
Liqun Chen
Ninghui Li
Kaitai Liang
Steve Schneider (Eds.)

LN
CS

 1
23

09

25th European Symposium
on Research in Computer Security, ESORICS 2020
Guildford, UK, September 14–18, 2020, Proceedings, Part II

Computer Security –
ESORICS 2020

Lecture Notes in Computer Science 12309

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Liqun Chen • Ninghui Li •

Kaitai Liang • Steve Schneider (Eds.)

Computer Security –

ESORICS 2020
25th European Symposium
on Research in Computer Security, ESORICS 2020
Guildford, UK, September 14–18, 2020
Proceedings, Part II

123

Editors
Liqun Chen
University of Surrey
Guildford, UK

Ninghui Li
Purdue University
West Lafayette, IN, USA

Kaitai Liang
Delft University of Technology
Delft, The Netherlands

Steve Schneider
University of Surrey
Guildford, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-59012-3 ISBN 978-3-030-59013-0 (eBook)
https://doi.org/10.1007/978-3-030-59013-0

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2680-4907
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0001-8365-6993
https://doi.org/10.1007/978-3-030-59013-0

Preface

The two volume set, LNCS 12308 and 12309, contain the papers that were selected for
presentation and publication at the 25th European Symposium on Research in Com-
puter Security (ESORICS 2020) which was held together with affiliated workshops
during the week September 14–18, 2020. Due to the global COVID-19 pandemic, the
conference and workshops ran virtually, hosted by the University of Surrey, UK. The
aim of ESORICS is to further research in computer security and privacy by establishing
a European forum, bringing together researchers in these areas by promoting the
exchange of ideas with system developers and by encouraging links with researchers in
related fields.

In response to the call for papers, 366 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty, and technical
quality. Except for a very small number of papers, each paper was carefully evaluated
by three to five referees and then discussed among the Program Committee. The papers
were reviewed in a single-blind manner. Finally, 72 papers were selected for presen-
tation at the conference, yielding an acceptance rate of 19.7%. We were also delighted
to welcome invited talks from Aggelos Kiayias, Vadim Lyubashevsky, and Rebecca
Wright.

Following the reviews two papers were selected for Best Paper Awards and they
share the 1,000 EUR prize generously provided by Springer: “Pine: Enabling
privacy-preserving deep packet inspection on TLS with rule-hiding and fast connection
establishment” by Jianting Ning, Xinyi Huang, Geong Sen Poh, Shengmin Xu, Jason
Loh, Jian Weng, and Robert H. Deng; and “Automatic generation of source lemmas in
Tamarin: towards automatic proofs of security protocols” by Véronique Cortier,
Stéphanie Delaune, and Jannik Dreier.

The Program Committee consisted of 127 members across 25 countries. There were
submissions from a total of 1,201 authors across 42 countries, with 24 countries
represented among the accepted papers.

ESORICS 2020 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We would also like to thank the organization/department
chair, Helen Treharne, the workshop chair, Mark Manulis, and all of the workshop
co-chairs, the poster chair, Ioana Boureanu, and the ESORICS Steering Committee. We
are also grateful to Huawei and IBM Research – Haifa, Israel for their sponsorship that
enabled us to support this online event. Finally, we would like to express our thanks to
the authors who submitted papers to ESORICS 2020. They, more than anyone else, are
what made this conference possible.

We hope that you will find the proceedings stimulating and a source of inspiration
for future research.

September 2020 Liqun Chen
Ninghui Li

Kaitai Liang
Steve Schneider

vi Preface

Organization

General Chair

Steve Schneider University of Surrey, UK

Program Chairs

Liqun Chen University of Surrey, UK
Ninghui Li Purdue University, USA

Steering Committee

Sokratis Katsikas (Chair)
Michael Backes
Joachim Biskup
Frederic Cuppens
Sabrina De Capitani di Vimercati
Dieter Gollmann
Mirek Kutylowski
Javier Lopez
Jean-Jacques Quisquater
Peter Y. A. Ryan
Pierangela Samarati
Einar Snekkenes
Michael Waidner

Program Committee

Yousra Aafer University of Waterloo, Canada
Mitsuaki Akiyama NTT, Japan
Cristina Alcaraz UMA, Spain
Frederik Armknecht Universität Mannheim, Germany
Vijay Atluri Rutgers University, USA
Erman Ayday Bilkent University, Turkey
Antonio Bianchi Purdue University, USA
Marina Blanton University at Buffalo, USA
Carlo Blundo Università degli Studi di Salerno, Italy
Alvaro Cardenas The University of Texas at Dallas, USA
Berkay Celik Purdue University, USA
Aldar C-F. Chan BIS Innovation Hub Centre, Hong Kong, China
Sze Yiu Chau Purdue University, USA

Rongmao Chen National University of Defense Technology, China
Yu Chen Shandong University, China
Sherman S. M. Chow The Chinese University of Hong Kong, Hong Kong,

China
Mauro Conti University of Padua, Italy
Frédéric Cuppens Polytechnique Montreal, Canada
Nora Cuppens-Boulahia Polytechnique Montréal, Canada
Marc Dacier Qatar Computing Research Institute (QCRI), Qatar
Sabrina De Capitani di

Vimercati
Università degli Studi di Milano, Italy

Hervé Debar Télécom SudParis, France
Stéphanie Delaune University of Rennes, CNRS, IRISA, France
Roberto Di Pietro Hamad Bin Khalifa University, Qatar
Tassos Dimitriou Kuwait University, Kuwait
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Changyu Dong Newcastle University, UK
Wenliang Du Syracuse University, Italy
Haixin Duan Tsinghua University, China
François Dupressoir University of Bristol, UK
Kassem Fawaz University of Wisconsin-Madison, USA
Jose-Luis Ferrer-Gomila University of the Balearic Islands, Spain
Sara Foresti DI, Università degli Studi di Milano, Italy
David Galindo University of Birmingham, UK
Debin Gao Singapore Management University, Singapore
Joaquin Garcia-Alfaro Télécom SudParis, France
Thanassis Giannetsos Technical University of Denmark, Denmark
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Guofei Gu Texas A&M University, USA
Zhongshu Gu IBM Research, USA
Jinguang Han Queen’s University Belfast, UK
Feng Hao University of Warwick, UK
Juan Hernández-Serrano Universitat Politècnica de Catalunya, Spain
Xinyi Huang Fujian Normal University, China
Syed Hussain Purdue University, USA
Shouling Ji Zhejiang University, China
Ghassan Karame NEC Laboratories Europe, Germany
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Stefan Katzenbeisser TU Darmstadt, Germany
Ryan Ko The University of Queensland, Australia
Steve Kremer Inria, France
Marina Krotofil FireEye, USA
Yonghwi Kwon University of Virginia, USA
Costas Lambrinoudakis University of Piraeus, Greece
Kyu Hyung Lee University of Georgia, USA

viii Organization

Shujun Li University of Kent, UK
Yingjiu Li Singapore Management University, Singapore
Kaitai Liang Delft University of Technology, The Netherlands
Hoon Wei Lim Trustwave, Singapore
Joseph Liu Monash University, Australia
Rongxing Lu University of New Brunswick, Canada
Xiapu Luo The Hong Kong Polytechnic University, Hong Kong,

China
Shiqing Ma Rutgers University, USA
Leandros Maglaras De Montfort University, UK
Mark Manulis University of Surrey, UK
Konstantinos

Markantonakis
Royal Holloway, University of London, UK

Fabio Martinelli IIT-CNR, Italy
Ivan Martinovic University of Oxford, UK
Sjouke Mauw University of Luxembourg, Luxembourg
Catherine Meadows NRL, USA
Weizhi Meng Technical University of Denmark, Denmark
Chris Mitchell Royal Holloway, University of London, UK
Tatsuya Mori Waseda University, Japan
Haralambos Mouratidis University of Brighton, UK
David Naccache Ecole normale supérieur, France
Siaw-Lynn Ng Royal Holloway, University of London, UK
Jianting Ning Singapore Management University, Singapore
Satoshi Obana Hosei University, Japan
Martín Ochoa Universidad del Rosario, Colombia
Rolf Oppliger eSECURITY Technologies, Switzerland
Manos Panousis University of Greenwich, UK
Olivier Pereira UCLouvain, Belgium
Günther Pernul Universität Regensburg, Germany
Joachim Posegga University of Passau, Germany
Indrajit Ray Colorado State University, USA
Kui Ren Zhejiang University, China
Giovanni Russello The University of Auckland, New Zealand
Mark Ryan University of Birmingham, UK
Reihaneh Safavi-Naini University of Calgary, Canada
Brendan Saltaformaggio Georgia Institute of Technology, USA
Pierangela Samarati Università degli Studi di Milano, Italy
Damien Sauveron XLIM, UMR University of Limoges, CNRS 7252,

France
Einar Snekkenes Norwegian University of Science and Technology,

Norway
Yixin Sun University of Virginia, USA
Willy Susilo University of Wollongong, Australia

Organization ix

Pawel Szalachowski SUTD, Singapore
Qiang Tang Luxembourg Institute of Science and Technology,

Luxembourg
Qiang Tang New Jersey Institute of Technology, USA
Juan Tapiador Universidad Carlos III de Madrid, Spain
Dave Jing Tian Purdue University, USA
Nils Ole Tippenhauer CISPA, Germany
Helen Treharne University of Surrey, UK
Aggeliki Tsohou Ionian University, Greece
Luca Viganò King’s College London, UK
Michael Waidner Fraunhofer, Germany
Cong Wang City University of Hong Kong, Hong Kong, China
Lingyu Wang Concordia University, Canada
Weihang Wang SUNY University at Buffalo, USA
Edgar Weippl SBA Research, Austria
Christos Xenakis University of Piraeus, Greece
Yang Xiang Swinburne University of Technology, Australia
Guomin Yang University of Wollongong, Australia
Kang Yang State Key Laboratory of Cryptology, China
Xun Yi RMIT University, Australia
Yu Yu Shanghai Jiao Tong University, China
Tsz Hon Yuen The University of Hong Kong, Hong Kong, China
Fengwei Zhang SUSTech, China
Kehuan Zhang The Chinese University of Hong Kong, Hong Kong,

China
Yang Zhang CISPA Helmholtz Center for Information Security,

Germany
Yuan Zhang Fudan University, China
Zhenfeng Zhang Chinese Academy of Sciences, China
Yunlei Zhao Fudan University, China
Jianying Zhou Singapore University of Technology and Design,

Singapore
Sencun Zhu Penn State University, USA

Workshop Chair

Mark Manulis University of Surrey, UK

Poster Chair

Ioana Boureanu University of Surrey, UK

Organization/Department Chair

Helen Treharne University of Surrey, UK

x Organization

Organizing Chair and Publicity Chair

Kaitai Liang Delft University of Technology, The Netherlands

Additional Reviewers

Abbasi, Ali
Abu-Salma, Ruba
Ahlawat, Amit
Ahmed, Chuadhry Mujeeb
Ahmed, Shimaa
Alabdulatif, Abdulatif
Alhanahnah, Mohannad
Aliyu, Aliyu
Alrizah, Mshabab
Anceaume, Emmanuelle
Angelogianni, Anna
Anglés-Tafalla, Carles
Aparicio Navarro, Francisco Javier
Argyriou, Antonios
Asadujjaman, A. S. M.
Aschermann, Cornelius
Asghar, Muhammad Rizwan
Avizheh, Sepideh
Baccarini, Alessandro
Bacis, Enrico
Baek, Joonsang
Bai, Weihao
Bamiloshin, Michael
Barenghi, Alessandro
Barrère, Martín
Berger, Christian
Bhattacherjee, Sanjay
Blanco-Justicia, Alberto
Blazy, Olivier
Bolgouras, Vaios
Bountakas, Panagiotis
Brandt, Markus
Bursuc, Sergiu
Böhm, Fabian
Camacho, Philippe
Cardaioli, Matteo
Castelblanco, Alejandra
Castellanos, John Henry
Cecconello, Stefano

Chaidos, Pyrros
Chakra, Ranim
Chandrasekaran, Varun
Chen, Haixia
Chen, Long
Chen, Min
Chen, Zhao
Chen, Zhigang
Chengjun Lin
Ciampi, Michele
Cicala, Fabrizio
Costantino, Gianpiero
Cruz, Tiago
Cui, Shujie
Deng, Yi
Diamantopoulou, Vasiliki
Dietz, Marietheres
Divakaran, Dinil Mon
Dong, Naipeng
Dong, Shuaike
Dragan, Constantin Catalin
Du, Minxin
Dutta, Sabyasachi
Eichhammer, Philipp
Englbrecht, Ludwig
Etigowni, Sriharsha
Farao, Aristeidis
Faruq, Fatma
Fdhila, Walid
Feng, Hanwen
Feng, Qi
Fentham, Daniel
Ferreira Torres, Christof
Fila, Barbara
Fraser, Ashley
Fu, Hao
Galdi, Clemente
Gangwal, Ankit
Gao, Wei

Organization xi

Gardham, Daniel
Garms, Lydia
Ge, Chunpeng
Ge, Huangyi
Geneiatakis, Dimitris
Genés-Durán, Rafael
Georgiopoulou, Zafeiroula
Getahun Chekole, Eyasu
Ghosal, Amrita
Giamouridis, George
Giorgi, Giacomo
Guan, Qingxiao
Guo, Hui
Guo, Kaiwen
Guo, Yimin
Gusenbauer, Mathias
Haffar, Rami
Hahn, Florian
Han, Yufei
Hausmann, Christian
He, Shuangyu
He, Songlin
He, Ying
Heftrig, Elias
Hirschi, Lucca
Hu, Kexin
Huang, Qiong
Hurley-Smith, Darren
Iadarola, Giacomo
Jeitner, Philipp
Jia, Dingding
Jia, Yaoqi
Judmayer, Aljosha
Kalloniatis, Christos
Kantzavelou, Ioanna
Kasinathan, Prabhakaran
Kasra Kermanshahi, Shabnam
Kasra, Shabnam
Kelarev, Andrei
Khandpur Singh, Ashneet
Kim, Jongkil
Koay, Abigail
Kokolakis, Spyros
Kosmanos, Dimitrios
Kourai, Kenichi
Koutroumpouchos, Konstantinos

Koutroumpouchos, Nikolaos
Koutsos, Adrien
Kuchta, Veronika
Labani, Hasan
Lai, Jianchang
Laing, Thalia May
Lakshmanan, Sudershan
Lallemand, Joseph
Lan, Xiao
Lavranou, Rena
Lee, Jehyun
León, Olga
Li, Jie
Li, Juanru
Li, Shuaigang
Li, Wenjuan
Li, Xinyu
Li, Yannan
Li, Zengpeng
Li, Zheng
Li, Ziyi
Limniotis, Konstantinos
Lin, Chao
Lin, Yan
Liu, Jia
Liu, Jian
Liu, Weiran
Liu, Xiaoning
Liu, Xueqiao
Liu, Zhen
Lopez, Christian
Losiouk, Eleonora
Lu, Yuan
Luo, Junwei
Ma, Haoyu
Ma, Hui
Ma, Jack P. K.
Ma, Jinhua
Ma, Mimi
Ma, Xuecheng
Mai, Alexandra
Majumdar, Suryadipta
Manjón, Jesús A.
Marson, Giorgia Azzurra
Martinez, Sergio
Matousek, Petr

xii Organization

Mercaldo, Francesco
Michailidou, Christina
Mitropoulos, Dimitris
Mohammadi, Farnaz
Mohammady, Meisam
Mohammed, Ameer
Moreira, Jose
Muñoz, Jose L.
Mykoniati, Maria
Nassirzadeh, Behkish
Newton, Christopher
Ng, Lucien K. L.
Ntantogian, Christoforos
Önen, Melek
Onete, Cristina
Oqaily, Alaa
Oswald, David
Papaioannou, Thanos
Parkinson, Simon
Paspatis, Ioannis
Patsakis, Constantinos
Pelosi, Gerardo
Pfeffer, Katharina
Pitropakis, Nikolaos
Poettering, Bertram
Poh, Geong Sen
Polato, Mirko
Poostindouz, Alireza
Puchta, Alexander
Putz, Benedikt
Pöhls, Henrich C.
Qiu, Tian
Radomirovic, Sasa
Rakotonirina, Itsaka
Rebollo Monedero, David
Rivera, Esteban
Rizomiliotis, Panagiotis
Román-García, Fernando
Sachidananda, Vinay
Salazar, Luis
Salem, Ahmed
Salman, Ammar
Sanders, Olivier
Scarsbrook, Joshua
Schindler, Philipp
Schlette, Daniel

Schmidt, Carsten
Scotti, Fabio
Shahandashti, Siamak
Shahraki, Ahmad Salehi
Sharifian, Setareh
Sharma, Vishal
Sheikhalishahi, Mina
Shen, Siyu
Shrishak, Kris
Simo, Hervais
Siniscalchi, Luisa
Slamanig, Daniel
Smith, Zach
Solano, Jesús
Song, Yongcheng
Song, Zirui
Soriente, Claudio
Soumelidou, Katerina
Spielvogel, Korbinian
Stifter, Nicholas
Sun, Menghan
Sun, Yiwei
Sun, Yuanyi
Tabiban, Azadeh
Tang, Di
Tang, Guofeng
Taubmann, Benjamin
Tengana, Lizzy
Tian, Yangguang
Trujillo, Rolando
Turrin, Federico
Veroni, Eleni
Vielberth, Manfred
Vollmer, Marcel
Wang, Jiafan
Wang, Qin
Wang, Tianhao
Wang, Wei
Wang, Wenhao
Wang, Yangde
Wang, Yi
Wang, Yuling
Wang, Ziyuan
Weitkämper, Charlotte
Wesemeyer, Stephan
Whitefield, Jorden

Organization xiii

Wiyaja, Dimaz
Wong, Donald P. H.
Wong, Harry W. H.
Wong, Jin-Mann
Wu, Chen
Wu, Ge
Wu, Lei
Wuest, Karl
Xie, Guoyang
Xinlei, He
Xu, Fenghao
Xu, Jia
Xu, Jiayun
Xu, Ke
Xu, Shengmin
Xu, Yanhong
Xue, Minhui
Yamada, Shota
Yang, Bohan
Yang, Lin
Yang, Rupeng
Yang, S. J.
Yang, Wenjie
Yang, Xu

Yang, Xuechao
Yang, Zhichao
Yevseyeva, Iryna
Yi, Ping
Yin, Lingyuan
Ying, Jason
Yu, Zuoxia
Yuan, Lun-Pin
Yuan, Xingliang
Zhang, Bingsheng
Zhang, Fan
Zhang, Ke
Zhang, Mengyuan
Zhang, Yanjun
Zhang, Zhikun
Zhang, Zongyang
Zhao, Yongjun
Zhong, Zhiqiang
Zhou, Yutong
Zhu, Fei
Ziaur, Rahman
Zobernig, Lukas
Zuo, Cong

xiv Organization

Keynotes

Decentralising Information
and Communications Technology:

Paradigm Shift or Cypherpunk Reverie?

Aggelos Kiayias

University of Edinburgh and IOHK, UK

Abstract. In the last decade, decentralisation emerged as a much anticipated
development in the greater space of information and communications technol-
ogy. Venerated by some and disparaged by others, blockchain technology
became a familiar term, springing up in a wide array of expected and some times
unexpected contexts. With the peak of the hype behind us, in this talk I look
back, distilling what have we learned about the science and engineering of
building secure and reliable systems, then I overview the present state of the art
and finally I delve into the future, appraising this technology in its potential to
impact the way we design and deploy information and communications tech-
nology services.

Lattices and Zero-Knowledge

Vadim Lyubashevsky

IBM Research - Zurich, Switzerland

Abstract. Building cryptography based on the presumed hardness of lattice
problems over polynomial rings is one of the most promising approaches for
achieving security against quantum attackers. One of the reasons for the pop-
ularity of lattice-based encryption and signatures in the ongoing NIST stan-
dardization process is that they are significantly faster than all other
post-quantum, and even many classical, schemes. This talk will discuss the
progress in constructions of more advanced lattice-based cryptographic primi-
tives. In particular, I will describe recent work on zero-knowledge proofs which
leads to the most efficient post-quantum constructions for certain statements.

Accountability in Computing

Rebecca N. Wright

Barnard College, New York, USA

Abstract. Accountability is used often in describing computer-security mech-
anisms that complement preventive security, but it lacks a precise, agreed-upon
definition. We argue for the need for accountability in computing in a variety of
settings, and categorize some of the many ways in which this term is used. We
identify a temporal spectrum onto which we may place different notions of
accountability to facilitate their comparison, including prevention, detection,
evidence, judgment, and punishment. We formalize our view in a utility-theo-
retic way and then use this to reason about accountability in computing systems.
We also survey mechanisms providing various senses of accountability as well
as other approaches to reasoning about accountability-related properties.
This is joint work with Joan Feigenbaum and Aaron Jaggard.

Contents – Part II

Formal Modelling

Automatic Generation of Sources Lemmas in TAMARIN: Towards Automatic
Proofs of Security Protocols . 3

Véronique Cortier, Stéphanie Delaune, and Jannik Dreier

When Is a Test Not a Proof? . 23
Eleanor McMurtry, Olivier Pereira, and Vanessa Teague

Hardware Fingerprinting for the ARINC 429 Avionic Bus 42
Nimrod Gilboa-Markevich and Avishai Wool

Applied Cryptography I

Semantic Definition of Anonymity in Identity-Based Encryption and Its
Relation to Indistinguishability-Based Definition . 65

Goichiro Hanaoka, Misaki Komatsu, Kazuma Ohara, Yusuke Sakai,
and Shota Yamada

SHECS-PIR: Somewhat Homomorphic Encryption-Based Compact
and Scalable Private Information Retrieval . 86

Jeongeun Park and Mehdi Tibouchi

Puncturable Encryption: A Generic Construction from Delegatable Fully
Key-Homomorphic Encryption . 107

Willy Susilo, Dung Hoang Duong, Huy Quoc Le, and Josef Pieprzyk

Analyzing Attacks

Linear Attack on Round-Reduced DES Using Deep Learning 131
Botao Hou, Yongqiang Li, Haoyue Zhao, and Bin Wu

Detection by Attack: Detecting Adversarial Samples
by Undercover Attack . 146

Qifei Zhou, Rong Zhang, Bo Wu, Weiping Li, and Tong Mo

Big Enough to Care Not Enough to Scare! Crawling to Attack
Recommender Systems . 165

Fabio Aiolli, Mauro Conti, Stjepan Picek, and Mirko Polato

Active Re-identification Attacks on Periodically Released Dynamic
Social Graphs . 185

Xihui Chen, Ema Këpuska, Sjouke Mauw, and Yunior Ramírez-Cruz

System Security II

Fooling Primality Tests on Smartcards . 209
Vladimir Sedlacek, Jan Jancar, and Petr Svenda

An Optimizing Protocol Transformation for Constructor Finite Variant
Theories in Maude-NPA . 230

Damián Aparicio-Sánchez, Santiago Escobar, Raúl Gutiérrez,
and Julia Sapiña

On the Privacy Risks of Compromised Trigger-Action Platforms 251
Yu-Hsi Chiang, Hsu-Chun Hsiao, Chia-Mu Yu,
and Tiffany Hyun-Jin Kim

Plenty of Phish in the Sea: Analyzing Potential Pre-attack Surfaces 272
Tobias Urban, Matteo Große-Kampmann, Dennis Tatang,
Thorsten Holz, and Norbert Pohlmann

Post-quantum Cryptography

Towards Post-Quantum Security for Cyber-Physical Systems:
Integrating PQC into Industrial M2M Communication 295

Sebastian Paul and Patrik Scheible

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 317
Zhuoran Zhang, Fangguo Zhang, and Haibo Tian

A Verifiable and Practical Lattice-Based Decryption Mix Net
with External Auditing. 336

Xavier Boyen, Thomas Haines, and Johannes Müller

A Lattice-Based Key-Insulated and Privacy-Preserving Signature
Scheme with Publicly Derived Public Key . 357

Wenling Liu, Zhen Liu, Khoa Nguyen, Guomin Yang, and Yu Yu

Post-Quantum Adaptor Signatures and Payment Channel Networks 378
Muhammed F. Esgin, Oğuzhan Ersoy, and Zekeriya Erkin

Security Analysis

Linear-Complexity Private Function Evaluation is Practical 401
Marco Holz, Ágnes Kiss, Deevashwer Rathee, and Thomas Schneider

xxii Contents – Part II

Certifying Decision Trees Against Evasion Attacks by Program Analysis 421
Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese

They Might NOT Be Giants Crafting Black-Box Adversarial Examples
Using Particle Swarm Optimization . 439

Rayan Mosli, Matthew Wright, Bo Yuan, and Yin Pan

Understanding Object Detection Through an Adversarial Lens 460
Ka-Ho Chow, Ling Liu, Mehmet Emre Gursoy, Stacey Truex,
Wenqi Wei, and Yanzhao Wu

Applied Cryptography II

Signatures with Tight Multi-user Security from Search Assumptions 485
Jiaxin Pan and Magnus Ringerud

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 505
Adam Janovsky, Matus Nemec, Petr Svenda, Peter Sekan,
and Vashek Matyas

MAC-in-the-Box: Verifying a Minimalistic Hardware Design
for MAC Computation. 525

Robert Küennemann and Hamed Nemati

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis
in FHE . 546

Anamaria Costache, Kim Laine, and Rachel Player

Blockchain I

How to Model the Bribery Attack: A Practical Quantification Method
in Blockchain . 569

Hanyi Sun, Na Ruan, and Chunhua Su

Updatable Blockchains. 590
Michele Ciampi, Nikos Karayannidis, Aggelos Kiayias,
and Dionysis Zindros

PrivacyGuard: Enforcing Private Data Usage Control with Blockchain
and Attested Off-Chain Contract Execution . 610

Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y. Thomas Hou

Contents – Part II xxiii

Applied Cryptography III

Identity-Based Authenticated Encryption with Identity Confidentiality 633
Yunlei Zhao

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 654
Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak,
and Haya Shulman

On Private Information Retrieval Supporting Range Queries 674
Junichiro Hayata, Jacob C. N. Schuldt, Goichiro Hanaoka,
and Kanta Matsuura

Blockchain II

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely. . . 697
Tuyet Duong, Lei Fan, Jonathan Katz, Phuc Thai,
and Hong-Sheng Zhou

Generic Superlight Client for Permissionless Blockchains. 713
Yuan Lu, Qiang Tang, and Guiling Wang

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network for Fun
and Profit. 734

Ahmet Kurt, Enes Erdin, Mumin Cebe, Kemal Akkaya,
and A. Selcuk Uluagac

Author Index . 757

xxiv Contents – Part II

Contents – Part I

Database and Web Security

Pine: Enabling Privacy-Preserving Deep Packet Inspection on TLS
with Rule-Hiding and Fast Connection Establishment 3

Jianting Ning, Xinyi Huang, Geong Sen Poh, Shengmin Xu,
Jia-Chng Loh, Jian Weng, and Robert H. Deng

Bulwark: Holistic and Verified Security Monitoring of Web Protocols 23
Lorenzo Veronese, Stefano Calzavara, and Luca Compagna

A Practical Model for Collaborative Databases: Securely Mixing,
Searching and Computing . 42

Shweta Agrawal, Rachit Garg, Nishant Kumar, and Manoj Prabhakaran

System Security I

Deduplication-Friendly Watermarking for Multimedia Data
in Public Clouds . 67

Weijing You, Bo Chen, Limin Liu, and Jiwu Jing

DANTE: A Framework for Mining and Monitoring Darknet Traffic 88
Dvir Cohen, Yisroel Mirsky, Manuel Kamp, Tobias Martin,
Yuval Elovici, Rami Puzis, and Asaf Shabtai

Efficient Quantification of Profile Matching Risk in Social Networks Using
Belief Propagation. 110

Anisa Halimi and Erman Ayday

Network Security I

Anonymity Preserving Byzantine Vector Consensus 133
Christian Cachin, Daniel Collins, Tyler Crain, and Vincent Gramoli

CANSentry: Securing CAN-Based Cyber-Physical Systems against Denial
and Spoofing Attacks . 153

Abdulmalik Humayed, Fengjun Li, Jingqiang Lin, and Bo Luo

Distributed Detection of APTs: Consensus vs. Clustering 174
Juan E. Rubio, Cristina Alcaraz, Ruben Rios, Rodrigo Roman,
and Javier Lopez

Designing Reverse Firewalls for the Real World . 193
Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina Onete,
and Thyla van der Merwe

Software Security

Follow the Blue Bird: A Study on Threat Data Published on Twitter 217
Fernando Alves, Ambrose Andongabo, Ilir Gashi, Pedro M. Ferreira,
and Alysson Bessani

Dynamic and Secure Memory Transformation in Userspace 237
Robert Lyerly, Xiaoguang Wang, and Binoy Ravindran

Understanding the Security Risks of Docker Hub . 257
Peiyu Liu, Shouling Ji, Lirong Fu, Kangjie Lu, Xuhong Zhang,
Wei-Han Lee, Tao Lu, Wenzhi Chen, and Raheem Beyah

DE-auth of the Blue! Transparent De-authentication Using Bluetooth
Low Energy Beacon . 277

Mauro Conti, Pier Paolo Tricomi, and Gene Tsudik

Similarity of Binaries Across Optimization Levels and Obfuscation 295
Jianguo Jiang, Gengwang Li, Min Yu, Gang Li, Chao Liu, Zhiqiang Lv,
Bin Lv, and Weiqing Huang

HART: Hardware-Assisted Kernel Module Tracing on Arm 316
Yunlan Du, Zhenyu Ning, Jun Xu, Zhilong Wang, Yueh-Hsun Lin,
Fengwei Zhang, Xinyu Xing, and Bing Mao

Zipper Stack: Shadow Stacks Without Shadow . 338
Jinfeng Li, Liwei Chen, Qizhen Xu, Linan Tian, Gang Shi, Kai Chen,
and Dan Meng

Restructured Cloning Vulnerability Detection Based on Function Semantic
Reserving and Reiteration Screening . 359

Weipeng Jiang, Bin Wu, Xingxin Yu, Rui Xue, and Zhengmin Yu

LegIoT: Ledgered Trust Management Platform for IoT 377
Jens Neureither, Alexandra Dmitrienko, David Koisser,
Ferdinand Brasser, and Ahmad-Reza Sadeghi

Machine Learning Security

PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 399
Yanjun Zhang, Guangdong Bai, Xue Li, Caitlin Curtis, Chen Chen,
and Ryan K. L. Ko

xxvi Contents – Part I

An Efficient 3-Party Framework for Privacy-Preserving Neural
Network Inference. 419

Liyan Shen, Xiaojun Chen, Jinqiao Shi, Ye Dong, and Binxing Fang

Deep Learning Side-Channel Analysis on Large-Scale Traces 440
Loïc Masure, Nicolas Belleville, Eleonora Cagli,
Marie-Angela Cornélie, Damien Couroussé, Cécile Dumas,
and Laurent Maingault

Towards Poisoning the Neural Collaborative Filtering-Based
Recommender Systems . 461

Yihe Zhang, Jiadong Lou, Li Chen, Xu Yuan, Jin Li, Tom Johnsten,
and Nian-Feng Tzeng

Data Poisoning Attacks Against Federated Learning Systems 480
Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu

Interpretable Probabilistic Password Strength Meters via Deep Learning. 502
Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi

Polisma - A Framework for Learning Attribute-Based Access
Control Policies . 523

Amani Abu Jabal, Elisa Bertino, Jorge Lobo, Mark Law,
Alessandra Russo, Seraphin Calo, and Dinesh Verma

A Framework for Evaluating Client Privacy Leakages
in Federated Learning . 545

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow,
Mehmet Emre Gursoy, Stacey Truex, and Yanzhao Wu

Network Security II

An Accountable Access Control Scheme for Hierarchical Content in Named
Data Networks with Revocation . 569

Nazatul Haque Sultan, Vijay Varadharajan, Seyit Camtepe,
and Surya Nepal

PGC: Decentralized Confidential Payment System with Auditability 591
Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au

Secure Cloud Auditing with Efficient Ownership Transfer 611
Jun Shen, Fuchun Guo, Xiaofeng Chen, and Willy Susilo

Privacy

Encrypt-to-Self: Securely Outsourcing Storage . 635
Jeroen Pijnenburg and Bertram Poettering

Contents – Part I xxvii

PGLP: Customizable and Rigorous Location Privacy Through
Policy Graph . 655

Yang Cao, Yonghui Xiao, Shun Takagi, Li Xiong, Masatoshi Yoshikawa,
Yilin Shen, Jinfei Liu, Hongxia Jin, and Xiaofeng Xu

Where Are You Bob? Privacy-Preserving Proximity Testing
with a Napping Party. 677

Ivan Oleynikov, Elena Pagnin, and Andrei Sabelfeld

Password and Policy

Distributed PCFG Password Cracking . 701
Radek Hranický, Lukáš Zobal, Ondřej Ryšavý, Dušan Kolář,
and Dávid Mikuš

Your PIN Sounds Good! Augmentation of PIN Guessing Strategies
via Audio Leakage . 720

Matteo Cardaioli, Mauro Conti, Kiran Balagani, and Paolo Gasti

GDPR – Challenges for Reconciling Legal Rules with Technical Reality 736
Mirosław Kutyłowski, Anna Lauks-Dutka, and Moti Yung

Author Index . 757

xxviii Contents – Part I

Formal Modelling

Automatic Generation of Sources
Lemmas in Tamarin: Towards Automatic

Proofs of Security Protocols

Véronique Cortier1, Stéphanie Delaune2(B), and Jannik Dreier1

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
2 Univ Rennes, CNRS, IRISA, Rennes, France

stephanie.delaune@irisa.fr

Abstract. Tamarin is a popular tool dedicated to the formal analysis
of security protocols. One major strength of the tool is that it offers an
interactive mode, allowing to go beyond what push-button tools can typ-
ically handle. Tamarin is for example able to verify complex protocols
such as TLS, 5G, or RFID protocols. However, one of its drawback is
its lack of automation. For many simple protocols, the user often needs
to help Tamarin by writing specific lemmas, called “sources lemmas”,
which requires some knowledge of the internal behaviour of the tool.

In this paper, we propose a technique to automatically generate
sources lemmas in Tamarin. We prove formally that our lemmas indeed
hold, for arbitrary protocols that make use of cryptographic primitives
that can be modelled with a subterm convergent equational theory (mod-
ulo associativity and commutativity). We have implemented our app-
roach within Tamarin. Our experiments show that, in most examples
of the literature, we are now able to generate suitable sources lemmas
automatically, in replacement of the hand-written lemmas. As a direct
application, many simple protocols can now be analysed fully automati-
cally, while they previously required user interaction.

1 Introduction

Security protocols are notoriously subtle to design and analyse. Many different
tools have been developed in order to detect flaws and prove security properties
such as authentication, secrecy, or privacy. However, even a simple property like
secrecy is undecidable in general [9]. Hence several tools focus on the analysis of
a decidable fragment, e.g. by bounding the number of sessions (e.g. AVISPA [1],
DeepSec [6]). But when considering wider classes of protocols, more general cryp-
tographic primitives, and an unlimited number of sessions, one necessarily goes
beyond the decidable fragment, possibly losing termination or even automation.

This work has been partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant
agreement No 714955-POPSTAR and grant agreement No 645865-SPOOC), as well as
from the French National Research Agency (ANR) under the project TECAP.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 3–22, 2020.
https://doi.org/10.1007/978-3-030-59013-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_1

4 V. Cortier et al.

One popular tool in that direction is ProVerif [4], a push-button tool that
has been able to analyse hundred of protocols including e.g. TLS 1.3 [3], the
ARINC823 avionic protocol [5], or the Neuchâtel voting protocol [7]. However,
ProVerif may fail to prove some protocols because of some internal approxima-
tions. In that case, the user must either simplify the model or just give up.

Another approach has been developed in the tool Tamarin [11]. One key
feature of Tamarin is that it provides an interactive mode: if the tool fails to
automatically prove a property by itself, the user may help the tool, for exam-
ple by writing intermediate lemmas, or by manually guiding the proof search.
Thanks to this approach, Tamarin supports many features that are typically
out of reach of many tools (Diffie-Hellman, stateful protocols), and has been
able to prove complex protocols such as 5G AKA [2] with exclusive or, group
key agreement protocols [13], or Noise framework [10] with Diffie-Hellman keys.

However, the fact that Tamarin is not fully automatic makes it more difficult
to use, at least in the learning phase. In particular, Tamarin fails to automat-
ically prove some “simple” protocols of the literature such as the well-known
Needham-Schroder protocol or the Denning-Sacco protocol. This is a barrier
when teaching the tool for example at the university or in summer schools.

Automation in Tamarin fails in particular if it encounters “partial decon-
structions”. To speed up the analysis, Tamarin computes in advance, for each
protocol and intruder fact, all possible origins (called sources) of these facts,
which are then repeatedly used in later steps of the analysis. However, this
pre-computation can stop in an incomplete stage if Tamarin lacks sufficient
information about the origins of some fact(s). In practice, as soon as Tamarin
encounters such a “partial deconstruction”, it is unlikely that it will be able to
prove any interesting property automatically. To solve the issue, the user needs to
manually write a “sources lemma” to help Tamarin. Unfortunately, this manual
step has to be done for many protocols, even simple ones.

Our contribution. In this paper, we automate the generation of sources lemmas.
The main idea is to provide a systematic analysis of the origins of a term in a
protocol. Intuitively, either a term has been forged by the attacker, or it comes
from an earlier step in the protocol. To avoid the exploration of too many cases,
we base our analysis on “deepest protected” subterms. We prove that the sources
lemmas that we generate are indeed true. Our result holds for any protocol
provided that the cryptographic primitives can be expressed as a convergent
subterm theory (modulo associativity and commutativity) with the finite variant
property. This is the case of most standard cryptographic primitives such as
symmetric and asymmetric encryptions, as well as signatures.

Interestingly, the correctness of Tamarin does not rely on the fact that
we are able to prove that our sources lemmas hold. Tamarin will verify them
anyway (as done with sources lemmas written by the user). This means that
our technique can also be used even in cases where our theoretical justification
does not apply. Our theoretical justification simply explains why Tamarin has
a good chance to work. We have implemented our technique in Tamarin, as a
new option --auto-sources. With this option, when partial deconstructions are

Automatic Generation of Sources Lemmas in Tamarin 5

detected, a sources lemma is generated automatically and added to the original
model, so that the user can see it and possibly amend it, if needed. We have
validated our approach with two kind of experiments.

– First, we consider simple protocols of the literature, used as benchmarks for
most tools. We modelled a handful of them and ran Tamarin. Our approach is
able to solve all partial deconstructions. Actually, we found out that for these
simple examples, this was the only reason they were not entirely automatic,
hence thanks to our --auto-sources option, Tamarin can now analyse all
these examples automatically.

– We also wanted to evaluate how our technique behaves on more complex
protocols and on protocols that have not been specified by ourselves. Hence
we considered all the models provided within Tamarin’s distribution, and
that contained “partial deconstructions”. For a large majority of them, our
technique successfully close all partial deconstructions and for about a half of
them, Tamarin is now even able to analyse the whole protocol automatically.

Unsurprisingly, complex protocols still require the existing manually written
intermediate lemmas. However, our technique considerably improves the degree
of automation of Tamarin, yielding a better trade-off between what can be done
automatically, and what needs to be done manually.

2 Overview

We illustrate our technique on a simple challenge-response protocol.

I → R : {req, I, n}pk(R)

R → I : {rep, n}pk(I)
The initiator sends a nonce n encrypted with the public key of the responder,
and then waits for the corresponding answer, i.e. the nonce n encrypted with
his own public key. The symbols req and rep are constants used to avoid con-
fusion between the two types of messages: they indicate whether the ciphertext
corresponds to a request or a reply. In Tamarin the responder role is as follows:

rule Rule_R:
[In(aenc{’req’, I, x}pk(ltkR)), !Ltk(R, ltkR), !Pk(I, pkI)]
--[]-> [Out(aenc{’rep’, x}pkI)]

Intuitively, this rule can be read as follows: at the reception of a message
of the form aenc{’req’, I, x}pk(ltkR), the agent R (with private key ltkR)
sends the message aenc{’rep’, x}pkI on the network to the agent I (with
public key pkI). Note that there are other rules modelling the Initiator role, as
well as the key generation. The latter rule creates the !LtK and !Pk facts used
here to retrieve the agents’ public and private keys.

This protocol rule models the behaviour of the responder role. It can be trig-
gered arbitrary many times, possibly with different values for x. When loading

6 V. Cortier et al.

this model in Tamarin, it turns out that the proof attempt of e.g. a simple
secrecy property of nonce n does not terminate due to partial deconstructions.
In Tamarin’s interactive interface, they are identified by dashed green arrows
as shown in Fig. 1. The green arrow symbolises a deconstruction chain. Decon-
struction chains are used in Tamarin’s intruder reasoning to extract values from
messages output by the protocol. In this example, Tamarin tries to extract a
fresh value from the message output by the rule Rule R (at the top). Tamarin
has computed that if it can decrypt the output of the rule (rule d 0 adec) and
then extract the second term (rule d 0 snd), it obtains the value x.7 (a renam-
ing of the variable x given in the initial rule definition). However, here Tamarin
is unable to continue its deconstruction, as x.7 can potentially be any value:
directly the desired fresh value, or a pair of values, or an encryption, or some-
thing completely different. As this deconstruction is incomplete, it is called a
partial deconstruction.

Fig. 1. Example of a partial deconstruction

Automatic Generation of Sources Lemmas in Tamarin 7

In the above example, Tamarin does not know anything about the contents
of the variable x.7, hence, to ensure soundness, it is obliged to consider this case
as a potential source for any value, which leads to an explosion of the number
of cases, and often to non termination issues. This is the case here: the rule
Rule R producing the x.7 requires an input, which could itself be the result of
(a different instantiation of) the same source, and so on.

To get rid of partial deconstructions, Tamarin uses source lemmas. They are
a special type of lemmas which are applied at the precomputation phase. More
precisely, after computing the initial raw sources without any lemmas, Tamarin
computes the refined sources using the source lemmas to hopefully discard partial
deconstructions. To ensure that the refined sources are correct, one further has
to prove the source lemmas correct, using only the raw sources. This can be done
either automatically by Tamarin or manually in the interactive mode.

The idea behind a source lemma is to provide more information regarding
the origin of the message mentioned in the partial deconstruction, i.e., the one
corresponding to the variable identified by the dashed green arrow. Going back
to our example and assuming that R(aenc{’req’, I, x}pk(ltkR), x) (resp.
I(aenc{’req’, I, n}pkR)) is added as a label to the responder rule Rule R
(resp. initiator rule), a source lemma could be as follows:

lemma typing [sources]:
"All x m #i. R(m,x)@#i ==> ((Ex #j. I(m)@#j & #j < #i)

|(Ex #j. KU(x)@#j & #j < #i)) "

This lemma says that whenever the responder receives the value x inside a mes-
sage m (at time point #i), either this message (actually a ciphertext) has been
forged by the attacker who therefore knew x before, denoted KU(x), or it has
been produced (for the first time) by another protocol rule, here the one denoted
I(m). Indeed, a quick inspection of the protocol shows that here this is the only
option to produce an output having the right format.

When generating the refined sources from the raw sources, Tamarin applies
the source lemmas. In this case, the source lemma above will allow it to learn
that x is either a nonce (generated by the initiator role) or a message already
known by the attacker. This solves the partial deconstruction as the previous
source will be refined into two refined sources. The first one is the case where the
intruder learns the nonce generated by the initiator, by passing the initiator’s
message to the responder, and then extracting the nonce like the variable x.7
above. However, Tamarin now knows that x.7 is not any value, but the initiator’s
nonce. The second case will be discarded by Tamarin since, if the intruder
already knew x before, it is useless to extract it again.

3 Tamarin Syntax and Semantics

We explain here the syntax and semantics of Tamarin, as presented in [8,12],
as necessary background for the remainder of the paper.

8 V. Cortier et al.

3.1 Term Algebra

Cryptographic messages are represented by a (sorted) term algebra. In Tamarin,
terms are all of sort msg and there are two incomparable subsorts fr and pub used
to represent respectively fresh names (e.g. nonces or keys) and public names (e.g.
agent names). We assume an infinite set N of names of each sort and an infinite
set V of variables of each sort as well. A variable x of sort s is denoted x : s.
The sort msg is often omitted, that is, the variable x typically denotes a variable
of sort msg. Each cryptographic primitive is represented by a function symbol
f : s1 × · · · × sn → s that takes n arguments of sort resp. s1, . . . , sn and returns a
term of sort s. We assume given a signature Σ, i.e. a set of function symbols with
their arities. Then the set of terms is built from the application of symbols of Σ
to names and variables and is denoted TΣ(N ,V). The set of variables occurring
in a term t is denoted vars(t). A term is ground if it contains no variable. A
substitution θ is grounding for t if tθ is ground.

Example 1. The standard primitives are often expressed by the signature

Σstand = {enc(,),dec(,), encA(,),decA(,),pk(), 〈 , 〉, fst(), snd()}

where all functions are of sort msg× · · · ×msg → msg. They model respectively
symmetric encryption and decryption, asymmetric encryption and decryption,
and concatenation and (left and right) projections.

The properties of the primitives are reflected through an equational theory E.
In Tamarin, user defined equational theories are given as a convergent rewrite
system. Tamarin additionally supports built-in theories such exclusive or [8]
and a set of equations for Diffie-Hellman (DH) exponentiation [12]. The equality
modulo associativity and commutativity (AC) is denoted =AC and the normal
form of a term t, modulo AC, is denoted t↓ (we consider any representative of
the normal form of t). Two terms t1 and t2 are unifiable (modulo AC) if there
exists a substitution θ such that t1θ =AC t2θ. Positions of a term t are defined
as usual considering AC operators as binary symbols. A subterm of t is a term t′

such that t′ = t|p for some position p.
Tamarin assumes equational theories that have the finite variant property,

that is where all the instances of a given term follow a finite number of differ-
ent patterns. Formally, a convergent equational theory E has the finite variant
property if for any term t, there exists a finite number of substitutions σ1, . . . , σk

such that, for any substitution θ, there is 1 ≤ i ≤ k, there exists a substitution θ′

such that (tθ)↓ =AC tσiθ
′. A particular class of rewriting systems is the class of

subterm rewriting system. A rewriting system is said subterm if it is defined by a
set of equations of the form l → r such that r is a subterm of l or a (public) con-
stant. Many cryptographic primitives can be modelled by (convergent) subterm
rewriting systems, such as signatures, symmetric and asymmetric encryption,
pair, hash, etc. Our theoretical development only consider equational theories
that can be defined by a subterm rewriting system, convergent modulo AC, that
have the finite variant property. Tamarin is not limited to subterm equational

Automatic Generation of Sources Lemmas in Tamarin 9

theories, and actually our approach can be applied in this general setting too
relying on Tamarin to establish the correctness of the generated lemmas.

Example 2. Orienting from left to right the equations below yields a subterm
convergent rewrite system that is usually used to model concatenation and asym-
metric encryption. Here, there is no AC symbol.

decA(encA(x,pk(y)), y) = x fst(〈x, y〉) = x snd(〈x, y〉) = y

In what follows, we will consider sets and multisets. Given a multiset S,
set(S) denotes the set of its elements. The symbol ⊆ denotes the set inclusion.
We will write S ⊆ S′ even if S and S′ are multisets, which is then interpreted
as set(S) ⊆ set(S′). In contrast, ⊆� denotes the multiset inclusion. Similarly, ∪�

denotes the multiset union and \� the multiset difference.

3.2 Transition System

In Tamarin, a protocol execution is modelled as a transition system where a
state contains a multiset of facts, representing the current knowledge of the
attacker and the current steps of the protocol, for each agent and each session.
Formally, we assume a set of fact symbols F partitioned into linear and persistent
fact symbols. A fact is an expression F(t1, . . . , tn) where F ∈ F and t1, . . . , tn ∈
TΣ(N ,V). Given a multiset of facts F , lfacts(F) denotes the multiset of its linear
facts while pfacts(F) denotes the multiset of its persistent facts.

Linear facts represent resources that are consumed. Tamarin includes three
pre-defined linear fact symbols: Fr(n) models the generation of a fresh name n,
Out(m) represents a message m sent over the network by a participant, and
In(m) denotes that the adversary has sent message m, that can then be received
by an agent of the protocol. Persistent facts represent facts that remain forever
and are not consumed by rules. Tamarin includes the persistent fact symbol K
that models the knowledge of the attacker, as well as K↑ and K↓ that allow to
distinguish between the terms built by the attacker and those obtained from
listening to the network or by decomposing learned messages. Then the protocol
may use other user defined facts, that can be either linear or persistent.

The protocol execution is specified through labelled multiset rewriting rules
[l]−−[a]→[r] where l, a, r are multisets of facts. The multiset l denotes the
premises of the rule that need to be present in the state in order for the rule to
be executed; a denotes the actions of the rule (later used to specify properties),
while r contains the conclusions, added to the state. There are three kinds of
rules.

Fresh name generation (Fresh). This is the only rule that can produce facts of
the form Fr(n). Moreover, to ensure freshness, a distinct name n is used for each
application.

[]−−[]→[Fr(x : fr)]

10 V. Cortier et al.

Message deduction rules (MD). They are pre-defined in Tamarin and represents
the attacker’s actions.

[Out(x)]−−[]→[K↓(x)] and [K↑(x)]−−[K(x)]→[In(x)]

model the fact that the attacker can learn any message sent by the protocol and
conversely, may send any message of her knowledge. Note that this is the only
rule where the predicate K appears as an action of a rule. The rules

[]−−[K↑(x)]→[K↑(x : pub)] and [Fr(x : fr)]−−[K↑(x)]→[K↑(x : fr)]

express respectively that the attacker can learn any public name and can cre-
ate fresh name on his own. Finally, the attacker can extend his knowledge by
applying function symbols. The intuitive rule is:

[K(x1), . . . ,K(xn)]−−[]→[K(f(x1, . . . , xn))] for any f ∈ Σ

Actually, this rule is split into two cases in Tamarin, depending on whether the
attacker is building a term, or decomposing it. Formally, for any substitution θ
(in normal form), we consider the rule

[K↑(x1θ), . . . ,K↑(xnθ)]−−[K↑(f(x1, . . . , xn)θ)]→[K↑(f(x1, . . . , xn)θ)]

when f(x1, . . . , xn)θ is in normal form. When the term f(x1, . . . , xn)θ reduces to a
subterm of xi0θ for some i0 (remember that we only consider subterm theories),
then we consider

[Kα1(x1θ), . . . ,Kαn(xnθ)]−−[K↓(f(x1, . . . , xn)θ ↓)]→[K↓(f(x1, . . . , xn)θ
⏐
�)]

where αi =↑ for all i �= i0 and αi0 =↓. Intuitively, the deduction rule is anno-
tated with K↑ when the attacker applies a “constructor” term such as an encryp-
tion and a pair. It can also be annotated with K↑ when the attacker applies a
deconstructor (for example, a decryption), if the term cannot be further reduced
(for example, the decryption fails). Conversely, the deduction rule is annotated
with K↓ when the attacker decomposes a term. Finally, it is possible to switch
from K↓ to K↑ thanks to the “coerce” rule:

[K↓(m)]−−[K↑(m)]→[K↑(m)]

for any m in normal form that is not a pair.

Protocol rules. Then the protocol as well as additional attacker capabilities are
specified through protocol rules, that are multiset rewriting rules that satisfy
some conditions.

Definition 1. A protocol rule is a multiset rewriting rule [l]−−[a]→[r] such that

1. it does not contain fresh names and Fr does not occur in r
2. K, K↑, K↓, and Out do not occur in l

Automatic Generation of Sources Lemmas in Tamarin 11

3. K, K↑, K↓, In do not occur in r
4. vars(r) ⊆ vars(l) ∪ {x ∈ V | x : pub}.
The first condition guarantees in particular that fresh names are only produced
thanks to the fresh name generation rule. The last three rules are easily met by
any rule modelling a protocol step.

Example 3. Going back to our running example, the rule given in Sect. 2 is a
protocol rule where Ltk and Pk are user-defined persistent facts used to model
generation of long-term keys. Actually, our model contains the following rule:

[Fr(xsk)]−−[]→[!Ltk(xid, xsk), !Pk(xid,pk(xsk)),Out(pk(xsk))]

where xsk is variable of sort fr, and xid is a variable of sort pub. This proto-
col rule represents the possibility to generate key pairs (xsk,pk(xsk)) for any
identity xid. The public part of the key is revealed to the attacker.

3.3 Execution Traces

A set of protocol rules P induces a transition relation →P between states.
Namely, we have S �set(aθ)

P S′ if there exists a rule ru ∈ P ∪ MD ∪ {Fresh}
and a grounding substitution θ for ru such that

– lfacts(lθ) ⊆� S, the linear facts of lθ should be present in S, with enough
occurrences,

– pfacts(lθ) ⊆ S,
– and S′ = (S �

lfacts(lθ)) ∪# rθ. The linear facts of lθ are removed and all
the conclusion facts are added to the state.

Moreover, if the applied rule is the Fresh rule then rθ = {Fr(n)} and n must be
a new name not used earlier. The execution of a protocol is simply modelled by
a sequence of transitions. A trace of a protocol is the sequence of actions that
appear in the execution. Formally, we have that:

traces(P) = {[A1, . . . , An] | ∅ �A1
P · · · �An

P S′}.

Example 4. Continuing Example 3, the protocol rule modelling key generation
can be used twice (or even more) to generate two key pairs for two different
identities leading to the following trace:

{} � {Fr(ska)} � Fa ∪ {Out(pk(ska))}
� {Fr(skb)} � Fa ∪ Fb ∪ {Out(pk(ska)),Out(pk(skb))}
� Fa ∪ Fb ∪ {K↓(pk(ska)),Out(pk(skb))}

where Fa = {!Ltk(A, ska), !Pk(A,pk(ska))}, Fb = {!Ltk(B, skb), !Pk(B,
pk(skb))}. Here ska and skb are names of sort fr whereas A,B are public names
of sort pub. This corresponds to the application of the Fresh rule followed by
the protocol rule to obtain key material for the first agent A and then for a sec-
ond agent B. The last rule corresponds to an application of an MD rule adding
the public key of A to the knowledge of the attacker.

12 V. Cortier et al.

3.4 Properties

Security properties are expressed as properties on the traces of a protocol.
Tamarin offers a first order logic to specify properties. Formulas make use of
variables of a novel sort temp to reason about when a fact occurs and to be
able to express that some event occurs before another one. The full syntax and
semantics of the logic is provided in [12]. We provide here only informally the
semantics of atomic formulas:

– F@i, where i is of sort temp, refers to the fact F that occurs in the ith element
of the trace;

– i
.= j expresses that the timepoints i and j are equal;

– i � j expresses that timepoint i occurs before j;
– t1 ≈ t2 says that t1 and t2 are equal (modulo the equational theory).

The first order logic is built from atomic formulas and closed by the boolean
connectors ∨, ∧, and ¬, as well as the quantificators ∃ and ∀.

A set of protocol rules P satisfies a formula φ, denoted P |= φ if, for any
trace tr ∈ traces(P), then tr satisfies φ.

Example 5. Continuing the running example, a typical lemma expressing nonce
secrecy of the challenge is as follows:

lemma nonce_secrecy:
"not(Ex A B s #i #j. (SecretI(A, B, s)@#i & K(s)@#j))"

This requires us to annotate the rule of the Initiator role with the action fact
SecretI. Then intuitively this lemma expresses that there does not exit any
trace such that SecretI(A,B,s) occurs at stage i (for some A, B, and s) and
the attacker knows s at stage j. If we consider only the three protocol rules
mentioned so far (initiator’s rule, responder’s rule, and key generation), then
this security property is satisfied. However, as expected, the same lemma is not
satisfied as soon as we model corruption, for example with the following rule.

rule Reveal_ltk: [!Ltk(xid, xsk)] --[RevLtk(xid)]-> [Out(xsk)]

Tamarin also allows to express diff-equivalence, a refined notion of equiva-
lence. This can be used for example to state that a protocol preserves unlinkabil-
ity, anonymity, or other privacy properties such as ballot privacy. For example,
the fact that Alice remains anonymous is often expressed as the property that
P (Alice) ∼ P (Bob). This intuitively says that an adversary should not see the
difference when Alice is playing protocol P or Bob is playing protocol P . The
formal definition of diff-equivalence can be found in [12]. We do not need to
provide it here as our automatically generated lemmas are simple trace prop-
erties and do not use diff-equivalence. Note however that our approach applies
to protocols with diff-equivalence as well since our generated lemmas also helps
Tamarin to terminate in the case of diff-equivalence properties.

Automatic Generation of Sources Lemmas in Tamarin 13

4 Automatically Generated Sources Lemmas

Whenever Tamarin fails to complete a deconstruction, we aim at providing the
tool with a sources lemma that resolves the partial deconstruction. We formalise
here our approach and prove it to be correct.

4.1 Definitions

We introduce the notion of protected term, which is any term that is headed
by a function symbol that is not a pair (because we know the adversary can
always open such terms) nor an AC symbol (simply because our heuristic does
not apply to case of failures due to an AC theory).

Definition 2. A protected term t is a term whose head symbol is not 〈 , 〉 nor
an AC symbol. Given a term t and a variable x occurring in t, we say that t′

is a deepest protected subterm w.r.t. x if t′ is a protected subterm of t that
contains x and such that one of the paths from the root of t′ to x contains only
pair symbols 〈 , 〉 (except for head symbol at top level).

Intuitively, if t′ is a deepest protected subterm w.r.t. x, then the only way to
obtain t′ is either by extracting it directly from some output, or by building it,
in which case x is already known to the attacker.

Example 6. Let t = enc(〈x, enc(〈b, x〉, k2)〉, k1). There are two deepest protected
subterms w.r.t. x, namely t itself and t′ = enc(〈b, x〉, k2).

We denote by Stpair(u) the set of subterms of u that can be obtained from u
simply by projecting. Formally, Stpair(u) is formally defined as

Stpair(u) =
{ {u} ∪ Stpair(u1) ∪ Stpair(u2) if u = 〈u1, u2〉

{u} otherwise

Normalised traces. In order to keep track of the origin of a protected subterm,
we need to assume that the shape of a term is not modified by the application
of the equational theory. Fortunately, since we assume an equational theory
with the finite variant property, it is possible to compute in advance the shapes
of all the terms obtained after normalisation. Given a set of protocol rules P ,
Tamarin computes the variants Variant(P) of P such that, for any rule ru ∈ P ,
for any substitution θ, there is ru ′ ∈ Variant(P) and a substitution θ′ such that
ruθ =E ru ′θ′ and (ru ′, θ′) is normalised, that is, for any fact F (u′) occurring
in ru ′, we have that (uθ′)

⏐
� =AC u′θ′. Moreover, ru ′ = (ruσ)

⏐
� for some σ.

Tamarin considers only traces that are normalised, i.e. executions of the
form ∅ �A1

Variant(P) S1 · · · �An

Variant(P) Sn and such that:

– the execution involves only rules ru ∈ Variant(P) and substitutions θ such
that (ru, θ) is normalised;

14 V. Cortier et al.

– pairs are always decomposed before been used, that is, if K↑(u) appears in
the left-hand-side of Ai then K↑(t) ∈ Si−1 for any t ∈ Stpair(u)1.

We write P |=norm φ if for any normalised trace tr of P , tr satisfies φ. Then,
given a formula φ that does not contain the fact K↑ nor K↓, we have P |= φ
if, and only if, P |=norm φ, which is what is actually checked by Tamarin. This
follows from the soundness of Tamarin [12].

In some cases, computing the variants Variant(ru) of a protocol rule ru may
introduce new variables on the right of the rule, and thus lead to rules that are
not protocol rules (according to Definition 1).

Example 7. The rule [In(decA(x, y))]−−[]→[Out(x)] is a protocol rule. However,
one of its variant is [In(z)]−−[]→[Out(encA(z,pk(y)))] which is not a protocol rule
according to Definition 1.

However, such cases correspond to badly defined protocols and Tamarin
typically raises a warning in this case. Hence, in what follows, we consider well-
formed protocol rules P , that is such that Variant(P) is still a set of protocol
rules. In practice, protocol rules representing a protocol are indeed well-formed.

4.2 Algorithm

Given a set P of protocol rules, Tamarin first computes its variants Variant(P).
It then precomputes sources as already explained. Whenever Tamarin fails to
complete a deconstruction, it returns the partial deconstruction. For the moment,
assume that from there we can extract a rule ru = [l]−−[a]→[r] of Variant(P)
and a variable x for which the deconstruction has failed (in practice there might
be multiple composed rules, as explained below, but the approach is similar). It
must be the case that x appears in some fact of l.

For each fact symbol F occurring in P , for each rule ru of Variant(P), and
each (deepest) protected subterm t occurring in of ru, we assume new fact sym-
bols LeftF,ru,t and RightF,ru,t that will be used to further annotate the rules of
Variant(P). These facts will appear only in the sources lemmas we generate.

The sources lemma SourceLemma(P, ru, x) associated to a failed deconstruc-
tion on variable x and rule ru for protocol P is defined by Algorithm 1. Intu-
itively, we first look for any occurrence of x in the premisses of ru, under a
(deepest) protected term t1 and we annotate the rule ru with LeftF,ru,t1(t1, x).
Then we look for all facts in the conclusions of a rule ru ′ that may have pro-
duced t1, that is that contain a term t2 that can be unified with t1 and we
annotate ru ′ with RightF ′,ru′,t1(t2). Finally, we generate the formula that says
that if we have LeftF,ru,t1(y, x) at some step i, then either x is already known to
the attacker, that is K(x) holds at an earlier step, or y has been obtained from
the protocol, that is RightF ′,ru′,t1(y) holds at some earlier step.

1 This comes from the fact that, whenever the attacker learns a pair K↓(〈m1, m2〉),
she cannot directly convert it in K↑(〈m1, m2〉) since the coerce rule does not apply
to terms headed with a pair. Hence it is necessary to decompose it first (with K↓

rules) and then reconstruct it (with K↑ rules).

Automatic Generation of Sources Lemmas in Tamarin 15

Algorithm 1. SourceLemma(P, ru, x)
Input: P, ru = [l]−−[a]→[r], x

for all t1 deepest protected term w.r.t. x that is subterm of F (v) ∈ l do
% we annotate ru with the fact that x may provide from t1
a := a ∪ {LeftF,ru,t1(t1, x)}
% then we identify from which facts t1 may provide.
for all rule ru ′ = [l′]−−[a′]→[r′] ∈ P do

if t1 unifiable with t2 modulo AC for some t2 protected subterm in F ′(v′) ∈ r′

then
% we annotate ru ′ with the fact that t2 may be used to produce x
a′ := a′ ∪ {RightF ′,ru′,t1(t2)}

end if
end for
Let φ the formula defined as follows

∀y, x, i LeftF,ru,t1(y, x)@i =⇒
(∃k RightF ′,ru′

1,t1
(y)@k ∧ k � i)

∨ . . .
∨ (∃k RightF ′,ru′

n,t1
(y)@k ∧ k � i)

∨ (∃k K↑(x)@k ∧ k � i)
return φ

end for

We can show that under our assumptions the generated sources lemmas
always hold, which explains why Tamarin is usually able to prove them.

Theorem 1. Given a set of well-formed protocol rules P , a rule ru ∈
Variant(P), a variable x occurring in ru, and φ returned by SourceLemma
(Variant(P), ru, x), then φ is satisfied by Variant(P), that is Variant(P) |=norm φ.

4.3 Dealing with Composed Rules

Actually, during the precomputations, Tamarin might compute the composition
of several rules. For example, when a rule ru1 depends on a rule ru2 in the sense
that ru1 can only be executed if ru2 has been executed previously, Tamarin
will return the composition of both, not only ru1. This yields bigger steps and
it allows Tamarin to prove lemmas more quickly.

Thus, the sources computed by Tamarin are actually composed variants
of initial protocol rules. Formally, given two rules ru1 = [l1]−−[a1]→[r1] and
ru2 = [l2]−−[a2]→[r2], we define the composition of ru1 and ru2 w.r.t. θ, denoted
ru1 ◦θ ru2 as the rule [l]−−[a]→[r] defined as follows:

l = l1θ ∪# (l2θ �
r1θ), a = a1θ ∪ a2θ, and r = (r1θ �

l2θ) ∪# r2θ.

We denote ru1 ◦θ ru2 ◦θ · · · ◦θ ruk the rule ru obtained by iterating k − 1
compositions: ru = ((ru1 ◦θ ru2) ◦θ · · ·) ◦θ ruk. Since the rules do not share any
variable, θ is just the union of substitutions θi where the domain of θi is the set
of variables of rui. It is easy to check that compositions of protocol rules yield

16 V. Cortier et al.

protocol rules. Not all compositions are computed by Tamarin, but we do not
need to characterise which compositions are considered exactly. We simply show
that any sources lemma generated from a composed rule is also sound.

Algorithm 2. SourceLemmaComp(P, ru, x)
Input: P, ru = ru1 ◦θ ru2 ◦θ · · · ◦θ ruk, x

let l, a, r such that ru = [l]−−[a]→[r]
for all position p such that there exists F (v) ∈ l such that v|p = x do

for all i such that F (v) = F (viθ) with F (vi) in the premisses of rui do
if p is a position of vi then

call SourceLemma(P, rui, vi|p)
end if

end for
end for

Algorithm 2 describes how to generate a sources lemma from a composed rule.
The idea is simply to identify, given a variable x, for which the partial decon-
struction is incomplete, at which positions x appears in the composed rule ru.
Then whenever the position exists in the some rule rui used for composition, we
generate the sources lemmas based on this rule. Algorithm 2 is well defined only if
whenever SourceLemma(P, rui, vi|p) is called, then vi|p is a variable. This follows
from the fact that viθ|p = x is a variable (with the notations of Algorithm2).

Theorem 2. Given a set of well-formed protocol rules P , a composed rule ru =
ru1 ◦θ ru2 ◦θ · · · ◦θ ruk with rui ∈ Variant(P), a variable x occurring in ru, and φ
returned by SourceLemmaComp(Variant(P), ru, x), then Variant(P) |=norm φ.

5 Implementation and Experimental Evaluation

We have implemented our approach in Tamarin version 1.6.0 [15]. The auto-
matic generation of source lemmas is activated using the command line option
--auto-sources. When Tamarin is called with this option, it will first load
the theory and run the pre-computations normally (in particular compute rule
variants and sources). If Tamarin is called using --auto-sources, and the the-
ory does not contain a sources lemma but has partial deconstructions, our new
algorithm is executed on the computed rule variants to generate a new sources
lemma, which is then added to the theory, as well as the required rule annota-
tions. In the interactive mode, the user can inspect the generated lemma and
annotations, and prove lemmas as usual. He can also download the modified
theory if he wants to export the lemma, or modify it. In the automatic mode,
Tamarin directly tries to prove the generated sources lemma. When showing
the results, Tamarin displays the sources lemma among the other lemmas, and
whether it managed to prove it.

Automatic Generation of Sources Lemmas in Tamarin 17

Heuristic. Our first experiments using Algorithm 2 showed that, for some exam-
ples, the generated lemmas, while true, caused Tamarin to loop in the precom-
putations. This happened when the algorithm considered the case where a fact
in the premises of a rule might have been produced by a fact in the conclusion of
the same rule. Hence, we have implemented an additional check that ignores this
case, should it arise. This means that the generated lemmas could potentially
be false, however we did not observe this in practice. In particular, the examples
that looped can now be proven correct. Note that this does not contradict our
theorems, as our lemmas are not minimal - we consider potentially too many
cases, so removing some (unnecessary) ones can still result in a correct lemma.
Evaluation. To evaluate the effectiveness of our approach, we selected several
classical examples from the SPORE library of cryptographic protocols [14] and
checked for standard properties such as secrecy of the exchanged key and mutual
(injective and non-injective) authentication. Because of partial deconstructions,
many of them were not entirely automatically verifiable in Tamarin previously
(except for extremely simple examples such as CCITT with only one message).
The results are presented in Table 1, the Tamarin models are available in the

Table 1. SPORE examples. “Partial Dec.” indicates the number of partial deconstruc-
tions, “Resolved” indicates whether our auto-generated lemmas resolve them, and can
be proven correct by Tamarin. “Automatic” means that our auto-generated lemmas
are then sufficient to directly prove or disprove the desired security properties.

Protocol Name Partial Dec. Resolved Automatic Time
Andrew Secure RPC 14 42.8s
Modified Andrew Secure RPC 21 134.3s
BAN Concrete Andrew Secure RPC 0 - 10.6s
Lowe modified BAN Andrew Secure RPC 0 - 29.8s
CCITT 1 0 - 0.8s
CCITT 1c 0 - 1.2s
CCITT 3 0 - 186.1s
CCITT 3 BAN 0 - 3.7s
Denning Sacco Secret Key 5 0.8s
Denning Sacco Secret Key - Lowe 6 2.7s
Needham Schroeder Secret Key 14 3.6s
Amended Needham Schroeder Secret Key 21 7.1s
Otway Rees 10 7.7s
SpliceAS 10 5.9s
SpliceAS 2 10 7.3s
SpliceAS 3 10 8.7s
Wide Mouthed Frog 5 0.6s
Wide Mouthed Frog Lowe 14 3.5s
WooLam Pi f 5 0.6s
Yahalom 15 3.1s
Yahalom - BAN 5 0.9s
Yahalom - Lowe 21 2.2s

18 V. Cortier et al.

directory examples/features/auto-sources/spore of the Tamarin reposi-
tory [15]. Our approach succeeded in all cases.

To see whether our approach works on more complicated examples, we
selected all files from the Tamarin github repository [15] that contained lemmas
annotated with sources, and that were not marked as “experimental” or “work
in progress”. It turned out that in some cases these examples did not actually
contain any partial deconstructions, and that these “sources” lemmas were actu-
ally used to prove other protocol invariants. As our approach is only meant to
handle partial deconstructions, we removed these examples from the set. Table 2
summarises our results on the remaining examples, the files can be found in the
directory examples/features/auto-sources/tamarin-repo of the Tamarin
repository [15].

It turns out that our algorithm still succeeds in generating successful sources
lemmas in the majority of cases, in the sense that the sources lemma resolve
all the partial deconstructions and can be proved by Tamarin. Our examples

Table 2. Examples from Tamarin repository. 1 The sources lemma needs to be anno-
tated with reuse for the following lemmas to be proven automatically. 2 The file
contains further intermediate lemmas annotated with reuse. 3 The generated lemma
removes all partial deconstructions, however Tamarin does not terminate while trying
to prove its correctness automatically.

Name
Partial
Dec.

Resolved Automatic
Time
(new)

Time
(previous)

Feldhofer (Equivalence) 5 3.8s 3.5s
NSLPK3 12 1.8s 1.8s
NSLPK3 untagged 12 1 - -
NSPK3 12 2.4s 2.2s
JCS12 Typing Example 7 2 0.3s 0.2s
Minimal Typing Example 6 0.1s 0.1s
Simple RFID Protocol 24 2 0.7s 0.5s
StatVerif Security Device 12 0.3s 0.4s
Envelope Protocol 9 2 25.7s 25.3s
TPM Exclusive Secrets 9 2 1.8s 1.8s
NSL untagged (SAPIC) 18 4.3s 19.9s
StatVerif Left-Right (SAPIC) 18 28.8s 29.6s
TPM Envelope (Equivalence) 9 3 - - -
5G AKA 240 - - -
Alethea 30 - - -
PKCS11-templates 68 - - -
NSLPK3XOR 24 - - -
Chaum Offline Anonymity 128 - - -
FOO Eligibility 70 - - -
Okamoto Eligibility 66 - - -

Automatic Generation of Sources Lemmas in Tamarin 19

include protocols with equivalence properties and SAPIC-generated2 theo-
ries. However, as the examples are more complex, even with a correct sources
lemma, Tamarin does not always succeed in proving all other lemmas fully
automatically.

We also analysed the examples where our algorithm failed to generate a cor-
rect sources lemma. The reasons turned out to be a too complex equational
theory (e.g., FOO and Okamoto, using blind signatures, or NSLPK3XOR and
Chaum using XOR), or a complex protocol model where the partial decon-
structions stem from the handling of state facts, which escapes our definition
of protected subterms (5G AKA, Alethea, PKCS’11). We only encountered one
example where the algorithm generated a lemma resolving the partial decon-
structions, but Tamarin was unable to (automatically) verify its correctness.

When our approach succeeds, the verification times are close to timings mea-
sured using the manual sources lemmas. All timings have been measured on a
standard laptop (Core i7, 16 GB RAM, Ubuntu 18.04).

6 Conclusion

We have provided a technique that allows to automatically generate sources
lemmas in Tamarin, which otherwise had to be written by the user. In return,
most simple protocols can now be analysed automatically with Tamarin.

As future work, we plan to look for even more automation. First, in several
cases where our sources lemmas solve the partial deconstructions but are not yet
sufficient to prove the security properties specified by the user, we are actually
close to full automation. What is missing is simply to indicate to Tamarin that
it should reuse one of the properties (e.g. secrecy of some long-term key) to prove
another property (e.g. authentication). We plan to investigate how to automate
these “re-use” annotations, without increasing the complexity of the tool.

Our result holds for subterm convergent theories (modulo AC) that have the
variant property. However, our algorithm does not generate lemmas for terms
headed with an AC symbol (for example exclusive or) as the resulting lemmas
would be false in most cases. Hence, manual sources lemmas are still necessary.
We plan to explore how to extend our result to tackle this case, which may
require to write more complex sources lemmas, e.g. to account for all possible
decompositions induced by the exclusive or operator.

Our algorithm also fails when the model uses state facts in such a way that
the variables in question do not occur within protected subterms. By generalising
the notion of protected subterms, we hope to also cover these cases.

Thanks to our sources lemma, the automation of Tamarin has improved, in
particular on simple protocols. It would be interesting to compare extensively
the tools ProVerif and Tamarin, in order to identify on which cases they are
both automatic, and on which kind of protocols, one of the two tools is more
likely to conclude automatically. This should also provide directions to improve
the automation of both tools.
2 SAPIC translates from applied pi models to Tamarin theories.

20 V. Cortier et al.

A Proofs of Theorems 1 and 2

Theorem 1. Given a set of well-formed protocol rules P , a rule ru ∈
Variant(P), a variable x occurring in ru, and φ returned by SourceLemma
(Variant(P), ru, x), then φ is satisfied by Variant(P), that is Variant(P) |=norm φ.

Proof. Let P be a set of protocol rules, ru ∈ Variant(P) and a variable x occur-
ring in ru, let φ be a formula returned by SourceLemma(Variant(P), ru, x). The
rule ru is of the form [l]−−[a]→[r] and φ is of the form:

∀y, x, i LeftF,ru,t1(y, x)@i =⇒
(∃k RightF ′,ru′

1,t1(y)@k ∧ k � i)
∨ . . .
∨(∃k RightF ′,ru′

n,t1(y)@k ∧ k � i)
∨(∃k K↑(x)@k ∧ k � i)

for some t1 deepest protected term w.r.t. x, subterm of F (t) ∈ l. By definition
of a deepest protected subterm, t1|p = x for some position p and there are only
pairs along the path p (except at position ε).

Let tr be a normalised trace of Variant(P). Let us show that tr satisfies φ.

tr = ∅ �A1 S1 · · · �An−1 Sn−1 �An Sn

Let i be such that LeftF,ru,t1(m,n) ∈ Si for some terms m,n. Then the ith

applied rule must the rule ru in Variant(P) mentioned above which has the form:

ru = {[F (t)} ∪ l′]−−[LeftF,ru,t1(t1, x) ∪ a′]→[r]

Moreover, there exists a substitution σi in normal form (the one used to instanti-
ate ru) such that m =AC (t1σi)

⏐
� and n =AC xσi↓. Since the trace is normalised,

m =AC t1σi and n =AC xσi. Let u =AC (tσi)
⏐
�. Again, we have u =AC tσi. Since

t1 is a subterm of t and t1 is not headed by an AC symbol, we have that m is a
subterm of u (modulo AC). Moreover F (u) ∈ Si−1 by definition of the applica-
tion of a rule.

Let j < i be the first occurrence of j such that m (modulo AC) is a subterm
of a fact in Sj and consider the jth rule that has been applied.

– Either this rule is a rule ru ′′ in Variant(P) of the form

ru ′′ = [l′′]−−[a′′]→[{F ′(w)} ∪ r′′]

and there exists σj in normal form (the substitution used to instantiate ru ′′)
such that m (modulo AC) is a subterm of u′ = (wσj)

⏐
�. Since the trace is

normalised, (wσj)
⏐
� =AC wσj . Let p′ be the position at which m occurs in

wσj , i.e. such that wσj |p′ =AC m.
• Either p′ is a path of w that does not end on a variable. Then w|p′ = w′

with w′ a protected subterm of w.

We have that w′σj =AC m =AC t1σi thus w′ and t1 are unifiable (mod-
ulo AC) thus we have annotated ru ′′, that is, RightF ′,ru′′,t1(w

′) ∈ a′′,
which concludes this case.

Automatic Generation of Sources Lemmas in Tamarin 21

• Or p′ is a path of w that ends on a variable or is not a path at all. Then
there must exist a variable y in w such that m (modulo AC) is a subterm
of yσj . Then y also appears in some premise fact F ′′(w′′), thanks to the
definition of a protocol rule and the fact that the variant rules are still
protocol rules. Therefore m (modulo AC) is a subterm of a fact in Sj−1

(since (w′′σj)
⏐
� =AC w′′σj), which contradicts the minimality of j.

– Or the rule is one of the MD rules. Since m is a protected term, the rule
cannot be []−−[K↑(x)]→[K↑(x : pub)] nor [Fr(x : fr)]−−[K↑(x)]→[K↑(x : fr)]
since these two rules only generate names. By minimality of j, it cannot
be the rule [Out(x)]−−[]→[K↓(x)], nor [K↑(x)]−−[K(x)]→[In(x)], nor the rule
[K↓(x)]−−[K↑(x)]→[K↑(x)] either. So it must be the deduction rule, either in
the K↑ version or in the K↓ version.

– Either it is the rule

[K↑(x1θ), . . . ,K↑(xnθ)]−−[K↑(f(x1, . . . , xn)θ)]→[K↑(f(x1, . . . , xn)θ)]

with f(x1, . . . , xn)θ in normal form. We have K↑(x1θ), . . . ,K↑(xkθ) ∈
Sj−1. Then, by minimality of j, and since m is not headed with an AC
symbol, we must have m =AC t1σi =AC f(x1θ, . . . , xkθ), otherwise we
would have that m is subterm of some xiθ hence subterm of Sj−1 or m
is a constant, which cannot be the case since m is a protected subterm.
Remember that xσi is a subterm at position p = i0.p

′ (for some i0) of t1
such that there are only pairs along p′, that is, xσi ∈ Stpair(xi0θ). Since
the trace is normalised (i.e. pairs are decomposed before being used), we
get that K↑(xσi) ∈ Sj−1, that is K↑(n) ∈ Sj−1. Now, by inspection of the
rules, we notice that the only way to obtain K↑(t) in a state is through
a rule annotated by K↑(t), hence we can conclude that K↑(n) appears in
one of the actions of an earlier rule.

– Or the rule

[Kα1(x1θ), . . . ,Kαn(xnθ)]−−[K↓(f(x1, . . . , xn)θ
⏐
�)]→[K↓(f(x1, . . . , xn)θ

⏐
�)]

has been applied, with f(x1, . . . , xk)θ that can be reduced at top level.
Since the equational theory is a subterm theory, it must be the case that
m = (f(x1, . . . , xk)θ) ↓ is a subterm of one of the xiσ, hence m is a
subterm of a fact of Sj−1, which contradicts the minimality of j. ��

Theorem 2. Given a set of well-formed protocol rules P , a composed rule ru =
ru1 ◦θ ru2 ◦θ · · · ◦θ ruk with rui ∈ Variant(P), a variable x occurring in ru, and φ
returned by SourceLemmaComp(Variant(P), ru, x), then Variant(P) |=norm φ.

Proof. The correctness of Algorithm 2 is a direct consequence of Theorem 1.
Indeed, let φ be a formula returned by SourceLemmaComp(Variant(P), ru, x).
Then φ is actually a formula returned by SourceLemma(Variant(P), rui, vi|p) for
some rui ∈ Variant(P) and some variable vi|p of rui. Applying Theorem 1, we
have that Variant(P) |=norm φ, hence the conclusion. ��

22 V. Cortier et al.

References

1. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

2. Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A for-
mal analysis of 5G authentication. In: 25th ACM Conference on Computer and
Communications Security (CCS 2018) (2018)

3. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: IEEE Symposium on Security
and Privacy (S&P 2017), San Jose, CA, pp. 483–503 (2017)

4. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
14th IEEE Computer Security Foundations Workshop (CSFW 2014), Cape Breton,
Nova Scotia, Canada, June 2001, pp. 82–96. IEEE Computer Society (2001)

5. Blanchet, B.: Symbolic and computational mechanized verification of the
ARINC823 avionic protocols. In: 30th IEEE Computer Security Foundations Sym-
posium (CSF 2017), Santa Barbara, CA, USA, pp. 68–82 (2017)

6. Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence proper-
ties in security protocols - theory and practice. In: Proceedings of the 39th IEEE
Symposium on Security and Privacy (S&P 2018), pp. 525–542. IEEE Computer
Society Press, May 2018

7. Cortier, V., Galindo, D., Turuani, M.: A formal analysis of the Neuchâtel e-voting
protocol. In: 3rd IEEE European Symposium on Security and Privacy (EuroSP
2018), London, UK, pp. 430–442, April 2018

8. Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R.: Automated unbounded verifi-
cation of stateful cryptographic protocols with exclusive OR. In: CSF 2018, pp.
359–373 (2018)

9. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded secu-
rity protocols. In: Workshop on Formal Methods and Security Protocols, Trento,
Italia (1999)

10. Girol, G., Hirschi, L., Sasse, R., Jackson, D., Cremers, C., Basin, D.: A spectral
analysis of noise: a comprehensive, automated, formal analysis of Diffie-Hellman
protocols. In: USENIX Security (2020)

11. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

12. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: CSF 2012, pp. 78–94
(2012)

13. Schmidt, B., Sasse, R., Cremers, C., Basin, D.: Automated verification of group key
agreement protocols. In: IEEE Symposium on Security and Privacy (S&P 2014)
(2014)

14. Security protocols open repository. http://www.lsv.fr/Software/spore/. Accessed
24 Apr 2020

15. Main source code repository of the tamarin prover for security protocol verification.
https://github.com/tamarin-prover/tamarin-prover. Accessed 06 Dec 2019

https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
http://www.lsv.fr/Software/spore/
https://github.com/tamarin-prover/tamarin-prover

When Is a Test Not a Proof?

Eleanor McMurtry1, Olivier Pereira2, and Vanessa Teague3(B)

1 University of Melbourne, Melbourne, Australia
emcmurtry@student.unimelb.edu.au

2 Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, Belgium
olivier.pereira@uclouvain.be

3 Thinking Cybersecurity Pty. Ltd. and the Australian National University,
Canberra, Australia

vanessa@thinkingcybersecurity.com

Abstract. A common primitive in election and auction protocols is a
plaintext equivalence test (PET) in which two ciphertexts are tested for
equality of their plaintexts, and a verifiable proof of the test’s outcome
is provided. The most commonly-cited PETs require at least one honest
party, but many applications claim universal verifiability, at odds with
this requirement. If a test that relies on at least one honest participant is
mistakenly used in a place where a universally verifiable proof is needed,
then a collusion by all participants can insert a forged proof of equality
into the tallying transcript. We show this breaks universal verifiability
for the JCJ/Civitas scheme among others, because the only PETs they
reference are not universally verifiable. We then demonstrate how to fix
the problem.

1 Introduction

We consider the distinction between universal verifiability and distributed trust,
in particular for Plaintext Equivalence Tests (PETs). Commonly-cited PETs
such as [17] and [19] require at least one honest participant. Although this is
clear enough in the original papers, numerous uses of PETs assume universal
verifiability, which requires that a convincing proof of an untrue fact cannot be
fabricated even if all the authorities collude. Many e-voting and verifiable auction
protocols use a Plaintext Equivalence Test (PET, with distributed trust) as if
it were a Plaintext Equivalence Proof (PEP), when it is not. They require their
PET to have universal verifiability, but reference only PETs that do not have this
property. Specifically, in Jakobsson and Juels [17] a collusion of all authorities
can forge a “proof” that two encrypted values are equal when they are not. If
in a real implementation this PET was used instead of a PEP, the consequence
would completely undermine universal verifiability for:

– the JCJ e-voting scheme [18] and its implementation, Civitas [8];
– a linear-time modification to JCJ [23];
– the Pretty Good Democracy scheme [21];
– the Caveat Coercitor scheme [12];
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 23–41, 2020.
https://doi.org/10.1007/978-3-030-59013-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_2

24 E. McMurtry et al.

– the Selections scheme [7];
– the Cobra scheme [11]; and
– several verifiable auction schemes [2,6,20]

In each case, the forged PEP enables a collusion among all tallying authorities
to exclude valid votes or include invalid votes while passing verification, thus
breaking universal verifiability. We stress that this is not a fault in the PET
of [17], but in the misalignment between the properties it provides and the
properties it is assumed to have when used in the above schemes.

We show further that this problem combines with an existing issue in the
Civitas implementation of the Fiat-Shamir transform to disastrous effect, allow-
ing colluding authorities to also forge a proof that two encrypted values are not
equal when in fact they are.

1.1 Addressing the Problem

PETs with distributed trust, including [17], are generally easy to transform
into a universally-verifiable Plaintext Equality Proof (PEP). We demonstrate
how a faked positive test can be detected in [17] with an additional check in
the verification procedure, and that there is a negligible soundness error, i.e.
probability of a false positive.

1.2 Our Contribution

We examine each protocol in turn, explaining the implications of using a PET
that can be forged when all tallying authorities collude. We then explain how to
patch the verification algorithm in the Jakobsson-Juels PET so that its transcript
does allow universal verifiability. We also explore the implications of weak Fiat-
Shamir transforms in one protocol, and explain how this can be fixed.

Mathematical details are provided in the following section. An examination
of each affected scheme is in Sect. 4. The correction of the PET verification
algorithm and a proof of universal verifiability are in Sect. 5.

2 The Jakobsson-Juels PET

We demonstrate that if all the trustees of a secret key collude, they can produce
a valid plaintext equivalence proof for two ciphertexts that are not encryptions
of the same value. We begin by reviewing the details of a PET from the widely-
referenced Jakobsson-Juels paper [17], and explain why it does not form a PEP.

2.1 Plaintext Equivalence Test

Let (G, g, p, q, y) be the parameters for ElGamal encryption, with g a generator
for the group G, and q = 〈g〉, i.e. aq = 1 mod p for all a �= 0 where p and q are
large prime numbers. The public key is y = gx for secret key x. Consider two

When Is a Test Not a Proof? 25

ElGamal ciphertexts (a1, b1) = (gr1 ,m1y
r1) and (a2, b2) = (gr2 ,m2y

r2) where
m1 �= m2.

For ease of exposition, suppose there are two trustees T1 and T2 who collude
(but it works just as well for more trustees). Each trustee has its own share
xi (i = 1, 2) of the secret key, corresponding to its own public key yi = gxi ,
arranged so that x1 + x2 = x mod q and hence y1y2 = y mod p.

They will produce a false proof that m1 = m2 mod q. We (publicly) set

C = (a1/a2, b1/b2) =
(
gr1−r2 , (m1/m2)yr1−r2

)

The main idea of the PET is that the two trustees will each raise (each
element of) C to a random power, prove in zero knowledge that they indeed
used the same power on all the elements of C, multiply all their exponentiated
values together, then decrypt the result, using another Zero Knowledge Proof to
prove they decrypted correctly. Call the trustees’ random exponents ρ1 (for T1)
and ρ2 (for T2). If ρ1 and ρ2 are chosen randomly, and if the decrypted value
(m1/m2)ρ1+ρ2 = 1, then with high probability1 m1/m2 = 1. So as long as at
least one trustee is honest, the proof is both sound and privacy-preserving. A
detailed example is shown in Fig. 1.

Exponential ElGamal. A common variant of ElGamal, called exponential
ElGamal, encrypts a message m by first computing gm and then encrypting this
value as usual in order to create additively-homomorphic ciphertexts. We will
work with this variant when discussing protocols that use it.

2.2 Why the PET Is Not a Proof

The PET described above does not form a plaintext equivalence proof. If the
trustees collude and set ρ1 = −ρ2 mod q (easy to do in a setting like ElGamal
where q is public), then they turn C into an encryption of 1 because (m1/m2)q =
1 even when m1 �= m2. In fact, they turn C into the trivial ciphertext (1, 1),
which looks unusual to a human eye but is a perfectly valid ElGamal encryption
of 1. Hence the colluding trustees, even if they decrypt honestly, can produce a
false proof that m1 = m2.

Adding a simple check for the trivial ciphertext (1, 1) solves the problem and
produces a universally verifiable Proof of Plaintext Equality (PEP). We prove
this in Sect. 5.

However, the PEP is strongly dependent on the soundness of its ZKPs. If
these are not properly implemented, the PEP is not sound.

3 Flaws in a Practical Implementation of the PEP

One particularly influential implementation of the PEP and zero knowledge
proofs discussed above2 is Civitas [8]. In the following section we discuss how
1 The test may fail if by pure bad luck, ρ1 = −ρ2 mod q. This happens only with the
negligible probability 1/q, where q is large.

2 Indeed, one of the only implementations we were able to find.

26 E. McMurtry et al.

weaknesses in Civitas’ implementations further undermine its PEPs, even if we
ensure the PEP does not produce the trivial ciphertext.

3.1 Use of Zero Knowledge Proofs (ZKPs)

A practical implementation of the Jakobsson-Juels PET outlined above depends
on two zero knowledge proofs. First, when trustee Ti takes C = (a1/a2, b1/b2)
and produces a randomised output ((a1/a2)ρi , (b1/b2)ρi), an observer has no way
to guarantee that Ti did indeed raise both elements to the same power. To this
end, a zero knowledge proof must be used to prove the equality of two discrete
logarithms. Set d = a1/a2, di = dρi and e = b1/b2, ei = eρi ; then we must prove

dlogddi = dlogeei

Second, the trustees (collectively) need to prove that they faithfully decrypted
the resulting ciphertext (a, b) = (

∏
i di,

∏
i ei). They do this by publishing ai =

axi and a proof that
dloggyi = dlogaai

guaranteeing that a really was raised to the power of the secret key to form ai.
We will use EqDlogs(a, b, x, y) to mean a proof that dlogax = dlogby.

3.2 Making Equivalent Ciphertexts Look Different

The plaintext equivalence test (used as a proof) from the Civitas technical
report [8] is reproduced as Fig. 1 below.

Fig. 1. PET protocol specification from the Civitas technical report

When Is a Test Not a Proof? 27

We demonstrate that trustees can produce a valid proof that two plaintexts
encrypt different values, even though they are encryptions of the same value.
Here, we proceed in a single trustee setting, but this can be trivially extended
to the multiple trustee setting.

We take advantage of a weaknesses in the way the Fiat-Shamir transform is
implemented as part of the decryption proof in the Civitas documentation (Step
7 of Fig. 1). The proof is specified as follows, for an ElGamal public key (g, y)
where y = gx, a ciphertext (a, b), and a decryption factor d that is supposed to
be equal to ax:

– Select a random r ∈ Zq and compute the commitment (r0, r1) = (gr, ar)
– Compute the challenge e = H(y, d, r0, r1)
– Compute the response f = r + ex

The proof is considered to be valid if the following two equations are satisfied:

gf = r0y
e af = r1d

e

and if e can be recomputed correctly. This is supposed to form a proof

EqDlogs(g, a, y, d)

Note that the ciphertext’s elements a and b have not been included in the
hash, so a malicious prover can choose them after computing the challenge. Here
is a strategy that a malicious trustee could use to produce a ciphertext that is
an encryption of 1 and prove that it is an encryption of something else.

– Select random r, s, t ∈ Zq and set (r0, r1) = (gr, gs) and d = gt

– Compute the challenge e = H(y, d, r0, r1)
– Compute the response f = r + ex
– Compute a = g(s+et)/f

This is enough to make a proof that passes verification, and will prove that d is
a valid decryption factor for a with respect to the public key (g, y), even though
it is not the case (with overwhelming probability): d is just picked as a random
group element. At this stage, we still have the freedom to choose any b we like
in order to complete our ciphertext. In particular, we can set b = y(s+et)/f ,
which guarantees that (a, b) is an encryption of 1. Thus we can produce a valid
proof that (a, b) decrypts to b/d for arbitrary d, even though it is actually an
encryption of 1.

In order to use this to devise a fake PEP, the cheating prover needs to know
the randomness used to generate the ciphertexts. Take two ciphertexts (a1, b1)
and (a2, b2) that we know are encryptions of the same plaintext and for which
we know the randomness; say, a1 = gr1 and a2 = gr2 for some r1, r2. We will
take their quotient and raise it to a “random” power ρ = ρ1 + ρ2 as per the
PET:

(a, b) =
((

a1

a2

)ρ

,

(
b1
b2

)ρ)

28 E. McMurtry et al.

However, we will cheat to ensure that

ρ =
s + et

f

1
r1 − r2

We are left with a = g(s+et)/f as per our cheated proof. Because we may freely
choose d, we can now produce a valid proof that this decrypts to some value other
than 1, and thus a valid proof that the ciphertexts encrypt different plaintexts.

This will not only look perfectly fine, but it will also be infeasible to distin-
guish these ciphertexts and proofs from those expected in the system, unless we
know x of course. This prevents the easy resolution discussed in Sect. 1.1.

In summary, a cheating prover, given two arbitrary equivalent ciphertexts,
can forge a proof that they are different. This requires knowing the randomness
used to generate the ciphertexts.

3.3 Making Encryptions of Different Messages Look Equivalent

The same issue can be exploited to produce proofs that two ciphertexts encrypt-
ing different messages actually encrypt the same message in a way that is unde-
tectable to a public observer. This time, we will exploit the use of the weak
Fiat-Shamir transform in the EqDlogs proof in the plaintext equivalence test
(Step 4 of Fig. 1). Again, for simplicity, we focus on the setting where we have a
single trustee, which is malicious. This trustee can proceed as follows:

– Select a random encryption of 1 as c′ = (d1, e1) = (gt, yt)
– Produce an EqDlogs proof as follows:

1. Select random r, s ∈ Zq and set (r0, r1) = (gr, ys)
2. Compute the challenge ep = H(d1, e1, r0, r1)
3. Pick a random response f ∈ Zq

4. Set R = (d, e) = (g(r+tep)/f , y(s+tep)/f)
and observe that (ep, f) makes an EqDlogs(d, e, d1, e1) proof that passes ver-
ification despite the fact that logd(d1) �= loge(e1) with overwhelming proba-
bility.

– Complete the fake PEP by picking any pair of ciphertexts c1, c2 whose quo-
tient is R, and producing a decryption proof for c′ in a perfectly honest way.

Since c′ is indeed an encryption of 1, the test will conclude that c1 and c2 are
encryptions of the same plaintext, despite the fact that they encrypt different
plaintexts with overwhelming probability. Below are two practical ways to exploit
this.

If we are given one ciphertext with unknown randomness c1 (say on
a web bulletin board), we can construct a second ciphertext c2 = Rc1 so that
c1/c2 = R, where we may freely choose R as above. Colluding tellers could
exploit this by adding an extra ballot to the mix, and producing a PEP that
falsely claims the targeted vote was cast with a duplicate credential. Note that
this would require knowledge of some valid credential. This can be done by a

When Is a Test Not a Proof? 29

colluding majority of authorities, where a PEP is meant to reveal the cheat, but
of course we have broken the PEP [23].

If we know the randomness for both c1 and c2 (say z1 and z2) encrypting
gm1 and gm2 (Civitas uses exponential ElGamal here) so that c1 = (gz1 , gm1gxz1)
and c2 = (gz2 , gm2gxz2), we

1. choose t and set ρ = ρ1 + ρ2 = r+tep

f(z1−z2)

2. choose f and set w = f
x

m1
m2

(so that f = wxm2
m1

)
3. choose r and set s = r + w

Now when we produce the re-randomised quotient R = (c1/c2)ρ, we need to
satisfy

R =
(
gρ(z1−z2), gm1/m2gxρ(z1−z2)

)

We must satisfy ρ(z1−z2) = (r+tep)/f and m1/m2+xρ(z1−z2) = x(s+tep)/f
as per Step 4 of the cheated proof above. The former is satisfied by definition of
ρ. For the latter:

m1

m2
+ xρ(z1 − z2) =

m1

m2
+ x

r + tep

wxm2
m1

(Eqn 1)

=
m1

m2

(
1 +

r + tep

w

)

=
m1

m2

r + w + tep

w

=
m1

m2
(s + tep)

x

f

m2

m1
(Eqns 2, 3)

= x(s + tep)/f

Colluding tellers could exploit this in the same way as the previous attack, but
without needing to add an extra ballot to the mix.

3.4 Summary and Implications of These Vulnerabilities

If every party performing the PET colludes, they can

– produce a false proof that any two ciphertexts are equivalent, without needing
to know the randomness used to generate them.

This problem can be prevented by adding a check for the trivial ciphertext to
the verification algorithm.

Using the Fiat-Shamir weakness, they can additionally

– produce a false proof that two equivalent ciphertexts are different, if they
know the randomness used to generate them (Sect. 3.2)

– produce a false proof that two ciphertexts are equivalent (Sect. 3.3), if
• they know the randomness used to generate them, or
• they can generate one of them (in which case there is no need to know

the randomness of the other).

These further attacks will produce plausible non-trivial ciphertexts.

30 E. McMurtry et al.

4 Why this Undermines Universal Verifiability in
JCJ/Civitas and Other Protocols

Universal verifiability (UV) means that any observer can confirm an election’s
tally matches its cast votes; in particular, any voter could perform this verifica-
tion [9]. See [1,3,22] for early work on this concept.

If the verification specification does not consider the case where all trustees of
the PEP collude to produce a false outcome, then only the trustees can verify the
plaintext equivalence proof — since they know whether they colluded. Therefore,
missing this step results in a scheme whose tallying phase is not universally
verifiable.

4.1 JCJ/Civitas

We investigate whether Civitas [8], an implementation of a well-known voting
protocol we refer to as JCJ [18], correctly performs the check for a trivial cipher-
text in its PEPs. The key idea behind the JCJ protocol is to assign each voter
an encrypted credential. To provide coercion resistance, a voter can provide the
coercer with an invalid credential, and the coercer cannot tell that the creden-
tial is not valid. Voters submit their encrypted votes and encrypted credentials,
together with proofs of plaintext knowledge, to a bulletin board. To tally votes,
the tabulation tellers:

1. check the proofs of plaintext knowledge for submitted votes,
2. identify (using a PEP) and exclude any votes with duplicate credentials,
3. perform a cryptographic mix on the encrypted votes,
4. identify (using a PEP) and exclude any votes cast with a credential that does

not match any on the list of valid credentials, and
5. decrypt the resulting list of valid votes (but not the corresponding creden-

tials).

We can immediately see that a flawed PEP could be abused by the tabulation
tellers to cheat in the election.

In its technical report [8], Civitas explicitly claims universal verifiability
regardless of whether the tellers collude on page 10: “Trust Assumption 6. There
exists at least one honest tabulation teller. If all the tellers were corrupted, then
the adversary could trivially violate coercion resistance by decrypting creden-
tials and votes. This assumption is not needed for verifiability, even if all the
tellers collude or are corrupted—the proofs posted by tellers during tabulation
will reveal any attempt to cheat”. Its verification specification, page 43 of the
technical report reproduced as Fig. 1 here, does not mention checking for a (1, 1)
ciphertext which is necessary for this property.

How did this happen? The JCJ paper has a proof of universal verifiability of
the overall voting protocol that is not exactly wrong, but leaves a trap for the
unwary implementer. It says of their PETs that “we model the ideal properties

When Is a Test Not a Proof? 31

of the primitive as an oracle [. . .] with the property of public verifiability”,3

citing the Jakobsson-Juels paper [17]. However, the protocol in that paper does
not have the UV property, and does not claim it, proving instead that it is sound
under the assumption that at least one participant is honest. (It also does not
explicitly mention that even with this assumption, the protocol has a negligible
but non-zero soundness error).

JCJ also cites [19], which in its Sect. 4.4 describes another PET, also with
the explicit assumption that fewer than a threshold of trustees are compromised;
however, this paper correctly points out that the protocol has a negligible but
non-zero soundness error. So if JCJ were implemented using a PEP with uni-
versal verifiability, then (we believe) the overall protocol would also be UV, but
since its only cited example is a PET that is not UV, a natural implementation
risks failing UV—as indeed the Civitas implementation does.

The incorrect PEP together with the Civitas scheme’s weak Fiat-Shamir
transform allows various attacks that undermine universal verifiability for JCJ,
such as:

– falsely proving that two different credentials are duplicates, hence excluding
them at Step 2,

– falsely proving that a valid credential is different from everything on the list
of valid credentials, hence excluding it at Step 4,

– falsely proving that an invalid credential is equivalent to something on the
list of valid credentials, hence including it at Step 4.

4.2 A Linear-Time Enhancement to JCJ

In [23], an enhancement to the JCJ protocol is proposed whereby tallying can
be done in linear time instead of a worst-case quadratic time. They “assume the
application of publicly verifiable group threshold mechanisms whenever register-
ing or tallying authorities perform joint computations”, which could be taken to
mean that our attack is outside their threat model; however this seems at odds
with the notion of universal verifiability, and the majority of their discussion of
security properties relies on that of JCJ. So the protocol is not broken as such,
but does lay a similar trap for the unsuspecting reader: they are referred to JCJ,
which claims UV but refers the reader to Mix & Match.

4.3 Introduction to Cryptography Textbook

The textbook Introduction to Cryptography: Principles and Applications (3rd
edition) [10] discusses distributed plaintext equivalence tests in Sect. 4.7, basing
their discussion on JCJ (and referencing Mix & Match). They unfortunately
make the same oversight, commenting that “the test may give a wrong result
only if z =

∑n
i=1 zi = [0]” and that “this happens only with the negligible

probability 1/q”, not accounting for the case where every party colludes. When

3 Public verifiability is a synonym for UV.

32 E. McMurtry et al.

discussing privacy of the distributed PEP, they explain “the privacy of Pk-
encrypted ciphertexts and the threshold decryption are guaranteed if at least t
of the n parties are honest and no coalition of t parties behaves dishonestly”,
but do not discuss the implications of dishonest parties on the integrity of the
proof.

4.4 Pretty Good Democracy

Pretty Good Democracy [15,21] also uses Plaintext Equivalence Tests in a critical
part of the tallying process, claiming that Counted-as-Cast and Tallied Correctly
“can be verified from the Bulletin Board using standard techniques, which do not
require trusting any of the authorities”. But it refers only to the PETs of [17],
which do require trusting at least one authority to be honest. A collusion of all
tallying authorities could fake a match with a correct vote code, thus tricking
a voter into thinking that the vote had been properly received when in fact an
invalid vote had been substituted.

4.5 Selections

The Selections protocol [7] falls victim to a similar trap. It focuses on over-the-
shoulder coercion-resistance, meaning that an adversary who is present during
vote casting cannot coerce the voter. To achieve this, the paper mentions that
the voter must trust at least one “registrar”. However, it

1. explicitly claims end-to-end verifiability;
2. mentions the protocol can work with distributed registrars; and
3. clarifies its trust assumption by saying the trusted registrar must not collude

with a coercer, but may still misbehave in any other regard.

In particular, the trustees that perform the tallying are not required to be honest,
and the security assumptions for them are left unclear—they may or may not
be the same entities as the registrars.

The tallying protocol (Algorithm 3 in the paper) uses a plaintext equality
test among tallying trustees, and explicitly refers the reader to Mix & Match
despite the lack of universal verifiability.

4.6 Cobra

The Cobra protocol [11] has the same problem as Selections because it is based
on it, claiming to have universally verifiable proofs yet referring the reader to
Juels and Jakobsson for a plaintext equality test.

4.7 Caveat Coercitor

Caveat Coercitor [12] aims to provide a new property called coercion evidence by
giving voters an opportunity to signal that they have been coerced. A voter can

When Is a Test Not a Proof? 33

cancel their vote (assuming it has been cast in a way that did not represent their
true wishes) by simply re-voting with the same credential but a different vote.
This nullifies the vote and is interpreted as evidence of coercion. The talliers
produce a tally showing which votes were cast with repeated credentials, for
which they use PEPs. Those that are duplicates are not included in the final
count. The exact protocol is similar to JCJ, except that when a credential is
used twice to cast the same vote it is included (once). The talliers:

1. check the proofs of plaintext knowledge for submitted votes;
2. identify (using a PET) any votes with duplicate credentials:

(a) identify (using a PET) whether all the corresponding votes are equal, in
which case one is included;

(b) or, if there are at least two different votes cast with the same credential,
exclude them all.

3. perform a cryptographic mix on the encrypted votes;
4. identify (using a PET) and exclude any votes cast with a credential that does

not match any from the list of valid credentials; and
5. decrypt the resulting list of valid votes (but not the corresponding creden-

tials).

The idea is that coerced voters give up their vote, but that “unforgeable
evidence about the degree of coercion that took place is included in the election
output”. If the talliers can fake apparently-equal PEPs for credentials or votes
that are actually different, there are a number of ways they can cheat.

– In Step 2 they can take two unique credentials and fake a proof that they
are equal, thus nullifying one of them (if the votes are equal) or both (if the
votes are different).

– In Step 2a they can take two different votes cast with the same credential
and fake a proof that the votes are equal, thus getting one of them included
when both should be excluded. This is particularly important because this
is exactly the case that Caveat Coercitor is designed to flag as coercion and
exclude—instead, a faked PEP allows it to be treated as a repeat-casting of
the same vote, so a vote is accepted and no coercion is flagged.

– Like JCJ/Civitas, in Step 4 Caveat Coercitor uses PEPs to test whether a
vote’s credential is equal to one of those on the list of valid credentials, so just
as in JCJ/Civitas, a faked PEP for equality again allows corrupt authorities
to stuff the ballot by pretending that an invalid credential is valid.

It is not entirely clear whether the possibility for all talliers to collude and
fake PEPs is included in the trust model of Caveat Coercitor. The paper refers
to the PETs as proofs, (petproof), and does not give an explicit construction,
but cites the distributed-trust-based test of [17].

On p. 371 (Sec B) it says “We assume that one mix server in M, one tal-
lier in T and the voting machines are honest”. The talliers correspond to the
authorities for the PET, so if they are assuming that at least one tallier is honest
then our attack is not within the security model. However, the paper in several

34 E. McMurtry et al.

places claims universal/public verifiability, such as “The talliers will execute an
algorithm whose output can be used by any external observer to determine the
amount of coercion”, (p. 371) and “Observers can perform universal and eligibil-
ity verification, because the computations of algorithm 3 are publicly verifiable”,
(p. 375). The crucial Lemma is Lemma 4, which considers whether the set of
accepted votes corresponds correctly to the set of those that were cast with a
unique credential or a repeated credential for the same vote. The proof (in the
Appendix) simply treats the PETs as perfect and does not mention the honest
tallier. The paper concludes by saying that “A major feature of the system is
that the degree of coercion that actually took place is publicly verifiable”. The
assumptions and claims are thus somewhat ambiguous and inconsistent.

In summary, the degree of coercion is not universally verifiable because with-
out at least one trustworthy tallier, evidence of coercion can be hidden.

4.8 Universally Verifiable Auctions

Several cryptographic auction protocols also use the PET from [17] while claim-
ing universal verifiability, and therefore are are vulnerable to the same attack.
In a verifiable auction there are n players who place a secret bid, and engage in
an interaction to determine which was the highest bid (and who placed it) with
convincing evidence that this was done correctly. There are two distinct settings:
one where this evidence is enough for each player to be sure of the result, and
one where it is enough for any public observer to verify the result.

For example, the scheme of Abe et al. [2] is claimed to be UV but uses the
Mix & Match PET, so it cannot have this property. The protocol of Bradford
et al. [6] also claims UV, citing Mix & Match for its PET as well as [16], an
almost-identical PET (which is also not UV). Most notably, Quaglia et al. [20]
present a method for converting a verifiable election protocol into a verifiable
auction protocol; they use Helios as a case study, in which a plaintext equivalence
proof is used to construct a universally verifiable auction from mixnet tallying.
However, they once again cite Mix & Match as their PET, so fail to achieve UV.

5 Correcting the Problems to Achieve UV

5.1 The Fiat-Shamir Transform

When using the Fiat-Shamir transform to convert an interactive zero knowledge
proof to a non-interactive equivalent, it is crucial that one includes the full
statement to be proved in the hash [4]. Focusing on Civitas, for the decryption
proof it uses H(y, d, gr, ar) when it should also include a, b, br. For the equality
of discrete logs it uses H(v, w, a, b) (where a = fz and b = hz for a random
factor z) when it should also include f, h. Note that these inclusions break the
attacks outlined above.

When Is a Test Not a Proof? 35

5.2 The Correct Plaintext Equivalence Proof

It is easy to fix the weakness in the distributed PET by simply checking that the
ciphertext is not (1, 1). However, this check is not present in either the original
Mix & Match paper by Jakobsson & Juels (which does not claim UV), nor JCJ
(which assumes UV and points to Mix & Match), nor the Civitas verification
code (for which the TR claims UV). We outline the setting of the Civitas PET
(a direct implementation of the Mix & Match PET) below.

Let xi ← Z
∗
q be the private key shares and yi = gxi mod p be the public key

shares such that

Y =
∏

i

yi mod p =
∏

i

gxi mod p = g
∑

i xi mod q mod p

is the public key. We assume EqDlogs(d, e, x, y) is an existentially sound4 nonin-
teractive zero knowledge proof that dlogdx = dlogey. We stress that EqDlogs as
presented in [8] is not existentially sound due to the issue in its implementation
of the Fiat-Shamir transform. However, [4,5] give an argument that a correctly
implemented transform including all inputs to the protocol in the hash function
results in an existentially sound version.

We are given as public input ciphertexts

cj = (aj , bj) = (grj mod p, gmjY rj mod p) for j ∈ {1, 2}

The goal is to prove in a universally-verifiable manner whether m1 = m2 mod q.
Let (d, e) = (a1/a2, b1/b2). Each teller TTi is supposed to randomly choose

zi ∈ Z
∗
q , calculate their share (di, ei) = (dzi , ezi), and publish a commitment

Commit(di, ei).5 A distributed decryption is then performed on c′, where each
TTi publishes their share a′

i = a′xi mod p and a proof EqDlogs(g, a′, yi, a
′
i), guar-

anteeing they faithfully calculated a′
i from a private key share xi.

Under the assumption that the Fiat-Shamir weakness is addressed (see [4]
for details on this), we present a proof that the PET in Civitas is universally
verifiable when a check for trivial ciphertexts are added, following the approach
of [5] (sections 19–20). The corrected protocol is shown in Protocol 1, in which
P is the prover (playing the role of all tellers simultaneously since we allow
the possibility of collusion) and V is the public verifier. We will construct the
protocol to allow both proofs of both equality and inequality; this will make the
argument a little more complex, but much more general.

Protocol 1. PlaintextEquivalenceProof
Setup: public ElGamal parameters (G, p, q, g); public key shares yi for i ∈ [n] (where
n is the number of tellers). Corresponding private key shares xi for i ∈ [n].

4 Also called adaptively sound in other literature.
5 The commitment is elided from Protocol 1, as it is not relevant in the case that
every teller colludes.

36 E. McMurtry et al.

1. P sends ciphertexts cj = (aj , bj) for j ∈ {1, 2} to V.
2. P,V calculate d = a1/a2, e = b1/b2.
3. P sends (di, ei),EqDlogs(d, e, di, ei) to V.
4. P,V calculate c′ = (a′, b′) = (

∏
i di,

∏
i ei).

5. P sends a′
i,EqDlogs(g, a′, yi, a

′
i) to V with a bit IsEq corresponding to whether

the proof is of equality (IsEq = 1) or inequality (IsEq = 0).
6. V calculates

M =
b′

∏
i a′

i

mod p

7. V verifies the EqDlogs ZKPs (as will be made precise below with CheckEqD)

8. If IsEq = 1,V outputs

{
accept ifM = 1, the ZKPs pass verification, and c′ �= (1, 1)

reject otherwise

If IsEq = 0, V outputs

{
accept if M �= 1 and the ZKPs pass verification
reject otherwise

We show that the combination of ZKP facts and equations checked directly
by V implies that the two plaintexts are equal (mod q).

Lemma 1. In the setting of Protocol 1, m1 = m2 mod q if and only if M = 1,
c′ �= (1, 1), dlogddi = dlogeei, and dloggyi = dloga′a′

i for all i ∈ [n].

Proof. With the setup done, an observer may compute (explicitly labelling mod-
ulo operations):

c′ = (a′, b′) =

(
∏

i

dzi ,
∏

i

ezi

)

= (dz mod q, ez mod q) where z =
∑

i

zi

=

((
a1

a2

)z mod q

,

(
b1
b2

)z mod q
)

=

((
gr1

gr2

)z mod q

mod p,

(
gm1

gm2

yr1

yr2

)z mod q

mod p

)

as well as

A′ =
∏

i

a′
i =

∏

i

(
gr1

gr2

)zxi mod q

(mod p)

=
(

gr1

gr2

)z
∑

i xi mod q

=
(

Y r1

Y r2

)z mod q

(mod p)

and thereby recover

M =
b′

A′ =

(
gm1

gm2
Y r1

Y r2

)z mod q

(
Y r1

Y r2

)z mod q
=

(
gm1

gm2

)z mod q

(mod p)

= 1 if and only if
gm1

gm2
= 1 mod p or z = 0 mod q

When Is a Test Not a Proof? 37

In particular, note that if z = 0 mod q, c′ = (1, 1) which trivially decrypts to 1
regardless of whether m1 = m2.

5.3 Security Proof for the Corrected PEP

We follow [5] for formalising the security requirements on the ZKPs, as well as
the plaintext equivalence proof system itself. The general idea is to decide what
a “proof” should mean mathematically: a statement whose truth can be checked
by a public observer. We will argue that any efficient adversary should have only
a negligible probability of forging a proof for a false statement.

Definition 1. Non-interactive proof system
Let R ⊆ X ×Y be an effective relation, where if (x, y) ∈ R, y is a statement and
x is a witness for the statement. A non-interactive proof system for R is a
pair of algorithms (Gen,Check) where

1. Gen is an efficient probabilistic algorithm that is invoked as π ←R Gen(x, y),
where (x, y) ∈ R, and π belongs to some proof space PS;

2. Check is an efficient deterministic algorithm that is invoked as Check(y, π),
where y ∈ Y and π ∈ PS; the output of Check is either accept or reject. If
Check(y, π) = accept, we say π is a valid proof for y.

We will assume that EqDlogs is corrected to satisfy this requirement. Given
public input f, h, v, w we would like to prove that we know x such that v =
fx and w = hx. After choosing a random z, the statement (for prime p, q) is
(p, q, f, h, v, w, a = fz mod p, b = hz mod p) with witness x. We will publish
c = H(f, h, v, w, a, b) and r = z + cx mod q. We then have algorithms

– GenEqD which maps (x, p, q, f, h, v, w, a, b) to π = (c, r)
– CheckEqC(p, q, f, h, v, w, a, b, π) which outputs accept if and only if fr =

avc mod p and hr = bwc mod p (otherwise, it outputs reject)

From here we will use EqDlogs(f, h, v, w) less formally to mean “the proof output
by GenEqD(x, p, q, f, h, v, w, a, b)” where context makes x, p, q clear.

PlaintextEquivalenceProof also satisfies this definition: given ciphertexts c1 =
(a1, b1), c2 = (a2, b2), ElGamal parameters (G, p, q, g), and public key shares yi,
the statement is

(G, p, q, g, c1, c2, {yi}i∈[n], IsEq)

with witnesses {xi}i∈[n]. The algorithms are:

– GenPEP which maps ({xi}i∈[n],G, p, q, g, c1, c2, {yi}i∈[n], IsEq) to

π = {(di, ei, a
′
i,EqDlogs(d, e, di, ei),EqDlogs(g, a′, yi, a

′
i))}i∈[n]

– CheckPEP (G, p, q, g, c1, c2, {yi}i∈[n], IsEq, π) which is as per Steps 2, 4, 6, 7, 8
of Protocol 1, with additional checks on the ElGamal parameters:
1. Check that (

∏
i di mod p,

∏
i ei mod p) �= (1, 1).

38 E. McMurtry et al.

2. Check that d = a1/a2 and e = b1/b2 in EqDlogs(d, e, di, ei), and that it is
a valid proof.

3. Check that g has order q in G, that a′ =
∏

i di in EqDlogs(g, a′, yi, a
′
i),

and that it is a valid proof.

4. If IsEq = 1, output

{
accept if the above checks succeed and

∏
i

ei
a′
i
= 1 mod p

reject otherwise

If IsEq = 0, output

{
accept if the above checks succeed and

∏
i

ei
a′
i

�= 1 mod p

reject otherwise

The requirement we will use for universal verifiability is that of existential
soundness:6 the adversary who produces our proof should not be able to falsify
a proof even if they freely choose all of the parameters, given a verifier who holds
only public knowledge [5, Definition 20.2]. If we can achieve this, then we satisfy
universal verifiability.

Definition 2. Existential soundness
Let Φ = (Gen,Check) be a non-interactive proof system for R ⊆ X × Y with
proof space PS. To attack Φ, an adversary A outputs a statement y ∈ Y and a
proof π ∈ PS. We say that the adversary wins the game if Check(y, π) = accept
but there is no witness x such that (x, y) ∈ R. We define A’s advantage with
respect to Φ, denoted niESadv[A, Φ], as the probability that A wins the game.
Φ is existentially sound if for all efficient adversaries A, niESadv[A, Φ] is
negligible.

Theorem 1. Assume EqDlogs is an existentially sound non-interactive proof
system. For all efficient adversaries A with security parameter k, suppose that
for some negligible ε(k), we have: niESadv[A,EqDlogs] < ε(k).
Then PlaintextEquivalenceProof is existentially sound.

Proof. Consider an efficient adversary A with security parameter k for whom

niESadv[A,PlaintextEquivalenceProof] = P (k)

Suppose A outputs a proof π for the false statement (G, p, q, g, c1, c2, IsEq).

Case 1: IsEq = 1. Then if CheckPEP (G, p, q, g, c1, c2, IsEq, π) outputs accept, by
definition m1 �= m2 mod q and gm1

gm2 = 1 mod p.

Case 2: IsEq = 0. Then if CheckPEP (G, p, q, g, c1, c2, IsEq, π) outputs accept, by
definition m1 = m2 mod q and gm1

gm2 �= 1 mod p.
In either case c′ �= (1, 1), and EqDlogs(d, e, di, ei), EqDlogs(g, a′, yi, a

′
i) are

valid proofs. We checked that 〈g〉 = q, so Lemma 1 implies (at least) one of the
following two statements is false for some i ∈ [n]:

(i) dlogddi = dlogeei

(ii) dloggyi = dloga′a′
i

6 Also called adaptive soundness.

When Is a Test Not a Proof? 39

So A must have cheated in at least one instance of EqDlogs. We can now
construct an adversary B (with security parameter k) to defeat EqDlogs. B runs
A to obtain two proofs EqDlogs(d, e, di, ei), EqDlogs(g, a′, yi, a

′
i). At least one

is valid; we do not know which one, so B tosses a coin. On heads, B chooses
EqDlogs(d, e, di, ei), and on tails it chooses EqDlogs(g, a′, yi, a

′
i). B then outputs

the chosen statement and proof. In this way, B wins with probability at least
P (k)/2.

Therefore given that an efficient adversary attacking EqDlogs has advantage
at most ε, an efficient adversary attacking PlaintextEquivalenceProof has advan-
tage at most 2ε. �	

6 Discussion and Conclusion

We have found a subtle misalignment of assumptions in a very influential paper
(624 citations): they require a PET to have universal verifiability, but reference
only PETs that do not have this property. As with many cryptographic proto-
cols, this small unmet assumption completely undermines one of the protocol’s
primary security goals, in this case universal verifiability. This oversight affects
a large number of follow-on protocols in exactly the same way, hence undermin-
ing their universal verifiability too. Furthermore, the issue is not unique to the
electronic voting domain, but also appears in verifiable auction schemes. To our
knowledge, other work has not noticed this important subtlety.

Although our most detailed analysis describes errors in the Civitas implemen-
tation, this is primarily because Civitas is the only one of the affected papers
to provide a detailed technical report and code, rather than because the other
projects understood the subtle assumption better. Comments in other papers
suggest that, if the authors had implemented their designs, they would likely
have made the same confusion between PETs with PEPs. This is further demon-
strated by their reference to the PET of [17], which lacks the crucial property.
Fortunately, the mistake is easily rectifiable—but if the Fiat-Shamir transform
is used improperly by a protocol, a related attack opens up to catastrophically
undermine any plaintext equivalence proofs used.

The discovery has significant parallels with Bernhard et al.’s discovery
of errors in the implementation of the Fiat-Shamir heuristic that undermined
soundness in the context of Helios [4], and again in the SwissPost-Scytl sVote
scheme [13,14]. This suggests that errors of this nature are not unique to the
schemes discussed in this paper, but may be indicative of a more systemic prob-
lem in the misalignment of assumptions between separate work.

Acknowledgements. The research carried out by O. Pereira was partially supported
by the F.N.R.S. PDR SeVoTe.

References

1. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 437–447. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054144

https://doi.org/10.1007/BFb0054144

40 E. McMurtry et al.

2. Abe, M., Suzuki, K.: M+ 1-st price auction using homomorphic encryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 8

3. Benaloh, J.: Verifiable secret-ballot elections (1988)
4. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of

the Fiat-Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

5. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)
6. Bradford, P.G., Park, S., Rothkopf, M.H., Park, H.: Protocol completion incentive

problems in cryptographic vickrey auctions. Electron. Commer. Res. 8(1–2), 57–77
(2008)

7. Clark, J., Hengartner, U.: Selections: internet voting with over-the-shoulder
coercion-resistance. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 47–61.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0 4

8. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: 2008 IEEE Symposium on Security and Privacy (SP 2008), pp. 354–368. IEEE
(2008)

9. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 779–798. IEEE (2016)

10. Delfs, H., Knebl, H.: Introduction to Cryptography, vol. 3. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47974-2

11. Essex, A., Clark, J., Hengartner, U.: Cobra: toward concurrent ballot authorization
for internet voting. EVT/WOTE 12 (2012)

12. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.: Caveat coercitor: coercion-
evidence in electronic voting. In: 2013 IEEE Symposium on Security and Privacy,
pp. 367–381. IEEE (2013)

13. Haenni, R.: Swiss Post Public Intrusion Test: Undetectable attack against
vote integrity and secrecy, March 2019. https://e-voting.bfh.ch/app/download/
7833162361/PIT2.pdf?t=1552395691

14. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 784–800
(2019)

15. Heather, J., Ryan, P.Y.A., Teague, V.: Pretty good democracy for more expressive
voting schemes. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 405–423. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3 25

16. Hevia, A., Kiwi, M.: Electronic jury voting protocols. Theoret. Comput. Sci.
321(1), 73–94 (2004)

17. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 13

18. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp.
37–63. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 2

19. MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 385–400.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 25

20. Quaglia, E.A., Smyth, B.: Secret, verifiable auctions from elections. Theoret. Com-
put. Sci. 730, 44–92 (2018)

https://doi.org/10.1007/3-540-45664-3_8
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-662-47974-2
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://doi.org/10.1007/978-3-642-15497-3_25
https://doi.org/10.1007/978-3-642-15497-3_25
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/3-540-45708-9_25

When Is a Test Not a Proof? 41

21. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Malcolm,
J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp.
111–130. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36213-
2 15

22. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X 32

23. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote E-voting in linear time. In: Danezis, G. (ed.) FC 2011.
LNCS, vol. 7035, pp. 182–189. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27576-0 15

https://doi.org/10.1007/978-3-642-36213-2_15
https://doi.org/10.1007/978-3-642-36213-2_15
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-642-27576-0_15
https://doi.org/10.1007/978-3-642-27576-0_15

Hardware Fingerprinting for the ARINC
429 Avionic Bus

Nimrod Gilboa-Markevich and Avishai Wool(B)

School of Electrical Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel
gmnimrod@gmail.com, yash@eng.tau.ac.il

Abstract. ARINC 429 is the most common data bus in use today in
civil avionics. Despite this, the protocol lacks any form of source authen-
tication. A technician with physical access to the bus is able to replace
a transmitter by a rogue device, and receivers will accept its malicious
data as they have no method of verifying the authenticity of messages.

Updating the protocol would close off security loopholes in new air-
crafts but would require thousands of airplanes to be modified. An
interim solution is required. We propose a hardware fingerprinting
method for the ARINC 429 data bus, and analyze its performance in
a sender authentication setting. Our approach relies on the observation
that changes in hardware, such as replacing a transmitter or a receiver
with a rogue one, modify the electric signal of the transmission.

In this paper we explore the feasibility of designing an intrusion detec-
tion system based on hardware fingerprinting. Our analysis includes both
a theoretical Markov-chain model and an extensive empirical evaluation.
For this purpose, we collected a data corpus of ARINC 429 data traces,
which may be of independent interest since, to the best of our knowledge,
no public corpus is available.

In our experiments, we show that it is feasible for an intrusion detec-
tion system to achieve a near-zero false alarms per second, while detect-
ing a rogue transmitter in under 50ms, and detecting a rogue receiver in
under 3 s. This would allow a rogue component installed by a malicious
technician to be detected during the pre-flight checks, well before the air-
craft takes off. This is made possible due to the fact that we rely on the
analog properties, and not on the digital content of the transmissions.
Thus we are able to detect a hardware switch as soon as it occurs, even
if the data that is being transmitted is completely normal.

1 Introduction

1.1 Background

ARINC 429 [1] is a prominent standard for wired intra-vehicle communication in
civil aviation released in 1977. Most active and retired airplanes contain ARINC
buses [14], connecting the many digital systems that are necessary for the oper-
ation of an aircraft: sensors, radars, engines, cockpit controls and more.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 42–62, 2020.
https://doi.org/10.1007/978-3-030-59013-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_3

Hardware Fingerprinting for the ARINC 429 Avionic Bus 43

Safety and reliability are key objectives in avionics [14]. Security on the
other hand, as we understand it today, was not a primary concern. ARINC
429 was designed without any security features, such as encryption or source
authentication, that are perceived today as essential to secure communication.
Over the last 10 years, systems of the same vintage have been attacked (cf.
[9,20,22]). A recent study [28] has found that attacks on wireless safety-related
avionics systems have the potential of disrupting ongoing flights. In contrast to
advancements in cybersecurity, there were no major revisions of the ARINC 429
standard since 1980 [29]. There is a successor to ARINC 429 - AFDX. However,
it is likely that ARINC 429 will continue to serve for many years in older aircrafts
and alongside the new protocol in newer aircrafts [14].

A major concern is that ARINC 429 has no mechanism for source authen-
tication. One way to add authentication without an industry-wide update of
the protocol is to implement it at a higher layer of the protocol stack. Unfortu-
nately, in ARINC 429 there are only 19 data bits in a message. This is typically
insufficient for a secure implementation of message code authentication (MAC).

Another solution is to employ an intrusion detection system (IDS) to retrofit
security into the existing protocol. We propose an IDS that relies on hardware
fingerprints, i.e, on characteristics of the electrical signal, in order to identify
changes in bus topology and connected hardware.

1.2 Related Work

To the best of our knowledge, this is the first academic research to suggest
hardware fingerprinting in ARINC 429. However, hardware fingerprinting was
explored previously in a number of different domains: Ethernet [15,19,30]; wire-
less radio [5,12,31]; smartphone accelerometers, gyroscopes, microphones and
cameras [10,11].

One domain in particular interests us: controller area network (CAN bus)
[27], the most commonly used standard for in-vehicle communication in the
automotive industry. ARINC 429 and CAN bus have a lot in common: Both
protocols were formulated more than 30 years ago, and both were not designed
for security but rather for safety, and as a consequence lack source authentication.

In recent years a number of successful cyber-attacks were demonstrated on
cars [22], motivating researchers to search for new ways to hinder attacks. A
number of papers demonstrate the use of hardware fingerprints for detecting
changes in hardware: [6,8,18,24].

CAN bus and ARINC 429 use different line protocols and have different
attack models, therefore methods presented in the above papers cannot be
directly applied to our problem without change. They can, however, serve as
a starting point for ARINC 429 hardware fingerprinting.

1.3 Contributions

We propose the use of hardware fingerprinting in order to imbue ARINC 429
buses with source authentication capabilities. Applying the method only requires

44 N. Gilboa-Markevich and A. Wool

the attachment of a standard-compliant monitoring unit to the bus. This method
does not require hardware or software updates to existing systems and is com-
pliant with the current version of the ARINC standard.

We describe the adversary models that our method is effective at protecting
against. We then design a preliminary intrusion detection system with hardware
fingerprinting capabilities, and evaluate its performance in these attack scenarios.

We explore the ability to distinguish between devices by using the hardware
fingerprints of individual transmitted words. We find that it is possible to distin-
guish between transmitters and receivers by their electric signal, with low error
rates. This observation applies both to devices from different vendors and to
devices from the same vendor and model, which are supposedly identical.

We explore the effect of receivers and transmission lines on performance.
We see that adding a receiver does not yield a significant change in the signal.
However, switching a receiver by another receiver, when combined with a change
to the transmission line, is detectable by our method.

We compare different feature sets under different adversarial models. Some-
what surprisingly, we find that using the raw samples, without extracting any
features, yields the best outcome when detecting a transmitter switch. In case of
a receiver switch, we find that features derived from a polynomial fit outperform
the other feature sets.

In order to drive the false-alarms-per-second rate to zero, we suggest to aug-
ment the per-word anomaly detection by a “suspicion counter” that increases
with each word flagged as an anomaly, and decreases with every normal word.
We first analyze the suspicion counter using a Markov-chain model, and then
evaluate the performance of the combined system using the empirical data. In
this experimental work, our intrusion detection system achieves near-zero false
alarms per second, while detecting a rogue transmitter in under 50 ms, and
detecting a rogue receiver in under 3 s. In other words, an intrusion detection
system could potentially be used to detect attacks during the pre-flight checks,
well before the aircraft takes off.

2 Preliminaries

2.1 The ARINC 429 Standard

ARINC Specification 429 [1] or “Mark 33 Digital Transfer System (DITS)”, is
a standard of the avionics industry. It defines a protocol for the communication
between avionics system elements over a local area network. First published in
1977 by Aeronautical Radio, Inc., it has since become one of the most widely
used data bus protocols in civil aircrafts [23]. The protocol encompasses different
layers: from the physical requirements, through the electronic characteristics of
the signal, data format and ending with a file transfer technique.

In ARINC 429 the communicating entities are called line-replaceable units
(LRU). Data is transmitted over a single twisted and shielded pair of wires. The
cable shield is grounded on both ends. The lines are denoted Line A and Line B.

Hardware Fingerprinting for the ARINC 429 Avionic Bus 45

Fig. 1. ARINC 429 bus showing the voltage difference between twisted pair for bits
0101. Counter-clockwise starting from the top left: Line A, Line B, the differential
signal

Differential signaling is used, meaning that the signal is the voltage difference
from Line A to Line B, rather than the difference from one wire to ground.
Bipolar return-to-zero (BRTZ) modulation is used as a line protocol. BRTZ is
a tri-level state modulation: we refer to the three voltage levels as “HI”, “LO”
and “NULL”. A binary 1 is encoded as a positive voltage pulse “HI”, and a
binary 0 is encoded as a negative voltage pulse “LO”. In between transmissions,
the voltage drops to 0 V, “NULL”. Every “HI” and every “LO” are preceded
and are followed by a “NULL”, even if repeating bit values are transmitted
consecutively. The differential output voltage from line A to line B is 10V ± 1
in “HI” mode, 0 ± 0.5 in “NULL” mode and −10V± 1 in “LO” mode. Figure 1
shows a recording of a transmission on an ARINC 429 data bus.

Data is transmitted in words that are 32-bit long. The bits are transmitted
in the following order, from first to last: 8, 7, ..., 2, 1, 9, 10, ..., 32. This order is
a legacy from older systems. In this paper, words are interpreted as though an
MSB-first transmission order is in place.

Data on the ARINC 429 bus is transmitted unidirectionally from a single
transmitter LRU to up to 20 receiver LRUs. Only one transmitter LRU is allowed
on the bus - a separate bus is required for each transmitter. Since there is only
one transmitter on each bus, there is no sender ID field in ARINC messages.

The protocol allows a choice of one of two bit rates: Slow, at 12.0 to
14.5 Kbits/sec, and fast, at 100 Kbits/sec. The bit rate on a bus is fixed and
maintained within %1. The signal is self-clocking.

2.2 The Adversary Model

Our method is designed to guard against “technician attacks”. This type of
attack involves an adversary that has brief physical access to the system. Such
an adversary is able to replace LRUs or add new ones to the bus.

The adversary may have prior knowledge of the hardware and of the topology
of the attacked system. The reverse is not true: As defenders, we have no prior

46 N. Gilboa-Markevich and A. Wool

knowledge of what the adversary’s hardware might be. However, we do assume
that the adversary will use commercial off-the-shelf hardware.

We only consider attacks, where the adversary changes the hardware that
is connected to the bus, as other types of attack do not affect the signal. We
distinguish between several types of attacks.

A Rogue Transmitter. In this type of attack an adversary replaces a legit-
imate transmitter LRU by a rogue one. During an initial latent phase of the
attack, the new device imitates the behavior of the original transmitter, trans-
mitting data exactly as requested, in order to remain hidden. Later, the rogue
transmitter LRU sends out messages which are meant to disrupt the work of the
system.

A Rogue Receiver. In this type of attack the adversary replaces a legitimate
receiver LRU by a rogue one, or adds a rogue receiver LRU without detaching
another LRU. By doing this the adversary gains access to the transmitted data,
which might be otherwise inaccessible, and may use this data to cause harm
through another attack channel.

Adding a Transmitter or Converting a Receiver to a Transmitter. An
attack wherein the adversary adds another transmitter LRU to the bus, without
detaching the legitimate transmitter, is actually not possible to perform on the
ARINC bus. The ARINC 429 bus is designed to allow exactly one transmit-
ter LRU. Connecting two transmitters to the same bus irreparably violates the
electrical properties of the system. Therefore, an adversary cannot simply add
a transmitter (built from off-the-shelf components) to the bus. An adversary
may possibly construct special hardware that would allow the bus to function
with two or more transmitters, but the fact remains that standard commercial
components would not suffice.

Furthermore, it is not possible to turn a receiver LRU into a transmitter LRU
by hijacking its software, since the LRU’s wiring does not permit it.

3 The Data Set

To the best of our knowledge, there is no publicly available data set that contains
high rate voltage samples of ARINC 429 protocol. We gathered our own data
set, with the kind assistance of Astronautics C.A. LTD. [3]. We sampled two
types of transmitters:

1. An M4K429RTx test equipment from Excalibur Systems [13]. The Excalibur
equipment hosts two transmitters which we label E1 and E2.

2. ADK-3220 Evaluation boards, manufactured by Holt Integrated Circuits INC.
[17]. The board contains a HI-3220PQ ARINC 429 Protocol IC connected to 8
HI-8597PSIFF line drivers chips. We use 4 of the transmitters and 2 different
boards. We label the transmitters Hxy, where x is the board number, 1 or 2,
and y is the transmitter number from 0 to 3.

Hardware Fingerprinting for the ARINC 429 Avionic Bus 47

Fig. 2. The Holt evaluation board and the fabricated connector board

The transmitters were connected to one or more of the following receivers:

1. An EDCU, a proprietary device manufactured by Astronautics C.A. LTD.
[2]. The device has 2 receivers which we label P1 and P2.

2. The ADK-3220 Evaluation boards also host 16 integrated line receivers. We
use 2 of the ports with the 2 boards. We label the receivers the same way as
the transmitters with Hxy (x is the board number, y is the receiver number).

Using a Keysight DSO9254A scope, all signals were sampled at 50 Msa/s at
a scope bandwidth of 25 MHz. The probes are 500 MHz, 10 MΩ, 11 pF. Each line
was sampled individually. We further downsampled digitally by a factor of 10 to
a rate of 5 MSa/s using a 30 point FIR filter with a Hamming window.

The transmitters and the receivers were connected through a custom board
that exposes the wires, which we fabricated for this purpose (Fig. 2).

All the devices transmitted the same data at a bit rate of 100 Kbits/sec. 6 val-
ues of words were transmitted. Interpreting the words with MSB-first transmis-
sion order, the values are: 0x00000000, 0xFFFFFFFF, 0x55555555, 0xAAAAAAAA,
0x5A5A5A5A, 0xA5A5A5A5. Note that these words include all the possible seg-
ment types. By transmitting the same data on all devices we ensure that the
IDS cannot unintentionally use the message content to make its decisions.

In addition to the recordings from different transmitter-receiver pairs, we
recorded E1 and E2 transmitting to P1 and P2 respectfully, with different Holt
devices attached as additional receivers.

Table 1 shows the different combinations of transmitter-receiver in our data
set, and the number of words recorded for each combination.

4 The Hardware Fingerprinting Approach

The fingerprinting IDS we propose has to be attached to the bus it is guarding.
During a training period it samples the bus and learns the transmitter LRU’s

48 N. Gilboa-Markevich and A. Wool

Table 1. Distribution of recorded words in the data set

Row # Transmitter Receiver #Words

1 E1 P1 4920

2 E1 P1 & H10 4920

3 E1 P1 & H12 4920

4 E1 P1 & H20 4920

5 E1 P1 & H22 4920

6 H10 P1 4920

7 H11 P1 4920

8 H12 P1 4920

9 H13 P1 4920

10 H20 P1 4920

11 H21 P1 4920

12 H22 P1 4920

13 H23 P1 4920

14 E2 P2 4920

15 E2 P2 & H10 4920

16 E2 P2 & H12 4920

17 E2 P2 & H20 4920

18 E2 P2 & H22 4920

19 H10 P2 4920

20 H11 P2 4920

21 H12 P2 4920

22 H13 P2 4920

23 H20 P2 4920

24 H21 P2 4920

25 H22 P2 4920

26 H23 P2 4920

characteristics. We assume that during this time only legitimate devices are
present on the bus. We further assume that access to the IDS is restricted; only
authorized personnel are able to trigger the training mechanism. This restric-
tion is in place in order to prevent an adversary from retraining the IDS after
switching the guarded transmitter by the rogue one. Usually, before takeoff, the
aircraft systems are checked for basic integrity. During the pre-flight operations
changes to the bus can be detected, even if the transmitter LRU is sending nor-
mal data. This makes it possible to handle the attack before takeoff, as opposed
to mid-flight.

Hardware Fingerprinting for the ARINC 429 Avionic Bus 49

4.1 IDS Overview

We will next describe our proposed method of anomaly detection. We divide the
algorithm into several stages. This section provides an overview of these steps. In
the subsequent sections selected stages are explained in greater detail as needed.

1. [Acquisition] We sample both lines of the bus at a sampling rate that is
50 times higher than the bit rate. We used a sample rate of 5 MSa/s. The
differential signal is obtained by subtracting the samples of line B from the
samples of line A.

2. [Segmentation] Each word is split into 127 segments of 10 different types,
based on voltage levels. The purpose of the segmentation is to eliminate the
effect of the transmitted data, i.e., the content of the word, on the final
decision of the anomaly detector. See Sect. 5 for details.

3. [Feature Extraction] We extract multiple features from each segment. See
Sect. 6 for details.

4. [Anomaly Detection per Segment] The features from each segment are
fed into a trained anomaly detector. Each segment is marked as either “nor-
mal” or “anomaly”.

5. [Voting] A word is flagged as an “anomaly”, if the number of “normal”
segments it contains does not exceed Tvotes, a calibrated threshold.

6. [Suspicion Counter] We keep a counter of anomalous words. The counter
is increased by 1 when a word is marked as an “anomaly”, and decreased by
1 to a minimum of 0 when a word is marked as “normal”. Once the counter
reaches a threshold of Tsuspicion an alarm is raised.

4.2 Anomaly Detection per Segment

Our basic building block uses per-segment anomaly detection. As we shall see
there are 10 types of segments, as detailed in Table 2. A segment’s characteristics
depend on its type. Therefore, we opted to train a different anomaly detector
for each type of segment.

There are numerous outlier and anomaly detection algorithms available in the
literature. An extensive review of various algorithms is presented in [26]. For the
anomaly detection task, we chose to work with the Local Outlier Factor (LOF)
[4]. LOF was shown to work better than other algorithms for the task of net-
work intrusion detection [21]. This fact, together with the available scikit-learn
[25] Python implementation, made it an appealing choice. Comparing different
anomaly detection algorithms is beyond the scope of this paper.

LOF is a density-based outlier detection algorithm. According to the LOF
algorithm, an outlier is defined as a data point (feature vector), whose local
density is greater than the average of local densities of its neighbors by a large
enough margin. A local density of a data point is the inverse of the average
distance of the point from its neighbors.

There are several hyper-parameters for the LOF algorithm. In all cases we
used the default parameters provided by the implementation. For the number

50 N. Gilboa-Markevich and A. Wool

of neighbors examined when calculating the LOF the default is 20. We used the
Euclidean metric for the distance measure. The threshold on the local outlier
factor that defines an anomaly is automatically set so that 10% of the samples
in the training set are outliers.

We constructed one detector per each type of segment. Each segment is
fed individually into its appropriate LOF anomaly detector. The LOF out-
puts its determination regarding the source of the segment, either “normal”
or “anomaly”.

4.3 Voting

We gather the decisions made by the different LOF detectors for all segments of
the same word. The number of segments that have been identified as normal is
subjected to a voting threshold Tvotes. If it does not exceed Tvotes, the word is
flagged as an “anomaly”, otherwise, it is flagged as “normal”.

4.4 Suspicion Counter

According to our adversary model, an attacker tampers with the system only
once. Therefore, we expect the true label of all words in the incoming stream
to be identical—either all the words originate from the original system, or all
the words originate from a compromised system. We utilize this attack model to
reduce the probability of making an error. Taking note from [18] we incorporate
an anomaly counter, which we name the suspicion counter.

The suspicion counter is a counter that is updated on the arrival of a new
word. The initial value of the counter is 0. When a word is declared as an
“anomaly”, the counter is increased by 1, and when a word is declared as “nor-
mal”, the counter is decreased by 1, to a minimum of 0. Once the counter reaches
a calibrated threshold of Tsuspicion an alarm is raised.

5 Signal Segmentation

Our method aims to rely solely on the physical characteristics of the hardware,
and aims to be completely agnostic to the transmitted data. In order to achieve
this goal, we divide each word into sub-bit non-overlapping segments.

In a BRTZ line protocol, each bit comprises of 4 distinct segments. For exam-
ple, a ‘1’ bit starts with a transition up from “NULL” to “HI”, then a plateau on
“HI”, then a transition down from “HI” back to “NULL”, and finally a “NULL”
plateau. Furthermore, we observed 4 different variants of “NULL”, depending
on the current and on the next bit. E.g., a “NULL” between two ‘1’ bits tends to
be “smile”-shaped, while a “NULL” between two ‘0’ bits has a “frown” shape.
All in all, we identified 10 different segment types, see Table 2.

Thus, we split every 32-bit word into 127 segments. Note that there are only
127 segments, not 128, because the last bit is followed by a long “NULL” that

Hardware Fingerprinting for the ARINC 429 Avionic Bus 51

Table 2. Voltage thresholds per segment type

Segment Starting threshold Ending threshold

LO falls below −Vh1 rises above −Vh2

HI rises above Vh1 falls below Vh2

NULL, HI to HI falls below Vl1 rises above Vl2

NULL, HI to LO falls below Vl1 falls below −Vl2

NULL, LO to LO rises above −Vl1 falls below −Vl2

NULL, LO to HI rises above −Vl1 rises above Vl2

Up from LO rises above −Vh2 rises above −Vl1

Up from NULL rises above Vl2 rises above Vh1

Down from HI falls below Vh2 falls below Vl1

Down from NULL falls below −Vl2 falls below −Vh1

Fig. 3. A segmentation example of the bits 01. The trace exhibits all 4 up/down tran-
sitions, the “HI” and “LO” plateaus, and 3 of the 4 possible “NULL” segment types

lasts until the next word and has a unique shape. We do not associate this
segment with any word.

The segmentation is performed in the following manner. A segment starts
where the voltage level of the signal rises above/falls below a certain threshold,
and ends where it falls below/rises above another threshold. 4 different thresholds
are employed in order to produce a stabling hysteresis effect. We denote them
as follows, and use them and their negative to define segment boundaries: Vl1 =
2.0V, Vl2 = 2.8V, Vh1 = 8.0V, Vh2 = 7.2V.

Table 2 shows the voltage levels used for each segment type. Figure 3 shows
an example of word segmentation.

52 N. Gilboa-Markevich and A. Wool

6 Feature Sets

In our work we compare the performance of the feature sets described below.

Raw Time-Domain Samples. This feature set consists of the raw vector of
sequential voltage samples. The only operation we perform after segmentation is
truncating the segments to a common length, since the LOF algorithm expects
all data points to be vectors of the same dimension. The length varies depending
on the segment type, as shown in Table 4. At the sample rate we use (recall
Sect. 4.1) the number of samples per segment is quite low - between 4–24. This
makes the Raw feature set a practical choice.

Generic Time-Domain Feature Set. As discussed in Sect. 1.2, in recent
years a number of papers suggested using extracted features to perform hardware
fingerprinting [7,8,11,18]. They all utilized time-domain features such as mean,
standard deviation, skewness etc., with good results.

We use the features that were presented in [18] as our Generic set. Six of the
eight features in this feature set are used in all four cited papers. The features
we used are listed in Table 3.

In addition to time-domain features, the cited papers also employ frequency-
domain features. We do not use frequency-domain features in this paper. We
argue that the non-periodic nature of the signals, that are the result of our
segmentation method, does not benefit from frequency analysis.

Polynomial Feature Set. The features in this set are calculated by performing
a least squares polynomial fit and taking each coefficient as a separate feature,
plus the residual as an additional feature.

In order to avoid overfitting, we fit each type of segment with a polynomial
function of an appropriate degree. For the four transitions (“Up from LO”, “Up
from NULL”, “Down from HI”, “Down from NULL”) we use a degree of 2. For
“NULL, HI to HI” and “NULL, LO to LO” we use a degree of 6, on account
of these segments being even functions. For the remaining segments we use a

Table 3. Generic feature set

Feature Description

Mean μ = 1
N

∑N
i=1 x(i)

Standard deviation σ =
√

1
N

∑N
i=1(x(i) − μ)2

Variance σ2 = 1
N

∑N
i=1(x(i) − μ)2

Skewness skew = 1
N

∑N
i=1(

x(i)−μ
σ

)3

Kurtosis kurt = 1
N

∑N
i=1(

x(i)−μ
σ

)4

Root mean square rms =
√

1
N

∑N
i=1 x(i)2

Maximum max = max(x(i))i=1...N

Energy en = 1
N

∑N
i=1 x(i)2

Hardware Fingerprinting for the ARINC 429 Avionic Bus 53

Table 4. Number of features per segment type

Segment Segment length Raw Generic Polynomial Hand-crafted

LO 20−24 20 8 7 10

HI 20−23 20 8 7 10

NULL, HI to HI 17−22 17 8 7 2

NULL, HI to LO 17−21 17 8 8 0

NULL, LO to LO 17−22 17 8 7 2

NULL, LO to HI 17−21 17 8 8 0

Up from LO 4−6 4 8 3 2

Up from NULL 4−6 4 8 3 2

Down from HI 4−5 4 8 3 2

Down from NULL 4−5 4 8 3 2

degree of 7 for similar reasons. Note that the number of features is always one
more than the degree due to the residual.

Hand-Crafted Feature Set. In this feature set there are different features for
each segment type. We observed that the “HI” segments contain an overshoot
followed by ripples. We denote by (t1, v1), (t2, v2), (t3, v3) the time and voltage
level at the first local maxima (the overshoot), then the first local minima that
follows and then the first local maxima that follows. Time is measured from
the beginning of the segment. The features we take are the above 6 values, in
addition to the differences in time and voltage of the second and third points
from the first point: t2 − t1, v2 − v1, t3 − t1, v3 − v1. The features in the “LO”
segments are a mirror image of the features in the “HI” segment.

For “NULL, HI to HI” and “NULL, LO to LO” we only take the time and
voltage levels at the overshoot (t1, v1): not all segments of these types in the
data set have ripples.

The 4 transition segments are linear-like. For them we extract 2 features. The
first is the mean of the first derivative. This quantifies the slope. The second is the
mean of differences of the segment from a line that passes between the segment’s
endpoints. This feature quantifies the segment’s deviation from a straight line.

The segments “NULL, LO to HI” and “NULL, HI to LO” do not participate:
not all segments of these types in the data set contain an overshoot.

7 Detection Based on a Single Word

7.1 Methodology

We evaluated the performance of our algorithm with an extensive series of experi-
ments spanning over 125,000 recorded words from 12 transmitters. In each exper-
iment we selected one transmitter LRU as a guarded device. Its measurements
are labeled as normal, indicating the legitimate state where the adversary has
not yet tampered with the system. In each experiment we selected a group of

54 N. Gilboa-Markevich and A. Wool

other devices as rogue devices. Their measurements are labeled as anomalies,
representing the state of the system after it was changed by an adversary. In
all cases we used a train-test split of 60%–40% of the measurements labeled as
normal. Anomaly-labeled measurements are not present in the training set.

For the purpose of comparing the different feature sets, we set Tsuspicion = 1.
We then run our algorithm and calculate the false alarm and misdetection rates
(FAR & MDR respectively) as functions of Tvotes. Next, we find the equal error
rate (EER), the rate at which the FAR equals the MDR. The EER is the metric
we use for comparing different hyper-parameters.

In our graphs we convert the EER to “false alarms per second” (FA/Sec)
under normal operation (system unaltered by an adversary). This gives a more
concrete meaning to the numbers. The FA/Sec is calculated by multiplying the
EER by the message rate, and is the inverse of mean time between failures. Note
that each word occupies 36 bits, because the protocol mandates a minimum
inter-word gap of at least 4 bit times. Thus the FA/Sec metric is defined as:

FA/Sec =
1

MTBF
= EER · 100Kbits/sec

36bits

Note that since the FA/Sec is linear in the EER, we can discuss the graphs
as though they display the EER when giving a qualitative analysis.

7.2 Identifying a Rogue Transmitter

In this series of experiments we simulate an attack, where the adversary switches
the guarded transmitter LRU by a rogue transmitter LRU. In each experiment
we designate one of the transmitters as the legitimate device to be guarded. In
addition, we choose one receiver, either P1 or P2. We train our IDS to identify
samples from the chosen Tx-Rx pair as normal.

We then test the trained IDS. We simulate a rogue transmitter LRU by using
measurements of other transmitters connected to the chosen receiver as anoma-
lies. We remind the reader that during each measurement, only one transmitter
is connected to the bus.

Only the Holt devices were used to simulate rogue transmitters, regardless
of whether the guarded transmitter is an Excalibur (E1 or E2) or a Holt (H10,
..., H13, H20, ..., H23).

For example, if we choose E1 as the guarded transmitter and P1 as the
receiver, words from row 1 in Table 1 are labeled as normal and used in the
training stage and in the testing stage. Words from rows 6–13 are labeled as
anomalies and used in the testing stage.

We repeat this process for all possible values of Tvotes (0–127) while keeping
Tsuspicion = 1. For each value of Tvotes we indicate the MDR and the FAR. From
these values we obtain the EER and the FA/sec.

We repeat this process for four feature sets with all pairs of guarded trans-
mitter and receiver. We end up with 18 experiments per feature set.

The results are presented as a box plot in Fig. 4. The x axis splits the results
according to the used feature set. The y axis shows the false alarms per second:

Hardware Fingerprinting for the ARINC 429 Avionic Bus 55

Fig. 4. Comparing the feature sets for identifying a rogue transmitter.

0 is the perfect score. The horizontal line in the middle of the box and the
number written next to it indicate the median. The bottom and top boundaries
of the box indicate the 1st and 3rd quartiles respectively. The horizontal lines
outside of the box (the whiskers) indicate the minimum and maximum values.

The figure shows that intruder detection yields the best results in term of
EER when we use the Raw feature set. Both the median and the spread of the
values are low. The EER values for the Generic and Polynomial feature sets are
slightly more spread out, and the median is greater. The Hand-Crafted feature
set is clearly inferior.

The Generic, Raw and Polynomial feature sets have comparable performance,
with Raw being slightly better with a median EER value of 0.12% compared to
0.32% and 0.19% for the Generic and Polynomial feature sets. Since there is
no significant reduction in memory costs from using the Generic feature set
(recall Table 4), we conclude that in our case it is best to use the raw voltage
samples, since in the trade-off between memory/runtime and performance, with
the Generic set we spend significant effort to extract the features, and obtain no
gain in comparison to the raw signal.

We point out that there is a correlation between the number of features in
the set and the performance of the feature set. The feature sets with reduced
performance, namely the Hand-Crafted and Polynomial sets, have significantly
fewer features for some segments - as few as 2 - and the Hand-Crafted sets
totally ignores two segment types. The more features there are in the set, the
more expressive the model is. Perhaps the two feature sets would perform better
if they included additional features.

Interestingly, for all feature sets there are experiments which reached a per-
fect EER value of 0. The guarded transmitters in these perfect experiments are
E1, E2 and H10. Why do we achieve these results for E1 and E2? We point out
that we only use the Holt boards to simulate rogue devices. This means that
in experiments where E1 and E2 are used as guarded devices, the IDS is tasked
with differentiating between a guarded device and rogue devices that are man-
ufactured by different vendors. We expect devices from different models to have
different characteristics. However, we achieve EER = 0 for the Holt device H10

56 N. Gilboa-Markevich and A. Wool

Fig. 5. FAR and MDR as a function of the threshold for different (a) E1 as a guarded
device and (b) H21 as a guarded device

as a guarded device as well - indicating that even for the same manufacturer
there are significant differences in the hardware fingerprint of individual devices.

We demonstrate this point by examining two selected experiments. We plot
the MDR and the FAR vs. the threshold value using E1 (Fig. 5a) and of H21

(Fig. 5b) as guarded devices. Both are connected to P1 and in both figures the
Raw feature set is used. Note that again, in these graphs, lower is better.

Figures 5a and 5b show that the two cases pose different levels of challenge for
the IDS. In case of the E1 transmitter (Fig. 5a), the MDR and the FAR curves
do not intersect. In fact, the MDR overlaps the left-side boundary of the figure.
There is a wide range of thresholds, for which an error rate of 0 can be achieved
simultaneously for both rates. This makes E1 easily distinguishable from Holt
transmitters. In contrast, in the case of the H21 transmitter (Fig. 5b) there is
only a narrow range of thresholds for which both error rates are small, and the
EER is greater than 0, making the tuning of the threshold important.

Another thing to observe is that in both Figs. 5a and 5b the FAR curve is
roughly the same, while the MDR curve spreads to higher thresholds in Fig. 5b.
Note that the FAR is only calculated from samples of the guarded transmitter,
and that the MDR is only calculated from samples of the rogue transmitters. The
task of labeling a word from a guarded device as normal is not affected by the
type of the guarded device. However, the success of labeling rogue transmitters
as anomalies heavily depends on the uniqueness of the guarded device.

Our experimental results regarding the identification of a rogue receiver
switch, and identification of an addition of a rogue receiver, have been omit-
ted due to space constraints. The results can be found in our full technical
report [16].

8 Modeling the Suspicion Counter

In this section we analyze the effect of the suspicion counter on the overall false
alarm rate, using a Markov-chain approach. Let the probability that a word is

Hardware Fingerprinting for the ARINC 429 Avionic Bus 57

Fig. 6. Suspicion counter example for Tsuspicion = 3

Fig. 7. (a) Probability for a false alarm during a 10-h flight (b) Time until the proba-
bility of a true detection exceeds 99.999%

detected as anomalous be denoted by p, and assume that the events of detecting
a word as anomalous are i.i.d. Then we can describe the value of the counter
after word i arrives as a Markov random process. Figure 6 shows, for example,
the Markov process that corresponds to Tsuspicion = 3.

A transition to the right indicates that a word was detected as an anomaly,
and a transition to the left indicates that a word was detected as normal. The
counter cannot be decreased below the initial value of 0. The state for i =
Tsuspicion is a final state indicating that an alarm is raised.

Figure 7a shows the probability of a false alarm occurring during a 10-h
flight as a function of Tsuspicion for different values of p. We assume an average
transmission rate of 610 words per second, which is about 20% of the maximal
available bandwidth. This is the rate used in our data set. We can see that for
every value of p, if Tsuspicion is high enough, the false alarm rate probability
drops to 0. The lower p is, the minimal Tsuspicion that is required is lower.
Interestingly, even for a very high single-word false alarm probability of 40%, at
a Tsuspicion value of just 50 the probability of a false alarm drops to 0.

Figure 7b show the time it takes for the probability for a positive (anomaly)
detection to reach 99.999%. Here all the transmitted words are assumed to orig-
inate from a rogue system, therefore we set p > 0.5. A low detection time means
that the system is quick at detecting the adversary. The figure shows that the
time until detection rises as Tsuspicion rises. The rise is quicker for low values of p.
Even so, with a very poor detection probability of p = 0.6 and Tsuspicion = 100,
(which is much more than the threshold required to bring the false alarm rate
to near 0), the time until detection reaches only 2 s. So, we can see from the

58 N. Gilboa-Markevich and A. Wool

Markov model that using a suspicion counter drastically reduces the false alarm
rate, while slowing down the detection only mildly.

9 Performance of the Complete Method

The results we attained in Sect. 7 are encouraging: we can successfully fingerprint
a transmitter based on a single word. However, the FA/Sec metric of around 5
alarms per second is still too high for a realistic system. To reduce the FA/Sec
rate to near-zero, we use the suspicion counter we analyzed in Sect. 8, and raise
an alarm only when the counter exceeds Tsuspicion. In this section we empirically
evaluate the behavior of the complete system as a function of the threshold. We
do not discuss how to identify an additional receiver, since we could not identify
it with sufficient certainty in Sect. 7.

In our full technical report [16] we showed that different feature sets are suited
for detecting different adversary models; the Raw feature set for detecting a rogue
transmitter, and the Polynomial feature set for detecting a rogue receiver. We
now continue our evaluation with these two feature sets.

We wish to examine the FAR as a function of the counter threshold. For each
transmitter-receiver pair in our data set we repeat the following procedure. First,
we train an anomaly detector on words recorded with the selected pair. Then we
test the detector 1000 times on words recorded with the same pair. Each time
we use the same 1968 words after cyclically shifting them by a random integer
in order to start the counter at a different point in time. We compute the FAR
by dividing the number of times an anomaly was detected by the total number
of measurements. Overall there are such 18000 measurements (9 transmitters ×
2 receivers × 1000 repetitions). We repeat this procedure with different values
of Tsuspicion, once for each feature set. We use Tvotes = 100 in all experiments.
Experiments in Sect. 7 show that this is a reasonable choice that balances the
FAR and the MDR for detection based on single words. The train-test split is
60%–40%. Figure 8a shows the results.

As predicted by the Markov analysis, the false alarm rate drops dramatically
as Tsuspicion increases. For Tsuspicion greater than 16, there were no false alarms:
the empirical results and the Markov analysis are in agreement, and the empirical
Fig. 8a is similar to the theoretical Fig. 7a. In both the false alarm probability
starts at 1, is stable for low values of Tsuspicion, drops quickly and finally decays
to 0.

For observing the trade-off of using an anomaly counter, measuring the
MDR rate is inefficient, since given sufficient time an anomaly will eventually
be detected. Instead of measuring the MDR, we measure the time it takes for
our detector to raise an alarm. The procedure is similar to the procedure of
measuring the FAR. Instead of testing the trained detector on words recorded
with the same transmitter-receiver pair as the one on which it was trained, we
test it on words from other pairs, according to the adversary model that is being
simulated, as explained in Sect. 7.1. The Raw feature set is used for measuring a
rogue transmitter detection, and the polynomial feature set is used when detect-
ing a rogue receiver. We count the number of words it takes for the detector to

Hardware Fingerprinting for the ARINC 429 Avionic Bus 59

Fig. 8. (a) FAR as a function of Tsuspicion (b) Maximal length of time for detecting an
attack. Tvotes = 100

raise an alarm. Overall, for a rogue transmitter there are 144000 measurements
(9 guarded transmitters × 8 rogue transmitters × 2 receivers × 1000 repetitions)
and for a rogue receiver there are 8000 (8 transmitters × 1 guarded receiver ×
1 rogue receiver × 1000 repetitions) for each value of Tsuspicion.

Figure 8b shows the maximal (worst case) time we measured for detecting a
rogue transmitter over all combinations of guarded and attacking transmitters.
Figure 8b shows the same for detecting a rogue receiver. The blue line indicates
a lower bound—the time it takes to transmit Tsuspicion messages. In our test set
the average transmission rate is 610 words per second, which is about 20% of
the maximal available bandwidth.

The figures show that the suspicion counter reduces false alarms at the
expense of only mildly delaying the detection of an attack. We find the trade-off
worthwhile. Even when Tsuspicion = 20 and there are no false alarms, a rogue
transmitter is detected in under 50 ms, which greatly reduces the adversaries
ability to mount a successful attack, and a rogue receiver is detected in several
seconds, which is still good.

In both cases, the maximal observed detection time rises faster than lower
bound. For rogue transmitter detection, the maximal time is of the same order of
magnitude of as the lower bound, while for the case of rogue receiver detection,
the maximal time is an order of magnitude higher. The gap is explained by
the difference in misdetection rates for single words, measured in Sect. 7. The
difference between the slopes is predicted by the Markov analysis. Figure 7b
shows that as the misdetection rate of a single word increases, so does the rate
at which the detection time rises.

10 Conclusions

We presented a hardware fingerprinting method for the ARINC 429 bus. The
method can be used to retrofit source authentication into existing avionic systems
with low effort, since it does not require modifications to existing components.

60 N. Gilboa-Markevich and A. Wool

We showed that our method is especially effective for identifying a technician
attack, in which an adversary replaces a legitimate LRU with a rogue one. We
demonstrated that even transmitter LRUs of the same make and model are
different enough for them to generate distinguishable signals. All the more so
when dealing with devices from different vendors. We found that skipping the
feature extraction stage and using the raw signal achieves the best result.

In our full technical report [16] we showed that the method can also detect a
switched receiver and that the Polynomial feature set, which was conceived for
the purpose of this paper, achieves the best performance among the feature sets
we examined for this task.

We showed that by augmenting the per-word anomaly detection by a “sus-
picion counter”, we can drastically reduce the false-alarm rate. Using both a
Markov-chain analysis and an extensive empirical evaluation, we showed that an
intrusion detection system based on hardware fingerprinting could potentially be
used to detect hardware changes during pre-flight checks, well before the aircraft
takes off. In our experiments, a preliminary intrusion detection system achieves
near-zero false alarms per second, while detecting a rogue transmitter in under
50 ms, and detecting a rogue receiver in under 3 s.

Further research is required in order to evaluate the sensitivity of the hard-
ware fingerprints to external changes such as fluctuations in temperature or
supply voltage levels, and to evaluate its stability over time.

ARINC 429 lacks essential security features. It is a safety liability that is
present today in almost every civil aircraft. Our hardware fingerprinting method
could help close the gap between ARINC 429 and modern security requirements.

Acknowledgments. This work was supported in part by a grant from the Interdisci-
plinary Cyber Research Center at Tel Aviv University. The authors would like to thank
Astronautics C.A. LTD. for sharing their equipment and expert knowledge.

References

1. Aeronautical Radio INC.: Mark 33 digital information transfer system (DITS), May
2004. http://www.bosch-semiconductors.de/media/ubk. ARINC specification 429
part 1–17

2. Astronautics C.A. LTD: Astronautics EDCU Brochure (2019). http://www.
astronautics.co.il/sites/default/files/edcu.pdf

3. Astronautics C.A. LTD: home page (2019). http://www.astronautics.com
4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based

local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104. ACM (2000)
5. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with

radiometric signatures. In: Proceedings of the 14th ACM International Conference
on Mobile Computing and Networking, pp. 116–127. ACM (2008)

6. Cho, K.T., Shin, K.G.: Viden: attacker identification on in-vehicle networks. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1109–1123. ACM (2017)

7. Choi, W., Jo, H.J., Woo, S., Chun, J.Y., Park, J., Lee, D.H.: Identifying ECUs
using inimitable characteristics of signals in controller area networks. IEEE Trans.
Veh. Technol. 67(6), 4757–4770 (2018)

http://www.bosch-semiconductors.de/media/ubk
http://www.astronautics.co.il/sites/default/files/edcu.pdf
http://www.astronautics.co.il/sites/default/files/edcu.pdf
http://www.astronautics.com

Hardware Fingerprinting for the ARINC 429 Avionic Bus 61

8. Choi, W., Joo, K., Jo, H.J., Park, M.C., Lee, D.H.: VoltageIDS: low-level com-
munication characteristics for automotive intrusion detection system. IEEE Trans.
Inf. Forensics Secur. 13(8), 2114–2129 (2018)

9. Costin, A., Francillon, A.: Ghost in the air (traffic): on insecurity of ADS-B protocol
and practical attacks on ADS-B devices. Black Hat USA, pp. 1–12 (2012)

10. Das, A., Borisov, N., Caesar, M.: Tracking mobile web users through motion sen-
sors: attacks and defenses. In: NDSS (2016)

11. Dey, S., Roy, N., Xu, W., Choudhury, R.R., Nelakuditi, S.: AccelPrint: imperfec-
tions of accelerometers make smartphones trackable. In: NDSS (2014)

12. Ellis, K., Serinken, N.: Characteristics of radio transmitter fingerprints. Radio Sci.
36(4), 585–597 (2001)

13. Excalibur Systems: M4K429RTx test and simulation module (2019). https://www.
mil-1553.com/m4k429rtx

14. Fuchs, C.M., et al.: The evolution of avionics networks from ARINC 429 to AFDX.
Innov. Internet Technol. Mob. Commun. (IITM) Aerosp. Netw. (AN) 65, 1551–
3203 (2012)

15. Gerdes, R.M., Mina, M., Russell, S.F., Daniels, T.E.: Physical-layer identification
of wired ethernet devices. IEEE Trans. Inf. Forensics Secur. 7(4), 1339–1353 (2012)

16. Gilboa-Markevich, N., Wool, A.: Hardware fingerprinting for the ARINC 429
avionic bus. Technical report arXiv:2003.12456 [cs.CR] (2020). http://arxiv.org/
abs/2003.12456

17. Holt Integrated Circuits INC.: ADK-3200: HI-3200 avionics data management
engine evaluation board (2011). http://www.holtic.com/product/p/pb/15-adk-
3200-hi-3200-avionics-data-management-engine-evaluation-board.aspx

18. Kneib, M., Huth, C.: Scission: signal characteristic-based sender identification and
intrusion detection in automotive networks. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp. 787–800.
ACM (2018)

19. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE
Trans. Dependable Secure Comput. 2(2), 93–108 (2005)

20. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3),
49–51 (2011)

21. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study
of anomaly detection schemes in network intrusion detection. In: Proceedings of
the 2003 SIAM International Conference on Data Mining, pp. 25–36. SIAM (2003)

22. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
Black Hat USA 2015, p. 91 (2015)

23. Moir, I., Seabridge, A., Jukes, M.: Data bus networks (chapter 3). In: Civil Avionics
Systems, pp. 79–118. Wiley, Chichester (2013)

24. Murvay, P.S., Groza, B.: Source identification using signal characteristics in con-
troller area networks. IEEE Signal Process. Lett. 21(4), 395–399 (2014)

25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

26. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty
detection. Sig. Process. 99, 215–249 (2014)

27. Robert Bosch GmbH: CAN specification, v2.0 (1991)
28. Smith, M., Strohmeier, M., Harman, J., Lenders, V., Martinovic, I.: A view from

the Cockpit: exploring pilot reactions to attacks on avionic systems. In: Network
and Distributed Systems Security (NDSS) Symposium. Internet Society, San Diego
(2020)

https://www.mil-1553.com/m4k429rtx
https://www.mil-1553.com/m4k429rtx
http://arxiv.org/abs/2003.12456
http://arxiv.org/abs/2003.12456
http://arxiv.org/abs/2003.12456
http://www.holtic.com/product/p/pb/15-adk-3200-hi-3200-avionics-data-management-engine-evaluation-board.aspx
http://www.holtic.com/product/p/pb/15-adk-3200-hi-3200-avionics-data-management-engine-evaluation-board.aspx

62 N. Gilboa-Markevich and A. Wool

29. Spitzer, C.R.: ARINC specification 429 mark 33 digital information transfer sys-
tem (chapter 2). In: Avionics: Elements, Software and Functions. The Electrical
Engineering Handbook Series. CRC Press, Boca Raton (2007)

30. Uluagac, A.S., Radhakrishnan, S.V., Corbett, C., Baca, A., Beyah, R.: A passive
technique for fingerprinting wireless devices with wired-side observations. In: 2013
IEEE Conference on Communications and Network Security (CNS), pp. 305–313.
IEEE (2013)

31. Xu, Q., Zheng, R., Saad, W., Han, Z.: Device fingerprinting in wireless networks:
challenges and opportunities. IEEE Commun. Surv. Tutorials 18(1), 94–104 (2015)

Applied Cryptography I

Semantic Definition of Anonymity in
Identity-Based Encryption and Its

Relation to Indistinguishability-Based
Definition

Goichiro Hanaoka1, Misaki Komatsu2, Kazuma Ohara1, Yusuke Sakai1,
and Shota Yamada1(B)

1 National Institute of Advanced Industrial Science and Technology (AIST),
2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan

{hanaoka-goichiro,ohara.kazuma,yusuke.sakai,yamada-shota}@aist.go.jp
2 Toshiba Corporation Corporate Research & Development Center,

1 Komukai-Toshiba-cho, Saiwai-ku Kawasaki-shi, Kanagawa 212-8582, Japan
misaki1.komatsu@toshiba.co.jp

Abstract. In this paper we point out an overlooked subtlety in pro-
viding proper security definitions of anonymous identity-based encryp-
tion (anonymous IBE) and its applications such as searchable encryp-
tion. Namely, we find that until now there is no discussion whether
the widely used indistinguishability-based notion of anonymity for IBE
implies simulation-based definition of anonymity, which directly captures
the intuition that recipients’ IDs are not leaked from ciphertexts. We
compensate this undesirable situation by providing a simulation-based
notion, which requires that a ciphertext can be simulated without know-
ing the associated ID, by specializing the anonymity notion defined for
more generalized notion of attribute-based encryption in previous work
to the setting of IBE and then proving that this definition is equivalent
to the conventional indistinguishability-based definition. We note that
while the final result is something one would expect, our proof is not
completely trivial. In particular, previous proofs that show the equiva-
lence between semantic security and indistinguishability-based one in the
setting where the security of payload is the main concern do not work
immediately in our setting due to the difference between the semantics of
identities and messages and the existence of the key extraction oracles.

Keywords: Identity-based encryption · Anonymity · Semantic
security

1 Introduction

We identify an overlooked issue in the security definitions of the anonymous
identity-based encryption (anonymous IBE) and application thereof such as
searchable encryption. In particular, we point out that there are no arguments
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 65–85, 2020.
https://doi.org/10.1007/978-3-030-59013-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_4

66 G. Hanaoka et al.

on the relation between commonly accepted indistinguishability definition for
anonymity and simulation-based one, where the latter directly captures the
intuition that recipients’ IDs are not leaked from ciphertexts. In this paper,
we fill this gap and for the first time demonstrate that the widely accepted
indistinguishability-based definition implies a simulation-based definition.

1.1 Background

Searchable Encryption. Searchable encryption is today one of the active research
trends in cryptography. Searchable encryption allows to search a piece of infor-
mation over an encrypted data, while keeping the data content and the query
secret even from the server holding the encrypted data.

With the rapid development of information technology, such as cloud comput-
ing, the guarantee of user privacy (without compromising usability as much as
possible) has become an important issue for service providers. Therefore, search-
able encryption has attracted a lot of attention as a method to realize encrypted
databases (EDB). Since CryptDB [37] demonstrated the practicality of its app-
roach, a number of EDBs have been proposed [2,42]. The fact that there are
many commercial EDB among them (such as Microsoft SQL Server [34], Google
Encrypted Big Query [25], SAP SEEED [26]) shows the demand for EDBs. In
recent days, startups [3,18,41] also developed products and services based on
searchable encryption.

In academia, searchable encryption is still actively being studied from func-
tional aspects such as range queries [29] and conjunctive queries [23,35], efficiency
aspects such as trade-off between storage size and search efficiency [4,5,15,19,20],
and security aspects such as verifiability [32,44].

Relation to Anonymous IBE. It is widely believed that these searchable encryp-
tion schemes are proven secure under some appropriate security definitions. In
particular, (public-key) searchable encryption can be constructed from anony-
mous identity-based encryption (anonymous IBE), and thus such searchable
encryption schemes is believed to be secure if the underlying anonymous IBE
is secure. Furthermore, it is worth noting that an anonymous IBE scheme can
be constructed from a public-key searchable encryption scheme [9], these two
cryptographic primitives are in fact equivalent.

Overlooked Issue in the Security Definitions. However, there seems to be an over-
looked subtlety in the theoretical efforts to construct secure searchable encryp-
tion schemes. Concretely, a number of public key encryption with key word
search (PEKS) schemes are mostly based on indistinguishability (IND)-based
security [1,9,12] and there has been no discussion on the notion for semantic
security (SS), whereas the security for symmetric searchable encryption (SSE),
which is a symmetric-key variant of PEKS, are proven SS-based definition. In
many cases, SS-based and IND-based definitions achieve same level of security,
however, it is also known that IND and SS are not equivalent in some cases [11].

Semantic Definition of Anonymity in Identity-Based Encryption 67

Therefore, there is a room for consideration on the difference between the secu-
rity on PEKS and SSE, and discussion for the SS-based security on PEKS would
help to properly understand the security of these schemes. As mentioned above,
one of the most basic construction of PEKS is based on anonymous IBE, and
the confidentiality of keywords in PEKS corresponds to the anonymity of the
identity in the IBE. The anonymity of IBE has also been proposed so far with
only the IND-based definition, and the SS-based is not known. That is, it would
be worth considering about SS-based definition for anonymity in IBE, as a first
step for considering SS-based security in PEKS.

Remind that Goldwasser and Micali introduced the IND-CPA definition
(indistinguishability against chosen-plaintext attacks) [24] as an easy-to-deal-
with alternative of semantic security [24]. Semantic security is meant to directly
capture our intuition that the adversary learns nothing on the plaintext from a
ciphertext, which is expressed in terms of a simulation-based definition. How-
ever, this definition is complex and not easy to deal with. Contrary to this,
IND-CPA is less intuitive and does not directly capture the idea of not leak-
ing any partial information of the encrypted message, but is simple and easy
to deal with. Goldwasser and Micali proved that these definitions are equiva-
lent. Therefore, by only proving a public-key encryption scheme is secure under
the IND-CPA definition we can confirm that the scheme satisfies more intuitive
notion of semantic security.

Their approach is generalized to formalize the security of various crypto-
graphic primitives. In general, we consider that the simulation-based security
notion as a preferable goal for cryptographic primitives to achieve compared
to IND-based notion. This is because the former seems to be more intuitive
and is usually at least as strong as the latter. If we can prove that both secu-
rity notions are in fact equivalent, we can use IND-based definition as a handy
alternative for the simulation-based security. However, it is possible for (appro-
priately defined) IND-based and simulation-based definitions not to be equiv-
alent, which is evidenced by some separation results between IND-based and
simulation-based definitions in various cryptographic primitives and notions,
such as functional encryption [11], security against selective-opening attacks [8],
and non-malleability [36].

1.2 Our Contribution

In this paper, we provide a simulation-based definition of anonymity for IBE
and study the relationship between this simulation-based definition and the
conventional IND-based definition of anonymity. In more details, we define the
simulation-based definition of anonymity of IBE by specializing Wee’s definition
of anonymity for attribute-based encryption [28] to the setting of IBE. Then, we
investigate the two directions of implications, namely, (i) whether the simulation-
based definition implies the IND-based definition, and (ii) whether the IND-based
definition implies the simulation-based definition. These establish the equivalence
between the two notions.

68 G. Hanaoka et al.

While the result is something one would expect, we emphasize that our proof
for the latter direction (ii) is not straightforward. In particular, previous proofs
[6,24] that show the equivalence between semantic security and IND-based one
in the setting where the security of payload is the main concern do not work
immediately in our setting due to the difference between the semantics of identi-
ties and messages and the existence of the key extraction oracles. In more details,
in our setting, we have to come up with a reduction that abides by the restriction
on key extraction queries, which is not present in the payload hiding settings.
The crux of the proof boils down to showing that the adversary is unable to make
a key query for certain identity with more than negligible probability. In order
to prove this, we introduce several game hops and crucially use the IND-based
security of the IBE. We refer to Sect. 4 for details.

This result for the first time shows that the IND-based anonymity definition
implies the simulation-based anonymity definition. This implies that the existing
IBE schemes secure under the IND-based anonymity definition indeed do not
leak recipients’ IDs. In addition, this fact not only guarantees the security of the
IBE schemes proven secure under the IND-based definition, does it allow us to
keep using the easy-to-use IND-based definition as we did.

However, the fact that our proof is not trivial suggests that the equivalence
between indistinguishability-based definition and simulation-based one is not
necessarily always true. Indeed, the difference between the two security notions
has been identified for the case of functional encryption and selective opening
security (Please refer to the next subsection for more discussion). Our conclusion
is that it would be risky to prove the secrecy of information in an IND-based
style for some primitive and use it as if it also satisfied simulation-based security
without a careful consideration.

1.3 Related Work

The idea of IBE is due to Shamir [39], and first practical solutions were pro-
posed by Sakai et al. [38], Boneh et al. [10], Cocks [17] independently. In par-
ticular, Boneh et al. have provided a definition of plaintext secrecy in the IBE,
which has been standardly used until today. The definition by Boneh et al.
was based on IND, and thus SS-based security was not strictly discussed at
first, but Attrapadung et al. [6] later showed the equivalence of both definitions.
Later, Izabachene et al. [30] discussed various definitions of plaintext secrecy and
their relations. Abdalla et al. [1] defined the anonymity of IBE based on IND
(namely, Ano-LOR), and many follow-up works adopted the IND-based defini-
tion of anonymity or variants thereof [7,13,14,22,27,31,33,43]. However, since
the introduction of the IND-based definition of anonymity, there has been little
in-depth study on the definition on anonymity, and in particular, the concrete
formulation of the definition based on SS and its relation to the IND-based defi-
nition were not well understood. Notably Boneh et al. [11] indicates that security
definitions based on IND and SS may not be equivalent in functional encryption,
which is a superordinate concept of IBE.

Semantic Definition of Anonymity in Identity-Based Encryption 69

2 Preliminaries

In this section, we first denote notations used in this work. Then we give syntax
and correctness of Identity-Based Key Encapsulation Mechanism (IB-KEM).
After that, we present two security notions for IB-KEM, namely, IND-ID-CPA
and Ano-LOR.

Notations. For set Y , y ← Y denotes that y is uniformly chosen from Y . If Y
is a function or algorithm, it denotes that Y outputs y. By PPT, we denote a
probabilistic polynomial-time algorithm. For PPT algorithm A, AO denotes that
A has access to the oracle O. ⊥ is a symbol that means failure of decryption.
Throughout, we use 1k as the security parameter. A function ε(k) is negligible if
for any c > 0 there exists an kc > 0 such that, for all k > kc we have: ε(k) < k−c.

2.1 Identity-Based Key Encapsulation Mechanism

Here, we define Identity-Based Key Encapsulation Mechanism (IB-KEM). While
the main focus of this paper is on the security definition of anonymous IBE, using
IB-KEM instead will simplify the discussion. We can convert IB-KEM to IBE
by using appropriate secret key encryption.

Syntax. An IB-KEM scheme Σ is a tuple (S,K,E,D) of PPT algorithms, where
ID is a identity space and K is a symmetric-key space.

S(1k): The setup algorithm gets as input the security parameter 1k. It outputs
the public parameter prm, and the master secret key msk . We assume prm
is implicitly provided as input to all algorithms.

K(msk , id): The key generation algorithm gets as input the msk , and id ∈ ID.
It outputs a user secret key usk id.

E(prm, id): The encryption algorithm gets as input prm, and id ∈ ID. It outputs
a ciphertext ct and a symmetric-key kem ∈ K.

D(ct , usk id): The decryption algorithm gets as input ct , and usk id. It outputs
kem or ⊥.

Correctness. IB-KEM is said to have correctness if we consider probabilities for
(prm,msk) ← S(1k), uskid ← K(msk , id) and (ct , kem) ← E(prm, id), then
Pr[kem = D(ct , usk id)] = 1 holds.

2.2 Security Definitions for IB-KEM

We denote two security definitions for IB-KEM, namely, IND-ID-CPA and Ano-
LOR.

Here, we define IND-ID-CPA security and Ano-LOR for IB-KEM. IND-ID-
CPA security is an indistinguishability based security notion that stipulates that
an encrypted message is hidden. On the other hand, SS-ID-CPA is more natural
security notion that captures the intuition that any information of the message

70 G. Hanaoka et al.

is not leaked to the adversary. It is known that these two notions are equivalent
[6]. The definition of IND-ID-CPA security in this paper is based on [6], where
we adapted their definition to the IB-KEM setting. The definition of Ano-LOR
is indistinguishability-based definition that is widely used in the literature.

IND-ID-CPA. Let Σ = (S,K,E,D) be an IB-KEM scheme and A = (A1, A2)
be a PPT adversary. We consider the following experiments IND-ID-CPA-b for
b ∈ {0, 1}.

ExpIND-ID-CPA-b
Σ,A (k)

(prm,msk) ← S(1k);

(id∗, s) ← A
K(msk, ·)
1 (prm);

(ct, kem) ← E(id∗, prm);
kem0 = kem; kem1 ← K;

b′ ← A
K{id∗}(msk ,·)
2 (ct, kemb, s);

In the above, key generation oracle K(msk, ·) gets as input the msk and
arbitrary id ∈ ID, and outputs a user secret key uskid associated with id.
A1 cannot use the id∗ that is queried to K(msk, ·) as the target ID. If A2

queries id∗ to K{id∗}(msk , ·), K{id∗}(msk , ·) outputs ⊥. We define the advan-
tage AdvIND-ID-CPA

Σ,A (k) as follows;

AdvIND-ID-CPA
Σ,A (k)

:= |Pr[ExpIND-ID-CPA-0
Σ,A (k) → 1] − Pr[ExpIND-ID-CPA-1

Σ,A (k) → 1]|.

Definition 1 (IND-ID-CPA). We say that IB-KEM scheme Σ = (S,K,E,D)
is IND-ID-CPA secure if AdvIND-ID-CPA

Σ,A (k) is negligible for any PPT adversary
A = (A1, A2).

Ano-LOR. Let Σ = (S,K,E,D) be an IB-KEM scheme and B = (B1, B2) be a
PPT adversary. We consider the following experiments Ano-LOR-b for b ∈ {0, 1}

ExpLOR-b
Σ,B (k)

(prm,msk) ← S(1k);

(id0, id1, s) ← B
K(msk, ·)
1 (prm);

(ct, kem) ← E(idb, prm);

b′ ← B
K{id0,id1}(msk ,·)
2 (ct, kem, s);

In the above, key generation oracle K(msk, ·) gets as input the msk, and arbi-
trary id ∈ ID. It outputs a user secret key uskid associated with id. B1 can-
not use the already queried ID to K(msk, ·) as the target ID (id0, id1). If B2

Semantic Definition of Anonymity in Identity-Based Encryption 71

queries id0 or id1 to K{id0,id1}(msk , ·), K{id0,id1}(msk , ·) outputs ⊥. We define
the advantage AdvLOR

Σ,B (k) as follows;

AdvLOR
Σ,B (k) := |Pr[ExpLOR-0

Σ,B (k) → 1] − Pr[ExpLOR-1
Σ,B (k) → 1].|.

Definition 2 (Ano-LOR). We say that IBE scheme Σ = (S,K,E,D) is Ano-
LOR secure if AdvLOR

Σ,B (k) is negligible for any PPT adversary B = (B1, B2).

Discussion of Ano-LOR. Ano-LOR already captures certain kind of secu-
rity, but we do not know whether it captures more natural semantic secu-
rity notion of anonymity because Ano-LOR is defined based on the notion of
indistinguishability.

To make the point clearer, let us recall the relationship between the security
notion of public key encryption (PKE), which is simpler than IBE. To capture
the intuition that the adversary cannot learn any information about encrypted
message, Goldwasser and Micali [24] introduced the notion of semantic security
(SS). In addition, they also defined simpler, but less intuitive notion of indistin-
guishability (IND). As shown by them, these definitions are in fact equivalent.
Thanks to their result, we can use the simpler IND security notion when we give
a security proof for a PKE scheme.

3 Simulation-Based Definition of Anonymity

In this section, we provide our definition of anonymity for IB-KEM named Ano-
SS. Our definition captures a natural notion of security that the adversary cannot
get any information on ID associated with a ciphertext. To validate our defini-
tion, we prove that our security notion implies Ano-LOR.

3.1 Defining Ano-SS for IB-KEM

Here, we address semantic security style definition of the anonymity for IB-KEM
that we call Ano-SS in the following. A natural starting point for doing so would
be adapt the definition of semantic security by Goldwasser and Micali [24] to our
setting. Since their security notion has been successfully extended to other prim-
itives including IBE and the equivalence to indistinguishability security notions
have been shown [6], this seems to be a promising approach. However, as we
explain in AppendixA, it turned out that it is not straightforward to define the
notion based on their approach. The difficulty stems from the fact that while
most of the previous work defining semantic security including [6] focuses on
the data privacy of IBE, we focus on the anonymity and asymmetry between
message and identity prohibits us from naturally extending the security notion
to our setting. We refer to AppendixA for more details. Alternatively, we pro-
vide our semantic security notion of anonymity for IB-KEM by specializing the
definition by Wee [28] that is defined for more general notion of attribute-based
encryption to the setting of IB-KEM.

72 G. Hanaoka et al.

Definition. In the following, we provide the special case of Wee’s definition for
anonymity [28] where we only consider IB-KEM instead of ABE. We call our def-
inition Ano-SS. Let Σ = (S,K,E,D) be an IB-KEM scheme and C = (C1, C2)
be a PPT adversary. We also let Σ∗ = (S∗,K∗, E∗) be a simulator, which
possibly depends on the adversary. We consider the following two experiments
ExpSS-REAL

Σ,C (k) and ExpSS-IDEAL
Σ,Σ∗,C (k).

ExpSS-REAL
Σ,C (k)

(prm,msk) ← S(1k);
(id∗, s) ← C

K(msk, ·)
1 (prm);

(ct, kem) ← E(prm, id∗);

v ← C
K{id∗}(msk ,·)
2 (ct, kem, s);

ExpSS-IDEAL
Σ,Σ∗,C (k)

(prm,msk) ← S∗(1k);
(id∗, s) ← C

K∗(msk, ·)
1 (prm);

ct ← E∗(msk); kem′ ← K;
v ← C

K∗(msk, ·)
2 (ct, kem′, s);

In the above, K is a symmetric-key space. Key generation oracle K(msk, ·)
and simulator K∗(msk, ·) get as input the msk and arbitrary id ∈ ID, and
output user secret key uskid associated with id. C1 cannot use id∗ that is
queried to KeyGen oracle as the target ID. If C2 queries id∗ to K{id∗}(msk , ·),
K{id∗}(msk , ·) outputs ⊥. At the end of the game, C2 outputs a bit v = {0, 1}.
We define the advantage AdvAno-SS

Σ,Σ∗,A(k) as follows

AdvSS
Σ,Σ∗,C(k) := |Pr

[
ExpSS-REAL

Σ,C (k) → 1
]

− Pr
[
ExpSS-IDEAL

Σ,Σ∗,C (k) → 1
]
|

Definition 3 (Ano-SS). We say that IB-KEM scheme Σ = (S,K,E,D) is
Ano-SS secure if for any PPT adversary C = (C1, C2) there exists a PPT sim-
ulator Σ∗ = (S∗,K∗, E∗) such that AdvAno-SS

Σ,Σ∗,C(k) is negligible.

In the above, C tries to guess whether it is in SS-REAL or SS-IDEAL from the
information it obtains during the game. In SS-REAL, C gets (ct, kem) that is
generated with respect to the challenge identity id∗ chosen by C. In SS-IDEAL,
C gets (ct, kem′), which is generated by the simulator E∗ that does not see id∗

at all. If C cannot distinguish SS-REAL from SS-IDEAL, it indicates that the
information of id∗ is not leaked to C.

3.2 Proof that Ano-SS Implies Ano-LOR

In this section we show that any Ano-SS secure IB-KEM is also Ano-LOR secure.
The theorem and the proof is as follows.

Theorem 1. If an IB-KEM scheme Σ = (S,K,E,D) is Ano-SS secure, Σ is
Ano-LOR secure.

Proof. We will prove that if Σ is not Ano-LOR secure, then Σ is not Ano-SS
secure. That is, we construct PPT adversary against Ano-SS security using PPT
adversary against Ano-LOR security.

Semantic Definition of Anonymity in Identity-Based Encryption 73

BO
1 (prm):
(id0, id1, s) ← A

K(msk, ·)
1 (prm)

b ← {0, 1}
output (idb, s)

BO{idb}
2 (ct , kem, s):

b′ ← A
K{id0,id1}(msk,·)
2 (ct , kem, s)

If
v := b′

output v

Fig. 1. The construction of Ano-SS adversary B = (B1, B2) using Ano-LOR adversary
A = (A1, A2).

ExpSS-REAL
Σ,B

(msk, prm) ← S(1k)
(idb, s) ← B

K(msk, ·)
1 (prm)

(ct, kem) ← E(idb, prm)

v ← B
K{idb}(msk,·)
2 (ct, kem, s)

ExpSS-IDEAL
Σ,Σ∗,B

(msk, prm) ← S∗(1k)
(idb, s) ← B

K∗(msk, ·)
1 (prm)

(ct, kem) ← E∗(msk)
kem′ ← K
v ← B

K∗{idb}(msk,·)
2 (ct, kem′, s)

Fig. 2. Adversary B = (B1, B2) in the Ano-SS game.

Let A = (A1, A2) be an arbitrary PPT adversary against the Ano-LOR
security of Σ. The construction of PPT adversary B = (B1, B2) against Ano-SS
security using A is shown in Fig. 1.

In Fig. 1, O is key generation oracle, that takes msk and arbitrary id′ ∈ ID
as input and outputs uskid′ associated with id′. When A queries id′, B queries
id′ to O and return uskid′ to A. In Fig. 2, we provide the description of the
Ano-SS game with B.

Here, we discuss that if B is in the real game, B perfectly simulates the
Ano-LOR game for A. First, we observe that any key query made by A is
answered by B, who queries the same identity to K(msk, ·) to obtain the secret
key and passes it to A. Furthermore, B can answer any secret key query made by
A because A is prohibited from making secret key query for id0 or id1 whereas
B is prohibited the query only for idb. Thus we have

Pr[ExpSS-REAL
Σ,B (k) → 1] = Pr[b = b′|ExpLOR-b

Σ,A (k) → b′].

Next, we will discuss the view of A in case B is in the ideal game. In this
case, b is information theoretically hidden from A because (ct, kem) is generated
by E∗ that does not take id∗ as input. Since b′ is independent from b, we have

Pr[ExpSS-IDEAL
Σ,Σ∗,B (k) → 1] =

1
2
.

74 G. Hanaoka et al.

Finally, we have that

AdvSS
Σ,Σ∗,B(k) = |Pr[ExpSS-REAL

Σ,B (k) → 1] − Pr[ExpSS-IDEAL
Σ,Σ∗,B (k) → 1]|

= |Pr[b = b′|ExpLOR−b
Σ,A (k) → b′] − 1

2
|

= AdvLOR
Σ,A (k).

Since A is the Ano-LOR adversary, AdvLOR
Σ,A (k) is a non-negligible. Hence,

AdvSS
Σ,Σ∗,B(k) is also a non-negligible function.

From the above, it is true that if there is an Ano-LOR adversary A, then
there is also an Ano-SS adversary B. Accordingly, if Σ is Ano-SS secure, then
Σ is Ano-LOR secure. ��

S∗(1k):
(prm,msk) ← S(1k)
output (prm,msk)

K∗(msk , id):
usk ← K(msk , id)
output usk

E∗(msk):
id1 ← ID
(ct , kem) ← E(id1, prm)
output ct

Fig. 3. The construction of Σ∗.

4 Equivalence Between Ano-LOR and Ano-SS

In this section, we show that any Ano-LOR secure IB-KEM is also Ano-SS
secure. Since we proved the other direction of the implication in Theorem1, this
implies that these two security notions are in fact equivalent.

As mentioned in the introduction, the security proof will be done by standard
techniques with one exception. We elaborate on this in the following. In the
security proof, we let the simulator generate a ciphertext for random identity.
We then gradually change the game from the real game where the adversary
is given a ciphertext corresponding to the identity chosen by itself to the ideal
game where the ciphertext is chosen by the simulator. If our focus was on payload
hiding, this change would be straightforward. However, our focus is on anonymity
and this means that we have to come up with a reduction that abides by the
restriction on key extraction queries, which is a challenge that is not present in
the payload hiding settings. In particular, in order to invoke Ano-LOR security
to prove indistinguishability between the real and ideal games, we have to make
sure that the underlying Ano-SS adversary does not make a key extraction query
for the random identity chosen by the simulator more than negligible probability,

Semantic Definition of Anonymity in Identity-Based Encryption 75

even if it is given the ciphertext corresponding to that identity. This step cannot
be done without computational assumption since the challenge ciphertext carries
the information of the associated identity in information theoretic sense. Instead
of information theoretic argument, we prove this by the additional invocation of
Ano-LOR security.

The theorem and the proof is as follows. The proof will be done by considering
sequence of games. While the changes from Game 0 to Game 3 are standard, the
change from Game 3 to Game 4 requires more complicated argument reflecting
the difficulty we outlined above.

Theorem 2. If an IB-KEM scheme Σ = (S,K,E,D) is Ano-LOR secure and
IND-ID-CPA secure, then Σ is Ano-SS secure.

Proof. Let A = (A1, A2) be an arbitrary probabilistic polynomial-time adversary
against the Ano-SS security of Σ. We construct a simulator Σ∗ = (S∗, E∗,K∗)
satisfying AdvSS

Σ,Σ∗,A(k) ≤ ε(k). The construction of Σ∗ is shown in Fig. 3. The
proof proceeds with a sequence of games. The description of the games is shown

Game 0:
(prm,msk) ← S(1k)
(id0, s) ← A

K(msk,·)
1 (prm)

(ct , kem) ← E(prm, id0)

v ← A
K{id0}(msk,·)
2 (ct , kem, s)

Game 1:
(prm,msk) ← S(1k)
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
(ct , kem) ← E(prm, id0)

v ← AK{id0,id1}
2 (ct , kem, s)

Game 2:
(prm,msk) ← S(1k)
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
(ct , kem) ← E(prm, id1)

v ← A
K{id0,id1}(msk,·)
2 (ct , kem, s)

Game 3:
(prm,msk) ← S(1k)
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
(ct , kem) ← E(prm, id1)
kem ′ ← K
v ← A

K{id0,id1}(msk,·)
2 (ct , kem ′, s)

Game 4:
(prm,msk) ← S∗(1k)
(id0, s) ← A

K(msk,·)
1 (prm)

ct ← E∗(msk)
kem ′ ← K
v ← A

K{id0}(msk,·)
2 (ct , kem ′, s)

Fig. 4. The sequence of games for the proof of the Ano-SS security.

76 G. Hanaoka et al.

in Fig. 4. In the description of the games, by KS(msk , ·) we denote the oracle
that returns K(msk , id) to the query id if id 	∈ S and returns ⊥ if id ∈ S.

In the following, let Gi be the event that the output v of the adver-
sary A2 is equal to 1. Since Game 0 is identical to the SS-REAL game, it
holds that Pr[G0] = Pr[ExpSS-REAL

Σ,A (k) → 1]. Similarly, Game 4 is identical
to the SS-IDEAL game, it also holds that Pr[G4] = Pr[ExpSS-IDEAL

Σ,Σ∗,A (k) →
1]. Due to the triangle inequality, it holds that |Pr[ExpSS-REAL

Σ,A (k) → 1] −
Pr[ExpSS-IDEAL

Σ,Σ∗,A (k) → 1]| ≤ ∑3
i=0|Pr[Gi] − Pr[Gi+1]|.

We bound these terms by proving the following propositions. Let q be an
upper bound on the number of the queries that A1 and A2 issue in total.

Proposition 1. It holds that |Pr[G0] − Pr[G1]| ≤ q/|ID|.
Proof (of Proposition 1). The games differ only when A2 issues id1 as a query
to the oracle. Since the choice of id1 is completely hidden from A2 and is chosen
uniformly random over ID, the probability that A2 issues id1 as an oracle query
is at most that q/|ID|. Hence due to the difference lemma [40], the proposition
follows.

B1(prm):
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
output (id0, id1, s)

B2(ct , kem, s):
v ← CK{id0,id1}(msk,·)(ct , kem, s)
output b′ ← v

Fig. 5. The adversary B = (B1, B2) for proving Proposition 2.

B′
1(prm):
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
output (id1, s)

B′
2(ct , kem, s):
v ← CK{id0,id1}(msk,·)(ct , kem, s)
output b′ ← v

Fig. 6. The adversary B′ = (B′
1, B

′
2) for proving Proposition 3.

Proposition 2. There exists an adversary B = (B1, B2) attacking the
Ano-LOR security of Σ whose advantage satisfies |Pr[G1] − Pr[G2]| =
AdvAno-LOR

Σ,B (k).

Proof (of Proposition 2). We construct an adversary B = (B1, B2) as in Fig. 5.
The adversary B2 is prohibited from obtaining a user secret key for id0 and
id1, however, it is able to simulate the oracle for A2, since for the oracle queries

Semantic Definition of Anonymity in Identity-Based Encryption 77

id0 or id1 form A2, it is sufficient to return ⊥ to properly simulate the oracle
K{id0,id1}(msk , ·). For the other oracle queries from A2, it is sufficient to for-
ward the queries to B2’s own oracle. Furthermore, if ct is an encapsulation with
identity id0, B perfectly simulates Game 1. Similarly, if ct is an encapsulation
with identify id1, B perfectly simulates Game 2. Therefore, it holds that

|Pr[G1] − Pr[G2]|
= |Pr[ExpLOR-0

Σ,B (k) → 1] − Pr[ExpLOR-1
Σ,B (k) → 1]|

= AdvLOR
Σ,B (k),

which proves the proposition.

Proposition 3. There exists an adversary B′ = (B′
1, B

′
2) attacking the

IND-ID-CPA security of Σ whose advantage satisfies |Pr[G2] − Pr[G3]| =
AdvIND-ID-CPA

Σ,B′ (k).

Proof (of Proposition 3). We construct an adversary B′ = (B′
1, B

′
2) as in Fig. 6.

Similarly to the proof of Proposition 2, the adversary B′
2 is not allowed to obtain

a user secret key for id1. This does not cause B′
2’s failure in simulating the oracle

for A2, because for A2’ query id1 it is sufficient to responds with ⊥. In addition,
if kem is the real session key encapsulated in ct , B′ perfectly simulates Game
2. Similarly, if kem is the random session key, B′ perfectly simulates Game 3.
Thus we have that

|Pr[G2] − Pr[G3]|
= |Pr[ExpIND-ID-CPA-0

Σ,B′ (k) → 1] − Pr[ExpIND-ID-CPA-1
Σ,B′ (k) → 1]|

= AdvIND-ID-CPA
Σ,B′ (k),

which proves the proposition.

Game 3-1:
(prm,msk) ← S(1k)
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
id2 ← ID
(ct , kem) ← E(prm, id1)
kem ′ ← K
v ← A

K{id0,id1,id2}(prm,·)
2 (ct , kem ′, s)

Game 3-2:
(prm,msk) ← S(1k)
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
id2 ← ID
(ct , kem) ← E(prm, id2)
kem ′ ← K
v ← A

K{id0,id1,id2}(prm,·)
2 (ct , kem ′, s)

Fig. 7. The subsidiary games for proving Proposition 4.

78 G. Hanaoka et al.

B′′
1 (prm):
(id0, s) ← A

K(msk,·)
1 (prm)

id1 ← ID
id2 ← ID
output (id1, id2, s)

B′′
2 (ct , kem, s):
kem ′ ← K
v ← A

K{id0,id1,id2}(msk,·)
2 (ct , kem ′, s)

if id1 is queried by A2 then
b′ ← 1

else
b′ ← 0

output b′

Fig. 8. The adversary B′′ = (B′′
1 , B′′

2) for proving Lemma 2.

Proposition 4. There exists adversary B′′ = (B′′
1 , B′′

2) attacking the Ano-
LOR security of Σ whose advantage satisfies |Pr[G3] − Pr[G4]| ≤ 2q/|ID| +
AdvLOR

Σ,B′′(k).

Proof (of Proposition 4). Game 3 and 4 differ only when A2 issues the oracle
query id1. Let us denote by F this event. Due to the difference lemma [40],
we have that |Pr[G3] − Pr[G4]| ≤ Pr[F]. To bound the probability Pr[F], we
introduce the following subsidiary sequence of games (Fig. 7). Let F3-i be the
event that A2 queries id1 in Game 3-i. From the triangle inequality, we have
that Pr[F] ≤ |Pr[F3]−Pr[F3-1]|+ |Pr[F3-1]−Pr[F3-2]|+Pr[F3-2]. We bound these
three terms in the following lemmas.

Lemma 1. It holds that |Pr[F3] − Pr[F3-1]| ≤ q/|ID|.
Proof (of Lemma 1). The games differ only when A2 issues the oracle query id2.
Since id2 is completely hidden from A2 and is chosen uniformly random over
ID, the probability that A2 issues id2 as an oracle query is at most q/|ID|.
Then, from the difference lemma [40], the lemma holds.

Lemma 2. There exists an adversary B′′ = (B′′
1 , B′′

2) attacking the IND-
ID-CPA security of Σ whose advantage satisfies |Pr[F3-1] − Pr[F3-2]| =
AdvIND-ID-CPA

Σ,B′′ (k).

Proof (of Lemma 2). We construct an adversary B′′ = (B′′
1 , B′′

2) as in Fig. 8.
The adversary B′′

2 is not allowed to obtain a user secret key for id1 and
id2. However, this does not cause B′′

2 ’s failure of the simulation of the oracle
K

{id0,id1,id2}
(msk , ·), because for the oracle query id1 and id2 it is sufficient to

respond with ⊥. Moreover, if ct is an encapsulation with identity id1, B′′ per-
fectly simulates Game 3-1, and if ct is an encapsulation with identity id2, B′′

perfectly simulates Game 3-2. Furthermore, both in Game 3-1 and 3-2, if and
only if A2 queries id1, namely, if and only if the event F3-1 or F3-2 occur, B′′

2

outputs 1. Therefore, it holds that

|Pr[F3-1] − Pr[F3-1]|
= |Pr[ExpLOR-0

Σ,B′′ (k) → 1] − Pr[ExpLOR-1
Σ,B′′ (k) → 1]|

= AdvLOR
Σ,B′′(k),

Semantic Definition of Anonymity in Identity-Based Encryption 79

which proves the lemma.

Lemma 3. It holds that Pr[F3-2] ≤ q/|ID|.
Proof (of Lemma 3). In Game 3-2, id1 is completely hidden from A2 and is
chosen uniformly random over ID. Thus the probability that A2 issues the oracle
query id1 is at most q/|ID|.

Lemmas 1, 2, and 3 show that Pr[F] ≤ |Pr[F3] − Pr[F3-1]| + |Pr[F3-1] −
Pr[F3-2]|+Pr[F3-2] ≤ q/|ID|+AdvLOR

Σ,B′′(k)+q/|ID|, which concludes the proof
of the proposition.

Finally, combining all the propositions, we have that

AdvSS
Σ,Σ∗,A(k) = |Pr[ExpSS-REAL(k) → 1] − Pr[ExpSS-IDEAL(k) → 1]|

≤ q

|ID| + AdvLOR
Σ,B (k) + AdvIND-ID-CPA

Σ,B′ (k) +
2q

|ID| + AdvLOR
Σ,B′′(k).

Since q is a polynomial of the security parameter k, and |ID| is exponential
in k, then q/|ID| is negligible in k. Therefore, if Σ is Ano-LOR secure and
IND-ID-CPA secure, then Σ is Ano-SS secure.

5 Discussion

In this section we discuss some theoretical and practical implications drawn from
our results.

Equivalence of Simulation-Based and IND-Based Definitions. Firstly and obvi-
ously, our results claim that the IND-based definition is equivalent to the
simulation-based definition for anonymity of IBE. This equivalence brings the
following two desirable effects to the community. The first is that all the existing
Ano-LOR secure IBE schemes are now automatically Ano-SS secure. Therefore,
their anonymity becomes more reliable and theoretically well-founded all at once.
The second is that if we want to design a new Ano-SS secure IBE scheme, it
is sufficient to prove that a scheme is Ano-LOR secure. We notice that it eases
the cost of providing a security proof, since the IND-based notion of Ano-LOR
is easier to deal with than the simulation-based notion of Ano-SS. Nevertheless,
our results ensure that a scheme which is proven Ano-LOR secure is also Ano-SS
secure without any additional proofs.

Clarification of the Relation Between the Intuition and the Definition. Secondly,
our results clarify the relationship between our intuition of anonymity and the
security that is captured by Ano-LOR. As mentioned in the introduction, our
Ano-SS notion captures the intuition that the recipient’s ID is not leaked from
a ciphertext more directly. In contrast to this, the Ano-LOR notion is designed
analogously to the IND-CPA notion, which in turn results in an easier-to-deal-
with but less intuitive notion. Filling this subtle gap between the two security
notions, which has not been investigated more than 15 years, would improve our
understanding on the security notions of IBE.

80 G. Hanaoka et al.

Potential Nontriviality in Proving Equivalence. Finally, our security proof sug-
gests that we may encounter a situation where the IND-based notion is not
equivalent to simulation-based notion depending on a cryptographic primitive
in question. This is because in our security proof that Ano-LOR implies Ano-SS,
there are several non-trivialities. For this nontriviality, we could not straightfor-
wardly apply Goldwasser-Micali’s technique [24] of proving the equivalence of
an IND-based notion and a simulation-based notion.

This suggests that for more sophisticated primitives, there is possibility of not
holding the equivalence between an IND-based secrecy notion and an simulation
based one. Such a situation has already occurred in the context of functional
encryption, where their IND-based and simulation-based notions are in fact not
equivalent [11]. In addition, for selective-opening security of public-key encryp-
tion, the simulation-based security and the IND-based security do not imply each
other [8]. For non-malleability of public-key encryption, there are variations of
simulation-based definitions and IND-based definitions, and the relationships
between them are quite complicated depending on whether the adversary has
access to decryption oracle [36].

We conjecture that if the behavior of oracles and restriction on the adver-
sary’s queries become more and more complicated, it becomes more and more
plausible to be unable to apply classical techniques to prove the equivalence
between a simulation-based definition and an IND-based definition. We remark
that the root of the non-triviality of our proof was the existence of the key
generation oracle, which can be seen as an oracle with very basic type of func-
tionality and it still brought an involved situation to the security game. Thus, it
is important to study the equivalence between IND-based and simulation-based
security notions for various cryptographic primitives, otherwise we may over-
look a subtlety in the (in)equivalence between security notions of the different
natures.

Other Studies that Rely on a Variant of Anonymity. As one possible application
of our research, we mention that there are other studies on the security against
key generation center (KGC) in IBE [16,21], which is a variant of the work on
anonymity in IBE.

Chow [16] and Emura et al. [21] discuss the ciphertext anonymity against
KGC to tackle the problem on the key escrow problem in IBE. If we try to
discuss this idea formally, we need a security definition in which the ciphertext
is anonymous, even if the master key is given to the malicious adversary. They
discussed this problem based on IND-based ciphertext anonymity introduced by
Chow [16].

As we have discussed in this paper, it would be desirable here as well if the
relationship between IND-based security and SIM-based security are clarified so
that we can better understand what the definition actually means.

Although our definition does not provide a definition capturing the situation
that master key is given to adversary, we believe that our results are useful as
first step in providing such a definition.

Semantic Definition of Anonymity in Identity-Based Encryption 81

Acknowledgement. We would like to thank the reviewers of ESORICS 2020 and
Sherman S. M. Chow for precious comments. A part of this work was supported by JSPS
KAKENHI Grant Number 18K18055, JSPS KAKENHI Grant Number 19H01109, and
JST CREST Grant Number JPMJCR19F6.

A Attempt to Define Anonymity Based on Goldwasser
and Micali’s Approach

Definition Based on Goldwasser-Micali [24]. Here, we briefly recall the notion
of semantic security (SS) defined by Goldwasser and Micali [24]. We say that
a PKE scheme satisfies SS if there exists a simulator that can simulate view
for an adversary that is indistinguishable from that of the real world where the
adversary chooses a message and is given a ciphertext that encrypts it and the
simulator is not provided any information of the message. In this section, we
attempt to define SS for anonymity of IB-KEM following their approach [24]
and observe that there seems no straightforward way to do so.

Let Σ = (S,K,E,D) be an IB-KEM scheme, and C = (C1, C2) be a PPT
adversary. We also let S = (S1,S2) be a simulator. We formulate Ano-SS as fol-
lows: if the game SS-REAL (ExpSS-REAL

Σ,C (k)) where the adversary receives the
ciphertext and guesses the information of the identity and the game SS-IDEAL
(ExpSS-IDEAL

Σ,S (k)) where the simulator S generates a simulated ciphertext with-
out receiving the identity, is indistinguishable, then the IB-KEM scheme is said
to satisfy Ano-SS.

ExpSS-REAL
Σ,C (k)

(prm,msk) ← S(1k);
((P, F), s) ← C

K(msk, ·)
1 (prm);

id∗ ← P (ID)
(ct, kem) ← E(prm, id∗);
v ← C

K(msk, ·)
2 (ct, kem, s);

β := 1 ↔ v = F (id∗)

ExpSS-IDEAL
Σ,S (k)

(prm,msk) ← S(1k);
((P, F), s) ← S1(prm);
id∗ ← P (ID)

v ← S2(s);
β := 1 ↔ v = F (id∗)

In the above, P and F are PPT algorithms. P samples id∗ from the ID
space ID, and F outputs partial information of the input. Key generation ora-
cle K(msk, ·) in ExpSS-REAL

Σ,C (k) gets as input msk and arbitrary id ∈ ID,
and outputs a user secret key uskid associated with id. C1 cannot use the chal-
lenge identity id∗ that is queried to K{id∗}(msk , ·) as the target ID. We define
AdvSS

Σ,C,S(k), the advantage of the Ano-SS adversary as follows

AdvSS
Σ,C,S(k) := |Pr[ExpSS-REAL

Σ,C (k) → 1] − Pr[ExpSS-IDEAL
Σ,S (k) → 1]|.

Definition 4. We say that IB-KEM scheme Σ = (S,K,E,D) is Ano-SS secure
if for any PPT adversary C = (C1, C2) there exists PPT simulator S such that
AdvAno-SS

Σ,C,S (k) is negligible.

82 G. Hanaoka et al.

Discussion on Definition 4. As we discuss here, Definition 4 is an incomplete
security definition since there is an adversary that trivially breaks the security.
For example, let us assume that K(msk, ·) returns the user secret key uskid∗

associated with id∗ when id∗ is queried to the key generation oracle. In this
case, the adversary can decrypt (ct, kem) encrypted with respect to the target
ID id∗ using uskid∗ and the adversary can identify the target ID by seeing if the
decryption result matches with kem. We then discuss whether the adversary can
indeed get a secret key for id∗ from the oracle, since this is a sufficient condition
for the above attack to succeed. Recall that id∗ is sampled from the ID space
ID by the polynomial time algorithm P . If the total number of IDs that P
can output is at most a polynomial size, C is in fact able to find id∗ by brute
force attack in polynomial time. For this reason, in order to make Definition 4
an achievable security definition, it is necessary to add some constraint on the
adversary’s behavior. However, with such a constraint, we do not know whether
the security notion is still meaningful. For example, we can consider following
constraints. However, all of them have problems as we explain below.

Prohibit queries on key generation oracle
As mentioned above, one of the trivial attacks is to query id∗ on key gen-
eration oracle. If the user secret key uskid∗ is given to the adversary, it can
learn the information of the target identity from it. To prevent this kind of
attack, let us restrict the adversary so that it cannot make a key query for
id∗. More concretely, let us consider an alternative security definition where
key generation oracle K(msk, ·) sends ⊥ back to the adversary C2 when it
queries id∗ to key generation oracle K(msk, ·) in the SS-REAL environment.
However, the adversary can learn the information of id∗ from the fact that
the user secret key query is prohibited for this particular identity.

Changing the sampling P settings
In the above discussion, it was assumed that the total number of ID that
P will output is of polynomial size, and thus the above attack was possible.
A natural approach to prevent the attack is to restrict the adversary C to
output P such that the number of ID that P can output is exponential. In
this case, it seems that there is no trivial attack on the security. However, this
restriction is less general because we pose a strict restriction on the sampler
chosen by the adversary and thus significantly narrow the class of adversaries
we capture. Since the meaning of the definition is unclear, we do not take this
approach either.

As we discussed above, we do not know of any natural restrictions on the adver-
sary that makes the security notion natural and meaningful. Therefore, we do
not adopt the approach by [24] for defining semantic security style notion of
anonymity.

Semantic Definition of Anonymity in Identity-Based Encryption 83

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, rela-
tion to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). https://doi.org/10.
1007/11535218 13

2. Arasu, A., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R., Venkatesan,
R.: A secure coprocessor for database applications. In: 23rd International Confer-
ence on Field programmable Logic and Applications (FPL 2013), Porto, Portugal,
2–4 September 2013, pp. 1–8. IEEE (2013)

3. Aroki Systems: End to End Encryption for Active Data. https://www.aroki.com
4. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:

optimal locality in linear space via two-dimensional balanced allocations. In: Wichs,
D., Mansour, Y. (eds.) STOC 2016, pp. 1101–1114. ACM (2016)

5. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryp-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
407–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 14

6. Attrapadung, N., et al.: Relations among notions of security for identity based
encryption schemes. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 130–141. Springer, Heidelberg (2006). https://doi.org/10.
1007/11682462 16

7. Blazy, O., Brouilhet, L., Phan, D.H.: Anonymous identity based encryption with
traceable identities. In: ARES 2019, pp. 13:1–13:10 (2019)

8. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
522–539. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 31

9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

12. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

13. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 17

14. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-
based encryption and authorised private searches on public key encrypted data. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1 12

15. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 20

https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/11535218_13
https://www.aroki.com
https://doi.org/10.1007/978-3-319-96884-1_14
https://doi.org/10.1007/11682462_16
https://doi.org/10.1007/11682462_16
https://doi.org/10.1007/978-3-642-30057-8_31
https://doi.org/10.1007/978-3-642-30057-8_31
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/11818175_17
https://doi.org/10.1007/978-3-642-00468-1_12
https://doi.org/10.1007/978-3-642-55220-5_20

84 G. Hanaoka et al.

16. Chow, S.S.M.: Removing Escrow from identity-based encryption. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 15

17. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

18. Crypteron: Crypteron introduces secure, searchable encryption. https://crypteron.
com/blog/practical-searchable-encryption-and-security

19. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with
optimal locality: achieving sublogarithmic read efficiency. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 371–406. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 13

20. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality.
In: Salihoglu, S., Zhou, W., Chirkova, R., Yang, J., Suciu, D. (eds.) Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, 14–19 May 2017, pp. 1053–1067. ACM (2017)

21. Emura, K., Katsumata, S., Watanabe, Y.: Identity-based encryption with security
against the KGC: a formal model and its instantiation from lattices. In: Sako, K.,
Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 113–133.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0 6

22. Fan, C., Tseng, Y.: Anonymous multi-receiver identity-based authenticated encryp-
tion with CCA security. Symmetry 7(4), 1856–1881 (2015)

23. Gajek, S.: Dynamic symmetric searchable encryption from constrained functional
encryption. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 75–89. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 5

24. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

25. Google: Encrypted BigQuery client. https://github.com/google/encrypted-
bigquery-client

26. Grofig, P., et al.: Experiences and observations on the industrial implementation
of a system to search over outsourced encrypted data. In: Katzenbeisser, S., Lotz,
V., Weippl, E.R. (eds.) Sicherheit 2014: Sicherheit, Schutz und Zuverlässigkeit,
Beiträge der 7. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Infor-
matik e.V. (GI), 19–21 März 2014, Wien, Österreich. LNI, vol. P-228, pp. 115–125.
GI (2014). http://subs.emis.de/LNI/Proceedings/Proceedings228/article7.html

27. He, K., Weng, J., Liu, J., Liu, J.K., Liu, W., Deng, R.H.: Anonymous identity-
based broadcast encryption with chosen-ciphertext security. In: AsiaCCS 2016,
pp. 247–255 (2016)

28. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

29. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with
distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 6

30. Izabachène, M., Pointcheval, D.: New anonymity notions for identity-based encryp-
tion. In: SCN 2008, pp. 375–391 (2008)

31. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

https://doi.org/10.1007/978-3-642-00468-1_15
https://doi.org/10.1007/3-540-45325-3_32
https://crypteron.com/blog/practical-searchable-encryption-and-security
https://crypteron.com/blog/practical-searchable-encryption-and-security
https://doi.org/10.1007/978-3-319-96884-1_13
https://doi.org/10.1007/978-3-030-29962-0_6
https://doi.org/10.1007/978-3-319-29485-8_5
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
http://subs.emis.de/LNI/Proceedings/Proceedings228/article7.html
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9

Semantic Definition of Anonymity in Identity-Based Encryption 85

32. Kurosawa, K., Ohtaki, Y.: How to update documents verifiably in searchable sym-
metric encryption. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. 8257, pp. 309–328. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-02937-5 17

33. Ma, X., Wang, X., Lin, D.: Anonymous identity-based encryption with identity
recovery. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 360–
375. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 21

34. Microsoft SQL Server: Always Encrypted Database Engine. https://goo.gl/
51LwQ9

35. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6 7

36. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 519–535. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76900-2 32

37. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: process-
ing queries on an encrypted database. Commun. ACM 55(9), 103–111 (2012)

38. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: Pro-
ceedings of Symposium on Cryptography and Information Security, Japan (2000)

39. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

40. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004, p. 332 (2004). http://eprint.iacr.org/2004/
332

41. StrongSalt: Introducing the First Privacy API. https://www.strongsalt.com
42. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing ana-

lytical queries over encrypted data. PVLDB 6(5), 289–300 (2013).
http://www.vldb.org/pvldb/vol6/p289-tu.pdf

43. Xu, P., Li, J., Wang, W., Jin, H.: Anonymous identity-based broadcast encryption
with constant decryption complexity and strong security. In: AsiaCCS 2016, pp.
223–233 (2016)

44. Yoneyama, K., Kimura, S.: Verifiable and forward secure dynamic searchable sym-
metric encryption with storage efficiency. In: Qing, S., Mitchell, C., Chen, L., Liu,
D. (eds.) ICICS 2017. LNCS, vol. 10631, pp. 489–501. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89500-0 42

https://doi.org/10.1007/978-3-319-02937-5_17
https://doi.org/10.1007/978-3-319-02937-5_17
https://doi.org/10.1007/978-3-319-93638-3_21
https://goo.gl/51LwQ9
https://goo.gl/51LwQ9
https://doi.org/10.1007/978-3-540-31815-6_7
https://doi.org/10.1007/978-3-540-76900-2_32
https://doi.org/10.1007/978-3-540-76900-2_32
https://doi.org/10.1007/3-540-39568-7_5
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://www.strongsalt.com
http://www.vldb.org/pvldb/vol6/p289-tu.pdf
https://doi.org/10.1007/978-3-319-89500-0_42

SHECS-PIR: Somewhat Homomorphic
Encryption-Based Compact and Scalable

Private Information Retrieval

Jeongeun Park1 and Mehdi Tibouchi2(B)

1 Department of Mathematics, Ewha Womans University, Seoul, Republic of Korea
jungeun7430@ewhain.net

2 NTT Corporation, Tokyo, Japan
mehdi.tibouchi.br@hco.ntt.co.jp

Abstract. A Private Information Retrieval (PIR) protocol allows a
client to retrieve arbitrary elements from a database stored in a server
without revealing to the server any information about the requested ele-
ment. PIR is an important building block of many privacy-preserving
protocols, and its efficient implementation is therefore of prime impor-
tance. Several concrete, practical PIR protocols have been proposed
and implemented so far, particularly based on very low-depth somewhat
homomorphic encryption. The main drawback of these protocols, how-
ever, is their large communication cost, especially in terms of the server’s
reply, which grows like O(d d

√
n) for an n-element database, where d is a

parameter typically chosen as 2 or 3.
In this paper, we describe an efficient PIR protocol called SHECS-

PIR, based on deeper circuits and GSW-style homomorphic encryption.
SHECS-PIR reduces the communication cost down to O(log n) remov-
ing all other factors apart from database size while maintaining a high
level of efficiency. In fact, for large databases, we achieve faster server
processing time in addition to more compact queries.

Keywords: PIR · Privacy-preserving technique · Homomorphic
encryption · TFHE

1 Introduction

Retrieving data even from a public database can be a privacy-sensitive operation,
which may reveal unwanted information about the client to the database oper-
ator: this could be the case for example for databases of patents, stock quotes,
medical conditions, compromised passwords and more. As a result, clients may
request that the content of their queries be protected from the database server.
This can be achieved using private information retrieval (PIR) protocols, as
introduced by Chor et al. [16].

J. Park—This work was partially carried out while the first author was a research
intern at NTT Corporation, Japan.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 86–106, 2020.
https://doi.org/10.1007/978-3-030-59013-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_5

SHECS-PIR 87

In PIR, the database is modeled as an array of elements1, and clients are
allowed to retrieve those elements by querying their indices in the array. The
required security property is that those queries remain hidden from the database
operator(s). A consequence of that property is that, in order to answer a query,
the server has to process the entire database, making the protocol computation-
ally heavy on the server side.

We can ask the security to hold either in a statistical sense or in a compu-
tational sense: this corresponds to two classes of protocols, called information-
theoretic PIR (IT-PIR) on the one hand [7,16,19,20,25], and computational
PIR (cPIR) on the other [1,5,8,10,18,21,23,27,28,30,33]. IT-PIR offers uncon-
ditional security guarantees, and is usually more computationally efficient, since
it usually involves simple bit operations on the database. However, any non-
trivial IT-PIR requires multiple non-colluding servers (as Chor et al. [16] proved
that the trivial protocol in which clients are sent the entire database is commu-
nication optimal in the single-server setting), which is often not achievable in
practical scenarios. On the other hand, cPIR can achieve sublinear communica-
tion with a single server, but is typically more computationally expensive as it
usually involves cryptographic operations based on public-key primitives to be
carried out on each element of the database (and its security guarantees rely on
some hardness assumption).

Standard PIR schemes do not normally offer any guarantee regarding the
privacy of the server, in the sense that a client may learn information about
elements of the database other than just the requested one. A PIR protocol
which ensures that a client only learns the desired element and no more is called
a symmetric PIR, and can be seen as a single-server, multi-client variant of
oblivious transfer.

The focus of this paper is (single-server) cPIR based on somewhat homomor-
phic encryption.

1.1 Achieving Efficient cPIR

Recent constructions of cPIR all rely on broadly similar approaches based on
homomorphic encryption. Since homomorphic encryption makes it possible to
compute on encrypted data, it is a natural fit for PIR.

In fact, cPIR can be achieved with asymptotically essentially optimal effi-
ciency (both in terms of communication and computation) using fully homo-
morphic encryption (FHE): the client sends as its query an encryption of its
desired index using the FHE scheme, and the server homomorphically applies
to this ciphertext the function mapping an index to the corresponding database
element and sends the result back to the client. For an n-element database, this
protocol has an optimal query size of O(log n), an optimal server computation
complexity of O(n) (since the function can be represented as a circuit of size

1 This basic building block enabling private queries to a contiguous array can then
be combined with techniques like cuckoo hashing to achieve private queries to more
advanced data structures like key-value stores.

88 J. Park and M. Tibouchi

O(n)) and the reply size is again optimal, linear in the size of a database entry.
Unfortunately, those nice asymptotic formulas tend to hide impractically large
constants corresponding to the considerable overhead of FHE, in terms of cipher-
text expansion and in computation cost, due to the expensive bootstrapping step
required to homomorphically evaluate large circuits.

Protocols suggested so far for practical cPIR have therefore been substan-
tially more complicated than this simple description, so as to circumvent the
large overhead of FHE and rely instead on more efficient somewhat homomor-
phic encryption schemes (SHE), that only support the homomorphic evaluation
of circuits of limited depth. For instance, one of the first practical cPIR proto-
col, XPIR [1] is based on the BV somewhat homomorphic encryption scheme [9].
Several subsequent works [5,23] then considered other SHE primitives to achieve
better efficiency in terms of communication or computation cost.

The basic underlying technique in those works can be described as follows:
if we represent the database as an n-dimensional vector, and the query for the
i-th database element as the vector of size n with all zeroes and a 1 in the
i-th component, the desired element is simply the inner product between those
two vectors. If the query vector is encrypted componentwise using an (at least)
additively homomorphic scheme, the inner product can easily be evaluated in
encrypted form and returned to the client. An obvious difficulty, however, is that
the query itself consists of n ciphertexts, and hence communication is no longer
sublinear. This can be solved using a technique due to J.P. Stern [33] in which
the database is structured as a d-dimensional hypercube. With this structure,
d d
√

n ciphertexts are needed as query vectors rather than n. Computing the reply
then involves the homomorphic evaluation of an arithmetic circuit of depth d
instead of just a linear function: this is the basic structure of XPIR.

SealPIR improves upon XPIR in terms of query size at the cost of additional
work on the server side. Instead of sending d query vectors of length d

√
n, the

client sends d ciphertexts containing the information on the desired index, and
the server expands those ciphertexts into ciphertext vectors in a homomorphic
way. Further optimizations of this technique have recently been proposed in [3],
in order to further reduce communication at the cost of increased computation
and noise on the server side.

1.2 Our Contribution

The main observation of this work is that the basic FHE approach to cPIR
described at the beginning of the previous section can in fact be instantiated in
practice, without bootstrapping, and achieve the same level of efficiency as state-
of-the-art schemes like SealPIR or even better, and with lower communication
cost overall.

To do so, we rely on the TFHE homomorphic encryption scheme [12–14],
which is an efficient implementation of the GSW [24] approach to homomor-
phic encryption. With respect to suitably structured circuits, GSW enjoys a
slow (additive rather than multiplicative) noise growth, and can therefore eval-
uate relatively deep circuits without bootstrapping. This is in particular the

SHECS-PIR 89

case for the circuits representing a large lookup table, which is exactly what
we want to evaluate in PIR. This lookup table circuit consists of a binary tree
of depth O(log n) of multiplexer gates (CMUX gates in TFHE; see Fig. 1), and
can be evaluated homomorphically without bootstrapping using the basic TFHE
parameters even for very large database sizes.

We also use suitable key-switching techniques in order to efficiently imple-
ment the query expansion, whereby the packed query of the client, containing
all the bits of the index in a single ciphertext, is decomposed bitwise into several
ciphertexts to be fed into the CMUX tree. Since there are fewer resulting cipher-
texts than in SealPIR (O(log n) compared to O(d d

√
n)), this step is also more

efficient in an asymptotic sense, although the implied constant in the big-O is
actually larger in our case.

The resulting scheme, which we call SHECS-PIR (Somewhat Homomorphic2

Encryption-based Compact and Scalable PIR), is competitive with SealPIR in
terms of computation cost, and achieves better communication cost (particularly
for the server’s reply, where we are essentially optimal). In addition, SHECS-PIR
scales better to larger databases: thanks to slower noise growth, no increase in
parameters is needed until a much larger database size than SealPIR. In addition,
our query ciphertext can contain multiple indices up to the point not exceed-
ing the dimension of plaintext degree without increasing query size. Therefore,
SHECS-PIR can be combined with all the efficient (cheap computation cost)
multi-query PIR techniques using probabilistic batch codes [5] or just batch
codes [26,32] for better performance on server’s computation time with much
lower network cost increase and query generation time.

1.3 A Note on Communication Cost

We mentioned earlier that the FHE approach to cPIR achieves essentially opti-
mal complexity since the query size is O(log n) and the answer size is linear in
the size of database entries. The caveat implied by “essentially” here is that,
while that bound certainly holds if size is measured in terms of numbers of
ciphertexts, there can be some additional overhead due to the ciphertext expan-
sion factor, namely the ratio F between the size of ciphertexts and plaintexts in
the underlying homomorphic encryption scheme. In fact, that expansion factor
is an even larger contributor to communication cost in schemes like XPIR, since
answer size incurs an overhead of F d−1, which can be large when d grows (i.e.
for larger database sizes).

One can mention recent efforts to reduce this expansion factor F down to a
constant close to 1, e.g. in [23], which proposes novel techniques to achieve an
asymptotically close to optimal communication complexity even when ciphertext

2 We stress that SHECS-PIR uses somewhat homomorphic (or arguably “leveled fully
homomorphic”) encryption in the sense that it does not rely on bootstrapping. This
is despite the fact that the underlying homomorphic encryption TFHE is bootstrap-
pable, and hence an FHE scheme. Not using bootstrapping is simply better for
efficiency.

90 J. Park and M. Tibouchi

expansion is taken into account. Those efforts, however, are largely orthogonal to
the line of work in which this paper fits: while they do obtain better communica-
tion rate in an asymptotic sense, they have a substantial fixed cost. For instance,
query size in [23] is around 200 MB for typical parameters, so the scheme only
offers an attractive communication rate when database entries themselves have
sizes in the hundreds of megabytes, and server computation time is accordingly
large. This can be relevant in specific settings, but for more common cPIR use
cases where database entries have sizes in kilobytes or less, it is not very practical.

Regarding the underlying encryption scheme of SHECS-PIR itself, it satisfies
F ≈ 4 for the security level and the large database sizes we consider, so the
corresponding overhead is small (and communication cost is effectively smaller
than the state of the art for this range of parameters). In an asymptotic sense, F
would increase very slightly with both database size (in order to accommodate
noise growth) and security level (to ensure the hardness of the underlying lattice
problem), but the scaling is an iterated logarithm, so practically speaking, F
can be considered a constant.

Along similar lines as [23], a previous paper due to Kiayias et al. [27] achieves
cPIR with optimal communication rate for databases with large entries, in the
sense that the total size of communication asymptotically approaches the size of
the unencrypted database entry alone. Moreover, it does so by relying on leveled
homomorphic encryption, and thus does not require bootstrapping, similarly to
the present work. While this is an important feasibility result, it again has limited
practicality, however, due to the heavy computational cost of the underlying
encryption scheme, as the authors themselves underscore. Moreover, as in [23],
there are substantial fixed communication costs that limit the applicability of
the scheme to only databases with very large entries (the authors consider the
retrieval of movie files of several gigabytes), which is again a different setting as
the one we focus on.

Another recent work discussing various approaches to reducing communica-
tion costs for PIR in a range of parameters more in line with the focus of this
work is Ali et al.’s paper [3]. It presents a number of ways to optimize concrete
cPIR schemes for lower communication, a number of which are largely indepen-
dent of this work, and in fact compatible (e.g., modulus switching in queries).
It does however introduce a new cPIR scheme called MulPIR, which is slower
than SealPIR but more compact. We do not include a detailed comparison with
MulPIR, due to the lack of a readily available implementation; however, since it
has larger query size than SealPIR and since replies consist of multiple cipher-
texts, it should be less efficient than SHECS-PIR in terms of both communication
(by comparison of query and answer sizes) and computation (because we perform
similarly to SealPIR or better).

SHECS-PIR 91

2 Basic Tools (Homomorphic Encryption Scheme)

2.1 Homomorphic Encryption

Our PIR protocol is constructed by a somewhat homomorphic encryption scheme
which allows limited number of operations on ciphertexts. Homomorphic Encryp-
tion (HE) allows a computation on encrypted data, where PIR scenario wants
to do. We give properties of our base homomorphic encryption scheme first and
concrete algorithms next. Homomorpic encryption scheme consists of four algo-
rithms (KeyGen,Enc,Dec,Eval). It is an encryption scheme having additional Eval
algorithm to evaluate arbitrary function on ciphertexts. Our protocol uses the
full power of homomorphic encryption (multiplication, addition on ciphertexts)
to evaluate a homomorphic mux gate (data selector).

– Homomorphic mux gate: Given two encrypted data d0, d1 and an encryption
of b ∈ {0, 1}, say C, it outputs d0 if C = Enc(0), otherwise d1.

It is easy to construct homomorphic mux gate using standard FHE schemes.
However, the most concern is the efficiency in terms of error growth and compu-
tational time for a practical use. The less noise overhead after any operation of
an FHE scheme, the more operations are possible with it, i.e. the deeper circuit
can be constructed from it. The ciphertext of all existing FHE schemes contains
a noise component in it. The noise grows with homomorphic operation with
regard to Euclidean norm. GSW-style homomorphic encryption [24] which keeps
noise overhead additive after homomorphic multiplication has deeper depth by
utilizing asymmetric noise propagation. Furthermore, its multiplication is natu-
ral i.e. just multiplication over ciphertexts avoiding other additional algorithms
(relinearization, key switching, modulus switching e.t.c). To obtain a ciphertext
(usually a vector) encrypting multiplication of plaintexts using homomorphic
operation in other non-GSW style FHE schemes, tensor product of ciphertexts
vectors are done at first. The product of vectors causes size of vector quadratic
so that extra algorithms such as relinearization are required to reduce the size as
original ciphertext. TFHE [14] adapts GSW encryption over Torus, but makes
multiplication faster preserving GSW property using its algebraic fact. From
this reason, we can eventually implement an efficient PIR protocol so we intro-
duce this TFHE scheme below. We implemented our protocol based on TFHE
library [15].

2.2 TLWE and TRLWE

Notation: We denote λ as the security parameter. We define vectors and matri-
ces in lowercase bold and uppercase bold, respectively. Dot product of two vec-
tors v,w is denoted by <v,w>. For a vector x, xi denotes the i-th component
scalar. We denote that B as the set {0, 1} and T as the real torus R/Z, the set
of real number modulo 1. We denote ZN [X] and TN [X] by Z[X]/(XN + 1) and
R[X]/(XN + 1) mod 1, respectively. BN [X] denotes the polynomials in ZN [X]

92 J. Park and M. Tibouchi

with binary coefficients. The norm notation ‖ · ‖ denotes infinity norm. log(·) is
binary logarithm. We use the same notation as [14] for better understanding.

The TFHE scheme [14] is working entirely on real torus T and TN [X] based
on TLWE problem and TRLWE problem which are torus variant of LWE problem
and RLWE problem respectively, where N is a power of two. It is easy to see that
(T,+, ·)(resp. (TN [X],+, ·)) is Z(resp. ZN [X]) module.

A TLWE (resp. TRLWE) sample is defined as (a, b) ∈ T
kn+1 (resp. TN [X]k+1)

for any k > 0, where a is chosen uniformly over T
kn(resp. T

k
N) and b = <a, s>+e.

The vector s is a secret key which is chosen uniformly from B
kn(resp. BN [X]k)

and the error e is chosen from Gaussian distribution with standard deviation
δ ∈ R > 0. Furthermore, we follow the definition of trivial sample in [14].
as having a = 0 and noiseless sample as having the standard deviation δ = 0.
Throughout this paper, we set k = 1 and n = N . Here, we denote the message
space to M ⊆ T. A TLWE ciphertext of μ ∈ M is constructed by adding a
trivial TLWE message sample (0, μ) to a non-trivial TLWE sample. Therefore,
the TLWE ciphertext of μ, say c, which we will interpret as a TLWE sample (of μ)
is (a, b) ∈ T

k+1, where b = <a, s> + e + μ. To decrypt it correctly, we use a
linear function ϕs called phase, which results in ϕs(c) = b − <a, s> = μ + e and
we round it to the nearest element in M. For a TRLWE encryption, it follows the
same way over TN but a message μ is a polynomial of degree N with coefficients
∈ M.

2.3 TRGSW and CMUX Gate

As we can see, TLWE and TRLWE samples have additive homomorphic property.
In order to support multiplication, the authors of [14] define TGSW ciphertext
which supports external product with TLWE ciphertext to get a TLWE sample
encrypting multiplication of messages. It is possible to be extended to polyno-
mials. In this paper, since we only use TGSW samples in ring mode, we use the
notation TRGSW which is working with TRLWE and also give the definition of
a TRGSW sample only.

For any positive integer Bg ≥ 2, �, k, a TRGSW sample is a matrix C =
Z + μ · H ∈ TN [X](k+1)�×(k+1), where each row of Z is a TRLWE sample of zero
and H is a gadget matrix which is defined by H = Ik+1⊗g ∈ TN [X](k+1)�×(k+1),
where g = (1/Bg, . . . , 1/B�

g).
The message μ is in ZN [X]. In this paper, we restrict the message space

of TRGSW to {0, 1} and set k = 1 as we mentioned above. We denote
TLWE(μ),TRLWE(μ), and TRGSW(μ) as a ciphertext of each proper message
μ of TLWE,TRLWE, and TRGSW, respectively. An external product between a
TRGSW sample and a TRLWE sample, denoted as �, is defined as A � b =
H−1(b) · A, where A is a TRGSW sample of μA, b is a TRLWE sample of μb

and H−1(·) is the gadget decomposition function DecH,β,ε of [14] with different
notation.

This external product outputs a TRLWE sample of μA · μb. With the homo-
morphic operations, we can construct a small circuit which is called CMUX gate.
It outputs one of two TRLWE samples depending on a message of TRGSW sample

SHECS-PIR 93

without decrypting it. To be concrete, CMUX(C,d0,d1) = C � (d1 − d0) + d0,
where C = TRGSW(μC),d0 = TRLWE(μd0), and d1 = TRLWE(μd1). Since we
restricted the message space of TRGSW to {0,1}, if μC = 0, CMUX gate outputs
TRLWE(μd0) otherwise, TRLWE(μd1) is the output. We refer to [14] for more
detail.

2.4 Basic Algorithms for TFHE

We introduce basic algorithms SampleExtract and PrivKS, which we use in
our PIR protocol. SampleExtract converts TRLWE samples of polynomial with
message coefficient under a key K (denoted as TRLWEK(

∑N−1
i=0 μiX

i)) into
TLWE(μi) under a key K (denoted as TLWEK(μi)), where μi ∈ T for ∀i ∈
[0, N − 1]. It is possible because we can extract a coefficient of a polynomial
(viewed as slots) as a scalar with algebraic operation and it works on the FHE
ciphertext. This algorithm does not add any noise.

There is an algorithm called the Private Functional Key Switching (PrivKS)
which allows to switch the message space from T to TN [X]. In other words,
it can convert a TLWE sample under a key K into a TRLWE sample under a
key K. We use this algorithm for unpacking query step. This function takes
a key switching key KSi,j(f) ∈ TRLWEK(fu(Ki

2j)) and a TLWEK(μ) on input
and outputs TRLWEK(fu(μ)). One can use the function fu mapping from T

p

to TN [X] with p TLWE samples, however, p = 1 is enough for our protocol.
Furthermore, we use two kinds of function fu where u indicates the position
where the input is added in a TRLWE sample. In detail, TRLWEK(f0(x)) =
(a + x, b), TRLWEK(f1(x)) = (a, b + x), where (a, b) ∈ TRLWEK(0), x ∈ TN [X].

3 Overall Description

A PIR protocol consists of three basic procedure: query generation, response
encoding(main computation), and response decoding [31]. Our PIR protocol
requires a somewhat homomorphic encryption (SHE) scheme consists of four
algorithms (KeyGen,Enc,Dec,Eval). Unlike other basic cPIR protocols based
on SHE, we use full power of homomorphic encryption i.e., multiplication over
ciphertexts. Basically, multiplication is the most tricky step as we mention in
Sect. 2, since it is usually followed by additional steps such as relinearization,
modulus switching, key switching etc., furthermore, large noise growth is another
trouble. However, GSW-style schemes support simple multiplication (with no
other additional steps) and additive noise growth. So one of GSW-style scheme,
TFHE, is adequate for instantiating our protocol. We introduce our protocol
below.

3.1 Our PIR Protocol

Query Generation. A client chooses an index i to retrieve the ith item out of
n data from server’s DB and encrypts each bit of the index as log n ciphertexts.
Then it sends to a server. Therefore, the query complexity is O(log n).

94 J. Park and M. Tibouchi

εs−1 . . . ε0
. . . x0

. . . x1

. . . xn−1

Fig. 1. The Cmux binary decision tree (left figure) and Look Up Table (right table):
the database with n elements (n = 2s). The figure represents how a server computes the
desired i-th item from whole database. xj stands for each data elements ∀j ∈ [0, n− 1]
and each εd is an binary element of the index i =

∑s−1
d=0 εd2d, ∀d ∈ [0, s − 1].

Response Encoding. As a preprocessing, server saves a database as the look
up table (See Fig. 1). The server runs n − 1 times MUX gate (a homomorphic
mux gate) where it selects one of the input elements to output the encrypted i-th
data. In our case, a MUX gate takes two data elements and one query ciphertext
which encrypts a bit of the index. Depending on a query ciphertext, it obliviously
selects one of two data inputs. After running MUX gates n/2 times (let’s say it is
the first level), all the outputs are ciphertexts so that the server does not know
which items are chosen. It is possible thanks to homomorphic encryption. The
server does the second level with the next query ciphertext and previous outputs
running n/4 times MUX gates. Finally, after log n levels, it gives the output to
the server. The total number of MUX gates for a server to evaluate is n−1, then
the server’s computational complexity is O(n). This process is done via a look
up table and binary decision tree (see Fig. 1).

Response Decoding. The client decrypts the ciphertext given by the server
with his secret key. Unlike the previous efficient protocols (XPIR [1], SealPIR [5]),
the complexity of PIR response does not depend on the expansion factor of
cryptosystem, F = |ciphertext size|/|plaintext size|, in our approach. Note that
constructing a look up table (LUT) is inefficient with traditional schemes like
BV [9] or FV [22] in XPIR and SealPIR respectively, due to their structure with
high noise level for every multiplication and large parameter. However, TFHE
is suitable to construct our protocol with concrete parameters due to its nature.
We give the concrete protocol, SHECS-PIR, from TFHE.

3.2 Concrete PIR Protocol (SHECS-PIR) from TFHE

We assume that a server has n = 2s data with β bit size (for convention, we set n
is a power of 2) and a client wants to retrieve the i-th data from server’s database
for i ∈ [0, n−1]. Before sending a query, each client registers its own key switching
input set KSfu = {KS(fu)

a,b }a∈[N+1],b∈[t] which is a set of TRLWE ciphertexts of

SHECS-PIR 95

a secret key bits to a server as a setup process, for u ∈ [0, 1]. This seems quite
necessary for every somewhat homomorphic encryption schemes as SealPIR also
requires cryptographic material for substitution operation (key switching) from
each client as a setup. However, It is sent only once by each client and the server
uses it for the computation, every time a client who registered those. In fact, a
server sets the database as a Look Up Table (LUT). It contains a list of indices
from 0 to n-1 with binary representation in the left column and corresponding
data represented as TRLWE message polynomial of degree at most N in the right
column, where each coefficient is in T (see Fig. 1). Moreover, server can pack the
database as much as possible by storing bit length of plaintext modulus (log p)
of the data element into a coefficient of message polynomial. Then, the database
size can be decreased to m = n/Pd, where Pd = N log p

β .

Query Generation:

(1) Choose an index i ∈ [n] and represent i =
∑j=s−1

j=0 εj2j for εj ∈ {0, 1}.
(2) A client encrypts each bit εj as a TRGSW ciphertext. → log nTRGSW cipher-

texts as a query.
(3) Send them to a server.

Response Encoding: The server starts the main computation with its n
database. The server converts data element (as Fig. 1) into as a trivial TRLWE
sample, (0,Dj), where Dj ∈ T[X]/(XN +1) for j ∈ [0, n−1]. He makes a binary
tree with these data and runs CMUX gates n − 1 times via the binary CMUX
tree to evaluate one TRLWE sample which contains the desired data. Note that
one CMUX gate contains 2� times ring multiplication.

Response Decoding: After receiving the answer from the server, the client can
get the i-th data by decrypting the answer with the TRLWE secret key. In this
case, the client only gets one ciphertext which is a TRLWE sample.

4 Implementation Details

4.1 Reducing Communication Cost

Packing and Unpacking Query. It is possible to compress query size as a
ciphertext encrypting all the bits of the index i. In other words, a client packs all
the bits of the index in a plaintext polynomial batching each bit into a coefficient
then encrypt it. To unpack a query to log n(= s) ciphertexts encrypting each bit,
we let the server do additional work which is called query unpacking step. Then
the number of ciphertext for query is reduced to �log n/N� from log n. As soon
as a server gets a query ciphertext from a client, he unpacks the query as log n
ciphertexts of each binary element of i. For example, let i = 3, n = 16 then
the binary representation of 3 is 0011. A client gives an output of Enc(0011) to
the server and he unpacks it to outputs of Enc(0),Enc(0),Enc(1), and Enc(1),
where Enc is an encryption algorithm. If there exists an algorithm extracting

96 J. Park and M. Tibouchi

(unbatching) one bit obliviously, a server runs it log n times, hence this step has
O(log n) computational complexity.

We show how to construct all the procedure with TFHE. Due to TRGSW
sample’s structure, client needs � number of ciphertexts to pack query. Client
gives TRLWE samples as a query then server unpacks it to TRGSW samples.
A query consists of �TRLWE ciphertexts under the key K having log n binary
elements of i. It is unpacked as � × log n TLWE samples under the key K then
converted to log n TRGSW samples under the key K.

[Query Generation]

(1) Choose an index i ∈ [n] and represent i =
∑j=s−1

j=0 εj2j for εj ∈ {0, 1}.
(2) Set � message polynomials as

∑j=s−1
j=0

εj

Bg
Xj , . . .

∑j=s−1
j=0

εj

B�
g
Xj for a positive

integer Bg > 2.
(3) A client encrypts these polynomials as � TRLWE samples.

→ TRLWEK(
∑j=s−1

j=0
εj

Bg
Xj), . . . ,TRLWEK(

∑j=s−1
j=0

εj

B�
g
Xj), where K is a

TRLWE secret key of the client and εj ∈ {0, 1} for j ∈ [0, s − 1].
(4) Send them to the server.

So a query consists of �� log n
N �TRLWE ciphertexts in SHECS-PIR. Since log n is

much smaller than N , in general, just � ciphertexts are required.

[Query Unpacking: Converting � TRLWE samples to log n TRGSW sam-
ples.]

(1) Run SampleExtract(TRLWEK(
∑j=s−1

j=0

εj

Bw
g

Xj)) → {TLWEK(
εj

Bw
g

)}j∈[0,s−1],w∈[1,�]

for w ∈ [1, �]
(2) For j ∈ [0, s− 1], u ∈ [0, 1] and w ∈ [1, �], run PrivKS(KSfu ,TLWEK(εj

Bw
g

)) →
{TRGSWK(εj)}j∈[0,s−1].

In total, server runs SampleExtract � log n times and PrivKS 2� log n times. Essen-
tially, SampleExtract is free since it just extracts coefficients from a polynomial,
but PrivKS has a large constant (at most Nt) times ciphertext addition itself,
where N is the dimension of ciphertext polynomial and t is a parameter of PrivKS.
Usually N = 1024 or N = 2048, t = 12. To optimize query size, the client can
concatenate all the � log n bits in one polynomial then only one ciphertext a
query but the server’s unpacking time is twice as a trade off.

Using Random Oracle. TFHE is basically a symmetric key encryption scheme
so that a client can give just seed of uniformly random part of a TRLWE sample
using random oracle. Then the server generates the exact value using the same
oracle. Roughly, the query size is reduced by half since the seed size is {0, 1}λ.
In general, LWE based symmetric key encryption scheme can use random oracle
to reduce the communication cost.

SHECS-PIR 97

Table 1. Communication and computation complexity, n = database size

Query Answer First-Step Main

XPIR O(d d
√

n) O(F d−1) N/A Ω(n + F
√

n)

SealPIR(d = 2) O(d� d
√

n/N�) O(F d−1) O(d d
√

n) Ω(n + F
√

n)

SHECS-PIR w query unpacking O(�log n/N�) O(1) O(log n) O(�n)

SHECS-PIR w/o query unpacking O(log n) O(1) N/A O(�n)

Table 2. Communication cost of SHECS-PIR and SealPIR for the same n, N , and β.

With First-step Without First-step

SHECS-PIR SealPIR(d = 2) SHECS-PIR SealPIR(d = 2)

Query[ctxt] �� log n
N

� d�
√

n
N

� log n d
√
n

Answer[ctxt] 1 � 2 log q
log p

� 1 � 2 log q
log p

�

Modulus Switching for Answer Ciphertext. In order to reduce the answer
size, a naive approach is modulus switching. Other homomorphic encryption
primitives [9,22] use this technique either to reduce the noise contained in a
ciphertext or to reduce the size of a ciphertext. We can easily employ it since
both the ciphertext modulus and plaintext modulus can be set as a power of 2.

4.2 Comparison with Other Protocols

Communication and Computation Cost: We give a complexity compar-
ison among previous works below in Table 1 (First-step is query unpacking in
SHECS-PIR and query expansion in SealPIR). The complexity of main compu-
tation is expressed in polynomial multiplication unit so that SHECS-PIR has
other factor � since one CMUX gate consists of 2� polynomial multiplication.
The server does 2�(n − 1) polynomial multiplication finally. This is because
the schemes TFHE and FV work over different algebraic structure. The ele-
ments over the torus TN [X] is rescaled by a factor 264 to be mapped to 64
bit integers for implementation. Then we can view the ciphertext modulus as
q = 264 and plaintext modulus as p(<q). However, FV (or BGV) works over
Zq[X]/(XN + 1) (q is a prime s.t. q = 1 mod 2N) so that they can use NTT
operation while TFHE uses FFT operation for ring multiplication. Furthermore,
FFT can be more scaled than NTT in general. Therefore, the actual cost com-
parison does not seem proper. In SealPIR and XPIR’s main computation, server
does 2(n + F

√
n) ring multiplication when d = 2. Roughly, SHECS-PIR’s server

seems to work twice since we set � = 2. However, the actual cost is similar
because the FFT operation in TFHE library [15] is more scaled than NTT used
in SealPIR library [29].

SealPIR can also use some our optimization technique such as random oracle
(when it uses symmetric key version) and modulus switching, hence, we can
have similar ciphertext size in both protocols. Therefore, how many ciphertexts

98 J. Park and M. Tibouchi

are needed for query and answer is important for communication cost. Although
SHECS-PIR doesn’t run query unpacking, we can see that the query size becomes
smaller than the size of SealPIR with query expansion at some point since our
query size complexity is O(log n). Table 2 shows the exact number of ciphertexts
of a query and an answer in SHECS-PIR and SealPIR. A query which is a TRLWE
ciphertext can represent 2N indices and usually N ≥ 1024 so that we can say that
the query size actually does not increase for realistic size of database. For n =
232, N = 2048, one ciphertext (=16 kB) is required for SHECS-PIR with query
unpacking while 64 ciphertexts (=2048 kB) are needed for SealPIR with query
expansion and database dimension d = 2 (so the database is a 216 ×216 matrix).
This is because SealPIR represents an index using 216/2048(= �√n/N�) = 32
for each database dimension. This size is as same as SHECS-PIR’s just giving
all log n(= 32) TRGSW ciphertexts (=2048 kB) in SHECS-PIR without query
unpacking so that the server’s running time would be much smaller also. In fact,
the query unpacking would be faster than expansion if

√
n is much larger than

N log n. For noise issue, SealPIR may increase N and decrease p, while we do
not need to do. Moreover, the answer size does not increase since it does not
depend on the expansion factor F . Therefore, we can achieve better performance
on both total communication cost and server’s computation for large database.

Noise Growth: Somewhat homomorphic encryption supports limited number
of operation over ciphertexts, hence, the deeper depth a scheme has, the larger
database its application can support without bootstrapping. Since bootstrap-
ping takes relatively long time and require other material (quite large size) as
an input, it is important not to use it as much as possible. Multiplication over
ciphertexts, in general, incurs large noise growth. In fact, noise growth is depend-
ing on the size of plaintext in FV so that SealPIR keeps downsizing the plaintext
modulus to achieve more depth. But it causes the factor F large, hence, it has
an influence on server’s answer size and main computation time as well. How-
ever, TFHE has larger depth since it has additive noise growth for both addition
and multiplication and also the noise growth of it does not depend on plaintext
modulus.

We show heuristic noise bound after server’s computation of SealPIR and
SHECS-PIR then how much noise has left until decryption will fail using noise
budget defined in [11]. First, we can redefine TFHE ciphertext with rescaled
version for integer representation of implementation (q = 264).

Definition 1 (Rescaled TFHE for implementation). Let ct = (c0, c1),
where ci ∈ Zq[X]/(XN + 1), i ∈ {0, 1} be an TRLWE cipertext encrypting a
message m ∈ Zp[X]/(XN +1). Its scaled inherent noise v is the polynomial with
the smallest infinity norm such that,

p

q
ct(s) =

p

q
(c0 + c1s) = m + v + ap,

where a is a polynomial with integer coefficient.

SHECS-PIR 99

Table 3. TFHE error growth (N = 2048, p = 212, q = 264, the number of trial = 10000)

Fresh Ciphertext Addition Multiplication

mean(bit) 11 12 42

standard deviation 0.12 0 0.12

Lemma 1. A TRLWE ciphertext ct encrypting a message m can be correctly
decrypted if the scaled inherent noise v satisfies

‖v‖ <
1
2

Noise budget for rescaled TFHE is actually as same as FV’s [11], where q is
ciphertext modulus and p is plaintext modulus and v is the invariant noise
contained in a ciphertext. In TFHE, p divides q since the two are both powers
of 2 so that it causes less noise than the case p � q of SealPIR. The noise budget
of both schemes is − log 2v A ciphertext is decryptable only when the noise
budget of it is positive (>0). Now we can observe that how fast the noise budget
contained in the reply ciphertext reaches to 0 in parameter database size n.

SealPIR(based on FV) error growth. Let vin be the initial error, which is
an error of a query essentially, and vs be the error contained in a ciphertext
which is generated after server’s computation. We set ‖vout‖ = ‖(p

q vs�)mod p‖,
where ‖vs‖ ≤ Np2n

√
n(‖vin‖ + B) [5], where N is the dimension of plaintext,

p is plaintext modulus, n is the number of database, and B is a constant error
generated from query expansion step. We assume the database dimension d = 2.
Since the noise budget of this result ciphertext is − log ‖2vout‖, it decreases with
O(log n) complexity.

SHECS-PIR(based on TFHE) error growth. Let vin and vout be the same
notation defined above. Then we observe the final error based on TFHE noise
analysis [14]. It satisfies ‖vout‖ ≤ log n((k + 1)�Nβ(‖vin‖ + (N + 1)2−(t+1) +
t(N + 1)‖vks‖), where N is the dimension of plaintext, p is plaintext modu-
lus, n is the number of database, �, t, β are constant of TRGSW sample and
vks is key switching error (encryption of secret key). Then the noise budget of
this result ciphertext decreases with O(log log n) complexity. Table 3 shows how
much TFHE noise is added after addition and multiplication to the original
fresh ciphertext having noise 11 bits (for 120 bits of security). All the opera-
tion is done over fresh ciphertext (non-evaluated) with the same noise distribu-
tion. Since query unpacking step which consists of addition does not add much
error, we focus on multiplication error growth. According to our noise estima-
tion above, we can see that log log n + 42 bits are the final error contained in
server’s reply. To decrypt it correctly (the noise budget > 0), log log n should
be smaller than 9. which means, n < 2512. As a result, we are able to run large
enough database without changing parameter using only somewhat homomor-
phic encryption functionalities. We can expect that the noise budget of the reply

100 J. Park and M. Tibouchi

ciphertext would still remain positive with large enough data while SealPIR may
not be able to support.

4.3 Security

The security of our cPIR scheme follows directly from the IND-CPA (i.e., seman-
tic) security of the underlying homomorphic encryption scheme TFHE [14].
Indeed, the query consists of TFHE ciphertexts, and semantic security ensures
that the server cannot learn any information about the underlying plaintexts,
which encode the queried database index. Therefore, SHECS-PIR is a secure cPIR
protocol.

The assumptions for security are slightly different in the version of the proto-
col with query compression and the version without: this is because in the latter
one, the key material sent to the server consists of just the evaluation key, allow-
ing the semantic security of TFHE to be proved under plain Ring-LWE). On the
other hand, in the former case, the server is also provided with key-switching
material, encrypting key-dependent information; the security proof for TFHE
then relies on an additional circular security assumption, as is always the case
for FHE schemes. This discrepancy, however, is not believed to have any impact
on concrete security, since no attack is known on circular security.

As usual for lattice-based cryptographic schemes, we can estimate concrete
security by evaluating the cost of the best possible attack against the proposed
parameters (which in our case are selected as N = 2048, q = 264, and α =
6.957 · 10−17 for the error magnitude, corresponding to our error distribution
with standard deviation 2−55). Albrecht et al.’s LWE estimator [2] shows that
the best attack is then the primal uSVP attack [4,6], which yields 121 bits of
security. As a comparison, SealPIR achieves 115 bits of security with their choice
of parameters (N = 2048, q = 260 − 218 + 1, and α = 8/q).

5 Experimental Result

Implementation Setup. All experiments are performed on a single core of a
server with Xeon Platinum 8160 @ 2.10 10 GHz CPUs. In the concrete protocol
SHECS-PIR, we set k = 1, then TRLWE sample consists of two polynomials,
(a, b) ∈ TN [X]2, where a is chosen uniformly. For TRGSW sample, we set � = 2,
Bg = 215.

Communication and Computation Cost. Table 4 shows the actual cost
using each library (SHECS-PIR based on TFHE [15] and SealPIR [29]). We stress
that those numbers corresponds to the case when only one database element is
stored in a given plaintext. It is possible to pack multiple database elements per
plaintext in order to support larger databases.

We set N = 2048 and ciphertext modulus q ≈ 260 for both protocols. Since
the FFT multiplication in TFHE library performs better than SEAL’s NTT,
our main computation time is similar to SealPIR. However, the First step (query

SHECS-PIR 101

Table 4. Computation cost of SHECS-PIR and SealPIR for the same n, q ≈ 260, N =
2048.

DB size n SHECS-PIR SealPIR (d = 2)

216 218 220 216 218 220

Query[kB] 32 32 32 32 32 32

Answer[kB] 32 32 32 320 320 320

Server preprocessing[ms] 0 0 0 5733 23101 92944

First-step[ms] 4507 5073 5846 187 422 840

Main[ms] 2282 9024 35902 1935 7025 26833

NB 8 7 7 7 6 5

NB (w/o unpack) 8 7 7 N/A

expansion, consisting of mainly polynomial additions) of SHECS-PIR is more
expensive than SealPIR’s for the database sizes considered in the table. It scales
slower with database size, however (logarithmically rather than in the square
root), so becomes negligible for larger databases.

Both protocols are based on “symmetric key” homomorphic encryption, so
that they use the random oracle model to reduce the query size by half. We
observe how much signal is left after the noise increase in homomorphic opera-
tions. NB represents the “noise budget” after server’s computation in the table,
namely the number of bits of plaintext recoverable above the noise in each of
the N coefficients of the plaintext. For example, for n = 216 in SHECS-PIR, each
coefficient of the reply can store up to 8 bits of information, for a total bandwidth
of 8N = 16384 bits of information (2048 bytes) per plaintext: this means that if
database entries are β = 288 bytes long, we can store 7 of them per plaintext,
and hence support database of size ≈219 in that case). NB(w/o unpack) denotes
the noise budget after server’s computation without query unpacking step. As
we can see that, query unpacking has very small error growth so that it has
little impact on the noise budget. The noise growth in SHECS-PIR is in log log n
compared to SealPIR’s log n, so the noise budget is higher in SHECS-PIR, and
we can support very large databases before this budget is reduced significantly.
In SealPIR on the other hand, parameters have to be increased somehow to sup-
port large databases; there is a complicated set of trade-offs between the data
element size β, the plaintext modulus p, the polynomial degree N and the array
size n, with an increase in one resulting in a decrease on another, making param-
eter selection somewhat tricky. Comparatively, SHECS-PIR is relatively free of
trade-offs as n increases.

For the computation time of the database in the applicable range, the server
processing time (main computation) scales very close to linearly with n (the
database size) and it is similar to SealPIR. We have a small overhead over SealPIR
due to the choice of avoiding any database preprocessing, more precisely, stor-
ing database elements as NTT/FFT form in advance. Note that a plaintext is a

102 J. Park and M. Tibouchi

Table 5. Comparison between SHECS-PIR and SealPIR for large n, q ≈ 260, N = 2048.

DB size n 222 224 225 226 227

SHECS-PIR Compressed-Query[#] 2 2 2 2 2

Query[#] 2 × 22 2 × 24 2 × 25 2 × 26 2 × 27

Answer[#] 1 1 1 1 1

SealPIR (d = 3) Compressed-Query[#] 3 3 3 3 3

Answer[#] 100 100 100 100 100

SHECS-PIR First-step[s] 15 16 17 18 18

Main[s] 143 574 1167 2327 4645

NB 7 6 6 6 6

SealPIR (d = 3) Server preprocessing[s] 291 1192 [out of memory]

Server time[s] 132 489

polynomial of 12 bit coefficients, while ciphertext consists of 64 bit coefficient. As
a result, we have almost no storage overhead for the database in memory, com-
pared to an overhead of more than 5 (=64/12) in SealPIR. This lets us support
very large databases up to 227 (corresponding to 230 entries of 384 KB each,
384 GB of data in total), while the same could not be achieved with SealPIR
on commodity hardware (See Table 5). In addition, for large databases, SealPIR
makes it necessary to increase d, which results in a larger response size. Specif-
ically, SealPIR simply fails if d is set to 2 for n ≥ 222, so we have to set d to
at least 3, and get a response consists of a hundred ciphertexts or more; due to
memory constraints, we could run it only up to n = 224, with larger instances
too big to fit in memory our relatively high-end server.

The communication cost (query and answer size) is expressed in the number
of ciphertexts. Compressed-Query[#] denotes an optimization of query size
(query unpacking in SHECS-PIR, query expansion in SealPIR). We can see that
our total communication cost even without query unpacking is actually lower
than SealPIR with query expansion for large database sizes, due to the much
larger response size in SealPIR. Nevertheless, query unpacking becomes relatively
negligible for large database sizes, so it would seem natural to use it as well and
enjoy our close to optimal communication complexity.

The server computation time may seem large, but it is almost completely
embarrassingly parallel, so on our 48-core server the total server computation
time can be brought down to less than 100 s for n = 227, say, by using multi-
threading.

A Optimization Options of Reducing Communication
Cost

We explain modulus switching technique which is widely used in several homo-
morphic encryption schemes as one of optimization options. It changes the

SHECS-PIR 103

ciphertext space to lower space by switching modulus, hence it makes answer size
smaller in PIR protocol. Another factor which has an effect on communication
cost is ciphertext polynomial degree. In fact, it directly affects not only the size
of query and answer but also computation time.

As stated in Sect. 5, there is a complicated relation on multiple factors of
both computation and communication cost. One change of the factors results
in small or big trade-offs in many cPIR protocols. There are several reasons to
increase the polynomial degree such as controlling error growth, handling larger
database e.t.c. However, we show that we can keep ciphertext polynomial size
lower dealing with larger database and having no noise problem.

A.1 Modulus Switching

We just set a new ciphertext modulus p̄ such that p < p̄ < q. Then modulus
switching takes original TRLWE ciphertext ct = (c0, c1) gives a new TRLWE

ciphertext c̄t = (c̄0, c̄1), where
[
�c̄0 = p̄

q c0�
]

mod p̄,
[
�c̄1 = p̄

q c1�
]

mod p̄. This is
almost free in implementation since it just shifts all the coefficients. Furthermore,
it causes fairly small noise growth comparing to FV ciphertext [17] since all the
modulus p, p̄, q are power of 2. As a result, we can reduce the communication
cost without increasing the server’s computation cost.

A.2 Smaller Polynomial Degree

As a ciphertext of query in SHECS-PIR has just bit length information which is
usually much smaller than polynomial degree N , there is no need to keep the
polynomial degree large. It may hardly happen that log n > N , hence, we could
keep the same modulus q and N . Larger N may contain large data element size in
one ciphertext but decreases the efficiency of protocol having more computation
and noise. Therefore, SHECS-PIR has a benefit on maintaining smaller query size
not increasing other factors (no trade-offs), while more ciphertexts are required
for a query in SealPIR as n increases.

B Multi-query PIR

Our protocol with packed query naturally supports multi-query scenario where
the same client wants to retrieve multiple elements from the same server or mul-
tiple indices are asked to a server for one answer. For the former, we can obtain
single query size cost even for realistic large enough number of database and
the answer size is linear on the number of indices. For the latter, the commu-
nication cost is as same as single query version. The reason is that we only use
log n coefficients of polynomial to generate the single query ciphertext for fixed
the number of data n and the degree N . Then it is possible to have at most
N/ log n� indices in one polynomial as a multi query without increasing query
size. It just maintains the communication cost of single query.

104 J. Park and M. Tibouchi

There are some multi query protocols to improve CPU costs. SHECS-PIR
gives a benefit on communication cost if it is applied to any computationally
efficient technique (batch codes [26,32], probabilistic batch codes [5]) of multi
query PIR protocol. Comparing to the previous work in [5], SealPIR requires each
query ciphertext to be expanded to each dimension’s query vector by expand
algorithm for an index. Therefore, a query ciphertext cannot contain more infor-
mation apart from the desired index using their way. It implies that a client
has to encrypts b times which outputs b ciphertexts to request b items from a
server’s DB. However, unpacking query step in our protocol is only dependent
on coefficient of polynomial. For example, to retrieve 64 items out of 220, SealPIR
requires more than 64 query ciphertexts (using probabilistic batch codes, they
require b(= 1.5×64) query). But our approach requires only one query ciphertext
having b indices for fixed N = 2048, n = 220 having the same efficient computa-
tional cost. Furthermore, for the server’s reply, only one ciphertext per query is
given by server with SHECS-PIR, while F d−1 ciphertexts are required per query
to answer for a server in SealPIR and usually F ≥ 4, d ≥ 2.

References

1. Aguilar Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR: private infor-
mation retrieval for everyone. PoPETs 2016(2), 155–174 (2016)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015). http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

3. Ali, A., et al.: Communication-computation trade-offs in PIR. Cryptology ePrint
Archive, Report 2019/1483 (2019). https://eprint.iacr.org/2019/1483

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association, August 2016

5. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: 2018 IEEE Symposium on Security and Privacy,
pp. 962–979. IEEE Computer Society Press, May 2018

6. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

7. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n1/(2k−1))
barrier for information-theoretic private information retrieval. In: 43rd FOCS, pp.
261–270. IEEE Computer Society Press, November 2002

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

10. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://eprint.iacr.org/2019/1483
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28

SHECS-PIR 105

11. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.2.
Technical report (2017)

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption library, August 2016. https://tfhe.github.io/tfhe/

16. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October 1995

17. Costache, A., Laine, K., Player, R.: Homomorphic noise growth in practice: com-
paring BGV and FV. Cryptology ePrint Archive, Report 2019/493 (2019). https://
eprint.iacr.org/2019/493

18. Dams, D., Lataille, J., Sanchez, R., Wade, J.: WIDESEAS: a lattice-based PIR
scheme implemented in EncryptedQuery. Cryptology ePrint Archive, Report
2019/855 (2019). https://eprint.iacr.org/2019/855

19. Demmler, D., Herzberg, A., Schneider, T.: Raid-PIR: practical multi-server PIR.
In: Proceedings of the 6th Edition of the ACM Workshop on Cloud Computing
Security, CCSW 2014, pp. 45–56. ACM, New York (2014)

20. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information
retrieval. In: Kohno, T. (ed.) USENIX Security 2012, pp. 269–283. USENIX Asso-
ciation, August 2012

21. Dong, C., Chen, L.: A fast single server private information retrieval protocol with
low communication cost. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11203-9 22

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144

23. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 438–464. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7 17

24. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

25. Goldberg, I.: Improving the robustness of private information retrieval. In: 2007
IEEE Symposium on Security and Privacy, pp. 131–148. IEEE Computer Society
Press, May 2007

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: Babai, L. (ed.) 36th ACM STOC, pp. 262–271. ACM Press, June 2004

27. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate private
information retrieval from homomorphic encryption. PoPETs 2015(2), 222–243
(2015)

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://tfhe.github.io/tfhe/
https://eprint.iacr.org/2019/493
https://eprint.iacr.org/2019/493
https://eprint.iacr.org/2019/855
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-319-11203-9_22
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-642-40041-4_5

106 J. Park and M. Tibouchi

28. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th FOCS, pp. 364–373. IEEE
Computer Society Press, October 1997

29. Laine, K., et al.: SealPIR: a computational PIR library that achieves low commu-
nication costs and high performance. https://github.com/microsoft/SealPIR

30. Lipmaa, H., Pavlyk, K.: A simpler rate-optimal CPIR protocol. In: Kiayias, A.
(ed.) FC 2017. LNCS, vol. 10322, pp. 621–638. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70972-7 35

31. Olumofin, F.G., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0 13

32. Paterson, M.B., Stinson, D.R., Wei, R.: Combinatorial batch codes. Adv. Math.
Commun. 3(1), 13–27 (2009)

33. Stern, J.P.: A new efficient all-or-nothing disclosure of secrets protocol. In: Ohta,
K., Pei, D. (eds.) ASIACRYPT’ 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998)

https://github.com/microsoft/SealPIR
https://doi.org/10.1007/978-3-319-70972-7_35
https://doi.org/10.1007/978-3-319-70972-7_35
https://doi.org/10.1007/978-3-642-27576-0_13

Puncturable Encryption: A Generic
Construction from Delegatable Fully

Key-Homomorphic Encryption

Willy Susilo1,3(B), Dung Hoang Duong1,3(B), Huy Quoc Le1,2(B),
and Josef Pieprzyk2,3(B)

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Northfields Avenue, Wollongong, NSW 2522, Australia
{wsusilo,hduong}@uow.edu.au, qhl576@uowmail.edu.au

2 CSIRO Data61, Sydney, NSW, Australia
Josef.Pieprzyk@data61.csiro.au

3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. Puncturable encryption (PE), proposed by Green and Miers
at IEEE S&P 2015, is a kind of public key encryption that allows recip-
ients to revoke individual messages by repeatedly updating decryption
keys without communicating with senders. PE is an essential tool for con-
structing many interesting applications, such as asynchronous messaging
systems, forward-secret zero round-trip time protocols, public-key water-
marking schemes and forward-secret proxy re-encryptions. This paper
revisits PEs from the observation that the puncturing property can be
implemented as efficiently computable functions. From this view, we pro-
pose a generic PE construction from the fully key-homomorphic encryp-
tion, augmented with a key delegation mechanism (DFKHE) from Boneh
et al. at Eurocrypt 2014. We show that our PE construction enjoys the
selective security under chosen plaintext attacks (that can be converted
into the adaptive security with some efficiency loss) from that of DFKHE
in the standard model. Basing on the framework, we obtain the first
post-quantum secure PE instantiation that is based on the learning with
errors problem, selective secure under chosen plaintext attacks (CPA) in
the standard model. We also discuss about the ability of modification our
framework to support the unbounded number of ciphertext tags inspired
from the work of Brakerski and Vaikuntanathan at CRYPTO 2016.

Keywords: Puncturable encryption · Attribute-based encryption ·
Learning with errors · Arithmetic circuits · Fully key-homomorphic
encryption · Key delegation

1 Introduction

Puncturable encryption (PE), proposed by Green and Miers [18] in 2015, is a
kind of public key encryption, which can also be seen as a tag-based encryption
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 107–127, 2020.
https://doi.org/10.1007/978-3-030-59013-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_6

108 W. Susilo et al.

(TBE), where both encryption and decryption are controlled by tags. Similarly
to TBE, a plaintext in PE is encrypted together with tags, which are called
ciphertext tags. In addition, the puncturing property of PE allows to produce new
punctured secret keys associated some punctures (or punctured tags). Although
the new keys (puncture keys) differ from the old ones, they still allow recipients
to decrypt old ciphertexts as long as chosen punctured tags are different from tags
embedded in the ciphertext. The puncturing property is very useful when the
current decryption key is compromised. In a such situation, a recipient merely
needs to update his key using the puncturing mechanism. PE is also useful when
there is a need to revoke decryption capability from many users in order to
protect some sensitive information (e.g., a time period or user identities). In this
case, the puncturing mechanism is called for time periods or user identities.

Also, PE can provide forward security in a fine-grained level. Forward secu-
rity, formulated in [19] in the context of key-exchange protocols, is a desired secu-
rity property that helps to reduce a security risk caused by key exposure attacks.
In particular, forward secure encryption (FSE) guarantees confidentiality of old
messages, when the current secret key has been compromised. Compared to
PE, FSE provides a limited support for revocation of decryption capability. For
instance, it is difficult for FSE to control decryption capability for any individual
ciphertext (or all ciphertexts) produced during a certain time period, which, in
contrast, can be easily done with PE.

Due to the aforementioned advantages, PE has become more and more
popular and has been used in many important applications in such as asyn-
chronous messaging transport systems [18], forward-secure zero round–trip time
(0-RTT) key-exchange protocols [15,20], public-key watermarking schemes [12]
and forward-secure proxy re-encryptions [16].

Related Works. Green and Miers [18] propose the notion of PE and also
present a specific ABE-based PE instantiation. The instantiation is based on
the decisional bilinear Diffie-Hellman assumption (DBDH) in bilinear groups
and is proven to be CPA secure in the random oracle model (ROM). Fol-
lowing the work [18], many other constructions have been proposed such as
[10,12,15,20,26] (see Table 1 for a summary). For instance, Günther et al. [20]
have provided a generic PE construction from any selectively secure hierarchi-
cal identity-based key encapsulation (HIBEKEM) combined with an any one
time signature (OTS). In fact, the authors of [20] claim that their framework
can be instantiated as the first post-quantum PE. Also, in the work [20], the
authors present the first PE-based forward-secret zero round-trip time protocol
with full forward secrecy. However, they instantiate PE that is secure in the
standard model (SDM) by combining a (DDH)-based HIBE with a OTS based
on discrete logarithm. The construction supports a predetermined number of
ciphertext tags as well as a limited number of punctures. Derler et al. [15] intro-
duce the notion of Bloom filter encryption (BFE), which can be converted to PE.
They show how to instantiate BFE using identity-based encryption (IBE) with
a specific construction that assumes intractability of the bilinear computational
Diffie-Hellman (BCDH) problem. Later, Derler et al. [14] extend the result of

DFKHE-Based Puncturable Encryption 109

[15] and give a generic BFE construction from identity-based broadcast encryp-
tion (IBBE). The instantiation in [14] is based on a generalization of the Diffie-
Hellman exponent (GDDHE) assumption in parings. However, the construction
based on BFE suffers from non-negligible correctness error. This excludes it
from applications that require negligible correctness error, as discussed in [26].
Most recently, Sun et al. [26] have introduced a new concept, which they call
key-homomorphic identity-based revocable key encapsulation mechanism (KH-
IRKEM) with extended correctness, from which they obtain a modular design of
PE with negligible correctness errors. In particular, they describe four modular
and compact instantiations of PE, which are secure in SDM. However, all of
them are based on hard problems in pairings, namely q-decision bilinear Diffie-
Hellman exponent problem (q–DBDHE), the decision bilinear Diffie-Hellman
problem (DBDH), the q-decisional multi-exponent bilinear Diffie-Hellman
(q-MEBDH) problem and the decisional linear problem (DLIN). We emphasize
that all existing instantiations mentioned above are insecure against quantum
adversaries. Some other works like [10,12] based PE on the notion of indistin-
guishability obfuscation, which is still impractical. The reader is referred to [26]
for a state-of-the-art discussion.

To the best of our knowledge, there has been no specific lattice-based PE
instantiation, which simultaneously enjoys negligible correctness error as well as
post-quantum security in the standard model.

Our Contribution. We first give a generic construction of PE from delegatable
fully key-homomorphic encryption (DFKHE) framework. The framework is a
generalisation of fully key-homomorphic encryption (FKHE) [5] by adding a
key delegation mechanism. The framework is closely related to the functional
encryption [7].

We also present an explicit PE construction based on lattices. Our design is
obtained from LWE-based DFKHE that we build using FKHE for the learning
with errors (LWE) setting [5]. This is combined with the key delegation ability
supplied by the lattice trapdoor techniques [1,11,17]. Our lattice FE construction
has the following characteristics:

– It supports a predetermined number of ciphertext tags per ciphertext. The
ciphertext size is short and depends linearly on the number of ciphertext
tags, which is fixed in advance. However, we note that following the work
of Brakerski and Vaikuntanathan [8], our construction might be extended to
obtain a variant that supports unbounded number of ciphertext tags (see
Sect. 5 for a detailed discussion),

– It works for a predetermined number of punctures. The size of decryption keys
(i.e., puncture keys) increases quadratically with the number of punctured
tags,

– It offers selective CPA security in the standard model (that can be converted
into full CPA security using the complexity leveraging technique as discussed
in [4,5,9,21]). This is due to CPA security of LWE-based underlying DFKHE
(following the security proof for the generic framework).

– It enjoys post-quantum security and negligible correctness errors.

110 W. Susilo et al.

Table 1 compares our work with the results obtained by other authors. At first
sight, the FE framework based on key homomorphic revocable identity-based
(KH-IRKEM) [26] looks similar to ours. However, both frameworks are differ-
ent. While key-homomorphism used by us means the capacity of transforming
(as claimed in [5, Subsection 1.1]) “an encryption under key x into an encryp-
tion under key f(x)”, key-homomorphism defined in [26, Definition 8] reflects
the ability of preserving the algebraic structure of (mathematical) groups.

Overview and Techniques. We start with a high-level description of fully-
key homomorphism encryption (FHKE), which was proposed by Boneh et al.
[5]. Afterwards, we introduce what we call the delegetable fully-key homomor-
phism encryption (DFHKE). At high-level description, FKHE possesses a mech-
anism that allows to convert a ciphertext ctx (associated with a public variable
x) into the evaluated one ctf for the same plaintext (associated with the pair
(y, f)), where f is an efficiently computable function and f(x) = y. In other
words, FKHE requires a special key-homomorphic evaluation algorithm, called
Eval, such that ctf ← Eval(f, ctx). In order to successfully decrypt an evaluated
ciphertext, the decryptor needs to evaluate the initial secret sk to get skf . An
extra algorithm, called KHom, is needed to do this, i.e. skf ← KHom(sk, (y, f)).
A drawback of FKHE is that it supports only a single function f .

Actually, we would like to perform key-homomorphic evaluation for many
functions {f1, · · · , fk} that belong to a family F . To meet the require-
ment and obtain DFKHE, we generalise FKHE by endowing it with two
algorithms ExtEval and KDel. The first algorithm transforms (ctx,x) into
(ctf1,··· ,fk

, (y, f1, · · · fk)), where f1(x) = · · · = fk(x) = y. This is writ-
ten as ctf1,··· ,fk

← ExtEval(f1, · · · , fk, ctx). The second algorithm allows to
delegate the secret key step by step for the next function or skf1,··· ,fk

←
KDel(skf1,··· ,fk−1 , (y, fk)).

Our generic PE framework is inspired by a simple but subtle observation that
puncturing property requires equality of ciphertext tags and punctures. This can
be provided by functions that can be efficiently computed by arithmetic circuits.
We call such functions equality test functions. Note that for PE, ciphertext tags
play the role of variables x’s and equality test functions act as functions f ’s
defined in FKHE. For FE, one more puncture added defines one extra equal-
ity test function, which needs a delegation mechanism to take the function into
account. We note that the requirement can be easily met using the same idea as
the key delegation mentioned above. In order to be able to employ the idea of
DFKHE for (y0,F) to PE, we define an efficiently computable family F of equal-
ity test functions ft∗(t) allowing us to compare the puncture t∗ with ciphertext
tags t = (t1, · · · , td) under the definition that ft∗(t) = y0 iff t∗ �= tj∀j ∈ [d], for
some fixed value y0.

For concrete DHKHE and PE constructions, we employ the LWE-based
FKHE proposed in [5]. In this system, the ciphertext is ct = (cin, c1, · · · , cd, cout),
where ci = (tiG + Bi)T s + ei for i ∈ [d]. Here the gadget matrix G is a spe-
cial one, whose associated trapdoor TG (i.e., a short basis for the q-ary lattice

DFKHE-Based Puncturable Encryption 111

Table 1. Comparison of some existing PE constructions in the literature with ours.
Note that, here all works are being considered in the CPA security setting. The nota-
tion “< ∞” means “bounded” or “predetermined”, while “∞” means “unlimited” or
“arbitrary”. The column entitled “Post-quantum” says whether the specific construc-
tion in each framework is post-quantum secure or not regardless its generic framework.
The last column mentions to supporting the negligible correctness error. ROM∗: For
the BFE-based FE basing on the IBBE instantiation of Derler et al. [14], we note that,
the IBBE instantiation can be modified to remove ROM, as claimed by Delerablée in
[13, Subection 3.2]

Literature From Assumption Security

model

#Tags #Punctures Post-quantum Negl. Corr.

Error

Green [18] ABE DBDH ROM <∞ ∞ × �
Günther [20] Any HIBE

+ any OTS

DDH (HIBE)

+ DLP (OTS)

SDM <∞ <∞ × �

Derler [14] BFE (IBBE) GDDHE ROM∗ 1 <∞ × ×
Derler [15] BFE (IBE) BCDH ROM 1 <∞ × ×
Sun [26] KH-IRKEM q–DBDHE SDM <∞ ∞ × �

DBDH <∞ ∞ ×
q–MEBDH ∞ ∞ ×
DLIN <∞ ∞ ×

This work DFKHE DLWE SDM <∞ < ∞ � �

Λ⊥
q (G)) is publicly known (see [22] for details). Also, there exist three evalu-

ation algorithms named Evalpk, Evalct and Evalsim [5], which help us to homo-
morphically evaluate a circuit (function) for a ciphertext ct. More specifically,
from ci := [tiG + Bi]T s + ei, where ‖ei‖ < δ for all i ∈ [d], and a function
f : (Zq)d → Zq, we get cf = [f(t1, · · · , td)G + Bf]T s + ef , ‖ef‖ < Δ, where
Bf ← Evalpk(f, (Bi)d

i=1), cf ← Evalct(f, ((ti,Bi, ci))d
i=1), and Δ < δ · β for

some β sufficiently small. The algorithm ExtEval mentioned above can be imple-
mented calling many times Evalpk,Evalct, each time for each function. Mean-
while, Evalsim is only useful in the simulation for the security proof. In the LWE-
based DFKHE construction, secret keys are trapdoors for q-ary lattices of form
Λ⊥

q ([A|Bf1 | · · · |Bfk
]). For the key delegation KDel, we can utilize the trapdoor

techniques [1,11,17] . For the LWE-based PE instantiation, we employ the equal-
ity test function with y0 := 0 (mod q). Namely, for a puncture t∗ and a list of
ciphertext tags t1, · · · , td we define ft∗(t1, · · · , td) := eqt∗(t1) + · · · + eqt∗(td),
where eqt∗ : Zq → Zq satisfying that ∀t ∈ Zq, eqt∗(t) = 1 (mod q) iff t = t∗,
otherwise eqt∗(t) = 0 (mod q). Such functions has also been employed in [6] to
construct a privately puncturable pseudorandom function. It follows from generic
construction that our PE instantiation is selective CPA-secure.

Efficiency. Table 2 summarizes the asymptotic bit-size of public key, secret key,
punctured key and ciphertext. We can see that the public key size is a linear
function in the number of ciphertext tags (i.e., d). The (initial) secret key size
is independent of both d and η (the number of punctures). The punctured key

112 W. Susilo et al.

(decryption key) size is a quadratic function of η. Lastly, the ciphertext size is a
linear function of d.

On Unbounded Ciphertext Tags. We believe that our framework can be
extended to support unbounded number of ciphertext tags by exploiting the
interesting technique of [8]. The key idea of [8] is to use homomorphic evalua-
tion of a family pseudorandom functions. This helps to stretch a predetermined
parameter (e.g., the length of a seed) to an arbitrary number of ciphertext tags.
The predetermined parameter will be used to generate other public parameters
(e.g., public matrices). More details is given in Sect. 5.

Table 2. Keys and ciphertext’s size of our LWE-based PE as functions in number of
ciphertext tags d and number of punctures η.

Public key size O((d + 1) · n2 log2 q)

Secret key size O(n2 log2 q · log(n log q))

Punctured key size (η + 1) · n log q · (O(log(βF) + η · log(n log q)))

Ciphertext size O((d + 2) · n log2 q))

2 Preliminaries

2.1 Framework of Puncturable Encryption

Syntax of Puncturable Encryption. For a security parameter λ, let d = d(λ),
M = M(λ) and T = T (λ) be maximum number of tags per ciphertext, the space
of plaintexts and the set of valid tags, respectively. Puncturable encryption (PE)
is a collection of the following four algorithms KeyGen, Encrypt, Puncture and
Decrypt:

– (pk, sk0) ← KeyGen(1λ, d): For a security parameter λ and the maximum
number d of tags per ciphertext, the probabilistic polynomial time (PPT)
algorithm KeyGen outputs a public key pk and an initial secret key sk0.

– ct ← Encrypt(pk, μ, {t1, · · · , td}): For a public key pk, a message μ, and a
list of tags t1, · · · , td, the PPT algorithm Encrypt returns a ciphertext ct.

– ski ← Puncture(pk, ski−1, t
∗
i): For any i > 1, on input pk, ski−1 and a tag

t∗i , the PPT algorithm Puncture outputs a punctured key ski that decrypts
any ciphertexts, except for the ciphertext encrypted under any list of tags
containing t∗i .

– μ/⊥ ← Decrypt(pk, ski, (ct, {t1, · · · , td})): For input pk, a ciphertext ct, a
secret key ski, and a list of tags {t1, · · · , td}, the deterministic polynomial
time (DPT) algorithm Decrypt outputs either a message μ if the decryption
succeeds or ⊥ if it fails.

DFKHE-Based Puncturable Encryption 113

Correctness. The correctness requirement for PE is as follows:
For all λ, d, η ≥ 0, t∗1, · · · , t∗η, t1, · · · , td ∈ T , (pk, sk0) ← KeyGen(1λ, d), ski ←
Punc(pk, ski−1, t

∗
i),∀i ∈ [η], ct = Encrypt(pk, μ, {t1, · · · , td}), we have

– If {t∗1, · · · , t∗η} ∩ {t1, · · · , td} = ∅, then ∀i ∈ {0, · · · , η},

Pr[Decrypt(pk, ski, (ct, {t1, · · · , td})) = μ] ≥ 1 − negl(λ).

– If there exist j ∈ [d] and k ∈ [η] such that t∗k = tj , then ∀i ∈ {k, · · · , η},

Pr[Decrypt(pk, ski, (ct, {t1, · · · , td})) = μ] ≤ negl(λ).

Definition 1 (Selective Security of PE). PE is IND-sPUN-ATK if the
advantage of any PPT adversary A in the game IND-sPUN-ATKsel,A

PE is negli-
gible, where ATK ∈ {CPA, CCA}. Formally,

AdvIND-sPUN-ATK
PE (A) = |Pr[b′ = b] − 1

2
| ≤ negl(λ).

The game IND-sPUN-ATKsel,A
PE proceeds as follows.

1. Initialize. The adversary announces the target tags {̂t1, · · · , ̂td}.
2. Setup. The challenger initializes a set punctured tags T ∗ ← ∅, a counter

i ← 0 that counts the current number of punctured tags in T ∗ and a set of
corrupted tags C∗ ← ∅ containing all punctured tags at the time of the first
corruption query. Then, it runs (pk, sk0) ← KeyGen(1λ, d). Finally, it gives
pk to the adversary.

3. Query 1.
– Once the adversary makes a puncture key query PQ(t∗), the challenger

updates i ← i + 1, returns ski ← Punc(pk, ski−1, t
∗) and adds t∗ to T ∗.

– The first time the adversary makes a corruption query CQ(), the chal-
lenger returns ⊥ if it finds out that {̂t1, · · · , ̂td} ∩ T ∗ = ∅. Otherwise, the
challenger returns the most recent punctured key skη, then sets C∗ as the
most recent T ∗ (i.e., C∗ ← T ∗ = {t∗1, · · · , t∗η}). All subsequent puncture
key queries and corruption queries are answered with ⊥.

– If ATK = CCA: Once the adversary makes a decryption query DQ(ct,
{t1, · · · , td}), the challenger runs Decrypt(pk, skη, (ct, {t1, · · · , td})) using
the most recent punctured key skη and returns its output.
If ATK = CPA: the challenger returns ⊥.

4. Challenge. The adversary submits two messages μ0, μ1. The challenger
rejects the challenge if it finds out that {̂t1, · · · , ̂td}∩C∗ = ∅1. Otherwise, the

challenger chooses b
$←− {0, 1} and returns ̂ct ← Encrypt(pk, μb, {̂t1, · · · , ̂td}).

1 Note that, after making some queries that are different from the target tags, the
adversary may skip making corruption query but goes directly to the challenge phase
and trivially wins the game. This rejection prevents the adversary from such a trivial
win. It also force the adversary to make the corruption query before challenging.

114 W. Susilo et al.

5. Query 2. The same as Query 1 with the restriction that for
DQ(ct, {t1, · · · , td}), the challenger returns ⊥ if (ct, {t1, · · · , td}) =
(̂ct, {̂t1, · · · , ̂td}).

6. Guess. The adversary outputs b′ ∈ {0, 1}. It wins if b′ = b.

The full security for PE is defined in the same way, except that the adversary
can choose target tags at Challenge phase, after getting the public key and after
Query 1 phase. In this case, the challenger does not need to check the condition
{̂t1, · · · , ̂td} ∩ T ∗ = ∅ in the first corruption query CQ() of the adversary in
Query 1 phase.

2.2 Background on Lattices

A lattice is the set L = L(B) := {
∑m

i=1 bixi : xi ∈ Z ∀i ∈ [m]} ⊆ Z
m generated

by a basis B = [b1| · · · |bm] ∈ Z
n×m. We are interested in the following lattices:

Λ⊥
q (A) := {e ∈ Z

m | Ae = 0 (mod q)}, Λu
q (A) := {e ∈ Z

m|Ae = u (mod q)},

ΛU
q (A) :=

{

R ∈ Z
m×k|AR = U(mod q)

}

, where A $←− Z
n×m, u ∈ Z

n
q and U ∈

Z
n×k
q .

For a vector s = (s1, · · · , sn), ‖s‖ :=
√

s2
1 + · · · + s2

n, ‖s‖∞ := maxi∈[n] |si|.
For a matrix S = [s1 · · · sk] and any vector x = (x1, · · · , xk), we define ‖S‖ :=
maxi∈[k] ‖si‖, the GS norm of S is ‖˜S‖, the sup norm is ‖S‖sup = supx

‖Sx‖
‖x‖ .

This yields for all x that ‖Sx‖ ≤ ‖S‖sup · ‖x‖. We call a basis S of some lattice
short if ‖˜S‖ is short.

Gaussian Distributions. Assume m ≥ 1, v ∈ R
m, σ > 0, and x ∈ R

m. We
define the function ρσ,v(x) = exp(−π‖x − v‖2/σ2).

Definition 2 (Discrete Gaussians). Suppose that L ⊆ Z
m is a lattice, and

v ∈ R
m and σ > 0. The discrete Gaussian distribution over L with center v

and parameter σ is defined by DL,σ,v(x) = ρσ,v(x)
ρσ,v(L) for x ∈ L, where ρσ,v(L) :=

∑

x∈L ρσ,v(x).

Lemma 1 ([23, Lemma 4.4]). Let q > 2 and let A,B be a matrix in Z
n×m
q

with m > n. Let TA be a basis for Λ⊥
q (A). Then, for σ ≥ ‖˜TA‖ · ω(

√
log n),

Pr[x ← DΛ⊥
q (A),σ : ‖x‖ > σ

√
m] ≤ negl(n).

Learning with Errors. The security for our construction relies on the decision
variant of the learning with errors (DLWE) problem defined below.

Definition 3 (DLWE, [25]). Suppose that n be a positive integer, q is prime,
and χ is a distribution over Zq. The (n,m, q, χ)-DLWE problem requires to dis-

tinguish (A,AT s+e) from (A, c), where A $←− Z
n×m
q , s $←− Z

n
q , e ← χm, c $←− Z

m
q .

DFKHE-Based Puncturable Encryption 115

Let χ be a χ0-bounded noise distribution, i.e., its support belongs to
[−χ0, χ0]. The hardness of DLWE is measured by q/χ0, which is always greater
than 1 as χ0 is chosen such that χ0 < q. Specifically, the smaller q/χ0 is,
the harder DLWE is. (See [5, Subsection 2.2] and [8, Section 3] for further
discussions.)

Lemma 2 ([8, Corollary 3.2]). For all ε > 0, there exist functions q = q(n) ≤
2n, m = Θ(n log q) = poly(n), χ = χ(n) such that χ is a χ0-bounded for some
χ0 = χ0(n), q/χ0 ≥ 2nε

and such that DLWEn,m,q,χ is at least as hard as the
classical hardness of GapSVPγ and the quantum hardness of SIVPγ for γ =
2Ω(nε).

Leftover Hash Lemma. The following variant of the so-called leftover hash
lemma will be used in this work to support our arguments.

Lemma 3 ([1, Lemma 13]). Let m,n, q be such that m > (n + 1) log2 q +
ω(log n) and that q > 2 is prime. Let A and B are uniformly chosen from
Z

n×m
q and Z

n×k
q , respectively. Then for any uniformly chosen matrix S from

{−1, 1}m×k (mod q) and for all vectors e ∈ Z
m
q ,

(A,AS,ST e)
s≈ (A,B,ST e).

We conclude this section with some standard results regarding trapdoor
mechanism often used in lattice-based cryptography.

Lattice Trapdoor Mechanism. In our context, a (lattice) trapdoor is a short
basis TA for the q-ary lattice Λ⊥

q (A), i.e., A · TA = 0 (mod q) (see [17]). We
call TA the associated trapdoor for Λ⊥

q (A) or even for A.

Lemma 4. Let n,m, q > 0 and q be prime.

1. (A,TA) ← TrapGen(n,m, q) ([3,22]): This is a PPT algorithm that outputs
a pair (A,TA) ∈ Z

n×m
q × Z

m×m
q , where TA is a trapdoor for Λ⊥

q (A) such
that A is negligibly close to uniform and ‖˜TA‖ = O(

√
n log q). The algorithm

works if m = Θ(n log q).
2. TD ← ExtBasisRight(D := [A|AS + B],TB) ([1]): This is a DPT algorithm

that, for the input (D,TB), outputs a trapdoor TD for Λ⊥
q (D) such that

‖˜TD‖ ≤ ‖˜TB‖(1 + ‖S‖sup), where A,B ∈ Z
n×m
q .

3. TE ← ExtBasisLeft(E := [A|B],TA) ([11]): This is a DPT algorithm that for
E of the form E := [A|B] and a trapdoor TA for Λ⊥

q (A), outputs a trapdoor
TE for Λ⊥

q (E) such that ‖ ˜TE‖ = ‖˜TA‖, where A,B ∈ Z
n×m
q .

4. R ← SampleD(A,TA,U, σ) ([17]): This is a PPT algorithm that takes a
matrix A ∈ Z

n×m
q , its associated trapdoor TA ∈ Z

m×m, a matrix U ∈ Z
n×k
q

and a real number σ > 0 and returns a short matrix R ∈ Z
m×k
q chosen

randomly according to a distribution that is statistically close to DΛU
q (A),σ.

The algorithm works if σ = ‖˜TA‖ · ω(
√

log m). Furthermore, ‖RT ‖sup ≤
σ
√

mk, ‖R‖sup ≤ σ
√

mk (see also in [5, Lemma 2.5]).

116 W. Susilo et al.

5. T′
A ← RandBasis(A,TA, σ) ([11]): This is a PPT algorithm that takes a

matrix A ∈ Z
n×m
q , its associated trapdoor TA ∈ Z

m×m, and a real number
σ > 0 and returns a new basis T′

A for Λ⊥
q (A) chosen randomly according to

a distribution that is statistically close to (DΛ⊥
q (A),σ)m, and ‖˜T′

A‖ ≤ σ
√

m.

The algorithm works if σ = ‖˜TA‖ · ω(
√

log m).

3 Generic PE Construction from DFKHE

3.1 Delegatable Fully Key-Homomorphic Encryption

Delegatable fully key-homomorphic encryption (DFKHE) can be viewed as a
generalised notion of the so-called fully key-homomorphic encryption (FKHE)
[5] augmented with a key delegation mechanism [5]. DFHKP together with the
key delegation mechanism allows one to do the same but with more functions,
i.e., (y, f1, · · · , fk), and the condition for successful decryption is that f1(x) =
· · · = fk(x) = y.

Definition 4 (DFKHE). Let λ, d = d(λ) ∈ N be two positive integers and let
T = T (λ) and Y = Y(λ) be two finite sets. Define F = F(λ) = {f |f : T d → Y}
to be a family of efficiently computable functions. (λ, d, T ,Y,F)–DFKHE is a
tuple consisting of algorithms as follows.

(dfkhe.pk, dfkhe.sk) ← DFKHE.KGen(1λ,F): This PPT algorithm takes as input
a security parameter λ and outputs a public key dfkhe.pk and a secret key
dfkhe.sk.

dfkhe.sky,f ← DFKHE.KHom(dfkhe.sk, (y, f)): This PPT algorithm takes as
input the secret key dfkhe.sk and a pair (y, f) ∈ Y × F and returns a secret
homomorphic key sky,f .

dfkhe.sky,f1,··· ,fk+1 ← DFKHE.KDel(dfkhe.pk, dfkhe.sky,f1,··· ,fk
, (y, fk+1)): This

PPT algorithm takes as input the public key dfkhe.pk, a function fk+1 ∈ F
and the secret key dfkhe.sky,f1,··· ,fk

and returns the delegated secret key
dfkhe.sky,f1,··· ,fk+1 . Further, the key dfkhe.sky,f1,··· ,fk

is produced either by
DFKHE.KHom if k = 1, or iteratively by DFKHE.KDel if k > 1.

(dfkhe.ct, t) ← DFKHE.Enc(dfkhe.pk, μ, t): This PPT algorithm takes as input
the public key dfkhe.pk, a plaintext μ and a variable t ∈ T d and returns a
ciphertext dfkhe.ct– an encryption of μ under the variable t.

dfkhe.ctf1,··· ,fk
← DFKHE.ExtEval(f1, · · · , fk, (dfkhe.ct, t)): The DPT algorithm

takes as input a ciphertext dfkhe.ct and the associated variable t ∈ T d and
returns an evaluated ciphertext dfkhe.ctf1,··· ,fk

. If f1(t) = · · · = fk(t) = y ,
then we say that dfkhe.ctf1,··· ,fk

is an encryption of μ using the public key
(y, f1, · · · , fk).

μ/⊥ ← DFKHE.Dec(dfkhe.sky,f1,··· ,fk
, (dfkhe.ct, t)): The DPT algorithm takes

as input a delegated secret key dfkhe.sky,f1,··· ,fk
and a ciphertext dfkhe.ct asso-

ciated with t ∈ T d and recovers a plaintext μ. It succeeds if fi(t) = y for all
i ∈ [k]. Otherwise, it fails and returns ⊥. To recover μ, the algorithm first

DFKHE-Based Puncturable Encryption 117

calls DFKHE.ExtEval(f1, · · · , fk, (dfkhe.ct, t)) and gets dfkhe.ctf1,··· ,fk
. Next

it uses dfkhe.sky,f1,··· ,fk
and opens dfkhe.ctf1,··· ,fk

.

Obviously, DFKHE from Definition 4 is identical to FKHE [5] if k = 1.

Correctness. For all μ ∈ M, all k ∈ N, all f1, · · · , fk ∈ F and t ∈ T d,
y ∈ Y, over the randomness of (dfkhe.pk, dfkhe.sk) ← FKHE.KGen(1λ,F),
(dfkhe.ct, t) ← FKHE.Enc(dfkhe.pk, μ, t), dfkhe.sky,f1 ← FKHE.KHom(dfkhe.sk,
(y, f1)) and dfkhe.sky,f1,··· ,fi

← FKHE.KDel(dfkhe.sky,f1,··· ,fi−1 , (y, fi)),
dfkhe.ctf1,··· ,fk

← DFKHE.ExtEval (f1, · · · , fk, (dfkhe.ct, t)) for all i ∈ {2, · · · , k},
then

– Pr[FKHE.Dec(dfkhe.sk, (dfkhe.ct, t)) = μ] ≥ 1 − negl(λ),
– if y = f1(t) = · · · = fk(t), then

Pr[FKHE.Dec(dfkhe.sk, (dfkhe.ctf1,··· ,fk
, t)) = μ] ≥ 1 − negl(λ),

Pr[FKHE.Dec(dfkhe.sky,f1,··· ,fi
, (dfkhe.ct, t)) = μ] ≥ 1 − negl(λ),∀i ∈ [k],

– For any i ∈ [k], if y �= fi(t),

Pr[FKHE.Dec(dfkhe.sky,f1,··· ,fj
, (dfkhe.ct, t)) = μ] ≤ negl(λ),∀j ∈ {i, k}.

Security. Security of DFKHE is similar to that of FKHE from [5] with an extra
evaluation that includes the key delegation mechanisms.

Definition 5 (Selectively-secure CPA of DFKHE). DFKHE is IND-
sVAR-CPA if for any polynomial time adversary B in the game IND-sVAR-
CPAsel,B

DFKHE, the adversary advantage AdvIND-sVAR-CPA
DFKHE (B) = |Pr[b′ = b] − 1

2 | ≤
negl(λ).

The IND-sVAR-CPAsel,B
DFKHE game is as follows.

1. Initialize. On the security parameter λ and λ–dependent tuple (d, (T ,Y,F)),
B releases the target variable ̂t = (̂t1, · · · , ̂td) ∈ T d.

2. Setup. The challenger runs (dfkhe.pk, dfkhe.sk) ← DFKHE.KGen(1λ,F).
Then, it gives dfkhe.pk to B.

3. Query. B adaptively makes delegated key queries DKQ(y, (f1, · · · , fk)) to get
the corresponding delegated secret keys. Specifically, B is allowed to access the
oracle KG(dfkhe.sk,̂t, y, (f1, · · · , fk)), which takes as input dfkhe.sk, ̂t, a list
of functions f1, · · · , fk ∈ F and y ∈ Y and returns either ⊥ if all fj(̂t) =
y, or the delegated secret key dfkhe.sky,f1,··· ,fk

, otherwise. The delegated
secret key dfkhe.sky,f1,··· ,fk

is computed calling dfkhe.sky,f1 := DFKHE.KHom
(dfkhe.sk, (y, f1)) and
dfkhe.sky,f1,··· ,fi

← DFKHE.KDel (dfkhe.pk, dfkhe.sky,f1,··· ,fi−1 , (y, fi)) for all
i ∈ {2, · · · , k}.

4. Challenge. The adversary submits two messages μ0, μ1 (with ̂t). The chal-

lenger in turn chooses b
$←− {0, 1} and returns the output (dfkhe.̂ct,̂t) of

DFKHE.Enc(dfkhe.pk, μb, ̂t).
5. Guess. The adversary outputs b′ ∈ {0, 1}. It wins if b′ = b.

118 W. Susilo et al.

3.2 Generic PE Construction from DFKHE

The main idea behind our construction is an observation that ciphertext tags can
be treated as variables t = (t1, · · · , td) ∈ T d. The puncturing property, which
is related to the “equality”, suggests us to construct a family F of equality test
functions, allowing to compare each pair of ciphertext tags and punctures. Using
this idea, we then can have a PE construction from DFKHE.

Let λ, d = d(λ) ∈ N be two positive integers. Let T = T (λ) be a finite
set (that henceforth called the tag space) and Y = Y(λ) be also a finite set.
In addition, let y0 ∈ Y be a some fixed special element. Define a family of all
equality test functions indicated by T ,

F = F(λ) :=
{

ft∗ |t∗ ∈ T ,∀t = (t1, · · · , td), ft∗ : T d → Y
}

, (1)

where ft∗(t) := y0 if t∗ �= ti,∀i ∈ [d], ft∗(t) := yt∗,t ∈ Y \{y0}. Here, yt∗,t means
depending on the value of t∗ and t. Now, let Π = (DFKHE.KGen,DFKHE.KHom,
DFKHE.Enc, DFKHE.ExtEval, DFKHE.KDel, DFKHE.Dec) be (λ, d, T ,Y,F)–
DFHKE. Using Π, we can construct a PE system Ψ = (PE.key,PE.enc,PE.pun,
PE.dec) of which both tags and punctures reside in T . The description of Ψ is
below:

Parameters: Set λ as a security parameter, and d = d(λ) as the maximum
number of tags per ciphertext.

(pe.pk, pe.sk0) ← PE.key(1λ, d): For input λ and d, run (dfkhe.pk, dfkhe.sk) ←
DFKHE.KGen(1λ,F), and return pe.pk := dfkhe.pk, and pe.sk0 := dfkhe.sk.

pe.ct ← PE.enc(pe.pk, μ, t = (t1, · · · , td)): For a public key pe.pk, a message μ,
and ciphertext tags t = (t1, · · · , td), return pe.ct ← DFKHE.Enc(pe.pk, μ, t).

pe.ski ← PE.pun(pe.pk, pe.ski−1, t
∗
i): For input pe.pk, pe.ski−1 and a punctured

tag t∗i ,
– If i = 1: run dfkhe.sky0,ft∗

1
← DFKHE.KHom(pe.sk0, (y0, ft∗

1
)) and output

pe.sk1 := dfkhe.sky0,ft∗
1
.

– If i ≥ 2: compute pe.ski ← DFKHE.KDel(dfkhe.pk, pe.ski−1, (y0, ft∗
i
)).

– Finally, output pe.ski.
μ/⊥ ← PE.dec(pe.pk, (pe.ski, (t∗1, · · · , t∗i)), (pe.ct, t)): For input the public key

pe.pk, a puncture key pe.ski together with punctures (t∗1, · · · , t∗i), a cipher-
text pe.ct and its associated tags t = (t1, · · · , td), the algorithm first checks
whether or not ft∗

1
(t) = · · · = ft∗

i
(t) = y0. If not, the algorithm returns ⊥.

Otherwise, it returns the output of DFKHE.Dec(pe.ski, pe.ct).

Correctness. Remark that, over the choice of (λ, d, η, (t∗1, · · · , t∗η), (t1, · · · , td),
η ≥ 0, t∗1, · · · , t∗η ∈ T , t1, · · · , td ∈ T \ {t∗1, · · · , t∗η}, we have ft∗

j
(t) = y0 for all

j ∈ [η]. Then, it is clear that, the induced PE Ψ is correct if and only if the
DFKHE Π is correct.

Theorem 1. PE Ψ is selectively-secure CPA assuming that the underlying
DFKHE Π is selectively-CPA secure.

Proof. See the full version [27] for the details.

DFKHE-Based Puncturable Encryption 119

4 DFKHE and FE Construction from Lattices

At first, in Subsect. 4.1 below, we will review the key-homomorphic mechanism,
which is an important ingredient for our lattice-based construction.

4.1 Key-Homomorphic Mechanism for Arithmetic Circuits

Let n, q > 0, k := �log q� and m := n · k. We exploit the gadget matrix
G and its associated trapdoor TG. According to [22, Section 4], the matrix
G := In ⊗ gT ∈ Z

n×m
q , where gT = [1 2 4 · · · 2k−1]. The associated trapdoor

TG ∈ Z
m×m is publicly known and ‖˜TG‖ ≤

√
5 (see [22, Theorem 4.1]).

Key-Homomorphic Mechanism. We recap some basic facts useful for con-
struction of evaluation algorithms for the family of polynomial depth and
unbounded fan-in arithmetic circuits (see [5, Section 4] for details). Let G ∈
Z

n×m
q be the gadget matrix given above. For x ∈ Zq, B ∈ Z

n×m
q , s ∈ Z

n
q and

δ > 0, define the following set Es,δ(x,B) := {(xG + B)T s + e, where ‖e‖ < δ}.
More details can be found in [5].

Lemma 5 ([5, Section 4]). Let n, q = q(n), m = Θ(n log q) be positive integers,
x = (x1, · · · , xd) ∈ Z

d
q , x∗ = (x∗

1, · · · , x∗
d) ∈ Z

d
q , Bi ∈ Z

n×m
q , ci ∈ Es,δ(xi,Bi)

for some s ∈ Z
n
q and δ > 0, Si ∈ Z

m×m
q for all i ∈ [d]. Also, let βF = βF (n) :

Z → Z be a positive integer-valued function, and F = {f : (Zq)d → Zq} be a
family of functions, in which each function can be computed by some circuit of a
family of depth τ , polynomial-size arithmetic circuits (Cλ)λ∈N. Then there exist
DPT algorithms Evalpk, Evalct, Evalsim associated with βF and F such that the
following properties hold.

1. If Bf ← Evalpk(f ∈ F , (Bi)d
i=1), then Bf ∈ Z

n×m
q .

2. Let cf ← Evalct(f ∈ F , ((xi,Bi, ci))d
i=1), then cf ∈ Es,Δ(f(x),Bf), where

Bf ← Evalpk(f, (Bi)d
i=1) and Δ < δ · βF .

3. The output Sf ← Evalsim(f ∈ F , ((x∗
i ,Si))d

i=1,A) satisfies the relation ASf −
f(x∗)G = Bf and ‖Sf‖sup < βF with overwhelming probability, where Bf ←
Evalpk(f, (ASi − x∗

i G)d
i=1). In particular, if S1, · · · ,Sd

$←− {−1, 1}m×m, then
‖Sf‖sup < βF with all but negligible probability for all f ∈ F .

In general, for a family F of functions represented by polynomial-size and
unbounded fan-in circuits of depth τ , the function βF is given by the following
lemma.

Lemma 6 ([5, Lemma 5.3]). Let n, q = q(n), m = Θ(n log q) be positive inte-
gers. Let Cλ be a family of polynomial-size arithmetic circuits of depth τ and
F = {f : (Zq)d → Zq} be the set of functions f that can be computed by some
circuit C ∈ Cλ as stated in Lemma 5. Also, suppose that all (but possibly one)
of the input values to the multiplication gates are bounded by p < q. Then,
βF = (pd−1

p−1 · m)τ · 20
√

m = O((pd−1m)τ
√

m).

120 W. Susilo et al.

Definition 6 (FKHE enabling functions). The tuple (Evalpk, Evalct, Evalsim)
together with the family F and the function βF = βF (n) in the Lemma 5 is called
βF -FKHE enabling for the family F .

4.2 LWE-Based DFKHE Construction

Our LWE-based DFKHE construction Π is adapted from LWE–based FKHE
and the key delegation mechanism, both of which proposed in [5]. Roughly speak-
ing, the key delegation mechanism in the lattice setting is triggered using the
algorithms ExtBasisLeft and ExtBasisRight and RandBasis in Lemma 4. Formally,
LWE-based DFKHE Π consists of the following algorithms:

Parameters: Let λ ∈ N be a security parameter. Set n = n(λ), q = q(λ) and
d = d(λ) to be fixed such that d < q. Let η ∈ N be the maximum number
of variables that can be delegated and σ1, · · · , ση be Gaussian parameters.
Also, we choose a constant ε ∈ (0, 1), which is mentioned in Lemma 2. The
constant is used to determine the tradeoff between the security level and
the efficiency of the system. Let F := {f |f : (Zq)d → Zq} be a family of
efficiently computable functions over Zq that can be computed by some circuit
of a family of depth τ , polynomial-size arithmetic circuits (Cλ)λ∈N. Take the
algorithms (Evalpk, Evalct, Evalsim) together with a function βF = βF (n) to
be βF–FKHE enabling for F .

DFKHE.KGen(1λ,F): For the input pair (a security parameter λ ∈ N and a
family F)2, do the following:
1. Choose m = Θ(n log q). The plaintext space is M := {0, 1}m, T := Zq.

Additionally, let χ be a χ0–bounded noise distribution (i.e, its support
belongs to [−χ0, χ0]) for which the (n, 2m, q, χ)–DLWE is hard.

2. Generate (A,TA) ← TrapGen(n,m, q), sample U,B1, · · · ,Bd
$←− Z

n×m
q .

3. Output the public key pk = {A,B1, · · ·Bd,U} and the initial secret key
sk = {TA}.

DFKHE.KHom(sk, (y, f1)): For the input pair (the initial secret key sk and a
pair (y, f1) ∈ Zq × F) do the following:
1. Bf1 ← Evalpk(f1, (Bk)d

k=1), Ey,f1 ← ExtBasisLeft([A|yG + Bf1],TA).
2. Ty,f1 ← RandBasis([A|yG + Bf1],Ey,f1 , σ1), output the secret key

sky,f1 = {Ty,f1}. Here, we set σ1 = ω(βF ·
√

log(2m)) for the security
proof to work.

DFKHE.KDel(sky,f1,··· ,fη−1 , (y, fη)): For the input pair (the delegated secret key
sky,f1,··· ,fη−1 and a pair (y, fη) ∈ Zq × F) do the following:
1. Bfη

← Evalpk(fη, (Bk)d
k=1).

2. Ey,f1,··· ,fη
← ExtBasisLeft([A|yG + Bf1 | · · · |yG + Bfη−1 |yG +

Bfη
],Ty,f1,··· ,fη−1).

3. Ty,f1,··· ,fη
←

RandBasis([A|yG + Bf1 | · · · |yG + Bfη−1 |yG + Bfη
],Ey,f1,··· ,fη

, ση).

2 Here, d also appears implicitly as an input.

DFKHE-Based Puncturable Encryption 121

4. Output the secret key sky,f1,··· ,fη
= {Ty,f1,··· ,fη

}.
We set ση = σ1 · (

√
m log m)η−1 and discuss on setting parameters in

details later.
DFKHE.Enc(μ, pk, t): For the input consiting of (a message μ = (μ1, · · · , μm) ∈

M, the public key pk and ciphertext tags t = (t1, · · · , td) ∈ T d), perform the
following steps:
1. Sample s $←− Z

n
q , eout, ein ← χm, and S1, · · · ,Sd

$←− {−1, 1}m×m.
2. Compute e ← (Im|S1| · · · |Sd)T ein = (eT

in, e
T
1 , · · · , eT

d)T .
3. Form H ← [A|t1G + B1| · · · |tdG + Bd] and compute c = HT s + e ∈

Z
(d+1)m
q ,

c = [cin|c1| · · · |cd], where cin = AT s + ein and ci = (tiG + Bi)T s + ei for
i ∈ [d].

4. Compute cout ← UT s + eout + μ� q
2�.

5. Output the ciphertext (ctt = (cin, c1, · · · , cd, cout), t).
DFKHE.ExtEval(f1, · · · , fη, ctt): For the input (a ciphertext ctt = (cin, c1,

· · · , cd, cout) and its associated tags t = (t1, · · · , td), and a list of functions
f1, · · · , fη ∈ F), execute the following steps:
1. Evaluate cfj

← Evalct(fj , ((tk,Bk, ck))d
k=1) for j ∈ [η].

2. Output the evaluated ciphertext cf1,··· ,fη
:= (cf1 , · · · , cfη

).
DFKHE.Dec(ctt, sky,f1,··· ,fη

): For the input (a ciphertext ctt = (cin, c1,

· · · , cd, cout), the associated tags t = (t1, · · · , td), and a delegated secret key
sky,f1,··· ,fη

, execute the following steps:
1. If ∃j ∈ [η] s.t. fj(t) �= y, then output ⊥. Otherwise, go to Step 2.
2. Sample R ← SampleD([A|yG + Bf1 | · · · |yG + Bfη

],Ty,f1,··· ,fη
,U, ση).

3. Evaluate (cf1 , · · · , cfη
) ← DFKHE.ExtEval(f1, · · · , fη, ctt).

4. Compute μ̄ := (μ̄1, · · · , μ̄m) ← cout − RT (cin|cf1 | · · · |cfη
).

5. For � ∈ [m], if |μ̄�| < q/4 then output μ� = 0; otherwise, output μ� = 1.

In the following, we will demonstrate the correctness and the security of the
LWE-based DFKHE Π.

Theorem 2 (Correctness of Π). The proposed DFKHE Π is correct if the
condition

(η + 1)2 ·
√

m · ω((
√

m log m)η) · β2
F + 2 <

1
4
(q/χ0) (2)

holds, assumming that fj(t) = y for all j ∈ [η].

Proof. See the full version [27] for the detail.

Theorem 3 (IND-sVAR-CPA of Π). Assuming the hardness of (n, 2m,
q, χ)–DLWE, the proposed DFKHE Π is IND-sVAR-CPA.

Proof. See the full version [27] for the details.

Setting Parameters. In order to choose parameters, we should take the fol-
lowing into consideration:

122 W. Susilo et al.

– For the hardness of DLWE, by Theorem 2, we choose ε, n, q, χ, where χ is a
χ0-bounded distribution, such that q/χ0 ≥ 2nε

. We also note that, the hard-
ness of DLWE via the traditional worst-case reduction (e.g., Lemma 2) does
not help us much in proposing concrete parameters for lattice-based cryp-
tosystems. Instead, a more conservative methodology that has been usually
used in the literature is the so-called “core-SVP hardness”; see [2, Subsection
5.2.1] for a detailed reference.

– Setting Gaussian parameters:
1. First approach: Without caring the security proof, for trapdoor algo-

rithms to work, we can set σ1 = ‖˜TA‖ · ω(
√

log(2m)), with ‖˜TA‖ =
O(

√
n log m) by Item 1 of Lemma 4. Note that, in DFKHE.KHom

we have ‖˜Ty,f1‖ < σ1 ·
√

2m by Item 5 of Lemma 4. Then, σ2 =
‖˜Ty,f1‖ · ω(

√

log(3m)) = σ1 · ω(
√

m log m). Similarly, we can set σk =
σ1 · (

√
m log m)k−1 for all k ∈ [η].

2. Second approach: For the security proof to work, we choose σk = ω(βF ·√
log m) for all k ∈ [η] (see the full version [27] for the details).

3. Compared with σk of the first approach, σk’s of the second approach are
essentially smaller. Therefore, in order for both trapdoor algorithms and
the security to work, we should set σ1 = ω(βF ·

√
log m) and choose βF >

‖˜TA‖ =
√

n log m and then follow the first approach in setting Gaussian
parameters. Recall that, βF = (pd−1

p−1 ·m)τ · 20
√

m = O((pd−1m)τ
√

m) by
Lemma 6.

– For the correctness: We need Condition (2) to hold, i.e., (η + 1)2 · √
m ·

ω((
√

m log m)η) · β2
F + 2 < 1

4 (q/χ0).

Sizes of Keys and Ciphertext. Recall that, throughout this work, we set m =
Θ(n log q). The public key corresponding d variables consists of d+1 matrices of
dimension n × m over Zq. Then the public key size is O((d + 1) · n2 log2 q). The
initial secret key is the short trapdoor matrix TA of dimension m×m generated
by TrapGen such that ‖TA‖ ≤ O(

√
n log q), then size is O(n2 log2 q · log(n log q)).

The secret key after delegating η functions is the trapdoor matrix Ty,f1,··· ,fη
of

dimension (η + 1)m × (η + 1)m and ‖Ty,f1,··· ,fη
‖ < ση ·

√

(η + 1)m = βF ·
ω((

√
m log m)η) with overwhelming probability by Lemma 1. Therefore its size

is (η + 1) · n log q · (O(log(βF) + η · log(n log q))). The ciphertext is a tuple of
(d + 2) vectors of in Z

m
q hence its size is O((d + 2) · n log2 q)).

4.3 LWE-Based PE Construction from DFKHE

We define the family of equality functions F := {ft∗ : Zd
q → Zq|t∗ ∈ Zq}, where

ft∗(t) := eqt∗(t1) + · · · + eqt∗(td), t = (t1, · · · , td), eqt∗ : Zq → Zq, satisfying
that ∀t ∈ Zq, eqt∗(t) = 1 (mod q) iff t = t∗, otherwise eqt∗(t) = 0 (mod q). Then
ft∗(t) = 0 (mod q) iff eqt∗(ti) = 0 (mod q) if d < q, for all i ∈ [d]. By applying
the generic framework in Sect. 3 to DFKHE demonstrated in Subsect. 4.2 and
modifying the resulting PE, we come up with the LWE-based PE construction
Ψ = {PE.key, PE.enc, PE.pun,PE.dec} presented below:

DFKHE-Based Puncturable Encryption 123

PE.key(1λ): For the input security parameter λ, do the following:

1. Choose n = n(λ), q = q(λ) prime, and the maximum number of tags
d = d(λ) per a ciphertext such that d < q.

2. Choose m = Θ(n log q). The plaintext space is M := {0, 1}m, T := Zq.
Additionally, let χ be a χ0–bounded noise distribution (i.e, its support
belongs to [−χ0, χ0] for which the (n, 2m, q, χ)–DLWE is hard. Set σ =
ω(βF ·

√
log m).

3. Sample (A,TA) ← TrapGen(n,m, q), U,B1, · · · ,Bd
$←− Z

n×m
q .

4. Output pk = {A,B1, · · ·Bd,U} and sk0 = {TA}.

PE.enc(μ, pk, {t1, · · · , td}): For the input consiting of (a message μ, the public
key pk and ciphertext tags (t1, · · · , td) ∈ T d), perform the following steps:

1. Sample s $←− Z
n
q , eout, ein ← χm, S1, · · · ,Sd

$←− {−1, 1}m×m.
2. Compute e ← (Im|S1| · · · |Sd)T ein = (eT

in, e
T
1 , · · · , eT

d)T .
3. Form H ← [A|t1G + B1| · · · |tdG + Bd] and compute c = HT s + e ∈

Z
(d+1)m
q ,

c = [cin|c1| · · · |cd], where cin = AT s + ein and ci = (tiG + Bi)T s + ei for
i ∈ [d].

4. Compute cout ← UT s + eout + μ� q
2�, output (ct = (cin, c1, · · · , cd, cout),

(t1, · · · , td)).

PE.pun(skη−1, t
∗
η): For the input (a puncture key skη−1 and a punctured tag

t∗η ∈ T), do:

1. Evaluate Beqη
← Evalpk(ft∗

η
, (Bk)d

k=1).
2. Compute Eeqη

← ExtBasisLeft([A|Beq1 | · · · |Beqη−1 |Beqη
],Teqη−1).

3. Teqη
← RandBasis([A|Beq1 | · · · |Beqη−1 |Beqη

],Eeqη
, ση).

4. Output skη := (Teqη
, (t∗1, · · · , t∗η), (Beq1 , · · · ,Beqη

)).

PE.dec(ct, t, (skη, {t∗1, · · · , t∗η})): For the input (a ciphertext
ct = (cin, c1, · · · , cd, cout), the associated tags t = (t1, · · · , td), a puncture
key skη and the associated punctured tags {t∗1, · · · , t∗η} ⊂ T), execute the
following steps:
1. If there exists j ∈ [η] such that ft∗

j
(t) �= 0, then output ⊥. Otherwise, go

to Step 2.
2. Parse skη := (Teqη

, (t∗1, · · · , t∗η), (Beq1 , · · · ,Beqη
)).

3. Sample R ← SampleD([A|Beq1 | · · · |Beqη
],Teqη

,U, ση).
4. Evaluate ceqj

← Evalct(ft∗
j
, ((tk,Bk, ck))d

k=1), for j ∈ [η].
5. Compute μ̄ = (μ̄1, · · · , μ̄m) ← cout − RT (cin|ceq1 | · · · |ceqη

).
6. For � ∈ [m], if |μ̄�| < q/4 then output μ� = 0; otherwise, output μ� = 1.

124 W. Susilo et al.

We remark that all analysis done for the LWE-based DFKHE in Subsect. 4.2
can perfectly applied to our LWE-based PE. Therefore, we do not mention the
analysis again in this section. For completeness, we only state two main theorems
as below.

Theorem 4 (Correctness of Ψ). The proposed PE Ψ is correct if (η + 1)2 ·
m1+ η

2 · ω((
√

log m)η+1) · β2
F + 2 < 1

4 (q/χ0), assumming that t∗j �= tk for all
(j, k) ∈ [η] × [d].

Theorem 5 (IND-sPUN-CPA). The proposed PE Ψ scheme is IND-sPUN-
CPA thanks to the IND-sVAR-CPA of the underlying DFKHE Π.

5 Discussion on Unbounded Number of Ciphertext Tags

The idea of [8] might help us to extend the LWE-based DFKHE construction
from Subsect. 4.2 (resp., PE from Subsect. 4.3) to a variant that supports arbi-
trary number of variables (resp., ciphertext tags). We call this variant unDFKHE.
Although, the original idea of [8] is applied to ABE with attributes belonging
to {0, 1} using the XOR operation, we believe that it might be adapted to work
well with our DFKHE with variables and punctures over Zq using the addition
modulo q (denoted ⊕q.

In unDFKHE, the maximum number of ciphertext tags d is not fixed in
advance. Then, in the key generation algorithm, we cannot generate B1, · · · ,Bd

and give them to the public. In order to solve this issue, we utilize a family of
pseudorandom functions PRF = (PRF.Gen, PRF.Eval), where PRF.Gen(1λ) takes
as input a security parameter λ and outputs a seed s ∈ Z

�
q of length � = �(λ)

(which depends on λ) and PRF.Eval(s,x) takes as input a seed s ∈ Z
�
q and a

variable x ∈ Z
∗
q of arbitrary length and returns an element in Zq. The family of

pseudorandom functions helps us to stretch a variable of fixed length � to one
of arbitrary length d as follows. In unDFKHE.KGen, for a variable t of length
d = |t|, instead of B1, · · · ,Bd, we generate B1, · · · ,B� and use them to produce
B1, · · · ,Bd later. This can be done by running Evalpk(PRF.Eval(·, i), (Bk)�

k=1),
for i ∈ [d], where PRF.Eval(·, i) acts as a function that can be evaluated by
Evalpk. Accordingly, any function f ∈ F will also be transformed to fΔ defined
by fΔ(t) := f(t ⊕q Δ≤d) before joining to any computation later on. Here
Δi := PRF.Eval(s, i) for i ∈ [d], Δ≤d = (Δ1, · · · ,Δd). Also remark that,
fΔ(t ⊕q (q≤d − Δ≤d)) = f(t), where q≤d = (q, · · · , q) ∈ Z

d. Therefore, in unD-
FKHE.KHom, Bf ← Evalpk(fΔ, (Bk)d

k=1).
Actually, there are a lot of work left to be done. Due to space limitation, we

leave details of this section for the future work.

DFKHE-Based Puncturable Encryption 125

6 Conclusion and Future Works

In this paper, we show puncturable encryption can be constructed from the
so-called delegatable fully key-homomorphic encryption. From the framework,
we instantiate our puncturable encryption construction using LWE. Our punc-
turable encryption enjoys the selective indistinguishability under chosen plain-
text attacks, which can be converted into adaptive indistinguishability under cho-
sen ciphertext attacks using well-known standard techniques. For future works,
there are few investigation directions worth pursuing such as design of: (i) punc-
turable lattice-based ABE as in [24], (ii) efficient puncturable forward-secure
encryption schemes as proposed in [18] or (iii) puncturable encryption schemes,
whose puncture key size is constant or puncturable ecnryption schemes support
unlimited number of punctures.

Acknowledgment. We all thank Sherman S.M. Chow and anonymous reviewers for
their insightful comments which improve the content and presentation of this work a lot.
This work is partially supported by the Australian Research Council Linkage Project
LP190100984. Huy Quoc Le has been sponsored by a CSIRO Data61 PhD Scholarship
and CSIRO Data61 Top-up Scholarship. Josef Pieprzyk has been supported by the
Australian ARC grant DP180102199 and Polish NCN grant 2018/31/B/ST6/03003.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Alkim, E., Bos, J.W., Ducas, L., et al.: FrodoKEM: learning with errors key
encapsulation (algorithm specifications and supporting documentation, version 25
March, 2020) (2020). https://frodokem.org/. Accessed 08 July 2020

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Pro-
ceedings of the 26th International Symposium on Theoretical Aspects of Computer
Science, STACS 2009, 26–28 February 2009, Freiburg, Germany, pp. 75–86 (2009).
https://doi.org/10.4230/LIPIcs.STACS.2009.1832

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. J. Cryptogr. 24(4), 659–693 (2011)

5. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

6. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lat-
tice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 15

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

https://doi.org/10.1007/978-3-642-13190-5_28
https://frodokem.org/
https://doi.org/10.4230/LIPIcs.STACS.2009.1832
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-642-19571-6_16

126 W. Susilo et al.

8. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 13

9. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

10. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54388-7 8

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

12. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) STOC 2016:
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Com-
puting, Cambridge, MA, USA, pp. 1115–1127 (2016). https://doi.org/10.1145/
2897518.2897651

13. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 12

14. Derler, D., Gellert, K., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption
and applications to efficient forward-secret 0-RTT key exchange. Cryptology ePrint
Archive, Report 2018/199 (2018). https://eprint.iacr.org/2018/199

15. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT Key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 14

16. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219–250. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 8

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2008).
https://eprint.iacr.org/2007/432

18. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320, May
2015. https://doi.org/10.1109/SP.2015.26

19. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

20. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

21. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1145/2897518.2897651
https://doi.org/10.1145/2897518.2897651
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-76900-2_12
https://eprint.iacr.org/2018/199
https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.1007/978-3-319-76578-5_8
https://eprint.iacr.org/2007/432
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/11681878_30

DFKHE-Based Puncturable Encryption 127

22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaus-
sian measures. In: Proceedings of the 45th Symposium on Foundations of Com-
puter Science (FOCS 2004), 17–19 October 2004, Rome, Italy, pp. 372–381 (2004).
https://doi.org/10.1109/FOCS.2004.72

24. Phuong, T.V.X., Ning, R., Xin, C., Wu, H.: Puncturable attribute-based encryption
for secure data delivery in internet of things. In: IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, pp. 1511–1519, April 2018. https://doi.
org/10.1109/INFOCOM.2018.8485909

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005). https://doi.org/10.
1145/1060590.1060603

26. Sun, S.-F., Sakzad, A., Steinfeld, R., Liu, J.K., Gu, D.: Public-key puncturable
encryption: modular and compact constructions. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 309–338.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 11

27. Susilo, W., Duong, D.H., Le, Q.H., Pieprzyk, J.: Puncturable encryption: a generic
construction from delegatable fully key-homomorphic encryption (full version).
https://arxiv.org/abs/2007.06353 (2020)

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/INFOCOM.2018.8485909
https://doi.org/10.1109/INFOCOM.2018.8485909
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-030-45374-9_11
https://arxiv.org/abs/2007.06353

Analyzing Attacks

Linear Attack on Round-Reduced DES
Using Deep Learning

Botao Hou1,2, Yongqiang Li1,2, Haoyue Zhao1, and Bin Wu1,2(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

{houbotao,liyongqiang,wubin}@iie.ac.cn, zhaohaoyue1@gmail.com
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Linear attack is a powerful known-plaintext cryptanalysis
method on block ciphers, which has been successfully applied in DES,
KATAN, SPECK and other ciphers. In this paper, we use deep learning
networks to achieve linear attack on DES with plain-cipher pairs. Com-
paring with traditional linear attack algorithm, our work requires less
knowledge about complex cryptanalysis as neural network can work well
by data-driven. Thus, this paper has three main contributions. First, a
new linear attack architecture based on deep residual network was pro-
posed to train discriminative neural networks with auto-generated plain-
cipher pair data. The results indicate that trained neural networks can
effectively learn algorithmic representations of the XOR distributions of
given linear expression on DES. Second, several novel neural network-
based algorithms were designed to efficiently enforce key recovery on
round-reduced DES using trained networks with moderate full and par-
tial bits of linear expression as inputs. Third, as far as we know, it is
the first time that neural networks are used to achieve known-plaintext
attack on complex block ciphers.

Keywords: Linear attack · Deep learning · DES

1 Introduction

Linear cryptanalysis is one of the most powerful analysis techniques used in
modern block ciphers. It can achieve key recovery attacks utilizing non-zero
correlation with bits of plain-cipher text and key, which is expressed in a lin-
ear approximate equation. The first linear cryptanalysis [2] was presented to
break Data Encryption Standard (DES) successfully in 1994. Since DES [1] was
published in 1977, its security has been focused by all over the world. In that
paper, Matsui provided some linear equations on round-reduced DES and pro-
posed a key recovery algorithm for known-plaintext attack in 8-round and even
only-plaintext attack in 8 rounds. And Matsui [3] proposed an improved ver-
sion for linear cryptanalysis and its application to the full 16-round DES. Later,
Hermelin et al. [4] improved linear cryptanalysis into multiple approximations

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 131–145, 2020.
https://doi.org/10.1007/978-3-030-59013-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_7

132 B. Hou et al.

and achieved a faster attack. Obviously, all of those traditional linear crypt-
analysis works need amounts of mathematical knowledge and manual theory
deduction.

Recently, some works have been explored to combine deep learning and appli-
cable statistical cryptanalytic techniques [10,12]. At first, Abadi and Andersen
[5] trained two neural networks which allow them to communicate using given
key without advanced cipher design, and another adversarial network was trained
to prove that it cannot recover information without the key. However, their work
did not explain what net construction is in cryptography. Soon, Coutinho et al.
[11] improved simple adversarial network above with chosen-plaintext attack
and obtained a unbreakable One-Time Pad algorithm in unsupervised condition
which explored the effect of adversarial network in security. And then, some
works tried to achieve cracking directly by simulating ciphers [13]. An unsuper-
vised CycleGAN neural network [8], named CipherGAN, was used to crack Shift
and Vigenere ciphers. Their work showed that neural network can learn detail
relationship about encrypt and decrypt processes, but it was limited to fixed key.
Comparing with traditional encrypt algorithms, modern block cryptographical
algorithms are more complex so that previous methods can’t work well, and some
works began to apply some mature cryptanalysis methods to improve availabil-
ity of attacking using machine learning [14]. Recently, some works [9] explored
the possibility of applying machine learning on side channel attack of Advance
Encryption Standard (AES), but generally side channel is considered not to be
cryptanalysis in the sense we discussed. And Gohr [6] tried to apply deep learning
on Speck, a lightweight block encryption algorithm. They constructed a network
to more accurately learn the distribution of output difference with a fixed input
difference. However, they didn’t give attacks on more complex ciphers.

1.1 Our Contribution

First of all, we devise and train neural networks and expect that we can achieve
efficient key recovery on DES using trained network models. Those network mod-
els should obtain the ability of distinguishing different distributions by observ-
ing given linear expression on round-reduced DES. Considering two different key
recovery methods, one bit key recovery and multiple bits key recovery, we train
corresponding network models in different ways.

For one bit key recovery on round-reduced DES, we propose a new neural net-
work attack framework that can successfully distinguish two different binomial
distributions. Those distributions perform two different situations of n-round lin-
ear approximation expression. Using the trained network models, we established
corresponding one bit key recovery algorithm and achieved successful key recov-
ering on 3, 4 and 5 rounds DES. In order to know the availability of our models,
we calculate the expected efficiency for round-reduced DES that use Bayesian
model. Experimental results indicate that the performance of our models is very
closed to theoretical value.

In multiple bits key recovery, another neural network model is proposed to
train as a discriminator for distributions produced by real and random effective

Linear Attack on Round-Reduced DES Using Deep Learning 133

key bits. And this model is used in proposed multiple bits key recovery algorithm.
We tested the performance of this algorithm on 4 rounds DES and obtained
effective key rank.

1.2 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, we present a brief
description of the cryptographic modules employed in our linear cryptanalysis.
In Sect. 3, we introduce our detail scheme of neural networks. The result of neural
discriminators and corresponding key recovery attacks are in Sect. 4. Section 5
is the conclusion about our scheme in short.

2 Preliminaries

Before introducing our architecture, we briefly review some cryptographic build-
ing modules deployed in linear cryptanalysis method on DES and two classical
key recovery attack algorithms.

2.1 DES

DES is a iterative cryptographic algorithm with Feistel structure, which has a
profound impact on the design of later ciphers. DES uses 56 bits key to protect
message with block divided into 64 bits. Omitting the initial permutation IP
and the final permutation IP−1 in full DES, we call input and output of round
iterations as plain text block P and cipher text block C. Each block will be
divided into two 32 bits blocks (L,R), which will be encrypted by total 16
rounds. More details can be seen in [1].

For rth round, the output Lr and Rr are computed as follows.

Lr = Rr−1

Rr = Lr−1 ⊕ F (Rr−1,Kr)
(1)

Where F(.) is the non-linear function called F function, it contains four opera-
tions which include extension operation E of Rr, bitwise XOR operation between
subkey and extended Rr, S-box operation S and final permutation operation. F
function is briefly expressed as:

F (Rr−1,Kr) = S(E(Rr−1) ⊕ Kr) (2)

2.2 Linear Attack

Linear Approximate Equation. Linear attack has been widely used to break
block cipher algorithms. Indeed, given plain text P , master key K and corre-
sponding cipher text C, linear approximate equation L try to describe the linear
relationship of bits in serval fixed locations like:

α · P ⊕ β · C = γ · K (3)

134 B. Hou et al.

Algorithm 1. ONE BIT KEY RECOVERY ALGORITHM
Input:
Ln, n−round linear approximate equation
PrLn , the probability of Ln

Pair, plain-cipher text pairs generated by key K
Output: output result

1: Npc ← the number of Pair
2: NL ← 0
3: for pair in Pair do
4: Ll ← compare the left side of Ln

5: if Ll == 0 then
6: NL+ = 1

7: if NL > Npc/2 then
8: if PrL > 1/2 then
9: return Lr = 0

10: else
11: return Lr = 1
12: else
13: if PrL > 1/2 then
14: return Lr = 1
15: else
16: return Lr = 0

Where α, β and γ are the bit location masks and α ·P is the bitwise addition
for bits in locations marked by α in P . There we name the value of left side in L
as Ll and the right side as Lr. Generally, equation L holds with the probability
PrL of 1/2. But if there is an obvious deviation with 1/2 and PrL, we call this
expression L as a well linear approximate equation. The bigger this deviation
is, the quicker this expression could be distinguished from other expressions.
Moreover, key recovery mentioned in follows is relative with PrL closely.

Key Recovery Attack. There are two different linear attack algorithms
divided by number of key bits can be recovered. First one is one bit key recovery
attack, relying on a well linear expression. Multiple bits key recovery is another, it
generally depend on the linear equation which expended by (n-1)-round expres-
sion. Both of those attacks can work well in DES, and many effective linear
expressions can be found [2].

One Bit Key Recovery. Given linear approximate equation L like Function 3,
we can judge whether Lr is 0 or 1 with probability PrL. If we have Npc plain-
cipher text pairs generated by fixed key, we count the number NL of those pairs
that satisfy Ll = 0. If NL has obvious difference with Npc/2, we can judge this
one bit key Lr depending on the symbol of difference with high success rate. The
detailed recovery process is showed in Algorithm 1.

Linear Attack on Round-Reduced DES Using Deep Learning 135

Algorithm 2. MULTIPLE BITS CANDIDATE KEY RANK ALGORITHM
Input:
Ln, n−round linear approximate equation
Pair, Plain-cipher text pairs generated by key K
Output: output Rankkey

1: Nt ← the number of effective text bits in left Ln

2: Tt ← {0}2Nt

3: for pair in Pair do
4: e ← bits extracted from pair following Ln

5: Tt[e]+ = 1

6: Nk ← the number of effective key bits in left Ln

7: Tk ← {0}2Nk

8: for k in len(Tk) do
9: for t in len(Tt) do

10: Ll ← compare the left side of Ln

11: if Ll == 0 then
12: Tk[k]+ = t

13: Npc ← the number of Pair
14: for k in len(Tk) do
15: Tk[k] = Tk[k] − Npc

16: Rankkey ← sort Tk by descending value order
17: return Rankkey

Multiple Bits Key Recovery. Generally, if we attack n rounds DES, we have
to obtain a (n-1)-round linear approximate equation Ln−i with PrL. Considering
the effect of F function in first round and nth round, n-round expression Ln is
described as:

α · P ⊕ β · C ⊕ μ · F1(P,K1) ⊕ ν · Fn(C,Kn) = γ · K (4)

Since Ln is expanded from Ln−i, PrLn
should be almost same with PrLn−i

,
which makes us knowing the distribution of Ll

n. Obviously, this value is totally
determined by some bits of plain-cipher text and key, and we call those bits as
effective text bits and effective key bits respectively. Based on known PrL, we
can recover those effective key bits as follows.

First, we list all possible effective key bits as key candidates. Considering
that the probability PrLn

would almost equal to PrLn−i
when K1 and Kn are

correctly guessed, this leads us to use maximum likelihood method in regard to
those key candidates.

There we get Npc plain-cipher text pairs generated with fixed key K. For
each key candidate, compute Ll

n and add counter with 1 when it equals to 0.
Sort all key candidates by the difference between counter and Npc/2 as key
rank. Generally, correct key bits will be in higher rank. The candidate key rank
processing is showed in Algorithm 2.

136 B. Hou et al.

3 Network Architectures

Our goal is to develop a learnable, end-to-end model for linear attack, and it
should obtain statistical cryptanalytic characteristics. Thus, we proposed a new
neural network architecture as a deep learning discriminator to distinguish dif-
ferent distributions. The diagram for our network is shown in Fig. 1.

Fig. 1. Model overview. An universal neural network architecture used in our experi-
ments

Those networks comprise three main components: input layer, iteration layer
and predict layer. The iteration layer is built by classical residual neural network
[7]. This network has been successfully applied in many domains. It consists of
some residual blocks which add input layer to output layer and produce new
output, the output will been sent to next block. The most important advantage
of residual networks is that it can effectively avoid gradient dispersion when the
number of layer increases.

The input layer receives training data with fixed length and applies reshape
layer into the data. We expect that our network should simulate XOR operation
better and form some intermediate representation. For this reason, we transpose
and apply convolution into input data so that we can expend the effect of each
bit. After batch normalization layer, data will be sent into iteration layer. Each
iteration layer has same structure with a convolution and normalization follow-
ing. What’ more, a skip connection is applied to add input layer and output layer
and this operation may allow next layer can mix bits in block more like bitwise
addition. Iteration layer will repeat 5 or 10 rounds in our experiments, and then
the predict layer will be following. The predict layer provides a fully connect
operation in order to combines all bits and a single linear layer to produce one
bit predicted result.

In our key recovery experiments, this neural network will be fed with bit
sequences and is expected to distinguish those input into two different distribu-
tions. For each sequence, it consists of 6 units and each unit will be padded with

Linear Attack on Round-Reduced DES Using Deep Learning 137

Algorithm 3. ONE BIT DEEP LEARNING NETWORK KEY RECOVERY
ALGORITHM
Input:
Ln, n−round linear approximate equation
NetLn , neural net discriminator trained by Ln

Pair, Plain-cipher text pairs generated by fixed key K
Output: output

1: Npc ← the number of Pair
2: G ← NetLn(Pair)
3: if sum(G) > Npc/2 then
4: return right of Ln = 1
5: else
6: return right of Ln = 0

0 to fixed length, which is determined by max length of each mark in Ln. Gener-
ally, this length is not longer than 8 and we will pad the sequence to 6× 8 = 48.
Input layer changes the size of this sequence into 8×48, and it will be trained in
this size till predict layer. Pooling operation condenses it into 48× 1 and output
it with 1 bit by dense layer.

In each epoch, we will check networks by validation data, and we save and
update the best model according to its accuracy.

4 Attack Architecture

In this section, we will introduce two new linear attack architectures: one bit key
recovery and multiple bits key recovery. We apply them in round-reduced DES,
and both of them can distinguish different distributions well using deep learning
net and realize expected key recovery.

4.1 One Bit Key Recovery

Given n-round linear approximation expression Ln as Function 3, and we know
that it will hold with certain probability PrLn

in previous. There, we don’t need
to know exact value about PrLn

and more details, and we can also obtain one
bit key information γ · K. For this, we propose one bit key recovery algorithm
showed in Algorithm 3 to recover mentioned bit using deep learning networks.

Train and Recover. Supposed that PrLn
is the probability linear expression

Ln holds, if we ask that Lr
n is fixed to 0, the distribution of Lr

n will be almost
binomial distribution which means 0 will appear with the probability equaling to
PrLn

. While the binomial distribution will be inverse if Lr
n is fixed to 1. Thus, we

mark those different distributions with corresponding labels and expect trained
networks can effectively distinguish them by inputting some bit sequences.

In order to obtain those network models, we generate training and validation
by several phases as follows:

138 B. Hou et al.

1. Generate plain texts P and master keys K ordering uniformly distribution.
2. Encrypt P with K by n−round DES cipher and obtain cipher texts C.
3. Extract P − C pairs into bits sequence EXpc and K into EXk depending on

linear equation Ln.
4. Pad EXpc with 0 into X following the order of (α · P ||β · C).
5. Set label Y relying on XOR value distribution of each EXk.

After generating enough data, neural network discriminator NetLn
will be

trained to predict right label Y . Obviously, if NetLn
is train well, its correct

output will help us directly to recover corresponding one bit key information.
Thus, we apply trained network into Algorithm 3 to recover this key bit.

Recovery phase need Npc plain-cipher pairs generated by fixed key K. Repet-
itively run Phase 3–4 above and we can obtain extracted text sequences of those
pairs. Those text sequences are feed into NetLn

and output their prediction.
Considering with the accuracy of NetLn

, the success rate of Algorithm 3 rely on
Npc and performance of algorithm will be shown in following experiments.

Goal Model. After training mentioned above, we indeed obtain a deep learning
discriminator. This discriminator would first learn the simulation of XOR oper-
ation, and then obtain the ability that distinguish the difference with different
binomial distribution performance.

Our deep learning model didn’t know any information about those distribu-
tions and even didn’t know XOR operation before training, all they obtaining is
input seems like random bit sequences. Obviously, if we can obtain those distri-
bution information about linear expression L, we can estimate the best result of
those networks using Bayesian rule.

As PrL is the possibility of linear approximation expression L holding and
discriminator BL with Bayesian model obtains distribution features of Ll fully, if
Ll of a bit sequence is 1, the accuracy of BL correctly judging that this sequence
belongs into Lr = 1 is shown following Function 5.

P (γ · K = 1|1) =
P (1|γ · K = 1)P (γ · K = 1)

P (1|γ · K = 1)P (γ · K = 1) + P (1|γ · K = 0)P (γ · K = 0)
(5)

Supposing that K is generated following uniform distribution, accuracy of
BL will be equal to PrL.

This Bayesian model will be our goal model of deep learning network. We
replace network discriminator NetL with this Bayesian discriminator BL in Algo-
rithm 3 and can get one bit key recovery. After reducing, we find that the rela-
tionship between success rate of one bit key recovery and number of plain-cipher
pairs required is same with Lemma 2 in [2]. Thus, we can measure key recovery
effect which uses deep learning networks with this lemma.

Linear Attack on Round-Reduced DES Using Deep Learning 139

Experiment. All of our experiments are run in a uniform environment, models
are trained on a workstation with NVIDIA GeForce GTX 1080Ti and Intel(R)
E5-2609 1.7 GHz CPU.

PH [7, 18, 24, 29]⊕PL[15] ⊕ CH [7, 18, 24, 29] ⊕ CL[15] = K1[22] ⊕ K3[22] (6)
PH [7, 18, 24, 29]⊕PL[15] ⊕ CH [15] ⊕ CL[7, 18, 24, 27, 28, 29, 30, 31]

= K1[22] ⊕ K3[22] ⊕ K4[42, 43, 45, 46] (7)
PH [15] ⊕ PL[7, 18, 24, 27, 28, 29, 30, 31] ⊕ CH [15] ⊕ CL[7, 18, 24, 27, 28, 29, 30, 31]

= K1[42, 43, 45, 46] ⊕ K2[22] ⊕ K4[22] ⊕ K5[42, 43, 45, 46]
(8)

First, we tested the performance of one bit key recovery algorithm on L3

which can be seen in Function 6. Model was trained for 200 epochs using
the Adam optimizer [15] with a batch size of 1000 against MSE loss with
L2−regularization. And there were 105 train data and 104 validation data used.
Figure 2a shows the learn history of NetL3 . The accuracy on validation data is
67.23% which is very closed to theoretical goal model which is 70%, same with
PrL3 .

To be clear, our neural network knows nothing about XOR operation and
detailed data distribution, but it can still perform well almost like goal model
which knows all about knowledge. All of those show that the presented approach
equips excellent learning capability of describing XOR distributions. What’s
more, we found that the increase of train data can significant improve the accu-
racy, and the network with 105 data is improved with 0.43% than 104 data.

Apply those models to recover key information and we found that the suc-
cess rate of neural network models is only lower than theoretical Bayesian model
slightly. The number of plain-cipher text pairs required in key recovery in dif-
ferent success rate based on those discriminators are shown in Fig. 2b. For each
result, we run key recovery process for 2000 times to obtain moderate obser-
vations. We can see that our neural network can complete key recovery given
small plain-cipher text set, and NetL3 trained by 105 training data even per-
forms better than theoretical success rate. Thus, those network model showed
their capacity to distinguish different distributions.

Table 1. results of different models on corresponding linear expression Ln. Meanwhile,
we show the average number of plain-cipher text pairs that can achieve key recovery
success rate, each of them are test in 2000 times

Index Network Train data Epoch Depth Accuracy Number of P − C pairs for success rate

85% 90% 95% 99%

1 B3 – – – 0.7 6 10 17 32

2 NetL3 104 103 5 0.668 14 18 32 64

3 NetL3 105 5 × 103 5 0.6723 10 18 25 32

4 B4 – – – 0.561 67 112 190 358

5 NetL4 106 5 × 104 5 0.5375 115 200 332 633

6 B5 – – – 0.519 2770 4617 7849 14774

7 NetL5 106 5 × 104 10 0.5128 5130 8631 – –

140 B. Hou et al.

(a)

(b)

Fig. 2. (a) shows accuracy and loss of Net3 in total train process data size of 105

respectively. Both valuation data and training data perform synchronously and indi-
cate that network work well without over fitting. (b) shows key recovery performance
of Bayesian model and our models. All of them will almost recover key information
with success rate more than 99% when increase the number of plain-cipher pairs into
64. With same pair number, the success rate of neural network models only lower
than theory Bayesian model slightly. And increasing the number of train data, neural
networks will work better.

Excepted 3-round one bit key recovery, we also ran 4 and 5-round key recovery
based on linear expression in Function 7 and Function 8. Comparing with L3, the
binomial distribution probability like PrL5 even decreases from 70% into 51.9%
[2]. Obviously, the difficulty of distinguishing those two different distributions
increases a lot. Table 1 shows the accuracy and key recovery of best models.
There, Bn is the discriminator of goal model using Bayes mentioned above. And
we can find that almost all of them can recover required one bit key with limited
plain-cipher text pairs number. For neural discriminators NetL5 , though it does
not achieve success rate more than 95% with less than 20000 pairs plain-cipher
text, it still performs its ability recovering key bit with success rate of even 90%.

Linear Attack on Round-Reduced DES Using Deep Learning 141

Algorithm 4 . MULTIPLE BITS DEEP LEARNING NETWORK CANDI-
DATE KEY RANK ALGORITHM
Input:
L′

n, n−round linear approximate equation
NetL′

n
, neural net discriminator trained by L′

n

Pair, Plain-cipher text pairs generated by key K
Output: output Rankkey

1: Nk ← the number of effective subkey bits in left L′
n

2: Tk ← {0}2Nk

3: for key in len(Tk) do
4: Ex ← bit sequences extracted from (Pair, key) following L′

n

5: Gk ← NetL′
n
(Ex)

6: Tk[key] = sum(Gkey)/len(Gkey)

7: Rankk ← sort Tk by descending value order
8: return Rankk

4.2 Multiple Bits Key Recovery

Like Function 4, we can apply (n-1)-round linear approximation expression Ln−1

to consecutive F-functions from the first round to the (n-1)th round or from the
second round to the nth round of n rounds DES, and obtain n-round linear
equation L′

n with some bits in F-functions. Because Kn is added in expression,
we can try all possible effective bits in Kn and test whether the value of left L′

n

satisfies the similar distribution like Ln−i, so that recover those effective bits.
Thus, we propose new multiple bits key candidate recovery algorithm showed in
Algorithm 4 to recover multiple bits using deep learning networks.

Train and Recover. Similar with one bit key recovery algorithm, we also
utilize the ability of deep learning networks that can distinguish different distri-
butions. Of course, we have to consider the interference produced by right side of
Function 4. In order to simplify our models, we suppose that the value of γ ·K is
0 which may be happened with the probability of 1/2. Then for once right guess
of key, the distribution of L′l

n will still be almost binomial distribution which 0
will appear in the probability equal to PrL′

n
, and we call it real distribution.

While the distribution for one wrong guess of key will be uniform, and we name
it random distribution. Those difference is what our networks should distinguish.
If given bit sequences generated by correct fixed key, neural network discrimi-
nator NetL′

n
should output label of real distribution as 1 with a big probability,

otherwise, it should be random distribution as 0.
Also, we give the generation phases of training and validation data.

1. Generate plain texts P and label Y ordering uniformly distribution, and
NumP is the number of those P .

2. Generate master key K ordering uniformly distribution, and filtrate out
NumPK that satisfy γ · K = 0.

142 B. Hou et al.

3. Encrypted P with K by n−round DES cipher and obtain cipher text C.
4. Extract P − C pairs into bits sequence EXpc and K into EXk with linear

equation L′
n.

5. For each label Y , do.
– if Y = 1, Pad EXpc with 0 into X following the order of (α · P ||β · C||μ ·

F1||ν · Fn).
– if Y = 0, Pad EXpc with 0 into X following the order of (α · P ||β ·

C||Rand||Rand), which Rand is generated ordering uniformly distribu-
tion.

As we know, F1(PL,K1) and Fn(CL,Kn) are determined by effective text bits
and effective key bits. Because the number of effective key bits are few enough,
we can research those bit keys exhaustively and call those keys as key candidate.
For each possible key candidate, we test this key candidate with some plain-
cipher text pairs and input corresponding bit sequences extracted following L′

n

into network model NetL′n. We count those output as the score which support
that this key candidate is the right bits of master key required. Sort those key
candidates with corresponding score in descending order and we call those as
key rank. A well discriminator should have the ability ranking real right subkey
higher.

Once we get a key rank, we can run an exhaustive key search for remaining
several bits key. In each trying, we will choose a candidate bit key from key rank
by order. Obviously, the higher the rank of right subkey is, the quicker whole
key recovery will complete.

Goal Model. Also, our neural network discriminator NetL′ need distinguish
two binomial distributions. However, different with distributions in one bit key
recovery, these binomial distributions should be with preal = PrL′ and pran = 1

2 .
Use Function 5 and we can obtain the theory accuracy of BL′ with Bayesian
model.

Experiment. We run our network models on the number of 105 training data
and 104 validation data. And we tested the performance of multiple bits key
recovery on L′

4 showed in Function 9 extended from L3. Thus PrL′
4

will almost
equal to PrL3 if effective key bits in K4 is right.

PH [15] ⊕ PL[7, 18, 24, 29] ⊕ CH [7, 18, 24, 29] ⊕ CL[15] ⊕ F1(PL,K1)[15]
= K2[22] ⊕ K4[22] (9)

We trained this neural network about 4−round with 200 epochs and each
epoch is run in size of 5000. As no unit in L′

4 is more than 4 bits, we set
padding as 5. And we contain 6 × 5 bits sequence, where the sixth unit is F4

and it don’t appear in Function 9, we will pad it into {0}5. Real and random
data determined by random label Y were sent to 5-depth residual network. And

Linear Attack on Round-Reduced DES Using Deep Learning 143

those two different distributions were separated with accuracy of 56.77%, while
the accuracy of theoretical Bayesian model should be 58.3%.

Analysis the effective text and key bits in Function 9, we can eas-
ily ensure that the effective key bits effecting left side of L′

4 are
{K1[42],K1[43],K1[44],K1[45],K1[46],K1[47]}, all of them are related to S-box
S1. Those 6 bits subkey are what we aim to recover. We list all possibility of 6
bits may take and get key candidate table with size of 26 = 64.

Table 2. Multiple bits key recovery on 4-round DES. We list the average key rank
on different number of plain-cipher pairs. They are measured through 200 rounds in
replicated test.

Network Train data depth Accuracy Average key rank in number of P-C pairs

32 64 128 256

NetL′
4

105 5 0.5677 13 9 3 2

We set a random master key K which holds γ ·K = 1 asked by trained neural
network NetL′

4
above, and we obtained plain-cipher pairs Pair with number of

Npc encrypted by K. Then we extract each pair following L′
4 and obtain bit

sequence (α · P ||β · C). Up to now, we have no information about F1 in L′
4. For

each key candidate Kcan, we compute μ · F1(PL,Kcan) and insert μ · F1 into
sequence. Record the prediction NetL′

4
and get score of Kcan.

Count all score of key candidate Kcan, the rank of those key candidates with
score is key rank. Research the rank of correct effective key bits, and we can test
the performance of NetL′

4
is showed in Table 2. As key ranks using NetL′

4
are

no lower than 25 = 32 in those small number of plain-cipher pairs, all of those
indicate that our neural network models can distinguish different distribution in
multiple bits key recovery and are pretty effective for key ranking.

5 Conclusion

In this paper, we used deep learning network achieving linear attack in round-
reduced DES. We proposed the network structure to distinguish different perfor-
mance of linear expressions. Our experiments indicated that those deep learn-
ing networks have the capacity of learning complex static characteristics like
XOR and distinguishing different distributions. In order to make networks per-
form better, we also designed two linear attack algorithms which apply network
in one bit and multiple bits key recovery. These end-to-end architectures need
almost few knowledge about distribution of linear expressions and performs well
in our experiments. And the representations of our results are also useful for
cryptanalysis on other more complex block ciphers.

For further work, we will continue to test the performance using deep learning
networks to research linear approximations with limited advanced knowledge.

144 B. Hou et al.

What’s more, we found a problem effecting performance of net when we trained
our network. Limited by number Nt of plain-cipher text bits, there are only 2Nt

text sequences in train text. However, training data is usually larger than this
value and make some same input may have different label, and this may make
network puzzled. The same situation also happened in [8], and we will explore
those further more.

Acknowledgments. The authors appreciate the anonymous reviewers valuable com-
ments, which improved the paper greatly. This work was supported by National
Nature Science Foundation of China under Grants No. 61941116, No. 61772517
and No. U1936119, and National Key R&D Program of China under Grant No.
2019QY(Y)0602.

References

1. National Burean of Standards: Data Encryption Standard. U.S. Department of
Commercc, Federal Information Processing Standards 46 (1977)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

3. Matsui, M.: The first experimental cryptanalysis of the data encryption stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 1

4. Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approxima-
tions. IACR Cryptology ePrint Archive (2011)

5. Abadi, M., Andersen,D.G.: Learning to protect communications with adversarial
neural cryptography. arXiv Cryptography and Security (2017)

6. Gohr, A.: Improving attacks on round-reduced Speck32/64 using deep learning.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 6

7. He, K., et al.: Deep residual learning for image recognition. In: Computer Vision
and Pattern Recognition, pp. 770–778 (2016)

8. Gomez, A.N., et al.: Unsupervised cipher cracking using discrete GANs.
arXiv: Learning (2018)

9. Gohr, A., Jacob, S., Schindler, W.: CHES 2018 side channel contest CTF - solution
of the AES challenges. IACR Cryptology ePrint Archive (2019)

10. Lytvyn, V., Peleshchak, I., Peleshchak, R., Vysotska, V.: Information encryption
based on the synthesis of a neural network and AES algorithm. In: 3rd International
Conference on Advanced Information and Communications Technologies, pp. 447–
450 (2019)

11. Coutinho, M., et al.: Learning perfectly secure cryptography to protect communi-
cations with adversarial neural cryptography. Sensors 18(5), 1306 (2018)

12. Preishuber, M., et al.: Depreciating motivation and empirical security analysis of
chaos-based image and video encryption. IEEE Trans. Inf. Forensics Secur. 13(9),
2137–2150 (2018)

13. Greydanus, S.: Learning the enigma with recurrent neural networks. arXiv Neural
and Evolutionary Computing (2017)

https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48658-5_1
https://doi.org/10.1007/978-3-030-26951-7_6
http://arxiv.org/abs/Learning

Linear Attack on Round-Reduced DES Using Deep Learning 145

14. Paterson, K.G., Poettering, B., Schuldt, J.C.N.: Big bias hunting in amazonia:
large-scale computation and exploitation of rc4 biases (invited paper). In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 398–419. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 21

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

https://doi.org/10.1007/978-3-662-45611-8_21

Detection by Attack: Detecting
Adversarial Samples by Undercover

Attack

Qifei Zhou1, Rong Zhang1, Bo Wu2, Weiping Li1(B), and Tong Mo1

1 Peking University, Haidian District, Beijing, China
{qifeizhou,rzhangpku}@pku.edu.cn, {wpli,motong}@ss.pku.edu.cn

2 MIT-IBM Watson AI Lab, Cambridge, MA, USA
bo.wu@ibm.com

Abstract. The safety of artificial intelligence systems has aroused great
concern due to the vulnerability of deep neural networks. Studies show
that malicious modifications to the inputs of a network classifier, can fool
the classifier and lead to wrong predictions. These modified inputs are
called adversarial samples. In order to resolve this challenge, this paper
proposes a novel and effective framework called Detection by Attack
(DBA) to detect adversarial samples by Undercover Attack. DBA works
by converting the difficult adversarial detection problem into a sim-
pler attack problem, which is inspired by the espionage technique. It
appears to be attacking the system, but it is actually defending the sys-
tem. Reviewing the literature shows that this paper is the first attempt
to introduce a detection method that can effectively detect adversar-
ial samples in both images and texts. Experimental results show that
the DBA scheme yields state-of-the-art detection performances in both
detector-unaware (95.66% detection accuracy on average) and detector-
aware (2.10% attack success rate) scenarios. Furthermore, DBA is robust
to the perturbation size and confidence of adversarial samples. The code
is available at https://github.com/Mrzhouqifei/DBA.

Keywords: Artificial intelligence · Deep neural network · Detection
by attack · Undercover attack · Adversarial sample

1 Introduction

Deep neural networks (DNNs) are vulnerable to adversarial samples [10,12,21].
Studies show that imperceptible perturbations to the inputs of a classifier can
lead to incorrect predictions. This issue is more challenging in safety-critical
applications such as autonomous driving and face payment. The first line in
Fig. 1 illustrates how an adversarial sample makes neural network-based systems
vulnerable. Human beings recognize each of the two images as a vehicle no-pass

Q. Zhou and R. Zhang—contribute equally to this paper.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 146–164, 2020.
https://doi.org/10.1007/978-3-030-59013-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_8&domain=pdf
https://github.com/Mrzhouqifei/DBA.
https://doi.org/10.1007/978-3-030-59013-0_8

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 147

sign. The image xo on the left is an ordinary image of the vehicle no-pass sign.
However, the image on the right xo +Δx is crafted by adding tiny perturbations
Δx to the original xo that forces a particular DNN to classify it as a tree.
Researchers have shown that these transformations are effective in the physical
world [17]. More specifically, considering the vulnerability of DNNs, someone
with ulterior motives can make autonomous-driving cars behave dangerously by
designing this adversarial road sign.

Fig. 1. The normal and adversarial images of the vehicle no-pass sign. After applied
Undercover Attack, the predicted class of the adversarial sample xo + Δx has changed
(“tree” → “vehicle no-pass”), while the normal sample xo has not.

Considering the challenges in existing network schemes, this paper aims to
detect adversarial samples from normal ones. A review of the literature shows
that most previous studies have focused on analyzing the difference in dimen-
sional distribution between normal and adversarial samples [8,13,19,20,28].
However, our method works by exploiting the vulnerability asymmetry between
adversarial and normal samples, which indicates that adversarial samples are
more vulnerable than normal ones. Therefore, if we attack an adversarial sample
and a normal sample with the same ∞-norm perturbation (||Δx∗||∞ = ε), the
disturbance brought to the prediction of the adversarial sample is higher than
that of the normal sample. As shown in the two vertical columns in Fig. 1, after
applied Undercover Attack, the predicted class of the adversarial sample xo +Δx
has changed, while the normal sample xo has not.

148 Q. Zhou et al.

Detection by Attack (DBA) is designed to detect adversarial samples by
leveraging the vulnerability asymmetry. In this paper, DBA focuses on applying
Undercover Attack to distinguish whether the sample is adversarial. Although
the features may be completely different in language tasks due to the finite set
of words, DBA is also applicable. It is sufficient to attack the word embeddings,
and we do not have to find the corresponding real words. The main contributions
of this paper are summarized as follows:

1. A new direction is proposed to detect adversarial samples by converting the
difficult detection problem into a simpler attack problem. Future research can
protect the system by designing superb attack methods.

2. This paper reveals that the adversarial samples are more vulnerable than
normal ones when they are attacked for the second time. DBA works by
leveraging the vulnerability asymmetry and is robust to the perturbation size
and confidence of adversarial samples.

3. It is demonstrated that DBA can be effectively applied to images and texts.
Moreover, it does not rely on the knowledge of the attack mechanism, and
performs well in both detector-unaware and detector-aware scenarios.

2 Background and Related Work

2.1 Adversarial Attack

The main goal of the attacker is to craft a sample that looks like a normal one.
It may be modifying a few pixels in the input image, or changing a few words
in the input text. These minor changes in the input can lead to a wrong predic-
tion by the target model, while it remains correctly classified by human eyes. A
significant number of adversarial attacks satisfying this goal have been proposed
in recent years. Therefore, it is possible to select a wide range of well-known
attacks in this paper, including the L∞-bounded fast gradient sign method
(FGSM) [10] and basic iterative method (BIM) [17], the L0-bounded jacobian-
based saliency map attack (JSMA) [22], and the L2-bounded Carlini and Wagner
attack (CW2) [4] and Boundary Attack [3]. As for texts, the method proposed by
Papernot et al. [23] is adopted in our paper, and it is named as Replace Attack.

2.2 Adversarial Defense

Defense on Images. The existence of adversarial samples has aroused great
concern in academia. Researchers have tried to explain adversarial samples and
proposed different schemes to defend against them effectively. Zheng et al. [30]
proposed the boundary differential privacy (ε-BDP) as a solution to protect
the system by obfuscating the prediction responses near the decision boundary.
Moreover, some other direct defense techniques, including image compression or
filtering [7,28], defensive distillation [24], and many defenses summarized as the
gradient masking [21] have been proposed so far. However, most of these defenses
can be totally or partially evaded by stronger attacks [1]. Due to the challenge of

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 149

direct defense, many recent studies have turned to the detection of adversarial
samples. Feinman et al. [8] claimed that the kernel density (KD) and Bayesian
uncertainty (BU) of adversarial samples are different from the normal ones.
Furthermore, the randomized methods have been employed in several studies
[19,28] by introducing noise to smoothen the features. However, most detectors
fail in the white box case, where the attacker is aware of the detector [5,15].

Defense on Texts. Since text data has discrete nature in the scenario of nat-
ural language processing (NLP), existing attack and defense methods cannot be
directly applied to texts [29]. Rosenberg et al. [25] proposed the use of adver-
sarial training, adversarial signatures, RNN ensemble, and defense SeqGAN to
increase the robustness of the text classifier against adversarial samples. They
showed that the adversarial training obtains the best defensive performance.

3 Detection by Attack

In this section, it is intended to introduce the DBA scheme to distinguish adver-
sarial samples from normal ones. It is worth noting that since most defensive
methods can be easily evaded by specifically designed attacks, the defense is
much more difficult than attack. Therefore, the DBA scheme is proposed to solve
the difficult defense problem by converting it into a simpler attack problem. The
training process of the framework consists of two steps, as the following:

1. Injecting adversarial samples to train the classification model.
2. Training a simple multi-layer perceptron (MLP) classifier to judge whether

the sample is adversarial.

Step 1 and step 2 correspond to Sect. 3.1 and Sect. 3.2, respectively. It should be
noted that only the pipeline in step 2 is required in adversarial detection.

3.1 Adversarial Training with L∞-bounded FGSM

The adversarial training with L∞-bounded attack can significantly improve the
performance of DBA. The adversarial sample xo + Δx injected into the classifi-
cation model is generated through FGSM:

xo + Δx = xo + εsign(�xo
J(θ, xo, ytrue)) (1)

where xo, ε, θ, and ytrue denote the corresponding original (normal) sample used
to craft the adversarial sample, the parameter that determines the perturbation
size in the gradient direction, the parameters of the model, and the correct label
of xo, respectively. The adversarial training objective can be described as:

arg min
θ

∑

(xo,y)

L(xo, y; θ) + α · L(xo + Δx, y, ε; θ) (2)

where L and α denote the loss function for the task (e.g. cross-entropy), and
the positive scalar which controls the intensity of adversarial training, respec-
tively. Generally speaking, as α increases, the accuracy of adversarial samples
will increase, while the accuracy of normal samples will decrease.

150 Q. Zhou et al.

input sample x Classifier
h′ (x)

Undecover
Attack

x + Δx* Classifier
h′ (x + Δx*)

labelcannot be
back-propagated

V1

V2

V1

V2

V1

V2

−

⊙

V1

V2

Concat

MLP
Classifier

V

Fig. 2. The detection pipeline of DBA. It is only required to train the MLP to detect
adversarial samples, and the classifier h′(·) should not be fine-tuned. Because the pro-
cess of obtaining x + Δx∗ is an independent Undercover Attack that cannot be back-
propagated.

3.2 Detecting via DBA

Figure 2 illustrates the detection pipeline of DBA. For an input x (x may be
normal or adversarial), x + Δx∗ is initially obtained via Undercover Attack as
follows:

x + Δx∗ = x + εsign(�xJ(θ, x, ypred)) (3)

Remark. The perturbation size ε is the same as that in adversarial training, and
the reason is given in Corollary 2. The difference between FGSM and Undercover
Attack is y, where ytrue is replaced with ypred. It is worth noting that ypred is
the predicted class produced by the classifier h(x) rather than the true class of
the input x. This change is conducted for two reasons. Firstly, it is impossible to
access the true class in the real world. Secondly, the primary purpose of DBA is
to measure the vulnerability of the sample. In our framework, such vulnerability
originates from the disturbance between the current hidden vector V1 and the
attacked hidden vector V2. The form is as follows:

h(x) = Linear (h′(x)) , V1 = h′(x), V2 = h′(x + Δx∗) (4)

V = [V1;V2;V1 − V2;V1 � V2] (5)

where h(·) ∈ R
k (k classes) and h′(·) denote the target classifier and the set of

all layers except the last Linear layer in the classifier, respectively. Moreover,
V1 and V2 are the corresponding hidden vectors of x and x + Δx∗, respectively.
Then, the vector V in Eq. 5 is obtained to capture more information between
V1 and V2 by referring to ESIM [6], and a simple MLP is trained to classify the
input x as adversarial or normal:

label = MLP(V), label =
{

+1, “adversarial”
−1, “normal” (6)

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 151

3.3 Why DBA is Effective?

DBA works by leveraging the vulnerability asymmetry between adversarial and
normal samples. After attacking a normal input x1 and an adversarial input x2

with the same ∞-norm perturbation (||Δx∗
1||∞ = ||Δx∗

2||∞ = ε), the probability
of Q(x1) �= Q(x1 + Δx∗

1) is lower than that of Q(x2) �= Q(x2 + Δx∗
2).

P (x)j =
exp h(x)j∑k
i=1 exp h(x)i

, Q(x) = arg max
j

P (x)j (7)

Linearly Separable. The vulnerability asymmetry is investigated through the
theorem analysis. Therefore, the case where normal samples and adversarial
samples are linearly separable is initially considered.

f(x) = 〈w, x〉 + b, label = signf(x) (8)

The hyperplane f(x) = 0 is defined, which aims to separate adversarial samples
(label = +1) from normal samples (label = −1). xo denotes the corresponding
original (normal) sample used to craft x if x is an adversarial input:

sign f(x) = +1 ⇒ x = xo + Δx, δ < ||Δx||∞ < ξ (9)

where δ and ξ are the safe boundary and the maximum value of the adversarial
perturbation, respectively. It is assumed that as long as δ is small enough, no
adversarial sample could be found within the δ-norm ball of xo. Undercover
Attack aims at adding Δx∗ to x and making sign f(x + Δx∗) �= sign f(x):

if x = xo, then sign f(x + Δx∗) =
{−1, if ||Δx∗||∞ < δ

∓1, if ||Δx∗||∞ > δ

if x = xo + Δx, then sign f(x + Δx∗) = ±1
(10)

Theorem 1. It is assumed that normal and adversarial samples each account
for 50% in overall samples, and they are uniformly distributed in their corre-
sponding regions. Moreover, r is the minimum detection accuracy of normal and
adversarial samples. Considering the perturbation of Undercover Attack subject
to ||Δx∗||∞ ≤ δ, then the following equation is obtained:

1
2

+
δ

2ξ
< r < 1, r ∈ (

1
2
, 1) (11)

Proof. For a normal input x = xo, xo+Δx∗ is obtained after applying Undercover
Attack. Figure 3(a) illustrates that, since ||Δx∗||∞ < δ, xo + Δx∗,1 could be
obtained instead of xo+Δx∗,2, which means sign f(xo) = sign f(xo+Δx∗) = −1.

For an adversarial input x = xo+Δx, xo+Δx+Δx∗ is obtained after applying
Undercover Attack. The attacker aims at making sign f(x + Δx∗) �= sign f(x),

152 Q. Zhou et al.

Normal
region

Adversarial
region

Safe boundary

+

-

xo + Δx*,2

input : x = xo

xo + Δx*,1

δ > | |Δx*,1 | |∞

| |Δx*,2 | |∞ > δ
δ

⟨w, x⟩ + b = 0

(a) Normal input sample

Normal
region

Adversarial
region

Safe boundary

+

-

ξδ

input : x = xo + Δx

xo

xo + Δx + Δx*,2

xo + Δx + Δx*,1

| |Δx | |∞
| |Δx + Δx*,1 | |∞| |Δx + Δx*,2 | |∞

⟨w, x⟩ + b = 0

(b) Adversarial input sample

Fig. 3. Undercover Attack on normal and adversarial samples in the linearly separable
case. With the constrains in Theorem 1, xo + Δx∗,1 could be obtained instead of
xo +Δx∗,2 in (a), while both xo +Δx+Δx∗,1 and xo +Δx+Δx∗,2 could be obtained in
(b). Therefore, input x satisfying sign f(x+Δx∗) = sign f(x) is regarded as “normal”,
and x satisfying sign f(x + Δx∗) �= sign f(x) is regarded as “adversarial”.

which means it will work in the direction to move x closer to the hyperplane or
out of the adversarial region. This results in the following equation:

||Δx + Δx∗||∞ < ||Δx||∞ < ξ (12)

Therefore, as shown in Fig. 3(b), both xo + Δx + Δx∗,1 and xo + Δx + Δx∗,2

could be obtained:

sign f(xo + Δx + Δx∗) =
{−1, if ||Δx + Δx∗||∞ ∈ (0, δ)

∓1, if ||Δx + Δx∗||∞ ∈ (δ, ξ) (13)

After applying Undercover Attack, all the normal samples (50% of all) satisfy
sign f(x+Δx∗) = sign f(x) = −1. Based on the assumption of uniform distribu-
tion, at most ξ−δ

ξ adversarial samples satisfy sign f(x+Δx∗) = sign f(x) = +1,
and at least δ

ξ adversarial samples satisfy sign f(x+Δx∗) �= sign f(x). We regard
inputs satisfying sign f(x + Δx∗) = sign f(x) as normal samples, and inputs
satisfying sign f(x + Δx∗) �= sign f(x) as adversarial samples. Then Eq. 11 in
Theorem 1 is proved. Moreover, the vector V in DBA contains more informa-
tion than sign f(·), so it is reasonable to consider r as the minimum detection
accuracy.

Corollary 1. Suppose that the maximum value of the adversarial perturbation
ξ approaches δ. Then, the minimum detection accuracy r will approach 1.

lim
ξ→δ

r = lim
ξ→δ

1
2

+
1
2

· δ

ξ
= 1 (14)

Corollary 1 indicates that if the perturbations of adversarial samples are smaller,
the vulnerability asymmetry between normal and adversarial inputs will become
more prominent. Moreover, since the strong attacks work by perturbing mini-
mal pixels Δx, DBA becomes more effective when facing adversarial samples
generated by stronger attack methods (e.g. CW2).

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 153

Corollary 2. Suppose that the training objective in Eq. 2 reaches the global opti-
mum. Then, the following equation is obtained:

1
2

+
1
2

· ε

ξ
< r < 1, r ∈ (

1
2
, 1) (15)

Proof. If the training objective in Eq. 2 reaches the global optimum, then no
adversarial sample could be found within the ε-norm ball of xo:

sign f(xo + Δx∗) = sign f(xo) = −1, ||Δx∗||∞ = ε ≤ δ (16)

1
2

+
1
2

· ε

ξ
≤ 1

2
+

1
2

· δ

ξ
< r < 1, r ∈ (

1
2
, 1) (17)

Corollary 2 demonstrates the necessity of ensuring ε in adversarial training is
the same as that in Undercover Attack. If no adversarial sample could be found
within the ε-norm ball of xo, then ε → δ and the minimum detection accuracy
r can be determined by ε. Theoretically, DBA performs better with larger ε.
However, an excessive ε will decrease the accuracy of the original classifier on
normal samples.

Non-linearly Separable. For the general setting, if the normal and adversarial
samples are separable in some feature space Φ, the hyperplane can be written
as:

f(x) = 〈w,Φ(x)〉 + b (18)

Therefore, it is straightforward to lift the analysis of Theorem 1 to this setting.

Limitations. Although DBA can work well in ideal conditions, there are two
limitations in practical applications. On the one hand, when the samples are
non-linearly separable, such analysis requires inputs to be initially transformed
into a more complex feature space Φ. However, such a feature space is not easy to
find, so we do not perform the transformation in this paper. On the other hand,
Undercover Attack in our paper can guarantee Eq. 12 in binary classification,
while it may fail in multi-class classification.

Nevertheless, we observe empirically through experiments that DBA is still
effective even with the two limitations. Firstly, the experiments in Sect. 4.1 shows
that Undercover Attack can capture the vulnerability asymmetry well in practi-
cal applications. Secondly, another possible reason is that the vector V in DBA
can capture more information than sign f(·), and the theoretical proof is an
interesting topic for future research.

4 Experiments

In order to inspect the effectiveness of DBA, results are presented according to
the detectability of adversarial samples on some well-known datasets, including

154 Q. Zhou et al.

MNIST and CIFAR10 on images, and IMDB and QQP on texts. Normal and
adversarial samples each account for 50% in the training and test sets. The
test sets consist of 4, 500 MNIST digits, 4, 500 CIFAR10 images, 1, 000 IMDB
sequences, and 1, 000 QQP sequence pairs. Moreover, in the detector-unaware
scenario, four attack techniques (FGSM, BIM, JSMA, and CW2) are employed
on images, and Replace Attack is employed on texts. Additionally, Boundary
Attack is employed in the detector-aware scenario. It should be noted that all the
test samples and the latter five attack techniques (BIM, JSMA, CW2, Replace
Attack, and Boundary Attack) are not involved in the design phase of DBA.

Classifier Setup. The models used in the above classification tasks are briefly
described as follows:

– MNIST. A 5-layer convolutional network is utilized, which achieves 99.2%
accuracy. The ε in adversarial training and Undercover Attack is set to 0.1.

– CIFAR10. The 18-layer PreActResNet [14] is used as the classifier, which
reports 95.49% accuracy. The ε is set to 4/255.

– Large movie review dataset (IMDB). This dataset1 contains movie
reviews along with their associated binary sentiment polarity labels. It serves
as a benchmark for the sentiment classification. The bidirectional LSTM is
utilized, which achieves 89.24% accuracy. Prior to being fed into the network,
the maximum length of the sentence is set to 500, and sentences exceeding
this length will be truncated. Moreover, the ε is set to 0.001.

– Quora question pairs (QQP). This dataset2 consists of question pairs,
and each of them is annotated with a binary value indicating whether the
two questions are duplicate or not. It serves as a benchmark for paraphrase
identification. ESIM [6] is utilized, which achieves 86.0% accuracy. Moreover,
the ε is set to 0.001.

It should be noted that DBA achieves competitive performance with α in Eq. 2
ranges from 0.5 to 1.0, and it is set to 0.8 in the adversarial training of the
following experiments.

Evaluation Metrics. In order to evaluate the effectiveness of DBA, the
recall, precision, F1 score, and accuracy are adopted to quantify the detection
performance.

Recall =
TP

TP + FN
,Precision =

TP

TP + FP
(19)

F1 =
2 · Recall · Presion

Recall + Precision
,Accuracy =

TP + TN

TP + TN + FP + FN
(20)

where TP, TN, FN, and FP denote the number of correctly detected adversar-
ial samples (true positive), the number of correctly detected normal samples
1 https://www.kaggle.com/iarunava/imdb-movie-reviews-dataset.
2 https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.

https://www.kaggle.com/iarunava/imdb-movie-reviews-dataset
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 155

(true negative), the number of adversarial samples that are detected as normal
ones (false negative), and the number of normal samples that are detected as
adversarial ones (false positive), respectively.

(a) Vulnerability asymmetry on images (b) Vulnerability asymmetry on texts

Fig. 4. The distribution of DKL on images and texts. MNIST and IMDB are selected
as example datasets, and the results on other datasets of images/texts are similar. The
blue dots and red triangles represent normal and adversarial samples, respectively.
(Color figure online)

4.1 Vulnerability Asymmetry Analysis

In this section, we will experimentally study the vulnerability asymmetry
between adversarial and normal samples when facing Undercover Attack. The
Kullback–Leibler divergence [27] DKL(x || x + Δx∗) is adopted to measure the
disturbances brought to the softmax prediction P (x):

DKL(x || x + Δx∗) =
k∑

i=1

P (x)i log
(

P (x)i

P (x + Δx∗)i

)
(21)

where k is the class number of the classification task. Figure 4 shows the distri-
bution of DKL for normal and adversarial samples. It is observed that the DKL

of adversarial samples are significantly larger than that of normal samples on
both images and texts.

4.2 Detecting in Detector-Unaware Scenario

Detecting FGSM Samples. Goodfellow et al. [10] hypothesized that adver-
sarial samples could be found using only a linear approximation of the target
model. They introduced the fast gradient sign method to craft adversarial sam-
ples efficiently.

xo + Δx = xo + εsign(�xo
J(θ, xo, ytrue)) (22)

156 Q. Zhou et al.

Table 1. Detection results of DBA. #F denotes the number of inputs that cannot be
perturbed to adversarial ones. The bold line is used to compare with other detectors
in Sect. 4.4.

Dataset Attack #F TP FN FP TN Recall Precision F1 Accuracy

MNIST FGSM(ε = 0.10) 3730 764 6 34 736 99.22% 95.74% 97.45% 97.40%

FGSM(ε = 0.15) 2510 1955 35 75 1915 98.24% 96.31% 97.26% 97.24%

FGSM(ε = 0.20) 1420 3029 51 322 2758 98.34% 90.39% 94.20% 93.94%

BIM (ε = 0.10) 3463 1029 8 26 1011 99.23% 97.54% 98.37% 98.36%

BIM (ε = 0.15) 1416 3066 18 158 2926 99.42% 95.10% 97.21% 97.15%

BIM (ε = 0.20) 304 4154 42 383 3813 99.00% 91.56% 95.13% 94.94%

JSMA(γ = 0.1) 467 524 9 20 513 98.31% 96.32% 97.31% 97.28%

JSMA(γ = 0.2) 340 654 6 17 643 99.09% 97.47% 98.27% 98.26%

JSMA(γ = 0.3) 286 703 11 21 693 98.46% 97.10% 97.77% 97.76%

CW2 (k = 0.0) 0 993 7 2 998 99.30% 99.80% 99.55% 99.55%

CW2 (k = 1.0) 0 991 9 5 995 99.10% 99.50% 99.30% 99.30%

CW2 (k = 2.0) 0 984 16 8 992 98.40% 99.19% 98.80% 98.80%

CIFAR10 FGSM(ε = 4/255) 3862 624 14 43 595 97.81% 93.55% 95.63% 95.53%

FGSM(ε = 6/255) 3222 1267 11 103 1175 99.14% 92.48% 95.69% 95.54%

FGSM(ε = 8/255) 2563 1918 19 148 1789 99.02% 92.84% 95.83% 95.69%

BIM (ε = 4/255) 1733 2720 47 234 2533 98.30% 92.08% 95.09% 94.92%

BIM (ε = 6/255) 936 3464 100 384 3180 97.19% 90.02% 93.47% 93.21%

BIM (ε = 8/255) 391 3921 188 772 3337 95.42% 83.55% 89.09% 88.32%

JSMA(γ = 0.1) 368 630 2 9 623 99.68% 98.59% 99.13% 99.13%

JSMA(γ = 0.2) 340 658 2 13 647 99.70% 98.06% 98.87% 98.86%

JSMA(γ = 0.3) 327 666 7 18 655 98.96% 97.37% 98.16% 98.14%

CW2 (k = 0.0) 0 997 3 8 992 99.70% 99.20% 99.45% 99.45%

CW2 (k = 1.0) 0 997 3 9 991 99.70% 99.11% 99.40% 99.40%

CW2 (k = 2.0) 0 991 9 19 981 99.10% 98.12% 98.61% 98.60%

IMDB Replace (w = 4) 668 325 7 6 326 97.89% 98.19% 98.04% 98.04%

Replace (w = 8) 431 563 6 16 553 98.95% 97.24% 98.08% 98.07%

Replace (w = 16) 205 791 4 29 766 99.50% 96.46% 97.96% 97.92%

QQP Replace (w = 4) 668 324 8 11 321 97.59% 96.72% 97.15% 97.14%

Replace (w = 8) 431 562 7 26 543 98.77% 95.58% 97.15% 97.10%

Replace (w = 16) 205 787 8 42 753 98.99% 94.93% 96.92% 96.86%

Total/Average 30286 41051 663 2961 38753 98.41% 93.27% 95.77% 95.66%

The FGSM works by linearizing the loss function in the L∞ neighborhood
of the original image xo. Specifically, ε is an important and adjustable parame-
ter. The larger the ε is, the more adversarial samples can be successfully crafted.
However, an excessive ε is likely to introduce noticeable perturbation and be eas-
ily spotted by a human. In order to evaluate the capability of DBA for detecting
adversarial samples with different perturbation sizes, the adversarial samples
are crafted with some acceptable ε values. It is set from 0.1 to 0.2 for MNIST
and 4/255 to 8/255 for CIFAR10. Table 1 shows that DBA achieves an average
detection accuracy of 96.19% on MNIST and 95.59% on CIFAR10.

Detecting BIM Samples. Kurakin et al. [17] applied the FGSM multiple
times with a small perturbation size β, called the basic iterative method. This

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 157

method can be mathematically expressed as follows:

iter = min(255ε + 4, 1.25 · 255ε), xo + Δxn := xadv
n (23)

xadv
0 = xo, xadv

n = Clipxo,ε{xadv
n−1 + βsign(∇xJ(θ, xadv

n−1, ytrue))} (24)

In addition to ε, iter is another hyperparameter that influences the attack perfor-
mance. Generally speaking, the larger the iter is, the more adversarial samples
can be successfully crafted. The iter used in Table 1 is introduced in Eq. 23, as
[17] suggested. Moreover, Clipxo,ε(·) performs per-pixel clipping of the original
image xo. Subsequently, xadv

n will be in the L∞ ε-neighborhood of the original
image. The setting of ε is the same as that in FGSM, and the average detection
accuracy of DBA is 96.82% on MNIST and 92.15% on CIFAR10. They are lower
than the accuracies in FGSM due to the iterative characteristic.

Detecting JSMA Samples. The above methods (FGSM and BIM) modify
each pixel within small ε-ball perturbation. However, Papernot et al. [22] intro-
duced the Jacobian-based saliency map attack, which works by modifying a
limited number of input pixels with relatively large perturbations. The JSMA
iteratively perturbs pixels that have high saliency scores S:

S(x, t)[i] =

{
0, if ∂Ft(x)

∂xi
< 0 or Σj �=t

∂Fj(x)
∂xi

> 0
(∂Ft(x)

∂xi
)|Σj �=t

∂Fj(x)
∂xi

|, otherwise
(25)

In order to achieve a target class t, Ft(x) must increase, while the probabilities of
all other classes Σj �=t

∂Fj(x)
∂xi

should decrease. The maximum number of iterations
is defined as follows:

max iter =
size · size · γ

2 · 100
(26)

where size and γ refer to the image size and the maximum distortion of the
image, respectively. Moreover, JSMA is more expensive than other attack tech-
niques. Therefore, the last 1, 000 MNIST digits and CIFAR10 images are selected
in our experiments. The average detection accuracy with γ from 0.1 to 0.3 is
97.77% on MNIST and 98.71% on CIFAR10. It amounts that DBA is still effec-
tive when faced with the L0-bounded attack.

Detecting CW2 Samples. Carlini et al. [4] introduced an optimized attack
framework that passed a range of defenses. They designed a loss function with
smaller values on adversarial samples and higher values on normal samples,
which resulted in three kinds of attacks, including an L∞ attack, an L0 attack,
and an L2 attack. Specifically, they achieved the strongest L2 attack, which is
considered in this paper with the following loss function:

minimize ||Δx||22 + c · g(xo + Δx) (27)

where g(·) depends on the best objective function found in the previous stages:

g(x) = max {max{Z(x)i : i �= t} − Z(x)t,−k} (28)

158 Q. Zhou et al.

where k is a parameter to control the misclassification confidence. Adversarial
samples can be crafted with high confidence by increasing k. In our experiments,
k is set from 0.0 to 2.0.

Among the four attack techniques in the detector-unaware scenario, CW2 is
the strongest one. It is an optimization-based algorithm, which can seek out as
small as possible perturbations. The #F column of Table 1 demonstrates that
CW2 can craft adversarial samples with 100% success rates. Similar to JSMA,
CW2 is computationally expensive. Therefore, the last 1, 000 samples (as [19]
do) of MNIST and CIFAR10 are selected. Table 1 shows that our method yields
excellent detection performance with an average accuracy of 99.22% on MNIST
and 99.15% on CIFAR10. It demonstrates that the detection ability of DBA
for stronger attacks is better than weaker attacks, which is consistent with the
previous intuition in Corollary 1.

Detecting Replace Attack Samples. Adversarial texts are usually generated
by adding, deleting, or replacing words in the sentences. Papernot et al. [23]
showed that the above algorithms for crafting adversarial samples misclassified
by feed-forward neural networks could be applied to recurrent neural networks.
However, due to the finite set of words, these methods cannot be applied to texts
directly. Since a real word corresponding to the modified word embedding may
not be found, the word embedding cannot be modified casually. Therefore, they
followed a heuristic procedure to solve the problem. They iteratively found a
word z in the dictionary that the sign of the difference between the embedding
of z and the original word is closest to sign(Jf (x)[i, f(x)]). In our experiments,
the replacement dictionary of Replace Attack consists of 50 most common words.
w is the hyperparameter that controls the number of replaced words, which is
set to 4, 8, and 16 in our experiments. The two-step training processes are the
same as those on images. DBA can achieve an average detection accuracy of
98.01% on IMDB and 97.03% on QQP.

Detecting Without Adversarial Training. In Corollary 2, the importance of
adversarial training is emphasized, and it is investigated through experiments in
this part. Table 2 shows the detection results of DBA without adversarial train-
ing. In comparison with Table 1, it is observed that the classifiers are more robust
to attacks after adversarial training (the numbers in column #F of Table 2 are
smaller than that of Table 1). Moreover, the evaluation metrics (recall, precision,
F1 score, and accuracy) are all improved by adversarial training.

4.3 Detecting in Detector-Aware Scenario

Finally, DBA is evaluated in a setting where the attacker is fully aware of the
detector. DBA is different from the detectors in [5] because the parameters of
the latter detectors can be optimized by the attacker. However, DBA involves
an independent Undercover Attack to produce the hidden vector V , and the
behavior of Undercover Attack cannot be changed or optimized. One possible

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 159

Table 2. Detection results of DBA without adversarial training.

Dataset Attack #F TP FN FP TN Recall Precision F1 Accuracy

MNIST FGSM(ε = 0.10) 3092 1309 99 194 1214 92.97% 87.09% 89.93% 89.60%

BIM (ε = 0.10) 2433 1943 124 247 1820 94.00% 88.72% 91.28% 91.03%

JSMA(γ = 0.1) 421 525 54 103 476 90.67% 83.60% 86.99% 86.44%

CW2 (k = 0.0) 0 981 19 10 990 98.10% 98.99% 98.54% 98.55%

CIFAR10 FGSM(ε = 4/255) 2135 1820 545 436 1929 76.96% 80.67% 78.77% 79.26%

BIM (ε = 4/255) 286 3169 1045 1251 2963 75.20% 71.70% 73.41% 72.76%

JSMA(γ = 0.1) 285 578 137 27 688 80.84% 95.54% 87.58% 88.53%

CW2 (k = 0.0) 0 836 164 18 982 83.60% 97.89% 90.18% 90.90%

IMDB Replace (w = 4) 561 429 10 27 412 97.72% 94.08% 95.87% 95.79%

QQP Replace (w = 4) 561 421 18 42 397 95.90% 90.93% 93.35% 93.17%

Total/Average 9774 12011 2215 2355 11871 84.43% 83.61% 84.02% 83.94%

way to bypass DBA is to generate new adversarial samples iteratively. After
generating a new adversarial sample, it will be tested on DBA to judge whether
it can fool DBA. If not, we will continue to craft new adversarial samples until
we find a sample that can bypass DBA or reach the iteration limit.

The decision-based Boundary Attack [3] is a powerful attack that can meet
our requirements. The algorithm is initialized from a point that is already adver-
sarial, then performs a random walk along the boundary between the adversarial
and non-adversarial region. Therefore, it stays in the adversarial region, and the
distance towards the target image decreases. In the n-th step, the perturba-
tion ηn is drawn from a maximum entropy distribution, subject to the following
constraint:

xo + Δxn := xadv
n , ||xo − xadv

n−1||22 − ||xo − xadv
n−1 − ηn||22 = λ · ||xo − xadv

n−1||22 (29)

However, it cannot be adopted to texts. Therefore, it is only tested on MNIST
and CIFAR10. The results turn out that the success rate of Boundary Attack
drops from 100% to 2.1% on MNIST and from 100% to 1.9% on CIFAR10 after
incorporating DBA. In other words, if the attacker wants to bypass DBA, then
it cannot find an adversarial sample in most cases (Table 3).

4.4 DBA vs. Other Detectors

In this paper, we follow the methodology of Liang et al. [19], and leverage their
result to compare our method with related ones in the detector-unaware and
detector-aware scenarios. We adopt the same configurations as [5,19], i.e., using
the default k value (0.0) to generate CW2 samples. The detection results of our
method are presented in Table 1 (bold line). DBA can achieve a high recall
rate of 99.30% and a low false positive rate of 0.20%. In the detector-aware
scenario, DBA can remarkably downgrade the attack success rate from 67.37%
to 2.10%. Compared with the existing methods, we can conclude that our method
outperforms them in both the detector-unaware and detector-aware scenarios.

160 Q. Zhou et al.

Table 3. DBA vs. other detectors. A higher detection recall is better in the detector-
unaware scenario, while a lower attack success rate is better in the detector-aware
scenario.

Method Detector-unaware Detector-aware

Detection recall Attack success rate

Network Uncertainty [8] 75.00% 98.00%

3 × 3 Filter [18] 80.00% 100%

KDE [8] – 100%

PCA [16] – 100%

Dimensionality Reduction [2] 97.00% 100%

Adversarial Training [9] 98.00% 100%

Adversarial Retraining [11] 98.50% 100%

Adaptive Noise Reduction [19] 98.89% 67.37%

Defense-GAN [26] 98.90% 45.00%

DBA 99.30% 2.10%

(a) FGSM,BIM/MNIST (b) FGSM,BIM/CIFAR10

(c) JSMA/MNIST,CIFAR10 (d) Replace Attack/IMDB,QQP

Fig. 5. Detection accuracy with different perturbation sizes. NoAdv and Adv represent
“without adversarial training” and “with adversarial training”, respectively.

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 161

4.5 Impact of Perturbation Size and Confidence

Theorem 1 indicates that the detection accuracy increases with smaller adver-
sarial perturbation. Since the four attacks (FGSM, BIM, JSMA, and Replace
Attack) can control the perturbation size easily by adjusting their hyperparam-
eters, the impact of perturbation size based on the four attacks is investigated
in Fig. 5. The results show that as the perturbation size increases, the detection
accuracy decreases. In particular, FGSM and BIM are L∞-bounded attacks,
which directly impact the ∞-norm perturbation as we adopted in DBA. There-
fore, DBA is more sensitive to the perturbation ε of FGSM and BIM. However,
DBA is more robust to the increase of perturbation size with the cooperation of
adversarial training.

(a) BIM/MNIST,CIFAR10 (b) JSMA/MNIST,CIFAR10

(c) CW2/MNIST,CIFAR10 (d) Replace Attack/IMDB,QQP

Fig. 6. Detection accuracy with different confidences. NoAdv and Adv represent “with-
out adversarial training” and “with adversarial training”, respectively.

Another essential issue is whether DBA works well on high-confidence adver-
sarial samples. The impact of confidence is investigated on BIM, JSMA, CW2,
and Replace Attack by increasing the number of iterations until the confidence
of the target adversarial class subject to:

P (x + Δx)target > confidence, confidence ∈ [0.5, 1) (30)

162 Q. Zhou et al.

Figure 6 shows that DBA is more robust to adversarial confidence than per-
turbation size. Especially for CW2, the detection accuracy is always at a high
level. The results prove that the core factor that affects the performance of DBA
is the perturbation size (especially ∞-norm perturbation) rather than confidence.

5 Conclusion

This paper points a new direction for detecting adversarial samples by converging
the detection problem into an attack problem. We propose an effective method
DBA to detect adversarial samples crafted by various attacks on both images and
texts. Furthermore, the reasons why DBA is effective are analyzed through the
theorem and corollaries. Compared with the existing detection methods, DBA
performs better in both the detector-unaware and detector-aware scenarios.

If someone wants to bypass DBA, it is required to generate a sample that
can fool the model and be robust to Undercover Attack. However, it is difficult
to make an adversarial sample robust to Undercover Attack. Since an adversarial
sample is generated from a normal xo, it is inherently vulnerable. At least one
attack method is to roll back to the original xo, which is a successful attack for
the adversarial sample.

In future work, we will mainly conduct research from two aspects. On the
one hand, we will try to overcome the two limitations introduced in Sect. 3.3. On
the other hand, it is planned to improve the performance of DBA by adopting
other attack forms, such as L0 and L2 attacks.

Acknowledgements. This work is supported by the the National Key Research
and Development Program of China (2017YFC0803609, 2017YFB1400401 and
2016YFB0801104).

References

1. Athalye, A., Carlini, N., Wagner, D.A.: Obfuscated gradients give a false sense of
security: circumventing defenses to adversarial examples. In: International Confer-
ence on Machine Learning, pp. 274–283 (2018)

2. Bhagoji, A.N., Cullina, D., Mittal, P.: Dimensionality reduction as a
defense against evasion attacks on machine learning classifiers. arXiv preprint
arXiv:1704.02654 (2017)

3. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks:
reliable attacks against black-box machine learning models. arXiv preprint
arXiv:1712.04248 (2017)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks
(2016)

5. Carlini, N., Wagner, D.A.: Adversarial examples are not easily detected: bypassing
ten detection methods. arXiv Learning, pp. 3–14 (2017)

6. Chen, Q., Zhu, X., Ling, Z.H., Wei, S., Jiang, H., Inkpen, D.: Enhanced lstm for
natural language inference. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1657–
1668 (2017)

http://arxiv.org/abs/1704.02654
http://arxiv.org/abs/1712.04248

Detection by Attack: Detecting Adversarial Samples by Undercover Attack 163

7. Das, N., et al.: Keeping the bad guys out: Protecting and vaccinating deep learning
with jpeg compression. arXiv Computer Vision and Pattern Recognition (2017)

8. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial sam-
ples from artifacts. arXiv Machine Learning (2017)

9. Gong, Z., Wang, W., Ku, W.S.: Adversarial and clean data are not twins. arXiv
preprint arXiv:1704.04960 (2017)

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. Comput. Sci. (2014)

11. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (sta-
tistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017)

12. Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.Q.: Simple black-box
adversarial attacks. arXiv preprint arXiv:1905.07121 (2019)

13. Guo, F., et al.: Detecting adversarial examples via prediction difference for deep
neural networks. Inf. Sci. 501, 182–192 (2019)

14. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

15. He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defenses:
ensembles of weak defenses are not strong (2017)

16. Hendrycks, D., Gimpel, K.: Early methods for detecting adversarial images. arXiv
preprint arXiv:1608.00530 (2016)

17. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world
(2016)

18. Li, X., Li, F.: Adversarial examples detection in deep networks with convolutional
filter statistics. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 5764–5772 (2017)

19. Liang, B., Li, H., Su, M., Li, X., Shi, W., Wang, X.: Detecting adversarial image
examples in deep neural networks with adaptive noise reduction. IEEE Trans.
Dependable Secure Comput. (2018)

20. Ma, X., et al.: Characterizing adversarial subspaces using local intrinsic dimen-
sionality. In: International Conference on Learning Representations (2018)

21. Papernot, N., Mcdaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples (2016)

22. Papernot, N., Mcdaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy, pp. 372–387 (2016)

23. Papernot, N., Mcdaniel, P.D., Swami, A., Harang, R.E.: Crafting adversarial input
sequences for recurrent neural networks. In: Military Communications Conference,
pp. 49–54 (2016)

24. Papernot, N., Mcdaniel, P.D., Wu, X., Jha, S., Swami, A.: Distillation as a defense
to adversarial perturbations against deep neural networks. In: IEEE Symposium
on Security and Privacy, pp. 582–597 (2016)

25. Rosenberg, I., Shabtai, A., Elovici, Y., Rokach, L.: Defense methods against adver-
sarial examples for recurrent neural networks (2019)

26. Samangouei, P., Kabkab, M., Chellappa, R.: Defense-GAN: protecting classifiers
against adversarial attacks using generative models. In: International Conference
on Learning Representations (2018)

27. Van Erven, T., Harremos, P.: Rényi divergence and kullback-leibler divergence.
IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)

http://arxiv.org/abs/1704.04960
http://arxiv.org/abs/1702.06280
http://arxiv.org/abs/1905.07121
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1608.00530

164 Q. Zhou et al.

28. Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in
deep neural networks. In: Network and Distributed System Security Symposium
(2018)

29. Zhang, W.E., Sheng, Q.Z., Alhazmi, A., Li, C.: Adversarial attacks on deep learning
models in natural language processing: a survey (2019)

30. Zheng, H., Ye, Q., Hu, H., Fang, C., Shi, J.: BDPL: a boundary differentially private
layer against machine learning model extraction attacks. In: Sako, K., Schneider,
S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 66–83. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29959-0 4

https://doi.org/10.1007/978-3-030-29959-0_4

Big Enough to Care Not Enough
to Scare! Crawling to Attack

Recommender Systems

Fabio Aiolli1, Mauro Conti1, Stjepan Picek2, and Mirko Polato1(B)

1 Department of Mathematics, University of Padova, Padua, Italy
{aiolli,conti,mpolato}@math.unipd.it

2 Delft University of Technology, Delft, The Netherlands
s.picek@tudelft.nl

Abstract. Online recommendation services, such as e-commerce sites,
rely on a vast amount of knowledge about users/items that represent an
invaluable resource. Part of this acquired knowledge is public and can
be accessed by anyone through the Internet. Unfortunately, that same
knowledge can be used by competitors or malicious users. A large body
of research proposes methods to attack recommender systems, but most
of these works assume that the attacker knows or can easily access the
rating matrix. In practice, this information is not directly accessible, but
can only be gathered via crawling.

Considering such real-life limitations, in this paper, we assess the
impact of different crawling approaches when attacking a recommenda-
tion service. From the crawled information, we mount different shilling
attacks. We determine the value of the collected knowledge through the
reconstruction of the user/item neighborhood. Our results show that
while crawling can indeed bring knowledge to the attacker (up to 65%
of neighborhood reconstruction), this will not be enough to mount a
successful shilling attack in practice.

Keywords: Recommender systems · Security · Crawling · Shilling
attack · Collaborative filtering

1 Introduction

With the advent of the Internet, many companies base large parts of their busi-
ness on the knowledge they gather online and over a long period. This is par-
ticularly evident on platforms where users generate almost all the content. Let
us take, for example, e-commerce sites like amazon.com. Products are added
by users who want to sell them, while buyers’ profiles are created by those
users who buy on the web site. Every type of interaction between users and the
e-commerce web pages can potentially be monitored and stored to perform anal-
ysis for the marketing or for improving the provided service. Recommendation

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 165–184, 2020.
https://doi.org/10.1007/978-3-030-59013-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_9&domain=pdf
http://amazon.com
https://doi.org/10.1007/978-3-030-59013-0_9

166 F. Aiolli et al.

engines, mostly known as Recommender Systems (RSs), are one of these services
offered by companies to help users in finding what they want/like [10,13,25,30].

Most of the state-of-the-art recommendation algorithms are based on the
concept that similar users tend to be interested in similar products (in the rest
of this paper, we will use the terms item and product interchangeably), for some
notion of similarity. The computation of this similarity often relies on the his-
tory of the purchases/rates (interactions in general) of the users with items.
This approach is known as collaborative filtering (CF). To get reliable similar-
ities, and knowledge in general, collecting as much information about the past
users’ behavior is crucial. Famous and successful companies (e.g.., Amazon [25],
Pinterest [13], or Netflix [10]) base their recommendation on information about
the users-items interaction collected through the years among millions of users.

The collected knowledge about users is a valuable resource for the companies
and must be kept safe. However, giving the nature of such e-services, part of
this knowledge is public and can be accessed by anyone who has an Internet
connection. For instance, ratings and reviews of a product, the user profile, and
his/her reviews’ history, and product details are usually public. Additionally,
other forms of aggregated information may be publicly available, such as the total
number of reviews or an item’s average rating. Even though public information is
only a fraction of the whole amount of knowledge owned by the service provider,
competitors can leverage it to improve their services. Potentially, a competitor
can design a way to collect as much public information as possible at almost
zero cost, and then use such “stolen” knowledge. In an ideal case, this scenario
could represent a substantial competitive advantage.

In this paper, we investigate the feasibility of such an attack. Specifically, we
design a straightforward and almost cost-free attack pipeline analyzing in what
conditions it can be potentially successful and to which extent. We focus our
analysis on the computation of the similarity between users/items as a measure
of success. The employed similarities, namely Pearson’s correlation and cosine
similarity, are standard indices used in RSs [21,32]. Our research particularly
stresses the data collection phase, which is often overlooked or given for granted
by most of the literature about attacks on RSs [8,26], i.e., they assume knowing
the full user-item rating matrix.

Since their early days, recommender systems have been put to the test by
various types of attacks. Among all the proposed attacks against RSs, the profile
injection attack (also known as the shilling attack) is undoubtedly the most dis-
cussed one. As the name suggests, the profile injection attack seeks to mislead
the RS by injecting well crafted fake users into the system. The type of damage
provoked by fake user profiles depends on the attacker’s goal. There are three
common goals: (i) increase the popularity of some targeted items (push attack);
(ii) decrease the popularity of some targeted items (nuke attack); (iii) deteri-
oration of the performance of the system. Previous works have shown that the
more the knowledge used by the attacker, the higher the rate of success [4].

In this paper, we aim to (partially) fill the gap between the ideal threat and
the feasibility of an attack on a recommendation service. To this end, we examine

Big Enough to Care Not Enough to Scare! 167

different crawling strategies to assess the most efficient ones in gathering infor-
mation. We also propose a crawling strategy, dubbed backlink++, which showed
to be highly effective. Additionally, we study how these strategies behave con-
cerning a specific intent: performing a shilling attack. We test different standard
profile injection attacks in which the fake users are crafted based on the crawled
information. We analyze the strength of the attacks and whether the fake users
are easy to detect by standard defense measures. In our research, we assume an
attacker with no information about the target system except the ones that can
be retrieved publicly. This assumption aims at putting the attacker in a realistic
scenario where there is a need to collect such information systematically and in
an automated way. Crawling is the most generic way to collect information from
the web systematically, and it is applicable almost in any context. The experi-
mental results show that the crawling process can allow competitors to gather
valuable information, e.g., partially reconstructing the user/item neighborhood,
while it is usually not enough to mount an effective shilling attack using standard
strategies.

Summarizing, we try to answer the following questions:

– Which crawling algorithm should be preferred to maximize the amount of
collected information?

– Which crawling algorithm should be preferred for gathering valuable knowl-
edge for a competitor?

– In practice, is the collected information enough to attack a Recommender
Systems with standard approaches successfully?

The rest of the paper is structured as follows. Section 2 presents the notation
we use, crawling approaches, and the datasets we investigate. Section 3 describes
the related work underlining the main differences with our analysis. Section 4
describes the methodology and assumptions used in our analysis. Section 5 shows
the results of our experiments, along with a thorough discussion. Finally, Sect. 6
wraps up the main results of the paper with some insights about possible future
research paths.

2 Background

In this section, we summarize the notation (Sect. 2.1), background knowledge on
crawling (Sect. 2.2), and datasets (Sect. 2.3) used throughout the paper.

2.1 Notation

We refer to the set of users of an RS with U , where |U| = n. Similarly, the set
of items is denoted by I, such that |I| = m. The set of ratings is denoted by
R ≡ {(u, i, r) | u ∈ U ∧ i ∈ I, u rated i with rating r}. We add a subscription
to both user and item sets to indicate, respectively, the set of items rated by a
user u (Iu), and the set of users who rated the item i (Ui). Moreover, we refer
to the rating matrix with R ∈ R

n×m such that rui is the rating given by u to i.

168 F. Aiolli et al.

Finally, with G(U , I,R), we indicate the weighted bipartite graph representing
the rating matrix. Nodes are users and items, while the edges (between users
and items) are weighted by the rating. When clear from the context, we simply
use the letter G.

2.2 Crawling a Recommendation-Based Website

When discussing recommendation (online) services, we refer to those services
that, based on information about users, items, and their interactions, provide
a personalized recommendation to the users. As mentioned above, users, items,
and interactions information are usually (partially) public. A malicious user can
potentially automatically collect (for example, via a crawling bot) such informa-
tion to design an attack against the recommender. However, online services are
aware of such possibilities, and their websites are often “secure” against auto-
matic crawling. The most gentle countermeasure that they can use is responding
with a control web page to check whether the requests come from a human or a
machine. These control pages usually contain a captcha-based query [33]. Other,
more severe countermeasures are temporary IP blacklisting, or in the extreme
case, an indefinite ban of the IP address. The attacker can try to circumvent such
defenses by using VPN, proxy, TOR1, and so on, but modern online services are
nowadays equipped to fight against such strategies. For these reasons, crawling
an entire (large) website can be expensive or even infeasible. Thus, an attacker
has to rely on incomplete information collected through a crawling process. This
limited crawling process must be as effective as possible, minimizing the number
of requests (and in general the crawling cost), while maximizing the amount of
collected knowledge. This optimization problem can be cast into a well-known
computational problem, i.e., an Online graph exploration problem. The online
graph exploration problem (OGEP) considers visiting all graph nodes and com-
ing back to the starting node with the minimum total traverse cost. The main
issue in this problem is that only the already visited sub-graph is known, hence
only “local” decisions can be made. It is worth noticing that in the OGEP, there
are constraints that do not apply to the problem at hand. While crawling an
RS’s website, we are not obliged to follow a path, i.e., we can jump from a node
(web page) to another even if they are not directly linked. Moreover, we do not
have to go back to the starting node. We can further assume that each item
(e.g.., web page) contains links to all the users who rated it and vice-versa. So,
the graph at hand is an undirected (bipartite) graph.

In the most general case, this problem has already been studied by researchers
in the context of search engines [7]. Even though the final aim is different, the
optimization problem is the same. As the problem is an unconstrained TSP with
incomplete information (i.e., partial knowledge of the graph), it is safe to state
that it is NP-hard. However, there are heuristic-based algorithms that allow us
to crawl the graph efficiently. In particular, Cho et al. proposed the following
crawling strategies [7]:

1 https://www.torproject.org/.

https://www.torproject.org/

Big Enough to Care Not Enough to Scare! 169

– random: the algorithm randomly chooses its next node from the known (but
unseen) set of nodes;

– random=: this strategy is similar to the random but, it first flips a coin
to decide whether to pick a user’s node or an item’s node and then picks
uniformly from the selected set of known but unseen nodes. This strategy
aims at avoiding biases towards the most numerous set between users and
items;

– breadth-first: the algorithm chooses its next node according to the First In
First Out (FIFO) policy, i.e., when a new node is visited its neighbors are
added to the queue (without a specific order);

– backlink: the algorithm chooses the (unvisited) node with the highest in-
degree according to the known graph. In the case of the undirected graph,
in-degree and out-degree are the same;

– pagerank: the algorithm chooses the (unvisited) node with the highest pager-
ank score according to the known graph.

2.3 Datasets

In our experiments, to emulate a real e-service (e.g.., e-commerce)
recommendation-based website, we use four small- to large-scale datasets com-
monly used as benchmark in the RSs community [30] (details are summarized
in Table 1). In particular:

Movielens this dataset contains users (5-stars) ratings collected from a movie
recommendation service designed by the GroupLens Research. In our exper-
iments, we used three different versions of the dataset with an increasing
number of ratings, users, and items, namely ml100k, ml1m, and ml20m.

Netflix this is the user-movie (5-stars) ratings data from the Netflix Prize2. The
main difference with the Movielens datasets is its sparsity, that is five times
the most sparse Movielens dataset (i.e., ml20m).

Table 1. Datasets information: number of users, number of items, number of inter-
actions (i.e., ratings), average number of ratings per user, and number of ratings per
item.

Dataset |U| |I| |R| Avg. u deg. Avg. i deg.

ml100k 943 1 639 99 955 165.6 ± 192.7 270.9 ± 384.4

ml1m 6 040 3 691 1 000 192 105.9 ± 100.7 60.9 ± 80.8

ml20m 138 493 26 164 19 999 645 209.2 ± 230.2 764.4 ± 3 117.8

Netflix 480 188 17 770 100 462 736 144.4 ± 302.2 5 653.5 ± 16 909.2

2 http://www.netflixprize.com/.

http://www.netflixprize.com/

170 F. Aiolli et al.

3 Related Works

In this section, we discuss the related work regarding the web crawling and the
shilling attack.

3.1 Crawling

A Web crawler, also known as spider/spiderbot, is an Internet bot that sys-
tematically browses the World Wide Web. Crawling the web is almost as old
as the World Wide Web itself [3,6,7,22]. Search engines have been the first
technology to rely on such methods to index the web. Since then, many efforts
have been devoted to increasing the crawling procedure’s efficiency and effective-
ness [1,11,23]. Focused web crawling [5] is one of the main strategies to improve
the crawling quality in specific contexts. Focused web crawling is a procedure
that collects Web pages that satisfy some specific property, by prioritizing the
so-called crawl frontier. The crawl frontier is the set (more specifically, a queue)
of known but not visited web pages. However, it is not always easy or feasible to
define properties that can help focus the crawling. Since we focus on the graph’s
mere structural properties, the most promising property is the pagerank [27] of
a page. Unfortunately, the pagerank value computed on a partially known graph
is not so accurate [17,18]. As we will see, using pagerank is empirically as good
as using simple heuristics based on the in/out-degree of the web page.

3.2 Shilling Attack

The shilling attack (a.k.a. profile injection attack) is the most popular attack
against recommender systems [15,28,31]. As mentioned in Sect. 1, a profile injec-
tion attack consists in injecting well crafted fake users into the system. The goal
of the attacker is usually of the following: (i) increase the popularity of some
targeted items (push attack); (ii) decrease the popularity of some targeted items
(nuke attack); (iii) deterioration of the performance of the system. For simplic-
ity, in this paper, we focus on the push attack, but we argue that all the final
considerations apply to the other goals. Besides the standard shilling attacks,
there are also attacks designed for specific kinds of recommendation engines,
such as [14] for memory-based models, [12] for graph-based models, and [24] for
factorization-based models. Unfortunately, the details behind a recommendation
engine are usually unknown, which cripples the applicability of the approaches
mentioned above. More recent and sophisticated attacks, like [8] and [26], assume
knowing the whole rating matrix, which is, in most of the cases, not realistic.
For these reasons, to generalize, we will consider standard shilling attacks as
testbeds. Details about the considered attacks are reported in Sect. 4.3.

The literature also offers studies about the effectiveness of shilling attacks
under different constraints or scenarios. Burke et al. made an analysis related to
the one proposed in this paper [4]. In their study, the attacker has limited knowl-
edge about a target user. Our results confirm some of the drawn conclusions in
this paper. Still, our analysis is broader and with a different goal. Moreover, we

Big Enough to Care Not Enough to Scare! 171

also cover a new attack scenario, which includes a potential competitor. In [19],
a cost-benefit analysis about a shilling attack is performed. However, the only
conclusion the authors draw is that the higher the number of available items in
the catalog, the higher the attack cost. Also, in this case, some of our conclu-
sions support their results. Finally, Deldjoo et al. studied the effectiveness of the
attack on different groups of users (more/less active) [9]. They had quite differ-
ent results on the two tested datasets, namely Movielens and Yelp. Nevertheless,
they found that BPR-MF [29] seems to be more resistant than the other tested
recommendation approaches.

4 Methodology

We will consider two main attack scenarios that can threaten an RS. These two
attacks are independent of each other, but both rely on the information gathered
through a starting crawling phase (Sect. 4.2). The two considered type of attacks
are:

Shilling attack (Sect. 4.3) the standard profile injection attack. The attacker
crafts the fake profiles exclusively using the crawled information;

Neighborhood reconstruction (Sect. 4.4) the attacker aims at collecting valu-
able information about the system. We assess the informative content of the
crawled data by reconstructing the neighborhood of a target node. The higher
the overlap w.r.t. the actual neighborhood (computed with the complete
knowledge of the graph), the more effective the crawling process.

4.1 Threat Model

We assume the following attacker’s capabilities:

– The attacker can access only the public information of the target service.
The data collection is performed using a crawling procedure, as described in
Sect. 2.2.

– The crawling strategies leverage only information about the user-item rating
graph.

– The information of a user (item) is gathered when the corresponding page
is requested (i.e., visited). The visit also allows us to know the linked/rated
items (users), but not their details.

– The attacker targets a particular node in the graph (either user or item),
which is also its starting node for the crawling.

4.2 Crawling

In addition to the techniques described in Sect. 2, we propose a variation of the
backlink strategy. In our variation, the known degree for a node is the actual
degree in the full graph. We denote this strategy backlink++. This strategy
aims to take advantage of the additional information about the graph structure

172 F. Aiolli et al.

(i.e., the actual out-degree) provided by the targeted web site. Even though it
might be impractical in the general case, there are e-service websites where one
can access the (public) degree information without visiting the page correspond-
ing to the node. For example, in booking.com search page, the number of reviews
(i.e., the out-degree of the item node) is reported before visiting the item page.

Figure 1 shows an example of the application of all the strategies mentioned in
Sect. 2, including backlink++, on a small bipartite graph. The crawling strategies
are applied to crawl the entire graph. Note that the algorithms stop when all
the graph is known, but it is not required to visit every single node. It is enough
to discover the structure (and possibly weights) of the graph without visiting all
of them for our purposes.

Fig. 1. Example of exploration strategies on a bipartite (recommendation) graph. All
the explorations start from the target node i4. Inside the parenthesis (·) is reported the
number of node visited by the strategy. Note that in the graph, we omitted the weight
of the edges.

The crawling phase for collecting the rating information is performed starting
from a target node (either a user or an item). Figure 1 shows an example of
crawling starting from the item i4. For our purposes, the starting node is also
the target one that is used for the reconstruction of its neighborhood (discussed
in Sect. 4.4) or to make a push shilling attack (discussed in Sect. 4.3). Algorithm 1
provides the pseudo-code of a general crawling procedure.

In our simulation, a node in the (unknown) user-item ratings graph (exclud-
ing the starting node) passes through three states (depicted in Fig. 2):

Unknown. The node exists in the whole graph but is currently unknown.
Discovered. The node has been discovered through another just visited node

that is linked to it. Discovered but not visited nodes can be considered in the
frontier of the graph exploration.

Visited. The node has been visited, allowing the discovery of (potentially) new
nodes. The visiting of a node simulates the request of its web page.

http://booking.com

Big Enough to Care Not Enough to Scare! 173

Algorithm 1: Crawling procedure.
Input: G(U, I, E): user-item rating bipartite graph; p: percentage of node to

visit, p ∈ [0, 1]; x: target node (user/item)
Output: G′: explored sub-graph (G′ ⊆ G)

1 n ← |U | + |I|
2 UG′ , IG′ , E ← ∅, ∅, ∅
3 add node x to either IG′ or UG′ on the basis of its type
4 Q ← [x]
5 while |Q| > 0 and |UG′ | + |IG′ | < pn do
6 x ← pop(Q)
7 update IG′ or UG′ on the basis of the type of x
8 update Q with {y|(x, y) ∈ E}
9 update E with {e ∈ E|e = (x, y) ∈ E}

10 sort Q according to the ordering policy of the algorithm

11 end
12 G′(UG′ , IG′ , E)
13 return G′

Ustart D V
discover visit

Fig. 2. Possible states of a node (with the exception of the starting node) during the
crawling procedure. U = unknown, D = discovered, and V = visited.

4.3 Shilling Attack on Recommender Systems

For performing a profile injection attack, there is a need for establishing how fake
profiles are defined. The number of fake profiles injected into the targeted system
is usually called attack size, while filler size refers to the number of ratings
each attack profile has to assign. An effective attack size highly depends on how
well the system has been developed. A reasonable amount of fake profiles is 1–
15%; otherwise, the associated cost of creating such additional profiles could be
prohibitive. In a standard shilling attack [31], a malicious profile can be defined
by four disjoint set of items, i.e., (IT , IS , IF , I∅) such that I ≡ IT ∪IS ∪IF ∪I∅:

Target item(s) the set of target items, IT , along with a rating function γ,
which assigns a rating based on the goal of the attack (e.g.., in a push attack
the maximum rating value);

Selected items set of items IS useful to support the attack. Often items in IS

are related (e.g.., bought together) to items in IT . In most of the standard
Sybil attack, IS is the empty set;

Filler items set of items, IF , used to “camouflage” the fake profile to make it
less detectable. Usually, ratings are randomly selected;

Unrated items all the remaining set of items for which the fake profile does
not give any rating I∅ ≡ I \ (IT ∪ IS ∪ IF).

174 F. Aiolli et al.

We test four shilling attacks in our analysis: random attack, average attack,
Random Bandwagon attack, and Average Bandwagon attack [15,28]. The way
user profiles are crafted in these attacks is summarized in Table 2.

4.4 Neighborhood Reconstruction

In competitive scenarios, collecting as much data as possible cannot be the most
efficient strategy, i.e., it may be more useful to collect less but more informative
data. To this end, we assess the quality of the collected knowledge by comparing
how close are the most similar users/items computed with the crawled data w.r.t.
the ones computed with the whole dataset. This comparison is based on the fact
that the most popular recommendation engines are neighborhood-based [21,30,
32]. Hence, if the neighborhood reconstruction is accurate enough, we can affirm
that the collected knowledge has a competitive value.

Similarity Measures. For computing the neighborhood of a node, we need a
similarity function. We employed two of the most widely used similarity measures
in the recommender system community [30]: Pearson’s correlation and cosine
similarity. The mathematical definition of these measures is reported in the fol-
lowing. In our experiments, to avoid biases, similarities have been computed
only between users/items with support greater or equal than 5, that is, given
u, v ∈ U , |Iuv| ≥ 5, and, similarly, given i, j ∈ I, |Uij | ≥ 5, where Iuv ≡ Iu ∩ Iv,
and Uij ≡ Ui ∩ Uj .

Pearson’s correlation:
– user-based

pearson (ru, rv) =

∑
i∈Iuv

(rui − r̄u) (rvi − r̄v)
√∑

i∈Iuv
(rui − r̄u)2

∑
i∈Iuv

(rvi − r̄v)
2
;

– item-based

pearson (ri, rj) =

∑
u∈Uij

(rui − r̄i) (ruj − r̄j)
√∑

u∈Uij
(rui − r̄i)

2 ∑
u∈Uij

(ruj − r̄j)
2
;

where r̄(·) is the average ratings of the user/item.
Cosine similarity: user-based (left) and item-based (right)

cos (ru, rv) =

∑
i∈Iuv

rui · rvi
√∑

i∈Iu
r2ui

∑
j∈Iv

r2vj

, cos (ri, rj) =

∑
u∈Uij

rui · ruj
√∑

u∈Ui
r2ui

∑
u∈Uj

r2uj

.

The neighborhood reconstruction evaluation procedure is summarized in
Algorithm 2. Given the crawled data (by a crawling strategy), the similarity
matrix is computed and compared with the similarity matrix computed on
the whole dataset. The evaluation is performed in terms of the overlap size
between the k most similar users/items computed with the crawled data and the
whole dataset. The higher the overlap size, the higher the value of the crawled
information.

Big Enough to Care Not Enough to Scare! 175

Table 2. Summary of the diverse attack models. Note that the filler size (f) and the
selection size (s) are attack parameters. r̄I and r̄i respectively indicate the average
rating over all items, and the average rating of i over all users. sI and si are the
corresponding standard deviations. pop stands for popular items, and sam(X,n) is a
random sampling function over X of dimension n. Items in the set I∅ are associated
to a missing rating (i.e., null).

Ratings

Attack IS IF S F T

Random ∅ sam(I \ IT , f) – N (r̄I , sI) rmax

Average ∅ sam(I \ IT , f) – N (r̄i, si) rmax

Bandwagon rand. sam(pop, s) sam(I \ IT , f) rmax N (r̄I , sI) rmax

Bandwagon avg. sam(pop, s) sam(I \ IT , f) rmax N (r̄i, si) rmax

Algorithm 2: Neighborhood Reconstruction Evaluation
Input: R: rating matrix;crawler : crawling algorithm, p: percentage of node to

visit, p ∈ [0, 1]; sim: similarity measure, x: target node (user/item)
Output: overlap percentage ∀k ∈ {10, 20, 50, 100, 200}

1 construct G, the user-rating bipartite graph, from R
/* extracts the sub-graph of G using the algorithm crawler starting

from node x visiting 100p% nodes of G */

2 G′ ← crawler(G, p, x)
/* computes the similarity, according to sim between x and all the

other nodes, of the same type, in the graph. */

3 SG ← argsort sim(x,G)
4 SG′ ← argsort sim(x,G′)
5 O ← []
6 for k ∈ {10, 20, 50, 100, 200} do
7 Sk ← set(SG[: k])
8 S ′

k ← set(S′
G[: k])

9 Ok ← |Sk∩S′
k|

k

10 end
11 return O

5 Experiments and Results

We conduct experiments for each of the phases described in the previous sections.
First, we compare the crawling strategies in terms of coverage of a recommen-
dation graph. Then, starting from the crawled information (Sect. 5.1):

– we assess whether standard shilling attacks are as effective as they were built
upon the full data (Sect. 5.2);

– we measure the informative value of the crawled data by reconstructing the
neighborhood of a target node. If the reconstruction is sufficiently good, then

176 F. Aiolli et al.

the collected data has collaborative value, and it can be leveraged by com-
petitors (Sect. 5.3).

5.1 Crawling and Recommendation Graph Coverage

The first set of performed experiments compares the crawling algorithm’s effec-
tiveness in terms of graph (edge) coverage fixing the number of the visited node.
Experiments have been performed for the data sets described in Table 1, and in
particular, we fix a maximum number of nodes defined in terms of percentage
w.r.t. the whole graph. Results are reported in Fig. 3. We do not report the
pagerank algorithm since it is computationally prohibitive, and in practice, it
achieves performance comparable with the ones of the backlink algorithm.

Fig. 3. Graph coverage of the crawling algorithms across different datasets.

Unsurprisingly, in all the cases, the worst-performing algorithm is random,
while the best ones are backlink and backlink++. It is also worth mentioning the
poor coverage of the breadth-first algorithm, which is not much higher than the
random algorithm. This is due to its ordering policy, which is not informed. It

Big Enough to Care Not Enough to Scare! 177

simply visits the first node in the frontier queue; hence the prioritization is not
better than choosing a completely random node. However, the way the graph
is explored is highly different from the other strategies, and we expect very
different performance in the successive experiments. It is also worth noticing
that the percentage of node visited is not a direct indicator of how much the
crawling procedure can cover the graph. An evident example is the difference
between ml-1m and ml-20m where for both, 1% of the nodes has been visited. The
core difference, in this case, is the connectivity of the graph (see Table 1). Even
though ml-20m is more sparse than ml-1m, its connectivity is higher (on average)
but with a higher variance. This means that it contains many hub nodes [16,20]
that allows covering in a single visit many edges explaining the huge difference
in the resulting coverage.

5.2 Shilling Attack Using Crawled Information

With this experiment, we want to assess whether a shilling attack is influenced
by the amount and type of information that the attacker possesses. In particular,
we test whether crafting malicious user profiles using crawled data harms stan-
dard shilling attacks’ effectiveness. We chose a popular k-nearest neighbour [30]
recommender system (k = 40) as the target recommendation engine. Each attack
is a push attack performed over a target item selected from the most popular
items’ second quintile. The size of the attacks has been set to 5% of the entire
data set. Additionally, the filler percentage has been set to 5%. The experiment
has been performed on the ml-1m dataset. The crawling algorithm stopped after
visiting 0.5% of the graph that corresponds to roughly 50 nodes. We argue that
the visited percentage would be much lower in a real setting and with limited
resources. The performance of the attacks has been measured in terms of predic-
tion shift, i.e., how the average rating of the target item changes before and after
the attack, and hit@n in which, given a rank R and an item i, hit@n(R, i) = 1
iff i is in the first n positions of R, 0 otherwise. The results of the experiment
are reported in Fig. 4.

It is evident from the figure that in terms of hit@10, having the full knowledge
of the rating matrix increases the attack’s effectiveness. The only exception is
the Bandwagon average attack in which all methods achieve an hit@10 around
10/15%. However, on average, it is clear that crafting user profiles on crawled
information is less harmful to the targeted system.

We also check whether the crafted profiles are also easier to be detected
using standard statistical detection mechanisms [2,34], such as RDMA, WDA,
WMDA, FMTD, and MeanVar. We discovered that all the crafted profiles are
detected by each of the detection methods in all cases. This further supports the
previous results underlining that performing a shilling attack on crawled data
can hardly be successful.

178 F. Aiolli et al.

Fig. 4. Comparison of different (push) shilling attacks based on data crawled using
different algorithms (and the full dataset) on ml-1m. Reported results are in Hit@10%
over all users that do not rated the target item. Target item has been randomly selected
from the 2nd quintile of the most popular items. On average, the prediction shift has
been +0.6 for all methods. On the x axis, bwr means Bandwagon Random, and bwa
means Bandwagon Average.

random breadth backlink backlink++

10 20 50 100 200

0

20

40

60

k

ov
er
la
p

(%
)

ml-100k - 1% crawled

10 20 50 100 200

0

2

4

k

ml-1m - .1% crawled

10 20 50 100 200
−2

0

2

4

6

k

ov
er
la
p

(%
)

ml-20m - .01% crawled

10 20 50 100 200

0

20

40

k

Netflix - .01% crawled

Fig. 5. Neighborhood reconstruction using user-based Pearson’s correlation. The
results are the average (± standard deviation) over five randomly selected users. k
on the x-axis is the dimension of the considered neighborhood.

Big Enough to Care Not Enough to Scare! 179

5.3 Neighborhood Reconstruction

In this section, we discuss the achieved results reconstructing the neighborhood.
These experiments have been performed following the procedure described in
Sect. 4.4. Figure 5 shows the overlap percentage of the neighborhood reconstruc-
tion using a user-based similarity based on Pearson’s correlation.

The first observation regards the random crawling strategy that does not
allow almost any kind of neighborhood reconstruction. This is intuitively rea-
sonable since this strategy does not consider any properties of the nodes/graph
to prioritize the nodes. On average, backlink++ is the most successful strategy,
but, as we already mentioned, it is not always applicable. However, even though
its coverage performance is not as good, breadth-first can achieve comparable
results w.r.t. backlink++. It is also worth to notice the backlink drop in per-
formance on the bigger datasets, namely ml-20m and Netflix. We argue that
this is due to the poor approximation quality of the degree of the nodes, i.e.,
the degree in the full graph (this is also supported by the higher gap in cover-
age w.r.t. backlink++, see Fig. 3) but it is surely something that needs further
investigation.

Figure 6 depicts the overlap percentage of the neighborhood reconstruction
using a item-based similarity based on cosine similarity. Note that we used

random breadth backlink backlink++

10 20 50 100 200

0

10

20

30

40

k

ov
er
la
p

(%
)

ml-100k - 1% crawled

10 20 50 100 200

0

10

20

30

k

ml-1m - 1% crawled

10 20 50 100 200

0

50

100

k

ov
er
la
p

(%
)

ml-20m - .1% crawled

10 20 50 100 200

0

5

10

15

k

Netflix - .1% crawled

Fig. 6. Neighborhood reconstruction using item-based cosine similarity. The results are
the average (± standard deviation) over five randomly selected average popular items.
k on the x-axis is the dimension of the considered neighborhood.

180 F. Aiolli et al.

a higher crawling percentage than the user-based case in ml-1m, ml-20m, and
Netflix.

The need to increase the crawling percentage underlines the fact that it is
harder to reconstruct an item’s neighborhood. This can be due to a longer tail
in the long tail distribution. However, it is further confirmed that breadth-first
works pretty well, with the only exception for Netflix. Strangely, here backlink
seems to be the best performing strategy. It can be noticed that, on average, the
reconstruction over the cosine similarity is easier than with Pearson’s correla-
tion. This can be seen more clearly when comparing these plots with the ones in
the Appendix (Figs. 7 and 8). We only reported user-based with Pearson’s corre-
lation and item-based with cosine similarity due to the page limit. In general, we
can state that it is possible for a competitor to collect useful knowledge crawling
a target e-service. The extent highly depends on the size of the target site and
available resources to perform the crawling. It empirically seems that a stan-
dard breadth-first strategy does the job nicely, but when possible using more
information to prioritize the crawling frontier (e.g.., backlink++) can improve
the results.

6 Conclusions and Future Work

In this paper, we discussed and assessed whether attacking an online RS can be
successful in a practical scenario where the attacker must collect useful data in
the first place. We can draw some conclusions about the vulnerability of online
recommendation services:

– When applicable, the backlink++ (our proposal) ensures good coverage of
the recommendation graph. In general, it is advisable to prioritize the crawl-
ing frontier using as much information as possible. When no information is
available, the backlink strategy is a good choice.

– The breadth-first strategy has shown pretty consistent results thanks to the
way the nodes are visited. Breadth-first ensures that the closest nodes to the
target are visited first when starting from the target node itself. This is a
good prioritization strategy when it comes to collect competitive knowledge
about the target item.

– In general, they are not enough. However, the Average Bandwagon attack has
shown to be less sensitive to the amount/quality of the collected information
(similar conclusion as in [4]). Unfortunately, all the tested attacks are easy to
detect and hence not effective in practice.

In future work, we aim to expand this analysis to other types of attacks and
perform a real attack on a running online recommendation service. Moreover,
it will be worth investigating new crawling policies that also use the content
information about the items rather than the graph’s mere structural information.

Acknowledgments. This work was supported by the European Commission under
the Horizon 2020 Programme (H2020), as part of the LOCARD project (Grant Agree-
ment no. 832735).

Big Enough to Care Not Enough to Scare! 181

A Neighborhood Reconstruction: User-Based with
Cosine Similarity

In Fig. 7, we depict the results for all four considered datasets for the neighbor-
hood reconstruction when using user-based cosine similarity.

random breadth backlink backlink++

10 20 50 100 200

0

20

40

60

80

k

ov
er
la
p

(%
)

ml-100k - 1% crawled

10 20 50 100 200

0

5

k

ml-1m - .1% crawled

10 20 50 100 200

0

10

20

30

k

ov
er
la
p

(%
)

ml-20m - .01% crawled

10 20 50 100 200

0

50

100

k

Netflix - .01% crawled

Fig. 7. Neighborhood reconstruction using user-based cosine similarity. The results are
the average (± standard deviation) over five randomly selected users. k on the x-axis
is the dimension of the considered neighborhood.

B Neighborhood Reconstruction: Item-Based with
Pearson’s Correlation

Finally, in Fig. 8, we depict the results for the neighborhood reconstruction when
using an item-based Pearson correlation.

182 F. Aiolli et al.

random breadth backlink backlink++

10 20 50 100 200

0

20

40

k

ov
er
la
p

(%
)

ml-100k - 1% crawled

10 20 50 100 200

0

5

10

k

ml-1m - .1% crawled

10 20 50 100 200

0

20

40

k

ov
er
la
p

(%
)

ml-20m - .1% crawled

10 20 50 100 200

0

5

10

15

k

Netflix - .1% crawled

Fig. 8. Neighborhood reconstruction using item-based Pearson’s correlation. The
results are the average (± standard deviation) over five randomly selected average
popular items. k on the x-axis is the dimension of the considered neighborhood.

References

1. Baeza-Yates, R., Castillo, C., Marin, M., Rodriguez, A.: Crawling a country: better
strategies than breadth-first for web page ordering. In: Special Interest Tracks and
Posters of the 14th International Conference on World Wide Web, WWW 2005,
New York, NY, USA, pp. 864–872. Association for Computing Machinery (2005).
https://doi.org/10.1145/1062745.1062768

2. Bhebe, W., Kogeda, O.P.: Shilling attack detection in collaborative recommender
systems using a meta learning strategy. In: 2015 International Conference on
Emerging Trends in Networks and Computer Communications, pp. 56–61 (2015)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In:
Proceedings of the Seventh International Conference on World Wide Web, WWW
2007, pp. 107–117. Elsevier, NLD (1998)

4. Burke, R., Mobasher, B., Bhaumik, R.: Limited knowledge shilling attacks in col-
laborative filtering systems. In: Proceedings of the 3rd IJCAI Workshop in Intelli-
gent Techniques for Personalization (2005)

5. Chakrabarti, S.: Focused Web Crawling, pp. 1147–1155. Springer, Boston (2009).
https://doi.org/10.1007/978-0-387-39940-9 165

6. Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., Kleinberg, J.:
Automatic resource compilation by analyzing hyperlink structure and associated
text. In: Proceedings of the Seventh International Conference on World Wide Web
2007, WWW 2007, pp. 65–74. Elsevier, NLD (1998)

https://doi.org/10.1145/1062745.1062768
https://doi.org/10.1007/978-0-387-39940-9_165

Big Enough to Care Not Enough to Scare! 183

7. Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through URL order-
ing. Comput. Netw. ISDN Syst. 30(1), 161–172 (1998). https://doi.org/10.
1016/S0169-7552(98)00108-1. http://www.sciencedirect.com/science/article/pii/
S0169755298001081. Proceedings of the Seventh International World Wide Web
Conference

8. Christakopoulou, K., Banerjee, A.: Adversarial attacks on an oblivious recom-
mender. In: Proceedings of the 13th ACM Conference on Recommender Systems,
RecSys 2019, pp. 322–330. ACM (2019). https://doi.org/10.1145/3298689.3347031.
http://doi.acm.org/10.1145/3298689.3347031

9. Deldjoo, Y., Di Noia, T., Merra, F.A.: Assessing the impact of a user-item col-
laborative attack on class of users. In: In Proceedings of the 13th ACM RecSys
Workshop on Impact of Recommender Systems (ImpactRS@RecSys 2019) (2019).
http://sisinflab.poliba.it/publications/2019/DDM19

10. Eksombatchai, C., et al.: Pixie: a system for recommending 3+ billion items to
200+ million users in real-time. In: Proceedings of the 2018 World Wide Web
Conference, WWW 2018, pp. 1775–1784. WWW Conferences Steering Committee,
Republic and Canton of Geneva, CHE (2018). https://doi.org/10.1145/3178876.
3186183

11. Ester, M., Kriegel, H.P., Schubert, M.: Accurate and efficient crawling for relevant
websites. In: Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, VLDB 2004, pp. 396–407. VLDB Endowment (2004)

12. Fang, M., Yang, G., Gong, N.Z., Liu, J.: Poisoning attacks to graph-based recom-
mender systems. In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference, ACSAC 2018, New York, NY, USA, pp. 381–392. Association for
Computing Machinery (2018). https://doi.org/10.1145/3274694.3274706

13. Gomez-Uribe, C., Hunt, N.: The netflix recommender system: algorithms, business
value, and innovation. ACM Trans. Manage. Inf. Syst. 6(4) (2016). https://doi.
org/10.1145/2843948

14. Gunes, I., Bilge, A., Polat, H.: Shilling attacks against memory-based privacy-
preserving recommendation algorithms. TIIS 7, 1272–1290 (2013)

15. Gunes, I., Kaleli, C., Bilge, A., Polat, H.: Shilling attacks against recommender
systems: a comprehensive survey. Artif. Intell. Rev. 42(4), 767–799 (2012). https://
doi.org/10.1007/s10462-012-9364-9

16. Hara, K., Suzuki, I., Kobayashi, K., Fukumizu, K.: Reducing hubness: a cause
of vulnerability in recommender systems. In: Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2015, New York, NY, USA, pp. 815–818. Association for Com-
puting Machinery (2015). https://doi.org/10.1145/2766462.2767823

17. Holzmann, H., Anand, A., Khosla, M.: Delusive PageRank in incomplete graphs.
In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.)
COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 104–117. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-05411-3 9

18. Holzmann, H., Anand, A., Khosla, M.: Estimating PageRank deviations in crawled
graphs. Appl. Netw. Sci. 4, 86–107 (2019)

19. Hurley, N.J., O’Mahony, M.P., Silvestre, G.C.M.: Attacking recommender systems:
a cost-benefit analysis. IEEE Intell. Syst. 22(3), 64–68 (2007)

20. Knees, P., Schnitzer, D., Flexer, A.: Improving neighborhood-based collaborative
filtering by reducing hubness. In: Proceedings of International Conference on Mul-
timedia Retrieval, ICMR 2014, New York, NY, USA, pp. 161–168. Association for
Computing Machinery (2014). https://doi.org/10.1145/2578726.2578747

https://doi.org/10.1016/S0169-7552(98)00108-1
https://doi.org/10.1016/S0169-7552(98)00108-1
http://www.sciencedirect.com/science/article/pii/S0169755298001081
http://www.sciencedirect.com/science/article/pii/S0169755298001081
https://doi.org/10.1145/3298689.3347031
http://doi.acm.org/10.1145/3298689.3347031
http://sisinflab.poliba.it/publications/2019/DDM19
https://doi.org/10.1145/3178876.3186183
https://doi.org/10.1145/3178876.3186183
https://doi.org/10.1145/3274694.3274706
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://doi.org/10.1007/s10462-012-9364-9
https://doi.org/10.1007/s10462-012-9364-9
https://doi.org/10.1145/2766462.2767823
https://doi.org/10.1007/978-3-030-05411-3_9
https://doi.org/10.1145/2578726.2578747

184 F. Aiolli et al.

21. Koren, Y., Bell, R.: Advances in Collaborative Filtering, pp. 145–186. Springer,
Boston (2011). https://doi.org/10.1007/978-0-387-85820-3 5

22. Koster, M.: Robots in the web: threat or treat? ConneXions 9(4), 8–18 (1995)
23. Lawankar, A., Mangrulkar, N.: A review on techniques for optimizing web crawler

results. In: 2016 World Conference on Futuristic Trends in Research and Innovation
for Social Welfare (Startup Conclave), pp. 1–4 (2016)

24. Li, B., Wang, Y., Singh, A., Vorobeychik, Y.: Data poisoning attacks on
factorization-based collaborative filtering. In: Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS 2016, pp. 1893–1901
(2016). http://dl.acm.org/citation.cfm?id=3157096.3157308

25. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

26. Muñoz-González, L., Pfitzner, B., Russo, M., Carnerero-Cano, J., Lupu, E.C.: Poi-
soning attacks with generative adversarial nets. ArXiv abs/1906.07773 (2019)

27. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. In: WWW 1999 (1999)

28. Patel, K., Thakkar, A., Shah, C., Makvana, K.: A state of art survey on shilling
attack in collaborative filtering based recommendation system. In: Satapathy,
S.C.C., Das, S. (eds.) Proceedings of First International Conference on Infor-
mation and Communication Technology for Intelligent Systems: Volume 1. SIST,
vol. 50, pp. 377–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30933-0 38

29. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI 2009, Arlington, Virginia,
USA, pp. 452–461. AUAI Press (2009)

30. Ricci, F., Rokach, L., Shapira, B.: Recommender Systems Handbook. Springer,
Boston (2011). https://doi.org/10.1007/978-0-387-85820-3 25

31. Si, M., Li, Q.: Shilling attacks against collaborative recommender systems: a
review. Artif. Intell. Rev. 53(1), 291–319 (2018). https://doi.org/10.1007/s10462-
018-9655-x

32. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. 2009 (2009). https://doi.org/10.1155/2009/421425

33. Zhang, Y., Gao, H., Pei, G., Luo, S., Chang, G., Cheng, N.: A survey of research on
captcha designing and breaking techniques. In: 2019 18th IEEE International Con-
ference On Trust, Security and Privacy in Computing and Communications/13th
IEEE International Conference on Big Data Science and Engineering (Trust-
Com/BigDataSE), pp. 75–84 (2019)

34. Zhou, W., et al.: Shilling attacks detection in recommender systems based on tar-
get item analysis. PLoS ONE 10(7), 1–26 (2015). https://doi.org/10.1371/journal.
pone.0130968

https://doi.org/10.1007/978-0-387-85820-3_5
http://dl.acm.org/citation.cfm?id=3157096.3157308
https://doi.org/10.1007/978-3-319-30933-0_38
https://doi.org/10.1007/978-3-319-30933-0_38
https://doi.org/10.1007/978-0-387-85820-3_25
https://doi.org/10.1007/s10462-018-9655-x
https://doi.org/10.1007/s10462-018-9655-x
https://doi.org/10.1155/2009/421425
https://doi.org/10.1371/journal.pone.0130968
https://doi.org/10.1371/journal.pone.0130968

Active Re-identification Attacks on Periodically
Released Dynamic Social Graphs

Xihui Chen, Ema Këpuska, Sjouke Mauw, and Yunior Ramı́rez-Cruz(B)

SnT, DCS, University of Luxembourg, 6, av. de la Fonte, 4364 Esch-sur-Alzette, Luxembourg
{xihui.chen,sjouke.mauw,yunior.ramirez}@uni.lu,

kepuskaema@gmail.com

Abstract. Active re-identification attacks pose a serious threat to privacy-
preserving social graph publication. Active attackers create fake accounts to
enforce structural patterns that can be used to re-identify legitimate users on pub-
lished anonymised graphs, even without additional background knowledge. So
far, this type of attacks has only been studied in the scenario where the inher-
ently dynamic social graph is published once. In this paper, we present the first
active re-identification attack in the more realistic scenario where a dynamic
social graph is periodically published. Our new attack leverages tempo-structural
patterns, created by a dynamic set of sybil nodes, for strengthening the adver-
sary. We evaluate our new attack through a comprehensive set of experiments on
real-life and synthetic dynamic social graphs. We show that our new attack sub-
stantially outperforms the most effective static active attack in the literature by
increasing success probability by at least two times and efficiency by at least 11
times. Moreover, we show that, unlike the static attack, our new attack remains
at the same level of efficiency as the publication process advances. Additionally,
we conduct a study on the factors that may thwart our new attack, which can
help design dynamic graph anonymisation methods displaying a better balance
between privacy and utility.

Keywords: Dynamic social graphs · Privacy-preserving publication ·
Re-identification attacks · Active adversaries

1 Introduction

Social graphs are a valuable source of data for conducting societal studies, market anal-
yses, and other forms of complex data analysis. Analysts profit from social graph data
for conducting their studies, whereas data owners find additional business and public
service opportunities in making these data available to third parties. However, releas-
ing social network data raises serious privacy concerns, due to the sensitive nature
of the information contained in social graphs. Thus, the data needs to be properly
sanitised before publication. It has been shown that pseudonymisation, i.e. removing
users’ identities and personally identifying information from the data, is insufficient for
protecting sensitive information, as most users can be unambiguously re-identified in
the pseudonymised graph by means of simple structural patterns [2,10,15]. User re-
identification subsequently allows a malicious agent, or adversary, to infer relations
c© Springer Nature Switzerland AG 2020

L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 185–205, 2020.
https://doi.org/10.1007/978-3-030-59013-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_10

186 X. Chen et al.

between users, group affiliations, etc. A method allowing an adversary to re-identify
(a subset of) the users in a sanitised social graph is called a re-identification attack.
Numerous anonymisation methods have been proposed for publishing social graphs
that effectively resist re-identification attacks, e.g. [3,10,12,13,20,22,26,27]. These
methods depend on an adversary model, which encodes assumptions about the adver-
sary capabilities. There are two classes of adversaries in social graph publication. On
the one hand, passive adversaries exploit publicly available information obtainable from
online resources, public records, etc., without interacting with the social network before
publication. On the other hand, active adversaries interact with the network before the
sanitised dataset is released. Active adversaries operate by inserting fake accounts in the
network, commonly called sybil nodes, and creating connection patterns between these
fake accounts and a set of legitimate users, the victims. After the publication of the sani-
tised graph, the attacker uses these unique patterns for re-identifying the victims. Active
adversaries have been shown to be a serious threat to social graph publication [2,14],
as they remain plausible even if no public background knowledge is available.

Social networks are inherently dynamic. Moreover, analysts require datasets con-
taining dynamic social graphs for conducting tasks such as community evolution anal-
ysis [4], link prediction [11] and link persistence analysis [17]. Despite the need for
sanitised dynamic social graphs, studies on graph anonymisation have overwhelmingly
focused on the scenario where a social graph is released only once. The rather small
number of studies on dynamic social graph publication have addressed passive adver-
sary models only. Thus, the manners in which active adversaries can profit from a
dynamic publication scenario remain unknown. In this paper, we remedy this situa-
tion by formulating active re-identification attacks in the scenario of dynamic social
graphs. We consider a scenario where snapshots of the underlying dynamic graph are
periodically taken, sanitised, and published. We model active adversaries whose knowl-
edge consists in tempo-structural patterns, instead of exclusively structural patterns as
those used by the original (static) active adversaries. Moreover, in our model the adver-
sary knowledge is incremental and evolves along the publication process. The new
dynamic active attack is more effective than the alternative of executing independent
static attacks on different snapshots. Furthermore, it is also considerably more efficient
than the previous attacks, because it profits from temporal patterns to accelerate several
of its components.

Our Contributions. The main contributions of this paper are listed in what follows:

– We formulate, for the first time, active re-identification attacks in the scenario of
periodically released dynamic social graphs. We describe an instance of the new
attack strategy based on tempo-structural patterns for re-identification.

– We conduct a comprehensive set of experiments on real-life and synthetic dynamic
social graphs, which demonstrate that the dynamic active attack is at least two times
more effective than the alternative of repeatedly executing the strongest active attack
reported in the literature for the static scenario [14].

– Our experiments also show that, as the number of snapshots grows, the dynamic
active attack runs at least 11 times faster than the static active attack from [14].

Active Re-identification Attacks 187

– We analyse the factors that affect the effectiveness of our new attack. The conclu-
sions of this study serve as a starting point for the development of anonymisation
methods for the periodical publication scenario.

2 Related Work

Re-identification attacks are a relevant threat for privacy-preserving social graph
publication methods that preserve a mapping between the real users and a set of
pseudonymised nodes in the sanitised release, e.g. [3,10,12,13,20,22,26,27]. Depend-
ing on the manner in which the attacker obtains the knowledge used for re-identification,
these attacks can be divided into two classes: passive and active attacks. Passive adver-
saries collect publicly available knowledge, such as public profiles in other social net-
works, and searches the sanitised graph for vertices with an exact or similar profile. For
example, Narayanan and Shmatikov [15] used information from Flickr to re-identify
users in a pseudonymised subgraph of Twitter. Subsequently, a considerable number of
passive attacks have been proposed, e.g. [6,7,15,16,18,23]. On the other hand, active
adversaries interact with the real network before publication, and force the existence of
the structural patterns that allow for re-identification after release. The earliest exam-
ples of active attacks are the walk-based attack and the cut-based attack, introduced
by Backstrom et al. in [2]. Both attacks insert sybil nodes in the network, and create
connection patterns between the sybil nodes that allow their efficient retrieval in the
pseudonymised graph. In both attacks, the connection patterns between sybil nodes and
victims are used as unique fingerprints allowing re-identification once the sybil sub-
graph is retrieved. Due to the low resilience of the walk-based and cut-based attacks,
a robust active attack was introduced by Mauw et al. in [14]. The robust active attack
introduces noise-tolerant sybil subgraph retrieval and fingerprint mapping, at the cost of
larger computational complexity. The attack proposed in this paper preserves the noise
resiliency of the robust active attack, but puts a larger emphasis on temporal consistency
constraints for reducing the search space. As a result, for every re-identification attempt,
our attack is comparable to the original walk-based attack in terms of efficiency, and to
the robust active attack in terms of resilience against modifications in the graph.

Notice that, by itself, the use of connection fingerprints as adversary knowledge
does not make an attack active. The key feature of an active attack is the fact that the
adversary interacts with the network to enforce the existence of such fingerprints. For
example, Zou et al. [27] describe an attack that uses the distances of the victims to a set
of hubs as fingerprints. This is a passive attack, since hubs exist in the network without
intervention of the attacker.

The attacks discussed so far assume a single release scenario. A smaller number
of works have discussed re-identification in a dynamic scenario. Some works assume
an adversary who can exploit the availability of multiple snapshots, although they only
give a coarse overview of the increased adversary capabilities, without giving details on
attack strategies. Examples of these works are [21], which models a passive adversary
that knows the evolution of the degrees of all vertices; and [27], which models another
passive adversary that knows the evolution of a subgraph in the vicinity of the vic-
tims. An example of a full dynamic de-anonymization method is given in [5]. Although

188 X. Chen et al.

they do not model an active adversary, the fact that the method relies on the existence
of a seed graph makes it potentially extensible with an active first stage for seed re-
identification, as done for example in [19]. Our attack differs from the methods above
in the fact that it uses an evolving set of sybil nodes that dynamically interact with the
network and adapt to its evolution.

3 A Dynamic Active Attack on Periodical Graph Publication

In this section we describe the scenario where the owner of a social network periodically
publishes sanitised snapshots of the underlying dynamic social graph, accounting for
the presence of active adversaries. We describe this scenario in the form of an attacker-
defender game between the data owner and the active adversary. We first introduce
the basic notation and terminology, and give an overview of the entire process. Then,
we introduce the notions of temporal consistency, which are the backbone of the new
attack strategy. Finally, we give a detailed description of the publication process, along
with an instantiation of the attack strategy, which exploits tempo-structural patterns and
temporal consistency for dynamic re-identification.

3.1 Notation and Terminology

We represent a dynamic social graph as a sequence G = (G1, G2, . . . , Gi, . . .), where
each Gi is a static graph called the i-th snapshot of G. Each snapshot of G has the form
Gi = (Vi, Ei), where Vi is the set of vertices (also called nodes indistinctly throughout
the paper) and Ei ⊆ Vi × Vi is the set of edges. We will use the notations VG and
EG for the vertex and edge sets of a graph G. In this paper, we assume that graphs
are simple and undirected. The neighbourhood of a vertex v in a graph G is the set
NG(v) = {w ∈ V | (v, w) ∈ E}, and its degree is δG(v) = |NG(v)|. For the sake
of simplicity, in the previous notations we drop the subscript when it is clear from the
context and simply write N(v), δ(v), etc. For a subset of nodes S ⊆ VG, we use 〈S〉G

to represent the subgraph of G induced by S, i.e. 〈S〉G = (S,EG ∩ (S×S)). Similarly,
the subgraph of G weakly induced by S is defined as 〈S〉w

G = (S ∪ NG(S), EG ∩ (S ×
(S ∪ NG(S)))). For every graph G and every S ⊆ VG, 〈S〉G is a subset of 〈S〉w

G, as
〈S〉w

G additionally contains the neighbourhood of S and every edge between elements
of S and their neighbours. Also notice that 〈S〉w

G does not contain the edges linking
pairs of elements of NG(S). An isomorphism between two graphs G = (V,E) and
G′ = (V ′, E′) is a bijective function ϕ : V → V ′ such that ∀v,w∈V (v, w) ∈ E ⇐⇒
(ϕ(v), ϕ(w)) ∈ E′. Additionally, we denote by ϕ(S) the restriction of ϕ to a vertex
subset S ⊆ V , that is ϕ(S) = {ϕ(v) | v ∈ S}.

3.2 Overview

Figure 1 depicts the process of periodical graph publication in the presence of an active
adversary. We model this process as a game between two players, the data owner and
the adversary. The data owner selects a set of time-stamps T = {t1, t2, . . . , ti, . . .},
t1 < t2 < . . . < ti < . . ., and incrementally publishes the sequence G� = (G�

t1 , G
�
t2 ,

Active Re-identification Attacks 189

t1

t2

...

ti

...

Gt1

Gt2

...

Gti

...

connect

update connection

...

update connection

G+
t1

G+
t2

G+
ti

...

anonymise

anonymise

anonymise

...

G�
t1

G�
t2

G�
ti

...

re-identify

re-identify

re-identify

...

sybil subgraph

sybil subgraph

sybil subgraph

create

update

update

φt1 : VG�
t1

→ Yt1

φt2 : VG�
t2

→ Yt2

φti : VG�
ti

→ Yti

...

...
...

...
...

...
...

evolve

evolve

evolve

Legit. user
activity

Sybil injection Re-identificationPublication

Adversary Data Owner Adversary

Fig. 1. Overview of periodical graph publication in the presence of active adversaries.

. . . , G�
ti

, . . .) of sanitised snapshots of the underlying dynamic social graph. The adver-
sary’s goal is to re-identify, in a subset T ′ ⊆ T of the releases, a (possibly evolving) set
of legitimate users referred to as the victims. To achieve this goal, the active adversary
injects an (also evolving) set of fake accounts, commonly called sybils, in the graph.
The sybil accounts create connections among themselves, and with the victims. The
connection patterns between each victim and some of the sybil nodes is used as a unique
fingerprint for that victim. The likely unique patterns built by the adversary will enable
her to effectively and efficiently re-identify the victims in the sanitised snapshots. At
every re-identification attempt, the adversary first re-identifies the set of sybil nodes,
and then uses the fingerprints to re-identify the victims.

The data owner and the adversary have different partial views of the dynamic social
graph. On the one hand, the data owner knows the entire set of users, both legitimate
users and sybil accounts, but she cannot distinguish them. The data owner also knows
all relations. On the other hand, the adversary knows the identity of her victims and
the structure of the subgraph weakly induced by the set of sybil nodes, but she does
not know the structure of the rest of the network. In this paper we conduct the analysis
from the perspective of an external observer who can view all of the information. We
will use the sequence G+ = (G+

t1 , G
+
t2 , . . . , G

+
ti

, . . .) to denote the view of the network
according to the data owner, i.e. the real network containing the nodes representing all
users, both legitimate and malicious. Further we use G = (Gt1 , Gt2 , . . . , Gti

, . . .) to
represent the view of the unattacked network, that is the view of the dynamic subgraph
induced in G+ by the nodes representing legitimate users.

In the original formulation of active attacks, a single snapshot of the graph is
released, so all actions executed by the sybil nodes are assumed to occur before the
publication. This is not the case in the scenario of a periodically released dynamic
social graph. Here, the adversary has the opportunity to schedule actions in such a way

190 X. Chen et al.

that the subgraph induced by the sybil nodes evolves, as well as the set of fingerprints.
In turn, that allows her to use temporal patterns in addition to structural patterns for
re-identification. Additionally, the adversary can target different sets of victims along
the publication process and adapt the induced tempo-structural patterns to the evolution
of the graph and the additional knowledge acquired in each re-identification attempt. In
the new scenario, the actions performed by the adversary and the data owner alternate
as follows before, during and after each time-stamp ti ∈ T .

Before ti, the adversary may remain inactive, or she can modify the set of sybil
nodes, as well as the set of sybil-to-sybil and sybil-to-victim edges. The result of these
actions is the graph G+

ti
= (Vti

∪ Sti
, Eti

∪ E+
ti
), where Vti

is the current set of
legitimate users, Sti

is the current set of sybil nodes, Yti
⊆ Vti

is the current set of
victims, Eti

= EGti
⊆ Vti

×Vti
is the set of connections between legitimate users, and

E+
ti

⊆ (Sti
× Sti

)∪ (Sti
× Yti

) is the set of connections created by the sybil accounts.
The subgraph 〈Sti

〉w
G+

ti

, weakly induced in G+
ti

by the set of sybil nodes, is the sybil

subgraph. We refer to the set of modifications of the sybil subgraph executed before the
adversary has conducted any re-identification attempt as sybil subgraph creation. If the
adversary has conducted a re-identification attempt on earlier snapshots, we refer to the
modifications of the sybil subgraph as sybil subgraph update.

During ti, the data owner applies an anonymisation method to G+
ti

to obtain the
sanitised version G�

ti
, which is then released. The anonymisation must preserve the

consistency of the pseudonyms. That is, every user must be labelled with the same
pseudonym throughout the sequence of snapshots where it appears. Consistent anno-
tation is of paramount importance for a number of analysis tasks such as community
evolution analysis [4], link prediction [11], link persistence analysis [17], among others,
that require to track users along the sequence of releases. The data owner anonymises
every snapshot exactly once.

After ti, the adversary adds G�
ti

to her knowledge. At this point, she can remain
inactive, or execute a re-identification attempt on G�

ti
. The result of a re-identification

attempt is a mapping φti
: VG�

ti
→ Yti

determining the pseudonyms assigned to the
victims by the anonymisation method. The adversary can additionally modify the results
of a re-identification attempt executed on some of the preceding releases.

3.3 Temporal Consistency Constraints

As we discussed in Sect. 3.2, the data owner must assign the same time-persistent
pseudonym to each user throughout the subsequence of snapshots where it appears.
Since the adversary receives all sanitised snapshots, she is able to determine when a
pseudonym was used for the first time, whether it is still in use, and in case it is not,
when it was used for the last time. In our attack, the adversary exploits this informa-
tion in all stages of the re-identification process. For example, consider the follow-
ing situation. The set of sybil nodes at time-step t6 is St6 = {s1, s2, s3, s4}. The
adversary inserted s1 and s2 in the interval preceding the publication of G�

t2 . Addi-
tionally, she inserted s3 before the publication of G�

t3 and s4 before the publication of
G�

t5 . After the release of G�
t6 , during the sybil subgraph retrieval phase of the first re-

identification attempt, the adversary needs to determine whether a set X ⊆ VG�
t6

, say

Active Re-identification Attacks 191

X = {v1, v2, v3, v4}, is a valid candidate. Looking at the first snapshot where each of
these pseudonyms was used, the adversary observes that v1 and v3 were first used in
G�

t2 , so they are feasible matches for s1 and s2, in some order. Likewise, v2 was first
used in G�

t5 , so it is a feasible match for s4. However, she observes that v4 was first used
in G�

t4 , unlike any element of St6 . From this observation, the adversary infers that X is
not a valid candidate, regardless of how structurally similar 〈X〉w

G�
t6

and 〈St6〉w
G+

t6

are.

We now formalise the different types of constraints used in our attack. To that end,
we introduce some new notation. The function α+ : ∪ti∈T VG+

ti

→ T yields, for every

vertex v ∈ ∪ti∈T VG+
ti

, the order of the first snapshot where v exists, that is α+(v) =

min{{ti ∈ T | v ∈ VG+
ti

}}. Analogously, the function α� : ∪ti∈T VG�
ti

→ T yields

the order of the first snapshot where each pseudonym is used, that is α�(x) = ti ⇐⇒
∃v∈V

G
+
ti

α+(v) = ti ∧ ϕti
(v) = x. Clearly, the adversary knows the values of the

function α� for all pseudonyms used by the data owner. Additionally, she knows the
values of α+ for all of her sybil nodes. These functions allow us to define the notion of
first-use-as-sybil consistency, which is used by the sybil subgraph retrieval method.

Definition 1. Let X ⊆ VG�
ti

be a set of pseudonyms such that |X| = |Sti
| and let

φ : Sti
→ VG�

ti
be a mapping from the set of real sybil nodes to the elements of X .

We say that X and Sti
satisfy first-use-as-sybil consistency according to φ, denoted as

X �φ Sti
, if and only if ∀s∈Sti

α+(s) = α�(φ(s)).

Note that first-use-as-sybil consistency depends on the order in which the elements
of the candidate set are mapped to the real sybil nodes, which is a requirement of the
sybil subgraph retrieval method. We define an analogous notion of first use consistency
for victims. In this case, the adversary may or may not know the value of α+. In our
attack, we assume that she does not, and introduce an additional function to represent
the temporal information the adversary must necessarily have about victims. The func-
tion β+ : ∪ti∈T Yti

→ T yields, for every v ∈ ∪ti∈T Yti
, the order of the snapshot

where v was targeted for the first time, that is β+(v) = min{{ti ∈ T | v ∈ Yti
}}. The

new function allows us to define the notion of first-time-targeted consistency, which is
used in the fingerprint matching method.

Definition 2. Let v ∈ VG�
ti
be a victim candidate and let y ∈ Yti

be a real victim. We
say that v and y satisfy first-time-targeted consistency, denoted as v � y, if and only if
α�(v) ≤ β+(y).

This temporal consistency notion encodes the rationale that the adversary can ignore
during fingerprint matching those pseudonyms that the data owner used for the first time
after the corresponding victim had been targeted. Next, we define the notion of sybil-
removal-count consistency, which is used by the re-identification refinement method to
encode the rationale that a sybil set candidate X , for which no temporal inconsistencies
were found during the ti-th snapshot, can be removed from Xti

when the ti+1-th snap-
shot is released, if the number of sybil nodes removed by the adversary in the interval
between these snapshots does not match the number of elements of X that cease to exist
in G�

ti+1
.

192 X. Chen et al.

Definition 3. We say that a set of pseudonyms X ⊆ VG�
ti
satisfies sybil-removal-count

consistency with respect to the pair (Sti
, Sti+1), which we denote as X � (Sti

, Sti+1),
if and only if |X \ VG�

ti+1
| = |Sti

\ Sti+1 |.

In certain social networks, the adversary can detect when one victim leaves the
network, e.g. by detecting that all connections to the victim from her sybil nodes are
simultaneously lost. From this, the adversary infers that the victim’s pseudonym will
not be present in the next release of the graph. This rationale can be used to further
refine the re-identification of victims in previously released snapshots, by discarding
those mappings where the pseudonyms continue to be present in the snapshots released
after the corresponding victims terminate their membership of the network. To encode
this rationale, the function γ+ : ∪ti∈T VG+

ti

→ T yields the order of the last snapshot

where a node is present in the social network. Note that the adversary is certain about
γ+(s) for every sybil node s. Analogously, the function γ� : ∪ti∈T VG�

ti
→ T yields

the order of the last snapshot where a pseudonym appears. By comparing the vertex sets
of two consecutive snapshots, the adversary can learn γ�(v) for any pseudonym v.

Definition 4. Let v ∈ VG�
ti
be a victim candidate and let y ∈ Yti

be a real victim. We
say that v and y satisfy last-time-targeted consistency, denoted as v �� y, if and only if
γ�(v) = γ+(y).

In what follows, we discuss how the temporal consistency constraints introduced in
Definitions 1 to 4 are used in our new dynamic re-identification attack.

3.4 Stages of the Attacker-Defender Game

We now discuss the actions performed by the data owner and the adversary at every
time-stamp ti. We first discuss sybil subgraph creation and update, then graph publica-
tion, and finally re-identification.

Sybil Subgraph Creation. The adversary can build the initial sybil subgraph along
several releases. This allows the creation of tempo-structural patterns incorporating
information about the first snapshot where each sybil node appears, to facilitate the
sybil subgraph retrieval stage during re-identification. As in all active attacks, the pat-
terns created must ensure that, with high probability, 〈Sti

〉w
G+

ti

is unique. We denote by

Fti
(y) the fingerprint of a victim y ∈ Yti

in terms of Sti
. Throughout this paper we

consider that Fti
(y) is uniquely determined by the neighbourhood of y in Sti

, that is
Fti

(y) = Sti
∩ NG+

y
. We denote by Fti

the set of fingerprints of all victims in G+
ti

.

Sybil Subgraph Update. In this step, the adversary can modify the set of sybil nodes,
by adding new sybil nodes or replacing existing ones. The adversary can also mod-
ify the inter-sybil connections and the fingerprints. Sybil subgraph update is executed
after at least one re-identification attempt has been conducted, so the adversary can use
information from this attempt, such as the level of uncertainty in the re-identification, to
decide the changes to introduce in the sybil subgraph. Finally, if the number of finger-
prints that can be constructed using the new set of sybil nodes is larger than the previous
number of targeted victims, that is 2|Sti

| − 1 > |Yti−1 |, the adversary can additionally

Active Re-identification Attacks 193

target new victims, either new users that joined the network in the last inter-release
interval, or previously enrolled users that had not been targeted so far. In the latter case,
even if these victims had not been targeted before, the consistency of the labelling in the
sequence of sanitised snapshots entails that a re-identification in the ti-th snapshot can
be traced back to the previous ones. Additional details on the implementation of sybil
subgraph creation and update in the instantiation of the dynamic active attack presented
in this paper can be found in Appendix A.

Graph Publication. At time step ti, the data owner anonymises G+
ti

and pub-
lishes the sanitised version G�

ti
. We formally view anonymisation as a two-step pro-

cess. The first step is pseudonymisation, which consists in building an isomorphism
ϕti

: VG+
ti

→ V ′�
ti

, with V ′�
ti

∩ VG+
ti

= ∅, that replaces every real identity in G+
ti

for a

pseudonym. The pseudonymised graph is denoted as ϕti
G+

ti
. If i = 1, all pseudonyms

are freshly generated. In the remaining cases, the pseudonyms for previously exist-
ing vertices are kept, and fresh pseudonyms are assigned to new vertices. The sec-
ond step of the anonymisation process consists in applying a perturbation method
Φti

: ϕti
G+

ti
→ (V �

ti
, V �

ti
× V �

ti
) to the pseudonymised graph. Perturbation consists in

editing the vertex and/or edge sets of the pseudonymised graph. Finally, the data owner
releases the graph G�

ti
obtained as the result of applying pseudonymisation on G+

ti
and

perturbation on ϕti
G+

ti
.

First Re-identification Attempt. The first re-identification attempt is composed of two
steps, sybil subgraph retrieval and fingerprint matching. Sybil subgraph retrieval con-
sists in the following substeps:

1. Find in G�
ti

a set Xti
= {X1,X2, . . . , Xp}, Xj ⊆ VG�

ti
, of candidate sybil sets. For

every X ∈ Xti
, the graph 〈X〉w

G�
ti

is a candidate sybil subgraph. In the instantiation

of the dynamic active attack presented in this paper, we apply two filtering criteria:
(i) Every element X of Xti

must satisfy Δ(〈X〉w
G�

ti

, 〈Sti
〉w
G+

ti

) ≤ θti
, where Δ is

the structural dissimilarity function defined in [14] and θti
is a tolerance thresh-

old. The value of θti
may be fixed (as in [14]), or it may be increased as new

snapshots are released in order to adapt to the accumulation of modifications in
successive instances of the graph publication step.

(ii) Every element of Xti
must satisfy the first-use-as-sybil consistency constraint

with respect to 〈St1〉w
G+

t1

, 〈St2〉w
G+

t2

, . . . , 〈Sti−1〉w
G+

ti−1

.

2. If Xti
= ∅, the attack fails. Otherwise, proceed to fingerprint matching (step 2).

For its part, fingerprint matching consists in the following substeps:

1. Select one element X ∈ Xti
with probability 1

|Xti
| .

2. Using X and Fti
, find a set of candidate mappings YX = {φ1, φ2, . . . , φq}, where

every φj (1 ≤ j ≤ q) has the form φj : VG�
ti

\ Sti
→ Yti

. Every element of YXti

represents a possible re-identification of the victims in G�
ti

. In the instantiation of
the dynamic active attack presented in this paper, YXti

is composed of the elements
simultaneously satisfying two criteria:

194 X. Chen et al.

(i) Maximise the noise-tolerant fingerprint similarity function defined in [14], pro-
vided that the similarity is above a threshold η.

(ii) Satisfy the first-time-targeted and last-time-targeted consistency constraints
with respect to Ft1 ,Ft2 , . . . ,Fti−1 .

3. If YX ′
ti
= ∅, the attack fails. Otherwise, select one element of YX ′

ti
and give it as the

result of the re-identification. As in the previous steps, every specific attack defines
how the selection is made.

The combination of structural similarity and temporal consistency in steps 1.a and
2.b considerably speed-up the overall re-identification process, and increase its effec-
tiveness, as will be empirically demonstrated in Sect. 4. Additional details on the imple-
mentation of steps 1.a and 2.b are given in Appendix B.

Re-identification Refinement. As we discussed above, the first re-identification
attempt on G�

ti
can be executed immediately after the snapshot is published. Then, after

the publication of G�
tj

, j > i, the re-identification refinement step allows the adversary
to improve her certainty on the previous re-identification, by filtering out elements of
Xti

that fail to satisfy the sybil-removal-count consistency constraint with respect to
〈Sti

〉w
G+

ti

and 〈Stj
〉w
G+

tj

, and then repeating the fingerprint matching step, excluding the

candidate nodes that do not comply with the first-time-targeted or the last-time-targeted
consistency constraints.

4 Experiments

In this section, we empirically evaluate our new dynamic active attack. Our evaluation
has three goals. First, we show that our dynamic attack outperforms the alternative of
repeatedly executing Mauw et al.’s static robust active attack [14] in terms of both effec-
tiveness and efficiency. Secondly, we determine the factors that affect the performance
of our new attack, and evaluate their impact. From this analysis, we derive a number
of recommendations allowing data owners to balance privacy preservation and util-
ity in random perturbation methods for periodical social graph publication. Due to the
scarcity of real-life temporally labelled social graphs, and the complete non-existence
of datasets of this type where the phenomenon of users abandoning the social network
is observed, we conducted these experiments on synthetic dynamic social graphs. To
that end, we developed a flexible synthesiser which generates synthetic dynamic graphs
with several parameter settings. Finally, we replicate the second experiment on two
real-life datasets, to show that some of the findings obtained on synthetic data remain
valid in practical scenarios. For simplicity, throughout this section we use the acronym
D-AA for our new dynamic attack and S-RAA for the static robust active attack.

4.1 Experimental Setting

We implemented an evaluation tool based on the attacker-defender game described in
Sect. 3. A dynamic social graph simulator loads a real-life dataset, or uses the synthe-
siser, to generate the sequence G = (Gt1 , Gt2 , . . . , Gti

, . . .) containing only legitimate

Active Re-identification Attacks 195

users. Each snapshot is then processed by a second module that simulates sybil sub-
graph creation or update. The output, which is the data owner’s view of the social graph,
is processed by a graph perturbation module, where we implement a simple perturba-
tion method based on cumulative noise addition. Finally, a fourth module simulates the
re-identification on the perturbed graph and computes the success probability of the
attack. Sybil subgraph creation and update, as well as re-identification, have been dis-
cussed in Sect. 3.4 (with extensive details given in Appendixes A and B, respectively).
We describe in what follows the implementation of the remaining modules.

Dynamic Social Graph Simulator. Our simulator allows us to conduct experiments on
temporally annotated real-life datasets, as well as synthetic datasets. In the first case,
the simulator extracts the graph snapshots from each dataset using a specific handler.
The simulator is parameterised with a sequence of time-stamps indicating when each
snapshot should be taken. A snapshot is built by taking all vertices and edges created at
a moment earlier or identical to the corresponding time-stamp and still not eliminated.

In the second case, our simulator synthesises a sequence of snapshots according to
the Barabási-Albert (BA) generative graph model [1]. We use BA because it preserves
the properties of real social graphs, namely power-law degree distribution, shrinking
diameter, and preferential attachment. The BA model has two parameters: the number
of nodes n0 of a (small) seed graph, and the initial degree Me (Me ≤ n0) of every
newly added node. The initial seed graph can be any graph. In our case we use a com-
plete graph Kn0 . Every time a new node v is added to the current version G of the BA
graph, Me edges are added between v and randomly selected vertices in VG. The prob-
ability of selecting a vertex w ∈ VG for creating the new edge (v, w) is δG(w)∑

x∈VG
δG(x) , as

prescribed by preferential attachment. We simulate the phenomenon of users abandon-
ing the social network by removing z randomly selected nodes before creating a new
snapshot. The value of z is randomly selected in the interval [0, z∗], where z∗ is 10% of
the current number of nodes. The synthesiser takes four parameters as input: the param-
eter n0 of the BA model, the parameter Me of the BA model, the number nv of vertices
of the first snapshot, and the growth rate rΔ, which is defined as the proportion of new
edges with respect to the previous number. The parameters nv and rΔ determine when
snapshots are taken. The first snapshot is taken when the number of vertices of the graph
generated by the BA model reaches nv , and every other snapshot is taken when the ratio
between the number of new edges and that of the previous snapshot reaches rΔ.

Graph Perturbation via Cumulative Noise Addition. To the best of our knowledge,
all existing anonymisation methods against active attacks based on formal privacy prop-
erties [12,13] assume a single release scenario, and are thus insufficient for handling
multiple releases. Proposing formal privacy properties that take into account the speci-
ficities of the multiple release scenario is part of the future work. In our experiments,
we adapted the other known family of perturbation methods, random noise addition, to
the multiple release scenario. To account for the incrementality of the publication pro-
cess, the noise is added in a cumulative manner. That is, when releasing G�

ti
, the noise

incrementally added on G�
t1 , G�

t2 , . . . , G�
ti−1

is re-applied on the pseudonymised graph

ϕti
G+

ti
to obtain an intermediate noisy graph G̃�

ti
, and then fresh noise is added on G̃�

ti

to obtain the graph G�
ti

that is released. In re-applying the old noise, all noisy edges

196 X. Chen et al.

incident in a vertex v ∈ VG�
ti−1

\ Vϕti
G+

ti

, removed after the release of G�
ti−1

, are for-

gotten. The fresh noise addition consists in randomly flipping a number of edges of G̃�
ti

.
For every flip, a pair (v, w) ∈ VG̃�

ti

× VG̃�
ti

is uniformly selected and, if (v, w) ∈ EG̃�
ti

,

the edge is removed, otherwise it is added. The cumulative noise addition method has
one parameter: the amount of fresh noise to add in each snapshot, called noise ratio
and denoted Ωnoise . It is computed with respect to |EG̃�

ti

|, the number of edges of the

pseudonymised graph after restoring the accumulated noise.

Success Probability. As in previous works on active attacks for the single release sce-
nario [12–14], we evaluate the adversary’s success in terms of the probability that she
correctly re-identifies all victims, which in our scenario is computed by the following
formula for the ti-th snapshot:

Pr
(ti)
succ =

⎧
⎨

⎩

∑
X∈Xti

p
(ti)
X

|Xti
| if Xti

�= ∅
0 otherwise

, with p
(ti)
X =

{ 1
|YX | if ∃φ∈YX

φ−1 = ϕti
|Yti

0 otherwise

and, as discussed in Sect. 3.4, ϕti
is the isomorphism applied on G+

ti
to obtain the

pseudonymised graph ϕti
G+

ti
. For every snapshot G�

ti
, we compute success probability

after the re-identification refinement is executed.

4.2 Results and Discussion

We begin our discussion with the comparison of D-AA and S-RAA. Then, we pro-
ceed to study the factors that affect the effectiveness of our attack, and characterise
their influence. Finally, we illustrate the effectiveness of our attack in practice using
the real-life datasets Petster [9] and BitcoinOTC [8]. For the first two sets of results,
we use synthetic dynamic graphs generated by our synthesiser. Table 1 summarises the
different configurations used for the generation. For each parameter combination, we
generated 100 synthetic dynamic graphs, and the results shown are the averages over
each subcollection. Every synthetic dynamic graph is grown up to the 20-th snaphsot.
In all cases, the number of new victims targeted in each new release is randomly chosen
in the interval [1, 5].

Table 1. Parameter combinations for the graph synthesiser.

n0 Me nv rΔ Ωnoise(%)

Comparison of D-AA and S-RAA 30 5 200, 400, 800 5% 0.5

Detailed analysis of our D-AA attack 30 5, 10 8000, 10000, 15000 5% 0.5, 1.0, 1.5, 2.0

As can be observed in the table, we used considerable smaller graphs for comparing
D-AA and S-RAA than the ones used for the detailed analysis of the factors influencing
the effectiveness of our new attack. The reason for this difference lies in the consider-
ably poorer performance, in terms of execution time, of the static attack. Since these

Active Re-identification Attacks 197

limits only apply to the static attack, the detailed analysis of our dynamic attack is per-
formed on considerably larger graphs. For example, for Me = 5 and nv = 15000, the
graphs generated at the 20-th snapshots have around 80000 nodes.

Fig. 2. Comparison of S-RAA and D-AA in terms of effectiveness (top) and efficiency (bottom).

Comparing D-AA and S-RAA. The goal of this comparison is to show that our
dynamic active attack outperforms the repeated execution of the original attack in both
effectiveness and efficiency. We use three parameter settings for the dynamic graph syn-
thesiser. We fix Me = 5 and set the initial number of vertices nv at 200, 400 and 800. In
all our experiments, sybil subgraph creation spans the first and second snapshots, and
the re-identification is executed for the first time on the second snapshot. Both attacks
are executed independently. That is, for every run we create two identical copies of
each synthetic graph to ensure that both attacks are compared in the same scenario, yet
the actions performed by D-AA have no impact on S-RAA, and vice versa. S-RAA is
allowed to create a fresh sybil subgraph for every snapshot and to increase its num-
ber of sybils if D-AA increases hers. In D-AA, we use the variable tolerance threshold
θti

= min{1500, 16 + 250 × (i − 2)2} for the i-th snapshot. Since S-RAA becomes
prohibitively slow with arbitrarily large values of θ, we run it with the fixed tolerance
threshold θ = 16, for which the attack runs in reasonable time for the largest graphs
used in this comparison. These settings guarantee that, to the largest possible extent,
D-AA is compared to the most effective feasible instantiation of S-RAA.

In Fig. 2 (top) we show the success probabilities of the two attacks on graphs with
different initial sizes. From these results, we can see that, as we had intuitively foreseen,
D-AA significantly outperforms S-RAA in terms of success probability. Except for a
few cases, D-AA outperforms S-RAA by at least a factor of 2 and by up to 4 in some
cases. Moreover, the average success probability of our attack remains above 0.5 in
almost all cases, whereas that of S-RAA never reaches this value. Figure 2 (bottom)
shows the average run times of S-RAA and D-AA in different scenarios. We can see
that D-AA runs in almost constant time on all snapshots, whereas S-RAA becomes
considerably slower as the graphs grow. In fact, D-AA runs at least 11 times faster than

198 X. Chen et al.

S-RAA in all cases, especially in late snapshots, where it runs up to 350 times faster
in some cases. This clearly shows that the use of temporal information in dynamic
social graphs helps D-AA to effectively avoid the computation overhead. Indeed, as the
released snapshots become larger, the number of equally similar matches (in terms of
structure alone) grows considerably, which dramatically increases the search space for
S-RAA. In this scenario, temporal consistency constraints allow D-AA to discard most
of the false positives and thus skip large areas of the search space.

Fig. 3. Factors influencing success probability of D-AA.

Factors Influencing our Attack. This analysis aims to serve as a guide for customis-
ing the settings of privacy-preserving publication methods for dynamic social graphs,
in particular for determining the amount of perturbation needed to balance the privacy
requirements and the utility of published graphs. We evaluate the impact of three factors
on the effectiveness of D-AA on dynamic graphs: the size of graphs, the speed of growth
between releases, and the amount of added noise. To that end, we analyse three param-
eters which determine these factors in our simulator: nv , Me, and Ωnoise . The number
nv of vertices in the initial snapshots determines the scale of the released graphs, while
the parameter Me of the BA model controls the number of new nodes and edges added
before the next release. Finally, Ωnoise determines the amount of added noise.

Figure 3 shows the success probability of our attack when different noise ratios
are applied on dynamic graphs with different initial sizes and growth speeds. Our first
observation is that the success probability decreases when more noise is applied. This
is a natural behaviour, as more perturbation makes it more difficult for the attacker
to find the correct sybil subgraph, either because it has been excessively perturbed to
be found as a candidate, or because edge perturbation makes other subgraphs appear
more similar to the original sybil subgraph. When Me = 5 and the noise ratio is set to
0.5%, success probability always remains above 0.5. For this value of Me, even with
Ωnoise at 2.0%, the attack still displays success probability above 0.5 in the first three
snapshots. Our second observation is that increases in noise ratio do not translate into

Active Re-identification Attacks 199

proportionally large decreases in success probability. Indeed, the largest drop in suc-
cess probability occurs when we increase Ωnoise from 0.5 to 1.0. This suggests that
arbitrarily increasing the amount of perturbation may not necessarily guarantee a better
privacy protection, but just damage the utility of the released graphs. Our third obser-
vation is that success probability values show a weak dependence on the initial size
of the graphs, with other parameters fixed. Finally, we observe that success probabil-
ity decreases faster, and is around 10% lower, snapshot-by-snapshot, when dynamic
graphs grow faster (in this case, when Me grows). Summing up, we observe that re-
identification risk decreases when more perturbation is applied, or when the graphs
grow faster, whereas the initial size of the graphs has a relatively small impact on the
attacker’s success probability.

Fig. 4. Factors influencing the utility of released graphs.

We evaluate the utility of released graphs (Fig. 4) in terms of three measures: the per-
centage of edge editions, the variation of the average local clustering coefficient, and the
Kullback-Leibler divergence of degree distributions. As all three measures present very
similar patterns for different values of nv , we only show the results for nv = 15000.
We have two major observations. First, as expected, the values of all three measures
increase as the noise accumulates, indicating that the utility of released graphs deterio-
rates. Even with Ωnoise set to just 1.0%, at the 10-th snapshot we can have up to 10%
of edges flipped and changes in edge density around 15%. Second, when the dynamic
graph grows faster, the impact of noise becomes smaller, as a larger number of legiti-
mate edges offsets the impact of noisy edges. Combining these results on utility with the
finding that larger growth speed results in smaller success probability for the attacker,
we can enunciate the following global recommendation for the design of publication
strategies and anonymisation methods for dynamic social graphs: the data owner should
publish dynamic social graphs that grow fast among releases, as they feature the best
balance between re-identification risk and utility.

Results on Real-Life Dynamic Social Graphs. We use two publicly available datasets
to validate to what extent the results reported on synthetic data remain valid in a more
realistic domain. The first one was collected from Petster, a website for pet owners to
communicate [9]. The Petster dataset is an undirected graph whose vertices represent
pet owners, and are labelled by their joining date. The graph contains 1898 vertices
and 16750 edges. We take a snapshot every six months. The second dataset was col-
lected from the platform BitcoinOTC, where users can trade with bitcoins. This plat-

200 X. Chen et al.

form allows members to rate others. In the resulting social graph, nodes represent mem-
bers and an edge between two nodes indicates that one of them rated the other. Every
edge is tagged with the date of the first rating between the corresponding pair of users.
The joining date of a member is set as the date when his first rating is posted. The graph
contains 5881 nodes and 21455 edges. We take the first snapshot at the 9th month, and
every other snapshot every 3 months, totalling 20 snapshots. Both datasets are incre-
mental, that is nodes are added but never removed.

Fig. 5. Evaluation on real-life datasets.

We present in Fig. 5 (top) the success probabilities of our D-AA attack on the two
datasets when the noise ratio is set to 0.5%, 1.0% and 1.5%. Compared to the suc-
cess probabilities discussed above on synthetic graphs, the curves have different shapes
and more fluctuations. This is because, instead of a fixed growth speed (determined by
rΔ and Me in our synthesiser), real-life graphs grow at different speeds in different
periods, as shown in Fig. 5 (bottom). For example, consider the evolution of Petster.
After the first few years of steady growth, it gradually lost its popularity, especially
in the last three years, where few new users joined. By cross-checking the attack’s
behaviour on Petster with the network’s evolution, we can see that the success prob-
ability changes with the amount of growth before the corresponding release. It first
increases steadily, due to the steady growth of the graph, until the fifth snapshot, which
shows an abrupt growth in the number of new vertices, along with a drop of success
probability. Then, when the growth slows down, the success probability also recovers;
and when the growth stops (from the 12-th snapshot), it starts increasing again, even
though the noise continues to accumulate. These observations validate our finding on
synthetic graphs that the speed of growth among releases is the dominating factor that
affects the success probability of our dynamic attack.

Active Re-identification Attacks 201

5 Conclusions

We have presented the first dynamic active re-identification attack on periodically
released social graphs. Unlike preceding attacks, our new attack exploits the inherent
dynamic nature of social networks by leveraging tempo-structural patterns, enforced by
a dynamic set of sybil nodes. Compared to the best static active attack, our new attack
significantly improves success probability, by at least two times, and efficiency, by at
least 11 times. Moreover, unlike the static attack, our new attack remains at the same
level of efficiency as the publication process advances. Through comprehensive experi-
ments on synthetic data, we determined the factors that influence the success probability
of our new attack against a data owner using cumulative noise addition for graph per-
turbation, namely the speed of growth and the amount of noise injected. These findings
can subsequently be used to develop dynamic graph anonymisation methods that bet-
ter balance privacy protection and the utility of the released graphs. Additionally, we
evaluated our attack on two real-life datasets, which allowed us to ascertain that these
findings obtained on synthetic data remain valid in practical scenarios.

Acknowledgements. This work received funding from Luxembourg’s Fonds National de la
Recherche (FNR), via grant C17/IS/11685812 (PrivDA).

A Implementation Details of Sybil Subgraph Creation and
Update

Sybil Subgraph Creation. Let G�
ti

be the first snapshot where the adversary conducts
a re-identification attempt. Sybil subgraph creation is executed during the entire time
window preceding ti. The adversary initially inserts a small number of sybil nodes, no

more than
⌊
log2

(
|VG+

ti

|
)⌋

. This makes the sybil subgraph very unlikely to be detected

by sybil defences [2,13,14,24,25], while allowing to create unique fingerprints for a
reasonably large number of potential initial victims. Spreading sybil injection over sev-
eral snapshots helps create temporal patterns that reduce the search space during sybil
subgraph retrieval. Inter-sybil edges are created in a manner that has been shown in [2]
to make the sybil subgraph unique with high probability. First, an arbitrary (but fixed)
order is established among the sybil nodes. In our case, we simply take the order in
which the sybils are created. Let s1 ≺ s2 ≺ . . . ≺ s|Sti

| represent the order established
among the sybils. Then, the edges (s1, s2), (s2, s3), . . . , (s|Sti

|−1, s|Sti
|) are added to

force the existence of the path s1s2 . . . s|Sti
|. Additionally, every other edge (sj , sk),

|j −k| ≥ 2, is added with probability 0.5. The initial fingerprints of the elements of Yti

are randomly generated (yet enforcing that all fingerprints are unique) by connecting
each victim to each sybil node with probability 0.5.

Sybil Subgraph Update. Let G�
ti−1

and G�
ti

be two consecutive releases occurring
after the first snapshot where the adversary conducted a re-identification attempt (G�

ti−1

itself may have been this snapshot). In the interval between G�
ti−1

and G�
ti

, the adversary
updates the sybil subgraph by adding and/or removing sybil nodes and inter-sybil edges,

202 X. Chen et al.

updating the fingerprints of (a subset of) the victims, and possibly targeting new victims.
We describe each of these modifications in detail in what follows.

Adding and Replacing Sybil Nodes. In our attack, the adversary is conservative
regarding the number of sybil nodes, balancing the capacity to target more victims
with the need to keep the likelihood of being detected by sybil defences sufficiently
low. Thus, the number of sybil nodes is increased as the number of nodes in the graph

grows, but keeping |Sti
| ≤

⌊
log2

(
|VG�

ti−1
|
)⌋

. Additionally, the attacker may select a

small random number of existing sybil nodes and replace them for fresh sybil nodes.
Let Sti−1 = {s1, s2, . . . , s|Sti−1 |} be the set of sybil nodes present in G+

ti−1
, and

let s1 ≺ s2 ≺ . . . ≺ s|Sti−1 | be the order established among them. We first consider
the case of sybil node addition. Let S′ = {s′

1, s
′
2, . . . , sq} be the set of new sybil nodes

that will be added to G+
ti

, and let s′
1 ≺ s′

2 ≺ . . . ≺ sq be the order established on
them. The path s1s2 . . . s|Sti−1 | is extended into s1s2 . . . s|Sti−1 |s′

1s
′
2 . . . sq by adding

to G+
ti

the edges (s|Sti−1 |, s′
1), (s

′
1, s

′
2), . . . , (s′

q−1, s
′
q). Additionally, the adversary adds

to G+
ti

every node (x, y), x ∈ S′, y ∈ (Sti−1 ∪ S′) \ NG+
ti

(x), with probability 0.5.

In order to replace a sybil node sj ∈ Sti−1 for a new sybil node s (s /∈ S′), the
adversary adds to G+

ti
the edges (sj−1, s) and (s, sj+1), where sj−1 and sj+1 are the

sybil nodes immediately preceding and succeeding sj according to ≺. The order ≺ is
updated accordingly to make s1 ≺ s2 ≺ . . . ≺ sj−1 ≺ s ≺ sj+1 ≺ . . . ≺ s|Si−1|.
These modifications ensure that the path s1s2 . . . s|Sti−1 | guaranteed to exist in G+

ti−1

is replaced in G+
ti

for s1s2 . . . sj−1ssj+1 . . . s|Si−1|. Additionally, the new sybil node s
is connected to every other sybil node with probability 0.5. In our attack, every sybil
node removal is part of a replacement, so the number of sybil nodes never decreases.

Updating Fingerprints of Existing Victims. After replacing a sybil node s ∈ Sti−1

for a new sybil node s′ ∈ Sti
\Sti−1 , the adversary adds to G+

ti
the edge (s′, y) for every

y ∈ Yti−1 ∩ NG+
ti−1

(s), to guarantee that the replacement of s for s′ does not render

any pair of fingerprints identical in G+
ti

. Additionally, if new sybil nodes were added,
the fingerprints of all previously targeted victims in Yti−1 are modified by creating
edges linking them to a subset of the new sybil nodes. For each new sybil node s ∈
Sti

\ Sti−1 and every victim y ∈ Yti−1 , the edge (s, y) is added with probability 0.5.
Finally, if the adversary has conducted a re-identification attempt on G�

ti−1
, she makes

additional changes in the set Fti
of fingerprints in G+

ti
based on the outcomes of the re-

identification. To that end, she selects a subset Y ′
ti−1

of victims whose fingerprints were
the least useful during the re-identification attempt, in the sense that they were the most
likely to lead to a larger number of equally likely options after fingerprint mapping.
The adversary modifies the fingerprint of every y ∈ Y ′

ti−1
by randomly flipping one

edge of the form (y, s), s ∈ Sti−1 , checking that the new fingerprint does not coincide
with a previously existing fingerprint. The set Y ′

ti−1
is obtained as follows. For every

victim yj ∈ Yti−1 and every vertex v mapped to yj according to some X ∈ Xti−1 and
the corresponding YX , let pj(v) be the probability that v has been mapped to yj in
the previous re-identification attempt according to some sybil subgraph candidate and

Active Re-identification Attacks 203

some of the resulting fingerprint matchings. We make Y ′
ti−1

= arg max
yj∈Yti−1

{H(pj)}, where

H(pj) is the entropy of the distribution pj .

B Implementation Details of Dynamic Re-identification

Sybil Subgraph Retrieval. The sybil subgraph retrieval method is a breadth-first search
procedure, which shares the rationale of analogous methods devised for active attacks
on static graphs [2,14], but differs from them in the use of temporal consistency con-
straints for pruning the search space. To establish the order in which the search space
is traversed, our method relies on the existence of an arbitrary (but fixed) total order ≺
among the set of sybil nodes, which is enforced by the sybil subgraph creation method
and maintained by the sybil subgraph update method.

Let s1 ≺ s2 ≺ . . . ≺ s|Sti
| be the order established on the elements of Sti

. The
search procedure first builds a set of cardinality-1 partial candidates Xti,1 = {{vj1} |
vj1 ∈ VG�

ti
}. Then, it obtains the pruned set of candidates X ′

ti,1 by removing from Xti,1

all elements {vj1} such that α�(vj1) �= α+(s1), or
∣
∣
∣δG�

ti
(vj1) − δG+

ti

(s1)
∣
∣
∣ > θ. The

first condition verifies that the first-use-as-sybil consistency property {vj1} �φ {s1}
holds, with φ = {(s1, vj1)}. The second condition excludes from the search tree all
candidates X such that Δ(〈X〉w

G�
ti

, 〈Sti
〉w
G+

ti

) > θ, where Δ is a structural dissimilarity

function, defined in [14], and θ is a tolerance threshold. Then, for every ≤ |Sti
|, the

method builds the set of partial candidates

Xti,� = {{vj1 , . . . , vj�
} | {vj1 . . . , vj�−1} ∈ Xti,�−1, vj�

∈ VG�
ti

\ {vj1 , . . . , vj�−1}}

and obtains the pruned candidate set X ′
ti,�

by removing from Xti,� all ele-
ments {vj1 , . . . , vj�

} such that {vj1 , . . . , vj�
} ��φ {s1, . . . , s�}, with φ =

{(s1, vj1), . . . , (s�, vj�
)}, and Δ(〈{vj1 , . . . , vj�

}〉w
G�

ti

, 〈{s1, . . . , s�}〉w
G+

ti

) > θ. Finally,

the method gives as output the pruned set of cardinality-|Sti
| candidates, that is

Xti
= X ′

ti,|Sti
|. Summing up, our method outputs the set of temporally consistent ver-

tex subsets whose weakly induced subgraphs in G�
ti

are structurally similar to that of
the original set of sybil nodes in G+

ti
.

Fingerprint Matching. The fingerprint matching step is conducted for a sybil sub-
set candidate X = {vj1 , vj2 , . . . vj|Sti

|} randomly selected from Xti
, with probability

1
|Xti

| . Let vj1 ≺ vj2 ≺ . . . ≺ vj|Sti
| be the order established on the elements of X by the

sybil subgraph retrieval method. Our fingerprint matching method is a depth-first search
procedure, which gives as output a set YX = {φ1, φ2, . . . , φq}, where every φ ∈ YX

has the form φ : Yti
→ NG�

ti
(X). Every element of YX maximises the pairwise similar-

ities between the original fingerprints of the victims and the fingerprints, with respect to
X , of the corresponding pseudonymised vertices. The method first finds all equally best
matches between the (real) fingerprint Fj of a victim yj ∈ Yti

and that of a temporally
consistent vertex u ∈ NG�

ti
(X) with respect to X , that is F �

u = NG�
ti
(u) ∩ X . Then,

for every such match, it recursively applies the search procedure to match the remaining

204 X. Chen et al.

real victims to other temporally consistent candidate victims. For every victim yj and
every candidate match u, the similarity function sim(F �

u , Fj) integrates the verification
of the temporal consistency and the structural fingerprint, and is computed as

sim(F �
u , Fj) =

{
simc(F �

u , Fj) if u � yj and simc(F �
u , Fj) ≥ η

0 otherwise.

where η is a tolerance threshold allowing to ignore insufficiently similar matches and

the function simc(F �
u , Fj) is defined as simc(F �

u , Fj) =
∑|Sti

|
k=1 μk(F �

u , Fj) with

μk(F �
u , Fj) =

{
1 if vjk

∈ F �
u and sk ∈ Fj

0 otherwise.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys.
74, 47–97 (2002)

2. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural steganography. Commun. ACM 54(12), 133–141
(2011)

3. Casas-Roma, J., Herrera-Joancomartı́, J., Torra, V.: k-degree anonymity and edge selection:
improving data utility in large networks. Knowl. Inf. Syst. 50(2), 447–474 (2017)

4. Dakiche, N., Tayeb, F.B., Slimani, Y., Benatchba, K.: Tracking community evolution in
social networks: a survey. Inf. Process. Manag. 56(3), 1084–1102 (2019)

5. Ding, X., Zhang, L., Wan, Z., Gu, M.: De-anonymizing dynamic social networks. In: Pro-
ceedings of GLOBECOM 2011, pp. 1–6 (2011)

6. Ji, S., Li, W., Srivatsa, M., Beyah, R.: Structural data de-anonymization: quantification, prac-
tice, and implications. In: Proceedings of CCS 2014, pp. 1040–1053 (2014)

7. Korula, N., Lattanzi, S.: An efficient reconciliation algorithm for social networks. Proc.
VLDB Endow. 7(5), 377–388 (2014)

8. Kumar, S., Spezzano, F., Subrahmanian, V.S., Faloutsos, C.: Edge weight prediction in
weighted signed networks. In: Proceedings of ICDM 2016, pp. 221–230 (2016)

9. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of WWW 2013, pp.
1343–1350 (2013)

10. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of SIGMOD
2008, pp. 93–106 (2008)

11. Martı́nez, V., Berzal, F., Cubero, J.C.: A survey of link prediction in complex networks. ACM
Comput. Surv. 49(4), 69 (2017)

12. Mauw, S., Ramı́rez-Cruz, Y., Trujillo-Rasua, R.: Anonymising social graphs in the presence
of active attackers. Trans. Data Privacy 11(2), 169–198 (2018)

13. Mauw, S., Ramı́rez-Cruz, Y., Trujillo-Rasua, R.: Conditional adjacency anonymity in social
graphs under active attacks. Knowl. Inf. Syst. 61(1), 485–511 (2018). https://doi.org/10.
1007/s10115-018-1283-x

14. Mauw, S., Ramı́rez-Cruz, Y., Trujillo-Rasua, R.: Robust active attacks on social graphs.
Data Mining Knowl. Discov. 33(5), 1357–1392 (2019). https://doi.org/10.1007/s10618-019-
00631-5

15. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings of S&P
2009, pp. 173–187 (2009)

https://doi.org/10.1007/s10115-018-1283-x
https://doi.org/10.1007/s10115-018-1283-x
https://doi.org/10.1007/s10618-019-00631-5
https://doi.org/10.1007/s10618-019-00631-5

Active Re-identification Attacks 205

16. Nilizadeh, S., Kapadia, A., Ahn, Y.: Community-enhanced de-anonymization of online social
networks. In: Proceedings of CCS 2014, pp. 537–548 (2014)

17. Papadopoulos, F., Kleineberg, K.K.: Link persistence and conditional distances in multiplex
networks. Phys. Rev. E 99(1), 012322 (2019)

18. Pedarsani, P., Figueiredo, D.R., Grossglauser, M.: A Bayesian method for matching two
similar graphs without seeds. In: Proceedings of the 51st Annual Allerton Conference on
Communication, Control, and Computing, pp. 1598–1607 (2013)

19. Peng, W., Li, F., Zou, X., Wu, J.: A two-stage deanonymization attack against anonymized
social networks. IEEE Trans. Comput. 63(2), 290–303 (2014)

20. Rousseau, F., Casas-Roma, J., Vazirgiannis, M.: Community-preserving anonymization
of graphs. Knowl. Inf. Syst. 54(2), 315–343 (2017). https://doi.org/10.1007/s10115-017-
1064-y

21. Tai, C.H., Tseng, P.J., Philip, S.Y., Chen, M.S.: Identities anonymization in dynamic social
networks. In: Proceedings of ICDM 2011, pp. 1224–1229 (2011)

22. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-symmetry model for identity anonymiza-
tion in social networks. In: Proceedings of the 13th International Conference on Extending
Database Technology, pp. 111–122 (2010)

23. Yartseva, L., Grossglauser, M.: On the performance of percolation graph matching. In: Pro-
ceedings of COSN 2013, pp. 119–130 (2013)

24. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: a near-optimal social network
defense against sybil attacks. In: Procs. of S&P 2008. pp. 3–17 (2008)

25. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: SybilQuard: defending against sybil
attacks via social networks. In: Proceedings of SIGCOMM 2006, pp. 267–278 (2006)

26. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In:
Proceedings of ICDE 2008, pp. 506–515 (2008)

27. Zou, L., Chen, L., Özsu, M.T.: K-automorphism: a general framework for privacy preserving
network publication. Proc. VLDB Endow. 2(1), 946–957 (2009)

https://doi.org/10.1007/s10115-017-1064-y
https://doi.org/10.1007/s10115-017-1064-y

System Security II

Fooling Primality Tests on Smartcards

Vladimir Sedlacek1,2(B), Jan Jancar1, and Petr Svenda1

1 Masaryk University, Brno, Czechia
2 Ca’ Foscari University of Venice, Venice, Italy

{vlada.sedlacek,j08ny}@mail.muni.cz, svenda@fi.muni.cz

Abstract. We analyse whether the smartcards of the JavaCard plat-
form correctly validate primality of domain parameters. The work is
inspired by Albrecht et al. [1], where the authors analysed many open-
source libraries and constructed pseudoprimes fooling the primality test-
ing functions. However, in the case of smartcards, often there is no way to
invoke the primality test directly, so we trigger it by replacing (EC)DSA
and (EC)DH prime domain parameters by adversarial composites. Such a
replacement results in vulnerability to Pohlig-Hellman [30] style attacks,
leading to private key recovery.

Out of nine smartcards (produced by five major manufacturers) we
tested (See https://crocs.fi.muni.cz/papers/primality esorics20 for more
information), all but one have no primality test in parameter validation.
As the JavaCard platform provides no public primality testing API, the
problem cannot be fixed by an extra parameter check, making it difficult
to mitigate in already deployed smartcards.

Keywords: Pseudoprimes · Primality testing · JavaCard · (EC)DSA ·
(EC)DH

1 Introduction

Many public key cryptosystems crucially rely on prime numbers for their security.
Yet for performance reasons (especially on constrained devices such as smart-
cards), most widely used primality tests, such as the Miller-Rabin (MR) test
[23,32], are only probabilistic [1,9]. Thus there exist pseudoprimes, i.e., com-
posite numbers passing these tests. When implemented correctly, probabilistic
tests still provide a sufficient assurance of primality. However, carefully crafted
pseudoprimes [4] can fool an implementation that is not utilizing enough ran-
domness [1]. In (EC)DH and (EC)DSA, this can lead to private key recovery,
using Pohlig-Hellman [30] style attacks.

JavaCard [29] is a popular platform for building systems based on pro-
grammable smart cards. It offers a Java-like environment on which multiple
applications, applets, can be installed. Thanks to Javacard’s rich cryptographic
API (supporting (EC)DSA, (EC)DH and much more [33]), these applets include
electronic passports and IDs, EMV applets for credit-cards, key managers, cryp-
tocurrency wallets or applets for two-factor authentication. While the API is
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 209–229, 2020.
https://doi.org/10.1007/978-3-030-59013-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_11&domain=pdf
https://crocs.fi.muni.cz/papers/primality_esorics20
https://doi.org/10.1007/978-3-030-59013-0_11

210 V. Sedlacek et al.

defined by an open standard, the implementation of the platform itself is almost
always proprietary, with manufacturers releasing very little information about
the code used in a particular family of cards. This black-box nature makes the
public assessment of implementation security more difficult, but nevertheless,
security problems have been discovered in the past [25].

In this paper, we test the robustness of present primality tests in JavaCards
by replacing (EC)DSA and (EC)DH prime parameters with MR pseudoprimes
and other composites. In contrast to [1], we do not have access to the code inside
the smartcard and are not able to call a primality testing function on its own.
Instead, we resort to performing standard operations (such as signature gener-
ation) using modified parameters (which still need to have specific properties),
and observe any deviations from the expected behaviour. This is further compli-
cated by the fact that the smartcards do not act deterministically, do not have
debugging functionality, and are prone to many errors.

The main contributions of this paper are:

– We open the topic of fooling primality tests on black-box devices and propose
a method for a systematic review of primality tests (and the relevant domain
parameter validation) in black-box devices that use (EC)DSA/(EC)DH.

– We develop new ways in which parameters can be replaced with pseudoprimes
in (EC)DH and (EC)DSA, along with practical attacks against these param-
eters. In particular, the attack against composite p in ECDSA is new to the
best of our knowledge.

– We examine the implementation security of ECDH and ECDSA in nine smart-
cards from five major manufacturers, showing that all cards but one are vul-
nerable due to insufficient primality testing of domain parameters. Issues
found were responsibly disclosed to affected vendors.

– We systematically survey the relevant attacker scenarios and types of attacks
with possible real-world impact and propose defence mechanisms.

We review the previous work on attacking primality tests in Sect. 2. Section 3
analyses the attack scenarios and briefly presents possible attacks. The method-
ology for testing the cards is given in Sect. 4, along with a basic explanation of
the used domain parameters. Readers interested only in practical security should
feel free to skip this section, while still grasping most of the contents of Sect. 5
that analyses the testing results, and Sect. 7 that follows up with a discussion
of proposed defences. Section 6 provides technical details about the full param-
eter generation and possible attacks and Sect. 8 concludes our paper. Finally,
the appendices contain an overview of the MR test (Appendix 1), the pseu-
doprime construction (Appendix 2), datasets of generated domain parameters
(Appendix 2.1) and example implementations of concrete attacks (Appendix 3).

2 Previous Work

The idea of breaking a cryptographic protocol by fooling primality tests was
first mentioned in [9]. In [1], the authors analysed primality tests in open-source

Fooling Primality Tests on Smartcards 211

libraries, and fooled many of them with carefully crafted pseudoprimes. Their
construction (extending the one in [4] and briefly described in Appendix 2) relies
on the assumption that the implementation of the MR test uses only a small
number of bases that are either fixed or chosen from a relatively small set. This
was indeed the case for many libraries.

Note that all the inspected libraries had a dedicated function for primality
testing whose source code was accessible. In contrast, the situation for black-box
devices where the code is not known, and the primality test (if present) cannot
be separated from the rest of the program, has not been studied before to the
best of our knowledge.

Furthermore, somewhat practical examples of attacks against various
(EC)DH implementations with insufficient primality tests, including the case
when pseudoprimes are included in elliptic curve domain parameters, were
described in [16].

3 Attack Scenarios

As in [1], we assume a setting where the attacker can control or affect the cryp-
tosystem domain parameters used by the applet – so that primes can be replaced
by composites – and wants to break the confidentiality of (EC)DH or unforge-
ability in (EC)DSA. We also assume that the attacker knows the factorization
of the injected parameters, as he most likely crafted them himself.

However, with the exception of primality testing, we still expect that all of
parameter validation is implemented properly (with the exception of a cofactor
check of an elliptic curve, as the cards lack the performance to do it).

In our scenario an applet developed by an applet developer uses the functions
of the JavaCard API on a card supplied by a manufacturer to perform some
cryptographic operations while allowing untrusted parameters provided by the
attacker to be used.

3.1 Rationale for the Attack Scenarios

To explain the rationale behind such a scenario, we consider the specifics of the
JavaCard environment as well as existing cryptographic protocols and standards.
Note that physical access (as is commonly relevant for the smartcard usage
domain) is often not required.

A JavaCard applet developer might use untrusted domain parameters,
because:

– The API functions that set parameter values, like ECPrivateKey.
setFieldFP(), place no limitation (except bit-sizes) on the parameters, which
are provided as sequences of bytes and are interpreted as unsigned integers.

– The API documentation contains no security notice that the set parameters
should be trusted or a warning of what are the consequences of setting domain
parameters that are untrusted or otherwise invalid [29].

212 V. Sedlacek et al.

– The API contains no functionality for direct primality testing or domain
parameter validation for (EC)DSA or (EC)DH and no way to implement
it efficiently. Thus the developer might (understandably) assume that the
validation is performed implicitly.

Multiple protocols allow to transmit the domain parameters and thus force
a party to either authenticate or validate them:

– TLS, up to version 1.2 [8] and prior to RFC8422 [26], allowed explicit (EC)DH
parameters to be sent from the server to the client, although authenticated
by the server public key.

– The certificate format specified in the X.509 standard allows public keys to
hold full domain parameters for (EC)DH or (EC)DSA [31]. Using this for-
mat in a JavaCard applet (e.g., for interoperability reasons) might lead to
untrusted parameters being used.

– The ICAO document 9303 [18] specifying the security requirements for
machine-readable travel documents allows transmitting the (EC)DH domain
parameters in the Chip Authentication and PACE protocols. The specifica-
tion warns that insecure domain parameters will cause leaks of secret data
and that parameters should not be used unless explicitly known to be secure
(without further elaboration). As the card transmits the parameters to the
reader, it is the one responsible for the validation.

All relevant (EC)DH and (EC)DSA standards specify procedures for validat-
ing the domain parameters and allow the use of untrusted domain parameters
provided the validation succeeds. For (EC)DSA, two standards specify the vali-
dation requirements:

– FIPS 186-4 [14] refers to the NIST Special publication 800-89 [27] that in turn
requires the primes used in the domain parameters to be accompanied by a
seed and verifies they were generated using the specified verifiably random
method.

– ANSI X9.62 [2] requires a primality test of the prime domain parameters,
using the MR test with the number of rounds equal or larger than 50, using
random bases. The IEEE P1363 [19] standard for (EC)DH has exactly the
same requirement.

The strong requirements for primality testing and domain parameter vali-
dation in the above standards might lead the applet developer to believe that
an appropriate validation is performed by the card and that the use of given
parameters is secure. As the detailed implementation guidance is not provided by
JavaCard specifications and recommendations from standards like IEEE P1363
and x9.62 are not explicitly mentioned, the platform vendor is left with decision
what level of checks to implement.

We also consider another scenario where primality testing and domain param-
eter validation make a significant difference in security. TLS is an open system
where communicating parties are likely to be realised by different software ven-
dors. In the case of closed systems like dedicated network line encryption boxes,

Fooling Primality Tests on Smartcards 213

the same entity configures both communicating endpoints, which may be based
on the commodity cards. A platform integrator (not the same as the card manu-
facturer) supplies the software responsible for setting the domain parameters on
both ends. These two endpoints are designed to communicate with each other
and to establish a secure channel using (EC)DH (and potentially (EC)DSA for
authentication). Without robust primality testing and domain parameter vali-
dation on the card, the domain parameters supplied to cards at both ends can
contain pseudoprimes or composites and be weak to a passive eavesdropping
attacker. These parameters can even be authenticated by the platform integra-
tor, yet without proper validation and primality testing, the card will accept
them. The platform integrator could then also claim some plausible deniability,
by blaming the weak parameters on a bug in the customised curve generation
codebase or arguing the pseudoprime in the parameters passed their primality
tests. A similar case happened in the Juniper Dual EC incident [11], where the
exploitable weakness was a result of a series of small coding errors, seemingly
unintentional.

One example of a vulnerability, where attacker-controlled domain parame-
ters were used, was the Microsoft CryptoAPI ECDSA verification vulnerability
(CVE-2020-0601) [28]. It was due to a faulty certificate verification mechanism,
which matched certificates provided to the trusted ones by comparing the pub-
lic key. This allowed an attacker to supply a certificate with modified domain
parameters, which would be trusted.

Even when not directly using untrusted parameters, the adversarial setting
makes sense when we account for the physical nature of cards and, thus, for fault
injection attacks. These could be mounted to manipulate any trusted parameters
[7,34] that the applet will use (e.g., in (EC)DH).

3.2 Attacks Overview

We focus on attacks theoretically applicable to all implementations accepting
composite parameters, instead of those stemming from specific behaviour of any
one implementation. We present four different attacks, based on the cryptosys-
tem and the injected parameter. In all four cases, it is possible to efficiently
recover the private key for suitable injected parameters. The details will be
given in Sect. 6.

When the group order n is composite in ECDSA/ECDH or DSA/DH, it
is well known that the discrete logarithm problem (DLP) in the group can be
decomposed into DLPs in its quotient groups of prime-power order, which are
much easier [30]. Thus for sufficiently smooth injected group orders, the discrete
logarithm can be computed.

A similar decomposition and DLP difficulty reduction occurs when injecting a
composite in place of the prime defining the full multiplicative group in DH/DSA
[12].

We use yet another decomposition when injecting a composite in place of the
prime defining the finite field for ECDSA/ECDH. As far as we know, this is a
new result.

214 V. Sedlacek et al.

4 Methodology for Assessing Primality Tests

In this section, we describe the method we used to analyse primality testing
in cards of the JavaCard platform. Throughout the remaining text, the term
pseudoprime will always mean a composite number that passes the MR test
with respect to several small bases (the first t primes in our case).

In [1], the library functions for testing primality are ready to be called
directly, and the source code can be analysed to see for what purpose and with
what parameters they are invoked. In contrast, we cannot even be sure if such
functions exist in the closed-source implementation of the JavaCard platform.
Hence we need to guess where they could be likely present and invoked (e.g.,
during domain parameter validation or key generation) and what parts of the
algorithm could behave problematically if a prime input was replaced with a
composite one. Also, unlike in [1], we only have a very limited amount of pseu-
doprime bit lengths to choose from.

JavaCard specifies five main cryptographic algorithms involving prime num-
bers or domain parameters: RSA, DSA, ECDSA, DH and ECDH (though not
all cards support all of them). We analysed all the relevant functions from the
JavaCard specification and found no way to invoke primality testing in the RSA
API with user-provided inputs. Also, the primes used there constitute the private
key, and a scenario with them being replaced with pseudoprimes does not trigger
a primality test. As a result, only the methods of the (EC)DH and (EC)DSA
algorithms are applicable. Additionally, we restricted the testing focus on the
ECDSA and ECDH algorithms only, as none of the tested cards support DH
and only one supports DSA. However, we still analyse the theoretical aspects of
using DSA/DH parameters.

The practical analysis of primality testing consists of three steps:

1. Constructing pseudoprimes and other composites (Sect. 4.2 and Sect. 4.3).
2. Generating (EC)DSA and (EC)DH parameters with primes replaced with the

numbers crafted in the previous step (Sect. 6).
3. Triggering the card’s primality test with the modified parameters as input,

e.g., key generation, signing, verification in case of (EC)DSA or key agreement
in case of (EC)DH. (The rest of this section.)

In the last step, for any operation we perform on the card, the card only
returns a response (output or error value) and the duration of the computation,
which is often insufficient to understand exactly what happened due to imple-
mentations being closed-source. By the behaviour of the card under test, we
mean such a response to our calls of API functions. To gain more information,
we could also observe the card’s power consumption or EM emissions during
computation, but we do not consider these here. We use three types of basic
operations in sequence to observe the behaviour:

3a) Parameter setting. Individual (EC)DSA or (EC)DH parameters are set on
a Key object as byte arrays, interpreted as unsigned integers.

Fooling Primality Tests on Smartcards 215

3b) Key generation. After setting all parameters, a Keypair can be generated.
Note that the JavaCard does not differentiate between an ECDSA and
ECDH keypair. In our tests, we skip this operation if it fails and continue
with a manually generated private key, to also test the scenario where a
keypair to be used is imported to the card.

3c) Signing and verification or Key agreement. After a Keypair object is success-
fully generated, it can be used to initialise a Signature or a KeyAgreement
object and perform the operation. We supplied random data for signing and
performed the key agreement between two keypairs generated on the card
if possible. If the key generation failed, we instead substituted the private
key and performed key agreement between it and the generator point on the
curve.

To perform these operations, we developed and released our ECTester tool
[21], which accesses the public JavaCard API and is generic to all cards.

4.1 Domain Parameters

In this section, we examine the requirements on domain parameters used in
(EC)DSA and (EC)DH, specifically primality requirements and show what
requirements need to be fulfilled while replacing a prime with a composite. Since
the parameters and the corresponding implementation checks for the finite field
case and for the elliptic curve case differ significantly, we study them separately.

The DSA/DH Case. In DSA/DH, there are three domain parameters [14]:

– p is the prime defining the multiplicative group Z
∗
p in which we compute,

– g is an element of Z
∗
p,

– q is the order of g in Z
∗
p.

Note that the above already implies gq ≡ 1 (mod p), q | p − 1 and g �= 1
(unless q = 1) and we can expect that these conditions could be checked by the
implementation.

The supported sizes include {(1024, 160), (2048, 224), (2048, 256)} bits for
p, q respectively. Classically, q is required to be prime, as the running time of the
Pohlig-Hellman algorithm [30] depends on the size of the largest factor of q. Also,
the random nonce k, which is generated during signing, needs to be invertible
mod q. Thus for testing, we could replace either p or q with a pseudoprime.
However, this replacement is non-trivial, as the conditions above are quite easy
to satisfy when computing p and g from q, but somewhat hard if given p, as one
needs to factor p − 1 and hope it has a prime factor q of the correct size. We
discuss this in Sect. 4.7.

In DH on the JavaCard platform, the domain parameters are the same as
in DSA, but the q parameter is optional [29]. This means that either no checks
related to q are performed, or that p is assumed to be a safe-prime, i.e. p = 2q+1.
We do not consider the case when the safe prime condition is assumed in the

216 V. Sedlacek et al.

remainder of this paper and instead refer the reader to [16]. Similarly, we do
not consider the case where there are no checks related to q present, as it is
straightforward to subvert the parameters in such a system (for example, q can
be very small).

Note that we did not test actual DSA/DH parameter sets, as mentioned
earlier in Sect. 4, due to lack of support in the tested cards.

The ECDSA/ECDH Case. This case is a little more complicated. The JavaC-
ard API supports curves in the short Weierstrass form either over prime fields
Fp or binary fields F2m . We do not work with the binary field case, as most cards
at our disposal do not support it. The prime field case then requires the inputs
p, a, b,Gx, Gy, n, h, where:

– p is the prime defining the field Fp over which we will work,
– a, b are the coefficients of the elliptic curve E in short Weierstrass form over

Fp,
– Gx, Gy are the affine coordinates of the generator point G ∈ E(Fp),
– n is the order of G,
– h is the cofactor, equal to the order of E(Fp) divided by n.

As for supported sizes, p should have either 160, 192, 224, 256, 384, 512 or
521 bits. Computing the group order or n is prohibitively expensive for the
card, so it is reasonable to assume that only the condition [n]G = ∞ will be
checked, possibly together with the size of n (by Hasse’s theorem, n · h should
be roughly the same size as p). Again, for ECDSA/ECDH, n should be prime
for the same reasons as q in DSA/DH. Thus for testing, we could replace either
p or n with a pseudoprime and tested (the case of pseudoprime n was discussed
in [16]). For the replacement, we need to either construct an elliptic curve with
a prescribed number of points (we used our tool ecgen [20] that supports the
complex multiplication method [10]) when n is replaced, or to construct an
“elliptic curve” over Zp (with composite p) and correctly compute its order.

For each card and each bit-size in {160, 192, 224, 256, 384, 512, 521}, we test
the card’s behaviour for ECDSA and ECDH with parameter sets described
in Table 2. The rest of this section shows how we generated p and n, while
Sect. 6 explains how we constructed the malicious parameters from them. The
full parameters used for testing in this paper are included in Appendix 2.1.

4.2 Generating Pseudoprimes

As we are considering only the MR primality test, we use a slightly tweaked
version of Arnault’s method with three pseudoprime factors, described in
Appendix 2. We construct numbers that are pseudoprime to t smallest primes
taken as bases, assuming the resource constrained smartcard will choose its bases
from a set of small primes. The only limitation is that the bit-size of the pseudo-
prime must be one of the supported ones, as discussed in Sect. 4. To achieve this,
we must try many combinations of t, k2, k3 to arrive precisely at the supported

Fooling Primality Tests on Smartcards 217

bit-sizes, while also trying to maximise t (Table 1). For each bit-size, the pseu-
doprime generation process took at most a few minutes on an ordinary laptop
(using the precomputed values of t, k2 and k3).

4.3 Generating Special Composites

Table 1. Parameters for construct-
ing pseudoprimes by tweaked Arnault’s
method [1,3].

bit-size t k2 k3

160 11 73 101

192 13 61 101

224 14 197 257

256 16 233 101

384 23 137 157

512 30 137 157

521 30 137 157

1024 52 241 281

To systematically compare the card
behaviour, we also used random compos-
ites with controlled numbers of factors or
varying levels of smoothness, to get finer
granularity. In this way, we can detect if
the primality test is present at all (though
possibly faulty).

Composites with a Given Number of
Factors. To generate a composite num-
ber of a given bit-size with a given num-
ber of factors, we use a greedy approach.
In each step, we generate a random prime
number of size b/r, where b is the number
of remaining bits, and r is the number of remaining factors to be generated.

Composites with a Given Smoothness Level. For the smooth case, we
employ a similar greedy algorithm that randomly chooses prime factors up to
the smoothness bound and retries until a number with the right bit-size is con-
structed.

4.4 Generating Complete Domain Parameters

In this section, we explain how to generate complete parameters for
ECDSA/ECDH and DSA/DH, based on the pseudoprime and other compos-
ite inputs generated in Sect. 4.2 and Sect. 4.3. In the ECDSA/ECDH case, these
are exactly the parameters we used for testing the cards.

The challenge in embedding composites into the domain parameters lies in
the fact that the card might check many properties of the parameters, while the
only thing we are currently interested in is the compositeness of some of them.
Thus the parameters should be as close to correct parameters as possible. The
properties of the parameters that the card might verify are listed in the standards
specifying domain parameter validation algorithms [2,19] and we listed them in
Sect. 4.1. For each scenario, we also list the corresponding attack.

4.5 ECDSA/ECDH: Prime p, Composite n

The approach, in this case, is almost the same as the one described in [16]. We use
the complex multiplication method (described in [10], realised by our tool ecgen

218 V. Sedlacek et al.

[20]), which is able to construct a curve over a prime field in short Weierstrass
form with a given number of points. We need to take into account that the
structure of E(Fp) is either cyclic or a product of two cyclic groups. This poses an
issue because the JavaCard platform limits the size of the cofactor to an unsigned
short integer, so just 16 bits. In the curves generated by two points, often the
cofactor does not fit into 16 bits, even if we pick a large subgroup. Thankfully,
the cards do not perform validation of the cofactor, as it is an optional input, so
we just pick the generator with the largest order and set the cofactor to 1. Given
the composite n, generating a suitable 256-bit curve took just a few minutes on
an ordinary laptop.

One of the forms of composite n we tried to generate was that of an appro-
priately sized primorial (i.e., the product of all the primes up to some bound).
However, the complex multiplication method, as implemented in the ecgen tool,
was unable to generate them, even after a significant time spent on the task
(e.g., a week on a single curve). The method searches for the curves by enumer-
ating values of their complex multiplication discriminant, starting from 1, until a
suitable curve and prime field is found. This points to an absence of prime field
curves with primorial order and a small complex multiplication discriminant,
which is an interesting observation.

4.6 ECDSA/ECDH: Composite p, Arbitrary n

Here we assume for simplicity that p is square-free and has no small factors
(up to some bound, we chose 50). We want to find a curve whose order has no
small divisors; otherwise, the card might reject the curve for a wrong reason, as
we have observed before.

For each prime factor pi of p, we iterate over all possible curves over Zpi

until we find one whose order is prime (this will minimise the number of prime
factors of the resulting curve over Zp). We also prefer if the order of the curve
is never repeated for different pi’s, but this is easily satisfied in practice. When
such a curve is found for each pi, we create the desired curve modulo p just by
using the CRT on the Weierstrass coefficients a, b of the individual curves. Since
p has no small prime divisors, we can expect the same to be true for the order
of the final curve as well, thanks to the construction, as the resulting order is
the product of the individual orders.

To obtain a generator point of the resulting curve, we simply pick a generator
point of each curve, and we use the CRT again on their coordinates. Since each
curve over Zpi

was cyclic and their orders were distinct, the final curve is cyclic
as well, so we can set the cofactor to be 1. This whole process takes just seconds
for the 3- and 10-factor 256-bit composites used in this paper.

4.7 DSA/DH: Prime p, Composite q

This is the easiest scenario, as it almost completely follows the way ordinary
DSA parameters are generated. We first pick a composite or pseudoprime q,
then choose random properly sized integers k until p = kq + 1 becomes a prime.

Fooling Primality Tests on Smartcards 219

Then we repeatedly pick a random r ∈ Z
∗
p until we get a generator of Z

∗
p and

compute g = r(p−1)/q. In this way, we ensure that g has order q modulo p.
This generation process is very fast, and takes just seconds to generate 1024-bit
parameters.

4.8 DSA/DH: Composite p, Prime q

This case is more problematic to construct than the above one. First, let us
assume that p is a Carmichael number (as is the case for the pseudoprimes we
are constructing (Appendix 2). We assume that either of the conditions

q | p − 1, gq ≡ 1 (mod p) and g �= 1

could be checked, so we will want to satisfy all of them.
These conditions imply that gq ≡ 1 (mod pi) for all prime factors pi of p,

hence ggcd(q,pi−1) ≡ 1 (mod pi). Since q is a prime and g �= 1 (mod pi) for some
i (otherwise g = 1), this implies q | pi − 1 for some i.

Thus we need p − 1 to have a prime factor q of a size corresponding to the
size of p (e.g., if p has 1024 bits, then we need q to have 160 bits). Given a
specially constructed p, this means factoring p− 1 and hoping for a factor of the
correct size. This is exactly what we did for generating the DSA parameters, even
though it was only practical for the 1024-bit parameters, given that factoring
larger than 1024-bit random integers and hoping for a factor of a correct bit-size
is computationally hard for our computation cluster. Finding an appropriate
1024-bit pseudoprime p such that p − 1 has a 160-bit factor took a few days on
an equivalent of an ordinary laptop.

Once we have p and q, we can again loop through random r from Z
∗
p and

compute g as g = r(p−1)/q until g �= 1. This will imply that g �≡ 1 (mod pi) for at
least one i, so that the primality of q together with the congruence gq ≡ rp−1 ≡ 1
(mod p) (as p is a Carmichael number) will imply that the order of g modulo pi

is q, hence q | pi − 1.
Note that it is possible that no such g exists, even if p is a pseudoprime -

for example for the Carmichael number p = 7 · 19 · 67 and q = 5, we have that
q | p − 1, but q � pi − 1 for any i, so there is no element of order q modulo p.
However, it can be empirically seen that is unlikely to happen when p and q are
large enough.

It seems hard to adapt this strategy of generating parameters for a fixed
composite non-Carmichael p (which instead has a given number of factors or
is smooth). One would have to simultaneously force q | p − 1 and q | pi − 1
for some prime factor pi of p, which is equivalent to q | gcd(p − 1, pi − 1). But
unlike in the Carmichael case (where gcd(p − 1, pi − 1) = pi − 1), heuristics
show that we cannot expect gcd(p − 1, pi − 1) to have a large prime factor for
most composite p, let alone a factor of an exactly given size. Thus we do not
consider this case further, but we stress that its significance is mostly limited to
testing of black-box devices. A motivated attacker would use pseudoprime (or
just Carmichael) p, as it has a much better chance to bypass potential primality
tests, while making the generation of the other parameters easier.

220 V. Sedlacek et al.

5 Practical Results

The analysis was performed on cards with ECC support that we were able to
obtain in small quantities and covers most major vendors (except for Gemalto
and Idemia). The cards were fabricated in the period between 2012 and 2018.
Note that due to lengthily and costly certification processes, the pace of software
changes in the smartcard environment is significantly slower than for standard
software development. As a result, the products by the same vendor tend to reuse
the same existing codebase (as visible from results for the NXP cards), and our
findings are likely valid for the newer product versions as well. The results are
summarized in Tables 2a and 2b.

The main result of our testing is that most manufacturers, apart from Athena
and Infineon, seem to lack primality tests of the p and n parameters for ECDSA
and ECDH. This follows from the same observed card behaviour for the tests
with pseudoprime parameters (Sect. 4.2) as for the tests with general composite
parameters (Sect. 4.3). Missing primality testing invites Pohlig-Hellman style
attacks mentioned in Sect. 3. Due to the non-deterministic nature of ECDSA key
and nonce generation, we had to run the tests many times to get representative
results. The different bit-sizes of the curves used, ranging from 160 bits to 521,
do not impact the results in an unexpected way.

We may have passed the primality test using a pseudoprime curve order in the
case of the Infineon CJTOP 80k card, as the key generation and ECDSA signing
and verification worked in a few rare cases, even though the card rejected the
parameters most of the time. We observed this in roughly 3 out of 1000 tries on
a 192-bit pseudoprime order curve. Our hypothesis is that the implementation
is choosing small MR bases, which occasionally lie in the set of liars for our
provided pseudoprime.

We were not able to pass the primality test present on the Athena IDProtect
card, perhaps because it uses random MR bases or some other primality test.

We also observed that cards occasionally went mute and did not respond to
the command, often upon invoking key generation. This behaviour is outside of
the PCSC specification1 and results in a PCSC error being raised by the reader’s
driver. It could also mean that the cards perform some kind of a self-test during
the operation and stop responding as a security measure if the test fails. The
presence of such self-tests is well documented in cards. In ECDSA, this error
might stem from the card generating a nonce k that is non-invertible modulo n,
which the system might not expect.

In the ECDSA case, several cards occasionally produced invalid signatures.
This is possibly due to the modular inversion algorithm assuming a prime mod-
ulus. We did not investigate this matter further, but these invalid signatures
might leak information about the private key or the used nonce, which might be
abused by a lattice attack.

1 The PCSC specification specifies the general communication protocol between the
card and the reader device.

Fooling Primality Tests on Smartcards 221

Table 2. Results of domain parameters validation using on-card primality testing by
nine different cards from five major manufacturers. Multiple values separated with a
slash indicate that multiple results are present with decreasing occurrence from left to
right. *IL (see below) happens on verification, key generation and signing works.

222 V. Sedlacek et al.

The behaviour of the cards also differs for smooth n and for 10-factor n. We
think this is due to some unknown checks failing when such a smooth order is
given, not due to a primality test. Furthermore, two cards (Athena IDProtect ,
G&D SmartCafe 6.0) cycle indefinitely on key generation on a curve with smooth
odd order, we do not have any explanation for this behaviour.

Algorithms used during the operations, such as the modular multiplicative
inverse or the modular square root, may be implemented to rely on the mod-
ulus being prime. Thus we were surprised to see the cards mostly working for
composite p.

6 The Attacks in Detail

In this section, we discuss the attack details in each of the four scenarios we
consider.

6.1 Attack on ECDSA/ECDH with Prime p and Composite n

Using the classical Pohlig-Hellman algorithm [30], the DLP asymptotically
becomes only as hard as the DLP in a subgroup of order l, where l is the largest
prime factor of the group order n. There it can be solved by the Pollard ρ algo-
rithm, which costs roughly

√
π
4 l ≈ 0.886

√
l point additions [5]. Thus for example,

when using a 256-bit curve and n has three factors of roughly the same size, the
total computation cost of the DLP is approximately 3 × 0.886 ×

√
286 ≈ 244,

which is already practical (and can be much cheaper for a larger number of fac-
tors). Compare this with a case of using the Pollard ρ algorithm to solve DLP
on a standard 256-bit curve, where one gets the cost of 0.886 ×

√
2256 ≈ 2128.

An example of this attack is given in Appendix 3.

6.2 Attack on ECDSA/ECDH with Composite p, and Arbitrary n

When a composite p is a product of distinct primes p1, . . . , pe in ECDSA or
ECDH, we are working with an “elliptic curve” over Zp (see [37] for a proper
definition and basic properties), whose group can be thought of as a direct sum of
groups of the same elliptic curve regarded over Zpi

, i.e., E(Zp) ∼= ⊕e
i=1 E(Zpi

).
The isomorphism is essentially realised by the CRT applied to point coordinates.
Thus the DLP on E(Zp) again asymptotically becomes only as hard as the
hardest DLP on some E(Zpi

) (since after solving the DLP in all individual
groups, we can use the CRT to obtain the desired discrete logarithm). Since the
order of E(Zpi

) is roughly pi, the situation is very similar to the one for composite
n in ECDSA/ECDH. An example of this attack is given in Appendix 3.

6.3 The Attack on DSA/DH with Prime p and Composite q

The Pohlig-Hellman algorithm is applicable in an exact analogy to the com-
posite n case in ECDSA/ECDH. Note that the sub-exponential index calculus

Fooling Primality Tests on Smartcards 223

algorithm could also be used to solve the individual DLPs, but we expect it
to perform worse than Pollard ρ (whose cost is asymptotically the same as for
ECDSA/ECDH), as it cannot efficiently use the extra information about the
factorisation of q.

6.4 The Attack on DSA/DH with Composite p and Prime q

In this case, we know the value gx modulo p, where 0 < x < q and q | pi − 1
for some prime factor pi of p (this follows from the construction described in
Sect. 4.8). Thus we also know the value gx modulo pi and finding x modulo pi

gives us x directly, since x < q ≤ pi − 1. Therefore it is sufficient to solve the
DLP modulo pi. Note that Pollard ρ does not have an advantage compared with
the case with a real prime p, as the group order is still q. On the other hand,
the complexity of an index calculus algorithm only depends on pi, which can be
much lower than p. Hence the security level will be lower than it should be and
might lead to a private key recovery for small enough pi. The practicality of this
approach is demonstrated in Appendix 3.

7 Proposed Defences

Without a robust primality test, a card cannot properly validate domain parame-
ters. As the public JavaCard API lacks primality testing functionality, we cannot
expect the developers to perform the validation either. Thus applications that
allow the setting of custom domain parameters may result in a vulnerable applet.

Furthermore, the absence of primality testing functionality hinders the devel-
opment of more complex cryptographic applications. For example, the vulnera-
bility in the RSA key generation presented in the ROCA attack [25] could have
been mitigated by applets generating the primes for their RSA keypairs them-
selves, thus avoiding full firmware fixes of the affected devices (which are often
impossible in the case of cards). The lack of solid number-theoretic functionality
in the JavaCard API prevented this though.

Fortunately, most of the protocols and implementations use standard named
curves such as NIST P-256 or Curve25519. This seems to limit the current
real-world impact of the aforementioned absence of primality testing in domain
parameter validation.

We analysed an extensive list of open-source implementations of JavaCard
applets [13] and found none that would use unauthenticated domain parameters
in (EC)DSA or (EC)DH. Most used a fixed standard curve, with a few using
domain parameters supplied in a command, but those were either authenticated
or it was apparent from the context that they were provided by a trusted party,
for example during the setup of the applet. However, one should keep in mind the
possibilities of an untrusted setup described in Sect. 3, as well as the possibility
of fault injection attacks. We also note that open-source JavaCard development
comprises only a very small part of deployed JavaCards and that most applets
are closed-source.

224 V. Sedlacek et al.

The recent trends in cryptography head towards misuse-resistance, the prop-
erty of protocols and APIs that makes it hard for the developers to use and
implement them incorrectly. Protocols and cryptosystems should allow simple
implementations, as those are more likely to be correct and secure. Furthermore,
the simple and fast implementation should always be a secure one. Examples of
this include the nonce-misuse resistant authenticated encryption modes such as
the SIV [17] or libraries with a very simple API such as libsodium or NaCl [6].
With this direction in mind, the missing domain parameter validation steers the
developers to misuse the API and undermine the security of their applets.

We thus propose several changes to the JavaCard specification:

– Require full domain parameter validation, for example as specified in ANSI
X9.62 [2] and IEEE P1363 [19], which includes primality tests of prime param-
eters.

– Add API that supports using a set of named curves and allow manufactur-
ers to only support this API. Consider perhaps deprecating or discouraging
explicit domain parameter setting.

– Add a primality test to the public API.

Validating elliptic curve domain parameters consists of more than primality
testing and general sanity checks on the parameters. It contains tests on certain
algebraic properties of the curves that might make the DLP easier (e.g., by
allowing transfers into weaker groups). Luckily, these are all specified in the
aforementioned standards.

The modification of JavaCard API to accept only named curves instead of the
full specification of curve parameters limits flexibility for the future inclusion of
new curves as it might not be possible to update the list after card deployment.
On the other hand, strict usage of only named curves prevents attacks similar
to the recent attack on the Microsoft CryptoAPI library (CVE-2020-0601) [28],
which cannot be prevented only by domain parameter validation.

The Miller-Rabin with random bases or Baillie-PSW primality tests should
allow a robust and reasonably efficient (even on limited smartcard chips) imple-
mentation of primality testing. For an example of a performant and misuse-
resistant primality test, see Massimo and Paterson [22].

8 Summary

We have explored the robustness of primality testing in domain parameter valida-
tion by smartcards of the JavaCard platform. Due to unavailability of primality
testing functionality in the public JavaCard API, we tried to trigger the tests
indirectly by using specially crafted composite domain parameters for ECDSA
and ECDH operations.

We analysed nine different smartcards from five major manufacturers and
found that all but one failed to properly verify the primality of the provided
ECDSA and ECDH domain parameters, not even requiring pseudoprimes to
fool them, just composites. This results in a vulnerability to Pohlig-Hellman [30]

Fooling Primality Tests on Smartcards 225

style attacks, allowing the extraction of the private key. Our approach is generic
to all black-box devices performing ECDSA and ECDH and the tooling can be
reused.

Furthermore, the vulnerability is not easily mitigated for the already deployed
smartcards. The code responsible for the domain parameter validation is often
stored in a read-only memory without the possibility for an update. In addition,
the on-card verification of the provided domain parameters by the developer
cannot be efficiently performed due to a lack of a primality testing functionality
in the public JavaCard API.

Acknowledgements. The authors would like to thank K.G. Paterson, M. Sys, V.
Matyas and anonymous reviewers for their helpful comments. J. Jancar was sup-
ported by the grant MUNI/C/1701/2018, V. Sedlacek by the Czech Science Foun-
dation project GA20-03426S. Some of the tools used and P. Svenda were supported by
the CyberSec4Europe Competence Network. Computational resources were supplied
by the project e-INFRA LM2018140.

Appendix

1 The Miller-Rabin Primality Test

The MR test [23,32] was one of the first practical primality tests and to this day
remains very popular because of its simplicity and efficiency. In particular, we
believe that if a low-resource device such as a smartcard (shortened as card for
the rest of text) uses a primality test, MR is the most probable choice (perhaps
followed by the Lucas test, which does not seem to be that widespread, and a
Ballie-PSW test, which is a combination of these two), as most other tests are
too resource-heavy.

However, the MR test cannot be used to prove that a number is prime; only
compositeness can be proven. It relies on the fact that there exist no nontrivial
roots of unity modulo a prime. More precisely, let n be the number we want to
test for primality and let n − 1 = 2sd, where d is odd. If n is prime, Fermat’s
Little Theorem implies that for any 1 ≤ a < n, we have either ad ≡ 1 (mod n)
or a2id ≡ −1 (mod n) for some 0 ≤ i < s. By taking the contrapositive, if there
is some 1 ≤ a < n such that none of these congruences hold, then n is composite
(and a is called a witness of compositeness for n). However, if at least one of the
congruences holds, then we say that n is pseudoprime with respect to base a (or
that a is a non-witness of compositeness for n, or also a liar for n). There is the
Monier-Rabin bound [24] for the number S(n) of such bases (that are less than
n): S(n) ≤ ϕ(n)

4 , where ϕ is the Euler totient function.
Since ϕ(n) ≈ n for large n, we get a practical upper bound for the number

of inputs that pass the test for a given a. Thus if we repeat the test t times for
random a’s, the probability of fooling the MR test will be at most (14)t.

The fact that the a’s were picked randomly is crucial for the guarantees
above. If the bases are fixed and known in advance (as in [1]), it is possible to

https://www.muni.cz/en/research/projects/46834

226 V. Sedlacek et al.

construct a pseudoprime (see Appendix 2), i.e., a number that passes the test
with respect to these bases.

2 Constructing Pseudoprimes

We will briefly describe how to generate pseudoprimes having 3 prime factors
with respect to given distinct prime bases a1, . . . , at according to [1] and [3],
where more details can be found. The whole method can be summarised as
follows:

1. Choose t odd prime bases a1 < · · · < at (we always choose the first t smallest
primes) and let A := {a1, . . . , at}.

2. Let k1 = 1 and choose distinct coprime k2, k3 ∈ Z, k2, k3 > at (see Table 1).
3. For each a ∈ A, compute the set Sa of primes p reduced modulo 4a s.t.(

a
p

)
= −1. This can be done constructively by looping over values x ∈

{1, 2, . . . , 4a − 1} and adding x to Sa iff
(

x
a

)
(−1)(x−1)(a−1)/4 = −1 (using

quadratic reciprocity).
4. For each a ∈ A, compute the intersection Ra :=

⋂3
j=1 k−1

j (Sa +kj −1), where
k−1

j (Sa + kj − 1) denotes the set {k−1
j (s + kj − 1) mod 4a | s ∈ Sa} for each

a ∈ A. If any are empty, go back to step 2.
5. For each a ∈ A, randomly pick an element ra ∈ Ra.
6. Using the Chinese Remainder Theorem, find p1 such that

p1 ≡ k−1
3 (mod k2), p1 ≡ k−1

2 (mod k3) and p1 ≡ ra (mod 4a) for all a ∈ A.
7. Compute p2 = k2(p1−1)+1 and p3 = k3(p1−1)+1. If all p1, p2, p3 are primes,

then p1p2p3 is pseudoprime with respect to all bases a ∈ A. Otherwise, go
back to step 4 (or even 2 or 1 after a certain amount of time has passed).

If we take a1 = 2 and enforce the condition p1 ≡ 3 (mod 8) (by slightly
tweaking some steps above), the constructed pseudoprimes will meet the Monier-
Rabin bound (maximizing the probability of passing the test for a random base
choice) and will also pass the MR test for any composite base with no prime
divisors greater than at [1].

Recall that Carmichael numbers are composite n that divide an−1 − 1 for all
a ∈ Z coprime to n. Equivalently, a composite integer n is a Carmichael number
if and only if n is square-free, and p − 1 | n − 1 for all prime divisors p of n [24].
The pseudoprimes generated in this way are automatically Carmichael numbers
[1] and we are using this fact in Sect. 4.8.

2.1 Generated Domain Parameters

The generated domain parameters and scripts used to generate them and
produce our results are available at https://crocs.fi.muni.cz/papers/primality
esorics20.

https://crocs.fi.muni.cz/papers/primality_esorics20
https://crocs.fi.muni.cz/papers/primality_esorics20

Fooling Primality Tests on Smartcards 227

3 Examples of Attacks

3.1 ECDSA/ECDH: Composite n

This case uses the 10-factor n parameters as specified in Appendix 2.1. Such a
smooth order of the curve allows for a direct application of the Pohlig-Hellman
algorithm for computing discrete logarithms to obtain the private key.

The SAGE [36] code (embedded) recovered the private key on a 256-bit curve
in just about 7 s on an ordinary laptop. Computing such a discrete logarithm on
a standard 256-bit curve is currently computationally infeasible.

3.2 ECDSA/ECDH: Composite p

This case uses the 10-factor p parameters as specified in Appendix 2.1. Such a
curve with composite p can be decomposed into ten much smaller curves modulo
the prime divisors of p. On these curves, it is trivial to compute the discrete
logarithm of the public key. The resulting discrete logarithm (and the private
key) is then recovered via the CRT.

The SAGE code (embedded) recovered the private key on a 256-bit curve in
about 9 s on an ordinary laptop.

3.3 DSA/DH: Composite q

In case of composite q in DSA/DH, the Pohlig-Hellman algorithm for computing
discrete logarithms applies again. The SAGE code (embedded) computed the
private key of a public key using the 1024 bit DSA/DH parameters given in
Appendix 2.1 in 35 min on one Intel Xeon X7560 @ 2.26 GHz processor.

3.4 DSA/DH: Composite p

We have used the CADO-NFS [35] implementation of the Number Field Sieve,
to demonstrate the ease of computing the discrete logarithm of a public key
using the 1024 bit DSA/DH parameters given in Appendix 2.1. We computed
the discrete logarithm in the order q subgroup of Z

∗
p1

as it defined the smallest
group of only 336 bits.

The computation took 70 min to recover the private key on three Intel Xeon
X7560 @ 2.26 GHz processors (24 cores total), with total CPU time of 22 h.
Furthermore, this computation is generic for all public keys using the given
domain parameters. The per-key computation is trivial and takes a few minutes
at most.

Only one computation of the discrete logarithm on prime 1024 bit DSA/DH
parameters is publicly known [15]. It used the fact that the prime was trapdoored
and ran much faster than random parameters. Even then, it took two months
on a large computation cluster, with a total CPU time of 385 CPU years.

228 V. Sedlacek et al.

References

1. Albrecht, M.R., Massimo, J., Paterson, K.G., Somorovsky, J.: Prime and prejudice:
primality testing under adversarial conditions. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp. 281–298.
ACM, New York (2018). https://doi.org/10.1145/3243734.3243787

2. American National Standard X9.62-1998, Public key cryptography for the financial
services industry: the elliptic curve digital signature algorithm (ECDSA). Prelim-
inary draft, Accredited Standards Committee X9 (1998)

3. Arnault, F.: Constructing Carmichael numbers which are strong pseudoprimes to
several bases. J. Symb. Comput. 20(2), 151–161 (1995). https://doi.org/10.1006/
jsco

4. Arnault, F.: Rabin-Miller primality test: composite numbers which pass it.
Math. Comput. 64(209), 355–361 (1995). https://doi.org/10.1090/S0025-5718-
1995-1260124-2

5. Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography (2017). https://safecurves.cr.yp.to/

6. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33481-8 9

7. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 8

8. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492,
pp. 1–35. RFC Editor (2006)

9. Bleichenbacher, D.: Breaking a cryptographic protocol with pseudoprimes. In: Vau-
denay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 9–15. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30580-4 2

10. Bröker, R.: Constructing elliptic curves of prescribed order. Thomas Stieltjes Insti-
tute for Mathematics (2006)

11. Checkoway, S., et al.: A systematic analysis of the juniper dual EC incident. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, Vienna, Austria, 24–28 October 2016, pp. 468–479 (2016). https://
doi.org/10.1145/2976749.2978395

12. Dorey, K., Chang-Fong, N., Essex, A.: Indiscreet Logs: Persistent Diffie-Hellman
Backdoors in TLS (2016). https://eprint.iacr.org/2016/999

13. EnigmaBridge: Curated list of JavaCard applications (2019). https://github.com/
EnigmaBridge/javacard-curated-list. Accessed 17 Mar 2020

14. Federal Information Processing Standards Publication 186-4 Digital Signature
Standard (DSS). Standard, National Institute for Standards and Technology (2013)

15. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A kilobit hidden SNFS discrete
logarithm computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 202–231. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 8

16. Galbraith, S.D., Massimo, J., Paterson, K.G.: Safety in numbers: on the need for
robust Diffie-Hellman parameter validation. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 379–407. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 13

https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1006/jsco
https://doi.org/10.1006/jsco
https://doi.org/10.1090/S0025-5718-1995-1260124-2
https://doi.org/10.1090/S0025-5718-1995-1260124-2
https://safecurves.cr.yp.to/
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/978-3-540-30580-4_2
https://doi.org/10.1145/2976749.2978395
https://doi.org/10.1145/2976749.2978395
https://eprint.iacr.org/2016/999
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/978-3-030-17259-6_13
https://doi.org/10.1007/978-3-030-17259-6_13

Fooling Primality Tests on Smartcards 229

17. Harkins, D.: Synthetic Initialization Vector (SIV) Authenticated Encryption Using
the Advanced Encryption Standard (AES). RFC 5297, pp. 1–26. RFC Editor
(2008)

18. Doc 9303 - Machine Readable Travel Documents. Document, International Civil
Aviation Organization (2015)

19. IEEE Standard - Specifications for Public-Key Cryptography. Standard, IEEE Std
1363-2000 Working Group (2000)

20. Jancar, J.: ecgen (2019). https://github.com/J08nY/ecgen
21. Jancar, J., Svenda, P.: ECTester (2019). https://crocs-muni.github.io/ECTester/
22. Massimo, J., Paterson, K.G.: A Performant, Misuse-Resistant API for Primality

Testing (2020). https://eprint.iacr.org/2020/065
23. Miller, G.L.: Riemann’s hypothesis and tests for primality. In: Proceedings of the

Seventh Annual ACM Symposium on Theory of Computing, STOC 1975, Albu-
querque, New Mexico, USA, pp. 234–239. ACM (1975). https://doi.org/10.1145/
800116.803773

24. Monier, L.: Evaluation and comparison of two efficient probabilistic primality test-
ing algorithms. Theor. Comput. Sci. 12(1), 97–108 (1980). https://doi.org/10.
1016/0304-3975(80)90007-9

25. Nemec, M., Sys, M., Svenda, P., Klinec, D., Matyas, V.: The return of copper-
smith’s attack: practical factorization of widely used RSA moduli. In: 24th ACM
Conference on Computer and Communications Security (CCS 2017), pp. 1631–
1648. ACM, New York (2017). https://doi.org/10.1145/3133956.3133969

26. Nir, Y., Josefsson, S., Pegourie-Gonnard, M.: Elliptic Curve Cryptography (ECC)
Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier. RFC
8422, pp. 1–34. RFC Editor (2018)

27. Special Publication 800-89: Recommendation for Obtaining Assurances for Digital
Signature Applications. Standard, National Institute for Standards and Technology
(2006)

28. NSA: Windows CryptoAPI Spoofing Vulnerability (CVE-2020-0601) (2020).
https://nvd.nist.gov/vuln/detail/CVE-2020-0601. Accessed 17 Mar 2020

29. Oracle: Java Card API 3.0.5, Classic Edition (2019). https://docs.oracle.com/
javacard/3.0.5/api/index.html. Accessed 17 Mar 2020

30. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110
(1978). https://doi.org/10.1109/TIT.1978.1055817

31. Polk, T., Housley, R., Bassham, L.: Algorithms and Identifiers for the Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 3279, pp. 1–27. RFC Editor (2002)

32. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory 12,
128–138 (1980). https://doi.org/10.1016/0022-314X(80)90084-0

33. Svenda, P.: JCAlgTest: detailed analysis of cryptographic smart cards running with
Java- Card platform (2019). https://www.fi.muni.cz/xsvenda/jcalgtest/. Accessed
17 Mar 2020

34. Takahashi, A., Tibouchi, M.: Degenerate Fault Attacks on Elliptic Curve Param-
eters in OpenSSL (2019). https://eprint.iacr.org/2019/400

35. The CADO-NFS Development Team: CADO-NFS, An Implementation of the Num-
ber Field Sieve Algorithm. Release 2.3.0. (2017). http://cado-nfs.gforge.inria.fr

36. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.9) (2019). https://www.sagemath.org

37. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn.
Chapman & Hall/CRC, Boca Raton (2008)

https://github.com/J08nY/ecgen
https://crocs-muni.github.io/ECTester/
https://eprint.iacr.org/2020/065
https://doi.org/10.1145/800116.803773
https://doi.org/10.1145/800116.803773
https://doi.org/10.1016/0304-3975(80)90007-9
https://doi.org/10.1016/0304-3975(80)90007-9
https://doi.org/10.1145/3133956.3133969
https://nvd.nist.gov/vuln/detail/CVE-2020-0601
https://docs.oracle.com/javacard/3.0.5/api/index.html
https://docs.oracle.com/javacard/3.0.5/api/index.html
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1016/0022-314X(80)90084-0
https://www.fi.muni.cz/xsvenda/jcalgtest/
https://eprint.iacr.org/2019/400
http://cado-nfs.gforge.inria.fr
https://www.sagemath.org

An Optimizing Protocol Transformation
for Constructor Finite Variant Theories

in Maude-NPA

Damián Aparicio-Sánchez1, Santiago Escobar1(B), Raúl Gutiérrez2,
and Julia Sapiña1

1 VRAIN, Universitat Politècnica de València, Valencia, Spain
{daapsnc,sescobar,jsapina}@upv.es

2 Universidad Politécnica de Madrid, Madrid, Spain
r.gutierrez@upm.es

Abstract. Maude-NPA is an analysis tool for cryptographic security
protocols that takes into account the algebraic properties of the cryp-
tosystem. Maude-NPA can reason about a wide range of cryptographic
properties. However, some algebraic properties, and protocols using
them, have been beyond Maude-NPA capabilities, either because the
cryptographic properties cannot be expressed using its equational unifi-
cation features or because the state space is unmanageable. In this paper,
we provide a protocol transformation that can safely get rid of crypto-
graphic properties under some conditions. The time and space difference
between verifying the protocol with all the crypto properties and verify-
ing the protocol with a minimal set of the crypto properties is remarkable.
We also provide, for the first time, an encoding of the theory of bilin-
ear pairing into Maude-NPA that goes beyond the encoding of bilinear
pairing available in the Tamarin tool.

Keywords: Crypto protocol analysis · Diffie-Hellman ·
Exponentiation · Bilinear pairing · Protocol transformation

1 Introduction

Maude-NPA [13] is an analysis tool for cryptographic security protocols that
takes into account the algebraic properties of the cryptosystem. Sometimes alge-
braic properties can uncover weaknesses of cryptosystems and, in other cases,
they are part of the protocol security assumptions. Maude-NPA uses an approach
similar to its predecessor, the NRL Protocol Analyzer (NPA) [23], i.e., it is based
on unification and performs backwards search from an attack state pattern to

Partially supported by the EU (FEDER) and the Spanish MCIU under grant
RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROM-
ETEO/2019/098, and by the US Air Force Office of Scientific Research under award
number FA9550-17-1-0286. Julia Sapiña has been supported by the Generalitat Valen-
ciana APOSTD/2019/127 grant.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 230–250, 2020.
https://doi.org/10.1007/978-3-030-59013-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_12

An Optimizing Protocol Transformation for CFVP in Maude-NPA 231

determine whether or not it is reachable. However, unlike the original NPA, it
has a theoretical basis on rewriting logic [12] and narrowing [7], and while NPA
could only be used to reason about equational theories involving a fixed set of
rewrite rules, Maude-NPA can be used to reason about a wide range of crypto-
graphic properties [1,13], including cancellation of encryption and decryption,
Diffie-Hellman exponentiation [11], exclusive-or [29], and some approximations
of homomorphic encryption [14,33].

However, some algebraic properties and protocols using them have been
beyond Maude-NPA capabilities, either because the cryptographic properties
cannot be expressed using its equational unification features or because the
state space is unmanageable. We provide a protocol transformation that can
substantially reduce the search space, i.e., given some cryptographic properties,
expressed using the equational unification features of Maude-NPA, and a proto-
col, we are able to transform the protocol in such a way that some cryptographic
properties are no longer necessary, and thus can be safely removed. The time and
space difference between verifying the protocol with all the crypto properties and
verifying the protocol with a minimal set of the crypto properties is remarkable.
We also provide, for the first time, an encoding of the theory of bilinear pairing
into Maude-NPA that goes beyond the encoding of bilinear pairing available in
Tamarin [2], the only crypto tool with such an equational theory.

Our protocol transformation relies on a program transformation from [27]
for rewrite theories in Maude that we have improved by relaxing some of its
applicability conditions. Such program transformation relies on constructor term
variants [26], which is an extension of term variants [8,16]. Nowadays, several
crypto analysis tools rely on the variant-based equational unification capabilities
of Maude, such as Maude-NPA but also Tamarin [10] and AKISS [5]. These
tools may be benefited from our protocol transformation and, furthermore, from
our encoding of the theory of bilinear pairing. Our contributions may even be
useful for other tools with more limited crypto properties such as ProVerif [6],
Scyther [9] or Scyther-proof [24].

The main contributions of this work are: (i) we provide a non-trivial protocol
transformation based on [27]; (ii) since the protocols of Sect. 5 do not satisfy
the conditions of [27], we provide a more powerful protocol transformation that
we implemented, made available online, and pays off in practice; (iii) we pro-
vide an encoding of bilinear pairing that can handle all the protocols of Sect. 5
that Tamarin cannot handle; (iv) we implemented the algorithm of [31] for the
computation of constructor variants [26] from scratch; and (v) there was no
implementation of the program transformation of [27] and we implemented it.

After some preliminaries on Sect. 2, we present how Maude-NPA works in
Sect. 3. We introduce our protocol transformation in Sect. 4. Section 5 presents
several increasingly complex case studies: Diffie-Hellman protocol in Sect. 5.1,
STR protocol in Sect. 5.2, Joux protocol in Sect. 5.3, and TAK protocols in
Sect. 5.4. Our experiments are presented in Sect. 6 and we conclude in Sect. 7.

232 D. Aparicio-Sánchez et al.

2 Preliminaries

We follow the classical notation and terminology for term rewriting [32], and
for rewriting logic and order-sorted notions [25]. We assume an order-sorted
signature Σ with a poset of sorts (S,≤). We also assume an S-sorted family
X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite. TΣ(X)s is
the set of terms of sort s, and TΣ,s is the set of ground terms of sort s. We write
TΣ(X) and TΣ for the corresponding order-sorted term algebras. For a term t,
Var(t) denotes the set of variables in t. Throughout this paper, Σ is assumed to
be preregular, so each term t has a least sort, denoted ls(t).

A substitution σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of
X to TΣ(X). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn}, where
the domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced
by terms t1, . . . , tn is written Ran(σ). The identity substitution is denoted id.
Substitutions are homomorphically extended to TΣ(X). The application of a
substitution σ to a term t is denoted by tσ or σ(t). The restriction of σ to a set
of variables V is σ|V . Composition of two substitutions σ and σ′ is written σσ′.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X)s for some sort
s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic induces
a congruence relation =E on terms t, t′ ∈ TΣ(X). The E-equivalence class of
a term t is denoted by [t]E and TΣ/E(X) and TΣ/E denote the corresponding
order-sorted term algebras modulo E. Throughout this paper we assume that
TΣ,s �= ∅ for every sort s, because this affords a simpler deduction system. An
equational theory (Σ,E) is a pair with Σ an order-sorted signature and E a set
of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
A set of substitutions CSU E(t = t′) is said to be a complete set of unifiers for the
equality t = t′ modulo E iff: (i) each σ ∈ CSU E(t = t′) is an E-unifier of t = t′;
(ii) for any E-unifier ρ of t = t′ there is σ ∈ CSU E(t = t′) and τ s.t. στ =E ρ;
(iii) for all σ ∈ CSU E(t = t′), Dom(σ) ⊆ (Var(t) ∪ Var(t′)). An E-unification
algorithm is complete if for any equation t = t′ it generates a complete set of
E-unifiers. A unification algorithm is said to be finitary and complete if it always
terminates after generating a finite and complete set of solutions.

A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X)s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules. The relation →R,E on TΣ(X) is defined as: t →p,R,E t′ (or just
t →R,E t′) iff there exist p ∈ PosΣ(t), a rule l → r in R, and a substitution σ
such that t|p =E lσ and t′ = t[rσ]p. The transitive (resp. transitive and reflexive)
closure of →R,E is denoted by →+

R,E (resp. →∗
R,E). A term t is (R,E)-irreducible

if there is no t′ s.t. t →R,E t′. The R,E-narrowing relation on TΣ(X) is defined
as t �p,σ,R,E t′ (�σ if R,E are understood, and � if σ is also understood)
if there is a non-variable position p ∈ PosΣ(t), a rule l → r ∈ R standardized
apart (i.e., contains no variable previously met during any previous computation)
and a unifier σ ∈ CSU E(t|p = l), such that t′ = (t[r]p)σ. The transitive (resp.
transitive and reflexive) closure of � is denoted by �+ (resp. �∗).

An Optimizing Protocol Transformation for CFVP in Maude-NPA 233

3 The Maude-NPA

Given a protocol P to be specified, protocol states are modeled as elements of
an initial algebra TΣP/EP , i.e., each state is an equivalence class [t]EP ∈ TΣP/EP
where ΣP is the set of symbols defining the protocol P, and EP specifies the alge-
braic properties of the cryptographic functions ΣP . The cryptographic properties
EP may vary depending on different protocols.

The signature ΣP incorporates some predefined symbols for protocol infras-
tructure. A state is a term of the form {S1 & · · · &Sn & {IK}} where & is an
associative-commutative union operator with identity symbol ∅.

The intruder knowledge IK of a state {S1 & · · · &Sn & {IK}} is defined as a
set of facts using the comma as an associative-commutative union operator with
identity element ∅. There are two kinds of intruder facts: positive knowledge facts
(the intruder knows m, i.e., m ∈ I), and negative knowledge facts (the intruder
does not yet know m but will know it in a future state, i.e., m /∈ I), where m is
a message expression.

Each Si of a state {S1 & · · · &Sn & {IK}} is called a strand and spec-
ifies the sequence of messages sent and received by a principal execut-
ing the protocol. Strands [17] are represented as a sequence of messages
[msg±

1 ,msg±
2 ,msg±

3 , . . . ,msg±
k−1,msg±

k] with msg±
i either msg−

i (also written
−msgi) representing an input message, or msg+i (also written +msgi) repre-
senting an output message. Note that each msgi is a term of a special sort Msg;
this sort is extended by the user to allow any user-definable protocol syntax.
Variables of a special sort Fresh are used to represent pseudo-random values
(nonces) and Maude-NPA ensures that two distinct fresh variables will never be
merged. Strands are extended with all the fresh variables created by that strand,
i.e., :: f1, . . . , fk :: [msg±

1 ,msg±
2 , . . . ,msg±

k]. Section 5 includes several examples
of honest and Dolev-Yao strands.

Strands are used to represent both the actions of honest principals (with a
strand specified for each protocol role) and the actions of an intruder (with a strand
for each action an intruder is able to perform on messages). In Maude-NPA strands
evolve over time; the symbol | is used to divide past and future. That is, given a
strand [msg±

1 , . . . , msg±
i | msg±

i+1, . . . , msg±
k], messages msg±

1 , . . . ,msg±
i are the

past messages, and messages msg±
i+1, . . . ,msg±

k are the future messages (msg±
i+1

is the immediate future message). A strand [msg±
1 , . . . ,msg±

k] is shorthand for
[nil | msg±

1 , . . . ,msg±
k , nil]. An initial state is a state where the bar is at the begin-

ning for all strands in the state, and the intruder knowledge has no fact of the form
m ∈ I. A final state is a state where the bar is at the end for all strands in the state
and there is no intruder fact of the form m /∈ I.

Since the number of states TΣP/EP is in general infinite, rather than explor-
ing concrete protocol states [t]EP ∈ TΣP/EP Maude-NPA explores state patterns
[t(x1, . . . , xn)]EP ∈ TΣP/EP (X) on the free (ΣP , EP)-algebra over a set of vari-
ables X . In this way, a state pattern [t(x1, . . . , xn)]EP represents not a single
concrete state but a possibly infinite set of such states, namely all the instances
of the pattern [t(x1, . . . , xn)]EP where the variables x1, . . . , xn have been instan-
tiated by concrete ground terms.

234 D. Aparicio-Sánchez et al.

The semantics of Maude-NPA is expressed in terms of a Maude rewrite the-
ory, including rewrite rules that describe how a protocol moves from one state
to another via the intruder’s interaction with it [13]. One uses Maude-NPA to
find an attack by specifying an insecure state pattern called an attack pattern.
Maude-NPA attempts to find a path from an initial state to the attack pattern
via backwards narrowing (using the narrowing capabilities of Maude [7] but with
the reversed orientation of the rewrite rules). That is, a sequence from an initial
state to an attack state is searched in reverse as a backwards path from an attack
state pattern to an initial state. Maude-NPA attempts to find paths until it can
no longer form any backwards narrowing steps, at which point it terminates.
If at that point it has not found an initial state, the attack pattern is judged
unreachable; providing a proof of security rather than finding attacks. However,
note that Maude-NPA places no bound on the number of sessions, so reachabil-
ity is undecidable in general. Maude-NPA does not achieve termination by any
data abstraction, e.g. a bounded number of nonces. Instead, the tool makes use
of a number of sound and complete state space reduction techniques that help
to identify unreachable and redundant states [15], and thus make termination
more likely.

4 Protocol Transformation

Maude-NPA relies on equational unification to perform each backwards nar-
rowing step. Some cryptographic properties often involve the development of
dedicated algorithms (see [4]). Maude-NPA provides built-in support for theo-
ries involving symbols with any combination of associativity (A), commutativity
(C), and identity (U) axioms. Furthermore, by relying on the variant-based equa-
tional unification [7,16], Maude-NPA allows users to augment the basic set of
equational axioms supported with rewrite rules such as cancellation of encryp-
tion and decryption, Diffie-Hellman exponentiation [11], exclusive-or [29], and
some approximations of homomorphic encryption [14,33].

4.1 Finite Variant Theories

An equational theory (Σ, E) is often decomposed into a disjoint union E = E
B,
where B is a set of algebraic axioms (which are implicitly expressed in Maude as
operator attributes assoc, comm, and id: keywords) and E consists of variant
equations that are implicitly oriented from left to right as a set �E of rewrite
rules (and operationally used as simplification rules modulo B).

Definition 1 (Decomposition [16]). Let (Σ, E) be an order-sorted equational
theory. We call (Σ,B, �E) a decomposition of (Σ, E) if E = E
B and (Σ,B, �E)
is an order-sorted rewrite theory satisfying the following properties:

1. B is regular, i.e., for each t = t′ in B, we have Var(t) = Var(t′), and linear,
i.e., for each t = t′ in B, each variable occurs only once in t and in t′.

An Optimizing Protocol Transformation for CFVP in Maude-NPA 235

2. B is sort-preserving, i.e., for each t = t′ in B and substitution σ, we have
tσ ∈ TΣ(X)s iff t′σ ∈ TΣ(X)s. Furthermore, for each equation t = t′ in B,
all variables in Var(t) and Var(t′) have a common top sort.

3. B has a finitary and complete unification algorithm.
4. The rewrite rules in �E are convergent, i.e., confluent, terminating, and coher-

ent modulo B, and sort-decreasing.

In a decomposition, for each term t ∈ TΣ(X), there is a unique (up to
B-equivalence) (�E,B)-irreducible term that can be obtained by rewriting t to its
normal form, which is denoted by t↓�E,B. We often abuse notation and say that

(Σ,B, �E) is a decomposition of an order-sorted equational theory (Σ, E) even if
E �= E
 B but E is instead the explicitly extended B-coherent completion of a
set E′ such that E = E′
 B (see [16]).

Example 1. The property associated to Diffie-Hellman exponentiation is
described using the following equational theory in Maude, including an auxiliary
associative-commutative symbol ∗ for exponents so that (zx)y = (zy)x = zx∗y.

fmod DH-FVP is

sorts Exp Nonce NeNonceSet Gen .

subsort Nonce < NeNonceSet . subsort Gen < Exp .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm] .

var X : Exp . vars Y Z : NeNonceSet .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

Note that X admits any exponentiation and Y and Z are restricted to non-empty
multisets of nonces. For an arbitrary term g of sort Gen and three arbitrary
terms nA, nB , nC of sort Nonce, t = exp(exp(exp(g, nA), nB), nC) is simplified
into t↓�E,B= exp(g, nA ∗ nB ∗ nC).

In order to provide a finitary and complete unification algorithm for a decom-
position (Σ,B, �E), the folding variant narrowing strategy is defined in [16]. Intu-
itively, an (�E,B)-variant of a term t is the (�E,B)-irreducible form of an instance
tσ of t. That is, the variants of t are all of the possible (�E,B)-irreducible terms
to which instances of t evaluate.

Definition 2 (Term Variant [8,16]). Given a term t and a decomposition
(Σ,B, �E), we say that (t′, θ) is a variant of t if t′ =B (tθ)↓�E,B, where Dom(θ) ⊆
Var(t) and Ran(θ) ∩ Var(t) = ∅.

Example 2. Following Example 1, the set of variants for the term exp(X,Y) is
infinite, since we have (exp(X ′, Y ∗ Y ′), {X �→ exp(X ′, Y ′)}), (exp(X ′′, Y ∗ Y ′ ∗
Y ′′), {X �→ exp(exp(X ′′, Y ′′), Y ′)}),

It is possible to compute a complete and finite set of variants for some equa-
tional theories.

236 D. Aparicio-Sánchez et al.

Definition 3 (Complete set of Variants [16]). Given a decomposition
(Σ,B, �E) and a term t, we write [[t]]�E,B for a complete set of variants of t,
i.e., for any variant (t2, θ2) of t, there is a variant (t1, θ1) ∈ [[t]]�E,B such that
(t1, θ1) ≤�E,B (t2, θ2), where (t1, θ1) ≤�E,B (t2, θ2) iff there is a substitution ρ such
that (θ1ρ)|Var(t) =B (θ2 ↓�E,B)|Var(t) and t1ρ =B t2. An equational theory has
the finite variant property (FVP) (also called finite variant theory) iff for all
t ∈ TΣ(X), [[t]]�E,B is a finite set.

Example 3. Following Example 2, there exists a complete and finite set of
variants for the term exp(X,Y): the variant (exp(X,Y), id) and the variant
(exp(X ′, Y ∗Y ′), {X �→ exp(X ′, Y ′)}). Any other variant includes a substitution
not in irreducible form.

4.2 Constructor Finite Variant Theories

Quite often, the signature Σ of a decomposition (Σ,B, �E), on which TΣ/B is
defined, has a natural subsignature of constructor symbols Ω. The elements
of the canonical algebra CΣ/ �E,B = {[t↓�E,B]B | t ∈ TΣ}, i.e., the B-equivalence

classes computed by �E,B-simplification, are Ω-terms, whereas the other symbols
are viewed as functions which are simplified into constructor symbols.

Proverif [6] already incorporated this distinction between what they called
destructor and constructor symbols time ago in contrast to other crypto tools
such as AKISS [5], Maude-NPA [1], OFMC [28], Scyther [9], Scyther-proof [24],
and Tamarin [2]. In the rest of the paper, we exploit this distinction in Maude-
NPA without altering the tool.

A decomposition (Σ,B, �E) protects a constructor decomposition (Ω,BΩ , �EΩ)
iff Ω ⊆ Σ, BΩ ⊆ B, and �EΩ ⊆ �E, and for all t, t′ ∈ TΩ(X) we have: (i)
t =BΩ

t′ ⇐⇒ t =B t′, (ii) t = t ↓�EΩ ,BΩ
⇐⇒ t = t ↓�E,B , and (iii)

CΩ/ �EΩ ,BΩ
= CΣ/ �E,B |Ω . A constructor decomposition (Ω,BΩ , ∅) is called free.

A decomposition (Σ,B, �E) is called sufficiently complete with respect to a free
constructor decomposition (Ω,BΩ , ∅) iff for each t ∈ TΣ we have: (i) t↓�E,B∈ TΩ ,
and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ . This ensures that if any ele-
ment in an equivalent class is a constructor term, all the other elements are also
constructor.

Example 4. We can extend the equational theory of Example 1 to protect a
constructor subsignature1 by overloading symbol exp to use the former2 sorts
Exp and Gen.

1 Operator declarations labeled ctor, their associated sorts, and no equation.
2 This equational theory, as well as all the ones in Sect. 5, should be parametric on

sorts Gen, GenP and Nonce but we omit such more general-purpose definitions for
simplicity (see [7] for details on parametric equational theories).

An Optimizing Protocol Transformation for CFVP in Maude-NPA 237

fmod DH-CFVP is

sorts Exp Nonce NeNonceSet Gen .

subsort Nonce < NeNonceSet .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm ctor] .

var X : Gen . vars Y Z : NeNonceSet .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

For an arbitrary term g of sort Gen and three arbitrary terms nA, nB , nC of sort
Nonce, t = exp(exp(exp(g, nA), nB), nC) is simplified into the constructor term
t↓�E,B= exp(g, nA ∗ nB ∗ nC).

The notion of a constructor variant, rather than a variant, is defined in [26].

Definition 4 (Constructor Variant [26]). Given a decomposition (Σ,B, �E)
protecting a constructor decomposition (Ω,BΩ , �EΩ) and a Σ-term t, we say that
a variant (t′, θ) of t is a constructor variant if t′ ∈ TΩ(X).

Example 5. Following Example 4, the set of constructor variants for the term
exp(X,Y) is infinite, as in Example 2, since we have (exp(X ′, Y ∗ Y ′), {X �→
exp(X ′, Y ′)}), (exp(X ′′, Y ∗ Y ′ ∗ Y ′′), {X �→ exp(exp(X ′′, Y ′′), Y ′)}),

Definition 5 (Complete set of Constructor Variants [26]). Given a
decomposition (Σ,B, �E) protecting a constructor decomposition (Ω,BΩ , �EΩ) and
a Σ-term t, we write [[t]]Ω�E,B

for a complete set of constructor variants of t,
i.e., for any constructor variant (t2, θ2) of t, there is a constructor variant
(t1, θ1) ∈ [[t]]Ω�E,B

such that (t1, θ1) ≤�E,B (t2, θ2). A decomposition (Σ,B, �E) has
the constructor finite variant property (CFVP) (or it is called a constructor
finite variant theory) iff for all t ∈ TΣ(X), [[t]]Ω�E,B

is a finite set.

Example 6. Following Example 5, there exists a finite and complete set of con-
structor variants for the term exp(X,Y) where X is of sort Exp, since we have
(exp(XG, Y ∗ Y ′), {X �→ exp(XG,Y ′)}) where XG is a new variable of sort Gen
instead of sort Exp.

An algorithm for computing [[t]]Ω�E,B
is provided in [31] for equational theories

that are FVP. This algorithm assumes an extra condition called preregular below,
i.e., a term cannot have a constructor typing above a non-constructor typing.

Definition 6 (Preregular below [26]). Given a decomposition (Σ,B, �E) pro-
tecting a constructor decomposition (Ω,BΩ , �EΩ), the (preregular) order-sorted
signature (Σ,<) is called preregular below iff ∀t ∈ TΣ(X), lsΩ(t) = lsΣ(t).

Example 7. Consider the following equational theory

238 D. Aparicio-Sánchez et al.

fmod DH-NoPreregularBelow is

sorts Nonce NeNonceSet GenSub Gen ExpSub Exp .

subsort GenSub < Gen . subsort ExpSub < Exp .

subsort Nonce < NeNonceSet .

op gSub : -> GenSub [ctor] .

op g : -> Gen [ctor] .

op exp : GenSub NeNonceSet -> ExpSub .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

endfm

The signature is not preregular below since, given an arbitrary term nA of sort
Nonce, the least sort of the term exp(gSub, nA) is ExpSub in the original signature
but Exp in the constructor subsignature.

The set of constructor variants of the form [[〈l, r〉]]Ω�E,B
, where l and r are,

respectively, the lefthand and righthand sides of a rewrite rule in a rewrite theory,
play a crucial role in the following theory transformation R �→ RΩ

l,r from [27].

Definition 7 (R �→ RΩ
l,r [27]). Given a rewrite theory (Σ,B
 E,R) such that

(Σ,B, �E) is CFVP and preregular below, the rewrite theory (Σ,B
 E,RΩ
l,r) is

defined as RΩ
l,r = {l′ → r′ | l → r ∈ R ∧ (〈l′, r′〉, σ) ∈ [[〈l, r〉]]Ω�E,B

}.

Section 5 shows how several protocols are transformed using a protocol trans-
formation that relies on this program transformation.

Example 8. Any expression of the form exp(X,Y), where X is of sort Exp and
Y is of sort NeNonceSet, occurring in any lefthand or righthand side of a rule in
a rewrite theory will be replaced by the constructor variant shown in Example 6.

Theorem 1 ([27, Theo. 7]). Given a rewrite theory (Σ,B
 E,R) such
that (Σ,B, �E) is a decomposition protecting a free constructor decomposition
(Ω,BΩ , ∅), it is CFVP, it is sufficiently complete with respect to (Ω,BΩ , ∅), and
Σ is preregular below, then the rewrite theory (Σ,BΩ , RΩ

l,r) is ground semanti-
cally equivalent to (Σ,B
 E,R).

The equational theory for Diffie-Hellman of Example 4 is sufficiently complete
w.r.t. its constructor subsignature, since any ground term rooted by symbol
exp is either already using the constructor typing or can be simplified into the
constructor typing of exp. However, some other theories of interest are not.

Example 9. Consider the cancellation of encryption and decryption.

fmod DE is

sorts Msg Key .

op enc : Key Msg -> Msg [ctor] .

op dec : Key Msg -> Msg .

var K : Key . vars X : Msg .

eq dec(K,enc(K,X)) = X [variant] .

endfm

An Optimizing Protocol Transformation for CFVP in Maude-NPA 239

Given arbitrary keys k1, k2 and an arbitrary term a, the term dec(k1, enc(k2, a))
cannot be reduced.

Terms that cannot be simplified into a constructor term are understood as
an erroneous expression and discarded. This is the behaviour of destructor sym-
bols in Proverif [6], i.e., functions that may fail. In the rest of the paper, we
relax the condition on sufficiently completeness of Theorem 1 and follow the
spirit of Proverif’s approach3: a NF rewrite theory below ensures that erroneous
expressions cannot occur in the righthand sides of rewrite rules or in equations,
preventing any function to capture that any of its arguments fails. Typical secu-
rity protocols do however not satisfy the conditions of [27], and in particular all
protocols studied in Sect. 5 did not.

Definition 8 (NF Rewrite Theory). Given a rewrite theory (Σ,B
 E,R)
such that (Σ,B, �E) is a decomposition protecting a free constructor decom-
position (Ω,BΩ , ∅), erroneous terms are defined as Err⊥ = {t ∈ TΣ(X) |
�σ : (tσ) ↓�E,B∈ TΩ(X)} whereas possibly erroneous terms are defined as
Err� = {t ∈ TΣ(X) | ∃σ : (tσ) ↓�E,B �∈ TΩ(X)}. We say the rewrite the-
ory is NF if, for each l = r ∈ E, l, r /∈ Err⊥ and, for each l → r ∈ R,
r|p ∈ Err� =⇒ ∃q : l|q =B r|p.

Theorem 2. Given a NF rewrite theory (Σ,B
 E,R) such that (Σ,B, �E) is
a decomposition protecting a free constructor decomposition (Ω,BΩ , ∅) and it is
CFVP, then any term reachable from a constructor term is also constructor.

Proof. By induction on the length of the narrowing sequence t0 �n tn. If n = 0,
then tn = t0 and t0 is constructor. If n > 0, then t0 �σ t1 �n−1 tn s.t.
σ ∈ CSU E�B(t0|p = l) and t1 = (t0[r]p)σ. Since t0 is a constructor term, there
is no equation applicable to t0, i.e., (t0|p)σ =B (lσ)↓�E,B . Since t0 is a constructor
term, the bindings in σ|Var(t0) contain only constructor terms. Since erroneous
expressions do not appear in the equations E, σ|Var(l) contains also constructor
terms. Since r does not contain any extra possible erroneous expression, t1 is
constructor. The conclusion follows by the induction hypothesis. ��

Corollary 1. Given a NF rewrite theory (Σ,B
 E,R) such that (Σ,B, �E)
is a decomposition protecting a free constructor decomposition (Ω,BΩ , ∅), it is
CFVP, and Σ is preregular below, then the rewrite theory (Σ,BΩ , RΩ

l,r) is ground
semantically equivalent to (Σ,B
 E,R).

We have implemented both the algorithm for computing [[t]]Ω�E,B
provided in

[31] for equational theories that are FVP and the rewrite theory transformation
R �→ RΩ

l,r from [27]. As far as we know, there was no implementation available of
the rewrite theory transformation R �→ RΩ

l,r of [27]. We have used [[t]]Ω�E,B
and

R �→ RΩ
l,r to create a protocol transformation available online at http://safe-

tools.dsic.upv.es/cvtool. This web page accepts a protocol specification, using the
3 A detailed comparison is outside the scope of this paper.

http://safe-tools.dsic.upv.es/cvtool
http://safe-tools.dsic.upv.es/cvtool

240 D. Aparicio-Sánchez et al.

Maude-NPA syntax, and returns the transformed version, including strands and
attack patterns. The proof of soundness and completeness of the protocol trans-
formation is omitted but relies on Theorem 1 and Corollary 1. Informally speak-
ing, Maude-NPA internally transforms a protocol specification into a rewrite the-
ory (see Sect. 3). This transformed rewrite theory is then transformed using the
program transformation R �→ RΩ

l,r. And, finally, this resulting rewrite theory is
mapped back into a protocol specification. Note that the web page assumes that
the conditions of Corollary 1 are satisfied without enforcing them. All the pro-
tocols presented in the next section need the relaxed conditions of application of
Corollary 1 to safely apply the protocol transformation. These relaxed conditions
allow us to deal with more complex protocol specifications efficiently.

A −→ B : gNa

B −→ A : gNb

KA = (gNb)Na

KB = (gNa)Nb

KAB = gNa∗Nb

Fig. 1. DH

A −→ B : gNa

B −→ A : gNb

B −→ C : g((g
Nb)Na)

C −→ A,B : gNc

KA = (gNc)(g
((gNb)Na))

KB = (gNc)(g
((gNa)Nb))

KC = (g((g
Nb)Na))Nc

KABC = gg
Na∗Nb∗Nc

Fig. 2. STR

A −→ B,C : aP
B −→ A,C : bP
C −→ A,B : cP

KA = ê(bP, cP)a

KB = ê(aP, cP)b

KC = ê(aP, bP)c

KABC = ê(P, P)a∗b∗c

Fig. 3. Joux

A −→ B,C : aP ; {xP}A

B −→ A,C : bP ; {yP}B

C −→ A,B : cP ; {zP}C

KA = h(ê(bP, cP)a; ê(yP, zP)x)
KB = h(ê(aP, cP)b; ê(xP, zP)y)
KC = h(ê(aP, bP)c; ê(xP, yP)z)

KABC = h(ê(P, P)a∗b∗c; ê(P, P)x∗y∗z)

Fig. 4. TAK1

KA = ê(bP, zP)a · ê(yP, cP)a · ê(bP, cP)x

KB = ê(aP, zP)b · ê(xP, cP)b · ê(aP, cP)y

KC = ê(aP, yP)c · ê(xP, bP)c · ê(aP, bP)z

KABC = ê(P, P)a∗y∗c · ê(P, P)x∗b∗c · ê(P, P)a∗b∗z

Fig. 5. TAK2

KA = ê(yP, cP)x · ê(bP, zP)x · ê(yP, zP)a

KB = ê(aP, zP)y · ê(xP, cP)y · ê(xP, zP)b

KC = ê(aP, yP)z · ê(xP, bP)z · ê(xP, yP)c

KABC = ê(P, P)x∗y∗c · ê(P, P)x∗b∗z · ê(P, P)a∗y∗z

Fig. 6. TAK3

An Optimizing Protocol Transformation for CFVP in Maude-NPA 241

KA = ê(bP + h(bP ; yP)yP, cP + h(cP ; zP)zP)a+(h(aP ;xP)∗x)

KB = ê(aP + h(aP ;xP)xP, cP + h(cP ; zP)zP)b+(h(bP ;yP)∗y)

KC = ê(aP + h(bP ; yP)yP, bP + h(bP ; yP)yP)a+(h(cP ;cP)∗c)

KABC = ê(P, P)(a+(h(aP ;xP)∗x))∗(b+(h(bP ;yP)∗y))∗(c+(h(cP ;zP)∗z))

Fig. 7. TAK4

5 Case Studies

This section presents several increasingly complex case studies: Diffie-Hellman
protocol in Sect. 5.1, STR protocol in Sect. 5.2, Joux protocol in Sect. 5.3, and
TAK protocols in Sect. 5.4. The Joux and TAK protocols use bilinear pairing
but TAK4 requires properties beyond the encoding of bilinear pairings available
in Tamarin, the only crypto tool with such an equational theory.

5.1 The Diffie-Hellman Protocol

In this section, we describe the analysis performed on the Diffie-Hellman (DH)
protocol. This protocol was already analysed using Maude-NPA in [11]. DH uses
exponentiation to share a secret between two parties. The description of the
protocol using an Alice & Bob notation is given in Fig. 1.

Alice and Bob agree on a common generator g. Alice sends the generator g
raised to the power of a new nonce generated by her. Bob sends the generator
g raised to the power of a new nonce generated by him. Both Alice and Bob
take the received nonce and raised it to the power of their own respective nonce.
The cryptographic property here allows (gNA)NB = (gNB)NA = gNA∗NB . This
cryptographic property is represented using the equational theory of Example 4.

The informal description of Fig. 1 is specified using strands as follows. We
represent an exponentiation xy as exp(x, y). We represent a nonce NA as n(A, f)
where f is a Fresh variable. We have added the identifiers of the participants in
the message exchange for clarity. And we have appended a final encryption of
some random secret using the generated key to make explicit the different keys
used by the honest participants before and after the transformation.

(Alice) :: fa, f ::[+(A;B; exp(g, n(A, fa))),−(B;A;X),
+ (enc(exp(X,n(A, fa)), sec(A, f)))]

(Bob) :: fb ::[−(A;B;Y),+(B;A; exp(g, n(B, fb))),
− (enc(exp(Y, n(B, fb)), Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+(A;B; exp(g, n(A, fa))),−(B;A; exp(G,N)),
+ (enc(exp(G,n(A, fa) ∗ N), sec(A, f)))]

(Bob) :: fb ::[−(A;B; exp(G,N)),+(B;A; exp(g, n(B, fb))),
− (enc(exp(G,N ∗ n(B, fb)), Sr))]

242 D. Aparicio-Sánchez et al.

As explained in Example 6, the expression exp(X:Exp, n(A, fa)) has only one
constructor variant using substitution X:Exp �→ exp(G:Gen,N :NeNonceSet).
Similarly for exp(Y :Exp, n(B, fb)). The duplication of symbols in one defined
and one constructor, the coincidence that each defined symbol has only one
equation, and the use of associativity and commutativity, makes each strand
of the protocols of this paper is replaced by just one strand. This may not
always be the case and a strand may be replaced by several new strands (see
[27, Example 7]). The Dolev-Yao capabilities for exponentiation are as follows.

(DY exp ctor)[−(G:Gen),−(N :NeNonceSet),+(exp(G:Gen, N :NeNonceSet)]
(DY exp func)[−(E:Exp),−(N :NeNonceSet),+(exp(E:Exp, N :NeNonceSet)]

The second one is transformed as follows

(DY exp cvar)[−(exp(G:Gen,X:NeNonceSet)),−(N :NeNonceSet),
+ (exp(G:Gen,X:NeNonceSet ∗ N :NeNonceSet))]

5.2 The STR Protocol

One extension of the Diffie-Hellman protocol is to consider that every time a
new member is joined the exchange key is repeated, allowing for an unbounded
number of participants a priori. We consider the tree-party group key agreement
protocol STR from [20], where STR is a short name for Skinny TRee. The
description of the protocol using an informal Alice & Bob notation is given in
Fig. 2. The only difference between the cryptographic properties of STR and
DH is that we can have an exponentiation as an exponent, where DH could not.
Therefore, the only difference to the equational theory of Example 4 is “subsort
Nonce Exp < NeNonceSet”. The equational theory still satisfies all the conditions
of Corollary 1. The informal description of Fig. 2 is specified using strands as
follows, we remove the identifiers of the participants for simplicity.

(Alice) :: fa, f ::[+(exp(g, n(A, fa))),−(XB),−(XC),
+ (enc(exp(XC, exp(XB, n(A, fa))), sec(A, f)))]

(Bob) :: fb ::[−(XA),+(exp(g, n(B, fb))),+(exp(g, exp(XA, n(B, fb)))),
− (XC),−(enc(exp(XC, exp(XA, n(B, fb))), Sr))]

(Carol) :: fc ::[−(XAB),+(exp(g, n(C, fc))),−(enc(exp(XAB, n(C, fc)), Sr))]

An Optimizing Protocol Transformation for CFVP in Maude-NPA 243

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+(exp(g, n(A, fa))),−(exp(G1,NB)),−(exp(G2,NC)),
+ (enc(exp(G2, exp(G1, n(A, fa) ∗ NB) ∗ NC), sec(A, f)))]

(Bob) :: fb ::[−(exp(G,NA)),+(exp(g, n(B, fb))),
+ (exp(g, exp(G,n(B, fb) ∗ NA))),−(exp(G,NC)),
− (enc(exp(G, exp(G,n(B, fb) ∗ NA) ∗ NC), Sr))]

(Carol) :: fc ::[−(exp(G,NAB)),+(exp(g, n(C, fc))),
− (enc(exp(G,NAB ∗ n(C, fc)), Sr))]

5.3 The Joux Protocol

When you want to keep the spirit of the Diffie-Hellman protocol, where no extra
sharing is necessary apart of the initial broadcast information, an interesting
alternative for three participants is the Joux protocol [19], which relies on bilinear
pairing. The description of the protocol using an informal Alice & Bob notation
is given in Fig. 3.

Pairing-based cryptography makes use of a pairing function ê : G1 × G2 →
GT of two cryptographic groups G1 and G2 into a third group GT . Typically,
G1 = G2 and it will be a subgroup of the group of points on an elliptic curve over
a finite field, and GT will be a subgroup of the multiplicative group of a related
finite field and the map ê will be derived from either the Weil or Tate pairing
on the elliptic curve. When G = G1 = G2, the pairing is called symmetric
and the pairing function ê is commutative, i.e., if the participants agree on a
generator g ∈ G, for any P,Q in G there exist integers i, j s.t. P = gi, Q = gj ,
ê(P,Q) = ê(gi, gj) = ê(g, g)i∗j = ê(gj , gi) = ê(Q,P). In Fig. 3, we follow the
syntax of [19] and use letter P as the agreed generator. We write aP instead of
P a for P added to itself a times, also called scalar multiplication of P by a. Note
that we write [a]P in the equational theory below for clarification. The bilinear
pairing is specified as follows.

fmod BP-CFVP is

sorts Nonce NeNonceSet Gen GenP Exp ExpP .

subsort Nonce < NeNonceSet .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm ctor] .

op p : -> GenP [ctor] .

op em : GenP GenP -> Gen [ctor comm] .

op em : ExpP ExpP -> Exp [comm] .

op [_]_ : NeNonceSet GenP -> ExpP [ctor] .

op [_]_ : NeNonceSet ExpP -> ExpP .

var X : Gen . vars Y Z : NeNonceSet . vars P Q : GenP .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

eq [Z]([Y]P) = [Z * Y]P [variant] .

eq em([Y]P, [Z]Q) = exp(em(P,Q),Y * Z) [variant] .

endfm

244 D. Aparicio-Sánchez et al.

We adapted the built-in theory of bilinear pairing of Tamarin [2,30] to satisfy4

the conditions of Corollary 1. The informal description of Fig. 3 is specified using
strands as follows.

(Alice) :: fa, f ::[+([n(A, fa)]p),−(XB),−(XC),
+ (enc(exp(em(XB,XC), n(A, fa)), sec(A, f))]

(Bob) :: fb ::[−(XA),+([n(B, fb)]p),−(XC),
− (enc(exp(em(XA,XC), n(B, fb)), Sr)]

(Carol) :: fc ::[−(XA),−(XB),+([n(C, fc)]p),
− (enc(exp(em(XA,XB), n(C, fc)), Sr)]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+([n(A, fa)]p),−([NB]PB),−([NC]PC),
+ (enc(exp(em(PB,PC), n(A, fa) ∗ NB ∗ NC), sec(A, f))]

(Bob) :: fb ::[−([NA]PA),+([n(B, fb)]p),−([NC]PC),
+ (enc(exp(em(PA,PC), n(B, fb) ∗ NA ∗ NC), Sr)]

(Carol) :: fc ::[−([NA]PA),−([NB]PB),+([n(C, fc)]p),
+ (enc(exp(em(PA,PB), n(C, fc) ∗ NA ∗ NB), Sr)]

5.4 The TAK Group Protocols

The Tripartite Authenticated Key group protocols [3] is a set of authenticated
key agreement protocols that still require only one round of communication. It is
an improvement of the Joux protocol. The four versions of TAK share the same
exchanged message but the computation key is different for each version. The
description of the TAK protocol using an informal Alice & Bob notation is given
in Fig. 4. However, the four different ways of computing the keys are given in
Figs. 4, 5, 6, and 7. These four protocols use the bilinear pairing cryptographic
properties explained in Sect. 5.3 plus a hash function h and the following additive
property (and its symmetric version, since ê is commutative)

ê(Q,W + Z) = ê(Q,W) · ê(Q,Z) (1)

where + is the additive symbol for the group G and · is the additive symbol for
the group GT given ê : G × G → GT . These properties are specified5 as follows.

4 Confluence is proved by the absence of critical pairs between the lefthand sides
of the three equations. Termination and FVP are proved by strongly right-
irreducibility [16], i.e., righthand sides do not unify with any lefthand side. CFVP
is proved because it is preregular below.

5 The additive property (1) is not supported by the bilinear pairing of Tamarin [2,30].

An Optimizing Protocol Transformation for CFVP in Maude-NPA 245

fmod BPAdd-CFVP is

sorts Nonce NeNonceSet Gen GenP Exp ExpP ExpT .

subsort Nonce < NeNonceSet . subsort Exp < ExpT .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [ctor assoc comm] .

op p : -> GenP [ctor] .

op em : GenP GenP -> Gen [ctor comm] .

op em : ExpP ExpP -> Exp [comm] .

op [_]_ : NeNonceSet GenP -> ExpP [ctor] .

op [_]_ : NeNonceSet ExpP -> ExpP .

op _+_ : NeNonceSet NeNonceSet -> NeNonceSet [ctor assoc comm] .

op _+_ : ExpP ExpP -> ExpP .

op _·_ : ExpT ExpT -> ExpT [ctor assoc comm] .

var X : Gen . vars Y Z : NeNonceSet . vars P Q : GenP .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

eq [Z]([Y]P) = [Z * Y]P [variant] .

eq em([Y]P, [Z]Q) = exp(em(P,Q),Y * Z) [variant] .

eq ([Y]P) + ([Z]P) = [Y + Z]P [variant] .

endfm

Note that Property 1 does not appear explicitly in the equational theory above
and it is transformed as follows. The addition symbol + is split into two versions,
one of them being an associative-commutative constructor and the other one
being a defined symbol. A new equation relating these two versions of + is added.
And symbol · is simply represented as an associative-commutative constructor.
The last, new equation denotes a homomorphic addition and it is easily handled
by variant-based unification because it is defined on disconnected sorts ExpP and
NeNonceSet (see [33] for approximations of homomorphism following the same
idea). For example, the key generated by Alice in TAK4

KA = exp(em([b]p + [h([b]p; [y]p) ∗ y]p, [c]p + [h([c]p; [z]p) ∗ z]p),
a + (h([a]p; [x]p) ∗ x))

is transformed into the common key

KABC = exp(em(p, p),(a + (h([a]p; [x]p) ∗ x))∗
(b + (h([b]p; [y]p) ∗ y)) ∗ (c + (h([c]p; [z]p) ∗ z)))

by applying the last equation two times, followed by the third and the first
equations (we underline the replaced subterm)

246 D. Aparicio-Sánchez et al.

exp(em([b]p + [h([b]p; [y]p) ∗ y]p, [c]p + [h([c]p; [z]p) ∗ z]p),

a + (h([a]p; [x]p) ∗ x)) =
exp(em([b + (h([b]p; [y]p) ∗ y)]p, [c + (h([c]p; [z]p) ∗ z)]p),

a + (h([a]p; [x]p) ∗ x))) =
exp(exp(em(p, p), a + (h([a]p; [x]p) ∗ x),

(b + h([b]p; [y]p) ∗ y) ∗ (c + h([c]p; [z]p) ∗ z)) =

exp(em(p, p),(a + (h([a]p; [x]p) ∗ x))∗
(b + (h([b]p; [y]p) ∗ y)) ∗ (c + (h([c]p; [z]p) ∗ z)))

If the non-constructor version of + becomes associative-commutative, then
the theory is not FVP. This equational theory works for all the TAK protocols
even if it is not the most general possible; it is left for future work whether
Property 1 can be encoded directly. This equational theory satisfies the condi-
tions of Corollary 1. The original and transformed versions of TAK1, TAK2,
and TAK3 are omitted but are available online. The informal description of the
TAK4 protocol given in Fig. 7 is specified using strands as follows.

(Alice) :: fa, fx, f :: [+([n(A, fa)]p),+([n(A, fx)]p),−(BP),−(YP),−(CP),−(ZP),

+ (enc(exp(ê(BP + [h(BP;YP)]YP,CP + [h(CP;ZP)]ZP),

fa + h([n(A, fa)]p; [n(A, fx)]p ∗ fx)), sec(A, f)))]

(Bob) :: fb, fy :: [−(AP),−(XP),+([n(B, fb)]p),+([n(B, fy)]p),−(CP),−(ZP),

− (enc(exp(ê(AP + [h(AP;XP)]XP,CP + [h(CP;ZP)]ZP),

fb + h([n(B, fb)]p; [n(B, fy)]p ∗ fy)), Sr))]

(Carol) :: fc, fz :: [−(AP),−(XP),−(BP),−(YP),+([n(C, fc)]p),+([n(C, fz)]p),

− (enc(exp(ê(AP + [h(AP;XP)]XP,BP + [h(BP;YP)]YP),

fc + h([n(C, fc)]p; [n(C, fc)]p ∗ fc)), Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, fx, f :: [+([n(A, fa)]p),+([n(A, fx)]p),

−([NB]PB),−([NY]PB),−([NC]PC),−([NZ]PC),

+(enc(exp(ê(PB,PC), (NB + (h([NB]PB; [NY]PB) ∗ NY))

∗ (NC + (h([NC]PC; [NZ]PC) ∗ NZ))

∗ (fa + h([n(A, fa)]p; [n(A, fx)]p ∗ fx))), sec(A, f)))]

(Bob) :: fb, fy :: [− ([NA]PA),−([NX]PA),+([n(B, fb)]p),+([n(B, fb)]p),

− ([NC]PC),−([NZ]PC),

− (enc(exp(ê(PA,PC), (NA + (h([NA]PA; [NX]PA) ∗ NX))

∗ (NC + (h([NC]PC; [NZ]PC) ∗ NZ))

∗ (fb + h([n(B, fb)]p; [n(B, fy)]p ∗ fy))), Sr))]

An Optimizing Protocol Transformation for CFVP in Maude-NPA 247

(Carol) :: fc, fz :: [− ([NA]PA),−([NX]PA),−([NB]PB),−([NB]PB),

+ ([n(C, fc)]p),+([n(C, fc)]p),

− (enc(exp(ê(PA,PB), (NA + (h([NA]PA; [NX]PA) ∗ NX))

∗ (NB + (h([NB]PB; [NY]PB) ∗ NY))

∗ (fc + h([n(C, fc)]p; [n(C, fz)]p ∗ fz))), Sr))]

6 Experiments

We have evaluated all the protocols of Sect. 5, both before and after the transfor-
mation. For DH, STR and Joux, we consider two general attack patterns, one for
authentication and another for secrecy of the session key. For TAKs we consider
only a secrecy attack pattern. Both properties of DH are insecure, authentica-
tion of STR is insecure but secrecy is secure [20], both properties of Joux are
insecure [19], and TAK1, TAK2, TAK3, and TAK4 are secure [3].

In Table 1, we report both the number of states and the generation time
of the search space associated to each attack pattern. The transformation itself
is almost immediate, since the equational theories in these examples are not so
complex. The time and space difference is shown in columns States (%) and
Speedup. These columns demonstrate that the difference between verifying the
protocol with all the crypto properties and verifying the protocol with a minimal
set of the crypto properties is remarkable in three different aspects. First, for
the STR protocol, the transformed protocol produces only 46.80% of the total
number of states of the untransformed version. Second, for the TAK3 protocol,
the execution time of the transformed protocol is three times faster than the
untransformed version. Third, for the Joux protocol, even if the analysis of the
transformed protocol produces more states than the analysis of the untrans-
formed protocol, the execution time is three times faster.

Table 1. Experimental results for the transformed protocols.

Protocol Property Before transformation After transformation States (%) Speedup

States Time (ms) States Time (ms)

DH auth 137 308,066 111 132,756 81.02 2.32

secrecy 138 322,731 104 142,015 75.36 2.27

STR auth 34 43,144 31 16,010 91.18 2.69

secrecy 250 1,016,469 117 408,960 46.80 2.49

Joux auth 38 85,579 37 30,012 97.37 2.85

secrecy 55 247,712 58 78,384 105.45 3.16

TAK1 secrecy 25 259,619 20 126,998 80.00 2.04

TAK2 secrecy 67 365,797 46 152,842 68.66 2.39

TAK3 secrecy 117 670,775 67 216,350 57.26 3.10

TAK4 secrecy 57 371,770 48 181,850 84.21 2.04

248 D. Aparicio-Sánchez et al.

All the experiments were conducted on a PC with a 3.3 GHz Intel Xeon
E5-1660 and 64 GB RAM. We used Maude v3.0 [7] and Maude-NPA v3.1.4 [1].
The protocol specifications of both before and after the transformation and the
output of each analysis are available at http://safe-tools.dsic.upv.es/cvtool.

7 Conclusions

Our first contribution is a protocol transformation that can safely get rid of cryp-
tographic properties under some mild conditions. We have demonstrated with
experiments that the time and space difference between verifying the protocol
with all the crypto properties and verifying the protocol with a minimal set of
the crypto properties is remarkable (an average speedup of 2.54). A similar idea
is presented in [22] for XOR and in [21] for DH. These works are however not
comparable to ours, since they are not protocol transformations but classes of
protocols were the analysis using Proverif is sound. In [18], protocol transforma-
tions are studied. However the goal it not to optimize the verification, but to
ensure that a transformed protocol satisfies some security goals, when the source
protocol did, focusing on incremental protocol construction. Our second contri-
bution is an encoding of the theory of bilinear pairing into Maude-NPA. This
encoding goes beyond the encoding of bilinear pairing available in the Tamarin
tool, the only crypto tool with such an equational theory. Since Tamarin [10]
and AKISS [5] use term variants, they could be adapted to use both our pro-
tocol transformation and our encoding of the theory of bilinear pairing. They
may even be useful for other crypto tools with more limited crypto properties
such as ProVerif [6], OFMC [28], Scyther [9] or Scyther-proof [24]. Specially, since
Proverif [6] already incorporated the notion of destructors and constructors time
ago. As future work, we plan to study how the protocol transformation applies
to other families of protocols and crypto properties such as homomorphisms [33].

References

1. Maude-NPA manual v3.1. http://maude.cs.illinois.edu/w/index.php/Maude
Tools: Maude-NPA

2. The Tamarin-Prover Manual, 4 June 2019. https://tamarin-prover.github.io/
manual/tex/tamarin-manual.pdf

3. Al-Riyami, S.S., Paterson, K.G.: Tripartite authenticated key agreement protocols
from pairings. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS,
vol. 2898, pp. 332–359. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-40974-8 27

4. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, pp. 447–533. Elsevier Science (2001)

5. Baelde, D., Delaune, S., Gazeau, I., Kremer, S.: Symbolic verification of privacy-
type properties for security protocols with XOR. In: 30th IEEE Computer Security
Foundations Symposium, CSF 2017, pp. 234–248. IEEE Computer Society (2017)

6. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Found. Trends Privacy Secur. 1(1–2), 1–135 (2016)

http://safe-tools.dsic.upv.es/cvtool
http://maude.cs.illinois.edu/w/index.php/Maude_Tools:_Maude-NPA
http://maude.cs.illinois.edu/w/index.php/Maude_Tools:_Maude-NPA
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://doi.org/10.1007/978-3-540-40974-8_27
https://doi.org/10.1007/978-3-540-40974-8_27

An Optimizing Protocol Transformation for CFVP in Maude-NPA 249

7. Clavel, M., et al.: Maude manual (version 3.0). Technical report, SRI International,
Computer Science Laboratory (2020). http://maude.cs.uiuc.edu

8. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

9. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 38

10. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equa-
tional theories in automated verification of stateful protocols. In: Maffei, M., Ryan,
M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54455-6 6

11. Escobar, S., Hendrix, J., Meadows, C., Meseguer, J.: Diffie-Hellman cryptographic
reasoning in the Maude-NRL protocol analyzer. In: Proceedings of 2nd Interna-
tional Workshop on Security and Rewriting Techniques (SecReT 2007) (2007)

12. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci.
367(1–2), 162–202 (2006)

13. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

14. Escobar, S., et al.: Protocol analysis in Maude-NPA using unification modulo homo-
morphic encryption. In: Proceedings of PPDP 2011, pp. 65–76. ACM (2011)

15. Escobar, S., Meadows, C.A., Meseguer, J., Santiago, S.: State space reduction in
the Maude-NRL protocol analyzer. Inf. Comput. 238, 157–186 (2014)

16. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)

17. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security
protocol correct? In: Proceedings of IEEE Symposium on Security and Privacy,
pp. 160–171 (1998)

18. Guttman, J.D.: Security goals and protocol transformations. In: Mödersheim, S.,
Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 130–147. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-27375-9 8

19. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

20. Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement. In:
Dupuy, M., Paradinas, P. (eds.) SEC 2001. IIFIP, vol. 65, pp. 229–244. Springer,
Boston, MA (2002). https://doi.org/10.1007/0-306-46998-7 16

21. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In: IEEE Computer Security Foundations, pp. 157–171
(2009)

22. Küsters, R., Truderung, T.: Reducing protocol analysis with XOR to the XOR-
free case in the horn theory based approach. J. Autom. Reason. 46(3–4), 325–352
(2011)

23. Meadows, C.: The NRL protocol analyzer: an overview. J. Logic Program. 26(2),
113–131 (1996)

24. Meier, S., Cremers, C., Basin, D.: Strong invariants for the efficient construction of
machine-checked protocol security proofs. In: 2010 23rd IEEE Computer Security
Foundations Symposium, pp. 231–245 (2010)

http://maude.cs.uiuc.edu
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-662-54455-6_6
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-642-27375-9_8
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/0-306-46998-7_16

250 D. Aparicio-Sánchez et al.

25. Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theo-
ret. Comput. Sci. 96(1), 73–155 (1992)

26. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

27. Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic
methods. J. Log. Algebr. Meth. Program. 110, 100483 (2020)

28. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for sym-
bolic analysis of security protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007-2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 6

29. Sasse, R., Escobar, S., Meadows, C., Meseguer, J.: Protocol analysis modulo com-
bination of theories: a case study in Maude-NPA. In: Cuellar, J., Lopez, J., Barthe,
G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 163–178. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22444-7 11

30. Schmidt, B., Sasse, R., Cremers, C., Basin, D.A.: Automated verification of group
key agreement protocols. In: 2014 IEEE Symposium on Security and Privacy, SP
2014, pp. 179–194. IEEE Computer Society (2014)

31. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log.
Algebraic Methods Program. 96, 81–110 (2018)

32. TeReSe: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)
33. Yang, F., Escobar, S., Meadows, C.A., Meseguer, J., Narendran, P.: Theories of

homomorphic encryption, unification, and the finite variant property. In: Proceed-
ings of PPDP 2014, pp. 123–133. ACM (2014)

https://doi.org/10.1007/978-3-642-03829-7_6
https://doi.org/10.1007/978-3-642-22444-7_11

On the Privacy Risks of Compromised
Trigger-Action Platforms

Yu-Hsi Chiang1(B), Hsu-Chun Hsiao1 , Chia-Mu Yu2 ,
and Tiffany Hyun-Jin Kim3

1 National Taiwan University, Taipei, Taiwan
r06922023@csie.ntu.edu.tw

2 National Chiao Tung University, Hsinchu, Taiwan
3 HRL Laboratories LLC, Malibu, CA, USA

Abstract. Trigger-action platforms empower users to interconnect var-
ious physical devices and online services with custom automation. While
providing convenience, their centralized design raises privacy concerns
for end users. Unlike prior work that consider privacy leakage to action
services, we consider privacy leakage to compromised platforms. After
investigating potential privacy exposure to a popular trigger-action plat-
form, IFTTT, we identified three types of leakages: event data, trigger
event presence, and device possession. We also found that 91% of the
top 500 triggers on IFTTT potentially leak sensitive information to the
platform, and 25% leak implicitly. To achieve the paradoxical goal of
hiding the event data and presence while asking the platform to trig-
ger corresponding actions when an event occurs, we propose Obfuscated
Trigger-Action Platform (OTAP) and Anonymous Trigger-Action Plat-
form (ATAP). ATAP additionally provides device set confidentiality at
the cost of minor platform modification. Our schemes can preserve user
privacy without sacrificing convenience, and are incrementally deploy-
able in various use cases. Our work addresses a crucial missing piece in
securing the trigger-action ecosystem, and can be integrated with solu-
tions that ensure integrity against untrusted platforms or solutions that
address untrusted vendor services and users.

1 Introduction

Fueled by the growing demand for home automation, trigger-action platforms
(e.g.., IFTTT [7], Zapier [11], and Microsoft Power Automate [1]) are gaining
popularity among smart home users. Such cloud-based platforms empower users
to connect heterogeneous devices from different vendors and write automation
rules, which often take the form of “If a certain trigger occurs, then do a certain
action.”1 In addition to home devices, these platforms are also integrated with
many online services such as Google, Amazon, and Instagram. Due to their
ease of use and the variety of supported services, these platforms have attracted
millions of users running billions of rules per month [8].
1 For example, “If I am approaching home, turn on the air conditioner.”.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 251–271, 2020.
https://doi.org/10.1007/978-3-030-59013-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_13&domain=pdf
http://orcid.org/0000-0001-9592-6911
http://orcid.org/0000-0002-1677-2131
https://doi.org/10.1007/978-3-030-59013-0_13

252 Y.-H. Chiang et al.

The convenience comes at the cost of privacy. Because trigger-action plat-
forms are authorized to collect and manipulate data from various services, some
of which may contain sensitive information including users’ location, purchase
history, private social media posts or photos, privacy concerns are raised if the
platforms are untrusted or hacked. Moreover, cloud-based centralized architec-
ture makes these platforms an attractive target for attackers, as demonstrated
by recent incidents targeting the cloud services of famous companies, including
Equifax [9], Yahoo [3,4] and Target [2]. Therefore, unlike prior work [13,14,23,28]
which focused on the privacy leakage to action services or rule authors through
improperly configured rules, we consider the case of compromised platforms. We
also note that a compromised trigger-action platform is more dangerous than
any single compromised vendor (e.g., Samsung, Google, etc.) due to the amount
of aggregated information.

To better understand the privacy risks of a compromised trigger-action plat-
form, we first conduct a case study on one popular trigger-action platform,
IFTTT. Instead of categorizing triggers by the functionality of their associated
services [13], we categorize by the types of information they may leak, and iden-
tified three types of leakage: event data, trigger event presence, or device pos-
session. Among the most popular 500 triggers, we found that 91% potentially
send sensitive data to IFTTT, and 25% may leak sensitive information implicitly
by the presence of their triggers. For example, a hearing-aid device leaks health
conditions, and a surfing sports application leaks a user’s personal interest. Cat-
egorizing potentially-leaking information types revealed that IFTTT can build
a profile of a user who installs a sufficient number of rules.

To enhance the privacy of the trigger-action ecosystem in a practical manner,
we investigate the problem of preventing an untrusted platform from learning
users’ private information (via either received data, trigger event presence, or
device possession), while simultaneously keeping the benefits of a cloud-based
solution. The goal seems paradoxical, as we would like to maintain both of the
trigger data and trigger event presence secrecy, while asking the platform to
trigger corresponding actions when an event occurs. Existing solutions based on
encryption or fine-grained access control such as DTAP [20] fail to achieve this
goal, as they can only hide the data but not the presence of triggers, and simply
limiting access to sensitive information could affect the platforms functional-
ity. In this work, we demonstrate that it is possible to build such schemes using
obfuscation and anonymization techniques, and propose (1) Obfuscated Trigger-
Action Platform (OTAP) and (2) Anonymous Trigger-Action Platform (ATAP).
In short, OTAP hides real triggers by also sending fake triggers to confuse the
platform, and ATAP preserves users’ privacy by breaking the links between a
user and his/her data. According to our empirical evaluation using realistic con-
figurations, our schemes can balance the trade-offs between security and utility
under different assumptions and requirements. For example, our schemes add
at most 25 ms to rule execution time and can achieve the same throughput as
existing solutions with at most 8× computation resources.

On the Privacy Risks of Compromised Trigger-Action Platforms 253

To summarize, this work makes the following contributions:

– We conducted an empirical study on potential privacy exposures to trigger-
action platforms. We categorized the types of leaked information and the
ways they are leaked.

– We designed and implemented two privacy-preserving trigger-action platform
solutions, OTAP and ATAP, based on trigger obfuscation and anonymization.
OTAP hides information about data and trigger event presence. ATAP addi-
tionally hides information about device/account possession.

– Through security analysis and empirical experiments, we show that our pro-
posed schemes can be deployed in various practical scenarios.

2 Problem Definition

Our core goals are to (1) identify the privacy risks of trigger-action platforms and
information leakage types, and (2) alleviate the exposed privacy risks in a prac-
tical manner. We provide formal privacy framework and proofs in Appendix A.

2.1 Threat Model

We consider an untrusted trigger-action platform that can be compromised and
violate end-users’ confidentiality. An adversary can collect users’ information
through the following three sources:

Data & parameter: The raw data of trigger and action parameters and trigger
event data.

Trigger event presence: The occurrence of trigger events. For example, the
occurrence of trigger-event “leave home” allows an attacker to infer if the user
is at home.2

Device/account possession: Status of users’ ownership of devices or online
accounts. For example, if one connects a hearing aid (e.g.., Oticon [6]), an
attacker may infer that the user has hearing issues.

We do not consider action presence in our threat model since no information
is sent back from the action service to the platform when an action is fired. Thus,
there is no way for the platform to verify whether an action is indeed executed.
We also assume that the platform will not collude with partner services and
there are secured channels (e.g., HTTPS) between different parties.

Since we only focus on confidentiality in this work, the following attacks are
considered out of our scope.

– Breaking action integrity, including replaying old triggers or triggering unau-
thorized actions, which can be mitigated with existing solution [20].

– Denial-of-service, which has low incentives from platforms’ perspectives as
DoS attacks will drive users away and hurt the platform’s reputations.

– Leaking sensitive information to partner services.
2 Turn off WiFi on your Android when you leave home to save power [10].

254 Y.-H. Chiang et al.

2.2 Desired Properties

In respect to Sect. 2.1, we define the following three types of confidentiality that
a privacy-preserving trigger-action platform should preserve.

Table 1. Example of a trigger-action rule

Rule If saying a specific phrase to Google

Home, then set the Hue light brightness

Trigger Say a phrase with a number

Trigger params phrase: set hue brightness to #

Action Set brightness

Action params brightness: number spoken

Event data number spoken: 50

triggered at: 2020/01/01 12:00 Fig. 1. Example of a trigger-action
ecosystem

Data & Parameters Confidentiality. The platform should not learn the
trigger and action parameters and the event data.

Trigger Event Presence Confidentiality. The trigger-action platform should
not be capable of infering when or whether a trigger event occurs.

Device Set Confidentiality. The trigger-action platform should not learn what
devices or service accounts a user possesses.

For practicality, the following should also be taken into account.

Minimal Information Exposure. Every entity in the system should not learn
additional information compared to what it knows from the original scheme
(i.e., IFTTT). Otherwise, a solution simply delegates the job of the platform
(i.e., rule storage and execution) to partner services, which does not protect
users’ privacy. In the existing IFTTT ecosystem, the trigger and action ser-
vices know the trigger and action-related information, respectively, while the
platform knows both of the information and the rules. Though the attacker
we considered in this work is the platform, we would also want to ensure that
the proposed solutions do not leak additional information to either of the
trigger or action service so that the privacy risks are not shifted or raised.

Performance. The system should be able to handle thousands of concurrent
triggers per second, the rule execution should be fast enough, and the delay
between the trigger and action being done should be reasonable (e.g.., 15 min
of maximum delay in IFTTT as of 2020).

3 Case Study: Privacy-Risks of IFTTT

To understand the security risks of a compromised trigger-action platform, we
inspect the trigger specifications of 500 most popular triggers on IFTTT, and
investigate the types of information that IFTTT can learn and the sources of
leakage. Datasets are available [12].

On the Privacy Risks of Compromised Trigger-Action Platforms 255

3.1 Background: IFTTT & Trigger-Action Platforms

A trigger-action platform is a cloud service that allows end-users to connect
different IoT devices and online services based on conditional rules. The rules
are in the form of “IF a certain trigger happens, THEN do a certain action,”
such as “IF saying a specific phrase to Google Home, THEN set the Hue light
brightness,” or “IF someone posts a new photo on Instagram, THEN upload it
to my Google Drive.” As shown in Table 1, triggers and actions are provided by
certain third-party partner services such as Phillips Hue, Instagram, or Google,
and they are customized by the trigger and action parameters, respectively.

A rule will be triggered when there is an event that satisfies the condition
described by its trigger and trigger parameters. Event data represents the data
associated with the event, and the event data can be used as part of action
parameters. Some platforms also allow users to write a piece of code (called
filter code), which filters and transforms the event data.

Figure 1 illustrates a typical ecosystem of trigger-action platforms [27]: upon
executing a rule, the trigger-action platform receives the data from the trigger
service, transforms them into the parameters of the action, and calls the API
of the action service. The platform usually does not connect to devices directly,
but through cloud services provided by their vendors for ease of management.
Partner services communicate to their devices using proprietary protocols, and
use the platform’s web-based protocols to fire triggers or receive action requests.

3.2 Methodology

Dataset. We obtained the list of event-data fields (known as ingredients in
IFTTT) of each trigger using IFTTT’s undocumented GraphQL API [12]. We
queried in March 2019, and retrieved all of the 524 services and 2,396 triggers.
We identified the 500 most popular triggers based on a popularity rank derived
from a public dataset collected in May 2017 [27]. Their dataset includes about
280,000 rules of IFTTT, and contains the number of installed users for each
rule. We assessed the popularity of each trigger by summing up the number of
installed users having that trigger.

Approach. We assigned several labels to each trigger to indicate what types of
information may be leaked and how the leakage would occur. To indicate the
possibility of containing private information, we assigned a score from 1 to 3:
Scores of 1, 2, or 3 indicate that the data does not contain, possibly contains,
or absolutely contains private information, respectively. For example, a “photo
uploaded” trigger may leak private information depending on the content of the
photo and hence we assigned the score of 2; an “arrive at” trigger definitely leaks
a user’s location and hence we assigned 3.

3.3 Results

Types of Leaked Information. As shown in Table 2, we identified 12 cate-
gories of leaked information, and labeled triggers for each category. Note that a

256 Y.-H. Chiang et al.

Table 2. Categories of leaked information

Basic information Name, age, email address, phone number, physical address,
occupation, etc.

Location Current location, location history

Finance Bank account balance, transaction logs, purchase history, etc.

Health status Weight, BMI, blood pressure, heart rate, etc.

Social Contacts, membership status of organizations, etc.

Communication Call records, SMS, voicemail, email, social media posts, etc.

Lifestyle/Activities Data or logs that show user’s activities. e.g., the time the
user wakes up, turns on the TV or goes to work, etc.

Activities summary The summary of user’s activities. e.g., total working hours,
distance of driving, etc.

Interest Videos liked or watched, interested news topics, followed
stocks, etc.

Physical sensor Temperature of a room, indoor CO2 level, etc.

Others (Personal) Information not publicly available and not fit in any of the
above categories

Public Publicly available information. e.g., weather forecasts, Public
posts, etc.

Table 3. Sources of leakage (n = 500)

Sources of
leakage

of triggers %

Event data 456 91%

Trigger event
presence

127 25%

Device/account
possession

2 0.4%

Fig. 2. # of triggers for each category

trigger may be assigned to more than one category. This list captures the most
common types, but is not exhaustive.

Among these triggers, 91% leak at least one type of private information (i.e.,
not labeled as public). As shown in Fig. 2, lifestyle/activities category is a broad
category into which most of the state change events fall, and hence is most likely
to be leaked, while health status is least likely.

Sources of Leakage. We labeled the sources of leakage of each trigger event
based on our definitions in Sect. 2.1. We found that a trigger may leak infor-
mation through multiple sources, and triggers that leak information by trigger
event presence or device/account possession will always leak information by data
too.

On the Privacy Risks of Compromised Trigger-Action Platforms 257

Table 3 shows the number of triggers subject to each of the three leakage
sources. We count the number of triggers assigned a score 2 or 3. We found the
most of the information is leaked through event data. Even if event data were to
be hidden from IFTTT, 25% of triggers still leak information by their presence.

4 Proposed Solutions

We propose OTAP and ATAP that achieve different sets of security goals as
outlined in the previous section. Table 4 provides a preview of comparisons of
the different schemes. Besides IFTTT, we also compare our schemes with a
Pairwise Connection approach, in which trigger and action services connect to
each other directly without communicating with the platform.

Pairwise Connection achieves the security goals, since no information is given
to the platform. However, Pairwise Connection breaks minimal information
exposure, as a trigger service can gain the information of what other device
a user owns if it connects to the action service. Also, removing the platform
from the system makes the maintenance more difficult. Without a trigger-action
platform, a service must notify all other services when it changes its API, but
with a trigger-action platform, the service only needs to notify the platform.

Table 4. Comparison of Schemes. Properties 4–6 are compared against the baseline.
The Pairwise Connection approach has no platform, and thus trivially achieves Prop-
erties 1–3 and 5 (*).

Property/Scheme IFTTT (baseline) Pairwise connection OTAP ATAP

1. Data & Parameters Confidentiality No Yes* Yes Yes

2. Trigger Event Presence Confidentiality No Yes* Yes Yes

3. Device Set Confidentiality No Yes* No Yes

4. Minimal Information Exposure - No Yes Yes

5. No Platform Modification Required - Yes* Yes No

6. No Service Modification Required - No No No

7. Ease of Maintenance Easy Hard Easy Easy

Core Techniques. In both OTAP and ATAP, encryption is employed to provide
data & parameters confidentiality. One challenge is that, due to the requirement
of minimal information exposure, the trigger and action services should not con-
nect to each other directly, thus making key establishment a non-trivial task.

Another challenge is to provide trigger event presence confidentiality. Indeed,
it sounds paradoxical to hide triggers from the platform while asking the platform
to execute certain rules when a trigger is fired. To that end, we propose two
techniques: trigger obfuscation and trigger anonymization.

For trigger obfuscation, we can notify the platform when some trigger occurs,
along with fake triggers when there is no actual event. In this way, the platform
cannot be sure whether there is a real event happening when receiving triggers.

258 Y.-H. Chiang et al.

On the other hand, the idea of trigger anonymization is different. We still
allow the trigger-action platform to learn when a trigger occurs, but make it
impossible to associate the trigger with a certain user. The advantage of this
technique is that, in our system, we already have trigger and action services
which can act as proxies or “mixes” naturally, and thus it is unnecessary to add
other parties for anonymization.

For the rest of this paper, we assume that user U wants to setup a rule r,
the associated trigger and action services are T and A, respectively, and the
trigger-action platform is denoted by P .

4.1 Obfuscated Trigger-Action Platform (OTAP)

OTAP is based on trigger obfuscation and is designed to protect both data
& parameters confidentiality and trigger event presence confidentiality without
platform modification. The protocol flow of OTAP is the same as the existing
IFTTT flow except that encryption is used to provide data & parameters confi-
dentiality. In addition, to obfuscate the trigger-action platform, the trigger ser-
vice periodically sends out a trigger event, either real or fake, every τ seconds,
where τ refers to trigger period and the time points are called trigger points.
Note that τ is configurable by the user and will be part of the trigger parame-
ters. A symmetric encryption is used and the encryption function is denoted by
Enc(k,m), where k is the encryption key and m is the message to be encrypted.
We also introduce two types of encryption keys:

– User-Service Keys: For each user U and service S, there is a shared key
kUS , which will be used for encrypting trigger and action parameters.

– Rule-Specific Keys: For each rule r, there is a key kr shared by the corre-
sponding trigger and action services, and is used for encrypting event data.

Fig. 3. OTAP protocol Fig. 4. ATAP protocol

We now present the phases of the protocol, as shown in Fig. 3. From the
user’s perspectives, note that the key managements and encryption/decryption
can be done by installing a local app or a browser plugin to ease the burden.

On the Privacy Risks of Compromised Trigger-Action Platforms 259

Phase 1: Service Setup. Besides the authentication and authorization flows in
the original scheme, in OTAP, the user’s client (e.g.., local app or browser plugin)
establishes the shared keys kUT and kUA with T and A during this phase.

Phase 2: Rule Setup. Before uploading the rule to the platform, the rule-specific
key kr must be obtained. As highlighted earlier, the trigger and action services
should not be directly connected. Thus, OTAP relies on the user’s client to do
this job since the user can connect with both parties. After generating kr, the
key will be uploaded by the user client to the platform as part of the rule along
with the trigger and action parameters. If there are multiple actions in a single
rule, then all of the involved action services will share the same key.

To ensure security and parameter confidentiality, the parameters must be
encrypted, Therefore, the actual messages received by the platform will be
〈Trigger Params, kr〉kUT

and 〈Action Params, kr〉kUA
, where

〈m, kr〉k = [Enc(k,m),Enc(k, kr),HMAC(k,Enc(k,m)‖Enc(k, kr))].

The first two terms are the parameters and kr encrypted by the user-service key,
and the last term is a Message Authentication Code providing integrity check.

Phase 3: Rule Execution. The trigger service is able to decrypt the trigger param-
eters and rule-specific key kr using kUT . At each trigger point, T sends to the
platform a trigger event, with event data encrypted by kr. The platform then
forwards the encrypted data, encrypted action parameters, and the key to the
action service. Upon receiving these, the action service first decrypts using kUA

to obtain the action parameters and kr. Finally, with kr, the action service
decrypts event data and perform the action.

Fig. 5. Illustration of two delivery strategies

Note that the size of the encrypted event data can still leak sensitive infor-
mation. However, we observed that the trigger fields of the same type are in
fixed size in most cases. For example, the temperature is always an integer with
the size of one block after encryption. If such a side-channel attack is a concern,
the trigger service can pad the trigger field to its maximum allowed size.

To summarize, in OTAP, the information learned by the trigger and action
services is the same as the existing solution. The platform knows the rules (i.e.,
which trigger and action are related), but not trigger and action data as they

260 Y.-H. Chiang et al.

are encrypted. Trigger presence is also hidden by having fake triggers. The delay,
whether deterministic or not, does not expose information about the real trig-
gered events, as real triggers are indistinguishable from fake ones in OTAP.

Obfuscated Trigger and Delivery Strategies. Thus far, we have claimed
that a fake event may be sent out at some trigger points. However, we have not
discussed how to decide when to send out a fake trigger and how to cancel a false
action when a fake trigger is sent. The latter issue can be caused because the
platform is unaware of the truthfulness of the trigger and fires an action even if
the incoming trigger is fake. To address this issue, we add an additional Boolean
field is real to the event data so that the action service can safely discard the
message when it is set to be false. Since the flag resides in the event data, which
is encrypted, the platform is unable to infer its value.

As for the former issue, we propose two main strategies called guaranteed
delivery and latest-only delivery to decide which trigger is to be sent at each
trigger point, as illustrated in Fig. 5. The guaranteed delivery strategy ensures
that every real trigger event is sent out. Specifically, the trigger service will queue
all the trigger events and send out the oldest unreported event at trigger points.
However, the delay (the time between when an event occurs and is fired) may
increase quickly if the trigger period is not short enough.

In contrast, the latest-only delivery strategy keeps only the latest trigger that
is not yet fired. Hence, if many trigger events occur between two consecutive
trigger points, only the latest one would be sent out. This strategy effectively
shortens the delay, but may lead to event loss (e.g., event 2 in Fig. 5b).

How to choose the best trigger period and delivering strategy depends on
the type of trigger and the rule, and can be adjusted dynamically to adapt the
scenario of use. For example, for the rule “If the motion sensor detects I’m in
the room, then turn on the light,” one might want to have a short trigger period
so that the action can be fired near real-time.

As for the delivery strategies, the guaranteed delivery is probably a better
option for rules like “Log the time I enter and leave the office and home,” as
one would simply like all the events to be logged and might care less about
delays. For the rule “If the temperature changes, adjust the thermostat,” one
may choose the latest-only delivery strategy as only the most recent temperature
is the relevant information.

Finally, one may also wonder that if it is possible to use a randomized trigger
period instead of a constant τ . Indeed, using a randomized trigger period will
not weaken the security as long as the distribution of the trigger period is inde-
pendent of actual trigger events. However, as shown in Appendix B, among all
trigger period distributions of the same mean value, the constant trigger period
will minimize the average delay. Note that the selection of trigger period and
strategy will only affect the utility but not security.

To integrate OTAP with the existing IFTTT ecosystem, the user clients (i.e.,
app or browser plugin) and partner services need to implement the encryption
and decryption functionalities, while no platform modification is required. The
existing IFTTT basically sends the user-provided parameters to the partner

On the Privacy Risks of Compromised Trigger-Action Platforms 261

services and forwards the data from the trigger service to the action service. In
OTAP, the only difference is that the parameters and data are now encrypted and
an additional parameter is added (i.e., the rule-specific key). Since the platform
can operate without knowing the actual content of parameters and data, there
is no need to change the platform’s implementation.

4.2 Anonymous Trigger-Action Platform (ATAP)

ATAP achieves all three security goals at the cost of trigger-action platform
modification. The scheme preserves trigger event presence confidentiality based
on the idea of anonymization. The trigger service will drop user information
before sending out a trigger to the trigger-action platform.

However, with this approach, we can no longer rely on the trigger-action
platform to execute the rule. This is because if the platform were to know which
rule to execute, it can distinguish between triggers of different users, contra-
dicting our goal. Therefore, we have to store the rules on trigger and action
services and use the platform only for forwarding, which also achieves our inten-
tion to preserve device set confidentiality. Although most of the functionality of
the platform are discarded, we achieve minimal information exposure and easier
system maintenance by keeping the platform, which the Pairwise Connection
approach of removing the platform fails to do so. Also, as the approach is based
on anonymization, its security is bounded by the number of users of the system.

Before diving into the protocol, we first introduce some cryptographic-related
notations and techniques that will be used. We use a symmetric encryption
function denoted by Enc(k,m), where k is the key and m is the plaintext to
be encrypted. We use ES(m) to represent the ciphertext of m encrypted by S’s
public key under ElGamal. Finally, an elliptic curve G is also used in ATAP with
G being its base point.

To preserve data confidentiality, we need to encrypt the event data and a
shared key must be established between the trigger and the action services.
OTAP accomplishes this requirement by having the user’s client generate the
key and distribute it to both services. However, ATAP requires different app-
roach because the triggers are anonymized. Specifically, the action service cannot
determine which key to use for decryption upon receiving the event data. Pub-
lic key exchange protocols, such as ECDH, would break minimal information
exposure, since the trigger and action service can identify their counterparts by
matching the public key. Therefore, the public key needs to be randomized. The
modified ECDH protocol is described as follows.

Suppose that the ECDH public key of A is QA and the associated private
key is α (i.e., QA = αG). The protocol consists of three steps:

1. Client U selects a random scalar γ and sends γQA, γG to trigger service T .
2. T selects another random scalar β and sends βγG to action service A.
3. T and A can both compute the shared key k = β(γQA) = α(βγG).

Figure 4 shows the protocol of ATAP. Note that there is no service setup
phase since the user no longer needs to register on the trigger-action platform.

262 Y.-H. Chiang et al.

Phase 1: Rule Registration. When setting up a new rule, the client starts by
registering the action with A and receives an action ID IDa. Then the client
registers the trigger with T . The information given to T falls into three groups.

1. Trigger params and IDa: Information needed for trigger-action.
2. EP (A): The name of the action service encrypted by P ’s public key, such that

the platform knows where the event data should be forwarded to.
3. γQA and γG: Used for ECDH key exchange, as described previously.

Phase 2: Rule Execution. When a trigger event occurs, the trigger service simply
fires the event to the platform. The event data and IDa will be encrypted by the
shared key k. Similar to OTAP, the event data can be padded to prevent leaking
sensitive information through data sizes, if necessary. The service name is re-
randomized through RP (EP (A)) = EP (A) + EP (0) exploiting the homomorphic
property of ElGamal. The key exchange message βγG is also sent out. Upon
receiving the messages, the platform obtains the service name A by decrypting
RP (EP (A)), and forwards the rest of the messages to A. The action service
computes the shared key k and decrypts the event data and action ID IDa.
With IDa, the action service can find the corresponding action parameters and
fire the action.

Re-randomization is needed for EP (A) since EP (A) is fixed for a given rule.
Without re-randomization, some information can be used to fingerprint the
user—the platform can learn that two different triggers are from the same user.
Re-randomization is required to limit the attack impact: even if the attacker can
break trigger presence confidentiality of one trigger, he/she cannot easily break
trigger presence confidentiality of other triggers by linking them together.

To sum up, in ATAP, the trigger and action services know only the informa-
tion of trigger and action, respectively. The platform knows nothing but some
triggers of a service occurred and some actions of a service were fired.

4.3 Security Analysis

We provide security proof sketc.hes here and detailed analysis in Appendix A.
Assume the use of IND-CPA symmetric encryption scheme Enc(·) (e.g., AES-

CBC) and IND-CPA asymmetric encryption scheme E(·) (e.g., ElGamal encryp-
tion). For OTAP, since all transmitted messages are encrypted by Enc(·), data &
parameter confidentiality is satisfied. By the definition of IND-CPA, an adver-
sary cannot distinguish between pairs of ciphertexts even with the knowledge
of plaintexts, and hence an adversary cannot distinguish between real and fake
trigger events. Hence, OTAP preserves trigger event presence confidentiality.

For ATAP, all transmitted messages are encrypted by either Enc(·) or E(·),
and thus data & parameters confidentiality is satisfied. In addition, since IND-
CPA leads to randomized encryption, this implies that the adversary in ATAP
is unable to link between different triggers, achieving trigger event presence con-
fidentiality. Device set confidentiality is also achieved, as no further information
is provided to the platform.

On the Privacy Risks of Compromised Trigger-Action Platforms 263

5 Performance Evaluation

To evaluate the performance of our proposed schemes, we implemented proto-
types of our systems and a skeleton version of IFTTT as our baseline (referred
to as the plain scheme). We ran several experiments to measure the end-to-end
latency and the throughput of our systems, as described in Sects. 5.1 and 5.2.

Experiments Settings. We implemented all the partner services and trigger-
action platforms as web servers using Node.js, and used MongoDB as the back-
end database. We used 128-bits AES-GCM for symmetric encryption and curve
P-256 for elliptic curve algorithms. Inspired by Fernandes et al. [20], we use the
rule “IF new item added to TODO list contains the word ‘cat’, THEN send an
SMS of this item.” This contains all the essential elements of a typical rule: a
trigger parameter that indicates the trigger condition, and using event data as
action parameters.

We hosted each service on separate Google Compute Engine g1-small
instances. Each instance was configured with 1 Intel Xeon vCPU @ 2.2 GHz,
1.7 GB memory, and 10 GB SSD storage in Ubuntu 18.04.

5.1 Latency

We compare end-to-end latency of the privacy-preserving versions with the plain
version. The latency increment mainly derived from (1) computational overhead
of the cryptographic operations, and (2) the delay caused by sending triggers
periodically, only for OTAP.

Fig. 6. Latency breakdown

Table 5. Goodput of different schemes

Scheme Avg. (req/sec)

Plain 411.78

OTAP (τ = 17, guaranteed) 52.46

OTAP (τ = 1796, latest-only) 162.64

ATAP 69.54

ATAP (w/o re-randomization) 360.27

Computational Overhead. We measured the time spent at different services
and the network overheads. The end-to-end latencies are largely affected by the
size of the event data, as they need to be encrypted and decrypted by the trigger
and the action services, respectively. Therefore, we varied their size from 0.5 KB
to 128 KB, and the experiment result is shown in Fig. 6.

A gap exists between the network overheads of the plain scheme and OTAP
(ATAP) when the trigger size is 32 KB, which is caused by TCP congestion

264 Y.-H. Chiang et al.

control. With encryption, transferred data is slightly bigger than the congestion
window size, requiring an additional round-trip for OTAP and ATAP. Despite
network overhead, the results show that OTAP adds at most 5 ms latency while
ATAP adds at most 25 ms. Both are small compared to network overheads or
other delays, given that there are no real-time requirements in these systems.

Triggering Delay. For OTAP, we conducted an empirical study on how the
trigger period affects the delay between the time a trigger occurs and the time
it is sent out. We used the CASAS hh104 dataset [17], which contains sensor
data that was collected in the home of a volunteer adult for about two years.
We selected the MA022 motion sensor events as triggers, which are the most
frequent events in this dataset. Appendix C describes the event distribution.

We ran the experiment for both delivery strategies, and the result is in Fig. 7a.
For guaranteed delivery, the delay grows quickly as the trigger period increased;
in this case, if we still want to guarantee real-time triggering, then the trigger
period should be set around the bursty rate of the trigger (2 s in this example).
For latest-only delivery, in contrast, the delay remains low as the trigger period
increases; the delay is around one-third of the trigger period. However, there is
a trade-off between the delay time and trigger event loss. For reference, we show
the resulting event loss rate of different trigger periods in Fig. 7b.

5.2 Goodput

Besides the end-to-end delay of a single rule execution, we also examine the
number of rules our schemes can handle, which affects the delay. We define the
goodput to be the maximum number of real rules being executed per second.
The rule we used in this experiment is the same as in Sect. 5.1 with size being
0.5 KB, and we used ApacheBench [5] to conduct the experiment by sending
10,000 trigger activations with up to 400 concurrent connections. The results
are presented in Table 5. We set the concurrency level to 400 by estimating
the maximum concurrent execution of the current IFTTT. According to their
website [8], around 1 billion rules are executed per month, which means, on
average, approximately 385 rules are executed per second.

(a) (b) (c)

Fig. 7. Trigger period vs. (a) Delay, (b) Event loss rate, (c) Real trigger ratio

On the Privacy Risks of Compromised Trigger-Action Platforms 265

For OTAP, the goodput depends heavily on the delivery strategy and the
trigger period τ . A longer trigger period will not only increase the goodput but
also increase the latency, as shown in Figs. 7a and 7c. In the experiment, we
choose the maximum τ such that the average trigger delay is less than 15 min.
Choosing a “best” trigger period to balance the trade-offs depends on the dis-
tribution of the trigger and other system requirements. We leave the parameter
selection as future work.

For ATAP, the goodput (which is the same as the throughput in this case)
dropped drastically by about 80%. We found that one of the performance bottle-
necks is the re-randomization of action service ID on the trigger service. However,
the action service ID is fixed for each rule and is not event-dependent, which
indicates that the re-randomization does not need to be performed for each trig-
ger and can be generated beforehand. Without re-randomization, our test results
show that the goodput only decreases by 12.5%.

6 Discussion

Incentive of Adoption. Similar to anonymous communication, which cannot
achieve strong anonymity, low bandwidth, low delay simultaneously as proved
in [18], our solution does not aim at providing all of them. Instead, by presenting
various modes and configurable parameters, our system allows users to best
fit their requirements. For example, for delay-critical applications in trigger-
action platform, the user can decide whether to activate our schemes for strong
anonymity at the cost of performance.

From the perspective of trigger-action platforms and partner services, we
acknowledge that adopting our schemes may increase their operating costs. With
the increased interest in the pay-for-privacy model [19], business incentives may
exist to offer privacy-enhanced trigger-action system for additional revenues.

Deployability. Though several changes are required to adopt our scheme, we
will explain how the transition to our schemes can be made easier with the help
of a proxy. In our schemes, the core functions of the partner services remain the
same. Therefore, the adoption of our schemes could be done by having a proxy
that sits in between the service and the platform and transforms the requests and
responses. Since all partner services follow the same API specification, the proxy
can be written once by the platform and distributed to all partner services. It
should be published in an open-source manner and run by each partner service
on its own, so that the proxy can be trusted.

For OTAP, as discussed in Sect. 4.1, the existing trigger-action platform can
be reused, though all the data and parameters sent to the trigger-action platform
must be encrypted by the user clients and partner services.

Compared to OTAP, ATAP requires modifying the platform, and a reimple-
mentation is inevitable. However, since its function is simpler compared to the
existing one, it is likely that it would not require excessive development effort.

As for the user-side, the key managements and encryption/decryption can
be done by installing a local app or a browser plugin to ease the burden.

266 Y.-H. Chiang et al.

7 Related Work

Researchers have worked on the security and privacy issues in the trigger-action
ecosystem. We first review the related work on the platforms, and review other
parts of the ecosystem, including automation rules, and IFTTT.

Untrusted Trigger-Action Platform. Xu et al. [30] studied privacy leakage
in smart homes to the trigger-action services and the mitigation. They pro-
posed “Filter-and-Fuzz (F&F)” that filters out events unneeded by IFTTT and
fuzzes the event data and their frequencies. This fuzzing component is some-
what similar to our OTAP scheme, as it randomizes the values of event data
and sometimes sends fake triggers. However, their usage scenario is limited to
Boolean or numerical event data fields and they only consider the cases where
the trigger and action services are the same.

Fernandes et al. [20] studied the security of IFTTT’s OAuth-based authenti-
cation protocols, and they found that 75% of the tokens are over-privileged and
can be exploited by the attackers to control users’ devices when the platform
is compromised. They proposed a decentralized trigger-action platform frame-
work (DTAP), which allows the use of fine-grained transfer tokens (XToken).
The trigger-action platform stores only rule-specific tokens while the XToken is
stored in the newly-introduced trusted-client, which is controlled by the user.
Although DTAP does not provide data confidentiality and privacy, DTAP can
be combined with our solution to enhance the system privacy and integrity.

Security and Privacy Concerns of Automation Rules. Bastys et al. [13,14]
examined IFTTT applets that contain filter code, and found that such applets
are susceptible to URL-based attacks, which can exfiltrate private information
to a third-party when the applet is created by a malicious maker. A malicious
applet could also lead to integrity and availability violations. Authors proposed
FlowIT that can monitor and prevent malicious apps from being executed.

Surbatovich et al. [28] analyzed 19,323 IFTTT rules based on information-
flow techniques. They defined a four point lattice that checks whether the infor-
mation flows from a trusted source to an untrusted sink using static analysis.
A series of work utilized dynamic analysis techniques such as model checking or
symbolic execution to detect and fix insecure interactions between rules or to
synthesize secure trigger-action programs [15,23–25,29,31].

IFTTT Ecosystem. Mi et al. [27] conducted an empirical study on IFTTT to
understand its ecosystem and the performance of rule executions. They leveraged
the self-implemented IFTTT server to profile the interaction among different
entities. Their work provides a deeper understanding of the architecture and the
execution path of a rule, which inspired our design.

8 Conclusion

Emerging trigger-action platforms empower users to conveniently combine var-
ious online services and physical devices for customized automation. However,

On the Privacy Risks of Compromised Trigger-Action Platforms 267

their centralized design allows these platforms to collect personal information
from multiple services, which raises privacy concerns. This work conducted the
first empirical study on potential privacy exposures to trigger-action platforms,
and presents two practical mitigations that enhance privacy without sacrificing
the convenience promised by these platforms. In our empirical study of the 500
most popular IFTTT triggers, we found that the platform is capable of obtaining
a variety of sensitive information, and 91% of the popular triggers are susceptible
to privacy leakage. To mitigate the problem, we designed and implemented two
privacy-preserving trigger-action platform systems, OTAP and ATAP. Trigger
obfuscation and trigger anonymization techniques can hide trigger presence, so
that the platform (1) sees real and fake triggers that are indistinguishable, or
(2) cannot determine which user is related to a given trigger. We believe that
our work provides an immediate remedy to enhance today’s trigger-action plat-
forms, and an interesting future direction is utilizing a clean-slate approach that
ensures security and privacy by design.

Acknowledgments. This research was supported by the Ministry of Science and
Technology of Taiwan under grants MOST 109-2636-E-002-021 and MOST 109-2636-
E-005-002.

A Formal Security Analysis

Privacy Framework. We adopt the ideal/real-world paradigm to analyze the
privacy of our schemes, which is standard in MPC literature [16,21,22]. Concep-
tually, there are two worlds, one is ideal and the other is real, both evaluating
the functionality Ftap, the trigger-action platform protocol. The “ideal-world”
has a trusted party T carrying out all the computations. All other parties send
their input to T and receive their prescribed output through a secure channel.
In “real-world”, no such party exists and all parties perform the computation
themselves. To show that a real-world protocol is secure, we need to show that
for every possible real-world adversary A, there exists an ideal-world simulator
S such that when controlling same parties as A, the outputs of the protocols in
ideal-world and real-world are computationally indistinguishable. This implies
that every attack that can be done by A in real-world can be done by S in the
ideal-world. Since the simulator learns nothing but the input/output of the cor-
rupted parties, the real-world adversary A can only learn the same information.

Adopting this framework, the security of a privacy-preserving trigger-action
system can be defined as follows.

Definition 1. A trigger-action protocol Π that computes Ftap is secure if
given any adversarial trigger-action platform A, there exists a simulator S
such that IDEALFtap,S ≈ REALΠ,A are computationally indistinguishable,
where IDEALFtap,S is the joint output of simulator S in the ideal-world, while
REALΠ,A is the output of adversary A in the real-world.

Theorem 1. Let Π be the protocol of OTAP and assume Enc(·) is an IND-CPA
encryption scheme. Given any adversarial trigger-action platform P , there exists

268 Y.-H. Chiang et al.

a probabilistic simulator S which takes as inputs the rules sets r1, · · · , rM and
the trigger periods τ satisfies Definition 1.

Proof. Let I = {(u, dt) ∈ ri | i = 1, . . . , M} be the set of users and trigger
parameters of rules, and τ(u,dt) be the associated trigger period for each (u, dt) ∈
I. The simulator S will interact with the adversary A internally, and can be con-
structed as follows. For each (u, dt) ∈ I, S passes (u, dt, c) to A as input as if
it was sent by the triggering service T at each corresponding trigger point (i.e.,
τ(u,dt), 2 · τ(u,dt), . . .) and outputs whatever A outputs, where c is randomly sam-
pled from the ciphertext space of Enc(·).

Now we show that the output of S is computationally indistinguishable
from the output of A in real-world. In the real-world, the service T sends out
(u, dt,Enc(k, δ)) to A periodically for every (u, dt) ∈ I, where δ is the event
data. Based on the CPA secure assumption of Enc, we know that (u, dt, c)
and (u, dt,Enc(k, δ)) are computationally indistinguishable. Thus, the outputs
of S = A(u, dt, c) and A(u, dt,Enc(k, δ)) must also be computationally indistin-
guishable, which completes the proof.

Since the simulator is given only the rules sets ri of every user i and the
trigger periods, it is clear that the platform learns nothing about the trigger
events, and thus preserved trigger presence confidentiality and trigger data con-
fidentiality. However, device set confidentiality is broken, as the devices owned
by a user can be inferred from the rules they are using.

Theorem 2. Let Π be the protocol of ATAP, and G be the elliptic curve used
in Π, whose base point being G and order being q. Assume that use of IND-CPA
encryption schemes Enc(·) and E(·), then given any adversarial trigger-action
platform A, there exists a probabilistic simulator S satisfies Definition 1, while
S takes as input a list E that contains the 3-tuples of events occurrence time,
trigger service name, and action service name.

Proof. The simulator S will interact with the adversary A internally, and can
be constructed as follows. For each (t, T,A) ∈ E, the simulator S passes
(EP (A), c, γ′G) to A as if it was sent by the trigger service T , where c is ran-
domly picked up from the ciphertext space of Enc and γ is randomly chosen from
{1, . . . , q − 1}. Then S simply outputs whatever A outputs.

Now we show that the output of S is computationally indistinguishable from
the output of A in real-world. It is suffices to show that (EP (A), c, γ′G) and
(EP (A),Enc(k, δ), βγG) are computationally indistinguishable, following from
the CPA security of underlying encryption schemes and the decisional Diffie-
Hellman (DDH) assumption.

From the above proof we know that the platform learns nothing but the time
of each event. However, since the platform will not know the name of the event
and the associated user, the trigger presence confidentiality is still preserved.
Trigger data confidentiality and device set confidentiality are also achieved, as
no further information is provided to the platform.

On the Privacy Risks of Compromised Trigger-Action Platforms 269

B Triggering Delay Analysis

This subsection will show that the average delay for OTAP with the guaranteed
delivery strategy is minimized when using a constant trigger period.

Consider a general case where the trigger period is not a constant but follows
a distribution I with E[I] = τ . In the following, we focus on a particular trigger
event and its corresponding service. We assume that the arrival of events is a
Poisson process with a rate of λ. We model the trigger service of OTAP as a
M/G/1 queueing system, where the customers (events) are served only at the
trigger points and the service time is zero.

When an event arrives, it first needs to wait a short period of time before
the queue starts serving new events, denoted as R. Then the event needs to wait
for all the events in the queue to be served before it is sent out. The duration
is the sum of NQ trigger periods, where NQ denotes the size of the queue when
the event arrives. As a result, we can derive the average delay of an event:
E[D] = E[R]+E[NQ] ·E[I]. By Little’s Law [26], we have E[NQ] = λE[D], and
from queueing theory, we know that E[R] = λ

2E[I2], which implies

E[D] =
E[R]

1 − λE[I]
=

λE[I2]

2(1 − λτ)
=

λ(Var[I] + (E[I])2)

2(1 − λτ)
=

λ(Var[I] + τ2)

2(1 − λτ)

The result shows that the average delay is minimized when the trigger period is
constant, since the minimum of Var[I] (= 0) happens when I is constant.

C Trigger Distribution

Figure 8a shows the distribution of the intervals between consecutive triggers
and Fig. 8b shows the number of trigger events in each hour from the first 720 h
of the CASAS hh104 dataset [17]. The occurrence of events is not uniformly
distributed. Since the sensor only monitors motions within a specific area, a
series of bursty triggers occurs when the user is present in that area, and no
trigger occurs when the user is elsewhere.

(a) Distribution of Inter-trigger Inter-
vals (b) Number of Triggers in Each Hour

Fig. 8. Trigger distribution in the CASAS hh104 dataset

270 Y.-H. Chiang et al.

D Supporting Filter Code

As mentioned in Sect. 3.1, some trigger-action platforms allow users to write
code to run during rule execution. Our schemes are capable of supporting a
filter code by letting the action services store and run such codes. However, it
might not be ideal to put this workload on action services instead of the trigger-
action platform. Therefore, we propose two potential solutions to support this
feature and leave them as future work.

The first direction is to replace the current encryption scheme with Homo-
morphic Encryption (HE), which allows computation over ciphertext without
knowing the underlying plaintext. However, a challenge is achieving acceptable
performance as HE schemes are computationally expensive.

Another possible solution is to build the trigger-action platform on trusted
hardware. Intel Software Guard Extension (SGX), for example, provides an iso-
lated execution environment called an enclave whose contents are protected, and
only processes running inside the enclave are allowed access. Since the protec-
tion is at the hardware level, a malicious OS cannot read those data. SGX also
provides another mechanism called remote attestation, which allows the client
to attest that the code running on the remote machine is indeed the expected
one. Thus, an SGX-based solution would support the trigger-action platform
to handle sensitive data inside an enclave and partner services to attest that
the platform is indeed running the privacy-preserving version at each interac-
tion. However, the resources inside an enclave are limited and hence, a challenge
becomes designing an algorithm that can use memory effectively.

References

1. Microsoft Flow. https://flow.microsoft.com
2. Target Expects $148 Million Loss from Data Breach (2014). https://time.com/

3086359/target-data-breach-loss/
3. Yahoo Says Hackers Stole Data on 500 Million Users in 2014 (2016). https://www.

nytimes.com/2016/09/23/technology/yahoo-hackers.html
4. Yahoo Triples Estimate of Breached Accounts to 3 Billion (2017). https://

www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-
1507062804

5. ApacheBench (2019). https://httpd.apache.org/docs/2.4/programs/ab.html
6. Do more with Oticon - IFTTT (2019). https://ifttt.com/oticon
7. IFTTT (2019). https://ifttt.com
8. IFTTT Platform (2019). https://platform.ifttt.com/lp/learn more
9. The Equifax Data Breach (2019). https://www.ftc.gov/equifax-data-breach

10. Turn off WiFi on your Android when you leave home to save power (2019). https://
ifttt.com/applets/302237p

11. Zapier (2019). https://zapier.com
12. (2020). https://github.com/csienslab/tap-privacy
13. Bastys, I., Balliu, M., Sabelfeld, A.: If this then what?: controlling flows in IoT

apps. In: ACM CCS (2018)

https://flow.microsoft.com
https://time.com/3086359/target-data-breach-loss/
https://time.com/3086359/target-data-breach-loss/
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://httpd.apache.org/docs/2.4/programs/ab.html
https://ifttt.com/oticon
https://ifttt.com
https://platform.ifttt.com/lp/learn_more
https://www.ftc.gov/equifax-data-breach
https://ifttt.com/applets/302237p
https://ifttt.com/applets/302237p
https://zapier.com
https://github.com/csienslab/tap-privacy

On the Privacy Risks of Compromised Trigger-Action Platforms 271

14. Bastys, I., Piessens, F., Sabelfeld, A.: Tracking information flow via delayed output.
In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 19–37. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03638-6 2

15. Bu, L., et al.: Systematically ensuring the confidence of real-time home automation
IoT systems. ACM Trans. Cyber-Phys. Syst. 2(3), 1–23 (2018)

16. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
CRYPTOLOGY 13(1), 143–202 (2000)

17. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS: a smart home
in a box. Computer 46(7), 62–69 (2012)

18. Das, D., Meiser, S., Mohammadi, E., Kate, A.: Anonymity trilemma: strong
anonymity, low bandwidth overhead, low latency-choose two. In: IEEE Sympo-
sium on Security and Privacy (S&P) (2018)

19. Elvy, S.A.: Paying for privacy and the personal data economy. Columbia Law Rev.
117, 1369 (2017)

20. Fernandes, E., Rahmati, A., Jung, J., Prakash, A., Rahmati, A.: Decentralized
action integrity for trigger-action IoT platforms. In: NDSS (2018)

21. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, Cambridge (2009)

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: ACM
Symposium on Theory of Computing (1987)

23. Hsu, K.H., Chiang, Y.H., Hsiao, H.C.: SafeChain: securing trigger-action program-
ming from attack chains. IEEE Trans. Inf. Forensics Secur. 14(10), 2607–2622
(2019)

24. Liang, C.J.M., et al.: Systematically debugging IoT control system correctness for
building automation. In: ACM BuildSys (2016)

25. Liang, C.J.M., et al.: Sift: building an internet of safe things. In: IEEE/ACM IPSN
(2015)

26. Little, J.D.: A proof for the queuing formula: L = λW. Oper. Res. 9(3), 383–387
(1961)

27. Mi, X., Qian, F., Zhang, Y., Wang, X.: An empirical characterization of IFTTT:
ecosystem, usage, and performance. In: ACM IMC (2017)

28. Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some recipes can do
more than spoil your appetite: analyzing the security and privacy risks of IFTTT
recipes. In: International Conference on World Wide Web (2017)

29. Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., Gunter, C.A.: Charting the
attack surface of trigger-action IoT platforms. In: ACM CCS (2019)

30. Xu, R., Zeng, Q., Zhu, L., Chi, H., Du, X., Guizani, M.: Privacy leakage in smart
homes and its mitigation: IFTTT as a case study. IEEE Access 7, 63457–63471
(2019)

31. Zhang, L., He, W., Martinez, J., Brackenbury, N., Lu, S., Ur, B.: AutoTap: synthe-
sizing and repairing trigger-action programs using LTL properties. In: IEEE/ACM
ICSE (2019)

https://doi.org/10.1007/978-3-030-03638-6_2

Plenty of Phish in the Sea : Analyzing
Potential Pre-attack Surfaces

Tobias Urban1,3(B) , Matteo Große-Kampmann1,2,3, Dennis Tatang3,
Thorsten Holz3, and Norbert Pohlmann1

1 Institute for Internet-Security, Westphalian University of Applied Sciences,
Gelsenkirchen, Germany

urban@internet-sicherheit.de
2 Aware7 GmbH, Gelsenkirchen, Germany

3 Ruhr-Universität Bochum, Bochum, Germany

Abstract. Advanced Persistent Threats (APTs) are one of the main
challenges in modern computer security. They are planned and performed
by well-funded, highly-trained and often state-based actors. The first step
of such an attack is the reconnaissance of the target. In this phase, the
adversary tries to gather as much intelligence on the victim as possible
to prepare further actions. An essential part of this initial data collection
phase is the identification of possible gateways to intrude the target.

In this paper, we aim to analyze the data that threat actors can use to
plan their attacks. To do so, we analyze in a first step 93 APT reports and
find that most (80%) of them begin by sending phishing emails to their
victims. Based on this analysis, we measure the extent of data openly
available of 30 entities to understand if and how much data they leak
that can potentially be used by an adversary to craft sophisticated spear
phishing emails. We then use this data to quantify how many employees
are potential targets for such attacks. We show that 83% of the analyzed
entities leak several attributes of uses, which can all be used to craft
sophisticated phishing emails.

Keywords: Advanced persistent threats · Phishing · OSINT ·
Reconnaissance · MITRE · Cyber kill chain · Measurement study

1 Introduction

Today, advanced persistent threats (APTs) represent one of the most dangerous
types of attacks, as a malicious actor focuses a tremendous amount of resources
into an attack on a selected target. Often such attacks utilize social engineering
methods—especially spear phishing—to initially infect the system in the target’s
network (e.g., via an email attachment) [19]. For an attacker, one of the first steps
is to collect as much information as possible on the target to plan their further
steps (e.g., used technologies or intelligence on employees to craft spear-phishing
emails) [22]. This data collection mostly happens unnoticed since the adversaries
often rely on open-source intelligence (OSINT) data, which can be accessed by
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 272–291, 2020.
https://doi.org/10.1007/978-3-030-59013-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_14&domain=pdf
http://orcid.org/0000-0003-0908-0038
https://doi.org/10.1007/978-3-030-59013-0_14

Analyzing Potential Pre-attack Surfaces 273

anyone. The collection of such data cannot be measured, or at least the crawling
cannot be distinguished from benign traffic.

In this paper, we aim to understand and measure which publicly available
data malicious actors can potentially utilize to plan and conduct their attacks
with a strong emphasis on data an adversary can use to design sophisticated
phishing campaigns. To the best of our knowledge, all previous work exclu-
sively aims to detect attacks while they happen, to investigate them after the
adversaries performed the attack, or to compare different APT campaigns (e.g.,
[4,10,11,16,21,25]). We aim to illuminate the data publicly available to adver-
saries during their initial reconnaissance phase by analyzing a diverse set of
organizations (n = 30). In a first step, we analyze 93 APT reports with a strong
focus on the different approaches how actors get access to a company’s network
and which techniques they use to do so. We show that an overwhelming major-
ity of 80% use targeted phishing emails to lure users to unknowingly infect their
system (e.g., clicking on a malicious email attachment). Based on this finding, we
crawled nearly 5 million websites, analyzed more than 250,000 documents, and
over 18,000 social media profiles regarding data that can be used to create per-
sonalized phishing emails. We then quantify the magnitude of publicly available
data companies (unknowingly) leak and show that 90% of them leak data that
adversaries can use for the desired task. Furthermore, we show that, on average,
71% of the employees we identified leaked several attributes that can be used for
phishing attacks as we found several work-related information on them that an
adversary can use in a targeted phishing campaign (e.g., supervisors, the focus
of work, or the used software).

In summary, we make the following key contributions:

1. We analyze real-world APT campaigns and identify the most common tactics
adversaries use during an attack and map these tactics and techniques onto
the MITRE PRE-ATT&CK framework.

2. We measure the magnitude of data that companies (unknowingly) expose
that can be used by adversaries to craft spear phishing emails. To this end, we
crawl several publicly available data sources (e.g., social networks and openly
available information on data leaks) and the company’s infrastructure.

3. We analyze how many employees of a company leak enough attributes to write
highly sophisticated phishing mails. We find that over 83% of all analyzed
companies provide rich target for spear phishing attacks.

2 Background

Before describing our approach to determine the Internet-facing attack surface of
a company, we provide background information necessary to follow our method.

2.1 Advanced Persistent Threats

Advanced Persistent Threats (APTs) are attacks executed by sophisticated and
well-resourced, often state-sponsored, groups. In contrast to other adversaries,

274 T. Urban et al.

the actions of these groups are often politically motivated, but they also aim to
achieve an economic gain from their efforts. They target every business sector
and design their attacks in a way that remains undetected for a very long time,
in contrast to e.g., ransomware attacks. While common adversaries often choose
their target by chance, APT threat actors typically target a specific company
or business sector and invest a lot of time and energy until they eventually
successfully obtain access. To enable such attacks, these groups utilize traditional
attack vectors like social engineering (e.g., spear phishing), but also sometimes
collect information by physically infiltrating the target companies (e.g., dumpster
diving).

Spear Phishing. In computer security, phishing describes the act when an adver-
sary impersonates a trusted entity (e.g., a popular brand or bank) with the intent
to trick users into exposing personal data (e.g., credit card numbers or creden-
tials) or spreading malware via malicious attachments or links [27]. While these
attempts commonly target tens of thousands of users, spear phishing targets a
limited group of people (e.g., few people within a company or one research group
at a university) or sometimes only a single person (e.g., the head of a depart-
ment). As these phishing campaigns target specific individuals, adversaries can
craft emails in a way that they perfectly suit the audience (e.g., by personal salu-
tations in emails) and are often successful [3]. Adversaries persistently exploit
phishing and spear-phishing because exploiting humans is often easier compared
to bypassing technical security measures [8].

Cyber Kill Chain. The term cyber kill chain, coined by Lockheed Martin [22], is
referring to the military term “kill chain”, and both terms describe the structure
of an attack. However, the cyber kill chain is often used defensively in incidence
response or digital forensics to model the attack performed by an adversary [32].
The chain maps each attack to seven phases that can be grouped into two sec-
tions, based on the stage of the attack. First, the attacker profiles the target
(1: “Reconnaissance”), then she builds the malware used to infiltrate the tar-
get (2: “Weaponize”), which is then transferred to the target (3: “Delivery”).
Afterwards, the attacker triggers the payload (4: “Exploitation”), and installs
a backdoor and establishes a persistent bridgehead into the target’s network
(5: “Installation”). Finally, she builds a C&C infrastructure to communicate
with the infected hosts (6: “Command and Control”) and performs the mali-
cious actions of desire (7: “Act on Objective”). Phases one, two, and sometimes
three are referred to as the pre-attack stage, while the remaining stages are
referred to as attack stage. In this work, we only focus on the pre-attack phase
and specifically on the reconnaissance phase.

2.2 MITRE Framework

The MITRE cooperation created and still maintains the PRE-ATT&CK [31]
and ATT&CK (“Adversarial Tactics, Techniques, and Common Knowl-
edge”) [30] frameworks. The platform collects and systematizes techniques and

Analyzing Potential Pre-attack Surfaces 275

tactics of real-world adversaries which were obtained from several attacks with
the goal that companies can learn from those attacks and improve their secu-
rity concepts. All collected events are organized in different categories based on
their appearance in the cyber kill chain [32]. The framework assigns a unique
four-digit identifier to each category and technique so that it can be referenced
easier (e.g., T1189 in TA0001).

The PRE-ATT&CK framework is designed to focus on the stages that usually
occur before the attack is performed. For example, this includes choosing a
victim, collecting data on the victim, or setting up the infrastructure needed
to perform the attack (e.g., implementing the needed malware or setting up
the C&C infrastructure). While the ATT&CK framework often contains very
technical and specific information, the PRE-ATT&CK framework is often more
general as it is by nature not as easy to determine which actions the actor
performed. For example, if an adversary used a specific type of malware, one
can analyze it and draw conclusions based on the sample. However, one cannot
undoubtedly determine why a specific employee was phished based on technical
data. Appendix A provides an overview of the pre-attack techniques and tactics
of the framework that are relevant for our work.

3 Advance Persistent Threat Analysis

In this section, we provide the results of an analysis of 93 real-world APT reports
we studied. More specifically, we perform a technical mapping of these reports
onto the MITRE PRE-ATT&CK framework.

3.1 APT Report Analysis

As noted above, the cyber kill chain describes the multiple stages of an attack.
To the best of our knowledge, no systematic research went into the analysis of
the early steps of this process in which adversaries collect data on their vic-
tims to plan and initiate their campaigns. To close this gap and to gain further
insights into the methods adversaries use, we manually analyze 93 openly avail-
able reports and technical blogs on APT campaigns with a strong emphasis on
these steps (i.e., the reconnaissance phase). We use these reports as security
companies, in contrast to academic researchers, often have unique insights into
these APTs, especially in terms of incident response. In total, 40 different com-
panies provide the reports of the APTs (e.g., Symantec, Kaspersky Lab or Palo
Alto Networks).

Overall, the analysis of the APT reports in our dataset attributed them to
66 different malicious actors. In 32 cases, the report does neither identify nor
disclose the actor. We argue that this broad distribution of actors allows us to
draw a more generalizable conclusion on the methods used by them. According
to the analyzed reports, the attacks in our dataset happened between 2011 and
2020. Figure 1a provides a detailed overview of the number of analyzed APTs
each year. Two reports do not report on the year in which the APT happened.

276 T. Urban et al.

(a) Reported incidents by
year.

(b) Reported delivery vec-
tors.

(c) Reported exploits.

Fig. 1. Overview of the analyzed APT reports.

Nearly all reports lack information about the reconnaissance phase (91%). This
knowledge gap probably roots in the fact that this cannot easily be analyzed,
especially from an incident response point of view. However, in 41% of the cases,
the target group (e.g., business sector or company type) could be identified. In
rare cases where data on the reconnaissance phase is present, the actor used data
publicly available (“Open-Source Intelligence” or OSINT) to identify promising
targets for further steps. Reportedly, an overwhelming majority (88%) of all
APTs used social engineering techniques to deploy their attack tools (e.g., mal-
ware) in companies’ infrastructure. Furthermore, email seems to be the most
popular way to get in touch with the victim (80%). Other means of communi-
cation with victims include social media (3%), phishing websites (4%), or SMS
(1%). In the cases where the malicious actor did not rely on social engineering,
the attackers abused vulnerabilities collected from public data on the compa-
nies infrastructure (4%), data collected from other services (3%) or the reports
only hold vague or inconclusive data on the delivery phase (e.g., “banks in Rus-
sia”). Figure 1b provides an overview of the reported delivery vectors. In the
exploitation phase, the actors mostly used Microsoft Office documents that con-
tained malicious macros (69%). In the remaining cases, the adversaries either
used case-specific malware or exploits they tailored for a product the company
uses, as shown in Fig. 1c.

In summary, there is a lack of knowledge of how attackers collect the data
on their victims. However, in the early stages of an attack, social engineering
is the most common attack vector. Most malicious actors use email (e.g., spear
phishing) as a primary channel to get in touch with their targets. In these emails,
they utilized office documents that contain malicious macros to infect the user’s
system. While the analysis of the APT campaigns yielded the most common
ways of how adversaries try to infiltrate companies, it is unclear which data they
used to perform these attacks, or how and where they acquired it.

Analyzing Potential Pre-attack Surfaces 277

3.2 MITRE PRE-ATT&CK Analysis

The MITRE PRE-ATT&CK framework consists of 15 groups that describe dif-
ferent stages of the pre-attack phase [31]. In this work, we focus on data that
can be publicly accessed by an adversary that provides her insights on the target
company, the used infrastructure, and employees of the company. As previously
described, an adversary can use this data to perform sophisticated social engi-
neering attacks, like spear phishing.

We analyzed the framework to test which of the listed tactics can be ana-
lyzed using publicly measurable data using only non-offensive collection meth-
ods, which we used as a basis to design our measurement. Adversaries probably
also use offensive tools (e.g., vulnerability scanners or buying information leaks
online) to collect information, but due to ethical considerations, we renounce
to use such tactics. Three computer security experts with a strong background
in online measurements or threat intelligence (i.e., the first three authors of
this paper) analyzed the framework. The experts were instructed to analyze all
techniques and tactics in the framework and assessed whether they are publicly
measurable using only non-offensive collection methods. The final inter-rater
agreement whether a technique is measurable in our setting or not shows sub-
stantial agreement (Fleiss’ Kappa: κ = 0.73; agreement > 90%). In the rare
cases of discrepancies, the option that got the majority was selected to resolve
such matters.

The results show that one cannot measure several techniques using data that
is publicly available. As a result, we only consider four of the 15 groups (i.e.,
Technical Information Gathering, People Information Gathering, Organizational
Information Gathering, and Technical Weakness Identification) in our analysis
(see Table A in Appendix A). The remaining groups are not measurable without
internal insights of the adversary. For example, an analyst could measure the
Target Selection or Adversary OPSEC phase if she infiltrates the adversary’s
internal infrastructure and monitors all events. We consider this to be out-of-
scope as (1) we want to identify protection mechanisms for companies, and only
highly specialized experts can perform such infiltration and (2) such penetration
is likely in a legal gray (if not black) area. The techniques that we exclude are
often either (1) described too general in the framework (e.g., “Conduct active
scanning”), (2) out-of-scope because we refrain from using offensive technologies
(e.g., “Conduct social engineering”), or (3) can be done reliably in an automated
fashion (e.g., “Identify supply chains”).

Summary. The analysis of the APT campaigns revealed that social engineering
enables most of them, commonly conducted via spear-phishing emails. However,
the reports could only rarely reconstruct which data attackers used to write the
emails. The MITRE PRE-ATT&CK lists several techniques adversaries can use
to collect such data. However, several of these described techniques are very
broad, cannot be measured straightforwardly, and are sometimes not under the
control of the company. Therefore, the question arises to what extend companies
(unknowingly) expose such data.

278 T. Urban et al.

4 Measuring Data Collection Opportunities

Based on the analysis of the framework presented in the previous section, we
developed tools to collect the data types that a malicious actor can use to craft
sophisticated spear-phishing emails as they are the most prevalent intrusion vec-
tor. We used two different crawling approaches to collect data for each company:
(1) Analyzing sources directly maintained by the companies (e.g., websites) and
(2) information present on third-party websites but that the company directly
or indirectly provides (e.g., job postings or social media profiles).

4.1 Data Description

In our analysis, we perform an in-depth analysis of 30 entities (27 companies, two
government agencies, and one non-profit organization). For the sake of simplicity,
we use the term company for these 30 entities in the following. To choose these
companies, we used a list of large, international companies and chose 27 from
this list, with an emphasis on banking and e-payment companies. We focused on
one sector as the described malicious actors tend to attack financial institutions
or large organizations. However, the chosen companies are active in a variety
of industry sectors and are of different sizes regarding revenue and number of
employees. On average, the revenue of the analyzed companies is 60 billion USD
(min: 27 million USD; max: 790 billion USD), and they employ 55,484 people
(min: 49; max: 375,000). We took these numbers from the official figures the
companies provided for 2018. Ten of the companies are active in the “banking”
or “digital payment” sector (37%), while the others are distributed over eleven
sectors (e.g., “Food” or “Aeronautics”).

For ethical reasons, we refrain from naming any of the companies and will use
pseudonyms for all companies in the remainder of this work (i.e., Comp. #X).
In our measurements, we used no legal or ethical questionable tools and only
accessed data that is publicly available. More specifically, we use in this study
three different types of data sources to measure the pre-attack surface of a com-
pany: (1) data the company (unknowingly) provides, (2) data publicly available
through social media sites, and (3) data leaked in known data breaches. An
extended ethical discussion is presented in Sect. 7.

4.2 Data Collection

As previously mentioned, we rely for our analysis on “Open Source Intelligence”
(OSINT) data, i.e., data sources that are publicly available. In the following, we
describe the used data sources in more detail.

Company Controlled Entities. To crawl each companies’ infrastructure, we
built a crawler that we initialize with 1 to n domains owned by a company (seed
domains). If possible, we read the TLS certificate present on these domains and

Analyzing Potential Pre-attack Surfaces 279

try to identify further domains that can be protected by this certificate (i.e., Sub-
ject Alternative Name (SAN) and multi-domain SSL certificates). Furthermore,
we perform a DNS enumeration to discover further domains and infrastructure
operated by the company. After identifying the “landing pages” of all domains
associated with a company, we visit each page and recursively all first-party
links occurring on each website to a certain depth (n = 6). Hence, we try to
visit every single webpage publicly linked by a company. Using this approach,
we miss resources that are only available if the user has a specific link to the
resource.

Analyzing Metadata. Most popular file types offer proprietary options to store
additional information regarding the file (“metadata”). Such metadata, for
example, includes authors of the document, the software used to create the
document (e.g., pdfTeX-1.40.17), email addresses of the author, or its title.
From an adversary’s point of view, this information may provide specific insights
into the victim. For example, the authors of a document, in combination with
its title/content, can be used to craft specific phishing emails for a single or
small group of users. With a given type of software, the adversary might also
be able to attach a file that exploits a specific bug in that software to infect
the user’s system. We only used email addresses whose domain part’s effective
top-level domain (eTLD) +1 fit the eTLD+1 of the seed domain(s) we analyzed.
For example, if our crawler scanned foo.com and extracted the email address
smith@bar.com in one file, we dropped the file. Aside from metadata analysis,
we identified emails by analyzing the content of websites and documents. For our
study, we download all files that we find during the crawling process and extract
the metadata. Overall, we analyze 36 different file types. These files includes
.pdf files, office documents (e.g., *.docx or *.odt), and various image types
(e.g., *.png or *.jpeg). If a document contains an author or other personally
identifiable information (e.g., email addresses or names), we map them to other
properties (e.g., used software). More specifically, we create relations between
users, the software they use, and possible topics on which they work. For exam-
ple, if we identified a Microsoft Office v1.0 document written by two authors
(Alice and Bob) with the title World Peace—Status Quo and Outlook, we can
conclude that both worked on “World Peace” using Microsoft Office.

Company Infrastructure. We mainly focus on the vulnerability of companies
towards social engineering attacks, especially spear phishing. Thus, we describe
our measurements regarding parts of the companies infrastructure that might
be abused by an adversary for this specific kind of attack. Adversaries might
use so-called homoglyph domains (e.g., changing ‘l’ to 1) to trick employees
into visiting them with the belief to navigate on the secure infrastructure of the
company (but an adversary, of course, controls this infrastructure). We perform a
simple cybersquatting detection by creating a list—based on the seed domains—
of URLs that “look” similar to humans by applying techniques like homoglyphs,
simple permutations, or by using different eTLDs. Afterward, we test if any of

280 T. Urban et al.

these URLs exist and try to assess who registered them. We use whois requests
and data from SSL certificates to identify the registering organization.

Furthermore, we aim to identify isolated components in a company’s infras-
tructure that is not connected to any other entity of the company’s infrastruc-
ture. Examples for connections between the components are hyperlinks or shared
IP addresses. Such isolated components could be legacy systems running with-
out the direct knowledge of the responsible administrators, might be used as
test systems, or in case of domains, might be run by an adversary in preparation
of an attack. For all domains registered by a company (excluding homoglyph
domains), we tested if the websites use trustworthy SSL certificates (e.g., not
expired ones). If companies use certificates that are not trustworthy, adversaries
might be able to intercept or eavesdrop the connection, which allows them to
collect sensitive data. Finally, we check whether companies register domains with
names similar to their original domain. Domain parking can be used to register
domains up front before a service is run on the domain. Furthermore, a service
provider can use this practice to avoid “domain drop catching”. Domain drop
catching is a (malicious) practice to registers a domain right after it expired and
then to use it for different purposes [18,26]. As users usually do not know when
and if domains expire, they will still visit the domain and might be exposed to
malicious content.

Social Media. Employment-oriented social media platforms, like LinkedIn, are
commonly used by millions of people [20]. As these platforms are supposed to
maintain business relationships, they can also be abused by adversaries to collect
intelligence on a company [1]. This data might provide several details about the
internal workings of a company, and its employees and their careers, contacts, or
supervisors. Furthermore, companies do not have real control over which data is
shared and posted on such platforms, and adversaries might use these sites to
get in touch with the employees, undetected by any security mechanism of the
company.

In this work, we use data obtained from various sources (e.g., different APIs).
Some of these APIs are deprecated as of July 2020 but were still available when
we collected our dataset. One example was the LinkedIn API that allowed to
crawl user data based on an email address (i.e., https://www.linkedin.com/sales/
gmail/profile/viewByEmail/mailaddress). The malicious actor could use this
endpoint to determine whether an identified email address had a correspond-
ing profile. To mimic the potential workflow of an adversary, we utilized search
engines to perform site-specific searches (e.g., site:linkedin.com <COMPANY-
NAME>). To further enrich our dataset, we utilized publicly available tools that
automate the crawling process of social media sites (e.g., CrossLinked [24]).

Data Leaks. Finally, adversaries may utilize data from previous data breaches
to prepare their attack. In this work, we use the Have I Been Pwned API [15] to
test if a company ever leaked data that can be used in another attack on that
company. The API exposes data leaks from over 400 websites and over 110.000

Analyzing Potential Pre-attack Surfaces 281

Fig. 2. Overview of our data collection approach.

“pastes”. In this case, pastes are indications of data leaks in which the adversaries
provides examples of the acquired data to prove that she actually got access to
sensitive information. The API does not directly provide any of the breached
data but returns categories of data that the leak contained. For example, if one
provides an email address, the API will return data types that were leaked along
with the address in different data breaches (e.g., foo@bar.com) results in dates
of birth, employers, and job titles). Figure 2 provides an overview of the
three types of data sources we analyzed.

4.3 Identified Data

Data Crawled from Companies’ Infrastructure. In total, we scanned 30
entities and identified 492 domains (eTLD+1 and suffix) operated by them.
Furthermore, we identified 18,873 employees, of which 8,994 appeared in data
leaks, or they provided valuable data in public social media profiles.

Metadata Analysis. During the measurement, we visited 4,912,938 distinct web-
pages and extracted metadata from 271,124 documents. Table 1a provides an
overview of the identified data types identified based on the metadata of files
we found on the crawled webpages. The min, max, and mean value describe how
many instances were obtained for each company (e.g., we identified the names
of 634 employees of a company). Ninety percent of the analyzed companies leak
the names of their employees. Overall, we identified 22,361 email addresses, of
which 6,335 were exclusively exposed via metadata (intentionally or unintention-
ally). As we extracted them from metadata, this might also provide insights to
the adversary on which projects they work on (e.g., based on the file’s content).
Aside from names, the email address is essential as actors can use them to get
in touch with potential victims. Almost three-quarters of all companies in our
dataset leaked an employee’s email address.

Furthermore, once the malicious actor understands the structure of a com-
pany’s email addresses (e.g., lastname@foo.com), she can presumably make edu-
cated guesses on the local parts of further addresses if she knows the employees’

282 T. Urban et al.

names. In our dataset, the amount of identified email addresses would increase,
on average, by 52% for each company. 81% of the companies exposed third
parties they work with (i.e., collaborating partners that created a document).
The three named data types can be used to craft user/team specific spear-
phishing campaigns. For example, an adversary could impersonate a partner the
employee worked with. Aside from personal data, the metadata of a file might
expose intelligence on the inner workings of a company. In our dataset, 90% of
the companies leaked the software they used to create a document, and almost
two-thirds leaked data paths they use in the company to store documents (e.g.,
Z:\Project X\Results). An attacker can use this information when preparing
for the attack (e.g., zero-day exploits for the used software).

Company Domains. Table 1b presents potential information on the infrastruc-
ture that an actor can collect and later use for an attack. Furthermore, it pro-
vides hints that adversaries already actively make use of homoglyph domains.
The most troubling finding of this measurement is that for 18 (60%) of the ana-
lyzed companies, an adversary actively abuse a homoglyph domain, at the time
of our crawl. Note that we only counted domains for which we find a substantial
string similarity of more than 95%, and therefore, our results can be seen as a
lower bound. For one company, we found twelve active domains of this type (avg:
4.5). The presence of such domains indicates that adversaries are likely already
actively trying to misguide users or employees of such services (e.g., password
phishing). However, we also observed that some companies are aware of this
endangerment and acquire some of these domains and “park” them for brand
protection purposes as a kind of proactive defense.

Often websites or other services are connected by various mechanisms (e.g.,
hyperlinks or services that share the same IP address). In our dataset, half of the
companies operate services that have no connection to others. These domains
might pose a problem if the companies no longer maintain them and, therefore,
could be less protected (e.g., legacy interfaces). On the other hand, these services
might not pose a problem at all because the companies are fully aware of them.
We found that eight entities (26%) operated domains that use an invalid or
outdated certificate. An adversary might abuse these by intercepting the TLS
encryption to such domains to collect more data on users or employees, whoever
primarily uses these services. All of these companies operated at least one isolated
domain (avg: 5) that uses an expired or otherwise untrusted certificate, which
reinforces the assumption that the companies no longer maintain them.

Data Available in Data Leaks and in Social Media Profiles. In addition
to the analysis of the companies’ infrastructure and data they expose via meta-
data, we analyzed if the business accounts of employees (e.g., email addresses)
occur in publicly known data breaches (see Sect. 4.2). For each company in our
dataset, we found data on at least three of the identified employees (max: 1,102).
In absolute numbers, 11 companies (46%) leaked data of less than 30 employ-
ees, and only four (12%) did not leak data on any employee that we identified.

Analyzing Potential Pre-attack Surfaces 283

Table 1. Overview of the data extracted from the company’s own infrastructure.

(a) Overview of the identified information.
The min and mean values exclude companies
that did not provide the type of data.

Data type aff. comp. min max mean

Names 90 % 7 634 227
Mail addresses 71 % 1 96 19
Third Parties 81 % 1 53 15
Software 90 % 5 205 71
Path 65 % 1 30 7

(b) Overview of the identified infrastruc-
ture information.

Type min max mean

Homoglyph Domains 1 12 4.5
Parked Domains 5 379 41.6
Isolated Domains 7 89 27.3
Untrusted Certificates 1 20 5.9

In relative numbers, two-thirds (20) of the analyzed companies leaked data of
more than one-third of the identified employees (max: 88%). We found no sta-
tistical significance between the amount of identified emails and the amount of
leaked data (ANOVA-Test p-value ≈ 0.03). Hence, companies that expose more
emails are not automatically likely to be present in more data leaks. As this might
seem to be counter-intuitive, it hints that some companies have policies in place
to reduce the potential of such data leaks (e.g., awareness campaigns). Over-
all, the analyzed data leaks include 65 different data categories. The categories
range from personal data (e.g., credit status information, government issued IDs,
or device usage tracking data) over data directly tied to the employee’s profes-
sional live (e.g., job titles, employers, or occupations) to other data an adversary
could use to plan an attack (e.g., instant messenger identities or password hints).
The category of a data leak shows a statistical correlation with the number of
instances that this data is leaked (ANOVA-Test p-value < 0.0001). Hence, some
data types leak more often than others.

Figure 3 shows the type of leaked data for each company. The heatmap
highlights the ratio of identified leaks with the email addresses that we could
identify. The figure only lists the top 15 categories, which account for 89% of
all leaking instances. It shows that some companies leak excessively more data
than others (ANOVA-Test p-value < 0.0001) but that there is no dominating
data type that is leaked. In our dataset, the top leaked types are passwords
(10%), phone numbers (8%), and geolocations (7%), excluding the name and
email addresses of the users that the adversary needs to identify an employee.
The biggest challenge with data actors collect from data leaks is that companies
have virtually no measure to delete it. Furthermore, in none of the cases, it
was the company itself that leaked the data but other platforms on which the
employees registered to use the service, using their business email address. Hence,
one solution could be to raise awareness with employees only to use the work
email if necessary and to provide as little information as possible when using the
respective services.

284 T. Urban et al.

Fig. 3. Overview of the data extracted from other data sources.

Summary. In this section, we demonstrated that companies excessively leak data
that provides insights into their inner workings or on the employees of the com-
panies. However, it is not clear whether an adversary can meaningfully combine
this data to plan further steps link designing successful phishing campaigns.

5 Assessing Potential Phishing Targets

Based on the insights of our study, we now introduce a metric to asses the
likeliness that an employee serves as a good spear phishing target. The presence
of data that we identify in this work does not necessarily pose a security problem
per se. Each data point on its own is properly not problematic if obtained by
an adversary, but taken together, they reveal intelligence that can be used, for
example, to craft personalized phishing emails. Therefore, it is important to
analyze and interpret the collected data.

5.1 Identifying Potential Phishing Targets

We now numerically analyze whether users are promising targets for spear phish-
ing attacks from an adversary’s point of view. In this work, we only analyze
technical aspects and not the personal experience of each person, which is out-
of-scope of this work but an essential aspect if someone falls for a phishing
attempt [17]. Previous work that analyzed the effectiveness of spear phishing
found that sources that impersonate an individual from the victim’s company
(e.g., from the human resources department) are quite effective [3,12]. The work
shows that 34%–60% of all participants clicked on a link in such email. There-
fore, we assume that if we could identify other persons working in the company
and especially if they are working together (e.g., co-worker, supervisor, or team
member), a phishing attempt might be more effective. Furthermore, if the adver-
sary knows the software used by the victim, she can craft and append an exploit
specifically for the used software to the email, which increases the chances of

Analyzing Potential Pre-attack Surfaces 285

Fig. 4. Number of leaked attributes for each user in our dataset.

a successful compromise. Thus, we also consider the used technology of each
employee as an essential aspect.

5.2 Spear Phishing Targets in the Wild

Figure 4 shows the number of attributes leaked for each employee in our dataset.
Most employees only leak two categories of information (i.e., their name and
email address), which we use to identify users of a company. For those individu-
als, it is not possible to craft targeted phishing mails (at least using our data).
However, we identified 5,910 (62%) employees that leak between seven and 15
attributes. Those employees are employed at 25 different companies (83%). 878
(9%) employees leak between 24 and 28 attributes and are employed at 18 compa-
nies (60%). From both employee groups, an adversary can potentially pick several
attributes and craft highly specific spear phishing mails. Only four (13%) com-
panies in our dataset do not leak any additional data on their employees, aside
the name and email address). For all of these companies, we identified relatively
few employees. One reason for this is that most of these companies are active in
business fields with no (public) customer interaction (e.g., investment banking).
The results show that almost all companies in our dataset provide a consider-
able pre-attack surface to motivated attackers. In absolute numbers, companies
that leaked more data also provide more targets for an attacker (ANOVA-Test
p-value ≈ 0.001). However, taking the relation between the amount of identified
emails and leaked data into account (similar to Fig. 3), we did not find a corre-
lation. Hence, leaking more data does not necessarily mean that the adversary
can identify more spear phishing targets. Our results show that the OSINT data
sources that we utilized provide a rich data source from which threat actors can
profit.

6 Related Work

Previously research on effective APT detection or prevention mostly focused on
detecting them at and/or after the “Delivery” phase in the cyber kill chain [32].
APT detection is highly complicated as information from many sources (e.g.,
human behavior, intrusion detection systems, or system logs) have to be com-
bined to make an informed decision. Machine learning approaches were studied

286 T. Urban et al.

to process this enormous amount of data to detect APTs [2,10,16,21]. Fur-
thermore, more heuristic solutions like correlating events [25], defining detection
rule sets [33], detecting misuse on application level [23], or annotating security
events [11] have been proposed. Similar to our APT analysis, Lemay et al. [19]
analyzed APT reports. In their work, they provide a summary of 40 analyzed
APT reports. A large number of different works focus on the technical detection
of spear-phishing emails, content analysis of phishing websites, and the detection
of such websites based on their URLs (e.g., [13,14]). Furthermore, various studies
analyzed human aspects to understand why spear-phishing attacks are success-
ful (e.g., [3,12]). Finally, several papers systematize the extensive research that
was conducted in this area (e.g., [5–7]). Our work differs from these approaches
as we solely focus on the very first steps adversaries take when they plan their
malicious actions, the reconnaissance phase. To the best of our knowledge, we
are the first ones to show the variety and magnitude of information companies
(unknowingly) provide that can be abused by adversaries to perform spear-
phishing attacks. Furthermore, we do not aim to understand the effectiveness
of specific phishing campaigns, but provide insights on how companies expose
data.

7 Ethical Consideration

For this study, we gathered and analyzed sensitive information on companies
and employees, thus individual persons. Our research institution does not require
approval for this type of study, nor does it provide an Institutional Review Board
(IRB). Nevertheless, we took strict ethical considerations into account. Addi-
tionally, we followed the research community’s standard guidelines to protect
those whose data was collected and the infrastructure of the services we use. A
recent court ruling, according to the Electronic Frontier Foundation, found that
”automated scraping of publicly available data is unlikely to violate the Computer
Fraud and Abuse Act (CFAA)” [9]. As a general rule, the collection of personal
information requires user consent; however, there are exceptions for cases where
this is not practical. In our case, publicly available sources are the basis of the
collection of information. By nature of our analysis, we cannot preempt to pro-
cess personal data. We also want to highlight that none of our collections tools
use any questionable tools to identify systems or persons. We do not perform any
kind of penetration testing to collect data and send all requests at a courteous
rate. The gathered data was collected for scientific purposes only, and we only
disclosed it to the involved companies. To protect the collected personal data,
we took additional safety measures: We encrypt the raw files for storage and
delete unused samples and data.

8 Discussion and Conclusion

Our approach comes with limitations that need further clarification. The most
decisive one, from a researchers’ perspective, is that there exists no ground truth

Analyzing Potential Pre-attack Surfaces 287

for our collected data. Hence, it implies that we do not know if adversaries profit
from the data sources that we utilize to plan their actions or if all companies are
unaware of the leakage of such data. However, the analyzed APT reports and
several other sources (e.g., [22,28,29]) indicate that adversaries make excessive
use of OSINT data, and even if companies are aware of the leakage of data, it
might still be used by the adversaries. There is very little raw data available
on incidents especially how the attackers infiltrated their victims. Furthermore,
to build a ground truth for our research, one would need to impersonate the
malicious actor while she plans her attack, which is ethically not tenable. With
a company’s consent, we could perform an awareness phishing campaign using
the identified data. However, previous work already performed similar studies
and demonstrated that they are often successful (see Sect. 6). With our work,
we do not aim to determine the exact data used by adversaries in each attack,
which is probably impossible in an automated fashion, but we demonstrate the
sheer scale of data leaked by companies. Our results highlight that all analyzed
companies provide a large attack surface to adversaries that is not monitored or
protected by state-of-the-art security solutions. Furthermore, this data leakage
is not always under the control of the companies, nor is it always possible to
revert the leakage. Therefore, there is no clear path how to circumvent this type
of leakage or straightforward countermeasure. It is quite hard to successfully
prevent attacks on third party providers or reduce attack surfaces and therefore
to apply countermeasures. One way to decrease the potential damage by these
data leaks is to raise awareness with employees that this kind of data is regularly
abused by adversaries and that the principle of “data economy” should be fol-
lowed. Actionable tools to counter misuse of our analyzed data sources can be to
wipe the metadata from all uploaded files, to continually monitor data leaks if
they include passwords or other personal data of employees, or to increase aware-
ness in a way that empowers employees not to provide too much work-related
information on social media platforms.

Acknowledgment. This work was partially supported by the Ministry of Culture
and Science of North Rhine-Westphalia (MKW grant 005-1703-0021 “MEwM”), the
federal Ministry of Research and Education (BMBF grant 16KIS1016 “AWARE7”),
and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC-2092 CaSa – 390781972. We would like to thank
Sweepatic NV—a cybersecurity company which maps, monitors and manages attack
surfaces—for their support and access to their technology.

A Analyzed MITRE PRE-ATT&CK Techniques

Table A lists the groups analyzed in this work. For each group, the techniques
and tactics are shown and we indicate whether we analyzed it (“Meas.”), if we
collected the needed information on third-party websites (“3 rd” or from first-
party resources (“1 st)”, and how we collected them (“How obtained”). If we did
not collect data on a technique, the column “How obtained” provides a brief
explanation why.

288 T. Urban et al.

Technique

M
ea

s.
1s

t

3r
d How obtained

Technical Information Gathering (TA0015)
Acquire OSINT data sets and information Too general
Conduct active scanning Too general
Conduct passive scanning out of scope
Conduct social engineering out of scope
Determine 3rd party infrastructure services Shodan and IP addresses
Determine domain and IP address space log addresses during crawls
Determine external network trust
dependencies log 3rd party usage

Determine firmware version during crawl & metadata
Discover target logon/email address format extract from metadata
Enumerate client configurations during crawl & metadata
Enumerate externally facing entities during crawl & metadata
Identify job postings and needs/gaps No API present
Identify security defensive capabilities out of scope
Identify supply chains very hard automatically
Identify technology usage patterns logged during crawls
Identify web defensive services analyzing 3rd party usage
Map network topology based on identified data
Mine technical blogs/forums out of scope
Obtain domain/IP registration information whois queries
Spearphishing for Information out of scope

People Information Gathering (TA0016)
Acquire OSINT data sets and information Too general
Aggregate individual’s digital footprint very hard automatically
Conduct social engineering out of scope
Identify business relationships out of scope
Identify groups/roles Based on social media data
Identify job postings and needs/gaps No API present
Identify people of interest based on collected data
Identify personnel with an authority/privilege based on collected data
Identify sensitive personnel information out of scope
Identify supply chains out of scope
Mine social media APIs of platforms

Organizational Information Gathering (TA0017)
Acquire OSINT data sets and information Too general
Conduct social engineering out of scope
Determine 3rd party infrastructure services extracted during crawl
Determine centralization of IT management very hard automatically
Determine physical locations extracted during crawl
Dumpster dive out of scope
Identify business processes/tempo out of scope
Identify business relationships social media data
Identify job postings and needs/gaps No API present
Identify supply chains out of scope
Obtain templates/branding materials extracted during crawl

Concluded

Analyzing Potential Pre-attack Surfaces 289

References

1. Balduzzi, M., Platzer, C., Holz, T., Kirda, E., Balzarotti, D., Kruegel, C.: Abusing
social networks for automated user profiling. In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 422–441. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15512-3 22

2. Barre, M., Gehani, A., Yegneswaran, V.: Mining data provenance to detect
advanced persistent threats. In: Proceedings of the 11th International Workshop
on Theory and Practice of Provenance, TaPP 2019. USENIX Association, Berkeley
(2019)

3. Caputo, D., Pfleeger, S., Freeman, J., Johnson, M.: Going spear phishing: explor-
ing embedded training and awareness. IEEE Secur. Privacy 12(1), 28–38 (2014).
https://doi.org/10.1109/MSP.2013.106

4. Chen, P., Desmet, L., Huygens, C.: A study on advanced persistent threats. In: De
Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 63–72. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44885-4 5

5. Chiew, K., Yong, K., Tan, C.: A survey of phishing attacks: their types, vectors
and technical approaches. Expert Syst. Appl. 106, 1–20 (2018). https://doi.org/
10.1016/j.eswa.2018.03.050

6. Das, A., Baki, S., El Aassal, A., Verma, R., Dunbar, A.: SoK: a comprehensive
reexamination of phishing research from the security perspective. IEEE Commun.
Surv. Tutor. (2019). https://doi.org/10.1109/COMST.2019.2957750

7. Dou, Z., Khalil, I., Khreishah, A., Al-Fuqaha, A., Guizani, M.: SoK: a systematic
review of software-based web phishing detection. IEEE Commun. Surv. Tutor.
19(4), 2797–2819 (2017). https://doi.org/10.1109/COMST.2017.2752087

8. Ferreira, A., Vieira-Marques, P.: Phishing through time: a ten year story based
on abstracts. In: Proceedings of the 4th International Conference on Information
Systems Security and Privacy, ICISSP 2018, pp. 225–232. INSTICC, SciTePress,
Setúbal, Portugal (2018). https://doi.org/10.5220/0006552602250232

9. Fischer, C., Crocker, A.: Victory! Ruling in hiQ v. Linkedin Protects Scrap-
ing of Public Data. https://www.eff.org/deeplinks/2019/09/victory-ruling-hiq-v-
linkedin-protects-scraping-public-data

10. Ghafir, I., et al.: Detection of advanced persistent threat using machine-learning
correlation analysis. Future Gener. Comput. Syst. 89, 349–359 (2018). https://doi.
org/10.1016/j.future.2018.06.055

11. Gianvecchio, S., Burkhalter, C., Lan, H., Sillers, A., Smith, K.: Closing the gap
with APTs through semantic clusters and automated cybergames. In: Chen, S.,
Choo, K.-K.R., Fu, X., Lou, W., Mohaisen, A. (eds.) SecureComm 2019. LNICST,
vol. 304, pp. 235–254. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
37228-6 12

12. Halevi, T., Memon, N., Nov, O.: Spear-phishing in the wild: a real-world study
of personality, phishing self-efficacy and vulnerability to spear-phishing attacks.
SSRN Electron. J. (2015). https://doi.org/10.2139/ssrn.2544742

13. Han, Y., Shen, Y.: Accurate spear phishing campaign attribution and early detec-
tion. In: Proceedings of the 31st ACM Symposium on Applied Computing, SAC
2016, pp. 2079–2086. ACM Press, New York (2016). https://doi.org/10.1145/
2851613.2851801

14. Ho, G., Sharma, A., Javed, M., Paxson, V., Wagner, D.: Detecting credential
spearphishing in enterprise settings. In: Proceedings of the 26th USENIX Secu-
rity Symposium, USENIX Sec 2017, pp. 469–485. USENIX Association, Berkeley
(2017)

https://doi.org/10.1007/978-3-642-15512-3_22
https://doi.org/10.1109/MSP.2013.106
https://doi.org/10.1007/978-3-662-44885-4_5
https://doi.org/10.1016/j.eswa.2018.03.050
https://doi.org/10.1016/j.eswa.2018.03.050
https://doi.org/10.1109/COMST.2019.2957750
https://doi.org/10.1109/COMST.2017.2752087
https://doi.org/10.5220/0006552602250232
https://www.eff.org/deeplinks/2019/09/victory-ruling-hiq-v-linkedin-protects-scraping-public-data
https://www.eff.org/deeplinks/2019/09/victory-ruling-hiq-v-linkedin-protects-scraping-public-data
https://doi.org/10.1016/j.future.2018.06.055
https://doi.org/10.1016/j.future.2018.06.055
https://doi.org/10.1007/978-3-030-37228-6_12
https://doi.org/10.1007/978-3-030-37228-6_12
https://doi.org/10.2139/ssrn.2544742
https://doi.org/10.1145/2851613.2851801
https://doi.org/10.1145/2851613.2851801

290 T. Urban et al.

15. Hunt, T.: Have I Been Pwned: API v3 (2020). https://haveibeenpwned.com/API/
v3. Accessed 15 Apr 2020

16. Kumar, G.R., Mangathayaru, N., Narsimha, G., Cheruvu, A.: Feature clustering
for anomaly detection using improved fuzzy membership function. In: Proceedings
of the 4th International Conference on Engineering & MIS, ICEMIS 2018. ACM
Press, New York (2018). https://doi.org/10.1145/3234698.3234733

17. Kumaraguru, P., Rhee, Y., Acquisti, A., Cranor, L.F., Hong, J., Nunge, E.: Pro-
tecting people from phishing: the design and evaluation of an embedded training
email system. In: Proceedings of the 25thACM SIGCHI Conference on Human
Factors in Computing Systems, CHI 2007, pp. 905–914. ACM Press, New York
(2007). https://doi.org/10.1145/1240624.1240760

18. Lauinger, T., Chaabane, A., Buyukkayhan, A.S., Onarlioglu, K., Robertson,
W.: Game of registrars: an empirical analysis of post-expiration domain name
takeovers. In: USENIX Security Symposium (2017)

19. Lemay, A., Calvet, J., Menet, F., Fernandez, J.M.: Survey of publicly available
reports on advanced persistent threat actors. Comput. Secur. 72, 26–59 (2018).
https://doi.org/10.1016/j.cose.2017.08.005

20. LinkedIn Corporation: Statistics (2020). https://news.linkedin.com/about-us#
statistics. Accessed 15 Apr 2020

21. Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X., Meng, D.: Log2vec: a heteroge-
neous graph embedding based approach for detecting cyber threats within enter-
prise. In: Proceedings of the 26th ACM Conference on Computer and Communica-
tions Security, CCS 2019, pp. 1777–1794. ACM Press, New York (2019). https://
doi.org/10.1145/3319535.3363224

22. Lockheed Martin Corporation: Gaining the Advantage-Applying Cyber Kill Chain
Methodology to Network Defense (2014). https://www.lockheedmartin.com/
content/dam/lockheed-martin/rms/documents/cyber/Gaining the Advantage
Cyber Kill Chain.pdf. Accessed 15 Apr 2020

23. Milajerdi, S.M., Eshete, B., Gjomemo, R., Venkatakrishnan, V.N.: ProPatrol:
attack investigation via extracted high-level tasks. In: Ganapathy, V., Jaeger, T.,
Shyamasundar, R.K. (eds.) ICISS 2018. LNCS, vol. 11281, pp. 107–126. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-05171-6 6

24. m8r0wn: CrossLinked (2020). https://github.com/m8r0wn/CrossLinked. Accessed
20 Apr 2020

25. Milajerdi, S., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.: HOLMES:
real-time APT detection through correlation of suspicious information flows. In:
Proceedings of the IEEE Symposium on Security and Privacy, S&P 2019, pp.
1137–1152. IEEE Computer Society, Washington (2019). https://doi.org/10.1109/
SP.2019.00026

26. Miramirkhani, N., Barron, T., Ferdman, M., Nikiforakis, N.: Panning for gold.com:
understanding the dynamics of domain dropcatching. In: International Conference
on World Wide Web (2018)

27. Parsons, K., McCormac, A., Pattinson, M., Butavicius, M., Jerram, C.: The design
of phishing studies: the design of phishing studies: challenges for researchers. Com-
put. Secur. 52, 194–206 (2015). https://doi.org/10.1016/j.cose.2015.02.008

28. Paterson, A., Chappell, J.: The Impact of Open Source Intelligence on Cybersecu-
rity, pp. 44–62. Palgrave Macmillan UK, London (2014). https://doi.org/10.1057/
9781137353320 4

29. RSA Research: Reconnaissance–A Walkthrough of the “APT” Intelligence Gather-
ing Process (2015). http://www.kerneronsec.com/2015/10/a-walkthrough-of-apt-
intelligence.html. Accessed 15 Apr 2020

https://haveibeenpwned.com/API/v3
https://haveibeenpwned.com/API/v3
https://doi.org/10.1145/3234698.3234733
https://doi.org/10.1145/1240624.1240760
https://doi.org/10.1016/j.cose.2017.08.005
https://news.linkedin.com/about-us#statistics
https://news.linkedin.com/about-us#statistics
https://doi.org/10.1145/3319535.3363224
https://doi.org/10.1145/3319535.3363224
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://doi.org/10.1007/978-3-030-05171-6_6
https://github.com/m8r0wn/CrossLinked
https://doi.org/10.1109/SP.2019.00026
https://doi.org/10.1109/SP.2019.00026
https://doi.org/10.1016/j.cose.2015.02.008
https://doi.org/10.1057/9781137353320_4
https://doi.org/10.1057/9781137353320_4
http://www.kerneronsec.com/2015/10/a-walkthrough-of-apt-intelligence.html
http://www.kerneronsec.com/2015/10/a-walkthrough-of-apt-intelligence.html

Analyzing Potential Pre-attack Surfaces 291

30. The MITRE Corporation: MITRE ATT&CK matrix for enterprise (2019). https://
attack.mitre.org/matrices/enterprise/. Accessed 15 Apr 2020

31. The MITRE Corporation: MITRE PRE-ATT&CK Matrix (2019). https://attack.
mitre.org/matrices/enterprise/. Accessed 15 Apr 2020

32. Yadav, T., Rao, A.M.: Technical aspects of cyber kill chain. In: Abawajy, J.H.,
Mukherjea, S., Thampi, S.M., Ruiz-Mart́ınez, A. (eds.) SSCC 2015. CCIS, vol. 536,
pp. 438–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22915-
7 40

33. Yu, H., Li, A., Jiang, R.: Needle in a haystack: attack detection from large-scale
system audit. In: Proceedings of the 19th International Conference on Commu-
nication Technology, ICCT 2019, pp. 1418–1426 (2019). https://doi.org/10.1109/
ICCT46805.2019.8947201

https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/matrices/enterprise/
https://doi.org/10.1007/978-3-319-22915-7_40
https://doi.org/10.1007/978-3-319-22915-7_40
https://doi.org/10.1109/ICCT46805.2019.8947201
https://doi.org/10.1109/ICCT46805.2019.8947201

Post-quantum Cryptography

Towards Post-Quantum Security for
Cyber-Physical Systems: Integrating PQC

into Industrial M2M Communication

Sebastian Paul(B) and Patrik Scheible

Corporate Sector Research and Advance Engineering, Robert Bosch GmbH,
Renningen, 70465 Stuttgart, Germany

sebastian.paul2@de.bosch.com

Abstract. The threat of a cryptographically relevant quantum com-
puter contributes to an increasing interest in the field of post-quantum
cryptography (PQC). Compared to existing research efforts regarding
the integration of PQC into the Transport Layer Security (TLS) pro-
tocol, industrial communication protocols have so far been neglected.
Since industrial cyber-physical systems (CPS) are typically deployed
for decades, protection against such long-term threats is needed. In
this work, we propose two novel solutions for the integration of post-
quantum (PQ) primitives (digital signatures and key establishment) into
the industrial protocol Open Platform Communications Unified Architec-
ture (OPC UA): a hybrid solution combining conventional cryptography
with PQC and a solution solely based on PQC. Both approaches provide
mutual authentication between client and server and are realized with cer-
tificates fully compliant to the X.509 standard. Moreover, we implement
the two solutions and measure and evaluate their performance across
three different security levels. All selected algorithms (Kyber, Dilithium,
and Falcon) are candidates for standardization by the National Institute
of Standards and Technology (NIST). We show that Falcon is a suitable
option—especially—when using floating-point hardware provided by our
ARM-based evaluation platform. Our proposed hybrid solution provides
PQ security for early adopters but comes with additional performance
and communication requirements. Our solution solely based on PQC
shows superior performance across all evaluated security levels in terms
of handshake duration compared to conventional OPC UA but comes at
the cost of increased sizes for handshake messages.

Keywords: Cyber-Physical systems · Post-quantum cryptography ·
X.509 certificates · Authentication · Key establishment · OPC UA

1 Introduction

Google’s recent shot at quantum supremacy attracted much public attention,
but the road to a stable and large-scale quantum computer is still long and

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 295–316, 2020.
https://doi.org/10.1007/978-3-030-59013-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_15

296 S. Paul and P. Scheible

uncertain [5]. Once one is built, however, it will be able to solve mathemat-
ical problems previously thought to be intractable. As a consequence, public
key primitives that have become the “security backbone” of our digital society
will be broken. This threat can be mitigated by deploying new cryptographic
primitives that withstand attacks from both quantum and traditional comput-
ers, i. e. post-quantum cryptography. NIST addressed this issue by starting a
PQC standardization process in 2016, which is currently in its second round.1

Eventually, NIST will standardize quantum-resistant encapsulation mechanisms
(KEMs) and digital signature algorithms (DSAs).

A migration to new primitives requires various forms of cryptographic agility,
which typically is not present in existing systems [31,40]. Therefore, research
how to securely and effectively integrate PQC into protocols and applications
is required. Furthermore, it is essential to plan for the cryptographic transition,
especially for devices with long life spans and high security requirements. Sev-
eral governmental institutes have proposed to use hybrid modes for this crypto-
graphic transition [9,17]. In such a hybrid mode at least two cryptographic prim-
itives are applied simultaneously. On the one hand, a hybrid approach implies
various advantages: 1) As long as one of the involved schemes remains unbroken
the “entire” security property holds. Therefore, early adopters can benefit from
additional security against quantum adversaries but don’t have to fully rely on
relatively new primitives; 2) Being compliant to industrial or governmental stan-
dards that have not been updated yet to include PQC; 3) Provide backward
compatibility to legacy devices. On the other hand, hybrid modes negatively
affect performance and increase the required communication bandwidth as well
as memory footprint.

One domain where components have long life spans and many industrial
(or even governmental) regulations are in place are industrial control systems
(ICS). In recent years, ICS have shifted away from isolated networks and serial
communication towards highly connected networks and TCP/IP-based commu-
nication, ultimately, providing access to the Internet. In fact, modern industrial
communication has shifted away from proprietary protocols towards standard-
ized machine-to-machine (M2M) protocols such as OPC UA [34,42,50]. Taking
into consideration that CPS deployed today could still be in use when a cryp-
tographically relevant quantum computer is available, a migration plan towards
PQC is highly recommended. Such a migration plan is even more critical regard-
ing confidentiality, because any communication passively recorded today can be
retroactively decrypted once sufficiently powerful quantum computers become
available. The fact that attacks related to industrial espionage play a major role
in ICS further emphasizes the need for long-term confidentiality of transmitted
data [49]. Although authentication can not be broken retroactively, we consider a
preliminary investigation beneficial. As components of ICS are seldom updated
during their long lifetime, they should support PQ DSAs rather sooner than
later. As a consequence, we address the integration of PQC (KEM and DSA)

1 As of June 2020, the second round is in its final stage; NIST plans to either conduct
a third round or to directly announce a final selection of algorithms.

Towards Post-Quantum Security for Cyber-Physical Systems 297

into the widespread industrial communication protocol OPC UA in this work.
Previous research efforts largely focused on the integration of PQC into common
Internet protocols, mainly, concentrating on PQ key exchange. To the best of
our knowledge, this is the first work that evaluates the integration of PQC into
an industrial protocol.

Contribution. In this work, we integrate quantum-resistant means of key estab-
lishment and authentication into OPC UA’s security handshake, thereby demon-
strating that industrial CPS are capable of handling the increased cost of PQC.
The main contributions of our work are summarized as follows:

→ We investigate all lattice-based schemes of NIST’s second round standardiza-
tion process with regards to a security-size trade-off and conduct a standalone
performance analysis of promising candidates on our evaluation platform.

→ We propose two novel integrations of PQC into OPC UA’s security handshake:
Hybrid OPC UA and PQ OPC UA. The first makes use of hybrid construc-
tions for key exchange, digital signatures, and X.509 certificates. The latter
is solely based on PQ schemes including PQ X.509 certificates. Both solu-
tions do not alter the existing structure of the security handshake, and our
hybrid approach provides backward compatibility to legacy devices. Besides
that, we present a novel way for verifying hybrid X.509 certificates using the
cryptographic library mbedTLS.

→ We implement and evaluate the two solutions on our ARM-based evaluation
platform and provide detailed performance measurements for three different
NIST security levels. By combining post-quantum key exchange and post-
quantum digital signatures we evaluate the total impact of PQC on OPC
UA.

→ Finally, we show that our PQ solution outperforms conventional OPC UA in
terms of handshake duration at all evaluated security levels. In addition, in
four of our six instantiations we make use of Falcon’s highly efficient floating-
point implementation, which—to the best of our knowledge—has previously
not been examined in integration studies.

Outline. In Sect. 2, we introduce the reader to OPC UA and its security mech-
anisms, and we provide preliminaries on PQC. Section 3 highlights related work.
In Sect. 4, we describe our two integrations of PQC into OPC UA. The per-
formance measurements of our two proposed solutions are presented in Sect. 5.
Section 6 concludes our paper.

2 Preliminary Background

2.1 OPC UA in Industrial Communication

OPC UA has been specified by the (IEC) in the standard series 62541. Further-
more, OPC UA is widely considered a de facto standard for future industrial

298 S. Paul and P. Scheible

applications. Because of its service-oriented architecture, OPC UA offers a stan-
dardized interface to exchange data between industrial applications independent
from manufacturer of automation technology. Recently, it has also been adopted
by popular cloud services demonstrating its increasing popularity [7,33]. OPC
UA offers two modes for the transfer of information: a client-server mode and a
relatively new publish-subscribe mode [34]. In this work, we focus on the client-
server mode, since it is widely deployed in current automation systems and fully
supported by open-source implementations.

OPC UA provides mutual authentication based on X.509 certificates and it
ensures integrity and confidentiality of communication. The bottom layer of OPC
UA’s security architecture handles the transmission and reception of information.
A secure channel is created within the communication layer and is crucial for
meeting the aforementioned security objectives. The exchange of information
is realized within sessions, which are logical connections between clients and
servers. The following description of OPC UA’s certificate-based authenticated
key exchange is based on the relevant parts of its official specification [35,36].
After a transport connection has been established between client and server, the
client requests EndpointDescriptions, which later allow him to access services or
information offered by the server. In addition, an EndpointDescription contains
information required for the security handshake: server certificate, message secu-
rity mode, and security policy. The server certificate contains the authenticated
public key of the server, which the client verifies before initiating the security
handshake. OPC UA offers different message security modes for established ses-
sions: None, SignOnly, and SignAndEncrypt. The set of cryptographic mecha-
nisms used during the handshake phase and in subsequent sessions are specified
using SecurityPolicy Profiles. For example, the security policy Basic256Sha256
uses RSA2048 to encrypt/decrypt (RSA-OAEP) and sign/verify messages (RSA-
PKCS1.5) during the security handshake; symmetric keying material is derived
using the hash function SHA256 in a (PRF); within sessions, AES256 in Cipher
Block Chaining mode is used for encryption, and a (HMAC) based on SHA256
is used for signatures. In contrast to TLS, OPC UA so far only offers a security
handshake that relies on RSA.2 In essence, it is based on encrypting random
client and server nonces that are used to derive session keys.

The following characteristics of the security handshake are specified in the
SecureChannel Service Set. First, the client sends an OpenSecureChannel Request
(OSC Req.) to the server. This request contains a cryptographically secure ran-
dom number (client nonce), a client certificate (including certificate chain), and
a requested lifetime for the secure channel. The request message is encrypted
using the authenticated public key of the server and signed using the secret key
of the client. In case the verification of the client certificate succeeds, decryp-
tion and signature verification take place. Afterwards, the server generates a
cryptographic random number (server nonce). In order to derive the required

2 It should be noted that the OPC Foundation plans to standardize a security pol-
icy that supports Diffie-Hellman (DH) key exchange based on (ECC) in the near
future [37].

Towards Post-Quantum Security for Cyber-Physical Systems 299

session keys, both nonces serve as inputs to a PRF. Two sets of symmetric keys
are derived this way: one is associated with the server and the other is asso-
ciated with the client. The message body of the OpenSecureChannel Response
(OSC Rsp.) contains a server nonce and a revised lifetime, the server certificate
is placed in the security header of the response message. Secure channels are
identified by security tokens, which expire after a specified lifetime. The revised
lifetime tells the client when to renew the secure channel. The response message
itself is encrypted using the client’s authenticated public key and signed using
the server’s private key. After decryption and signature verification, the client
derives the keying material from its own nonce and the received server nonce
by applying the same PRF as the server. Finally, client and server end up with
an identical set of cryptographic keys completing OPC UA’s security handshake.
The security properties of this handshake have been formally analyzed and the
entire security architecture has been investigated in previous works [16,43].

2.2 Post-quantum Cryptography

Once a cryptographically relevant quantum computer becomes available, current
public key primitives based on the mathematical problem of integer factorization
(RSA) and (elliptic curve) discrete logarithm (DH and ECDH) will be broken
because of Shor’s quantum algorithm [45]. The last decade has seen an increased
interest from academia and industry in finding novel cryptosystems that can
withstand attacks from quantum computers. In essence, one needs to find a NP-
hard problem that is not solvable in polynomial-time by quantum and classical
computers.

PQ schemes can be grouped into five families: code-based, lattice-based, hash-
based, multivariate, and supersingular EC isogeny cryptography. Out of the five
families lattice-based cryptography has arguably attracted the most attention in
research: 12 of the remaining 26 schemes in NIST’s standardization process are
based on lattice problems. Besides that, lattice schemes offer efficient implemen-
tations, reasonably sized public keys and ciphertexts, as well as strong security
properties [32]. Consequently, we focus on lattice-based cryptography in this
work.

A lattice consists of a set of points in a n-dimensional space with a periodic
structure. By using n-linearly independent vectors any point in this structure
can be reproduced. The security of lattice-based cryptographic primitives are
based on NP-hard problems of high-dimensional lattices, such as the shortest
vector problem (SVP). All lattice schemes submitted to NIST’s standardization
process rely on variants of the (LWE) problem, learning with rounding (LWR)
problem, or NTRU. These problems can be related to aforementioned NP-hard
lattice problems via reductions. We investigate the following lattice-based KEMs
for potential integration into OPC UA: CRYSTALS-Kyber [6], FrodoKEM [2],
LAC [51], NewHope [1], NTRU [20], NTRU-Prime [10], Round5 [8], Saber [22],
and ThreeBears [27]. In addition, we investigate the following lattice-based signa-
ture schemes: CRYSTALS-Dilithium [24], Falcon [25], and qTESLA [11]. Table 2

300 S. Paul and P. Scheible

and Table 3 in Appendix A list all lattice-based schemes considered in this work
including characteristics of their parameter sets.

NIST defined five security levels corresponding to different security strengths
in bits for its PQC standardization process. We focus on level 1, 3, and 5 in this
work. NIST security level 1 corresponds to 128 bit (classical) security, whereas
level 3 and 5 correspond to 192 bit and 256 bit security respectively. KEMs
consist of a triple of algorithms: key generation, encapsulation, and decapsula-
tion. Key generation is a probabilistic algorithm that generates a public and
private key pair. The probabilistic encapsulation requires a public key as input
and generates a shared secret and the corresponding ciphertext. Input to the
decapsulation algorithm is a ciphertext and a private key, it either returns a
shared secret or an error. Many lattice-based schemes show a small (cryptograph-
ically negligible) failure probability during the decapsulation step, in such cases
a shared secret can not be derived. Typically, KEMs offer either indistinguisha-
bility under cho- sen plaintext attack (IND-CPA) or indistinguishability under
chosen ciphertext attack (IND-CCA). IND-CPA offers security against passive
adversaries, i. e. no information is learned by observing ciphertexts being trans-
mitted. IND-CCA offers a stronger notion of security and provides security in
presence of active adversaries. For the integration into OPC UA we rely on an
ephemeral key exchange scheme. Any KEM can be easily transformed into an
ephemeral key exchange as follows. An initiator generates a public and private
key pair and sends its ephemeral public key to a receiving entity. The receiving
entity generates a random secret, encrypts it using the received ephemeral pub-
lic key (encapsulation), and sends the resulting ciphertext back to the initiator.
Ultimately, the initiator decrypts the received ciphertext using its ephemeral
private key (decapsulation) giving both parties a shared random secret.

Similar to KEMs, signature schemes consist of a triple of algorithms: key gen-
eration, signature generation, and signature verification. Key generation returns
a public and private key pair. Signature generation takes a private key and
a given message to produce a signature. The deterministic signature verifica-
tion algorithm takes a public key, a message, and a signature and either rejects
or accepts the signature. The standard security notion for DSAs is existential
unforgeability under chosen message attack (EUF-CMA). NIST required all sub-
mitted signature schemes to reach this notion. For specific details of the schemes,
we refer the reader to the corresponding specifications.

3 Related Work

There have been a lot of research efforts integrating PQC into widespread
Internet protocols such as TLS, SSH (Secure Shell), and IKEv2 (Internet Key
Exchange version 2). Since OPC UA’s security handshake is loosely inspired
by TLS’s handshake protocol, we focus on previous works in this area. In gen-
eral, existing integration studies can be grouped into the following three cate-
gories: standardization efforts, implementation works, and experimental studies.
Two active Internet Engineering Task Force (IETF) Internet-Drafts exist that

Towards Post-Quantum Security for Cyber-Physical Systems 301

describe the integration of hybrid key exchange into TLS 1.2 [19] and TLS 1.3 [48].
Many experimental studies have been conducted under real network conditions
[15,30,46] or under lab conditions [21,39]. In aforementioned studies, the authors
typically make use of already existing open source implementations of PQC. For
example, Open Quantum Safe provides prototypical integrations of PQ schemes
into the the popular library OpenSSL [47]. Other works exist where PQC has
been either integrated into embedded libraries [18] or has been optimized for
specific platforms [29]. Our implementations of PQ schemes are mainly based
on PQClean3, which provides portable implementations for an easy integration
into other codebases. When investigating authentication, another difficulty must
be dealt with: a long-term public key is involved, which is typically stored and
distributed via certificates. Previous works proposed hybrid certificates for the
post-quantum transition where extension fields are used to bind an additional
public key to an entity using an additional PQ signature scheme [12,14]. In addi-
tion, the impact of hybrid and PQ certificates on various Internet protocols has
been investigated [28,46].

Since it enables confidentiality against future quantum adversaries, hybrid
key exchange has so far attracted the most attention. If authentication and
key exchange are considered, they are typically evaluated separately, hence not
showing the entire impact of PQC on protocols. Hybrid authentication has been
addressed, but it was evaluated separately from key exchange and no perfor-
mance measurements were conducted [21]. The authors of [18] investigated the
combined impact of PQ key exchange and authentication on TLS for embedded
devices, but only considered one set of PQ primitives at one security level.

4 Integration of PQC into OPC UA

4.1 Hybrid OPC UA

In hybrid modes, different options for combining cryptographic material exist.
We use the XOR-then-MAC combiner from [13] regarding confidentiality of data,
which is provably secure against fully quantum adversaries. Besides the integra-
tion of a hybrid key exchange scheme, we need to convey two long-term public
keys and two digital signatures for authenticity and integrity. For reasons of
backward compatibility, we work with X.509 certificates that consist of two non-
critical extensions as proposed in [12]. The first contains the public key of the
additional PQ signature scheme, the second holds the signature over the certi-
fied data. Messages are signed independently from each other using two different
signature schemes. The security properties of this concatenation combiner have
been investigated in [14]. While the merits of a hybrid key exchange are obvious,
there is a slightly weaker need for hybrid authentication and hybrid digital signa-
tures. However, applications will have to support conventional and PQ schemes
in order to be backward compatible with applications, which have not been

3 https://github.com/PQClean/PQClean.

https://github.com/PQClean/PQClean

302 S. Paul and P. Scheible

upgraded yet. Therefore, we also consider hybrid signatures and authentication
in this work to fully understand its impact on OPC UA.

The integration of hybrid modes into the security handshake of OPC UA
requires modifications to the SecureChannel Service Set. We define a new security
policy Hybrid{1,3,5} Basic256, which the server suggests to the client within
the GetEndpoints Response. In our approach, this response contains the hybrid
X.509 certificate (including the certificate chain). First, the client verifies the
entire certificate chain assuming a hybrid root certificate has been preinstalled. In
addition to a random client nonce, the ephemeral key generation function of a PQ
KEM needs to be called (pkPQ, skPQ). The hybrid OSC Req. is initialized using
the client nonce, pkPQ, and the security settings obtained from the GetEndpoints
Response. The additional public key is positioned within the security header,
which also includes the hybrid client certificate. Before the request is sent to the
server in form of an OPC UA message, it is signed using the aforementioned
hybrid signature scheme: A hash is computed over the entire message that is
then signed conventionally and by a PQ signature scheme. According to the
specification of OPC UA, the sequence header, the message body containing
the client nonce, and the message footer containing RSA-padding fields and
signatures are encrypted. We avoid expensive RSA encryption/decryption by
placing the additional values of our hybrid solution (pkPQ and PQ signature)
outside the encrypted message parts.

Once the server receives the request message, it verifies the hybrid client
certificate (including the certificate chain). After the certificate verification, the
conventionally encrypted message parts are decrypted and the two signatures are
verified. As in conventional OPC UA, the server then creates his server nonce.
For our proposed hybrid mode, the encapsulation function of the respective
PQ KEM is called using the received public key pkPQ as input. This generates
a ciphertext ctpq and a shared secret sspq. In order to maintain the original
structure of OPC UA’s security handshake, we expand the shared secret using a
PRF to obtain additional nonce values. Further calls to PRFs generate two types
of keying material: a conventional set and a post-quantum set. In a subsequent
step, the two sets are combined using XOR. To complete the XOR-then-MAC
combiner, we compute a MAC over the ciphertext ctpq and the original server and
client nonce using the generated server’s symmetric signing key. The ciphertext
and MAC are placed in the security header. We keep the server nonce inside
the body of the response message alongside the revised lifetime of the secure
channel. The response message is signed using the aforementioned concatenation
combiner. After signing the message, the sequence header, the message body,
and message footer are encrypted. Again, this avoids expensive encryption of
additional, potentially large values (ctpq, MAC, and PQ signature).

The client receives the response message, conventionally decrypts it, and ver-
ifies the included hybrid signature. Utilizing the received PQ ciphertext ctpq and
the client’s own PQ secret key skpq, the corresponding decapsulation function
of the respective KEM is called, which outputs the shared secret sspq. As in
processing the OSC Req., this shared secret is expanded to create additional

Towards Post-Quantum Security for Cyber-Physical Systems 303

nonce values. Having obtained all required nonces, we generate two types of key-
ing material (conventional and PQ) and combine them using XOR. We verify
the received MAC by using the computed symmetric signing key completing our
hybrid security handshake.

4.2 Post-quantum OPC UA

Once PQ schemes have been standardized, they will be adopted in protocols
and will be considered state-of-the-art. Consequently, hybrid modes will not be
required any longer. For our PQ OPC UA solution, we keep the structure of the
original security handshake but replace conventional asymmetric primitives with
PQ key encapsulation and digital signature schemes.

We introduce a new security policy PQ{1,3,5}, which is sent to the client
in GetEndpoints Response. The conveyed server certificate contains a single PQ
public key and is signed with a PQ signature scheme. The client verifies the
server certificate including the certificate chain. Again, we assume the PQ root
certificate has been preinstalled on both client and server. The generation of the
OSC Req. is the same as in our hybrid mode. First, a random client nonce is
created and then the ephemeral key pair of a PQ KEM (pkPQ, skPQ). Since
we base the key exchange of our PQ solution solely on a PQ KEM, we do not
require secrecy of the random client and server nonce. As a consequence, sequence
header, message body, and message footer of the OSC Req. and OSC Rsp. are
sent unencrypted. The resulting OSC Req. is signed using the client’s private PQ
signing key, the certificate containing the corresponding PQ public key is part
of the request message sent to the server.

The server verifies the PQ client certificate (including the certificate chain)
and the signature of the OSC Req. using the client’s authenticated public key.
After the verification step, the encapsulation function of the KEM is invoked
resulting in a ciphertext (ctPQ) and shared secret (ssPQ). Besides that, we gen-
erate a random server nonce. The shared secret and both random nonces serve
as input to a PRF. We consider the output of the PRF our master secret. Subse-
quently, we use the master secret as input to another PRF to obtain symmetric
keying material. By keeping the random nonces from the conventional security
handshake and by using them as input to the first PRF we ensure that both
parties contribute to the master secret. The OSC Rsp. contains the generated
ciphertext, the server certificate, the server nonce, and the revised lifetime of
the secure channel. The response message is signed using the server’s private
PQ signing key and the signature is appended.

Once the client receives the OSC Rsp., the signature is verified using the
server’s authenticated public key. Then, the client calls the decapsulation func-
tion of the PQ KEM resulting in the shared secret (ssPQ). Again, this shared
secret serves as input to a PRF alongside the client and server nonce. The output
is fed to another PRF to compute the final keying material. Server and client
derive the same keying material, which is used in subsequent communication ses-
sions. This completes OPC UA’s handshake solely based on PQ schemes: Client

304 S. Paul and P. Scheible

and server are mutually authenticated via PQ certificates and signatures. Keying
material is derived using a key exchange scheme based on a PQ KEM.

64

128

192

256

320

Se
cu

rit
y

Es
tim

at
e

[b
it]

Public Key + Ciphertext [bytes]

Kyber
LAC
NewHope
NTRU-HRSS
NTRU Prime
Saber
Three Bears
Round5
Frodo

128

192

256

10 K 30 K 50 K

(a) Key encapsulation mechanisms

64

128

192

256

320

Se
cu

rit
y

Es
tim

at
e

[b
it]

Public Key + Signature [bytes]

Dilithium
Falcon
qTESLA

64

128

192

256

1 K 2 K 3 K 4 K 5 K

(b) Digital signature algorithms

Fig. 1. Security-size trade-off for lattice-based quantum-resistant schemes.

4.3 Selection of Quantum-Resistant Primitives

In principle, our generic approach allows us to integrate any KEM and DSA. Our
criteria for the selection of quantum-resistant schemes are as follows. We require
lattice-based algorithms that offer a balanced trade-off in terms of estimated
security, public key+ciphertext/signature size, and performance, since the time
to establish a secure channel should not substantially increase. In addition, we
only consider algorithms that are part of NIST’s ongoing PQC standardization
process (Round 2). Consequently, their official specification should offer various
parameter sets that cover different security levels; KEMs should provide IND-
CCA. Integration into OPC UA needs to be possible without any modifications
to cryptographic algorithms, since we do not want to invalidate any of their
security claims.

Security-Size Trade-Off. First, we study the trade-off in terms of security
and size of all remaining lattice-based Round 2 submissions. The size metric is
important to allow for an easy integration into existing protocols. In our case,
the size metric for KEMs consists of the public key and ciphertext size, since
both need to be transmitted in our proposed solutions. Regarding DSAs, we use
public key and signature size as metric. Both are transmitted via certificates
to other nodes during the handshake. Considering the security metric, we use
security strength estimations provided in the specification of each submission.
These figures are based on the estimated cost of the best known attacks against
the underlying lattice-problem, typically core-SVP hardness is evaluated.

Towards Post-Quantum Security for Cyber-Physical Systems 305

Figure 1 shows the trade-off for estimated security and size for lattice-based
schemes remaining in NIST’s PQC process. Note that for submissions containing
multiple schemes or multiple parameter sets we only consider one scheme or
one set of parameters. In case of NTRU, we consider the recommended KEM
parameter set NTRU-HRSS; for NTRU Prime, we only consider the parameter
sets of Streamlined NTRU Prime. For Round 5, which specifies a total of 21
parameter sets, we only consider their specified IND-CCA secure KEM with
ring parameter set and no error correction, i. e. R5ND CCA 0d KEM.

0.70

0.95

1.20

1.45

1.70

1.95

2.20

Kyber Saber Round5

Key Generation
Encapsulation
Decapsulation

M
ill

io
n

C
yc

le
s

(a) Level 1 parameter sets

M
ill

io
n

C
yc

le
s

1.25

1.75

2.25

2.75

3.25

3.75

4.25

Kyber Saber Round5

Key Generation
Encapsulation
Decapsulation

(b) Level 3 parameter sets

M
ill

io
n

C
yc

le
s

2.25

2.75

3.25

3.75

4.25

4.75

5.25

Kyber Saber Round5

Key Generation
Encapsulation
Decapsulation

(c) Level 5 parameter sets

Fig. 2. Average performance of selected key encapsulation mechanisms.

Our evaluation shows that parameter sets for Kyber (Kyber512,
Kyber768, and Kyber1024), Round 5 (R5ND 1CCA 0d, R5ND 3CCA 0d, and
R5ND 5CCA 0d), and Saber (LightSaber, Saber, and FireSaber) offer a very
good trade-off in terms of public key + ciphertext size and estimated security
strength. Consequently, we select these three schemes for a further performance
evaluation. From the trade-off in Fig. 1a, LAC seems like another promising can-
didate. However, attacks on LAC that allow to fully recover the secret key have
been discovered decreasing our trust in this scheme [23,26]. We do not select
other schemes for further evaluation, as their parameter sets imply an imbal-
anced security-size trade-off (NTRU-HRSS, NewHope, and Frodo), they have
not attracted much attention in previous experimental studies (Three Bears
and NTRU Prime), or known attacks significantly reduce their security estima-
tions (LAC).

The security-size trade-off for digital signature schemes is shown in Fig. 1b.
After an update to its Round 2 specification, qTESLA only provides provably-
secure parameter sets that come with very large sizes for signatures and public
keys. Ultimately, we select the remaining two signature algorithms—Falcon and
Dilithium—for a further performance evaluation. Both seem to be promising
signature algorithms, since public key and signature are reasonably sized and
they provide parameter sets for different security strengths (level 1: Falcon512
and Dilithium2, level 3: Dilithium4, level 5: Falcon1024).

Preliminary Performance Evaluation. We continue with an evaluation of
the standalone performance of the selected algorithms on our target platform—
Raspberry Pi 3 Model B (see Sect. 5.2 for detailed description). In order to

306 S. Paul and P. Scheible

obtain cycle-accurate measurements, we added a kernel extension that enables
access to the CPU cycle count register [3]. Our goal is to select parameter sets
for three security levels with a balanced trade-off in terms of security, size, and
performance. Our implementations of Kyber and Saber are based on code from
PQClean. Round 5 has not been integrated there; consequently, we work with
code from the official Round 5 submission4. Figure 2 shows the average cycle
counts of 100 executions of the selected KEMs. Across all security levels Kyber
shows the best performance. Considering all processing steps of KEMs, Kyber
is significantly faster than Round 5 (in average 3.6 × 106 cycles at each security
level) and also faster than Saber (in average 1.5 × 106 cycles at each security
level). In comparison, the standalone performance of an ECDH key exchange
based on SECP256R1, which corresponds to security level 1, takes 6.9 × 107

cycles on our evaluation platform, whereas Kyber512 only takes 2.9× 106 cycles.
Kyber has also been part of several previous studies resulting in similar assess-
ment of its performance [18,39]. Consequently, we select the three parameter
sets of Kyber for instantiating our solutions.

25

50

75

100

RSA2048
(PKCS1.5)

ECDSA
(SECP256R1)

Falcon512
(EMU)

Falcon1024
(EMU)

Falcon512
(FPU)

Falcon1024
(FPU)

Dilithium2 Dilithium4

Sign Verify

0

3

6

9

12

Falcon512
(FPU)

Falcon1024 Dilithium2 Dilithium4

M
ill

io
n

C
yc

le
s

Fig. 3. Average performance of selected digital signature algorithms.

Having analyzed KEMs, we turn to the two selected signature schemes.
Exploiting Falcon’s floating-point arithmetic requires an underlying hardware
floating-point unit (FPU) to support double-precision floating-point as defined
by the IEEE 754 standard [41]. For devices without hardware FPU an implemen-
tation exists that emulates floating-point precision (Falcon-EMU). The ARMv8
instruction set of the Raspberry Pi 3 fulfills the aforementioned requirement,
which allows us to evaluate both implementations, i.e. Falcon-FPU and Falcon-
EMU [4]. Our implementation of Dilithium is based on code from PQClean, for
the implementation of Falcon we make use of reference code from the official web-
site5. Figure 3 shows the average cycle counts of signature generation and verifi-
cation of the selected DSAs in comparison with ECDSA and RSA over 100 execu-
tions. Please note, we do not report performance measurements of key generation,
since generation of new signing keys is typically required only rarely. Enabling
floating-point operations by using Falcon-FPU increases signature generation
in average 11.4 times compared to Falcon-EMU. Furthermore, Falcon’s highest
4 https://github.com/round5/code/tree/master/configurable.
5 https://falcon-sign.info.

https://github.com/round5/code/tree/master/configurable
https://falcon-sign.info

Towards Post-Quantum Security for Cyber-Physical Systems 307

security parameter set is even 1.9 × 106 cycles faster than Dilithium’s level 1
configuration in case floating-point operations are enabled. All parameter sets of
Dilithium and Falcon-FPU outperform the conventional ECDSA SECP256R1,
which corresponds to security level 1. The total runtime (signature generation
plus verification) of SECP256R1 corresponds to 3.2× 107 cycles on our evalu-
ation platform. In comparison, Falcon512-FPU only takes 4.7× 106 cycles and
Dilithium2 1.1× 107 cycles. Since Falcon provides very efficient sizes for signa-
tures and public key and since our evaluation platform is able to use Falcon’s
floating-point arithmetic, we select it for instantiating our proposed solutions.
However, Falcon does not offer a parameter set covering security level 3, thus
for the instantiation regarding that security strength we work with Dilithium4.
Besides that, we are not aware of any works that have shown fundamental weak-
nesses in either Falcon or Dilithium, and both have been part of previous exper-
imental studies [39,46].

In accordance with our initial requirements, we instantiate our two proposed
solutions with the following algorithms: We use Kyber512 and Falcon512-FPU
regarding NIST security level 1, for security level 3 we use Kyber768 and Dili-
thium4, and for level 5 we work with Kyber1024 and Falcon1024-FPU.

5 Experimental Results and Evaluation

5.1 Implementation Notes

We rely on an open-source OPC UA stack—open62541 [38]—to implement our
two solutions. Integration of hybrid key exchange, hybrid authentication, and
hybrid signatures requires significant changes to the codebase of open62541. To
allow for backward compatibility with non-hybrid aware nodes we implement
a new security policy Hybrid{1,3,5} Basic256. We add the respective parts of
the hybrid key exchange based on KEM to the client and server code. The key
derivation function is adapted to generate two sets of keying material and to
combine these two sets using XOR. Alongside this combiner construction, the
MAC creation and verification is added as part of the hybrid key exchange. The
handling of hybrid authentication based on certificates is integrated and hybrid
signature creation and verification is added to the source code. The quantum-
resistant signature is appended to the message buffer (not encrypted), while the
additional PQ public key and ciphertext of the respective KEM and MAC-value
are added to the security header. Our PQ solution requires fewer modifications
and uses the new security policy PQ{1,3,5}. The KEM-based key exchange is
integrated in client and server code. In addition, the generation and verification
of PQ signatures and the verification of PQ certificates is implemented. The
handling of request and response message needs to be adapted accordingly.

Available tools for generating hybrid certificates either make use of combin-
ers that are not fully backward compatible [47] or implement only a small subset
of PQ schemes [12]. Because of these limitations, we implement a new software
package capable of creating hybrid and PQ certificates. Our software is capable
of creating the X.509 certificate structure from scratch and can freely modify

308 S. Paul and P. Scheible

the desired fields. In our case, we rely on two non-critical extensions for stor-
ing the additional public key and signature. Open62541 uses the cryptographic
library mbedTLS for all security relevant functions including the verification of
certificates. Therefore, the certificate chain and the trusted root certificates are
passed to the verification function provided by mbedTLS. We are able to use
this function without modifications, since our generated hybrid certificates are
fully compliant to the X.509 standard. The verification function of mbedTLS
allows to provide an optional callback function as parameter that is called after
each certificate in the chain was verified. We use this callback mechanism to
verify the additional PQ signature inside the custom extension of our hybrid
certificates. It should be noted that verification of PQ certificates takes place
outside mbedTLS, since we did not integrate our selected PQ schemes into this
cryptographic library. Instead, we rely on its mechanism to parse encoded certifi-
cates, which required minor changes to mbedTLS because of unique algorithm
identifiers used in our PQ X.509 certificates.

Table 1. Message and certificate sizes for both solutions (in bytes).

Solution OSC Req. OSC Rsp. Cert. Chain

Single

Cert.

Attch. CA

Cert.

Single

Cert.

Attch. CA

Cert.

Single

Cert.

Attch. CA

Cert.

Conventional (RSA2048) 1,597 2,373 1,601 2,377 908 1,750

Hybrid 1 (Kyber512 + Falcon512

+ RSA2048)

4,698 7,147 4,670 7,119 2,515 4,964

3 (Kyber768 +

Dilithium4 + RSA2048)

11,945 17,929 11,885 17,869 6,050 12,034

5 (Kyber1024 +

Falcon1024 + RSA2048)

7,770 11,755 7,806 11,791 4,051 8,036

PQ 1 (Kyber512 +

Falcon512)

3,618 5,472 3,593 5,447 1,924 3,778

3 (Kyber768 +

Dilithium4)

10,211 15,598 10,154 15,541 5,457 10,844

5 (Kyber1024 +

Falcon1024)

6,562 9,952 6,601 9,991 3,460 6,850

5.2 Measurement Setup

Our setup resembles a typical use case for OPC UA within an industrial net-
work: Two CPS (e.g.. control unit and gateway) wish to exchange data which
requires the establishment of a secure channel. We select the Raspberry Pi 3
Model B as our evaluation platform. It features a 1.2 GHz quad-core CPU (ARM
Cortex-A53), 1024 MB RAM, and requires a SD-card to store operating system
and software. As affordable single-board computer, Raspberry Pis have become
very popular prototyping platforms even for industrial use cases [44]. The two
Raspberry Pis are connected to the same network via their 100 Mbit Ethernet
interfaces, one is instantiated as OPC UA client and the other as OPC UA server.
For our timing measurements we rely on the same kernel extensions introduced
in Preliminary Performance Evaluation (see Sect. 4.3). Since our measurements

Towards Post-Quantum Security for Cyber-Physical Systems 309

also include network round-trip time and overhead of the network stack, we
report the time elapsed until completion of the OPC UA handshake in millisec-
onds. Therefore, we convert the cycle counts obtained from the two Raspberry
Pis to milliseconds.

Besides handshake completion time, we report the performance of OPC UA’s
security handshake in terms of message and certificate size. Our baseline mea-
surement considers a conventional OPC UA security handshake using security
policy Basic256Sha256. Both solutions are evaluated at three NIST security lev-
els (see Sect. 4.3). This leads to a total of six different test cases: Hybrid-{1,3,5}
and PQ-{1,3,5}. In addition, we evaluate each test case in two different sce-
narios regarding included certificates. In the first scenario, only a single device
certificate (Single Cert.) is conveyed. The second scenario assumes that OPC UA
client and server are part of a larger industrial network containing an intermedi-
ate (CA). In this case, the certificate chain contains the device and one attached
intermediate CA certificate (Attch. CA Cert.). For each of the above test cases
and the two scenarios, we record the establishment of 100 secure channels and
state average values.

320

340

360

380

400

Conventional Hybrid-1 Hybrid-3 Hybrid-5

Single Cert. Attch. CA Cert.

Ti
m

e
[m

s]

(a) Hybrid OPC UA

0

100

200

300

400

Conventional PQ-1 PQ-3 PQ-5

Single Cert. Attch. CA Cert.

0

10

20

30

40

50

PQ-1 PQ-3 PQ-5

Ti
m

e
[m

s]

(b) PQ OPC UA

Fig. 4. Comparison of average handshake duration at different security levels.

5.3 Results and Evaluation

Hybrid OPC UA. Table 1 shows the impact of our hybrid security handshake
on the size of the OSC Req. and OSC Rsp. message at different security lev-
els. Besides that, certificate sizes for both scenarios are reported. As expected,
because of the hybrid mode the message sizes increase at all levels. The highest
increment compared to conventional OPC UA can be observed at security level 3:
In case an additional CA certificate is attached, the size of the OSC Req. and
OSC Rsp. message increases in average 7.5 times. Considering certificate sizes,
the smallest increase with a factor of 2.8 is observed in certificates containing an
additional Falcon512 public key and signature.

310 S. Paul and P. Scheible

Figure 4a shows the results of the conducted performance measurements. As
expected, the duration of the handshake increases at all security levels. How-
ever, the most time during the handshake is spent conventionally decrypting
and signing the request and response message. In case a single hybrid certificate
is conveyed, the fastest observed hybrid handshake adds only 11.9 ms to the total
duration (Hybrid-1), while the slowest leads to an overhead of 42.6 ms (Hybrid-3).
The extra time spent verifying an attached intermediate CA certificate is clearly
visible in Fig. 4a and correlates to the reported verification times in Fig. 3. Since
our implementation of Falcon makes use of floating-point operations, the over-
head in Hybrid-1 and Hybrid-5 remains very small. Because both nodes are
connected via fast network interfaces, the larger message sizes have only little
impact on the total duration of the handshake. For example, sending the response
and request message in Hybrid-3 (Attch. CA Cert.) takes 0.4 ms in total.

PQ OPC UA. Table 1 also shows the message and certificate sizes for our
solution solely based on PQC. Similar to our hybrid solution, we observe that
message sizes as well as certificate sizes increase at all security levels due to the
larger public keys and signatures of the integrated PQ schemes. Besides that,
instantiations using Falcon show a significantly lower overhead.

The results of our performance measurements (see Fig. 4b), however, show
a significant improvement compared to OPC UA’s conventional security hand-
shake. Across all security levels our PQ solution is in average 11.5 times faster
than conventional OPC UA. The fact that we omit all cryptographic operations
based on RSA from OPC UA’s conventional security handshake substantially
increases its performance. With a handshake duration of just 28.6 ms, PQ-5
(Single Cert.) is even faster than PQ-3 with 41.8 ms. As the signature gener-
ation and verification times of Falcon and Dilithium are generally slower than
Kyber’s KEM functions, client and server spend most of the time during the
handshake performing operations of the respective DSA. For example, deriving
symmetric keying material requires 3.5 ms compared to 10.2 ms spent on the
creation and verification of signatures in PQ-1. Similar to our hybrid approach,
message sizes have only little impact on the overall duration of the security
handshake.

Both our solutions demonstrate that Falcon is preferable over Dilithium in
case both communicating nodes are capable of using its efficient floating-point
arithmetic. Our Hybrid-5 and PQ-5 solution even leads to significantly less
overhead—in terms of handshake duration and size—than Hybrid-3 and PQ-3.
Since message sizes do not negatively impact the performance of the security
handshake as much as slower algorithms do, we recommend to use Dilithium2 in
case security level 1 is required and floating-point support can not be assumed.

Towards Post-Quantum Security for Cyber-Physical Systems 311

6 Conclusion

In this work, we proposed two novel solutions for the integration of PQC into the
security handshake of the industrial M2M protocol OPC UA. Our first solution
considers hybrid key exchange, hybrid authentication, and hybrid signatures,
while the second is solely based on quantum-resistant primitives. Compared to
other works, this approach allowed us to investigate the total impact of PQC.

After the description of our two solutions, we selected three algorithms
based on an investigation of all lattice-based schemes submitted to NIST’s
PQC standardization process. Subsequently, we instantiated our two solutions
at three different NIST security levels using the respective parameter sets of
Kyber{512,768,1024} for key establishment and Falcon{512,1024}-FPU or Dili-
thium4 for digital signatures. In our performance measurements, we compared
the handshake duration of both solutions to that of conventional OPC UA for
different security levels and certificate scenarios. Our hybrid integration leads to
acceptable overhead in terms of latency and message sizes, while our PQ solution
significantly outperforms conventional OPC UA at all security levels in terms of
handshake duration. OPC UA provides mutual authentication based on X.509
certificates. Our hybrid solution works with hybrid certificates using non-critical
extension fields to achieve backward compatibility with non-hybrid aware clients
and servers. Furthermore, our described verification of hybrid certificates using
mbedTLS applies to use cases outside the industrial domain. Ultimately, our
two solutions provide comprehensive insights into the feasibility of integrating
PQC into OPC UA and demonstrate that PQC is practical for ICS. Falcon
and Dilithium are efficient options for PQ signature schemes; in case floating-
point support is available, Falcon provides faster performance at smaller public
key and signature size. In our two solutions, Kyber showed very efficient perfor-
mance throughout all evaluated security levels. As future work, we will continue
to investigate our two solutions, especially with regards to time-sensitive indus-
trial applications and a formal security analysis of our proposed integrations
including a detailed threat model. In addition, we plan to evaluate our proposed
solutions in industrial networks under realistic conditions.

Acknowledgment. The work presented in this paper has been partly funded by
the German Federal Ministry of Education and Research (BMBF) under the project
“FLOQI” (ID 16KIS1074).

312 S. Paul and P. Scheible

A Algorithm Overview

Table 2. Conventional and PQ KEMs evaluated in this work.

KEM NIST

category

Intractable

problem

Classical

security

PQ

security

sk

(bytes)

pk

(bytes)

ct

(bytes)

Failure

rate

Frodo640 1 LWE 144 bit 103 bit 19888 9616 9720 2−139

Kyber512 Module

LWE

111 bit 100 bit 1632 800 736 2−178

LAC-128 Ring LWE 147 bit 133 bit 512 544 712 2−116

LightSaber Modules

LWR

125 bit 114 bit 1568 672 736 2−120

NewHope512 Ring LWE 112 bit 101 bit 1888 928 1120 2−213

NTRU-HRSS NTRU 136 bit 123 bit 1450 1138 1138 –

R5ND-1CCA-0d General

LWR

125 bit 115 bit 16 676 740 2−157

SECP256R1 EC Discrete

Log.

128 bit – 32 65 65 –

SNTRUP653 NTRU 129 bit 117 bit 1518 994 897 –

BabyBear 2 Module

LWE

154 bit 140 bit 40 804 917 2−156

Frodo976 3 LWE 209 bit 150 bit 31296 15632 15744 2−200

Kyber768 Module

LWE

181 bit 164 bit 2400 1184 1088 2−164

LAC-192 Ring LWE 286 bit 259 bit 1024 1056 1188 2−143

R5ND-3CCA-0d General

LWR

186 bit 174 bit 16 983 1103 2−154

Saber Module

LWR

203 bit 185 bit 2304 992 1088 2−136

SNTRUP761 NTRU 153 bit 139 bit 1763 1158 1039 –

MamaBear 4 Module

LWE

235 bit 213 bit 40 1194 1307 2−206

FireSaber 5 Module

LWR

283 bit 257 bit 3040 1312 1472 2−165

Frodo1344 LWE 274 bit 196 bit 43088 21520 21632 2−253

Kyber1024 Module

LWE

254 bit 230 bit 3168 1568 1568 2−174

LAC-256 Ring LWE 320 bit 290 bit 1024 1056 1424 2−122

NewHope1024 Ring LWE 257 bit 233 bit 3680 1824 2208 2−216

PapaBear Module

LWE

314 bit 280 bit 40 1584 1697 2−256

R5ND-5CCA-0d General

LWR

253 bit 238 bit 16 1349 1509 2−145

SNTRUP857 NTRU 175 bit 159 bit 1999 1322 1184 –

Towards Post-Quantum Security for Cyber-Physical Systems 313

Table 3. Conventional and PQ DSAs evaluated in this work.

DSA NIST

category

Intractable

problem

Classical

security

PQ

security

sk (byte) pk(byte) Signature

(byte)

RSA2048 <1 Integer

factorization

112 bit – 256 259 256

Dilithium2 1 Module

LWE

100 bit 91 bit 2800 1184 2044

Falcon512 NTRU 114 bit 103 bit 1281 897 690

qTESLAp-I RingLWE 151 bit 140 bit 5184 14880 2592

SECP256R1 EC Discrete

Logarithm

128 bit – 32 65 73

Dilithium3 2 Module

LWE

141 bit 128 bit 3504 1472 2701

Dilithium4 3 Module

LWE

174 bit 158 bit 3856 1760 3366

qTESLAp-III Ring LWE 305 bit 279 bit 12352 38432 5664

Falcon1024 5 NTRU 263 bit 230 bit 2305 1793 1330

References

1. Alkim, E., Avanzi, R., Bos, J.W., Ducas, L., de la Piedra, A., et al.: NewHope.
NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

2. Alkim, E., Bos, J.W., Ducas, L., Longa, P., Mironov, I., et al.: FrodoKEM. NIST
Post-Quantum Cryptography Standardization: Round 2 (2019)

3. Arcus, M.: Using the Cycle Counter Registers on the Raspberry Pi 3 (2018).
https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-
registers-on-the-raspberry-pi-3/

4. Arm Limited: Arm Architecture Reference Manual: Armv8 (2020). https://static.
docs.arm.com/ddi0487/fb/DDI0487F b armv8 arm.pdf, ID040120

5. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., et al.: Quantum
supremacy using a programmable superconducting processor. Nature 574, 505–
510 (2019). https://doi.org/10.1038/s41586-019-1666-5

6. Avanzi, R., Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., et al.: CRYSTALS-Kyber.
NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

7. AWS Blog: Converting industrial protocols with AWS IoT Greengrass (2019).
https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-aws-
iot-greengrass/

8. Baan, H., Bhattacharya, S., Fluhrer, S., Garcia-Morchon, O., Laarhoven, T., et al.:
Round5. NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

9. Barker, E., Chen, L., Davis, R.: Recommendation for Key-Derivation Methods in
Key-Establishment Schemes. Special Publication 800–56C Revision 2. NIST (2020).
https://doi.org/10.6028/NIST.SP.800-56Cr2-draft

10. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime.
NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

11. Bindel, N., Akleylek, S., Alkim, E., Bareto, P.S.L.M., Buchmann, J., et al.:
qTESLA. NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3/
https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3/
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
https://doi.org/10.1038/s41586-019-1666-5
https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-aws-iot-greengrass/
https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-aws-iot-greengrass/
https://doi.org/10.6028/NIST.SP.800-56Cr2-draft

314 S. Paul and P. Scheible

12. Bindel, N., Braun, J., Gladiator, L., Stckert, T., Wirth, J.: X.509-compliant hybrid
certificates for the post-quantum transition. J. Open Source Softw. 4, 1606 (2019).
https://doi.org/10.21105/joss.01606

13. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encap-
sulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt,
R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7 12

14. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-
resistant public key infrastructure. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017.
LNCS, vol. 10346, pp. 384–405. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59879-6 22

15. Braithwaite, M.: Experimenting with Post-Quantum Cryptography (2016).
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

16. BSI: OPC UA Security Analysis (2017). https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html

17. BSI: Migration zu Post-Quanten-Kryptografie. Handlungsempfehlungen des BSI
(2020). https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-
Quanten-Kryptografie. (available only in German)

18. Brstinghaus-Steinbach, K., Krauß, C., Niederhagen, R., Schneider, M.: Post-
Quantum TLS on Embedded Systems. Cryptology ePrint Archive, Report
2020/308 (2020). https://eprint.iacr.org/2020/308

19. Campagna, M., Crockett, E.: Hybrid Post-Quantum Key Encapsulation Meth-
ods (PQ KEM) for Transport Layer Security 1.2 (TLS). Internet-Draft (work in
progress) (2019). https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-
sike-hybrid-01

20. Chen, C., Danba, O., Hoffstein, J., Hlsing, A., Rijneveld, J., et al.: NTRU. NIST
Post-Quantum Cryptography Standardization: Round 2 (2019)

21. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH. Cryptology ePrint Archive, Report
2019/858, 1–24 (2019). https://eprint.iacr.org/2019/858

22. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER: Mod-LWR
based KEM. NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

23. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum schemes. In: Proceedings of ACM Workshop
on Theory of Implementation Security Workshop - TIS 2019, pp. 2–9. ACM Press
(2019). https://doi.org/10.1145/3338467.3358948

24. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., et al.:
CRYSTALS-Dilithium. NIST Post-Quantum Cryptography Standardization:
Round 2 (2019)

25. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., et al.:
Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU. NIST Post-
Quantum Cryptography Standardization: Round 2 (2019)

26. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 4

27. Hamburg, M.: ThreeBears. NIST Post-Quantum Cryptography Standardization:
Round 2 (2019)

28. Kampanakis, P., Panburana, P., Daw, E., van Geest, D.: The Viability of Post-
Quantum X.509 Certificates. Cryptology ePrint Archive, Report 2018/063, 1–18
(2018). https://eprint.iacr.org/2018/063

https://doi.org/10.21105/joss.01606
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-319-59879-6_22
https://doi.org/10.1007/978-3-319-59879-6_22
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie
https://eprint.iacr.org/2020/308
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01
https://eprint.iacr.org/2019/858
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://eprint.iacr.org/2018/063

Towards Post-Quantum Security for Cyber-Physical Systems 315

29. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
Benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report
844, 1–22 (2019). https://eprint.iacr.org/2019/844

30. Kwiatkowski, K., Valenta, L.: The TLS Post-Quantum Experiment (2019). https://
blog.cloudflare.com/the-tls-post-quantum-experiment/

31. McGrew, D.: Cryptographic agility in the real world. In: Cryptographic Agility
and Interoperability: Proceedings of a Workshop, pp. 34–38. National Academies
Press (2016). https://doi.org/10.17226/24636

32. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 146–191. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88702-7 5

33. Microsoft Azure: What is Connected Factory IoT solution accelerator?
(2019). https://docs.microsoft.com/en-gb/azure/iot-accelerators/iot-accelerators-
connected-factory-features

34. OPC Foundation: OPC UA Specification. Part 1 - Overview and Concepts Release
1.04 (2017)

35. OPC Foundation: OPC UA Specification. Part 4 - Services Release 1.04 (2017)
36. OPC Foundation: OPC UA Specification. Part 6 - Mappings Release 1.04 (2017)
37. OPC Foundation: OPC UA Roadmap (2020). https://opcfoundation.org/about/

opc-technologies/opc-ua/opcua-roadmap/
38. Palm, F., Gruner, S., Pfrommer, J., Graube, M., Urbas, L.: Open source as enabler

for OPC UA in industrial automation. In: 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), pp. 1–6. IEEE (2015). https://doi.
org/10.1109/ETFA.2015.7301562

39. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking Post-Quantum Cryptography
in TLS. Cryptology ePrint Archive, Report 2019/1447 (2019)

40. Paul, S., Niethammer, M.: On the importance of cryptographic agility for industrial
automation. at - Automatisierungstechnik 67, 402–416 (2019). https://doi.org/10.
1515/auto-2019-0019

41. Pornin, T.: PQClean - Falcon implementations (integer-only code, constant-
time) (2019). https://github.com/PQClean/PQClean/pull/210#issuecomment-
513827611

42. Profanter, S., Tekat, A., Dorofeev, K., Rickert, M., Knoll, A.: OPC UA versus
ROS, DDS, and MQTT: performance evaluation of industry 4.0 protocols. In:
2019 IEEE International Conference on Industrial Technology (ICIT), pp. 955–962
(2019). https://doi.org/10.1109/ICIT.2019.8755050

43. Puys, M., Potet, M.-L., Lafourcade, P.: Formal analysis of security properties on
the OPC-UA SCADA protocol. In: Skavhaug, A., Guiochet, J., Bitsch, F. (eds.)
SAFECOMP 2016. LNCS, vol. 9922, pp. 67–75. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45477-1 6

44. Sfera Labs: Strato Pi: Industrial Raspberry Pi (2020). https://www.sferalabs.cc/
strato-pi/

45. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997). https://
doi.org/10.1137/S0097539795293172

46. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3. In: NDSS Symposium 2020 (2020). https://doi.org/10.14722/ndss.2020.
24203

47. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 2

https://eprint.iacr.org/2019/844
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://doi.org/10.17226/24636
https://doi.org/10.1007/978-3-540-88702-7_5
https://docs.microsoft.com/en-gb/azure/iot-accelerators/iot-accelerators-connected-factory-features
https://docs.microsoft.com/en-gb/azure/iot-accelerators/iot-accelerators-connected-factory-features
https://opcfoundation.org/about/opc-technologies/opc-ua/opcua-roadmap/
https://opcfoundation.org/about/opc-technologies/opc-ua/opcua-roadmap/
https://doi.org/10.1109/ETFA.2015.7301562
https://doi.org/10.1109/ETFA.2015.7301562
https://doi.org/10.1515/auto-2019-0019
https://doi.org/10.1515/auto-2019-0019
https://github.com/PQClean/PQClean/pull/210#issuecomment-513827611
https://github.com/PQClean/PQClean/pull/210#issuecomment-513827611
https://doi.org/10.1109/ICIT.2019.8755050
https://doi.org/10.1007/978-3-319-45477-1_6
https://doi.org/10.1007/978-3-319-45477-1_6
https://www.sferalabs.cc/strato-pi/
https://www.sferalabs.cc/strato-pi/
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.14722/ndss.2020.24203
https://doi.org/10.14722/ndss.2020.24203
https://doi.org/10.1007/978-3-319-69453-5_2

316 S. Paul and P. Scheible

48. Steblia, D., Fluhrer, S., Gueron, S.: Hybrid key exchange in TLS 1.3. Internet-
Draft (work in progress) (2020). https://datatracker.ietf.org/doc/html/draft-ietf-
tls-hybrid-design-00

49. Verizon: Data Breach Investigations Report (2020). https://enterprise.verizon.
com/resources/reports/2020/2020-data-breach-investigations-report.pdf

50. Wollschlaeger, M., Sauter, T., Jasperneite, J.: The future of industrial communi-
cation. IEEE Ind. Electron. Mag. 11, 17–27 (2017). https://doi.org/10.1109/MIE.
2017.2649104

51. Xianhui, L., Yamin, L., Dingding, J., Haiyang, X., Jingnan, H., et al.: LAC. NIST
Post-Quantum Cryptography Standardization: Round 2, pp. 1–28 (2019)

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-00
https://enterprise.verizon.com/resources/reports/2020/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020/2020-data-breach-investigations-report.pdf
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1109/MIE.2017.2649104

CSH: A Post-quantum Secret Handshake
Scheme from Coding Theory

Zhuoran Zhang1,2, Fangguo Zhang1,2(B), and Haibo Tian1,2

1 School of Data and Computer Science, Sun Yat-sen University,
Guangzhou 510006, China
isszhfg@mail.sysu.edu.cn

2 Guangdong Province Key Laboratory of Information Security Technology,

Guangzhou 510006, China

Abstract. In secret handshake schemes, the members in the same orga-
nization can anonymously authenticate each other and commonly nego-
tiate a secret key for communication. Since its proposing in 2003, secret
handshake schemes become an important privacy protection crypto-
graphic technique on internet applications. In this paper, a secret hand-
shake scheme based on coding theory (we call CSH) is presented. This
is the first code-based secret handshake scheme. CSH is constructed by
combining the CFS signature system and Stern’s identification system,
thus the security of CSH relies on the syndrome decoding problem just
like the two above systems. Moreover, as far as we know, CSH is the
first scheme to use a generic construction of Fiat-Shamir paradigm in
secret handshake schemes. This may lead to a more generic framework
construction.

Keywords: Secret handshaking · Code-based cryptography · Post
quantum cryptography · Privacy-preserving

1 Introduction

With the rapid development of information techniques, the Internet plays a more
and more important role in people’s life. On the one hand, we can shop, chat,
and do many other daily routines online conveniently. On the other hand, the
collecting of personal privacy becomes an easy task too. Given the pervasiveness
and public nature of today’s Internet, communication privacy is becoming a
grave concern. Imagining that Alice is an FBI agent, and she is assigned to
a criminal gang to connect with another agent Bob. For her own safety, Alice
does not want to reveal her FBI credentials unless Bob is a genuine FBI agent.
And vice versa for Bob. They not only need to find each other on the open
channel, but also need to make sure their identities will not be recognized by
other organizations or spies. In order to solve this problem, the notion of Secret
Handshake has been proposed by Balfanz et al. [2] in 2003. They also introduced

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 317–335, 2020.
https://doi.org/10.1007/978-3-030-59013-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_16

318 Z. Zhang et al.

the first secret handshake scheme based on pairing, which can be viewed as a
variant of Sakai et al.’s non-interactive key agreement scheme [22].

A secret handshake scheme usually contains a group authority (GA), a user
initiator, and a user responder. Such privacy-preserving authentication means
that one user will reveal his/her affiliation to the other user only if they both
belong to the same organization. Thus if the participants are coming from dif-
ferent organizations, nothing about their identity and their affiliation will be
leaked. Because of its wide application, the secret handshake scheme has become
a hotspot since its proposing. Many different forms of secret handshake authen-
tication schemes are proposed based on different cryptography primitives, which
further improve the theoretical basis of secret handshake protocol, and promote
the application of secret handshake protocol.

In 2004, Castelluccia et al. [6] constructed an efficient secret handshake
scheme through the use of so-called CA-oblivious encryption. One year later,
Zhou et al. [31] introduced an oblivious signature based envelope (OSBE) scheme
to build secret handshake schemes. Both of them build their security over the
computational Diffie-Hellman (CDH) assumption. Specifically, the former com-
bines ElGamal encryption and Schnorr signature, and the latter is a compound of
ElGamal encryption and DSA signature. Under the RSA assumption, Vergnaud
[26] constructed some secret handshake schemes but fails to provide affiliation-
hiding. In 2008, Stanislaw et al. [15] proposed an improved scheme based on RSA
assumption called affiliation-hiding authenticated key exchange protocol. Xu and
Yung [30] presented a secret handshake scheme based on PKI-like infrastructures.
Their scheme is the first one which achieves weaker unlinkability with reusable
credential, instead of one-time credential. From then on, lots of researches went
into the so-called unlinkable secret handshake schemes, such as [13,14]. In order
to meet the needs of more application scenarios, secret handshake schemes which
can satisfy more requirements such as [28,29] were proposed.

However, the security of nearly all the above secret handshake schemes is
based on the hardness of factoring or the presumed intractability of the discrete
logarithm problem. With the discovery of Shor Algorithm [23] and the rapid
development of quantum computers, the above problems together with many
other problems that are thought to be difficult to solve by current electronic com-
puters, may become not hard anymore. Thus, the conception of post-quantum
cryptosystems raises public concern. Up to now, the code-based cryptography,
lattice-based cryptography, multivariate cryptography, and hash-based cryptog-
raphy are most commonly known types of post-quantum cryptography. Although
many encryption and signature systems have been proposed to resist quantum
computing attacks, there is no post-quantum secret handshake scheme as far as
we know.

Among the post-quantum cryptosystems, code-based cryptosystems own
many advantages. The code-based cryptosystems not only have effective encryp-
tion and decryption algorithms, but also rely their security on the NP-hard prob-
lems. The first code-based public-key encryption system was proposed in 1978
by McEliece [20]. It has already resisted more than 40 years of cryptanalysis

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 319

since its invention. In 1986, Niederreiter [21] presented a variant of the McEliece
encryption system. This variant inspired the first construction of code-based dig-
ital signature system in 2001, which is known as CFS signature [7] now. In 1993,
Stern [24] presented an identification system from coding, and this scheme can
be transformed into a signature system by Fiat-Shamir paradigm [10]. With the
help of CFS signature system and Stern’s identification system, we are going to
construct a secret handshake scheme based on coding theory, which may be the
first post-quantum secret handshake scheme.

Our Contributions: We propose the first post-quantum secret handshake
scheme CSH from code-based cryptographic primitives. We use the CFS sig-
nature system in the AddMember step. Then we transform Stern’s identification
system by Fiat-Shamir paradigm into a signature system and use it in the Hand-
shake step. The security of the CSH scheme relies on the syndrome decoding
problem, which is known as an NP-hard problem. Our scheme is not only the
first code-based post-quantum secret handshake scheme, but also the first one
constructed from a signature transformed by generic Fiat-Shamir paradigm.

Organization: The remainder of this paper is organized as follows. In Sect. 2,
we recall some preliminaries on coding theory and code-based cryptosystems.
In Sect. 3, the definition and security properties of secret handshake scheme are
reviewed. In Sect. 4, CSH is presented together with its security analysis, and
then the performance and applications are showed. Sect. 5 concludes the paper.

2 Preliminaries

In this section, we present the notions of coding theory that are prerequisite for
the following sections as well as basic knowledge about code-based cryptography.

2.1 Linear Codes

We now recall some basic definitions for linear codes.
An [n, k]q linear error-correcting code C is a linear subspace of a vector space

F
n
q , where Fq denotes the finite field of q elements, and k denotes the dimension

of the subspace. The generator matrix G for a linear code is a k ×n matrix with
rank k which defines a linear mapping from F

k
q (called the message space) to F

n
q .

Namely, the code C is
C = C(G) = {xG | x ∈ F

k
q}.

If C is the kernel of a matrix H ∈ F
(n−k)×k
q , we call H a parity check matrix of

C, i.e.
C = C⊥(H) = Ker(H) = {y ∈ F

n
q |Hy = 0}.

We call a vector in C a codeword.
Given a codeword c = (c1, c2, . . . , cn) ∈ F

n
q , its Hamming weight wt(c) is

defined to be the number of non-zero coordinates, i.e. wt(c) = |{i | ci �= 0, 1 ≤
i ≤ n}|. The distance of two codewords c1, c2, denoted by d(c1, c2) counts the

320 Z. Zhang et al.

number of coordinates in which they differ. The minimum distance d(C) of code
C is the minimal value of the distance between any two different codewords. By
the linearity of C, we know that d(C) is determined by the minimum Hamming
weight among all non-zero codewords in C, i.e.

d(C) = min{wt(c) | c ∈ C \ {0}}.
If c is a codeword and c + e is the received word, then we call e the error

vector and {i|ei �= 0} the set of error positions, wt(e) is the number of errors of
the received word. If r = c + e is the received word and the distance from r to
the code C is t′, then there exists a codeword c′ and an error vector e′ such that
r = c′ + e′ and wt(e′) = t′. If the number of errors is at most (d − 1)/2, then
it is sure that c = c′ and e = e′. In other words, the nearest codeword to r is
unique when r has distance at most (d − 1)/2 to C.

There are many hard problems in coding theory, one of the well-known prob-
lems is general decoding problem. Syndrome decoding (SD) problem is a dual
variant of general decoding problem, both of them have been proved to be NP-
hard for general linear codes in [4]. Nowadays, most of the code-based cryptosys-
tems are constructed on SD problem or its variant such as rank-SD problem. An
instance of computation SD problem is as follows:

Instance 1. Given an (n − k) × n parity check matrix H of code C over Fq,
a syndrome s ∈ F

n−k
q , the Computation SD Problem CSD(n, k, w) asks for a

vector x ∈ Fq, whose weight wt(x) = w, such that Hx = s.

An SD distribution is defined as follows: For positive integers, n, k, and w,
the SD(n, k, w) distribution chooses H ←$ F

(n−k)×n
q and x ←$ F

n
q such that

wt(x) = w, and outputs (H, s = HxT). An instance of Decision SD problem is
as follows:

Instance 2. Given an matrix H ∈ F
(n−k)×n
q and a vector y ∈ F

n−k
q , the Deci-

sion SD Problem DSD(n, k, w) asks to decide with non-negligible advantage
whether (H,y) comes from the SD(n, k, w) distribution or the uniform distri-
bution over F

(n−k)×n
q × F

n−k
q .

2.2 Goppa Codes and CFS Digital Signature System

A Goppa code Γ (L, g) is defined by a support L = {α1, α2, . . . , αn} where αi ∈
Fqm and a Goppa polynomial g(x) ∈ Fqm [x] with degree deg(g) = t such that
g(αi) �= 0 for all i. The codewords c = (c1, . . . , cn) in F

n
qm is defined by

n∑

i=1

ci

x − αi
= 0 mod g(x).

All the codewords form a linear code Γqm(L, g) of length n and dimension n − t
over Fqm . The Goppa code Γq(L, g) with support L and Goppa polynomial g is
the restriction of Γqm(L, g) to the field Fq. As a subfield subcode of Γqm(L, g),

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 321

the code Γq(L, g) has dimension k ≥ n − mt. Assuming Γq(L, g) has dimension
exactly n − mt, then a parity check matrix for Γq(L, g) is given by

H =

⎛

⎜⎜⎜⎝

g(α1)−1 g(α2)−1 · · · g(αn)−1

α1g(α1)−1 α2g(α2)−1 · · · αng(αn)−1

...
...

. . .
...

αt−1
1 g(α1)−1 αt−1

2 g(α2)−1 · · · αt−1
n g(αn)−1

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎝

1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αt−1
1 αt−1

2 · · · αt−1
n

⎞

⎟⎟⎟⎠ · diag(g(α1)−1, g(α2)−1, · · · , g(αn)−1)

By written αj
i g(αi)−1 ∈ Fqm into the sequence of coefficients [a0, . . . , am−1]T in

the ground field Fq, we can write the parity check matrix H into field Fq with
size mt × n.

CFS digital signature system [7] is the most widely known code-based signa-
ture system, its security relies on the SD problem. The original CFS signature
system was introduced by Courtois et al. in 2001, and it uses a high rate Goppa
code. Although it is attacked by a distinguisher that can distinguish a high rate
Goppa code and random code [9], the CFS system is still thought to be safe under
suitable parameters. The main idea of the CFS signature is to hide a Goppa code
matrix with parameters [2m, 2m−mt, 2t+1] correcting up to t errors. A CFS sig-
nature on a message m is generated by hashing m to a syndrome and then trying
to decode it. However, for a t-error correcting Goppa code of length n = 2m,
only about 1/t! of the syndromes are decodable. Thus, a counter is appended to
m, and the signer updates the counter until the hash value is decodable. The
signature consists of both the error pattern with weight t and the counter value.
There are also many variants of CFS signature system, such as modified-CFS
[8], parallel-CFS [11] and so on. The modified-CFS scheme is very similar to the
original CFS scheme, the only difference is to change the counter into a ran-
dom value which will result in a formal security proof. In our CSH scheme, the
modified-CFS is used, and we summarize it in Fig. 1. The parallel-CFS scheme
achieves a higher security level with the sacrifice of computational cost, which
is not necessary for our construction.

The security of modified-CFS signature is analysed in [8]. The modified-CFS
signature system is existentially unforgeable under adaptively chosen message
attack in the random oracle model, under the assumptions that Goppa parame-
terized bounded decoding (GPBD) problem and the Goppa code distinguishing
problem is hard. GPBD problem is a variant of SD problem, with parameters
n = qm, k = n − mt and w = t. Since there are no efficient algorithms to solve
this problem, the assumption that GPBD problem is hard remains valid. Faugere
et al. [9] points out that it is possible to efficiently distinguish a CFS public key
(a binary Goppa parity check matrix) from a random matrix of the same size.
However, this does not lead to any efficient key recovery attack up to now.

322 Z. Zhang et al.

CFS.KeyGen(λ):
H ∈ F

(n−k)×n
q is a parity check matrix of Go-

ppa code C with error correcting capability t.
C.SDecode is a syndrome decoding algorithm
for C.
P is an n × n random permutation matrix.
M ∈ F

(n−k)×(n−k)
q is a matrix such that MHP

is systematic.
Hpub ← MHP.
H: {0, 1}∗ → F

n−k
q is a secure hash function.

Output:
param = 〈q, n, k, t, H〉, pk = Hpub,

sk = 〈M,P,C.SDecode〉.

CFS.Sign(m, sk):
do

i ←$ {1, 2, . . . , qn−k}
e = C.SDecode(M−1H(m||i))

until such e is found
Output: σ = (i, eP)

CFS.Verify(m, σ, pk):
compute s = Hpub(eP)T

if s = H(m||i) and wt(eP) ≤ t
then output TRUE

otherwise output FALSE.

Fig. 1. Modified-CFS signature system [8]

In practice, the best-known techniques for forging a signature are based on
generic decoding of linear codes, which is equal to solving the CSD problem.

2.3 Stern Identification System

Stern proposed a code-based zero-knowledge system [24,25] whose security also
relies on the SD problem. This system is a 3-pass prover-verifier protocol with
cheating probability equal to 2/3. The prover P can make a zero-knowledge proof
to the verifier V on that he knows a secret vector x solving an CSD(H, s, w)
problem. The original version in [24] is thought to be inefficient, and thus many
other code-based identification systems are proposed [5,12]. But Stern’s system

Public data: (H, H, s, w) where
H ∈ F

(n−k)×n
q is a parity check of code C

with error correcting capability w, and
H is a collision-resistance hash function.
s is a syndrome of code C.

P proves knowledge of x ∈ F
n
q such that

s = Hx and wt(x) = w to V as follows:

1. P computes commitments by randomly
choose a permutation π and a vector
y ∈ F

n
q :

cmt(1) = H(π||Hy), cmt(2) = H(π(y)),
cmt(3) = H(π(x+ y)).

2. P sends
cmt = (cmt(1), cmt(2), cmt(3))

to V.

3. V sends ch ← {0, 1, 2}.

4. if ch = 0, P sends = 〈π,y〉,
if ch = 1, P sends rsp

rsp
= 〈π,x+ y〉,

if ch = 2, P sends rsp = 〈π(x), π(y)〉.

5. if ch = 0, V checks cmt(1), cmt(2),
if ch = 1, V checks cmt(1), cmt(3),
if ch = 2, V checks cmt(2), cmt(3).

Fig. 2. Stern identification system [25]

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 323

is still the most widely recognized secure code-based identification system. We
summarize Stern’s system in Fig. 2.

Stern’s protocol can be transformed into a signature system by Fiat-Shamir
paradigm [10]. The main idea is changing the random challenge ch from the
verifier into a value generated by a random oracle HO, which can be simulated
by a hash function. Indeed, to sign a message m, the signer (who knows the
secret) produces a valid transcript (cmt, ch, rsp) of the interactive protocol where
ch = HO(cmt,m). In our following construction, we need that each rsp has the
same length no matter what the value of ch is. Since π has length n log n and
the vector has length n log q, we can achieve this property by adding a random
string to the shorter one.

3 Model and Security Properties

In this section, the model and security definitions for secret handshakes are
reviewed. Secret handshake scheme (denoted by SHS) operates in an environment
which consists of a set of groups managed by a set of group authorities, and a set
of users U1, . . . , Un registered into some groups. Based on the definitions in [2],
our scheme consists of the following probabilistic polynomial-time algorithms:

– SHS.Setup: The Setup algorithm selects a security parameter λ to generate
the public parameters params common to all subsequently generated groups.

– SHS.CreateGroup: CreateGroup can be viewed as a key generation algo-
rithm executed by Group Authority (GA) to establish a group G. It takes
params as input, and outputs group public key and secret key (gpkG, gskG).

– SHS.AddMember: AddMember is a two-party protocol run by user and
GA, which adds a user to become a legitimate member of the group. After
verifying the users’ real identity (ID), GA outputs the user’s group credential
credID using GA’s group keys (gpkG, gskG).

– SHS.Handshake: Handshake is a two-party authenticate protocol executed
by a pair of anonymous users (U, V), where (U, V) are possible members
belong to different groups. Generally, the handshake protocol is asymmet-
ric. The protocol takes the anonymous users’ secrets and some other public
information as the input, and output “1” or “0” for each party. If U and
V belong to the same group, the output is “1” and a session key K will be
produced which can be used for subsequent secure communication between
the two members.

– SHS.TraceMember: TraceMember is a polynomial time algorithm that is
executed by GA. The algorithm outputs the identity of the user U while
a transcript of secret handshake between one user U and the other user is
submitted.

– SHS.RemoveMember: RemoveMember is a polynomial time algorithm
that is authorized by GA. It takes its current Credential Revocation List
(CRL) and U ’s revocation tokens as inputs, whilst outputs an up-to-date
CRL that includes new revocation records.

324 Z. Zhang et al.

Now we recall some basic security definitions of SHS in brief. The formal
definitions can be referred to the literature [2] for details. In general, a secret
handshake scheme must satisfy the following security requirements:

1. Completeness: It means that the SHS protocol always outputs “1” when
the interactive participants belong to the same group.

2. Impersonator resistance: This property means that an adversary who
attempts to impersonate a legitimate member of one group can only suc-
ceed with a negligible probability. Namely, it is computationally infeasible
without the knowledge of some secret key associated with the group key to
successfully execute the protocol SHS with a member of this group. Formally,
the property is defined in the following game GameIR between an adversary
A and a challenger B:

– Init: The adversary A first sets chosen as (G∗, i∗). Then B simulates
Setup, CreateGroup, and AddMember, and sends group public keys and
up-to-date CRL to A.

– Queries: A can make the following queries, where the responses will be
simulated by B.

• Corruption Queries: The corruption list Cor is initialized as ∅. The
adversary A can query CreateGroup and AddMember for the secret
information of some groups and members, except for (G∗, i∗). B will
respond to the simulated information and update the corruption list
Cor.

• Handshake Queries: The adversary A can make queries on the
Handshake protocol with the group members. The transcripts of the
queried members can be generated by B. During a handshake, A
can query the hash functions used in the Handshake protocol. In
particular, A can request non-interactive proof of knowledge on a
random message for any member at the current interval.

– Challenge: The challenger B acts as the group member i∗ of G∗ and exe-
cutes handshake protocol with the adversary A. A attempts to convince
B that A is a legitimated member of the group G∗.

– Output: If the adversary A on behalf of a member in the group G∗

succeeds in executing Handshake with B, the output of the game is “1”.
Otherwise, the output is “0”. Note that it is required that A never queried
any secret information with respect to the member i∗ of the group G∗,
i.e., i∗ ∩ Cor = ∅.

Let AdvIR
A = Pr[GameIR = 1], we say that SHS satisfies the impersonator

resistance if the function AdvIR
A is negligible for any polynomially-bounded

adversary.
3. Detector resistance: This property means that an adversary will only suc-

ceed with a negligible probability when he activates an SHS with an honest
user in order to identify his affiliation. Namely, it is computationally infeasible
to determine whether a user’s U is associated with the group public key gpk.
Formally, the property is defined in the following game GameDR between an
adversary A and a challenger B:

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 325

– Init: The adversary A first sets chosen as (i0, G0, i1, G1). Then B simu-
lates Setup, CreateGroup, and AddMember, and sends group public keys
together with revocation lists of all groups to A.

– Queries: A can make the following queries, where the responses will be
simulated by B.

• Corruption Queries: The corruption list Cor is initialized as ∅. The
adversary A can query CreateGroup and AddMember for the secret
information of some groups and members, except for (i0, G0, i1, G1).
Thus, B will respond to the simulated information and update the
corruption list Cor.

• Handshake Queries: The adversary A can make queries on the
Handshake protocol with the group members. The transcripts of the
queried members can be generated by B. During a handshake, A
can query the hash functions used in the Handshake protocol. In
particular, A can request non-interactive proof of knowledge on a
random message for any member at the current interval.

– Challenge: The challenger B selects a random bit φ ← {0, 1}. And then
B acts as the member iφ in the group Gφ and executes handshake protocol
with the adversary A. A attempts to distinguish which group B belongs
to.

– Output: The adversary A outputs φ′ as its guess of φ.
Let AdvDR

A = |Pr[GameDR(φ = 0) = 1] − Pr[GameDR(φ = 1) = 1]|, we say
that SHS satisfies the detector resistance if the function AdvDR

A is negligible
for any polynomially bounded adversary.

4. Unlinkability: This property means that no adversary can successfully asso-
ciate two executions of SHS protocol involving the same honest user with a
non-negligible probability.

4 Secret Handshake from Coding Theory

In this section, a code-based secret handshake scheme CSH will be described.
First, we will present the construction of the CSH scheme. Second, the security
and performance are analysed in the following subsections respectively. At last,
we will give a short look at its applications.

4.1 The CSH Scheme

In the construction of our scheme, we use the techniques from CFS digital sig-
nature system and Stern’s identification system. Since secret handshakes are
private mutual authentications, the identification system with public verifica-
tion can not be directly used to construct a secret handshake scheme. Therefore,
we borrow the idea from the construction of secret handshake schemes from mes-
sage recovery signatures. In the beginning, we transform Stern’s identification
system into a Fiat-Shamir type signature with 3 parts (cmt, ch, rsp). Instead of
signing a message m by setting ch = HO(cmt||m), we make the signature by

326 Z. Zhang et al.

setting ch = HO(ID||gpk) where ID is the participant’s pseudonym and gpk is
the group public key, and do not send it to the receiver. Hence the ch can only
be recovered with a proper group public key. Moreover, we abandon the cmt
part when sending the signatures. Thus, although the receiver can not directly
verify whether the signature is valid, some knowledge (we denote by CK) about
the commitments cmt can be recovered through ch and rsp. Consequently, the
receiver and signer will share the same CK if they are in the same group.

The CSH scheme is designed as follows.

– CSH.Setup: Given a security parameter λ, generates the global parameters
param = (q, n, k, t, κ). Choosing secure hash functions H1 : {0, 1}∗ → F

n−k,
H2 : {0, 1}∗ → {0, 1, 2}κ, {0, 1}∗ ← {0, 1}λ → {0, 1}λ and {0, 1}∗ ←
{0, 1}λ → {0, 1}λ.

– CSH.CreatGroup: The group author GA takes param as input to create a group
G. GA runs CFS.KeyGen to get the group key pair (gpkG, gskG) = (H,Φ),
where H is a party check matrix for a [n, k, t]q Goppa code, Φ is its syndrome
decoding algorithm embedded the matrix M,P as described in Fig. 1.

– CSH.AddMember: When a user U wants to join to the group G, he chooses
IDu as his pseudonym. Then GA runs CFS.Sign(IDu, gskG) and outputs a
signature credu = (eu, cu) as user U ’s credentials, i.e. HeT

u = H1(IDu||cu).
GA sends credu to the user and adds (U, IDu, credu) to the group member
list L.

– CSH.Handshake: Suppose the member U from group G1 with credential credu,
and another member V from group G2 with credv, engage in handshake
protocol.

– U → V : (IDu, cu, σu)
1. U makes a signature by Stern’s system with public data (HG1,H4,

H1(IDu||cu), t) and secret value eu:

Πu = (cmt1u, . . . , cmtκu; ch1
u, . . . , chκ

u; rsp1u, . . . , rspκ
u)

where (ch1
u, . . . , chκ

u) = H2(IDu||gpkG1).
2. U sets σu = (rsp1u, . . . , rspκ

u).
3. Denotes the checked value corresponds to chi

u and rspi
u as CKi

u, and
CKu = (CK1

u, . . . , CKκ
u). Namely, V sets

CKi
u =

⎧
⎨

⎩

〈cmtiu(1), cmtiu(2)〉, chi
u = 0

〈cmtiu(1), cmtiu(3)〉, chi
u = 1

〈cmtiu(2), cmtiu(3)〉, chi
u = 2

where
⎧
⎨

⎩

cmtiu(1) = H4(πi
u||HG1r

i
u)

cmtiu(2) = H4(πi
u(ri

u))
cmtiu(3) = H4(πi

u(eu + ri
u))

and πi
u is a random permutation, ri

u ∈ F
n
q is a random vector as

described in Fig. 2.

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 327

– V → U : (IDv, cv, σv, RSPv)
1. V checks CRLG2. If IDu is in CRLG2, outputs “0” and abort. Oth-

erwise continues.
2. V computes (ch′1

u , . . . , ch′κ
u) = H2(IDu||gpkG2).

3. V computes CK ′
u = (CK ′1

u , . . . , CK ′κ
u) for i ∈ [1, . . . , κ] by checking

the rspi
u with correspond ch′i

u . Namely, V departs rspi
u as

rspi
u =

⎧
⎨

⎩

〈π′i
u ,xi

u〉, ch′i
u = 0

〈π′i
u ,yi

u〉, ch′i
u = 1

〈π′i
u (eu), π′i

u (xi
u)〉, ch′i

u = 2

and then calculates

CK ′i
u =

⎧
⎨

⎩

〈H4(π′i
u ||HG2x

i
u),H4(π′i

u (xi
u))〉, ch′i

u = 0
〈H4(π′i

u ||(HG2y
i
u − H1(IDu||cu)),H4(π′i

u (yi
u))〉, ch′i

u = 1
〈H4(π′i

u (xi
u)),H4(π′i

u (eu) + π′i
u (xi

u))〉, ch′i
u = 2

4. V makes a signature by Stern’s system with public data (HG2,H4,
H1(IDv||cv), t) and secret value ev:

Πv = (cmt1v, . . . , cmtκv ; ch1
v, . . . , chκ

v ; rsp1v, . . . , rspκ
v)

where (ch1
v, . . . , chκ

v) = H2(IDv||gpkG2).
5. V sets σv = (rsp1v, . . . , rspκ

v).
6. Denote the checked value corresponds to chi

v and rspi
v as CKi

v, and
CKv = (CK1

v , . . . , CKκ
v). Namely, v sets

CKi
v =

⎧
⎨

⎩

〈cmtiv(1), cmtiv(2)〉, chi
v = 0

〈cmtiv(1), cmtiv(3)〉, chi
v = 1

〈cmtiv(2), cmtiv(3)〉, chi
v = 2

where
⎧
⎨

⎩

cmtiv(1) = H4(πi
v||HG2r

i
v)

cmtiv(2) = H4(πi
v(ri

v))
cmtiv(3) = H4(πi

v(ev + ri
v))

and πi
v is a random permutation, ri

v ∈ F
n
q is a random vector.

7. RSPv = H3(CK ′
u, CKv, 0).

– U → V : RSPu

1. U checks CRLG1. If IDv is in CRLG1, outputs “0” and abort. Oth-
erwise continues.

2. U computes (ch′1
v , . . . , ch′κ

v) = H2(IDv||gpkG1).

328 Z. Zhang et al.

3. U computes CK ′
v = (CK ′1

v , . . . , CK ′κ
v) for i ∈ [1, . . . , κ] by check the

rspi
v with respective to ch′i

v . Namely, U departs rspi
v as

rspi
v =

⎧
⎨

⎩

〈π′i
v ,xi

v〉, ch′i
v = 0

〈π′i
v ,yi

v〉, ch′i
v = 1

〈π′i
v (ev), π′i

v (xi
v)〉, ch′i

v = 2

and then calculates

CK ′i
v =

⎧
⎨

⎩

〈H4(π′i
v ||HG1x

i
v),H4(π′i

v (yi
v))〉, ch′i

v = 0
〈H4(π′i

v ||(HG1y
i
v − H1(IDv||cv)),H4(π′i

v (yi
v))〉, ch′i

v = 1
〈H4(π′i

v (xi
v)),H4(π′i

v (ev) + π′i
v (xi

v))〉, ch′i
v = 2

4. If H3(CKu, CK ′
v, 0) = RSPv, U outputs “1”.

Then U sets RSPu = H3(CKu, CK ′
v, 1) and computes the session key

as K = H3(CKu) ⊕ H3(CK ′
v).

5. Otherwise U outputs “0” and sets RSPu = H3(r) where r is a random
number.

– V checks whether H3(CK ′
u, CKv, 1) = RSPv. If true, V outputs “1” and

computes the session key K = H3(CK ′
u)⊕H3(CKv). Otherwise V output

“0”.
– CSH.TraceMember: When a dispute happens, the trace authority of GA will

retrieve the handshaking transcript of U and V . GA can easily obtain the
pseudonyms IDu and IDv from a transcript of a secret handshake instance.
Through looking up in the lists of pseudonyms corresponding to the genuine
identities, GA can identify which users have executed the malicious secret
handshakes.

– CSH.RemoveMember: GA maintains and updates the information of a CRL
after tracing a malicious group member. To remove a user U from the group,
the GA looks up and removes the user’s UserSecret (IDu, credu). Then the
GA adds (IDu, credu) to the CRL, and distributes warning notice to every
other group member via an authenticated anonymous channel, which alerts
not to execute any handshake performed by a user using any pseudonym in
the CRL.

Completeness: The completeness of CSH scheme relies on both participants can
successfully recover the CK part by their group knowledge. When the respon-
der V gets (IDu, σu), he knows that the user U wants to prove he has a cre-
dential associated with IDu given by the GA, and σu is the response part of
the proof. Now take a look at the step of recovering CKu. Suppose that U
and V come from the same group with group public key H, and they are both
honest participants. Then U ’s signature Πu = (cmtiu; chi

u; rspi
u) from Stern’s

system is a valid one, which means the verification of each (chi
u, rspi

u) will meet
the corresponding commitment, i.e. for chi

u = 0, 1, 2 and rspi
u, the verifier can

calculate 〈cmt′iu(1), cmt′iu(2)〉, 〈cmt′iu(2), cmt′iu(3)〉 and 〈cmt′iu(1), cmt′iu(3)〉 which

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 329

exactly equal to the original commitment value. Since U and V are in the same
group, V can recover the correct challenge part chu, and then calculates a cor-
rect CKu. Thus U and V will share the same CKu, and vice versa for CKv. A
session key K = H3(CKu)⊕H3(CKv) is also agreed for the following two-party
communications.

4.2 Security Analysis

Now we provide the security results on CSH with respect to the impersonator
resistance, detector resistance, and unlikability described in Sect. 3.

Theorem 1. If there exists an adversary A can break the Impersonator Resis-
tance of CSH with non-negligible probability, then there exists an algorithm B
can solve the Decision SD problem with non-negligible probability.

Proof. Suppose there exists an adversary A who can break the impersonator
resistance property against some honest member U in group G∗ identified by
ID∗, then we can build an algorithm B to solve a Decision SD problem. When
given a DSD(n, k, w) problem with a parity check matrix H∗ and a vector s∗, B
builds a sequence of games as follows:

– Game0: This is the real impersonator resistance challenge game. In such a
challenge, the adversary A has access to oracles

{OCG,OAM ,OSH ,OH1,OH2,OH3,OH4}

which execute CSH.CreateGroup,CSH.AddMember,CSH.Handshake and hash
function H1,H2,H3,H4 respectively. A takes the public parameters as input,
and outputs a triple (G∗, ID∗). A succeeds if ID∗ belongs to G∗, G∗ remains
uncorrupt during A’s execution, all corrupt users from G∗ are excluded from
G∗ and if in the protocol CSH.Handshake between A and ID∗, the member
ID∗ returns “1”. In each game Gamei (i ∈ [0, . . . , 3]), we denote by IpRi this
event. Without loss of generality, we can suppose that any time A makes a
query involving a pseudonym ID to one of the oracles OCG,OAM ,OSH , and
A has previously queried ID to the random oracle OH1. In particular, we
suppose that A has queried ID∗ and IDA (the pseudonym used by A in the
final execution of CSH.Handshake) to the random oracle OH1. By definition,
we have Pr[IpR0] = SuccA = ε.

– Game1: B randomly choose i ← [1, . . . , qCG] where qCG is the maximum
number for A to query OCG. Then in the i-th query, B simulates the oracle
OCG, sets the public key as H∗, and public parameters (n, k, w). B aborts if
the group G∗ was not obtained at the i-th query to the oracle OCG. Hence
we have Pr[IpR1] = Pr[IpR0]/qCG.

– Game2: B simulates the oracles OH1 and OAM in CSH.AddMember in the
following way:
For a group G, let Λ(ID) be a list stores the random number r such that
H1(ID||r) be a decodable syndrome. This list has been settled when the ID

330 Z. Zhang et al.

occurs in the query in the first time by randomly choose r. Let ΛG be a list
stores (e, r) where HGe = H1(ID||r),wt(e) = w, i.e. the weight of e can
be any possible value. Let ΛH be a list stores s indexed by (ID, r). Namely,
ΛG(ID) = (e, r) and ΛH(ID, r) = H1(ID||r) = s.
Then for each query (ID, r), B checks whether (ID, r) is in ΛH or ΛG. If not,
B checks whether Λ(ID) = r. If so, B randomly choose e where wt(e) = t,
and calculates s = HGe. Meanwhile B adds (e, r) corresponds to ID into ΛG,
and adds s corresponds to (ID, r) into ΛH . Else B randomly choose e, and
adds s = He corresponds to (ID, r) into ΛH .
B outputs s in ΛH corresponds to the query of (ID, r) to OH , and outputs
(e, r) in ΛG corresponds to the query of ID to OAM .
Specifically, in the query to OH1(Gi), B randomly choose j ← [1, . . . , qH1]
where qH1 is the maximum number for A to query OH1. Then in the j-th
query, B simulates the oracle OH1 by setting the hash value as s∗. B discards
execution if IDA was not the j-th query to the oracle OH1. Hence we have
Pr[IpR2] = Pr[IpR1]/qH1.

– Game3: Finally, B simulates the CSH.Handshake protocols for members with
pseudonyms say IDu and IDv. B can perfectly simulate the OSH by querying
other hash oracles. Therefore, we have Pr[IpR3] = Pr[IpR2].

To summarize, when the Game3 terminates, A outputs (G∗, ID∗) such that
G∗’s public key is H∗ and OH1(IDA||rA) = s∗. Then A interacts with the
algorithm B emulating the member with pseudonym ID∗ to execute the protocol
CSH.Handshake.

– If the protocol is successful, B retrieves in its transcript and calculates CK ′
A

by IDA and σA. In Stern’s system, when ch = 1, the verifier will calculate
Hy by the knowledge of x + y and public parameters, i.e. Hy = H(x + y) −
Hx = H(x + y) − s. Hence there must exist eA with wt(eA) = t such that
H∗eA = H∗(eA + y) −H∗eA = H∗(eA + y) − s∗, i.e. H∗eA = s∗. Therefore B
outputs SD.

– Else B outputs b ←${SD,Uniform}.

As a result, the advantage for B to win a DSD(n, k, w) problem is AdvB =
SuccA/(qH1qCG), which means that if the advantage for adversary A to break
the impersonate resistance of CSH is non-negligible, then the algorithm B can
solve the DSD(n, k, w) problem with non-negligible probability.

Theorem 2. If there exists an adversary A can break the Detector Resistance
of CSH with non-negligible probability, then there exists an algorithm B can solve
the Decision SD problem with non-negligible probability.

Proof. Suppose there exists an adversary A who can break the detector resis-
tance property by distinguishing honest member U0 in group G0 identified by
ID0 and another honest member U1 in group G1 identified by ID1, then we
can build an algorithm B to solve a DSD(n, k, w) problem. In fact, using dif-
ferent group public key, a participant in the handshake protocol will recover
different ch and CK when he receives (ID, c, σ). And he can not know whether

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 331

the information he recovered is right or wrong until a RSP is received. More
precisely, if there exists an adversary A who can break the detector resistance
property against some honest member U in a group G identified by IDu and
group public key gpk = HG, then A can verify the Stern’s signature made by
U . However, since U did not send any message about U ’s challenge chu and
commitment cmtu to A, the only way for A to verify U ’s identity is to recover
the correct ch′

u and CK ′
u. Furthermore, the correctness of CK ′

u can only be
checked from the RSPu by verifying RSPu = H3(CK ′

u, CKv, b) where b = 0 if
A is the initiator and b = 1 otherwise. This means A has to make sure U will
recover the correct CKA by IDA and σA. In Stern’s system, when ch = 1, the
verifier will calculate Hy by the knowledge of x + y and public parameters, i.e.
Hy = H(x + y) − Hx = H(x + y) − s. In CSH, the above equation turns into
HGy = HG(eA + y) −HGeA = HG(eA + y) − HG(IDA||cA), where (eA, cA) is a
valid credential from GA, i.e. HGeA = H1(IDA||cA). Thus, A has to break the
impersonate resistance of CSH. By Theorem 1, this theorem holds.

The unlinkability of CSH is ensured by one-time pseudonyms. Namely, CSH
specify that a user obtains a list of pseudonyms for one-time use. The members
in a group G will ask for a new credential for each secret handshake, and the
used credential will be added to CRL. This allows handshakes to be unlinkable.

4.3 Performance

In this subsection, we will analyse the performance of CSH from communica-
tion cost and computation cost. CSH is a code-based secret handshake scheme
constructed by combining the CFS signature system and Stern’s identification
system. The main attacks on CFS system are information set decoding (ISD)
attack and generalized birthday algorithm (GBA) attack. Up to now, the most
effective ISD algorithms in binary field [3,18,19] take about O(2n/20) in decod-
ing. For GBA [27], the complexity of this attack against CFS with a counter is

given by L log(L) with L = min

(
2mt

(n
t−�t/3�)

,
√

2mt

(n
�t/3�)

)
. The Goppa code distin-

guishing attack [9] only affects high rate Goppa codes. However, this result did
not give rise to any attack on the scheme which then remains usable. In fact,
in practice and despite the aforesaid distinguisher, the best attacks to the CFS
problem are still generic and treat the public parity check matrix in CFS scheme
as a random one. We choose parameters to reach the security level of 80 bits as
(q,m, t, κ) = (2, 19, 11, 137).

– Communication Cost: In CSH.AddMember, the user sends his ID to GA
and GA returns cred = (e, c) to the user. Since the group identifies their
member by CFS signature system, w.l.g we can suppose the number of total
members will not larger than

(
n
t

)
where n = 2m is the length of underlying

codes and t is its error correcting capability. And thus the length of ID is
shorter than log(

(
n
t

)
) ≤ 2m −1. The credential has length n+(n−k) = 2m +

mt < 64.1 KB. The communication cost in this step is 2 ·2m −1+mt < 128.1

332 Z. Zhang et al.

KB. CSH.HandShake is a 3-round protocol, each member needs transmit 4
elements (ID, c, σ,RSP) to the other. ID is a string with length 2m − 1.
c is a random counter with length mt. σ is the response part in a Stern’s
signature system, each single rsp in σ has length n + n log n. In order to
make the cheating probability under 2−80, the interactive protocol should be
executed 137 times, i.e. κ = 137. Hence the length of σ is 137 · (n+n log n) =
137(m + 1) · 2m bits and is about 171.2 MB. The length of RSP is 160 bits.
Thus, the total communication cost in CSH.Handshake for each participant is
(2m − 1) + mt + 137(m + 1) · 2m + 160 bits ≈ 171.3 MB.

– Computational Cost: In CSH.AddMember, GA should calculate the creden-
tial for users by making CFS signatures. The CFS signature system cannot
find a preimage for any syndrome H(ID), it does it only with probability
1/t!, this fact is managed through the randomly choice of c which appended
to ID, and then decode H(ID||c), i.e. modified-CFS system is used. Thus, on
average, a credential (e, c) correspond to ID given by the CFS public matrix
H is found with a small failure probability. If we choose Berlekamp-Massey
algorithm [17] with complexity O(n2) as the syndrome decoding algorithm,
the total computational complexity for making one CFS signature is about
2O(t)O(n2). The number of syndromes 2mt, for a [2m, 2m − mt, 2t + 1] Goppa
code, gives an upper bound on the number of valid credentials. Considering
each user needs a new credential to ensure the unlinkability of CSH, the CSH
scheme can support valid group members to execute 2mt−1 successful secret
handshake protocols. The above parameters take 13.1 MB for GA’s public
key. In CSH.Handshake, the main cost is the sign and verify algorithm in
Stern’s signature system. Here the public matrix H is GA’s public key with
size mt×n, and the secret vector is e which is a part of user’s credential with
length n and weight t. The main computation cost here is the multiplication
of one vector and a matrix in O(n2) and three hash computation. Thus the
computational cost of CSH.Handshake is considered to be very small.

4.4 Application

For sensitive applications with strong privacy protection requirements, 2-party
anonymous authentication that can hide the knowledge of organizations is
needed. In a nutshell, secret handshake is such a technology proposed to solve
this kind of 2-party anonymous authentication problem. With the help of secret
handshake protocol, we can not only realize the secret transmission of data, but
also avoid the leakage of important information such as organization.

With the arrival of the 5G era, the data transmission speed is faster and
faster. It only takes a few seconds to download a high-definition film. In this
context, the communication cost of secret handshake protocol is no longer the key
factor restricting its application. The handshake protocol, which can be executed
quickly, will play an increasingly important role. Since the AddMember step has
finished before a handshake is requested, we can mainly consider the cost of the
Handshake step in actual use. Thus, CSH.Handshake is such a protocol with high
communication costs but small computational cost.

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 333

Nowadays, while people enjoy the convenience brought by the Internet and
big data, how to protect personal privacy becomes a thorny problem. Thus, other
than serves for state affairs with high confidentiality, secret handshake schemes
play a more and more important role in people’s daily life. Secret handshake
schemes can be applied in the e-commerce field, e-medical system and informa-
tion technique services, such as the communication and transmission of confi-
dential documents between company partners, the sharing of patient’s diagnosis
data among different departments in hospitals, and so on. The secret hand-
shake schemes have also become one of the important password authentication
technologies to protect the privacy of users in Internet services. In the commu-
nication between companies, the group management center can be built with
the help of trusted cloud server, and the anonymous authentication handshake
scheme or group secret handshake scheme can be used to realize the authen-
tication communication according to the needs. Another specific application of
secret handshake protocol is defence against copyright infringement of videos
that need a high-speed transmission. For example, HDMI is an interface stan-
dard of HDTV, which can provide high-definition lossless transmission of digital
video or audio signals. By using anonymous two-way secret handshake schemes,
the video providers can prevent illegal infringement interface from matching their
HDMI. Considering the fast speed of executing CSH.Handshake, our scheme CSH
may play a significant role in similar applications.

Li et al. [16] applied the secret handshake protocol [2] to the anonymous rout-
ing protocol and shows that it outperforms its predecessors in all the aspects of
anonymity, security, and efficiency. With the continuous development of network
application requirements, the secret handshake protocol can be applied in a more
complex environment. For example, as mentioned by Ateniese et al. in [1], the
secret handshake protocols can allow dynamic matching of attributes associated
with the role in a treshold way. This can further extend to the designated role-
based secret handshake protocol. The application of secret handshake can also
be extended to protocols with dynamic matching, which plays an important role
in the social network applications and vehicular ad-hoc network applications.

5 Conclusion

This paper aims to propose a new secret handshake scheme from coding theory.
We combined the modified CFS signature system and Stern’s identification sys-
tem to construct CSH. Hence more efficient variants of CFS system and Stern’s
system will lead to a more efficient secret handshake scheme. For achieving simple
traceability and unlinkability, our construction still uses one-time pseudonyms
and achieves basic security requirements while GA is a trusted authority. Thus
how to build post-quantum secret handshake schemes with stronger anonymity
is still an open problem. As far as we know, this is the first time to use a Fiat-
Shamir type signature in constructing secret handshake schemes. Since Fiat-
Shamir paradigm is a generic transformation, we are considering whether this
means that secret handshake protocols can be built based on any zero-knowledge

334 Z. Zhang et al.

proof system, which may lead to a more generic framework to construct secret
handshake schemes. For future work, it is also interesting to build secret hand-
shakes from other post-quantum cryptographic primitives, such as lattice based
cryptosystems and supersingular isogeny based cryptosystems.

Acknowledgements. This work is supported by the National Key R& D Program of
China (2017YFB0802500) and the National Natural Science Foundation of China (No.
61672550, No. 61972429) and Guangdong Major Project of Basic and Applied Basic
Research (2019B030302008).

References

1. Ateniese, G., Kirsch, J., Blanton, M.: Secret handshakes with dynamic and fuzzy
matching. In: Network and Distributed System Security Symposium, NDSS 2007,
pp. 783–788. The Internet Society (2007)

2. Balfanz, D., Durfee, G., Shankar, N., Smetters, D., Staddon, J., Wong, H.: Secret
handshakes from pairing-based key agreements. In: IEEE Symposium on Security
and Privacy 2003, pp. 180–196. IEEE (2003)

3. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

4. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

5. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19574-7 12

6. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret handshakes from CA-oblivious
encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 21

7. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 10

8. Dallot, L.: Towards a concrete security proof of Courtois, Finiasz and Sendrier
signature scheme. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007.
LNCS, vol. 4945, pp. 65–77. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-88353-1 6

9. Faugère, J., Gauthier-Umaña, V., Otmani, A., Perret, L., Tillich, J.: A distin-
guisher for high-rate McEliece cryptosystems. IEEE Trans. Inf. Theory 59(10),
6830–6844 (2013)

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

11. Finiasz, M.: Parallel-CFS. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 159–170. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19574-7 11

12. Gaborit, P., Girault, M.: Lightweight code-based identification and signature. In:
ISIT 2007, pp. 191–195. IEEE (2007)

https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/978-3-540-30539-2_21
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/978-3-540-88353-1_6
https://doi.org/10.1007/978-3-540-88353-1_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-19574-7_11
https://doi.org/10.1007/978-3-642-19574-7_11

CSH: A Post-quantum Secret Handshake Scheme from Coding Theory 335

13. Gu, J., Xue, Z.: An improved efficient secret handshakes scheme with unlinkability.
IEEE Commun. Lett. 15(2), 259–261 (2011)

14. Huang, H., Cao, Z.: A novel and efficient unlinkable secret handshake scheme.
IEEE Commun. Lett. 13(5), 363–365 (2009)

15. Jarecki, S., Kim, J., Tsudik, G.: Beyond secret handshakes: affiliation-hiding
authenticated key exchange. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol.
4964, pp. 352–369. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-79263-5 23

16. Li, S., Ephremides, A.: Anonymous routing: a cross-layer coupling between appli-
cation and network layer. In: 2006 40th Annual Conference on Information Sciences
and Systems, pp. 783–788. IEEE (2006)

17. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory
15(1), 122–127 (1969)

18. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

19. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

20. Mceliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress report 42-44, pp. 114–116 (1978)

21. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Control Inf. Theory 15(2), 159–166 (1986)

22. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: Sym-
posium on Cryptography and Information Security, SCIS 2000 (2000)

23. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: FOCS 1994, pp. 124–134. IEEE (1994)

24. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

25. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

26. Vergnaud, D.: RSA-based secret handshakes. In: Ytrehus, Ø. (ed.) WCC 2005.
LNCS, vol. 3969, pp. 252–274. Springer, Heidelberg (2006). https://doi.org/10.
1007/11779360 21

27. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

28. Wen, Y., Zhang, F.: Delegatable secret handshake scheme. J. Syst. Softw. 84(12),
2284–2292 (2011)

29. Wen, Y., Zhang, F., Xu, L.: Secret handshakes from ID-based message recovery
signature: a new generic approach. Comput. Electr. Eng. 38(1), 96–104 (2012)

30. Xu, S., Yung, M.: K-anonymous secret handshakes with reusable credentials. In:
CCS 2004, pp. 158–167. ACM (2004)

31. Zhou, L., Susilo, W., Mu, Y.: Three-round secret handshakes based on ElGa-
mal and DSA. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006.
LNCS, vol. 3903, pp. 332–342. Springer, Heidelberg (2006). https://doi.org/10.
1007/11689522 31

https://doi.org/10.1007/978-3-540-79263-5_23
https://doi.org/10.1007/978-3-540-79263-5_23
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/11779360_21
https://doi.org/10.1007/11779360_21
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/11689522_31
https://doi.org/10.1007/11689522_31

A Verifiable and Practical Lattice-Based
Decryption Mix Net with External

Auditing

Xavier Boyen1, Thomas Haines2, and Johannes Müller3(B)

1 Queensland University of Technology, Brisbane, Australia
2 Norwegian University of Science and Technology, Trondheim, Norway

3 SnT, University of Luxembourg, Luxembourg City, Luxembourg
johannes.mueller@uni.lu

Abstract. Mix nets are often used to provide privacy in modern security
protocols, through shuffling. Some of the most important applications,
such as secure electronic voting, require mix nets that are verifiable. In
the literature, numerous techniques have been proposed to make mix
nets verifiable. Some of them have also been employed for securing real
political elections.

With the looming possibility of quantum computers and their threat
to cryptosystems based on classical hardness assumptions, there is sig-
nificant pressure to migrate mix nets to post-quantum alternatives. At
present, no verifiable and practical post-quantum mix net with external
auditing is available as a drop-in replacement of existing constructions.
In this paper, we give the first such construction.

We propose a verifiable decryption mix net which solely employs prac-
tical lattice-based primitives. We formally prove that our mix net pro-
vides a high level of verifiability, and even accountability which guaran-
tees that misbehaving mix servers can also be identified. Verification is
executed by a (temporarily trusted) public auditor whose role can easily
be distributed. To demonstrate practicality for real-world systems, we
provide detailed performance benchmarks on our stand-alone implemen-
tation based only on the most conservative lattice hardness assumptions.

Keywords: Lattice-based · Verifiability · Accountability · Mix net ·
e-voting

1 Introduction

Mix nets are indispensable building blocks of many secure e-voting systems.
Essentially, a mix net consists of a sequence of mix servers which take as input the
encrypted messages provided by the senders (e.g., the voters’ ballots), secretely
shuffle them, and eventually output the permutated plain messages (e.g., votes).
Unless all mix servers are corrupted, the mixing breaks the individual connec-
tions between the senders and their revealed messages in the output. In the
context of e-voting, this property guarantees vote privacy.
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 336–356, 2020.
https://doi.org/10.1007/978-3-030-59013-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_17&domain=pdf
http://orcid.org/0000-0003-2134-3099
https://doi.org/10.1007/978-3-030-59013-0_17

A Verifiable and Practical Lattice-Based Decryption Mix Net 337

However, for secure e-voting, it is also important to ensure that the voters’
intent be reflected correctly in the election result, even if the mix servers are
corrupted and actively try to tamper with the votes. Therefore, the employed
mix net must be verifiable to guarantee that manipulating the senders’ input,
and generally incorrect mixing, can be detected. Moreover, in order to deter
parties from misbehaving in the first place, accountability is often also desirable.
This stronger form of verifiability provides identification of misbehaving parties
and adjudication of possible disputes. In the literature, numerous mix nets [1,2,
4,10,11,14,15,17,19–21,23,27,28,31–33,35–37] have been proposed that aim to
achieve verifiability and, in some cases, accountability. Some of them have also
been used for securing real political elections (see, e.g., [12,34]).

With more and more powerful quantum computers on the horizon (see,
e.g., [3]), it is important to protect mix nets even when actively targeted by
quantum attackers, either contemporary or future. Due to the stark possibility
that future quantum attackers could retrospectively break vote privacy, there is
significant pressure to employ verifiable post-quantum mix nets already today.

Unfortunately, to the best of our knowledge, only a single verifiable mix net
scheme [23], named sElect, has been proposed so far that could employ practi-
cal post-quantum, e.g., lattice-based, cryptosystems. The unique characteristic
of sElect, in contrast to all other known verifiable mix nets, is to avoid (zero-
knowledge) proofs of correct decryption, for which, at present, there exist no
practical solutions whose security can be reduced to hardness assumptions over
lattices (see Sect. 2 for more details). Alas, although sElect is provably secure, its
security relies on the assumption that the senders/voters themselves verify the
correctness of the final outcome. While this assumption is reasonable for some
election scenarios, it cannot be justified in general; in particular, recourse and
adjudication in case of voter-detected fraud is problematic.

Therefore, it is still an open problem to construct a practical and provably
secure mix net with external auditing that can defend against quantum attacks.

Our Contributions. In this paper, we present the first highly efficient and prac-
tically realizable lattice-based decryption mix net that provides a high level of
verifiability and even accountability. Verification is completely executed by a
(temporarily trusted) public auditor whose role can easily be distributed. This
structure is the same as the one of the prominent randomized partial checking
(RPC) technique [20] which was, for instance, used for elections in the Australian
state of Victoria [12].

To be more precise, our mix net employs a generalized version of the trip
wire technique that was, in a specific variant, originally employed in the mix
net by Khazaei et al. [21] as a subroutine. At a high level, in this technique,
the input to the mix net consists of the real input messages plus a number of
trip wire messages which to a mix server are indistinguishable from the real
ones. Now, if a mix server wants to manipulate the outcome, it faces the risk
of “touching” at least one trip wire, in which case the mix server would be
caught cheating. In contrast to the specific variant in the mix net by Khazaei
et al. [21], where each mix server can only inject a single trip wire in order to

338 X. Boyen et al.

be able to guarantee correctness of the verification (which furthermore requires
a proof of correct decryption), we depart from this as follows. First, we do not
assume that the mix servers themselves inject the trip wires to “verify each
other”, but place that responsibility on a number of public auditors. Just one
of these auditors needs to be trusted, and in fact only temporarily, because
each auditor opens its inner state once mixing has finished—which incidentally
greatly simplifies adjudication in case of dispute, and could not be done to the
mixers themselves. Second, each auditor does not inject just a single but many
trip wires, so that the probability of being caught cheating can be made very
high even for manipulating just a few messages. Trip wires are cost effective, and
since we further use only the most basic and black-box cryptographic primitives
(namely, public-key encryption and digital signatures), the resulting mix net
can be run with extremely efficient (lattice-based) primitives that more than
compensate for the trip wires’ overhead compared to ZKP-based approaches.

Altogether, our contributions are as follows:

1. We first discuss the unique constraints that come into play when building
mix nets with quantum resistance, and related works (Sect. 2).

2. We describe how to extend an arbitrary plain (i.e., unverifiable, proof-less)
decryption mix net (Sect. 3) with our general version of the trip wire technique
(Sect. 4).

3. We precisely characterize how a decryption mix net with trip wires provides
a high level of verifiability and even accountability (Sect. 5). A formal proof
is provided in our technical report [7].

4. We instantiate the generic trip wire decryption mix net using practical lattice-
based cryptography from conservative hardness assumptions (plain LWE). We
have created a self-contained optimized implementation of the lattice con-
struction, and provide detailed benchmarks that demonstrate its practicality
for real-world elections at a high level of security (Sect. 6).

5. We candidly discuss the general properties, benefits and drawbacks of trip
wire mix nets (Sect. 7) and conclude in Sect. 8.

2 Feasibility of Post-quantum Secure Mixing

Existing mix nets can be divided into two classes: decryption mix nets and re-
encryption mix nets. In this section, we describe the main ideas of these two
different approaches, and explain why the re-encryption approach is currently
impractical for defending against quantum attackers.

In a decryption mix net, originally proposed by Chaum [8], an IND-CCA2
secure public-key encryption scheme is employed. Each mix server holds a pub-
lic/secret key pair. Each sender iteratively encrypts its input message under the
mix servers’ public keys in reverse order, forming a multi-layered onion. Mixing
starts with the first mix server, which “peels off” the outermost encryption layer,
shuffles the result, forwards it to the second mix server, and so on. Eventually, all
encryption layers have been removed and the plain input messages are published
in the resulting random order.

A Verifiable and Practical Lattice-Based Decryption Mix Net 339

In a re-encryption mix net, originally proposed by Park et al. [29], an IND-
CPA secure public-key encryption scheme with re-encryption is employed. There
is one public key whose secret key shares are distributed among a number of
trustees. Each sender encrypts its input message under this public key. Mixing
starts with the first mix server which re-encrypts its input ciphertexts, shuffles
the result, forwards it to the second mix server, and so on. Eventually, all re-
encrypted input ciphertexts are published in random order. Depending on the
application, the output ciphertexts are either decrypted by the trustees or not.

In their plain unverifiable modes, re-encryption mix nets are more lightweight
than decryption mix nets because input messages are not encrypted iteratively
but only once under a single public key. However, when verifiability in the pres-
ence of quantum attackers is required, the trade-offs get more complicated. In
general, there are two different approaches for making re-encryption mix nets
verifiable, namely, by using randomized partial checking (RPC) [20] or by a proof
of correct shuffle [1,2,4,10,11,14,15,17,19,27,28,32,33,36]. On the positive side,
RPC could potentially be used for making a lattice-based re-encryption mix net
verifiable, for instance using one of three recently proposed lattice-based proofs
of correct shuffle [10,11,32], although it is unclear whether or not these are prac-
tical. On the negative side, both proof-based approaches merely guarantee that
the output ciphertexts are in fact shuffled re-encryptions of the input cipher-
texts. In order to be useful for our motivating application, i.e., secure e-voting,
we also have to decrypt the output ciphertexts verifiably. Unfortunately, to the
best of our knowledge, no practical zero-knowledge proofs of correct decryption
for lattice-based encryption have been proposed so far, whose security can itself
be reduced to lattice-based hardness assumptions. Even with recent develop-
ments on sublinear arguments from lattices [5], ZK proofs tend to be, and will
likely remain, much heavier and more cumbersome than simple primitives such
as public-key encryption based on comparable assumptions.

As the main purpose of our mix nets would be for quantum-secure e-voting
where integrity, performance and simplicity of implementation are paramount,
our best bet is to devise a lattice-based decryption mix net that provides external
auditability using only the simplest fastest primitives as building blocks.

3 Plain Decryption Mix Net

In this section, we first recall the main idea of a plain unverifiable decryption
mix net [8] and then precisely describe its protocol. In Sect. 4, we describe the
generic trip wire technique to endow a plain decryption mix net with correctness
verification (and external/third-party adjudication) of its outcome.

3.1 Idea

At a high level, a decryption mix net works as follows. It consists of a num-
ber of mix servers M1, . . . ,MnMS

each of which holds a public/private (encryp-
tion/decryption) key pair (pkk, skk). Each sender iteratively encrypts its plain

340 X. Boyen et al.

input message m under the public keys pk1, . . . , pknMS
of the mix servers in

reverse order, and submits the resulting “nested” ciphertext c to the first mix
server M1. The first mix server uses its secret key sk1 to “peel off” the outermost
encryption layer of all input ciphertexts, then shuffles the decrypted messages,
and forwards the permutated list to the second mix server M2. The second mix
server uses its secret key sk2 to “peel off” the second encryption layer, then
shuffles the result, and so on. Eventually, the last mix server MnMS

outputs all
the plain messages initially chosen by the senders in random order.

3.2 Protocol

We now precisely describe the protocol of a plain decryption mix net.

Protocol Participants. A plain decryption mix net protocol is run among senders,
S1, . . . ,SnS

, and mix servers, M1, . . . ,MnMS
, using a public, append-only bulletin

board B.

Channels. For each sender Si, we assume that there is an authenticated channel
from Si to the bulletin board B. These channels ensure that only eligible senders
are able to submit their inputs.1

Cryptographic Primitives. We use the following cryptographic primitives:

– An IND-CCA2-secure public-key encryption scheme E .2

– An EUF-CMA-secure signature scheme S.

Protocol Overview. A protocol run consists of the following consecutive phases.
In the setup phase, parameters are generated. In the submission phase, the
senders generate and submit their input. In the mixing phase, the mix servers
collaboratively mix the input.

We now describe each of the protocol phases in more detail.

Setup Phase. Each mix server Mk runs the key generation algorithm of the
digital signature scheme S to generate its public/private (verification/signing)
keys. The verification keys are published on the bulletin board B.

Each mix server Mk runs the key generation algorithm KeyGen of the public-
key encryption scheme E to generate its public/private (encryption/decryption)
key pair (pkk, skk), and posts its public key pkk on the bulletin board B.

Submission Phase. Each sender Si iteratively encrypts its secret input mi under
the mix servers’ public keys in reverse order, i.e., starting with the public key

1 By assuming such authenticated channels, we abstract away from the exact method
the senders use to authenticate to the bulletin board; in practice, several methods
can be used, such as one-time codes, passwords, or external authentication services.

2 We also require that E , for every public-key and any two plaintexts of the same
length, always yields ciphertexts of the same length. This seems to be satisfied by
all practical schemes in existence, unless implemented with entropic compression.

A Verifiable and Practical Lattice-Based Decryption Mix Net 341

pknMS
of the last mix server MnMS

to the public key pk1 of the first mix server
M1:

ci = Enc(pk1, (. . . ,Enc(pknMS
,mi))).

Mixing Phase. The list of ciphertexts C0 ← (ci)nS
i=1 posted by the senders on the

bulletin board B is the input to the mixing phase. Starting with the first mix
server M1, each mix server Mk takes Ck−1 as input and performs the following
tasks:

1. Mk decrypts all ciphertexts in Ck−1 under its private key skk:

∀i ∈ {1, . . . , nS} : C ′
k[i] ← Dec(skk, Ck−1[i])

2. Mk chooses a permutation πk over {1, . . . , nS} uniformly at random, and sets

∀i ∈ {1, . . . , nS} : Ck[πk(i)] ← C ′
k[i].

3. Mk posts Ck on the bulletin board B.

The output CnMS
of the last mix server MnMS

is the output of the mixing
phase. It equals (mπ(i))

nS
i=1, where π = πnMS

◦ . . . ◦ π1 is the overall permutation
of the mix net.

4 Trip Wire Technique

We describe how to extend a plain decryption mix net (Sect. 3) with trip wires.
We will show in Sect. 5 that the resulting mix net provides a high level of
verifiability and accountability in the presence of fully malicious mix servers
(Fig. 1).

4.1 Idea

At a high level, the trip wire technique works as follows. The plain decryption
mix net is extended with a number of auditors AD1, . . . ,ADnAD

each of which
executes the submission program of the senders ntw times. For this purpose, ADj

chooses dummy input messages (e.g., 0l) and encrypts them in layers as a normal
user would. The resulting ciphertexts are called ADj ’s trip wires. Furthermore,
ADj stores the random coins that it has used to generate its ntw trip wires.

Now, the plain decryption mix net (with only “main mixing” servers for now)
is run with this extended set of inputs. Once mixing has finished, each auditor
ADj reveals its inner states, including its trip wires’ random coins. With this,
the traces of ADj ’s trip wires through the mix net can publicly be verified. If a
mix server Mk did manipulate one of these dummy traces, this can be detected,
and furthermore Mk can be held accountable through its digital signature (more
on this later).

342 X. Boyen et al.

Fig. 1. Examplified run of a decryption mix net with trip wires, where nAD = 3,
nMS = 3, nS = 3, and ntw = 1. Rectangles and circles symbolize senders’ and auditors’
message traces, respectively.

Even though this high-level description gives some intuition on the “integrity
challenge” underlying the trip wires, verifiability is obviously not yet guaranteed:

1. At the start of the mix, it is clear which input ciphertexts belong to the
senders and which ones to the auditors. Hence, if the first mix server M1 is
malicious, then the adversary can completely manipulate the outcome of the
mix net without being detected.

2. In general, we cannot assume that the auditors are able to simulate the
senders’ message distribution. Therefore, realistically, the auditors’ and the
senders’ plaintext distributions are distinguishable. Now, recall that the last
mix server MnMS

knows the final plaintext output before it publishes it. Hence,
if MnMS

is malicious, then the adversary can undetectably manipulate the out-
come of the mix net.

We propose the following additional mechanisms to address the above problems:

1. Prior to the main mixing, the input ciphertexts are “pre-mixed” using the
same kind of plain decryption mix net, but now run by the auditors. This
phase is called explicit mixing (see below for the reason). Unless all auditors
are corrupted, it is no longer possible, for the original main mixing servers,
to distinguish between the senders’ ciphertexts and the auditors’ trip wires.

2. An additional layer of encryption (whose private key is secret-shared among
the auditors) is added directly to the plain input messages. This is called the
repetition layer. Unless all auditors are corrupted, the last mix server gets to
know only the still encrypted output.

A Verifiable and Practical Lattice-Based Decryption Mix Net 343

Since secrecy of the explicit mixing and of the repetition layer is required
only during main mixing, these two phases can be verified explicitly once the
main mixing has finished. For this purpose, each auditor is supposed to reveal
its explicit-mixing secret key as well as its secret key share of the repetition
encryption layer after the final mix server has published its output.

4.2 Protocol

In this section, we precisely describe how to extend a plain decryption mix net
(Sect. 3) with the trip wire technique.

To preserve readibility, we make the following implicit assumptions:

– Whenever a party (mix server or auditor) holding a verification/signing key
pair publishes information, it signs this data with its secret signing key.

– Whenever a mix server or an auditor deviates from its honest program in
an obvious way (e.g., refuses to participate, or publishes an invalid secret
key), then the protocol aborts immediately and the misbehaving party is
held accountable.

– In order to protect against replay attacks which may affect message privacy
of senders (see, e.g., [9]), ciphertext deduplication is always in effect, where
only the first instance of a multiply occurring ciphertext is retained.

Protocol Participants. The set of protocol participants is extended by a number
of auditors AD1, . . . ,ADnAD

.

Cryptographic Primitives. We additionally use an IND-CCA2-secure (nAD, nAD)-
threshold public-key encryption scheme Ed.3

Setup Phase. The following additional steps are executed.
Each auditor ADj runs the key generation algorithm of the digital signature

scheme S to generate its public/private (verification/signing) keys. The verifica-
tion keys are published on the bulletin board B.

Each auditor ADj runs the key generation algorithm KeyGen of the public-
key encryption scheme E to generate a public/private key pair (pkexplj , skexplj), and
posts the public key pkexplj on the bulletin board B.

Each auditor ADj runs the key share generation algorithm KeyShareGen of
the distributed public-key encryption scheme Ed to generate a public/private
key share pair (pkrepj , skrepj), and posts the public key share pkrepj on the bulletin
board B. From those, using the deterministic algorithm PublicKeyGen, everyone
can then compute the joint public key pkrep.

Altogether, the public parameters consist of the public keys pkexpl1 , . . . , pkexplnAD

for the explicit decryption mix net, the public keys pk1, . . . , pknMS
for the main

decryption mix net, and the joint public key pkrep for the repetition encryption
layer.

3 Note that to jointly decrypt a ciphertext in Ed, all secret key shares are required.

344 X. Boyen et al.

Submission Phase (Senders). Each sender Si first encrypts its message mi under
the auditors’ joint public key pkrep:

crepi = Enc(pkrep,mi).

After that, Si encrypts crepi under the mix servers’ public keys pk1, . . . , pknMS

of the main decryption mix net in reverse order:

cmain
i = Enc(pk1, (. . . ,Enc(pknMS

, crepi))).

Afterwards, Si encrypts cmain
i under the auditors’ public keys pkexpl1 , . . . , pkexplnAD

of the explicit decryption mix net in reverse order:

cexpli = Enc(pkexpl1 , (. . . ,Enc(pkexplnAD
, cmain

i))).

The resulting ciphertext ci ← cexpli is Si’s input to the mix net.

Submission Phase (Auditors). Each auditor ADj executes ntw times the senders’
submission steps described above, every time with (dummy) input message m =
0l (where l is the bit size of a sender’s message). We denote ADj ’s trip wire
ciphertexts by (cnS+(j−1)·ntw+l)

ntw

l=1. Furthermore, ADj stores the random coins
that were used to generate its trip wire ciphertexts.

Mixing Phase. The input to the mixing phase is (ci)i∈Iexpl which consists of
(a subset of)4 the nS ciphertexts submitted by the senders and the nAD · ntw

ciphertexts submitted by the auditors. Then, the overall mixing phase consists
of two consecutive parts:

1. Explicit mixing: The auditors use their secret decryption keys skexpl1 , . . . , skexplnAD

to run the plain decryption mix net (Sect. 3) with input (ci)i∈Iexpl . The output
of this mix net is (c̃main

i)i∈Imain , where Imain ⊆ Iexpl.

2. Main mixing: The mix servers use their secret decryption keys sk1, . . . , sknMS

to run the plain decryption mix net (Sect. 3) with input (c̃main
i)i∈Imain . The output

of this mix net is (c̃repi)i∈Irep , where I rep ⊆ Imain.

Auditing Phase. Each auditor ADj publishes its secret key skexplj associated to
the explicit decryption mix net. With this, everyone can verify that the explicit
mixing was executed correctly. If verification fails, a misbehaving auditor is iden-
tified through its signature and the whole protocol stops.

After that, each auditor ADj publishes the random coins that it used to
create its trip wires. With this, everyone can verify the integrity of trip wires’
traces through the main decryption mix net. If verification fails, a misbehaving
mix server is identified and the whole protocol stops.

Final Decryption Phase. Each auditor ADj publishes its secret key share skrepj

on the bulletin board B. Then, for each ciphertext c̃repi (i ∈ I rep), the decryption
key share is publicly computed: decrepj,i ← DecShare(skrepj , c̃repi). After that, the

4 Recall that ciphertext duplicates or invalid ciphertexts are continuously removed.

A Verifiable and Practical Lattice-Based Decryption Mix Net 345

decryption shares are combined to decrypt c̃repi : m̃i ← Dec(decrep1,i , . . . , dec
rep
nAD,i).

Alternatively, and more efficiently if the threshold encryption scheme supports
it (it normally would), the joint secret key skrep iz explicitly reconstituted from
the published secret key shares (skrepj)j∈[nAD] and from there using skrep each
ciphertext c̃repi is directly decrypted into m̃i.

The list of decrypted messages (m̃i)i∈Irep is the final outcome of the mix net.

5 Verifiability

In this section, we analyze verifiability of the decryption mix net with trip wires
in the generic verifiability framework by Küsters, Truderung, and Vogt [25]. We
briefly recall a specific instance of their general framework (Sect. 5.2) that was
previously applied to analyze a number of further mix nets [18,23,24,26] and
that we now apply to the decryption mix net with trip wires (Sect. 5.3).

5.1 Notation

The decryption mix net extended with the trip wire technique can be modeled
in a straightforward way as a protocol P tw

DMN(nS, n
hon
S , nMS, nAD, ntw), described

next. The protocol participants consist of nS senders (in total), nhon
S honest

senders, nMS mix servers, nAD auditors, a scheduler SC, and a public append-only
bulletin board B. The scheduler SC plays the role of the mix net authority and
schedules all other agents in a run according to the protocol phases. We assume
that SC and the bulletin board B are honest, i.e., they are never corrupted. While
SC is merely a virtual entity, in reality, B should be implemented in a distributed
way (see, e.g., [13,22]). The parameter ntw denotes the number of trip wires per
auditor.

5.2 Verifiability Definition

Intuitively, a mix net is verifiable if an incorrect final outcome is not accepted.
More precisely, an outcome of the mix net should be rejected if it does not
correspond to the actual input as provided by the senders. However, such a näıve
definition of verifiability would be too strong for most reasonably verifiable mix
nets. Instead, the intuitive definition is judiciously adjusted as follows:

1. Completeness is relaxed such that an incorrect outcome may falsely be
accepted with some (small) probability δ ∈ [0, 1]. This parameter is called
the verifiability tolerance of the mix net.

2. Many verifiable mix nets (besides the ones equipped with a proof of correct
shuffle) do not aim to ensure that all input messages are reflected correctly in
the final outcome but almost of them. Therefore, we allow for manipulating
a small number of k input messages. (Typically, the verifiability tolerance
δ = δk decreases when k increases.)

346 X. Boyen et al.

3. Since corrupted senders may not (necessarily) complain in case their messages
were dropped or manipulated by a colluding mix net authority (e.g., mix
server), it is often sufficient to guarantee the integrity of the final result only
w.r.t. the honest input messages (as long as no input message stuffing by
dishonest senders occurs.)

These refinements lead to the following expressive, widely applicable and
currently accepted definition of verifiability. Due to space limitations, we state
it informally, and refer to [25] for the complete formal definition.

Definition 1 (Verifiability (informal)). A mix net protocol P provides
(δ, k)-verifiability if and only if an outcome of the mix net is accepted with prob-
ability at most δ in case more than k honest input messages were manipulated
(or any dishonest messages were inserted).

5.3 Verifiability Result

We are now able to precisely state the verifiability level offered by the decryption
mix net with trip wires according to Definition 1. The level depends on the
number of honest senders nhon

S and the number of dummy messages per auditor
ntw, as described in Sect. 5.1.

Assumptions. We prove the verifiability result under the following assumptions:

(V1) The public-key encryption scheme E is IND-CCA2-secure.
(V2) The (nAD, nAD)-threshold public-key encryption scheme Ed is IND-CCA2-

secure.
(V3) The signature scheme S is EUF-CMA-secure.
(V4) The scheduler SC, the bulletin board B, and at least one auditor are honest.
(V5) For all honest senders and auditors, the length of the message plaintext

has the same size in each run of the protocol (given a security parameter).
(V6) For E and Ed, we require that for any two plaintexts of the same length,

their encryption always yields ciphertexts of the same length.

Our Result. Intuitively, the following theorem states that the probability that,
in a run of the trip wire decryption mix net, more than k honest sender inputs
have been manipulated, but the final result of this run is nevertheless accepted,
is bounded by a function δk(nhon

S , ntw) which we can quantify.

Theorem 1 (Verifiability). Under the assumptions (V1) to (V6) stated above,
the decryption mix net protocol with trip wires P tw

DMN(nS, n
hon
S , nMS, nAD, ntw)

is (δk(nhon
S , ntw), k)-verifiable, where

δk(nhon
S , ntw) =

(
nhon
S

k+1

)

(nhon
S +ntw

k+1

) .

A Verifiable and Practical Lattice-Based Decryption Mix Net 347

The main reasoning behind this theorem is as follows. Since the explicit mix-
ing and the shared decryption of the repetition layer are perfectly verifiable, an
adversary can only manipulate honest senders’ messages in the main mix net
without being detected. However, due to the IND-CCA2-security of the under-
lying public-key encryption schemes, the adversary has to do this manipulation
“blindly” as the nhon

S + ntw ciphertexts related to the honest input parties (one
ciphertext for each of the nhon

S honest senders plus ntw ciphertexts by the honest
auditor) are indistinguishable. Now, if an adversary wants to manipulate k + 1
honest inputs, the probability that he is not caught cheating is captured by the
following urn experiment. An urn contains nhon

S white and ntw black balls, rep-
resenting honest messages and trip wires respectively. Upon picking k + 1 balls
from this urn without replacement, the probability that none of the removed
balls was black (i.e., no trip wire was touched) is exactly

(
nhon
S

k+1

)
/
(
nhon
S +ntw

k+1

)
.

Importantly, for all k, the verifiability tolerance δk(nhon
S , ntw) is bounded by

(nhon
S /(nhon

S + ntw))k+1 which converges exponentially fast to 0 in the number
of manipulated honest inputs k. For example, if we choose ntw = nS, then the
adversary’s risk is more than 90% for manipulating more than 4 honest messages,
and even more than 99% for manipulating more than 7 honest messages.

Theorem 1 follows immediately from the even stronger result of accountability
which we state and formally prove in our technical report [7]. Precisely, we show
that a decryption mix net with trip wires even provides individual accountability.
This security property not only guarantees that the correctness of the mix net
outcome can be verified and adjudicated externally, but also that misbehaving
parties can be identified and held accountable. Since Küsters et al. [25] proved
that accountability is a stronger form of verifiability, the formal proof of our
accountability result [7] implies the verifiability result (Theorem 1) stated above.

6 Implementation

In terms of efficiency, the core component of the verifiable mix net protocol is
the (post-quantum) IND-CCA2-secure public-key encryption scheme: this com-
ponent must be fast and robust enough to process thousands, possibly millions,
of untrusted encrypted ballots, and do so safely and efficiently. Decryption per-
formance is of particular importance since each mix server will be decrypting
(one layer of) the entire set of encrypted ballots, while encryption is naturally
done piecemeal in a distributed way by the individual voters. Encryption perfor-
mance will start to matter (for the auditors) if the number of trip wires is large,
or (for the voters) if there are many mix servers hence encryption layers.

6.1 Design

We implement essentially the textbook Regev scheme (technically its dual),
which is provably secure under the now-classic LWE hardness assumption [30].
Our implementation attempts to remain faithful to the theoretical scheme, but
rearranges it to optimize its computation. We merely summarize the salient

348 X. Boyen et al.

points in Appendix A, while referring the reader to standard texts or surveys
on lattice-based cryptography for background. We also elaborate on our imple-
mentation rationale in our technical report [7], in particular on why we refrained
from choosing one of the current NIST proposals.

6.2 Technical Details

The concrete IND-CCA2-secure scheme we implement is a hybrid consisting of
a lattice-based CCA2-secure KEM, combined with an AES256-based DEM with
MAC. The KEM closely follows the original Regev cryptosystem [30]. For effi-
ciency, much of the secret data is obtained from privately or randomly seeded
AES256-based PRNG, and likewise much of the public key is generated on the
fly from a publicly seeded AES128-based PRNG. The data is aligned and ordered
so as to maximize performance of decryption over that of encryption. Standard
techniques are used to provide chosen-ciphertext security for each of the KEM
and the DEM, albeit only implicitly in the sense of [6], causing malformed cipher-
texts to decrypt indistinguishably randomly rather than be explicitly rejected.

Our implementation targets the 240-bit security level, and accordingly uses
240-bit or wider data paths everywhere including the KEM-crypted symmetric
session key and the DEM redundancy. As stated, we erred on the side of over-
shooting our target, and used lattices of dimension n = 1024, modulus q = 216

and sampler-mandated LWE discrete Gaussian noise σ ≈ 2, providing sufficient
headroom to reliably encode 5-bit payload per 16-bit ciphertext component.
These parameters are conservative but not normative, and were selected mainly
for the purpose of conducting a realistic performance evaluation.

As stated in the theoretical part of the paper, the final decryption (in the
repetition layer) does not need to operate as a true threshold scheme, as long as
the private key can be reconstituted from the revealed private-key shares. Regev
key generation supports this, by linearity of the public key in the private key.
We can thus reuse the same implementation for the final layer, by letting each
auditor create its own private-key share and publish the corresponding share
of the public key. The “dependent part” of the public key is reconstituted as
the modular sum of the public shares. The “independent part” of the public key,
namely the large public matrix “A”, does not need to be shared and continues to
be pseudorandomly expanded from a public random seed that the auditors will
have agreed on. The private-key shares eventually revealed by the auditors can
be verified for correctness based on the corresponding public-key shares, before
the final decryption of the repetition layer takes place.

Our implementation is completely independent and does not borrow any code
from anywhere, other than a few lines for the canonical usage of AESNI.

6.3 Local-Scale Performance

Our test platform is a 2019 Dell XPS 13 Intel i7-8565U CPU, fully mitigated
in microcode and OS (Linux) against all known speculative execution/loading
attacks, and running a single core 4.1 GHz measured clock frequency. At the

A Verifiable and Practical Lattice-Based Decryption Mix Net 349

240-bit target security level, using 1024-dimension lattices, the performance of
our IND-CCA2 subsystem (assuming 240-bit canary and 16-bit payload for the
DEM plaintext) is as follows:

– Public-key size: 93 kB
– Ciphertext overhead incl. canary: 2.3 kB
– Key generation time: 36 µs (0.036 s)
– Encryption time: 201 µs (0.000201 s)
– Decryption time: 133 µs (0.000133 s)

For the verifiable mix net application, except when the number of ballots is
extremely small, the processing time for each mix layer will be almost entirely
dominated by the time it takes to decrypt the incoming ballots. As one would
expect, the total decryption time for one layer of the mix net using a single core
scales almost perfectly linearly with the number of ballots (see Sect. 6.4), and
we measure (on the same hardware as above):

– 7500 ballots in 1.02 s, or
– 1 million ballots in 132.22 s.

In practice, the decryption running time for a large number of independent
ciphertexts can be divided almost exactly by the number of available CPU cores.

6.4 Whole-System Performance

The random permutation of the ballots in each layer of the mix net does not add
any appreciable time to the mixing, as long as it can be assumed that the entire
set fits in random-access memory (normally a reasonable assumption). Likewise,
while lattice-based signatures are generally much more expensive than lattice-
based encryption, the overhead of issueing a single signature on the published
mix does not make any difference with a large number of ballots.

Therefore, when considering the performance of the entire mix net, the two
principal factors are the sequential nature of the encryption and decryption
operations (by the voter and the mix servers respectively), and the growth of
the multi-layer encrypted ballot with the number of layers. Clearly, the first
consideration introduces a linear factor in the total mixing time, since each mix
server must finish its mixing task on the entire set of ballots before certifying
the result and passing the baton to the next mix server.

The ciphertext growth is also linear in the number of layers (or equivalently,
mix servers). In our implementation at 240-bit security level, each layer adds an
overhead of 2.3 kB (consisting of 2.1 kB of KEM data plus 0.2 kB of redundancy,
to be added to the size of the plaintext, which in every layer except the first one
is the total size of the previous layer’s ciphertext). In theory, this makes the total
mixing time quadratic in the number n of mix servers as n → ∞. In practice,
however, the hybrid encryption and decryption running times are dominated
by the public-key KEM component, the processing of which at each layer is
independent of the size of the DEM hence the number of layers.

350 X. Boyen et al.

Our experiments (Table 1) show the evolution of encryption and decryption
running time of one layer of the “onion” or encrypted ballot, in function of the
number of layers of encryption beneath it (level 0 indicates direct encryption of
the plaintext vote, while level 1,000,000 is clearly impractical and provided only
to show asymptotic behavior).

Table 1. Encryption/decryption times and ciphertext size in function of layer height.

layers ctx size (kB) Encrypt time Decrypt time

0 2,144 201 us 133 us

1 4,256 201 us 134 us

10 23,264 209 us 141 us

30 65,504 214 us 154 us

100 213,344 254 us 194 us

300 635,744 368 us 308 us

1,000 2,114,144 792 us 753 us

1,000,000 2,112,002,144 0.641 s 0.607 s

In practice, each layer corresponds to a different mixing server, so the total
number of layers will likely remain small (less or much less than 100). Nev-
ertheless, the experiments show that encryption and decryption times remain
essentially constant (per layer) far beyond the range of practical applications,
and that it is the size of the encrypted onions, rather than the time to encrypt
or decrypt them, that is likely to be a limiting factor. The asymptotic linearity
of encryption and decryption times (for each layer) only starts to show at very
high numbers of layers. We also note that only the total number of layers and
the total number of ciphertexts will matter, in terms of performance. How these
are partitioned between explicit and main mixers, as well as between actual and
trip wire ballots, has no significant impact on running time.

On the voter’s size, encrypting a complete onion even for an exceedingly
large 1000-layer mixnet would still require less than one second on most modern
commodity consumer hardware.

7 Discussion

In this section, we discuss the main properties of the decryption mix net with
trip wires.

Verifiability and Accountability. We have formally proven that, even if all mix
servers are malicious, an adversary’s risk of being caught cheating is high.

More precisely, our accountability result implies that, if an adversary wants
to manipulate more than k honest inputs, then (at least) one misbehaving mix
server is identified with probability at least 1 − (nhon

S /(nhon
S + ntw))k+1, where

A Verifiable and Practical Lattice-Based Decryption Mix Net 351

nhon
S is the given number of honest senders and ntw is the given number of trip

wires per auditor. In particular, an adversary knows upfront that its risk of
being caught cheating converges exponentially fast against 1 in the number of
manipulated messages k.

Moreover, recall that during the main mixing, both the explicit mixing and
the repetition layer are still locked. Hence, even if the race between two candi-
dates A and B was very close, an adversary trying to manipulate the election
outcome in favor of A by swapping just a few votes from B to A, has to do this
“blindly”. In particular, the adversary may accidentally swap a message from A
to A. Hence, an adversary’s chance of successfully manipulating the outcome is
significantly reduced, independently of whether the adversary is caught cheating
or not.

Altogether, for applications like secure e-voting where misbehaving parties
have to face severe financial or legal penalties, an adversary knows a priori that
manipulating the mix net outcome would be completely unreasonable.

External Auditing. At a high level, the verification procedure of the trip wire
mix net can be regarded as an “integrity experiment” that is run between an
adversary (controlling all mix servers) and an external auditor who challenges
the adversary by “injecting” trip wires. If the adversary is able to manipulate (a
significant number of) honest inputs without touching one of the trip wires, then
the adversary wins. Our verifiability/accountability result (see above) provides
an upper bound for an adversary’s advantage in this experiment.

Obviously, the external auditor needs to be trusted for the integrity experi-
ment but this trust assumption is mitigated by two means. First, the auditor’s
role can easily be distributed among several auditors, only one of which needs to
be trusted. Second, the auditor opens its complete inner states once the integrity
challenge has finished so that the correctness of its internal computation can
publicly be verified.

Privacy. The original purpose of employing a mix net is to break the individual
links between the senders and their plain input messages. This property is called
(message) privacy. Assuming one honest mix server and one honest auditor, the
trip wire mix net guarantees privacy. A formal proof of this statement can be
based on a sequence of games similar to the one of our accountability proof.

Post-quantum Practicality. We experimentally benchmarked our verifiable mix
net scheme using an optimized post-quantum IND-CCA2-secure hybrid encryp-
tion scheme, consisting of a lattice-based CCA2-secure KEM, combined with
an AES256-based DEM/MAC. The benchmarks on our prototype demonstrate
that our verifiable mix net with trip wires is highly practical, even for large-scale
elections run entirely on commodity hardware.

Example: Practical PQ-secure e-voting. We now demonstrate how to put all these
pieces together. For this purpose, we consider two different kinds of elections,
one with few and one with many voters. Clearly, for an election with few voters,
manipulating just a single message can have a major impact on the election
result with significant probability, whereas this is much less likely for an election

352 X. Boyen et al.

with many voters. In what follows, we exemplify how the decryption mix net
with trip wires can be set up to take this aspect into account.

Assume we have one election with 100 and one with 100,000 voters. We choose
ntw = 100, 000 for both elections. (For the sake of simplicity, we assume that all
voters are honest, i.e., nS = nhon

S .) From the verifiability theorem, it follows
that the risk of being caught cheating is ≥99% both in the election with 100
voters for manipulating k ≥ 1 votes, and in the election with 100,000 voters for
manipulating k ≥ 7 votes. Therefore, in both cases, an adversary knows upfront
that tampering significantly with the election result is extremely risky.

At the same time, our benchmarks demonstrate that increasing ntw, and
hence tightening the verifiability tolerance, is practically negligible for appli-
cations like secure e-voting where the tallying phase is typically not too time-
critical.

8 Conclusion

We have presented the first practical and verifiable lattice-based decryption mix
net with external auditing which can be dropped into existing e-voting schemes.
Our mix net is fully implemented and supports arbitrarily many authorities.

Acknowledgements. All authors acknowledge support from the Luxembourg
National Research Fund (FNR) and the Research Council of Norway for the joint
INTER project SURCVS (Number 11747298). Xavier Boyen thanks the Australian
Research Council for support as Future Fellow under ARC grant FT140101145.

A Optimizations

As mentioned in Sect. 6, our implementation attempts to remain faithful to
Regev’s theoretical scheme [30], but rearranges it to optimize its computation.
In what follows, we summarize the salient points.

Our first optimization, which does deviate from the theoretical scheme, is,
rather than to publish the encryption key as a truly random matrix, we publish
a random seed from which the key is pseudo-randomly generated it using AES.
This is a trick used by several NIST submissions, including the “front runners”
still in play, but we have the opportunity to do it much faster without function
calls as explained in our technical report [7].

We also mentioned the use of a strictly data-independent integer Gaussian
sampler for generating the secret LWE noise. Using the Central Limit Theo-
rem, we build a novel circuit-based sampler, which, when paired with hardware-
accelerated AES, is able to produce i.i.d. integer samples of zero mean and small
fixed variance (e.g., σ ≈ 2) with provable 64-bit or 128-bit accuracy, suitable
as LWE noise, in a few clock cycles.5 For comparison, we note that FrodoKEM

5 Sampling accuracy is here meant in the sense of KL divergence to a true integer
Gaussian; clearly the output itself is just a small integer that fits in a few bits.

A Verifiable and Practical Lattice-Based Decryption Mix Net 353

which also implements plain-LWE Regev encryption, samples from a cumula-
tive probability table of about 20-bit effective accuracy, and goes to lengths to
show that this is okay. Our equally fast sampler is far more accurate, and closely
matches the theoretical Regev scheme which requires high accuracy. It is also
data-independent (unlike table lookups whose access patterns could lead to cer-
tain cache-based side-channel leakage). The main downside of our sampler is
that it is highly inflexible and specifically suited for that particular usage.6

Another extension to the textbook Regev scheme that we make, is the addi-
tion of an “all-or-nothing” transform such as [16] to obtain chosen-ciphertext
security, as is standard practice. Unlike [16], though, our all-or-nothing trans-
form does not cause invalid ciphertexts to be rejected, but only scrambled (or
randomized), as proposed in [6]. We do this to ensure that there truly is no data-
dependent test anywhere in the crypto code. We still get true CCA2 security,
and we can recover the classic explicit rejection behavior simply by adding and
testing a known string such as 0λ to the plaintext, i.e., outside of the crypto
code, to act as a “canary”.

Other that those differences, the mathematical functions computed by
our implementation are functionally very similar to the NIST submission
FrodoKEM, which both implement the Regev scheme. This allows us to borrow
from its extensive security analyses and use similar lattice dimension parameters
to target similar security levels. In particular, we were pleasantly surprised that
the FrodoKEM designers chose a Gaussian noise variance parameter close to that
which was forced on us by our optimized but inflexible sampler circuit design—
making their analysis a good match for our implementation. Nevertheless, to
err on the side of caution, we collected lattice hardness estimates from multiple
sources and, seeing that they loosely agreed with the FrodoKEM recommenda-
tions, we still rounded up the main lattice dimension to the higher power of 2.
Minor optimizations included selecting the modulus q = 216 “sizeof(short)”
for its ability to give us vectorized (SIMD) modular reductions for free.7

We reiterate that our optimizations mostly affect not what we compute but
how we compute it. Unbound from the NIST rules, our code is not only faster, but
also safer, not in a cryptographic sense but against side-channel attacks. None
of our code borrows from the NIST contest; we merely frame this discussion in
relation with NIST to preempt any preconception than official standardization
would necessarily produce an optimal outcome.

6 Describing and analyzing the sampler is very much out of the scope of this paper,
but it is one example of a very impactful optimization we could make that does not
involve what we compute, only how we do it.

7 FrodoKEM had nearly the same idea, but for reasons unclear chose q = 215 not 216,
perhaps because they could not use x86 64 vectorization intrinsics.

354 X. Boyen et al.

References

1. Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 30

2. Adida, B., Wikström, D.: Offline/online mixing. In: Arge, L., Cachin, C., Jur-
dziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484–495.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8 43

3. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505–510 (2019)

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

5. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

6. Boyen, X.: Miniature CCA2 PK encryption: tight security without redundancy. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 485–501. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 30

7. Boyen, X., Haines, T., Mueller, J.: A verifiable and practical lattice-based decryp-
tion mix net with external auditing. IACR Cryptology ePrint Archive, 2020:115
(2020)

8. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

9. Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
In: IEEE CSF 2011, pp. 297–311 (2011)

10. Costa, N., Mart́ınez, R., Morillo, P.: Proof of a shuffle for lattice-based cryptogra-
phy. In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS,
vol. 10674, pp. 280–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70290-2 17

11. Costa, N., Mart́ınez, R., Morillo, P.: Lattice-based proof of a shuffle. IACR Cryp-
tology ePrint Archive, 2019:357 (2019)

12. Culnane, C., Ryan, P.Y.A., Schneider, S.A., Teague, V.: vVote: a verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

13. Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable
voting systems. In: IEEE CSF 2014, pp. 169–183 (2014)

14. Fauzi, P., Lipmaa, H., Siim, J., Zaj ↪ac, M.: An efficient pairing-based shuffle argu-
ment. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp.
97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 4

15. Fauzi, P., Lipmaa, H., Zaj ↪ac, M.: A shuffle argument secure in the generic model.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 841–
872. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 28

16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2011). https://doi.org/10.1007/s00145-
011-9114-1

17. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 22

https://doi.org/10.1007/978-3-540-70936-7_30
https://doi.org/10.1007/978-3-540-70936-7_30
https://doi.org/10.1007/978-3-540-73420-8_43
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-540-76900-2_30
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-662-53890-6_28
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/3-540-44647-8_22

A Verifiable and Practical Lattice-Based Decryption Mix Net 355

18. Haines, T., Müller, J.: SoK: techniques for verifiable mix nets. In: IEEE CSF 2020
(2020, to appear)

19. Hébant, C., Phan, D.H., Pointcheval, D.: Linearly-homomorphic signatures and
scalable mix-nets. IACR Cryptology ePrint Archive, 2019:547 (2019)

20. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: USENIX Security Symposium 2002, pp. 339–
353 (2002)

21. Khazaei, S., Moran, T., Wikström, D.: A mix-net from any CCA2 secure cryp-
tosystem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
607–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 37

22. Kiayias, A., Kuldmaa, A., Lipmaa, H., Siim, J., Zacharias, T.: On the security
properties of e-voting bulletin boards. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 505–523. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 27

23. Küsters, R., Müller, J., Scapin, E., Truderung, T.: sElect: a lightweight verifiable
remote voting system. In: IEEE CSF 2016, pp. 341–354 (2016)

24. Küsters, R., Truderung, T.: Security analysis of re-encryption RPC mix nets. In:
IEEE EuroS&P 2016, pp. 227–242 (2016)

25. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: ACM CCS 2010, pp. 526–535 (2010)

26. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of chaumian mix nets with
randomized partial checking. In: IEEE SP 2014, pp. 343–358 (2014)

27. Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive
zero-knowledge shuffle argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32928-9 27

28. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS
2001, pp. 116–125. ACM (2001)

29. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 21

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, 2005, pp. 84–93 (2005)

31. Schneier, B.: Applied Cryptography - Protocols, Algorithms, and Source Codein
C, 2nd edn. Wiley, Hoboken (1996)

32. Strand, M.: A verifiable shuffle for the GSW cryptosystem. In: Zohar, A., Eyal, I.,
Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018. LNCS,
vol. 10958, pp. 165–180. Springer, Heidelberg (2019). https://doi.org/10.1007/978-
3-662-58820-8 12

33. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12678-9 7

34. Verificatum Mix Net (VMN). https://www.verificatum.org/html/product vmn.
html

35. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 15

https://doi.org/10.1007/978-3-642-34961-4_37
https://doi.org/10.1007/978-3-642-34961-4_37
https://doi.org/10.1007/978-3-319-98113-0_27
https://doi.org/10.1007/978-3-319-98113-0_27
https://doi.org/10.1007/978-3-642-32928-9_27
https://doi.org/10.1007/978-3-642-32928-9_27
https://doi.org/10.1007/3-540-48285-7_21
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-642-12678-9_7
https://www.verificatum.org/html/product_vmn.html
https://www.verificatum.org/html/product_vmn.html
https://doi.org/10.1007/11593447_15

356 X. Boyen et al.

36. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02620-1 28

37. Wikström, D., Groth, J.: An adaptively secure mix-net without erasures. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 276–287. Springer, Heidelberg (2006). https://doi.org/10.1007/
11787006 24

https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/11787006_24
https://doi.org/10.1007/11787006_24

A Lattice-Based Key-Insulated and
Privacy-Preserving Signature Scheme
with Publicly Derived Public Key

Wenling Liu1,2, Zhen Liu1(B), Khoa Nguyen3, Guomin Yang4, and Yu Yu1,2(B)

1 Shanghai Jiao Tong University, Shanghai, China
{lingeros,liuzhen,yyuu}@sjtu.edu.cn

2 Shanghai Qi Zhi Institute, Shanghai, China
3 Nanyang Technological University, Singapore, Singapore

khoantt@ntu.edu.sg
4 University of Wollongong, Wollongong, Australia

gyang@uow.edu.au

Abstract. As a widely used privacy-preserving technique for cryptocur-
rencies, Stealth Address constitutes a key component of Ring Confiden-
tial Transaction (RingCT) protocol and it was adopted by Monero, one of
the most popular privacy-centric cryptocurrencies. Recently, Liu et al.
[EuroS&P 2019] pointed out a flaw in the current widely used stealth
address algorithm that once a derived secret key is compromised, the
damage will spread to the corresponding master secret key, and all the
derived secret keys thereof. To address this issue, Liu et al. introduced
Key-Insulated and Privacy-Preserving Signature Scheme with Publicly
Derived Public Key (PDPKS scheme), which captures the functionality,
security, and privacy requirements of stealth address in cryptocurren-
cies. They further proposed a paring-based PDPKS construction and
thus provided a provably secure stealth address algorithm. However,
while other privacy-preserving cryptographic tools for RingCT, such as
ring signature, commitment, and range proof, have successfully found
counterparts on lattices, the development of lattice-based stealth address
scheme lags behind and hinders the development of quantum-resistant
privacy-centric cryptocurrencies following the RingCT approach.

In this paper, we propose the first lattice-based PDPKS scheme and
prove its security in the random oracle model. The scheme provides

Z. Liu—Supported by the National Natural Science Foundation of China (No.
61672339) and the National Cryptography Development Fund (No. MMJJ20170111).
K. Nguyen—Supported by the Gopalakrishnan - NTU Presidential Postdoctoral Fel-
lowship 2018.
G. Yang—Supported by the Australian Research Council Discovery Project
DP200100144.
Y. Yu—Supported by the The National Key Research and Development Program of
China (Grant No. 2018YFA0704701), National Natural Science Foundation of China
(Grant Nos. 61872236 and 61971192), the National Cryptography Development Fund
(Grant No. MMJJ20170209), and the Major Program of Guangdong Basic and Applied
Research (Grant No. 2019B030302008).

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 357–377, 2020.
https://doi.org/10.1007/978-3-030-59013-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_18

358 W. Liu et al.

(potentially) quantum security not only for the stealth address algo-
rithm but also for the deterministic wallet. Prior to this, the existing
deterministic wallet algorithms, which have been widely adopted by most
Bitcoin-like cryptocurrencies due to its easy backup/recovery and trust-
less audits, are not quantum resistant.

Keywords: Lattice-based · Signature · Privacy preservation · Stealth
address

1 Introduction

The past decade has witnessed the rapid development of cryptocurrencies since
the invention of the Bitcoin [20]. Bitcoin had been regarded as an innovative pay-
ment network with high anonymity, and its emergence brings the prosperity of
blockchain technology and cryptocurrency. However, as shown by [17,26], Bitcoin
is not truly “anonymous” but only “pseudonymous”. In Bitcoin-like cryptocur-
rency systems, digital signature schemes are used to authorize and authenticate
transactions. Each coin is assigned a public key and a value, where the pub-
lic key specifies the ownership of the coin. When a user wants to spend a coin
(pkin, v) and transfer the value to another owner with public key pkout, he issues
a transaction tx that takes in (say, consumes) the coin (pkin, v) and outputs (say,
generates) a new coin (pkout, v), and associate the transaction with a signature
σ which is valid with respect to the transaction (as the signed message) and the
spent coin’s public key pkin. Bitcoin achieves only pseudonym since information
including the sender, the receiver, and the amount of the transactions are public
and accessible to all participants.

Note that privacy preservation is one of the top desired features for cryptocur-
rencies, since the privacy weakness in Bitcoin was identified [17,26], enhancing
user’s privacy in cryptocurrencies has attracted much attention from commu-
nity [6,13,19,27]. Among the proposed privacy-preserving technologies, Stealth
Address [28,29], provides a simple yet efficient way to enhance privacy by hiding
the receiver of transactions. Roughly speaking, stealth address is a key-derivation
mechanism. In a cryptocurrency system with the stealth address, each user pub-
lishes his long-term master public key MPK, and if a payer, say Alice, wants to
transfer funds to a payee, say Bob, she can generate a fresh derived public key
dpk from Bob’s master public key MPKB and use dpk to specify the receiver of
the transaction, without any interaction with Bob. On the other side, to spend
the coin on such a dpk, Bob can generate a corresponding derived secret key
dsk use his long term master secret key MSKB, and then generate a signature
that can be verified using dpk only. In such a mechanism, the receiver’s mas-
ter public key (referred to as ‘address’ in cryptocurrency) never appears in the
transactions or on the blockchain, and neither the derived public key or the sig-
nature leaks any information about the master public key. Due to its simplicity
and convenience (i.e., each coin is assigned a fresh derived public key, and no
interaction between the payer and payee) and privacy-preserving virtues, stealth

A Lattice-Based PDPKS Scheme 359

address has been widely adopted by many cryptocurrencies. Particularly, stealth
address is a core component of RingCT protocol for Monero [21], which is one
of the most popular privacy-centric cryptocurrencies and ranks the 14th in all
cryptocurrencies in terms of market capitalization [9].

Recently, Liu et al. [16] have pointed out the current widely used stealth
address algorithms [28,29] suffers a security flaw in designs. In particular, once
a derived secret key was compromised, the damage would spread to the corre-
sponding master secret key, and all the derived secret keys thereof. To address
this problem, Liu et al. [16] introduced and formalized the concept of Signature
Scheme with Publicly Derived Public key (PDPKS), capturing the functional-
ity, security, and privacy requirements that steal address should satisfy when
applied in cryptocurrencies in practice. Liu et al. also proposed a pairing-based
construction, with provable security and privacy based on the discrete logarithm
assumption. It is worth mentioning that, as shown by Liu et al. [16], a PDPKS
scheme does not only implies a secure stealth address algorithm, but also implies
a secure deterministic wallet [31] algorithm, supporting the promising applica-
tions such as easy backup and recovery, trustless audits, treasurers allocating
funds to departments.

On the other side, due to the advance of quantum computing technologies,
quantum-resistant cryptography, especial lattice-based cryptography has been
attracting much attention and making significant progress. Cryptocurrency is
also developing towards post-quantum cryptocurrencies. However, to the best of
our knowledge, as so far, quantum-resistant stealth address algorithm satisfying
the functionality, security, and privacy requirements captured by Liu et al.’s work
[16] has not been proposed yet. This lags behind other privacy-preserving cryp-
tographic primitives for cryptocurrencies. In particular, in the RingCT approach
for building privacy-centric cryptocurrencies, linkable ring signature, stealth
address, and commitment with range proof are used to hide the transaction’s
sender, receiver, and amount, respectively. While lattice-based linkable ring sig-
nature schemes [15,30] and lattice-based commitment with range proof schemes
[10,32] have been proposed, the lack of lattice-based stealth address schemes is
hindering the development of quantum-resistant privacy-centric cryptocurrencies
following the RingCT approach.

1.1 Our Results

In this paper, we propose a lattice-based PDPKS construction, and prove the
security and privacy in the random oracle model, based on the hardness of the
Learning With Errors (LWE) problem [25]. As our construction satisfies the
definitions and models on functionality, security, and privacy by Liu et al. [16],
our lattice-based PDPKS construction provides potential quantum-resistance for
both the stealth address algorithm and the deterministic wallet scheme.

As for many LWE-based cryptographic constructions with advanced features,
the public key and signature sizes of our construction are still too large for
practical use. We do not want to oversell our results, but take this as a stepping-
stone towards the goal of practical and quantum-resistant stealth address, as

360 W. Liu et al.

this is the first concrete instantiation of PDPKS scheme that has the potential
to be resistant against quantum computers.

To enable the signature scheme with publicly derived public key, where the
compromising of a derived secret key will not impact other secret keys, we resort
to the techniques of lattice basis delegation [1,2,8]. We noticed that the delega-
tion algorithm by Agrawa et al. [1] has the property that the delegated lattice
conceals the original one. Note that when PDPKS is applied in cryptocurrency,
to achieve that no attackers can learn the master public key from the derived
public key and corresponding signatures, we have to make sure that only the
payee who owns the corresponding master secret key can know the secret infor-
mation that was used by the payer to create a derived public key. To achieve
this, we resort to the key-private public key encryption introduced by Bellare
et al. [5]. Due to the adversary’s adaptively querying of derived public keys in
the privacy game, an adaptive key-indistinguishable PKE scheme is needed in
our scheme. However, to the best of our knowledge, no explicit construction of
quantum-resistant key-indistinguishable PKE has been proposed prior to us. To
construct such PKE scheme, We start the passive key-indistinguishable Regev’s
LWE-based PKE scheme and prove the Fujisaki-Okamoto transformation [11]
transforms a passively key-indistinguishable PKE scheme to an adaptively key-
indistinguishable one.

1.2 Related Work

Liu et al. [15] proposed a lattice-based linkable ring signature scheme with stealth
address, but the security model does not consider the case that derived secret
keys are generated and compromised, while all the signatures are generated
using the master secret key. The setting increases the risk of the master key
being compromised and cannot support the applications of deterministic wallet,
such as treasurers allocating funds to departments.

2 Preliminary

In this section, we review the definition of PDPKS by Liu et al. [16] and some
lattice-based background as well as the definition of PKE with key-privacy [5].

2.1 Definition of Publicly Derived Public Key Scheme

Syntax. A PDPKS scheme consists of the following polynomial-time algorithms:

– Setup(1λ) → PP. On input the security parameter 1λ, the algorithm outputs
the public parameter PP.

– MasterKeyGen(PP) → (mpk,msk). On input the public parameter PP, the
algorithm outputs a master public-secret key pair (mpk,msk).

– DpkDerive(PP,mpk) → dpk. On input the public parameter PP and a master
public key mpk, the algorithm outputs a derived public key dpk. We say such
a dpk is linked to mpk.

A Lattice-Based PDPKS Scheme 361

– DpkCheck(PP,mpk,msk, dpk) → 1/0. On input the public parameter PP, a
master key pair (mpk,msk), and a derived public key dpk, the algorithm
outputs a bit b ∈ {0, 1}, with b = 1 meaning that dpk is linked to mpk and
b = 0 otherwise.

– DskDerive(PP,mpk,msk, dpk) → dsk. On input the public parameter PP, a
master key pair (mpk,msk), and a derived public key dpk that is linked to
mpk, the algorithm outputs a derived secret key dsk corresponding to dpk.

– Sign(PP, dpk, μ, dsk) → s. On input the public parameter PP, a derived public
key dpk, a message μ, and a derived secret key dsk corresponding to dpk, the
algorithm outputs a signature s.

– Verify(PP, dpk, μ, s) → 1/0. On input the public parameter PP, a derived
public key dpk, a message μ, and a signature s, the algorithm outputs a bit
b ∈ {0, 1}, with b = 1 meaning valid and b = 0 meaning invalid.

For a cryptocurrency system with PDPKS scheme, it runs the PP ←
Setup(1λ) and publish PP to all participants. Each participant can run the
(mpk,msk) ← MasterKeyGen(PP) to obtain his long-term master key pair and
publish mpk. When a payer, say Alice, wants to pay the payee, say Bob,
Alice runs dpk ← DpkDerive(PP,mpkB) where mpkB is Bob’s master public
key, and assigns dpk to the output coin. For Bob, when a new coin appears
in the system, he runs b ← DpkCheck(PP,mpkB ,mskB , dpk) where mskB is
his master secret key and dpk is the coin’s (derived) public key, Bob puts
such a coin into his wallet only if b = 1. To spend such a coin, Bob runs
dsk ← DpkCheck(PP,mpkB ,mskB , dpk) to obtain the derived secret key dsk
corresponding to dpk, then he runs the sign algorithm Sign to sign a transaction
spending the coin. For a transaction that consumes a coin with (derived) public
key dpk, anyone can run the Verify algorithm to check whether the associated
signature is valid, only using the dpk, without needing the corresponding master
public key.

Correctness. The scheme must satisfy the following correctness proper-
ties: for any PP ← Setup(1λ), (mpk,msk) ← MasterKeyGen(PP), dpk ←
DpkDerive(PP,mpk), dsk ← DskDerive(PP,mpk,msk, dpk), and any message μ,
it holds that

Pr [DpkCheck(PP,mpk,msk, dpk) = 1] = 1 − negl(n), and
Pr [Verify(PP, dpk, μ,Sign(PP, dpk, μ, dsk)) = 1] = 1 − negl(n).

Security. We define the existentially unforgeable (EUF) security of PDPKS
scheme below:

Definition 1. We say a PDPKS scheme is existentially unforgeably (EUF)
secure, if all probabilistic polynomial time (PPT) adversaries A win the following
game Gameeuf with negligible probabilities.

362 W. Liu et al.

– Setup. PP ← Setup(1λ) and (mpk,msk) ← MasterKeyGen(PP) are run. PP
and mpk are given to A. An empty set Ldpk = ∅ is initialized.1

– Probing Phase. A can adaptively query the following oracles:
• Derived Public Key Check Oracle ODpkCheck(·):

On input a derived public key dpk, this oracle returns c ← DpkCheck(PP,
mpk,msk, dpk) to A. If c = 1, set Ldpk = Ldpk ∪ {dpk}.

• Derived Secret Key Corruption Oracle ODskCorrupt(·):
On input a derived public key dpk ∈ Ldpk, this oracle returns dsk ←
DskDerive(PP,mpk, msk, dpk) to A.

• Signing Oracle OSign(·, ·): On input a derived public key dpk ∈ Ldpk and
a message μ, this oracle returns σ ← Sign(PP, dpk, μ, dsk) to A, where
dsk ← DskDerive(PP,mpk,msk, dpk).

– Output Phase. A outputs a derived public key dpk∗ ∈ Ldpk, a message μ∗,
and a signature σ∗.

A succeeds if Verify(PP, dpk∗, μ∗, s∗) = 1 under the restrictions that (1)
ODskCorrupt(dpk∗) is never queried, and (2) OSign(dpk∗, μ∗) is never queried.

Privacy. The definition captures the fact that derived public keys and corre-
sponding signatures do not leak the corresponding master public key.

Definition 2. A PDPKS scheme is master public key unlinkable (MPK-UNL),
if for all PPT adversaries A, the advantage of A in the following game
Gamempkunl, denoted by Advmpkunl

A , is negligible.

– Setup. PP ← Setup(λ) is run and PP is given to A.
(mpk0,msk0) ← MasterKeyGen(PP) and (mpk1,msk1) ← MasterKeyGen(PP)
are run, and mpk0,mpk1 are given to A. Two empty sets Ldpk,0 = Ldpk,1 = ∅
are initialized.2

– Challenge Phase. A random bit b ← {0, 1} is chosen.
dpk∗ ← DpkDerive(PP, mpkb) is given to A.

– Probing Phase. A can adaptively query the following oracles:
• Derived Public Key Check Oracle ODpkCheck(·, ·):

On input a derived public key dpk �= dpk∗ and an index i ∈ {0, 1}, this
oracle returns c ← DpkCheck(PP,mpki,mski, dpk) to A. If c = 1, set
Ldpk,i = Ldpk,i ∪ {dpk}.

• Derived Secret Key Corruption Oracle ODskCorrupt(·):
On input a derived public key dpk ∈ Ldpk,0 ∪ Ldpk,1, this oracle returns
dsk ← DskDerive(PP,mpki,mski, dpk) to A, with i = 0 if dpk ∈ Ldpk,0,
and i = 1 if dpk ∈ Ldpk,1.

1 This set serves only to describing the game easier. It stores the derived public keys
that have been checked and accepted as being linked to the target master public key,
where are all known to the adversary.

2 The two sets are defined only for describing the game easier. Ldpk,i(i = 0, 1) stores
the derived public keys that have been checked and accepted as being linked to the
target master public key mpki. The two sets are known to the adversary.

A Lattice-Based PDPKS Scheme 363

• Signing Oracle OSign(·, ·): On input a derived public key dpk ∈ Ldpk,0 ∪
Ldpk,1∪{dpk∗} and a message μ, this oracle returns σ ← Sign(PP, dpk, μ,
dsk) to A, where dsk ← DskDerive(PP,mpki,mski, dpk), with i = 0 if
dpk ∈ Ldpk,0, i = 1 if dpk ∈ Ldpk,1, and i = b if dpk = dpk∗.

– Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b.

2.2 Lattice Backgrounds

Notations. We denote matrices by bold capitals, e.g., A, and column vectors
by bold small letters e.g., x. For a matrix A, denote its transpose by AT . For
two matrices, A and B, we denote their concatenation by [A|B]. We denote
the inner product of two vectors a,b by 〈a,b〉 = aTb. For an ordered vector
set T = {t1, · · · , tm}, we denote its Gram-Schmidt orthogonalization by T̃ =
{t̃1, · · · , t̃m}; we also denote the matrix [t1| · · · |tm] by T. We denote the identity
matrix of order m by Im and omits m without ambiguity. We denote the �2 norm
of a vector x by ‖x‖ and define ‖T‖ := max ‖ti‖. For a matrix R ∈ Z

m×m
q , define

the parameter sR = supx∈Rm\{0}
‖Rx‖
‖x‖ .

For a randomized algorithm or a distribution A, we denote its once execution
(or sampling) output x by x ← A. Let S be a finite set, we abuse the notion to
denote the uniform distribution over S by S. We say a function ε : R+ → R+ is
negligible if for any polynomial p, it holds that ε(n) < 1/p(n) for sufficient large
n. We denote an arbitrary negligible function by negl(n). We say a function
g : R+ → [0, 1] is overwhelming if g(n) = 1 − negl(n). For x ∈ R, we define
�x� = �x + 1

2. For an integer m ∈ Z+, we denote {1, 2, · · · ,m} by [m].
We denote m-dimensional lattice generated by a basis T by L(T). Denote

integer lattice {z ∈ Z
m : Az = 0 mod q} by Λ⊥

q (A) and omits q without
ambiguity. Denote the discrete Gaussian distribution on lattice Λ, with Gaussian
parameter s and center c by DΛ,s,c.

For Gaussian Distribution we have the following Lemma 1 and Lemma 2,
where Lemma 2 is obtained by combining the smoothing lemma [18] and “the
new bound of smoothing parameter” in [12].

Lemma 1 ([18]). Let q ≥ 2 and A ∈ Z
n×m
q . Let T be a basis of Λ⊥(A), s ≥

‖T̃‖ · ω(
√

log m). Then for any c ∈ Z
m
q ,

Pr
x←D

Λ⊥(A),s,c

[‖x − c‖ > s
√

m] = negl(n).

Lemma 2 ([12,18]). For any m-dimensional lattice Λ, define

b̃l(Λ) = min
T:Λ=L(T)

‖T̃‖.

Let A ∈ Z
n×m
q be a matrix whose columns generate Z

n
q , s ≥ b̃l(Λ⊥(A)) ·

ω(
√

log m) be a real number. Then for a x ← DZm,s, the distribution of u = Ax
mod q is statistically close to the uniform distribution over Z

n
q .

364 W. Liu et al.

Assumptions. The security and privacy of our PDPKS construction will be
based on the following Short Integer Solution (SIS) assumption and LWE
assumption.

Definition 3 (SIS Assumption) ([3,12,18,22]). Let q, β,m be functions of
n. Define SISn,q,β,m problem as: Given a matrix A ← Z

n×m
q , find a non-zero

integer vector z ∈ Z
m s.t. Az = 0 mod q and ‖z‖ ≤ β.

For m,β = poly(n), q ≥ β · Õ(
√

n), no (quantum) algorithm can solve
SISn,q,β,m problem in polynomial time.

Definition 4 (LWE Assumption) ([22,25]). Let m, q be functions of n, q > 2,
χ be a distribution on Zq called the error distribution, defines the LWE distribu-
tion As,χ as: Choose a vector a ← Z

n
q and an error e ← χ, output (a, 〈a, s〉+ e).

Defines the Search-LWEn,q,χ,m problem as: fix an s ← Z
n
q , given at most m sam-

ples from As,χ, work out s. Define the Decision-LWEn,q,χ,m problem as: For a
uniformly chosen s ← Z

n
q , given the oracle to be (1) As,χ or (2) the uniform

distribution over Z
n+1
q , decide which is the case with at most m oracle calls.

For parameters m = poly(n), q ≤ 2poly(n), r = 2
√

n and χ be the (discrete)
Gaussian distribution with Gaussian parameter r, no (quantum) algorithm can
solve the (Search/Decision)-LWEn,q,χ,m problem in polynomial time.

Lemma 3 ([24]). With such parameters in SIS assumption and LWE assump-
tion, SIS assumption implies LWE assumption for β ≤ q/r.

Algorithms on Lattices. Our construction will use the following SamplePre
and TrapGen algorithms.

Lemma 4 (SamplePre Algorithm [12]). There exists a PPT algorithm
SamplePre that, on input a matrix A ∈ Z

n×m
q , a basis T ∈ Z

m×m
q of Λ = Λ⊥(A),

a Gaussian parameter s ≥ ‖T̃‖·ω(
√

log m) and a vector u ∈ Z
n
q , outputs a vector

x such that Ax = u mod q and the distribution of x is statistically close to the
distribution of x′ ← DZm,s conditioned on Ax′ = u mod q. The short basis T
is called the trapdoor of A.

Lemma 5 (TrapGen Algorithm, [4,7]). For fixed constant δ > 0, there is a
PPT algorithm TrapGen that, on input n (in unary), an odd prime q = poly(n),
and m ≥ (5 + 3δ)n log q, outputs a statistically (m · q−δ0n/2)-close to uniform
matrix A ∈ Z

n×m
q and a basis T of Λ⊥(A) such that with overwhelming proba-

bility ‖T̃‖ ≤ O(
√

n log q).

Note that we can set δ = 1/3, then we have m ≥ 6n log q and output matrix A
by the above TrapGen algorithm distributes statistically (6n ·q−n/6 log q)-close to
the uniform distribution over Z

n×m
q . In addition, the following Lemma 6 shows

that the output matrix A by the above TrapGen algorithm generates Z
n
q with

overwhelming probability.

Lemma 6 ([12]). Let m ≥ 2n log q, then for all but q−n fractions of A ∈ Z
n×m
q ,

the columns of A generate Z
n
q .

A Lattice-Based PDPKS Scheme 365

Trapdoor Delegation Algorithms. On the basis/trapdoor delegation, we
have the following Lemma 7, 8, and 9.

Lemma 7 ([1,7]). There exists a PPT algorithm DeleRight′ that, on input a
matrix A ∈ Z

n×m
q , a matrix B ∈ Z

n×m
q whose columns generate Z

n
q , a trapdoor

TB of B s.t. ‖T̃B‖ ≤ L, and a matrix R ∈ Z
m×m
q , outputs a trapdoor T′

F for
F = [A|AR + B] s.t. ‖T̃′

F‖ ≤ L · (sR + 1).

Lemma 8 ([8]). There exists a PPT algorithm DeleLeft′ that, on input a matrix
A ∈ Z

n×m
q whose columns generate Z

n
q , a matrix C ∈ Z

n×m
q , and a trapdoor TA,

outputs a trapdoor T′
F for F = [A|C] s.t. ‖T̃′

F‖ = ‖T̃A‖.
Lemma 9 ([8]). There exists a PPT algorithm RandBasis that, on input a basis
T′ of an m-dimensional integer lattice Λ s.t. ‖T̃′‖ < L, a real number s ≥
‖T̃′‖ · ω(

√
log m), outputs a basis T of Λ s.t. ‖T̃‖ ≤ s

√
m. Moreover, for any

two basis T1,T2 of Λ, let s ≥ max{‖T̃1‖, ‖T̃2‖} · ω(
√

log m), then the outputs
of RandBasis(T1, s) and RandBasis(T2, s) are statistically close.

With the parameter A ← Z
n×m
q , R ← {−1, 1}m×m as chosen in [1], applying

the above Lemma 7, 8, and 9, we have the following DeleRight and DeleLeft
algorithms as shown by Theorem 1 and Theorem 2 respectively. Our PDPKS
construction will be based on the DeleRight algorithm, while the proofs will be
based on the DeleLeft algorithm.

Theorem 1 (DeleRight Algorithm). Let q > 2 be a prime, fix some sR =
O(

√
m). There exists a PPT algorithm DeleRight that, on input a matrix A ←

Z
n×m
q , a matrix B ∈ Z

n×m
q whose columns generate Z

n
q , a trapdoor TB of B s.t.

‖T̃B‖ ≤ L, and a matrix R ← {−1, 1}m×m, a real number s ≥ L·sR ·ω(
√

log m),
outputs a trapdoor TF for F = [A|AR + B] such that F distributes statistical
close to the uniform distribution over Z

n×2m
q and ‖T̃F‖ ≤ s · √

2m.
Moreover, for any two trapdoors T1,T2 of B s.t. ‖T̃1‖ ≤ L and ‖T̃2‖ ≤ L,

the distribution of DeleRight(A,B,T1,R, s) and DeleRight(A,B,T2,R, s) are
statistically close.

Theorem 2 (DeleLeft Algorithm). Let q > 2 be a prime. There exists a PPT
algorithm DeleLeft that, on input a matrix A ∈ Z

n×m
q s.t. columns of A generate

Z
n
q , a trapdoor TA of A s.t. ‖T̃A‖ ≤ L, a matrix C ∈ Z

n×m
q and a real number

s ≥ L · ω(
√

log m), outputs a trapdoor TF for F = [A|C] s.t. ‖T̃F‖ ≤ L · √
2m ·

ω(
√

log m).
Moreover, for A ← Z

n×m
q and R ← {−1, 1}m×m, let C = AR+B for some

B ∈ Z
n×m
q , sR be such parameter in Theorem 1, if columns of B generate Z

n
q and

TB be a trapdoor of B s.t. ‖T̃B‖ ≤ L, then the outputs of DeleLeft(A,TA,C, L ·
sR · ω(

√
log m)) and DeleRight(A,B,TB,R, L · sR · ω(

√
log m)) are statistically

close.

366 W. Liu et al.

2.3 Key-Privacy in Public Key Encryption

Our construction is based on public key encryption (PKE) with key-privacy,
which was introduced by Bellare et al. [5]. In particular, key-privacy requires
that an adversary in possession of a ciphertext is not able to tell which specific
public key, out of a set of known public keys.

Syntax. A public-key encryption scheme is a tuple of four PPT algorithms
(Setup,KeyGen,Enc,Dec):

– Setup(1λ) → GP. On input a security parameter 1λ, the algorithm outputs
the common global public parameters GP, that all users in the system will
share, including the security parameter, the message space M, the ciphertext
space C, etc.

– KeyGen(GP) → (pk, sk). On input GP, the algorithm outputs a public-secret
key pair (pk, sk).

– Enc(GP, pk, μ) → c ∈ C: On input GP, a public key pk and a plaintext μ ∈ M,
the algorithm outputs a ciphertext c ∈ C.

– Dec(GP, c, pk, sk) → μ′/ ⊥. On input GP, a secret key sk and a ciphertext
c ∈ C, the algorithm outputs the a plaintext μ′ ∈ M or ⊥.

Correctness and Security. The correctness, CPA-Security, and CCA2-security
are identical to that of conventional PKE, and we omit the details here.

Key-Privacy. The key-privacy is captured by the following “indistinguishable
of keys under adaptive chosen-ciphertext attack” (IK-CCA) property [5]:

Definition 5 (IK-CCA). A PKE scheme is IK-CCA secure if for any PPT
adversary A, the advantage in the following IK-CCA game Gameikcca, denoted by
Advikcca

A , is negligible.

1. Setup. GP ← Setup(1λ) is computed and given to A.
(pk0, sk0) ← KeyGen(GP) and (pk1, sk1) ← KeyGen(GP) are run, and pk1 and
pk2 are sent to adversary A.

2. Probing Phase 1. A can adaptively query the decryption oracle ODec(·, ·):
On input a ciphertext c ∈ C and an index i ∈ {0, 1}, this oracle returns
μ ← Dec(GP, c, pki, ski) to A.

3. Challenge Phase. A chooses a challenge plaintext μ∗ ∈ M. A uniform coin
b ← {0, 1} is tossed. c∗ ← Enc(GP, pkb, μ

∗) is given to A.
4. Probing Phase 2. A can adaptively query the decryption oracle ODec(·, ·),

but cannot make query on (c∗, 0) or (c∗, 1).
5. Output Phase. A outputs a bit b′ ∈ {0, 1} as its guess to b.

3 Our Lattice-Based PDPKS Construction

• Setup(1λ) → PP. The algorithm takes λ (in unary) as input. Let n be a
polynomial of λ, q > 2 be a prime, and m ≥ 6n log q. Fix some ω1 = ω(

√
log m)

A Lattice-Based PDPKS Scheme 367

and ω2 = ω(
√

log 2m), let sR = O(
√

m), σB = L ·sR ·ω1 and σF = σB ·√2m ·ω2

for some L ≥ O(
√

n log q).
Let Πpke = (Setup,KeyGen,Enc,Dec) be a lattice-based CCA2 secure and IK-

CCA secure PKE scheme. The algorithm runs GP ← Πpke.Setup(1λ). Let Mpke

and Cpke be the message space and ciphertext space in GP respectively. Let k
be polynomials of λ, and let G1 : Mpke × Cpke → Z

n×m
q , G2 : Mpke × Cpke →

{−1, 1}m×m, and H : {0, 1}∗ × {0, 1}k → Z
n
q be functions that will be modeled

as random oracles in the proofs. The algorithm produces as output the public
parameter PP = (1λ, n,m, q, sR, σB , σF , k,GP, (G1, G2,H),Πpke).
• MasterKeyGen(PP) → (mpk,msk). On input PP, the algorithm runs
(B,TB) ← TrapGen(1n) to generate a random B and its trapdoor TB. It runs
(epk, esk) ← Πpke.KeyGen(GP) to generate a PKE public-secret key pair. It out-
puts the master public key and master secret key as mpk = (B, epk),msk =
(TB, esk).
• DpkDerive(PP,mpk) → dpk. On input PP, a master public key mpk = (B, epk),
the algorithm samples t ← Mpke and computes τ ← Πpke.Enc(GP, epk, t), A =
G1(t, τ) and R = G2(t, τ). It then sets F = [A|AR+B] and outputs the derived
public key dpk = (F, τ).
• DpkCheck(PP,mpk,msk, dpk): On input PP, a master key pair (mpk =
(B, epk), msk = (TB, esk)), and a derived public key dpk = (F = [A|C], τ),
the algorithm computes t ← Πpke.Dec(GP, τ, epk, esk) and A′ = G1(t, τ),
R′ = G2(t, τ). It outputs 0 if A′ �= A or C �= A′R′ + B. Otherwise, it out-
puts 1.
• DskDerive(PP,mpk,msk, dpk) → dsk. On input PP, a master key pair (mpk =
(B, epk),msk = (TB, esk)), and a derived public key dpk = (F = [A|C], τ),
the algorithm computes t ← Πpke.Dec(GP, τ, epk, esk), A′ = G1(t, τ) and R′ =
G2(t, τ). It outputs ⊥ if A′ �= A or C �= A′R′ +B. Otherwise (i.e., A′ = A and
C = AR′ +B), it runs TF ← DeleRight(A,B,TB, R′, σB) to sample a trapdoor
TF for F, then outputs the derived secret key dsk = TF for dpk.
• Sign(PP, dpk, μ, dsk) → s. On input PP, a derived public key dpk = (F, τ), a
message μ ∈ {0, 1}∗, and the derived secret key dsk = TF corresponding to dpk,
the algorithm samples a random string r ← {0, 1}k and computes u = H(μ, r).
It runs z ← SamplePre(F,TF,u, σF), and outputs s = (z, r) as a signature for
μ.
• Verify(PP, dpk, μ, s) → 1/0. On input PP, a derived public key dpk = (F, τ),
a message μ, and a signature s = (z, r), the algorithm outputs 1 (accepts) if
‖z‖ ≤ √

2m · σF and Fz = H(μ, r) mod q, otherwise, it outputs 0 (rejects).

3.1 Correctness

Correctness of DpkCheck(). Due to the correctness of Πpke, for a derived pub-
lic key dpk = (F = [A|C], τ), the t under τ can be recovered correctly with
overwhelming probability. This implies that the recovered A′ = G1(t, τ) and
R′ = G2(t, τ) will pass the checks A′ = A and C = AR′ + B.

368 W. Liu et al.

Correctness of Verify(). For (B,TB) ← TrapGen(1n), recall Lemma 5 and
Lemma 6, we have that ‖T̃B‖ ≤ L, the distribution of B is statistically close to
the uniform distribution over Zn×m

q , and the columns of B generate Zn
q with over-

whelming probability. Thus, for the B, A, and R in the construction, the distri-
bution of F is statistically close to the uniform distribution over Zn×2m

q . And this
implies that the columns of F generate Z

n
q with overwhelming probability. For

dsk ← DskDerive(PP,mpk,msk, dpk), due to Theorem 1, we have that dsk = TF

is a basis of Λ⊥(F) and ‖T̃F‖ ≤ σB · √2m. For s ← Sign(PP, dpk, μ, dsk) where
s = (z, r), due to Lemma 4, we have that the distribution of z is statistically
close to z′ s.t. z′ ← DZ2m,σF

conditioned on Fz′ = u = H(μ, r) mod q. This
implies that with overwhelming probability, z satisfies ‖z‖ ≤ σF · √

2m, i.e.,
the Verify algorithm accepts such (μ, s) as valid (message, signature) pair with
overwhelming probability.

3.2 Proof of Security

Theorem 3. If the SISn,q,2β,2m assumption holds with β =
√

2m · σF , then the
PDPKS scheme is secure in the random oracle model.

Proof. Let F be a forger of the PDPKS scheme that wins the game Gameeuf
(w.r.t. Definition 1) with non-negligible probability ε(n). We construct an SIS
solver S that invokes F as a subroutine and solves the SISn,q,2β,2m problem with
non-negligible probability.

Setup. S is given an instance of SIS problem SISn,q,2β,2m with β =
√

2m · σF ,
i.e., F = [A|C] ∈ Z

n×2m
q , where A,C ∈ Z

n×m
q . S samples z ← DZ2m

q ,σF
and

computes u = Fz mod q.
S setups PP ← Setup(1λ) as in the construction and gives PP to F , We

assume WLOG that F queries G1, G2 and H for at most Q1, Q2 and QH times
respectively and set QG = max{Q1, Q2}. S chooses k ← [QG] and � ← [QH].
S initializes empty lists L1, L2, LH to record the oracle query-results of G1, G2,
and H respectively.

S samples R ← {−1, 1}m×m and runs (epk, esk) ← Πpke.KeyGen(GP). S then
sets B = C−AR,mpk = (B, epk) and gives mpk to F . Note that B distributes
statistically close to that in the real game. S initializes an empty list L̂dpk to
record the derived public keys linked to mpk and corresponding information.

Probing Phase. F can adaptively query the following oracles:
• For the j-th distinct query to G1 on (tj , τj): If j �= k, S runs (Aj ,TAj

) ←
TrapGen(1λ1), samplesRj ← {−1, 1}m×m, stores (tj , τj ,Aj ,TAj

) and (tj , τj ,Rj)
into L1 and L2 respectively, and replies with Aj . If j = k, S stores (tj , τj ,A,�)
and (tj , τj ,R) into L1 and L2 respectively, and replies with A.
• For a query to G2 on any (t, τ): If (t, τ,R′) exists in L2 with some R′, S
replies with R′, otherwise S makes a query to G1 on (t, τ), which triggers a new
(t, τ,R′) to be put into L2, then replies with the corresponding R′.

A Lattice-Based PDPKS Scheme 369

• For j-th distinct query to H on (μj , rj): If j �= �, S chooses zj ← DZ2m,σF
, sets

uj = Fzj mod q, stores (μj , rj ,uj , zj) into LH , and replies with uj . If j = �, S
stores (μj , rj ,u, z) into LH , and replies with u.
• For a query to ODpkCheck(·) on dpk′ = (F′ = [A′|C′], τ ′): S runs t′ ←
Πpke.Dec(GP, τ ′, epk, esk), and makes query to G1 and G2 on (t′, τ ′) respectively.
Let A′′ = G1(t′, τ ′), R′′ = G2(t′, τ ′). If A′ = A′′ and C′ = A′′R′′ +B, S replies
with 1 and sets L̂dpk = L̂dpk ∪ {(dpk,A′′,R′′)}, otherwise replies with 0.
• For a query to ODskCorrupt(·) on dpk′ = (F′ = [A′|C′], τ ′) ∈ Ldpk: S
finds dpk′ ∈ L̂dpk, let (A′,R′) be the corresponding matrices. We have that
there is a tuple (t′, τ ′,A′, T′

A) ∈ L1 and a tuple (t′, τ ′,R′) ∈ L2, where
t′ = Πpke.Dec(GP, τ ′, epk, esk). If A′ = A, note that TA′ = �, S aborts the
game. Otherwise, S computes TF′ ← DeleLeft(A′,A′R′+B,TA′ , σB) and replies
with TF′ .
• For a query to OSign(·, ·) on (dpk′ = (F′, τ ′), μ′) such that dpk′ ∈ Ldpk:
If F′ = F, S samples r′ ← {0, 1}k and makes a query to H on (μ′, r′).
With (μ′, r′,u′, z′) in LH , S replies with s′ = (z′, r′). If F′ �= F, S runs
t′ ← Πpke.Dec(GP, τ ′, epk, esk). Let (t′, τ ′,A′,TA′) ∈ L1 be the tuple corre-
sponding to (t′, τ ′), S computes TF′ ← DeleLeft(A′,A′R′ + B,TA′ , σB) and
sets dsk′ = TF′ , then replies with s′ ← Sign(PP, dsk′, dpk′, μ′).

Output Phase. F outputs a forge (dpk∗, μ∗, s∗ = (z∗, r∗)). S outputs z∗ − z as
its solution to the SIS problem.

Analysis. Before analyzing the reduction, we prove the following claims.

Claim 1. G2 is perfectly simulated, and the responses of G1,H are statistically
close to such in the real game.

Proof. Due to Lemma 5, the output of G1 simulated by S is statistical close to
uniform. Recall that by Lemma 2 the output of H simulated by S is statistically
close to uniform.

Claim 2. The replies of ODpkCheck(·) simulated by S is statistical close to those
in the real game.

Proof. The only difference between the ODpkCheck(·) simulated by S and such
in the real game is that whether the simulated or the real G1, G2 are used. Due
to Claim 1, the claim holds.

Claim 3. With negligible probability, F adds some dpk′ = (F′ = [A|C′], τ ′) for
C′ �= C to Ldpk.

Proof. If dpk′ = (F′ = [A|C′], τ ′) is added to Ldpk, then τ ′ �= τ . Since F′ is
determined by τ ′, but distributes uniform before making queries to G1, G2 on
(t′, τ ′) where t′ = Dec(GP, τ ′, epk, esk), this happens with negligible probability
due to the limited query times.

Claim 4. F produces a forgery with regards to A with probability ε(n)/QG −
negl(n).

370 W. Liu et al.

Proof. To facilitate the analysis, suppose that there is an imaginary compu-
tational unbounded S ′ that behaves identical to S except when F queries
ODskCorrupt on (F, τ), where F is the SIS instance to solve and τ is arbitrary.
Upon such a query, S ′ computes a trapdoor TA of A s.t. ‖T̃A‖ ≤ L and replies
with the trapdoor delegated from TA. Then S ′ never aborts. In the game simu-
lated by S ′, the view of F is statistically close to such in the real game. Since F
outputs a forge in the real game with probability larger than ε(n), F outputs a
forge with probability ε(n)−negl(n) in the game simulated by S ′. If F output a
forge, there exists some keys in Ldpk that hasn’t been queried to ODskCorrupt.
Due to the uniformity of A, any such key has probability at least 1/QG regards
to A. Then with probability larger than ε(n)/QG − negl(n), F does not query
ODskCorrupt with keys regard to A. Since before S abort, the view of F in the
game simulated by S is identical to such in the game simulated by S ′, then with
probability ε(n)/QG − negl(n), F produces a forgery with regards to A.

With probability larger than ε(n)/QG − negl(n), F produces a forgery with
regards to A, also under this case, the probability that the forgery happens on
u is 1/QH , so the total probability is ε(n)/(QG · QH) − negl(n). If F produces
a forgery with regards to A, S will not abort. Since the view of F in the game
simulated by S is statistically close to such in the real game, then if S does not
abort, F outputs a valid forge s∗ = (z∗, r∗) for some message with probability
ε(n) − negl(n). If F outputs a valid forge (z∗, r), then ‖z∗‖ < σF · √

2m with
overwhelming probability. If such z is forged with F, then Fz∗ = u mod q. Due
to min-entropy of Gaussian distribution shown in [12,23], z has min-entropy at
least O(m), z �= z∗ with overwhelming probability. With all the above events
happen, ‖z − z∗‖ ≤ 2σF · √

2m, z − z∗ is a solution to the SIS problem.
In conclusion, S outputs a valid solution z−z∗ of the given SIS instance will

probability large than ε(n)2/(QH · Q2
G) − negl(n), which is non-negligible.

3.3 Proof of Privacy

Theorem 4. If the CCA2-security and IK-CCA security of Πpke holds, the
PDPKS scheme is MPK-UNL privacy-preserving in random oracle model.

Proof. Suppose there exists a PPT adversary A that breaks the privacy of the
PDPKS scheme with non-negligible probability ε(n), we construct a PPT adver-
sary B that breaks the IK-CCA security of Πpke with non-negligible probability.

Setup. B is given the global public parameter GP of Πpke, and two pub-
lic keys epk0, epk1. B simulates the MPK-UNL game for A as follows: B
sets n,m, q, sR, σB , σF , k,G1, G2,H as in the construction, and gives PP =
(1λ, n,m, q, sR, σB , σF , k,GP, (G1, G2,H),Πpke) to A. B runs (B0,T0) ←
TrapGen(1n) and (B1,T1) ← TrapGen(1n), and gives mpk0 = (B0, epk0) and
mpk1 = (B1, epk1) to A.

B initializes empty lists L1, L2, LH to record the oracle query-results of
G1, G2, and H respectively. B initializes two empty lists L̂dpk,i(i = 0, 1) to record

A Lattice-Based PDPKS Scheme 371

the derived public keys linked to mpki and the corresponding information. B
samples t∗ ← Mpke and submits t∗ to his challenge in the IK-CCA game, and
obtains a challenge ciphertext τ∗ ← Πpke.Enc(GP, epkb, t

∗). B simulates dpk∗ by
running (A∗,TA∗) ← TrapGen(1n), sampling C∗ ← Z

n×m
q and then setting the

challenge derived public key as dpk∗ = (F∗ = [A∗|C∗], τ∗) and sending dpk∗

to A.

Probing Phase. B then answers A’s oracle queries as follows:
• For the j-th distinct query to G1 on (tj , τj), if tj = t∗, B aborts the game;
otherwise, B samples Aj ← Z

n×m
q and stores (tj , τj ,Aj) into L1, then replies

with Aj .
• For the j-th distinct query to G2 on (tj , τj), if tj = t∗, B aborts the game;
otherwise, B samples Rj ← {−1, 1}m×m and stores (tj , τj ,Rj) into L2, then
replies with Rj .
• For the j-th distinct query to H on (μj , rj), B samples uj ← Z

n
q and stores

(μj , rj ,uj) into LH , then replies with uj .
• For a query to ODpkCheck(·, ·) on (dpk, i) where i ∈ {0, 1} and dpk = (F, τ) �=
dpk∗: If τ �= τ∗, B make a query to ODec(·, ·) on (τ, i) and obtain a t ∈ Mpke.
Then B make a query to G1 on (t, τ) and a query to G2 on (t, τ), and sets A =
G1(t, τ),R = G2(t, τ). If F = [A|AR+Bi], B sets L̂dpk,i = L̂dpk,i∪{(dpk,A,R)}
and replies with 1, otherwise replies with 0. If (τ = τ∗) ∧ (F �= F∗), B returns 0.
• For a query to ODskCorrupt(·) on dpk = (F, τ) ∈ Ldpk,i s.t. i ∈ {0, 1}: as
dpk ∈ Ldpk,i, B can find the corresponding (A,R) from L̂dpk,i such that F =
[A|AR + Bi], then B computes TF ← DeleRight(A,Bi,Ti,R, σB) and replies
with dsk = TF.
• For a query to OSign(·, ·) on a dpk = (F, τ) ∈ Ldpk,0 ∪ Ldpk,1 ∪ {dpk∗}
and a message μ: If dpk ∈ Ldpk,i for i ∈ {0, 1}, B can find the corre-
sponding (A,R) from L̂dpk,i such that F = [A|AR + Bi], then B computes
TF ← DeleRight(A,Bi,Ti,R, σB), and runs s ← Sign(PP, dpk, μ, dsk = TF)
and replies with s. If dpk = dpk∗, B computes TF∗ ← DeleLeft(A∗,TA∗ ,C∗, σB),
samples r ← {0, 1}k, and computes u = H(μ, r). Then B runs z ← SamplePre
(F∗,TF∗ , σF) and outputs s = (z, r) as the signature.

Output Phase. B outputs whatever A outputs.

Analysis. We prove the following claims.

Claim 5. If A does not query G1, G2 on t∗, the simulated F∗ is statistical indis-
tinguishable to the original MPK-UNL game.

Proof. If A does not query G1, G2 on t∗, then R∗ = G2(t∗, τ∗) is undefined
and uniformly distributed, which means F∗ = [A∗|A∗R∗ + B∗

b] is statistically
indistinguishable from F∗ = [A∗|C∗] (Theorem 1).

Claim 6. If A does not query G1, G2 on t∗, the simulation of DpkCheck,
DskDerive and OSign queries is statistically close to that in the real game.

Proof. The only difference between the simulation and the real game is caused
by the use of DeleLeft and DeleRight, which produces statistically close results.

372 W. Liu et al.

Claim 7. A queries G1, G2 on t∗ with negligible probability if ΠPKE is IND-
CCA2 secure and Mpke has super-polynomial size.

Proof. If A queries G1 or G2 on t∗ with non-negligible probability, then we can
construct B′ to break the CCA2 security of ΠPKE with non-negligible probability.

B′ is given a public key epk. B′ then picks two random messages t∗0, t
∗
1 from

Mpke and obtains a challenge ciphertext τ∗ ← Πpke.Enc(GP, epk, t∗b′) where b′

is chosen by the IND-CCA2 challenger. B′ sets up the game for A as follows:
B′ tosses a coin b and sets epkb = epk and randomly generates (epk1−b, esk1−b).
B′ simulates F∗ as B does and then gives epk0, epk1 and dpk∗ = (F∗, τ∗) to
A. B′ answers all the queries as B does except that B′ simulates all the queries
related to epk1−b honestly using esk1−b. If in the game, A queries G1 or G2 on
t∗c for c ∈ {0, 1}, then B′ outputs c as his guess for b′ in the IND-CCA2 game,
otherwise, B′ outputs a random bit. Since Mpke has super-polynomial size and
t∗1−b′ is never used in the simulation for A, the chance that A outputs t∗1−b′ in a
query to G1 or G2 is negligible. On the other hand, by the assumption, t∗b′ will
appear in a query to G1 or G2 with a non-negligible probability, hence B′ can
win the IND-CCA2 game with a negligible probability.

If A does not query G1 or G2 on t∗, then B does not abort and the simulation
is statistical close to the real game. If A can guess b correctly in the Gamempkunl

with non-negligible advantage, B can break the IK-CCA security of Πpke with
non-negligible advantage.

3.4 Parameter Choosing

We fix the parameter n = λ. The other parameters can be instantiated in various
ways. For a typical choice, we fix k = n and ε > 0 to some constant, choose
m = n1+ε and set L =

√
m. We fix ω1 = ω2 = ω(

√
log m) and set σF =

O(m3/2) · ω(
√

log m)2. To ensure the security of our SIS problem, we set β =√
2m · σF = O(m2) · ω(

√
log m)2. According to the SIS assumption, we set

q = Õ(m5/2) · ω(
√

log m)2.

3.5 Lattice-Based Key-Private Public Key Encryption

In this section, we construct a (quantumly) CCA2-secure and IK-CCA secure
PKE based on the hardness of LWE. We states the theorem here and leave the
construction of such PKE scheme and the proof to Appendix A.

Theorem 5. Let q > 2 be a prime, m be some polynomial of n, χ be an effi-
ciently sampleable distribution over Zq. Assume that the LWEn,q,χ,m problem is
hard, there exists PKE scheme π that is IND-CCA2 secure and IK-CCA secure.

4 Conclusion

Unlike other cryptographic components for RingCT (e.g., ring signature, com-
mitment, and range proof) for which lattice-based constructions are known, we

A Lattice-Based PDPKS Scheme 373

did not know any lattice based stealth address schemes, which hinders the devel-
opment and deployment of quantum-resistant RingCT-based privacy-centric
cryptocurrencies. In this paper, we fill this gap by proposing the first lattice-
based PDPKS scheme and proving its security in the random oracle model.
Our construction offers (potentially) quantum security not only for the stealth
address algorithm but also for the deterministic wallet algorithm. Previously,
deterministic wallet algorithms, despite their popularity in Bitcoin-like cryp-
tocurrencies, were not quantum resistant.

A Construct Quantumly CCA2-Secure PKE Scheme
with CCA2 with IK-CCA Security

The IK-CPA Privacy of PKE Schemes. The definition of IK-CPA privacy
of PKE schemes follows [5].

Definition 6. A PKE scheme is Key-Indistinguishable in Chosen-Plaintext-
Attack (IK-CPA) secure if for any PPT adversary A, the advantage in the following
CCA-key-distinguish game Gameikcpa, denoted by Advikcca

A , is negligible.

1. Setup. GP ← Setup(1λ), (pk0, sk0) ← KeyGen(GP), (pk1, sk1) ←
KeyGen(GP) are run. GP, pk0, pk1 are sent to the adversary A.

2. Challenge Phase. A choose a challenger ciphertext μ∗ ∈ M. A uniform
coin b ← {0, 1} is tossed. c∗ ← Enc(GP, pkb, μ

∗) is given to A.
3. Output Phase. A outputs a bit b′ ∈ {0, 1} as its guess to b and wins if

b′ = b.

Let n, q,m, χ be the parameters in Theorem 5. Regev’s PKE scheme [25]
LWEPKE = (Setup,KeyGen,Enc,Dec) is a tuple of PPT algorithms.

– LWEPKE.Setup(1λ): The algorithm computes n = poly(n), m = poly(n), fixes
the error distribution χ according to n and outputs GP = (1n, q, χ,m).

– LWEPKE.KeyGen(GP): The algorithm samples s ← Z
n
q , A ← Z

n×m
q , and

e ← χm. It then computes b = AT s + e and outputs secret key sk = s and
public key pk = (AT ,b).

– LWEPKE.Enc(GP, pk = (AT ,b), μ ∈ {0, 1}): The algorithm samples r ←
{0, 1}m, computes and outputs c = (aT = rTAT , b = rTb+� q

2�) as ciphertext.
– LWEPKE.Dec(GP, c = (aT , b), pk, sk = s): The algorithm decrypts 0 if b −

〈a, s〉 is closer to 0 than to q
2 . Otherwise decrypts to 1.

Lemma 10. LWEPKE is IK-CPA private.

Proof. We define the following games for a hybrid argument:

– Game0: This is the original kd-cpa game of LWEPKE for A.
– Game1: A0 ← Z

n×m
q and b0 ← Z

m
q are sampled. Based on Game0, (AT

0 ,b0) is
sent to A instead of pk0. The rest of the game remains unchanged.

374 W. Liu et al.

– Game2: A1 ← Z
n×m
q and b1 ← Z

m
q are sampled. Based on Game1, (AT

1 ,b1) is
sent to A instead of pk1. The rest of the game remains unchanged.

Due to the LWE assumption, the views of A in Game0 and Game1 are compu-
tational indistinguishable, as are the views of A in Game1 and Game2. The rest
of the proof can be done by showing that any PPT adversary A achieves only
negligible advantage in Game2 by using left-over hash lemma [14].

From IK-CPA to IK-CCA. We introduce Fujisaki-Okamoto transformation
that transforms a CPA-secure PKE scheme to a CCA2-secure one [11] and prove
it transforms a IK-CPA private PKE scheme to a IK-CCA private PKE scheme.

Let λ be the security parameter and n,N, � be polynomials of λ. Let PKE =
(Setup,KeyGen,Enc,Dec) be a PKE scheme with message space {0, 1}n. Denote
the process “under global parameter GP, encrypts plaintext μ under public key
pk with randomness r” by Enc(GP, pk, μ; r). Assume the algorithm Enc takes at
most � random bits and let G : {0, 1}n → {0, 1}N ,H : {0, 1}N+n → {0, 1}	, be
random oracles. The PKE2 = (Setup2,KeyGen2,Enc2,Dec2) scheme is defined as:

– PKE2.Setup2(1λ): The algorithm runs GP ← PKE.Setup(1λ) and sets � =
poly(λ), N = poly(λ). Let fix G,H and outputs GP2 = (GP, �,N,G,H).

– KeyGen2(GP2): The algorithm runs (pk′, sk′) ← KeyGen(GP). It outputs pk =
pk′ as public key, outputs sk = sk′ as secret key.

– Enc2(GP2, pk, μ): For a public key pk = pk′ and a plaintext μ ∈ {0, 1}N ,
the algorithm chooses σ ← {0, 1}n. It computes w = G(σ) ⊕ μ, d ←
PKE.Enc(GP, pk′, σ;H(μ, σ)) and outputs c = (d,w) as ciphertext.

– Dec2(GP2, c, pk, sk): For a public key pk = pk′, a secret key sk = sk′ and
a ciphertext c = (d,w), the algorithm computes σ ← Dec(GP2, sk′, d) and
μ = G(σ) ⊕ w. It outputs μ if d = Enc(GP, pk′, σ;H(μ, σ)), otherwise it
outputs ⊥.

Theorem 6. Let PKE be a PKE scheme with CPA-security and IK-CPA pri-
vacy, PKE2 is IK-CCA private.

Proof. We prove by reduction. Let A be any PPT algorithm that breaks the IK-
CCA private of PKE2, we construct a PPT algorithm B with A as a subroutine
breaks the IK-CPA privacy of PKE.

On receiving the challenge keys GP, pk′
0, pk′

1 s.t (pk′
0, sk

′
0) ← PKE.KeyGen(GP)

and (pk′
1, sk

′
1) ← PKE.KeyGen(GP), B computes and sends GP2, pk0 = pk′

0, pk1 =
pk′

1 to A. In the Gameikcca of A for PKE2, the decryption oracles of A
are ODec2(·, ·), which equal to Dec2(GP2, ·, pki, ski) respectively. A query to
ODec2(·, ·) on cj = (dj , wj) defines values σj = PKE.Dec(GP, ki, dj), μj =
G(σj) ⊕ wj , where i ∈ {0, 1}. We define the following events:
•invj : For j-th query to ODec2(·, ·) on (i, cj = (dj , wj)), it replies ⊥.
•guej : Before the j-th query to ODec2(·, ·) on (i, cj = (dj , wj)), G(σj) and
H(μj , σj) are not queried, where σj = Dec(GP, dj , pk′

j , sk
′
i) and μj = wj ⊕G(σj).

A Lattice-Based PDPKS Scheme 375

•expj : Defined to be the event guej ∧ invj .
•exp: Any of expj happen in the whole kd-cca game.

We prove that exp occurs with negligible probability. Assume that expj

occurs, then cj decrypts to μj . Without querying on G(σj), wj = G(σj) ⊕ μj

is uniformly random to A. In order to achieve invj , A has to guess wj right,
but this happens with negligible probability. If A has queried G(σj), then it
hasn’t queried H(μj , σj). The randomness H(μj , σj) in the encryption pro-
cess PKE.Enc(GP, pki, μj) is uniformly random. Then A has to compute dj =
Enc(GP, pk′

i, μj ;H(μj , σj)) right with a uniformly random string rj ← {0, 1}	

instead of H(μj , σj). This happens with negligible property, otherwise in the
cpa game, one could try to encrypts the challenge plaintext to ciphertext with
uniform randomness to break the CPA-security of PKE. The union bound of
expj shows exp happens with negligible probability. Therefore, it holds that

Pr[A wins] = Pr[A wins ∧ exp] + Pr[A wins ∧ exp] ≤ Pr[A wins ∧ exp] + Pr[exp]

= Pr[A wins ∧ exp] + negl(n)

Assume Advikcca
A,PKE2 = |Pr[A wins] − 1

2 | is non-negligible, then |Pr[A wins ∧
exp] − 1

2 | is non-negligible. B is committed to win its kd-cpa game when
[A wins ∧ exp] happens. B simulates the oracles G,H by uniformly sampling
and recording to list LG, LH , similar to the strategy of G1, G2 in the proof
of Theorem 4. When B receives the challenge plaintext μ∗ ∈ {0, 1}N from
A, it samples a σ∗ ← {0, 1}n as its challenge plaintext. On receiving chal-
lenge ciphertext d∗ = PKE.Enc(GP, pk′

b, σ
∗; r∗) for some r∗ ← {0, 1}	, B sends

c∗ = (d∗, w∗) to A as challenge ciphertext, where w∗ = G(σ∗) ⊕ μ∗. For A’s
j-th query to ODec2(·, ·) on cj = (dj , wj), B scans the whole LG, LH . If B finds
some (σj , G(σj)) ∈ LG and (μj , σj ,H(μj , σj)) ∈ LH s.t. G(σj) ⊕ μj = wj and
dj = PKE.Enc(GP, pki, μj ,H(μj , σj)), it replies with μj , otherwise replies ⊥.

When A outputs its guess b′ to b, B outputs b′. Conditioned on that
exp occurs, B can answer all the decryption queries, and the view of A
in the reduction is identical to that in the real game. Therefore, we have
Pr[B wins] ≥ Pr[A wins ∧ exp] − negl(n). Then Advikcpa

B,PKE = |Pr[B wins] − 1
2 | =

|Pr[A wins ∧ exp] − 1
2 | − negl(n), which is non-negligible if Advikcca

A,PKE is non-
negligible.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 6

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108 (1996)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6

376 W. Liu et al.

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS 2009, pp. 75–86. LIPIcs (2009)

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

6. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

7. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 29

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

9. CoinMarketCap: Top 100 cryptocurrencies by market capitalization. https://
coinmarketcap.com. Accessed 12 Feb 2020

10. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th ACM STOC, pp. 197–206 (2008)

13. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
an untrusted bitcoin-compatible anonymous payment hub. In: NDSS 2017 (2017)

14. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: 21st ACM STOC, pp. 12–24 (1989)

15. Liu, Z., Nguyen, K., Yang, G., Wang, H., Wong, D.S.: A lattice-based linkable ring
signature supporting stealth addresses. In: Sako, K., Schneider, S., Ryan, P.Y.A.
(eds.) ESORICS 2019. LNCS, vol. 11735, pp. 726–746. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29959-0 35

16. Liu, Z., Yang, G., Wong, D.S., Nguyen, K., Wang, H.: Key-insulated and privacy-
preserving signature scheme with publicly derived public key. In: IEEE EuroS&P
2019, pp. 215–230 (2019)

17. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. Commun. ACM 59(4), 86–93 (2016)

18. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS, pp. 372–381 (2004)

19. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
E-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–
411 (2013)

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

21. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
22. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report

2015/939 (2015). http://eprint.iacr.org/2015/939
23. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-

tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13190-5_27
https://coinmarketcap.com
https://coinmarketcap.com
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-030-29959-0_35
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/939
https://doi.org/10.1007/11681878_8

A Lattice-Based PDPKS Scheme 377

24. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th ACM STOC, pp. 84–93 (2005)

26. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

27. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin
mixing for bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11212-1 20

28. van Saberhagen, N.: Cryptonote v 2.0 (2013). https://cryptonote.org/whitepaper.
pdf

29. Todd, P.: Stealth addresses. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2014-January/004020.html

30. Torres, W.A.A., et al.: Post-quantum one-time linkable ring signature and appli-
cation to ring confidential transactions in blockchain (lattice RingCT v1.0). In:
ACISP 2018, pp. 558–576 (2018)

31. Wuille, P.: Bip32: hierarchical deterministic wallets, February 2012. https://github.
com/bitcoin/bips/blob/master/bip-0032.mediawiki

32. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-642-39884-1_2
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://doi.org/10.1007/978-3-030-26948-7_6

Post-Quantum Adaptor Signatures
and Payment Channel Networks

Muhammed F. Esgin1,2(B), Oğuzhan Ersoy3, and Zekeriya Erkin3

1 Faculty of Information Technology, Monash University, Melbourne, Australia
muhammed.esgin@monash.edu

2 Data61, CSIRO, Melbourne, Australia
3 Cyber Security Group,

Delft University of Technology, Delft, Netherlands
{o.ersoy,z.erkin}@tudelft.nl

Abstract. Adaptor signatures, also known as scriptless scripts, have
recently become an important tool in addressing the scalability and inter-
operability issues of blockchain applications such as cryptocurrencies. An
adaptor signature extends a digital signature in a way that a complete
signature reveals a secret based on a cryptographic condition. It brings
about various advantages such as (i) low on-chain cost, (ii) improved
fungibility of transactions, and (iii) advanced functionality beyond the
limitation of the blockchain’s scripting language.

In this work, we introduce the first post-quantum adaptor signature,
named LAS. Our construction relies on the standard lattice assumptions,
namely Module-SIS and Module-LWE. There are certain challenges spe-
cific to the lattice setting, arising mainly from the so-called knowledge gap
in lattice-based proof systems, that makes the realization of an adaptor
signature and its applications difficult. We show how to overcome these
technical difficulties without introducing additional on-chain costs. Our
evaluation demonstrates that LAS is essentially as efficient as an ordi-
nary lattice-based signature in terms of both communication and com-
putation. We further show how to achieve post-quantum atomic swaps
and payment channel networks using LAS.

Keywords: Post-quantum · Blockchain · Lattice · Adaptor signature ·
Scriptless script · Payment channel network.

1 Introduction

Blockchains are decentralized platforms run by miners, where each transaction
on the blockchain can be seen as an application formed of some script(s). The
scripting language of a blockchain defines potential functionalities that can be
implemented on blockchain. Bitcoin, for example, consists of very few scripts,
which restricts its use mainly into coin transactions. Ethereum, on the other
hand, has a Turing-complete scripting language that enables users to run more
advanced and complicated applications.
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 378–397, 2020.
https://doi.org/10.1007/978-3-030-59013-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_19

Post-Quantum Adaptor Signatures and Payment Channel Networks 379

A user who wants to deploy and execute a transaction needs to pay a fee
to the miners. The fee is determined by the storage and computational costs
of running each script of the transaction. Thus, it is beneficial to handle some
operations off-chain to reduce the on-chain fee paid to the miners. In this manner,
Poelstra introduced the notion of scriptless scripts [25], which is later named as
adaptor signatures [3,15].

Adaptor signatures can be seen as an extension over a digital signature, where
first a “pre-signature” is generated and its completion to a (full) signature reveals
a secret based on a cryptographic condition. The conditions are defined over a
hard relation such as the discrete log problem, and the complete signature reveals
a witness matching with the statement embedded into the pre-signature. The
verification of the signature is done in the same way as the original signature
scheme. Thus, while the miners verify only the signature, parties involved in the
signature generation can embed an additional condition.

The main advantages of adaptor signatures can be summarized as follows:
(i) A significant reduction in on-chain costs, (ii) improved fungibility of transac-
tions, and (iii) ability to incorporate complex conditions, which may otherwise
be impossible to execute due to the limitation of the blockchain’s scripting lan-
guage. More specifically, if the condition is published on-chain separately, then
it would incur additional storage and verification costs. At the same time, since
the condition is embedded inside a signature, for the outsiders and miners the
signature with a condition is indistinguishable from a regular one. This fungibil-
ity property is especially useful to hide payment channel network transactions
among any other transactions [21]. Moreover, adaptor signatures enhance the
functionality of blockchains with a limited scripting language. Since the condi-
tion embedded within the signature is not verified by miners, it is not limited by
the blockchain’s scripting language. These advantages have been utilized in pay-
ment channel networks [3,21], atomic swaps [24], and discrete log contracts [8].

None of these works, however, provide security against powerful quantum
computers as they rely on discrete-log-related assumptions. As evident, e.g.,
from NIST’s efforts for standardization of post-quantum (i.e., quantum-resistant)
algorithms [22], there is a major need for designing quantum-secure alternatives
of currently deployed schemes. In fact, in the blockchain community, there are
already significant efforts and considerations towards migrating to post-quantum
cryptography. For example, Ethereum 2.0 Serenity upgrade [5] is planned to have
an option for a post-quantum signature, Zcash developers plan to update their
protocol with post-quantum alternatives when they are mature enough [31], and
Hcash is building a post-quantum privacy-preserving blockchain [17].

Lattice-based cryptography, studied extensively in the last decades, is a
promising candidate for post-quantum security. For example, Dilithium [9],
which is based on standard lattice assumptions, is among the 2nd round signature
candidates in NIST’s post-quantum standardization process. Beyond basic cryp-
tographic schemes such as encryption and signature, lattice-based cryptography
also supports advanced schemes such as zero-knowledge proofs (ZKP), which
play a crucial role in blockchain applications. For example, advanced ZKPs have
recently been studied in [12,13] and there are even recent efforts in constructing
blockchain-specific applications based on lattice assumptions [14,30].

380 M. F. Esgin et al.

Our contributions. In this work, we introduce the first post-quantum adap-
tor signature, LAS, in support of the efforts towards migration to post-quantum
cryptography. Our construction relies on standard lattice assumptions, namely
Module-LWE and Module-SIS, and is essentially as efficient as an ordinary
lattice-based signature scheme based on the same assumptions. In particular,
the signature scheme underlying LAS is a simplified version of Dilithium [9].

We further show how to realize post-quantum payment channel networks and
atomic swaps using LAS. Our results show that these applications can be realized
in the post-quantum setting without incurring an additional on-chain cost. The
on-chain cost is effectively the cost of an ordinary lattice-based signature.

The main technical difficulties in constructing lattice-based adaptor signa-
tures, as well as atomic swaps and payment channel networks, stem from the fol-
lowing two related facts. First, hard-to-find pre-images of lattice-based one-way
functions, and in general user’s secret keys, are required to have small coeffi-
cients in comparison to the system modulus q. In this case, a common technique
used to hide user’s secrets is rejection sampling, which is applied depending on
the secret. As a result, in the setting of a payment channel network where a
multi-party interaction is required with each user having his/her own secret, the
realization of a secure construction demands a more careful analysis.

Secondly, efficient lattice-based zero-knowledge proofs underlying the (ordi-
nary) signature scheme we employ have an inherent knowledge (soundness) gap
(see, for example, [12,19,20]). That is, a witness extracted from a protocol inter-
action satisfies an extended relation R′ whereas an honest user’s secret satisfies a
stronger relation R such that R ⊆ R′. Therefore, we need to adjust the security
model carefully and also show that the extended guarantees are still meaningful
and sufficient for practical applications. To this end, we extend the formal model
of adaptor signatures introduced recently in [3], and show how to overcome the
technical difficulties in our applications.

Organization of the paper. In Sect. 2, we present our security assumptions,
lattice-based signatures and the rejection sampling technique as well as our
extended formal definition for adaptor signatures. We introduce LAS, our adap-
tor signature, in Sect. 3, where the security and performance analyses and the
effect of the knowledge gap are also given. We discuss the application of LAS to
atomic swaps and payment channel networks in Sect. 4.

2 Preliminaries

We define Rq = Zq[X]/(Xd + 1) to be a cyclotomic ring of power-of-2 degree
d for an odd modulus q. We denote by Sc the set of polynomials in Rq whose
maximum absolute coefficient is at most c ∈ Z

+. Similarly, R = Z[X]/(Xd + 1).
We denote by In the n-dimensional identity matrix. Vectors and matrices

over R are denoted by lower-case and capital bold letters such a and A, respec-
tively. For a polynomial f = f0+f1X+· · ·+fd−1X

d−1 ∈ R, we define the norms

in the typical way: ‖f‖ =
√∑d−1

i=0 f2
i , ‖f‖∞ = maxi |fi| and ‖f‖1 =

∑d−1
i=0 |fi|.

Post-Quantum Adaptor Signatures and Payment Channel Networks 381

For a vector v = (v0, . . . , vs−1) ∈ Rs of polynomials with s ≥ 1, we further

define ‖v‖ =
√∑s−1

i=0 ‖vi‖2, ‖v‖1 =
∑s−1

i=0 ‖vi‖1 , ‖v‖∞ = maxi ‖vi‖∞ .

2.1 Security Assumptions: Module-SIS and Module-LWE

The security assumptions on which our constructions rely are the two well-known
lattice problems, namely Module-SIS (M-SIS) and Module-LWE (M-LWE) [18].
They are generalizations of SIS [2] and LWE [28] problems, respectively. These
problems are widely believed to resist attacks against powerful quantum adver-
saries. As in [9,12,13], we define below M-SIS in “Hermite normal form”, which
is as hard as M-SIS with a completely random matrix A.

Definition 1 (M-SISn,m,q,βSIS). Let A′ $← Rn×(m−n)
q and A = [In ‖A′].

Given A, M-SIS problem with parameters m > n > 0 and 0 < βSIS < q asks to
find a short non-zero v ∈ Rm

q such that Av = 0 over Rq and ‖v‖ ≤ βSIS.

We use a standard variant of M-LWE where both the error and secret coeffi-
cients are sampled uniformly from {−1, 0, 1}. This variant is commonly used in
many recent proposals such as [12–14].

Definition 2 (M-LWE�,m,q). M-LWE problem with parameters �,m > 0 asks

to distinguish between the following two cases: 1) (A, b) $← Rm×�
q × Rm

q , and 2)

(A,As+e) for A
$← Rm×�

q , a secret vector s
$← S

�
1 and an error vector e

$← S
m
1 .

It is well-known that if the error and the secret coefficients are sampled from Sγ

for γ > 1, then M-LWE problem gets harder. Therefore, M-LWE�,m,q hardness
assumption implies that t = As+ e is (computationally) indistinguishable from

a uniformly random element of Rm
q when s

$← S
�
γ and e

$← S
m
γ for any γ ≥ 1.

2.2 Lattice-Based Signature and Rejection Sampling

The (ordinary) signature part of our construction can be seen as a simplified
version of Dilithium [9], which is a 2nd round signature candidate in NIST’s
post-quantum standardization process. This signature scheme itself is based on
Lyubashevsky’s signatures [19,20]. In our construction, we do not employ the
optimizations in Dilithium in order to simplify the presentation.

To make sure that the signature does not leak information about the secret
key, we employ the rejection sampling technique from [19] as also done in
Dilithium. The idea for this works as follows. Let s ∈ Rk

q be a secret-dependant
vector with ‖s‖∞ ≤ p ∈ Z

+. In order to tie the security to M-SIS, we require
the masked vector z = y + s to be short relative to q. Therefore, y cannot be
sampled uniformly at random from Rk

q . Instead, we sample y $← S
k
γ for γ ≈ kd·p.

Then, we restart signing (i.e., reject z = y + s) if ‖z‖∞ > γ − p. It is easy to
see that conditioned on z being accepted, the distribution of z is identical to
the uniform distribution on Sk

γ−p. That is, the distribution of z is forced to be
uniform in a box, and thus is (perfectly) simulatable using public information.

382 M. F. Esgin et al.

2.3 Adaptor Signatures

In [3], an adaptor signature ΠR,Σ is defined with respect to a hard relation R
and a signature scheme Σ = (KeyGen,Sign,Verify). A relation R with a language
LR := {Y | ∃y : (Y, y) ∈ R} is said to be hard [6] if: (i) there exists a probabilistic
polynomial time (PPT) generator Gen(1n) that outputs (Y, y) ∈ R, (ii) for every
PPT algorithm A, given Y ∈ LR, the probability of A outputting y is negligible.
A signature scheme Σ is defined by three algorithms: (i) KeyGen generates a
public-secret key pair (pk, sk), (ii) Sign produces a signature σ using the key
(pk, sk) and message M , (iii) Verify verifies the correctness of a signature σ on
a message M using a public key pk. Our underlying signature, Dilithium [9], is
SUF-CMA (Strong existential unforgeability under chosen message attacks) secure.

In the lattice setting, we need to define two relations R,R′ with R ⊆ R′.
Here, R constitutes the relation for the statement-witness pairs output by Gen
(i.e., those used by honest users) whereas R′ is an extended relation that defines
the relation for extracted witnesses. The reason for this extension is detailed
in Section 3, and stems from the knowledge/soundness gap inherent in effi-
cient lattice-based zero-knowledge proofs (see, e.g., the soundness definition in
[13, Section 2.3]). We denote an adaptor signature scheme in this setting by
ΠR,R′,Σ , which extends the definition given in [3], and elaborate further below
the reason why this extension is necessary.

Definition 3 (Adaptor Signature Scheme). An adaptor signature scheme
ΠR,R′,Σ consists of four algorithms (PreSign,PreVerify,Adapt,Ext) defined below.

PreSign((pk, sk), Y,M): on input a key pair (pk, sk), a statement Y ∈ LR and a
message M ∈ {0, 1}∗, outputs a pre-signature σ̂.

PreVerify(Y, pk, σ̂,M): on input a statement Y ∈ LR, a pre-signature σ̂, a public
key pk and a message M ∈ {0, 1}∗, outputs a bit b.

Adapt((Y, y), pk, σ̂,M): on input a statement-witness pair (σ̂, y), a public key
pk, a pre-signature σ̂ and a message M ∈ {0, 1}∗, outputs a signature σ.

Ext(Y, σ, σ̂): on input a statement Y ∈ LR, a signature σ and a pre-signature σ̂,
outputs a witness y such that (Y, y) ∈ R′, or ⊥.

Note that an adaptor signature ΠR,R′,Σ also inherits KeyGen, Sign and Verify
algorithms from the signature scheme Σ. The authors in [3] define the security
properties for an adaptor signature: aEUF-CMA security, pre-signature adapt-
ability and witness extractability. In addition, they extend the standard cor-
rectness definition of signature algorithms with pre-signature correctness, which
states that an honestly generated pre-signature of a statement Y ∈ LR passes
PreVerify and can be completed into a signature where the witness y can be
extracted. We extend further the formal definitions of the security properties
in [3], where R = R′ yields the setting in [3].

Definition 4 (aEUF-CMA security). An adaptor signature scheme ΠR,R′,Σ
is aEUF-CMA secure if for every PPT adversary A there exists a negligible func-
tion negl(λ) such that Pr[aSignForgeA,ΠR,R′,Σ

(λ) = 1] ≤ negl(λ) , where the
experiment aSignForgeA,ΠR,R′,Σ

is defined as follows:

Post-Quantum Adaptor Signatures and Payment Channel Networks 383

aSignForgeA,ΠR,R′,Σ
(λ)

1 : Q := ∅
2 : (pk, sk) ← KeyGen(1λ)

3 : M∗ ← AOS(·),OpS(·,·)(pk)

4 : (Y, y) ← Gen(1λ)

5 : σ̂ ← PreSign((pk, sk), Y, M∗)

6 : σ ← AOS(·),OpS(·,·)(σ̂, Y)

7 : return (M∗ �∈ Q ∧ Verify(pk, σ, M∗))

OS(M)

1 : σ ← Sign((pk, sk), M)

2 : Q := Q ∪ {M}
3 : return σ

OpS(M,Y)

1 : σ̂ ← PreSign((pk, sk), Y, M)

2 : Q := Q ∪ {M}
3 : return σ̂

Definition 5 (Weak pre-signature adaptability). An adaptor signature
scheme ΠR,R′,Σ is weak pre-signature adaptable if for any message M ∈ {0, 1}∗,
any statement/witness pair (Y, y) ∈ R, any key pair (pk, sk) ← KeyGen(1λ)
and any pre-signature σ̂ ← {0, 1}∗ with PreVerify(Y, pk, σ̂,M) = 1, we have
Pr[Verify(pk,Adapt((Y, y), pk, σ̂,M),M) = 1] = 1.

We call our pre-signature adaptability definition weak because only statement-
witness pairs satisfying R are guaranteed to be adaptable, and not those satisfying
R′. This is similar to the knowledge gap of the ZKP underlying Dilithium, where
the soundness only guarantees extraction of a witness from an extended relation.
Therefore, pre-signature adaptability does not guarantee, for example, that an
extracted witness can be used to adapt a pre-signature successfully (see Remark
1). This issue becomes effective in the applications of our adaptor signature, and
we show how to overcome it in Section 4. Note that still the pre-signature σ̂ in the
above definition can be adversarially generated as in [3].

Definition 6 (Witness extractability). An adaptor signature scheme
ΠR,R′,Σ is witness extractable if for every PPT adversary A, there exists a neg-
ligible function negl(λ) such that the following holds: Pr[aWitExtA,ΠR,R′,Σ

(λ) =
1] ≤ negl(λ) , where the experiment aWitExtA,ΠR,R′,Σ

is defined as follows

aWitExtA,ΠR,R′,Σ
(λ)

1 : Q := ∅
2 : (pk, sk) ← KeyGen(1λ)

3 : (M∗, Y) ← AOS(·),OpS(·,·)(pk)

4 : σ̂ ← PreSign((pk, sk), Y, M∗)

5 : σ ← AOS(·),OpS(·,·)(σ̂)

6 : y′ := Ext(Y, σ, σ̂)

7 : return (M∗ �∈ Q ∧ (Y, y′) �∈ R′

8 : ∧ Verify(pk, σ, M∗))

OS(M)

1 : σ ← Sign((pk, sk), M)

2 : Q := Q ∪ {M}
3 : return σ

OpS(M,Y)

1 : σ̂ ← PreSign((pk, sk), Y, M)

2 : Q := Q ∪ {M}
3 : return σ̂

Note that, in the above witness extractability definition, the adversary’s
winning condition is restricted to the extracted witness not being in R′.

384 M. F. Esgin et al.

Since R ⊆ R′, (Y, y′) /∈ R′ implies that (Y, y′) /∈ R. Therefore, it is sufficient
to ensure that R′ is a hard relation, which itself implies that R is also a hard
relation. As a result, in our security assumptions, we make sure that R′ is a hard
relation.

3 LAS: An Efficient Adaptor Signature from Lattices

In this section, we describe our lattice-based adaptor signature, LAS. Let A =
[In ‖A′] ∈ R

n×(n+�)
q for A′ $← Rn×�

q and H : {0, 1}∗ → C be a hash function
(modelled as a random oracle). We assume that the public parameters pp =
(A,H) are publicly available and can be used by any algorithm. In practice,
A′ can be generated from a small seed using an extendable output function
(modelled as a random oracle) as done in Dilithium [9]. The function fA (x) =
Ax over Rq is Ajtai’s hash function [2] defined over module lattices where the
matrix A is in Hermite normal form (HNF). It is clear that the function is
additively homomorphic, and Ajtai [2] showed that it is one-way in the setting of
SIS. In our case, the security is based on M-SIS (in HNF). Collision-resistance is
also clear as a collision (x,x′) yields an immediate M-SIS solution: A(x−x′) = 0.

In Table 1, we first summarize the identifiers used for LAS, where the hard
relations R,R′ are given by RA ,R′

A with RA ⊆ R′
A . The statement-witness

generation Gen for RA runs exactly as KeyGen. It is easy to see that if M-
SISn,n+�+1,q,β for β = 2γd(n + �) is hard, then RA and R′

A are hard relations.
This is because if one can find r such that (t, r) ∈ R′

A for a random t, then

[A ‖ t] ·
(

r
−1

)
= 0. Hence,

(
r

−1

)
is a solution to M-SISn,n+�+1,q,β for β =

2γd(n + �) since ‖r‖ ≤ β.

Table 1. Identifiers for LAS.

Notation Explanation Value

d a power-of-2 ring dimension 256

Rq cyclotomic ring of degree d: Rq = Zq [X]/(Xd + 1) log q ≈ 24

Sc the set of polynomials f ∈ Rq with ‖f‖∞ ≤ c for c ∈ Z+

n M-SIS rank 4

� M-LWE rank 4

C the challenge set and range of H:
{c ∈ R : ‖c‖1 = κ ∧ ‖c‖∞ = 1}

κ = 60

γ maximum absolute coefficient of a masking randomness κd(n + �)

(Y, y) ∈ RA the base relation with [In ‖A′] = A ∈ Rn×(n+�)
q :

(Y, y) = (t, r) ∈ RA if t = Ar and ‖r‖∞ ≤ 1

(Y, y) ∈ R′
A the extended relation with [In ‖A′] = A ∈ Rn×(n+�)

q :
(Y, y) = (t, r) ∈ RA if t = Ar and ‖r‖∞ ≤ 2(γ − κ)

γ > κ

Post-Quantum Adaptor Signatures and Payment Channel Networks 385

Algorithm 1. Lattice-Based Signature

1: procedure KeyGen(): � same as Gen

2: r
$← S

n+�
1

3: t = Ar
4: return (pk, sk) = (t, r)
5: end procedure

6: procedure Sign((pk, sk), M):

7: y
$← S

n+�
γ

8: w = Ay
9: c = H(pk,w, M)

10: z = y + cr where r := sk

11: if ‖z‖∞ > γ − κ, then Restart
12: return σ = (c, z)
13: end procedure

14: procedure Verify(pk, σ, M):
15: Parse (c, z) := σ
16: if ‖z‖∞ > γ − κ, then return 0
17: w′ = Az − ct where t := pk
18: if c �= H(pk,w′, M), then return 0
19: return 1
20: end procedure

We present the ordinary signature procedures in Algorithm 1, and then the
procedures for the adaptor signature in Algorithm 2. The idea for the signature
is similar to the Schnorr signature [29] with the main difference being the use of
rejection sampling at Step 11. This is the so-called “Fiat-Shamir with Aborts”
technique [19,20].

In the adaptor signature part in Algorithm 2, PreSign and PreVerify operate
very similar to Sign and Verify, respectively. The main issue is that the signer
may not know (at the time of running PreSign) the witness y to the statement Y ,
and yet for many applications in practice (such as payment channel networks),
one would want to make sure that having access only to the signature (but not
the pre-signature) does not reveal any information on the witness y.

To this end, we need to modify the rejection sampling step. Even though the
signer does not know the witness y, he does know how it is supposed to be gen-
erated in an honest run. Therefore, he knows that the maximum absolute coeffi-
cient of any honestly-generated witness is at most 1 (recall that Gen runs exactly
as KeyGen). Since we have z = y + cr + r′ for r′ := y in an honestly-generated
full signature, we know that the secret-dependant part cr+ r′ has infinity norm
at most κ + 1. Therefore, the signer artificially performs a stronger rejection
sampling step in PreSign, where ‖ẑ‖∞ ≤ γ − κ − 1 is required. This ensures
that even when the witness is added to the response in Adapt, the response z
still satisfies the rejection sampling condition in Sign, and thus remains publicly
simulatable, i.e., no secret information including the witness is revealed.

In fact, there are further reasons for this important modification. One is in
regards to adaptability. If the rejection sampling in PreSign is done exactly as
in Sign, then verification of an adapted pre-signature (i.e., output of Adapt) via
Verify may not succeed as the infinity norm condition may be violated due to
the addition of r′ := y. Another reason comes from the security analysis. In
order to be able to simulate the outputs of both Sign and PreSign, this change
to rejection sampling plays a crucial role.

386 M. F. Esgin et al.

Algorithm 2. LAS: Lattice-Based Adaptor Signature

1: procedure PreSign((pk, sk), Y, M):

2: y
$← S

n+�
γ

3: w = Ay
4: c = H(pk,w + t′, M) for t′ := Y
5: ẑ = y + cr where r := sk
6: if ‖ẑ‖∞>γ − κ − 1, then Restart
7: return σ̂ = (c, ẑ)
8: end procedure

9: procedure PreVerify(Y, pk, σ̂, M):
10: Parse (c, ẑ) := σ̂ and t′ := Y
11: if ‖ẑ‖∞ > γ − κ − 1 then
12: return 0
13: end if
14: w′ = Aẑ − ct where t := pk
15: if c �= H(pk,w′ + t′, M) then
16: return 0
17: end if

18: return 1
19: end procedure

20: procedure Adapt((Y, y), pk, σ̂, M):
21: if PreVerify(Y, pk, σ̂, M) = 0 then
22: return ⊥
23: end if
24: Parse (c, ẑ) := σ̂ and r′ := y
25: return σ = (c, ẑ + r′)
26: end procedure

27: procedure Ext(Y, σ, σ̂):
28: Parse (c, z) := σ and (ĉ, ẑ) := σ̂
29: Parse t′ := Y
30: s = z − ẑ
31: if t′ �= As, then return ⊥
32: return s
33: end procedure

Let us summarize the following two facts as we will make use of them repeat-
edly in the security proofs.

Fact 1. We can see that ‖cr‖∞ ≤ κ since ‖c‖1 ≤ κ and ‖r‖∞ ≤ 1. Therefore,
both ẑ in PreSign and z in Sign can be simulated publicly as they follow uniform
distributions on S

n+�
γ−κ−1 and S

n+�
γ−κ, respectively, due to the rejection sampling.

Fact 2. Assuming the hardness of M-LWE�,n,q, the result of Ax is (compu-
tationally) indistinguishable from a uniformly random element in Rn

q when-

ever x
$← S

n+�
c for some c ≥ 1. We can see this by realizing that Ax =

[In ‖A′] ·
(
x0

x1

)
= x0 + A′x1. This is an M-LWE instance with the secret

vector x1 ∈ S
�
c and the error vector x0 ∈ S

n
c .

Note that there is a knowledge gap between a witness used by an honest user
and a witness extracted by Ext for a statement Y . In particular, an honest user’s
witness y = r satisfies ‖r‖∞ ≤ 1 (i.e., (Y, y) ∈ RA), whereas an extracted witness
y′ = r′ is only guaranteed to satisfy ‖r′‖∞ ≤ 2(γ−κ) (i.e., (Y, y′) ∈ R′

A). Such a
knowledge gap is inherent in the existing efficient lattice-based zero-knowledge
proofs such as the one underlying Dilithium. However, we emphasize that this
knowledge gap does not raise a security concern as our hardness assumptions
require that finding even a witness as big as an extracted witness is still hard,
which itself implies that finding an honest user’s witness is also hard. In the next
section, we study the security aspects more rigorously.

Post-Quantum Adaptor Signatures and Payment Channel Networks 387

3.1 Security Analysis

Pre-signature correctness follows via a straightforward investigation. In the fol-
lowing sequence of lemmas, we prove the security properties.

Lemma 1 (Weak pre-signature adaptability). LAS satisfies weak pre-
signature adaptability with respect to the relation RA given in Table 1.

Proof. Let σ̂ = (c, ẑ) be a valid pre-signature with PreVerify(Y, pk, σ̂,M) = 1
and y = r′ ∈ S

n+�
1 be a witness corresponding to Y . Note that ‖ẑ‖∞ ≤ γ −κ−1

since σ̂ is valid. Then, Adapt((Y, y), pk, σ̂,M) = (c, ẑ + r′) =: (c,z) = σ. Now,
we have

‖z‖∞ = ‖ẑ + r′‖∞ ≤ ‖ẑ‖∞ + ‖r′‖∞ = (γ − κ − 1) + 1 = γ − κ. (1)

We further have

H(pk,Az − ct,M) = H(pk,A(ẑ + r′) − ct,M) = H(pk,Aẑ − ct + Ar′,M)
= H(pk,Aẑ − ct + t′,M) = c. (2)

From (1) and (2), it follows that σ is valid, i.e., Verify(pk, σ,M) = 1. �
Remark 1. Observe in the proof of Lemma 1 that we crucially rely on the fact
that for a witness y = r′ in RA , we have ‖r′‖∞ ≤ 1. An extracted witness s does
not necessarily obey this rule as the relation R′

A only requires ‖s‖∞ ≤ 2(γ −κ).
Therefore, extra care needs to be taken when dealing with the cases where an
extracted witness is used to adapt a pre-signature.

Lemma 2 (Witness extractability). If M-LWE�,n,q and M-SISn,n+�+1,q,β

for β = 2γ
√

d(n + �) are hard, then LAS is witness extractable in the random
oracle model.

Proof. Here, we only investigate the case that the signature output by the adver-
sary shares the same challenge with the pre-signature. The other case (where the
two challenges are distinct) can be proven exactly as in Case 2 of the proof of
Lemma 3 because how Y is generated is irrelevant for that case.

For a given pair of public key and statement (pk, Y) = (t, t′) and a message
M , let σ̂ = (c, ẑ) and σ = (c,z) be a valid pre-signature and a valid signature,
respectively. Then, from the corresponding verification algorithms (i.e., Verify
and PreVerify), we have H(pk,Az − ct,M) = H(pk,Aẑ − ct + t′,M). Since H is
modelled as a random oracle, this holds only when Az−ct = Aẑ−ct+t′, which
implies that Az−Aẑ = A(z−ẑ) = t′. It is easy to see that ‖z−ẑ‖∞ ≤ 2(γ−κ).
Therefore, for the output s = z − ẑ of Ext(Y, σ, σ̂), we have (t′, s) ∈ R′

A . Note
also that s is non-zero since t′ is non-zero except for a negligible probability. �
Lemma 3 (Unforgeability). If M-SISn,n+�+1,q,β for β = 2γ

√
d(n + �) and

M-LWE�,n,q are hard, then LAS is aEUF-CMA secure in the random oracle model.

Proof. First, from the assumptions in the statement, we know that

388 M. F. Esgin et al.

1. both RA and R′
A are hard relations,

2. any public key output by KeyGen and any statement output by Gen is indis-
tinguishable from a uniformly random element in Rn

q due to Fact 2.

Let F be a PPT adversary who wins the aEUF-CMA security game with non-
negligible probability. We will build an adversary S that solves M-SISn,n+�+1,q,β .

Let β = 2γ
√

d(n + �) and B = [In ‖A′ ‖a] ∈ Rn×(n+�+1)
q for A′ $← Rn×�

q and

a
$← Rn

q . Assume that S wants to solve M-SIS w.r.t. B. Let A denote [In ‖A′].

Setup. S sets A together with some hash function H as the public parameters. It
is clear that A has the correct distribution. Then, it sets pk = t = Br where r =(
r′

1

)
for r′ $← S

n+�
1 . S sends pk to F . By M-LWE�,n,q, pk is indistinguishable

from a public key output by KeyGen since Br = Ar′+a looks uniformly random
as Ar′ does. Note also that t = pk is non-zero with overwhelming probability.
Oracle simulation. For OS(M), S picks z

$← S
n+�
γ−κ and c

$← C, and programs
the random oracle such that c = H(pk,Az − ct,M). If the input of H has been
queried before, S aborts. Otherwise, S returns σ = (c,z). The simulated output
is indistinguishable from a real one due to Fact 1.

For OpS(M,Y), the simulator picks ẑ
$← S

n+�
γ−κ−1 and c

$← C, and programs
the random oracle such that c = H(pk,Aẑ−ct+t′,M) for t′ := Y . If the input of
H has been queried before, S aborts. Otherwise, the simulator returns σ̂ = (c, ẑ).
The simulated output is indistinguishable from a real one due to Fact 1.

In both cases, the probability of an abort is negligible as F can make at most
polynomially many queries to H.
Forgery. F returns the target message M∗ to S. S sets Y = −a and computes
a pre-signature σ̂∗ = (c∗, ẑ∗) using the simulation method above. S sends (Y, σ̂∗)
to F . Again, note that Y is indistinguishable from a real output by Gen, and σ̂∗

is indistinguishable from a real output of PreSign. Finally, F returns a forged
signature σ = (c,z) on M∗.
Case 1 (c∗ = c) : If this is the case, then as shown in the proof of Lemma 2, S
can extract a witness to R′

A . That is, S gets (Y, y) ∈ R′
A with s′ := y, which

implies that As′ = −a (since Y = −a) and ‖s′‖∞ ≤ 2(γ −κ). This is equivalent

to Bs = 0 for s =
(
s′

1

)
. Note that ‖s‖ ≤ β. Hence, S finds a solution to

M-SISn,n+�+1,q,β .
Case 2 (c∗ �= c) : In this case, we know that the forged signature’s chal-
lenge comes from a random oracle query output (with overwhelming prob-
ability). Therefore, we can use a standard rewinding argument as in [26],
where S rewinds F to get another forgery σ′ = (c′,z′) such that c′ �= c and
H(pk,Az′ − c′t,M∗) = H(pk,Az − ct,M∗). Therefore, we have

Az′ − c′t = Az − ct ⇐⇒ A (z′ − z) = (c′ − c)t. (3)

Post-Quantum Adaptor Signatures and Payment Channel Networks 389

Since c′ �= c, we have z′ − z �= 0. The above equation (3) can be equivalently
written as

B

(
z′ − z

0

)
= (c′ − c)t. (4)

Now recalling that t = Br, we also have

(c′ − c)t = B · (c′ − c)r. (5)

Subtracting (3) from (5), we get

B

[
(c′ − c)r −

(
z′ − z

0

)]
= 0. (6)

Recalling that the last coordinate of r is 1, i.e., non-zero, the above gives
a non-trivial solution to M-SISn,n+�+1,q,β . Here note that ‖z′ − z‖ ≤ 2(γ −
κ)

√
d(n + �) < β and ‖(c′ − c)r‖ ≤ 2κ

√
d(n + � + 1). Since γ � κ, the total

norm of the M-SIS solution remains below β = 2γ
√

d(n + �). �

3.2 Parameter Setting and Performance Analysis

First, we set γ = κd(n + �) so that the average number of restarts in Sign and
PreSign is about e < 3. Then, we set d = 256 and κ = 60, which ensures that
the challenge set C has more than 2256 elements. Finally, in order to meet the
M-SISn,n+�+1,q,β and M-LWE�,n,q security requirements for β = 2γ

√
d(n + �),

we set n = � = 4 and q ≈ 224. Only the size of the modulus q is important,
and therefore the concrete value can be chosen to allow fast computation such
as Number Theoretic Transformation (NTT).

In estimating the practical security of M-SIS and M-LWE, we follow the
methodology outlined in [10, Section 3.2.4] and measure the practical hardness
in terms of “root Hermite factor” δ. This parameter setting yields δ < 1.0045
for both M-SIS and M-LWE. δ ≈ 1.0045 has been used in recent works, e.g.,
[12–14] for targeting 128-bit post-quantum security. From here, we can compute
the concrete signature length as

|σ| = d(n + �) log(2γ)/8 + 32 bytes ≈ 3210 bytes. (7)

This length is slightly larger than the size of Dilithium (2701 bytes) [9] with
recommended parameters. The main reason is because we do not employ the
optimizations for ease of presentation.

In terms of the computational efficiency, the operations performed in LAS are
almost identical to those in Dilithium. Thus, hundreds of signing (and even more
verification) can be done per second on a standard PC as shown in [9, Table 2].

390 M. F. Esgin et al.

4 Applications

In this section, we present two blockchain applications of our adaptor signature,
namely atomic swaps and payment channel networks. To match with the exist-
ing adaptor signature applications, we assume an Unspent Transaction Output
(UTXO)-based blockchain like Bitcoin where the signature algorithm is replaced
with a lattice-based signature scheme given in Algorithm 1 . In the UTXO model,
coins are kept in addresses where each address consists of the amount and the
spending condition. The spending condition is defined by the scripting language
and the most common ones are signature and hash preimage verifications, and
timing conditions. For our applications, we also assume that the underlying
blockchain supports these scripts.

4.1 Atomic Swaps

An atomic swap can be defined between two users u1 and u2 who want to exchange
two different cryptocurrencies c1 and c2. The crucial point of the exchange is
ensuring fairness, i.e., either both parties receive their expected output or none
do. In [23], an atomic swap protocol is presented with the following steps.

Setup. First, u1 shares a hash value h1 := H(r1) of a secret r1 to u2. Then, u1

creates a transaction on the coins c1 such that it can be spendable by u2 only
if the preimage of h1 is presented. Similarly, u2 also creates a transaction on
the coins c2 with the same preimage condition for u1. Here, both transactions
have timeouts ti such that, once ti elapses, ui can redeem ci if the counterparty
does not continue to the exchange. Also, the timelock, t2, on u2’s transaction is
shorter (i.e., t2 < t1) to ensure that u2 would have enough time to react. First,
u1 publishes her transaction on-chain, then u2 does the same.

Swap. Once both transactions are on-chain, u1 can obtain c2 by revealing r1,
which yields to u2 obtaining c1. Note that this protocol requires both scripting
languages of the cryptocurrencies to have preimage conditioned scripts. Later
on, in [24], the scriptless version of the protocol is presented where the hash
condition is embedded into the signature algorithm.

Let us explain how to achieve atomic swaps using LAS, which requires careful
analysis because of the aforementioned knowledge gap. In the scenario below,
an extracted witness, which satisfies an extended relation (i.e., R′

A , but not
necessarily RA), will constitute the opening condition to receive coins.

Let (pki, ski) be the public-secret key pair for user ui for i = 1, 2. First,
u1 generates a statement-witness pair (Y, y) = (t, r) ∈ RA as in Section 3,
and sends Y to u2 along with a proof π of knowledge of a witness r such
that t = Ar and ‖r‖∞ ≤ 1. Such a proof can be realized using the
recent Esgin-Nguyen-Seiler proof system [11]. Then, u1 also creates a pre-
signature σ̂1 ← PreSign((pk1, sk1), Y, tx1) for tx1 spending the coins c1 to
u2. After verifying the proof π, u2 similarly creates a pre-signature σ̂2 ←
PreSign((pk2, sk2), Y, tx2) for tx2 spending the coins c2 to u1. Then, the two pre-
signatures are exchanged between the parties. Now u1 adapts the pre-signature

Post-Quantum Adaptor Signatures and Payment Channel Networks 391

σ̂2 as σ2 ← Adapt((Y, y), pk2, σ̂2, tx2), and aborts if σ2 =⊥. Otherwise, he pub-
lishes the full signature σ2 on the second cryptocurrency’s blockchain in order
to receive the coins c2. Then, seeing σ2, u2 runs y′ = s ← Ext(Y, σ2, σ̂2) and
σ1 ← Adapt((Y, y′), pk1, σ̂1, tx1). If any of them returns ⊥, u2 aborts. Otherwise,
u2 publishes σ1 on the first cryptocurrency’s blockchain to receive the coins c1.
This interaction is depicted in Figure 1.

Let us now analyze whether u1 receives c2 if and only if u2 receives c1. If
u1 does not receive c2, i.e., u1 aborts, then u2 clearly cannot receive c1 due
to the aEUF-CMA security of LAS as u2 only has the pre-signature σ̂1 and the
statement Y (without a witness to Y). On the other hand, if u1 does receive c2,
this means that σ2 is valid signature published on a blockchain, i.e., accessible
by u2. Therefore, by the witness extractability of LAS, u2 can extract a witness
s to Y = t such that t = As. Recall that u1 proved knowledge of a witness r
to Y = t such that ‖r‖∞ ≤ 1. By the hardness of M-SIS, it must be the case
that s = r as otherwise A(s − r) = 0 gives a solution to M-SISn,n+l,q,β for β =
2γ

√
d(n + �). As a result, we have that ‖s‖∞ = ‖r‖∞ ≤ 1. Therefore, s ∈ RA

and the pre-signature adaptability works, and hence the signature σ1 adapted
by u2 passes the verification. Note that without the proof of knowledge π,

Fig. 1. Atomic swap protocol using LAS.

392 M. F. Esgin et al.

we cannot guarantee that the extracted witness s will satisfy ‖s‖∞ ≤ 1, and
hence pre-signature adaptability would not have been guaranteed without π. In
other words, π is essential to make sure that u2 receives the coins c1.

We also note that even though a lattice-based proof of knowledge, π, is rel-
atively costly in terms of communication in practice (but very efficient in com-
putation), this proof is only exchanged between the parties, and not published
on blockchain. Therefore, it does not incur additional on-chain storage costs.

4.2 Payment Channel Networks

Payment channel networks (PCNs) [7,16,21,27] are one of the promising solu-
tions to the scalability issues of blockchains. More specifically, many blockchains
have poor transaction throughput compared to alternatives like credit card
networks because of their consensus mechanisms, where every party (miner)
approves and stores every transaction. PCNs improve the throughput by moving
some transactions off-chain while relying on the security of the blockchain. In a
PCN, two parties can lock coins into a channel where they can make instant and
arbitrarily many transactions between each other so long as they have enough
balances. One of the most popular PCNs built on Bitcoin is the Lightning net-
work [27]. The overall structure of our post-quantum PCN resembles the Light-
ning network.

A payment channel consists of three steps: create, update, and close. In the
creation phase, parties deposit some coins into the channel and create a funding
transaction that spends the input addresses into a single output of the channel.
The funding transaction is published on the blockchain and afterward, all of
the updates are done off-chain until the closing part. The output condition of
funding is spendable only if both parties sign it, which ensures an agreement by
both parties. The condition can be implemented by a two-party multi-signature.

In realizing a two-party multi-signature, a straightforward option is to simply
combine two individual signatures. Alternatively, there is a lattice-based multi-
signature in [4], which can be used in the two-party setting. The underlying
signature uses the same “Fiat-Shamir with Aborts” technique, and as stated in
[4], the multi-signature can be realized over module lattices as in our work.

When parties want to send/receive coins in the channel, they make off-chain
transactions and update the channel balances. In each update, parties create new
commit transactions that spend the output of the funding transaction into the
two new addresses of the parties with their corresponding balances. Also, parties
revoke the previous commits by sharing the signing keys with each other. The
revocation can be seen as a punishment mechanism to prevent a malicious party
from publishing an old commitment. Once parties are done with the channel,
they can close it and obtain their coins by publishing the latest commitment on-
chain. A payment channel creation, update, and closing can be done in the same
manner as the Lightning network. Now, we investigate how to achieve multi-hop
payments with our adaptor signature scheme.

A network of channels allows parties to make multi-hop payments. More
specifically, parties, who do not have a direct channel, can route a payment

Post-Quantum Adaptor Signatures and Payment Channel Networks 393

using the channels of some intermediary nodes. In these multi-hop payments,
it is crucial to synchronize each channel on the route so that either all of them
update accordingly or no one does. The Lightning network achieves this by
using HTLC (hash-time lock contract). However, in [21], the authors presented
privacy concerns as well as the wormhole attack for the HTLC mechanism. In
this manner, we adopt the AMHL (anonymous multi-hop lock) technique [21]
for the multi-hop payments. Also, it is stated that AMHLs are sufficient to
construct a payment channel network [21, Theorem 4]. In a scenario where sender
S (or I0) wants to send payment through the intermediary nodes I1, . . . , Ik−1

to the receiver R (or Ik), AMHL-based multi-hop payment works as follows (for
simplicity, we omit the fees given to the intermediary nodes).

Setup. S chooses random strings �0, �1, . . . , �k−1, and computes yj :=
∑j

i=0 �i

and Yj := G(yj) for j = 0, . . . , k − 1 where G is an additively homomorphic
one-way function. Then, S shares (Yj−1, Yj , �j) with each intermediary Ij for
i = 1, . . . , k − 1 and (Yk−1, yk−1) with R. Each intermediary party Ij validates
the correctness of values by using the homomorphism, i.e., checking that G(�j)⊕
Yj−1 = G(yj) = Yj , where ⊕ denotes the operation in the range of G.

Payment. S makes a conditional payment to I1 requiring preimage of Y0, while
each intermediary party Ij , for j = 1, . . . , k − 1, makes a payment of the same
amount to Ij+1 with a condition on preimage of Yj after they receive a similar
payment from Ij−1. Once all conditional payments are placed, S reveals the
preimage yk−1 to R = Ik showing that she can redeem the payment. This creates
a chain reaction as follows. When an intermediary party Ij receives yj from Ij+1,
he can compute yj−1 = yj − �j and redeem the payment by revealing yj−1 to
Ij−1. The procedure is completed once all the channels are updated accordingly.

We can realize AMHL in the post-quantum setting using LAS, but again
a special care is required due to the knowledge gap and the use of rejection
sampling. First of all, we assume that the length of the PCN is at most K � q
(i.e., k ≤ K � q) and update the norm check at Steps 6 and 11 in Algorithm 2 by

‖ẑ‖∞ > γ −κ−K. Now, S samples rj
$← S

n+�
1 , and computes sj =

∑j
i=0 ri and

tj = Asj for j = 0, . . . , k − 1. Observe that we have ‖sj‖∞ ≤ k ≤ K for all j =
0, . . . , k − 1. Then, S treats Yj = tj , yj = sj and �j = rj for j = 0, . . . , k − 1.
The additively homomorphic function is fA (x) = Ax (over Rq) mentioned in
Section 3. Then, the Setup phase of AMHL described above is run. Additionally,
for each j = 0, . . . , k − 2, S sends Ij+1 a NIZK proof πj+1 that she knows a
witness yj = sj to Yj = tj such that

‖sj‖∞ ≤ K. (8)

After this setup, payment phase begins. Let (pkj , skj) be Ij ’s public-secret key
pair used in his channel with Ij+1, and txj be the transaction transferring the rel-
evant coins from Ij to Ij+1. S creates a pre-signature σ̂0 ← PreSign((pk0, sk0), Y0,
tx0) and sends it to I1. Then, for j = 1, . . . , k − 1, each user Ij creates a pre-
signature σ̂j ← PreSign((pkj , skj), Yj , txj) after receiving the pre-signature σ̂j−1

from Ij−1. Once all pre-signatures are generated and transferred, S reveals yk−1

394 M. F. Esgin et al.

Fig. 2. Anonymous multi-hop payments using LAS. We assume that (i) Tj ’s are trans-
mitted confidentially, (ii) pre-signature transmission from Ij to Ij+1 happens only if
that from Ij−1 to Ij already happened, and (iii) signature transmission from Ij+1 to
Ij happens only if that from Ij+2 to Ij+1 already happened.

Post-Quantum Adaptor Signatures and Payment Channel Networks 395

to R, which allows R to adapt the pre-signature σ̂k−1 to σk−1 in order to receive
the relevant coins from Ik−1. R sends σk−1 to Ik−1. From here, Ik−1 extracts
a witness y′

k−1 to Yk−1. Then, she computes y′′
k−2 = y′

k−1 − �k−1 and uses it
to complete the pre-signature σ̂k−2. Continuing this way, completion of a pre-
signature by Ij enables Ij−1 to obtain a witness to Yj−1 and then compute a
witness to Yj−2 using �j . The process ends with S receiving σ0. This anonymous
multi-hop payment procedure is depicted in Figure 2.

Let us analyze the details now. First of all, each party Ij has a proof that S
knows a witness yj−1 = sj−1 to Yj−1 satisfying (8). Due to the M-SIS hardness
as before, no party Ij can obtain another witness to Yj−1, but yj−1 generated
by S. Therefore, each party Ij is ensured that the witness he extracts will have
infinity norm at most K. As a result, each party Ij will be able to adapt the
pre-signature σ̂j−1 successfully and claim his coins thanks to the aforementioned
change to Steps 6 and 11 in Algorithm 2.

We emphasize again the importance of the proof πj ’s that guarantee pre-
signature adaptability. These proofs are only communicated off-chain and thus do
not incur any additional on-chain cost, and can be realized using the techniques
in [11]. Moreover, the change to Steps 6 and 11 in Algorithm 2 is also important
as, in this setting, even honestly-generated witnesses have potentially absolute
coefficients greater than 1, but still at most K. Note that this change does not
affect the security assumptions as still the original conditions (and even stronger
ones) in Algorithms 1 and 2 hold. The only effect is that PreSign may have
more restarts, but for most practical settings of, say, K ≤ 50 (i.e., the length of
the PCN is at most 50), the effect will be minimal. In practice, for example, in
Lightning Network, the route search algorithm typically stops after K = 20 [1].

5 Conclusion

In this work, we constructed the first post-quantum adaptor signature based
on standard lattice assumptions. We also showed that our construction, LAS,
leads to efficient atomic swaps and payment channel networks in the post-
quantum world. In particular, our applications do not incur additional costs
on the blockchain, other than the cost of an ordinary lattice-based signature.

References

1. Basis of lightning technology, available at: https://github.com/lightningnetwork/
lightning-rfc/blob/master/00-introduction.md

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC. pp. 99–108. ACM (1996)

3. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostakova, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized bitcoin-compatible channels. Cryptology ePrint
Archive, Report 2020/476 (2020), https://eprint.iacr.org/2020/476

4. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme
with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0 9

https://github.com/lightningnetwork/ lightning-rfc/blob/master/00-introduction.md
https://github.com/lightningnetwork/ lightning-rfc/blob/master/00-introduction.md
https://eprint.iacr.org/2020/476
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-319-48965-0_9

396 M. F. Esgin et al.

5. Buterin, V.: Understanding serenity, part i: Abstraction (2015), https://blog.
ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/, Accessed
on 20 April 2020

6. Damg̊ard, I.: On Σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science (2002), https://www.cs.au.dk/∼ivan/Sigma.pdf

7. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

8. Dryja, T.: Discreet log contracts, https://adiabat.github.io/dlc.pdf
9. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:

Crystals-Dilithium: Digital signatures from module lattices. In: CHES. vol. 2018–1
(2018), https://eprint.iacr.org/2017/633.pdf

10. Esgin, M.F.: Practice-Oriented Techniques in Lattice-Based Cryptography. Ph.D.
thesis, Monash University (5 2020). https://doi.org/10.26180/5eb8f525b3562,
https://bridges.monash.edu/articles/Practice-Oriented Techniques in Lattice-
Based Cryptography/12279728

11. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: New
techniques to exploit fully-splitting rings. Cryptology ePrint Archive, Report
2020/518 (2020), https://eprint.iacr.org/2020/518

12. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

13. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

14. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: Efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. pp. 567–584. CCS ’19, ACM (2019). https://doi.org/10.1145/3319535.
3354200, (Full version at https://eprint.iacr.org/2019/1287)

15. Fournier, L.: One-time verifiably encrypted signatures a.k.a. adaptor signatures
(2019), https://github.com/LLFourn/one-time-VES/blob/master/main.pdf

16. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: off the
chain transactions. IACR Cryptol. ePrint Arch. 2019, 360 (2019)

17. Hcash: Hcash features, https://h.cash/#section4, Accessed on 20 April 2020
18. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.

Design Code Cryptogr. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-
014-9938-4

19. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

20. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://adiabat.github.io/dlc.pdf
https://eprint.iacr.org/2017/633.pdf
https://doi.org/10.26180/5eb8f525b3562
https://bridges.monash.edu/articles/Practice-Oriented_Techniques_in_Lattice-Based_Cryptography/12279728
https://bridges.monash.edu/articles/Practice-Oriented_Techniques_in_Lattice-Based_Cryptography/12279728
https://eprint.iacr.org/2020/518
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1145/3319535.3354200
https://doi.org/10.1145/3319535.3354200
https://eprint.iacr.org/2019/1287
https://github.com/LLFourn/one-time-VES/blob/master/main.pdf
https://h.cash/#section4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43

Post-Quantum Adaptor Signatures and Payment Channel Networks 397

21. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maf-
fei, M.: Anonymous multi-hop locks for blockchain scalability and inter-
operability. In: 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24–27,
2019 (2019), https://www.ndss-symposium.org/ndss-paper/anonymous-multi-
hop-locks-for-blockchain-scalability-and-interoperability/

22. NIST: Post-quantum cryptography - call for proposals (2017), https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization/Call-for-Proposals, Accessed on 20 April 2020

23. Nolan, T.: Alt chains and atomic transfers, https://bitcointalk.org/index.php?
topic=193281.msg2224949#msg2224949

24. Poelstra, A.: Adaptor signatures and atomic swaps from scriptless scripts, https://
github.com/ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md

25. Poelstra, A.: Scriptless scripts. Presentation Slides, https://lists.launchpad.net/
mimblewimble/msg00086.html

26. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

27. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments (2016), draft version 0.5.9.2, available at https://lightning.network/
lightning-network-paper.pdf

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

29. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

30. Alberto Torres, W., Kuchta, V., Steinfeld, R., Sakzad, A., Liu, J.K., Cheng, J.:
Lattice RingCT V2.0 with multiple input and multiple output wallets. In: Jang-
Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 156–175. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21548-4 9

31. Zcash: Frequently asked questions, https://z.cash/support/faq/#quantum-
computers, Accessed on 20 April 2020

https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://github.com/ ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md
https://github.com/ ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md
https://lists.launchpad.net/mimblewimble/msg00086. html
https://lists.launchpad.net/mimblewimble/msg00086. html
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-21548-4_9
https://z.cash/support/faq/#quantum-computers
https://z.cash/support/faq/#quantum-computers

Security Analysis

Linear-Complexity Private Function
Evaluation is Practical

Marco Holz1(B), Ágnes Kiss1, Deevashwer Rathee2, and Thomas Schneider1

1 ENCRYPTO, Technische Universität Darmstadt, Darmstadt, Germany
{holz,kiss,schneider}@encrypto.cs.tu-darmstadt.de

2 Department of Computer Science, IIT (BHU) Varanasi, Varanasi, India
deevashwer.student.cse15@iitbhu.ac.in

Abstract. Private function evaluation (PFE) allows to obliviously eval-
uate a private function on private inputs. PFE has several applications
such as privacy-preserving credit checking and user-specific insurance
tariffs. Recently, PFE protocols based on universal circuits (UCs), that
have an inevitable superlinear overhead, have been investigated thor-
oughly. Specialized public key-based protocols with linear complexity
were believed to be less efficient than UC-based approaches.

In this paper, we take another look at the linear-complexity PFE pro-
tocol by Katz and Malka (ASIACRYPT’11): We propose several opti-
mizations and split the protocol in different phases that depend on the
function and inputs respectively. We show that HE-based PFE is practi-
cal when instantiated with state-of-the-art ECC and RLWE-based homo-
morphic encryption. Our most efficient implementation outperforms the
most recent UC-based PFE implementation of Alhassan et al. (JoC’20)
in communication for all circuit sizes and in computation starting from
circuits of a few thousand gates already.

Keywords: Private function evaluation · Homomorphic encryption ·
Secure computation

1 Introduction

While computations on a local machine can be secured against malicious eaves-
dropping, computations that are performed collaboratively on two or more
devices typically rely on the trustworthiness of remote systems. This poses a
risk to the sensitive data supplied by the participants. Privacy-preserving pro-
tocols aim to mitigate these risks by protecting the data using cryptographic
approaches such that there is no need for a trusted remote party anymore.

Secure two-party computation (STPC) or secure function evaluation (SFE)
protocols allow two parties to jointly compute a function on private data without
learning the other party’s inputs. Private function evaluation (PFE) extends this
setting by also hiding the evaluated function from one of the parties: P1 inputs
a private function f , typically represented by a circuit Cf , and P2 inputs private
data x and learns only f(x) but no additional information on f (except its size).
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 401–420, 2020.
https://doi.org/10.1007/978-3-030-59013-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_20

402 M. Holz et al.

PFE has diverse applications that require to keep the participants’ inputs pri-
vate and hide the operations applied to these inputs from one of the participants.
We describe a few example applications. In a privacy-preserving intrusion detec-
tion system (IDS) [Nik+14], a server holds a set of zero-day signatures (including
regular expressions matching the payload) and is able to check whether sensi-
tive data uploaded to the IDS matches those signatures such that the server
learns nothing about the data and the client learns nothing about the signa-
tures. Using PFE, attribute-based access control can be enhanced to protect both
sensitive credentials and sensitive policies [FAL06]. PFE can be used for privacy-
preserving credit worthiness checking [FAZ05], disclosing neither the customer’s
private financial data nor the private criteria of the loaner. In privacy-preserving
car insurance rate calculation [Gün+19] the privacy-critical customer data, as
well as the tariff calculation details remain private.

The most common approach for PFE is to reduce it to classical SFE by securely
evaluating a public universal circuit (UC) [Val76,KS08a,KS16,LMS16,GKS17,
Alh+20,Zha+19,Liu+20]. This series of works on optimizations and implemen-
tations of UCs has shown that UC-based PFE can be practical, but UCs introduce
an inevitable logarithmic overhead [Val76]. Katz and Malka [KM11] propose a
linear-complexity PFE scheme based on homomorphic encryption (HE) and Yao’s
garbled circuit protocol. They expect their scheme to be “easier to implement and
more efficient (for larger circuits) than approaches relying on universal circuits”.
However, their scheme has not been implemented yet.

Our Contributions. Our paper takes another look at the linear-complexity
PFE protocol by Katz and Malka [KM11]. We split the protocol into several
phases so that parts of the protocol can be precomputed knowing, e.g., only
the size of the private function or the private function itself. For instance, for a
privacy-preserving IDS it is reasonable to precompute any function-dependent
part so that the online phase where the client provides its input is fast. We
optimize, instantiate, and implement their scheme using three state-of-the-art
homomorphic encryption (HE) schemes: Elliptic curve (EC) ElGamal [Elg85],
the Brakerski/Fan-Vercauteren (BFV) scheme [FV12], and the cryptosystem
by Damg̊ard/Jurik/Nielsen (DJN) [DJN10]. We implement our protocols using
the ABY framework [DSZ15] and thereby provide the first implementation of
a linear-complexity PFE scheme. Our experiments show that HE-based PFE
outperforms today’s most efficient UC-based PFE implementation [Alh+20] on
the same platform already starting from circuits with only a few thousand gates.

2 Related Work

In this paper, we focus on PFE protocols that provide security against semi-
honest adversaries. These can be categorized as follows:

UC-Based PFE. A universal circuit (UC) is a circuit that can be programmed
to evaluate any Boolean circuit up to size n by specifying a set of program
bits as its input. In recent years, a lot of research was put into optimizing and

Linear-Complexity Private Function Evaluation is Practical 403

implementing UC-based PFE, which reduces the task of PFE to standard SFE
that relies mostly on symmetric cryptography where the function is the publicly
known UC. Valiant [Val76] proposed two recursive UCs with sizes ∼5n log2 n
and ∼4.75n log2 n in the size of the simulated circuit n, which are optimal up to
a constant factor because any UC must have size at least Ω(n log n). Zhao
et al. [Zha+19] present a UC with size ∼4.5n log2 n. A hybrid UC with size
∼4.5n log2 n, combining optimizations from [KS16,GKS17,Zha+19] was imple-
mented in [Alh+20]. The most recent UC from [Liu+20] has size ∼3n log2 n.
These constructions have reached lower bounds for the most common ways UCs
are constructed [Zha+19,Liu+20], so no significant improvements are expected.

OT-Based PFE. Mohassel and Sadeghian introduce an oblivious trans-
fer (OT)-based approach based on the oblivious evaluation of a switching net-
work of size Θ(n log n) that hides the topology of the Boolean circuit [MS13].
Bingöl at al. [Bin+18] adapt the half gates optimization [ZRE15] to the OT-
based approach of [MS13] and reduce the number of OTs by half. As shown
in [Alh+20], the communication of both [MS13] and [Bin+18] is worse than that
of UC-based PFE. PFE schemes based on both UCs and switching networks
have an inevitable logarithmic overhead.

TEE-Based PFE. Felsen et al. [Fel+19] propose private function evaluation
with a different trust assumption and implement PFE using Intel SGX as trusted
execution environment (TEE), by evaluating a UC within the SGX enclave.

HE-Based PFE. The protocol by Katz and Malka [KM11] has linear complex-
ity O(n), but its concrete practicality has not yet been explored. The authors use
homomorphic encryption to hide the topology of the circuit Cf from the party
that obliviously garbles the circuit (cf. Sect. 4.1). Mohassel and Sadeghian [MS13]
include a linear-complexity protocol in their generic framework for PFE. They
optimize the baseline protocol of [KM11], but their protocol is not more efficient
than the improved protocol of [KM11] which we use. Mohassel et al. [MSS14]
extend the protocol from [KM11,MS13] to security against malicious adversaries
using zero-knowledge proofs while maintaining linear complexity. Biçer et al.
present a reusable linear-complexity PFE scheme [Biç+18] based on the pro-
tocol of [KM11] which is efficient if the same private function f is evaluated
multiple times. Their protocol in the first execution has slightly lower total com-
munication, but around a factor four higher online computation than [KM11]
(cf. [Biç+18, Table 1]). Later runs of the protocol with the same function are
more efficient both in communication and computation than [KM11]. We leave
investigating the concrete efficiency of the protocol of [Biç+18] for applications
where the same function can be reused as future work.

In our paper, we resurrect the neglected line of research on linear-complexity
HE-based PFE protocols and show that the protocol of [KM11] is practical.

404 M. Holz et al.

3 Preliminaries

In this section, we describe preliminaries to our work from the fields of secure
function evaluation (SFE) in Sect. 3.1 and private function evaluation (PFE) in
Sect. 3.2, and recapitulate the homomorphic encryption (HE) schemes we use in
Sect. 3.3.

3.1 Circuit-Based Secure Function Evaluation

We focus on security against semi-honest (passive) adversaries where all parties
are assumed to follow the protocol. This allows for highly efficient protocols and
is a starting point for constructing protocols with stronger security guarantees.

In the past, several SFE protocols have been proposed that rely on a cir-
cuit representation of the function f which is known to both parties, e.g.,
Yao’s garbled circuit (GC) protocol [Yao82,Yao86,LP09] and the GMW pro-
tocol [GMW87]. In Yao’s protocol, party P1, the garbler, prepares an encrypted
version of the circuit in the form of garbled tables, which are then sent to P2.
The other party P2, the evaluator, evaluates the garbled circuit after receiving
the keys corresponding to his input wires using oblivious transfers.1 Oblivious
transfer (OT) allows the receiver P2 to retrieve one of two messages obliviously
from the sender P1 without the receiver learning the other message or the sender
learning which message was retrieved. Though OTs require expensive public-key
cryptography [IR89], OT extension [Ish+03,Ash+13] allows to perform a large
number of OTs more efficiently by extending a few base OTs and obtain many
oblivious transfers using only symmetric cryptographic operations. Recent opti-
mizations to Yao’s GC protocol include point-and-permute [BMR90], free-XOR
[KS08b], fixed-key AES garbling [Bel+13], and half gates [ZRE15].

3.2 Private Function Evaluation

Private function evaluation (PFE) extends SFE to the case where only one
party P1 inputs a private function f represented by circuit Cf . The protocol
must guarantee that P2 on private input x learns the output f(x) but no other
information about the function f whereas P1 learns nothing.2 Generally, PFE
protocols reveal the size of the circuit Cf to the participants. If needed, the actual
number of gates and wires can be hidden by adding dummy gates and dummy
input/output wires to the circuit. One notable characteristic of PFE protocols
is that P1 typically must not be able to learn the output of the function f . The
reason for this is that an adversarial party P1 could reveal the inputs of party P2

by defining f to leak information about x, e.g., f(x) = x.

1 Even though the gates are encrypted and thus the gates’ types can easily be hidden
from P2, P2 must know the topology of the circuit for evaluating the garbled circuit.

2 This can be extended to the case were P1 also holds an input value in addition to the
circuit Cf . Our 2-party PFE implementation supports input values for both parties.

Linear-Complexity Private Function Evaluation is Practical 405

3.3 Homomorphic Encryption

Homomorphic encryption (HE) schemes allow for computations on encrypted
data, i.e., operations performed on the ciphertexts are reflected in the output of
decryption as if they were applied directly on the plaintexts.

The protocol of Katz and Malka [KM11] is based on additively homomorphic
encryption, i.e., a HE scheme that supports only homomorphic addition. The
authors of [KM11] suggest to instantiate their protocol with Paillier [Pai99] or
ElGamal [Elg85] HE and mention that their protocol can be improved by using
elliptic-curve cryptography (ECC). Since then, several significant improvements
on additively HE were published that we consider in our implementation:

DJN. The DJN cryptosystem [DJN10], a generalization of Paillier’s scheme
[Pai99], has since then been optimized using CRT-based decryption [HMS12].
Our implementation is based on libpailler3 and uses this optimization.

EC ElGamal. EC ElGamal encryption offers exceptionally small ciphertexts,
practical computation and an additive homomorphism over the underlying ellip-
tic curve group. The use of elliptic curves over finite fields as a basis for a cryp-
tosystem was suggested independently from each other by both Koblitz [Kob87]
and Miller [Mil86]. In our implementation, we use the RELIC Toolkit [AG09] for
ECC.

BFV. Significant improvements have been made in the area of RLWE-based
HE [Reg05,LPR10,Bra12,FV12]. The RLWE-based BFV scheme [FV12,Lai17]
is implemented in the Microsoft SEAL library [Sea19], which is among the fastest
HE libraries available today. We present a high level overview of the BFV scheme
restricted to only the part of its functionality which is relevant for our applica-
tion. For additional details, see [Lai17]. We note that our discussion also applies
to other popular Ring-LWE-based HE schemes such as BGV [BGV12].

The BFV scheme operates on polynomial rings of the form R = Z[x]/(xn+1),
where the polynomial modulus degree n is a power of 2. For a plaintext modulus t,
the plaintext space is defined as Rt = R/tR = Zt[x]/(xn + 1), which consists
of polynomials of degree n − 1 with coefficients in Zt. Similarly, the ciphertext
space is defined as (Rq)2, where q is called the coefficient modulus and Rq =
R/qR. The encryption function Enc is probabilistic, takes a public key pk and a
message m ∈ Rt as inputs, and outputs a ciphertext c ∈ (Rq)2. The ciphertext
output by Enc has a noise component associated with it which is necessary for
maintaining security. The decryption function Dec takes the secret key sk and a
ciphertext c ∈ (Rq)2 as inputs, and outputs a message m ∈ Rt. Decryption m =
Dec(sk,Enc(pk,m)) works if the ciphertext noise is below a certain threshold
defined by the scheme parameters. For ease of exposition, we omit the keys from
the invocation of the encryption and decryption functions, and assume a single
key-pair throughout the paper, which makes the functions compatible.

Enc is a homomorphic map from (Rt,+) to ((Rq)2,+), which provides
the scheme with its additive homomorphic properties. Given ciphertexts

3 http://hms.isi.jhu.edu/acsc/libpaillier/

http://hms.isi.jhu.edu/acsc/libpaillier/

406 M. Holz et al.

c1 = Enc(m1) and c2 = Enc(m2), we have Dec(c1 + c2) = Dec(c1)+Dec(c2). The
noise component grows as we perform homomorphic operations on the cipher-
text until it reaches a threshold, beyond which decryption is not possible and
the ciphertext is rendered useless. This is not a problem since addition does not
grow the noise by much. The scheme described so far only provides IND-CPA
security against parties other than the key owner. To hide the operations applied
to the ciphertext from the key owner, which may include some private inputs
from other parties, and only reveal the result of decryption, the ciphertext needs
to be flooded with extra noise (cf. [Lai17], § 9.4). This requires larger param-
eters to accommodate the extra noise, and has been taken into account in our
parameter selection.

4 Linear-Complexity Private Function Evaluation

In this section, we recapitulate the private function evaluation (PFE) protocol of
Katz and Malka [KM11] in Sect. 4.1, introduce further improvements in Sect. 4.2,
and propose efficient instantiations using EC ElGamal in Sect. 4.3 and the BFV
homomorphic encryption scheme in Sect. 4.4.

4.1 The [KM11] Protocol

The PFE protocol proposed by Katz and Malka [KM11] combines homomorphic
encryption (HE) with Yao’s garbled circuit (GC) protocol to hide the topology
of the circuit Cf in addition to the parties’ inputs. They give a baseline protocol
and a roughly twice as efficient improved protocol. We describe the improved
protocol shown in Fig. 1 and refer to the original paper for the baseline version.

The Boolean circuit to be evaluated privately has g gates, u inputs and o
outputs and has size N = u + g. The circuit is assumed to be built of only
two-input NAND gates so that their functionality does not need to be hidden.
There exist established highly optimized hardware synthesis tools that optimize
for a small number of NAND gates when translating the function to a circuit.
Moreover, it is assumed that “the output wires of the circuit do not connect to
any other gates” [KM11] which is achieved by adding at most o gates to the
circuit. [KM11] define the wiring among the gates as follows: Incoming wires are
the inputs of the g gates. Outgoing wires are the output wires of the g gates and
the u input wires of the circuit. Each incoming wire must be connected to exactly
one outgoing wire, but an outgoing wire may be connected to more incoming
wires, enabling gates with arbitrary fan-out. In contrast, UC-based PFE requires
the fan-out to be at most two which requires additional copy-gates [Val76] that
increase the circuit size.

Party P2 inputs private data x of length |x| = u and acts as the circuit
garbler from Yao’s protocol. P1 inputs the private circuit Cf of g gates and acts
as the circuit evaluator. Since P2 must remain unaware of the circuit wiring,
P2 cannot directly garble the gates. Instead, P1 creates a so-called encrypted
garbled gate encGGi for each gate i of the circuit and P2 decrypts these to learn

Linear-Complexity Private Function Evaluation is Practical 407

the keys required to create the garbled tables as in Yao’s protocol (cf. Sect. 3.1
and [LP09]). By creating the encrypted garbled gates under HE, P1 obliviously
connects two outgoing wires to each gate of the circuit (the wire keys for the
outgoing wires are provided by P2 beforehand). Thereby, the circuit topology
remains hidden from P2.

Four Phases of PFE Protocols. We split the protocol of [KM11] and UC-
based PFE into four phases: 1) a precomputation phase which is run only once,
2) a setupN phase dependent on the size N of the function, 3) a setupf phase
dependent on the function f , and 4) an onlinex phase dependent on the input x.

Fig. 1. The [KM11] protocol. The circuit Cf has u input wires, o output wires, g gates,
and size N = u + g. The symmetric security parameter is κ = 128.

408 M. Holz et al.

In most applications, e.g., when a server provides a service with a pre-defined
function (such as privacy-preserving IDS, cf. Sect. 1), the precomputation and
both setup phases can be precomputed before the client provides its input, allow-
ing for a very fast onlinex phase. In other applications, the function may not be
known beforehand, in which case the precomputation and setupN phases can be
precomputed, and the setupf and onlinex phases are run online.

1) precomputation phase. We first determine all operations that have
to be done once, independently of the protocol run: For [KM11], this includes
generating and sending the public key of the HE scheme, and for UC-based
PFE, the construction of the UC itself. We do not include this phase in our
performance evaluation in Sect. 5.

2) setupN phase. This phase precomputes all operations that depend only
on the size N of the circuit. In [KM11], P2 creates two wire keys representing
the bit values 0 and 1 for each of the N = g +u outgoing wires. The wire keys of
all g + u outgoing wires except the o output wires of the circuit are essential to
define the mapping representing the topology of the circuit. We denote the wire
key corresponding to the bit value b ∈ {0, 1} on outgoing wire i ∈ {1, . . . , N}
by sb

i . The security of the protocol depends on the indistinguishability of the
two keys. P2 chooses the wire key s0i at random and, similar to the free-XOR
technique [KS08b], defines a global random shift r of the same size as the wire
keys. P2 then sets s1i = s0i + r for i ∈ {1, . . . , N} and sends the homomorphically
encrypted wire keys Enc(s01), . . . , Enc(s0N−o) to P1. As a preparation for the
setupf phase, P1 already creates and encrypts two random blinding values, bi

and b′
i, for each gate Gi. This phase has complexity O(N).

In the UC-based PFE protocols, the UC is garbled and sent to the evaluator,
which has complexity Θ(N log N).

3) setupf phase. This depends on the specific function f . In [KM11],
party P1 creates the encrypted garbled gates. In order to hide the wiring of
the circuit from P2, each wire key is blinded. If outgoing wires j and k are con-
nected to the incoming wires of gate Gi, P1 constructs the encrypted garbled
gate encGGi by making use of the additively homomorphic property of Enc as

encGGi =
(
Enc(s0j + bi),Enc(s0k + b′

i)
)
. (1)

P1 then sends encGG1, . . . , encGGg to P2. P2 is now able to create the garbled
tables and thereby acts as the circuit garbler from Yao’s protocol. For each
gate Gi, P2 decrypts the corresponding encrypted garbled gate and retrieves the
blinded wire keys for the left and the right incoming wire of the gate:

L0
i = Dec(Enc(s0j + bi)), R0

i = Dec(Enc(s0k + b′
i)). (2)

P2 is now able to obtain the blinded wire keys s1j + bi and s1k + b′
i by defining

L1
i = L0

i +r and R1
i = R0

i +r. Note that the blinded wire keys L0
i , L

1
i and R0

i , R
1
i

are independent of the keys assigned to the outgoing wires of gates j and k. This
hides the circuit topology from P2 while still enabling P2 to create the garbled

Linear-Complexity Private Function Evaluation is Practical 409

Fig. 2. encYao: creation of a garbled table [LP09]

tables. The garbled table GTi is generated using function encYao, instantiated as
shown in Fig. 2 [LP09]: The truth table of the NAND gate is randomly permuted
and then for each combination of the left (L0

i , L
1
i) and right (R0

i , R
1
i) input key

these keys are used to symmetrically encrypt the output key s0u+i or s1u+i using
function sEnc which is instantiated using AES-128 (cf. Sect. 5.1 for details). We
emphasize that the gates’ output keys are pre-determined and the protocol of
[KM11] applies additively homomorphic operations on input keys. Therefore,
we cannot use GC optimizations like point-and-permute [BMR90], garbled row
reduction [NPS99,Pin+09], or half-gates [ZRE15]. Instead, we have to use the
classical GC from [LP09] with four entries per garbled table (GT), so each GT
has size 4 · (|su+i| + σ) bits, where σ = 40 is the statistical security parameter.
Finally, P2 sends GT1, . . . ,GTg to P1. This phase has complexity O(N).

In the UC-based PFE protocols, the wire keys specifying the values of the
UC’s programming bits are sent which yields Θ(N log N) communication.

4) onlinex phase. In this final phase, the private data x is input by P2.
In [KM11], the wire keys sx1

1 , . . . , sxu
u of the circuit input wires corresponding

to P2’s input bits x1, . . . , xu are sent to P1.4 P1 can now evaluate the garbled
tables and determine the wire keys of the output wires as follows: To evaluate
gate i, P1 has to reconstruct the keys used to encrypt one entry of the garbled
table. Starting with the first gate in topological order, P1 uses for gate Gi with
left input j and right input k the keys sj ∈ {s0j , s1j} and sk ∈ {s0k, s1k} and
the blinding values bi, b

′
i from the setupN phase to calculate Li = sj + bi and

Ri = sk + b′
i. P1 now decrypts the garbled table GTi to learn the wire key

su+i = decYao(Li, Ri, i,GTi) as in Yao’s garbled circuit protocol and continues
with the next gate in topological order. Once all gates have been evaluated,
P1 has obtained the wire keys sN−o+1, . . . , sN of the output wires. These can
be mapped to plaintext outputs as in Yao’s protocol. However, as mentioned
in Sect. 3.2, the function holder P1 should not learn the output of f , so the
output is determined by party P2. This phase has complexity O(N).

4 The protocol can naturally be extended to the setting where also P1 has private
input data y. Either y is encoded in the private function f [PSS09], or the keys
corresponding to the bits of y are obliviously sent to P1 using oblivious transfer
[Ish+03,LP09,Ash+13] as describe in [KM11].

410 M. Holz et al.

In the UC-based PFE protocols, the wire keys corresponding to the private
input x are sent, the garbled UC is evaluated, which requires Θ(N log N) com-
putation, and the output bits of the UC are decoded.

4.2 Optimizations of the [KM11] Protocol

In this section, we describe our optimizations to the protocol of [KM11].

Precomputation of All Homomorphic Encryptions. As described in
Sect. 4.1, all homomorphic encryptions can be precomputed in the setupN

phase where only the size N is known but neither Cf nor x. Since encryp-
tion is a relatively expensive operation, this drastically reduces the protocol
runtime (see Sect. 5.2).

The wire keys are sampled randomly so depend neither on the inputs nor on
the circuit Cf , and are encrypted using the HE public key generated by P2.

P2 can sample and homomorphically encrypt the encrypted wire keys Enc(s0i),
where 1 ≤ i ≤ N . Similarly, P1 can sample and encrypt the blinding values bi, b

′
i,

where 1 ≤ i ≤ g, using P1’s public key. Here, it is necessary to exchange the
public key of the HE scheme first. We argue that this is feasible in practice by
P2 publishing the public key beforehand.

Pipelining. The creation and evaluation of the garbled circuit (GC) is done
in topological order which makes this process eligible for pipelining. When trans-
mitting the garbled gates directly after creation, they can be ungarbled by the
evaluator while subsequent gates are still being garbled by the garbler. This GC
pipelining was proposed and implemented in [Hen+10,Hua+11].

In addition to the GC pipelining, we also implemented pipelining of the
creation and evaluation of the encrypted garbled gates. The process of retrieving
the wire keys from the encrypted garbled gates can then seamlessly be combined
with the pipelined creation and evaluation of the GC. Since decryption of the
encrypted garbled gates is the most expensive operations in the setupf phase,
this significantly speeds up the protocol and reduces the time spent solely on
network communication. In our experiments, we saw that pipelining improves
the runtime in the setupf phase by about 25%.

Parallelization. The [KM11] protocol is very suitable for parallelization. We
provide a fully parallelized implementation of 1) the creation of the encrypted
wire keys by P2 and the encrypted blinding values by P1 in the setupN phase,
2) the creation of the encrypted garbled gates by P1 in the setupf phase, 3)
the decryption of the encrypted garbled gates and the creation of the garbled
tables by P2 in the setupf phase. Only the evaluation of the garbled tables by
P1 depends on the wire keys obtained from previous garbled tables and therefore
cannot be fully parallelized.

4.3 Instantiating [KM11] with EC ElGamal

Katz and Malka suggest to use ElGamal encryption to instantiate their
protocol [KM11], and briefly mention the possibility of using elliptic curve

Linear-Complexity Private Function Evaluation is Practical 411

cryptography (ECC) in their protocol. In the following, we denote integers by
lowercase letters and points on the elliptic curve by capital letters. The equiv-
alent of choosing a random element of the residue field as the private key in
standard ElGamal encryption is choosing a random integer a from the Galois
field GF (p) as the private key in the elliptic curve version. The public key A is
then computed as A = a ∗ P where P is the base point of the elliptic curve.

In standard additively homomorphic lifted EC ElGamal, a message m ∈
GF (p) is mapped to a curve point M as M = m ∗ P . The reverse mapping
used during decryption then requires solving the discrete logarithm of M which
requires that m is from a small domain whereas we need to operate on κ = 128
bit keys. Instead, we observe that the only requirement for the choice of the wire
keys and the blinding values in the [KM11] protocol is indistinguishability, so
we can simply define curve points M as our plaintext values for wire keys and
blinding values. Then, we perform plaintext additions using the ECC arithmetic
on the elliptic curve when P1 needs to apply the blinding value to a plaintext
wire key in order to determine the values Li and Ri. These points are then
mapped to keys for AES using a KDF (cf. Sect. 5.1).

Analogous to standard ElGamal, we define encryption of a message M with
a public key A = a ∗ P as follows:

Enc(M) = (K,C) = (k ∗ P, k ∗ A + M). (3)

Decryption of the ciphertext (K,C) can now be done as follows:

Dec(K,C) = C−a∗K = k∗A+M −a∗k∗P = k∗a∗P +M −a∗k∗P = M. (4)

EC ElGamal is additively homomorphic in the underlying elliptic curve
group. We define the homomorphic addition of two ciphertexts as

Enc(M1) ⊕ Enc(M2) = (K1, C1) ⊕ (K2, C2) = (K1 + K2, C1 + C2). (5)

This satisfies the additively homomorphic property over the EC group:

Dec(Enc(M1) ⊕ Enc(M2)) = Dec((k1 ∗ P, k1 ∗ A + M1) ⊕ (k2 ∗ P, k2 ∗ A + M2))
= Dec((k1 ∗ P + k2 ∗ P, k1 ∗ A + M1 + k2 ∗ A + M2))

= Dec((k1 + k2) ∗ P, (k1 + k2) ∗ A + M1 + M2))
= (k1 + k2) ∗ A + M1 + M2 − a ∗ (k1 + k2) ∗ P = M1 + M2. (6)

Semantic security naturally follows from that of ElGamal based in the DDH
assumption in the EC group.

4.4 Instantiating [KM11] with BFV Homomorphic Encryption

Since the linear-complexity protocol of [KM11] was proposed in 2011, significant
progress has been made in the area of Ring-LWE (RLWE) based homomorphic
encryption. Thus, we revise the protocol of [KM11] with an HE instantiation

412 M. Holz et al.

based on these efficient Ring-LWE HE schemes. We specifically use the BFV
scheme (cf. Sect. 3.3) as implemented in Microsoft’s SEAL library [Sea19]. We
take the plaintext modulus as t = 2, which results in the smallest possible poly-
nomial modulus degree and thus ciphertext size in our scenario. The coefficient
modulus q is chosen as a product of primes q1 = 12289 and q2 = 1099510054913.
q1 is the smallest prime that is large enough to allow homomorphic blinding
of the key values and satisfies q1 ≡ 1 mod 2n, where n is polynomial modulus
degree (cf. [Sea19] for details). For function privacy, which is necessary to pre-
vent P2 from learning the permutation of the keys employed by P1, we flood the
ciphertext with noise (cf. [Lai17, §9.4]) that is 40-bits larger than the noise of
the output ciphertext, ensuring a statistical security of 40-bits against P2. Thus,
we require an additional 40-bits (in the form of q2) in the coefficient modulus
to contain the extra noise. Consequently, we choose p = 2048 as the polynomial
modulus degree, which is the smallest n that maintains computational security
of 128-bits for a q of 54-bits (cf. [Lai17], Table 3).

Encoding of the Wire Keys. When choosing a plaintext modulus of t = 2,
each bit of the plaintext value is encoded as one coefficient of the polyno-
mial. Assume we have a wire key v with a binary representation of v =
v127||v126|| . . . ||v0, we define our plaintext polynomial as v127x

127+ . . .+v1x+v0.
Since homomorphic addition is done coefficient-wise in the BFV scheme and we
use t = 2, addition becomes equivalent to a homomorphic XOR operation.

Due to the requirement that each wire key has to be utilized separately
when creating the encrypted garbled gates, Chinese Remainder Theorem (CRT)
batching, as provided by SEAL, becomes inefficient for our use case. Using batch-
ing, one can pack n integers modulo t into one plaintext polynomial and apply
SIMD (Single Instruction, Multiple Data) operations on those values. However,
this would require a much larger value for t. A multiplication operation (by a
one-hot encoded vector), that is needed to extract one wire key from the cipher-
text containing n wire keys, is less efficient than encrypting and decrypting a
smaller ciphertext on its own. We therefore decided against CRT batching.

Efficient Packing of the Ciphertexts. The encoding of the wire keys uses
exactly 128 coefficients of the BFV ciphertext. Since the degree of the polynomial
modulus (poly modulus degree) is set to 2048, we only use 1

16 of the coefficients
of each ciphertext. Even though we decided not to use CRT batching, utilizing
the unused coefficients for packing additional 15 wire keys in a ciphertext seems
desirable in order to reduce the communication of the protocol by a factor of 16.

Unfortunately, without access to the secret key, it is not possible for P1 to
homomorphically extract a subset of coefficients of the underlying plaintext, and
thus a wire key. Therefore, multiple wire keys can only be packed in a response
to P2 holding the secret key.

Traditionally, each of the encrypted garbled gates consists of two ciphertexts,
holding the blinded wire keys for the two incoming wires of that gate. First, we
describe a way to combine the encrypted wire keys, Enc(sj) and Enc(sk), into one
ciphertext Enc(sj ||sk). Since in the plaintexts the wire keys of length 128-bits are
followed by 15×128 coefficients set to zero, we can use these coefficients to encode

Linear-Complexity Private Function Evaluation is Practical 413

further wire keys. We achieve this by applying a “homomorphic (right) bit shift”
of 128-bits (respectively coefficients) to one of the wire keys (by multiplying a
ciphertext by the plaintext constant 2128) and adding both wire keys afterwards.

These wire keys still have to be blinded to form the encrypted garbled
gate encGGi, which can now be achieved by only one homomorphic addition.
Therefore, we concatenate the blinding values bi and b′

i and homomorphi-
cally add them to Enc(sj ||sk) to receive the encrypted garbled gate encGGi =
Enc(sj ||sk)+Enc(bi||b′

i) = Enc((sj +bi)||(sk +b′
i)). Since P2 is in charge of telling

the wire keys apart, “unpacking” is simply done by decrypting the ciphertext
and assigning 128-bits to both wire keys.

Analogously, we can pack additional encrypted garbled gates into the same
ciphertext and thereby use all 2048 coefficients to pack 8 encrypted garbled
gates. This can be done efficiently using Horner’s method as described in [KSS13].
Blinding of the wire keys can now be applied by concatenating 16 blinding values
and add them to the ciphertext in a single homomorphic addition.

Compared to not using this packing technique, we require the same number
of homomorphic additions (15 additions to pack the 16 wire keys + 1 addition
for the combined blinding value instead of one addition of a blinding value per
wire key) and 15 multiplications by 2256, but we also eliminated 15 decryptions
since P2 only receives one ciphertext instead of 16. Since for our instantiation
of the BFV protocol decryption is more expensive than homomorphic scalar
multiplication, this also improves computation.

Wire Key Generation Using Seed Expansion. The wire keys are encrypted
by the private key owner P2 and can be homomorphically encrypted using the
secret key to have smaller noise and smaller ciphertext size. When encrypting
with the secret key, half of the ciphertext coefficients are chosen uniformly at
random from Rq. Using a pseudo-random function, one can sample these coeffi-
cients by expanding a seed sent to P1 instead. This nearly halves the ciphertext
size of the encrypted wire keys and significantly improves communication which
is the major bottleneck of the scheme.5

5 Evaluation

In this section, we describe our implementation of the different instantiations
of the [KM11] protocol and point out bottlenecks and advantages. We exper-
imentally compare our implementations with the best existing UC-based PFE
implementation of [Alh+20]. We also give estimates on the efficiency of the
recent UC improvements of [Liu+20] that results in 33% smaller UCs and hence
would improve UC-based PFE of [Alh+20] by around 33% in both runtime and
communication (cf. dashed lines in Fig. 4 and 3). The results of our performance
tests show that HE-based linear-complexity PFE supersedes UC-based PFE in
runtime starting from a few thousand gates already and in communication for all

5 Since January 2020 (version 3.4.0) the SEAL library [Sea19] supports seed expansion
and encryption with the secret key. Our implementation uses this optimization.

414 M. Holz et al.

circuit sizes. Hence, linear-complexity PFE is a viable alternative for improving
the performance of private function evaluation.

5.1 Implementation

We implemented our optimized and fully parallelized version of the [KM11] pro-
tocol described in Sect. 4 using the ABY SFE framework [DSZ15]. Our imple-
mentation is available as open-source at https://encrypto.de/code/linearPFE.
This is the first implementation of a linear-complexity PFE protocol. We pro-
vide a fair comparison with today’s most efficient UC-based PFE implementa-
tion of [Alh+20] with complexity Θ(N log N) which is based on the same STPC
framework ABY.

We instantiate sEnc as sEnck′(m) = (AESk′(0)||AESk′(1)|| . . . ||
AESk′(�(|m| + σ)/128	 − 1)) ⊕ (m||0σ), where AES is AES-128 and σ = 40
is the statistical security parameter. The arbitrary-length key k is mapped to a
128-bit key k′ = KDF(k) where the KDF is instantiated with PBKDF2.

We instantiate the DJN cryptosystem with modulus size of 3072 bits.
In our EC ElGamal-based implementation we use the eBATS B-251 binary

elliptic curve. RELIC encodes each point on the elliptic curve in 33 bytes.
SEAL serializes ciphertexts as 64-bit values using a compression function. For

our specific choice of parameters, this compression did not achieve ideal results.
For all ciphertexts except the encrypted wire keys where a seed is used to reduce
their size, we implemented our own serialization where we eliminate unnecessary
zeroes and thereby reduce the ciphertext size compared to the SEAL encoding.

5.2 Experimental Evaluation

We use two identical machines with a physical connection of 10 Gbit/s band-
width and a round-trip time of 1 ms. We refer to this as the LAN setting and
also simulated a WAN setting with 100 Mbit/s bandwidth and a round-trip time
of 100 ms. Each machine is equipped with an Intel Core i9-7960X CPU (32 Cores,
2.8 GHz) and 128 GB RAM. All measurements are averaged over 10 executions.
Because in all PFE protocols the costs for the input x is substantially lower than
for the gates, we fix the number of input bits to u = |x| = 64. The exact perfor-
mance measures used to plot the figures are given in the full version [Hol+20].

Communication. In Fig. 3, we depict the communication of the PFE protocols.
The EC ElGamal instantiation clearly outperforms all other implementations,
including UC-based PFE [Alh+20] and thereby offers the best PFE scheme in
terms of communication known so far. Its communication is lower than UC-based
PFE of [Alh+20] by a factor of ∼11× for circuit size N = 106.

We observe that the communication complexity of DJN-based PFE is on
par with UC-based approaches. Due to its large ciphertext size, BFV-based
encryption has the worst communication of our instantiations but it is only a
factor of about 1.8× higher for N = 106 than that of UC-based PFE [Alh+20].
Its communication is significantly reduced by the seed expansion technique to

https://encrypto.de/code/linearPFE

Linear-Complexity Private Function Evaluation is Practical 415

10
2

10
3

10
4

10
5

10
6

10−6

10−1

104

Input circuit size N

C
om

m
un

ic
at
io
n
(M

B
)

Function-independent setupN

10
2

10
3

10
4

10
5 6

10−6

10−1

104

Input circuit size N

C
om

m
un

ic
at
io
n
(M

B
)

Function-dependent setupf

10
2

10
3

10
4

10
5

10
6

10−6

10−1

104

Input circuit size N

C
om

m
un

ic
at
io
n
(M

B
)

Input-dependent onlinex

10
2

10
3

10
4

10
5 6

10−6

10−1

104

Input circuit size N

C
om

m
un

ic
at
io
n
(M

B
) Total communication

UC [Alh+20] UC [Liu+20] DJN BFV EC ElGamal

Fig. 3. Communication of PFE protocols (in MB).

reduce the size of the encrypted wire keys in the BFV scheme (cf. Sect. 3.3). In
the onlinex phase, the communication of all protocols only depends on the size
of the input x and is nearly negligible (only a few KB).

Runtime. In Fig. 4, we depict the runtime of our implementation compared to
the most recent UC-based PFE implementation of [Alh+20].

ECC-based PFE is our fastest implementation: Compared to the state-of-the-
art UC-based PFE implementation of [Alh+20], the total runtime for N = 106

gates is faster by a factor ∼3.3× in LAN and ∼7.0× in WAN.
BFV-based PFE offers promising total runtimes even though it is less effi-

cient than ECC-based PFE of [Alh+20] by a factor of ∼1.4× in LAN and ∼1.8×
in WAN for N = 106. The larger factor in the WAN setting results from its larger
communication overhead compared to ECC-based PFE. These findings underline
that though computational complexity is still relevant, communication complex-
ity becomes the bottleneck for these PFE protocols. Therefore, the computa-
tional advances of BFV cannot compensate its larger ciphertext sizes any more.
Still, our implementation instantiated with the BFV scheme beats [Alh+20] for
circuits of about N ≥ 250000 gates when function- and input-independent pre-
computations from the setupN phase are excluded cf. full version [Hol+20]).

416 M. Holz et al.

Fig. 4. Runtime of PFE protocols (in seconds).

Linear-Complexity Private Function Evaluation is Practical 417

DJN-based PFE has impractical computational overhead, i.e., about 53 min-
utes of runtime for N = 106 gates in LAN (compared to 24 s of the ECC-based
instantiation), even with the optimizations described in Sect. 3.3. Its runtime in
WAN is similar to WAN as it is dominated by computation.

Per-phase Comparison. In the setupN phase, computation and communica-
tion are independent of the function f and input x and only depend on the
(maximum) size of f . This yields significant large precomputation capabilities
of HE-based PFE, especially for our BFV-based instantiation.

In the setupf phase, the logarithmic overhead of UC-based PFE of [Alh+20]
has a large performance impact. In contrast, HE-based protocols scale linearly
and outperform UC-based PFE for N ≥ 106 in LAN and N ≥ 250000 in WAN.

In the onlinex phase, HE-based PFE outperforms UC-based PFE of [Alh+20]
for about N ≥ 1000 gates in LAN and N ≥ 10000 gates in WAN. Here, the com-
putation is dominated by GC evaluation. The logarithmic overhead of the UC
size compared to the actual circuit leads to a noticeable performance drawback.
Since our ECC-based implementation uses points on the elliptic curve as wire
keys (encoded as 264 bit values), the GC is larger by a factor of about two
compared to the BFV- and DJN-based instantiations where wire keys have size
128 bits. This impacts GC evaluation runtime and BFV-based PFE becomes the
fastest instantiation in the onlinex phase.

When excluding precomputation of the setupN phase from the total runtime,
BFV-based PFE outperforms UC-based PFE of [Alh+20] for about N ≥ 250000
in LAN and WAN, and ECC-based PFE outperforms [Alh+20] for about N ≥
10000 in LAN and about N ≥ 25000 in WAN (cf. full version [Hol+20]).

Summary. In this paper, we optimize and implement the linear-complexity PFE
protocol of [KM11]. Our elliptic curve ElGamal-based implementation outper-
forms the state-of-the-art UC-based PFE implementation of [Alh+20] not only
in communication, but also in total runtime: For private circuits of size N = 106,
our implementation is ∼3.3× faster in a LAN and ∼7.0× faster in a WAN setting
and scales with O(N) instead of Θ(N log N).

Acknowledgement. This project received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850990 PSOTI). It was co-funded by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 CROSSING/236615297 and GRK 2050
Privacy & Trust/251805230, and by BMBF and HMWK within ATHENE.

References

[AG09] Aranha, D.F., Gouvêa, C.: RELIC cryptographic toolkit (2009). https://
github.com/relic-toolkit

[Alh+20] Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable
universal circuits. J. Cryptol. 33(3), 1216–1271 (2020). https://doi.org/10.
1007/s00145-020-09346-z

https://github.com/relic-toolkit
https://github.com/relic-toolkit
https://doi.org/10.1007/s00145-020-09346-z
https://doi.org/10.1007/s00145-020-09346-z

418 M. Holz et al.

[Ash+13] Asharov, G., Lindell, Y., Schneider, T., Zohner M.: More efficient oblivious
transfer and extensions for faster secure computation. In: CCS 2013, pp.
535–548. ACM (2013)

[Bel+13] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling
from a fixed-key blockcipher. In: S&P 2013, pp. 478–492. IEEE (2013)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer
Science (ITCS 2012), pp. 309–325. ACM (2012)

[Biç+18] Biçer, O., Bingöl, M.A., Kiraz, M.S., Levi, A.: Highly efficient and reusable
private function evaluation with linear complexity. Cryptology ePrint
Archive, Report 2018/515 (2018). https://ia.cr/2018/515

[Bin+18] Bingöl, M.A., Biçer, O., Kiraz, M.S., Levi, A.: An efficient 2-party private
function evaluation protocol based on half gates. Comput. J. 62(4), 598–613
(2018)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols. In: STOC 1990, pp. 503–513. ACM (1990)

[Bra12] Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32009-5 50

[DJN10] Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-
key system with applications to electronic voting. Int. J. Inf. Secur. 9(6),
371–385 (2010). https://doi.org/10.1007/s10207-010-0119-9

[DSZ15] Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient
mixed-protocol secure two-party computation. In: NDSS 2015. The Internet
Society (2015)

[Elg85] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. Trans. Inf. Theory 31(4), 469–472 (1985)

[FAL06] Frikken, K.B., Atallah, M.J., Li, J.: Attribute-based access control with hid-
den policies and hidden credentials. IEEE Trans. Comput. 55(10), 1259–1270
(2006)

[FAZ05] Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit checking.
In: ACM Conference on Electronic Commerce (EC 2005), pp. 147–154. ACM
(2005)

[Fel+19] Felsen, S., Kiss, Á., Schneider, T., Weinert, C.: Secure and private function
evaluation with Intel SGX. In: CCSW 2019, pp. 165–181. ACM (2019)

[FV12] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144 (2012). https://ia.cr.org/2012/
144

[GKS17] Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit con-
structions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 443–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 16

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game.
In: STOC 1987, pp. 218–229. ACM (1987)

[Gün+19] Günther, D., Kiss, Á., Scheidel, L., Schneider, T.: Framework for semi-
private function evaluation with application to secure insurance rate cal-
culation. CCS 2019 Posters/Demos (2019)

[Hen+10] Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.:
TASTY: tool for automating secure two-party computations. In: CCS 2010,
pp. 451–462. ACM (2010)

https://ia.cr/2018/515
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/s10207-010-0119-9
https://ia.cr.org/2012/144
https://ia.cr.org/2012/144
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-319-70697-9_16

Linear-Complexity Private Function Evaluation is Practical 419

[HMS12] Hu, Y., Martin, W.J., Sunar, B.: Enhanced flexibility for homomorphic
encryption schemes via CRT. In: ACNS 2012 (Industrial Track) (2012)

[Hol+20] Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private func-
tion evaluation is practical (full version). Cryptology ePrint Archive, Report
2020/853 (2020). https://ia.cr/2020/853

[Hua+11] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party compu-
tation using garbled circuits. In: USENIX Security 2011. USENIX (2011)

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way
permutations. In: STOC 1989, pp. 44–61. ACM (1989)

[Ish+03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

[KM11] Katz, J., Malka, L.: Constant-round private function evaluation with linear
complexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25385-0 30

[Kob87] Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209
(1987)

[KS08a] Kolesnikov, V., Schneider, T.: A practical universal circuit construction and
secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS,
vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85230-8 7

[KS08b] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp.
486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
70583-3 40

[KS16] Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 27

[KSS13] Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: A systematic approach to
practically efficient general two-party secure function evaluation protocols
and their modular design. J. Comput. Secur. 21(2), 283–315 (2013)

[Lai17] Laine, K.: Simple encrypted arithmetic library 2.3.1. Microsoft Research
(2017). https://www.microsoft.com/en-us/research/uploads/prod/2017/
11/sealmanual-2-3-1.pdf

[Liu+20] Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W.: Pushing the limits of Valiant’s
universal circuits: simpler, tighter and more compact. Cryptology ePrint
Archive, Report 2020/161 (2020). https://ia.cr/2020/161

[LMS16] Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal cir-
cuit: improvements, implementation, and applications. Cryptology ePrint
Archive, Report 2016/17 (2016). https://ia.cr/2016/017

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/
s00145-008-9036-8

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13190-5 1

https://ia.cr/2020/853
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-49890-3_27
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://ia.cr/2020/161
https://ia.cr/2016/017
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1

420 M. Holz et al.

[Mil86] Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986).
https://doi.org/10.1007/3-540-39799-X 31

[MS13] Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient frame-
work for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 33

[MSS14] Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function
evaluation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 26

[Nik+14] Niksefat, S., Sadeghiyan, B., Mohassel, P., Sadeghian, S.: ZIDS: a privacy-
preserving intrusion detection system using secure two-party computation
protocols. Comput. J. 57(4), 494–509 (2014)

[NPS99] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mecha-
nism design. In: ACM Conference on Electronic Commerce (EC 1999), pp.
129–139. ACM (1999)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

[Pin+09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party com-
putation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-10366-7 15

[PSS09] Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of semi-
private functions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud,
D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 89–106. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01957-9 6

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC 2005, pp. 84–93. ACM (2005)

[Sea19] Microsoft SEAL (release 3.3) (2019). https://github.com/Microsoft/SEAL
[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: STOC 1976, pp.

196–203. ACM (1976)
[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS

1982, pp. 160–164. IEEE (1982)
[Yao86] Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS 1986, pp.

162–167. IEEE (1986)
[Zha+19] Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited:

an overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 401–425. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34578-5 15

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-01957-9_6
https://github.com/Microsoft/SEAL
https://doi.org/10.1007/978-3-030-34578-5_15
https://doi.org/10.1007/978-3-662-46803-6_8

Certifying Decision Trees Against Evasion
Attacks by Program Analysis

Stefano Calzavara(B), Pietro Ferrara, and Claudio Lucchese

Università Ca’ Foscari, Venezia, Italy
stefano.calzavara@unive.it

Abstract. Machine learning has proved invaluable for a range of differ-
ent tasks, yet it also proved vulnerable to evasion attacks, i.e., maliciously
crafted perturbations of input data designed to force mispredictions. In
this paper we propose a novel technique to verify the security of decision
tree models against evasion attacks with respect to an expressive threat
model, where the attacker can be represented by an arbitrary imperative
program. Our approach exploits the interpretability property of decision
trees to transform them into imperative programs, which are amenable
for traditional program analysis techniques. By leveraging the abstract
interpretation framework, we are able to soundly verify the security guar-
antees of decision tree models trained over publicly available datasets.
Our experiments show that our technique is both precise and efficient,
yielding only a minimal number of false positives and scaling up to cases
which are intractable for a competitor approach.

Keywords: Adversarial machine learning · Decision trees · Security of
machine learning · Program analysis

1 Introduction

Machine learning (ML) learns predictive models from data and has proved invalu-
able for a range of different tasks, yet it also proved vulnerable to evasion attacks,
i.e., maliciously crafted perturbations of input data designed to force mispredic-
tions [25]. To exemplify, let us assume a credit company decides to use a ML
model to automatically assess whether customers qualify for a loan or not. A
malicious customer who somehow realises or guesses that the model privileges
unmarried people over married people could cheat about her marital status to
improperly qualify for a loan.

The research community recently put a lot of effort in the investigation of
adversarial ML, e.g., techniques to train models which are resilient to attacks or
assess the security properties of models. In the present paper we are interested in
the security certification of a popular class of models called decision trees, i.e., we
investigate formally sound techniques to quantify the resilience of such models
against evasion attacks. Specifically, we propose the first provably sound certifi-
cation technique for decision trees with respect to an expressive threat model,
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 421–438, 2020.
https://doi.org/10.1007/978-3-030-59013-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_21

422 S. Calzavara et al.

where the attacker can be represented by an arbitrary imperative program. Veri-
fying ML techniques with respect to highly expressive threat models is nowadays
one of the most compelling research directions of adversarial ML [12,16]. This
is an important step forward over previous work, which either proposed empiri-
cal techniques without formal guarantees or only focused on artificial attackers
expressed as mathematical distances (see Sect. 6 for full details).

Our approach exploits the interpretability property of decision trees, i.e.,
their amenability to be easily understood by human experts, which makes their
translation into imperative programs a straightforward task. Once a decision
tree is translated into an imperative program, it is possible to leverage state-of-
the-art program analysis techniques to certify its resilience to evasion attacks.
In particular we leverage the abstract interpretation framework [9,10] to auto-
matically extract a sound abstraction of the behaviour of the decision tree under
attack. This allows us to efficiently compute an over-approximated, yet precise,
estimate of the resilience of the decision tree against evasion attacks.

Contributions. We specifically contribute as follows:

1. We propose a general technique to certify the security guarantees of deci-
sion trees against evasion attacks attempted by an attacker expressed as an
arbitrary imperative program. We exemplify the technique at work on an
expressive threat model based on rewriting rules (Sect. 3).

2. We implement our technique into a new tool called TreeCert. Given a deci-
sion tree, an attacker and a test set of instances used to estimate predic-
tion errors, TreeCert outputs an over-approximation of the error rate that
the attacker can force on the decision tree. TreeCert implements a context-
insensitive analysis computing a single over-approximation of the attacker’s
behavior and reuses it in the analysis of all the test instances, thus boosting
efficiency without missing attacks (Sect. 4).

3. We experimentally prove the effectiveness of TreeCert against publicly avail-
able datasets. Our results show that TreeCert is extremely precise, since it
can compute tight over-approximations of the actual error rate under attack,
with a difference of at most 0.02 over it on cases which are small enough to
be analyzed without approximated techniques. Moreover, TreeCert is much
faster than a competitor approach [5] and scales to intractable cases, avoiding
the exponential blow-up of non-approximated techniques (Sect. 5).

2 Background

2.1 Security of Supervised Learning

In this paper, we deal with the security of supervised learning, i.e., the task of
learning a classifier from a set of labeled data. Formally, let X ⊆ R

d be a d-
dimensional space of real-valued features and Y be a finite set of class labels; a
classifier is a function f : X → Y which assigns a class label to each element

Certifying Decision Trees Against Evasion Attacks by Program Analysis 423

of the vector space (also called instance). The correct label assignment for each
instance is modeled by an unknown function g : X → Y, called target function.

Given a training set of labeled data Dtrain = {(x1, g(x1)), . . . , (xn, g(xn))}
and a hypothesis space H, the goal of supervised learning is finding the classifier
ĥ ∈ H which best approximates the target function g. Specifically, we let ĥ =
argminh∈HL(h,Dtrain), where L is a loss function which estimates the cost of
the prediction errors made by h on Dtrain. Once ĥ is found, its performance is
assessed by computing L(ĥ,Dtest), where Dtest is a test set of labeled, held-out
data drawn from the same distribution of Dtrain.

Within the context of security certification, one should measure the accuracy
of ĥ by taking into account all the actions that an attacker could take to fool the
classifier into mispredicting, i.e., the so-called evasion attacks [1,2]. To provide
a more accurate evaluation of the performance of the classifier under attack,
the loss L can thus be replaced by the loss under attack LA [21]. Formally, the
attacker can be modeled as a function A : X → 2X mapping each instance into a
set of perturbed instances which might fool the classifier. The test set Dtest can
thus be corrupted into any dataset obtained by replacing each (xi, yi) ∈ Dtest

with any (x′
i, yi) such that x′

i ∈ A(xi); we let A(Dtest) stand for the set of all
such datasets. The loss under attack LA is thus defined by making the pessimistic
assumption that the attacker is able to craft the most damaging perturbations,
as follows:

LA(ĥ,Dtest) = max
D′∈A(Dtest)

L(ĥ,D′).

Unfortunately, computing LA by enumerating A(Dtest) is intractable, given
the huge number of perturbations available to the attacker: for example, if the
attacker can flip K binary features, then each instance can be perturbed in 2K

different ways, leading to 2K · |Dtest| possible attacks.

2.2 Decision Trees

A powerful set of hypotheses H is the set of the decision trees [4]. We focus on
traditional binary decision trees, whose internal nodes perform thresholding over
feature values. Such trees can be inductively defined as follows: a decision tree t
is either a leaf λ(ŷ) for some label ŷ ∈ Y or a non-leaf node σ(f, v, tl, tr), where
f ∈ [1, d] identifies a feature, v ∈ R is the threshold for the feature f and tl, tr
are decision trees. At test time, an instance x = (x1, . . . , xd) traverses the tree t
until it reaches a leaf λ(ŷ), which returns the prediction ŷ, denoted by t(x) = ŷ.
Specifically, for each traversed tree node σ(f, v, tl, tr), x falls into the left tree tl
if xf ≤ v, and into the right tree tr otherwise.

Figure 1 represents an example decision tree, which assigns the instance (6,8)
with label −1 to its correct class. In fact, (i) the first node checks whether the
second feature (whose value is 8) is less than or equal to 10 and then takes the
left sub-tree, and (ii) the second node checks whether the first feature (whose
value is 6) is less than or equal to 5 and then takes the right leaf, classifying the
instance with label −1. However, note that an attacker who was able to corrupt

424 S. Calzavara et al.

(6,8) into (5,8) could force the decision tree into changing its output, leading to
the prediction of the wrong class +1.

Fig. 1. Example of decision tree.

2.3 Abstract Interpretation

In the abstract interpretation framework, the behavior of a program is approxi-
mated through abstract values of a given abstract domain with a lattice structure,
rather than concrete values. For example, the Sign domain abstracts numbers
just with their sign, as formalized by the following abstraction and concretization
functions (α and γ respectively):

α(V) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⊥ if V = ∅
+ if ∀v ∈ V : v > 0
0 if ∀v ∈ V : v = 0
− if ∀v ∈ V : v < 0
	 otherwise

γ(a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R if a = 	
{n ∈ R | n > 0} if a = +
{0} if a = 0
{n ∈ R | n < 0} if a = −
∅ if a = ⊥

Notice that for all sets of concrete values V ⊆ R we have V ⊆ γ(α(V)), i.e.,
the abstraction function provides an over-approximation of the concrete values.
Operations over concrete values like the sum operation + are over-approximated
by abstract counterparts ⊕ over the abstract domain, which define the abstract
semantics. For example, the sum of two positive numbers is certainly positive,
while the sum of a positive number and a negative number can be positive,
negative or 0; this lack of information is modeled by 	. Hence, ⊕ is defined such
that + ⊕ + = + and + ⊕ − = 	. A sound definition of ⊕, here omitted, must
ensure that ∀V1, V2 ⊆ R : {v1 + v2 | v1 ∈ V1 ∧ v2 ∈ V2} ⊆ γ(α(V1) ⊕ α(V2)), i.e.,
abstract operations must over-approximate operations over concrete values. By
simulating the program over the abstract domain, abstract interpretation ensures
a fast convergence to an over-approximation of all the reachable program states.
In particular, the analysis consists in computing the fixpoint of the abstract

Certifying Decision Trees Against Evasion Attacks by Program Analysis 425

semantics over the abstract domain, making use of a widening operator – usually
if the upper bound operator does not converge within a given threshold [9,10].

Thanks to its modular approach, abstract interpretation allows one to define
multiple abstractions of the same concrete domain. Therefore, several abstract
domains approximating numerical values have been proposed in the literature.
For instance Octagons [22] and Polyhedra [11] track different types of (linear)
relations among numerical variables, and have been fruitfully applied to different
contexts. Apron [18] is a library of numerical abstract domains comprising the
main domains leveraged in this work.

3 Security Verification of Decision Trees

3.1 Threat Model

Our approach is general enough to be applied to attackers represented as arbi-
trary imperative programs. To exemplify it, we show how it can be applied to an
expressive threat model based on rewriting rules [5]. This relatively new threat
model goes beyond traditional distance-based models, which are plausible for
perceptual tasks like image recognition, but are inappropriate for non-perceptual
tasks (e.g., loan assignment) where mathematical distances do not capture useful
semantic properties of the domain of interest.

We model the attacker A as a pair (R,K), where R is a set of rewriting rules,
defining how instances can be corrupted, and K ∈ R

+ is a budget, limiting the
amount of alteration the attacker can apply to each instance. Each rule r ∈ R
has form:

[a, b]
f−→k [δl, δu],

where: (i) [a, b] and [δl, δu] are intervals on R ∪ {−∞,+∞}, with the former
defining the precondition for the application of the rule and the latter defining
the magnitude of the perturbation enabled by the rule; (ii) f ∈ [1, d] is the index
of the feature to perturb; and (iii) k ∈ R

+ is the cost of the rule. The semantics
of the rewriting rule can be explained as follows: if an instance x = (x1, . . . , xd)
satisfies the condition xf ∈ [a, b], then the attacker can corrupt it by adding any
v ∈ [δl, δu] to xf and spending k from the available budget. The attacker can
corrupt each instance by using as many rewriting rules as desired in any order,
possibly multiple times, up to budget exhaustion.

According to this attacker model, we can define A(x), the set of the attacks
against the instance x, as follows.

Definition 1 (Attacks). Given an instance x and an attacker A = (R,K), we
let A(x) be the set of the attacks that can be obtained from x, i.e., the set of the
instances x′ such that there exists a sequence of rewriting rules r1, . . . , rn ∈ R
and a sequence of instances x0, . . . ,xn where:

1. x0 = x and xn = x′;
2. for all i ∈ [1, n], the instance xi−1 can be corrupted into the instance xi by

using the rewriting rule ri, as described above;

426 S. Calzavara et al.

3. the sum of the costs of r1, . . . , rn is not greater than K.

Notice that x ∈ A(x) for any A by picking an empty sequence of rewriting rules,
i.e., the attacker can always leave the instance uncorrupted.

Example 1. Consider the attacker A = ({r1, r2}, 10), where:

– r1 = [0, 10] 1−→5 [−1, 0] allows the attacker to corrupt the first feature by
adding any value in [−1, 0], provided that the feature value is in [0, 10] and
the available budget is at least 5;

– r2 = [5, 10] 2−→4 [0, 1] allows the attacker to corrupt the second feature by
adding any value in [0, 1], provided that the feature value is in [5, 10] and the
available budget is at least 4.

The attacker A can force the decision tree in Fig. 1 to change its original
prediction (−1) on the instance (6, 8). In particular, we can show that (5, 8) is a
possible attack against (6, 8), since A can apply r1 once by spending 5 from the
budget, and (5, 8) is classified as +1 by the decision tree.

3.2 Conversion to Imperative Program

Our analysis technique exploits the interpretability property of decision trees,
i.e., their amenability to be easily understood by human experts. In particular,
it is straightforward to convert any decision tree into an equivalent, loop-free
imperative program. To exemplify, Fig. 2 shows the translation of the decision
tree in Fig. 1 into an equivalent function.

Fig. 2. Translation of the decision tree in Fig. 1 into an imperative program.

We can then model the attacker as an imperative program which has access to
the function representing the decision tree to analyse. In particular, we observe
that the attacker A = (R,K) can be represented by means of a non-deterministic
program which behaves as follows:

1. Select a random rewriting rule r ∈ R.

Certifying Decision Trees Against Evasion Attacks by Program Analysis 427

2. Let [a, b]
f−→k [δl, δu] be the selected rule r and let x = (x1, . . . , xd) be the

instance to perturb. If xf ∈ [a, b] and the available budget is at least k, then
select a random δ ∈ [δl, δu], replace xf with xf + δ and subtract k from the
available budget.

3. Non-deterministically go to step 1 or terminate the process. This stop condi-
tion allows the attacker to spare part of the budget, which is needed to enforce
termination when the entire budget cannot be spent (or does not need to be
spent).

This encoding is exemplified in Fig. 3, where lines 1–27 show how the attacker
of Example 1 can be modeled as an imperative program, using standard functions
for random number generation. Once the attacker has been modeled, we can
finally encode the behavior of the decision tree under attack: this is shown in
lines 29–32, where we let the attacker corrupt the input instance before it is fed
to the decision tree for prediction.

3.3 Proving Security by Program Analysis

Given a decision tree t, an attacker A and a test set Dtest, we can compute an
over-approximation of LA(t,Dtest) as follows.

We first translate the decision tree t together with the attacker A into an
imperative program P modeling the decision tree under attack, as discussed in
Sect. 3.2. For each instance (xi, yi) ∈ Dtest, we build an abstract state α({xi})
representing xi in the chosen abstract domain and we analyze P with such entry
state. Then, the output of the analysis might be either of the following:

1. only leaves of the decision tree with the correct class label yi are reachable.
This means that, for all possible attacks against xi, the decision tree always
classifies the instance correctly;

2. leaves with the wrong label are reachable as well. If t correctly classifies the
instance in the unattacked setting, this might happen either because there is
indeed an attack leading to a misprediction or for a loss of precision due to
the over-approximation performed by the static analysis.

Since our approach relies on sound static analysis engines, it is not possible
to miss attacks, i.e., every instance which can be mispredicted upon attack must
fall in the second case of our analysis. Let P#(xi) = Yi stand for the set of labels
Yi returned by the analysis of P on the instance xi.

By using this information, we can construct an abstraction of the behaviour
of t under attack on Dtest defined as follows:

∀(xi, yi) ∈ Dtest : t#(xi) =

{
yi if P#(xi) = {yi}
y �= yi otherwise

By construction, we have that LA(t,Dtest) ≤ L(t#,Dtest) for any loss func-
tion which depends just on the number of mispredictions, like the error rate,
i.e., the fraction of wrong predictions among all the performed predictions.

428 S. Calzavara et al.

Fig. 3. Encoding predictions under attack into an imperative program.

This means that after building t# we have an efficient way to over-approximate
the loss under attack LA by computing just a traditional loss L, which does not
require the computation of the set of attacks.

3.4 Extensions

We discuss here possible extensions of our approach to different popular settings.
We leave the implementation of these extensions to future work, since they are
essentially an engineering effort.

Regression. The regression task requires one to learn a regressor rather than
a classifier from the training data. The key difference between a regressor and a

Certifying Decision Trees Against Evasion Attacks by Program Analysis 429

classifier is that the former does not assign a class from a finite set Y, but rather
infers a numerical quantity from an unbound set, e.g., estimates the salary of
an employee based on her features. Regression can be modeled by revising the
abstraction t# such that it returns an abstract value over-approximating all the
values of the predictions found in the leaves which are reachable upon attack.
Formally, this means requiring t#(xi) = �yi∈P#(xi)α({yi}), where � stands for
the upper bound operator on the abstract domain.

Tree Ensembles. Ensemble methods train multiple decision trees and combine
them to improve prediction accuracy. Traditional ensemble approaches include
random forest [3] and gradient boosting [14]. Irrespective of how an ensemble is
trained, its final predictions are performed just by aggregating the predictions
of the individual trees, e.g., using majority voting or averaging. This means that
it is possible to readily generalize our analysis technique to ensembles by trans-
lating each tree therein and by aggregating their predictions in the generated
imperative program.

4 Implementation

Figure 4 depicts the architecture of TreeCert. The inputs are: (i) the attacker,
expressed in the threat model of Sect. 3.1 using a JSON file, (ii) a decision tree to
analyse, serialized through the joblib library, and (iii) a test set in CSV format.
TreeCert reports for each test instance whether it is correctly classified for each
possible attack or it might be wrongly classified. The analysis is performed along
three different modules, called TreeCoder, AttackerAnalyzer and TreeAnalyzer
respectively, which we detail in the following.

Fig. 4. The architecture of TreeCert.

430 S. Calzavara et al.

4.1 TreeCoder

The first step of TreeCert is to encode the attacker and the decision tree as Java
programs through the module TreeCoder, as described in Sect. 3.2. TreeCoder
is a Python script that, given an attacker model and a decision tree, produces
two distinct Java files encoding the attacker (see method attack in Fig. 3) and
the decision tree (see method predict in Fig. 2).

There are only two small technical differences over the previous presentation.
First, given that all instances of the same dataset share the same set of features,
instances are not encoded as arrays, but rather modeled using a distinct local
variable for each feature, which simplifies the static analysis; specifically, we let
variable xi represent the initial value of the i-th feature and variable x′

i represent
its value after the attack. In addition, each time a rewriting rule r is applied,
we increment a counter r counter, initially set to 0, which allows one to capture
useful analysis invariants. Clearly, these changes do not affect the semantics of
the generated program, so we did not include them in Fig. 3 for simplicity.

4.2 AttackerAnalyzer

The encoded attacker is then passed to the AttackerAnalyzer module, a static
analyzer based on abstract interpretation. The analyzer interfaces with Apron,
a standard library implementing many popular abstract domains. The analyzer
then computes a fixpoint over the Java program representing the attacker, using
the Polka implementation1 of the Polyhedra domain [11].

Polka tracks linear equalities and inequalities over an arbitrary number of
variables. These invariants allow AttackerAnalyzer to infer the upper and lower
bounds of each attacked feature, based on how many times a feature can be
attacked using the available budget. To exemplify, pick the attacker in Fig. 3.
AttackerAnalyzer infers on such program that, after the attack has been per-
formed: (i) the value of the first feature may have been decreased by at most
r1 counter (formally, x′

1 ∈ [x1 − 1 ∗ r1 counter, x1]), (ii) the second feature may
have been increased by at most r2 counter (x′

2 ∈ [x2, x2 + 1 ∗ r2 counter]), (iii)
both the counters are non-negative (r1 counter ≥ 0 ∧ r2 counter ≥ 0), and (iv)
the budget spent in the application of the two rewriting rules is less than or equal
to the initial budget (5 ∗ r1 counter + 4 ∗ r2 counter ≤ 10). Note that the last
invariant is inferred only if the calculation of a fixpoint over the abstract seman-
tics did not require to apply the Polyhedra widening operator to convergence.
Otherwise, the analysis would drop such information to ensure termination.

4.3 TreeAnalyzer

The attacker invariants are then passed to the TreeAnalyzer module together
with the test set. Like AttackerAnalyzer, TreeAnalyzer performs a static analysis
using the Polka implementation of the Polyhedra abstract domain. For each test

1 http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/Polka.html.

http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/Polka.html

Certifying Decision Trees Against Evasion Attacks by Program Analysis 431

instance x, TreeAnalyzer (i) adds the initial values of the features of x to the
attacker invariants, (ii) computes the fixpoint over the program encoding the
decision tree t under attack, and (iii) uses it to return the output t#(x).

To clarify, consider again Example 1, where the test instance (6, 8) is correctly
classified as −1 by the decision tree in Fig. 1, but can be misclassified upon
attack. First of all, TreeAnalyzer adds the invariants x1 = 6 and x2 = 8 to
the inferred attacker invariants, leading to an initial Polyhedra state tracking
that x′

1 ∈ [6 − r1 counter, 6] and x′
2 ∈ [8, 8 + r2 counter] with 5 ∗ r1 counter +

4 ∗ r2 counter ≤ 10. Then the static analysis of the encoded tree starts with
the evaluation of the condition x′

2 ≤ 10, inferring that such condition is always
evaluated to true: indeed, x2 could become greater than 10 only if r2 counter
was strictly greater than 2, but then 5 ∗ r1 counter + 4 ∗ r2 counter ≤ 10 could
not hold since r1 counter ≥ 0. TreeAnalyzer then analyzes the condition x′

1 ≤ 5.
In this case, it cannot definitely conclude that the condition is always evaluated
to false, since x1 can become less than or equal to 5 if r1 counter ≥ 1, which is
allowed by the invariant 5 ∗ r1 counter + 4 ∗ r2 counter ≤ 10. TreeAnalyzer then
concludes that the test instance might be wrongly classified, since a branch that
classifies it as +1 could be reached.

5 Experimental Evaluation

5.1 Methodology

We evaluate our proposal on three public datasets: Census, House and Wine,
which are described in Sect. 5.2. Our methodology includes multiple steps. We
start with a preliminary threat modeling phase, where we define the attacker’s
capabilities by means of a set of rewriting rules R and a set of possible budgets
{K1, . . . , Kn}, as explained in Sect. 3.1. Our attackers are primarily designed
to perform an experimental evaluation of TreeCert, yet they are representative
of plausible attack scenarios which do not fit traditional distance-based models
and are instead readily supported by the expressiveness of our threat model.

Datasets are divided into Dtrain and Dtest by using a 90-10 splitting with
stratified sampling (80-20 splitting is used for the smaller Wine dataset). We
first train a decision tree t on Dtrain using the popular scikit-learn library,
tuning the maximum number of leaves in the set {21, 22, . . . , 210} through cross
validation on Dtrain. We then evaluate the tree resilience to attacks against each
attacker A = (R,Ki) on Dtest, using a non-approximated technique. Given the
expressiveness of our threat model, the only available solution for this is the
algorithm in [5]. In particular, the algorithm computes A(xi), the set of repre-
sentative attacks against t, for each instance xi in Dtest. This is a comparatively
small subset of the attacks A(xi), which suffices to detect the successful evasions
attacks without any loss of soundness or precision. We refer to this method as
Representative Attacks. We observe and we experimentally confirm that com-
puting even the representative attacks is intractable in general, which motivates
the need for approximated analyses like ours; yet, being able to deal with this in
a few cases is useful to assess the precision of TreeCert against a ground truth.

432 S. Calzavara et al.

Finally, we compute the abstraction t# on Dtest for each attacker A = (R,Ki)
by using TreeCert. This allows us to classify each (xi, yi) ∈ Dtest as follows:

– True Positive (TP): TreeCert states that the instance xi can be misclassified
upon attack and this conclusion is correct. Formally, t#(xi) �= yi ∧ ∃x′

i ∈
A(xi) : t(x′

i) �= yi.
– False Positive (FP): TreeCert states that the instance xi can be misclassified

upon attack, but this conclusion is wrong. Formally, t#(xi) �= yi ∧ ∀x′
i ∈

A(xi) : t(x′
i) = yi.

– True Negative (TN): TreeCert states that the instance xi cannot be misclas-
sified upon attack and this conclusion is correct. Formally, t#(xi) = yi∧∀x′

i ∈
A(xi) : t(x′

i) = yi.
– False Negative (FN): TreeCert states that the instance xi cannot be misclas-

sified upon attack, but this conclusion is wrong. Formally, t#(xi) = yi∧∃x′
i ∈

A(xi) : t(x′
i) �= yi.

Since our analysis is sound, we cannot have FN . We then assess the quality
of TreeCert by computing its False Positive Rate FPR and False Discovery Rate
FDR as follows:

FPR =
FP

FP + TN
, FDR =

FP
FP + TP

.

We also compare the value of the loss under attack LA(t,Dtest) against its
over-approximation L(t#,Dtest), focusing on the error rate, i.e., the fraction of
wrong predictions. Finally, we compare the execution time of TreeCert against
the time spent in the computation of the set of the representative attacks.

5.2 Datasets

We perform our experiments on three publicly available datasets, whose key
statistics are shown in Table 1. The preconditions of the rewriting rules and the
magnitude of the perturbations have been set after a preliminary data explo-
ration step, based on the observed data distribution in the dataset. A real-world
application of our analysis technique would require input from domain experts
to define the relevant threats, which is beyond the scope of our evaluation.

Census. The Census2 dataset includes demographic information about Amer-
ican citizens. The prediction task is estimating whether the income of a citizen
is above 50,000$ per year. For this dataset, we define four rewriting rules:

– cost 5: if the capital gain is in [0,100000], a citizen can raise it by 200;
– cost 5: if the capital loss is in [0,100000], a citizen can lower it by 200;
– cost 10: if the number of work hours is in [0,40], a citizen can raise it by 1;
– cost 10: if the age is in [0,40], a citizen can raise it by 1.

We consider 20, 40, 60, 80 as possible values of the attacker’s budget.
2 http://archive.ics.uci.edu/ml/machine-learning-databases/adult.

http://archive.ics.uci.edu/ml/machine-learning-databases/adult

Certifying Decision Trees Against Evasion Attacks by Program Analysis 433

Table 1. Properties of datasets used in the experiments.

Dataset #Instances #Features Maj. class

Census 29169 51 0.75

House 21613 19 0.51

Wine 6497 12 0.63

House. The House3 dataset contains house sale prices for the King County area.
The prediction task is inferring whether a house costs at least as the median
house price. For this dataset, we define four rewriting rules:

– cost 5: if the square footage of the living space of the house is in [0,3000], it
can be increased by 50;

– cost 5: if the square footage of the land space is in [0,2000], it can be increased
by 50;

– cost 5: if the average square footage of the living space of the 15 closest houses
is in [0,2000], it can be increased by 50;

– cost 5: if the construction year is in [1900,1970], it can be increased by 10.

We consider 10, 20, 30, 40 as possible values of the attacker’s budget.

Wine. The Wine4 dataset represents different types of wines. The prediction
task is detecting whether a wine has quality score at least 6 on a scale 0–10. For
this dataset, we define four rewriting rules:

– cost 2: if the residual sugar is in [2,4], it can be lowered by 0.01;
– cost 5: if the alcohol level is in [0,11], it can be increased by 0.01;
– cost 5: if the volatile acidity is in [0,1], it can be lowered by 0.01;
– cost 5: if the free sulfur dioxide is in [20,40], it can be lowered by 0.1.

We consider 20, 30, 40, 50, 60 as possible values of the attacker’s budget.

5.3 Experimental Results

Precision. Table 2 reports for all datasets and budgets a number of measures
computed for the trained decision tree t:

1. the traditional loss in absence of attacks L(t,Dtest). This is the fraction of
wrong predictions returned by t on Dtest in the unattacked setting;

2. the loss under attack LA(t,Dtest), computed by enumerating all the repre-
sentative attacks using the algorithm in [5]. This is the fraction of wrong
predictions returned by t on Dtest upon attack;

3. the over-approximation of the loss under attack L(t#,Dtest), computed using
the program analysis of TreeCert;

3 https://www.kaggle.com/harlfoxem/housesalesprediction.
4 https://www.openml.org/data/get csv/49817/wine quality.arff.

https://www.kaggle.com/harlfoxem/housesalesprediction
https://www.openml.org/data/get_csv/49817/wine_quality.arff

434 S. Calzavara et al.

4. the false positive rate of TreeCert, noted FPR;
5. the false discovery rate of TreeCert, noted FDR.

Table 2. Accuracy results across datasets.

Dataset Budget L(t,Dtest) LA(t,Dtest) L(t#,Dtest) FPR FDR

Census 20 0.14 0.17 0.17 0.00 0.00

40 0.14 0.17 0.17 0.00 0.01

60 0.14 0.18 0.18 0.00 0.01

80 0.14 0.20 0.21 0.00 0.01

House 10 0.10 0.12 0.12 0.00 0.02

20 0.10 0.14 0.15 0.01 0.04

30 0.10 0.16 0.17 0.01 0.06

40 0.10 0.18 0.19 0.02 0.08

Wine 20 0.24 0.30 0.31 0.01 0.02

30 0.24 0.34 0.35 0.02 0.03

40 0.24 0.36 0.37 0.02 0.04

50 0.24 0.37 0.39 0.03 0.05

60 0.24 0.38 0.40 0.03 0.05

The experimental results clearly confirm the quality of the analysis performed
by TreeCert. In particular, we observe that the FPR is remarkably low, stand-
ing well below 5%, where 10% is considered a state-of-the-art reference for static
analysis techniques [24]. Indeed, in Census we measured an absolute number of
false positives never greater than 5. This is interesting, because it shows that for
many instances there is a simple security proof, i.e., TreeCert is able to prove
that they cannot be successfully attacked (i.e., they are TN), which significantly
drops the FPR. As to the FDR, we observe that it also scores extremely well
on all datasets, though it tends to be slightly higher than FPR. However, this
is not a major problem in our application setting: contrary to what happens
in traditional program analysis, where users are forced to investigate all false
alarms to identify possible bugs, here we are rather interested in the aggregated
analysis results, i.e., the final over-approximation of the loss under attack. Even
on the House dataset, where FDR tends to be higher, we observe that the loss
under attack is appropriately approximated by TreeCert, since there is a dif-
ference of at most 0.01 between the actual value of the loss under attack and
its over-approximation. Remarkably, our experiments also show that the quality
of the over-approximation is not significantly affected by the attacker’s budget,
which is important because it suggests that TreeCert likely generalizes to cases
where computing the actual value of the loss under attack is computationally
intractable, which is the intended use case of our analysis tool.

Certifying Decision Trees Against Evasion Attacks by Program Analysis 435

Efficiency. To show the efficiency of our approach, we compare in Fig. 5
the running time of TreeCert against the time taken to compute the full set
of the representative attacks. It is possible to clearly see that the two curves
exhibit completely different trends. The time taken to construct the represen-
tative attacks has an exponential trend: the approach is efficient and feasible
when the attacker’s budget is low, but blows up to intractability very quickly.
For example, each increase in the attacker’s budget multiplies the execution
time of a 3x factor in the case of Census and we experimentally confirmed that
more than 12 h of computation are needed when the budget grows to 100 (not
plotted). Conversely, the execution time of TreeCert is only marginally affected
when increasing the attacker’s budget, since the analysis always converges in
less than one hour. In the case of the House dataset, computing the set of the
representative attacks is even less feasible: even for small budgets, the running
time is remarkably high, due to the fact that the trained decision tree uses many
different thresholds, which makes the number of representative attacks blow up.
Finally, also the Wine dataset shows similar figures, though the execution times
there are lower due to its smaller size. This confirms that brute-force approaches
based on the exhaustive enumeration of the representative attacks do not scale,
yet luckily they can be replaced by more efficient abstraction techniques with
very good precision.

Fig. 5. Running time of TreeCert against the enumeration of representative attacks.

6 Related Work

Verifying the security guarantees of machine learning models is an important
task, which received significant attention by the research community in the last
few years. In particular, many papers proposed techniques to verify the security
of deep neural networks [15,17,20,27,28]; we refer to a recent survey for more
work in this research area [29]. As of now, however, comparatively less attention
has been received by the security verification of decision trees models.

436 S. Calzavara et al.

The closest related work to our approach is a very recent paper by Ranzato
and Zanella [23]. Their work also focuses on decision trees and builds on the
abstract interpretation framework. However, their approach can only be applied
to attackers who admit a simple mathematical characterization as a set of per-
turbations, e.g., based on distances. In particular, their soundness theorem relies
on the hypothesis that, for each test instance x, one has A(x) ⊆ γ(α({x})), i.e.,
the abstraction of x must cover all the possible attacks. Checking this condition
for distance-based attackers is straightforward, yet it is computationally infeasi-
ble in general. For example, in the case of the rewriting rules we considered, A(x)
is unknown a priori, but is induced by the application of the rules. Indeed, their
tool silva only supports attackers based on the infinity-norm L∞, which has a
compact mathematical characterization as a set, but falls short of representing
realistic threats. Instead, our approach is general enough to work on attackers
modeled as arbitrary imperative programs.

Other approaches also deal with the verification of decision trees, but are not
based on abstract interpretation. For example, Einzinger et al. use SMT solving
to verify the robustness of gradient-boosted models [13]. Their approach also
requires to explicitly encode the set of attacks A(x) in closed form, which is
only easily doable for artificial distance-based attackers. Moreover, SMT solving
suffers from scalability issues, which required the authors to develop custom
optimizations to make their approach practical. It is unclear whether this line of
work can be adapted and scale to more expressive attackers or not, also because
their tool is not publicly available. Other notable work includes the robustness
verification algorithm by Chen et al. [8], which only works for attackers based
on the infinity-norm L∞, and the abstraction-refinement approach by Törnblom
and Nadjm-Tehrani [26], which is not proved sound.

Finally, it is worth mentioning adversarial learning algorithms which train
decision trees more resilient to evasion attacks by construction [5–7,19]. This
line of work is orthogonal to the security verification of decision trees, i.e., our
approach can also be applied to estimate the improved robustness guarantees of
trees trained using such algorithms.

7 Conclusion

We proposed a technique to certify the security of decision trees against evasion
attacks by leveraging the abstract interpretation framework. This is the first
solution which is both sound and expressive enough to deal with sophisticated
attackers represented as arbitrary imperative programs. Our experiments showed
that our technique is both precise and efficient, yielding only a minimal number
of false positives and scaling up to cases which are intractable for a competitor [5].

We foresee several avenues for future work. First, we plan to extend our
approach to the analysis of regression tasks and tree ensembles: though this is
straightforward from an engineering perspective, we want to analyze the preci-
sion and the efficiency of our solution in such settings. Moreover, we will inves-
tigate techniques to automatically infer the minimal attacker’s budget required

Certifying Decision Trees Against Evasion Attacks by Program Analysis 437

to induce a given error rate on the test set, so as to efficiently provide security
analysts with this useful information. Finally, we will investigate the trade-off
between the precision and the efficiency of TreeCert by testing more sophisti-
cated abstract domains and analysis techniques, e.g., trace partitioning.

References

1. Biggio, B., et al.: Evasion attacks against machine learning at test time. In:
Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS
(LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3 25

2. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recognit. 84, 317–331 (2018)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont (1984)

5. Calzavara, S., Lucchese, C., Tolomei, G.: Adversarial training of gradient-boosted
decision trees. In: Proceedings of CIKM. ACM (2019)

6. Calzavara, S., Lucchese, C., Tolomei, G., Abebe, S.A., Orlando, S.: Treant: train-
ing evasion-aware decision trees. Data Min. Knowl. Discov. (2020, to appear).
https://doi.org/10.1007/s10618-020-00694-9

7. Chen, H., Zhang, H., Boning, D.S., Hsieh, C.: Robust decision trees against adver-
sarial examples. In: Proceedings of ICML. PMLR (2019)

8. Chen, H., Zhang, H., Si, S., Li, Y., Boning, D.S., Hsieh, C.: Robustness verification
of tree-based models. In: Proceedings of NeurIPS, pp. 12317–12328 (2019)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL. ACM (1977)

10. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of POPL. ACM (1979)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL. ACM Press (1978)

12. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 3–26. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 1

13. Einziger, G., Goldstein, M., Sa’ar, Y., Segall, I.: Verifying robustness of gradient
boosted models. In: Proceedings of AAAI, pp. 2446–2453. AAAI Press (2019)

14. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2001)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of Security and Privacy. IEEE Computer Society
(2018)

16. Goodfellow, I., McDaniel, P., Papernot, N.: Making machine learning robust
against adversarial inputs. Commun. ACM 61(7), 56–66 (2018)

17. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10618-020-00694-9
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-319-63387-9_1

438 S. Calzavara et al.

18. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

19. Kantchelian, A., Tygar, J.D., Joseph, A.D.: Evasion and hardening of tree ensemble
classifiers. In: Proceedings of ICML. JMLR.org (2016)

20. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: Proceedings of ICLR. OpenReview.net
(2018)

22. Miné, A.: The octagon abstract domain. Higher-Order Symb. Comput. 19, 31–100
(2006). https://doi.org/10.1007/s10990-006-8609-1

23. Ranzato, F., Zanella, M.: Abstract interpretation of decision tree ensemble classi-
fiers. In: Proceedings of AAAI. AAAI Press (2020)

24. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at google. Commun. ACM 61(4), 58–66 (2018)

25. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of
ICLR (2014)

26. Törnblom, J., Nadjm-Tehrani, S.: An abstraction-refinement approach to formal
verification of tree ensembles. In: Romanovsky, A., Troubitsyna, E., Gashi, I.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 301–313.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1 24

27. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Proceedings of NeurIPS 2018 (2018)

28. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of USENIX Security.
USENIX Association (2018)

29. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. CoRR abs/1810.01989 (2018). http://arxiv.org/abs/1810.01989

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-030-26250-1_24
http://arxiv.org/abs/1810.01989

They Might NOT Be Giants Crafting
Black-Box Adversarial Examples Using

Particle Swarm Optimization

Rayan Mosli1,2(B), Matthew Wright1, Bo Yuan1, and Yin Pan1

1 Golisano College of Computing and Information Sciences, Rochester Institute of
Technology, Rochester, NY 14623, USA

{rhm6501, matthew.wright, bo.yuan, yin.pan}@rit.edu
2 Faculty of Computing and Information Technology, King Abdul-Aziz University,

Jeddah, Saudi Arabia

Abstract. As machine learning is deployed in more settings, including
in security-sensitive applications such as malware detection, the risks
posed by adversarial examples that fool machine-learning classifiers have
become magnified. Black-box attacks are especially dangerous, as they
only require the attacker to have the ability to query the target model and
observe the labels it returns, without knowing anything else about the
model. Current black-box attacks either have low success rates, require a
high number of queries, produce adversarial images that are easily distin-
guishable from their sources, or are not flexible in controlling the outcome
of the attack. In this paper, we present AdversarialPSO, (Code avail-
able: https://github.com/rhm6501/AdversarialPSOImages) a black-box
attack that uses few queries to create adversarial examples with high
success rates. AdversarialPSO is based on Particle Swarm Optimization,
a gradient-free evolutionary search algorithm, with special adaptations
to make it effective for the black-box setting. It is flexible in balanc-
ing the number of queries submitted to the target against the quality
of the adversarial examples. We evaluated AdversarialPSO on CIFAR-
10, MNIST, and Imagenet, achieving success rates of 94.9%, 98.5%, and
96.9%, respectively, while submitting numbers of queries comparable to
prior work. Our results show that black-box attacks can be adapted to
favor fewer queries or higher quality adversarial images, while still main-
taining high success rates.

1 Introduction

Deep learning (DL) is being used to solve a wide variety of problems in many dif-
ferent domains, such as image classification [20], malware detection [18], speech
recognition [23], and medical imaging based diagnosis [4]. Despite state-of-the-
art performance, DL models have been shown to suffer from a general flaw that
makes them vulnerable to external attack. Adversaries can manipulate models to
misclassify inputs by applying small perturbations to samples at test time [22].
These adversarial examples have also been successfully demonstrated against
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 439–459, 2020.
https://doi.org/10.1007/978-3-030-59013-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_22&domain=pdf
https://github.com/rhm6501/AdversarialPSOImages
https://doi.org/10.1007/978-3-030-59013-0_22

440 R. Mosli et al.

real-world black-box targets, where adversaries would perform remote queries
on a classifier to develop and verify their attack samples [16]. The possibility of
such attacks poses a significant risk to any ML application, especially in security-
critical settings or life-threatening environments.

Early adversarial attacks relied on model gradients to create examples [3,7,17],
which requires internal knowledge of the target model. Since some adversar-
ial examples transfer from one model to another [16], limited black-box attacks
are possible using model gradients, but with low success rates [5]. More recent
approaches either estimate the model’s gradients [2,5,9,10] or iteratively apply
perturbations to the input [1,8,15]. As demonstrated by Moon et al., however,
the success rate of gradient-estimation approaches depends heavily on the choice
of hyperparameters [15]. Consequently, attack methods with fewer hyperparam-
eters to set or potentially tune would be less sensitive to hyperparameter values
and thus more practical in a black-box setting where tuning might be impossible.

In practice, the feasibility of a black-box attack also depends greatly on the
number of required queries submitted to the model. Against machine-learning-as-
a-service (MLaaS) platforms like Google Vision, each query has a monetary cost.
Too many queries make the attack costly. Perhaps more importantly, needing too
many queries could trigger a monitor to detect an attack underway by observing
many subtly modified versions of the same image submitted to the system in a
short period. To evade such a monitor, one could conduct the attack very slowly
or use a large number of accounts that all have different credit cards attached and
different IP addresses. Either approach would significantly add to the real-world
costs of conducting the attack.

In this paper, we examine how an adversary could generate adversarial exam-
ples with a controllable trade-off between the number of queries and the quality
of the adversarial examples. In particular, we propose the use of Particle Swarm
Optimization (PSO)—a gradient-free optimization technique—to craft adversar-
ial examples. PSO maintains a population of candidate solutions called particles.
Each particle moves in the search space to find better solutions based on a fitness
function that we have designed for finding adversarial examples.

In our attack, called AdversarialPSO, we specify that particles move by mak-
ing small perturbations to the input image that are virtually imperceptible to a
human observer. PSO has been shown to quickly converge on good (though not
globally optimal) solutions [19], making it very suitable for finding adversarial
examples in a black-box setting, as it can identify sufficiently good examples with
few queries. In AdversarialPSO, we also propose numerous adaptations to fit the
black-box setting, including a novel method to minimize redundancy among the
particles that greatly reduces the number of queries. We test the effectiveness of
this approach on three image classification datasets—MNIST, CIFAR-10, and
Imagenet—and find that AdversarialPSO attains high success rates with queries
comparable to state-of-the-art attacks.

In a real attack, the adversary may be constrained to making fewer queries
or, alternatively, be able to make more queries and want to improve the quality
of the images further. AdversarialPSO allows the attacker to tune the number of

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 441

queries against the quality of images by simply changing the number of particles
in the swarm. By using bigger swarms, more queries would be submitted to the
model in exchange for higher-quality adversarial examples.

In addition to the flexibility offered by AdversarialPSO, due the gradient-
free nature of the attack, no hyperparameters require tuning for the attack to be
successful. As shown in Sect. 3.2, the attack only requires the number of particles
and the initial block-size used in the attack. The two hyperparameters affect the
quality vs number of queries trade-off and can be roughly estimated based on
the dimensions of the input.

Contributions. In summary, we have made the following contributions:

– We present AdversarialPSO, a gradient-free black-box attack with control-
lable trade-offs between the number of queries and the quality of adversarial
examples.

– We demonstrate the effectiveness of AdversarialPSO on both low-dimensional
and high-dimensional datasets by empirically evaluating the attack on the
MNIST, CIFAR-10, and Imagenet datasets. We show that AdversarialPSO
produces adversarial examples comparable to the state-of-the-art.

– We show how AdversarialPSO can be adjusted to trade-off the number of
queries against the quality of the images.

2 Related Work

In this section, we discuss related work in both the white-box and black-box
settings.

2.1 White-Box Attacks

Szegedy et al. were the first to discuss the properties of neural networks that
make adversarial attacks possible [22]. They show that imperceptible non-
random perturbations of an image can cause an otherwise accurate DL model to
misclassify it. The authors also discuss the transferability of adversarial examples
from one model to another, including scenarios where models may have different
architectures or are trained using different subsets of training data.

Goodfellow et al. [7] presented an explanation as to why DL models are
susceptible to adversarial examples. They argue that the linearity of neural net-
works is what leads to their sensitivity to small and directed changes in input.
They also present the Fast Gradient Sign Method (FGSM), which calculates the
perturbations needed to transform inputs to adversarial examples. FGSM deter-
mines the direction of perturbations according to model gradients with respect
to input and adds minuscule values in that direction. Kurakin et al. [13] extend
this approach by introducing IGSM, an iterative variant of FGSM that takes
several smaller steps instead of one relatively large step. The authors printed
the images of the adversarial examples and fed them to a model through a cam-
era. The results demonstrate that adversarial examples can work in the physical
world, and that these types of attacks are practical.

442 R. Mosli et al.

Papernot et al. take a different approach to find adversarial examples [17].
Instead of taking multiple small steps, they construct a saliency map that main-
tains relevant input features with a high impact on model outputs. They utilize
the saliency map to perturb specific features and create adversarial examples.
This approach allows an adversarial example constructed towards a target label
specified by the attacker. In a later paper, Papernot et al. extended the tech-
niques of both Goodfellow et al. and Papernot et al. to launch black-box attacks
against remotely hosted targets [16]. As both attacks require knowledge of model
internals—information that is not available in a black-box setting—the authors
used a local white-box surrogate that approximates the black-box target. The
surrogate is trained using the Jacobian-based Dataset Augmentation method,
which expands the training set used to train the surrogate with data points that
allow the surrogate to approximate the target’s decision boundary closely.

Another approach was employed by Carlini and Wagner [3], who search for
adversarial examples by iteratively performing minimizeD(x, x+δ), where D is
either an L0, L2, or L 8 distance metric. The attack finds the minimum distance
required to generate an adversarial example according to the distance metric
being minimized. To use it as a black-box attack, it can be launched on a surro-
gate model, where only examples with high confidence are likely to transfer to
the target model.

2.2 Black-Box Attacks

In a black-box attack, the attacker does not know the internals of a target model.
Instead, the attacker can query the target with specially crafted inputs meant
to help estimate the gradient or lead gradually to misclassified samples. Target
models are typically assumed to return confidence scores along with each classi-
fication, and these are used in constructing the inputs for subsequent queries.

Gradient-Estimation Attacks. To launch black-box attacks, Chen et al. pro-
pose ZOO [5], a method to estimate model gradients using only the model inputs
and the corresponding confidence scores provided by the model. The approach
employs a finite difference method that evaluates image coordinates after adding
a small perturbation to estimate the direction of the gradient for each coordi-
nate. Since examining every coordinate requires a huge number of queries to
the model, the authors applied the stochastic coordinate descent algorithm and
attack-space dimension reduction to reduce the number of queries needed to
approximate gradients. Moderate perturbations in the direction of the gradient
are, as shown in the FGSM attack, sufficient to obtain an adversarial exam-
ple from the input. Although ZOO can successfully create adversarial examples
indistinguishable from the inputs, it requires up to a million queries for high-
dimensional samples, such as from Imagenet. With so many queries, the attack
could be easily detectable, and the cost could be prohibitive and impractical in
a real-world setting for a single image.

To reduce the number of queries, Bhagoji et al. estimate the gradient of
groups of features or coordinates instead of estimating one coordinate at a

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 443

time [2]. Although the attack was not evaluated on a high-dimensional dataset, it
outperformed ZOO on low-dimensional datasets such as CIFAR-10 and MNIST.
The proposed Gradient Estimation (GE) approach by the authors still requires
up to 10,000 queries to generate an adversarial example. The authors considered
PSO as a possible approach for searching adversarial examples but found it to
be slow and not as useful as GE. As we show in Sect. 4.2, however, our modi-
fications to the basic PSO algorithm enable it to outperform GE. Our version
of PSO does not require a swarm of 100 particles to be effective, which would
be slow as per Bhagoji et al.’s experience. Instead, it can search for adversarial
examples with high success rates using swarms with as few as five particles.

Ilyas et al. propose Natural Evolutionary Strategies (NES) to estimate gra-
dients of the model, and then use projected gradient descent on the estimated
gradients to craft adversarial examples [9]. They also extend the approach in [10]
to utilize the bandit optimization method to exploit prior information when
estimating the gradients. Specifically, they incorporate a data-dependent prior,
which exploits the similarity in gradient information exhibited by adjacent pix-
els. Furthermore, they also incorporate a time-dependent prior that utilizes the
high correlation between gradients estimated in successive steps. Although the
attack can generate high-quality adversarial examples with few queries, the app-
roach has been shown to be very sensitive to changes in hyperparameter values.
Moon et al. [15] have shown that having too many hyperparameters could lead
to significant variability in attack performance, creating dependability on the
values chosen for those hyperparameters. Gradient-estimation based approaches
commonly have multiple hyperparameters that are necessary for the execution
of attacks, such as the learning rate, search variance, decay rate, and update
rules – in a real-world black-box setting, tuning these hyperparameters would
either incur additional queries or might not be possible at all in many cases. In
our approach, there are only two hyperparameters with predictable effects on
the outcome of the attack.

Gradient-Free Attacks. Moon et al. formulate the problem of crafting adver-
sarial examples as a set maximization problem that searches for the set of positive
and negative perturbations that maximizes an objective function [15]. Similar
to [10], the authors exploit the spatial regularity exhibited by adjacent pix-
els by searching for perturbations in blocks instead of individual pixels. They
increase the granularity of the blocks as the search progresses. Our Adversari-
alPSO attack searches for perturbations in blocks as well and yields comparable
results as Moon et al.’s approach. However, our approach is capable of adjusting
hyperparameter values effectively for the trade-off between L2 and queries as we
show in Sect. 4.6.

Guo et al. explore a simple attack that crafts adversarial examples by ran-
domly sampling a set of orthonormal vectors and adding or subtracting them
from the input [8]. The attack is shown to be successful in crafting adversarial
examples despite its simplicity. However, the success of the attack diminishes as
dimensionality increases, as shown when targeting InceptionV3, which expects

444 R. Mosli et al.

inputs (299× 299) with higher dimensionality than that of ResNet and DenseNet
(224× 224). As the perturbations are applied randomly, many queries are wasted
by the approach until a solution is found.

By utilizing Differential Evolution (DE), Su et al. show that some test sam-
ples can be misclassified by changing a single pixel [21]. Similar to the PSO
algorithm used in this paper, DE is a population-based algorithm that main-
tains and manipulates a set of candidate solutions until an acceptable outcome
is found. The objective of this one-pixel attack is to better understand the geom-
etry of adversarial space and proximity of adversarial examples to their corre-
sponding inputs. The attack does not achieve high success rates due to the tight
constraints used in the study.

Another population-based black-box attack is GenAttack [1], which uses a
Genetic Algorithm (GA) to find adversarial examples. This attack iteratively
performs the three genetic functions–selection, crossover, and mutation–where
selection extracts the fittest candidates in a population, crossover produces a
child from two parents, and mutation encodes diversity to the population by
applying small random perturbations. The authors propose two heuristics to
reduce the number of queries used by GenAttack, namely dimensionality reduc-
tion and adaptive parameter scaling. Although the authors propose two heuris-
tics to reduce the numbers of queries used by their approach, GenAttack uses a
higher number of queries compared to our approach.

3 Particle Swarm Optimization

In this section, we provide an overview of the PSO algorithm and describe how
we adapt it to generate adversarial examples against image classification models.

3.1 Conventional PSO

Kennedy and Eberhart first proposed PSO as a model to simulate how flocks
of birds forage for food [12]. It has since been adapted to address a multitude
of problems, such as text feature selection [14], grid job scheduling [11], and
optimizing the generation of electricity [6]. The algorithm works by dispersing
particles in a search space and moving them until a solution is found. The search
space is assumed to be d-dimensional, where the position of each particle i is a
d-dimensional vector Xi = (xi,1, xi,2, xi,3, . . . , xi,d). The position of each particle
is updated according to a velocity vector Vi where Vi = (vi,1, vi,2, vi,3, . . . , vi,d).
In each time-step or iteration, denoted as t, the velocity vector is used to update
the particle’s next position, calculated as:

xi(t + 1) = xi(t) + vi(t + 1) (1)
vi(t + 1) = wvi(t) + c1R1(pg − xi(t)) + c2R2(pi − xi(t)) (2)

Equation 2 contains three terms. The first term controls how much influence
the current velocity has when calculating the next velocity and is constrained

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 445

with the inertia weight w. The second term, with weight c1, is referred to as
exploration, as it allows particles to explore further regions in the search space
in the direction of the best position found by the swarm, denoted by pg. The
third term, with weight c2, is referred to as exploitation, and it is based on the
best position found by this particle, denoted by pi. R1 and R2 are d-dimensional
vectors containing uniformly distributed random numbers that are calculated
for each iteration to encode randomness in the search process. Early implemen-
tations of PSO assigned a fixed value to w. Shi and Eberhart, however, found
that linearly decreasing the inertia weight w improved PSO performance [19]. In
each iteration, fixed values wstart and wend together with a maximum number of
iterations tmax were used to calculate the inertia as:

w(t) = wend + (wstart − wend)
(

tmax − t

tmax

)
(3)

In the case of black-box adversarial attacks, however, the number of queries
is a more appropriate measure for how much the attack has progressed. We thus
modify Eq. 3 to compute w with respect to the number of queries instead of
number of iterations as:

w(t) = wend + (wstart − wend)
(

qmax − q

qmax

)
, (4)

where qmax is the query budget used in the attack and q is the number of queries
submitted to the model. We set wstart = 1 and wend = 0.

3.2 Adversarial PSO

Among the many applications of PSO, we show in this paper that it can also be
used to craft adversarial examples for images. Shi and Eberhart [19] found that
PSO is quick to converge on a solution and scales well to large dimensions, at the
cost of slower convergence to global optima. This makes PSO an excellent fit for
finding adversarial examples in the black-box setting, as it suggests that it can
identify sufficiently good examples with few queries, even for high-dimensional
image data.

In this section, we first describe the key adaptations we used to make PSO
effective and query-efficient for black-box attacks, and especially highlight our
technique for minimizing redundancy in the query process. We then lay out the
overall algorithm.

PSO Adaptations. Our PSO includes several key adaptations for our problem:

Fitness Function. To adapt PSO to the problem of creating adversarial examples,
we define a fitness function that measures the change in model output when
perturbations are added to the input. In both targeted and untargeted attacks,
the fitness function measures how much the model’s confidence in the target label
rises or drops, respectively. When performing untargeted attacks, the fitness for

446 R. Mosli et al.

each candidate solution is the confidence drop in the original class predicted
by the model. Given the original image x, the perturbed image x′, the model
parameters θ, and the original label y we compute confidence f(x, y, θ). We then
calculate the fitness using fitness = f(x, y, θ) − f(x′, y, θ). In targeted attacks,
fitness is given by the increase in confidence in the desired class. For the target
label y′, we compute confidence f(x, y′, θ) and fitness = f(x′, y′, θ)− f(x, y′, θ).

Constraints. To further control the perturbations added to the input image,
we define an upper bound value B of maximum change to limit the L∞ dis-
tance between the adversarial image and the original image. L∞ measures the
maximum change to any of the coordinates, where L∞ = max(|x1 − x′

1|, |x2 −
x′
2|, . . . , |xd − x′

d|). To ensure the upper bound, we use the clip operator to get
x

′
= clip(xi + vi, xi − B, xi + B). Additionally, we apply box constraints to

maintain valid image values when adding perturbations. These constraints are
applied to Eq. 1 to yield:

xi(t + 1) = clip(clip(xi(t) + vi(t + 1), xi − B, xi + B), 0, 1) (5)

Block-Based Perturbation. Similar to related work [2,9,15], we exploit the spatial
regularity of adjacent pixels by splitting the input into blocks and perturbing all
the pixels in each block en masse. Perturbing pixels in blocks utilizes the gradient
similarities that are shared between adjacent pixels. Essentially, as such pixels
would have similar effects on the outcome of the prediction, perturbing them
as a group would have a larger impact on the rise (or drop) on the model’s
confidence, which translates to requiring fewer queries to generate adversarial
examples.

Reversals. Since we have a relatively small number of blocks, and thus a limited
number of perturbations, we can examine the results of each modification sep-
arately. We take advantage of this by reversing all the perturbations that have
caused a negative impact on the fitness with the goal of finding improvements.
Note that instead of just undoing the perturbation, we actually move the particle
in the opposite direction. In essence, this is similar to inferring the gradient, as
we assume that the opposite of a bad direction will be a good direction. We note
that this is different from the approach of Moon et al. of alternating between
adding perturbations and removing perturbations [15], which just undoes some
of the prior steps. In our tests, we find that our reversals do indeed lead to a
better position in many cases.

Following the Edge of the L∞ Ball. As observed by Moon et al. [15], the optimal
solution when crafting adversarial examples often reside at the edges of the L∞
ball. Based on this observation, when initializing and randomizing particles, we
set their positions at the edge of the L∞ ball to observe the highest (or lowest)
fitness for each dimension. Particles are then moved inwards using Eqs. 2 and 5.
Moving inwards from the edge ensures that particles get enough velocity to reach
the other end quickly if the opposite position was found to have better fitness.
Otherwise, particles would waste queries moving around the center of the ball

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 447

until they eventually build enough velocity towards the position with the highest
fitness.

The Particle Explosion Problem. For long running attacks, the velocity would
eventually become so large that it would overpower the exploration and exploita-
tion terms in Eq. 2. This would cause particles to get stuck at the edges of the L∞
ball as the ever-increasing velocity would continuously push them to locations
outside the search space. This is a well known problem in PSO, and although the
inertia weight is meant to mitigate it, it does not completely solve the problem.
Therefore, in addition to the inertia weight, we perform velocity clamping to
limit the growth of the velocity vector, again leveraging the clip operator:

vi(t) = clip(vi(t),−B,B). (6)

This is performed in every iteration for each particle before updating the particle
positions.

Redundancy Minimization. Beyond these other adaptations to PSO, we
found it very effective to minimize the redundancy across particles, which helps
to minimize the number of particles and the number of queries to find good
examples. The key insight of this approach is that relatively few of the possible
changes to the image are going to be especially valuable to changing the classi-
fication result. If one of the particles includes one of these useful changes, then
that benefit is likely to be seen in the query result. Having found that effec-
tive change in one particle, other particles can take advantage of this through
the exploration attribute in the PSO algorithm, which moves particles towards
the best position in the swarm. We thus aim to limit the possibility of redun-
dant checks on already perturbed blocks. Essentially, if one of the particles has
modified one of the blocks in a given way, e.g. it increased the red channel on
all pixels in that block, then we prevent other particles from making the same
modification. To do this, we first define a set β with all available blocks (which
are still eligible to be modified), β = (b1, b2, b3, . . . , bn). Then, for each block
in the set, we create a list of all possible directions containing the positive and
negative directions for each channel in the block. For grayscale images, which
contain only a single channel, the list of possible channel directions cd is given
by cd = {(1), (−1)}. For RGB images, it is

cd = {(1, 0, 0), (−1, 0, 0),
(0, 1, 0), (0,−1, 0),
(0, 0, 1), (0, 0,−1)}.

In other words, any single channel could be increased or decreased.
When a direction in a block is assigned to a particle, that direction is then

removed from the list to avoid multiple particles perturbing the same block in
the same direction. When all the directions in a block are assigned to particles,
we remove that block from the set β. When there are no more blocks in the set,

448 R. Mosli et al.

we increase the granularity of the blocks by dividing the block-size by half and
recreate the block set to contain the smaller blocks.

For each particle, we maintain a list of all the blocks and directions assigned
to it. This list is used to avoid assigning an opposite direction to the particle
which would cancel out a direction that it was previously assigned. Section 3.2
discusses how this list is used.

PSO Algorithm. The threat model we assume for this attack consists of an
attacker with exploratory capabilities that permits submissions to a remote
black-box model, which returns confidence scores with each prediction. The
attacker has no influence on the training process and has no access to internal
model information. The attack is based solely on the confidence scores returned
by the model.

The search for adversarial examples is performed in two stages: initialization
and optimization. The initialization stage disperses the particles in the search
space and tests the initial fitness for the starting point of each particle. The
optimization stage moves the particles according to Eqs. 1 and 2, and tests
the fitness for each new position until either an adversarial example is found
or the query budget is exhausted, whichever comes first. The overall process of
AdversarialPSO (Algorithm 1), and all other algorithms discussed in this section,
can be seen in the appendix.

Initialization. For each image, the search process starts with initializing the par-
ticles by randomizing their positions in the search space (Algorithm 2). Particles
are initialized by randomly assigning an equal number of blocks to each particle,
without replacement to minimize redundancy (see Sect. 3.2). In large swarms,
each particle is assigned relatively few blocks, resulting in a more fine-grained
search for adversarial examples.

Two hyperparameters control how the swarm is initialized: the number of
particles in the swarm P and the initial block-size b, which determines the num-
ber of initial blocks created and the number of blocks assigned to each particle.
Each particle begins with the input image x and the set of blocks β with a sin-
gle direction for each block. Particles are then dispersed in the search space by
perturbing all the blocks assigned to them to the edge of the L∞ ball according
to the directions they were given. Once the particles are created and dispersed,
their fitness is calculated and subsequently used in the optimization step.

Optimization. The optimization step of AdversarialPSO (Algorithm 3) is an
iterative process that moves the particles in search of better fitness. Particle
positions are updated using the velocity vector, which is calculated for each
particle in every iteration. After moving the particles, their fitness is calculated
and compared against the particle’s best fitness to determine which particle
position will be used to calculate future particle movements. The particle’s fitness
is also compared against the best fitness achieved in the swarm as a whole (i.e,
best swarm fitness), and if the particle fitness was found to be better, the swarm
is updated to account for the position with the highest fitness. The process is

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 449

repeated until an adversarial example is found or when the process exhausts the
allowed number of queries.

In every iteration, in addition to particle movements, each particle is assigned
the next set of blocks and directions as was done in the initialization stage.
Again, the assignment is designed to minimize redundancy (see Sect. 3.2). This
randomization is performed after the particles are moved according to their
calculated velocity vectors to allow the exploration of additional regions of the
search space (Algorithm 4).

After some number of iterations, all the directions in all the blocks will
have been assigned to a particle. At that point, the granularity of the blocks
is increased, and the particles are re-initialized with the swarm best position
as a starting point. When re-initializing the particles, we also reset their best
positions. We do this to prevent the particles from retracting to the previous
granularity level.

After all the blocks are assigned to particles and before increasing the gran-
ularity of the blocks, we perform the reversal operation (see Sect. 3.2 on Rever-
sals). The reversal is performed on the swarm best position by iterating through
the past positions of each particle and applying an opposite step for any move-
ment that caused a negative fitness for the particle (Algorithm 5).

4 Evaluation

4.1 Setup

To evaluate AdversarialPSO, we consider the the success rate (i.e., the ratio of
successfully generated adversarial examples over the total number of samples)
and the average number of queries needed to generate adversarial examples. We
compare our results against the Parsimonious Black-Box Adversarial Attack [15],
NES [9] and Bandits [10] using the benchmark dataset Imagenet. We use the
results reported in the Parsimonious attack paper [15] for our comparison, and as
L2 distances were not reported by the authors for all three attacks, we omit this
metric from our evaluation. Nonetheless, the same L∞ bound was used in our
experiments as the other three attacks. Furthermore, similar to the related work,
we evaluate the attack using InceptionV3. The Imagenet results for both untar-
geted and targeted attacks are obtained from running AdversarialPSO on 1,000
correctly classified samples from the indices list provided in the Parsimonious
attack. The same target labels used in [15] and [10] are used for the targeted
experiment. Also, for related work that utilize block-based perturbations, we
use the same initial block-sizes as related work. If not, we use block-size that are
adequate to the dimensions of the input samples. The results for the untargeted
and targeted Imagenet attacks are reported in Sects. 4.3 and 4.4, respectively.

We also test the attack on an adversarially trained CIFAR-10 ResNet classier
as was done in [15], by using the same pretrained network provided by Madry-
Lab.1 The results for this test are reported in Sect. 4.5.
1 https://github.com/MadryLab/cifar10_challenge.

https://github.com/MadryLab/cifar10_challenge

450 R. Mosli et al.

We compare the AdversatialPSO attack on MNIST and CIFAR-10 against
the approach used by Bhagoji et al. [2] to show the improvements attained from
our modifications to the PSO algorithm. Similar to the models used in [2], we
use ResNet-32 and a two-layer convolutional neural network for CIFAR-10 and
MNIST respectively. Furthermore, we use the same L∞ limits of L∞ = 0.3 for
MNIST L∞ = 8/255 for CIFAR-10. Unlike Bhagoji et al., who used 100 particles,
we only use 5 particles. Using fewer particles translates to fewer queries being
submitted to the model and a less resource intensive attack. As we show in
Sect. 4.2, we achieve higher success rates with much smaller swarms. For all
MNIST evaluations, due to the low dimensionality of the inputs, we use an
initial block-size of 2 without increasing the granularity. For CIFAR-10, we use
an initial block-size of 8.

Finally, we explore the effect of using different-sized swarms on ImageNet. We
report the average per-pixel L2 distance between input images and their adver-
sarial counterparts. As using more particles enables us to increase the granularity,
we find that larger swarms produce better adversarial examples with a lower L2
average. We show the results of this analysis in Sect. 4.6.

Table 1. Results comparison: Untargeted attack on MNIST and CIFAR-10 against the
PSO and GE attacks of Bhagoji et al. [2]. The results we list for the Bhagoji attacks
are obtained from their paper

Attack MNIST CIFAR-10
Succ. rate L2 Queries Succ. rate L2 Queries

Finite Diff 92.9% 6.1 1568 86% 410.3 6144
GE 61.5% 6.0 196 66.8% 402.7 768
IFD 100% 2.1 62720 100% 65.7 61440
Iterative GE 98.4% 1.9 8000 99.0% 80.5 7680
Their PSO 84.1% 5.3 10000 89.2% 262.3 7700
SPSA 96.7% 3.9 8000 88.0% 44.4 7680
AdversarialPSO 98.52% 5.3 183 94.92% 338.2 129

4.2 Untargeted MNIST and CIFAR-10

To demonstrate the effectiveness of AdversarialPSO, we compare our attack
against the approach used by Bhagoji et al. [2]. As shown in Table 1, Adversar-
ialPSO not only outperforms the standard PSO used by Bhagoji et al., it also
outperforms the GE approach used by the authors. For MNIST, the only app-
roach to have a higher success-rate is the Iterative Finite Difference (IFD) attack
at 100%, however the average number of queries was above 60K. In our imple-
mentation, we set a maximum budget of 10K queries, which led to a handful of
failures.

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 451

Regarding the average L2, using a swarm with 5 particles produces adversar-
ial examples with comparable distances. However, by increasing the number of
particles in the swarm, better quality adversarial examples could be generated
at the expense of more queries. Repeating the same experiment but with 10
particles produces an average L2 of 4.9, but with an average of 296 queries.

Similarly for CIFAR-10, the only two approaches to have higher success rates
are Iterative GE and IFD. Both of these, however, require many more queries
on average (over 7500) than AdversarialPSO (under 200).

In examining the failed instances of the CIFAR-10 ResNet-32 model, we find
that samples that failed were resistant to small perturbations. Particle move-
ments had a low impact on the model’s confidence scores and as such, executed
for a large number of iterations until the query budget was exhausted. For a
majority of the samples, the adversarial examples were crafted rather quickly
without using many queries. We speculate that the failed instances were far
from the decision boundary, thus requiring large changes to be misclassified.
Figure 1 shows randomly chosen examples of our attack on both CIFAR-10 and
MNIST.

Before After Before After Before After Before After

Deer Bird Airplane Automobile 1 2 8 2

Dog Cat Dog Horse 1 7 5 8

Frog Deer Horse Deer 7 2 2 0

Dog Cat Truck Automobile 6 2 4 8

Dog Ship Frog Ship 4 8 1 4

Fig. 1. Untargeted attack using AdversarialPSO on MNIST and CIFAR-10

452 R. Mosli et al.

Before After Before After

Anole Lacerta viridis Screw Dumbbell

Totem pole Pinwheel Admiral Argiope aurantia

Pirate ship Water tower Triumphal arch Footstall

Fig. 2. Untargeted attacks on InceptionV3 (randomly selected samples)

Table 2. Untargeted and targeted attacks on Imagenet

Attack Untargeted Targeted
Success rate Avg. queries Success rate Avg. queries

NES 80.3% 1660 99.7% 16284
Bandits 94.9% 1030 92.3% 26421
Parsimonious attack 98.5% 722 99.9% 7485
AdversarialPSO 96.9% 837 98.6% 14959

4.3 Untargeted Imagenet

To evaluate the attack on the Imagenet dataset, we use the InceptionV3 model
provided by Keras2. As per the Keras implementation, inputs are scaled to
[−1,1], so we set the L∞ bound to 0.1 (equivalent to the 0.05 L∞ used by
prior work). We choose the first 1000 samples from the indices list found in the
Parsimonious Black-Box Attack GitHub page3 and attack each sample with a
query budget of 10,000 queries. We also use 32 for an initial block-size, similar to
Moon et al. [15], and 5 particles in the swarm. Figure 2 shows randomly chosen
examples of images generated from the attack, which we find have similar quality
to those shown by Moon et al. [15]. As shown in Table 2, our attack achieves
comparable success rates and number of queries as the related work, but with
the advantage of providing controllable trade-offs between the number of queries
and the quality of the adversarial examples.

2 https://keras.io/applications/#inceptionv3.
3 https://github.com/snu-mllab/parsimonious-blackbox-attack.

https://keras.io/applications/#inceptionv3
https://github.com/snu-mllab/parsimonious-blackbox-attack

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 453

4.4 Targeted Imagenet

To evaluate AdversarialPSO in a targeted attack, we use samples from the Par-
simonious Black-box Attack’s list of sample indices and we use the same labels
as in [15]. Furthermore, similar to [15], we use an initial block-size of 32 and a
query budget of 100,000 queries. Unlike the untargeted attack however, we use 10
particles to accommodate the more difficult attack setting. Table 2 summarizes
our results and Fig. 3 shows randomly chosen examples of the attack. Similar to
the untargeted attack, we outperform both GE-based attacks. The Parsimonious
attack however, generates adversarial examples with fewer queries.

retfAerofeBretfAerofeB

Indian cobra Ring snake Hammer King snake

Panpipe Goldfish Soap dispenser Killer whale

Binder Desktop computer Stingray Anemone

Fig. 3. Targeted attacks on InceptionV3 (randomly selected samples)

Table 3. Untargeted attack on adversarially trained CIFAR-10 ResNet classier

Attack Success rate Avg. queries

NES 29.5% 2872
Bandits 38.6% 1877
Parsimonious attack 48% 1261
AdversarialPSO 45.4% 2341

4.5 AdversarialPSO on Adversarially Trained Models

To test the attack against defended models, we evaluate AdversarialPSO against
the adversarially trained CIFAR-10 model provided by MadryLabs. We use the
same samples, L∞ bound, and query budgets as used by Moon et al. [15]. As
shown in Table 3, AdversarialPSO outperforms both Bandits and NES. Although

454 R. Mosli et al.

Fig. 4. The effect of swarm size on the average number of queries and per-pixel L2

distance. In the figure, the x-axis represents the number of queries, the y-axis represents
the per-pixel L2, and the number of particles are shown by the markers

the Parsimonious Black-box attack remains the highest in success rate, Adversar-
ialPSO performs comparably with the added advantage of providing a trade-off
between queries and L2.

4.6 Swarm-Size Analysis

By re-running the untargeted Imagenet attack using swarms with different sizes,
we show that increasing the number of particles lowers the average L2 at the
expense of more queries. The results are based on samples that were successfully
attacked by all swarm sizes. As shown in Fig. 4, there is a 26% improvement in
adversarial example quality when increasing the number of particles from 5 to
50. With this trade-off, an attacker that favors adversarial example quality over
number of queries can use larger swarms. On the other hand, if fewer queries is
more important to the attacker, then smaller swarms would be more beneficial.

5 Conclusions

This paper presented a black-box attack based on the evolutionary search algo-
rithm: Particle Swarm Optimization. The attack we call AdversarialPSO, adapts
the traditional PSO algorithm to produce adversarial examples from images. Our
experimental evaluations on the MNIST, CIFAR10, and Imagenet datasets sug-
gest that AdversarialPSO can effectively generate adversarial examples in prac-
tical black-box settings with a limited number of queries to the target model.
Furthermore, we demonstrate how the attack can be adjusted to control the
trade-off between the number of queries submitted to the model and the L2
distance between the original inputs and the generated adversarial examples.

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 455

The purpose of the attack is to help evaluate security-critical models against
black-box attacks and to promote the search for robust defenses.

Acknowledgment. We would like to thank the reviewers for their constructive com-
ments that helped clarify and improve this paper. This material is based upon work
supported by the National Science Foundation under Awards No. 1816851, 1433736,
and 1922169.

A Appendix

As discussed in Sect. 3.2, the AdversarialPSO attack iteratively performs several
operations to generate adversarial examples from images. Algorithm 1 provides
a high-level view of the main AdversarialPSO loop that is responsible for ini-
tializing the swarm, moving the particles, randomizing the particles, increasing
the granularity of the search space, and reversing any movement with a negative
fitness:

Algorithm 1. AdversarialPSO
1: Input: maximum queries qmax,block-set B
2: Initialize swarm (See Algorithm 2)
3: while q < qmax do
4: if Success then
5: return bestPosition
6: end if
7: Move Particles (See Algorithm 3)
8: if B is empty then
9: performReversal (See Algorithm 5)

10: increaseGranularity
11: initializeParticles(bestPosition)
12: else
13: randomizeParticles (See Algorithm 4)
14: end if
15: end while
16: return bestPosition

In preparation for the attack, AdversarialPSO initializes the swarm by sep-
arating the image into blocks and assigning a different set of blocks to each
particle. The attack then moves the particles according to the blocks they were
assigned and evaluates the new position to calculate the fitness of each new
position. Algorithm 2 provides the steps for the initialization process:

456 R. Mosli et al.

Algorithm 2. Initializing the swarm
1: Input: input image x, particle array par, block-set B, and maximum change m.
2: n ← int(length(B)/P) # blocks per particle
3: for p in par do
4: blocks ← select random n elements from B
5: p.pos ← x
6: for block in blocks do
7: direction ← select random direction from B[block]
8: pop direction from B[block] and push direction to p.blockList[block]
9: for i in block do

10: p.posi ← p.posi +m ∗ direction
11: end for
12: end for
13: fitness ← calculateF itness #includes update to q
14: Compare new fitness against particle best and swarm best
15: end for
16: return par, bestPosition, bestF itness

In each iteration, particles are moved using traditional PSO operations, which
consist of calculating the velocity of each particle and adding that velocity to
the particle’s current position. After each movement, the fitness for the new
position is calculated and compared against the particle’s best fitness and the
swarn-wide best fitness. Future particle movements depend on the outcome of
each fitness comparison. Algorithm 3 provides the steps for the velocity-based
particle movements:

Algorithm 3. Move Particles
1: Input: particle array par, swarm-wide best fitness bestF itness, and swarm-wide

best position bestPosition
2: for p in par do
3: v ← calculateV elocity
4: p.pos ← updatePosition
5: fitness ← calculateF itness #includes update to q
6: Compare new fitness against particle best and swarm best
7: end for
8: return bestPosition

In addition to velocity-based movements, in every iteration, each particles is
assigned new blocks with directions that are unique to that particle. Algorithm 4
shows the process of assigning blocks and directions to particles:

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 457

Algorithm 4. Randomize Particles
1: Input: particle list par, block-set B, change rate cr, and maximum change m.
2: for p in par do
3: blocks ← select random cr elements from B
4: for block in blocks do
5: if block in p.blockList then
6: d ← p.blockList[block]
7: direction ←select direction from B[block] where direction ! = {d,−d}
8: else
9: push block to p.blockList

10: direction ← select random direction from B[block]
11: end if
12: pop direction from B[block] and push direction to p.blockList[block]
13: for i in block do
14: p.posi ← p.posi +m ∗ direction
15: end for
16: end for
17: fitness ← calculateF itness #includes update to q
18: Compare new fitness against particle best and swarm best
19: end for

If a given particle movement produced a negative fitness, we observed that
moving in the opposite direction would most likely produce a positive fitness.
Algorithm 5 provides the steps for these reversal operations:

Algorithm 5. Reverse movements with negative fitness
1: Input: best position bestPosition and Particle list par
2: for p in par do
3: for pastPos in p.pastPos do
4: if pastPos.fitness < 0 then
5: bestPosition ← bestPosition − pastPos.pos
6: if Fitness did not improve then
7: Undo last changes
8: end if
9: pop pastPos from p.pastPos

10: end if
11: end for
12: end for
13: return bestPosition

References

1. Alzantot, M., Sharma, Y., Chakraborty, S., Srivastava, M.B.: Genattack: practical
black-box attacks with gradient-free optimization. CoRR, abs/1805.11090 (2018)

458 R. Mosli et al.

2. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural
networks using efficient query mechanisms. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 158–174. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_10

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

4. Carneiro, G., Zheng, Y., Xing, F., Yang, L.: Review of deep learning methods in
mammography, cardiovascular, and microscopy image analysis. In: Lu, L., Zheng,
Y., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Net-
works for Medical Image Computing. ACVPR, pp. 11–32. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-42999-1_2

5. Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.-J.: Zoo: zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. CoRR, abs/1708.03999v2 (2017)

6. Gaing, Z.-L.: Particle swarm optimization to solving the economic dispatch consid-
ering the generator constraints. IEEE Trans. Power Syst. 18(3), 1187–1195 (2003)

7. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: International Conference on Learning Representations (2015)

8. Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.Q.: Simple black-box
adversarial attacks. CoRR, abs/1905.07121 (2019)

9. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with
limited queries and information. CoRR, abs/1804.08598 (2018)

10. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: black-box adversarial attacks
with bandits and priors. CoRR, abs/1807.07978 (2018)

11. Izakian, H., Tork Ladani, B., Zamanifar, K., Abraham, A.: A novel particle swarm
optimization approach for grid job scheduling. In: Prasad, S.K., Routray, S.,
Khurana, R., Sahni, S. (eds.) ICISTM 2009. CCIS, vol. 31, pp. 100–109. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00405-6_14

12. James Kennedy and Russell Eberhart. Particle swarm optimization. In: Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–
1948 (1995)

13. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
CoRR, abs/1607.02533 (2016)

14. Yonghe, L., Liang, M., Ye, Z., Cao, L.: Improved particle swarm optimization
algorithm and its application in text feature selection. Appl. Soft Comput. 35,
629–636 (2015)

15. Moon, S., An, G., Song, H.O.: Parsimonious black-box adversarial attacks via
efficient combinatorial optimization. In: ICML (2019)

16. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, ASIA CCS 2017,
pp. 506–519. ACM, New York (2017)

17. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy (EuroSP), pp. 372–387, November 2016

18. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.: Mal-
ware detection by eating a whole exe. In: The Workshops of the Thirty-Second
AAAI Conference on Artificial Intelligence (2018)

19. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), vol. 3, pp. 1945–1950, February 1999

https://doi.org/10.1007/978-3-030-01258-8_10
https://doi.org/10.1007/978-3-319-42999-1_2
https://doi.org/10.1007/978-3-642-00405-6_14

They Might NOT Be Giants Crafting Black-Box Adversarial Examples 459

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2015)

21. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
CoRR, abs/1710.08864 (2017)

22. Szegedy, C., et al.: Intriguing properties of neural networks. CoRR,
abs/1312.6199v4 (2014)

23. Zhang, Y., et al.: Towards end-to-end speech recognition with deep convolutional
neural networks. CoRR, abs/1701.02720 (2017)

Understanding Object Detection Through
an Adversarial Lens

Ka-Ho Chow(B), Ling Liu, Mehmet Emre Gursoy, Stacey Truex, Wenqi Wei,
and Yanzhao Wu

Georgia Institute of Technology, Atlanta, GA, USA
{khchow,ling.liu,memregursoy,staceytruex,wenqiwei,yanzhaowu}@gatech.edu

Abstract. Deep neural networks based object detection models have
revolutionized computer vision and fueled the development of a wide
range of visual recognition applications. However, recent studies have
revealed that deep object detectors can be compromised under adversar-
ial attacks, causing a victim detector to detect no object, fake objects, or
mislabeled objects. With object detection being used pervasively in many
security-critical applications, such as autonomous vehicles and smart
cities, we argue that a holistic approach for an in-depth understand-
ing of adversarial attacks and vulnerabilities of deep object detection
systems is of utmost importance for the research community to develop
robust defense mechanisms. This paper presents a framework for analyz-
ing and evaluating vulnerabilities of the state-of-the-art object detectors
under an adversarial lens, aiming to analyze and demystify the attack
strategies, adverse effects, and costs, as well as the cross-model and cross-
resolution transferability of attacks. Using a set of quantitative metrics,
extensive experiments are performed on six representative deep object
detectors from three popular families (YOLOv3, SSD, and Faster R-
CNN) with two benchmark datasets (PASCAL VOC and MS COCO).
We demonstrate that the proposed framework can serve as a methodi-
cal benchmark for analyzing adversarial behaviors and risks in real-time
object detection systems. We conjecture that this framework can also
serve as a tool to assess the security risks and the adversarial robustness
of deep object detectors to be deployed in real-world applications.

Keywords: Adversarial robustness · Object detection · Attack
evaluation framework · Deep neural networks

1 Introduction

Empowered by deep structures, nonlinear activation, and high-performance
GPUs, deep neural networks (DNNs) have monopolized object detection sys-
tems [14,21,22], enabling the development of many security-critical applications,
such as traffic sign detection on autonomous vehicles [23] and intrusion detec-
tion on surveillance systems [6]. While deep object detection algorithms offer

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 460–481, 2020.
https://doi.org/10.1007/978-3-030-59013-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_23

Understanding Object Detection Through an Adversarial Lens 461

real-time performance with high accuracy over traditional techniques [17,26],
recent studies have revealed that well trained deep object detectors are vulnera-
ble to adversarial inputs that are maliciously modified but visually imperceptible
from the original benign input [2,12,27,28]. Table 1 illustrates such vulnerabil-
ities. With no attack, the object detector can accurately identify the person,
the car, and the stop sign on the two benign images (1st column). However, the
same detector is fooled blindly by the adversarial examples (2nd-5th columns)
that are perturbed malignantly but indistinguishable from the benign images by
human-perception.

Table 1. Detection on two examples by the TOG family of attacks [2].

Benign
(No Attack)

Adversarial Attacks with Different Types of Attack Specificity

Untargeted
Random Object-vanishing Object-fabrication Object-mislabeling

stopsign→umbrella

1.1 Related Work and Problem Statement

Object detection is the core task in computer vision, which takes an input image
or video frame and detects multiple instances of semantic objects according to
known categories [17,26]. Although some may view object detection as a gener-
alization of the image classification task, a deep object detector is a multi-task
learner and performs two unique learning tasks that make attacking object detec-
tion more complex and challenging than image classification: (1) Object detec-
tion should detect and identify instances of multiple semantic objects encapsu-
lated in a single image or video frame, whereas a vanilla image classifier deals
with the classification of each image into one of the known classes. (2) Object
detection performs localization and classification of multiple instances of multiple
semantic objects in a single image, and the localization accuracy of each instance
may influence the classification accuracy of the instance. Thus, the adversarial
attack techniques for image classifiers [10,24] are not applicable to attacking
deep object detectors. The adversarial examples to attack object detection mod-
els are generated using more complex attack techniques, which compute and

462 K.-H. Chow et al.

inject adversarial perturbations to the benign input by maximizing objectness
loss, localization loss and classification loss simultaneously and iteratively [2,27].

Existing object detection models are broadly classified into two categories:
(1) the proposal-based two-phase learning and (2) the regression-based single-
phase learning. The proposal-based approach uses a two-phase procedure by
first detecting proposal regions with a region proposal network (RPN), and then
refining them with bounding box and class label prediction. This category is
dominated by Faster R-CNN [22], and also includes R-CNN [7,8] and Mask R-
CNN [11]. The regression-based single-phase learning formulates the detection
task as a regression problem. It jointly estimates the bounding box and class
label of objects by directly predicting the coordinates of bounding boxes. This
category is represented by YOLO [19–21,23] and SSD [14]. Moreover, different
object detectors, even from the same family (e.g., Faster R-CNN), may use dif-
ferent neural networks as the backbone, and some additionally utilize different
input resolutions [21,22] to optimize their detection performance. Several white-
box attacks are developed to attack Faster R-CNN by utilizing proposal regions,
such as DAG [28], UEA [27], and other similar methods [1,12]. For example, DAG
first assigns an adversarial label (at random) to each proposal region detected
and then performs iterative gradient backpropagation to misclassify the propos-
als. However, DAG attack with Faster R-CNN as the victim detector cannot be
applied or extended to attacking single-phase detectors, which do not use pro-
posal regions. Similar to the black-box transfer attacks to image classifiers [18],
UEA [27] studied the transferability of attacks by using the adversarial examples
generated from a Faster R-CNN detector to attack SSD detectors.

1.2 Scope and Contribution

In this paper, we develop an attack evaluation framework to rigorously analyze
the vulnerabilities and security risks of deep object detection systems. The paper
makes three original contributions. (1) We take a holistic approach to analyz-
ing and characterizing adversarial attacks to object detection models from three
dominant families: YOLOv3 [21], SSD [14], and Faster R-CNN [8,22], including
attack generalization, untargeted random attacks, targeted specificity attacks,
such as object-vanishing, object-fabrication, and targeted object-mislabeling. We
develop the TOG family of attacks, which on one hand show the feasibility of
attacking one-phase regression-based and two-phase proposal-based detectors
using the same attack framework, and on the other hand provide a broader cov-
erage of vulnerabilities for analyzing and understanding object detection through
an adversarial lens. (2) Our evaluation framework provides two main building
blocks: the attack module, which incorporates the state-of-the-art attack algo-
rithms, and the evaluation module, which includes a set of quantitative met-
rics to measure, compare and analyze different attack algorithms in terms of
adversarial effectiveness and costs, and attack transferability. We define cross-
model transferability in terms of both algorithm and backbone of the detectors
and introduce cross-resolution transferability to enrich our analysis on adversar-
ial robustness of deep object detection models. (3) We conduct comprehensive

Understanding Object Detection Through an Adversarial Lens 463

experimental analysis on six object detectors from three dominant families of
object detection algorithms (YOLOv3, SSD, and Faster R-CNN), with four rep-
resentative attack methods: DAG [28], RAP [12], UEA [27], and TOG [2], on
two benchmark datasets: PASCAL VOC [4] and MS COCO [13]. Our experi-
mental results further demonstrate the utility of the proposed framework as a
methodical benchmark platform for evaluating adversarial robustness of deep
object detectors, and assessing the security risks and the attack resilience of
deep object detectors to be deployed in real-world applications.

2 Proposed Framework - Attack Module

Figure 1 gives an overview of the proposed framework. This section is dedicated
to the attack module, a collection of attack algorithms for comparisons and anal-
ysis. We first give an algorithmic overview of deep object detection algorithms
and adversarial attacks. Then, we provide the formal analysis on the four state-
of-the-art attack algorithms (TOG [2], UEA [27], RAP [12], and DAG [28]).

Datasets
Scale 1

Scale 2

Scale 3

Object Detectors

Attack Module

Random
Attacks

TOG

UEA

RAP

DAG

Targeted
Attacks

TOG

Evaluation Module

Attack
E ectiveness

General Metrics

Targeted Metrics

Attack Costs

Time Costs

Distortion Costs

Performance
Measurement

Security
Examination

Analysis &
Comparison

Attack
Transferability

Model
Applicability

Fig. 1. The overview of the evaluation framework.

2.1 DNN-based Object Detection and Adversarial Attacks

DNN-based object detection is a multi-task learning problem, aiming to mini-
mize the prediction error of (1) object existence, (2) bounding boxes, and (3)
class labels of detected objects. Given an input image x with resolution (H×W),
a K-class object detector fθ , parameterized by θ, generates a large number of
S candidate objects {ô1, . . . , ôS} where ôi = (b̂x

i , b̂y
i , b̂w

i , b̂h
i , Ĉi, p̂i) represents a

candidate centered at coordinates (b̂x
i , b̂y

i) having a dimension (b̂w
i , b̂h

i) with an
objectness probability of Ĉi ∈ [0, 1] to be a real object, and a K-class probability
vector p̂i = (p̂1i , p̂

2
i , . . . , p̂

K
i). This is often done by dividing the input into mesh

grids in different scales (resolutions). Each grid cell is responsible for locating

464 K.-H. Chow et al.

objects centered at the cell. The final detection results Ô are obtained by apply-
ing confidence thresholding to remove candidates with low prediction confidence
and non-maximum suppression to exclude those with high overlapping.

To train a deep object detection neural network, every ground-truth object
in a training sample x̃ is assigned to one of the S candidates according to their
center coordinates. Let O be the set of ground-truth objects of x̃. The object
detector can be trained by optimizing the following multi-task learning objective:

L(D̃;θ) = E(x̃,O)∈D̃[Lobj(x̃,O;θ) + Lbbox(x̃,O;θ) + Lclass(x̃,O;θ)] (1)

where D̃ is the training set, Lobj, Lbbox, and Lclass represent the loss function
of the three prediction tasks: object existence (objectness), object localization
(bounding box), and object class label respectively. In the rest of this paper, we
use O and Ô to distinguish between ground-truth and predicted detection, and
we only specify the argument (e.g., O(x)) to emphasize the input if necessary.

An adversarial example x′ is generated by perturbing a benign input x sent
to the victim detector, aiming to fool the victim to misdetect randomly or pur-
posefully. The generation process can be conceptually formulated as

min ||x′ − x||p s.t. Ô(x′) �= Ô(x), Ô(x′) = O∗(x) (2)

where p is the distance metric and O∗(x) is the incorrect detection. Popular
choices for the distance metric include the L∞ norm, denoting the maximum
change to any pixel, the L2 norm, computing the Euclidean distance, and the
L0 norm, measuring the number of the pixels that are changed.

Although adversarial attacks on object detection systems are more sophisti-
cated, adopting different formulations, they generally exploit gradients derived
from one or multiple losses in Eq. 1 (i.e., Lobj, Lbbox, and Lclass). This allows
the attack algorithm to meticulously inject perturbations to the input image,
such that the tiny changes in input will be amplified throughout the forward
propagation of the victim detector, and become large enough to alter one or
more types of prediction results (i.e., object existence, bounding box, and class
probability), depending on the composition of gradients. We analyze below the
four representative attack algorithms on object detection systems, understanding
their properties and demystifying their working principles.

2.2 TOG: Targeted Objectness Gradient Attacks

We develop the TOG family of attacks [2] based on an iterative gradient approach
to obtain the malicious perturbation fooling the victim detector to give the
desired erroneous detection. With a proper setting of the designated detection
O∗(x) and the attack loss L∗, TOG can be generally formulated as:

x′
t+1 =

∏

x,ε

[
x′

t − αTOGΓ
(
∇x′

t
L∗(x′

t,O∗(x);θ)
)]

(3)

where x′
t is the adversarial example at the t-th iteration,

∏
x,ε[·] is the projection

onto a hypersphere with a radius ε centered at x in Lp norm, Γ is a sign function,

Understanding Object Detection Through an Adversarial Lens 465

and αTOG is the attack learning rate. With this formulation, TOG allows adver-
saries to specify the effect imposed on victim’s detection accuracy and correct-
ness, including untargeted random attacks and three types of targeted specificity
attacks: object-vanishing, object-fabrication, and targeted object-mislabeling.

Untargeted attacks fool the victim detector to randomly misdetect without
targeting at any specific object. This class of attacks succeeds if the adversarial
example fools the victim detector to give incorrect result of any form, such
as having objects vanished, fabricated, or mislabeled randomly. TOG exploits
gradients from both Lobj, Lbbox, and Lclass and formulates the attack to be

x′
t+1 =

∏

x,ε

[
x′

t + αTOGΓ
(
∇x′

t
L(x′

t,O(x);θ)
)]

. (4)

As shown in the 2nd column in Table 1, the victim detector cannot identify any
correct objects that were detected on benign inputs (1st column) but the exact
effect varies across input images and attack algorithms.

Object-vanishing attacks consistently disable the victim detector to locate
and recognize any object. TOG-vanishing utilizes gradients from Lobj as it dom-
inates the decision on object existences and formulates the attack as follows:

x′
t+1 =

∏

x,ε

[
x′

t − αTOGΓ
(
∇x′

t
Lobj(x′

t,Ø;θ)
)]

(5)

By targeting specifically at object-vanishing, this attack if successful will make
the victim detector fail to detect any object as shown in the 3rd column in
Table 1 where no object is detected in both examples.

Object-fabrication attacks consistently fool the victim to mistakenly recognize
false objects. TOG-fabrication leverages gradients from Lobj with formulation:

x′
t+1 =

∏

x,ε

[
x′

t + αTOGΓ
(
∇x′

t
Lobj(x′

t,Ø;θ)
)]

. (6)

This attack makes the victim to drastically increase the number of detected
objects by introducing fake objects, as illustrated in the 4th column in Table 1.

Targeted object-mislabeling attacks consistently cause the victim detector to
misclassify the objects detected on the input image by replacing their source class
label with the maliciously chosen target class label, while maintaining the same
set of correct bounding boxes. By focusing on the classification loss (i.e., Lclass)
and keeping the gradients of the other two parts unchanged, TOG-mislabeling
assigns the target class label to each object in O(x) to form O∗(x) and generate
adversarial examples with

x′
t+1 =

∏

x,ε

[
x′

t − αTOGΓ
(
∇x′

t
L(x′

t,O∗(x);θ)
)]

. (7)

For instance, the object-mislabeling attack in the 5th column in Table 1 is con-
figured to fool the victim to mislabel any stop sign as an umbrella. Note that
the person (top) and the car (bottom) can still be detected under this attack as
they are not the objects of attack interest and only stop signs will be mislabeled.

466 K.-H. Chow et al.

As TOG does not attack a special structure (e.g., RPN) in an object detec-
tor, it is applicable to both one-phase and two-phase techniques. Inspired by the
universal perturbations to attack image classifiers [16], TOG also develops uni-
versal perturbations to attack deep object detectors in terms of object-vanishing
or object-fabrication attack [2]. By training the universal perturbation offline on
a training set and a victim detector, the universal perturbation can be applied
during the online detection phase to any input sent to the victim.

2.3 DAG: Dense Adversary Generation

DAG [28] is an untargeted random attack and begins with manually assigning the
IOU threshold to 0.90 in non-maximum suppression (NMS) in the RPN of a given
two-phase model. This attack setting requires one proposal region to be highly
overlapped (>90%) with the other proposal region in order to be pruned. Hence,
a large amount of proposal regions remain unpruned. After the refinement by the
subsequent network for bounding box and class label prediction, DAG assigns a
randomly selected label for each proposal region and then performs the iterative
gradient attack to misclassify the proposals with the following formulation:

rt = ∇x′
t

J∑

j=1

zj [pc
j − pc′

j], x′
t+1 = x′

t − αDAG

||rt||∞
rt (8)

where zj = 1 if the j-th proposal on x′
t from RPN is foreground and 0 otherwise,

pc
j and pc′

j are the prediction confidence of the correct class c and randomly
selected incorrect class c′ of the j-th proposal and αDAG is the attack learning
rate. This is equivalent to exploiting gradients derived from the classification
loss Lclass. As DAG requires to manipulate the RPN to generate a large number
of proposals, it can only be directly applicable to two-phase detection models.

2.4 RAP: Robust Adversarial Perturbation

RAP [12] is an untargeted random attack and focuses on collapsing the function
of the RPN in two-phase algorithms. It exploits the composite gradients from
(i) the objectness loss, i.e., Lobj, that fools the RPN to not returning foreground
objects, and (ii) the localization loss, i.e., Lbbox, that causes the bounding box
estimation to be incorrect even if foreground objects are proposed:

rt = ∇x′
t

J∑

j=1

zj [log(Ĉj) + �SE(b̂j , τ)], x′
t+1 = x′

t − αRAP

||rt||2
rt (9)

where �SE is the squared error, b̂j and τ are quadruples of the proposed bounding
box and large offsets respectively, and αRAP is the attack learning rate.

Understanding Object Detection Through an Adversarial Lens 467

2.5 UEA: Unified and Efficient Adversary

UEA [27] is an untargeted random attack. It trains a conditional generative
adversarial network (GAN) [9] to craft adversarial examples. In deep object
detectors, the backbone network plays an important role in feature extraction
for region proposals in two-phase algorithms or object recognition in one-phase
techniques. In practice, it is often one of the popular architectures (e.g., VGG16)
that perform well in large-scale image classification and is pretrained with the
ImageNet dataset for transfer learning. UEA designs a multi-scale attention fea-
ture loss, encouraging the GAN to create adversarial examples that can corrupt
the feature map extracted by the backbone network in the victim detector:

LFea
UEA = E(x̃,O)∈D[

M∑

m=1

||Am ◦ (x̃m − Rm)||2] (10)

where x̃m is the extracted feature map of the training example x̃ in the m-
th layer of the backbone network, Rm is a randomly predefined feature map,
and Am is the attention weight computed based on the proposal regions from
the RPN. Whenever another detector is equipped with the same backbone, the
adversarial examples are likely to be effective. Equation 10 is jointly optimized
with the DAG formulation (Eq. 8), requiring the manipulation of the RPN.
Hence, it is unable to directly attack one-phase algorithms.

3 Proposed Framework - Evaluation Module

The evaluation module is the second building block of the proposed frame-
work (Fig. 1), providing experimental testbed to measure, evaluate and analyze
attacks and adversarial robustness of an object detector from four perspectives.

3.1 Attack Effectiveness

mean Average Precision (mAP). The interpolated average precision (AP)
has been used by major object detection competitions [4,13]. For a given class,
the precision/recall curve is computed from the detector’s output, ranked by the
detected confidence. The AP summarizes the shape of the precision/recall curve
by taking the mean precision at a set of equally spaced recall levels. Then, the
mean Average Precision (mAP) that quantifies the overall detection quality of
a detector is computed by taking the mean of APs of all classes. The general
attack performance can be analyzed on two sets of mAP (or AP), one on benign
examples and another on adversarial examples. A low adversarial mAP implies
the power of the attack but reveals the vulnerability of the victim model.

Attack Success Rate (ASR). In addition to comparing mAPs to reveal the
impact on overall performance of the victim, we further define the attack success
rate (ASR) for each targeted specificity attack, to capture their capability to fool
the victim to misbehave with the designated effect (e.g., object-vanishing).

468 K.-H. Chow et al.

For object-vanishing attacks, we define the ASR as the proportion of objects
detected on benign examples that are not covered by any objects detected on
their adversarial counterparts:

ASR =

∑
x∈D

∑
ô∈Ô(x) 1[¬∃ô′ ∈ Ô(x′)(IOU(ô[bbox], ô

′
[bbox]) ≥ tIOU)]

∑
x∈D ||Ô(x)||

, (11)

where 1[condition] = 1 if the condition is met and 0 otherwise,
IOU(ô[bbox], ô

′
[bbox]) computes the intersection over union of the two bound-

ing boxes ô[bbox] and ô′
[bbox], and tIOU is a predefined threshold controlling the

amount of overlapping required for two bounding boxes to be considered as
referring to the same entity.

For object-fabrication attacks, the ASR is defined as the proportion of test
examples where additional false objects are mistakenly detected by the victim
detector under attacks:

ASR =
1

||D||
∑

x∈D
1[||Ô(x′)|| > ||Ô(x)||]. (12)

For object-mislabeling attacks, we define the ASR to be the proportion of
objects detected on benign examples that are mislabeled as the target label by
the victim detector on their adversarial counterparts:

ASR =

∑
x ∈D

∑
ô ∈Ô(x) 1 [∃ô ′ ∈ Ô(x ′)(IOU(ô [bbox], ô ′

[bbox]) ≥ tIOU ∧ ô ′
[class] = T (ô [class]))]

∑
x ∈D ||Ô(x)||

(13)

where T (ô[class]) is a mapping from a source class to a target class. Under this
setting, we consider the attack succeeds only if it (i) does not alter the bounding
box significantly and (ii) fools the detector to give a designated wrong label.

3.2 Attack Cost

Time Cost. We measure time cost using two metrics: (i) the attack time, which
measures the additional time introduced by the attack, excluding the inference
of the victim detector to obtain the final detection results; and (ii) the total time
cost, which considers both attack time and (benign) detection time.

Distortion Cost. Remaining human-imperceptible is an important factor in
adversarial attacks as significant distortion naturally mislead a deep learning
model to misbehave. A robust object detection model should be resilient against
adversarial examples that are visually identical to their benign counterparts.

L0, L2, and L∞ distances have been popularly used in adversarial learning.
They are used as a constraint to limit the maximum perturbation introducible to
the benign example. Note that a low Lp distance means a high imperceptibility.

Structural Similarity (SSIM) has become an important metric to quantify
the similarly between two images in computer vision:

Understanding Object Detection Through an Adversarial Lens 469

SSIM(x,x′) =
I∑

i=1

(2μx[i]μx′[i] + κ1)(2σx[i]x′[i] + κ2)
(μ2

x[i] + μ2
x′[i] + κ1)(σ2

x[i] + σ2
x′[i] + κ2)

(14)

where x[i] denotes the i-th channel of image x, μx and σx are the average and
variance of x respectively, σxx′ is the covariance of x and x’, and κ1 and κ2 are
two variables for numerical stability. It has a range from −1.00 (the least similar)
to 1.00 (the most similar) and is considered to be more consistent to human visual
perception than Lp distances. As attacks optimize different Lp distances, SSIM
offers an objective comparison on the imperceptibility of adversarial examples.

3.3 Attack Transferability

All adversarial attacks on deep object detectors are white-box attacks as they
require model weights to optimize the generation of adversarial perturbation
against a victim detector. The transferability of adversarial examples generated
against one victim detector can be utilized to launch black-box attacks to other
detectors, in a similar way as the transferability of adversarial examples to attack
different image classifiers [18]. For object detection, we propose to study not only
the cross-model transferability, but also the cross-resolution transferability.

Cross-model transferability in object detection can be further broken down
into (i) cross-algorithm transferability that the source and the target models
use different detection algorithms and (ii) cross-backbone transferability that
examines the transferability between different backbones of the same detection
algorithm and between different detection algorithms with the same backbone.

Cross-resolution transferability covers a characteristic unique to those object
detection algorithms (e.g., YOLO and Faster R-CNN) that allow variable input
resolutions. In contrast to image classification networks where the resolution of
the input image is fixed due to the fully-connected layer for the final softmax,
for object detection, increasing input resolution can generate more candidate
objects with a potentially better detection quality with the cost of slowing down
the detection. The cross-resolution transferability reveals whether the adversarial
examples generated by an attack algorithm on a source resolution can be robust
and survive under resizing and interpolation to the target resolution.

3.4 Model Applicability

From a macroscopic perspective, all object detection systems take an input image
and output a set of detected objects. They may appear to be similar, but their
internal learn-to-detect mechanisms can be very different. Some existing attacks
are designed by exploiting the vulnerability of a particular structure, e.g., the
region proposal network (RPN) in Faster R-CNN detectors. Hence, not all attack
techniques are universally applicable. RAP [12] is an example, which perturbs the
benign image to disable the functionality of the RPN in two-phase algorithms
and cannot be used on one-phase detectors where no RPN is used. We also
leverage model-applicability as an evaluation aspect on attack algorithms.

470 K.-H. Chow et al.

4 Experimental Analysis

Extensive experiments are conducted on two benchmark datasets: PASCAL
VOC [4] and MS COCO [13]. All results are based on the entire test set, and
we preprocess images by padding to preserve the aspect ratio of objects. We
consider six models from three dominant detection algorithms. YOLOv3-D and
YOLOv3-M are two YOLOv3 [21] models with a Darknet53 and a MobileNetV1
backbone respectively. For SSD [14], we have SSD300 and SSD512 correspond-
ing to two models with different input resolutions. Finally, FRCNN denotes the
Faster R-CNN [22] model. As experimental results on COCO are highly similar
to VOC, we provide only YOLOv3-D on COCO due to the space constraint. We
provide more experimental configuration details in Appendix A.

No Attack TOG UEA RAP DAG

Fig. 2. Four visual examples of the untargeted attacks by different algorithms.

4.1 Untargeted Random Attacks

This section reports the set of experiments to compare the four attack algo-
rithms: TOG, UEA, RAP, and DAG in terms of effectiveness and time cost of
untargeted attacks. Figure 2 provides a visualization of four benign images (left
most column) and their four adversarial examples generated by TOG, UEA,
RAP, and DAG. Four attack algorithms fool the same victim detector FRCNN

Understanding Object Detection Through an Adversarial Lens 471

to misdetect on the same query image in different ways. TOG deceives the vic-
tim detector to return false objects on the 1st, 3rd and 4th examples with no
correct objects detected. For the 2nd example with two cats, TOG succeeds by
fooling the victim to detect no object at all. This shows that different images
may respond to the same attack differently, such as missing cats by TOG in the
2nd example compared with fabricating fake objects in the other examples. Sim-
ilarly, UEA misses both the person and the dog for the 1st example, detects one
cat correctly and misses the other cat on the 2nd example, misses both person
and car for the 3rd example, and misdetect all objects on the 4th example. RAP
and DAG fail the detection on all four examples differently.

Table 2. Untargeted attacks on different datasets and victim detectors.

Dataset Random attack Victim detector mAP (%) Time cost (s) Distortion cost

Benign Adv. Benign Adv. L∞ L2 L0 SSIM

VOC TOG YOLOv3-D 83.43 0.56 0.03 0.98 0.031 0.083 0.984 0.875

VOC TOG YOLOv3-M 71.84 0.43 0.02 0.59 0.031 0.083 0.978 0.876

VOC TOG SSD300 76.11 0.86 0.02 0.39 0.031 0.120 0.975 0.879

VOC TOG SSD512 79.83 0.74 0.03 0.69 0.031 0.070 0.974 0.869

VOC TOG FRCNN 67.37 2.64 0.14 1.68 0.031 0.058 0.976 0.862

VOC UEA FRCNN 67.37 18.07 0.14 0.17 0.343 0.191 0.959 0.652

VOC RAP FRCNN 67.37 4.78 0.14 4.04 0.082 0.010 0.531 0.994

VOC DAG FRCNN 67.37 3.56 0.14 7.99 0.024 0.002 0.493 0.999

COCO TOG YOLOv3-D 54.16 3.52 0.03 1.02 0.031 0.083 0.986 0.872

Table 2 provides the quantitative measurements on all victim detectors under
the four attack algorithms. The first metric is the mAP in percentage, including
benign mAP with no attacks and adversarial mAP given adversarial examples.
The second metric measures the detection time on benign inputs and attack
total cost (both generation and detection). The third metric is the distortion
cost measured in L∞, L2, L0 distances, and SSIM. L2 and L0 costs reported
here are normalized by the number of pixels and the L2 cost has a magnitude of
10−3. Note that UEA, RAP, and DAG can only attack FRCNN, and hence we
do not evaluate them on YOLOv3, SSD300 and SSD512. We make two obser-
vations from Table 2. First, all attacks successfully bring down the mAP of the
victim. Considering the TOG attack, the benign mAP of any victim detector is
drastically reduced to less than 3.52% with four victims having a close to zero
adversarial mAP. This indicates that the victims fail miserably with no detec-
tion capability. Second, we compare four different attacks on FRCNN, which
has a benign mAP of 67.37%. TOG is the most powerful attack with the low-
est adversarial mAP of 2.64%, followed by DAG (3.56%), RAP (4.78%), and
UEA (18.07%). By default, UEA generates adversarial examples with a fixed
resolution of 300 × 300. When attacking FRCNN taking inputs with resolution
of 600 × 600, resizing and interpolation are required. Hence, the effectiveness of
UEA is hindered. In comparison, TOG, RAP and DAG are much more adaptive,
and capable of generating adversarial examples that fit the input resolution, as
they do not rely on additional networks.

472 K.-H. Chow et al.

Apart from attack effectiveness, attack costs are equally important. UEA has
the lowest time cost with only 0.17 s attack total time because the generation
of adversarial examples does not use the victim model but the GAN, which can
have much lower complexity. TOG has a reasonable range of attack total time
but RAP and DAG have prohibitively high time cost (4.04 s and 7.99 s). This can
be explained by the number of iterations required to succeed the attack in RAP
and DAG. TOG needs 10 iteration while RAP and DAG need to run more than
30 rounds. Interestingly, spending more iterations allows RAP and DAG to have
a much lower distortion cost and exceptionally high SSIM measures of 0.994 and
0.999 respectively. TOG also has a high imperceptibility with SSIM higher than
0.862, while adversarial perturbation generated by UEA is significantly more
perceptible, having a low SSIM of 0.652. Furthermore, RAP and DAG have a
low L0 cost, which implies their perturbations are more localized. In comparison,
both TOG and UEA have the L0 cost close to 1.000, indicating that most pixels
are modified by the adversarial perturbation.

4.2 Targeted Specificity Attacks

We evaluate the three targeted specificity attacks using TOG. For targeted mis-
labeling attacks, without loss of generality, we choose two representative attack
targets: the most-likely (ML) and the least-likely (LL), which correspond to the
incorrect class label of an object detected on benign example with the high-
est and the lowest prediction confidence respectively [3]. The TOG-mislabeling
allows objects of any class to be attacked. Figure 3 shows the benign and adver-
sarial AP of each class on YOLOv3-M. All targeted attacks by TOG drastically
reduce the average precision of every class supported by the victim to almost
zero, showing the severity of the targeted attacks. We provide more experimental
measurements on all 24 cases (four attacks on six detectors) in Appendix B.

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

ttl
e

bu
s

ca
r

ca
t

ch
ai

r
co

w
di

ni
ng

ta
bl

e do
g

ho
rs

e
m

ot
or

bi
ke

pe
rs

on
po

tte
dp

la
nt

sh
ee

p
so

fa
tr

ai
n

tv
m

on
ito

r

Class

0

20

40

60

80

100

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

Benign
TOG-vanishing

(a) TOG-vanishing

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

ttl
e

bu
s

ca
r

ca
t

ch
ai

r
co

w
di

ni
ng

ta
bl

e do
g

ho
rs

e
m

ot
or

bi
ke

pe
rs

on
po

tte
dp

la
nt

sh
ee

p
so

fa
tr

ai
n

tv
m

on
ito

r

Class

0

20

40

60

80

100

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

Benign
TOG-fabrication

(b) TOG-fabrication

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

ttl
e

bu
s

ca
r

ca
t

ch
ai

r
co

w
di

ni
ng

ta
bl

e do
g

ho
rs

e
m

ot
or

bi
ke

pe
rs

on
po

tte
dp

la
nt

sh
ee

p
so

fa
tr

ai
n

tv
m

on
ito

r

Class

0

20

40

60

80

100

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

Benign
TOG-mislabeling (ML)
TOG-mislabeling (LL)

(c) TOG-mislabeling

Fig. 3. The AP of each class under TOG targeted attacks on YOLOv3-M

Recall Fig. 2, each of the four input images responds to the same untargeted
random attack differently. Figure 4 provides a visualization of the same set of
images attacked by TOG with different targeted specificity effects. This qualita-
tively validates that all targeted attacks in TOG are goal-driven, which can be

Understanding Object Detection Through an Adversarial Lens 473

more detrimental to victim detector. For example, with TOG-vanishing attack
(2nd column), all four adversarial examples fool the victim detector FRCNN to
misdetect with no object recognized. For TOG-mislabeling attacks, the person and
the dog on the 1st row are purposefully mislabeled as the dog and the cat respec-
tively in the ML case and both aeroplanes in the LL case. In comparison with Fig. 2,
UEA, RAP, DAG and general TOG are untargeted: each of the four input images
responds to attacks under the same attack algorithm (be it TOG, UEA, RAP and
DAG) quite differently, showing random ways to fool a victim detector. We provide
more experimental analysis on each targeted attack in Appendix B.

No Attack TOG-vanishing TOG-fabrication TOG-mislabeling
(ML)

TOG-mislabeling
(LL)

Fig. 4. Four visual examples of different targeted specificity attacks by TOG.

4.3 Transferability of Attacks

We conduct quantitative analysis on the transferability of all four untargeted
attacks: TOG, UEA, RAP and DAG. Table 3 reports the results for the cross-
model transferability, measured in adversarial mAP. Using the same model to
craft adversarial examples always achieves the highest transferability, as indi-
cated in boldface. We first consider the adversarial examples generated on dif-
ferent source models and measure their transferability to different target models
using TOG (the 2nd-6th rows). First, we observe that having the same backbone
architecture does not necessarily lead to high transferability. FRCNN, SSD300

474 K.-H. Chow et al.

Table 3. Cross-model transferability.

Transfer attack Source model Target model

YOLOv3-D YOLOv3-M SSD300 SSD512 FRCNN

Benign (No Attack) 83.43 71.84 76.11 79.83 67.37

TOG YOLOv3-D 0.56 60.13 72.70 73.86 55.57

TOG YOLOv3-M 74.62 0.43 73.27 75.27 59.1

TOG SSD300 56.87 42.85 0.86 38.79 50.36

TOG SSD512 56.21 46.00 58.00 0.74 35.98

TOG FRCNN 79.47 68.60 75.80 78.09 2.64

UEA FRCNN 51.92 31.88 47.08 47.66 18.07

RAP FRCNN 81.80 69.45 75.77 76.84 4.78

DAG FRCNN 81.21 70.37 75.15 78.38 3.56

and SSD512 all use VGG16 as the backbone network. Yet, the adversarial exam-
ples generated on FRCNN have very low transferability to SSD300 and SSD512,
reducing their mAP from 76.11% to 75.80% and from 79.83% to 78.09% respec-
tively. Second, the adversarial examples generated on SSD have relatively higher
transferability compared to other source models. For instance, adversarial exam-
ples from SSD300 and SSD512 can reduce the mAP of YOLOv3-D from 83.43%
to 56.87% and 56.21%, much better than YOLOv3-M and FRCNN that only
reduction to 74.62% and 79.47% are recorded. Finally, considering the transfer-
ability of different attack algorithms with the same source model FRCNN (the
last four rows), we find that adversarial examples by UEA exhibit a higher trans-
ferability consistently. This can be attributed to its high distortion cost incurred
to perturb each adversarial example (recall Table 2).

Table 4. Cross-resolution transferability.

(a) FRCNN

Transfer attack Source resolution Target resolution

300 × 300 400 × 400 500 × 500 600 × 600 700 × 700 800 × 800

Benign (No Attack) 65.33 67.85 68.00 67.37 67.91 67.76

TOG 600 × 600 50.15 29.50 15.07 2.64 6.84 3.86

UEA 300 × 300 3.86 11.88 18.61 18.07 16.32 17.34

RAP 600 × 600 58.45 54.32 56.96 4.78 53.21 50.12

DAG 600 × 600 62.89 59.82 46.58 2.84 30.96 13.75

(b) YOLOv3

Model Transfer attack Source resolution Target resolution

352 × 352 384 × 384 416 × 416 448 × 448 480 × 480

YOLOv3-D Benign (No Attack) 82.71 83.25 83.43 83.63 83.65

TOG 416 × 416 25.26 14.93 0.56 11.02 12.16

YOLOv3-M Benign (No Attack) 69.98 71.13 71.84 73.10 72.72

TOG 416 × 416 33.41 20.61 0.43 15.62 19.16

Table 4a and b report the cross-resolution transferability on FRCNN and
YOLOv3 respectively. Note that only TOG can directly attack YOLOv3
(one-phase detectors), and SSD does not support variable input resolutions.

Understanding Object Detection Through an Adversarial Lens 475

We use nearest neighbor interpolation during resizing as we find empirically
that it can better preserve the malicious pattern. For victim detector FRCNN,
we observe that TOG and UEA have higher cross-resolution transferability than
RAP and DAG. The same observation can be made in both YOLOv3 detec-
tors. For instance, TOG can still effectively reduce the mAP from more than
82% to less than 26% in all target resolutions evaluated on YOLOv3-D. This is
because adversarial examples generated by TOG and UEA have a higher robust-
ness under resizing and interpolation to fit the target resolution. Also, upsizing
to a higher target resolution is always better than downsizing, causing a higher
mAP drop in the target victim model, which can be explained by the fact that
downsizing loses the fine details of malicious perturbation.

Table 5. Transferring targeted attacks on SSD300 to three other detectors.

Detection results under four TOG targeted attacks

Benign
(No Attack) TOG-vanishing TOG-fabrication TOG-mislabeling

(ML)
TOG-mislabeling

(LL)

S
S
D
30

0

Detection results transferred from SSD300 to other victim detectors

Benign
(No Attack) TOG-vanishing TOG-fabrication TOG-mislabeling

(ML)
TOG-mislabeling

(LL)

S
S
D
51

2
Y
O
L
O
v3

-D
Y
O
L
O
v3

-M

Table 5 provides a visualization to illustrate the transferability of four TOG
targeted attacks by generating adversarial examples on SSD300 and evaluating

476 K.-H. Chow et al.

their cross-model transferability to the other three detectors: SSD512, YOLOv3-
D, and YOLOv3-M. Consider the SSD300 row, the detector can correctly iden-
tify the person and the bicycle on the benign input (1st column). The targeted
attacks by TOG successfully fool the victim to misdetect with designated attack
specificity effects: the two objects are missed in TOG-vanishing, false objects are
detected in TOG-fabrication, and the person and the bicycle are mislabeled as
a dog and a horse in the ML case of TOG-mislabeling and both buses in the LL
case. We analyze the transferability by observing the other three rows. Given
that all three detectors can successfully identify the two objects on the benign
image, we find different degrees of adversarial transferability. For instance, TOG-
vanishing and TOG-fabrication can be successfully transferred to SSD512, which
has the same backbone (i.e., VGG16) and detection algorithm as the source
detector SSD300. TOG-fabrication can also be transferred to YOLOv3-M with
the same effect. However, even some adversarial examples may fool other detec-
tors (e.g., TOG-vanishing to YOLOv3-M), they fail in transferring attacks with
the same effect. Note that with adversarial transferability, the attacks are black-
box, generated and launched without any prior knowledge of the three victim
detectors. We provide more discussion in Appendix C.

4.4 Model Applicability and Physical Attacks

We provide a comparison of seven representative attack algorithms, including
two physical attacks, to deep object detectors in Table 6.

Table 6. Characteristics of seven representative attacks.

Attack effect Model-applicability

Random Object-
vanishing

Object-
fabrication

Object-
mislabeling

Two-phase One-phase

FRCNN YOLO SSD

TOG [2] ✓ ✓ ✓ ✓ ✓ ✓ ✓

UEA [27] ✓ ✗ ✗ ✗ ✓ ✗ ✗

RAP [12] ✓ ✗ ✗ ✗ ✓ ✗ ✗

DAG [28] ✓ ✗ ✗ ✗ ✓ ✗ ✗

DPATCH [15] ✗ ✗ ✓ ✗ ✓ ✓ ✓

Extended-RP2 [5] ✗ ✓ ✓ ✗ ✓ ✓ ✓

Thys’s Patch [25] ✗ ✓ ✗ ✗ ✓ ✓ ✓

TOG [2], UEA [27], RAP [12] and DAG [28] are the representative digital
attacks against a victim detector by perturbing pixel values of a benign image
while maximizing one or more of the three loss functions: objectness, bound-
ing box, and classification. All four can perform untargeted random attacks,
and TOG also provides additional three targeted specificity attacks. For model-
applicability, UEA, RAP and DAG by design depend on the RPN structure,
and can only be employed to generate adversarial examples against FRCNN
(two-phase detectors). TOG is a general attack framework without dependency

Understanding Object Detection Through an Adversarial Lens 477

on any special structure and can be used to fool object detectors from both
one-phase (YOLO and SSD families) and two-phase algorithms (e.g., FRCNN).

In addition to perturbing the entire image, adversarial patches are also pro-
posed in either a digital (DPATCH) or physical (Extended-RP2 and Thys’s
Patch) form. DPATCH puts a small patch (e.g., 40 × 40) on a benign example,
fooling the victim to fabricate objects at random position or the location where
the patch is placed. Extended-RP2 and Thys’s Patch propose printable adversar-
ial patches. If the adversarial patch is presented physically in the scene captured
by the camera, the captured image will become adversarial input, which will fool
a victim detector to misdetect. Extended-RP2 supports “disappearance” and
“creation”, corresponding to the object-vanishing and object-fabrication effects,
while Thys’s Patch aims to make the object vanishing from the detector. Similar
to TOG, all physical attack and digital patch algorithms can be employed on
both two-phase and one-phase detection techniques.

5 Conclusion

We witnessed a growing number of digital or physical adversarial attacks to
object detection systems recently [2,5,12,15,25,27,28]. To gain an in-depth
understanding of the security risks of employing object detection intelligence
in security-critical applications, in this paper, we develop a principled evalua-
tion framework to analyze vulnerabilities of object detection systems through an
adversarial lens, with three original contributions. First, we examine and com-
pare the state-of-the-art attacks through our proposed evaluation framework.
Second, to provide broader coverage of security risks in deep object detection sys-
tems, we present a family of TOG attack algorithms, capable of attacking both
proposal-based two-phase detectors (e.g., FRCNN) and regression-based one-
phase techniques (e.g., SSD, YOLOv3), supporting a general form of untargeted
random attacks, and three targeted attacks, geared specifically to object detec-
tion. Third but not least, we introduce a set of quantitative metrics, including
cross-resolution transferability and cross-model transferability w.r.t. algorithms
and DNN backbones, to evaluate the effectiveness and cost of four representa-
tive methods of digital attacks, and using model-applicability to compare digital
attacks with physical patch attacks. Our evaluation framework can serve as a
tool for analyzing adversarial attacks, assessing security risks and adversarial
robustness of deep object detectors deployed in real-world applications.

Acknowledgment. This research is partially sponsored by National Science Founda-
tion under grant NSF 1564097, NSF 2038029 and an IBM faculty award. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation
or other funding agencies and companies mentioned above.

478 K.-H. Chow et al.

A Appendix

A. Background. The VOC 2007+2012 dataset has 16, 551 training images
and 4, 952 testing images, while the COCO 2014 dataset has 117, 264 training
images and 5, 000 testing images. The configuration and detection performance
of the six detectors under no attack are reported in Table 7. All measurements are
recorded on NVIDIA RTX 2080 SUPER (8 GB) GPU, Intel i7-9700K (3.60GHz)
CPU, and 32 GB RAM on Ubuntu 18.04.

Table 7. A summary of victim detectors under no attack.

Dataset Detector identifier Algorithm Backbone Input resolution Benign

mAP(%)

Detection

time(s)

VOC YOLOv3-D YOLOv3 Darknet53 416 × 416 83.43 0.0328

YOLOv3-M YOLOv3 MobileNetV1 416 × 416 71.84 0.0152

SSD300 SSD VGG16 300 × 300 76.11 0.0208

SSD512 SSD VGG16 512 × 512 79.83 0.0330

FRCNN Faster R-CNN VGG16 600 × 600 67.37 0.1399

COCO YOLOv3-D YOLOv3 Darknet53 416 × 416 54.16 0.0337

B. Analysis on Targeted Specificity Attacks. Table 8 reports the results
of four TOG targeted attacks on six victim detectors (24 cases). TOG targeted
attacks effectively bring down the mAP of all victim detectors, with any attack
specificity. For instance, YOLOv3-D on VOC has a high mAP of 83.43% given
benign images but, under attacks, it becomes less than 3.15%. Even though
the adversarial examples in targeted attacks can fool the victim detectors to
misdetect with the targeted specificity effects, such attack sophistication does
not drastically incur additional attack time cost and distortion cost, compared
with the TOG untargeted attack scenario in Table 2.

Figure 5 compares the four targeted attacks with respect to the number of
object detected by three victim detectors (YOLOv3-D, SSD512 and FRCNN)
with different settings of the confidence threshold. The benign case (the blue
solid curve) indicates the number of objects detected by the victims under no
attacks. Confidence thresholding is used by object detection algorithms as a post-
processing step to return only detected objects with high confidence (Sect. 2.1),
and the threshold is a hyperparameter defined by the system owner (e.g., FRCNN
uses 0.70 by default). We find that all trends are consistent across both detectors:
Fig. 5 experimentally confirms that (i) the TOG-vanishing attacks significantly
lower the number of detected objects with any setting of confidence threshold,
(ii) the number of detected objects is drastically increased in TOG-fabrication
attacks, and (iii) the TOG-mislabeling attacks (both ML and LL) have almost
the same number of objects detected on benign examples.

Figure 6 further analyzes the two targeted mislabeling attacks of TOG in
terms of ASR according to Eq. 13. With a similar formulation, we also intro-
duce misdetection rate (MR) to compute the portion of objects that are misla-
beled under TOG-mislabeling attacks. Note that MR still requires the detected

Understanding Object Detection Through an Adversarial Lens 479

Table 8. Targeted attacks by TOG on different datasets and victim detectors.

Detector (Dataset) Targeted attack mAP (%) Time cost (s) Distortion cost

Benign Adv. Benign Adv. L∞ L2 L0 SSIM

YOLOv3-D (VOC) TOG-vanishing 83.43 0.32 0.03 0.77 0.031 0.082 0.983 0.877

TOG-fabrication 83.43 0.25 0.03 0.93 0.031 0.084 0.984 0.873

TOG-mislabeling (ML) 83.43 3.15 0.03 0.95 0.031 0.080 0.972 0.879

TOG-mislabeling (LL) 83.43 2.80 0.03 0.96 0.031 0.081 0.972 0.879

YOLOv3-M (VOC) TOG-vanishing 71.84 0.36 0.02 0.37 0.031 0.082 0.978 0.878

TOG-fabrication 71.84 0.17 0.02 0.57 0.031 0.084 0.976 0.873

TOG-mislabeling (ML) 71.84 2.67 0.02 0.56 0.031 0.079 0.953 0.882

TOG-mislabeling (LL) 71.84 1.60 0.02 0.56 0.031 0.079 0.953 0.881

SSD300 (VOC) TOG-vanishing 76.11 5.54 0.02 0.36 0.031 0.120 0.978 0.880

TOG-fabrication 76.11 0.57 0.02 0.37 0.031 0.122 0.978 0.877

TOG-mislabeling (ML) 76.11 2.53 0.02 0.37 0.030 0.110 0.945 0.891

TOG-mislabeling (LL) 76.11 1.44 0.02 0.37 0.030 0.111 0.945 0.889

SSD512 (VOC) TOG-vanishing 79.83 6.23 0.03 0.62 0.031 0.071 0.975 0.868

TOG-fabrication 79.83 0.50 0.03 0.69 0.031 0.071 0.976 0.866

TOG-mislabeling (ML) 79.83 2.53 0.03 0.65 0.031 0.065 0.957 0.878

TOG-mislabeling (LL) 79.83 1.20 0.03 0.65 0.031 0.066 0.956 0.877

FRCNN (VOC) TOG-vanishing 67.37 0.14 0.14 1.66 0.031 0.058 0.975 0.862

TOG-fabrication 67.37 1.24 0.14 1.68 0.031 0.057 0.977 0.866

TOG-mislabeling (ML) 67.37 2.14 0.14 1.64 0.030 0.054 0.935 0.873

TOG-mislabeling (LL) 67.37 1.44 0.14 1.60 0.030 0.054 0.935 0.872

YOLOv3-D (COCO) TOG-vanishing 54.16 0.41 0.03 0.78 0.031 0.082 0.986 0.874

TOG-fabrication 54.16 1.46 0.03 0.78 0.031 0.083 0.986 0.871

TOG-mislabeling (ML) 54.16 5.43 0.03 1.00 0.031 0.080 0.968 0.878

TOG-mislabeling (LL) 54.16 0.76 0.03 1.00 0.031 0.080 0.968 0.877

0.2 0.4 0.6 0.8

Confidence Threshold

10 0

10 2

10 4

10 6

N
um

be
r

of
 D

et
ec

te
d

O
bj

ec
ts YOLOv3-D

0.2 0.4 0.6 0.8

Confidence Threshold

10 0

10 2

10 4

10 6

N
um

be
r

of
 D

et
ec

te
d

O
bj

ec
ts SSD512

0.2 0.4 0.6 0.8

Confidence Threshold

10 0

10 2

10 4

10 6

N
um

be
r

of
 D

et
ec

te
d

O
bj

ec
ts FRCNN

Benign TOG-vanishing TOG-fabrication
TOG-mislabeling (ML) TOG-mislabeling (LL)

Fig. 5. Number of detected objects under no attack and TOG targeted attacks.

bounding box to be correct, but the predicted class label of the object can be
any class but not the correct one. We observe that a large portion of objects
are successfully mislabeled as the maliciously targeted class (ASR), and only
small portion is randomly mislabeled instead (MR - ASR), especially for the
ML targets (Fig. 6a). For the LL attack targets (Fig. 6b), the ASR is less than
80%, but the misdetection rate (MR) is close to 100% in all five victim detectors,
indicating that almost all objects in all test examples are mislabeled though only
less than 80% LL targeted mislabeling attacks succeeded.

480 K.-H. Chow et al.

YOLOv3-D YOLOv3-M SSD300 SSD512 FRCNN

Victim Detector

0

20

40

60

80

100
P

er
ce

nt
ag

e
(%

)

ASR
MR

(a) Most-likely (ML) Targets

YOLOv3-D YOLOv3-M SSD300 SSD512 FRCNN

Victim Detector

0

20

40

60

80

100

P
er

ce
nt

ag
e

(%
)

ASR
MR

(b) Least-likely (LL) Targets

Fig. 6. ASR and MR of TOG-mislabeling attacks.

C. Transferability of Targeted Specificity Attacks. Consider in Table 5
the victim detector SSD512 with the same backbone and detection algorithm
as SSD300, TOG-vanishing can perfectly transfer the attack to SSD512 with
the same effect (i.e., no object is detected). For TOG-fabrication, we observe
that while the number of false objects is not as much as in the SSD300 case, a
fairly large number of fake objects are wrongly detected by SSD512. The TOG-
mislabeling (LL) attack transfers to SSD512 but with the object-fabrication
effect instead, while the TOG-mislabeling (ML) attack failed to transfer for
this example. Now consider YOLOv3-D and YOLOv3-M, the TOG-mislabeling
(LL) attack is successful in transferability for both victims but with different
attack effects, such as wrong or additional bounding boxes or wrong labels. Also,
the attacks from SSD300 can successfully transfer to YOLOv3-M with different
attack effects compared to the attack results in SSD300, but not to YOLOv3-D
for this example.

References

1. Chen, K., et al.: Optimizing video object detection via a scale-time lattice. In:
CVPR (2018)

2. Chow, K.H., Liu, L., Gursoy, E., Truex, S., Wei, W., Wu, Y.: TOG: targeted
adversarial objectness gradient attacks on real-time object detection systems. arXiv
preprint arXiv:2004.04320 (2020)

3. Chow, K.H., Wei, W., Wu, Y., Liu, L.: Denoising and verification cross-layer ensem-
ble against black-box adversarial attacks. In: IEEE BigData (2019)

4. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman,
A.: The pascal visual object classes challenge: a retrospective. IJCV 111(1), 98–136
(2015). https://doi.org/10.1007/s11263-014-0733-5

5. Eykholt, K., et al.: Physical adversarial examples for object detectors. arXiv
preprint arXiv:1807.07769 (2018)

6. Gajjar, V., Gurnani, A., Khandhediya, Y.: Human detection and tracking for video
surveillance: A cognitive science approach. In: ICCV (2017)

7. Girshick, R.: Fast R-CNN. In: ICCV (2015)
8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-

rate object detection and semantic segmentation. In: CVPR (2014)
9. Goodfellow, I., et al..: Generative adversarial nets. In: NIPS (2014)

http://arxiv.org/abs/2004.04320
https://doi.org/10.1007/s11263-014-0733-5
http://arxiv.org/abs/1807.07769

Understanding Object Detection Through an Adversarial Lens 481

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
12. Li, Y., Tian, D., Bian, X., Lyu, S., et al.: Robust adversarial perturbation on deep

proposal-based models. arXiv preprint arXiv:1809.05962 (2018)
13. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)
14. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, Bastian, Matas, Jiri,

Sebe, Nicu, Welling, Max (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46448-0 2

15. Liu, X., Yang, H., Liu, Z., Song, L., Li, H., Chen, Y.: DPatch: an adversarial patch
attack on object detectors. arXiv preprint arXiv:1806.02299 (2018)

16. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: CVPR (2017)

17. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detec-
tion. In: ICCV. IEEE

18. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016)

19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: CVPR (2016)

20. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR (2017)
21. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint

arXiv:1804.02767 (2018)
22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: NIPS (2015)
23. Simon, M., et al.: Complexer-YOLO: real-time 3D object detection and tracking

on semantic point clouds. In: CVPRW (2019)
24. Szegedy, C., et al..: Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199 (2013)
25. Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras:

adversarial patches to attack person detection. In: CVPRW (2019)
26. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple

features. In: CVPR. IEEE (2001)
27. Wei, X., Liang, S., Chen, N., Cao, X.: Transferable adversarial attacks for image

and video object detection. arXiv preprint arXiv:1811.12641 (2018)
28. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples

for semantic segmentation and object detection. In: ICCV (2017)

http://arxiv.org/abs/1809.05962
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1806.02299
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1811.12641

Applied Cryptography II

Signatures with Tight Multi-user Security
from Search Assumptions

Jiaxin Pan and Magnus Ringerud(B)

Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim, Norway

{jiaxin.pan,magnus.ringerud}@ntnu.no

Abstract. We construct two tightly secure signature schemes based on
the computational Diffie-Hellman (CDH) and factoring assumptions in
the random oracle model. Our schemes are proven secure in the multi-
user setting, and their security loss is constant and does not depend
on the number of users or signing queries. They are the first schemes
that achieve this based on standard search assumptions, as all existing
schemes we are aware of are either based on stronger decisional assump-
tions, or proven tightly secure in the less realistic single-user setting.
Under a concrete estimation, in a truly large scale, the cost of our CDH-
based scheme is about half of Schnorr and DSA (in terms of signature
size and running time for signing).

Keywords: Digital signature · Tight reduction · Multi-user security ·
Search assumption

1 Introduction

In modern public-key cryptography, a scheme is usually proposed together with
a reduction-based security analysis. In such an analysis, a security model is
defined to capture the security required in the real world. Then a reduction is
constructed to show that if there is an adversary can break the security of the
scheme, then the reduction can use this adversary to break some well-studied
hardness assumption.

This analysis provides not only a mathematically proof for the security of a
scheme, but also guidelines for theoretically sound parameter setup, namely,
setting up parameters for a scheme so that it can offer the proven security
guarantee.
Concrete Security. To deploy a scheme in a theoretically sound manner, we
need to know the scheme’s concrete security. The reduction-based analysis offers
a way to do so. More precisely, it establishes the following relation between the
success ratio ΓA of an adversary A (which is defined as the quotient of its success
probability and running time) attacking scheme S, and that of a reduction B
breaking the underlying assumption P :

ΓA ≤ L · ΓB. (1)
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 485–504, 2020.
https://doi.org/10.1007/978-3-030-59013-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_24

486 J. Pan and M. Ringerud

The parameter L is called the security loss. Equation 1 guides us in deriv-
ing parameters that can provably guarantee a k-bit security for the scheme1.
According to the current cryptanalysis results, we derive suitable parame-
ters for the hardness problem P to compensate the security loss L and have
ΓA ≤ L · ΓB ≤ 2−k. Thus a smaller L can give us shorter key lengths, and
potentially more efficient schemes.

We call a reduction (or the scheme’s security) tight if L is a small con-
stant. Recently, a relaxed notion, called almost tight security, was considered in
[18,25,26], where L could be a linear or logarithmic function of the security
parameter. In this paper, we only consider fully tight security. In non-tight
schemes, the security loss can depend on the scale of applications, for instance
the number of users and/or issued signatures for digital signatures. To provide
the same level of security guarantee, one needs to reasonably estimate the scale
of an application and derive larger parameters to compensate for the security
loss. Such an increase in parameters will inevitably slow down computations.

Thus, a large amount of attention has recently been drawn towards research
on tight security, which has spanned from theoretical (such as [4,13,31]) to
more practical aspects (such as [20,27], and covered different primitives including
(identity-based) encryption [14,18,25], digital signatures [26–28,30,31] and non-
interactive zero-knowledge proofs [2,3].

In this paper we focus on digital signatures, which has numerous applica-
tions both on its own, and as a basic building block for advanced cryptographic
protocols (for instance, TLS).
Multi-user Security. The classical security model (or definition) for signature
schemes is unforgeability against chosen-message attacks (UF-CMA) [29], where
an adversary attempts to forge a signature on a fresh message after it adap-
tively asks for signatures on multiple different messages. The UF-CMA security
is defined in the single-user setting, namely, an adversary can only see the public
key of a single user. We believe this is less desirable in practice.

In practice, (independent) public keys of multiple users are exposed to an
adversary. Presumably, it will output a valid forgery under one of these public
keys in a meaningful way after asking multiple signatures. This is captured by
the UF-CMA security in the multi-user setting (denoted by MU-UF-CMA).

Although the MU-UF-CMA security is more desirable than the UF-CMA secu-
rity, most signature schemes are typically proven in the UF-CMA model. We
believe there are two main reasons: Firstly, adversaries in the UF-CMA model
have less capabilities and thus the security proof in this model is easier; secondly,
asymptotically speaking, the UF-CMA security implies MU-UF-CMA according
to a generic reduction in [24]. However, this is problematic when we consider
concrete security and derive theoretically sound parameters for the scheme in
practice, since the generic reduction in [24] is not tight.

Concretely, it loses a factor of �, which is the number of users: It only proves
that attacking a scheme in the MU-UF-CMA model with � users does not increase

1 Usually, “k-bit security” means that there is no adversary can break the scheme with
success ratio larger than 2−k (see discussions in [7,17]).

Signatures with Tight Multi-user Security from Search Assumptions 487

the success ratio of the adversary by more than a factor of �, compared to attack-
ing the same scheme in the UF-CMA model. Thus, via this non-tight generic
reduction, a signature scheme with k-bit security guarantee in the UF-CMA
model does not gives us the same level of provable security guarantee in the
MU-UF-CMA model.

As a concrete example, we reasonably assume � := 230 (about 1 billion)2. For
a signature scheme, if the best adversary attacking it in the UF-CMA model has
success ratio ΓU := 2−80 (i.e. 80-bit UF-CMA security), then the argument in
[24] shows that the best adversary against the same scheme in the MU-UF-CMA
model has success ratio ΓMU = 230 · 2−80 = 2−50, which is not a safe margin
for current large-scale applications. To provide the same level of security in the
MU-UF-CMA model, we need to increase the key length accordingly to compen-
sate the security loss, which is � := 230 in the above case.
Difficulty: Tight Security from Search Assumptions. In recent years,
several signature schemes with tight security in the single-user setting (aka.
UF-CMA security) have been created, such as [13,14,18,26,28,30,31,34]. The
schemes in [4,27,38,43,44] are the only ones we know of that have tight security
in the multi-user setting (aka. MU-UF-CMA security). We note that [43] is based
on the one-more CDH assumption, which is a non-static interactive assumption
in pairing groups.

Furthermore, most of all the known tightly secure schemes (in both single-
user and multi-user settings) require decisional assumptions. Inherently, deci-
sional assumptions seem crucial for tight security. Different to the non-tight and
guessing proof strategy, decisional assumptions and their random self-reducibility
give security reductions the advantage to switch the distribution of signatures
to random “at once”, and then argue that even for an unbounded adversary
there is no chance to win. This advantage cannot be easily achieved by search
assumptions (such as the Computational Diffie-Hellman (CDH) and Factoring
(FAC) assumptions), although search assumptions are more standard and reli-
able. For instance, the CDH assumption is more standard and weaker than the
Decisional Diffie-Hellman assumption. It is similar for the FAC and the decisional
Phi-Hiding assumption used in [34].

There are a few notable exceptions including the Rabin-William scheme [11]
and the Micali-Reyzin scheme [6,40] based on FAC, the “selector bit” variants
of RSA-PSS [35], and the Chevallier-Mames [19] and its later abstraction by
Kiltz, Loss, and Pan [37]. However, their tight security is established in the less
realistic single-user setting.

As a result of the above discussion, we raise the question of whether it is pos-
sible to construct an efficient and tightly MU-UF-CMA-secure signature scheme
based on standard search assumptions. We are interested in schemes in the ran-
dom oracle model [8]. In the random oracle model, a cryptographic hash func-
tion is modeled as an oracle that responds a random value in its output domain
for each unique query. Although there is some limitation with the model [16],

2 Nowadays many applications involve billions of users. For instance, Facebook has
about 2 billion active users daily, according to https://about.fb.com/company-info/.

https://about.fb.com/company-info/

488 J. Pan and M. Ringerud

security proofs in the model still give strong evidence of the scheme’s practi-
cal security. Moreover, schemes in the random oracle model are usually more
efficient than their counterparts in the standard model.

1.1 Our Contribution: Multi-User Security from Search
Assumptions

We construct two tightly secure signature schemes from standard (static) search
assumptions (namely, CDH and FAC) in the multi-user setting. The security is
proven in the random oracle model and the security loss is the constant 1. Our
schemes improve upon those from the framework of Kiltz, Loss, and Pan at
Asiacrypt 2017 [37] in the sense that our schemes have tight multi-user security.
Asymptotically, our schemes have the same number of elements in a signature
as [37], but, since our schemes are tightly secure in the multi-user setting, at
the concrete security level our elements will be shorter and our schemes will
have smaller signature size and achieve more efficient computation, in particular,
for settings with large number of users. In fact, our CDH-based scheme is the
Chevallier-Mames scheme [19]. Another interpretation of it is that we give a new
tight security proof of the original Chevallier-Mames scheme in the multi-user
setting.

In the following efficiency analysis, it shows that our CDH-based scheme is
more efficient than Schnorr and DSA in a truly large setting. Moreover, our CDH-
based scheme can offer offline pre-computation to speed up signing, namely, most
of the work can be done offline before receiving the signing messages.
Efficiency Analysis. We compare the asymptotic efficiency of known tightly
secure signature schemes (in both single-user and multi-user settings) in the
random oracle model in Table 1. We are precise about the security loss from the
single-user to the multi-user setting. The multi-user security of some schemes is
established by the non-tight reduction in [24] and thus we need to choose a larger
group to compensate the non-trivial security loss. We will mark those group sizes
with G�. We also include the two famous signature schemes Schnorr and DSA
in our comparison. By the optimal security proof in [38], the security loss of
Schnorr is 12Qh, where Qh is the number of hash queries an adversary makes,
and the loss of the Katz-Wang scheme (KW) [28] is 4. We note a recent work on
Schnorr in the (idealized) generic group model (GGM) [15]. While a proof in the
GGM certainly provides certain degree of confidence in the scheme’s security, its
scope is rather limited, for instance, it does not capture algorithms that make
use of the representation of the group. Thus, we do not include their result in
our comparison. The provable security result for DSA [36] is established by [22]
in the single-user setting, and we believe it is hard to prove it tightly in the
multi-user setting. We will give more details about this in AppendixA.

To provide the concrete efficiency comparison, we estimate the schemes based
on the DLOG and Diffie-Hellman assumptions in Table 2. We consider exponen-
tiation as the dominating factor in the running time cost. We use elliptic curves
when estimating the schemes, as group elements have a much shorter representa-
tion there than over finite fields. To have a k-bit secure DLOG problem, we need

Signatures with Tight Multi-user Security from Search Assumptions 489

Table 1. Comparison between some known signature schemes in the random oracle
model. Top: schemes in a cyclic group G of prime order p. Bottom: schemes over ZN for
composite N . We detail the security loss of the schemes in the multi-user setting with
� users. Qh is the maximum number of hash queries an adversary can make. Elements
of G have bit length G and n denotes the security parameter. We take the security loss
into account, and, for non-tight schemes, we write their group size as G�. G′ denotes
the bit length of a pairing-friendly group. c < |p| is a parameter for the short Diffie-
Hellman assumptions. We count the numbers of offline (“Off-line Exp.”) and online
exponentiation (“On-line Exp.”) during signing, respectively.

to choose a 2k-bit elliptic curve, according to the baby-step giant-step algorithm.
As in [27], we assume k+1 bits to represent a k-bit elliptic curve group element,
and k bits to represent the corresponding discrete log. Thus, we need 257 bits
to represent a group element of the NIST P256 curve.

For the running time in Table 2, similar to [27], we run “openssl speed
ecdh” on a computer with a 2.4 GHz Quad-Core Intel Core i5 CPU, 16 GB RAM
and MacOS 10.15.3. This command offers speed estimation for one operation
(namely, exponentiation in the language of this paper) for curves NIST P192
(takes 0.3 ms), P224 (0.4 ms), P256 (0.4 ms), P384 (1.0 ms), P521 (2.2 ms), K233
(2.6 ms), B163 (1.3 ms) and so on. We use NIST P-curves for estimation, as
they are more efficient than the other curves providing the same security level.
We note that the security of Schnorr and DSA is dependent on Qh, which is
problematic, since an adversary can compute as many hash values as he would
like offline. Computing hash functions is very cheap, and for instance, one can
easily compute 229 (≈0.5 billion) SHA-512 of 8192 byte messages per second
with a normal PC. This is estimated by running “openssl speed sha”. Thus,
Qh can be much larger than the number of users. According to [38], Qh is

490 J. Pan and M. Ringerud

estimated in the range between 240 to 280. We consider a setting with roughly a
billion users (� := 230), and take DSA as an example to show how we estimate:
For (�,Qh) = (230, 240) and 128-bit security, the security loss is 270, and we
require a 198-bit secure DLOG. Thus we need a 396-bit curve, and we suggest
NIST P521 as the appropriate choice, for which one signing (which requires 1
operation) takes 2.2 ms.

We note that the WLGSZ scheme uses Type 1 (symmetric) pairings [23].
Usually, in pairing-friendly groups, the group size is larger and operations (in
particular, computing pairings) are less efficient than those in groups without
pairings. For 128-bit security of WLGSZ, we should choose a Supersingular Curve
over GF (21223), where 1 group operation takes 2.57 ms, and 1 pairing takes
19.00 ms.3 We also put the estimation of it in Table 2.

Table 2. Concrete efficiency estimation of some known signature schemes based on the
DLOG-related assumptions for 128-bit security and 230 (≈ 1 billion) users. Top: schemes
using search assumptions. Bottom: schemes using decisional assumptions. For the same
security level, we focus on the signature size (“Sig. Size”) and running time for signing
(“Sig. Time”). ‘–’ means the security of the corresponding scheme is independent of
that parameter.

Scheme Qh Curve Sig. Size (in bits) Sig. Time (in milliseconds)

Schnorr [42] 240 P384 768 1.0

Schnorr [42] 280 P521 1024 2.2

DSA [36] 240 P521 1024 2.2

DSA [36] 280 P521 1024 2.2

GJKW [28] – P384 1153 3.0

FSCDH [37] – P384 1153 3.0

OFCDH [37] – P384 1153 3.0

WLGSZ [43] – SS 2447 5.14

Ours (Fig. 2) – P256 769 1.2

KW [28,38] – P256 512 0.4

GJ [27] – P256 1794 2.8

Interpretation and Open Problems. According to Table 2, for a medium
scale ((�,Qh) = (230, 240)), our scheme based on CDH (cf. PF-OFCDH in Fig. 2)
is comparable to the Schnorr signature, but for a truly large scale ((�,Qh) =
(230, 280)) our scheme is significantly more efficient than other schemes based on
search assumptions (either DLOG or CDH).

It is worth mentioning that the KW scheme achieves the best efficiency at the
cost of using a stronger assumption (DDH). CDH is more standard and weaker

3 Taken from the benchmarks in https://github.com/miracl/MIRACL/blob/master/
docs/miracl-explained/benchmarks.md (2020-03-26).

https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md
https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md

Signatures with Tight Multi-user Security from Search Assumptions 491

than DDH. For instance, in symmetric pairing groups, CDH is still hard, while
DDH is easy. In fact, for certain primes, CDH is equivalent to DLOG [21,39].

Our schemes live in harmony with the existing impossibility results about
tightness [5,20,41]. Firstly, our schemes are not unique with respect to [5, Defi-
nition 1] and [41, Definition 1], and thus we do not contradict their results. Sec-
ondly, Cohn-Gordon et al. [20] showed the tightness impossibility result about
authenticated key exchange protocols in a model where an adversary is allowed
to corrupt a user’s secret key, while our model does not allow signing key corrup-
tions. This is a disadvantage of our schemes, since if one combines our schemes
with the framework in [27] to construct an AKE protocol, the resulting protocol
cannot provide any tight forward secrecy. We leave improving our schemes to
allow signing key corruptions in a tight manner as the main open problem.

Another natural open problem is to further improve the efficiency of our
schemes.
Our Approach. We provide a brief overview of our technique. The starting
point of our work is the work of Kiltz, Loss, and Pan (KLP) [37], which tightly
transforms a five-move identification (ID) scheme into a signature scheme with
programmable random oracles in the single-user setting. Before them, a similar
work of Kiltz, Masny, and Pan (KMP) [38] has been done for the three-move
identification schemes in the multi-user setting, and the Schnorr signature is a
well-known example from this transformation. In particular, the KMP framework
proves that the UF-KOA security implies the MU-UF-CMA security for signatures
(cf. Appendix B and Theorem 3.2 in [38]). The UF-KOA security is the same as
UF-CMA, except that an adversary cannot ask any signing queries. Naturally,
one is tempted to transform the single-user security (UF-KOA) to multi-user
(MU-UF-CMA) one for KLP signatures by using the KMP method.

In the “UF-KOA → MU-UF-CMA” for SIG[ID]4, the security reduction gets
a public key pk from the UF-KOA challenger. By the random self-reducibility
(RSR) of ID, the reduction can randomize pk and derive public keys (pk1, ..., pk �),
which is given to the adversary A against the MU-UF-CMA security. Due to some
technical reason, only about half of (pk1, ..., pk �) are computed using pk and
the other half are generated honestly. Signing queries from A is generated by
the honest-verifier zero-knowledge property of ID and programming the random
oracle. To correctly map a MU-UF-CMA forgery to a UF-KOA one, the RSR
property of ID allows, given the randomization trapdoor τi (for a 1 ≤ i ≤ �),
a valid transcript t1 := (R, h, s) under pk i to be turned into another valid

transcript t2 := (R, h, s∗) under pk . The reduction crucially requires that only
the value s∗ in t2 is different to s in t1.

The five-move ID schemes in KLP only have a weaker form of RSR, namely,
given τi, a valid transcript (R1, h1, R2 , h2, s) under pk i can be converted to

another valid transcript (R1, h1, R′
2 , h2, s

∗) under pk for R2 �= R′
2, since R2

is dependent of pk i. Unfortunately, this is problematic for converting a valid

4 SIG[ID] is the signature scheme constructed from a three-move identification scheme
ID via the Fiat-Shamir transformation.

492 J. Pan and M. Ringerud

MU-UF-CMA forgery to a UF-KOA one: For a valid UF-KOA forgery under pk , h2

has to be equal to H2(R′
2,m) and, in particular, H2 is simulated by the UF-KOA

challenger; However, before the reduction receives A’s MU-UF-CMA forgery of
message m under public key pk i, h2 has been defined as h2 := H2(R2,m) in one
of the random oracle queries. Clearly, H2(R2,m) �= H2(R′

2,m) with overwhelm-
ing probability. Our solution is to apply the key-prefixing technique [12] and
append R1 and a public key in H2, namely, we compute H2(R1, R2, pk ,m) in
our schemes. By knowing this additional information, we can carefully mod-
ify how the reduction queries the random oracle H2, and make sure that
h2 = H2(R1, R

′
2, pk ,m). We will refer to Sects. 3 and 4 for technical details.

2 Preliminaries

Notations. For a prime p, Zp is the residual ring Z/pZ. If A is a set, then
a $← A denotes picking a from A according to the uniform distribution. All our
algorithms are probabilistic polynomial time, otherwise, we will state it. Let A
be an algorithm and a $← A(b) denote the output of A on input b.

We present our definitions and proofs in the code-based game-playing frame-
work [10,14]. A game G contains procedures Initialize and Finalize, and some
additional procedures P1, . . . ,Pn, which are defined in pseudo-code. Initially all
variables in a game are undefined (denoted by ⊥) and all sets are empty (denoted
by ∅). An adversary A is executed in game G (denoted by GA) if it first calls
Initialize, obtaining its output. Next, it may make arbitrary queries to Pi

(according to their specification), again obtaining their output. Finally, it makes
one single call to Finalize(·) and stops. We use GA ⇒ d to denote that G
outputs d after interacting with A, and d is the output of Finalize.

2.1 The Computational Diffie-Hellman Assumption

A cyclic group generator G is an algorithm that takes 1n as input (where n is
the security parameter), and returns a n-bit prime p, a cyclic group G of order
p, and a generator of the group. We denote the output as (p, g,G) $← G(1n).

Definition 1 (Computational Diffie-Hellman Assumption). The compu-
tational Diffie-Hellman problem CDH is (t, ε)-hard with respect to G if for all
adversaries A running in time at most t, we have

Pr[Z = gxy | par := (p, g,G) $← G(1n);x, y $← Zp, Z ← A(par, gx, gy)] ≤ ε.

2.2 The Factoring Assumption

The factoring-based scheme in [37] is proven based on the CDH assumption in the
group of signed quadratic residues [32], which is tightly implied by the factoring
assumption. We recall necessary background here. It is almost verbatim to the
definitions in Sect. 4.3 of [37].

Signatures with Tight Multi-user Security from Search Assumptions 493

For n ∈ N, we denote Pn/2 as the set of n/2 bit primes, and Blumn := {N |
N = (2p + 1)(2q + 1) ∧ (2p + 1), (2q + 1), p, q ∈ Pn/2 ∧ p �= q}. The factoring
assumption is defined as follows.

Definition 2 (Factoring Assumption). The factoring problem FAC is (t, ε)
hard for Blumn if for all adversaries A running in time at most t,

Pr
[
N = PQ ∧ P,Q ∈ Pn/2 | N $← Blumn ; (P,Q) ← A(N)

] ≤ ε. (2)

For an element a ∈ ZN , we define the absolute value

|x| :=

{
x if x ≤ (N − 1)/2
−x otherwise

.

We define the group of signed quadratic residues as QR
+
N := {|x| : x ∈ QRN}.

We have that (QR
+
N , ◦) is a cyclic group with order |QR

+
N | = ϕ(N)/4, where,

for all a, b ∈ QR
+
N and x ∈ ZN , group operations are defined as follows:

a◦b := |a ·b mod N |, ax := a ◦ a ◦ ... ◦ a︸ ︷︷ ︸
x times

= |ax mod N |, a−1 := |a−1 mod N |.

Lemma 1 (Lemma 7, [37]). Let N ′ := N/4�,G := QR
+
N , and X $← ZN ′ , Y $←

Z|G|. Then the statistical distance D(X,Y) satisfies D(X,Y) ≤ 2(P+Q)
PQ .

2.3 Digital Signature

Definition 3 (Syntax of Digital Signature). A digital signature scheme SIG
is a tuple of algorithms (Setup,Gen,Sign,Ver) where

– The setup algorithm Setup takes as input a security parameter 1n , and outputs
system parameters par.

– The key generation algorithm Gen takes as input the system parameters par,
and returns public and secret keys (pk , sk). We assume that pk defines a
message space M and a signature space Σ.

– The signing algorithm Sign takes the secret key sk and a message m ∈ M as
inputs, and returns a signature σ ∈ Σ.

– The deterministic verification algorithm Ver takes a public key pk, a message
m and a signature σ as inputs and returns 1 (accept) or 0 (reject).

For correctness, we require that Pr[Ver(pk ,m,Sign(sk ,m)) = 1] = 1.

Definition 4 (MU-UF-CMA Security). A signature scheme SIG is said to be
(t, ε, �,Qs)-MU-UF-CMA secure (multi-user unforgeable against chosen message
attacks), if for all adversaries A that run in time t and makes at most Qs queries
to the signature oracle in the security game in Fig. 1, we have

Pr
[
MU-UF-CMAA ⇒ 1

]
≤ ε.

494 J. Pan and M. Ringerud

Fig. 1. Security game for MU-UF-CMA security with � users.

3 Construction from the CDH Assumption

Our construction here is based on the CDH-based online/offline signature scheme
in [37]. We apply the key-prefixing technique [12] on it.

Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → {0, 1}n be two hash functions. We
recall the signature scheme OFCDH := (Setup,Gen,Sign,Ver) from [37] and define
our key-prefixing variant PF-OFCDH := (Setup,Gen,Signpf ,Verpf) of it in Fig. 2.
We highlight the differences with grey. By additionally hashing R1 in H2, we can
prove that the multi-user (MU-UF-CMA) security of our PF-OFCDH can be tightly
implied by the single-user security of OFCDH in the programmable random oracle
model. Interestingly, PF-OFCDH is the same as the original Chevallier-Mames
scheme [19]. Our proof can be seen as a new, tight proof of the scheme in the
multi-user setting, while the original proof is only tight in the single-user setting.

Fig. 2. Signature schemes OFCDH and PF-OFCDH. We highlight the difference with
grey . Both schemes execute all the codes, while the codes with grey are only exe-
cuted in PF-OFCDH.

We recall the security of OFCDH from [37].

Lemma 2 (Security of OFCDH, Theorem 2 of [37]). If CDH is (t, ε)-hard
w.r.t G, then OFCDH is (t′, ε′, Qs, Q1, Q2)-UF-CMA secure in the programmable

Signatures with Tight Multi-user Security from Search Assumptions 495

random oracle model, where

ε′ ≤ ε +
Q2 + 2

2n
+

(Q1 + Q2)Qs

2n
+

1
2n

, t′ ≈ t. (3)

where Qs, Q1 and Q2 are upper bounds on the number of signature and hash
queries to H1 and H2 in the UF-CMA-experiment.

Lemma 3 (UF-CMA of OFCDH → MU-UF-CMA of PF-OFCDH). If OFCDH

is (t, ε,Qs, Q1, Q2)-UF-CMA secure, then PF-OFCDH is (t′, ε′, �, Q′
s, Q

′
1, Q

′
2)-

MU-UF-CMA secure in the programmable random oracle model, where

ε′ ≤ ε +
Q′

2Q
′
s

2n
, Q′

s = Qs, Q′
1 = Q1 − 1, Q′

2 = Q2 − 1, and t′ ≈ t. (4)

Here Qs, Q1 and Q2 are upper bounds on the number of signature and hash
queries to H1 and H2 in the UF-CMA-experiment. Similarly, Q′

s, Q
′
1 and Q′

2 are
upper bounds on the number of signature and hash queries to H ′

1 and H ′
2 in the

MU-UF-CMA-experiment.

Combining Lemmata 3 and 2, we get the following theorem.

Theorem 1 (Security of PF-OFCDH). If CDH is (t, ε)-hard with respect to G,
then PF-OFCDH is (t′, ε′, �, Qs, Q1, Q2)-MU-UF-CMA secure in the programmable
random oracle model, where

ε′ ≤ ε +
Q2 + 3

2n
+

(Q1 + Q2 + 2)Qs

2n
+

1
2n

+
Q2Qs

2n
, t′ ≈ t. (5)

where Qs, Q1 and Q2 are upper bounds on the number of signature and hash
queries to H1 and H2 in the MU-UF-CMA-experiment.

Thus, we only need to prove Lemma 3.

3.1 Proof of Lemma 3

Let A be an adversary that (t′, ε′, �, Q′
s, Q

′
1, Q

′
2)-breaks the MU-UF-CMA secu-

rity of PF-OFCDH. We prove Lemma 3 by constructing a reduction B that
(t, ε,Qs, Q1, Q2)-breaks the UF-CMA security of OFCDH and provides oracle
access for A as in Fig. 3.

The reduction B gets oracle access to InitializeU,SignU, and FinalizeU

and random oracles Hash1 and Hash2 (for hash function H1 and H2 in
OFCDH) from the UF-CMA security experiment. Moreover, B simulates oracles
InitializeMU,SignMU,FinalizeMU and random oracles Hash

′
1 and Hash

′
2 (for

hash functions H1 and H2 in PF-OFCDH) for adversary A.
Analysis. We show that B simulates a distribution statistically close to the
real one for A. It is trivial to see that the output of InitializeMU distributes
the same as the real one, since Xi is uniformly random over G. Random oracles
Hash1 and Hash2 are provided by the UF-CMA challenger and thus Hash

′
1 and

Hash
′
2 are simulated properly.

496 J. Pan and M. Ringerud

Fig. 3. Security reduction B to break the UF-CMA security of OFCDH, and simulate
oracles for adversary A against the MU-UF-CMA security of PF-OFCDH. H

′
2 is a list

that keeps track of the inputs and outputs of random oracle Hash
′
2.

Our focus is to show that signatures simulated by SignMU are statistically
close to those outputted by Signpf of PF-OFCDH. Given σ̂ := (R̂L, ĥ2, ŝ) ←
SignU(Xi,m), σ̂ is a valid signature w.r.t. the verification of OFCDH (defined
in Fig. 2) and ŝ distributes uniformly at random, namely, the following equation
holds:

ĥ2 = Hash2(R̂2,Xi,m),

where R̂2 = (R̂L, R̂R), R̂R = ĥŝ
1 · R̂−ĥ2

L , ĥ1 = Hash1(R̂1) and R̂1 = gŝ · X−ĥ2 .

If SignMU(i,m) does not abort, the signature σ := (RL, ĥ2, s) with s =
ŝ+aiĥ2 output by SignMU(i,m) has the right distribution, namely, s is uniformly
random (which is trivial due to the random ŝ) and σ will pass the verification
Verpf of PF-OFCDH: Firstly, Verpf will compute values R1 and R2 := (RL, RR)
according to its definition in Fig. 2, and, by our simulation of InitializeMU and
SignMU, the following holds

R1 := gs · X−ĥ2
i = gŝ+aiĥ2 · (X · gai)−ĥ2 = gŝ · X−ĥ2 = R̂1

RR := hs
1 · R−ĥ2

L = ĥŝ+aiĥ2
1 · (R̂L · ĥai

1)−ĥ2 = ĥŝ
1 · R̂−ĥ2

L = R̂R

Signatures with Tight Multi-user Security from Search Assumptions 497

where h1 = Hash1(R1) = Hash1(R̂1) = ĥ1. Thus, ĥ2 in σ returned by
SignMU(i,m) will have ĥ2 = Hash

′
2(R1, R2,Xi,m) and Verpf(Xi,m, σ) = 1.

Moreover, since ŝ is uniform, R̂1 distributes uniformly over G and the prob-
ability that H

′
2[R̂1, R2,Xi,m] has been defined is at most Q′

2/|G|. By applying
the union bound on the number of signing queries, B will abort its simulation
with probability at most QsQ

′
2/|G|.

A Valid Forgery. To see that B produces a valid forgery, we first assume
that the forgery (i∗,m∗, σ∗ = (R∗

L, h∗
2, s

∗)) made by A is a valid forgery in the
MU-UF-CMA-experiment under the public key Xi∗ , meaning that for

R∗
1 := gs∗ · X

−h∗
2

i∗ , h∗
1 := Hash1(R∗

1) and R∗
R := h∗

1
s∗ · R∗

L
−h∗

2 ,

we have h∗
2 = Hash

′
2(R

∗
1, R

∗
L, R∗

R,Xi∗ ,m∗). In addition, it satisfies the freshness
condition that (i∗,m∗) has not been queried in a previous signature query. For
the signature σ̃ = (R̃L, h∗

2, s̃), we compute

R̃1 : = gs̃ · X−h∗
2 = gs∗−ai∗ h∗

2 · X−h∗
2 = gs∗ · X

−h∗
2

i∗ = R∗
1.

We set h̃1 := Hash1(R̃1) = Hash1(R∗
1) = h∗

1 and compute

R̃R : = h̃s̃
1 · R̃

−h∗
2

L = h̃
s∗−ai∗ h∗

2
1 ·

(
R∗

L/h̃ai∗
1

)−h∗
2

= h̃s∗
1 · R∗

L
−h∗

2 = R∗
R.

Then, by the simulation of Hash
′
2(R

∗
1, R

∗
2,Xi∗ ,m∗) and R̃L = R∗

L/hai∗
1 , we have

that

h∗
2 = Hash

′
2(R

∗
1, R∗

2, Xi∗ , m∗) = Hash
′
2(R

∗
1, (R∗

L, R∗
R), Xi∗ , m∗)

= Hash2(R
∗
1, (R∗

L/hai∗
1 , R∗

R), Xi∗ , m∗) = Hash2(R̃1, (R̃L, R̃R), Xi∗ , m∗) = h̃2

and hence Ver(X, m̃, σ̃) = 1 where m̃ := (Xi∗ ,m∗). Since σ∗ was a fresh signature
on (i∗,m∗), m̃ has never been queried to the UF-CMA signature oracle, and hence
σ̃ is a fresh signature on the message m̃.

4 Construction from the Factoring Assumption

We can also apply our method to FSFAC in [37] to get tight MU-UF-CMA security
from the FAC assumption. We refer readers to Sect. 2.2 for necessary mathemat-
ical background of this section.

Let H1 : {0, 1}∗ → QR
+
N and H2 : {0, 1}∗ → {0, . . . , 2k−1} be hash functions,

and let g be a generator of QR
+
N . As before, in Fig. 4 we have the original scheme

FSFAC and its prefixed variant PF-FSFAC. To give a syntactically correct definition,
we require that Setup outputs a private parameter sp that only inputs to Gen.

By combining Corollary 1, Lemma 85 and Lemma 1 of [37], we get the fol-
lowing result.
5 We use the result derived in the reduction, not the statement of the lemma, as they

are not the same.

498 J. Pan and M. Ringerud

Fig. 4. Signature schemes FSFAC and PF-FSFAC. We highlight the difference with grey .
Both schemes execute all the codes, while the codes with grey are only executed in
PF-FSFAC.

Lemma 4 (Security of FSFAC). If FAC is (t, ε)-hard for Blumn , then FSFAC is
(t′, ε′, Q1, Q2)-UF-KOA secure in the random oracle model, where

ε′ ≤ ε +
1

2n/2
+

Q2 + 1
2k

, t′ ≈ t.

Lemma 5 (UF-KOA of FSFAC → MU-UF-CMA of PF-FSFAC). If FSFAC
is (t, ε,Q1, Q2)-UF-KOA secure, then PF-FSFAC is (t′, ε′, �, Qs, Q

′
1, Q

′
2)-

MU-UF-CMA secure in the programmable random oracle model, where

ε′ ≤ ε+
1

2n/2−2
+Qs

(
Q′

1

2n
+

Q′
2

2k

)
, Q′

1 = Q1−1, Q′
2 = Q2−1, and t′ ≈ t. (6)

Here Q1 and Q2 are upper bounds on the number of hash queries to H1 and
H2 in the UF-KOA-experiment. Similarly, Qs, Q

′
1 and Q′

2 are upper bounds on
the number of signature and hash queries to H ′

1 and H ′
2 in the MU-UF-CMA-

experiment.

Combining Lemmata 4 and 5, we get the following theorem.

Theorem 2 (Security of PF-FSFAC). If FAC is (t, ε)-hard for Blumn , then
PF-FSFAC is (t′, ε′, Qs, Q1, Q2)-MU-UF-CMA secure in the programmable random
oracle model, where

ε′ ≤ ε +
1

2n/2
+

Q2 + 2
2k

+
1

2n/2−2
+ Qs

(
Q1

2n
+

Q2

2k

)
, t′ ≈ t. (7)

As before, we now only need to prove Lemma 5.

Signatures with Tight Multi-user Security from Search Assumptions 499

Fig. 5. Security reduction B to break the UF-KOA security of FSFAC, and simulate
oracles for adversary A against the MU-UF-CMA security of PF-FSFAC. Operations
denoted with ◦ are performed in QR

+
N , while other operations are performed over the

integers.

4.1 Proof of Lemma 5

Let A be an adversary that breaks the (t′, ε′, �, Qs, Q
′
1, Q

′
2)-MU-UF-CMA-security

of PF-FSFAC. We construct a reduction B that breaks the (t, ε,Q1, Q2)-UF-KOA-
security of FSFAC as in Fig. 5. As before, the reduction B gets oracle access to
InitializeU,FinalizeU and random oracles Hash1 and Hash2 (for hash func-
tion H1 and H2 in FSFAC) from the UF-KOA security experiment. Moreover, B
simulates oracles InitializeMU,SignMU,FinalizeMU and random oracles Hash

′
1

and Hash
′
2 (for hash functions H1 and H2 in PF-FSFAC) for adversary A.

Analysis. We again want to show that B simulates a distribution statistically
close to the real one for A. It is trivial to see that the output of InitializeMU

has the same distribution as in the real case, since Xi is uniformly random over

500 J. Pan and M. Ringerud

QR
+
N . The random oracles are provided by the UF-KOA challenger and thus

Hash
′
1 and Hash

′
2 are properly simulated.

If SignMU does not abort, the signature σ = (R̂L, ĥ2, ŝ) is within statistical
distance 2(P + Q)/PQ ≤ 22−n/2 from a real distribution, and it passes the
verification Verpf of PF-FSFAC. To show this, we use Lemma 1 and a result from
Lemma 8 in [37]. Combined, these show that when simulating a signature like
we do in SignMU, the returned transcript (R̂1, ĥ1, R̂2, ĥ2, ŝ) is within statistical
distance at most 2(P + Q)/PQ from a real distribution. This is so because ŝ
has statistical distance at most 2(P +Q)/PQ from a uniformly random variable
over Z|QR

+
N | by Lemma 1, and R̂1, R̂L, R̂R are determined by ŝ, ĥ2 and Xi, since

they are the unique values that satisfy R̂1 = gŝ ◦ X−ĥ2
i and R̂R = ĥŝ

1 ◦ R̂−ĥ2
L .

For the verification, we proceed as we did for PF-OFCDH. The Verpf algo-
rithm computes R1 and RR as described in Fig. 4, and from our simulation of
InitializeMU and SignMU we get

R1 := gŝ ◦ X−ĥ2
i = R̂1

RR := hŝ
1 ◦ R̂−ĥ2

L = gwŝ ◦ X−wĥ2
i =

(
gŝ ◦ X−ĥ2

i

)w

= R̂w
1 = R̂R,

where we after the programming have h1 := Hash1(R1,Xi,m) = ĥ1 = gw.
Thus, ĥ2 in σ returned by SignMU(i,m) will satisfy

ĥ2 := Hash
′
2(R1, R̂L, RR,Xi,m),

and therefore Verpf(Xi,m, σ) = 1. In the simulation we randomly choose
ŝ $← Z�N/4�, which means that R1 will be uniformly random over QR

+
N , and the

probability that H′
1[R̂1,Xi,m] has been defined is at most Q′

1/
∣
∣QR

+
N

∣
∣ ≤ Q′

1/2n .
A similar argument shows that the probability that H

′
2[R̂1, R2,Xi,m] has been

defined is at most Q′
2/2k. The union bound applied on the number of sign-

ing queries shows that B will abort its simulation with probability at most
Qs(Q′

1/2n + Q′
2/2k).

A valid forgery. To show that (Xi∗ ,m∗, σ̃ = (R̃L, h∗
2, s̃)) is a valid forgery

in the UF-KOA-experiment, we first assume that (i∗,m∗, σ∗ := (R∗
L, h∗

2, s
∗)) is a

valid signature in the MU-UF-CMA-experiment, meaning that for

R∗
1 := gs∗ ◦ X

−h∗
2

i∗ , h∗
1 := Hash

′
1(R

∗
1,Xi∗ ,m∗) and R∗

R := h∗
1
s∗ ◦ R∗

L
−h∗

2 ,

we have h∗
2 = Hash

′
2(R

∗
1, R

∗
L, R∗

R,Xi∗ ,m∗). It also satisfies the freshness con-
dition that (i∗,m∗) has not been queried in a previous signature query in
the MU-UF-CMA game. This means that if h∗

1 = H
′
1[R

∗
1,Xi∗ ,m∗] or h∗

2 =
H

′
2[R

∗
1, R

∗
2,Xi∗ ,m∗] are defined, it was not done by SignMU, and hence the

value was returned by an UF-KOA hash oracle, as required. For the signature
σ̃ = (R̃L, h∗

2, s̃) generated in FinalizeMU, we compute R̃1 := gs̃ ◦ X−h∗
2 =

gs∗−ai∗ h∗
2 ◦ X−h∗

2 = gs∗ ◦ X
−h∗

2
i∗ = R∗

1. We set h̃1 = Hash1(R̃1,Xi∗ ,m∗) =
Hash1(R∗,Xi∗ ,m∗) = h∗

1, and compute

R̃R : = h̃s̃
1 ◦ R̃

−h∗
2

L = h̃
s∗−ai∗ h∗

2
1 ◦

(
R∗

L ◦ (h̃1)
−ai∗

)−h∗
2

= h̃s∗
1 ◦ R∗

L
−h∗

2 = R∗
R.

Signatures with Tight Multi-user Security from Search Assumptions 501

Then, by the simulation of Hash
′
2(R

∗
1, R

∗
2,Xi∗ ,m∗), we have that

h̃2 := Hash2(R̃1, (R̃L, R̃R),Xi∗ ,m∗) = Hash
′
2(R

∗
1, R

∗
2,Xi∗ ,m∗) = h∗

2, (8)

and hence Ver(X, m̃, σ̃) = 1 where m̃ := (Xi∗ ,m∗). The running time is that of
A plus the Qs simulations of SignMU, and we write t′ ≈ t.

A On the Multi-user Security of DSA

We show why it is difficult to show tight implication from the single-user security
to the multi-user security for DSA. We first recall the scheme. Let p be an L-bit
prime, and q be an N -bit prime such that q | (p − 1). For specifications on L
and N , see the DSA documentation [36]. Let g be a generator of a subgroup of
order q in Z

∗
p. The Gen,Sign and Ver can then be described as follows.

Gen(par):
sk := x $← Zq

X := gx mod p
pk := X
Return (pk , sk)

Sign(sk ,m):
r $← Z

∗
q

R := (gr mod p) mod q
s :=(

r−1(H(m) + xR)
)

mod q
Return σ := (R, s)

Ver(X,m, σ):
Parse σ := (R, s)
If R = 0 ∨ s = 0

Return 0
w := s−1 mod q
u1 := H(m) · w mod q
u2 := R · w mod q
v :=

(gu1Xu2 mod p) mod q
If v = R

Return 1
Else return 0

Different to the Schnorr signature, given a valid signature σ := (R, s) under
public key X, it is not possible to convert it to a valid signature under public
key X · gai for ai

$← Z
∗
q = Zq \ {0} using methods in [12,38], since we do not

have the discrete log of R, namely, r ∈ Z
∗
q .

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

2. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8 23

3. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 21

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21

502 J. Pan and M. Ringerud

4. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 26

5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 10

6. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 15

7. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 24

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

9. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

11. Bernstein, D.J.: Proving tight security for Rabin-Williams signatures. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 5

12. Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive,
Report 2015/996 (2015). http://eprint.iacr.org/2015/996

13. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from Chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

14. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 23

15. Blocki, J., Lee, S.: On the multi-user security of short Schnorr signatures. Cryptol-
ogy ePrint Archive, Report 2019/1105 (2019). https://eprint.iacr.org/2019/1105

16. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

17. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness
II: practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360
(2016). http://eprint.iacr.org/2016/360

18. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

19. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight secu-
rity reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 31

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-78967-3_5
http://eprint.iacr.org/2015/996
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://eprint.iacr.org/2019/1105
http://eprint.iacr.org/2016/360
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/11535218_31

Signatures with Tight Multi-user Security from Search Assumptions 503

20. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 25

21. Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 38

22. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC) DSA sig-
natures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 1651–1662. ACM Press, October 2016

23. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165 (2006). http://eprint.iacr.org/2006/165

24. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-
user setting. Inf. Process. Lett. 83(5), 263–266 (2002). https://doi.org/10.1016/
S0020-0190(01)00338-6

25. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

26. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 8

27. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 4

28. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. J. Cryptol. 20(4), 493–514 (2007).
https://doi.org/10.1007/s00145-007-0549-3

29. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017

30. Guo, F., Chen, R., Susilo, W., Lai, J., Yang, G., Mu, Y.: Optimal security reduc-
tions for unique signatures: bypassing impossibilities with a counterexample. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 517–547.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 18

31. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

32. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 2

33. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 32

34. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. J.
Cryptol. 31(1), 276–306 (2018). https://doi.org/10.1007/s00145-017-9257-9

https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/0-387-34799-2_38
http://eprint.iacr.org/2006/165
https://doi.org/10.1016/S0020-0190(01)00338-6
https://doi.org/10.1016/S0020-0190(01)00338-6
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/s00145-007-0549-3
https://doi.org/10.1137/0217017
https://doi.org/10.1007/978-3-319-63715-0_18
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/s00145-017-9257-9

504 J. Pan and M. Ringerud

35. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003

36. Kerry, C.F., Director, C.R.: FIPS PUB 186–4 federal information processing stan-
dards publication digital signature standard (DSS) (2013)

37. Kiltz, E., Loss, J., Pan, J.: Tightly-secure signatures from five-move identification
protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 68–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 3

38. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

39. Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 21

40. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
J. Cryptol. 15(1), 1–18 (2002). https://doi.org/10.1007/s00145-001-0005-8

41. Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 507–536. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03807-6 19

42. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

43. Wu, G., Lai, J.-C., Guo, F.-C., Susilo, W., Zhang, F.-T.: Tightly secure public-
key cryptographic schemes from one-more assumptions. J. Comput. Sci. Technol.
34(6), 1366–1379 (2019). https://doi.org/10.1007/s11390-019-1980-2

44. Zhang, X., Liu, S., Gu, D., Liu, J.K.: A generic construction of tightly secure sig-
natures in the multi-user setting. Theor. Comput. Sci. 775, 32–52 (2019). https://
doi.org/10.1016/j.tcs.2018.12.012

https://doi.org/10.1007/978-3-319-70700-6_3
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/3-540-68697-5_21
https://doi.org/10.1007/3-540-68697-5_21
https://doi.org/10.1007/s00145-001-0005-8
https://doi.org/10.1007/978-3-030-03807-6_19
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/s11390-019-1980-2
https://doi.org/10.1016/j.tcs.2018.12.012
https://doi.org/10.1016/j.tcs.2018.12.012

Biased RSA Private Keys: Origin
Attribution of GCD-Factorable Keys

Adam Janovsky1,2(B), Matus Nemec3, Petr Svenda1, Peter Sekan1,
and Vashek Matyas1

1 Masaryk University, Brno, Czech Republic
adamjanovsky@mail.muni.cz

2 Invasys, Brno, Czech Republic
3 Linköping University, Linköping, Sweden

Abstract. In 2016, Švenda et al. (USENIX 2016, The Million-key Ques-
tion) reported that the implementation choices in cryptographic libraries
allow for qualified guessing about the origin of public RSA keys. We
extend the technique to two new scenarios when not only public but
also private keys are available for the origin attribution – analysis of
a source of GCD-factorable keys in IPv4-wide TLS scans and forensic
investigation of an unknown source. We learn several representatives of
the bias from the private keys to train a model on more than 150 mil-
lion keys collected from 70 cryptographic libraries, hardware security
modules and cryptographic smartcards. Our model not only doubles the
number of distinguishable groups of libraries (compared to public keys
from Švenda et al.) but also improves more than twice in accuracy w.r.t.
random guessing when a single key is classified. For a forensic scenario
where at least 10 keys from the same source are available, the correct
origin library is correctly identified with average accuracy of 89% com-
pared to 4% accuracy of a random guess. The technique was also used
to identify libraries producing GCD-factorable TLS keys, showing that
only three groups are the probable suspects.

Keywords: Cryptographic library · RSA factorization ·
Measurement · RSA key classification · Statistical model

1 Introduction

The ability to attribute a cryptographic key to the library it was generated with
is a valuable asset providing direct insight into cryptographic practices. The
slight bias found specifically in the primes of RSA private keys generated by
the OpenSSL library [14] allowed to track down the devices responsible for keys
found in TLS IPv4-wide scans that were in fact factorable by distributed GCD
algorithm. Further work [23] made the method generic and showed that many

Full details, datasets and paper supplementary material can be found at https://crocs.
fi.muni.cz/papers/privrsa esorics20.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 505–524, 2020.
https://doi.org/10.1007/978-3-030-59013-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_25&domain=pdf
https://crocs.fi.muni.cz/papers/privrsa_esorics20
https://crocs.fi.muni.cz/papers/privrsa_esorics20
https://doi.org/10.1007/978-3-030-59013-0_25

506 A. Janovsky et al.

other libraries produce biased keys allowing for the origin attribution. As a result,
both separate keys, as well as large datasets, could be analyzed for their origin
libraries. The first-ever explicit measurement of cryptographic library popularity
was introduced in [18], showing the increasing dominance of the OpenSSL library
on the market. Furthermore, very uncommon characteristics of the library used
by Infineon smartcards allowed for their entirely accurate classification. Impor-
tantly, this led to a discovery that the library is, in fact, producing practically
factorable keys [19]. Consequently, more than 20 million of eID certificates with
vulnerable keys were revoked just in Europe alone. The same method allowed to
identify keys originating from unexpected sources in Estonian eIDs. Eventually,
the unexpected keys were shown to be injected from outside instead of being
generated on-chip as mandated by the institutional policy [20].

While properties of RSA primes were analyzed to understand the bias
detected in public keys, no previous work addressed the origin attribution prob-
lem with the knowledge of private keys. The reason may sound understandable –
while the public keys are readily available in most usage domains, the private keys
shall be kept secret, therefore unavailable for such scrutiny. Yet there are at least
two important scenarios for their analysis: 1) Tracking sources of GCD-factorable
keys from large TLS scans and 2) a forensic identification of black-box devices
with the capability to export private keys (e.g., unknown smartcard, remote
key generation service, or in-house investigation of cryptographic services). The
mentioned case of unexpected keys in Estonian eIDs [20] is a practical example
of a forensic scenario, but with the use of public keys only. The analysis based
on private keys can spot even a smaller deviance from the expected origin as the
bias is observed closer to the place of its inception. This work aims to fill this
gap in knowledge by a careful examination of both scenarios.

We first provide a solid coverage of RSA key sources used in the wild by
expanding upon the dataset first released in [23]. During our work, we more than
doubled the number of keys in the dataset, gathered from over 70 distinct crypto-
graphic software libraries, smartcards, and hardware security modules (HSMs).
Benefiting from 158.8 million keys, we study the bias affecting the primes p and
q. We transform known biased features of public keys to their private key ana-
logues and evaluate how they cluster sources of RSA keys into groups. We use
the features in multiple variants of Bayes classifier that are trained on 157 mil-
lion keys. Subsequently, we evaluate the performance of our classifiers on further
1.8 million keys isolated from the whole dataset. By doing so, we establish the
reliability results for the forensic case of use, when keys from a black-box sys-
tem are under scrutiny. On average, when looking at just a single key, our best
model is able to correctly classify 47% of cases when all libraries are considered
and 64.6% keys when the specific sub-domain of smartcards is considered. These
results allow for much more precise classification compared to the scenario when
only public keys are available.

Finally, we use the best-performing classification method to analyze the
dataset of GCD-factorable RSA keys from the IPv4-wide TLS scan collected
by Rapid7 [21].

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 507

The main contributions of this paper are:

– A systematic mapping of biased features of RSA keys evaluated on a more
exhaustive set of cryptographic libraries, described in Sect. 2. The dataset
(made publicly available for other researchers) lead to 26 total groups of
libraries distinguishable based on the features extracted from the value of
RSA private key(s).

– Detailed evaluation of the dataset on Bayes classifiers in Sect. 3 with an aver-
age accuracy above 47% where only a single key is available, and almost 90%
when ten keys are available.

– An analysis of the narrow domain of cryptographic smartcards and libraries
used for TLS results in an even higher accuracy, as shown in Sect. 4.

– Practical analysis of real-world sources of GCD-factorable RSA keys from
public TLS servers obtained from internet-wide scans in Sect. 5.

The paper roadmap has been partly outlined above, Sect. 7 then shows related
work and Sect. 8 concludes our paper.

2 Bias in RSA Keys

Various design and implementation decisions in the algorithms for generating
RSA keys influence the distributions of produced RSA keys. A specific type of
bias was used to identify OpenSSL as the origin of a group of private keys [17].
Systematic studies of a wide range of libraries [18,23] described more reasons
for biases in RSA keys in a surprising number of libraries. In the majority of
cases, the bias was not strong enough to help factor the keys more efficiently.
Previous research [23] identified multiple sources of bias that our observations
from a large dataset of private RSA keys confirm:

1. Performance optimizations, e.g., most significant bits of primes set to a
fixed value to obtain RSA moduli of a defined length.

2. Type of primes: probable, strong, and provable primes:
– For probable primes, whether candidate values for primes are chosen ran-

domly or a single starting value is incremented until a prime is found.
– When generating candidates for probable primes, small factors are

avoided in the value of p−1 by multiple implementations without explain-
ing.

– Blum integers are sometimes used for RSA moduli – both RSA primes
are congruent to 3 modulo 4.

– For strong primes, the size of the auxiliary prime factors of p−1 and p+1
is biased.

– For provable primes, the recursive algorithm can create new primes of
double to triple the binary length of a given prime; usually one version of
the algorithm is chosen.

3. Ordering of primes: are the RSA primes in private key ordered by size?
4. Proprietary algorithms, e.g., the well-documented case of Infineon fast

prime key generation algorithm [19].

508 A. Janovsky et al.

5. Bias in the output of a PRNG: often observable only from a large number
of keys from the same source;

6. Natural properties of primes that do not depend on the implementation.

2.1 Dataset of RSA Keys

We collected, analyzed, and published the largest dataset of RSA keys with a
known origin from 70 libraries (43 open-source libraries, 5 black-box libraries,
3 HSMs, 19 smartcards). We both expanded the datasets from previous work
[18,23] and generated new keys from additional libraries for the sake of this study.
We processed the keys to a unified format and made them publicly available.
Where possible, we analyzed the source code of the cryptographic library to
identify the basic properties of key generation according to the list above.

We are primarily interested in 2048-bit keys, what is the most commonly
used key length for RSA. As in previous studies [18,23], we also generate shorter
keys (512 and 1024 bits) to speed up the process, while verifying that the cho-
sen biased features are not influenced by the key size. This makes the keys of
different sizes interchangeable for the sake of our study. We assume that repeat-
edly running the key generation locally approximates the distributed behaviour
of many instances of the same library. This model is supported by the mea-
surements taken in [18] where distributions of keys collected from the Internet
exhibited the same biases as locally generated keys.

2.2 Choice of Relevant Biased Features

We extended the features used in previous work on public keys to their equivalent
properties of private keys:

Feature ‘5p and 5q’: Instead of the most significant bits of the modulus, we
use five most significant bits of the primes p and q. The modulus is defined
by the primes, and the primes naturally provide more information. We chose 5
bits based on a frequency analysis of high bits. Further bits are typically not
biased and reducing the size of this feature prevents an exponential growth of
the feature space.

Feature ‘blum’: We replaced the feature of second least significant bit of the
modulus by the detection of Blum integers. Blum integers can be directly iden-
tified using the two prime factors. When only the modulus is available, we can
rule out the usage of Blum integers, but not confirm it.

Feature ‘mod’: Previous work used the result of modulus modulo 3. It was
known that primes can be biased modulo small primes (due to avoiding small
factors of p−1 and q−1). The authors only used the value 3, because it is possible
to rule out that 3 is being avoided as a factor of p− 1, when the modulus equals
2 modulo 3 [23]. It is not possible to rule out higher factors from just a single
modulus. With the access to the primes we can directly check for this bias for
all factors. We detected four categories of such bias, each avoiding all small odd

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 509

Fig. 1. How the keys from various libraries differ can be depicted by a dendrogram. It
tells us, w.r.t. our feature set, how far from each other the probability distributions of
the sources are. We can then hierarchically cluster the sources into groups that produce
similar keys. The blue line at 0.085 highlights the threshold of differentiating between
two sources/groups. This threshold yields 26 groups using our feature set.

prime factors up to a threshold. We use these categories directly by looking at
small odd divisors of p − 1 and q − 1 and note if none were detected: 1) up to
17863, 2) up to 251, 3) up to 5, 4) none – at least one value is divisible by 3.

Feature ‘roca’: We use a specific fingerprint of factorable Infineon keys pub-
lished in [19].

2.3 Clustering of Sources into Groups

Since it is impossible to distinguish sources that produce identically distributed
keys, we introduce a process of clustering to merge similar sources into groups.
We cluster two sources together if they appear to be using identical algorithms
based on the observation of the key distributions. We measure the difference
in the distributions using the Manhattan distance1. The absolute values of the
distances depend on the actual distributions of the features. Large distances
correlate with significant differences in the implementations. Note, that very

1 We experimented with Euclidean distance and fractional norms. While Euclidean
distance is a proper metric, our experiments showed that it is more sensitive to
the noise in the data, creating separable groups out of sources that share the same
key generation algorithms. On the other hand, fractional norms did not highlight
differences between sources that provably differ in the key generation process.

510 A. Janovsky et al.

small observed distances may be only the result of noise in the distributions
instead of a real difference, e.g., due to a smaller number of keys available.

We attempt to place the clustering threshold as low as possible, maximizing
the number of meaningful groups. If we are not able to explain why two clusters
are separated based on the study of the algorithms and distributions of the
features, the threshold needs to be moved higher to join these clusters. We worked
with distributions that assume all features correlated (as in [23]).

The resulting classification groups and the dendrogram is shown in Fig. 1. We
placed the threshold value at 0.085. By moving it higher than to 0.154, we would
lose the ability to distinguish groups 11 and 12. It would be possible to further
split group 14, as there is a slight difference in the prime selection intervals used
by Crypto++ and Microsoft [23]. However, the difference manifests less than
the level of noise in other sources, requiring the threshold to be put at 0.052,
what would create several false groups. We use the same clustering throughout
the paper, although the value of the threshold would change when the features
change. Note that different versions of the same library may fall into different
groups, mostly because of the algorithm changes between these versions. This,
for instance, is the case of the Bouncy Castle 1.53, and 1.54.

3 Model Selection and Evaluation

How accurately we can classify the keys depends on several factors, most notably
on: the libraries included in the training set, number of keys available for clas-
sification, features extracted from the classified keys, and on the classification
model. In this section, we focus on the last factor.

3.1 Model Selection

As generating the RSA keys is internally a stochastic process, we choose the
family of probabilistic models to address the source attribution problem. Since
there is no strong motivation for complex machine learning models, we utilize
simple classifiers. More sophisticated classifiers could be built based on our find-
ings when the goal is to reach higher accuracy or to more finely discriminate
sources within a group. The rest of this subsection describes the chosen models.

Näıve Bayes Classifier. The first investigated model is a näıve Bayes classifier,
called näıve because it assumes that the underlying features are conditionally
independent. Using this model, we apply the maximum-likelihood decision rule
and predict the label as ŷ = argmaxy P (X = x | y). Thanks to the näıve
assumption, we may decompose this computation into ŷ = argmaxy

∏n
i=1 P (xi |

y) for the feature vector x = (x1, . . . , xn).

Bayes Classifier. We continue to develop the approach originally used in [23]
that used the Bayes classifier without the näıve assumption. Several reasons
motivate this. First, it allows to evaluate how much the näıve Bayes model suffers
from the violated independence assumption (on this specific dataset). Secondly,

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 511

it enables us to access more precise probability estimates that are needed to clas-
sify real-world GCD-factorable keys. Additionally, we can directly compare the
classification accuracy of private keys with the case of the public keys from [23].
However, one of the main drawbacks of the Bayes classifier is that it requires
exponentially more data with the growing number of features. Therefore, when
striving for high accuracy achievable by further feature engineering, one should
consider the näıve Bayes instead.

Näıve Bayes Classifier with Cross-Features. The third investigated option
is the näıve Bayes classifier, but we merged selected features that are known
to be correlated into a single feature. In particular, we merged the features
of the most significant bits (of p, q) into a single cross-feature. Subsequently,
the näıve Bayes approach is used. This enables us to evaluate whether merging
clearly interdependent features into one will affect the performance of näıve
Bayes classifier w.r.t. this specific dataset.

3.2 Model Evaluation

Methodology of Classification and Metrics. Our training dataset contains
157 million keys and the test set contains 1.8 million keys. We derived the test set
by discarding 10 thousand keys of each source from the complete dataset before
clustering. This assures that each group has the test set with at least 10 thousand
keys. Accordingly, since the groups differ in the number of sources involved, the
resulting test dataset is imbalanced. For this reason, we employ the metrics of
precision and recall when possible. However, we represent the model performance
by accuracy measure in the tables and in more complex classification scenarios.

For group X, the precision can be understood as a fraction of correctly clas-
sified keys from group X divided by the number of keys that were marked as
group X by our classifier. Similarly, the recall is a fraction of correctly classified
keys from group X divided by a total number of keys from group X [11]. We
also evaluate the performance of the models under the assumption that the user
has a batch of several keys from the same source at hand. This scenario can
arise, e.g., when a security audit is run in an organization and all keys are being
tested. Furthermore, to react to some often misclassified groups, we additionally
provide the answer “this key originates from group X or group Y ” to the user
(and we evaluate the confidence of these answers).

Table 1. Performance comparison of different models on the dataset with all libraries.
Note that the precision of a random guess classifier is 3.8% when considering 26 groups.

Model Avg. precision Avg. recall

Bayes classifier 43.2% 47.6%

Näıve Bayes classifier 40.9% 46.2%

Cross-feature näıve B 41.7% 47.6%

512 A. Janovsky et al.

Comparison of the Models. The overall comparison of all three models can
be seen in Table 1. If the precision for some group is undefined, i.e., no key is
allegedly originating from this group, we say that the precision is 0. We evaluate
the näıve Bayes classifier on the same features that were used for Bayes classi-
fier to measure how much classification performance is lost by introducing the
feature independence assumption. A typical example of interdependent features
is that the most significant bits of primes p and q are intentionally correlated to
preserve the expected length of the resulting modulus n. Pleasantly, the observed
precision (recall) decrease is only 2.3% (1.4%) when compared to the Bayes clas-
sifier. Accordingly, this suggests that a larger number of different features than
usable with the Bayes classifier (due to exponential growth in complexity) can be
considered when the näıve Bayes classifier is used. As a result, further improve-
ment of the performance might be achieved, despite ignoring the dependencies
among features. Overall, the Bayes classifier shows the best results. When a sin-
gle key is classified, the average success rate for the 26 groups is captured by
precision of 43.2% and a recall of 47.6%. Still, there is a wide variance between
the performance in specific groups. A detailed table of results together with a
discussion is presented in Appendix A.

4 Classification with Prior Information

Section 2 outlined the process of choosing a threshold value that determines the
critical distance for distinguishing between distinct groups. Inevitably, the same
threshold value directly influences the number of groups after the clustering task.
As such, the threshold introduces a trade-off between the model performance
and the number of discriminated groups. The smaller the difference between
group distributions is, the more they are similar, and the model performance
is lower as more misclassification errors occur. The objective of this section is
to examine the classification scenario when some prior knowledge is available to
the analyst, limiting the origin of keys to only a subset of all libraries or increase
the likelihood of some. Since Sect. 3 showed that the Bayes classifier provides
the best performance, this chapter considers only this model.

Prior knowledge can be introduced into the classification process in multiple
ways, e.g., by using a prior probability vector that considers some groups more
prevalent. We also note that the measurement method of [18] can be used to
obtain such prior information, but a relatively large dataset (around 105 private
keys) is required that may not be available. Our work, therefore, considers a
different setting when some sources of the keys are ruled-out before the classifier
is constructed. Such scenario arises e.g., when the analyst knows that the scru-
tinized keys were generated in an unknown cryptographic smartcard. In such
case, HSMs and other sources of keys can thus be omitted from the model alto-
gether what will arguably increase the performance of the classification process.
Another example is leaving out libraries that were released after the classified
data sample was collected.

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 513

Table 2. Bayes classifier performance on three analyzed partitionings of the dataset
– complete dataset with all libraries (All libraries), smartcards only (Smartcards
domain), libraries and HSMs expected to be used for TLS (TLS domain) and spe-
cific subset of TLS domain where only single prime is available due to the nature of
results obtained by GCD factorization method (Single-prime TLS domain). Compar-
ison with the random guess as a baseline is provided (here, accuracy equals precision
and recall).

Dataset Avg. precision Avg. recall Random guess (baseline)

All libraries 43.2% 47.6% 3.8%

Smartcards domain 61.9% 64.6% 8.3%

TLS domain 45.5% 42.2% 7.7%

Single-prime TLS domain 28.8% 36.2% 11.1%

We present the classification performance results for three scenarios with a
limited number of sources – 1) cryptographic smartcards (Sect. 4.1), 2) sources
likely to be used in the TLS domain (Sect. 4.2) and 3) a specific case of GCD-
factorable keys from the TLS domain, where only one out of two primes can be
used for classification (see Sect. 4.3 for more details). The comparison of models
for these scenarios can be seen in Table 2.

To compute these models we first, discard the sources that cannot be the
origin of the examined keys according to the prior knowledge of the domain (e.g.,
smartcards are not expected in TLS). Next, we re-compute the clustering task to
obtain fewer groups than on the dataset with all libraries. Finally, we compute
the classification tables for the reduced domain and evaluate the performance.

Fig. 2. The clustering of smartcard sources yields 12 separate groups.

4.1 Performance in the Smartcards Domain

The clustering task in the smartcards domain yields 12 recognizable groups for
19 different smartcard models as shown in Fig. 2. The training set for this limited
domain contains 20.6 million keys, whereas the test set contains 340 thousand

514 A. Janovsky et al.

keys. On average, 61.9% precision and 64.6% recall is achieved. Moreover, 8 out
of 12 groups achieve > 50% precision. Additionally, the classifier exhibits 100%
recall on 3 specific groups: a) Infineon smartcards (before 2017 with the ROCA
vulnerability [19]), b) G&D Smartcafe 4.x and 6.0, and c) newer G&D Smartcafe
7.0. Figure 3 shows so-called confusion matrix where each row corresponds to
percentage of keys in an actual group while each column represents percentage
of keys in a predicted group.

Fig. 3. The confusion matrix for the classifier of a single private key generated in the
smartcards domain. A given row corresponds to a vector of observed relative frequen-
cies with which keys generated by a specific group (True group) are misclassified as
generated by other groups (Group predicted by our model). For example, group 1 and
group 2 have no misclassifications (high accuracy), while keys of group 3 are in 33%
cases misclassified as keys from group 2. On average, we achieve 64.6% accuracy. The
darker the cell is, the higher number it contains. This holds for all figures in this paper.

As expected, the results represent an improvement when compared to the
dataset with all libraries. When one has ten keys of the same card at hand, the
expected recall is over 90% on 10 out of 12 groups. The full table of results can
be found in the project repository.

Interestingly, 512- and 1024-bit keys generated by the same NXP J2E145G
card (similarly also for NXP J2D081) fall into different groups2. The main dif-
ference is in the modular fingerprint (avoidance of small factors in p − 1 and
q−1). We hypothesize that on-card key generation avoids more small factors for
2 This is an exception to the observation that the selected features behave indepen-

dently of key length. Otherwise, keys of different length can be used interchangeably.

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 515

larger keys. Such behaviour was not observed for other libraries but highlights
the necessity of collecting different key lengths in the training dataset when one
analyzes black-box proprietary devices or closed-source software libraries.

To summarize, the classification of private keys generated by smartcards
is very accurate due to the significant differences resulting from the propri-
etary, embedded implementations among the different vendors. The differences
observed likely results from the requirements to have a smaller footprint required
by low-resources devices.

4.2 Performance in the TLS Domain

For the TLS domain, we excluded all the libraries and devices unlikely to be
used to generate keys then used by TLS servers. All smartcards are excluded,
together with highly outdated or purpose-specific libraries like PGP SDK 4.
All hardware security modules (HSMs) are present as they may be used as
TLS accelerators or high-security key storage. Summarized, we started with 17
separate cryptographic libraries and HSMs, inspected in a total of 134 versions.
The clustering resulted in 13 recognizable groups as shown in Fig. 4.

The domain training set contains 121.8 million keys and the test set contains
1.3 million keys. On average, the classifier achieves 45.5% precision and 42.2%
recall. The decrease in average recall compared to the full domain may look
surprising, but averaging is deceiving in this context. In fact, recall improved for
10 out of 13 groups that are both in the full set and the TLS domain set, with
the precision improving for 9 groups. The mean values of the full dataset are
being uplifted by a generally better performance of the model outside the TLS
domain. Five groups have >50% precision. OpenSSL (by far the most popular
library used by servers for TLS [18]) has 100% recall, making the classification
of OpenSSL keys very reliable. Complete results can be found in the project
repository.

To summarize, we correctly classify more keys in a more specific TLS domain
than with the full dataset classifier. Additionally, the user can be more confident
about the decisions of the TLS-specific classifier.

Fig. 4. The clustering of the sources from the TLS domain yields 13 separate groups.

516 A. Janovsky et al.

4.3 Performance in the Single-Prime TLS Domain

The rest of this section is motivated by a setting when one wants to ana-
lyze a batch of correlated keys. Specifically, we assume a case of k ≥ 1 keys
(p1, q1), . . . , (pk, qk) generated by the same source, where p1 = p2 = · · · = pk.
This scenario emerges in Sect. 5 and cannot be addressed by previously con-
sidered classifiers. If applied, the results would be drastically skewed since the
classifier would consider each of pi separately, putting half of the weight on the
shared prime. For that reason, we train a classifier that works on single primes
rather than on complete private keys. Instead of feeding the classifier with a
batch of k private keys, we supply it with a batch of k + 1 unique primes from
those keys. The selected features were modified accordingly: we extract the 5
most significant bits from the unique prime, its second least significant bit, and
compute the ROCA and modular fingerprint for the single prime. We trained
the classifier on the learning set limited to the TLS domain, as in Sect. 4.2.

On average, we achieve 28.8% precision and 36.2% recall when classifying
a single prime. Table 3 shows the accuracy results in more detail. It should,
however, be stressed that this classifier is meant to be used for batches of many
keys at once. When considering a batch of k ≥ 10 primes, the accuracy is more
than 77%. The decrease in accuracy compared to Sect. 4.2 can be explained by
the loss of information from the second prime. The features mod and blum
are much less reliable when using only one prime. Since we can compute the
most significant bits from a single prime at a time, we lost the information
about the ordering of primes (since features 5p and 5q are correlated). These
facts resulted in only nine separate groups of libraries being distinguishable. The
following groups from the TLS domain are no longer mutually distinguishable:
5 and 13, 7 and 11, 8 and 9 and 10.

4.4 Methodology Limitations

The presented methodology has several limitations:

Table 3. Classification accuracy for single-prime features evaluated on TLS domain.

Number of primes in a batch
Group 1
Group 2
Group 3
Group 4

Group 5|13
Group 6

Group 7|11
Group 8|9|10
Group 12
Average

1 10 20 30 100
100.0% 100.0% 100.0% 100.0% 100.0%
42.8% 99.7% 100.0% 100.0% 100.0%
78.0% 100.0% 100.0% 100.0% 100.0%
47.5% 90.3% 95.8% 98.7% 100.0%
1.8% 30.8% 43.7% 51.8% 74.7%
5.2% 48.9% 61.0% 64.8% 76.7%
0.0% 67.3% 92.3% 97.4% 100.0%
37.9% 99.9% 100.0% 100.0% 100.0%
12.8% 61.8% 77.7% 83.9% 97.2%
36.2% 77.6% 85.6% 88.5% 94.3%

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 517

Classification of an Unseen Source. Not all existing sources of RSA keys are
present in our dataset for clustering analysis and classification. This means that
attempting to classify a key from a source not considered in our study will bring
unpredictable results. The new source may either populate some existing group
or have a unique implementation, thus creating a new group. In both cases, the
behaviour of the classifier is unpredictable.

Granularity of the Classifier. There are multiple libraries in a single group.
The user is therefore not shown the exact source of the key, but the whole group
instead. This limitation has two main reasons: 1) Some sources share the same
implementation and thus cannot be told apart. 2) The list of utilized features
is narrow. There are infinitely many possible features in principle and some
may hide valuable information that can further help the model performance.
Nevertheless, the proposed methodology allows for an automatic evaluation of
features using the näıve Bayes method which shall be considered in future work.

Human Factor. The clustering task in our study requires human knowledge.
To be specific, the value of the threshold that splits the libraries into groups (for
a particular feature) is established only semi-automatically. We manually con-
firmed the threshold – when we could explain the difference between the libraries,
or moved it otherwise. Summarized, this complicates the fully automatic evalua-
tion on a large number of potential features. Once solved, the relative importance
of the individual features could be measured.

5 Real-World GCD-Factorable Keys Origin Investigation

Previous research [2,13,14,16] demonstrated that a non-trivial fraction of RSA
keys used on publicly reachable TLS servers is generated insecurely and is prac-
tically factorable. This is because the affected network devices were found to
independently generate RSA keys that share a single prime or both primes.
While an efficient factorization algorithm for RSA moduli is unknown, when two
keys accidentally share one prime, the efficient factorization is possible using the
Euclidean algorithm to find their GCD3. Still, the current number of public keys
obtained from crawling TLS servers is too high to allow for the investigation of
all possible pairs. However, the distributed GCD algorithm [15] allows analyzing
hundreds of millions of keys efficiently. Its performance was sufficient to analyze
all keys collected from IPv4-wide TLS scans [5,21] and resulted in almost 1% of
factorable keys in the scans collected at the beginning of the year 2016.

After the detection of GCD-factorable keys, the question of their origin natu-
rally followed. Previous research addressed it using two principal approaches: 1)
an analysis of the information extractable from the certificates of GCD-factorable
keys, and 2) matching specific properties of factored primes with primes gener-
ated by a suspected library – OpenSSL. The first approach allowed to detect
a range of network routers that seeded their PRNG shortly after boot without
3 Note that the keys sharing both primes are not susceptible to this attack but reveal

their private keys to all other owners of the same RSA key pair.

518 A. Janovsky et al.

enough entropy, what caused them to occasionally generate a prime shared with
another device. These routers contained a customized version of the OpenSSL
library, what was confirmed with the second approach, since OpenSSL code
intentionally avoids small factors of p − 1 as shown by [17].

While this suite of routers was clearly the primary source of the GCD-
factorable keys, are they the sole source of insecure keys? The paper [13] iden-
tified 23 router/device vendors that used the code of OpenSSL (using specific
OpenSSL fingerprint based on avoidance of small factors in p − 1 and informa-
tion extracted from the certificates). Eight other vendors (DrayRek, Fortinet,
Huawei, Juniper, Kronos, Siemens, Xerox, and ZyXEL) produced keys without
such OpenSSL fingerprint, and the underlying libraries remained unidentified. In
the rest of this section, we build upon the prior work to identify probable sources
of the GCD-factorable keys that do not originate from the OpenSSL library.

Two assumptions must be met to employ the classifier studied in Sect. 4.3.
First, we assume that when a batch of GCD-factored keys shares a prime, they
were all generated by sources from a single classification group. This conjecture
is suggested in [13,14] and supported by the fact that when distinct libraries
differ in their prime generation algorithm, they will produce different primes
even when initialized from the same seed. On the other hand, when they share
the same generation algorithm, they inevitably fall into the same classification
group. Second, we assume that if the malformed keys share only single prime, the
PRNG was reseeded with enough entropy before the second prime got generated.
This is suggested by the failure model studied for OpenSSL in [14] and implies
that the second prime is generated as it normally would be.

Leveraging these conjectures, the rest of this section tracks the libraries
responsible for GCD-factorable keys while not relying on the information in the
certificates. First, we describe the dataset gathering process, as well as the fac-
torization of the RSA public keys. Later, successfully factored keys are analyzed,
followed with a discussion of findings.

6 Datasets of GCD-Factorable TLS Keys

The input dataset with public RSA keys (both secure and vulnerable ones) was
obtained from the Rapid7 archive. All scans between October 2013 and July 2019
(mostly in one or two weeks period) were downloaded and processed, resulting
in slightly over 170 million certificates. Only public RSA keys were extracted,
and duplicates removed, resulting in 112 million unique moduli. On this dataset,
the fastgcd [15] tool based on [3] was used to factorize the moduli into private
keys. A detailed methodology of this procedure is discussed in AppendixB.

6.1 Batching of GCD-Factorable Keys

Would the precision and recall of our classifier be 100%, one could process the
factored keys one by one, establish their origin library and thus detect all sources
of insecure keys. But since the classification accuracy of the single-prime TLS

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 519

classifier4 with a single key is only 36%, we apply three adjustments: 1) batch
the GCD-factorable keys sharing the same prime (believed to be produced by
the same library); 2) analyze only the batches with at least 10 keys (therefore
with high expected accuracy); 3) limit the set of the libraries considered for
classification only to the single-prime TLS domain. Since the keys from the
OpenSSL library were already extensively analyzed by [13], we use the mod
feature to reliably mark and exclude them from further analysis. By doing so,
we concentrate primarily on the non-OpenSSL keys that were not yet attributed.
The exact process for classification of factored keys in batches is as follows:

1. Factorize public keys from a target dataset (e.g., Rapid7) using fastgcd tool.
2. Form batches of factored keys that share a prime and assume that they orig-

inate from the same classification group.
3. Select only the batches with at least k keys (e.g., 10).
4. Separate batches of keys that all carry the OpenSSL fingerprint. As a control

experiment, they should classify only to a group with the OpenSSL library.
5. Separate batches without the OpenSSL fingerprint. This cluster contains yet

unidentified libraries.
6. Classify the non-OpenSSL cluster using a single-prime TLS classifier.

6.2 Source Libraries Detected in GCD-Factorable TLS Keys

In total, we analyzed more than 82 thousand primes divided into 2511 batches.
While each batch has at least 10 keys in it, the median of the batch size is 15.
Among the batches, 88.8% of them exhibit the OpenSSL fingerprint. This num-
ber well confirms the previous finding by [13] that also captured the OpenSSL-
specific fingerprint in a similar fraction of keys. We attribute three other batches
as coming from the OpenSSL (8-bit fingerprint), an OpenSSL library compiled
to test and avoid divisors of p−1 only up to 251. Importantly, slightly more than
11% of batches were generated by some library from groups 8, 9, or 10, which
are not mutually distinguishable when only a single prime is available. There are
also negative results to report. With the accuracy over 80% (for a batch size of

Table 4. Keys that share a prime factor belong to the same batch. Classification of
most batches resulted in OpenSSL as the likely source. The rest of the batches were
likely generated by libraries in the combined group 8 | 9 | 10.

Group(s) # batches

1 (OpenSSL) 2230

2 (8-bit OpenSSL) 3

8 | 9 | 10 (various libraries, see Fig. 4) 278

3; 4; 6; 12; 5 | 13; 7 | 11 0 (improbable)

4 Note that without using single-prime model, the results are biased as the shared
prime is considered multiple times in the classification process.

520 A. Janovsky et al.

15) and no batches attributed to any of groups 3, 4, 6, 12, 5 | 13, or 7 | 11, it
is very improbable that any GCD-factorable keys originate from the respective
sources in these libraries (Table 4).

7 Related Work

The fingerprinting of devices based on their physical characteristics, exposed
interfaces, behaviour in non-standard or undefined situations, errors returned,
and a wide range of various other side-channels is a well-researched area. The
experience shows that finding a case of a non-standard behaviour is usually
possible, while making a group of devices indistinguishable is very difficult due
to an almost infinite number of observable characteristics, resulting in an arms
race between the device manufacturers and fingerprinting observers.

Having the device fingerprinted is helpful to better understand the complex
ecosystem like quantifying the presence of interception middle-boxes on the inter-
net [9], types of clients connected or version of the operating system. Differences
may help point out subverted supply chains or counterfeit products.

When applied to the study of cryptographic keys and cryptographic libraries,
researchers devised a range of techniques to analyze the fraction of encrypted
connections, the prevalence of particular cryptographic algorithms, the chosen
key lengths or cipher suites [1,2,4,8,10,12,24]. Information about a particular
key is frequently obtained from the metadata of its certificate.

Periodical network scans allow to assess the impact of security flaws in prac-
tice. The population of OpenSSL servers with the Heartbleed vulnerability was
measured and monitored by [7], and real attempts to exploit the bug were sur-
veyed. If the necessary information is coincidentally collected and archived, even
a backward introspection of a vulnerability in time might be possible.

The simple test for the ROCA vulnerability in public RSA keys allowed to
measure the fraction of citizens of Estonia who held an electronic ID supported
by a vulnerable smartcard, by inspecting the public repository of eID certificates
[19]. The fingerprinting of keys from smartcards was used to detect that private
keys were generated outside of the card and injected later into the eIDs, despite
the requirement to have all keys generated on-card [20].

The attribution of the public RSA key to its origin library was analyzed by
[23]. Measurements on large datasets were presented in [18], leading to accurate
estimation of the fraction of cryptographic libraries used in large datasets like
IPv4-wide TLS. While both [23] and [18] analyze the public keys, private keys
can be also obtained under certain conditions of faulty random number generator
[6,13,14,16,22]. The origin of weak factorable keys needs to be identified in order
to notify the maintainers of the code to fix underlying issues. A combination of
key properties and values from certificates was used.

8 Conclusions

We provide what we believe is the first wide examination of properties of
RSA keys with the goal of attribution of private key to its origin library.

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 521

The attribution is applicable in multiple scenarios, e.g., to the analysis of GCD-
factorable keys in the TLS domain. We investigated the properties of keys as
generated by 70 cryptographic libraries, identified biased features in the primes
produced, and compared three models based on Bayes classifiers for the private
key attribution.

The information available in private keys significantly increases the classifica-
tion performance compared to the result achieved on public keys [23]. Our work
enables to distinguish 26 groups of sources (compared to 13 on public keys) while
increasing the accuracy more than twice w.r.t. random guessing. When 100 keys
are available for the classification, the correct result is almost always provided
(>99%) for 19 out of 26 groups.

Finally, we designed a method usable also for a dataset of keys where one
prime is significantly correlated. Such primes are found in GCD-factorable TLS
keys where one prime was generated with insufficient randomness and would
introduce a high classification error in the unmodified method. As a result, we
can identify libraries responsible for the production of these GCD-factorable
keys, showing that only three groups are a relevant source of such keys. The
accurate classification can be easily incorporated in forensic and audit tools.

While the bias in the keys usually does not help with factorization, the cryp-
tographic libraries should approach their key generation design with a great
care, as strong bias can lead to weak keys [19]. We recommend to follow a key
generation process with as little bias present as possible.

Acknowledgements. The authors would like to thank anonymous reviewers for their
helpful comments. P. Svenda and V. Matyas were supported by Czech Science Foun-
dation project GA20-03426S. Some of the tools used and other people involved were
supported by the CyberSec4Europe Competence Network. Computational resources
were supplied by the project e-INFRA LM2018140. This work was partially supported
by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

A Classifier Results Discussion and Datasets Preparation

Some groups are accurately classified and rarely misclassified even with a sin-
gle key available: namely group 1 (Infineon prior 2017, distinct because of
the ROCA fingerprint), group 2 (Giesecke&Devrient SmartCafe 4.x and 6.0),
group 24 (standard OpenSSL without the FIPS module enabled) and group 26
(Giesecke&Devrient SmartCafe 7.0) are all classified with more than 96% recall.
Groups 1, 2, and 26 are rarely misclassified as origin library (false positive). The
keys from group 25 (OpenSSL avoiding only 8-bit small factors in p − 1) are
misclassified as group 24 (standard OpenSSL) in 31.6% cases, which still iden-
tifies the origin library correctly, only misidentifies the OpenSSL compile-time
configuration.

In contrast, keys from groups 7, 10, 11, 14, 15, and 17 are almost always
misclassified (less than 8% recall, some even less than 1%). However, as dis-

522 A. Janovsky et al.

Table 5. The average classification accuracy of the best performing Bayes classifier.
In the i-th column we consider a classifier successful if the true source of the key is
among i best guesses of our model. Similarly, for each of the 3 columns we evaluate
the success rate when 1, 2, 3, 5 or 10 keys from the same group are available.

Top 1 match Top 2 match Top 3 match
#keys in batch

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15
Group 16
Group 17
Group 18
Group 19
Group 20
Group 21
Group 22
Group 23
Group 24
Group 25
Group 26
Average

1 2 3 5 10
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
86.3% 98.1% 99.8% 100.0% 100.0%
92.7% 99.3% 99.9% 100.0% 100.0%
60.8% 76.3% 79.8% 90.7% 96.6%
73.0% 88.1% 88.5% 83.5% 69.8%
7.6% 18.9% 30.0% 47.9% 73.6%
16.3% 33.5% 44.2% 54.6% 62.8%
12.8% 28.3% 38.9% 50.9% 61.1%
0.0% 24.7% 47.7% 67.9% 92.0%
6.9% 21.8% 34.2% 51.6% 63.1%
54.9% 75.4% 78.2% 71.5% 65.8%
47.2% 57.0% 69.6% 84.8% 96.3%
6.9% 22.4% 40.8% 70.5% 93.6%
0.2% 28.0% 52.7% 80.0% 96.5%
31.4% 63.6% 79.4% 91.1% 99.4%
5.1% 28.6% 50.2% 78.0% 97.6%
12.2% 55.1% 70.5% 78.5% 84.7%
44.0% 54.4% 59.7% 67.3% 78.5%
81.5% 95.2% 98.7% 99.9% 100.0%
53.0% 77.9% 88.4% 97.0% 99.9%
14.6% 39.2% 53.5% 72.5% 92.3%
77.4% 98.0% 99.9% 100.0% 100.0%
96.8% 99.9% 100.0% 100.0% 100.0%
58.3% 86.7% 96.1% 99.7% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
47.7% 64.2% 73.1% 82.2% 89.4%

1 2 3 5 10
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
98.2% 100.0% 100.0% 100.0% 100.0%
94.8% 99.7% 100.0% 100.0% 100.0%
71.5% 90.1% 93.6% 98.7% 99.9%
92.8% 92.8% 97.7% 98.2% 99.9%
77.3% 95.5% 98.8% 99.9% 100.0%
27.5% 56.2% 73.5% 91.3% 99.2%
37.7% 65.7% 79.1% 90.4% 99.0%
18.4% 44.1% 60.8% 79.8% 96.1%
56.7% 87.2% 95.9% 99.4% 100.0%
72.2% 85.0% 95.4% 98.1% 100.0%
52.9% 68.6% 80.9% 93.8% 99.5%
7.7% 41.0% 69.7% 90.8% 99.3%
2.5% 43.4% 65.4% 90.2% 99.4%
40.9% 70.6% 85.4% 96.5% 100.0%
18.3% 51.2% 71.9% 92.0% 99.7%
45.2% 91.0% 98.2% 100.0% 100.0%
54.5% 88.3% 97.3% 99.9% 100.0%
97.2% 100.0% 100.0% 100.0% 100.0%
95.2% 99.7% 100.0% 100.0% 100.0%
78.0% 98.2% 99.8% 100.0% 100.0%
96.8% 99.9% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
87.6% 97.9% 99.6% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
66.3% 83.3% 90.9% 96.9% 99.7%

1 2 3 5 10
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
98.2% 100.0% 100.0% 100.0% 100.0%
96.4% 99.9% 100.0% 100.0% 100.0%
73.0% 91.3% 97.6% 98.8% 100.0%
96.5% 97.0% 99.5% 99.8% 100.0%
92.7% 99.3% 99.9% 100.0% 100.0%
38.6% 63.9% 81.7% 94.2% 99.5%
48.3% 75.9% 87.8% 96.8% 99.8%
52.7% 87.6% 92.5% 98.5% 100.0%
73.2% 95.2% 99.2% 100.0% 100.0%
89.5% 95.7% 99.0% 99.8% 100.0%
66.4% 82.9% 91.4% 98.0% 99.8%
12.4% 53.7% 78.9% 95.4% 99.9%
28.2% 64.6% 81.0% 94.4% 99.7%
48.3% 80.0% 92.1% 98.8% 100.0%
37.7% 73.0% 89.0% 98.1% 100.0%
76.3% 96.1% 99.4% 100.0% 100.0%
62.1% 93.8% 99.1% 100.0% 100.0%
98.9% 100.0% 100.0% 100.0% 100.0%
97.6% 100.0% 100.0% 100.0% 100.0%
97.2% 99.9% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
93.9% 99.7% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
76.1% 90.4% 95.7% 98.9% 100.0%

cussed in the next section, if some additional information is available and can
be considered, this misclassification can be largely remediated.

Keys from group 7 (Libgcrypt) are mostly misclassified as group 6 (PGP SDK
4, 64.5%) or group 13 (Gemalto GXP E64, 20.2%). As libgcrypt is a commonly
used library while groups 6 and 13 correspond to a very old library and card, this
case demonstrates the possibility for further classifier improvement when some
prior knowledge is available. E.g., for the TLS domain, groups corresponding to
old smartcards or non-TLS libraries can be ruled out from the process.

Group 10 (Bouncy Castle since 1.54, Mocana 7.x or HSM Thales nShieldF3)
is misclassified as group 12 (smartcard Taisys SIMoME, 36.3%) or group 5
(Mocana 6.x 21.0%). Additional information can improve classification accuracy
as the Taisys smartcard is unlikely source for the most usage domains. If Mocana
library actually generated the key, only the identified version is incorrect.

Group 11 (cryptlib, Safenet HSM Luna SA-1700, and Feitian and Oberthur
cards) is misclassified as group 12 (smartcard Taisys, 50.2%) or group 20
(Oberthur Cosmo Dual, 20.4%). This is a very similar case as for group 10.

Group 14 (Microsoft and Crypto++, prevalent group) is misclassified as
group 6 (PGP SDK 4, 23.9%), group 12 (card Taisys, 20.1%), group 13 (card
Gemalto GXP E64, 13.5%) or group 5 (Mocana 6.x, 10.7%). Again, for the TLS
domain, the only real misclassification problem is with the Mocana 6.x library.

Group 15 (large group with multiple frequently used libraries) is misclassified
as group 12 (card Taisys, 27.2%), group 13 (card Gemalto GXP E64, 18.1%),

Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys 523

group 20 (card Oberthur, 11.7%) or group 6 (PGP SDK 4, 32.3%). For the TLS
domain, no group from the misclassified ones is likely.

Group 17 (Nettle, Cryptix, FlexiProvider) is misclassified as multiple other
groups where only groups 5 (Mocana 6.x) and 9 (Bouncy Castle prior 1.54 and
SunRsaSign OpenJDK 1.8) cannot be ruled out as unlikely for the TLS domain
(Table 5).

B Obtaining Dataset of GCD-Factorable Keys

The fastgcd [15] tool based on [3] was used to perform the search for the GCD-
factorable keys. Only valid RSA keys were considered5. Running the fastgcd
tool for a high number of keys (around 112 million for Rapid7 dataset) requires
an extensive amount of RAM. Running the tool on a machine with 500 GB of
RAM resulted in only a few factored keys, all sharing just tiny factors, while
the tool did not produce any errors or warnings. The same computation on a
subset of 10 million keys revealed a substantial number of large factors. Likely,
the fastgcd tool requires even more RAM for the correct functioning with such
a large number of keys. To solve the problem, we partitioned the time-ordered
dataset into two subsets of 50 and 62 million keys with an additional third subset
with 50 million keys that partially overlapped both previous partitions. By doing
so, we miss GCD-factorable keys that appeared in the dataset separated by a
considerable time distance (2–3 years). We hypothesise that if a prevalent source
starts producing GCD-factorable keys, we capture a sufficiently large batch of
them within a single subset. In total, we have acquired 114 thousand unique
factors from the whole dataset.

References

1. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH
cipher suites. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1480–1491. ACM (2016)

2. Barbulescu, M., Stratulat, A., Traista-Popescu, V., Simion, E.: RSA weak public
keys available on the internet. In: Bica, I., Reyhanitabar, R. (eds.) SECITC 2016.
LNCS, vol. 10006, pp. 92–102. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47238-6 6

3. Bernstein, D.J.: How to find smooth parts of integers (2004). [cit. 2020-07-13].
http://cr.yp.to/papers.html#smoothpart

4. Cangialosi, F., et al.: Measurement and analysis of private key sharing in the https
ecosystem. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 628–640. ACM (2016)

5. Censys: Censys TLS Full IPv4 443 Scan (2015). [cit. 2020-07-13]. https://censys.
io/data/443-https-tls-full ipv4/historical

6. Batch-GCDing Github SSH Keys (2015). [cit. 2020-07-13]. https://cryptosense.
com/batch-gcding-github-ssh-keys/

5 The factorization occasionally finds small prime factors up to 216, likely because the
public key (certificate) was damaged, e.g., by a bit flip.

https://doi.org/10.1007/978-3-319-47238-6_6
https://doi.org/10.1007/978-3-319-47238-6_6
http://cr.yp.to/papers.html#smoothpart
https://censys.io/data/443-https-tls-full_ipv4/historical
https://censys.io/data/443-https-tls-full_ipv4/historical
https://cryptosense.com/batch-gcding-github-ssh-keys/
https://cryptosense.com/batch-gcding-github-ssh-keys/

524 A. Janovsky et al.

7. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference, pp. 475–488. ACM (2014)

8. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
certificate ecosystem. In: Proceedings of the 2013 ACM Internet Measurement
Conference, pp. 291–304. ACM (2013)

9. Durumeric, Z., et al.: The security impact of https interception. In: Network and
Distributed Systems Symposium. The Internet Society (2017)

10. Electronic Frontier Foundation: The EFF SSL Observatory (2010). [cit. 2020–07-
13]. https://www.eff.org/observatory

11. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense
of Data, Chap. 2, pp. 57–58. Camridge University Press (2012)

12. Gustafsson, J., Overier, G., Arlitt, M., Carlsson, N.: A first look at the CT land-
scape: certificate transparency logs in practice. In: Kaafar, M.A., Uhlig, S., Amann,
J. (eds.) PAM 2017. LNCS, vol. 10176, pp. 87–99. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-54328-4 7

13. Hastings, M., Fried, J., Heninger, N.: Weak keys remain widespread in network
devices. In: Proceedings of the 2016 ACM on Internet Measurement Conference,
pp. 49–63. ACM (2016)

14. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps
and Qs: detection of widespread weak keys in network devices. In: Proceeding
of USENIX Security Symposium, pp. 205–220. USENIX (2012)

15. Heninger, N., Halderman, J.A.: Fastgcd (2015). [cit. 2020-07-13]. https://github.
com/sagi/fastgcd

16. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012).
[cit. 2020-07-13]. https://eprint.iacr.org/2012/064

17. Mironov, I.: Factoring RSA Moduli II (2012). [cit. 2020–07-13]. https://
windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/

18. Nemec, M., Klinec, D., Svenda, P., Sekan, P., Matyas, V.: Measuring popularity of
cryptographic libraries in internet-wide scans. In: Proceedings of the 33rd Annual
Computer Security Applications Conference, pp. 162–175. ACM (2017)

19. Nemec, M., Sys, M., Svenda, P., Klinec, D., Matyas, V.: The return of copper-
smith’s attack: practical factorization of widely used RSA Moduli. In: 24th ACM
Conference on Computer and Communications Security (CCS 2017), pp. 1631–
1648. ACM (2017)

20. Parsovs, A.: Estonian electronic identity card: security flaws in key management.
In: 29th USENIX Security Symposium. USENIX Association (2020)

21. Rapid7: Rapid 7 Sonar SSL full IPv4 scan (2019). [cit. 2020-07-13]. https://
opendata.rapid7.com/sonar.ssl/

22. Software in the Public Interest: DSA-1571-1 openssl - predictable random num-
ber generator (2008). [cit. 2020-07-13]. https://www.debian.org/security/2008/
dsa-1571

23. Svenda, P., et al.: The million-key question—investigating the origins of RSA public
keys. In: Proceeding of USENIX Security Symposium, pp. 893–910 (2016)

24. VanderSloot, B., Amann, J., Bernhard, M., Durumeric, Z., Bailey, M., Halderman,
J.A.: Towards a complete view of the certificate ecosystem. In: Proceedings of the
2016 ACM on Internet Measurement Conference, pp. 543–549. ACM (2016)

https://www.eff.org/observatory
https://doi.org/10.1007/978-3-319-54328-4_7
https://doi.org/10.1007/978-3-319-54328-4_7
https://github.com/sagi/fastgcd
https://github.com/sagi/fastgcd
https://eprint.iacr.org/2012/064
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/
https://opendata.rapid7.com/sonar.ssl/
https://opendata.rapid7.com/sonar.ssl/
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571

MAC-in-the-Box: Verifying a Minimalistic
Hardware Design for MAC Computation

Robert Küennemann(B) and Hamed Nemati

Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany
{robert.kuennemann,hamed.nemati}@cispa.saarland

Abstract. We study the verification of security properties at the state
machine level of a minimalistic device, called the MAC-in-the-Box
(MITB). This device computes a message authentication code based
on the SHA-3 hash function and a key that is stored on device, but
never output directly. It is designed for secure password storage, but
may also be used for secure key-exchange and second-factor authentica-
tion. We formally verify, in the HOL4 theorem prover, that no outside
observer can distinguish this device from an ideal functionality that pro-
vides only access to a hashing oracle. Furthermore, we propose protocols
for the MITB’s use in password storage, key-exchange and second-factor
authentication, and formally show that it improves resistance against
host-compromise in these three application scenarios.

1 Introduction

Practically all large providers of communication and banking services employ
cryptographic hardware in their critical infrastructure. This ranges from expen-
sive hardware security modules, used in the web’s public-key infrastructure and
the banking network, to low-cost devices like smart cards, used in mobile com-
munication and health care. Their purpose is to separate and encapsulate sen-
sitive cryptographic operations in a device that is (a) designed for security and
(b) small enough to be audited. By encapsulating sensitive information within
these small, purportedly secure devices, the surrounding system can exploit the
flexibility of general-purpose operating systems to interoperate with its complex
environment.

Despite this simplicity, and even despite their ubiquity—it is estimated that
there are at least 30 billion smart cards in circulation [30]—the formal verifica-
tion of security properties in cryptographic hardware designs (i.e., at the state
machine level) has received little attention. So far, formal verification focused
on functional correctness, i.e., the correctness w.r.t. the mathematical descrip-
tion of the algorithm, while the security of the algorithm was (hopefully) shown
in a pen-and-paper proof. Historically, this was due to a lack of support for
reasoning over probabilistic systems. Over the last years, this support was con-
tinuously improved with standalone proof assistants [5], as well as frameworks for
Coq [5,32] and Isabelle/HOL [3,29]. They were successfully used to show security
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 525–545, 2020.
https://doi.org/10.1007/978-3-030-59013-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_26

526 R. Küennemann and H. Nemati

properties for mathematical algorithms and even for software implementations,
but not for hardware, due to their focus on probabilistic programs. By contrast,
hardware is typically verified in higher-order logic, using mathematical functions
to model its components [11].

In this work, we demonstrate the practicability of traditional hardware ver-
ification techniques for providing strong security guarantees, even when prob-
abilistic reasoning is not available.1 We develop a minimalistic device for the
computation of message authentication codes (MACs) based on the recently
standardized SHA-3 hash function. We call it MAC-in-the-box (MITB).

This device stores and protects a user-generated key. We can show that this
minimalistic device provides strong guarantees such as confidentiality and unpre-
dictability, given the usual assumption that the hash function behaves like a
so-called random oracle. This holds even if its computing environment is under
attack: In HOL4, we formally verify that, to any outside observer, the informa-
tion gathered by an active attacker capable of compromising the MITB’s host is
limited by the information that can be gained from accessing a hashing oracle. In
the random oracle model, this provides the desired guarantees by construction.
This case study in security hardware design also shows the potential of formal
analysis of hardware in the security setting: the verification helped us to identify
three bugs in the early design of the MITB. We elaborate on these discovered
issues in Sect. 7.

Despite its minimalism, the MITB can be used for various applications,
e.g., establishment of secure channels and second-factor authentication. Its main
application is to secure password databases. Password databases are frequently
targeted to expose millions of passwords and exploit their reuse on other web
pages. The MITB is initialized with a cryptographic key and stores a MAC of
the password instead of the password itself. Even if this MAC is leaked, it is
neither possible to recover the password from it, nor to guess popular passwords
(‘12345’) without online access to the MITB. We formalize the password stor-
age protocol, and protocols for two further applications, showing their security
against host compromise in the symbolic model. Proof scripts and case studies
are available online (https://bit.ly/32cu17B).

Paper Organization: In Sect. 2, we discuss related work on formally verified
cryptographic implementations. In Sect. 3 we introduce the MITB. We define
the security goal in Sec. 4. Sect. 5 to 7 describe the formalization of the MITB,
the threat model and the proof. Before we conclude, we outline three applications
where the MITB improves the security after host compromise in Sect. 8.

2 Related Work

There are various approaches to support cryptographic reasoning in mainstream
theorem provers. The most important aspects here are reasoning about outcome
1 We verify the MITB at the state machine level. Proof-producing synthesis (e.g. [36])

can be used to refine this to the gate-level for future work.

https://bit.ly/32cu17B

Verifying a Minimalistic Hardware Design for MAC Computation 527

Absorbing phase Squeezing phase

m0

c bits

r bits
f

m1

f

m2

f

m3

f

z0

f

Fig. 1. Sponge construction as in SHA-3 (adapted from [23]). The final output consists
of the first n bits of z0.

distributions of random processes described in terms of simple probabilistic pro-
gramming languages, and reasoning about their runtime. Both CertiCrypt [4]
and Verypto [3] were the pioneers in this regard, providing a deep embedding
in Coq and Isabelle, respectively. EasyCrypt [5] is CertiCrypt’s successor and
provides better automation by calling external SMT solvers. It is essentially a
theorem prover on its own, but unlike Coq, Isabelle or HOL-4, it does not strive
to have a small trusted kernel that tactics derive from—a trade-off to speed
up development. More recent approaches prefer a (semi-) shallow embedding to
make it easier to use the theorem prover’s libraries and reasoning infrastruc-
ture. The Foundational Cryptography Framework (FCF) extends Coq’s built-in
functional language Gallina with probabilistic semantics [32]. CryptoHOL [29]
provides a shallow embedding in Isabelle/HOL. All of these approaches have not
been designed to reason about hardware designs, which are typically described in
terms of higher-order functions [11]. We side-step the need for probabilistic rea-
soning in this work and exemplify that, for some cases, it is possible to describe
and prove cryptographic properties like secrecy with standard techniques. While
FCF and CryptoHOL would certainly be useful to formalize surrounding proto-
cols using the MITB, they currently both have drawbacks preventing that use.
FCF’s probabilistic semantics do not allow for recursions or exceptions, which
would be used for modeling network routing and communication between the
MITB and the protocol using it. CryptoHOL cannot express polynomial run-
time, which is a prerequisite to formalizing the threat model.

To our knowledge, all approaches for formal verification on the hardware level
were showing the correctness w.r.t. a functional specification, i.e., in absence of
an adversary [17,19]. There are, however, formalized proofs for implementations
written in C, e.g., for the random number generator HMAC-DRBG [38] and the
HMAC construction in OpenSSL [6], and even for an x86-64 implementation of
SHA-3 [2]. This line of work separates the probabilistic reasoning about the cryp-
tographic algorithm from the correctness of its implementation in presence of an
adversary. Almeida et al. [2], e.g., use Easycrypt to show the indistinguishability
of the Sponge construction from a random oracle, and the Jasmin framework [1] to
show the correctness, as well as the side-channel resistance, of a highly-optimized
implementation. Our main result (Theorem 1) categorizes as a correctness result,
in the sense that it talks about equivalences modulo abstraction, however, our
verificationx objective is not a straight-forward implementation of SHA-3, i.e.,

528 R. Küennemann and H. Nemati

1

1

r

�log2r�

1

n
MITB(r, c, n)f

skip inp

move inp

block inp

size inp

ready out

digest out

Fig. 2. MITB: inputs and outputs

with the same or a similar interface, but a hardware design that uses SHA-3 to
achieve higher-level properties. Furthermore, our goals are orthogonal: first, we
want guarantees for a hardware design, not a software implementation. Second, we
want to demonstrate how probabilistic reasoning can be avoided and traditional
theorem provers be used (Fig. 2).

Existing work on cryptographic hardware like the TPM [14,15,35], hardware
security modules [10,13,16,25,33] or authentication tokens [22,27] operate on
the specification level, abstracting cryptographic bitstrings using a term algebra.
Implementation-specific aspects like the complicated state-machine needed to
correctly apply padding or the low-level access available to an adversary after
compromise are not represented in these models.

3 Hardware Design

The MITB is a standalone device that computes a MAC using the Keccak
family of hash functions [8], which NIST standardized as SHA-3 [18]. A nice
feature of SHA-3 is that it can serve as a message authentication code (MAC)
by simply prepending a secret key to the message, i.e., the function:

mac(k,m) ··= SHA3(k‖m)

is a valid MAC [7]. MACs operate as follows: to ensure the integrity of a message
m, one computes mac(k,m) and attaches it to the message. The communication
partner, who also knows k, can recompute this function and compare the result
to the MAC received. If the result is the same, the communication partner can
be sure the message was created by a party that knows k (typically either the
sender or the receiver himself) and that m was not modified in transit. Previous
hash functions like SHA-1, SHA-2 and MD5 were vulnerable to length-extension
attacks and thus required more complicated constructions like HMAC to serve as
MACs. (Cryptographic) hash functions themselves are functions that are difficult
to invert and are resistant to collision attacks. In contrast to unforgeability, the
main property of a MAC, it is difficult to formalize these properties, hence hash
functions are often abstracted in terms of random oracles. A random oracle is a
randomly chosen function from {0, 1}∗ → {0, 1}n where n is the length of the
hash, i.e., each new input appears to be freshly sampled, but the function itself
is deterministic.

Verifying a Minimalistic Hardware Design for MAC Computation 529

Readystart Absorbing AbsorbEnd10S1

AbsorbEnd110S1

AbsorbEnd0S1

Move

Input k l Input b l, l = r

Input b l, l ≤ r − 4

Input b l
l = r − 3

l = r − 2
l = r − 1

Input b l

Fig. 3. State transition diagram. Not shown: (a) Skip preserves state. (b) In any
absorbing state, Move returns to Ready, but resets volatile memory to 0r+c. Here, k
and b are input blocks and l represent input size.

The Sponge Construction. SHA-3 is based on the ‘sponge construction’ in
which an arbitrary length message is iteratively ‘absorbed’ into a finite state (see
Fig. 1). The number of iterations depends on the length of the message. Once
all message blocks have been absorbed, the resulting state can be ‘squeezed’ to
extract a digest. In general, this squeezing can be used to derive a digest of any
desired length, however, all instances of fixed-length SHA-3 require only a single
squeeze operation.

SHA-3 defines four instances of this construction, but recommends only one
(the others are for testing and light-weight hashing). This instance is defined by
a bitrate of r = 576, a capacity of c = 1024 and an output size n = 512 < r,
i.e., the number of bits to which the output is truncated. The state of the SHA-
3 sponge algorithm thus consists of r + c = 1600 bits. Initially, the state is
0r+c, i.e. each of the 1600 state bits is 0. In each iteration, a state permutation
f : Zr+c

2 → Z
r+c
2 is applied on the state. A detailed formal specification of f is

not given here; f is treated as an uninterpreted parameter in the specification
and proofs. That is, we do not make any assumptions about f itself other than
that the sponge construction with f can be abstracted by a random oracle. The
attacker can compute f on inputs of her choice.

By itself, the sponge construction is only defined for input sizes that are
multiples of r. Therefore, a 10∗1 padding is used, i.e., a bitstring with 1 at
the beginning and end, and sufficiently many 0s in between. In addition, the
SHA-3 specification requires two bits 01 to be added to distinguish fixed-length
SHA-3 from its variable-length siblings SHAKE-128 and SHAKE-256. Hence any
message m is padded to a multiple of r bits by appending at least four bits: first
011, then sufficiently many (|m| + 4 mod r) zeroes, and finally a trailing 1. An
empty message, e.g., is padded to a block 0110r−41.

State Machine. The MITB computes mac(k,m), but keeps k secret. It pro-
vides two operations: overwriting k (reading is not possible by an outsider), and
computing mac(k,m) for a given m. As we detail in Sect. 8, this functionality by
itself is sufficient to improve the resilience of password databases, secure channel
establishment and two-factor authentication against host compromise. As m can
be arbitrarily long, the device operates in a blockwise fashion, absorbing 512 bits

530 R. Küennemann and H. Nemati

per call. Each full block is applied to the current state. If the user indicates an
input of shorter length, a padding is applied and the operation finalized. Only if
the padding was correctly applied, the state may be output.

The MITB has two 1-bit control inputs skip inp and move inp, two data
inputs block inp and size inp, a 1-bit control output ready out and a data
output digest out. It is parametrized on three numbers (r, c, n) and a permu-
tation function f . These are part of the Keccak specification. An actual device
would be manufactured with specific values for the parameters, and we require
that 4 < r, 0 < c and n ≤ r.

The input block inp is r-bits wide and the output digest out is n-bits wide.
The input size inp has sufficient bits to represent a number of size r or less.
For convenience, it is modeled as a number rather than a bitstring. The truth
values T, F model bits 1, 0, respectively. The MITB runs continuously after being
switched on. It is implemented as a state machine using combinational logic
and registers (see Sect. 5). All a user can observe (assuming tamper-resistant
manufacture) are the sequences of values appearing on the outputs ready out
and digest out, which depend on the values input via skip inp, move inp,
block inp and size inp. From a user’s point of view, the MITB can be in
either of two states: Ready or Absorbing. It powers up into state Ready. The
1-bit output ready out indicates whether the state is Ready (ready out = T) or
in some absorbing state (ready out = F).

The input skip inp ‘freezes’ the MITB: holding it T stops the state changing
on successive cycles. If skip inp is F, then input move inp causes the state to
change on the next cycle; in particular it is used to signal that MITB should
start absorbing a message. In the state machine, this is represented as a transition
Move, no matter what values block inp and size inp have. If both move inp
and skip inp are F, we consider this as a transition Input block inp size inp.

MITB has a permanent memory for holding an r-bit secret key. The key
can be set or changed by holding both skip inp and move inpF in the Ready
state. The data being input on block inp then overwrites the stored key. In the
Absorbing state, if both move inp and skip inp are F, we absorb block inp
to compute the MAC in a blockwise fashion. Depending on the message length,
the padding might cause the message to extend to another block, in which case
this additional block needs to be absorbed. As described in the previous section,
the padding adds at least four bits, so a message that is 1, 2 or 3 bits short to
the block length needs to have an extra block for the parts of the padding. Thus
the need for three states that finalize the padding block. E.g., if the message
is two bits short, i.e., size inp is r − 2 in Absorbing, then 01 is appended to
the last block before absorbing it, and MITB moves into state AbsorbEnd10S1
(the ‘S’ can be read as ‘∗’). There, a block 10r−21 is absorbed (inputs block inp
and size inp are ignored) before moving to Ready in the next cycle. Note that
Absorbing also moves back to Ready if size inp ≤ r − 4.

The main correctness property of the device is that if the specified protocol
is used to input a message, then its MAC will appear on digest out. The main
security property is that no matter what inputs are supplied, the secret key

Verifying a Minimalistic Hardware Design for MAC Computation 531

cannot be revealed nor any other information than a valid MAC. In particular,
no chain of inputs can leak parts of the state of the sponge construction before
the padding has been completed.

MAC Computation Protocol. The MAC of m, i.e., the SHA-3 hash of k‖m,
is computed as follows:

1. If ready out = 0, i.e., the device is not in Ready state, transition to the
Ready state using Move, i.e., by inputting F on skip inp and T on move inp
(block inp and size inp are ignored during this step).

2. The device is put into Absorbing state using another Move.
3. The user splits m into a sequence of blocks, m = b1‖b2‖ · · · ‖bn−1‖bn, such

that all blocks except the last one are r-bits wide, i.e., |bi| = r for 1 ≤ i < n
and |bn| < r. If r divides exactly into |m|, then bn is taken to be the empty
block (so |bn| = 0).

4. Starting on the next cycle, and continuing for n cycles, the user performs
transitions Input bi |bi|, i.e., inputs F on both move inp and skip inp, bi on
block inp and |bi| on size inp, where 1 ≤ i ≤ n. During this time F will be
output on ready out.

5. After inputting bn, the user keeps inputting F on skip inp and move inp for
one more cycle until ready out becomes T. On the cycle when this happens,
the hash of k‖n will appear on digest out. The number of cycles taken
depends on |bn|. If |bn| ≤ r−4 then ready out will become T on the cycle
after bn is input. If r−4 < |bn| < r, then ready out will become T the cycle
after bn is input.

Key Update Protocol. The key is updated to value k in two steps.

1. Exactly as step 1 in the MAC computation protocol.
2. Perform transitions Input k 576 by setting both move inp and skip inp to

F, block inp to k and size inp to 576.

4 Security Goals

The MITB is designed to protect password databases in case of a server breach,
but can be used for many other different applications (see Sect. 8). We assume
that an attacker may eventually gain control over this server, in which case the
secrecy of the key should be preserved, but the attacker can compute MACs of
her choice, re-set the key or send arbitrary other commands to the MITB. Before
the attacker gains control, she shall not be able to compute or predict MACs.

Real-World/Ideal-World Formulation. Complex cryptographic properties
are often formulated using the real-world/ideal-world paradigm. The real world

532 R. Küennemann and H. Nemati

describes how the cryptographic primitive or protocol interacts with the adver-
sary, i.e., the threat model. The ideal world describes an idealised setup that pro-
vides the necessary guarantees by construction. In the case of signatures, e.g.,
all signatures are created by a central authority that keeps a list of message-
signature pairs, so only message-signature pairs that it constructed itself are
accepted, thus providing unforgeability by construction. Or, for encryption
schemes, it outputs random bitstrings instead of a ciphertexts, thus providing
confidentiality by construction. If it is not possible to distinguish both worlds,
then the real-world scenario must be sufficiently close to the ideal world that it
can be considered secure.

In our case, the real world consists of the MITB in communication with
some environment, e.g., one of the applications in Sect. 8. The environment uses
the protocol from Sect. 3 to compute a MAC or update the key, but can also
bypass this protocol by declaring the host computer corrupted. In this case, the
environment’s inputs are directly transferred to the MITB.

The ideal world is specified by a simple machine that (a) stores or overwrites
a key k; (b) for every MAC request m, calls a hash oracle with k‖m. (c) If the
environment declares the host system corrupted, the attacker can do nothing
more than to continue to query this oracle, in particular, she does not get access
to k. Our security result in Theorem 1 can thus be informally stated as follows:

For all parameters r, c and n such that r > 4, c > 0 and n ≤ r, and any
sequence of inputs i, the sequence of outputs obtained by sending i to the
real-world is equal to the sequence of outputs obtained by sending i to the
ideal-world.

Hash Functions and the Random Oracle Model. So far, a security defi-
nition for cryptographic hash functions that is both formal and directly applies
to real-life hash functions has not been found. Properties like collision resistance
postulate that there is no known adversary that can provoke a collision, but fun-
damentally, there are adversaries that can create collisions, due to the pigeonhole
principle. We cannot formally reason about all known algorithms.

In cryptographic proofs, hash functions are thus usually abstracted using
random oracles (ROs). A RO has two properties: First, when queried for a new
bitstring m, RO draws a bitstring from the uniform distribution of bitstrings
of length n. Second, if m was queried before, the RO responds with the same
bitstring as before. Since hash functions are deterministic, a RO can be distin-
guished from any fixed hash function. Cryptographic results, e.g., indifferentia-
bility [7] or PRF security [20] hence consider a sponge construction that calls
an oracle to evaluate a randomly chosen permutation (and/or a keyed variant of
the construction [20]). But in SHA-3, the permutation is public and fixed.

Theorem 1 complements these result. It relates the MITB to the ideal world
with the sponge construction for an arbitrary, but fixed permutation. Indifferen-
tiability relates the ideal world with a randomized sponge construction (keyed
or with a randomly chosen permutation) to the ideal world with a random ora-
cle, within certain bounds on the adversary’s running time and the number of

Verifying a Minimalistic Hardware Design for MAC Computation 533

oracle queries. Observe, however, that the step from the deterministic sponge
construction (with a fixed permutation) to the randomised construction used in
cryptographic proofs remains a heuristic; it is (provably) incorrect.

Guarantees Provided by Construction. Once we (heuristically) instantiate
the hash function in the ideal world with a randomly chosen hash function, as
in the RO model,2 we obtain a very clear interpretation of the guarantees that
the ideal world we previously described provides.

1. Confidentiality: The output contains neither information about k, nor the
message m (as it is merely a randomly chosen bitstring).

2. Unpredictability: The MAC computation yields unpredictable values for each
k and m, as long as (k,m) were not queried before (as the result is chosen
freshly).

3. Determinism: If (k,m) were previously queried, the MAC will be the same
(as the RO is deterministic and k‖m constitutes the query). This guarantees
that a MAC can be verified later.

4. Resistance against compromise: The above guarantees hold even if the host
system is compromised.

These guarantees go beyond the guarantees of message authentication codes
(which are allowed to leak information about the authenticated message) or
hash functions (which may leak information about the hashed message, but can
be forged by everyone). We have designed the functionality specifically to suit
secure password storage, our main application.

5 Formalising the MITB

We base the MITB’s definition on the function MITB FUN, which speci-
fies the behaviour abstractly. MITB FUN takes an abstract state s ∈ S

and an input i, and returns the next state. The abstract state s =
〈cntl, pmem, vmem〉 consists of the value of the control register cntl ∈
{Ready, Absorbing, AbsorbEnd(0S1|10S1|110S1)}) and a permanent (pmem) and
volatile (vmem) memory, which are both bit-strings of length r + c. The control
flags correspond to the states described in Sect. 3. An input i can either be Move,
Skip or Input bk len, where bk is a bitstring of size r and len corresponds to
the number of bits of bk that constitutes the input block (thus len ≤ r). The
bitstring bk and number len represent inputs on block inp and size inp.

2 A randomly chosen hash function or an oracle that samples random hash values on
demand are equivalent formulations of the RO model.

534 R. Küennemann and H. Nemati

The definition of MITB FUN uses ML-style pattern matching. Due to lack of
space we skip presenting MITB FUN’s formal definition here. However, its possible
transitions are depicted in Fig. 3. The most complex part of MITB FUN specifies
the state transition corresponding to absorbing a block. What happens depends
on the input length. The complexity here is due to the padding applied by the
devices, as described in Sect. 3. If the block length is less or equal to r − 4,
e.g. 0, the device applies the padding and sets cntl to Ready. If the last block is
one bit short of being a full block (len = r − 1) then one bit of padding is added
and the device enters an absorbing state with cntl = AbsorbEnd0S1. On the
next cycle, the remaining padding (i.e. r−1 zeros and a final T) is added and the
permutation f is applied to vmem before transitioning back to the ready state.
Similar steps are taken if the input block length is equal to r − 2 or r − 3. When
the block size is exactly r, the device starts absorbing a non-final block, which is
done by: (i) appending zero to it, (ii) XOR-ing the result with the current value
of the volatile memory vmem, (iii) applying the Keccak permutation f to the
result of the XOR-ing, and finally, (iv) updating the volatile memory with the
result of applying the function f .

Figure 4 shows the definition of the function MITB which decodes the inputs
into abstract commands Skip, Move and Input and calls MITB FUN.

MITB f (cntl , pmem, vmem)
(skip,move, block , size) =

MITB FUN f (cntl , pmem, vmem)
(if skip = T then Skip
else if move = T then Move
else if size ≤ r then

Input block size
else Skip)

Fig. 4. Definition of MITB function.

MITB STEP f s i =
let (cntl ′, pmem ′, vmem ′) = MITB f s i ;

digest =
(if cntl ′ = Ready
then (T, (r − 1 >< 0) vmem ′)
else (F,ZERO))

in ((cntl ′, pmem ′, vmem ′), digest)

Fig. 5. Definition of step function.

We also define a step function (Fig. 5) which yields the next state of the sys-
tem. The step function behaves like the MITB, but defines the output, too. The
step function takes a permutation f , the current state of the MITB, denoted as
s, and the input i = (skip inp, move inp, block inp, size inp). It returns the
next state of the MITB together with an output. The returned output depends
on the value of cntl in that cycle. In the definition, (h >< l) w represents the
HOL4 bit extraction function for input word w, and h and l are the upper and
lower bound for the number of extracted bits, respectively.

Verifying a Minimalistic Hardware Design for MAC Computation 535

6 Formalizing Security

We define the security of the MITB in terms of a functionality, an idealized
specification of both the functional correctness of the device, and the information
the adversary can learn from it. The popular ‘universal composability’ framework
defines how the MITB ought to relate to this functionality (Fig. 6).

Z

π A

Z

F S

≈

· adversarial pos.

· protocol position

Fig. 6. π (perfectly) emulates F iff, for all A, there exists S such that for all Z, the
lhs network is indistinguishable (or instead: identical) from the rhs.

6.1 Universal Composability

Our security definition follows the real-world/ideal-world paradigm, which can
be generalized into a security notion called emulation.3 Emulation provides prop-
erties similar to refinement and entails a property called universal composability.
Canetti introduced universal composability (UC) in a framework that goes by
the same name [12], but there are several variations of it [21,28]. If a proto-
col or cryptographic primitive π UC emulates an ‘ideal-world’ system F (called
the functionality), then π provides universal composability w.r.t. F . This means
that for the analysis of any higher-level system ρ that uses π, it is sufficient to
analyze the more abstract and thus simpler system where ρ interacts with F
instead—even if multiple copies of π run in parallel.

To formulate the security property, we formalize UC’s communication frame-
work and perfect emulation, the strongest variant of their refinement notion. We
did not seek to prove that UC emulation implies universal composability.

The real world is characterized by the protocol π communicating on two
interfaces, the honest and the adversarial interface. The honest interface provides
inputs, possibly from higher level protocols. A secure channel protocol like TLS,
e.g., receives the instruction ‘Party A requests sending m to Party B’ and may
later output ‘Party B received m from A’. The adversarial interface models the
network: all network communication, e.g., the encrypted TLS records, is sent to
and received from an adversary A. The attacker can hence eavesdrop messages,
but also drop or modify them.

In the ideal world, the functionality F receives the same high-level instruc-
tions on the honest interface.4 Ideally, the messages on the network provide no
3 Also called ‘realization’ [12].
4 More precisely, F specifies this interface, and π tries to implement it accordingly.

536 R. Küennemann and H. Nemati

useful information for the adversary. However, often enough this is impossible;
encryption, e.g., reveals the length of the plain text. Therefore, the functional-
ity makes this so-called leakage explicit by outputting, e.g., the length of the
plaintext on the adversarial interface. To show that the network traffic leaks no
information besides F ’s output on the dishonest interface, most emulation proofs
construct a simulator S that imitates A’s behavior using only this intended leak-
age. Thus, to an outsider, no matter what inputs the protocol receives, for every
attacker A there should be a simulator S such that π interacting with A is indis-
tinguishable from F interacting with S. The comparison assures correctness (as
any difference between the honest protocol and the ideal functionality on the
honest interface can be observed) and confidentiality up to the leakage in F (if
the adversary can learn something that the simulator cannot reproduce from the
input provided by F , then there would not be a simulator that achieves indis-
tinguishability). The inputs to the protocol can come from a high-level protocol
using it (e.g., a p2p system using TLS for communication between peers), and
are abstracted as a Turing Machine Z. In the real world, Z interacts with π
(on the honest interface) and with A (on the adversarial interface). In the ideal
world, Z interacts with F and S.

It was shown5 that for any environment Z and adversary A that are success-
ful in distinguishing real world and ideal world, a new environment Z ′ can be
constructed that simulates A and only relies on a special attacker Ad, the so-
called dummy adversary. The dummy adversary only forwards messages between
Z ′ and π. Thus, in practice, one shows the existence of a simulator S such that
for all environments Z, π and Ad are indistinguishable from F and S.

We formalize the communication structure in UC as follows. A message
datatype indicates the routing for messages between the protocol position (occu-
pied by π in real world, F in the ideal world), the adversary position (occupied
by Ad in the real word, S in the ideal world) and the environment position
(occupied by Z in both cases).

Message=EnvtoP of α |EnvtoA of β |PtoEnv of γ |PtoA of δ |AtoEnv of η |AtoP of φ

Initially, the environment sends a message of type EnvtoP or EnvtoA to either
the adversary or the protocol. The function ROUTE p a, for a protocol step
function p and an adversary step function a, expects the previous state of p
and a and a value of type Message to be routed. It computes the next state of
the protocol and adversary and the next message to be routed. If the message
matches EnvtoP or AtoP, the protocol step function is applied, the protocol’s
state updated, and the output converted into type Message, e.g.:

ROUTE p a ((state p, state a),EnvtoP m) =
(let (state p n, out) = p state p (EnvtoP m)

in ((state p n, state a),Proto Wrapper out))

5 This simplification was proven sound for the UC framework [12], GNUC frame-
work [21] and the IITM framework [28], so for brevity, we will assume it part of the
definition.

Verifying a Minimalistic Hardware Design for MAC Computation 537

The wrapper Proto Wrapper transforms a datatype for protocol output into
Message, i.e., values that match either PtoEnv or PtoA. This ensures that the
protocol cannot send messages that appear to originate from the adversary, and
vice versa. Messages addressing the adversary are handled analogously.

Before the environment is addressed again, there can be additional routing
steps between the protocol and the adversary. Messages to the environment,
however, terminate a routing step and are returned. We will later restrict the
communication to three routing steps before the environment is again in control,
which is sufficient for our case (otherwise, a routing error is produced).

ROUTE p a ((state p, state a),PtoEnv m) = ((state p, state a),PtoEnv m)

Note that the scheduling model of UC gives control to the party that received
a message. More elaborate scheduling mechanisms are modeled by including
scheduling requests to the adversary in the protocol.

In UC, the environment is a Turing Machine, however, in this work, we
consider the strongest notion of emulation, called perfect emulation. Here, the
sequence of messages the environment receives is the same (rather than indistin-
guishable to all polynomial time environments). We, furthermore, do not assume
any runtime bounds on the participants.6 This simplifies the analysis: We can
model the set of environments as the set of input sequences and consider all other
participants in terms of mathematical functions, and thus avoid probabilistic
reasoning altogether. This is sufficient for the MITB because it is entirely deter-
ministic, due to the key being generated outside the device and the deterministic
nature of the hash function. We hence define (EXEC p a), again on protocol and
adversary step functions p and a, that applies a sequence of inputs i to an initial
protocol and adversary state s = (sa, sp) until one of these two parties outputs
a message addressed to the environment.

The environment is fully described by the sequence of inputs it sends to the
protocol or the adversary, hence we define an execution as follows:

EXEC p a s [] = []

EXEC p a s (i :: il) = (let (s′, out) = EXEC STEP p a (s, i) in (s′, out) ::EXEC p a s′ il)

In this definition the EXEC STEP function defines a single execution step from
the perspective of the environment.

6.2 Security Definition

The Real World. The environment Z communicates with parties that com-
pute MACs using the MITB via a library, as well as an attacker, who can take
control over the machine the MITB is attached to and thus bypass this library.
The attacker also communicates with Z and can thus provide Z with informa-
tion that allows it to distinguish real world and ideal world. As the attacker is

6 This is w.l.o.g. for all participants except for the simulator, which, however, is obvious
to run in polynomial time in our case.

538 R. Küennemann and H. Nemati

instantiated with the dummy attacker, which is defined as follows, Z can access
the adversarial interface, in this case the MITB, via this indirection.

DUMMY ADV v0 (EnvtoA m) = (0,Adv toP m)
DUMMY ADV v1 (PtoA m) = (0,Adv toEnv m)

For messages from the environment, PROTO models the protocols for MAC
computation and key updates we defined in Sect. 3 (see Appendix B in [26] for
the precise modeling).

The Ideal World. In the ideal world, Z receives ‘correct’ output for whatever
message it inputs. ‘Correct’ means the following: given a message (SetKey , k), it
stores k. For any subsequent message (Mac,m), it outputs H(k||m), where H is
a hash function. The function (FMAC H s) describes the output and next state
of the ideal-world functionality in state s, parametrized with the hash function H
to represent the hashing oracle H. The only state that FMAC holds is the stored
key k and the corruption status (T iff corrupted).

FMAC H (K ′,F) (EnvtoP (SetKey k)) = ((k ,F),Proto toEnv 0w)
FMAC H (K ′,F) (EnvtoP (Mac m)) =

((K ′,F),Proto toEnv (H (word to bits K ′ ‖ m)))

After the corruption signal was received (and forwarded to the adversary),
FMAC responds to oracle queries, computing H(k‖m):

FMAC H (K ′,F) (EnvtoP Corrupt) = ((K ′,T),Proto toA WasCorrupted)
FMAC H (K ′,T) (AtoP CorruptACK) = ((K ′,T),Proto toEnv 0w)
FMAC H (K ′,T) (AtoP (OracleQuery m)) =

((K ′,T), Proto toA (OracleResponse (H (word to bits K ′ ‖ m))))

The responses on the attacker interface formalize that the attacker does not
receive information beyond the ability to compute MACs: Via the adversarial
interface of FMAC, the simulator has access to the hash function H, but not to
the MITB. Note that, in contrast to the real world, FMAC notifies the simulator
that it was corrupted, so the simulator knows whether it has to deny or simulate
direct access to the MITB. After corruption, all honest queries are ignored:

FMAC H (K ′,T) (EnvtoP (SetKey v16)) = ((K ′,T),Proto toEnv 0w)
FMAC H (K ′,T) (EnvtoP (Mac v17)) = ((K ′,T),Proto toEnv 0w)

Our main result is that, no matter which inputs the environment sends, the
outputs are the same. In the next section, we will define a simulator SIM that
mimics the behavior of the MITB with access only to the hashing oracle provided
by FMAC. We establish its existence by constructing it so that:

Theorem 1. For all parameters r, c and n such that r > 4, c > 0 and
n ≤ r and permutations f : {0, 1}r+c → {0, 1}r+c, if the protocol and dummy
adversary, as well as the functionality FMAC and the simulator are in their
respective initial states s and s′, then, for any sequence of inputs i, the output
sequences tracereal = EXEC (PROTO (MITB STEP f)) DUMMY ADV s i, and
trace ideal = EXEC (FMAC (Hash f 0)) (SIM MITB STEP f) s′ i are equal.

Verifying a Minimalistic Hardware Design for MAC Computation 539

Note that f is a free variable in this theorem, and can stand for any permuta-
tion. The function (Hash f 0) formalizes the sponge construction with permuta-
tion f and initial state 0r+c, including the SHA-3 padding and the truncation to
n bits. For lack of space, we will not elaborate on its formalization. The protocol,
which is parametric in the MITB step function, is instantiated with MITB STEP
from Sect. 5, which itself is parametric in the underlying permutation f .

7 Proof Overview

We proceed to outline the proof of Theorem 1. To this end, we first present the
simulator and the relational invariant used to characterize possible states that
the system can enter at runtime.

The simulator pretends to be the attacker from the real world, i.e., the
dummy adversary. It simulates the information the functionality outputs in
the ideal world, in particular the MITB’s output after corruption. To imi-
tate the MITB, without knowing the last key that was stored, the simu-
lator uses the oracle H(k‖m), where H is a hash function and || denotes
the bit-string concatenation function. The simulator SIM ignores queries until
the variable corrupted is set. Afterwards, it parses each message m sent by
the environment into an input (skip inp, move inp, block inp, size inp) ∈
B × B × {0, 1}r × N

r. We formulate the behavior of SIM for the case where
Corrupt = T as a function on its state (cntl, vmem,m, overwt, s) ∈ {Ready,
Absorbing, AbsorbEnd(0S1|10S1|110S1)} ×{0, 1}n×{0, 1}∗×B×S and the input
(skip inp, move inp, block inp, size inp). The output of the function is a new
state, and the simulated output of the MITB, i.e., (ready out, digest out) ∈
B × {0, 1}n. Due to lack of space, the detailed definition of SIM is included in
Appendix C in [26].

Our invariant to prove emulation (i) relates the permanent and volatile mem-
ory in the real world to the key and the messages received so far in the real world,
in case the MITB was corrupted; and guarantees that (ii) corruption status in
real and ideal world correspond; and that (iii) if the real world is corrupted, the
control state of the MITB simulated by SIM and the actual MITB in the real
world correspond. The proof of Theorem 1 proceeds by induction on the length
of the input i. Table 1 gives details on the specification and proof size.

Table 1. Size of formal proof in lines of code (loc).

Definitions (loc) Theorems incl. proofs (loc)

Universal composability 137 —

Sponge construction 58 512

MITB 547 1962

Intuitively, the existence of the simulator shows that all outputs of the MITB
are hashes of correctly padded messages, and therefore non-revealing. The con-

540 R. Küennemann and H. Nemati

struction of the simulator pointed us to the need of an extra absorbing state—our
initial design trusted the library to remember to request a final block. Later, we
incorporated the two bits that are meant to distinguish SHA-3 from the SHAKE
family, hoping the proof would not be affected. On the contrary, it required the
introduction of another two absorbing states, which manifested in the impossibil-
ity of proving the memory invariant with only one absorbing state. Finally, failed
attempts in showing the state invariant indicated the need for an initialization
procedure in MAC computation protocol (as well as the key update protocol),
to ensure that the device is indeed in Ready state. These three flaws, which we
discovered early on, while proving emulation of the ideal functionality, seem to
be stereotypical flaws when designing hardware for a hostile environment. None
of them would have been discovered by tests for functional correctness.

8 Applications

We propose three applications for the MITB. Each provides improved resilience
against host compromise. All properties we mention have been verified using
off-the-shelf protocol verification tools. As protocols are notorious for their com-
plex interleaving of a possibly unbounded number of small programs running
in concurrency, these are the right tool for the job, as they have a large degree
of automation. These tools operate in the symbolic model, where cryptographic
outputs are abstracted using a term algebra, e.g., a MAC is a term of form
mac(k,m), where mac is a function symbol, and k,m themselves are terms. The
MITB is reflected in these models by the simple fact that the term k used in
the key-position remains secret even if the attacker gains control over its host
system (see Appendix D in [26] for the models).

Secure Password Storage: All businesses that store password data need to
secure these password databases for the case where they get stolen. To store
passwords securely, the MITB is initialized with a fresh key during set-up, then
used to compute MACs on the hashed and salted password. We used ProVerif’s
diff-equivalence [9] to show strong secrecy, i.e., resistance against offline password
guessing. The verification takes less than a second for an unbounded number of
passwords7. Furthermore, the MITB could replace the YubiHSM, which costs
about $ 650,8 in an even more elaborate password storage scheme by Almeshekah
et. al.

Establishing a Secure Channel: The MITB can harden a variation of the
signed Diffie-Hellman key-exchange protocol, which is used, e.g., in TLS and
IPsec. Due to the MITB, this protocol provides perfect forward secrecy (even if
the adversary gains control over one of the MITBs, all session keys established

7 Computed on a MacBook Pro with 3,1 GHz Intel i7 and 16 GB RAM.
8 Pessl et al. estimate a SHA-3 implementation on an RFID token to cost about

$ 0.05 [31]. As the MITB’s state machine and key storage do not fundamentally add
to that, production cost will likely be dominated by the bus technology, e.g., USB.

Verifying a Minimalistic Hardware Design for MAC Computation 541

prior to this event remain secret) and post-compromise security (even if the
adversary temporarily gains control over one of the MITBs, once the participants
come together and set up a new key, future session keys will again remain secure.)
Using the tamarin/SAPIC [24,34] toolchain, we establish both properties for an
unbounded number of sessions. The proof terminates in1516 s (See footnote 7).

Two-Factor Authentication: We demonstrate that the MITB is compatible
with the FIDO standard for universal 2nd factor authentication [37] (see Fig. 7
in Appendix A). With tamarin/SAPIC, we establish perfect forward security
and post-compromise security for authentication, i.e., the property that any
successful login on the web server was initiated by the user. The proof terminates
within 9 s (See footnote 7).

9 Conclusion

With the MAC-in-the-box we presented the first full-fledged formal security argu-
ment for a hardware design. Despite its simplicity, the device has various appli-
cations. It also demonstrates that interactive theorem provers, which have an
excellent track record for hardware verification, can in some cases be directly
applied to the analysis of cryptographic constructions—even if support for prob-
abilistic reasoning is missing or insufficient.

Our technique applies when common abstractions in cryptography are heuris-
tics rather than mathematically valid simplifications. Examples are random ora-
cles for hash functions, or pseudorandom functions for block ciphers. Designs
based on these primitives essentially argue that they provide proper access to
these abstractions. For cases where this property holds unconditionally, our app-
roach has advantages over cryptographic frameworks that come with additional
proof obligations, or are not available for the theorem prover of choice.

Acknowledgements. This project was Graham Steel’s and Michael J. C. Gordon’s
idea, who both supported it in its early stages. A substantial part of the MITB’s
formalisation was contributed by Mike, who this paper is dedicated to. The first author
is grateful for his guidance and his kindness in difficult times. This work was carried out
in the framework of the French-German-Center for Cybersecurity, a collaboration of
CISPA and LORIA. The second author is supported by the German Federal Ministry
of Education and Research (BMBF) through funding for the CISPA-Stanford Center
for Cybersecurity (FKZ: 16KIS0762).

542 R. Küennemann and H. Nemati

A Two-Factor Authentication

MITB M User U Website W

challengei
$← {0, 1}n

Sign-up phase

(W, login, password , challengei)

ri = mac(k, (W, login, password , challengei))

ri

store challengei, ri
Login for url url and session s

login, password

choose challengej from store

challengej

(W, login, password , challengej)

rj

h((challengei, url ,W), rj)

Fig. 7. U2F protocol for user U using MITB M to sign up and login on website W ,
simplified.

References

1. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp.
1807–1823. ACM (2017)

2. Almeida, J.B., et al.: Machine-checked proofs for cryptographic standards: indif-
ferentiability of sponge and secure high-assurance implementations of SHA-3. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2019, London, UK, 11–15 November 2019, pp. 1607–1622.
ACM (2019)

Verifying a Minimalistic Hardware Design for MAC Computation 543

3. Backes, M., Berg, M., Unruh, D.: A formal language for cryptographic pseudocode.
In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 353–376. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89439-1 26

4. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based crypto-
graphic proofs. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, 21–23
January 2009, pp. 90–101. ACM (2009)

5. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 5

6. Beringer, L., Petcher, A., Katherine, Q.Y., Appel, A.W.: Verified correctness and
security of OpenSSL HMAC. In: USENIX Security Symposium, pp. 207–221 (2015)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

8. Bertoni, G., Daemen, J., Peeters, M., and Assche, G.V.: Online Keccak Specifica-
tions (2009). http://keccak.noekeon.org/

9. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: Symposium on Logic in Computer Science (LICS
2005), pp. 331–340. IEEE Computer Society (2005)

10. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: 17th ACM Conference on Computer and Commu-
nications Security (CCS 2010), pp. 260–269. ACM (2010)

11. Camilleri, A., Gordon, M., Melham, T.: Hardware verification using higher-order
logic. Technical report, University of Cambridge, Computer Laboratory (1986)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Foundations of Computer Science, pp. 136–145. IEEE Computer
Society (2001)

13. Dax, A., Tangermann, S., Künnemann, R., Backes, M.: How to wrap it up - a
formally verified proposal for the use of authenticated wrapping in PKCS#11. In:
Computer Security Foundations Symposium (2019)

14. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: 24th IEEE Computer Security Foundations Symposium
(CSF 2011), pp. 66–82. IEEE Computer Society (2011)

15. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication
in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 111–125. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19751-2 8

16. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11 and proprietary
extensions. J. Comput. Secur. 18(6), 1211–1245 (2010)

17. Deschamps, J.-P.: Hardware Implementation of Finite-Field Arithmetic. McGraw-
Hill Inc., New York (2009)

18. Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Technical report (2015)

19. Erkök, L., Carlsson, M., Wick, A.: Hardware/software co-verification of crypto-
graphic algorithms using cryptol. In: Formal Methods in Computer-Aided Design,
2009. FMCAD 2009, pp. 188–191 (2009)

https://doi.org/10.1007/978-3-540-89439-1_26
https://doi.org/10.1007/978-3-540-89439-1_26
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
http://keccak.noekeon.org/
https://doi.org/10.1007/978-3-642-19751-2_8
https://doi.org/10.1007/978-3-642-19751-2_8

544 R. Küennemann and H. Nemati

20. Gaži, P., Pietrzak, K., Tessaro, S.: The exact PRF security of truncation: tight
bounds for keyed sponges and truncated CBC. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 368–387. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 18

21. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. Cryp-
tology ePrint Archive (2011). http://eprint.iacr.org/

22. Jacomme, C., Kremer, S.: An extensive formal analysis of multi-factor authenti-
cation protocols. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, 9–12 July 2018, pp. 1–15. IEEE Computer Society
(2018)

23. Jean, J.: TikZ for Cryptographers (2016). https://www.iacr.org/authors/tikz/
24. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global

state. J. Comput. Secur. 24, 583–616 (2016)
25. Kremer, S., Künnemann, R., Steel, G.: Universally composable key-management.

In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol.
8134, pp. 327–344. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40203-6 19

26. Künnemann, R., Nemati, H.: MAC-in-the-Box: Verifying a Minimalistic Hard- ware
Design for MAC Computation (extended). https://bit.ly/2yyttvL

27. Künnemann, R., Steel, G.: YubiSecure? Formal security analysis results for the
Yubikey and YubiHSM. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM
2012. LNCS, vol. 7783, pp. 257–272. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38004-4 17

28. Küsters, R., and Tuengerthal, M.: The IITM model: a simple and expressive model
for universal composability. Technical report 2013/025, Cryptology ePrint Archive
(2013)

29. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 20

30. NV, G.: Smart card basics - A short guide (2019). https://www.gemalto.com/
companyinfo/smart-cards-basics

31. Pessl, P., Hutter, M.: Pushing the limits of SHA-3 hardware implementations to fit on
RFID. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 126–141.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 8

32. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46666-7 4

33. Scerri, G., Stanley-Oakes, R.: Analysis of KeyWrapping APIs: generic policies,
computational security. In: 29th Computer Security Foundations Symposium, pp.
281–295. IEEE Computer Society (2016)

34. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

35. Shao, J., Qin, Y., Feng, D., Wang, W.: Formal analysis of enhanced authoriza-
tion in the TPM 2.0. In: 10th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS 2015), pp. 273–284. ACM (2015)

36. Slind, K., Owens, S., Iyoda, J., Gordon, M.: Proof producing synthesis of arithmetic
and cryptographic hardware. Form. Asp. Comput. 19(3), 343–362 (2007)

https://doi.org/10.1007/978-3-662-47989-6_18
http://eprint.iacr.org/
https://www.iacr.org/authors/tikz/
https://doi.org/10.1007/978-3-642-40203-6_19
https://doi.org/10.1007/978-3-642-40203-6_19
https://bit.ly/2yyttvL
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-662-49498-1_20
https://www.gemalto.com/companyinfo/smart-cards-basics
https://www.gemalto.com/companyinfo/smart-cards-basics
https://doi.org/10.1007/978-3-642-40349-1_8
https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Verifying a Minimalistic Hardware Design for MAC Computation 545

37. Srinivas, S., Balfanz, D., Tiffany, E., Alliance, F., Czeskis, A.: Universal 2nd factor
(U2F) overview. FIDO Alliance Proposed Standard (2015)

38. Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A., Appel, A.W.:
Verified correctness and security of mbedTLS HMAC-DRBG. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2017), pp. 2007–2020. ACM (2017)

Evaluating the Effectiveness of Heuristic
Worst-Case Noise Analysis in FHE

Anamaria Costache1(B), Kim Laine2, and Rachel Player1

1 Royal Holloway, University of London, Egham, UK
{anamaria.costache,rachel.player}@rhul.ac.uk

2 Microsoft Research, Seattle, USA
kim.laine@microsoft.com

Abstract. The purpose of this paper is to test the accuracy of worst-
case heuristic bounds on the noise growth in ring-based homomorphic
encryption schemes. We use the methodology of Iliashenko (Ph.D. thesis,
2019) to provide a new heuristic noise analysis for the BGV scheme. We
demonstrate that for both the BGV and FV schemes, this approach
gives tighter bounds than previous heuristic approaches, by as much as
10 bits of noise budget. Then, we provide experimental data on the noise
growth of HElib and SEAL ciphertexts, in order to evaluate how well
the heuristic bounds model the noise growth in practice. We find that,
in spite of our improvements, there is still a gap between the heuristic
estimate of the noise and the observed noise in practice. We extensively
justify that a heuristic worst-case approach inherently leads to this gap,
and hence leads to selecting significantly larger parameters than needed.
As an additional contribution, we update the comparison between the
two schemes presented by Costache and Smart (CT-RSA, 2016). Our new
analysis shows that the practical crossover point at which BGV begins
to outperform FV occurs for very large plaintext moduli, well beyond
the crossover point reported by Costache and Smart.

1 Introduction

Fully homomorphic encryption enables the evaluation of arbitrary polynomials
on encrypted data, without requiring access to the secret key. In contrast, some-
what homomorphic encryption enables the evaluation of limited functions on
encrypted data; this is usually characterised by a bound of the depth of the cir-
cuits that can be evaluated. The first fully homomorphic encryption scheme was
presented by Gentry [22], whose construction augmented a somewhat homomor-
phic encryption scheme with a technique known as bootstrapping.

In all homomorphic encryption schemes ciphertexts contain noise that grows
during homomorphic evaluation operations. Once the noise exceeds a certain
threshold, decryption will fail. In practice, managing the noise to ensure it is
always below the threshold can be done in two ways. The first approach uses the
bootstrapping procedure, which takes as input a ciphertext with large noise, and
outputs a new ciphertext which has less noise and can be further computed on.
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 546–565, 2020.
https://doi.org/10.1007/978-3-030-59013-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_27&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_27

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 547

Hence by bootstrapping at appropriate points, the entire evaluation can be per-
formed. The second approach is to pre-determine the function to be evaluated and
set the parameters so as to allow for the noise growth that this specific function
will incur. Using this method, we are sure that the output ciphertext at the end
of the evaluation will have noise below the threshold, thus no bootstrapping will
be necessary and correct decryption is ensured. In either case, good understand-
ing of the noise growth behaviour is essential to achieve correctness and optimal
performance. In fact, a good understanding of the noise growth in any scheme is
crucial to parameter setting, large parameters remaining one of the main hurdles
in homomorphic encryption development.

Contributions. This paper presents two main contributions. Firstly, we evalu-
ate the effectiveness of the heuristic worst-case method. We do so by reworking
the noise growth estimates produced by this method for the somewhat homomor-
phic encryption (SHE) schemes BGV [10] and FV1 [21]. We use the Iliashenko
method [27] for obtaining the heuristic bounds. The bounds for FV were pre-
sented in [27], with the exception of modulus switching, while the BGV bounds
we present using this method are new. We compare these new bounds against
the previous heuristic analyses [18,23,24], and show that Iliashenko’s approach
improves on the previous approach by as much as 10 bits of noise budget in cer-
tain settings, particularly so for the FV scheme. To demonstrate this, we provide
the noise estimated by the old bounds and the new approach in Tables 1, 2, 3,
and 4.

Next, we evaluate the practical noise growth incurred when evaluating homo-
morphic operations in BGV and FV by looking at their implementations in the
HElib [26] and SEAL [36] libraries, respectively. The first HElib noise results
concern the growth of the critical quantity [18] and can be found in Table 1. In
order to facilitate comparison, we define and implement in HElib a noise budget
for the critical quantity for BGV, analogous to the invariant noise budget [36]
for FV that is implemented in SEAL. The results in terms of the noise budget
are presented in Table 2. Our SEAL noise results are presented in Tables 3 and 4,
for the binary encoding and batch settings, respectively. We find that, despite
the improvements mentioned above, the predictions are not tight, and that a
significant gap between the predicted noise and the actual noise remains. We
will refer to this gap as the heuristic-to-practical gap.

We conclude that a worst-case heuristic estimate of homomorphic noise
growth is inadequate. That is to say, we conjecture that the theoretical bounds
we present in this work cannot be made tighter. We give an extensive justifi-
cation for this conjecture, and comment on other methods we attempted for
improvement, in Sect. 6. Therefore, we propose further tightening the heuristic-
to-practical gap as an open problem. We believe that a better model of the noise
growth behaviour can only be achieved by fine-tuning the analysis of a specific
scheme to its specific implementation.

Our second main contribution, which can be of independent interest, is to
use our improved analysis to update the Costache-Smart [18] comparison of the
1 FV is based on a scheme of Brakerski [9] and hence is sometimes referred to as BFV.

548 A. Costache et al.

BGV and FV schemes. We improve upon the previous work of Costache-Smart
in several ways. As well as applying the updated noise analysis following [27],
we use a different notion of noise for FV than that used in [18], namely the
invariant noise. In addition, our comparison relies on an up-to-date security
analysis conforming to HE standards [1]. Indeed, it has since been shown [17]
that parameters used in [18] that were estimated to have 80 bits of security are
now estimated to have as little as 50. In contrast, the HE standards security
recommendations start at the level of 128 bits [1].

The BGV and FV schemes remain two of the most popular SHE schemes, as
they continue to see many performance improvements and optimisations and are
implemented in several actively maintained homomorphic encryption libraries,
including PALISADE2 as well as SEAL and HElib. It is therefore an important
question to accurately assess how they perform and compare them against one
another.

We conduct our comparison for a range of plaintext moduli t and present
our results in Tables 5, 6, 7, 8 and 9. We expect that BGV will outperform FV
asymptotically and our results remain consistent with this. An important issue
in practice is to understand where the crossover point is, and our key conclusion
is that the crossover point is somewhere between t = 232 and t = 264, far beyond
the crossover point t ≈ 28 reported in [18].

In most cases, our results show that BGV and FV present only minor per-
formance differences in terms of supporting a specific homomorphic evaluation.
We can conclude that, from the perspective of computational capabilities, the
question of whether or not BGV should be preferred to FV should not be an
important one when deciding between the two schemes.

Related Work. The BGV and FV schemes are among the primary schemes
being considered in the ongoing effort to standardise homomorphic encryption3.
Indeed, the Homomorphic Encryption Security Standard [1] explicitly mentions
the comparison of BGV and FV as an open problem, and motivates the present
work. The analysis presented in our work should be expected to feed into the
ongoing effort of the standardisation consortium [11] towards automation such
as compilers or optimiser toolchains. An accurate noise growth estimator is likely
to be a central component of any such tool.

A comparison of BGV as implemented in HElib and FV as implemented
in SEAL was identified as an interesting and challenging open problem in [13].
Al Badawi et al. [35] investigate the behaviour of the BEHZ [5] and HPS [25]
variants of FV4, and call for further study on BEHZ-FV noise growth, which
further motivates the present work.

Previous comparisons of homomorphic encryption schemes include [18,28,30].
In our comparison, we do not consider newer schemes such as CKKS [15] or
TFHE [16], which come with entirely different trade-offs. We also do not consider

2 https://git.njit.edu/palisade/PALISADE.
3 HomomorphicEncryption.org.
4 The results of [35] were recently revisited by Bajard et al. [6].

https://git.njit.edu/palisade/PALISADE
http://HomomorphicEncryption.org

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 549

the NTRU-based schemes YASHE [8] and LTV [32], which are vulnerable to
attacks in “overstretched” parameter settings of interest [4,29].

2 Preliminaries

For reasons of space, we recall the BGV scheme in Appendix A and the FV
scheme in Appendix B. As in prior work [18], we deviate from the original
description of FV by also defining a modulus switching operation. In partic-
ular, we describe switching from a modulus q to a modulus p.

Parameters. A Ring-LWE-based (levelled) FHE scheme is parameterised by
L, n, Q, t, χ, S, w, � and λ. There are L primes p0, . . . , pL−1 which are used
to form the chain of moduli q0, . . . , qL−1. Elements in the chain of moduli are
formed as qk =

∏k
j=0 pj . The dimension n is a typically chosen as a power of two,

and we will only use such n in this work. The dimension n, plaintext modulus
t and the chain of moduli parameterise the underlying plaintext and ciphertext
rings. In particular, the ciphertext modulus Q = qL−1 =

∏L−1
j=0 pj is the product

of all the primes. Each intermediate prime qj corresponds to a level and all
ciphertexts are with respect to a specific level. We denote by q some fixed level
when describing the schemes, so that the ciphertext space at any given moment
is Rq = Zq[x]/(xn + 1). Note that for key generation and for fresh ciphertexts,
we always have q = Q. The plaintext space is always Rt = Zt[x]/(xn +1). Let w
be a base, then �+1 = �logw q�+1 is the number of terms in the decomposition
into base w of an integer in base q. The security parameter is λ.

The Ring-LWE error distribution is denoted χ and is typically a discrete
gaussian with standard deviation σ = 3.2 [1]. The underlying Ring-LWE prob-
lem, parameterised by n, Q and σ, is a variant with small secret. The parameter
S denotes the secret key distribution. In the FV scheme [21] the distribution S is
the uniform distribution on the subspace of Rq consisting of polynomials whose
coefficients are in the set {0, 1}. In the SEAL implementation [36] the distribu-
tion S is the uniform distribution on the subspace of Rq consisting of polynomials
whose coefficients are in the set {−1, 0, 1}. In the BGV scheme [10], the distribu-
tion S is the same as the error distribution χ. In the HElib5 implementation [26],
S is the distribution on the subspace of Rq consisting of polynomials whose coef-
ficients are in the set {−1, 0, 1} where each coefficient is sampled as follows: the
element 0 is sampled with probability 0.5 and the elements ±1 are each sampled
with probability 0.25. To obtain the heuristic bounds for both BGV and FV, we
take S to be the uniform distribution on the subspace of Rq consisting of poly-
nomials whose coefficients are in the set {−1, 0, 1}. This ensures our comparison
of the two schemes in Sect. 5 is fair.

Canonical Embedding Norm. Following previous work [18,23,24,27], we will
present heuristic bounds for the noise growth behaviour of FV and BGV with
respect to the canonical embedding norm ‖·‖can. Throughout this work, the

5 Since January 2019 the HElib default secret distribution is no longer sparse.

550 A. Costache et al.

notation ‖a‖ refers to the infinity norm of a, while ‖a‖can refers to the canonical
embedding norm. The canonical embedding norm of an element a is defined to
be the infinity norm of the canonical embedding6 σ(a) of a, so ‖a‖can = ‖σ(a)‖.

We will use the following properties of the canonical embedding norm. For any
polynomial a ∈ R we have ‖a‖ ≤ cm ‖a‖can ≤ ‖a‖1 where cm is a constant known
as the ring expansion factor (see [20]). We have cm = 1 when the dimension n is
a power of two [20]. In this case, it suffices for correctness to ensure that ‖v‖can
is less than the maximal value of ‖v‖ such that decryption succeeds. For any
polynomials a, b we have ‖ab‖can ≤ ‖a‖can ‖b‖can.

For our bounds, we use the method presented in [27]. This allows us to
improve our noise bounds compared to previous ones [18,23,24] by as much as
10 bits of noise budget in certain settings. Therefore, the noise bounds we present
in this work are much tighter than ones presented in previous works.

Let R = Z[x]/(xn + 1) and let ζ be a primitive 2nth root of unity (it does
not matter which one, by the definition of the canonical embedding norm). Let
a ∈ R be a polynomial for which the variance of each coefficient is Va. Then,
the variance of the random variable a(ζ) is nVa [18,24,27]. We use the fact that
erfc(6) ≈ 2−55 to obtain the following bound ‖a‖can ≤ 6

√
n
√

Va.
We also use the following facts. Let Va and Vb the variances of the coefficients

of two polynomials a ∈ R and b ∈ R chosen from zero-mean distributions, and
let γ be a constant. The variance of the coefficients of the polynomial a + b
is Va+b = Va + Vb. The variance of the coefficients of the polynomial γa is
Vγa = γ2Va. The variance of the coefficients of the polynomial ab is Vab = nVaVb

(see [27] for a proof).
The variances in situations of interest for this paper are as follows. The

coefficients of a polynomial f that are distributed uniformly in [−k
2 , k

2] have
variance Vf ≈ k2

12 . The coefficients of a polynomial e that are drawn from an
error distribution χ, which has standard deviation σ, have variance Ve = σ2.
The coefficients of a polynomial s that are drawn from the uniform distribution
on the ternary set {−1, 0, 1} have variance Vs = 2

3 .

3 BGV Noise Growth in Practice

3.1 Noise Growth Behaviour

In this section we present new heuristic bounds on the noise growth behaviour
of BGV, developed using the methodology of [27]. In Sect. 3.2 we compare our
bounds with those that would be obtained following the methodology presented
in prior work [18,23,24], and show that our analysis provides a better estimate
of the noise growth.

Our bounds use the critical quantity [18] definition of noise, which is the
notion of noise used in the HElib implementation of BGV. We assume that the
plaintext is chosen uniformly at random from the plaintext space. We further
assume that the secret key distribution S is the uniform ternary distribution.
6 For a definition of the canonical embedding and other algebraic background, see [33].

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 551

Earlier heuristic bounds for BGV [18,23,24] were presented assuming a sparse
secret distribution, in line with earlier versions of HElib. For comparison with
our new bounds, we redo the prior analysis so that in Tables 1 and 2, the ‘[18]’
column refers to bounds that would be obtained using the heuristic method
presented in [18] and assuming a uniform ternary distribution for the secret key.

Definition 1 (BGV critical quantity [18]). Let ct = (c0, c1) be a BGV
ciphertext encrypting the message m ∈ Rt. Its critical quantity v is the
polynomial

v = [ct(s)]q = (c0 + c1s) (mod q) .

During decryption, we first compute the critical quantity and then take the
result modulo t. If there is no wraparound modulo q then for some integer
polynomial k, the critical quantity satisfies [ct(s)]q = m + tk. The reduction
modulo t hence returns m. Therefore for correctness, we require that ‖v‖ ≤ q/2.

Lemma 1 (Maximal noise [18]). A BGV ciphertext ct encrypting a message
m can be correctly decrypted if the critical quantity v satisfies ‖v‖ < q/2.

Encrypt: Let ct be a fresh BGV encryption of a message m ∈ Rt. With high
probability, the critical quantity v in ct satisfies

‖v‖can ≤ 6t

√
n

12
+ nσ2

(
4
3
n + 1

)

.

To see this, we use that for a polynomial a with coefficients with variance
Va, and a scalar t, the polynomial ta has coefficients with variance Vat = t2Va.
The noise polynomial is v = m + t(e1 + e2s − eu). Its coefficients have variance

Vv = Vm+t(e1+e2s−eu) = Vm + t2Ve1+e2s−eu = t2
(

1
12

+ σ2

(
4
3
n + 1

))

.

Hence ‖v‖can ≤ 6
√

nVv = 6
√

nt2
(

1
12 + σ2

(
4
3n + 1

))
.

Add [18]: Let ct1 and ct2 be two BGV ciphertexts encrypting m1,m2 ∈ Rt,
and having critical quantities v1, v2, respectively. Then the critical quantity vadd
in their sum ctadd satisfies ‖vadd‖can ≤ ‖v1‖can + ‖v2‖can.

Mult [18]: Let ct1 and ct2 be two BGV ciphertexts encrypting m1,m2 ∈ Rt,
and having critical quantities v1, v2, respectively. Then the critical quantity vmult

in their product ctmult satisfies ‖vmult‖can ≤ ‖v1‖can · ‖v2‖can.

Relinearize: Let ct be a BGV ciphertext encrypting m and having noise v. Let
ctrelin be the ciphertext obtained by the relinearization of ct. Then with high
probability, the critical quantity vrelin in ctrelin satisfies

‖vrelin‖can ≤ ‖v‖can + t
√

(� + 1)nwσ
√

3 .

The justification is analogous to the FV relinearization bound proved in [27].

552 A. Costache et al.

ModSwitch: Let ct be a BGV ciphertext encrypting m with critical quantity v
with respect to a modulus q. Let ctmod be the ciphertext encrypting m obtained
by modulus switching to the modulus p. Then with high probability, the critical
quantity vmod in ctmod satisfies

‖vmod‖can ≤ p

q
‖v‖can + t

√
3n + 2n2 .

Let ctmod = (c′
0, c

′
1), the result of the modulus switching operation applied

to ct = (c0, c1). As in [18], we let τi be the rounding error of p
q · δi. Then:

‖c′
0 + c′

1s‖can ≤ p

q

(‖c0 + c1s‖can + ‖δ0 + δ1s‖can
) ≤ p

q
‖v‖can + ‖τ0 + τ1s‖can

≤ p

q
‖v‖can + 6t

√
n

12

(

1 +
2n

3

)

.

3.2 Practical Experiments

In this section we compare the observed critical quantity in HElib ciphertexts
formed as a result of certain homomorphic evaluation operations with expected
estimates on the noise growth from the heuristic upper bounds. We run the
following experiment for a certain number of trials: we step through a specific
homomorphic evaluation, and for each operation, we record the observed noise
growth. We then output the mean of the observed noise. Separately, we compute
an estimate of the noise growth using the heuristic bounds presented in Sect. 3.1.

HElib offers a debugging function7 that implements an augmented decryp-
tion, which also returns the critical quantity v. We modify this to create a
function that returns ‖v‖.

Table 1. The column x gives the logarithm to base 2 of the observed mean of the
noise in HElib ciphertexts over 10000 trials of a specific homomorphic evaluation for
parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives an
estimate of the noise growth using heuristic bounds obtained following our analysis.
The remaining column gives an estimate of the noise growth using heuristic bounds
obtained following an analysis as in [18].

n Enc Add Mult ModSwitch

[18] E x [18] E x [18] E x [18] E x

2048 19.0 17.1 5.12 20.0 18.1 5.62 39.0 35.1 14.7 – – –

4096 20.0 18.1 5.19 21.0 19.1 5.69 40.9 37.1 15.3 15.5 14.1 3.62

8192 21.0 19.1 5.25 22.0 20.1 5.76 42.9 39.1 15.8 16.5 15.1 3.65

16384 22.0 20.1 5.31 23.0 21.1 5.81 44.9 41.1 16.4 17.5 16.1 3.70

7 decryptAndPrint.

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 553

Table 2. The column x gives the observed mean of the noise budget in HElib cipher-
texts over 10000 trials of a specific homomorphic evaluation for parameter sets with
dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives an estimate of the noise
budget using heuristic bounds obtained following our analysis. The remaining column
gives an estimate of the noise budget using heuristic bounds obtained following an
analysis as in [18].

n Enc Add Mult ModSwitch

[18] E x [18] E x [18] E x [18] E x

2048 34.0 35.0 41.1 33.0 34.0 40.2 14.0 17.0 26.0 – – –

4096 88.0 89.0 97.9 87.0 88.0 97.0 67.0 70.0 82.4 38.0 39.0 38.1

8192 196 197 209 195 196 209 174 177 194 146 147 150

16384 415 416 433 414 415 432 392 395 416 365 366 373

The evaluation is as follows in the i-th trial. We first generate fresh cipher-
texts ct1 and ct2 encrypting i+1 and i. Next, generate ct3 as the homomorphic
addition of ct1 and ct2. Next, generate ct4 as the homomorphic multiplication
of ct3 and ct2. Finally, generate ct5 by modulus switching ct4 down to the next
prime in the chain.

Relinearization for BGV as defined in Appendix A above is not implemented
in HElib. Instead, a different variant is implemented (see [24]). Indeed, relin-
earization can be (and, in practice, is) implemented in a number of ways, all
with easy-to-understand additive noise growth. Therefore, we do not investigate
the noise growth behaviour during relinearization in our practical experiments.

Table 1 gives the results of this experiment for 10000 trials. We used the
follow default parameter settings in HElib: we set the standard deviation of the
error distribution as σ = 3.2 and the security parameter8 λ = 80. The HElib
parameter c, which relates to relinearization, was set as a default value c = 2.
We set the number of plaintext slots as s = 1 as we did not require batching
functionality. We used the default HElib secret distribution, which slightly differs
from a uniform ternary secret distribution, as discussed in Sect. 2.

We set the dimension9 n ∈ {2048, 4096, 8192, 16384}. The HElib parameter
nBits is passed to the function buildModChain which sets an appropriate chain
of moduli for which the product of all the primes, Q, satisfies Q ≈ 2nBits. We
set nBits ∈ {54, 109, 218, 438}, which are the same values as for the default Q
in SEAL [36]. The parameters for n = 2048 were not large enough to perform
modulus switching. We set the plaintext modulus10 as t = 3. Such a small
plaintext modulus means that the values encrypted in our trials ‘cover’ the whole

8 In HElib, the security parameter is typically denoted as k. This may not be an
accurate security estimate [3].

9 In HElib, the dimension is selected as m where n = ϕ(m) and ϕ(·) is the Euler
totient function. Hence, we set m ∈ {4096, 8192, 16384, 32768}. We verified that our
other choices allowed for these m using the function FindM.

10 In HElib, the plaintext modulus is parameterised as pr hence we set p = 3 and r = 1.

554 A. Costache et al.

plaintext space and hence the assumption used in the noise bounds that m is a
random plaintext is reasonable.

Table 1 shows that the heuristic bounds hold on average: the actual observed
mean noise is less than the estimated noise. However, it will be difficult to directly
compare these results with those for experiments in SEAL, which are given in
terms of a noise budget, rather than the noise itself [36]. In order to facilitate an
easier comparison, we define a noise budget for BGV that is analogous to the
invariant noise budget in FV.

Definition 2 (BGV noise budget). Let ct be a BGV ciphertext with respect
to modulus q having critical quantity v. The noise budget for this ciphertext is
defined as

log2 (q) − log2 (‖v‖) − 1 .

To see that this is an analogous definition, note that for FV the invariant
noise budget is defined in [36] as − log2(2 · ‖v‖) = log2 (q) − log2 (q · ‖v‖) − 1.
This captures that for correctness in FV, we require that q · ‖v‖ < q

2 . Similarly,
Definition 2 captures that for correctness in BGV, we require ‖v‖ ≤ q/2.

We implemented a function in HElib to measure the noise budget, and a
function to estimate the noise budget using the heuristic bounds. We then ran
the same experiment as detailed above to compare the growth of the observed
noise budget in HElib ciphertexts with that predicted from the heuristic bounds.
Table 2 gives the results of this experiment for 10000 trials.

We see from Tables 1 and 2 that the heuristic bounds hold: the observed
mean noise is less than the estimated noise, so the observed mean noise budget
is more than the estimated noise budget. Moreover, we see that using our new
analysis to obtain the heuristic bounds gives an estimate closer to the observed
noise than an analysis as in the line of prior work [18,23,24].

Despite this improvement, the heuristic bounds are still not tight11. For
example, for fresh ciphertexts, our heuristic bound predicts 6 to 17 fewer bits
of remaining noise budget than the mean observed. We see that the gap com-
pounds as we move through the computation: after multiplication, the gap is 9
to 21 bits. The gap narrows after modulus switching, to below 7 bits. Although
the HElib implementation uses a secret key distribution that is slightly different
from the uniform ternary distribution assumed in the heuristic bounds, we do
not expect this to significantly contribute to the gap.

We also found that the observed noise budgets follow narrow distributions,
which gives us confidence that the heuristic bounds will hold very often, and
so could be relied upon to set parameters for correctness. However, since the
heuristic bounds are not tight, they may lead us to choose larger parameters than
is necessary. It is not clear that choosing BGV parameters using the heuristic
bounds will be optimal for performance.

11 An exception is modulus switching for n = 4096, which seems to be well-modelled
by both approaches for obtaining heuristic bounds.

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 555

4 FV Noise Growth in Practice

4.1 Heuristic Upper Bounds

To evaluate the effectiveness of heuristic worst-case noise analyses for FV, we will
use the heuristic upper bounds for FV presented by Iliashenko [27]. For reasons of
space we do not reproduce these bounds, except for modulus switching, for which
a bound was not presented in [27]. In Sect. 4.2 we compare these bounds with
those that would be obtained following the methodology of previous work [14,
18,23,24], and show that the Iliashenko method provides a better estimate of
the noise growth.

The bounds use the invariant noise definition for noise [14], as used in the
SEAL [36] implementation of FV. We assume that the secret key distribution
S is the uniform ternary distribution, as in SEAL [36], and that plaintexts are
chosen uniformly at random in the plaintext space.

Definition 3 (FV invariant noise [36]). Let ct = (c0, c1) be an FV ciphertext
encrypting the message m ∈ Rt. Its invariant noise v is the polynomial with the
smallest infinity norm such that, for some integer coefficient polynomial a,

t

q
ct(s) =

t

q
(c0 + c1s) = m + v + at .

The intuition for this definition of noise is that v is exactly the term which will
be removed by the rounding in a successful decryption. Therefore for correctness,
we require that ‖v‖ < 1

2 [36].

ModSwitch: Let ct be an FV ciphertext encrypting m with invariant noise v with
respect to a modulus q. Let ctmod be the ciphertext encrypting m obtained by
modulus switching to the modulus p. Then with high probability, the invariant
noise vmod in ctmod satisfies

‖vmod‖can ≤ ‖v‖can +
t

p
·
√

3n + 2n2 .

The bound can be seen as analogous to the BGV modulus switching bound
(Sect. 3.1) and is justified by a similar argument.

4.2 Practical Experiments

In this section we compare the observed noise in SEAL ciphertexts formed as a
result of certain homomorphic evaluation operations with expected estimates on
the noise growth from the heuristic upper bounds. We run the following exper-
iment for a certain number of trials: we step through a specific homomorphic
evaluation and for each operation we record the observed noise growth. We then
output the mean of the observed noise. Separately, we compute an estimate of
the noise growth using the heuristic bounds.

556 A. Costache et al.

Recall that since ‖v‖ ≤ ‖v‖can, we can use the bounds presented in Sect. 4.1
as upper bounds for the infinity norm ‖v‖ of the invariant noise v. Rather than
working with the invariant noise v directly, since it can be an extremely small
quantity, SEAL instead uses the current invariant noise budget [36], which is
defined as − log2(2 · ‖v‖).

We conduct the same evaluation in SEAL as we did in Sect. 3.2 for HElib.
In particular, this means we do not measure the noise growth in relinearization.
Apart from the reasons discussed in Sect. 3.2, this is also necessary for two
reasons. Firstly, the choice of the parameter w is no longer part of the API
in SEAL, so it is difficult to compare to the relinearization heuristic bound.
Secondly, SEAL reserves one of the chain of moduli as ‘special prime’ used
both in relinearization and in a modulus switching implemented as part of the
encryption operation. This reduces noise in a fresh SEAL ciphertext, but deviates
from a plain FV encryption, and hence would not be accurately captured by the
fresh noise bound presented in [27]. We modify SEAL to disable this special
prime functionality. This enables us to obtain data on the noise growth in an
implementation of plain FV encryption, at the cost of being unable to investigate
relinearization.

The evaluation is as follows in the i-th trial. First, generate fresh ciphertexts
ct1 and ct2 encrypting i + 1 and i. Next, generate ct3 as the homomorphic
addition of ct1 and ct2. Next, generate ct4 as the homomorphic multiplica-
tion of ct3 and ct2. Finally, generate ct5 by modulus switching ct4 down to
the next prime in the chain. We ran this evaluation over 10000 trials, using the
SEAL default parameters n, Q, σ for the 128-bit security level for dimensions
n ∈ {2048, 4096, 8192, 16384}. The SEAL default parameters for n = 2048 cor-
respond to a chain of only one modulus, and hence we cannot perform modulus
switching in this case. We used a plaintext modulus t = 256. Such a plaintext
modulus means that the values encrypted in our trials ‘cover’ the whole plaintext
space and hence the assumption used in the noise bounds that m is a random
plaintext is reasonable. To generate the plaintexts encoding i + 1 and i, we used
the default binary encoder. Table 3 reports on the results of this experiment12.

In a second experiment, we repeated the above evaluation using a batch
encoder. In each trial we generate two plaintexts, encoding the values j and
j +1 for j ∈ {0, 1, . . . , n} respectively in each of the n slots. To enable batching,
we changed the plaintext modulus to be t = 65537, a prime congruent to 1
modulo 2n. All other parameters were kept the same. Table 4 reports on the
results of this experiment for 10000 trials.

Tables 3 and 4 show that the heuristic bounds indeed hold: the observed mean
noise is less than the estimated noise, so the observed mean noise budget is more
than the estimate obtained using the heuristic bounds. This gives us confidence
that the heuristic bounds will hold very often, and so can be used reliably to

12 Bajard et al. [6] recently identified a bug in the implementation of multiplication
in SEAL, resulting in a ciphertext that is has more noise than expected when the
plaintext modulus is large. Our experiments, using a small plaintext modulus t =
256, are not affected. This bug is expected to be fixed in SEAL v3.5.

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 557

Table 3. Binary encoder setting. The column x gives the observed mean of the invariant
noise budget in SEAL ciphertexts over 10000 trials of a specific homomorphic evaluation
for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives
an estimate of the noise budget using heuristic bounds obtained following our analysis.
The remaining column gives an estimate of the noise budget using heuristic bounds
obtained following an analysis as in prior work [14].

n Enc Add Mult ModSwitch

[14] E x [14] E x [14] E x [14] E x

2048 27.0 29.0 35.4 26.0 28.0 35.0 0.000 8.00 16.9 – – –

4096 81.0 83.0 90.0 80.0 82.0 89.1 51.0 61.0 69.8 31.0 33.0 50.2

8192 189 191 198 188 190 198 157 168 178 139 141 151

16384 408 410 418 407 409 417 375 386 396 358 360 365

Table 4. Batching setting. The column x gives the observed mean of the invariant noise
budget in SEAL ciphertexts over 10000 trials of a specific homomorphic evaluation for
parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives an
estimate of the noise budget using heuristic bounds obtained following our analysis.
The remaining column gives an estimate of the noise budget using heuristic bounds
obtained following an analysis as in prior work [14].

n Enc Add Mult ModSwitch

[14] E x [14] E x [14] E x [14] E x

2048 19.0 21.0 27.4 18.0 20.0 27.0 0.000 0.00 1.00 – – –

4096 71.0 71.0 82.0 70.0 70.0 81.1 32.0 41.0 54.0 23.0 25.0 42.3

8192 179 179 190 178 178 190 139 148 161 131 133 143

16384 398 398 410 397 397 409 356 366 380 350 352 357

set parameters to ensure correctness. However, the bounds do not appear to be
tight. Indeed, for encryption, the heuristic bound predicts 6 to 8 (respectively 6
to 12) fewer bits of remaining noise budget than the mean observed in Table 3
(respectively Table 4). This gap is compounded as the number of operations
increases, reaching 8 to 17 (respectively 7 to 14) bits after multiplication in
Table 3 (respectively Table 4, for n = 4096 and above). It appears that the gap
reduces after modulus switching, with 8 or 9 fewer bits of remaining noise budget
than the mean observed in both Table 3 and Table 4. Comparing to Table 2 we
see that these trends are all similar to the HElib case. Finally, notice that while
the new method tightens the bounds by up to 3 bits for BGV as seen in Tables 1
and 2, for FV the improvement is more dramatic. Indeed, the new analysis
tightens the bounds by as much as 10 bits in the case of the multiplication
operation, as seen in Tables 4 and 3. This difference can be explained by looking
at the multiplication bounds. The BGV bound is very simple (recall Sect. 3.1)
while the complexity of the FV bound implies that this scheme has a much larger
benefit from a tighter analysis.

558 A. Costache et al.

Table 5. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 3.

Scheme Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 4.75 6.77 8.77 8.77 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8

FV 4.75 6.77 8.77 8.77 8.77 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8

Table 6. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 256. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

Scheme Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 6.77 8.77 8.77 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 – –

FV 4.75 6.77 8.77 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8

Table 7. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 32768. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

Scheme Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 6.77 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 – – – –

FV 6.77 8.77 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 – – –

5 Updated Comparison Between BGV and FV

In this section we compare the BGV and FV schemes, improving on a prior
comparison by Costache and Smart [18]. Our first main improvement is to select
parameters that achieve a security level λ = 128 according to the Homomorphic
Encryption Standard [1]. In contrast, the prior work [18] relied on a security
analysis by Lindner and Peikert [31], which has been shown to be incorrect [2,3].
In fact, as shown in [17], FHE parameters which were estimated by [31] to have
80 bits of security had as little as 51 bits of security according to [2,3]. Our second
main improvement is to use a heuristic noise analysis following the methodology
of Iliashenko [27]. Our experimental results in Sects. 3 and 4 show that this
analysis more closely represents the noise growth in implementations than the
heuristic analysis that was used in [18].

Methodology. We now describe the homomorphic evaluation function used in
our comparison, which is the same as was used in [18]. We begin by guessing the
dimension n. We go through a pre-determined circuit as follows: we take a fresh
ciphertext, perform ζ additions, followed by a multiplication, and a relinearization.

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 559

Table 8. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 232. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

Scheme Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 6.77 8.77 10.8 12.8 12.8 12.8 12.8 – – – – – – – –

FV 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 – – – – – – –

Table 9. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 264. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

Scheme Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 8.77 10.8 12.8 12.8 12.8 – – – – – – – – – –

FV 10.8 10.8 12.8 12.8 – – – – – – – – – – –

We then modulus switch down to the next prime in the chain, perform ζ additions,
followed by a multiplication and relinearization, and so on. After modulus switch-
ing to the smallest prime,we check if we get a decryption error. If that is the case, we
increase the guess, and repeat the procedure until decryption succeeds. Each of the
circuits we consider in this work is parameterised by a number of additions ζ and a
multiplicative depth L. Any circuit that is to be homomorphically evaluated con-
sists of additions and/ or multiplications, thus this approach is as comprehensive
as can be. We refer to the reader to [19] for real-life applications of such circuits.

Parameter Selection. For the given circuit, and for a fixed level L, plaintext
modulus t, and security level λ, our goal is to find the smallest parameter set,
in terms of ciphertext size in kilobytes, such that decryption succeeds. While we
could have considered other criteria such as key size, it is ciphertexts which are
sent over networks and computed on, thus a very large ciphertext could present
the biggest overhead in an implementation. Therefore, we believe ciphertext size
is the most relevant criterion.

To keep the comparison fair, we assume a uniform ternary distribution for
the secret keys, as well for the ephemeral keys sampled in encryption, in both
BGV and FV. Following the choice in [18], we perform ζ = 8 additions before
each multiplication. The ring constant is set to cm = 1, as n (and hence m)
is always a power of two. We consider a range of levels L of circuits, choosing
L ∈ {2, 4, 6, . . . , 30}. We set the standard deviation σ = 3.2, which follows
the recommendation in the Homomorphic Encryption Standard [1]. We set the
parameters n and (top modulus) Q as those recommended in the Homomorphic

560 A. Costache et al.

Encryption Standard [1] to achieve a security level λ = 128 when the secret
follows a uniform ternary distribution.

Asymptotically, we expect that BGV will outperform FV. We investigate
a range of plaintext moduli to understand where the practical crossover point
is. We first perform the comparison using plaintext modulus t = 3, which was
shown to be optimal among integral bases for encoding by Costache et al. [19],
and is well within the regime for which FV is reported to be more performant
in [18]. We then consider a plaintext modulus t = 256, a choice slightly beyond
the crossover point according to [18]. We also perform the comparison with the
plaintext moduli t = 32768, t = 232 and t = 264, which are all well beyond the
reported crossover point.

Results and Analysis. Table 5 presents the results of the comparison for
plaintext modulus t = 3. We see that, as the level increases, the point at which
we need to switch to the next parameter set is often the same for both schemes.
However, for L ∈ {10, 18} we see that BGV required a larger parameter set
than FV. This would suggest that for small plaintext modulus, FV is sometimes
preferable to BGV. This is in agreement with the findings of [18].

Table 6 presents the results of the comparison for plaintext modulus t = 256.
Again, for most values of L, the ciphertext sizes were the same for both BGV
and FV. However, for L ∈ {2, 4, 8, 28, 30} we see from Table 6 that BGV required
a larger parameter set than FV. Indeed, the computation for L ∈ {28, 30} could
not be supported for BGV using any parameter set. The results for plaintext
modulus t = 32768, presented in Table 7, are similar. This would suggest that
FV continues to outperform BGV even after the crossover point reported in [18].

In Table 8, for plaintext modulus t = 232, we see that depending on the
level, sometimes BGV outperforms FV and sometimes vice versa. In Table 9, for
plaintext modulus t = 264, we see that FV required a larger parameter set than
BGV for L = 2 and BGV could support up to L = 10 levels while FV could only
support L = 8. This would suggest that by plaintext modulus t = 264 we have
entered the regime in which BGV outperforms FV.

In summary, our results are consistent with the asymptotic expectation
that BGV will outperform FV. However, they also indicate that the practi-
cal crossover point is far beyond that reported in [18], being somewhere between
t = 232 and t = 264. Across all tables, we see that for most values of L, both BGV
and FV required the same minimal values of n and Q to support the computa-
tion and hence the ciphertext sizes were the same. We can additionally conclude
that BGV and FV present only minor performance differences from the point of
view of computational capabilities.

Limitations. We stress that this is a comparison of how the noise growth
behaviour impacts correctness in the BGV and FV schemes: we ignore correct-
ness issues coming from decoding failure. Our comparison is naturally limited in
several other aspects. For example, we only consider a certain specific computa-
tion, for which we do not attempt to make any scheme-specific optimisations that
may be possible. Also, we note that while the choice of plaintext modulus t = 3

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 561

is optimal for integral bases, recent work has demonstrated the benefits of using
non-integral bases [7,12] or using t a polynomial rather than an integer [14].

6 Improving the Heuristic-to-practical Gap

In this section, we present additional supporting evidence for our main conclusion
that the worst-case heuristic approach is inadequate.

Different Definitions of Noise Result in a Similar Gap. In a fresh FV
encryption (see Appendix B), the message m is scaled up by Δ = �q/t� to put it
in the high-order bits. In decryption, we cancel Δ by multiplying by t/q, but this
introduces a rounding term of the form rt(q) · m, since typically q is not exactly
divisible by t. The invariant noise, defined such that t/q · (ct(s)) = m + v + at,
folds this rounding term into the noise. However, notice that this rt(q) · m term
is only introduced by the decryption process: this term is not a part of the
noise that the ciphertext carries before a decryption is performed. Therefore,
including this term in every intermediate ciphertext will lead to overestimates
that compound. We modified our experiments to take this into account and found
that while this would represent a slight improvement for modelling the noise in
fresh ciphertexts, it does not significantly improve the heuristic-to-practical gap.

Worst-Case Bounds are Inherently Loose. Our approach to obtain heuris-
tic bounds requires us to bound Gaussian random variables in the canonical
embedding. For example, a Gaussian random variable e, with mean zero and
standard deviation σ is bounded as ‖e‖can ≤ B ·σe, for some B, where σe = σ

√
n.

Following [18], we use B = 6, while HElib uses B = 10 as a default [26]. On the
one hand, we never see ‖e‖can this large in experiments, which is not surprising
because the probability of ‖e‖can > B · σe is extremely low. On the other hand,
to prove a heuristic bound of this type in theory, we need to ensure B is large
enough (such as B = 5 or B = 6) to obtain a ‘reasonable’ failure probability.
For example, we have erfc(5) ≈ 2−40, while erfc(6) ≈ 2−50.

An Average-Case Analysis Would be Complicated by Nonlinearity.
The TFHE scheme [16] uses an appealing average-case approach to estimate
noise growth, rather than worst-case bounds. In this approach, the coefficients
of the noise in a TFHE ciphertext are modelled as independent subgaussians,
and the variance of these subgaussians is traced through the homomorphic eval-
uation operations. This heuristic has been experimentally verified for the gate
bootstrapping operation [16, Figure 10], showing in this case the noise in an out-
put ciphertext can be modelled as a Gaussian of a certain variance. Moreover,
every elementary operation in TFHE can be implemented via gate bootstrap-
ping on a linear combination of ciphertexts [16, Table 1]. Hence, by linearity, all
noises in TFHE ciphertexts can be modelled as subgaussian and it is easy to
follow through the analysis of the variances.

In contrast, in the case of BGV and FV, we have a nonlinear noise growth in
multiplication. In [34] it was shown that while a Central Limit argument could be
used to approximate the noise in a BGV-like ciphertext as Gaussian, the quality

562 A. Costache et al.

of such an approximation would tend to decrease after many multiplications
because the true noise distribution would have heavier and heavier tails. Hence
it is not clear if an average-case approach as used in [16] would tightly model the
noise growth in BGV or FV after many multiplications. Resolving this would be
an interesting direction for future work.

Acknowledgements. Player was partially supported by the French Programme
d’Investissement d’Avenir under national project RISQ P141580. Player and Costache
were partially supported by the European Union PROMETHEUS project (Horizon
2020 Research and Innovation Program, grant 780701). Most of this work was done
while Costache was at Intel AI, San Diego. We thank Ilia Iliashenko, Shai Halevi and
Nigel Smart for helpful comments.

A The BGV scheme

In this section we introduce the BGV scheme [10]. The BGV scheme is comprised
of the SecretKeyGen, PublicKeyGen, EvaluationKeyGen, Encrypt, Decrypt,
Add, Multiply, Relinearize, and ModSwitch algorithms.

In the ModSwitch algorithm, we describe switching from a modulus q to a
modulus p where, for correctness, we require that p = q = 1 mod t [10,23]. For
the algorithm as described here, we also need p | q, which will be the case when
moving down the chain of moduli.

• SecretKeyGen(λ): Sample s ← S and output sk = s.
• PublicKeyGen(sk): Set s = sk and sample a ← Rq uniformly at random and

e ← χ. Output pk = ([−(as + te)]q, a).
• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , �}, sample ai ← Rq

uniformly at random and ei ← χ. Output evk =
(
[−(ais + tei) + wis2]q, ai

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u ← S
and e1, e2 ← χ. Output ct = ([m + p0u + te1]q, [p1u + te2]q).

• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output m′ = [[c0 + c1s]q]t.• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).
• Multiply(ct0, ct1): Set c0= [ct0[0]ct1[0]]q, c1= [ct0[0]ct1[1]+ ct0[1]ct1[0]]q,

and c2 = [ct0[1]ct1[1]]q. Output ct = (c0, c1, c2).
• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let

evk[i][0] = [−(ais + tei) + wis2]q and evk[i][1] = ai. Express c2 in base
w as c2 =

∑�
i=0 c

(i)
2 wi. Set c′

0 = c0 +
∑�

i=0 evk[i][0]c(i)2 , and c′
1 = c1 +

∑�
i=0 evk[i][1]c(i)2 . Output ct′ = (c′

0, c
′
1).

• ModSwitch(ct, p) : Let ct = (c0, c1). Fix δi such that δi = −ci (mod q
p) and

δi = 0 (mod t). Set c′
0 = p

q (c0+δ0) and c′
1 = p

q (c1+δ1). Output ct = (c′
0, c

′
1).

B The FV scheme

In this section we introduce the FV scheme [21], comprised of the algorithms
SecretKeyGen, PublicKeyGen, EvaluationKeyGen, Encrypt, Decrypt, Add,

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 563

Multiply, Relinearize and ModSwitch. Unlike for BGV, the constraint on the
chain of moduli that pi = 1 mod t is not required, though was enforced for FV
in [18]. Imposing this constraint may result in unfairly large parameters for FV,
hence our updated comparison can be seen as allowing a more flexible modulus
switching.

In order to define Encrypt, we must first define Δ =
⌊

q
t

⌋
, where q is the

current ciphertext modulus, and t is the plaintext modulus. We also define rt(q)
as the remainder of q on division by t, so that q = Δt + rt(q).

• SecretKeyGen(λ): Sample s ← S and output sk = s.
• PublicKeyGen(sk): Set s = sk and sample a ← Rq uniformly at random and

e ← χ. Output pk = ([−(as + e)]q, a).
• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , �}, sample ai ← Rq

uniformly at random and ei ← χ. Output evk =
(
[−(ais + ei) + wis2]q, ai

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u ← S
and e1, e2 ← χ. Output ct = ([Δm + p0u + e1]q, [p1u + e2]q).

• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output m′ =[⌊
t
q [c0 + c1s]q

⌉]

t
.

• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q) .

• Multiply(ct0, ct1): Compute c0 =
[⌊

t
qct0[0]ct1[0]

⌉]

q
,

c1 =
[⌊

t
q (ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]

q
, and c2 =

[⌊
t
qct0[1]ct1[1]

⌉]

q
.

Output ct = (c0, c1, c2).
• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let

evk[i][0] = [−(ais + ei) + wis2]q and evk[i][1] = ai. Express c2 in base
w as c2 =

∑�
i=0 c

(i)
2 wi. Set c′

0 = [c0 +
∑�

i=0 evk[i][0]c(i)2]q, and c′
1 =

[c1 +
∑�

i=0 evk[i][1]c(i)2]q. Output ct′ = (c′
0, c

′
1).

• ModSwitch(ct, p) : Let ct[0] = c0 and ct[1] = c1. Set c′
0 =

[⌊
p
q c0

⌉]

p
and

c′
1 =

[⌊
p
q c1

⌉]

p
. Output ct′ = (c′

0, c
′
1).

References

1. Albrecht, M., et al.: Homomorphic encryption security standard. HomomorphicEn-
cryption.org, Technical report (2018)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

4. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6

564 A. Costache et al.

5. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

6. Bajard, J.C., Eynard, J., Martins, P., Sousa, L., Zucca, V.: An HPR variant of the
FV scheme: Computationally cheaper, asymptotically faster. IACR Cryptology
ePrint Archive 2019, vol. 500 (2019)

7. Bonte, C., Bootland, C., Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.:
Faster homomorphic function evaluation using non-integral base encoding. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 579–600. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 28

8. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S (ed.) ITCS 2012, pp. 309–
325. ACM, January 2012

11. Brenner, M., et al.: A standard API for RLWE-based homomorphic encryption.
HomomorphicEncryption.org, Technical report (2017)

12. Castryck, W., Iliashenko, I., Vercauteren, F.: Homomorphic SIM2D operations: sin-
gle instruction much more data. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10820, pp. 338–359. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78381-9 13

13. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL
v2.1. In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague,
V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) FC 2017. LNCS,
vol. 10323, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0 1

14. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic
encryption. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 116–136.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 7

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2019). https://doi.org/
10.1007/s00145-019-09319-x

17. Costache, A.: On the practicality of ring-based fully homomorphic encryption
schemes. Ph.D. thesis, University of Bristol (2018)

18. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 19

19. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed-point arithmetic in SHE
schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 401–422.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 22

https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-66787-4_28
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-78381-9_13
https://doi.org/10.1007/978-3-319-78381-9_13
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-319-76953-0_7
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-69453-5_22

Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE 565

20. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M., (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

23. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

24. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

25. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

26. HElib, January 2019. https://github.com/shaih/HElib,
27. Iliashenko, I.: Optimisations of fully homomorphic encryption. Ph.D. thesis, KU

Leuven (2019)
28. Kim, M., Lauter, K.: Private genome analysis through homomorphic encryption.

BMC Med. Inform. Decis. Mak. 15(5), S3 (2015). https://doi.org/10.1186/1472-
6947-15-S5-S3

29. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

30. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 20

31. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

32. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T., (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, May 2012

33. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

34. Murphy, S., Player, R.: Discretisation and product distributions in Ring-LWE.
MathCrypt 2019, to appear (2019)

35. Al Badawi, A.Q.A., Polyakov, Y., Aung, K.M.M., Veeravalli, B., Rohloff, K.: Imple-
mentation and performance evaluation of RNS variants of the BFV homomorphic
encryption scheme. IEEE Trans. Emerg. Top. Comput., 1 (2019). https://doi.org/
10.1109/TETC.2019.2902799

36. Microsoft SEAL (release 3.4), Microsoft Research, Redmond, WA, October 2019.
https://github.com/Microsoft/SEAL

https://doi.org/10.1007/978-3-642-32009-5_38
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-12612-4_5
https://github.com/shaih/HElib
https://doi.org/10.1186/1472-6947-15-S5-S3
https://doi.org/10.1186/1472-6947-15-S5-S3
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1109/TETC.2019.2902799
https://github.com/Microsoft/SEAL

Blockchain I

How to Model the Bribery Attack: A
Practical Quantification Method

in Blockchain

Hanyi Sun1, Na Ruan1(B), and Chunhua Su2

1 Shanghai Jiao Tong University, Shanghai, China
sunhanyi2015@sjtu.edu.cn, naruan@cs.sjtu.edu.cn

2 University of Aizu, Aizuwakamatsu, Japan
chsu@u-aizu.ac.jp

Abstract. Due to substantial profit gain and economic rewards, decen-
tralized cryptocurrency systems have become primary targets for attack-
ers. Double-spending is one of the most rudimentary and collective risks.
Even without high hash power, attackers can still increase the probabil-
ity of double-spending by bribing other miners to subvert the consensus
agreement. This kind of attack is called bribery attack and a number
of bribery attack models have been proposed during last few years. The
evaluation and comparison of bribery attack models remain problematic
due to the lack of systematic methods to quantify them. In particular,
the costs and benefits of attackers are rarely considered which influenced
by many factors. We propose a quantitative analysis method for previ-
ous bribery attack models. For further exploration, we design a bribery
attack model and introduce profit formulations based on our analysis
method. We experimentally prove that our model can reduce costs and
increase benefits of bribery attacks compared with comparable models.
The result shows our quantitative method is instructive both for bribery
attack designing and analyzing.

Keywords: Blockchain · Quantified model · Bribery attack ·
Mechanism design

1 Introduction

In recent years, decentralized cryptocurrencies have not only become a heated
topic in the economic sphere, but also the focus of attackers who tend to gain
direct economic interest or undermine the cryptocurrency systems. Bitcoin [1],
launched as the first cryptocurrency based on blockchain in 2009, has now
achieved a market value of more than 100 billion dollars. Its core rule, known as
Nakamoto Consensus, mentioned that the Bitcoin uses a computational puzzle
system Proof-of-Work (POW) to guarantee the consensus of the whole Bitcoin
system and continuously generate new blocks. Those who work out the compu-
tational puzzle, also called miners, can get block reward if they generate a new
block.
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 569–589, 2020.
https://doi.org/10.1007/978-3-030-59013-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_28&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_28

570 H. Sun et al.

Preventing double-spending is very important in all cryptocurrencies. Attack-
ers retrieve the cryptocurrency in some previous transactions by invalidating
them. Nakamoto consensus provides a probability guarantee to prevent double-
spending. Miners try to work out a computational puzzle and the first miner to
resolve it will get block reward. The new block will be added to the chain and
chain may fork since the mining process is performed simultaneously. Miners
solve the branches problem by mining on the longest branch. In the process,
shorter branches will be isolated and any transaction that conflicts with the
main branch will be considered invalid. At the same time, participants accept
a transaction with six confirmations which means six blocks past since its first
appearing block to prevent double-spending. In this case, as long as most of the
miners in the blockchain are honest and control more than half of hash power,
double-spending will not happen.

However, double-spending still happened in the cryptocurrencies. For exam-
ple, in May 2018, a Bitcoin hard fork BTG suffered a double-spending through
51% attack and lost nearly 388200 BTGs. On January 2019, another cryptocur-
rencie ETC has also suffered a double-spending and lost 54200 ETCs, nearly
2.7 million dollars. Although getting 51% hash power is difficult, attackers can
increase the probability of double-spending by bribing other miners to subvert
the consensus agreement. This kind of attack is called bribery attack and first
proposed by Bonneau J. [2] and the first practical example of this type of attack
is implemented in [17].

Bribery attacks assume that at least some miners in the blockchain act ratio-
nally. These miners accept bribes from attackers to maximize their profit. If the
attacker and rational miners can get a high percentage of hash power, they may
be able to carry out a successful attack such as double-spending. Due to the
danger of bribery attack and lack of a practical model to analyze it, we aim at
proposing a new model to quantify the bribery attack with assumptions suitable
for a real scenario. At the same time, we translate the miner’s strategy into a
Markov decision process while rational miners in other models only consider the
current state to make their decisions.

Our contributions in this work are listed as follows:

– We propose a quantitative analysis method for previous bribery attack mod-
els. We analyze the previous models through different aspects, such as hash
power, smart contract and the benefits or costs of attackers. And we discuss
the feasibility of these models based on our analysis.

– We establish a new model of bribery attack with practical assumptions and
introduce profit formulations based on our analysis method. We translate
the miner’s strategy into a Markov decision process. And we experimentally
prove that our model can reduce costs and increase benefits of bribery attacks
compared with comparable models.

– We discuss the possibility of preventing bribery attacks give a defensive
strategy.

The rest of our work is organized as follows: In Sect. 2, we introduce basic
concepts. In Sect. 3, we briefly summarize researches on bribery attacks on

How to Model the Bribery Attack 571

blockchain and make quantitative analysis. In Sect. 4, we introduce our model,
strategies of attackers and miners and profit calculation. In Sect. 5, we simu-
late and analyze our model. In Sect. 6, we propose possible defense strategy. In
Sect. 7, we conclude our work.

2 Background

2.1 Bitcoin Mining Process

Bitcoin system can be briefly described as followed. A decentralized economy
system requires the data to be kept on the public ledger. In Bitcoin system, mer-
chants or buyers produce transactions with Bitcoins. These transactions would
be recorded by block underlying Bitcoin.

When transactions emerge, all of the miners on the Bitcoin network try to
collect a set of valid transactions and form them into a block. The generation
process of a block is to solve a computational puzzle, a process called Proof-of-
Work (POW). The puzzle can be abstracted as follows [18]:

SHA-2562{v ||Bl || k ||MR(TR1, ..., TRn) ||T ||n } ≤ target (1)

Where v is a version number, Bl denotes the last generated block,
TR1, ...TRn is the set of valid transactions not yet confirmed, MR(x) denotes
the root of the Merkle tree over transactions x, T is the current Unix timestamp,
n is a nonce in the space N , and the target is a 256-bit value that determines
the difficulty of the mining operation. What miners want to do is finding that n
which satisfies this inequality.

Once a miner completes the calculation, it sends this block to all its neighbor
nodes. These nodes will continue to propagate this block after receiving and
verifying it. Other miners in the network begin to work on the next puzzle for
the next block based on Bl+1 to show that they confirm the block. After the block
has six confirmations which means six blocks added since its first appearing, the
block and transactions in it can be regarded as valid. The consensus means all
the participants in the network believes the longest chain is the main one.

2.2 Double-Spending

Some researches about the double-spending focus on fast payments [8,13]. Fast
payments refer to a transaction which does not need six confirmations since the
transaction payment is not high enough to attract an attack in real transactions
in life. For example, shopping in a supermarket or have a lunch in restaurants.
Pinzn C. and Rocha C. [19] proves the feasibility of double-spending and estab-
lish better double-spending model in mathematical ways.

In the mining process, the core mechanism POW provides the miner with
profits by rewarding the minted bitcoins and embedded transaction fees in the
newly confirmed block to the miner who first figures out the answer to the
puzzle. Since mining is performed simultaneously, the main chain will fork and

572 H. Sun et al.

some branches will be generated. Eventually, one branch will be extended longer
than the others because of the random nature of the computational puzzle [6]
and the only way to solve the puzzle is to try random nounces [12]. That longer
branch will be considered as the main chain. However, the randomness of the
puzzle and its economic incentive leads to a double-spending risk.

When an attacker wants to launch a double-spending [7], he needs to make
a fork chain longer than the main one. Then blocks on the main chain since
the forked block and transactions on them will be abandoned. At that time,
attackers can retrieve the payment of the abandoned transaction and use it twice.
If the transaction has already been confirmed, the destination of the transaction
can never notice that the payment is sent back. The double-spending aims to
retrieve the transaction, which means an attacker can both get the commodity
and retrieve the payment, or in other words, use the payment twice. We explain
it in Fig. 1.

Fig. 1. Double-spending

In Fig. 1, state(a) refers to the beginning of a double-spending, in which an
attacker produces a conflicting transaction Ty. Tx and Ty are the same except for
different destination of the transaction—payment of Tx will send to the merchant
while Ty to the attacker. State(b) refers to the condition when the attack fails
and Ty is abandoned. State(c) is the opposite one, which means Tx is abandoned,
and the attack succeed.

In such circumstances, a merchant can never ensure whether the transaction
is abandoned by a very deep fork [9]. In Bitcoin, the consensus system is robust,
and the network gradually reaches consensus if no more than half of the hash
power fork the main chain on purpose [10,11]. However, even if the attacker does
not hold more than half of the hash power, he can still increase the probability
of double-spending by bribing other miners.

2.3 Bribery Attack

Since Nakamoto consensus requires most hash power to keep mining on the most
extended branch, some researchers suggest bribing other hash power to mine for
attackers, attempting to catch up and overtake the main branch to launch a
double-spending. Bonneau J. [2] assumes bribing more than half of the hash

How to Model the Bribery Attack 573

power and lists several reasons why bribery attack may not be effective but does
not give a quantitative or detailed analysis and it lacks experimental simulations.

Liao K. and Katz J. [3] describe the process of bribery attack and give some
defensive suggestions. M. Rosenfeld [5] focus on the economic profit of hash-based
double-spending but does not apply it to bribery attacks. J. Garay [17] presents
three smart contracts that allow a briber to fairly exchange bribes to miners who
pursue a mining strategy benefiting the briber. They can be combined with any
model on bribery attack and put into practice.

Bribery Attack is targeting incentive compatibility. In Nakamoto consensus,
when most of the miners in the blockchain are honest and control more hash
power than attackers, double-spending will not happen. However, some miners
act rationally in the actual blockchain. Bribery attack assume that those miners
are not interested in the cryptocurrency long-term health and accept bribery to
maximize their profit. If the attacker and all bribe miners can obtain a significant
portion of the hash power in the blockchain for a short period of time, the attack
is likely to succeed and double-spending may happen.

There are mainly two forms of bribery attacks:

– In-band. Most bribery attacks focus on optimizing the earnings of miners by
accepting in-band bribes. It contains large fees in block reward and cryp-
tocurrency payments in the same cryptocurrency. Some miners will choose to
mine on attacker’s branch when they can get higher returns.

– Out-of-band. Another form of bribery attacks is the Out-of-band. The
attacker’s goal is to disrupt competing cryptocurrencies to gain utility. The
first practical example of this type of attack is implemented in [17].

Out-of-band bribery attacks need bank transfer or payment in another cryp-
tocurrency. In comparison, in-band bribery attacks directly aim at gaining direct
profit. Therefore, in our work, we do not consider the second form of bribery
attack and only consider the in-band profit that the miners and attackers can
get. In Sect. 3, we make quantitative analysis for existing bribery attack models.
And in Sect. 4, we establish our model with practical assumptions.

3 Quantitative Analysis

3.1 General Model

For all analyzed and presented bribery attacks we adopt the following general
attack model. We divided the participating miners into three categories, and
their roles remained unchanged for the duration of the attack.

– Attacker: The attacker A wants to launch a double-spending through bribery
attack. Attacker A controls hashrate α in the cryptocurrency and makes a
transaction payment value v for double-spending. In addition to this, the
attacker has a sum of cryptocurrency to bribe rational miners.

– Honest miner: The honest miner H always abides by the rules of the agree-
ment, and they will not accept bribes to jeopardize the security of the cryp-
tocurrency. H controls hashrate λ in the cryptocurrency.

574 H. Sun et al.

– Rational miner: The rational miner R aims to maximize its short-term prof-
its. As long as the gains obtained through bribery attacks are higher than
following the rules, they will accept bribes and cooperate with the attackers.
R controls hashrate β in the cryptocurrency. For our analysis, we assume that
rational miners will not engage in other attacks, such as selfish mining.

It holds that α + β + λ = 1. In general, suppose that the reward for mining a
block is 1, then the expected return of the rational miner on main chain is β.
Only when the expected return is greater than β, the rational miner will choose
to cooperate with the attacker to mine on the attacker’s private chain.

In general, the process a double-spending launched by bribery attack is shown
in Fig. 2:

Fig. 2. Possible states during attack

In Fig. 2, state (a) refers to the beginning state. After the intended double-
spend transaction Tx was included in a block, the attacker uses the last block
as the previous one of his private chain. As soon as he gets a new block, he
contains a conflict transaction Ty into it – a transaction same as the transaction
Tx but sent the cryptocurrency to the account controlled by the briber. States
(b) and (c) represent the possible cases when the main chain does not reach six
confirmations, attacker. Whenever a new block is added to the private chain, the
attacker will pay a bribe to the rational miner which is presented as Tb1, ..., Tbk.
States (d) and (e) are under conditions where the intended transaction has been
confirmed. When the length of the private chain overtakes the main one and
intended transaction has been confirmed on the main chain as shown in State
(d), the briber can public the private chain and abolish the intended transaction
without the notice of merchants. In which case, the attack succeeds.

In the attack process, Liao K. and Katz J. [3] give the conclusion that the
probability of private chain getting longer than the main one is:

az = min(
q

p
, 1)max(z+1,0) =

{
1, z < 0 or q > p
(qp)z+1, z � 0 and q � p

(2)

How to Model the Bribery Attack 575

q refers to hash power on the private chain, and p refers to hash power on the
main chain. z refers to length difference between private chain and main chain.

When z ≥ 0:
If miner choosing to keep mining on briber’s branch, then q = α + β, p =

1−α−β, α is briber’s hash power proportion, β is miner’s hash power proportion.
The possibility of private branch overtaking the main branch:

Pb = (
α + β

1 − α − β
)z+1 (3)

If miner choosing to keep mining on the main branch, then q = α, p = 1−α.
The possibility of private branch overtaking the main branch:

Pm = (
α

1 − α
)z+1 (4)

The important principle of designing a bribery attack is: suppose δ is the
bribery value attacker can give. And ζ is the income of miners mining on the
main chain. Rational miners will choose to mine on private chain when:

Pb · δ > Pm · ζ (5)

When α and β are fixed, what an attacker wants to do is to reduce δ to make
himself profitable.

3.2 Analysis of Existing Models

The previous researches on double-spending and bribery attack do have some
valuable points. However, there still lacks a quantitative or detailed analysis.
In order to fill this gap, we conduct a systematic quantitative analysis of the
previous bribery attack models in this section.

Table 1 presents an overview of our analysis of representative previous related
works, each row represents a different attack and each columns represents a
different property. Suppose the reward for a new block is b, and the attack
lasted k blocks in private chain. ε is a coefficient which determines the value of
the bribe fee which is not exactly the same in all attacks. c is the operational fee
if the attack needs smart contract. Symbol/means the model only gives idea but
not design specific details. Due to space reasons, we use the source to represent
each model.

Attacker hashrate α is the need of attacker’s hashrate to launch a bribery
attack. Some bribery attacks can be executed when the attacker has no hashrate
such as model [2,20]. However, a low hashrate α means more bribery fees which
has a great effect of attacker’s benefits. In order to avoid the impact of the 51%
attack, the previous models limit the briber’s hashrate α < 1

2 .
Malicious miner hashrate α + β is the total hashrate of rational miner

and attacker. Generally, all bribing attacks assume that at least some of the
miners in the blockchain are rational and accept bribes. However, some works
like model [15] and [16] assume that α + β = 1 which is difficult to achieve in

576 H. Sun et al.

Table 1. Quantitative analysis of related works, each model is represented by reference
source id.

Model Attacker
hashrate
α

Malicious
hashrate
α + β

Smart
contract

Payment Expected
gains

Expected
costs

Repay if
attack
fail

[2] / [1
2
, 1] No need in-band v k · ε · b No

[3] / [1
2
, 1] No need in-band / k · Be No

[15] (0, 1
2
) 1 No need in-band v k · 1+ε−0.02

ε
· b No

[17] [1
3
, 1
2
) [2

3
, 1) Need in-band / k · (1 − ε

8
) · b No

[14] / (1
3
, 1] No need out-band / / No

[16] / 1 Need in-band / k · (ε · b + δ) Yes

[20] / [1
2
, 1] Need out-band v − c k · ε · b + c Yes

reality. This assumption makes these attacks difficult to perform. Overall, it is
a reasonable assumption that α + β is around 0.5.

Smart contract shows whether the attack requires a smart contract to
launch. Models [16,17,20] use smart contract in the attacks. If the target cryp-
tocurrency does not support smart contracts, this kind of attacks are difficult to
play a role. At the same time, using smart contracts for attack requires additional
fees to execute.

Payment means where the bribery fees to pay. Payment is in-band (in the
target cryptocurrency) or out-of-band (in a different cryptocurrency). Obviously,
in order to avoid the influence of other factors, the rational miner prefers in-
band payment. In-band transactions are more convenient, and rational miners
can more accurately calculate their expected returns.

Expected gains means how much can an attacker benefit from a success-
ful attack. In many previous works, the models do not take into account the
attacker’s benefits. It is true that paying a large bribery fees such as [3] can
increase the success rate of bribery attack, but attacker cannot obtain any sub-
stantial benefits or the cost of bribery far exceeds the value v in the double-spend
transaction. This is inconsistent with the attacker’s desire to profit. The final
gain of attacker is expected gain minus expected cost.

Expected costs means the cost of the attacker to launch a bribery attack.
The cost contains the bribery fees to miner and operation fees for smart contracts
if needed. The cost of an attack is also a factor considered by the attacker. With
a similar success rate, attackers would consider using a bribery attack model
that costs less. Take [3] as a example, the expected cost for a bribery attack may
more than hundreds of Bitcions which is difficult for an attacker to bear.

Repay if attack fails means at least some bribes is paid whether the attack
is successful such as [20]. Some definite benefits can increase the probability of
rational miners participating in the attack, but obviously this is a undesirable
choice for attackers.

How to Model the Bribery Attack 577

3.3 Observation

In existing bribery attacks, the attacker’s benefits were rarely considered. The
attacker pays huge bribes but has no real gains, which is untenable in reality. So
in our model, we think more about whether attackers can benefit from bribery
attacks. At the same time, we prove the profitability of our model through exper-
imental simulation.

Previous models rarely considered rational miners’ decision-making process.
If we want to guarantee the profit of the attacker, the bribery costs need to
be carefully calculated. In this case, the rational miner compares the expected
benefits of two actions (cooperating with attacker, or mining with honest miners)
to take their own actions. In Sect. 4, we translate this behavior into a Markov
decision process. We calculate the profit formula of the attacker and the rational
miner, and give the bribery process.

We consider including bribery fees in the form of transactions on the blocks
of the private chain. If bribery attack fails, the fees in these transactions will
also lapse. This can reduce the cost of bribery attacks, and greatly encourage
rational miners to mine on attacker’s private chain. In short, we leave the risk
of decision to rational miners, which are continuing to mine on the private chain
to obtain the previous bribery fees or mining on main chain with honest miners.

4 Model Design

In this section, we elaborate on our model. In the following, for the convenience
of description, we will call the attacker as the briber, and rational miners who
accepts the bribery as miner. Section 4.1 talks about the assumptions on which
our model is based. Section 4.2 shows both the briber’s and the miner’s decision-
making strategies. Section 4.3 does profit calculation for our model, based on
which we can analyze the profit of the bribery attack.

4.1 Assumptions

The amount of bribery cost for successfully carrying out an attack depends on
the assumption of hash power entities’ behavior pattern. That contains miners’
tolerance to the risk of failure, judgment on whether bribers would go on to
attack or give up and consideration of the long-term benefit. Even worse, miners’
may not share the block with the bribers and may withhold blocks on the bribers’
chain to get more revenue if they confirm that the briber would not readily give
up the attack. To simplify the model and show our originality, we make the
following assumptions:

Less Hash Power. Both sides of the attack are the entities with less than
50% hash power. What is more, when simulating the model, we only consider
the conditions where dishonest hash power (bribers and miners together) is less
than 50%. Since if dishonest hash power is more than half, the attacker is easily

578 H. Sun et al.

to lauch a double-spending attack which is also called 51 attacks [4]. What we
discuss is a worse condition for the attacker.

One Briber and One Miner. The model is under the condition with one
miner. The miner can be a miner or a mining pool, and the latter one seems a
better choice because they have much hash power. During the process of bribery,
no other bribers or miners will participate in the attack. In the mining process,
the probability of an attacker finding a new block is only affected by the hash
power of himself and the miner.

A Persistent Attack. When miners make their choices, they will not consider
the bribers’ sudden giving up. Given the condition where bribers find that the
private chain has fallen too far behind the main chain and quit the attack,
which leads to influence on miners’ decision, our model is more straightforward.
Meanwhile, briber will put bribery in every new block in private branch to attract
the miner.

Practical Profit Calculation. In our simulation, Bribery means to contain
a transaction in private chain where the briber sends some cryptocurrency to
the miners. To attract the miners, the briber should contain such transactions
every time private chain gets longer. Different from previous works, the profit of
briber and miner consider the entire bribery process. When miners are making
decisions on which chain to mine, he not only consider the status next but also
previous blocks the miner has mined and bribery he can get.

Markov Decision Process. Based on assumption ahead, the briber and miner
predict the possibility of success under consideration that there will not be hash
power on this fork other than the miner and the briber. Miners’ decisions of
which chain to mine depends on the expectation of revenue in the next period
of mining, and the status at present including the previous blocks the miner has
mined (Markov decision process).

Normalized Unit. We set the block reward as 1. It is a unit to simplify our
calculations.

4.2 Strategies

In this section, we analyze briber’s and miner’s decision-making strategies. Then
we summarize the attack process in the form of algorithm. In the attack process,
miners and bribers have different decision-making process.

Miners’ Decision-Making Process. The core gist of this process is the dif-
ference of expectation reward between the main chain and the private one. To
be specific, if revenue on the main chain Rm > revenue on briber’s chain Rb,
the miners will choose the main chain, and if not, they will choose the briber’s
chain. We use this to establish the miners’ decision-making strategy. Whenever
the miner (miner) receives a bribery transaction which includes some bribery
fee, he should compare Rm and Rb to find which chain to choose. If he finds
there is more profit mining on Rm, then he will choose the main chain. And

How to Model the Bribery Attack 579

he begins to compete on the main chain with the honest hash power for a new
block. Oppositely, if he finds there is more profit mining on Rb, he will mine on
the briber’s chain with the bribers in order to make the briber’s chain longer
than the main one.

Bribers’ Decision-Making Process. As is discussed in Sect. 4.1, after the
intended double-spend transaction was included in a block, the briber begins to
mine the first block on his briber’s chain using the last block as the head while
doing the hash calculation. Then, he will take several factors which are related
to his attack revenue into account and accordingly work out the bribery fee he
should give to the miner.

Algorithm 1: Bribery Attacking Process
Input: Hash Power α, β; Transaction Payment v; Revenue Coefficient θ
Output: Sum of Bribery Fee δi

Result: Succeed or Fail
1 Initialize t = 1, z = add to main(α,β), n = 6 (n is confirmation blocks which is

now six);
2 while True do
3 if z ≥ 0 then
4 Use Equation 8 to figure out δ;
5 Record θδ as δi in Array1;
6 if profit on private > profit on main then
7 Mine on the private chain;
8 t = t + add to main(α,β);
9 miner competes with the briber for a new block on the private chain;

10 end
11 if profit on private ≤ profit on main then
12 Mine on the main chain;
13 t = t + add to main(α,0);
14 miner competes with the honest for a new block on the main chain;
15 k = k + add reward()

16 end

17 end
18 if z < 0 then
19 Mine on the private chain;
20 t = t + add to main(α,β);
21 miner competes with the briber for a new block on the private chain;

22 end
23 if z = -1 and t > n then
24 Break; The attack succeeds;
25 end

26 end

580 H. Sun et al.

Our model is to combine the two strategies profit analysis explained in
Sect. 4.3, and have a simulation of the whole process. We clarify our model in the
form of pseudo-code as Algorithm 1. Related symbols are explained in Table 2.
The algorithm omits the following details. Different from previous works, in our
algorithm, the decisions of the miner are constantly changing. When a new block
generated, the miner decides which chain to mine based on the expected profit
he can get.

Beginning of Attack. The briber publics the intended transaction and mines
the first block on the private chain using the last block on the main chain as the
hash head. Suppose at that time the private chain has already fallen z blocks
behind the main one.

Process of Attack. During the simulation, we always stand on the private chain
to evaluate the situation. From the model above, the private chain gets one block
longer while the main chain gets several blocks longer each loop. The function
add to main returns the number of additional blocks on main chain after the
private chain gets one block longer. We assume that the hash power of the main
chain is a and private is b. Adding n blocks after the private chain’s one block
extension equals the case in which miners successively mine n+1 blocks and the
front n blocks are main chain blocks, and the last block belongs to the private
one. Thus, the probability of n can be figured out. The function Add Reward
is the number of blocks found by the miner on the main chain when competing
with the honest miners. It can be abstracted to a probability problem, totally n
blocks have been generated, and among them, k blocks belong to the miner. It
is a binomial distribution, so the probability of k can be calculated.

Markov Decision Process. Just as what mentioned in the assumption part,
when the miner is making his choice, he only compares the expected revenue
between the private chain and the main one, regardless of any other external fac-
tor like the briber’s quit or decrease in Bitcoin’s value resulting from the attack.
The expectation of the private revenue is only concerned with past bribery fee,
past mining conditions and the current possibility of attacking successfully.

4.3 Profit Calculations

In this part, we show how briber and miner work out their profit and accord-
ingly make their decisions. We list and explain the symbols in the model in
Table 2. Based on that, we show how briber and miner work out their profit and
accordingly make their decisions.

Calculations of Miner’s Mining Profit
In the expression of mathematics formula, we define symbols in Table 2. We
consider the miner’s mining profit in two situation:

– If miner choose keeping mining on the main branch and attack failed, the
expected reward:

Rm = [1 − (
α

1 − α
)z+1] ∗ (k +

β

1 − α
) (6)

How to Model the Bribery Attack 581

Table 2. Symbols and explanation for calculation

Symbol Explanation

α Briber’s hash power proportion

β Miner’s hash power proportion

z Length difference between two chains

δ Bribery transaction value in the current block

δi Bribery transaction value in the previous i-th block

k Blocks on the main chain already mined by miner

l Blocks on the private chain already mined by miner

r Length of the private chain

t Length of the main chain

v Transaction payment for double-spending

θ Revenue coefficient

Left of the multiple sign is the possibility of a fail attack. If the attack failed,
miner can only get reward from the main branch—previous acquired reward
k and possible next block reward.

– If miner choose keeping mining on the briber’s branch and attack succeed,
the expected reward:

Rb = (
α + β

1 − α − β
)z+1 ∗ [

r∑
i=1

δi + l +
β

α + β
+ δ] (7)

Left of the multiple sign is the possibility of a successful attack, in which
miner can only get the reward from briber’s branch—previously acquired
block reward l, acquired bribery fee and possible next block reward.

When making decision, miner only considers the expected profit if keeping
mining on the main branch and attack failed and if keeping mining on the briber’s
branch and attack succeed.

Calculations of Briber’s Attack Profit. The revenue of one briber get from
briberry attack equals the intended transaction fee for double-spending minus
bribery fee when attack succeeds and minus any reward the briber will lost when
attack fails. Here, we get a equation, which illuminated by Meni Rosenfeld [5],
the profit R of Briber is:

R = v − (1 − Pb)(v + r − l) − Pb(δ + δi) (8)

v is the transaction payment for double-spending. Pb is the possibility of a suc-
cessful bribery attack which defined in Sect. 3.1. r is length of the private chain. δ
is bribery transaction value in the current block and δi is the bribery transaction
value in the previous i-th block.

582 H. Sun et al.

To benefit from the attack, the briber must surely guarantee the profit to be
more than 0, that is

v − δ − δi >
(1 − Pb)(r − l)

Pb
(9)

When setting the profit to 0, the briber can get the max bribery fee δmax

in next block he can give to the miner. However, bribe obviously does not want
to do so because the attack has no gain in this way. In our model, we assume a
unique parameter θ (0 < θ < 1) which we call revenue coefficient to measure how
much profit can the briber get from the attack. After getting the δmax according
to the above inequation and the briber set real bribery fee δ to δ = θδmax. The
bigger the θ is, the more bribery fees and thus the less attack revenue. δ is also
a important effect of attacker’s profit.

After sending the bribery transaction to the miner, briber will mine on the
private branch and sending bribery fee δ to miner. Then he will check whether
the main branch is far ahead or z is less than 0 to determine the attack succeed
or to give up this attack.

5 Simulation and Analysis

In this section, we simulate our model and achieve several conclusions. Section 5.1
shows the parameters of our simulation and carry out our simulation in Python
program. Section 4.2 presents the relationship between hash power, transaction
payment, revenue coefficient and revenue based on our simulation and shows our
analysis for the simulation result. Through simulation and analysis, we find that
bribers can get 90% of transaction payment revenue with our strategies.

5.1 Scenario

The experiment emulates the whole process of the bribery attacks based on the
model we designed and the miner’s mining profit and briber’s attack profit. We
set the simulation and the details are as follows:

– The input of each attack simulation is transaction payment v, revenue coef-
ficient θ and the hash power α and β.

– For each group of input, we simulate the bribery attack for 10000 times.
– we count the number of failure bribery attacks (which called error number

below) among them.
– We count the total bribery fee of those successful attacks. Then we calculate

the average bribery fee and average revenue of the successful trails.
– For those 10000 bribery attack simulations, we calculate the briber’s absolute

gains (the frequency of the successful attack multiplies the average revenue)
and briber’s relative gains (the absolute revenue divided by the intended
transaction fee).

How to Model the Bribery Attack 583

Hash Power α + β. The choice of α + β is much closer to ideal conditions,
with the range of 0.33−0.49. If α+β is smaller than 0.33, the final possibility of
successful attacks would be too little to get any valid data. In real conditions, the
briber can hardly carry out a successful attack with little hash power. Given the
existence of mining pools, a sum of 0.33−0.49 power hash is possible. To present
the proportion of α and β, which refers to briber’s and miner’s hash power
relatively, we choose 0.25 + 0.24 = 0.49 and 0.15 + 0.34 = 0.49, two conditions
when α + β = 0.49, and choose the same when α + β = 0.4: 0.1 + 0.3 = 0.4 and
0.2 + 0.2 = 0.4.

Transaction Payment v. The choice of v refers to transaction fees in reality.
We check the transactions and find that the biggest transaction is no more than
50 Bitcoins and most transactions fee is small, so v should be as small as possible.
Since the block reward as 1, which now equals 12.5 Bitcoins, our result of the
simulation should regard one block reward as the unit and the real value of these
result should be 12.5 times bigger.

The v we choose for the simulation is 0−100, which is more in line with the
situation in the actual blockchain.

Revenue Coefficient θ. In the model, we assume a parameter θ (0 < θ < 1)
which we can call revenue coefficient when calculating the bribery cost. After
getting the δmax according to the above Inequation 7 and the briber set the real
bribery fee δ to δ = θδmax in the recent block. For the convenience of simulation,
we set θ to a fixed value in every same bribery attack, and simulate the profit
of the briber can get through different θ in different bribery attack.

When simulating the whole model process, we may get a bribery fee δ below
0. In such case, we set δ to 0. The meaning of it, in reality, is that at that time
the briber considers continue bribing as unprofitable, so he will stop sending
bribery fee but not stop mining on the private branch. However, if the previous
bribery money is more than profit on the main branch, the miner may still mine
on the private branch to take back their previous bribery money even though
he does not receive any new bribery money. θ has a great impact on the success
rate of the attack, which will ultimately affect the profit of the attacker.

5.2 Result and Analysis

We collect all the data in the simulation and analyze them. We first confirm that
high hash power of bribery and miner is beneficial for an bribery attack. Then
we discover the relationship between transaction payment v, revenue coefficient
θ and revenue of the attack to verify that our model is practical. Based on that,
we propose a strategy for bribers to gain maximum revenue.

In the simulation result, we find that hash power a + b, transaction v and
revenue coefficient θ can greatly influence the revenue.

Impact of Hash Power α + β on Revenue. In order to get a general con-
clusion, we set the transaction Payment v and the revenue coefficient θ in two
situations, where v = 1 and θ = 0.1 and v = 3 and θ = 0.2.

584 H. Sun et al.

Table 3. Simulation results with v = 1, θ = 0.1 and different α + β.

Sum= α + β Average bribery fee Error number Absolute gains Relative gains

0.49 0.285146072 1145 0.633003154 0.633003154

0.49 0.323679056 1192 0.595703488 0.595703488

0.47 0.171929098 3284 0.556132418 0.556132418

0.45 0.118794884 5185 0.424300263 0.424300263

0.43 0.086186667 6835 0.28922192 0.28922192

0.4 0.051793966 8327 0.158634869 0.158634869

0.4 0.059810257 7826 0.20439725 0.20439725

0.37 0.039667427 9100 0.086429932 0.086429932

0.35 0.016023851 9333 0.065631209 0.065631209

0.33 0 9600 0.04 0.04

Table 4. Simulation results with v = 3, θ = 0.2 and different α + β.

Sum= α + β Average bribery fee Error number Absolute gains Relative gains

0.49 1.733100993 1133 1.12335935 0.374453117

0.49 1.819382873 1201 1.03882501 0.346275003

0.47 1.37117179 2867 1.161843162 0.387281054

0.45 1.136255103 4693 0.989089417 0.329696472

0.43 0.96314839 6202 0.773596241 0.257865414

0.4 0.767397473 7781 0.495414501 0.165138167

0.4 0.901051675 7881 0.44476715 0.148255717

0.37 0.739853301 8691 0.295853203 0.098617734

0.35 0.5603207 9291 0.172973262 0.057657754

0.33 0.528124165 9555 0.109998475 0.036666158

From the data above in Table 3 and 4, the less the hash power α+β, the more
error times, the fewer the absolute and relative gains. Thus, from the practical
point of view, if the briber wants more gains, he should raise the sum hash
power with rational miners. No matter the absolute gains (the attack revenue
that briber actually gets), or relative gains (the proportion of gains and costs),
they are all based on increasing the hash power, which is rational in the real
Bitcoin. Since the choice of v and θ is random, such a conclusion is applicable
for all v and θ.

Impact of Transaction Payment v on Revenue. With a definite α + β, we
inspect the impact of v on absolute and relative gains with different θ through line
charts. To be clearer, we only choose α+β as 0.15+0.34 = 0.49, 0.1+0.23 = 0.33
and θ as 0.01, 0.1, 0.3, 0.5.

How to Model the Bribery Attack 585

From with Fig. 3 (a) and Fig. 3 (c), we can see that with the increasing of v,
the absolute gains increase. The smaller the θ, the bigger the slope of the curve,
which means faster growth of absolute gains and more absolute gains.

From Fig. 3 (b), we can see that the relative gains decrease with the increasing
v. And when v is fixed, the relative gains decrease with the increasing θ. However,
in Fig. 3 (d), the relative gains can also increase wity. That is because the success
rate.

(a) Absolute gains and v when α+ β=0.49(b) Relative gains and v when α + β=0.49

(c) Absolute gains and v when α + β=0.33 (d) Relative gains and v when α + β=0.33

Fig. 3. The impact of v on gains

All the curves will approach their respective value, a value concerned with
θ—a bigger θ means a smaller revenue. The tendency of the relative curves
can be explained by reality: when v is small, block reward becomes the main

(a) Absolute gains and θ when α+ β=0.49(b) Relative gains and θ when α + β=0.49

(c) Absolute gains and θ when α + β=0.33 (d) Relative gains and θ when α + β=0.33

Fig. 4. The impact of θ on gains

586 H. Sun et al.

revenue; while v gets bigger, v dominates the revenue, and thus relative gains
will be stable. As a conclusion, with enough hash power, bribers should raise the
intended transaction value v if he needs more absolute gains, or decreases the
transaction value v to get bigger relative gains.

Impact of Revenue Coefficient θ on Revenue. With a definite α + β, we
inspect the performance of θ on absolute and relative gains with different v
through line charts. To be clearer, we also choose α + β as 0.15 + 0.34 = 0.49,
0.1 + 0.23 = 0.33, v as 1, 10, 50, 100 and θ as 0.01, 0.1, 0.3, 0.5, 0.6.

From Fig. 4 (a) and Fig. 4 (c), we can see that the absolute gains decrease
with the increasing of θ. It is reasonable because the bigger θ, the more bribery
fee should the attack pay. When considering about v, in most cases the bigger
the v, the more absolute gains. However, when θ is reached to 0.6, the absolute
gains is smaller enough even v is 100. In this case, the attacker can get little
profit even the attack succeed.

From Fig. 4 (b), we can see that the relative gains decrease with the increasing
of θ. However, in Fig. 4 (d), the relative gains may increase with the increasing
of θ. This is because the success rate which influenced by θ.

The fluctuation is serious when the hash power is only 0.33. As a conclusion,
with enough hash power, bribers should decrease θ in order to get more gains,
both absolute gains and relative gains.

Strategy to Get Maximum Revenue. According to the analysis above, the
briber should first guarantee enough hash power with the intended miners in
order to get the maximum absolute and relative gains. With this premise, the
fluctuation of expectation revenue will be smoother, and the model is more
controllable. If the attacker is eager for higher absolute gains, he can choose
transaction with a higher fee and a smaller revenue coefficient θ. However, if
briber seeks for higher relative gains, he should choose a smaller v and θ. Since the
maximum relative gain can be nearly 90% through the data from the experiment,
which means the briber making a transaction with 1 pay can retrieve 90% of the
transaction through bribery attack at most, the attack is a profitable one.

6 Defensive Strategy for Bribery Attack

Based on the analysis above, we give some defensive strategy mainly on both
the transaction and the confirmation of a block.

Take Bitcoin for an example, we suggest increasing the blocks needed to
confirm a transaction when the transaction fee is high. When waiting for the
six blocks, the private chain falls behind the main one with a high possibility.
Assuming that bribers need to wait for more than six blocks, the length difference
between the main and private chain is even larger, which is adverse for the
briber: less attack revenue and less probability of success. We carry out a simple

How to Model the Bribery Attack 587

Fig. 5. Absolute gains and errors with confirmation blocks

experiment followed to verify that increasing the number of confirmed blocks is
effective, as shown in Fig. 5. The figure shows the relationship of gains and errors
with confirmation blocks when v = 1, θ = 0.1, a + b = 0.25 + 0.24 = 0.49. With
the increase of confirmation blocks from 0 to 12, absolute gains decrease with
inverse proportional function and errors obviously increase.

The transaction payment v is a key factor which can directly influence the
attack revenue. Transactions with a high fee are needed for the briber to get
the maximum revenue. Bitcoin can have an exact upper threshold value for the
transaction payment. We can not verify this through our experiment since the
block reward, which is our unit of gains, will change in the future and accordingly
the transaction payment will change, but this suggestion is effective. At the
same time, we should consider the briber’s trick to avoid this threshold value
limitation: he has many transactions with the same input (the briber) and double
spends all these transactions to surpass the limitation value. Hence, we suggest
that besides the threshold value for the transaction payment, several transactions
with the same input cannot be present in a block during a short period time.
These limitations do not have any negative influence on the normal transaction
and two honest parties of the transaction, because they are unlikely to send
many transactions in a short period time, and even when this happens, some of
these transactions will be delayed to the next block, which will not lead much
influence.

7 Conclusion

In this work, we proposed a quantitative analysis method for previous bribery
attack models. For further exploration, we design a new bribery attack model
with more practical assumptions and propose decision-making strategies for mer-
cenary briber and miners. We simulated the whole process of bribery to find how
much the bribers should pay to attract miners to mine for them and how much
they can get from one attack. Our model is practical via analysis on simulation.
In the last part, we presented the defense strategy to control this bribery attack

588 H. Sun et al.

with limitation of transaction payment and high confirmation blocks. It is note-
worthy that our model is suitable for all POW based cryptocurrencies, not only
Bitcoins.

Acknowledgments. Our work is supported by National Nature Science Founda-
tion of China (NSFC) No. 61702330, JSPS Kiban(B) 18H03240 and JSPS Kiban(C)
18K11298.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
2. Bonneau, J.: Why buy when you can rent? In: Clark, J., Meiklejohn, S., Ryan,

P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604,
pp. 19–26. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-
4 2

3. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bren-
ner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 264–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 17

4. Bradbury, D.: The problem with bitcoin. Comput. Fraud Secur. 2013(11), 5–8
(2013)

5. Rosenfeld, M.: Analysis of hashrate-based double-spending. arXiv preprint,
arXiv: 1402.2009 [cs.CR] (2014)

6. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for bitcoin and cryptocurrencies. In: Proceed-
ings of IEEE Symposium on Security and Privacy, pp. 104–121 (2015)

7. Bamert, T., Decker, C., Elsen, L., Wattenhofer, R., Welten, S.: Have a snack, pay
with bitcoins. In: Proceedings of IEEE P2P (2013)

8. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-
coin. In: Proceedings of the ACM Conference on Computer and Communications
Security, pp. 906–917 (2012)

9. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better—how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 29

10. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

11. Miller, A., LaViola Jr., J.J.: Anonymous byzantine consensus from moderately-
hard puzzles: a model for bitcoin (2014)

12. Courtois, N.T., Grajek, M., Naik, R.: Optimizing SHA256 in bitcoin mining. In:
Kotulski, Z., Ksi ↪eżopolski, B., Mazur, K. (eds.) CSS 2014. CCIS, vol. 448, pp.
131–144. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44893-
9 12

13. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. (TISSEC) 18(1), Article no. 2 (2015)

14. Judmayer, A., Stifter, N., Schindler, P., Weippl, E.: Pitchforks in cryptocurren-
cies. In: Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Livraga, G., Rios, R. (eds.)
DPM/CBT-2018. LNCS, vol. 11025, pp. 197–206. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00305-0 15

https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-319-70278-0_17
http://arxiv.org/abs/1402.2009
https://doi.org/10.1007/978-3-642-32946-3_29
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-44893-9_12
https://doi.org/10.1007/978-3-662-44893-9_12
https://doi.org/10.1007/978-3-030-00305-0_15
https://doi.org/10.1007/978-3-030-00305-0_15

How to Model the Bribery Attack 589

15. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

16. Winzer, F., Herd, B., Faust, S.: Temporary censorship attacks in the presence of
rational miners. In: IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW), pp. 357–366. IEEE (2019)

17. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 3–18. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-662-58820-8 1

18. Daian, P., Eyal, I., Juels, A., Sirer, E.G.: (Short paper) PieceWork: generalized
outsourcing control for proofs of work. In: Brenner, M., et al. (eds.) FC 2017.
LNCS, vol. 10323, pp. 182–190. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70278-0 11

19. Pinzón, C., Rocha, C.: Double-spend attack models with time advantage for bit-
coin. Electron. Notes Theor. Comput. Sci. 329(9), 79–103 (2016)

20. Judmayer, A., Stifter, N., Zamyatin, A., et al.: Pay-to-win: incentive attacks
on proof-of-work cryptocurrencies. Cryptology ePrint Archive, Report 2019/775
(2019)

https://doi.org/10.1007/978-3-662-54970-4_29
https://doi.org/10.1007/978-3-662-58820-8_1
https://doi.org/10.1007/978-3-319-70278-0_11
https://doi.org/10.1007/978-3-319-70278-0_11

Updatable Blockchains

Michele Ciampi2(B), Nikos Karayannidis1, Aggelos Kiayias1,2,
and Dionysis Zindros3

1 Input Output HK Limited, Hong Kong, People’s Republic of China
nikos.karagiannidis@iohk.io

2 The University of Edinburgh, Edinburgh, UK
mciampi@ed.ac.uk, akiayias@inf.ed.ac.uk

3 National and Kapodistrian University of Athens, Athens, Greece
dionyziz@gmail.com

Abstract. Software updates for blockchain systems become a real chal-
lenge when they impact the underlying consensus mechanism. The acti-
vation of such changes might jeopardize the integrity of the blockchain
by resulting in chain splits. Moreover, the software update process should
be handed over to the community and this means that the blockchain
should support updates without relying on a trusted party. In this paper,
we introduce the notion of updatable blockchains and show how to con-
struct blockchains that satisfy this definition. Informally, an updatable
blockchain is a secure blockchain and in addition it allows to update
its protocol preserving the history of the chain. In this work, we focus
only on the processes that allow securely switching from one blockchain
protocol to another assuming that the blockchain protocols are correct.
That is, we do not aim at providing a mechanism that allows reaching
consensus on what is the code of the new blockchain protocol. We just
assume that such a mechanism exists (like the one proposed in NDSS
2019 by Zhang et al.), and show how to securely go from the old proto-
col to the new one. The contribution of this paper can be summarized
as follows. We provide the first formal definition of updatable ledgers
and propose the description of two compilers. These compilers take a
blockchain and turn it into an updatable blockchain. The first compiler
requires the structure of the current and the updated blockchain to be
very similar (only the structure of the blocks can be different) but it
allows for an update process more simple, efficient. The second compiler
that we propose is very generic (i.e., makes few assumptions on the sim-
ilarities between the structure of the current blockchain and the update
blockchain). The drawback of this compiler is that it requires the new
blockchain to be resilient against a specific adversarial behaviour and
requires all the honest parties to be online during the update process.
However, we show how to get rid of the latest requirement (the honest
parties being online during the update) in the case of proof-of-work and
proof-of-stake ledgers.

Keywords: Blockchain · Update · Ledger

Research partly supported by H2020 project PRIVILEDGE #780477.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 590–609, 2020.
https://doi.org/10.1007/978-3-030-59013-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_29&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_29

Updatable Blockchains 591

1 Introduction

Most of the existing software requires to be updated (or replaced) at some point.
Indeed, the most vital aspect for the sustainability of any software system is its
ability to effectively and swiftly adapt to changes; one basic form of which are
software updates. Therefore the adoption of software updates is at the heart of
the lifecycle of any system, and blockchain systems are no exception. Software
updates might be triggered by a plethora of different reasons: change requests,
bug-fixes, security holes, new-feature requests, various optimizations, code refac-
toring etc. More specifically, for blockchain systems, a typical source of change
is the enhancements at the consensus protocol level. There might be changes to
the values of specific parameters (e.g., the maximum block size, or the maximum
transaction size etc.), changes to the validation rules at any level (transaction,
block, or blockchain), or even changes at the consensus protocol itself. Usually,
the reason for such changes is the reinforcement of the protocol against a broader
scope of adversary attacks, or the optimization of some aspect of the system like
the transaction throughput, or the storage cost etc. A software update’s lifecycle
comprises of three important decision points: a) What update proposal should
be implemented, b) is a specific implementation appropriate to be deployed and
c) when and how the changes should be activated on the blockchain. A fully
decentralized approach should decentralize all of these three decisions. Indeed,
there are already proposals on how to update specific blockchain protocols in a
decentralized way [8,9,14]. Moreover, Bingsheng et al. [16], proposes a complete
treasury system in order to solve the funding problem for software updates. The
decentralization of such decisions is usually called in short decentralized gover-
nance. This paper does not focus on how to achieve decentralized governance for
software updates. Indeed, we assume that appropriate decentralized governance
processes (e.g., voting, delegation of voting, upgrade-readiness signaling etc.) are
in place and the community has already reached a consensus on what specific
update should be activated and this information is written on the blockchain.
Moreover, we assume that a sufficient percent of honest parties have expressed
(e.g. through a signaling mechanism) their readiness to upgrade to the new
ledger. This is exactly the point from where our focus begins. In particular, we
deal with the secure activation of software update changes on the blockchain in
a fully decentralized setting and essentially provide a way to safely transition
from the old ledger to the upgraded ledger without the need of a trusted third
party. Moreover, we define what is a secure activation of changes by introducing
the notion of updatable blockchains. To the best of our knowledge, our approach
is the first that treats the problem of decentralized activation of updates for
blockchains in such a formal way providing a security definition for updatable
blockchain and generic constructions (more details will be provided in the next
section).

592 M. Ciampi et al.

1.1 Our Contributions

In our work, we try to define what is a ledger1 that supports updates and refer
to it as an updatable ledger.

Then we propose a generic compiler that takes a ledger L1 and turns it into
an updatable ledger that tolerates updates only with respect to ledgers that
follow the same consensus rule as L1 but have different blocks structure. We
then propose another (more generic) compiler that, always starting from L1,
turns L1 it into a ledger LUPD that can be updated to the code of a ledger L2.
This compiler works assuming only few similarities between L1 and L2, but it is
more complicated and decreases the throughput of the ledger during the update.
All our constructions do not rely on any trusted third party (TTP).

1.2 Our Techniques

Our definition of updatable ledgers is quite intuitive. We require an updatable
ledger LUPD to be secure under the standard definition of security (i.e., it has
to enjoy consistency and liveness) but on top of this, it has to support the
property of updatability. This property guarantees that, in the case there are
enough parties that are willing to upgrade the code of LUPD to the code of a
new ledger L2, the honest parties can securely run L2 and preserve the state of
LUPD.

Clearly, (almost) any ledger L1 can be turned into an updatable ledger LUPD

if we can rely on a TTP. Indeed, in this case the TTP can issue a genesis block
for L2 which incorporates the state of L1 (or just the hash of it), and then the
parties that where running L1 can abandon it and start running L2 using the
genesis block issued by the TTP.

We show how to construct an updatable ledger without relying on a TTP.
The starting point for our construction is a standard ledger L1 that we enhance
with the following mechanism. At time T0 (when enough parties are assumed to
be willing to update to L2) a block of L1 is chosen and translated into a genesis
block for L2. All the parties that wanted to update can now simply run L2 on
the chosen genesis block. This approach clearly requires that there is an efficient
way to translate a block of L1 into a block for L2, and this might limit the class
of ledgers to which LUPD can be updated.

Even though the above approach seems to work, there are unfortunately
many subtleties that we need to deal with. The first is that the adversary might
be able to see the genesis block for L2 before any other honest parties do, and
therefore he can take advantage in the generation of the blocks of L2 thus com-
promising the security of the system. The second issue is that the adversary
might influence the choice of the genesis block. Indeed, we do not know how
the consensus algorithm of L1 works and what is the power of the adversary in
biasing the content of L1’s blocks. We note that this scenario (where there are

1 With slight abuse of terminology we use the words ledger and blockchain inter-
changeably.

Updatable Blockchains 593

many candidates blocks and the adversary can decide which block is added to the
final chain) is well studied (see [11]) and many blockchain protocols allow this
kind of adversarial behaviour (i.e., an adversary can create forks and influence
the decision on what fork will become part of the stable chain). To tackle these
issues, we further shrink the class of ledgers to which LUPD can be updated, and
require L2 to retain its security even in the case the genesis block can be seen by
the adversary before that the hones parties can see it, and even if the adversary
can pick the genesis block from a set of candidate genesis blocks. Despite being
quite general, this compiler has the drawback that the honest parties need to
be online during the update. Indeed, if an honest party is offline before T0 and
comes online after the update then no security can be guaranteed for this party.
However, we show how to relax the requirement on the honest parties being
online during the update by relying on a 2-for-1 mining approach (more details
are provided in the end of Sect. 4.2).

The second scheme that we propose requires LUPD and L2 to be the same (i.e.,
they use the same consensus rules) but might have a different block structure.
In this case, the update process is even simpler, the parties, starting from a
pre-agreed block index j, start extending the state of LUPD using the rules of
L2 even if the block in position j is not stable. That is, it might happen that
different honest parties start running L2 using a different starting block given
that the block j does not belong to the common prefix. We prove that this does
not cause issues even in the case when not all the honest parties participate to
the update (i.e., some honest parties are offline or decided to not participate to
the update). The advantage of this approach over the first that we have proposed
is that we do not require all the honest parties to be online during the update,
and the throughput is not affected by the update process.

2 The Model

Protocol participants are represented as parties—formally Interactive Turing
Machine instances (ITIs)—in a multi-party computation. We assume a central
adversary who corrupts miners and uses them to attack the protocol. The adver-
sary is adaptive, i.e., can corrupt (additional) parties at any point and depending
on his current view of the protocol execution. Our protocols are synchronous
(G)UC protocols [4,15]: parties have access to a (global) clock setup, denoted
by Gclock, and can communicate over a network of authenticated multicast chan-
nels. We note that the assumption on the existence of a global clock has been
used to prove the security of Bitcoin [4] and we are not aware of any other formal
proof that relies on weaker notion of “time”. For this reason we believe that the
use of the functionality Gclock in this work is without loss of generality.

We assume instant and fetch-based delivery channels [7,15]. Such channels,
whenever they receive a message from their sender, they record it and deliver it to
the receiver upon his request with a “fetch” command. In fact, all functionalities
we design in this work will have such fetch-based delivery of their outputs. We
remark that the instant-delivery assumption is without loss of generality as the

594 M. Ciampi et al.

channels are only used for communicating the timestamped object to the verifier
which can anyway happen at any point after its creation. However, our treatment
trivially applies also to the setting where parties communicate over bounded-
delay channels as in [4].

We adopt the dynamic availability model implicit in [4] which was fleshed out
in [3]. We next sketch its main components: All functionalities, protocols, and
global setups have a dynamic party set. i.e., they all include special instructions
allowing parties to register, deregister, and allowing the adversary to learn the
current set of registered parties. Additionally, global setups allow any other setup
(or functionality) to register and deregister with them, and they also allow other
setups to learn their set of registered parties. For more details on the registration
process we refer the reader to Appendix B.

The Clock Functionality Gclock (cf. Fig. 4). The clock functionality was initially
proposed in [15] to enable synchronous execution of UC protocols. Here we adopt
its global-setup version, denoted by Gclock, which was proposed by [4] and was
used in the (G)UC proofs of the ledger’s security.2 Gclock allows parties (and
functionalities) to ensure that the protocol they are running proceeds in syn-
chronized rounds; it keeps track of round variable whose value can be retrieved
by parties (or by functionalities) via sending to it the pair: CLOCK-READ. This
value is increased when every honest party has sent to the clock a command
CLOCK-UPDATE. The parties use the clock as follows. Each party starts every oper-
ation by reading the current round from Gclock via the command CLOCK-READ.
Once any party has executed all its instructions for that round it instructs the
clock to advance by sending a CLOCK-UPDATE command, and gets in an idle
mode where it simply reads the clock time in every activation until the round
advances. To keep more compact the description of our functionalities that rely
on Gclock, we implicitly assume that whenever an input is received the command
CLOCK-READ is sent to Gclock to retrieve the current round. Moreover, before
giving the output, the functionalities request to advance the clock by sending
CLOCK-UPDATE to Gclock.

2.1 Ledger Consensus: Model

In this section, we define our notion of protocol execution following [5,11]. The
execution of a protocol Π is driven by an environment program Z that may
spawn multiple instances running the protocol Π. The programs in question can
be thought of as interactive Turing machines (ITM) that have communication,
input and output tapes. An instance of an ITM running a certain program will
be referred to as an interactive Turing machine instance or ITI. The spawning
of new ITI’s by an existing ITI as well as the interaction between them is at the
discretion of a control program which is also an ITM and is denoted by C. The
pair (Z, C) is called a system of ITM’s, cf. [5]. Specifically, the execution driven

2 As a global setup, Gclock also exists in the ideal world and the ledger connects to it
to keep track of rounds.

Updatable Blockchains 595

by Z is defined with respect to a protocol Π, an adversary A (also an ITM)
and a set of parties P1, . . . , Pn; these are hardcoded in the control program C.
Initially, the environment Z is restricted by C to spawn the adversary A. Each
time the adversary is activated, it may send one or more messages of the form
(corrupt, Pi) to C. The control program C will register party Pi as corrupted,
only provided that the environment has previously given an input of the form
(corrupt, Pi) to A and that the number of corrupted parties is less or equal tc, a
bound that is also hardcoded in C.

We divide time into discrete units called time slots or round. Players are
equipped with (roughly) synchronized clocks Gclock that indicate the current
slot: we assume that any clock drift is subsumed in the slot length.

Ledger Consensus. Ledger consensus (a.k.a. “Nakamoto consensus”) is the
problem where a set of nodes (or parties) operate continuously accepting inputs
that are called transactions and incorporate them in a public data structure
called the ledger. A ledger (denoted in calligraphic-face, e.g. L) is a mechanism for
maintaining a sequence of transactions, often stored in the form of a blockchain.
In this work, we denote with L the algorithms used to maintain the sequence,
and with L all the views of the participants of the state of these algorithms
when being executed. For example, the (existing) ledger Bitcoin consists of the
set of all transactions that ever took place in the Bitcoin network, the current
UTXO set, as well as the local views of all the participants. In contrast, we
call a ledger state a concrete sequence of transactions Tx1,Tx2, . . . stored in the
stable part of a ledger state L, typically as viewed by a particular party. Hence,
in every blockchain-based ledger L, every fixed chain C defines a concrete ledger
state by applying the interpretation rules given as a part of the description of
L. In this work, we assume that the ledger state is obtained from the blockchain
by dropping the last k blocks and serializing the transactions in the remaining
blocks. We refer to k as the common-prefix parameter. We denote by LP [t] the
ledger state of a ledger L as viewed by a party P at the beginning of a time
slot t and by ĽP [t] the complete state of the ledger (at time t) including all
pending transactions that are not stable yet. LP [t] can be obtained from ĽP [t]
by dropping the last k block.

For two ledger states (or, more generally, any sequences), we denote by �
the prefix relation. Recall the definition of secure ledger protocol given in [10].

Definition 1. A ledger protocol L is secure if it enjoys the following properties.

Consistency. For any two honest parties P1, P2 and two time slots t1 ≤ t2,
it holds LP1 [t1] � ĽP2 [t2].
Liveness. If all honest parties in the system attempt to include a transaction
Tx then, at any slot t after s slots (called the liveness parameter), any honest
party P , if queried, will report Tx ∈ LP [t].

In this work we also explicitly rely on the properties of Common Prefix (CP),
Chain Growth (CG) and Chain Quality (CQ).

596 M. Ciampi et al.

Common Prefix (CP); with parameters k ∈ N states that for any pair
of honest players P1, P2 at rounds r1 ≤ r2 respectively, it holds that LP1 [r1] �
ĽP2 [r2].
Chain Growth (CG); with parameters τ ∈ (0, 1] and s ∈ N. Consider
the chain C adopted by an honest party at the onset of a slot and any portion
of C spanning s prior slots; then the number of blocks appearing in this portion
of the chain is at least τs.
Chain Quality (CQ) with parameters μ ∈ R and � ∈ N. For any honest
party P with chain C it holds that for any � consecutive blocks of C the ratio
of honest blocks is at least μ.

We consider a setting where a set of parties run a protocol maintaining a
ledger L1. Following [13], we denote by A1 the assumptions for L1. That is, if the
assumption A1 holds, then ledger L1 is secure under the Definition 1. Formally,
Ai for a ledger Li is a sequence of events Ai[t] for each time slot t that can
assume value 1, if the assumption is satisfied, and 0 otherwise. For example, Ai

may denote that there has never been a majority of hashing power (or stake in a
particular asset, on this ledger or elsewhere) under the control of the adversary;
that a particular entity (in case of a centralized ledger) was not corrupted; and
so on. Without loss of generality, we say that the assumption A1 for the ledger
L1 holds if and only if the fraction of corrupted parties (the parties that received
the input (corrupt, ·)) is below the threshold tc1 (where tc1 is part of the control
function as described in the beginning of this section).

Chain Selection Rule and Block Validation. We sometimes assume that a ledger
protocol describes a chain selection rule that we denote with ChainSel. That is,
we assume that each party in each round of the execution of the protocol collects
all chains that come from the network and runs the algorithm ChainSel to decide
whether to keep his current local chain Cloc, or adopt one of the newly received
chains. Following [4] we also assume that before applying the chain-selection
rule, any given chain is tested using the procedure IsValidChain. IsValidChain
checks filters the valid chains among all the chain received from the network and
only the valid chain are used as input for ChainSel. ChainSel in turns rely on the
algorithm IsValidBlock. IsValidBlock take as input a block B of Cloc and outputs
1 if B is a valid block (i.e., the structure of the block is correct) and 0 otherwise.

We note that by assuming that a ledger protocol is always equipped with the
algorithms ChainSel, IsValidChain and IsValidBlock make some of our results less
general. However, we will show that it is possible to obtain a better updatable
ledger in the case when the two ledgers (the current ledger) and the new ledger
have the same chain selection rule (among other similarities).

2.2 Genesis Block Functionality

The ledger protocols that we consider in this work are equipped with the descrip-
tion of an algorithm genesis that, on input a random value of appropriate length,
outputs a valid genesis block (i.e., the first block of the chain). The security

Updatable Blockchains 597

of most of the known ledger protocols holds under the additional assumption
that the genesis block is correct. That is, the genesis block has been generated
accordingly to genesis using appropriate randomness. Multiple ways have been
presented to generate a correct genesis block in the literature (i.e., by relying on
a trusted authority, use unpredictable information (like in bitcoin), run a multi-
party computation (MPC) protocol [1], rely on PoW [12] assumptions and so on
and so forth). In this work we abstract the generation of the genesis block by
means of an ideal functionality. The ideal functionality that one might expect,
upon being activated from the adversary or from an honest party, should sample
a random string and use it to run the algorithm genesis. Unfortunately this sim-
ple functionality does not cover real world scenarios where an adversarial party
might see the genesis block before the honest parties do. This, for example, can
happen in the case when genesis is realized via an MPC protocol and a rushing
adversary3 could hold the genesis block (the output of the computation) for some
bounded amount of time τmax before the honest parties can see it. We note that
an adversary can use this strategy to take an advantage on the generation of the
blocks that extend the genesis block. Therefore, the first modification that we
consider for our ideal functionality is to allow the adversary to see the genesis
block up to τmax rounds earlier than the honest parties. The second relaxation
allows the adversary to see up to m honestly generated genesis blocks and conse-
quently decide which of these blocks will become the genesis block. We propose
the formal description of our genesis functionality Fgen in Fig. 1. We note that
the case where τmax = 0 and m = 1 corresponds to the case where there is only
one candidate genesis block and all the parties can see it at the same round.

3 Secure Updatable Ledgers

3.1 Defining Secure Updatable Ledgers

In this section, we provide the definition of updatable ledgers. Our definition is
generic in the sense that can be applied to a large class of ledgers (e.g., PoS, PoW
and so on). Let LUPD and L2 be the two ledgers with the respective assumptions
A1 and A2. Assuming that A1 holds, then among the parties that are running
LUPD we could have up to a fraction of tc1 corrupted parties (i.e., parties that
have received the command corrupt). Analogously, the assumption A2 for the
ledger L2 holds if the number of corrupted parties divided by the number of
honest party is below the threshold tc2.

The interface of an updatable ledger extends the interface of a standard ledger
by adding the command (activate,L2). That is, each party that runs an updatable
ledger LUPD can receive the command (activate,L2) from the environment to
enable the update procedure. Let tPi

denote the time in which a party Pi receives
the activation command and let Pu be the set of parties that received this

3 A rushing adversary waits to receive the messages from all the honest parties and
then computes its reply. Note that this means that, in general, the adversary is
always able to see the output of the computation before the honest parties do.

598 M. Ciampi et al.

Fig. 1. The genesis functionality Fgen.

command. Informally, an updatable ledger guarantees that if the set of honest
parties that are willing to run L2 (i.e., the number of parties that received
(activate,L2)) is such that A2[τ] = 1 for all τ ≥ T0 for some T0 ∈ N, then
the state of L2 at time T0 + Δ corresponds to the state of LUPD at some time
T ∈ [T0, T0 + Δ]. The parameter Δ represents the time required for the update
process to be completed. The above implies that L2 extends L1 and that L2 is
secure (i.e., it enjoys consistency and liveness). In a nutshell, a secure update
process guarantees that the state of the old ledger is moved into the new ledger,
and that the new ledger is secure. We now give a more formal definition.

Definition 2 (Updatable Ledger). We say that a ledger LUPD is updatable
with activation parameter Δ (where Δ ∈ N) if it is a secure ledger according to
Definition 1 and it enjoys the following property.

Updatability. Let L2 be a secure ledger (always according to Definition 1). Let
Pu be the set of parties that received the input (activate,L2). If Pu is such that
A2[τ] = 1 for all τ ≥ T0 for some T0 ∈ N and A1[τ ′] = 1 for all τ ′ ≤ T1 = T0+Δ,
then

1. LPi
1 [T ′] � L2 for some Pi ∈ Pu with T0 ≤ T ′ ≤ T1.

2. for all τ ′′ ≥ T1 L2 enjoys consistency and liveness

We note that this definition says nothing on the security of LUPD after the
time T1 = T0 + Δ. Indeed, the Definition 2 implies that if after this time slot
T0+Δ LUPD becomes insecure (e.g., because A1 does not hold) then the security
of L2 is not compromised.

Updatable Blockchains 599

We relax the above definition by introducing the notion of updatable ledger
in the semi-online setting. An updatable ledger in the semi-online setting guar-
antees the properties of updatability only for the honest parties that where active
during the activation period [T0, T1]. That is, if an honest party P is offline before
time T0, and comes online after at time T1 then no security is guaranteed with
respect to P .

4 Our Constructions

In this section we propose two main approaches to turn a ledger L1 into an
updatable ledger LUPD. That is, we show how to make L1 able to self-update
to the code of a new ledger L2. The first approach proposed requires L1 and
L2 to be the same (i.e., they use the same consensus rules) but might have
a different block structure. The advantage in this approach is that we get a
very simple updatable ledger, that does not decrease the throughput of LUPD

during the update and does not require all the honest parties to be online during
the update4. The second approach requires fewer similarities between the two
ledgers, but it is proven secure only in the semi-online. We also show that we
can relax the requirement on the honest parties being online during the update
by relying on a 2-for-1 mining approach (more details are provided in the end
of Sect. 4.2).

We now provide a detailed description of our approaches and formally prove
their security.

4.1 First Approach

In this section we consider a simplified scenario where the two ledgers, L1 and L2,
are the same except for the block format (i.e., L1 and L2 might have a different
block size). Moreover, we assume that a block valid for L1 is valid for L2 as well
(but the vice versa does not necessarily hold). Formally, this means that if the
block validation algorithm IsValidBlock1 of L1 outputs 1 on some input B, then
also the block validation algorithm IsValidBlock2 of L2 outputs 1 (see Sect. 2.1
for more details). We now prove the following theorem

Theorem 1. If L1 and L2 are secure ledgers with block validation rules respec-
tively IsValidBlock1 and IsValidBlock2 such that:

1. L1 and L2 are the same except with respect to the block validation rules;
2. for every block B such that if IsValidBlock1(B) = 1 then IsValidBlock2(B) = 1,
3. L1 (resp. L2) has common-prefix parameter k, chain-growth parameter (τ, s)

and assumption A1 (resp. A2) with A1 = A2,

then there exists an updatable ledger LUPD with update parameter Δ := (k +
1)τ−1 + s.
4 We also show that we can relax the requirement on the honest parties being online

during the update for the case of PoW ledgers.

600 M. Ciampi et al.

Proof. We assume that enough parties have received the command (activate,L2)
such that A2 holds and denote the time when this happen with T0. Our updatable
ledger LUPD works as follows.

Each party Pi ∈ Pu does the following steps.

1. Use IsValidBlock2 as a block validation algorithm.
2. Create and post a transaction that contains an activation flag.
3. Let if be the index of the block that will contain the first transaction with an

activation flag.
4. Let j := if +k+1, run L1 and when the j-th block Bi

j becomes part of ĽPi
1 [τi]

for some τi ≥ T0 start extending Bi
j using the rules of L2 instead of the rules

of L1 (we recall that a valid block for L1 is also a valid block for L2)

We provide a pictorial description of what happens to the ledger state during
the update in Fig. 2. We note that two honest parties P1 and P2 might have
different ĽP1

1 [τ] and ĽP2
1 [τ] at any time τ . The Fig. 2 describe the scenario where

P1 might start to run L2 starting from an unstable block (i.e. a block of ĽP1
1 [τ]

with τ ≥ T0 + s) which is different from the block that P2 is using. However,
after sufficiently many rounds (at some round τ ′ ≤ T0 + s + (k1 + 1)τ−1

1 to be
precise) P1 and P2 will agree on what is the last block of L1 and what is the
first bock of L2.

To complete the proof we need to show that L2 enjoys consistency and live-
ness and that the state L1 at some time τ ∈ [T0, T1] is a prefix of L2’s state.

Before doing that, we introduce the notion of canonical execution for the
ledger L2. A canonical execution represents a standalone execution of L2. More
precisely, we assume the existence of a genesis block for L2 (that the adversary
and the honest party see at the round 0) and that A2[τ] = 1 for all τ ≥ 0. Let
P be the set of parties that is running L2. Also, let t be the smallest time slot
in which Bif appears in LPi

2 [t] for all Pi ∈ P and let t̃i,j be the smallest time slot
in which Bi

j appears in ĽPi
2 [ti,j] for each Pi ∈ P with j := if + k + 1.

We now go back to our updatable ledger protocol. In the protocol that we
have described, by assumption, we have that A2[T0] = 1 for all τ ≥ T0. From the
moment when A2 becomes true the activation process takes Δ ≤ (k + 1)τ−1 + s
time slots to be completed.

This is because the parties need to wait for the block if to be part of all the
honest parties stable view and wait for the j-th block (with j := if + k + 1) of
to be part of ĽPi

1 [ti,j] for all Pi with ti,j ∈ N. Note that in the moment that the
block Bi

j becomes available to an honest party Pi ∈ Pu (i.e., Bi
j is part of ĽPi

1)
then the party starts running L2 to extend Bi

j as described earlier (we recall
that at this time slot the assumption A2 holds). Let t′i,j be the smallest time
slot in which Bi

j appears in ĽPi
2 [t′i,j] for each Pi ∈ P with t′i,j ∈ N. If we consider

the execution of the protocol from time T0 and T0 + Δ this can be seen as a
canonical execution of L2 given that L1 and L2 follow the same rules and the
same assumption, and given that ĽPi

1 (and ĽPi
2) contains at most k blocks more

than LPi
1 (and LPi

2) for all Pi ∈ Pu. Hence, any advantage that the adversary has
on our updatable ledger can be translated into an advantage for an adversary

Updatable Blockchains 601

Fig. 2. Transition from L1 to L2. Note that different honest parties might have different
views (i.e., forks) of the unstable part of the chain which have also different lengths.

that is attacking L2, which is assumed to be secure. Note that it is crucial that
the assumption that underlines the two ledger is the same. Indeed, we note that
the number of honest parties that received (activate,L2) might be lower than
the overall number of honest parties. Hence, the honest parties that are running
the update procedure are less than the parties that are running L1 (this might
happen as we do not require all the honest parties to update). However, given
that A1 = A2, we can see the honest parties that did not receive the command
(activate,L2) as parties controlled by the adversary as they are not following the
update procedure. Luckily, this does not cause problems as even if we consider
these parties as adversarial, A1 would still hold (given that A1 = A2). Hence, we
can claim that in the worst case everything that can be done by the adversary
during the update can be done also in the canonical execution given that the
number of honest parties in the canonical execution is the same as the number
of honest parties that are performing the update.

We remark that the only difference between this and the canonical execution
described above is that the blocks Bif , . . . , Bj−2, Bj−1 are generated using L1,
but this does not represent an issue since we are assuming that any block of L1

is valid for L2. ��
We finally note that this protocol does not put any restriction on whether an

honest party needs to be online or not during an update given that L1 and L2

have the same chain selection rule (only the block selection rule is different). One
practical advantage of our approach is that if L1 (and L2) allows bootstrapping
from the genesis block (like in [3]) so does our updatable ledger.

602 M. Ciampi et al.

4.2 Second Approach

Before providing our construction we introduce the notion of genesis-compatible
ledgers. We say that two ledgers L1 and L2 are genesis-compatible if a block of
L1 can be turned into a valid candidate genesis block for L2. We now propose a
formal definition.

Definition 3. Let L1 and L2 be two secure ledgers where Fgen is the genesis
functionality of L2 parameterized by the algorithm genesis() (see Fig. 1).

We say that L1 is genesis-compatible with L2 if there exists a deterministic
polynomial time algorithm Π1→2 that, on input a valid block B of L1 outputs
a valid genesis block B̃ for L2. Moreover, the output of Π1→2 is identically
distributed to the output of the procedure genesis().

We note that Π1→2 could be a very simple protocol. For example, if we con-
sider two PoW ledgers that use the same puzzles, then L1 is genesis-compatible
with L2 since the Π1→2 can simply take a block of L1 and use it as a candidate
genesis block for L2. We note that the definition of genesis-compatibility only
tells that it is possible to generate a genesis block for L2 with a valid structure.
That is, it does not imply that L2 can be securely run using any genesis block
generated using Π1→2 as, for example, using an old block of L1 could give an
advantage to the adversary over the honest parties. More details follow.

We now propose our first compiler that turns a ledger L1 that is genesis-
compatible with L2, into an updatable ledger. At a very high level our approach
is the following. We use L1 to realize the genesis functionality of L2, and then we
use the output of the genesis functionality to execute L2. We note that it is easy
to create a candidate genesis block from L1 because it is genesis-compatible with
L2. To complete the description of our compiler, we need to specify what block
of L1 will be chosen, and argue that this process is indeed sufficient to realize
the genesis functionality for L2. In our approach the parties that are running L1

agree on the index j of a block that will be used as a genesis block (this block can
be decided using the consensus algorithm of L1, more details will be provided).
When the block of position j, that we denote with Bj , becomes stable for all
the honest parties that decided to update, then these parties use Π1→2 to turn
Bj into a genesis block for L2 thus obtaining Bgen. At this point Bgen is used
to run L2 and L1 can be abandoned. Even though the above approach seems to
work, there are many subtleties. The first is that the adversary might be able to
see the block Bj before any other honest parties do, and therefore he can take
an advantage in the generation of the blocks of L2. The second issue is that the
adversary might influence the choice of the block that will appear in position j.
Indeed, we do not know how the consensus algorithm of L1 works and what is
the power of the adversary in biasing the content of Bj . We denote with τmax′

the upper bound on the number of rounds that pass between the time at which
the adversary can see a candidate block for L1 for a position j, and the time
at which all the honest parties see Bj as part of the stable chain. We refer to
this parameter τmax′ as the prediction parameter. We also denote with m′ the
upper bound on the number of valid chains that are broadcasted on the network

Updatable Blockchains 603

that contain a block in position j and refer to this parameter as maximum forks
parameter.

Coming back to our protocol, we note that if the genesis functionality of L2

is parameterized with τmax = τmax′ and m = m′ then we can prove that the
solution we proposed works.

We are now ready to state formally our theorem and prove it.

Theorem 2. If L1 and L2 are secure ledgers and:

1. L1 has common-prefix parameter k1, chain-growth parameter (τ1, s1) and
assumption A1;

2. L2 has common-prefix parameter k2, chain-growth parameter (τ2, s2) and
assumption A2;

3. the prediction parameter of L1 is τmax′ and the maximum forks parameter is
m′;

4. the genesis functionality Fgen of L2 is parametrized by τmax = τmax′ and
m = m′;

5. L1 is genesis-compatible with L2.

then there exists an updatable ledger LUPD with update parameter Δ :=
2k1τ

−1
1 + s1 in the semi-online setting.

Proof. We start the proof by describing how formally our protocol works. Let
T0 be such that A2 holds. At time T0 each party in Pi ∈ Pu does the following
steps.

1. Create and post a transaction that contains an activation flag, let if be the
index of the block that will contain the first transaction with an activation
flag (note that there might be more than one of such a transactions).

2. Keep running L1 until the block with index j = if + k1 becomes stable (i.e.,
becomes part of LP1 [τ] for all P ∈ Pu for some τ ≥ T0) and stop issuing
transaction for L1 (if any).

3. When the j-th block Bj becomes stable then stop running L1 and start run-
ning L2 using Bgen ← Π1→2(Bj) as the genesis block.

We provide a pictorial description of what happens to the ledger state during
the update in Fig. 3. The activation flag is used by the honest parties to reach an
agreement on what it will be the index of the block used as a genesis block. We
note that the blocks of L1 that extend Bj might be unstable, moreover after the
update has been completed the parties in Pu will ignore the blocks of L1 that
extend Bj (since after the update all the parties in Pu will be using the rules
L2, hence its chain selection rule). The reason why the parties in Pu will stop
issuing transactions for L1 is that these transactions might be included in blocks
that extend Bj , which will be ignored after T0 + Δ rounds. This clearly affects
the throughput of the ledger in the interval [T0 + k1τ

−1
1 + s1, T0 + 2k1τ

−1
1 + s1]

(Fig. 3). We now continue with the proof. Let T0 be the time at which we know
that Pu is such that A2 holds. In the worst case, the time required for an honest
party to post a transaction that contains the activation flag takes time s1 rounds

604 M. Ciampi et al.

(s1 comes from the liveness of L1). The number of rounds required for j to be
stable in the view of all the honest parties is 2k1τ−1

1 rounds. This is because
to generate the block Bj are required at least k1τ

−1
1 rounds, and Bj has to

be extended with at least k1 blocks to be part of all the honest parties view
(and this takes additional k1τ

−1
1 rounds) Hence, the time required to complete

the update is Δ = 2k1τ
−1
1 + s1. Once the block Bj becomes stable, the parties

in Pu can start running L2, and we are guaranteed that L2 enjoys liveness
and consistency because the genesis block for L2 is created accordingly to Fgen

and by assumption A2 holds. Therefore, everything that appears before Bgen

is preserved due to the consistency of L2. We refer to the state of L1 before
Bgen as L̃1, and to the state of the ledger after the update as L̃1||L2. We finally
note that we guarantee no security for the honest parties that were not online
during the update. The reason is that after T1 the honest parties abandon L1 and
the adversary could compromise it. For example, an adversary could potentially
keep extending L1 after the block j, and create a very long chain, even longer
that L̃1||L2. Hence, if the chain selection rule of L1 prescribes to take the longest
chain, then a party that comes online at time T1 might take the chain L1 (which is
compromised). ��

We remark that our construction requires the parties to generate empty
blocks for L1 from block index j + 1 and until block Bj becomes stable. This is
required as the honest parties, after the update completes, will ignore any block
generated using the rules of L1 that comes after Bj .

Practical Implications. The updatable ledger that we have described can be
updated to any ledger L2 under the condition that the genesis functionality of
L2 tolerates an adversary that can see the genesis block τmax rounds before the
honest parties and decide the genesis block among a set of m candidate genesis
blocks. This requirement might look strong, but we note that the problem of
constructing a ledger that is secure in such a scenario is simpler than the problem
of constructing a ledger that supports temporary dishonest majority [2]. A ledger
with security assumption A that tolerates temporary dishonest majority is such
that its security properties (liveness and consistency) become valid again when
A[τ1] = 1, even if A[τ ′] = 0 for all τ ′ ∈ [τ0, τ1 − δ] for some τ0, τ1, δ ∈ N such
that τ1 − δ ≥ τ0. That is, the ledger become secure again when there is honest
majority (i.e., A holds) even if there was an interval of time when there was no
honest majority (i.e., A did not hold). Therefore, if we consider the extreme case
where τ0 = 0, we can assume without loss of generality that the ledger admits
a genesis functionality parametrized by τmax = δ, and by m that depends on
the upper bound on the number of forks that the adversary can create. Hence,
there are already ledgers that might fit our requirements for L2, and all the
advancement in the research that concerns the security of ledgers in the case
of temporary dishonest majority can be used to construct good candidates of
updated ledgers (L2) for existing ledgers (L1) that can be used in our compiler.

Updatable Blockchains 605

Fig. 3. Transition from L1 to L2. Note that the empty blocks of L1 might be non-stable.

Security for Offline Parties. Our security notion above is ensured for parties
that are online during the upgrade process. Clearly it is necessary that the major-
ity of the population’s consensus-maintaining parties are honest and online, as
the honest majority assumption mandates. Nevertheless, practical blockchain
systems often have a large number of consumer parties by count who have a
very small contribution to the total computational power of network, if at all,
and are not significantly contributing to the maintenance of the consensus. These
nodes can be wallets and other clients who mainly consume, rather than main-
tain, the blockchain, and are often offline for longer periods of time. Regardless,
these nodes constitute the economic majority of the nodes and we must ensure
they can also upgrade safely. The critical situation arises when such a party goes
offline prior to an upgrade, remains offline during every phase of the upgrade,
and comes online long after the rest of the population has successfully upgraded.
Before describing how to construct a protocol that can protect these parties, let
us briefly observe why an attack is easily possible by a minority adversary in a
construction with no relevant protective mechanism. Consider a situation where
a hard-fork-style change takes place and that blocks mined by upgraded parties
after the upgrade are incompatible with blocks mined prior to the upgrade, i.e.,
after the upgrade, an unupgraded party will not consider an upgraded block as
valid and an upgraded party will not consider an unupgraded block as valid.
After the upgrade has been completed, the majority of the population will shift
their mining power to mining new-style blocks. The adversary can take advan-
tage of this situation to ex post facto attack the old system, which now remains
unprotected as no significant mining power remains to secure it. As such, she can
break the common prefix property, rewrite history, and subvert the upgrade sig-
naling mechanism itself. More concretely, an adversary in this situation forks the

606 M. Ciampi et al.

old chain from the parent of the block in which upgrade information appeared
for the first time and continues mining a chain parallel to the one that yielded
the upgrade. As soon as that alternative history overtakes the old chain in terms
of work, the adversary is successful. Any offline party who wakes up afterwards
will use the old-style consensus rules to choose the blockchain and hence the
upgrade will not appear in its view. The adversary has succeeded in isolating
the offline party from the rest of the network. To rectify the above issue, a
practical implementation of the protocol must leverage the mining power of the
upgraded population to maintain both the new chain while at the same time
securing the old chain. We propose a solution for the case where L1 and L2

are two proof-of-work or two proof-of-stake type of ledgers. Our solution lever-
ages on a variation of 2-for-1 mining [11]. An upgraded miner works as follows.
They maintain the longest chain C in view of the new protocol rules, but also
the longest chain C ′ in the view of an unupgraded party. In case of hard fork,
these two chains will differ. When they are about to mine a new block on top
of the upgraded chain, they construct a new-style candidate block b extending
C as usual. In addition, they also construct an empty (transactionless) old-style
block b′ on top of the best unupgraded chain C ′. In a commentary section of the
old-style candidate block b′, such as the coinbase transaction, the miner places
the hash H(b) of the new-style candidate block. The miner then attempts to
find proof-of-work for the old-style block, i.e., some nonce ctr that satisfies the
proof-of-work equation H(b′ ‖ ctr) ≤ T for the mining target T . If such proof-
of-work is found, then the block b′ is broadcast to the network and adopted as
the tip of the longest unupgraded chain by the rest of the (upgraded or unup-
graded) miners. Note that this block is designed to be backwards-compatible
in the sense that it will be accepted by unupgraded miners even though they
remain unaware of the upgrade. On the other hand, if the reverse proof-of-work
equation H(b′ ‖ ctr)R ≤ T is satisfied (where H(·)R denotes the reversed bit-
string of H(·)), then b′ and the respective proof-of-work and blocks b′, b are
broadcast to the network. This time unupgraded miners will not consider this
a valid block. However, upgraded miners examine the validity of the block b
contained within the commentary section of b′ and check that the reverse proof-
of-work equation is satisfied. If so, they adopt the block b as the next block
in their upgraded blockchain. The above mechanism is the only mechanism by
which new-style blocks are accepted by upgraded honest miners. The protocol
just described has two advantages. Firstly, the upgraded honest miners make
use of their mining power to contribute to the security of both the old and the
new-style chain simultaneously. Therefore, an adversary cannot attack the old
chain ex post facto. Secondly, instead of dividing their mining power between the
two chains, the honest parties only use their mining power once to mine on both
networks, because the hash function is only evaluated once. As such, the hon-
est mining power is not diminished by the use of this mechanism. We observe
that, in the Random Oracle model, the last bits of the hash output remain
uniformly distributed conditioned on the fact that the proof-of-work equation
has a solution. Therefore, finding a solution of the proof-of-work equation and

Updatable Blockchains 607

finding a solution of the reverse proof-of-work equation are two independent
events (they will occur simultaneously so rarely that the honest parties can ignore
this possibility). Lastly, note that this scheme can be used repeatedly when mul-
tiple upgrades have occurred on top of one another, simply by treating a portion
of the bits of the hash as the significant bits to test against the proof-of-work
equation (e.g., for a second upgrade, the hash output can be split in three equal
parts to be tested against the proof-of-work equation). This scheme therefore the-
oretically resolves the question of securing offline parties. In practice, because
the scheme adds significant implementation complexity, implementors may elect
to maintain this backwards-compatibility mechanism for a limited amount of
time. In that case, parties who have remained offline longer than the backwards-
compatibility mechanism is maintained, will have no guarantees for security,
similarly to a classical system whose long-term support window has expired.
The scheme requires the added complexity of mining two blocks simultaneously
only in the case of proof-of-work. This is due to the nature of proof-of-work and
specifically the fact that each query counted towards the proof-of-work quota
can only be devoted to a specific message. In proof-of-stake blockchains, the
solution for maintaining the security of offline unupgraded parties is the obvious
one and allows for a much simpler implementation: We require upgraded parties
to mint, alongside their new-style blocks extending the longest upgraded chain
and containing transactions, also empty old-style blocks extending the longest
unupgraded chain, to ensure the security of their unupgraded counterparts.

A Modeling Synchrony

We refer to Fig. 4 for the formal description of the functionality Gclock.

B Functionalities with Dynamic Party Sets

UC provides support for functionalities in which the set of parties that might
interact with the functionality is dynamic. We make this explicit by means of the
following mechanism (that we describe almost verbatim from [4, Sec. 3.1]): All
the functionalities considered here include the following instructions that allow
honest parties to join or leave the set P of players that the functionality interacts
with, and inform the adversary about the current set of registered parties:

– Upon receiving (REGISTER, sid) from some party pi (or from A on behalf of
a corrupted pi), set P := P ∪ {pi}. Return (REGISTER, sid, pi) to the caller.

– Upon receiving (DE REGISTER, sid) from some party pi ∈ P, the functionality
updates P := P \ {pi} and returns (DE REGISTER, sid, pi) to pi.

– Upon receiving (IS REGISTERED, sid) from some party pi, return (REGISTER,
sid, b) to the caller, where the bit b is 1 if and only if pi ∈ P.

– Upon receiving (GET REGISTERED, sid) from A, the functionality returns the
response (GET REGISTERED, sid,P) to A.

608 M. Ciampi et al.

Fig. 4. The functionality Gclock

In addition to the above registration instructions, global setups, i.e., shared
functionalities that are available both in the real and in the ideal world and
allow parties connected to them to share state [6], allow also UC functionalities
to register with them. Concretely, global setups include, in addition to the above
party registration instructions, two registration/de-registration instructions for
functionalities:

– Upon receiving (REGISTER, sidG) from a functionality F (with session-id sid),
update F := F ∪ {(F, sid)}.

– Upon receiving (DE REGISTER, sidG) from a functionality F (with session-id
sid), update F := F{(F, sid)}.

– Upon receiving (GET REGISTEREDF , sidG) from A, return (GET REGISTEREDF ,
sidG, F) to A.

We use the expression sidG to refer to the encoding of the session identifier
of global setups. By default (and if not otherwise stated), the above four (or
seven in case of global setups) instructions will be part of the code of all ideal
functionalities considered in this work. However, to keep the description simpler
we will omit these instructions from the formal descriptions unless deviations
are defined.

Updatable Blockchains 609

References

1. Zcash. https://z.cash/
2. Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin security under

temporary dishonest majority. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 466–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32101-7 28

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 913–930. ACM Press,
October 2018. https://doi.org/10.1145/3243734.3243848

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001. https://doi.org/10.1109/SFCS.2001.959888

6. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

7. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 33

8. Decred: Decred white paper (2019). https://docs.decred.org/
9. Duffield, E., Diaz, D.: Dash: a payments-focused cryptocurrency (2018). https://

github.com/dashpay/dash/wiki/Whitepaper
10. Garay, J., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. In:

Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 284–318. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 13

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

12. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 465–495. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76581-5 16

13. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 IEEE Sym-
posium on Security and Privacy, pp. 139–156. IEEE Computer Society Press, May
2019. https://doi.org/10.1109/SP.2019.00040

14. Goodman, L.: Tezos—a self-amending crypto-ledger white paper (2014). https://
tezos.com/static/white paper-2dc8c02267a8fb86bd67a108199441bf.pdf

15. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

16. Zhang, B., Oliynykov, R., Balogun, H.: A treasury system for cryptocurrencies:
enabling better collaborative intelligence. In: NDSS 2019. The Internet Society,
February 2019

https://z.cash/
https://doi.org/10.1007/978-3-030-32101-7_28
https://doi.org/10.1007/978-3-030-32101-7_28
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-662-53890-6_33
https://docs.decred.org/
https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper
https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1109/SP.2019.00040
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://doi.org/10.1007/978-3-642-36594-2_27

PrivacyGuard: Enforcing Private Data Usage
Control with Blockchain and Attested Off-Chain

Contract Execution

Yang Xiao1(B), Ning Zhang2, Jin Li3, Wenjing Lou1, and Y. Thomas Hou1

1 Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
xiaoy@vt.edu

2 Washington University in St. Louis, St. Louis, MO, USA
3 Guangzhou University, Guangzhou, China

Abstract. The abundance and rich varieties of data are enabling many trans-
formative applications of big data analytics that have profound societal impacts.
However, there are also increasing concerns regarding the improper use of indi-
vidual data owner’s private data. In this paper, we propose PrivacyGuard, a sys-
tem that leverages blockchain smart contract and trusted execution environment
(TEE) to enable individual’s control over the access and usage of their private
data. Smart contracts are used to specify data usage policy, i.e., who can use what
data under which conditions and what analytics to perform, while the distributed
blockchain ledger is used to keep an irreversible and non-repudiable data usage
record. To address the efficiency problem of on-chain contract execution and to
prevent exposing private data on the publicly viewable blockchain, PrivacyGuard
incorporates a novel TEE-based off-chain contract execution engine along with a
protocol to securely commit the execution result onto blockchain. We have built
and deployed a prototype of PrivacyGuard with Ethereum and Intel SGX. Our
experiment result demonstrates that PrivacyGuard fulfills the promised privacy
goal and supports analytics on data from a considerable number of data owners.

Keywords: Privacy · Data access and usage control · Trusted execution ·
Blockchain · Smart contract

1 Introduction

The recent emergence of big data analytics and artificial intelligence has made life-
impacting changes in many sectors of society. One of the fundamental enabling com-
ponents for the recent advancements in artificial intelligence is the abundance of data.
However, as more information on individuals is collected, shared, and analyzed, there
is an increasing concern on the privacy implication. In the 2018 Facebook-Cambridge
Analytica data scandal, an API, originally designed to allow a third party app to access
the personality profile of limited participating users, was misused by Cambridge Ana-
lytica to collect information on 87 million of Facebook profiles without the consent
of the users. These illicitly harvested private data were later used to create personal-
ized psychology profiles for political purposes [21]. With increasing exposure to the
c© Springer Nature Switzerland AG 2020

L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 610–629, 2020.
https://doi.org/10.1007/978-3-030-59013-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_30&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_30

PrivacyGuard: Enforcing Private Data Usage Control 611

privacy risks of big data, many now consider the involuntary collection of personal
information a step backward in the fundamental civil right of privacy [19], or even in
humanity [43,44]. Yet, driven by economic incentives, the collection and analysis of
the personal data continue to grow at an amazing pace.

Individuals share personal information with people or organizations within a partic-
ular community for specific purposes; this is often referred to as the context of pri-
vacy [33]. For example, individuals may share their medical status with healthcare
professionals, product preferences with retailers, and real-time whereabouts with their
loved ones. When information shared within one context is exposed in another unin-
tended one, people may feel a sense of privacy violation [32]. The purposes and values
of those contexts are also undermined. The contextual nature of privacy implies that
privacy protection techniques need to address at least two aspects: 1) what kind of infor-
mation can be exposed to whom, under what conditions; and 2) what is the “intended
purpose” or “expected use” of this information.

Much research has been done to address the first privacy aspect, focusing on data
access control [4,23,49,53] and data anonymization [16,28,29,41]. Only recently,
there have been a few works that attempted to address the second aspect of privacy
from the architecture perspective [6,14,17,38,60,61]. In fact, many believe that the
prevention of this kind of “second-hand” data (mis)use can only be enforced by legal
methods [13]. Under the current practice, once an authorized user gains access to the
data, there is little control over how this user would use the data. Whether he would
use the data for purposes not consented by the original data owner, or pass the data to
another party (i.e., data monetization) is entirely up to this new “data owner”, and is no
longer enforceable by the original data owner.

Our Contribution. Building upon our previous work [55], we present the design,
implementation and evaluation of PrivacyGuard in this paper. PrivacyGuard empow-
ers individuals with full control over the access and usage of their private data in a data
market. The data owner is not only able to control who can have access to their private
data, but also ensured that the data are used only for the intended purpose. To realize
this envisioned functionalities of PrivacyGuard, three key requirements need to be met.
First, users should be able to define their own data access and usage policy in terms
of to whom they will share the data, at what price, and for what purpose. Second, data
usage should be recorded in a platform that offers non-repudiation. Third, the actual
usage of data should have a verifiable proof to show its compliance to the policy.

Blockchain, the technology behind Bitcoin [31] and Ethereum [18], has exhibited
great potential in providing security and privacy services. Smart contract is a program
that realizes a global state machine atop the blockchain and has its correct execu-
tion enforced by the blockchain’s consensus protocol. PrivacyGuard enables individual
users to control the access and usage of their data via smart contract and leverages the
blockchain ledger for transparent and tamper-proof recording of data usage.

While smart contract and blockchain appear to be the perfect solution, there are fun-
damental limitations if applied directly. First, data used by smart contracts are uploaded
in the form of blockchain transaction payload, which is not designed to hold arbi-
trarily large amount of data due to communication burden and scalability concerns
[12,31]. Second, smart contracts are small programs that have to be executed by all

612 Y. Xiao et al.

participants in the network, which raises serious computational efficiency concerns.
For the same reason, existing platforms such as Ethereum are not purposed to handle
complex contract programs [51]. Last but not least, data used by smart contracts are
available to every participant on blockchain by design, which conflicts with the confi-
dentiality requirement of user data. Existing secure computation techniques for preserv-
ing confidentiality and utility of data, such as functional encryption [5], can nonetheless
be prohibitively expensive for the network.

To tackle data and computation scalability problems, PrivacyGuard splits the private
data usage enforcement problem into two domains: the control plane and the data plane.
In the control plane, individual users publish the availability as well as the usage policy
of their private data as smart contracts on blockchain. Data consumers interact with
the smart contract to obtain authorization to use the data. Crucially, the actual data of
the users are never exposed on the blockchain. Instead, they are stored in the cloud
in encrypted forms. Computation on those private user data as well as the provision
of secret keys are accomplished off-chain in the data plane with a trusted execution
environment (TEE) [2,30] on the cloud.

When a data contract’s execution is split into control and computation, where the
computation actually takes place off-chain, several challenges occur. First, the correct-
ness of the contract execution can no longer be guaranteed by the blockchain consensus.
To this end, we propose “local consensus” for the contracting parties to establish trust
on the off-chain computation via remote attestations. Second, the execution of contract
is no longer atomic when the computation part is executed off-chain. We design a multi-
step commitment protocol to ensure that result release and data transaction remain an
atomic operation, where if the computation results were tampered with, the data trans-
action would abort gracefully. Lastly, private data are protected inside the TEE enclave
and secrets are only provisioned when approved according to the contract binding.

We implemented a prototype of PrivacyGuard using Intel SGX as the TEE technol-
ogy and Ethereum as the smart contract platform. We chose these two technologies for
implementation due to their wide adoption. Our design generally applies to other types
of trusted execution environments and blockchain smart contract platforms. The plat-
form fulfills the goal of user-define data usage control at reasonable cost and we show
that it is feasible to perform complex data operations with the security and privacy pro-
tection as specified by the data contract.

To summarize, we make the following contributions in this paper:

– We propose PrivacyGuard, a platform that combines blockchain smart contract and
trusted execution environment to address one of the most pressing problems in big
data analytics—trustworthy private data computation and usage control. Privacy-
Guard essentially allows data owners to contribute their data into the data market
and specify the context under which their data can be used.

– We propose a novel construction of off-chain contract execution environment to sup-
port the vision of PrivacyGuard, which is the key to improving the execution effi-
ciency of smart contract technology and enabling trustworthy execution of complex
contract program without solely relying on costly network consensus.

– We implemented a prototype of PrivacyGuard using Intel SGX and Ethereum smart
contract and deployed it in a simulated data market. Our evaluation shows that

PrivacyGuard: Enforcing Private Data Usage Control 613

PrivacyGuard is capable of processing considerable volumes of data transactions
on existing public blockchain infrastructure with reasonable cost.

2 Background

Blockchain and Smart Contract. Blockchain is a recently emerged technology used
in popular cryptocurrencies such as Bitcoin [31] and Ethereum [18]. It enables a wide
range of distributed applications as a powerful primitive. With a blockchain in place,
applications that could previously run only through a trusted intermediary can now
operate in a fully decentralized fashion and achieve the same functionality with com-
parable reliability. When the majority of the network’s voting power (hashing power,
stake value, etc.) are controlled by honest participants, the shared blockchain becomes
a safe and timestamped record of the network’s activities. The conceptual idea of pro-
grammable electronic “smart contracts” dates back nearly twenty years [42]. When
implemented in the blockchain platform (e.g. Ethereum), smart contracts are account-
like entities that can receive transfers, make decisions, store data or even interact with
other contracts. The blockchain and the smart contract platform however have several
drawbacks in transaction capacity [12], computation cost [9,26], as well as privacy of
user and data [26,27].

Trusted Execution Environment. Creating vulnerability-free software has long been
considered a very challenging problem [40]. Researchers in the architecture commu-
nity in both academia [11] and industry [2,30] have embraced a new paradigm of
limiting the trusted computing base (TCB) to only the hardware, realizing a trusted
execution environment (TEE). The well-known Intel SGX [30] is an instruction set
extension to provide TEE functionalities. Applications are executed in secure contain-
ers called enclaves. The hardware guarantees the integrity and confidentiality of the
protected application, even if the platform software is compromised. TEE has recently
been adapted as a powerful tool to support blockchain-based applications [9,22,25,54].

3 PrivacyGuard Overview

3.1 System Goal and Architecture

The vision of PrivacyGuard is to not only protect data owner privacy but also promote
a vibrant data sharing economy, in which data owners can confidently sell the right to
use their data to data consumers for profits without worrying about data misuse. To
realize this, there are three specific goals. First, data encryption/decryption are fully
controlled by data owners. Untrusted parties (e.g. cloud storage and data consumers)
can not obtain or possess data owners’ plaintext data. Second, Data owners are able to
control who can access which data items under what conditions for what usage. The
data usage records should be non-repudiable and auditable by data owners. Third, the
security mechanism of our system should be able to capture user-defined policies and
enforce the compliance of the policies during the execution of data access.

Figure 1 shows the system architecture of PrivacyGuard. Although we have been
using the term users to refer to both individuals and organizations, we differentiate two

614 Y. Xiao et al.

Fig. 1. System architecture for PrivacyGuard framework.

roles that an user in the data market can take. We refer to the individual or organization
that owns the data as data owner (DO) and the entity that needs to access the data
as data consumer (DC). Classified by the assigned responsibility, there are three main
functional components in the PrivacyGuard framework:

Data Market. Data market is an essential PrivacyGuard subsystem that supports the
supply, demand and exchange of data on top of blockchain. For data access and usage
control, DO can encode the terms and conditions pertaining to her personal data in a
data contract, and publish it on a blockchain platform such as Ethereum. Data usage by
DC is recorded via transactions that interact with the data contract.

iDataAgent (iDA) and Data Broker (DB). iDA is a trusted entity representing an
individual DO and responsible for key management for the DO. It also participates in
contract execution by only provisioning the data key material to attested remote entities.
Since it is often not realistic to expect individual DO to be connected all the time, iDA
can also be instantiated as a trusted program in a TEE-enabled cloud server. To address
the inherent transaction bandwidth limit of the blockchain network, DB is introduced
to collectively represent a group of users.

Off-Chain Contract Execution Environment (CEE). This off-chain component exe-
cutes data operations contracted between DO(s) and DC in a TEE enclave. The trusted
execution guarantees correctness as if it was executed on-chain. The computation result
is securely committed to DC while enforcing the contract obligation.

PrivacyGuard: Enforcing Private Data Usage Control 615

3.2 PrivacyGuard High-Level Workflow

The workflow of PrivacyGuard proceeds in three stages which can function concur-
rently. Stage 1 and 2 involve the supply side (DO, iDA, DB) that prepares the data
items and usage contracts while stage 3 characterizes the regular operation.

Stage 1: Data Generation, Encryption, and Key Management. In this stage, a DO’s
data are generated by its data sources and collected by its iDA, who passes the encrypted
data to the cloud storage. Keys for data en/decryption are generated by the DO via
interface to iDA and managed by iDA. For a group of users with common data types,
they can delegate their trust to a DB by remote-attesting the DB’s enclave and provision
data keys to the enclave.

Stage 2: Policy Generation with Smart Contract. In PrivacyGuard, individual DOs
can define their own usage policies for their private data in DO contract (CDO). The
policies encoded usually includes the essential components for privacy context, such as
data type, data range, operation, cost, consumer, expiration, etc. The operation, which
specifies intended usage of the targeted data, can be an arbitrary attestable computer
program. This paradigm grants DOs fine-grained control on the data usage policy and
the opportunity to participate in the data market independently. However, it requires
ample transaction processing capacity from the blockchain network that scales in the
number of DOs. Alternatively, the DB-based paradigm uses DB as a trusted delegate
for a large number of DOs. DB represents the DOs in the blockchain by curating a
DB contract (CDB) that accepts data registries from DOs and advertising their data in
bundles. The encoding of CDO and CDB will be elaborated in Sect. 4.

Stage 3: Data Utilization and Contract Execution. DC invokes a CDO (or CDB)
for permission to use certain private data of the targeted DO(s) for a specific operation,
and deposits payment onto the contract. If permission is granted on the blockchain, DC
instructs CEE to load the enclave program for the contracted operation whose checksum
is specified in the contract. Then both the DC and iDA (or DB) proceed to remote-attest
the CEE enclave. This essentially allows the two parties to reach a “local consensus”
on CEE’s trustworthiness that enables the off-chain execution of the on-chain contract.
When the attestations succeed, iDA (or DB) provisions data decryption keys to the
CEE enclave to enable data operation within the enclave. When the operation finishes,
the enclave releases the result in encrypted form and erases all the associated data and
keying materials. To achieve a fair and atomic exchange that DC gets the decrypted
result while DO(s) get the payment, we propose a commitment protocol for the two
sides which ensures the atomic exchange only when they agree upon each other. The
detailed design of the commitment protocol will be explained in Sect. 5.

3.3 Threat Model and Assumptions

We assume all entities act based on self-interest and may not follow the protocol. How-
ever, to maintain a reasonable scope for the paper, we assume DO will not provide
meaningless or falsified data intentionally. It is possible to encode rules in smart con-
tract to penalize DOs for abusing the system with bad data. Furthermore, we assume

616 Y. Xiao et al.

the security systems, i.e. the blockchain and TEE, are trustworthy and are free of vul-
nerability. Specifically, in the control plane, we assume the blockchain infrastructure is
secure that adversaries do not control enough resources to disrupt distributed consen-
sus. We also assume smart contract implementations are free of software vulnerabil-
ity. In the data plane, we assume the TEE is up to date, and particularly, Intel SGX,
is secure against malicious attack from the operating system. We recognize that TEE
implementations are not always perfect, and previous work has demonstrated side chan-
nel information leakage on the SGX platform alone [45,46,50,52,56–58], preventing
such attacks is an important but orthogonal task. We also assume that all data operations
requested by DC have been ratified by trusted sources and a cryptographic checksum of
the program binary is sufficient for PrivacyGuard to check the data operation integrity.

4 Data Market of User-Defined Usage with Blockchain

The intuition behind the data market is to enable fair and transparent data transactions
between DO and DC. In PrivacyGuard, DOs advertise private data items available for
knowledge extraction on blockchain smart contracts. DC shops for a desirable data set
and contract for his analytics. To start the data transaction, DC invokes the data contract
and deposits a payment. The sales of knowledge extraction rights on private data are
fulfilled that DO obtains the payment while the DC obtains the knowledge. The data
transaction is then recorded in the blockchain with transparency. To enable user-defined
access and usage control, the data contract, needs to encode DO’s data usage policy
including how data can be used by which DC at what cost. Next we present the our data
contract design in PrivacyGuard in a constructive manner.

4.1 Encoding Data Usage Policy with Smart Contract

Basic Data Usage Contract. In the conventional data sharing scenario, the data access
policy often includes attributes such as type of the data, range or repository of the
data, DO and DC credentials. For example, we assume patient X with public key pair
(pkX ,skX) has three types of medical data: radiology data, blood test data and mental
record data. X is only willing to share his radiology data (with descriptor pData) with
urology specialist S with public key pkS . X can treat S as a DC and specify an access
policy P in a data access contract: CX(DA) = {P = {pData, pkS}, SigskX

(P)}.
This encoding, however, specifies only data access but no obligation of the DC once
access is granted. The DC could share the data with other parties against the original
intention of the DO. To enable fine-grained control on how data is used, obligations
need to be attached to the policy. For instance, if X only wants S to run a certain opera-
tion op on the data, then X can encode a new data usage contract in the following form:
CX(DU) = {P = {pData, op, pkS}, SigskX

(P)}.

Enabling Data Market Economy. A key feature of PrivacyGuard is to encourage
DOs to share private data for public welfare as well as financial rewards without
concerning privacy leakage or data misuse. Building on top of the success of cryp-
tocurrency, the blockchain smart contract platform allows DO and DC to transact
on the usage of data with financial value attached. DO can specify a price tag $pr

PrivacyGuard: Enforcing Private Data Usage Control 617

(in cryptocurrency) in the policy. To further ensure a fair exchange that DC gets the
knowledge and DO gets the payment, certain control logic should be instated in the
form of smart contract functions. We call these functions and other contract meta-
data the contextual information, denoted ctx. Back to the previous example, we now
have CX(DU) = {P = {pData, op, $pr, pkS}, ctx, SigskX

(P ||ctx)}. In blockchain
domain, the signature is conveniently fulfilled by X’s signature in the contract creation
transaction.

Transparent Tracking of Data Utilization. For the system to provide transparent data
utilization tracking and policy compliance auditing, each data transaction needs to be
recorded in a tamper-resistant and non-repudiable manner. In PrivacyGuard, contract
functions (part of ctx, invoked via blockchain transactions) are used to facilitate the
recording of data utilization. Since the blockchain ledger is publicly managed via global
consensus and unforgeable, contract function invocations in blockchain transactions can
provide non-repudiable records on data utilization.

Algorithm 1: Data Owner’s Smart Contract CDO Pseudocode
Function Constructor() // Contract creation by DO with a policy

Parse policy as (dataset, price, operation,DCList, requestT imeout) ;
pDS ← policy.dataset ;
pPrice ← policy.price ;
pOP ← policy.operation ;
pDCL ← policy.DCList ;
pRTO ← policy.requestT imeout ;
R ← [] // Usage records ;
DO ← creator ;

Function Request(op, data, $f) // Callable by DC
if op = pOP and sender ∈ pDCL and data ⊂ pDS and f ≥ pPrice then

Create a record entry R[idx] with index idx for this new data transaction ;
R[idx].{data,DC, reqT ime} ← {data, sender, sys.time} ;
R[idx].status ← WAIT COMPUTATION ;

else
Return $f to sender and terminate ;

Function ComputationComplete(idx, KresultHash) // Callable by DC
R[idx].krHash ← KresultHash ;
R[idx].status ← WAIT COMPLETE ;

Function CompleteTransaction(idx, Kresult) // Callable by DO
if Hash(Kresult) = R[idx].krHash then

Send $f to DO ;
R[idx].kr ← Kresult ;
R[idx].status ← COMPLETE // Data transaction complete ;

Function Cancel(idx) // Callable by DC
if sender = R[idx].DC and (sys.time − R[idx].reqT ime) > pRTO then

Return $f to R[idx].DC; ;
R[idx].status = CANCELED ;

Function Revoke() // Callable by DO
if sender = DO then

contract selfdestruct ;

Data Owner’s Smart Contract CDO. We design CDO to capture the functionalities
discussed above. The pseudo code of CDO in shown in Algorithm 1. In addition to
the policy variables, CDO encodes functions for enforcing the control logic. Construc-
tor initializes the policy at contract creation. Request takes a payment deposit from
DC along with the requested operation op, the requested data descriptor Dtarget, and

618 Y. Xiao et al.

authorizes this data transaction. ComputationComplete is called by DC to signal the
completion of the off-chain data execution. CompleteTransaction is called by DO to
record the data usage and completes the transaction. The deposited payment is then
redistributed to DO. We will cover more details on them along with the result commit-
ment process in Sect. 5. Cancel is called by DC to abort the current transaction if the
timeout passes. Lastly, Revoke invalidates the contract and can be called only by DO.

4.2 Using Data Broker to Address the On-Chain Scalability Challenge

While CDO allows individual DOs to have fine-grained control over data usage pol-
icy and participate in data market independently, this paradigm puts heavy pressure
on the blockchain transaction processing capability when the number of DOs is huge.
In the meantime limited transaction throughput is a known problem for major pub-
lic blockchains [7,12,20]. While there are many ongoing efforts to scale up transaction
throughput [1,36], we take a different but complementary approach to address this issue
in PrivacyGuard’s scenario. A trusted delegate, namely data broker (DB), is used to rep-
resent a group of users and curates a DB’s contract (CDB). CDB allows individual DOs
to register data entries and operations for DB to moderate. DB then participates in the
data market on behalf of the registered DOs. We call this paradigm the DB-based system
in our later implementation, in contrast to the iDA-based system.

The pseudo code of CDB is provided in Appendix A. CDB emulates CDO for most
parts but with extra global variables for data source management and two more func-
tions: Register and Confirm. When a DO wants to make use of the DB, she first invokes
Register function to register her data with the CDB. In the data plane, the DO needs
to remotely attest the DB to establish trust, then provisions the data keys to the DB
enclave. This, however, is not the end of data registration, because the data source and
quality still need to be verified by the DB. Once verified, DB invokes Confirm function
to complete the data registration. Furthermore, result commitment is also slightly dif-
ferent for CDB. The CompleteTransaction function is now callable by DB and needs
to distribute payments to all involved DOs.

5 Off-Chain Contract Execution

PrivacyGuard leverages blockchain smart contract to provide the control mechanisms
for valued data exchanges. While the technology offers a distributed time-stamped
ledger which is ideal in providing a transparent recording of data usage, smart contract
suffers from several prohibiting drawbacks when it comes to confidential data computa-
tion purely on-chain. First, the smart contract invocation and the ensuing computation is
executed and repeated by all nodes in the blockchain network. The cost to run complex
algorithms on-chain can be prohibitive even assuming data storage is not an issue. Sec-
ond, data has to be decrypted and stored on the chain, causing confidentiality problems.

To tackle this problem, we introduce the concept of off-chain contract execution in
PrivacyGuard and introduce an entity called off-chain contract execution environment
(CEE) to bring both the computation and data provisioning off-chain. Particularly, we
decompose a data usage contract into two portions, the control part and the computation

PrivacyGuard: Enforcing Private Data Usage Control 619

Fig. 2. Off-chain contract execution and result commitment

part. The control flow starts with invoking the contract and stops at the contracted com-
putation task which switched to off-chain. The control flow is resumed with another
contract invocation when the off-chain computation task is finished. Accordingly, we
propose a novel off-chain contract execution and result commitment protocol, as is
shown in Fig. 2. Note that both DB and iDA can represent a DO. Here we resort to the
DB-based paradigm for convenience of presentation. We defer the discussion on DB’s
role in the data plane to the end of this section. Next we elaborate on the important
features of off-chain contract execution in a constructive manner.

5.1 Establishing Trust on the Execution of Contracted Operation Through
“Local Consensus”

The first challenge is the correct execution of the contracted task. As we have men-
tioned, when smart contracts are executed on blockchain platform, the correctness of
the execution is guaranteed by the entire network through global consensus, which suf-
fers from high on-chain cost. Our observation is that the correctness of one particular
computation instance only matters to the stakeholders of the data transaction, i.e. the
DOs, DB, and DC. And we do not need the entire network to verify the correctness.

In the conventional setting of distributed computing, both the DC and DO would
perform the data computation task and expect the same result from each other. However,
it contradicts DO’s goal of fine-grained control on data usage if the data are directly pro-
vided to DC. Instead, we rely on software remote attestation, which is a widely available
primitive with TEEs [2,30], for securely delegating the computation task to CEE. In
this paper we opt for Intel SGX [30]. First of all, the designated computation program
should pre-ratified with its program (binary) hash published in the data contract along
side “authorized operations”. When instructed by DC for a specific computation task,
CEE loads the corresponding enclave program for that task. Then the two transacting
sides in the data plane, DB and DC, remotely attest the enclave program to verify its

620 Y. Xiao et al.

authenticity and integrity with the program hash in the contract. As a result, as shown in
Fig. 2, the immediate steps after data transaction request is to have CEE load the enclave
program and DC and DB remotely attest the CEE enclave. Once correctly CEE enclave
is verified with attestation reports, both sides of the contract can then extend their trust
to CEE, knowing the attested program will execute securely in the enclave till termi-
nation, and the computation result will be genuine even if an adversary compromises
CEE’s untrusted platform (i.e., “normal world” in TEE terminology, which includes the
operating system and non-enclave programs). And finally the result produced by CEE
will be the “local consensus” between the two sides.

5.2 Enforcing Data Obligation and Confidentiality

The local consensus mechanism guarantees the data intensive computation task can be
offloaded to the off-chain entity CEE for execution while maintaining the correctness
of computation. However, in order to achieve the privacy goals of PrivacyGuard, com-
putation itself has to fulfill the data obligation, which we refer to as the obligations
of DC for utilizing DO’s data. More specifically, it follows the general requirement of
secure computation, wherein only the computation result is accessible by the DC, not
the plaintext source data. First, the computation process should not output any plaintext
source data or any intermediate results that are derived from the source data. Second, at
the end of the computation, all decrypted data and intermediate results should be sani-
tized. Despite recent breakthrough in fully homomorphic encryption, performing arbi-
trary computation over encrypted data remains impractical for generic computation. In
PrivacyGuard, we make use of TEE enclaves to create the environment for confidential
computing. As is illustrated by step 3 and 4 in Fig. 2, DO’s data en/decryption key Kdata

can be provisioned to CEE’s enclave only if the latter can be cryptographically verified
via remote attestation and a secure channel is established. This comes as an integral
part of the local consensus. The hardware of CEE, the processor specifically, enforces
the isolation between the untrusted platform and the enclave. We require the enclave
program to include steps to sanitize intermediate results and keying materials. Since
memory contents are encrypted in Intel SGX, once the keying material is removed, the
data can be considered effectively sanitized. This also ensures that the program inside
the enclave will terminate once the contracted task is completed.

5.3 Ensuring Atomicity in Contract Execution and Result Commitment

The last challenge is ensuring the atomicity of the contract, which arises from the split
of control between on-chain off-chain. Contract functions that were previously executed
in a single block are now completed via multiple function invocations that are executed
in multiple blocks. Furthermore, there is no guarantee on the execution time of the
off-chain computation, because an adversary controlling the platform can interrupt the
computation and cause delays. Specifically, two issues need to be addressed.

The first issue is the contract function runtime. When the adversary has control of
the off-chain computation platform of CEE, he can pause or delay the computation.
For many data computations, the result can be time-sensitive. To tackle this problem,
we add a timeout mechanism in the data contract to allow DC to cancel the request after
timeout and have the deposit refunded (see Algorithm 1).

PrivacyGuard: Enforcing Private Data Usage Control 621

The second issue is the atomic completion of the contract. We want both the DOs to
get the payment in the control plane while allowing DC to get the computation results in
the data plane. This is particularly challenging due to the lack of availability guarantee
on the CEE platform. When the platform is compromised, the adversary can intercept
and modify any external I/O from the enclave, including both the network and stor-
age. Our design for the atomic completion and result commitment can be observed
from step 7 to 10 in Fig. 2. The key idea is that result release and contract completion
should be done as a single message in the control plane. To prevent DC from getting
the result without completing the payment to DOs, the result are encrypted into Cresult

with a random result key Kresult, before being sent to DC in the attested secure chan-
nel. Since the platform can corrupt any output from CEE, the CEE enclave also sends
DC the hash of the encrypted result and key, i.e., Hash(Cresult) and Hash(Kresult),
which will be later used by DC for integrity check on the result and the key. Kresult is
passed to DB in the attested secure channel. To prevent DB from completing the trans-
action without releasing the correct result key, DC needs to initiate the commitment
procedure in the control plane by invoking the contract function ComputationComplete
with Hash(Kresult), indicating it has the encrypted result and is ready to finish the
data transaction if and only if the correct result key Kresult is released. Upon observing
the message from DC, DB then invokes the smart contract function CompleteTransac-
tion with the result key Kresult. Only when the hash of Kresult matches the previously
received Hash(Kresult), will the contract write the data usage into records, release the
payment to DOs, and finally conclude the data transaction. Note that our commitment
protocol design does not need to protect the confidentiality of Kresult (thus enabling
the on-chain hash check). This is because the encrypted result Cresult is passed directly
from CEE enclave to DC via the attested secure channel. Finally, DC has the full dis-
cretion in deciding whether to publish the computation result afterwards.

5.4 Data Broker for Scalability in the Data Plane

In the iDA-based paradigm, when DC needs to use the data from a large number of DOs,
the naive use of remote attestation on the CEE would require each iDA to individually
attest and verify the CEE enclave, resulting in linearly growing computation overhead
and network traffic. To address this challenge, in the DB-based paradigm, DB can be
re-purposed as a trusted intermediary between the CEE and all relevant DOs in the
data plane during the preparation stage, similar to its control plane role. Essentially,
DB is also deployed on a TEE-enabled machine and instantiates an enclave for secure
handling of DOs’ data. The enclave is attested to every new DO only once after the
DO registers with DB. During the normal operation, DB attests CEE on behalf of all
relevant DOs for each DC request, saving the need for individual DOs to attest CEE.
To accommodate the extreme case when a large number of DOs registers with DB
simultaneously, we will explore parallel remote attestation solutions in Subsect. 6.1.

6 Implementation and Evaluation

We implemented a prototype of PrivacyGuard using Intel SGX as the TEE technology
and Ethereum as the smart contract platform. Source code with documentation is avail-
able at https://github.com/yang-sec/PrivacyGuard. The on-chain components, namely

https://github.com/yang-sec/PrivacyGuard

622 Y. Xiao et al.

the DO contract and the DB contract, were implemented in Solidity with 144 and 162
software lines of code (SLOC) respectively. The data usage price was set at 0.01 ethers
per user data. The off-chain components include five PrivacyGuard applications, namely
iDataAgent (iDA), Data Broker (DB), Data Owner (DO), Data Consumer (DC), Con-
tract Execution Environment (CEE). They were implemented in C++ with Intel SGX
SDK v2.3.1 on top of Ubuntu 16.04 LTS. The total SLOC for off-chain components is
about 37,000.

We deployed the contracts onto Ethereum Rinkeby testnet for evaluation, though
our system is fully compatible with Ethereum mainnet. We used a fixed gas price
of 10−9 ethers. PrivacyGuard applications were deployed in a LAN scenario. 1 DB,
1 iDataAgent, and 1 CEE ran on a SGX-enabled Linux machine with Intel Core i5-
7260U CPU (2 cores 4 threads, 3.5 5 GHz). Up to 160 DOs and 1 DC ran on a Linux
machine with AMD FX-8320 CPU (4 cores 8 threads, 3.5 5 GHz). We note that this
setup aims for feasibility demonstration; in real-world deployment each application will
most likely reside in a different machine. We used the adult dataset from UCI Machine
Learning Repository [15] to simulate the data source. Each DO randomly drew 500
data points from the dataset as its private data. We have tested the entire PrivacyGuard
workflow in multiple runs and the data usage history has been recorded in the deployed
contracts. Our evaluation focuses on the system’s scalability and consists of three parts:
control plane runtimes, control plane costs, and data plane runtimes.

6.1 Control Plane Runtimes

To accommodate the scenario where N DOs simultaneously attest the DB enclave in
the DB-based system, we experimented with a parallel attestation scheme in DB that
each of the N attestation instances is handled by one of the T software threads, which
invokes a new attestation context of the enclave and a dedicated enclave thread control
structure (TCS) (thus TCSNUM = T). The experiment was repeated under different T .
To avoid congesting the Intel Attestation Service (IAS) which may violate the terms of
service, we instead used a simulated IAS that responds to EPID signature revocation
list request and attestation report request with 0.1 s and 0.5 s delays respectively. The
result is shown in Fig. 3(a). We observe that the parallel scheme is indeed a promising
solution for scaling up attestation capacity, at the cost of enlarged enclave memory
footprint. When N = 160, it takes the 64-thread DB about a tenth the attestation time
of its sequential counterpart. We remark that efficient and scalable remote attestation is
an interesting standalone topic to explore in future work.

To further evaluate the performance constraints imposed by the blockchain network,
we measured the average transaction finalization delay in a congested environment. We
set up 160 DOs to simultaneously send out a transaction calling the Register() func-
tion in the DB contract and their own DO contracts. we use receipt as the finalization
response of the Ethereum transaction that makes the function call. The result is shown in
Fig. 3(b). As more DOs send transactions at the same time, the average time to finalize
a transaction increases dramatically. A straightforward workaround is to require DOs to
call Register() according to a time schedule that minimizes congestion.

PrivacyGuard: Enforcing Private Data Usage Control 623

(a) (b)

Fig. 3. (a) Attestation times of DB when N DOs simultaneously initiate attestation. (b) Average
transaction finalization delay when N DOs simultaneously call a contract function.

6.2 Control Plane Cost

The monetary cost of the control plane mainly comes from the gas cost of operating
smart contracts in Ethereum. At the beginning, every DO registers its data items on its
own DO contract and the DB contract. DB fetc.hes data from whoever registered with
its contract and routinely confirms new registries. DC then requests for the data items
from N DOs by sending a request transaction to the DB contract (or separate requests to
all related DO contracts) with a sufficient deposit to cover the price before proceeding
to attesting CEE. We repeated the experiment for N = 1 → 10 and obtained the gas
costs and dollar equivalents for each contract function call, based on the ether price on
03/31/2019, which was $141.51 (source: https://coinmarketcap.com/).

Table 1. Cost of the data contract’s scale-independent functions

DO Contract DB Contract

Function Gas Cost USD Equiv. Gas Cost USD Equiv.

constructor() 951747 0.13468 846794 0.11983

Register() (new) 156414 0.02213 125392 0.01774

Register() (update) 30121 0.00426 45177 0.00639

Cancel() 81998 0.01160 66954 0.00947

We find that in both DB and DO contracts the costs of calling constructor() (con-
tract creation), Register() and Cancel() do not depend on the number of registered DOs.
We call these type of function calls scale-independent; otherwise scale-dependent. The
costs of calling scale-independent functions and scale-dependent functions are shown
in Table 1 and Fig. 4(a). Notably, the costs of calling Request() and ComputationCom-
plete() grow faster than the costs of calling Confirm() and CompleteTransaction(). This
implies the total cost will increasingly shift to the DC side, which is a scalable trend for
the system as the DC has incentives to pay for more data usage.

To evaluate the scalability gain brought by DB, we compare the case wherein indi-
vidual DOs share data via their own DO contracts versus via the DB contract. In both

https://coinmarketcap.com/

624 Y. Xiao et al.

cases, the total amount of data requested by the DC and subsequently operated with by
the CEE are the same. We summed the costs of all function calls except for the contract
creation (calling constructor()) and extrapolated over different N . Figure 4(b) shows
that it costs the DB-based system much less to accommodate one extra DO ($0.0304)
compared to the iDataAgent-based system ($0.06096). This result together with con-
trol plane runtimes (Fig. 3(a)) demonstrate DB’s ability to provide PrivacyGuard with
financial and performance scalability when facing a growing number of DOs.

6.3 Data Plane Runtimes

To evaluate CEE’s performance in off-chain contract execution, we experimented with
a demonstrative, reasonably complex computation task: training four parallel instances
of a neural network classifier. Detailed hyperparameters can be found in our source
code. The training functions were ported to the SGX enclave from the Fast Artificial
Neural Network (FANN) Library (https://github.com/libfann/fann). To evaluate enclave
overhead, we also implemented an untrusted version (executed outside enclave) of the
computation task that ran on the same machine. We noticed that recent work showed
Intel’s Hyperthreading Technology (HTT) has flaws that may impair the security of
SGX enclaves [45]. Therefore, we tested the computation task under different hardware
options with respect to the usage of SGX enclave and HTT. The Intel CPU’s TurboBoost
feature was turned off to avoid unexpected performance gain.

(a) (b)

Fig. 4. (a) Gas costs of the DB contract’s scale-dependent function calls. (b) Total gas costs of the
DB based system and the iDataAgent based system.

The experiment results is shown in Fig. 5. We find that the overhead caused by dis-
abling HTT is 48.84% for inside enclave and 17.99% for outside-enclave. This indicates
disabling HTT will drag down in-enclave performance more significantly. The over-
heads caused by enclave are 196.55% and 274.13% for HTT-enabled and HTT-disabled
respectively. We speculate that the big enclave overhead is related to the enclave’s
secure function calls and our imperfect porting of the training program. We leave the
performance caveats of Intel SGX and possible solutions to future work.

https://github.com/libfann/fann

PrivacyGuard: Enforcing Private Data Usage Control 625

Fig. 5. Runtimes of training an example neural network classifier under four hardware options.

7 Related Work

Privacy Protection. Privacy-preserving computation has been an active area of
research in the past decade [8,25,34,37,47,55]. With the increasing reliance on rich
data, there has been a significant amount of research on applying cryptographic tech-
niques to perform privacy preserving computation and data access control [3,5,8,35,47,
48]. Recently, hardware-assisted TEE has been adapted in numerous works to achieve
privacy-preserving computation [22,24,25,34,37,59]. Specially, Ryoan [25] is closely
related to PrivacyGuard. It combines native client sandbox and Intel SGX to confine
data processing module and provide confidentiality. However, Ryoan aims to achieve
data confinement with a user-defined directed acyclic graph that specifies information
flow. In comparison, PrivacyGuard allows data user and consumer to negotiate data
usage using smart contract with non-repudiable usage recording.

Blockchain and TEE. The idea of moving computation off-chain to improve the per-
formance and security is mentioned in [6,9,10,26,39,51]. Choudhuri et al. [10] com-
bines blockchain with TEE to build one-time programs that resemble to smart contracts
but only aim for a restricted functionality. Ekiden [9] and the Intel Private Data Object
(PDO) project [6] are two concurrently developed projects that are closely related to our
work. Similar to PrivacyGuard, Ekiden harmonizes trusted computing and distributed
ledger to enable confidential contract execution. Ekiden offloads computation from con-
sensus nodes to a collection computing nodes in the aim of improving the ecosystem.
In comparison, PrivacyGuard is designed to fit existing blockchain infrastructure. The
Intel PDO project aims to combine Intel SGX and distributed ledger to allow distrust-
ful parties to work on the data in a confidential manner. However, the system focuses
heavily on a permissioned model with significant overhead for bootstrapping trust.

8 Conclusion

In this paper, we proposed PrivacyGuard, a platform that combines blockchain smart
contract and TEE to enable transparent enforcement of private data computation and
fine-grained usage control. Blockchain can not only be used as a tamper-proof dis-
tributed ledger that records data usage, but also facilitate financial transactions to

626 Y. Xiao et al.

incentivize data sharing. To enable complex and confidential operations on private data,
PrivacyGuard splits smart contract functionalities into control operations and data oper-
ations. Remote attestation and TEE are used to achieve local consensus of the contract
participants on the trustworthiness of the off-chain contract execution environment.
Atomicity of the contract completion and result release is facilitated by a commitment
protocol. We implemented a prototype of PrivacyGuard platform and evaluated it in a
simulated data market. The results show the reasonable control plane costs and feasibil-
ity of executing complex data operations in a confidential manner using the platform.

Acknowledgment. This work was supported in part by US National Science Foundation under
grants CNS-1916902 and CNS-1916926.

A Data Broker Contract CDB

Algorithm 2: Data Broker’s Smart Contract CDB Pseudocode
Function Constructor() // Contract creation by DB with config

Parse config as (operationList, requestT imeout) ;
cOPL ← config.operationList ;
cRTO ← config.requestT imeout ;
{DO,DS,R} ← {[[]], [], []} // DOs, data sources, data usage records ;
DB ← creator ;

Function Register(op,DC, price) // Callable by a DO
Create a DO entry DO[ido, op] with index ido for this new DO;
DO[ido, op].{DO,DC, price} ← {sender,DC, price} ;

Function Confirm(cfDOs) // Callable by DB
for all {ido, op} that ido ∈ cfDOs and op ∈ cOPL andDO[ido, op] �= null do

Append ido to DS[op].DOList ;
Append DO[ido, op].DC to DS[op].DCList ;
DS[op].price ← DS[op].price + DO[ido, op].price ;

Function Request(op, targetDOs,$f) // Callable by DC
if op ∈ cOPL and sender ∈ DS[op].DCList and targetDOs ⊂ DS[op].DOList and
f ≥ DS[op].price then

Create a record entry R[idx] with index idx for this new data transaction ;
R[idx].{targetDOs,DC, reqTime} ← {targetDOs, sender, sys.time} ;
R[idx].status ← WAIT COMPUTATION ;

else
Return $f to sender and terminate ;

Function ComputationComplete(idx,KresultHash)
(same as in CDO , see Algorithm 1)

Function CompleteTransaction(idx,Kresult) // Callable by DB
if Hash(Kresult) = R[idx].krHash then

for all ido ∈ DS[R[idx].op].DOList do
Send $DO[ido,R[idx].op].price to DO[ido].DO;

R[idx].kr ← Kresult ;
R[idx].status ← COMPLETE // Data transaction complete ;

Function Cancel(idx)
(same as in CDO)

Function Revoke()
(same as in CDO , except callable by DB)

PrivacyGuard: Enforcing Private Data Usage Control 627

References

1. Brainbot technologies AG: raiden network. https://raiden.network/
2. ARM: Security technology building a secure system using trustzone technology (2009)
3. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M., Samarati, P.:

Mix & slice: efficient access revocation in the cloud. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 217–228 (2016)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007
IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334. IEEE (2007)

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19571-6 16

6. Bowman, M., Miele, A., Steiner, M., Vavala, B.: Private data objects: an overview (2018).
https://arxiv.org/pdf/1807.05686.pdf

7. Buterin, V.: Privacy on blockchain. https://blog.ethereum.org/2016/01/15/privacy-on-the-
blockchain/

8. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked
search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014)

9. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy, and per-
formant smart contracts. In: 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 185–200. IEEE (2019)

10. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair world:
Fair multiparty computation from public bulletin boards. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 719–728. ACM (2017)

11. Costan, V., Lebedev, I.A., Devadas, S.: Sanctum: minimal hardware extensions for strong
software isolation. In: USENIX Security Symposium, pp. 857–874 (2016)

12. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan,
P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 8

13. Custers, B., Uršič, H.: Big data and data reuse: a taxonomy of data reuse for balancing big
data benefits and personal data protection. Int. Data Privacy Law 6(1), 4–15 (2016)

14. Datta, A., Fredrikson, M., Ko, G., Mardziel, P., Sen, S.: Use privacy in data-driven systems:
theory and experiments with machine learnt programs. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1193–1210. ACM
(2017)

15. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.
ics.uci.edu/ml

16. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li,
A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-79228-4 1

17. Elnikety, E., Mehta, A., Vahldiek-Oberwagner, A., Garg, D., Druschel, P.: Thoth: compre-
hensive policy compliance in data retrieval systems. In: USENIX Security Symposium, pp.
637–654 (2016)

18. Ethereum: Blockchain app platform. https://www.ethereum.org/
19. General data protection regulation (GDPR) (2016). https://eur-lex.europa.eu/eli/reg/2016/

679/oj
20. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain pro-

tocol. In: NSDI, pp. 45–59 (2016)
21. Facebook-cambridge analytica data scandal. https://en.wikipedia.org/wiki/Facebook%E2

%80%93Cambridge Analytica data scandal

https://raiden.network/
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://arxiv.org/pdf/1807.05686.pdf
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://doi.org/10.1007/978-3-662-53357-4_8
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://www.ethereum.org/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal

628 Y. Xiao et al.

22. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryption using
intel sgx. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 765–782. ACM (2017)

23. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security, pp. 89–98 (2006)

24. Hunt, T., Song, C., Shokri, R., Shmatikov, V., Witchel, E.: Chiron: privacy-preserving
machine learning as a service (2018). https://arxiv.org/pdf/1803.05961.pdf

25. Hunt, T., Zhu, Z., Xu, Y., Peter, S., Witchel, E.: Ryoan: a distributed sandbox for untrusted
computation on secret data. In: OSDI, pp. 533–549 (2016)

26. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: scalable,
private smart contracts. In: Proceedings of the 27th USENIX Conference on Security Sym-
posium, pp. 1353–1370. USENIX Association (2018)

27. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of
cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security
and Privacy (SP), pp. 839–858. IEEE (2016)

28. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-
diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115.
IEEE (2007)

29. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy
beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3-es (2007)

30. McKeen, F., et al.: Innovative instructions and software model for isolated execution. In:
HASP@ ISCA, p. 10 (2013)

31. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
32. National Science and Technology Council: National privacy research strategy. https://www.

nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
33. Nissenbaum, H.: Privacy as contextual integrity. Wash. Law Rev. 79, 119 (2004)
34. Ohrimenko, O., et al.: Oblivious multi-party machine learning on trusted processors. In:

USENIX Security Symposium, pp. 619–636 (2016)
35. Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution secure processors.

In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 260–289.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 10

36. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments
(2016). https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-
paper.pdf

37. Schuster, F., et al.: Vc3: trustworthy data analytics in the cloud using SGX. In: 2015 IEEE
Symposium on Security and Privacy (SP), pp. 38–54. IEEE (2015)

38. Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J., Wing, J.M.: Bootstrapping privacy
compliance in big data systems. In: 2014 IEEE Symposium on Security and Privacy (SP),
pp. 327–342. IEEE (2014)

39. Sinha, R., Gaddam, S., Kumaresan, R.: Luciditee: policy-compliant fair computing at scale
(2019). https://eprint.iacr.org/2019/178.pdf

40. Song, D., et al.: SoK: sanitizing for security. In: 2019 IEEE Symposium on Security and
Privacy (SP), pp. 1275–1295. IEEE (2019)

41. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty, Fuzziness
Knowl. Based Syst. 10(05), 557–570 (2002)

42. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9)
(1997). https://firstmonday.org/article/view/548/469

43. TED Talk: how tech companies deceive you into giving up your data and privacy. https://
goo.gl/hSfaUX

https://arxiv.org/pdf/1803.05961.pdf
https://www.nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
https://www.nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
https://doi.org/10.1007/978-3-319-56620-7_10
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://eprint.iacr.org/2019/178.pdf
https://firstmonday.org/article/view/548/469
https://goo.gl/hSfaUX
https://goo.gl/hSfaUX

PrivacyGuard: Enforcing Private Data Usage Control 629

44. Tim cook: personal data collection is being ‘weaponized against us with military efficiency’.
https://goo.gl/BsWB3k

45. Van Bulck, J., Piessens, F., Strackx, R.: Foreshadow: extracting the keys to the intel {SGX}
kingdom with transient out-of-order execution. In: 27th USENIX Security Symposium
(USENIX Security 18) (2018)

46. Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling your secrets
without page faults: stealthy page table-based attacks on enclaved execution. In: 26th
USENIX Security Symposium (USENIX Security 17), pp. 1041–1056 (2017)

47. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-
of-the-art in privacy preserving data mining. ACM Sigmod Rec. 33(1), 50–57 (2004)

48. Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryption poli-
cies for regulating access to outsourced data. ACM Trans. Database Syst. (TODS) 35(2), 12
(2010)

49. Wang, G., Liu, Q., Wu, J.: Hierarchical attribute-based encryption for fine-grained access
control in cloud storage services. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, pp. 735–737 (2010)

50. Wang, W., et al.: Leaky cauldron on the dark land: understanding memory side-channel haz-
ards in SGX. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 2421–2434. ACM (2017)

51. Wüst, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S.: Ace: asynchronous and concurrent
execution of complex smart contracts. (2019). https://eprint.iacr.org/2019/835.pdf

52. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side channels for
untrusted operating systems. In: 2015 IEEE Symposium on Security and Privacy, pp. 640–
656. IEEE (2015)

53. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Infocom, 2010 proceedings IEEE, pp. 1–9. IEEE (2010)

54. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenticated data feed
for smart contracts. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 270–282. ACM (2016)

55. Zhang, N., Li, J., Lou, W., Hou, Y.T.: PrivacyGuard: enforcing private data usage with
blockchain and attested execution. In: Garcia-Alfaro, J., Herrera-Joancomartı́, J., Livraga, G.,
Rios, R. (eds.) DPM/CBT -2018. LNCS, vol. 11025, pp. 345–353. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00305-0 24

56. Zhang, N., Sun, H., Sun, K., Lou, W., Hou, Y.T.: Cachekit: evading memory introspec-
tion using cache incoherence. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 337–352. IEEE (2016)

57. Zhang, N., Sun, K., Lou, W., Hou, Y.T.: Case: cache-assisted secure execution on arm pro-
cessors. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 72–90. IEEE (2016)

58. Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T.: Trusense: information leakage from
trustzone. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp.
1097–1105. IEEE (2018)

59. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.: Opaque: an
oblivious and encrypted distributed analytics platform. In: 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pp. 283–298. USENIX Associ-
ation, Boston, MA (2017)

60. Zyskind, G., Nathan, O., Pentland, A.: Enigma: decentralized computation platform with
guaranteed privacy (2015). https://arxiv.org/pdf/1506.03471.pdf

61. Zyskind, G., Nathan, O., Pentland, A.S.: Decentralizing privacy: using blockchain to protect
personal data. In: Security and Privacy Workshops (SPW). IEEE (2015)

https://goo.gl/BsWB3k
https://eprint.iacr.org/2019/835.pdf
https://doi.org/10.1007/978-3-030-00305-0_24
https://arxiv.org/pdf/1506.03471.pdf

Applied Cryptography III

Identity-Based Authenticated Encryption
with Identity Confidentiality

Yunlei Zhao1,2(B)

1 School of Computer Science, Fudan University, Shanghai, China
ylzhao@fudan.edu.cn

2 State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an, China

Abstract. Identity-based cryptography (IBC) is fundamental to secu-
rity and privacy protection. Identity-based authenticated encryption
(i.e., signcryption) is an important IBC primitive, which has numer-
ous and promising applications. After two decades of research on sign-
cryption, recently a new cryptographic primitive, named higncryption,
was proposed. Higncryption can be viewed as privacy-enhanced sign-
cryption, which integrates public key encryption, entity authentication,
and identity concealment (which is not achieved in signcryption) into a
monolithic primitive. Here, briefly speaking, identity concealment means
that the transcript of protocol runs should not leak participants’ identity
information.

In this work, we propose the first identity-based higncryption
(IBHigncryption). The most impressive feature of IBHigncryption, among
others, is its simplicity and efficiency. The proposed IBHigncryption
scheme is essentially as efficient as the fundamental CCA-secure Boneh-
Franklin IBE scheme [12], while offering entity authentication and iden-
tity concealment simultaneously. Compared to the identity-based sign-
cryption scheme [8], which is adopted in the IEEE P1363.3 standard,
our IBHigncryption scheme is much simpler, and has significant efficiency
advantage in total. Besides, our IBHigncryption enjoys forward ID-privacy,
receiver deniability and x-security simultaneously. In addition, the pro-
posed IBHigncryption has a much simpler setup stage with smaller public
parameters, which in particular does not have the traditional master
public key.

1 Introduction

Identity-based cryptography (ID-based) was proposed by Shamir in 1984 [45],
with the motivation to simplify certificate management in traditional public-key

This work is supported in part by National Key Research and Development Program
of China under Grant No. 2017YFB0802000, National Natural Science Foundation
of China under Grant Nos. 61877011 and 61472084, and Shandong Provincial Key
Research and Development Program of China under Grant Nos. 2017CXG0701 and
2018CXGC0701.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 633–653, 2020.
https://doi.org/10.1007/978-3-030-59013-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_31&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_31

634 Y. Zhao

cryptography. In an ID-based cryptosystem, the identity of a user acts as its
public key, so the certificate issuance and management problem is simplified in
an ID-based system. In general, ID-based cryptography includes identity-based
signature (IBS), identity-based encryption (IBE), etc. Though ID-based signa-
ture schemes appeared much earlier [45]. However, the first practical and fully
functional identity-based encryption scheme was only proposed by Boneh and
Franklin [12] in 2001 based on bilinear maps. The Boneh-Franklin’s IBE scheme
is further standardized with ISO/IEC 18033-5 and IETF RFC 5091 [15], and is
now widely deployed (e.g., in HPE Secure Data by Voltage security [3]).1

Authenticated encryption in the public-key setting, i.e., signcryption, was
proposed by Zheng [48]. It enables the sender to send an encrypted message
such that only the intended receiver can decrypt it, and meanwhile, the intended
receiver has the ability to authenticate that the message is indeed from the spec-
ified sender. It provides a more economical and safer way to integrate encryption
and signature, compared to the sequential composition of them. Since its intro-
duction, research and development (including international standardizations) of
signcryption have been vigorous. In particular, a list of public-key signcryption
schemes were standardized with ISO 29150.

Identity-based signcryption was first proposed by Malone-Lee [37], and was
then intensively studied thereafter (e.g., [8,14,18,34]). The reader is referred
to [13,29] for a good survey on ID-based signcryption and key establishment.
Identity-based signcryption has numerous promising applications. For example,
it is used in secure and privacy-preserving protocols for vehicular ad hoc net-
works (VANET) [36], for beyond 5G mobile small cells [20], for big data [46], for
cloud data access control [21], for industrial Internet of things [29], and more.
In particular, as shown in [24,39], signcryption and one-pass authenticated key
establishment (AKE) are functionally equivalent, and identity-based one-pass
AKE is critically used in the standards for 4G/5G mission critical services as
specified by 3GPP [2], which involves the sequential composition of an identity-
based encryption scheme [27] and an identity-based signature scheme [25]. To
our knowledge, the ID-based signcryption scheme proposed in [8] is one of the
most efficient up to now, which was also adopted as IEEE P1363.3 standard.

For almost all the existing identity-based signcryption schemes, the sender’s
identity information has to be exposed; otherwise, the ciphertext cannot be
decrypted and the authentication cannot be verified. However, identity conceal-
ment is a fundamental privacy concern. Identity confidentiality is now mandated
by a list of prominent standards such as TLS1.3 [41], EMV [16], QUIC [43], and
the 5G telecommunication standard [2] by 3GPP, etc., and is enforced by General
Data Protection Regulation (GDPR) of EU. Under this motivation, a new cryp-
tographic primitive called identity-hiding signcryption (higncryption, for short)
was introduced in [47]. Higncryption can be viewed as a novel monolithic integra-
tion of public key encryption, entity authentication, and identity concealment.

1 The HPE IBE (including BF01 [12] and BB1 [11]) technology developed by Voltage
provides plug-ins for Outlook, Pine, Hotmail, Yahoo, etc., and is reported to be used
by over 200 million users and more than 1,000 enterprises worldwide.

Identity-Based Authenticated Encryption with Identity Confidentiality 635

Here, identity concealment means that the transcript of protocol runs should not
leak participants’ identity information. Moreover, a higncryption scheme satisfies
the following features simultaneously:

– Forward ID-privacy, which means that the player’s ID-privacy is preserved
even when its static secret key is compromised.

– Receiver deniability [28], in the sense that the session transcript can be sim-
ulated from the public parameters and the receiver’s secret-key.

– x-security [28], in the sense that the leakage of some critical intermediate
randomness (specifically, DH-exponent x) does not cause the exposure of the
sender’s static secret key or the primary secret (from which session-key is
derived).

We note that the work in [47] only considered higncryption in the traditional
public-key setting. In this work, we study identity-based higncryption and its
applications. A natural way to achieve identity-based higncryption is the sign-
then-encrypt approach: i.e., first employing an identity-based signature then
encrypt the message together with the signature and identity information by
running an identity-based encryption. With this approach, some careful consid-
erations are needed for security issues. The identity-based signcryption proposed
in [18] adopts this sign-then-encrypt approach. But the resultant scheme is less
efficient: it requires the generation of traditional master public key, and performs
four pairs and four exponentiations in total in signcryption and de-signcryption.
In addition, we note that the security analysis in [18] assumes that the challenger
can successfully guess the target sender and the target receiver in advance, and
does not consider the case that the sender and the receiver are the same party.

1.1 Motivational Applications

5G is the fifth generation of cellular mobile communication, which succeeds the
4G (LTE/WiMax), 3G (UMTS) and 2G (GSM) systems. 5G performance tar-
gets include high data rate, reduced latency, and massive device connectivity
(for low-power sensors and smart devices), which are far beyond the levels 4G
technologies can achieve. Among the services 5G supported, mission critical ser-
vices and communications require ultra reliability and virtual zero latency. The
platform for mission critical (MC) communications and MC services has been a
key priority of 3GPP in recent years, and is expected to evolve further in the
future [33]. In June 2018, 3GPP has identified the following essential require-
ments related to user privacy [1,30] for 5G communications.

– User identity confidentiality: The permanent identity of a user to whom a
service is delivered cannot be eavesdropped on the radio access link.

– User untraceability: An intruder cannot deduce whether different services are
delivered to the same user by eavesdropping on the radio access link.

– User location confidentiality: The presence or the arrival of a user in a certain
area cannot be determined by eavesdropping on the radio access link.

636 Y. Zhao

At the heart of the security architecture, specified by 3GPP [2] for 5G mis-
sion critical communications and services, is an identity-based authenticated key
transport (IB-AKT) protocol inherited from 4G, which is the identity-based ver-
sion of Multimedia Internet KEYing (MIKEY) specified in IETF RFC 3830 [4].
This IB-AKT protocol involves the sequential composition of an identity-based
encryption scheme (specifically, SAKKE specified in IETF RFC 6508 [27] and
6509 [26]) and an identity-based signature scheme (specifically, ECCSI specified
in IETF RFC 6507 [25]). In MIKEY-SAKKE, the user’s identity ID takes the
form of a constrained telephone URI (universal resource identifier), in front of
which there is a monthly-updated time stamp for periodically refreshing the key
of the user. It also provides a simple mechanism for masking identity; Briefly
speaking, for MIKEY-SAKKE with identity masking, a user’s URI is replaced
by UID = H(S), where H is the SHA-256 hash function and S is some informa-
tion related to the identifiers of the user and the key management server (KMS).
Further, UID shall be used as the identifier within MIKEY-SAKKE with iden-
tity masking. Clearly, MIKEY-SAKKE does not satisfy the above requirements
on identity privacy mandated by 5G now.

Considering that the sequential composition of an identity-based encryption
scheme and an identity-based signature scheme is less efficient, identity-based
signcryption may be a promising candidate for mission critical services. We note
that there already exists IEEE P1363.3 standard for ID-based signcryption [8].
However, as mentioned ahead, the sender’s identity has to be exposed [8]. In
this sense, ID-based identity-concealed signcryption (IBHigncryption) takes place.
Moreover, for enhancing privacy and strengthening security, forward ID-privacy,
receiver deniability, and x-security are all desirable in such settings.

Identity-based cryptography is fundamental to security and privacy protec-
tion. We remark that though 5G mission critical service is introduced as an
illustrative application of IBHigncryption, IBHigncryption can actually have much
more applications beyond that. It can find applications wherever identity-based
encryption, authentication, and identity concealment are needed simultaneously.
Some other promising applications include secure and privacy-preserving proto-
cols for vehicular ad hoc networks (VANET) [36], for beyond 5G mobile small
cells [20], for big data [46], for cloud data access control [21], for industrial IoTs
[29], etc.

1.2 Contribution

In this work, we propose the first identity-based higncryption (IBHigncryption, for
short). We present the formal security model of IBHigncryption, and the detailed
security proofs for the proposed scheme. The difficulty and non-triviality in
achieving secure and efficient IBHigncryption is witnessed by the intensive study
history of identity-based signcryption, and lies in that we actually cannot adapt
the higncryption construction in the public-key setting [47] into the identity-
based setting. The higncryption construction proposed in [47] is actually the
dual of a protocol variant of HMQV [28,31]. We note that directly transforming

Identity-Based Authenticated Encryption with Identity Confidentiality 637

the higncryption construction of [47] into the identity-based setting, if possi-
ble, is at least less efficient. The highly practical construction of IBHigncryption
proposed in this work involves a novel combination of Boneh-Franklin IBE and
Fujisaki-Okamoto (FO) transformation [22] in the authenticated encryption set-
ting. In addition, the security definition and analysis of higncryption in [47]
assumes that the players in the system are fixed at the onset. In this work, we
do not make such an unreasonable restriction in security definition and analysis.

The most impressive feature of IBHigncryption, among others (including the
desirable properties it offers, such as forward ID-privacy, receiver deniability, and
x-security), is its simplicity and efficiency, which might be somewhat surpris-
ing in retrospect. The proposed IBHigncryption scheme is essentially as efficient
as the fundamental CCA-secure Boneh-Franklin IBE scheme [12], while offer-
ing entity authentication and identity concealment simultaneously. Compared
to the identity-based signcryption scheme [8], which is adopted in the IEEE
P1363.3 standard, our IBHigncryption scheme is much simpler, and has signif-
icant efficiency advantage in total (particularly on the receiver side). Besides,
our IBHigncryption enjoys forward ID-privacy, receiver deniability and x-security
simultaneously, while the IEEE 1363.3 standard of ID-based signcryption satis-
fies none of them.

In addition, our IBHigncryption has a much simpler setup stage with smaller
public parameters, which in particular does not need to generate the traditional
master public key. To the best of our knowledge, this is the first identity-based
cryptographic scheme of this type (i.e., without master public key). The much
simpler setup stage of IBHigncryption, particularly waiving the master public key,
brings the following advantages:

– The computational and space complexity for generating and storing the sys-
tem parameters is reduced.

– The attack vector (for recovering the master secret key) is decreased, e.g., for
some mission critical applications.

– It eases deployment and compatibility with existing ID-based cryptosystems.
Specifically, when deploying our IBHigncryption scheme in reality with other
existing identity-based cryptosystems, the system parameters and particu-
larly the master public key can remain unchanged.

We implement the IBHigncryption scheme, where the codes are available from
https://github.com/IBHigncryption2018/IBHigncryption. The implementations
use the PBC (pairing-based cryptography) library of Stanford University http://
crypto.stanford.edu/pbc, and the underlying authenticated encryption is imple-
mented with AES-GCM-256.

2 Preliminaries

2.1 Authenticated Encryption

Briefly speaking, an authenticated encryption (AE) scheme transforms a message
M and a public header information H (e.g., a packet header, an IP address, some

https://github.com/IBHigncryption2018/IBHigncryption
http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc

638 Y. Zhao

predetermined nonce or initial vector) into a ciphertext C in such a way that
C provides both privacy (of M) and authenticity (of C and H) [9,10,32,42]. In
practice, when AE is used within cryptographic systems, the associated data H
is usually implicitly determined from the context (e.g., the hash of the transcript
of the protocol run or some pre-determined states).

Let SE = (Kse,Enc,Dec) be a symmetric encryption scheme. The probabilis-
tic polynomial-time (PPT) algorithm Kse takes the security parameter κ as input
and samples a key K from a finite and non-empty set K ⋂{0, 1}κ. For presenta-
tion simplicity, we assume K ← K = {0, 1}κ. The polynomial-time (randomized
or stateful)2 encryption algorithm Enc : K×{0, 1}∗×{0, 1}∗ → {0, 1}∗∪{⊥}, and
the (deterministic) polynomial-time decryption algorithm Dec : K × {0, 1}∗ →
{0, 1}∗ ∪ {⊥} satisfy: for any K ← K, any associated data H ∈ {0, 1}∗ and any
message M ∈ {0, 1}∗, if EncK(H,M) outputs C �= ⊥, DecK(C) always outputs
M . Here, for presentation simplicity, we assume that the ciphertext C bears the
associated data H in plain.

Let A be an adversary. Table 1 describes the security game for authenticated
encryption. We define the advantage of A to be

AdvAE
SE (A) =

∣
∣2 · Pr[AEA

SE returns true] − 1
∣
∣ .

We say that the SE scheme is AE-secure, if for any sufficiently large κ, the
advantage of any probabilistic polynomial-time (PPT) algorithm adversary is
negligible. We say the SE scheme is (tAE , εAE)-secure, if for any sufficiently
large κ and any PPT adversary A of running time t, AdvAE

SE (A) < εAE .
The above AE definition is based on that given in [9,10], but with the public

header data H explicitly taken into account. The definition of authenticated
encryption with associated data (AEAD) given in [32] is stronger than ours in
that: (1) it is length-hiding; and (2) both the encryption and the decryption
algorithms are stateful.

Table 1. AE security game

main AEA
SE: proc. Enc(H, M0, M1): proc. Dec(C′):

K ← Kse If |M0| �= |M1|, Ret ⊥ If σ = 1 ∧ C′ /∈ C
σ ← {0, 1} C0 ← EncK(H, M0) Ret DecK(C′)

σ′ = AEnc,Dec C1 ← EncK(H, M1) Ret ⊥
Ret (σ′ = σ) If C0 = ⊥ or C1 = ⊥

Ret ⊥
C ∪← Cσ; Ret Cσ

2 If randomized, it flips coins anew on each invocation. If stateful, it uses and then
updates a state that is maintained across invocations.

Identity-Based Authenticated Encryption with Identity Confidentiality 639

The above AE security is quite strong. In particular, it means that, after
adaptively seeing a polynomial number of ciphertexts, an efficient adversary is
unable to generate a new valid ciphertext in the sense that its decryption is not
“⊥”. Also, for two independent keys K,K ′ ← K and any message M and any
header information H, Pr[DecK′(EncK(H,M)) �= ⊥] is negligible.

2.2 Bilinear Pairings, and Hard Problems

Definition 1 (Bilinear Pairing [12,44]). Let G1,G2 and GT be three multi-
plicative groups of the same prime order q, and let g1, g2 be generators of G1 and
G2, respectively. Assume that the discrete logarithm problems in G1,G2 and GT

are intractable. We say that e : G1 ×G2 → GT is an admissible bilinear pairing,
if it satisfies the following properties:

1. Bilinear: For all a, b ← Z
∗
q , ĝ1 ← G1, ĝ2 ← G2, e(ĝ1

a, ĝ2
b) = e(ĝ1, ĝ2)ab.

2. Non-degenerate: For each ĝ1 ∈ G1/{1}, there exists ĝ2 ∈ G2, such that
e(ĝ1, ĝ2) �= 1.

3. Computable: For all ĝ1 ← G1, ĝ2 ← G2, e(ĝ1, ĝ2) is efficiently computable.

Bilinear pairings are powerful mathematical tools for numerous cryptographic
applications. Generally, there are three types of bilinear pairing [17,23]:

Type 1: G1 = G2, it is also called symmetric bilinear pairing.
Type 2: There is an efficiently computable isomorphism either from G1 to G2

or from G2 to G1.
Type 3: There exists no efficiently computable isomorphism between G1 and

G2.

A brief history of pairings is presented in [6]. In recent years, much progress
on number field sieve (NFS) has been made against pairing-friendly curves, which
imposes new estimation of the security of parings. The reader is referred to [7]
for updated key size estimation of some popular pairing-friendly curves (e.g.,
BN, BLS, KSS).

The computationally intractable problems considered in this work are defined
as follows, which are described w.r.t. Type 1 pairings for presentation simplicity.
Let G1,GT be two multiplicative groups of the same prime order q, g be a
generator of G1, e : G1 ×G1 → GT be an admissible symmetric bilinear pairing.

Definition 2 (Bilinear Diffie-Hellman (BDH)). The bilinear Diffie-Hellman
(BDH) problem [35] in 〈G1,GT, e〉 is to compute e(g, g)abc ∈ GT, given
(g, ga, gb, gc) ∈ G

4
1, where a, b, c ← Z

∗
q . The BDH assumption says that no PPT

algorithm can solve the BDH problem with non-negligible probability.

Definition 3 (Square Bilinear Diffie-Hellman (SBDH)). The square bilin-
ear Diffie-Hellman (SBDH) problem in 〈G1,GT, e〉 is to compute e(g, g)a2b ∈ GT,
given (g, ga, gb) ∈ G

3
1, where a, b ← Z

∗
q . The SBDH assumption says that no PPT

algorithm can solve the SBDH problem with non-negligible probability.

640 Y. Zhao

Below, we show that the SBDH assumption is equivalent to the BDH assump-
tion. Due to space limitation, the proof details are given in the full version.

Theorem 1. The BDH assumption and the SBDH assumption are equivalent.

Definition 4 (Gap Bilinear Diffie-Hellman (Gap-BDH)). The gap bilinear
Diffie-Hellman (Gap-BDH) problem [5,35] is to compute e(g, g)abc ∈ GT, given
(g, ga, gb, gc) ∈ G

4
1, where a, b, c ← Z

∗
q , but with the help of a decisional bilinear

Diffie-Hellman (DBDH) oracle for G1 = 〈g〉 and GT. Here, on arbitrary input
(A = ga, B = gb, C = gc, T) ∈ G

3
1×GT, the DBDH oracle outputs 1 if and only if

T = e(g, g)abc. The Gap-BDH assumption says that no PPT algorithm can solve
the Gap-BDH problem with non-negligible probability.

Definition 5 (Gap Square Bilinear Diffie-Hellman). The gap square bilin-
ear Diffie-Hellman (Gap-SBDH) problem is to compute e(g, g)a2b ∈ GT, given
(g, ga, gb) ∈ G

3
1, where a, b ← Z

∗
q , but with the help of a decisional bilinear

Diffie-Hellman (DBDH) oracle for G1 = 〈g〉 and GT. Here, on arbitrary input
(A′ = ga′

, B′ = gb′
, C ′ = gc′

, T) ∈ G
3
1 × GT, the DBDH oracle outputs 1 if and

only if T = e(g, g)a′b′c′
. The Gap-SBDH assumption says that no PPT algorithm

can solve the Gap-SBDH problem with non-negligible probability.

Clearly, by Theorem 1, the Gap-BDH assumption and the Gap-SBDH assump-
tion are equivalent.

3 Identity-Based Higncryption: Definition and Security
Model

3.1 Definition of IBHigncryption

In an identity-based identity-concealed signcryption scheme (IBHigncryption)
(denoted by IBHC), there is a private key generator (PKG) who is responsi-
ble for the generation of private keys for the users in the system. The PKG
computes the private key for each user using its master secret key on the user’s
public identity. Next, we give the formal definition of an IBHigncryption.

Definition 6 (IBHigncryption). An IBHigncryption scheme IBHC with associated
data, consists of the following four polynomial-time algorithms:
Setup,KeyGen, IBHigncrypt, and UnIBHigncrypt.

– Setup(1κ) → (par,msk): The algorithm is run by the PKG. On input of the
security parameter κ, it outputs the system’s common parameters par and the
master secret key msk. Finally, the PKG outputs par, and it keeps the master
secret key msk in private. We assume that the security parameter and an
admissible identity space ID are always (implicitly) encoded in par.

– KeyGen(par,msk, ID) → sk: On input of the system’s public parameters par,
the master secret key msk of the PKG, and a user’s identity ID, the PKG
computes and outputs the private key sk of ID using msk if ID ∈ ID. The
public identity and its private key are for algorithm IBHigncrypt and algorithm
UnIBHigncrypt respectively.

Identity-Based Authenticated Encryption with Identity Confidentiality 641

– IBHigncrypt(par, sks, IDs, IDr,H,M) → (C,⊥): It is a PPT algorithm. On
input of the system’s public parameters par, a sender’s private key sks, and
his public identity IDs ∈ ID, a receiver’s public identity IDr ∈ ID, a message
M ∈ {0, 1}∗ and its associated data H ∈ {0, 1}∗ to be IBHigncrypted, it
outputs an IBHigncryptext C ∈ {0, 1}∗, or ⊥ indicating IBHigncrypt’s failure.
The associated data H, if there is any, appears in clear in the IBHigncryptext
C, when C �=⊥.

– UnIBHigncrypt(par, skr, IDr, C) → ((IDs,M),⊥): It is a deterministic algo-
rithm. On input of the system’s public parameters par, the receiver’s private
key skr, the receiver’s public identity IDr ∈ ID, and an IBHigncryptext C,
it outputs (IDs,M) if the verification is successful, or ⊥ indicating an error,
where IDs ∈ ID is the sender’s public identity, and M ∈ {0, 1}∗ is the mes-
sage IBHigncrypted by IDs. It is different from the traditional identity-based
signcryption in that UnIBHigncrypt does not need to take the sender’s public
identity IDs as input.

Definition 7 (correctness). We say an IBHigncryption scheme IBHC is cor-
rect, if for any sufficiently large security parameter κ, any key pairs (IDs, sks),
and (IDr, skr), where sks and skr are output by KeyGen on IDs and IDr respec-
tively, it holds that UnIBHigncrypt(par, skr, IDr, IBHigncrypt(par, sks, IDs, IDr,
H, M)) = (IDs,M) for any H,M ∈ {0, 1}∗ such that
IBHigncrypt(par, sks, IDs, IDr,H,M) �=⊥.

Definition 8 (receiver deniability). We say that an IBHigncryption scheme
IBHC has receiver deniability, if the same IBHigncryptext can be generated
either by the sender or the receiver. Specifically, there exists a PPT algo-
rithm IBHigncrypt′(par, skr, IDs, IDr,H,M) → (C,⊥), satisfying: the output
of IBHigncrypt′(par, skr, IDs, IDr,H,M) has the same distribution as that of
IBHigncrypt(par, sks, IDs, IDr,H,M), for any security parameter κ, any H,M ∈
{0, 1}∗, and any key pairs (IDs, sks) and (IDr, skr) where sks and skr are output
by KeyGen on IDs and IDr respectively.

Remark 1. Deniability has always been a central privacy concern in personal
and business communications, with off-the-record communication serving as an
essential social and political tool [40]. Given that many of these interactions
now happen over digital media (e.g., email, instant messaging, web transactions,
virtual private networks), it is critically important to provide these communi-
cations with “off-the-record” or deniability capability to protocol participants.3

For these applications, we may only concern about the authentication of the
communication, and less care about the non-repudiation of the communication.

3 Needless to say, there are special applications where non-repudiable communication
is essential. But this is not the case for most of our nowaday communications over
Internet, where deniable authentication is much more desirable than non-repudiable
one [40].

642 Y. Zhao

3.2 Security Model for IBHigncryption

We focus on the security model for IBHigncryption in the multi-user environ-
ment, where each user possesses a single key pair for both IBHigncrypt and
UnIBHigncrypt, and the sender can IBHigncrypt messages to itself. Our secu-
rity model is stronger than that of an identity-based signcryption, since it allows
the adversaries to access more oracles.

The private keys of all the users in the system are generated by the challenger
by running the specified key generation algorithm KeyGen. All the users’ pub-
lic identities are given to the adversary initially. Throughout this work, denote
by IDi, the public identity of user i, and denote by IDs (resp., IDr) the public
identity of the sender (resp., the receiver). For presentation simplicity, through-
out this work we assume that all the users in the system have public identity
information of equal length. But our security model and protocol construction
can be extended to the general case of different lengths of identities, by incor-
porating length-hiding authenticated encryption [38] in the underlying security
model and protocol construction.

The security of an IBHigncryption includes two parts: outsider unforgeability
(OU) and insider confidentiality (IC). In order to formally define the above
security, we introduce two types of adversaries in our system, one is called OU-
adversary, AOU

IBHC, and the other is called IC-adversary, AIC
IBHC. The goal of an

AOU
IBHC is to forge a valid IBHigncryptext on behalf of an uncorrupted sender IDs∗

to an uncorrupted receiver IDr∗ , where IDs∗ may be equal to IDr∗ . The goal of an
AIC

IBHC adversary is to break the confidentiality of the message or the privacy of
the sender’s identity for any IBHigncryptext from any (even corrupted) sender to
any uncorrupted receiver, even if AIC

IBHC is allowed to corrupt the sender and to
expose the intermediate randomness used for generating other IBHigncryptexts.
Likewise, here the sender may be equal to the receiver. The terminology “insider”
(resp., “outsider”), which is traditional in this literature, refers to the situation
that the target sender can (resp., cannot) be corrupted.

Now, we describe the oracles to which AOU
IBHC or AIC

IBHC gets access in our
security model for IBHigncryption.

– HO Oracle : This oracle is used to respond to the IBHigncrypt queries made
by an adversary, including AOU

IBHC or AIC
IBHC. On input (IDs, IDr,H,M) by

an adversary, where IDr ∈ ID may be equal to IDs ∈ ID, and H,M ∈
{0, 1}∗, this oracle returns C = IBHigncrypt(par, sks, IDs, IDr, H, M) to
the adversary. In order to respond to some EXO queries against C by the
adversary, the HO Oracle needs to store some specified offline-computable
intermediate randomness (which is used in generating C) into an initially
empty table STC privately.

– UHO Oracle: This oracle is used to respond to the UnIBHigncrypt queries made
by an adversary, including AOU

IBHC or AIC
IBHC. On input (IDr, C) by an adversary,

this oracle returns UnIBHigncrypt(par, skr, IDr, C) to the adversary, where skr

is the private key of the receiver IDr ∈ ID.
– EXO Oracle: This oracle is used to respond to the intermediate randomness

used in generating an IBHigncryptext of an earlier HO query. It is an additional

Identity-Based Authenticated Encryption with Identity Confidentiality 643

oracle in our security model that makes our security stronger than the tradi-
tional security for signcryption; This feature is considered and named as x-
security in [28]. On input an IBHigncryptextC, this oracle returns the value (i.e.,
the offline-computable intermediate randomness used in generating C) stored
in the table STC, if C �=⊥ and C was an output of an earlier HO query. If there
is no such a record in STC, this oracle returns ⊥ to the adversary.

– CORRUPT Oracle: This oracle is used to respond to the private key queries
for any user in the system. On input a user’s identity IDi ∈ ID, this oracle
returns the private key ski = KeyGen(par,msk, IDi), and IDi is then marked
as a corrupted user. Denote by Scorr the set of corrupted users in the system,
which is initially empty. This oracle updates Scorr with Scorr := Scorr

⋃{IDi}
whenever the private key of IDi is returned to the adversary.

Next, we describe the security games for insider confidentiality (IC) and
outsider unforgeability (OU).

Definition 9 (Insider Confidentiality (IC)). Let AIC
IBHC be an IC-adversary

against IBHC. We consider the following game, denoted by GAMEAIC

IBHC, in which
an adversary AIC

IBHC interacts with a challenger C.

– Setup: The challenger C runs Setup to generate the system public parameters
par and a master secret key msk. The challenger returns par to the adversary
AIC

IBHC, and keeps the msk secretly for itself.
– Phase 1: In this phase, AIC

IBHC issues any polynomial number of queries, includ-
ing HO, UHO, EXO, and CORRUPT.

– Challenge: At the end of phase 1, AIC
IBHC selects in the identity space ID two

different target senders, IDs∗
0

and IDs∗
1
, and an uncorrupted target receiver

IDr∗ , a pair of messages (M∗
0 ,M∗

1) of equal length from the message space,
and associated data H∗. AIC

IBHC submits (M∗
0 ,M∗

1), H∗, and (IDs∗
0
, IDs∗

1
, IDr∗)

to the challenger C.
The challenger C chooses σ ← {0, 1}, and gives the challenge IBHigncryptext

C∗ = IBHigncrypt(par, sks∗
σ
, IDs∗

σ
, IDr∗ ,H∗,M∗

σ)

to the adversary AIC
IBHC. Here, we stress that there is no restriction on selecting

the target senders IDs∗
0

and IDs∗
1
. It implies that both target senders can be

corrupted, which captures forward ID-privacy; And either one of the target
senders can be the target receiver (i.e., it may be the case that IDs∗

σ
= IDr∗).

– Phase 2: AIC
IBHC continues to make queries as in phase 1 with the following

restrictions:
1. AIC

IBHC is not allowed to issue CORRUPT(IDr∗).
2. AIC

IBHC is not allowed to issue UHO(IDr∗ , C∗).
3. AIC

IBHC is not allowed to issue EXO(C∗).
– Guess: Finally, AIC

IBHC outputs σ′ ∈ {0, 1} as his guess of the random bit σ.
AIC

IBHC wins the game if σ′ = σ.

644 Y. Zhao

With respect to the above security game GAMEAIC

IBHC, we define the advantage
of an AIC

IBHC adversary in GAMEAIC

IBHC as:

AdvAIC

IBHC = |2 · Pr[σ′ = σ] − 1|.
We say that an IBHigncryption scheme IBHC has insider confidentiality, if for
any PPT adversary AIC

IBHC, its advantage AdvAIC

IBHC is negligible for any sufficiently
large security parameter.

Definition 10 (Outsider Unforgeability (OU)). Let AOU
IBHC be an OU-

adversary against IBHC. We consider the following game, denoted by GAMEAOU

IBHC,
in which an adversary AOU

IBHC interacts with a challenger C.

– Phase 1: The challenger C runs Setup to generate the system public parameters
par and a master secret key msk. The challenger returns par to the adversary
AOU

IBHC, and keeps the msk for itself in private.
– Phase 2: In this phase, AOU

IBHC issues any polynomial number of queries, includ-
ing HO, UHO, EXO, and CORRUPT.

– Phase 3: In this phase, AOU
IBHC outputs (IDr∗ , C∗) as its forgery, where IDr∗ /∈

Scorr and the associated data contained in C∗ in clear is denoted by H∗. We
say the forgery (IDr∗ , C∗) is a valid IBHigncryptext created by an uncorrupted
sender IDs∗ ∈ ID for an uncorrupted receiver IDr∗ ∈ ID if and only if the
following conditions hold simultaneously:
1. UnIBHigncrypt(skr∗ , IDr∗ , C∗) = (IDs∗ ,M∗), where IDs∗ ∈ ID \ Scorr,

M∗ ∈ {0, 1}∗, and IDs∗ may be equal to IDr∗ .
2. AOU

IBHC is not allowed to issue CORRUPT queries on IDs∗ or IDr∗ .

3. AOU
IBHC is allowed to issue HO(IDs′ , IDr′ ,H ′,M ′) for any (IDs′ , IDr′ ,H ′,

M ′) �= (IDs∗ , IDr∗ ,H∗,M∗). In particular, AOU
IBHC can make an HO query

on (IDs∗ , IDr∗ , H ′, M∗), where H ′ �= H∗. It can even make the query
HO(IDs∗ , IDr∗ ,H∗,M∗), as long as the output returned is not equal to C∗.

Let AdvAOU

IBHC denote the advantage that AOU
IBHC outputs a valid forgery in the

above security game GAMEAOU

IBHC. We say an IBHigncryption scheme IBHC has
outsider unforgeability, if for any PPT adversary AOU

IBHC, its advantage AdvAOU

IBHC

is negligible for any sufficiently large security parameter.

Remark 2. Note that the above definition of outsider unforgeability implies the
x-security considered and named in [28]. Specifically, getting access to the oracle
EXO in an arbitrary way does not allow the adversary to forge IBHigncryptext
(in particular, to recover the secret key of any uncorrupted user).

4 IBHigncryption: Construction and Discussion

For presentation simplicity, below we present the construction of IBHigncryption
based on bilinear pairings of Type 1. The straightforward extensions to Type 2
and 3 pairings are presented in Appendix A.

Identity-Based Authenticated Encryption with Identity Confidentiality 645

Sender Receiver

IDs

sks = h(IDs)s
IDr

skr = h(IDr)s

x ← Z∗
q , X = h(IDs)x

PS = e(sks, h(IDr))x

K1 = KDF (PS,X‖IDr)
H,X,CAE ← EncK1(H, IDs‖M‖x)

PS = e(X, skr)
K1 = KDF (PS,X‖IDr)

DecK1(H,CAE) = {H, IDs,M, x}
Accept if IDs is valid, x ∈ Z∗

q and X = h(IDs)x

Fig. 1. Protocol Structure of IBHigncryption

Our IBHigncryption scheme consists of the following four algorithms:

– Setup(1κ): The algorithm is run by the PKG in order to produce the sys-
tem’s public parameters and the master secret key. On input of the security
parameter κ, it chooses two multiplicative bilinear map groups G1 = 〈g〉 and
GT of the same prime order q such that the discrete logarithm problems in
both G1 and GT are intractable. The algorithm constructs a bilinear pairing
e : G1 × G1 → GT, and chooses s ← Z

∗
q . Additionally, it selects a one-way

collision-resistant cryptographic hash function, h : {0, 1}∗ → G1. Finally, the
algorithm outputs the public parameters par = (q,G1,GT, e, g, h), and the
PKG’s master secret key msk = s. The PKG makes par public to the users in
the system, but keeps msk secret for itself. Note that the setup stage is much
simpler, where in particular no modular exponentiation is performed in order
to generate a traditional master public key as in [12] and [8]. For presentation
simplicity, we assume the admissible identity space ID = {0, 1}∗.

– KeyGen(par,msk, ID): On input of the system’s public parameters par, the
master secret key msk of PKG, and a user’s identity ID ∈ {0, 1}∗, the PKG
computes sk = h(ID)msk = h(ID)s, and outputs skID as the private key asso-
ciated with identity ID.

– IBHigncrypt(par, sks, IDs, IDr,H,M): Let SE = (Kse, Enc, Dec) be an authen-
ticated encryption (AE) scheme as defined in Sect. 2.1, M ∈ {0, 1}∗ be
the message to be IBHigncrypted with associated data H ∈ {0, 1}∗, and
KDF : GT × {0, 1}∗ → K be a key derivation function that is modelled to
be a random oracle, where K is the key space of Kse. For presentation sim-
plicity, we denote by IDs the sender’s public identity whose private key is
sks = h(IDs)s, and by IDr the receiver’s public identity whose private key is
skr = h(IDr)s.

646 Y. Zhao

To IBHigncrypt a message M ← {0, 1}∗ with the sender’s identity IDs con-
cealed, the sender IDs runs the following steps: (1) selects x ← Z

∗
q , and

computes X = h(IDs)x ∈ G1; (2) computes the pre-shared secret PS =
e(sks, h(IDr))x ∈ GT; (3) derives the AE key K1 = KDF (PS,X‖IDr) ∈
K; (4) computes CAE ← EncK1(H, IDs‖M‖x); and finally (5) sends the
IBHigncryptext C = (H,X,CAE) to the receiver IDr.

– UnIBHigncrypt(par, skr, IDr, C): On receiving C = (H, X, CAE), the receiver
IDr with private key skr does the following: (1) computes the pre-shared secret
PS = e(X, skr) ∈ GT, and derives the key K1 = KDF (PS,X‖IDr) ∈ K; (2)
runs DecK1(H,CAE). If DecK1(H,CAE) returns ⊥, it aborts; Otherwise, the
receiver gets {IDs,M, x}, and outputs (IDs,M) if IDs ∈ ID, x ∈ Z∗

q , and
X = h(IDs)x. Otherwise, it outputs “⊥” and aborts.

Remark 3. The correctness and the property of receiver deniability of the above
IBHigncryption are straightforward. It also enjoys x-security and forward ID-
privacy, which are implied by the formal analyses of outsider unforgeability and
insider confidentiality to be given in Sect. 5.

Remark 4. The construction of IBHigncryption is fundamentally different from
the PKI-based higncrypiton from [47], and cannot be transformed each other.
Briefly recall the construction by directly transforming the higncryption scheme
from [47] into ID-based setting. Let S = gs and s ← Z∗

q be the master public
and private keys of PKG. Let sks = h(IDs)s and skr = h(IDr)s be the private
keys of sender IDs and receiver IDr respectively. Let x ← Z∗

q , X = gx, X̄ =
h(IDs)Xd, where d = h′(IDs, IDr,X) and h′ : {0, 1}∗ → Z∗

q is a cryptographic
hash function. Let PS = e(sks, h(IDr))e(Sxd, h(IDr)) = e(X̄, skr). The sender
computes and sends {X̄, CAE = EncK1(IDs,M,X)}. The receiver decrypts CAE

and checks whether X̄ = h(IDs)Xd. This is indeed the starting point of our
design of IBHigncryption. This straightforward design is much less efficient, and
has the traditional master public key. Our actual design of IBHigncryption embeds
a technique similar to the FO-transformation [22], and critically relies on the
properties of pairings. So, the construction of IBHigncryption is fundamentally
different from the direct transformation of the higncryption scheme [47].

4.1 Comparison and Discussion

In this section, we briefly compare our IBHigncryption scheme with the CCA-
secure Boneh-Franklin IBE [12] (referred to as BF-IBE), and the IEEE P1363.3
standard of ID-based signcryption [8] (referred to as IEEE P1363.3 for simplic-
ity). The schemes of CCA-secure BF-IBE and IEEE P1363.3 will be presented
in the full version due to space limitation.

The comparisons between our IBHigncryption scheme based on symmetric
bilinear pairings of Type 1 and BF-IBE [12], and our IBHigncryption scheme
based on asymmetric bilinear pairings of Type 2 and the IEEE P1363.3 stan-
dard [8], are briefly summarized in Table 2 and Table 3 respectively. Therein, ⊥
denotes “unapplicable”, “-” denotes no exponentiation operation, “E” denotes

Identity-Based Authenticated Encryption with Identity Confidentiality 647

Table 2. Brief comparison between IBHigncryption and CCA-secure BF-IBE

par IBHigncryption BF-IBE [12]

(q,G1,GT, e, g, h) (q,G1,GT, e, n, g, Ppub, h1, h2, h3, h4)

Efficiency Setup - 1 E

KeyGen 1 E + 1 H2 1 E + 1 H2

Sender 2 E + 1 P + 2 H2 + 1 Enc 2 E + 1 P + 1 H2 + 3 H1

Receiver 1 E + 1 P + 1 H2 + 1 Dec 1 E + 1 P + 3 H1

Message space {0, 1}∗ {0, 1}n

Assumption Gap-SBDH BDH

Table 3. Brief comparison between IBHigncryption and IEEE P1363.3

par IBHigncryption IEEE P1363.3 [8]

(q, G1, G2, GT, g1, g2, e, ψ, h) (q, G1, G2, GT, g1, g2, g, Qpub, e, ψ, h1, h2, h3)

Efficiency Setup 1 ψ 1 E + 1 P + 1 ψ

KeyGen 1 E + 1 H2 1 E + 1 INV + 1 H1 + 1A

Sender 2 E + 1 P + 2 H2 + 1 ψ + 1 Enc 4 E + 2 ψ + 3 H1 + 1 M + 1A

Receiver 1 E + 1 P + 1 H2 + 1 ψ + 1 Dec 2 E + 2 P + 3 H1 + 1 MT + 1 M + 1A

Message space {0, 1}∗ {0, 1}n

Forward ID-privacy � ×
x-security � ×
Receiver deniability � ×
Consider IDs = IDr � ×
Assumption Gap-SBDH q-BDHIP

modular exponentiation, “P” denotes paring, “H1” denotes a plain hashing,
“H2” denotes a hashing onto the bilinear group, “A” denotes modular addi-
tion, “M” (resp., MT) denotes modular multiplication in G1 or G2 (resp., GT),
“INV” denotes modular inversion, and ψ denotes isomorphism. Note that mod-
ular inverse is a relatively expensive operation, which is typically performed by
the extended Euclid algorithm.

In comparison with BF-IBE [12] and IEEE P1363.3 [8], IBHigncryption has a
much simpler setup stage. Specifically, the setup stage of our IBHigncryption has
much smaller public parameters, and actually does not need to perform expo-
nentiation to generate the master public key (corresponding to Ppub in BF-IBE,
and Qpub in IEEE P1363.3). The much simpler setup stage of IBHigncryption,
particularly waiving the master public key, brings the following advantages:

– The computational and space complexity for generating and storing the sys-
tem parameters is reduced.

– The attack vector (for recovering the master secret key) is decreased, e.g., for
some mission critical applications.

– It eases deployment and compatibility with existing identity-based cryptosys-
tems. Specifically, when deploying our IBHigncryption scheme in reality with
other existing identity-based cryptosystems, the system parameters and par-
ticularly the master public key can remain unchanged.

648 Y. Zhao

For IEEE P1363.3 [8], if the secret x is exposed one can compute from
the corresponding signcryptext the following values: the message M being sign-
crypted, and more importantly the secret key value ψ(skIDA

) which then allows
the attacker to impersonate the sender in an arbitrary way. This shows that
IEEE P1363.3 lacks the x-security (specifically, cannot be outsider unforgeable
when getting access to the EXO oracle is allowed). We also note that the provable
security of IEEE P1363.3 [8] does not consider the case of IDs = IDr.

For computational efficiency, briefly speaking, our IBHigncryption is essen-
tially as efficient as BF-IBE [12], while providing the functionalities of encryp-
tion, authentication, and ID-privacy simultaneously and with a much simpler
setup stage. In other words, compared with BF-IBE, the functionalities of
authentication and ID-privacy are gotten almost for free with IBHigncryption.
In comparison with IEEE P1363.3 [8], besides the extra properties of forward
ID-privacy, x-security, receiver deniability, IBHigncryption is also computation-
ally more efficient in total. Note that the plaintext spaces for BF-IBE and IEEE
P1363.3 are pre-specified to be {0, 1}n. If one employs the hybrid encryption app-
roach to encrypt messages of arbitrary length with BF-IBE or IEEE P1363.3,
it also needs to employ some appropriate symmetric-key encryption scheme in
reality.

5 Security Analysis of IBHigncryption

Due to space limitation, we focus on the security proof of our IBHigncryption
construction with symmetric bilinear groups. The extension to the asymmetric
bilinear groups is straightforward. In the following security analysis, KDF and
the hash function h are modelled as random oracles (RO). The proof details of
the following theorems are given in the full version.

Theorem 2. The IBHigncryption scheme presented in Fig. 1 is outsider unforge-
able in the random oracle model, under the AE security and the Gap-SBDH
assumption.

Theorem 3. The IBHigncryption scheme presented in Fig. 1 has insider confi-
dentiality in the random oracle model, under the AE security and the Gap-SBDH
assumption.

Acknowledgement. We are grateful to Hongbing Wang for many helpful discussions
and for contributions in writing and presentation.

A IBHigncryption Constructions with Asymmetric
Bilinear Pairings

The construction of our IBHigncryption in this section, as well as the IEEE
P1363.3 standard [8] for ID-Based signcryption, is based on asymmetric bilinear
pairings of Type 2. The extension of our IBHigncryption construction to the Type
2 bilinear pairings is straightforward, which is described below from scratch for
ease of reference.

Identity-Based Authenticated Encryption with Identity Confidentiality 649

– Setup(1κ): On input of the security parameter κ, the algorithm chooses
three multiplicative bilinear map groups G1,G2 and GT of the same prime
order q, generators g1 ∈ G1, g2 = ψ(g1) ∈ G2, and a bilinear pairing
e : G1 × G2 → GT such that the discrete logarithm problems in G1,G2

and GT are intractable, where ψ : G1 → G2 is an efficient, publicly com-
putable isomorphism. The algorithm chooses a master secret key s ← Z

∗
q .

Additionally, it selects a one-way collision-resistant cryptographic hash func-
tion, h : {0, 1}∗ → G1. Finally, the algorithm outputs the public parameters
par = (q,G1,G2,GT, e, g1, g2, ψ, h), and the PKG’s master secret key msk = s.
The PKG makes par public to the users in the system, but keeps msk secret
for itself.

– KeyGen(par,msk, ID): On input of the system’s public parameters par, the
master secret key msk of the PKG, and a user’s identity ID ∈ {0, 1}∗, the
PKG computes sk = h(ID)msk = h(ID)s, and outputs sk as the private key
associated with identity ID.

– IBHigncrypt(par, sks, IDs, IDr,H,M): Let SE = (Kse, Enc, Dec) be an authen-
ticated encryption scheme, M ∈ {0, 1}∗ be the message to be IBHigncrypted
with associated data H ∈ {0, 1}∗, and KDF : GT × {0, 1}∗ → {0, 1}∗ be a
key derivation function, where K is the key space of Kse. For presentation
simplicity, we denote by IDs the sender’s public identity whose private key is
sks = h(IDs)s, and by IDr the receiver’s public identity whose private key is
skr = h(IDr)s.
To IBHigncrypt a message M ← {0, 1}∗ with the sender’s identity IDs con-
cealed, the sender: (1) selects x ← Z

∗
q , and computes X = h(IDs)x ∈

G1; (2) computes the primary secret PS = e(sks, ψ(h(IDr)))x; (3) derives
K1 = KDF (PS,X‖IDr) ∈ K; (4) computes CAE ← EncK1(H, IDs‖M‖x);
and finally (5) sends the IBHigncryptext C = (H,X,CAE) to the receiver IDr.

– UnIBHigncrypt(par, skr, IDr, C): Upon receiving C = (H, X, CAE), the
receiver: (1) computes the primary secret PS = e(X,ψ(skr)) ∈ GT, and
derives the key K1 = KDF (PS,X‖IDr) ∈ K; (2) runs DecK1(H,CAE). If
DecK1(H,CAE) returns ⊥, it aborts; Otherwise, the receiver gets {IDs,M, x},
and outputs (IDs,M) if x ∈ Z∗

q and X = h(IDs)x; Otherwise, it outputs “⊥”
and aborts.

A.1 Construction with Bilinear Pairings of Type 3

The construction of our IBHigncryption in this subsection is based on the bilinear
pairings of Type 3.

– Setup(1κ): On input of the security parameter κ, the algorithm chooses three
multiplicative bilinear map groups G1,G2 and GT of the same prime order q,
generators g1 ∈ G1, g2 ∈ G2, and a bilinear pairing e : G1 × G2 → GT such
that the discrete logarithm problems in G1,G2 and GT are intractable. The
algorithm chooses a master secret key s ← Z

∗
q . Additionally, it selects two

one-way collision-resistant cryptographic hash functions, h1 : {0, 1}∗ → G1,
and h2 : {0, 1}∗ → G2. Finally, the algorithm outputs the public parameters

650 Y. Zhao

par = (q,G1,G2,GT, e, g1, g2, h1, h2), and the PKG’s master secret key msk =
s. The PKG makes par public to the users in the system, but keeps msk secret
for itself.

– KeyGen(par,msk, ID): On input of the system’s public parameters par, and
a user’s identity ID ∈ {0, 1}∗, the PKG computes sk = (sk1, sk2) =
(h1(ID)s, h2(ID)s), and outputs sk as the private key associated with identity
ID.

– IBHigncrypt(par, sks = (sks1 , sks2), IDs, IDr,H,M): Let SE = (Kse, Enc, Dec)
be an authenticated encryption scheme, M ∈ {0, 1}∗ be the message to be
IBHigncrypted with associated data H ∈ {0, 1}∗, and KDF : GT × {0, 1}∗ →
{0, 1}∗ be a key derivation function, where K is the key space of Kse. For pre-
sentation simplicity, we denote by IDs the sender’s public identity whose pri-
vate key is sks = (sks1 , sks2) = (h1(IDs)s, h2(IDs)s), and by IDr the receiver’s
public identity whose private key is skr = (skr1 , skr2) = (h1(IDr)s, h2(IDr)s).
To IBHigncrypt a message M ← {0, 1}∗ with the sender’s identity IDs con-
cealed, the sender: (1) selects x ← Z

∗
q , and computes X = h1(IDs)x ∈

G1; (2) computes the primary secret PS = e(sks1 , h2(IDr))x; (3) derives
K1 = KDF (PS,X‖IDr) ∈ K; (4) computes CAE ← EncK1(H, IDs‖M‖x);
and finally (5) sends the IBHigncryptext C = (H,X,CAE) to the receiver IDr.

– UnIBHigncrypt(par, skr = (skr1 , skr2), IDr, C): On receiving C = (H, X,
CAE), the receiver: (1) computes the primary secret PS = e(X, skr2) ∈ GT,
and derives the key K1 = KDF (PS,X‖IDr) ∈ K; (2) runs DecK1(H,CAE). If
DecK1(H,CAE) returns ⊥, it aborts; Otherwise, the receiver gets {IDs,M, x},
and outputs (IDs,M) if x ∈ Z∗

q and X = h1(IDs)x; Otherwise, it outputs “⊥”
and aborts.

Remark 5. For presentation simplicity, the above Type 3 pairing based imple-
mentation of IBHigncryption is described w.r.t. a pair of secret keys (sk1, sk2)
for each user in the system. But from the protocol description, it is clear that:
if a user only performs the role of sender (resp., receiver), it only needs a single
secret key sk1 (resp., sk2).

References

1. 3GPP TS 33.180 v15.3.0 (2018–09), 3rd Generation Partnership Project: 3G Secu-
rity; Security Architecture (3GPP TS 33.102 Version 15.0.0 Release 15)

2. 3GPP TS 33.180 v15.3.0 (2018–09), 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; Security of the mission critical
service; (Release 15)

3. Voltage identity-based encryption-information encryption for email, files, doc-
uments and databases. https://www.voltage.com/technology/data-encryption/
identity-based-encryption/

4. Arkko, J., Carrara, E., Lindholm, F., Naslund, M., Norrman, K.: Mikey: multime-
dia internet keying. RFC 3830, pp. 1–66 (2004)

5. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient multi-receiver identity-based
encryption and its application to broadcast encryption. In: Vaudenay, S. (ed.)
PKC 2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30580-4 26

https://www.voltage.com/technology/data-encryption/identity-based-encryption/
https://www.voltage.com/technology/data-encryption/identity-based-encryption/
https://doi.org/10.1007/978-3-540-30580-4_26
https://doi.org/10.1007/978-3-540-30580-4_26

Identity-Based Authenticated Encryption with Identity Confidentiality 651

6. Barbulescu, R.: A brief history of pairings. In: Duquesne, S., Petkova-Nikova, S.
(eds.) WAIFI 2016. LNCS, vol. 10064, pp. 3–17. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-55227-9 1

7. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2018). https://doi.org/10.1007/s00145-018-9280-5

8. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11593447 28

9. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008). https://doi.org/10.1007/s00145-008-9026-x

11. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

12. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

13. Boyd, C., Mathuria, A., Stebila, D.: Protocols for Authentication and Key Estab-
lishment. ISC. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-
58146-9 9

14. Boyen, X.: Multipurpose identity-based signcryption. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45146-4 23

15. Boyen, X., Martin, L.: Identity-based cryptography standard (IBCS) #1: Super-
singular curve implementations of the BF and BB1 cryptosystems. RFC 5091, pp.
1–63 (2007)

16. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: ACM CCS, pp. 373–386 (2013)

17. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of Ψ revisited. Discrete Appl. Math. 159(13), 1311–1322 (2011)

18. Chen, L., Malone-Lee, J.: Improved identity-based signcryption. In: Vaudenay,
S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30580-4 25

19. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

20. De Ree, M., Mantas, G., Radwan, A., Mumtaz, S., Rodriguez, J., Otung, I.: Key
management for beyond 5G mobile small cells: a survey. IEEE Access 7, 59200–
59236 (2019)

21. Debnath, S., Nunsanga, M.V.L., Bhuyan, B.: Study and scope of signcryption for
cloud data access control. In: Biswas, U., Banerjee, A., Pal, S., Biswas, A., Sarkar,
D., Haldar, S. (eds.) Advances in Computer, Communication and Control. LNNS,
vol. 41, pp. 113–126. Springer, Singapore (2019). https://doi.org/10.1007/978-981-
13-3122-0 12

https://doi.org/10.1007/978-3-319-55227-9_1
https://doi.org/10.1007/978-3-319-55227-9_1
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/11593447_28
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-58146-9_9
https://doi.org/10.1007/978-3-662-58146-9_9
https://doi.org/10.1007/978-3-540-45146-4_23
https://doi.org/10.1007/978-3-540-45146-4_23
https://doi.org/10.1007/978-3-540-30580-4_25
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/978-981-13-3122-0_12
https://doi.org/10.1007/978-981-13-3122-0_12

652 Y. Zhao

22. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-
011-9114-1

23. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

24. Gorantla, M.C., Boyd, C., González Nieto, J.M.: On the connection between sign-
cryption and one-pass key establishment. In: Galbraith, S.D. (ed.) Cryptography
and Coding 2007. LNCS, vol. 4887, pp. 277–301. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77272-9 17

25. Groves, M.: Elliptic curve-based certificateless signatures for identity-based encryp-
tion (ECCSI). RFC 6507, pp. 1–17 (2012)

26. Groves, M.: MIKEY-SAKKE: sakai-kasahara key encryption in multimedia inter-
net keying (MIKEY). RFC 6509, pp. 1–21 (2012)

27. Groves, M.: Sakai-kasahara key encryption (SAKKE). RFC 6508, pp. 1–21 (2012)
28. Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In:

Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 317–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 20

29. Karati, A., Islam., H, Biswas, G., Bhuiyan, M., Vijayakumar, P., Karuppiah, M:
Provably secure identity-based signcryption scheme for crowdsourced industrial
internet of things environments. IEEE Internet Things J. 5(4), 2904–2914 (2018)

30. Khan, H., Dowling, B., Martin, K.M.: Identity confidentiality in 5G mobile tele-
phony systems. IACR Cryptology ePrint Archive 2018, 876 (2018). https://eprint.
iacr.org/2018/876

31. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

32. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

33. Lair, Y., Mayer, G.: Mission critical services in 3GPP. IEEE Spectrum 6507, 1–195
(2018)

34. Libert, B., Quisquater, J.: A new identity based signcryption scheme from pairings.
In: IEEE Information Theory Workshop, pp. 155–158 (2003)

35. Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto,
T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24660-2 9

36. Lu, Z., Qu, G., Liu, Z.: A survey on recent advances in vehicular network security,
trust, and privacy. IEEE Trans. Intell. Transp. Syst. 20(2), 760–776 (2019)

37. Malone-Lee, J.: Identity-based signcryption. Public Key Cryptography - PKC 2002,
pp. 362–379 (2002)

38. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: attacks and
proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 20

39. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Cryptogr. 52(2), 219–241 (2009). https://doi.org/10.1007/s10623-009-9278-y

40. Raimondo, D., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. ACM CCS, pp. 400–409 (2006)

https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-540-77272-9_17
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-642-19379-8_20
https://eprint.iacr.org/2018/876
https://eprint.iacr.org/2018/876
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-540-24660-2_9
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/s10623-009-9278-y

Identity-Based Authenticated Encryption with Identity Confidentiality 653

41. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446
(2018)

42. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
pp. 98–107 (2002)

43. Roskind, J.: Quick UDP internet connections: Multiplexed stream transport over
UDP. https://tools.ietf.org/html/draft-ietf-tls-tls-12 1(2), 77-94 (2012)

44. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystem based on pairings. In: Sym-
posium on Cryptography and Information Security (SCIS), pp. 26–28 (2000)

45. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in
Cryptology, Proceedings of CRYPTO 1984, pp. 47–53 (1984)

46. Wei, G., Shao, J., Xiang, Y., Zhu, P., Lu, R.: Obtain confidentiality or/and authen-
ticity in big data by ID-based generalized signcryption. Inf. Sci. 318, 111–122
(2015)

47. Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1464–1479 (2016)

48. Zheng, Yuliang: Digital signcryption or how to achieve cost(signature & encryp-
tion) cost(signature) + cost(encryption). In: Kaliski, Burton S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052234

https://tools.ietf.org/html/draft-ietf-tls-tls-12
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/BFb0052234

Securing DNSSEC Keys via Threshold
ECDSA from Generic MPC

Anders Dalskov1, Claudio Orlandi1, Marcel Keller2, Kris Shrishak3(B),
and Haya Shulman4

1 Aarhus University, Aarhus, Denmark
2 CSIRO’s Data61, Sydney, Australia

3 Technical University Darmstadt, Darmstadt, Germany
kris.shrishak@sit.tu-darmstadt.de

4 Fraunhofer SIT, Darmstadt, Germany

Abstract. Deployment of DNSSEC, although increasing, still suffers
from many practical issues that results in a false sense of security. While
many domains outsource zone management, they also have to outsource
DNSSEC key management to the DNS operator, making the operator
an attractive target for attackers. Moreover, DNSSEC does not provide
any sort of protection in the case the operator itself decides to serve false
information, for example, if it gets compromised.

In this work, we show how to use techniques from threshold ECDSA:
(1) to protect keys such that domains do not reveal their signing keys
to a DNS operator, and (2) to protect the operational integrity of DNS
operator. As a result of being highly specialized, prior work on threshold
ECDSA has focused on a limited set of threat models, and none have
so far considered techniques to amortize signature generation. Our work
takes a different approach and presents a generic technique for obtain-
ing a threshold ECDSA protocol from any secure multiparty computa-
tion protocol that works over an appropriate finite field. We show how
this technique lends itself to very efficient threshold signing protocols by
comparing it against state-of-the-art protocols from both academia and
industry. For similar threat models, our protocols are as fast as the pre-
vious best protocol in terms of signing, and up to an order of magnitude
faster for key generation on a fast network. Finally, we show how to inte-
grate our application into a widely used DNS management software and
demonstrate through experiments the overhead compared to traditional
DNSSECs.

1 Introduction

The Domain Name System (DNS) [RFC1033, RFC1034], one of the core Inter-
net protocols, performs lookup services and provides a platform for an increas-
ing number of systems and applications. DNS was not designed with security in
mind and is alarmingly vulnerable to DNS cache poisoning [2,6,9,22,23,36]. DNS
Security extensions (DNSSEC) [RFC4033–RFC4035] was standardized to miti-
gate cache poisoning using cryptographic techniques. At a high level, DNSSEC
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 654–673, 2020.
https://doi.org/10.1007/978-3-030-59013-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_32&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_32

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 655

enables certification of DNS records in a response such that the machine making
the query can verify that it was not tampered with, assuming the DNS operator
is trusted. A record is certified using a digital signature scheme, with RSA and
ECDSA being the supported algorithms [RFC 5702, RFC 6605]. While RSA is
the most commonly used scheme, the need to prevent fragmentation of UDP
responses requires the signing keys to be short. ECDSA is the better choice
moving forward as it provides the same level of security as RSA but with much
smaller signatures. While DNSSEC prevents cache poisoning, this only holds
insofar as the operator is trusted. Moreover, DNSSEC additionally requires the
operator to manage cryptographic keys. Both these requirements manifest them-
selves as areas of insecurity in practice.

Centralization of Key Management. DNSSEC burdens the provider with
the additional task of generating and managing the keys of their users. Recent
work has demonstrated that a large number of domains share the same key [12].
Sharing the same key across multiple domains makes the DNSSEC provider a
lucrative target. If the key of one domain is compromised, several other domains
can be compromised as well. Another study [34] has shown issues with key
generation that result in keys with inadequate security.

Centralization of Operation. A second issue that arises from the problem of
the DNS operator being in-charge of key management is that the entire operation
is centralized. In other words, any guarantee towards integrity of a DNS response
to a query is lost if the operator cannot be trusted. This implies that DNSSEC
does not prevent attacks from powerful adversaries on the operator, such as
nation-state actors. In recent years, several examples of sophisticated attacks on
DNS registrars have been observed in Germany [32], Greece [14] and Sweden [30]
as part of attacks on DNS infrastructure [37].

1.1 Threshold Signing

Threshold signatures are a natural candidate to solve the issues outlined above.
A threshold signature scheme distributes a signing key to n signers such that any
subset of at least t signers can sign a message. Since the signing key is distributed
among many signers, it will remain private as long as at least t servers remain
uncompromised. Moreover, the threshold signing scheme can be made secure
against tampering, i.e., a malicious operator cannot compromise the integrity of
a response.

While threshold RSA has previously been studied for fault tolerance in
DNSSEC, threshold ECDSA has not been used for DNSSEC in spite of an
increased interest in threshold ECDSA in recent years [18,19,21,27,28]. All of
these recent works motivate the problem of threshold ECDSA in the context of
crypto-currencies, a problem that is substantially different from DNSSEC: First,
recent work on threshold ECDSA focus on “full threshold”, i.e., privacy of the
signing key is maintained when up to t = n − 1 signers collaborate. Second, the
focus has typically been on “malicious” security, i.e., signers are not assumed
to behave according to the signing protocol. However, it is possible to design

656 A. Dalskov et al.

faster protocols by relaxing some of these security guarantees, e.g., by requiring
an honest majority, or assuming that signers do not deviate from the signing
protocol. The diverse context in which DNS is used can benefit from solutions
that are not limited to a specific threat model.

In the real world application of DNSSEC where multiple operators (e.g., 3)
serve a domain, the possibility of only one of them being controlled by an adver-
sary is reasonable as operators are often corporations located in different parts of
the world and adhere to different local laws. In such a setting, a “full threshold”
protocol may not be necessary, and a protocol that assumes an honest-majority
(i.e., with 3 servers this implies none of the servers collude) among the operators
can be sufficient. Moreover, DNS operators are bound by legal contracts with
their customers and they provide service according to this contract. These legal
bounds allow us to consider operators that do not act maliciously since that
would be a breach of contract. However, in such a case we will still be interested
in protecting keys stored at the operator.

1.2 Contributions

A summary of our contributions:

– A generic transformation for secure multiparty computation (MPC) protocols
over a field Zp to protocols over an elliptic group of order p, such as one used
in ECDSA.

– An implementation of this transformation in MP-SPDZ [17] to support
threshold signing with ECDSA in many different threat models. We bench-
mark each instantiation against state-of-the-art protocols for threshold sign-
ing and show that they perform comparably.

– A measurement study to understand the extent to which multiple providers
for a given domain is used on the Internet.

– A prototype of a full implementation, based on our implementation in MP-
SPDZ and Knot, as well as experiments showing that threshold signing incurs
only a minimal overhead.

1.3 Outline

Section 2 presents a measurement study we performed. We show that a signifi-
cant number of domains use multiple operators, which allows them to easily use
our solution. Section 3 outlines our system and threat model. Section 4 presents
our technical contribution as well as our threshold signing protocol. Section 5
shows how we integrate our signing protocol into a well-known DNSSEC appli-
cation. Section 6 presents a number of different experiments and comparisons to
prior work. Section 7 discusses how our work relates to prior works before the
conclusion is presented in Sect. 8.

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 657

2 Quantifying Multiple Operators

Since the large DDoS attacks on Dyn [20] and NS1 [5] in 2016, many domains
are using more than one operator to increase the redundancy of the zone so that
they do not fall victim to another DDoS attack. However, no recent work has
measured the number of domains that make use of multiple operators. As we
propose to use our multiparty ECDSA protocol for DNSSEC zone signing, we
measure the extent to which multiple operators are used on the Internet. We
consider a domain to have more than one operator if the DNS name servers of
the same domain are hosted by an entirely different DNS operator.

2.1 Data Collection Methodology

If a domain name is configured to be served by three DNS name servers, we check
whether it is managed by the same operator. For our purpose, we are interested
in nameservers run by different operators and not necessarily name servers placed
at different locations. For instance, some domains might use two operators who
are geographically located in close proximity to each other; sometimes, even in
the same data centre. We are interested in the setting with different operators as
they do not trust each other with signing keys and they do not have a business
relationship with each other that will allow them to pass on copies of signing
keys. Hence, being geographically close does not eliminate the need to run a
secure signing protocol. Some domains make use of a single operator which has
name servers at different locations. In principle, a multiparty ECDSA protocols
can be used in this setting as well because it provides better security than simply
storing a copy of the signing key on each name server.

Our measurements were conducted using the Alexa Global Top 1 million
list1 as the dataset. The list was downloaded on 12 July 2019. We ran scans on
the same date on all the domains in the dataset and requested its NS records.
For each NS record we also obtain the first associated A record. On obtaining
the NS record, we have the list of authoritative name servers. We compare the
sub-domains of country code TLDs (ccTLDs), country code second-level domains
(ccSLDs) and generic TLDs (gTLDs). E.g., if the two name servers of a domain
are dns1.p09.nsone.net. and ns1.p43.dynect.net., then we compare nsone
and dynect. However, we do not only compare the SLD names. For instance, if
there is a third name server for the same domain at pdns6.ultradns.co.uk.,
then we compare ultradns with nsone and dynect.

To measure how many domains use multiple operators, we need to know
the owners of the authoritative name servers. Though it is possible to obtain
this information from the WHOIS database using the A records we collected,
the information obtained does not have a consistent schema and is heavily rate
limited [29]. Hence, we use the WHOIS database to only check information for
Alexa Top-1k; for the rest of Alexa Top 1 million, we take an approach similar
to [12] and rely on the NS records to indicate the DNS operator. We made manual

1 https://www.alexa.com/topsites.

https://www.alexa.com/topsites

658 A. Dalskov et al.

checks to make sure that subsidiaries of large corporations are not classified as
separate operators. (For instance, Chinese online shopping website taobao.com
is a subsidiary of the Alibaba group, and we found that one of their name servers
is owned by Alibaba and hence, we classified them as the same operator.) Note
that large organizations such as Facebook and Google run dedicated networks
which provides DNS redundancy. However, as it is run by the same organization,
we do not account for them in our list of domains with multiple operators.

2.2 Data Analysis

To
p-
10
0

To
p-
1k

To
p-
10
k

To
p-
1m

0

20

40

60

80

100

40

20.3
9.15 3.5

57

77.3
88.64

90.18

3 2.4 2.21 6.32

Alexa list

P
ro
po

rt
io
n
of

do
m
ai
ns

(%
)

Misconf/NR Only 1 More than 1

Fig. 1. Domains with multiple
operators

We classified domains as having a single
operator (Only 1), multiple operators (More
than 1), no response (NR) and misconfig-
ured (Misconf). An NR classification refers
to the case where, during our scans, we did
not receive a response with the name server
list within a 15-s timeout. Misconf refers to
zones which are misconfigured due to mis-
takes and/or typos. More precisely, we first
observed whether we received an A record for
the NS record. If we instead receive an error,
we then checked the NS record for complete-
ness. If, during this check, we encouter mis-
takes or typos, the domain is marked as mis-
configured. E.g., just ds0. was configured as
one of the authoritative name servers for the
domain oxfordlearnersdictionaries.com.
See Fig. 1 for the result of classifying the Alexa
Global Top 1 million, as well as its subsets, in this manner.

We did not receive a response to our queries from 3, 24, 208, 60775 domains in
the Top-100, Top-1k, Top-10k and Top-1m respectively. Although we did not find
any misconfigured domains in the Top-1k, we found 13 misconfigured domains in
the Top-10k and 2483 domains in Top-1m. We observe that 40% of the domains
in Alexa Top-100 have more than one operator while the proportion reduces as
we move down the Top-1m list. 20.3%, 9.2% and 3.5% of the domains in the Top-
1k, Top-10k and Top-1m have more than one operator for their domain. Hence,
we conclude from our measurements that there are thousands of domains that use
multiple operators and that can easily plug-in our threshold ECDSA protocols.

3 System and Threat Model

The diversity of the DNS ecosystem should be reflected in our system and threat
model. For the system model, we assume a small number of operators that serve a
single domain. As seen in the previous section, this setting is common in practice,
in particular among popular domains. For the threat models, we take the two

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 659

issues outlined in the introduction as our starting point. Before we continue, we
describe the security properties that we address with our threat model:

1. Key Privacy. This is our baseline. Key privacy states that signing key
remains private in the event that a server is compromised. We note that
this property is relevant in a number of different contexts. For example, this
property states that a signing key isn’t exposed to a system administrator,
or to anyone who obtains a decommissioned (but improperly cleaned) server.

2. Operational Integrity. Besides keeping keys secret, we may also want to
uphold the integrity of operation. By operational integrity, we mean that only
two situations can occur: Either operation proceeds as normal, that is, the
right zone is signed, or nothing is signed. In other words, at best, a malicious
operator can only disrupt operation, i.e., it performs a denial of service attack
but it cannot sign zones with bogus information. Notice that key privacy is
subsumed in operational integrity. If it is possible to extract the signing key,
then no guarantee about the integrity can be made since a single operator
can sign any zone it manages at will.

3.1 System and Communication Model

Intuitively, our system model can be viewed as distributing the task of a single
operator among multiple operators. To simplify things, we assume that such a
system has either n = 2 or n = 3 operators who maintain a fixed set of domains.
These operators can be distributed in a single location, communicating over a
LAN, or they can be distributed globally. Finally, we assume that the servers are
sufficiently separated, that is, a compromise of one server does not automatically
lead to a compromise of another server.

3.2 Threat Model

We consider an adversary that is capable of compromising a single server. Thus,
when n = 2, the adversary controls half the servers, and when n = 3, the adver-
sary controls a minority (since 2 servers remain honest). We distinguish between
the two standard adversarial models from the MPC literature. The first type of
adversary, called passive, is characterized by following the prescribed protocol.
The second adversary, called active, may behave arbitrarily and not follow the
protocol. Notice how these two adversarial types capture our security properties.
If we only desire key privacy, then security against a passive adversary suffices.
If we want operational integrity as well, then we must also secure ourselves
against active adversaries. Indeed, it is exactly against such an adversary that
the integrity of operation becomes an issue.

4 Threshold ECDSA

In this section we present a generic transformation of any secure computation
protocol over a field Zp into a protocol for a group of order p. In particular, this
technique enables an efficient method to compute threshold ECDSA signatures.

660 A. Dalskov et al.

Arithmetic black-box

– A command ([a], [b], [c]) ← RandMul() that generates appropriate representa-
tions of a random tuple of secret shared values a, b, c ∈ Zp with c = ab.

– A command [c] ← Mul([a], [b]) that returns c = ab (This is typically im-
plemented using one invocation of RandMul and Beaver’s re-randomization
technique [4]).

– A command [a] ← Rand() that generates appropriate representation of a ran-
dom value a ∈ Zp.

– A command a ← Open([a]) that publicly reconstructs a (or outputs a special
symbol ⊥ denoting abort).

– Linear computation for the [·] representation: given the shares [a], [b] and
public scalars x, y ∈ Zp, the parties can compute [c] = x · [a]+y · [b] “for free”,
i.e., the computation does not involve communicating with the other parties.

Fig. 2. The arithmetic black-box functionality.

4.1 ECDSA Signing

ECDSA as standardized in [25] is parametrized by a curve E(K) for a field K.
Let G ⊆ E(K) be an additive subgroup group of order p with generator G, and
let Zp denote the field of size p. Given a message M , secret key sk ∈ Zp, signing
is performed as follows:

1. Sample k ← Zp at random.
2. Compute (rx, ry) = k · G.
3. Let s = k−1(H(M) + sk · rx) where H is a hash function mapping messages

into elements of Zp.
4. Output signature σ = (rx, s).

4.2 Secure Multiparty Computation

We assume a MPC engine supporting the standard commands of the arithmetic
black-box (ABB) functionality as shown in Fig. 2, where the notation [a] indicates
that the value a is “secret-shared”, i.e., no party has access to it. The security
model of a MPC protocol is parametrized by two variables. First, whether the
adversary can control at least half, or less than half the parties. The former is
called dishonest majority, while the latter is called honest majority. Observe that
an honest majority protocol would correspond a setting with n = 3 servers, while
a dishonest majority protocol means n = 2. The second parameter is the cor-
ruption model: The two cases considered here—active and passive—correspond
to our description in Sect. 3.2.

4.3 Secure Computation on Groups

We present an extension to the ABB that extends its capabilities to secure
computation over an arbitrary Abelian group of order p. In some sense, this

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 661

shows that the actual representation of the algebraic structure used to perform
MPC is irrelevant as long as it is possible to perform linear operations. This
generalization of arithmetic MPC has also been described independently by [35],
and might have applications in other contexts. In this paper, we use this idea to
perform MPC in subgroup G. This extension comes at no extra cost in terms of
communication and a small increase in computation complexity (corresponding
to standard operations in the subgroup of the curve).

Consider a protocol implementing the ABB in Fig. 2 and assume that the
shares [a] are also elements of Zp. The idea is to let each party map their share
of [a] to a curve point of order p by locally computing Ai = ai · G, where ai is
party i’s share of a. This mapping, being a homomorphism, preserves linearity
and so Ai is a share of a · G with the same properties as the original Zp sharing
[a]. In the following, we write 〈a〉 to denote a share of a · G, and we add the
following two commands to the ABB in Fig. 2:

– A command 〈a〉 ← Convert([a]) that converts a representation of the shared
value a in Zp to a representation of the value a · G in the group G.

– A command a · G ← Open(〈a〉) that recovers the secret shared point.

These two commands are sufficient to give us a protocol for secure computation
over the group G. If we consider the sharing [a] as a vector with elements from
Zp, we get the following useful properties:

– Linearity is preserved, i.e., given the shares 〈a〉, 〈b〉 and scalars x, y ∈ Zp, we
can locally compute 〈c〉 = x〈a〉 + y〈b〉.

– If the Open procedure for [·] shares relies only on group operations in Zp,
then we can implement Open for 〈·〉 shares by using the corresponding group
operations of G. This property follows from the fact that Convert is structure
preserving.

– Secret scalar multiplication by public point is possible by noting that Convert
defines an action of Zp on G, i.e., [a] · P for a P ∈ G is a local operation that
results in 〈a · logP (G)〉. Note that opening this share will result in a · P .

– Finally, given [x] and 〈y〉 (and a multiplication tuple [a], [b], [c]) it is possible
to compute 〈xy〉 using a slight tweak on Beaver’s technique as follows: (1)
e = Open([a]+[x]), (2) D = Open(Convert([b])+〈y〉), (3) 〈xy〉 = Convert([c])+
e〈y〉 + [x]D − eD. Note that this property is not required for our application
but could be of independent interest.

The properties of Convert and Open, as well as the functionality of the under-
lying ABB (which provide secure computation over Zp) is enough to give us a
protocol for secure computation over G. This extended ABB (which we will call
ABB+) is shown in Fig. 3.

4.4 Active Security Using SPDZ Like MACs

The previous section showed that one can easily extend a protocol of Zp with
functionality for secure computation over a subgroup of G ⊆ E(K) of order p.

662 A. Dalskov et al.

Extended Arithmetic black-box (ABB+)

– RandMul, Mul([·], [·]), Rand, Open([·]) as described in Figure 2.
– A command 〈a〉 ← Convert([a]) that converts a representation of a secret [a]

over the field Zp into a representation of the secret 〈a〉 over the group G.
– A command a · G ← Open(〈a〉) that reconstructs a curve point a · G from a

secret representation 〈a〉.

Fig. 3. ABB from Fig. 2 extended to support computation over elliptic curves.

A natural question to ask is whether the active security guarantees of the Zp

protocol extend to the G protocol. We answer this question in the affirmative by
showing that the MAC scheme of SPDZ [16] can be used to provide authentica-
tion of shares in G (i.e., 〈·〉 shares) as well.

SPDZ Recap. We recall the SPDZ protocol and its security using the descrip-
tion from [15]. In SPDZ a value a ∈ Zp is shared as

[a] = ((a1, . . . , aN), (γ(a)i, . . . , γ(a)N)),

where party i holds the pair (ai, γ(a)i), and where a =
∑

i ai and α · a = γ(a) =∑
i γ(a)i. The value α ∈ Zp is a global MAC key which is secret shared using

a different scheme, �α�. (The details of this are not important for the following
discussion; it suffices to say that each party has a share αi, such that

∑
i αi = α,

as well as other information to make this sharing secure) The global MAC key
is unknown to all parties and provide a notion of authentication of the shares.

We recap here the opening phase of the SPDZ protocol for a single value,
i.e., the part where the parties check if the output was computed correctly2:

1. Each Pi has input αi, their share of the global MAC key, and γ(a)i, their
share of the MAC on a partially opened value a3.

2. Each Pi computes σi = γi(a) − αia and broadcasts a commitment com(σi).
3. All parties open com(σi), compute chk =

∑
i σi and abort if chk �= 0.

Suppose a′ = a + ε, i.e., the adversary adds an error ε �= 0 during the partial
opening. If, in addition, the adversary lies about its MAC in Step 2 of SPDZ
opening phase and let Δ denote this error, then the adversary is successful if
Δ =

∑
i σi. In this case, we have

Δ =
n∑

i=1

σi =
n∑

i=1

γi(a) − αia = αε.

2 Note that several openings can be batched at the same time, see the original
paper [15] for more details.

3 A partial opening reveals the value but not the MAC.

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 663

Since ε = (a − a′) �= 0, then α = Δε−1 which happens with probability at most
1/p due to the random choice of α.

SPDZ-Like Computation Over an Elliptic Curve. In the remainder of this
section, we will use the shorthand notation cv(a) = Convert(a) interchangeably
for convenience. Consider the most natural modification possible to obtain a
notion of a SPDZ-sharing 〈·〉 over G, from a SPDZ-sharing [·] over Zp, by applying
cv to all local shares. We define 〈a〉 as the vector

〈a〉 = ((cv(ai), . . . , cv(aN)), (cv(γ(a)i), . . . , cv(γ(a)N))),

where Pi holds (cv(a1), cv(γ(a)i)). Observe that the linearity of cv implies that∑
i(cv(ai)) = cv(

∑
i ai) = cv(a), which makes the above a valid sharing of cv(a).

In addition, the semantics of the MAC is preserved since
∑

i

cv(γ(a)i) = cv(
∑

i

γ(a)i) = cv(α · a).

Therefore, we can use the same �α� to authenticate the Converted share as well.
More precisely, we consider a modified opening procedure that works as follows:4

1. Let αi be the share of the key held by Pi, and Γi = cv(γ(a)i) be the shares
of the MAC on A = cv(a).

2. Each Pi computes Σi = Γi − αiA and broadcasts a commitment com(Σi).
3. Open com(Σi), compute chk = Σ1 + · · · + ΣN and abort if chk �= 0.

It follows that, due to the linearity of the group operations, if the adversary
opens A′ �= A, then the check only passes with probability 1/p. In a nutshell,
we are taking a secure linear MAC procedure, and raising all the MACs and
values in the exponent. Since the SPDZ MACs are information theoretic secure,
the security of the “MAC in the exponent” can be reduced to the security of
the regular MAC (as the reduction can run in unbounded time and retrieve the
original MAC).

4.5 Multiparty ECDSA Protocol Using the ABB+

We recall the protocol of Gennaro and Goldfeder [21] and show that it can be
computed by our extended arithmetic black box functionality. The main issue
with computing ECDSA signatures securely is calculating k−1 such that it does
not reveal information about k. However, the inversion trick by Bar-Ilan and
Beaver [3] can be used here: Suppose each party has a share of two random
values γ, k, and their product, i.e., [γ], [k], [δ] where δ = γ · k. The parties can
then open δ and use it locally to compute their share of [k−1] = δ−1[γ]. Thus the
price to pay for the inversion (which is the most expensive part of every threshold
ECDSA protocol) is essentially just generating a random multiplication triple

4 Once again, the procedure is described for a single value, but it can be extended to
support batched opening.

664 A. Dalskov et al.

Threshold ECDSA in the ABB+ Hybrid Model

Key Generation. To generate a key for user Uj , either Uj supplies the sharing
[skj], or the servers run [skj] ← Rand(). The public key is computed as pkj =
Open(Convert([skj])).

User independent preprocessing. The goal is to generate a pair (〈k〉, [k−1]) for each
signature in the following way.

1. The servers run ([a], [b], [c]) ← RandMul().
2. Run c ← Open([c]).
3. Let [k−1] = [a].
4. Define 〈k〉 ← Convert([b]) · c−1

5. Output (〈k〉, [k−1]).

User dependent preprocessing.

1. Take as input [skj] (the sharing of the secret key of user Uj) and (〈k〉, [k−1])
(an unused tuple from the previous phase).

2. Compute [sk′
j] = [skj/k] ← Mul([k−1], [skj])

3. Output a final tuple (〈k〉, [k−1], [sk′
j]).

Given a message to be signed M and preprocessed tuple (〈k〉, [k−1], [sk′
j]) for Uj .

1. Run R ← Open(〈k〉) = (bc−1) · G = a−1 · G = k · G
2. Let (rx, ry) ← R.
3. Compute [s] = H(M) · [k−1] + rx · [sk′

j].
4. Open s ← Open([s]) and output σ = (rx, s).

Fig. 4. Protocol with preprocessing computing threshold ECDSA signatures using our
extended ABB.

using RandMul, and using Convert to compute the value R = Open(Convert([k])).
The other value we need is a sharing of sk/k. Given [k−1] it is possible to compute
[sk/k] very efficiently by performing a single secure multiplication.

The full protocol using the ABB+ now follows: We consider a setting with
a number of servers S = {S1, . . . , SN} and a number of users U = {U1, . . . , U�}.
Our protocol has 4 phases: Key generation in which a random secret key is
generated using [sk] = Rand(), and then converted into the public key by running
pk = Open(Convert([sk])). (Alternatively, users can pick their own keys and input
them to the servers in S). Next up are two preprocessing phases: One phase is
independent of the users and the messages to be signed, and serves to generate
the values [k−1] and 〈k〉 that are required for generating any signature; the other
phase depends on the user and computes [skj/k], where skj is the signing key
of user Uj . Finally, generating a signature using the output of the preprocessing
and the user’s signing key is just a matter of performing a linear computation
followed by an opening. We show the details of the full protocol in Fig. 4.

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 665

Security Analysis. Security of the protocol in Fig. 4 follows directly from the
security of the underlying ABB scheme, and from an assumption that ECDSA is
a secure signature scheme (this assumption has also been used in [18] and [19]).

5 Multiparty Zone Signing System

In this section, we describe the integration of our threshold ECDSA implemen-
tation in a DNS name server before describing the important operations. We
implement several variants of our threshold ECDSA protocol on top of MP-
SPDZ [17] and have used Crypto++ as the library for computation over elliptic
curves. We integrate MP-SPDZ with DNS administrative name servers. For DNS
name server software, we use Knot DNS [26] as it has the possibility to perform
automated key management and it comes with extensive documentation. For
the setting where the registrar is the DNS operator, we propose that registrars
interact with other registrars in the zone signing protocol. We describe the multi-
operator setting in this section and, where necessary, we note the difference if
the operators are also the registrar.

5.1 Setup

In our DNSSEC signing system, each operator serves a name server, runs a
threshold ECDSA module and has two key stores: one to store the keys for
particular zones and another to store the key material associated with other
operators. We consider three name servers operated by independent DNS oper-
ators, all of which support ECDSA with SHA256 message digest. We do not
change the operation of Knot DNS apart from the parts involved in DNSSEC
key generation, key rollover and zone signing. Communication between the name
server and the threshold ECDSA module is performed using a message queue.

5.2 Key Generation/Rollover

In the key generation/rollover phase, when new keys need to be generated, each
operator generates a signing key sharing [skj] for the zone and runs the key
generation as shown in Fig. 4. At the end of this phase, the public key is added
to DNSKEY record of the zone at all the operators and the signing key share [skj]
is stored in the keystore for the zones. In addition, a tag that indicates the DNS
operators associated with this signing key share is stored. E.g., Operator A would
store a tag T (B,C) along with the key shares associated with Operator B and
Operator C. This makes it easy for the threshold ECDSA module to contact the
corresponding DNS operators during the signature generation phase. Note that
the key generation for ZSK and KSK is the same except that in the case of KSK,
the domain owner generates the DS record and sends it to the registrar, who then
submits it to the registry. When the registrar is one of the DNS operators of the
zone, then the registrar can directly submit the DS record.

666 A. Dalskov et al.

Authoritative Name
Server

Threshold ECDSA
Module
MP-SPDZ

Key Store

DNS Operator 1

DNS Operator 2 DNS Operator 3

1

3s

1

3p

2 2

2

Fig. 5. Zone signing

5.3 Zone Signing

As shown in Fig. 4, our signing protocol has three phases: the first is independent
of the zone to be signed, while the second is independent of the RRset, but
dependent on the zone to be signed. Each of the three phases involve three steps
that are shown in Fig. 5. In Step 1, the threshold ECDSA module receives the
input for the phase from the name server and the tag from the key store. In Step
2, the MPC protocol for the phase is run between the threshold ECDSA module
of the three operators. In Step 3, the output of the preprocessing phases are sent
to the key store (Step 3p) while the output of the signing phase, RRSIG, is sent
to the name server to store in the zone file (Step 3s). We note that the threshold
ECDSA module runs in the background and periodically polls the name server
so that it is always available to sign.

Implication for DNS Operators. In our system, the DNS operators do not
need to be online any more than they already are in existing systems. DNS oper-
ators in existing systems remain online to respond to DNS queries. Many DNS
operators sign DNS responses on-the-fly and, hence, they are already equipped
with signing systems that are online. In our system they will not only respond
to DNS queries, they will also run MPC with other registrar/operators to cre-
ate RRSIG. Our threshold ECDSA protocols have an overhead—both in terms
of communication and computation—that depends on the concrete threat and
system model. We discuss the overheads as part of our benchmarks in Sect. 6.

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 667

It is also worth noting that the operators need not rely on secure hardware
to store their user’s keys anymore, which may bring down both the cost and
complexity for a DNS operator.

Implication for DNS Resolvers. Proper functioning of the DNSSEC ecosys-
tem requires both the signing and the validation to work. Deploying changes
at DNS resolvers is extremely hard as numerous resolver software need to be
changed. Fortunately, no change is required at the validating resolver to use our
solution. Every time the domain is queried at the authoritative name server,
the signatures for the zone need to be verified at the resolvers for the chain
of trust to be established. Though three operators are involved in the signing
process, the signature can be verified with the same DNSKEY, irrespective of the
operator which initiated the signing process. If the DNS resolver obtains the
DNSKEY records from Operator A and stores it in the cache, then it will be able
to authenticate a response from Operator B for the same domain, as the two
operators have the same DNSKEY for the zone. The resolver will be able to verify
the chain of trust irrespective of the operator responded to the query.

6 Evaluation

In this section we report on several benchmarks of our protocol and compare
with prior work of both signature generation and key generation times. We
implement six varieties of our protocol (thus supporting different system and
threat models) in MP-SDPZ [17]. For n = 3 we have Rep3, Shamir (passive
security) and Mal. Rep3 and Mal. Shamir (active security). We remark that
only the Shamir protocols support n > 3. For n = 2, we use MASCOT and
MASCOT– (MASCOT minus) where the latter is a heuristic optimization of
the former. Many of these protocols have asymmetric communication patterns
and thus we report the maximum execution time, instead of the average. All
experiments were run on AWS c5.2xlarge instances in three settings: LAN,
continental WAN and worldwide WAN. The maximum RTT between any two
servers in these settings are 0.08 ms, 17 ms and 240 ms, respectively.

6.1 MASCOT– Optimizations

Our MASCOT– protocol is obtained by making a number of function specific
optimizations to MASCOT [24]. Threshold signatures are a special case of MPC
where the correctness of the output can trivially be determined by observing the
output itself (by verifying the signature). This is a well known trick which has
previously been used to optimize many threshold ECDSA protocols in the liter-
ature. We can similarly optimize our protocol by using an “optimistic” version
of the Open command when running Step 3 of the Signing subroutine in Fig. 4.

SPDZ Opening. We save a round of communication during opening as we do
not need to check correctness of the MACs. Omitting this attack permits the

668 A. Dalskov et al.

adversary to make an additive attack, which may result in an invalid signature,
but does not leak anything about the secret key.

Beaver Multiplication. Suppose the adversary can perform an additive attack
during multiplication. That is, x + a + ε1 and y + b + ε2 for independent ε1 and
ε2. A multiplication becomes

(x+a+ε1) ·(y+b+ε2)−(x+a+ε1) ·b−(y+b+ε2) ·a+ab = xy+ε1y+ε2x+ε1ε2.

This permits a selective failure attack (e.g., ε2 = 0, ε1 �= 0 then the multiplication
is correct if and only if y = 0). However, multiplications are only used on k−1

and sk, both of which are of high entropy.

6.2 Comparison with Prior Work

We present a comparison of our protocols with two industry protocols from
Unbound [38] and KZen [31], as well as the two-party protocol of Doerner et
al. [18] (DKLS) in Table 1. The numbers reported for our protocols correspond
to running all three phases in Fig. 4. We see that MASCOT– performs as well
as the fastest prior protocol in DKLS, with the same security guarantees, in the
LAN setting. However, with more servers, some of our protocols perform better
in the LAN setting. In our two WAN settings, DKLS outperforms our protocols,
a fact we attribute to the fact that DKLS requires only 2 messages (1 round
of communication) whereas our fastest protocol (Rep3) requires 3. Interestingly,
the simplicity of our key generation protocol is very apparent, and in all cases
(except MASCOT–) key generation is faster than signing.

6.3 Key Generation

We also benchmark the key generation phase as that is typically the more expen-
sive phase in prior works (e.g., [21,28]). With our approach, generating a shared
key amounts to running any protocol for generating a secret shared field element
[sk], followed by opening the result of Convert[sk]. Timings for key generation is
shown in Table 2. For our honest majority protocol (n = 3) generating a secret
key requires only 1 or 2 rounds of communication. MASCOT and MASCOT–
is slightly different in that the opening procedure is more costly. Finally, notice
that MASCOT– and MASCOT perform the same. Indeed, the heuristics used
to obtain MASCOT– cannot be used when generating keys.

6.4 Amortizing Signing

Finally, we analyze the cost of signing when amortization is applied, something
that no prior work has considered.5 Table 3 shows how many signing tuples
5 Although it might be possible to split some of the protocols in previous work into a

preprocessing and signing phase, such a split has not been implemented and, hence,
we cannot compare with it.

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 669

Table 1. Comparison with prior work. Numbers for our protocols are obtained by
taking the mean over the maximum execution time over many runs.

Colocation Continent World

n Sig (ms) KGen (ms) Sig (ms) KGen (ms) Sig (ms) KGen (ms)

Rep3 3 2.78 1.45 27.22 29.44 367.87 291.32

Shamir 3 3.02 1.39 78.75 35.52 1140.09 486.82

Mal. Rep3 3 3.45 1.57 82.14 39.97 1128.01 429.47

Mal. Shamir 3 4.43 1.89 174.95 37.35 2340.53 485.11

MASCOT 2 6.56 4.32 196.19 185.71 2688.92 2632.07

MASCOT– 2 3.61 4.41 54.38 181.12 729.08 2654.59

DKLS [18] 2 3.58 43.73 15.33 109.80 234.37 1002.97

Unbound [38] 2 11.33 315.96 31.08 424.02 490.73 1010.98

Kzen [31] 2 310.71 153.87 1282.81 577.67 14441.83 7237.93

Table 2. Breakdown of key generation benchmarks into the time it takes to gener-
ate the [sk] sharing, and the time it takes to run Open(Convert([sk])). Times are the
maximum time that each step takes.

Colocation Continent World

Secret (ms) Public (ms) Secret (ms) Public (ms) Secret (ms) Public (ms)

Rep3 0.16 1.27 11.12 18.31 113.86 174.03

Shamir 0.25 1.13 17.17 18.09 243.00 243.82

Mal. Rep3 0.16 1.40 11.00 28.98 115.25 301.66

Mal. Shamir 0.25 1.62 16.90 18.32 241.78 243.18

MASCOT 2.34 1.91 149.26 33.01 2142.31 442.75

MASCOT– 2.40 1.92 145.48 33.21 2132.75 449.43

each protocol can generate per second. The signing times reported in this table
correspond to computing a signature when amortization is taken into account.
A signing tuple corresponds to the output of the user dependent preprocessing
phase in Fig. 4. We note that, for almost all protocols, amortized signing corre-
sponds essentially to a single round of communication.

6.5 Overhead for Operators

The storage overhead can be derived from the sizes of a share for a given protocol.
For Mal. Rep3, MASCOT and Rep3 each share consists of two Zp elements, while
for the rest a share is a single element. Thus, for the former three the overhead for
storing the signing keys is doubled. A signing tuple consists of two Zp shares and
one G share. For example, Rep3 needs to store roughly 2·4·32 bytes per signature,
assuming a 256-bit prime. Communication per party is between 177 and 354
bytes, depending on the protocol (this number was derived at experimentally).

670 A. Dalskov et al.

Table 3. Throughput in signing tuples per second as well as signing time when amor-
tization is taken into account.

Colocation Continent World

Tuples per sec. Sig (ms) Tuples per sec. Sig (ms) Tuples per sec. Sig (ms)

Rep3 922.27 2.49 898.25 19.91 715.54 247.13

Shamir 1829.69 2.37 1544.31 20.62 402.88 271.80

Mal. Rep3 914.65 2.52 806.13 20.07 309.76 245.14

Mal. Shamir 1792.30 2.91 1154.30 27.03 172.87 416.60

MASCOT 380.19 4.82 233.73 57.02 31.98 756.34

MASCOT– 700.94 2.75 447.85 20.37 68.31 258.85

7 Related Works

DNSSEC Deployment and Measurement. DNSSEC deployment heavily
relies on DNS operators and registrars. Prior works have found issues such as
reuse of signing keys by DNS operators for multiple domains6 [12] and sharing
of RSA modulus among multiple domains [34]. After the DDoS attacks of 2016,
the impact of the attacks and the number of customers of DyN and NS1 that
added another operator was measured [1]. However, only the domains that use
DyN and NS1 were measured while we measure the use of multiple operators,
not restricting our measurements to managed DNS providers.

Privacy in DNS. Though DNSSEC provides data integrity, it does not provide
confidentiality. “Range queries” [39] and private information retrieval [40] have
been proposed as a solution to hide queries. Recently, the Internet Engineering
Task Force (IETF) has considered privacy issues in DNS and DNSSEC [7,8] and
proposed DNS-over-TLS [RFC8310] and DNS-over-HTTPS [RFC8484]. While
privacy of DNS queries has been considered, we address the issue of privacy of
DNSSEC keys.

Threshold ECDSA. Protocols for computing ECDSA signatures in a threshold
manner has seen a resurgence lately due to their relevance to crypto-currencies.
Doerner et al. have developed threshold ECDSA protocols for both 2-parties
[18] and multiple parties [19]. Another recent protocol for dishonest majority is
due to Lindell [27]. Even more recently, Castagnos et al. developed a threshold
ECDSA protocol from Hash Proof Systems [11].

Threshold Signatures for DNSSEC. Threshold RSA signatures for DNSSEC
have been considered in the past. [10] proposed a distributed DNS to avoid single
point of failure, which provides fault tolerance and security in the presence of
corrupted servers. [13] emulate a HSM at an authoritative name server and they
report timings on a LAN which range from tens to hundreds of milliseconds on
commodity hardware. Both used RSA threshold signature scheme of [33].

6 https://www.netnod.se/sites/default/files/2016-12/NETNOD2015 DNS Martin
Levy CloudFlare-2.pdf (Slide 28).

https://www.netnod.se/sites/default/files/2016-12/NETNOD2015_DNS_Martin_Levy_CloudFlare-2.pdf
https://www.netnod.se/sites/default/files/2016-12/NETNOD2015_DNS_Martin_Levy_CloudFlare-2.pdf

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 671

8 Conclusion

Deployment of DNSSEC is still an open problem. Current practices force the
domain owners to “outsource” management of their DNSSEC keys to the oper-
ators, and trust them not to abuse that knowledge. We replace that trust with
distributed mechanism that generates DNSSEC keys and signatures.

Our mechanism is based on a simple but powerful transformation that can
be applied to a large class of protocols for secure computation over Zp to obtain
protocols for secure computation over an elliptic curve group. We demonstrated
the appeal of such a transformation by obtaining several very efficient protocols
for threshold ECDSA. Our protocols work in the preprocessing model, which
allows us to obtain schemes for computing 100s to 1000s of signatures per second.

Our measurements demonstrate that multi-operator solutions for name
servers and for domains are popular in the Internet. Finally, motivated by the
aforementioned measurements, we show that our protocols provide an efficient
solution to existing issues in DNSSEC. In particular, we demonstrate a sys-
tem that allows multiple distinct operators to digitally sign zone (as required in
DNSSEC) at essentially no cost compared to regular single-operator DNSSEC.

Acknowledgment. This work has been co-funded by: the Concordium Blockhain
Research Center, Aarhus University, Denmark; the European Research Council (ERC)
under the European Unions’s Horizon 2020 research and innovation programme under
grant agreement No 803096 (SPEC); the Danish Independent Research Council under
Grant-ID DFF-6108-00169 (FoCC); the German Federal Ministry of Education and
Research and the Hessen State Ministry for Higher Education, Research and Arts
within their joint support of the National Research Center for Applied Cybersecurity
ATHENE; the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion): GRK 2050/251805230 and SFB 1119/236615297.

References

1. Abhishta, A., van Rijswijk-Deij, R., Nieuwenhuis, L.J.M.: Measuring the impact
of a successful DDoS attack on the customer behaviour of managed DNS service
providers. Comput. Commun. Rev. 48(5), 70–76 (2018)

2. Atkins, D., Austein, R.: Threat analysis of the domain name system (DNS). RFC
3833, 1–16 (2004)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 201–209. ACM (1989)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Beevers, K.: A note from NS1’s CEO: How we responded to last week’s
major, multi-faceted DDoS attacks, 23 May 2016. https://ns1.com/blog/how-we-
responded-to-last-weeks-major-multi-faceted-ddos-attacks

6. Bellovin, S.M.: Using the domain name system for system break-ins. In: USENIX
Security Symposium. USENIX Association (1995)

https://doi.org/10.1007/3-540-46766-1_34
https://ns1.com/blog/how-we-responded-to-last-weeks-major-multi-faceted-ddos-attacks
https://ns1.com/blog/how-we-responded-to-last-weeks-major-multi-faceted-ddos-attacks

672 A. Dalskov et al.

7. Bortzmeyer, S.: DNS privacy considerations. RFC 7626, 1–17 (2015)
8. Bortzmeyer, S.: DNS query name minimisation to improve privacy. RFC 7816,

1–11 (2016)
9. Brandt, M., Dai, T., Klein, A., Shulman, H., Waidner, M.: Domain validation++

for MitM-resilient PKI. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2060–2076. ACM (2018)

10. Cachin, C., Samar, A.: Secure distributed DNS. In: International Conference on
Dependable Systems and Networks, 2004, pp. 423–432. IEEE (2004)

11. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 7

12. Chung, T., et al.: A longitudinal, end-to-end view of the DNSSEC ecosystem. In:
USENIX Security Symposium, pp. 1307–1322. USENIX Association (2017)

13. Cifuentes, F., Hevia, A., Montoto, F., Barros, T., Ramiro, V., Bustos-Jiménez,
J.: Poor man’s hardware security module (pmHSM): a threshold cryptographic
backend for DNSSEC. In: LANC, pp. 59–64. ACM (2016)

14. Cimpanu, C.: Hackers breached Greece’s top-level domain registrar, 9
July 2019. https://www.zdnet.com/article/hackers-breached-greeces-top-level-
domain-registrar/

15. Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practi-
cal covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits.
Cryptology ePrint Archive, Report 2012/642 (2012). https://eprint.iacr.org/2012/
642

16. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

17. Data61. MP-SPDZ - versatile framework for multi-party computation. https://
github.com/data61/MP-SPDZ

18. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy,
pp. 980–997. IEEE Computer Society Press, May 2018

19. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: the multiparty case. In: 2019 IEEE Symposium on Security and Pri-
vacy, pp. 1051–1066. IEEE Computer Society Press, May 2019

20. DYN. DYN analysis summary of friday october 21 attack, 26 October 2016.
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

21. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM Conference on Computer and Communications Security, pp. 1179–
1194. ACM (2018)

22. Herzberg, A., Shulman, H.: Socket overloading for fun and cache-poisoning. In:
ACSAC, pp. 189–198. ACM (2013)

23. Kaminsky, D.: Black ops 2008: It’s the end of the cache as we know it. Black Hat
USA (2008)

24. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

25. Kerry, C.F., Gallagher, P.D.: FIPS pub 186–4 federal information processing stan-
dards publication digital signature standard (DSS) (2013)

https://doi.org/10.1007/978-3-030-26954-8_7
https://www.zdnet.com/article/hackers-breached-greeces-top-level-domain-registrar/
https://www.zdnet.com/article/hackers-breached-greeces-top-level-domain-registrar/
https://eprint.iacr.org/2012/642
https://eprint.iacr.org/2012/642
https://doi.org/10.1007/978-3-642-32009-5_38
https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 673

26. Knot. Knot DNS. https://www.knot-dns.cz/
27. Lindell, Y.: Fast Secure Two-Party ECDSA Signing. In: Katz, J., Shacham, H.

(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 21

28. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. Cryptology
ePrint Archive, Report 2018/987 (2018). https://eprint.iacr.org/2018/987

29. Liu, S., Foster, I.D., Savage, S., Voelker, G.M., Saul, L.K.: Who is .com?: learning
to parse WHOIS records. In: Internet Measurement Conference, pp. 369–380. ACM
(2015)

30. Netnod. Statement on man-in-the-middle attack against netnod, 5 Febru-
ary 2019. https://www.netnod.se/news/statement-on-man-in-the-middle-attack-
against-netnod

31. Kzen networks. Rust implementation of t, n-threshold ecdsa (elliptic curve digital
signature algorithm). https://github.com/KZen-networks/multi-party-ecdsa

32. Krebs on Security. A Deep Dive on the Recent Widespread DNS Hijacking
Attacks, 18 February 2019. https://krebsonsecurity.com/2019/02/a-deep-dive-on-
the-recent-widespread-dns-hijacking-attacks/

33. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

34. Shulman, H., Waidner, M.: One key to sign them all considered vulnerable: eval-
uation of DNSSEC in the internet. In: NSDI, pp. 131–144. USENIX Association
(2017)

35. Smart, N.P., Talibi Alaoui, Y.: Distributing any elliptic curve based protocol. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 342–366. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1 17

36. Son, S., Shmatikov, V.: The Hitchhiker’s guide to DNS cache poisoning. In: Jajodia,
S., Zhou, J. (eds.) SecureComm 2010. LNICSSITE, vol. 50, pp. 466–483. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16161-2 27

37. Talos Intelligence. DNS hijacking abuses trust in core internet service, 17 April
2019. https://blog.talosintelligence.com/2019/04/seaturtle.html

38. Unbound Tech. blockchain-crypto-mpc. https://github.com/unbound-tech/
blockchain-crypto-mpc

39. Zhao, F., Hori, Y., Sakurai, K.: Analysis of privacy disclosure in DNS query. In:
MUE, pp. 952–957. IEEE Computer Society (2007)

40. Zhao, F., Hori, Y., Sakurai, K.: Two-servers PIR based DNS query scheme with
privacy-preserving. In: IPC, pp. 299–302. IEEE Computer Society (2007)

https://www.knot-dns.cz/
https://doi.org/10.1007/978-3-319-63715-0_21
https://eprint.iacr.org/2018/987
https://www.netnod.se/news/statement-on-man-in-the-middle-attack-against-netnod
https://www.netnod.se/news/statement-on-man-in-the-middle-attack-against-netnod
https://github.com/KZen-networks/multi-party-ecdsa
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-030-35199-1_17
https://doi.org/10.1007/978-3-642-16161-2_27
https://blog.talosintelligence.com/2019/04/seaturtle.html
https://github.com/unbound-tech/blockchain-crypto-mpc
https://github.com/unbound-tech/blockchain-crypto-mpc

On Private Information Retrieval
Supporting Range Queries

Junichiro Hayata1,2(B), Jacob C. N. Schuldt2, Goichiro Hanaoka2,
and Kanta Matsuura1

1 Institute of Industrial Science, The University of Tokyo, Meguro-Ku, Tokyo, Japan
{hayata,kanta}@iis.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Koto-Ku, Tokyo, Japan

{jacob.schuldt,hanaoka-goichiro}@aist.go.jp

Abstract. Private information retrieval (PIR) allows a client to retrieve
data from a database without the database server learning what data is
being retrieved. Although many PIR schemes have been proposed in
the literature, almost all of these focus on retrieval of a single database
element, and do not consider more flexible retrieval queries such as basic
range queries. Furthermore, while practically-oriented database schemes
aiming at providing flexible and privacy-preserving queries have been
proposed, to the best of our knowledge, no formal treatment of range
queries has been considered for these. In this paper, we firstly highlight
that a simple extension of the standard PIR security notion to range
queries, is insufficient in many usage scenarios, and propose a stronger
security notion aimed at addressing this. We then show a simple generic
construction of a PIR scheme meeting our stronger security notion, and
propose a more efficient direct construction based on function secret
sharing – while the former has a round complexity logarithmic in the size
of the database, the round complexity of the latter is constant. Finally,
we report on the practical performance of our direct construction.

Keywords: Private information retrieval · Range query · Function
secret sharing

1 Introduction

An increasing number of applications and services rely on remotely stored data
e.g. data stored in the cloud. While the data itself might not be private, the infor-
mation regarding a client’s queries might be. For example, investors searching
information regarding companies and stock prices, might involuntarily leak their
investment interests and intentions through their queries. It is conceivable that
a malicious data manager collects statistical data from the client’s queries and
attempt to exploit this information. To prevent such attacks, private information
retrieval (PIR) was proposed [1]. By using PIR, a client can retrieve data from

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 674–694, 2020.
https://doi.org/10.1007/978-3-030-59013-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_33&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_33

PIR Supporting Range Queries 675

a database without the database server learning what data is being retrieved. A
trivial way to achieve PIR would be for the client to download all data from the
database. However, since this trivial approach would incur communication cost
O(n) for the client, assuming the size of the database is n, this solution quickly
becomes unreasonable when we consider larger databases. Hence, a PIR scheme
is required to have communication cost lower than O(n).

The first PIR scheme was proposed by Chor et al. [1]. Their construction
assumed that many servers hold a replicated database, and that the servers
do not communicate with each other. A PIR scheme constructed under these
assumptions is called a multi-server PIR scheme. A PIR scheme relying on just a
single server, which is technically more difficult to construct, was first achieved by
Kushilevitz et al. [2]. After that, several works on constructing single-server PIR
and multi-server PIR schemes have been introduced, gradually improving the
communication cost of PIR [3–5]. However, while PIR provides strong security
guarantees, the standard definition of PIR only consider queries that retrieve a
single element, and do not consider other often used queries types, such as basic
range queries.

In contrast, in the somewhat related area of encrypted databases, most
schemes aims at providing functionality approaching standard SQL, includ-
ing range queries [6,7]. However, note that even setting aside the problem of
how data would be encrypted and decrypted, an encrypted database would not
address the privacy concerns considered in a PIR scheme, as the aim is only to
protect the confidentiality of the data against a malicious server, and no attempts
are done in these scheme to hide the access pattern by clients. Furthermore, sev-
eral attacks reconstructing the underlying data or partial information about
this, based on the functionality of encrypted database schemes, have been dis-
covered e.g. attacks based on information leakage in searchable encryption [8],
and volume attacks based on observing only the volume of answers to the range
queries [9–11].

An interesting recent scheme that provides a SQL-like functionality, but still
aims at preserving the privacy of client queries, is the private query scheme
by Wang et al. [14]. While the scheme does not directly support unbounded
range queries, by combining the supported TOPK and COUNT queries of their
scheme, we can implement the range query functionality we consider in this
paper. The scheme is based on a two-server setup, and uses function secret
sharing [18] to generate and respond to queries. Essentially, each server will only
receive a share of a function that extracts the relevant information the client
is interested in obtaining, and evaluate that share over his own copy of the
database. By the security property of function secret sharing, the server will
not learn what function is being evaluated, but correctness allows the client to
combine the evaluation results from the two server, to obtain the output of the
function. While Wang et al. [14] do not provide any formal security models or
security proofs for their construction, it is plausible that their construction will
satisfy our simple extension of PIR security to range queries, defined in Sect. 3.
However, it is relatively easy to see that the structure of their scheme leaks the

676 J. Hayata et al.

kind of queries a client is making, and for range queries, the number of elements
returned be the server. As discussed below, this can potentially by problematic
with respect to maintaining query privacy.

1.1 Our Contribution

In this paper, we focus on PIR schemes that simultaneously provide strong
security and functionality beyond simple standard PIR. Specifically, we consider
schemes supporting range queries, which is one of the most frequently used
queries for online data analytics [12,13]. Only very few works seems to have a
similar focus (Wang et al. [14] being an exception). In addition to this, to the
best of our knowledge, all query privacy preserving schemes that do support
some kind of range queries, are not formally shown secure.

Firstly, we formalize PIR schemes supporting both standard PIR queries as
well as range queries, and introduce corresponding security models. More specif-
ically, we define three security notions. The first notion captures ordinary PIR
security i.e. when a client request just a single element at a given position in the
database (which we denote an index query), the server(s) does not learn what
element is being retrieved. The second notion, which is a simple extension of the
first notion to range queries, captures that when a client request all database
entries x satisfying a ≤ x ≤ b for chosen bounds (a, b), the server(s) does not
learn what elements are being retrieved i.e. the server cannot distinguish this
query from any other range query containing the same number of elements. How-
ever, we note that this notion might not be sufficient to protect query privacy in
some scenarios. For example, consider a simple database consisting of five ele-
ments; three distinct elements (x, y, z) as well as two additional elements (z′, z′′)
identical to the third element i.e. z = z′ = z′′. For this particular database,
any range query resulting in a three elements response, can only have been for
ranges including z, but not x or y; any query resulting in two elements must
have been for a range including x and y; and any query resulting in a single
element, must have been for ranges include either x or y, but not both. In other
words, the privacy of the range queries is almost completely lost, if the fact that
a range query is made, and the number of elements in the response, leaks to
the server. This is the case for the scheme by Wang et al. [14]. Furthermore, if
additional information regarding the distribution of queries a client is likely to
make, is available to the server, deriving what queries the client makes becomes
even easier.

While this type of information leakage might seem inherent to range queries,
we define a third notion aimed at addressing this. This notion, which we call
query indistinguishability, captures that the server(s) cannot distinguish between
range queries and an appropriate number of independent index queries. This
adds an additional layer of security, in particular if multiple queries (ideally
from multiple indistinguishable clients) are done simultaneously. In other words,
this notion ensures that the server(s) cannot detect range queries (or the bound-
aries between different range queries), and that server(s) can only obtain an
overall estimate of the size of the data transferred in all queries by the client(s).

PIR Supporting Range Queries 677

This can greatly reduce the ability of the server(s) to infer information about
client queries. We note that the definition of query indistinguishability addresses
the structural information leakage wrt. range queries, but, like most other cryp-
tographic security definitions, does not address temporal information leakage i.e.
what servers might infer from the timing of the queries made by the clients. In
Sect. 7 we discuss potential ways to address this dimension.

Having defined the above three notions of security, we show that query indis-
tinguishability implies the other two i.e. schemes shown to satisfy query indistin-
guishability will also satisfy ordinary PIR security as well as the simple extension
to range queries. We then show a simple generic construction of a PIR scheme sat-
isfying query indistinguishability from a standard PIR scheme. This scheme has
a range query round complexity with a multiplicative overhead of O(k + log n),
where n is the size of the database and k is the number of elements retrieved
in the range query, compared to the underlying PIR scheme. Lastly, we give a
direct construction of a multi-server PIR scheme supporting range queries based
on function secret sharing. Our construction takes a similar approach to the pri-
vate query scheme of Wang et al. [14], but whereas the scheme from [14] is not
formally shown secure, and can potentially only achieve the simple extension of
PIR security to range queries, our construction is shown to satisfy query indis-
tinguishability. In contrast to the generic constructions, the round complexity
of the direct construction is 2 + k. We additionally implemented the client and
server components of our scheme, and performed various performance measure-
ments. These show that the time required to process a range query containing
50 elements from a database containing 7.5 million elements, is about 200 s. The
details of this are discussed in Appendix A.

1.2 Related Works

While most PIR schemes support only index queries, there are a few exception in
the literature. Chor et al. [15] proposed a PIR scheme supporting keyword search
queries. Tillem et al. [16] proposed a PIR scheme supporting range queries, and
Wang et al. [14], highlighted above, proposed PIR schemes providing functional-
ity approaching standard SQL, including range queries. We note that the latter
two works do not formally define security and provide security proofs. Further-
more, neither of these schemes satisfy query indistinguishability, and it is unclear
whether the scheme by Tillem et al. even satisfy our simple security notion for
range queries.

The concept of multi-query PIR proposed by Groth et al. [17] allows multiple
elements to be retrieved simultaneously. Groth et al. [17] gave an information-
theoretic lower bound on the communication of any multi-query PIR scheme, as
well as a construction matching this bound. We note, however, that in multi-
query PIR, it is assumed that the client knows the (possibly independent) indices
of the elements to be retrieved, whereas in a range query, no such assumption
is made. Hence, multi-query PIR schemes and PIR schemes supporting range
queries are not directly comparable.

678 J. Hayata et al.

1.3 Paper Organization

The structure of this paper is as follows. In Sect. 2, we introduce notation and
preliminary definitions. In Sect. 3, we define the syntax and security models for
multi-server PIR schemes supporting range queries, and in Sect. 4, we prove
relations among the introduced security notions. In Sect. 5, we show a generic
construction of a PIR scheme supporting range queries from a standard PIR
scheme. In Sect. 6, we show our efficient constructions of a PIR scheme support-
ing range queries using function secret sharing. In Sect. 7, we discuss information
leakage due to the timing of queries and how to address this. In Appendix A,
we show experimental results regarding the efficiency of our scheme. Lastly,
Appendix B contains omitted proofs.

2 Preliminaries

Parameters. We use the following parameters:

– �: number of servers.
– n: size of the database (number of elements).
– V : size of each element.

Notation. We denote probabilistic polynomial time algorithm by PPTA, denote
PIR supporting range queries by RQ-PIR, and for an algorithm A, we denote
the procedure that A is given input a and outputs b by b ← A(a). In addition,
we use the notation −→x for vectors, and denote a vector with all elements being
⊥ by

−→⊥ .

Function Secret Sharing (FSS). Function secret sharing (FSS) was proposed
by Boyle et al. [18], and a FSS scheme provides a means to split a function f
into separate evaluation keys, where each party’s key enables him to efficiently
generate a standard secret share of the evaluation f(x) for any input x, and yet
each key individually does not reveal information about which function f has
been shared.

In this paragraph, we define syntax, correctness, and a security model for FSS
schemes. A FSS scheme is defined for a function family F . Like Boyle et al. [18],
we model F as an infinite collection of bit strings f , together with efficient
procedures IdentityDomain and Evaluate, such that Df ← IdentityDomain(1λ, f)
extracts from the string f an input domain space Df , and y ← Evaluate(f, x),
for any input x ∈ Df , defines the output of f at x. By convention, we assume
the description f includes also the input length and output length of f .

For simplicity of notation, in this paper, we will refer to the domain Df of
f without making explicit reference to the corresponding call to IdentityDomain,
and will denote an evaluation Evaluate(f, x) by shorthand notation f(x).

PIR Supporting Range Queries 679

The syntax of a FSS scheme is as follows.

Definition 1. For p ∈ N, T ⊆ [p], a p-party, T -secure function secret sharing
(FSS) scheme FSS with respect to function class F , is a pair of PPTA (Gen,
Eval) with the following syntax:

(k1, . . . , kp) ← Gen(1λ, f): Key Generation algorithm Gen takes as input the
security parameter 1λ and function description f ∈ F , and outputs a p-tuple
of keys (k1, . . . , kp).

yi ← Eval(i, ki, x): Evaluation algorithm Eval takes as input a party index i ∈ [p],
key ki and input string x ∈ Df , and outputs a value yi, corresponding to the
party’s share of f(x).

Correctness and secrecy requirements are as follows:

Correctness: For all f ∈ F , x ∈ Df ,

Pr

[
(k1, . . . , kp) ← Gen(1λ, f) :

p∑
i=1

Eval(i, ki, x) = f(x)

]
= 1.

Security: Consider the following indistinguishability experiment for an adversary
A = (A1,A2) and corrupted parties T ⊂ [p] :

1: The adversary outputs (f0, f1, st) ← A1(1λ), where f0, f1 ∈ F with Df0 =
Df1 .

2: The challenger samples b ← {0, 1} and computes (k1, . . . , kp) ← Gen(1λ, f b).
3: Given the keys for corrupted parties T , the adversary outputs a guess b′ ←

A2((ki)i∈T , st).

Denote by
AdvFSS(1λ,A) := |Pr[b = b′] − 1/2|

the advantage of A in guessing b in the above experiment, where the probabil-
ity is taken over the randomness of the challenger and A. We say the scheme
(Gen,Eval) is T -secure if there exists a negligible function ε such that for all
PPTA A, it holds that Adv(1λ,A) ≤ ε(λ).

Although it is possible to construct FSS for arbitrary functions, practical
FSS protocols only exist for some functions, e.g. point and interval functions.
These take the following forms [18,19]:

– Point functions fa are defined as fa(x) = 1 if x = a or 0 otherwise.
– Interval functions are defined as fa,b(x) = 1 if a < x < b or 0 otherwise.

Hereafter, for a function f , we denote by (f1, . . . , fp) ← Gen(1λ, f) the func-
tion shares described by the keys (k1, . . . , k�) generated by Gen(1λ, f), and by
fi(x) the output of Eval(i, ki, ·).

680 J. Hayata et al.

3 Syntax and Security Models for PIR Schemes
Supporting Range Queries

In this section, we define syntax and security models for PIR schemes supporting
range queries. In the following, we will treat a database as consisting of an n-
entry vector −→x = (x1, . . . , xn), and each entry as a V -bit integer. Furthermore,
we will assume that the entries in the database are sorted in ascending order i.e.
it holds that x1 ≤ x2 ≤ · · · ≤ xn.

3.1 Syntax of RQ-PIR

Our notion of a RQ-PIR scheme supports two types of queries: index queries
and range queries. In an index query, the client specifies an index i ∈ [n], and
obtains the ith entry in the database i.e. xi. However, in a range query, the client
specifies a range by values a, b ∈ N (a < b), and obtains all entries xj in the
database satisfying a ≤ xj ≤ b. Note that the client might be unaware of the
indices j of the elements retrieved in a range query.

To capture interactive schemes, we define a RQ-PIR scheme via stateful
algorithms. Note, however, that we only require the client to maintain state.
Specifically, only the algorithms Index and Range defined below, which the
client will run to make an index or range query, respectively, will be stateful,
whereas the algorithm Res run by the servers to respond to the clients request,
will be stateless.

(q, st′) ← Index(1λ,−−→ans, st): The Index algorithm is a stateful interactive algo-
rithm run by the client to execute an index query. The algorithm takes
as input the security parameter 1λ, potential previous answers −−→ans :=
(ans1, ans2, . . . , ans�) from servers, where ansj is the answer from server
j, and state st. The algorithm outputs server queries −→q := (q1, q2, . . . , q�),
and new state st′. The client sets the initial state to st := {i}, where i is
the index of the entry in the database he would retrieve, and sets the initial
−−→ans ← −→⊥ . When Index outputs q =

−→⊥ , it indicates termination of the index
query, and the client outputs st as the final output y.

(q, st′) ← Range(1λ,−−→ans, st): The Range algorithm is a stateful interactive algo-
rithm run by the client to execute a range query. The algorithm takes as input
the security parameter 1λ, potential previous answers −−→ans := (ans1, ans2,
. . . , ans�) from servers, where ansj is the answer from server j, and state st.
The algorithm outputs queries −→q := (q1, q2, . . . , q�), and new state st′. The
client sets the initial state to st := {a, b}, where a, b ∈ N, a ≤ b and [a, b]
is the range that client wants to retrieve from database, and sets the initial
−−→ans ← −→⊥ . When Range outputs q =

−→⊥ , it indicates termination of the range
query, and client outputs st as a final output y.

ansj ← Res(1λ,x, j, q): The Res algorithm is stateless and run by each server
to respond to the clients queries. The algorithm takes as input the security
parameter 1λ, database x, the identifier of the server j ∈ [�], and query q
from the client, and outputs answer ansj .

PIR Supporting Range Queries 681

To simplify notation, we will often omit the security parameter 1λ from the
input of the above defined algorithms. In addition to this, we will use Resj(x, q)
to denote Res(1λ,x, j, q).

Based on the above algorithms, we obtain protocols for index and range
queries by respectively combining Index and Res, and Range and Res. We will
use the following notation regarding these:

(y,
−→⊥) ← 〈Index,Res1, . . . , Res�〉(i,x, . . . ,x): This denotes the client running
the Index algorithm with input the initial state st0 := {i}, and server j
replying to each query qj from client by running Resj(x, qj), for all j ∈ [�],
until the Index algorithm halts. After completing the protocol, the client
outputs y and each server receives no output (i.e. ⊥).

(y,
−→⊥) ← 〈Range,Res1, . . . , Res�〉((a, b),x, . . . ,x): This denotes the client run-
ning the Range algorithm with input initial state st0 := {a, b}, and server j
replying to queries qj from client by running Resj(x, qj), for all j ∈ [�] until
the Range algorithm halts. After completing the protocol, the client outputs
y and each server outputs ⊥.

For the above protocols, we will consider the transcript of an interaction
between a client and a server: for any j ∈ [�] and for any i ∈ [n], we denote
by Transj(〈Index,Res1, . . . , Res�〉(i,x, . . . ,x)) the messages sent between the
client and server j when executing the above defined protocol for retrieving the
database entry for index i (held by the client). Likewise, for any j ∈ [�] and
for any a, b ∈ N, we denote by Transj(〈Range,Res1, . . . , Res�〉((a, b),x, . . . ,x))
the messages sent between client and server j during the execution of the above
defined protocol for retrieving values in the range [a, b].

3.2 Security of RQ-PIR

We will now define three security models for PIR schemes that support index
queries and range queries. In all of these models, we assume that serves do not
collude, and there is a secure channel between the client and each server.

At first, we define security of index queries for RQ-PIR schemes. This security
notion is equivalent to the computational notion normally considered for stan-
dard (multi-server) PIR, and captures that the servers do not learn anything
regarding the element being retrieved in the index query.

Definition 2. A RQ-PIR scheme provides secure index queries if for all λ ∈ N,
for any database x = (x1, . . . , xn) of size n, for any server m ∈ [�], for any
indices i, j ∈ [n], for any PPTA distinguisher D,

|Pr[D(Viewm
i) = 1] − Pr[D(Viewm

j) = 1]|
is negligible, where

Viewm
k ← {Transm(〈Index,Res1, . . . , Res�〉(k,x, . . . ,x)),x, r}

for k ∈ {i, j}, and where r is the randomnesses used by server m during the
execution of the protocol.

682 J. Hayata et al.

We now define a simple extension of the above security notion aimed at
capturing security of range queries. This security notion captures that the servers
do not learn the bounds (a, b) of the range query, and what elements are being
retrieved via an indistinguishability requirement: any server should be unable to
distinguish two different range queries as long as the number of elements in the
query is the same.

Definition 3. A RQ-PIR scheme provides secure range queries if for all λ ∈ N,
for any database x = (x1, . . . , xn) of size n, for any server m ∈ [�], for any
bounds a, b, c, d ∈ [n] such that |{xi | a ≤ xi ≤ b}| = |{xi | c ≤ xi ≤ d}| = k, for
any PPTA distinguisher D,

|Pr[D(Viewm
a,b) = 1] − Pr[D(Viewm

c,d) = 1]|
is negligible, where

Viewm
h0,h1

← {Transm(〈Range,Res1, . . . , Res�〉((h0, h1),x, . . . ,x)),x, r}
for (h0, h1) ∈ {(a, b), (c, d)}, and where r is the randomnesses of server m during
the execution of the protocol.

While Definition 3 above intuitively guarantees the security of range queries,
this security notion does not guarantee that the type of query being made,
or the number of elements in a range query, are hidden. As discussed in the
introduction, that might lead to the privacy of range queries being compromised.
Thus, a stronger security notion is desirable.

Hence, we define query indistinguishability of a RQ-PIR scheme aimed at
addressing this. This security notion captures that the servers cannot learn
whether the client is performing a range query or a number of independent
index queries for a set of arbitrary unrelated set of entries in the database.

Definition 4. A RQ-PIR scheme provides query indistinguishability if there
exists a polynomial time computable function f : N → N such that for all λ ∈ N,
for any database x = (x1, . . . , xn) of size n, for any server m ∈ [�], for any
bounds a, b ∈ N, for any st of indices i1, . . . if(k) ∈ [n] where k = |{xi | a ≤ xi ≤
b}|, for any PPTA distinguisher D,

|Pr[D(Viewm
range) = 1] − Pr[D(Viewm

index) = 1]|
is negligible, where

Viewm
range ← {Transm(〈Range,Res1, . . . , Res�〉((a, b),x, . . . ,x)),x, r},

and
Viewm

index ← Viewi1 || · · · ||Viewif(k) ,

where Views ← {Transm(〈Index,Res1, . . . , Res�〉(k,x, . . . ,x)),x, r}, and s ∈
{i1, . . . , if(k)} and r is the randomnesses of server m during the execution of
the protocol.

Note that while Definition 4 guarantees that database server(s) cannot detect
range queries (or boundaries between these) from the queries alone, the definition
by itself does not address information derived from the timing of queries. In Sect.
7, we discuss ways to address this.

PIR Supporting Range Queries 683

4 Relation Among Security Notions

In this section, we prove implications among the security notions introduced
above. Specifically, we prove that query indistinguishability implies secure index
queries, as well as secure range queries.

Theorem 1. If RQ-PIR scheme Π provides query indistinguishability, then Π
provides secure range queries.

Due to the page limitation, we defer the full proof to Appendix B.
Then, we prove that query indistinguishability implies secure index queries.

To show this implication, we introduce the security notion of secure index queries
for sets. At first, we prove that query indistinguishability implies secure index
queries for sets, and then show that index queries for sets implies secure index
queries.

Definition 5. A RQ-PIR scheme provides secure index queries for sets if for
all λ ∈ N, for any database x = (x1, . . . , xn) of size n, for any server m ∈ [�],
for any set of indices i1 = (i11 , . . . , i1k), i2 = (i21 , . . . , i2k) ∈ [n]k, for any PPTA
distinguisher D,

|Pr[D(Viewm
i1) = 1] − Pr[D(Viewm

i2) = 1]|

is negligible, where

Viewm
k ← {Transm(〈Index,Res1, . . . , Res�〉(it1 ,x, . . . ,x)),x, r1}|| · · ·

||{Transm(〈Index,Res1, . . . , Res�〉(itk ,x, . . . ,x)),x, rk}

for t ∈ {1, 2}, and where r1, . . . , rk is the randomnesses used by server m during
the execution of the protocol.

Theorem 2. If RQ-PIR scheme Π provides query indistinguishability, then Π
provides secure index queries for sets.

Theorem 3. If RQ-PIR scheme Π provides secure index queries for sets, then
Π provides secure index queries.

Due to the page limitation, we omit proof of Theorems 2 and 3.
From Theorem 2 and 3, we can derive following theorem.

Theorem 4. If RQ-PIR scheme Π provides query indistinguishability, then Π
provides secure index queries.

5 Generic Construction of RQ-PIR from PIR

Let Σ = (Index,Res1, . . . , Res�) be a PIR scheme that provides secure index
queries. We give a simple generic construction of a RQ-PIR scheme Π from Σ.

684 J. Hayata et al.

Π simply uses the index query algorithm provided by the underlying Σ for
index queries, and we omit the description of this. Likewise, Π uses the response
algorithms from Σ, and we omit the description of these as well. However, how
range queries are implemented does not follow immediately, and care must be
taken to avoid these leaking information. We firstly discuss the intuition of our
construction, and then provide the full details.

Note that when a client sends a range query, he does not know the indices
corresponding to the elements he would like to retrieve. Thus, to retrieve these
elements using Σ, he needs to obtain the relevant indices first. To do this, we
use binary search. However, if binary search is used naively, it might terminate
in less than log n rounds, which will leak information regarding the search, and
prevent us from showing query indistinguishability, as the query size of range
queries for a given number of elements is required to be constant. To prevent
this, we adjust the communication rounds by sending dummy queries.

After the client has run binary searches for the bounds defining the range
query, he obtains the corresponding indices. However, when the database con-
tains elements with the same value, it is not guaranteed that the indices the
client obtained cover all elements in the range. To address this, the client will
query additional elements on either side of the obtained indices, until elements
outside the desired range is obtained.

In the following, [a, b] denotes a range query specified by the client.

Range(−−→ans, st) :
– Using binary search, the client searches for an index i such that xi = a,

by appropriately setting the queries −→q , processing the corresponding −−→ans,
and updating st. Each query in the search is done using Index from Σ.
The client additionally maintains a counter c during this execution, which
represents the total number of queries made. If the index i is found, but
c < log n, the client chooses random index i′ ∈ [n] and runs additional
Index queries for i′ until c = log n.

– Then, if xi ≥ a, the client runs Index queries for i − k for k = 1, 2, ...
until he retrieves an element such that xi−k′ < a (i.e. i − k′ + 1 is the
smallest index of the elements with value a).

– The client then searches an index j such that xj = b, using binary search
as above.

– Then, if xj ≤ b, the client runs Index queries for j + t for t = 1, 2, ... until
he retrieves an element such that xj+t′ > b (i.e. j − t′ − 1 is the largest
index of the elements whose value is b).

– Finally, the client generates index queries for i + 1 to j − 1. Since the
elements in the range from i − k′ + 1 to i and j to j + t′ − 1 have already
been retrieved, the client obtains all elements within the range [a, b].

Regardless of the type of queries executed by the client, only Index queries
from Σ is used when communicating with the server. In addition to this, when
the client submits a range query, the number of elements retrieved is always
k + 2 + 2 log n, where k is the number of elements within [a, b]. Hence, the
following theorem easily follows.

Theorem 5. The RQ-PIR scheme Π above provides query indistinguishability.

PIR Supporting Range Queries 685

6 Construction of RQ-PIR Scheme from FSS

In this section, we give a construction of a two-server RQ-PIR scheme using
function secret sharing. After that, we give a security proof for our construction.
Our construction is more efficient than the scheme described in Sect. 5 in terms
of communication complexity and the number of communication rounds.

6.1 Construction of Two-Server RQ-PIR Scheme

We construct a two-server RQ-PIR scheme Π = (Index,Range,Res). Our con-
struction is based on function secret sharing and we take a similar approach to
the private query construction of Wang et al. [14]. While the scheme from [14] can
be used for range queries as highlighted in the introduction, the scheme allows
the server to distinguish whether the query from the client is an index query or
range query. Our construction avoids this issue by computing a server response
that the client can simultaneously used for both index and range queries, which
leads to the server being unable to distinguish which query it receives. Our
constructions of Index,Range,Resj (j ∈ {1, 2}) are as follows:

Index(−−→ans, st): This algorithm is stateless besides the initial state st = i indi-
cating the index i to retrieve, and allows a one-round index query protocol.

– On input st = i, the client computes (f1, f2) ← Gen(1λ, f), where

f(x) =

{
1 i − 1 < x < i + 1
0 otherwise.

The client then output (q, st′) = ((f1, f2),⊥), implying that f1 is sent to
server 1 and f2 to server 2 in the protocol.

– On input answers −−→ans = ((a1,1, a1,2), (a2,1, a2,2)) from server 1 and server
2 (and state st = ⊥), the client computes y ← a1,2 + a2,2, and outputs
(q, st′) = ((⊥,⊥), y) indicating termination.

Range(−−→ans, st): During the range query protocol, the client maintains
state information st := {st1, st2, st3, st4}, and initial state is st :=
{{a, b}, {},⊥, {}} where a and b are the bounds in the range query.

– On input st1 = {a, b}, the client computes (f1, f2) ← Gen(1λ, f), where

f(x) =

{
1 0 < x < a

0 otherwise.

The client then outputs (q, st′) := ((f1, f2), {{b}, {},⊥, {}}), indicating
that f1 is sent to server 1 and f2 to server 2 in the protocol.

– On input st1 = {b} and −−→ans = ((a1,1, a1,2), (a2,1, a2,1)) from server 1 and
server 2, the client computes y ← a1,1+a2,1 and start index s ← y+1, and
updates the state st = {{}, {s},⊥, {}}. After that, the client computes
(g1, g2) ← Gen(1λ, g), where

g(x) =

{
1 0 < x < b + 1
0 otherwise.

686 J. Hayata et al.

Finally, the client outputs (q, st′) := ((g1, g2), st), indicating that g1 is
sent to server 1 and g2 to server 2.

– On input st1 = {}, st2 = {s}, and −−→ans = ((a1,1, a1,2), (a2,1, a2,2)) from
server 1 and server 2, the client computes y′ ← a1,1 + a2,1, sets the end
index t ← y′, computes the number of elements in the range k ← t − s,
and updates the state st = {{}, {s, t}, k}. After that, client computes
(h1, h2) ← Gen(1λ, h), where

h(x) =

{
1 t − 1 < x < t + 1
0 otherwise.

The client outputs (q, st′) := ((h1, h2), st), indicating that h1 is sent to
server 1 and h2 to server 2.

– On input st1 = {}, st2 = {s, t}, st3 �= 0, and −−→ans = ((a1,1, a1,2),
(a2,1, a2,2)) from server 1 and server 2, the client does the following:
The client computes y ← a1,2 + a2,2, st3 = st3 − 1, st4 = st4||y. After
that, the client computes (h′

1, h
′
2) ← Gen(1λ, h′), where

h′(x) =

{
1 st3 − 1 < x < st3 + 1
0 otherwise.

The client outputs (q, st′) := ((h′
1, h

′
2), st), indicating that h′

1 is sent to
server 1 and h′

2 to server 2.
– On input st1 = {}, st2 = {s, t}, st3 = 0, and −−→ans = ((a′

1,1, a
′
1,2),

(a′
2,1, a

′
2,2)) from server 1 and server 2, the client computes y ← a′

1,2 +
a′
2,2,st4 = st4||y, and outputs (q,y) := ((⊥,⊥), st4), indicating termina-

tion.
Resj(x, fj): In the above algorithms, the client sends a share of a function fj

to server j. Upon receiving this, the server computes aj,1 =
∑n

i=1 fj(xi),
aj,2 =

∑n
i=1 fj(i) · xi, and sends these to the client. Note that the server

response is the same whether the query from the client is a range query or
an index query. Note also that the Res algorithm is deterministic.

In the following, we prove security of our RQ-PIR scheme Π. Since query
indistinguishability implies secure index queries and secure range queries (as
shown in Sect. 4), we only prove query indistinguishability. The main idea of the
security proof is to use the security of the FSS scheme to gradually change the
function shares sent from the client to the servers, transforming a range query
into an appropriate number of index queries.

PIR Supporting Range Queries 687

Theorem 6. If FSS scheme FSS = (Gen,Eval) is secure, then RQ-PIR scheme
Π provides query indistinguishability.

Proof. For the function f(x) := x + 2, for all λ, for any database x = (x1, . . . ,
xn) of size n, for any m ∈ [2], for any a, b ∈ [n], for any i1, . . . if(k) ∈ [n] where
k = |{xi | a ≤ xi ≤ b}|, we consider a PPTA D against query indistinguishability
in RQ-PIR scheme Π. The advantage of D is defined by

Advind
D,Π = |Pr[D(Viewm

range) = 1] − Pr[D(Viewm
index) = 1]|.

Since the Res algorithm in our RQ-PIR scheme Π is deterministic, Viewm
rangea,b

can be written as {Transm(〈Range,Res1, Res2〉((a, b),x,x),x} = {(q,a),x},
where |{xi | a ≤ xi ≤ b}| = k, q = (q1, . . . , qk+2) and the i-th element in
q is a query for server m generated from some function fi by the client, and
a = ((a1,1, a1,2), . . . , (ak+2,1, ak+2,2)) and (ai,1, ai,2) is the reply from server m
for query qi.

To obtain a proof, we use a sequence of games (Game 0 to Game k + 2).

Game 0: This game corresponds to the client and servers running 〈Range,Res1,
Res2〉((a, b),x,x).

Game r (1 ≤ r ≤ k + 1): The difference from Game r − 1 is that qr−1 is
replaced with q′

r−1 where q′
r−1 is a function share for server m generated

from a function fr−1(x) =

{
1 ir−1 − 1 < x < ir−1 + 1
0 otherwise

.

Game k + 2: This game corresponds to the client and servers running 〈Index,
Res1, Res2〉(ir,x,x) for r = 1, . . . , f(k).

For all r, we denote by Viewm
r the view for server m generated by the exper-

iment Game r.

Lemma 1. If FSS scheme FSS = (Gen,Eval) is secure, then for any 1 ≤ s ≤
k + 2 and for any PPTA B, it holds that the difference between the probability
that B outputs 1 in Game s − 1 and s is negligible.

Proof. We consider a PPTA B who distinguishes Viewm
r−1 from Viewm

r , and
denote the advantage of B by

Advr
B,Π = |Pr[B(Viewm

r) = 1] − Pr[B(Viewm
r−1) = 1]|.

Then, we construct an adversary A against FSS who uses B internally as shown
in Fig. 1.

By the construction of A, A simulates Viewm
r−1 for B when A receives a

function share of f0 in the FSS security experiment. Moreover, A outputs 1 only
when B outputs 1. Thus the probability that A outputs 1 in the experiment that
A receives a function share of f0 is equal to Pr[B(Viewm

r−1) = 1]. Likewise, the

688 J. Hayata et al.

A1(1λ)
Send f0 := fr−1 and f1 := f ′

r−1 to challenger,
where fr−1 is the r − 1-th function used in the range protocol for [a, b],

and f1(x) =

{
1 ir−1 − 1 < x < ir−1 + 1
0 otherwise.

Output st := ({(a, b), (i1, . . . , if(k))},x)
A2(fb

m, st)
Let st := {(a′, b′), (i′1, . . . , i′f(k)),x

′}
Compute s =

∑n
i=1 f

b
m(x′

i), s
′ =

∑n
i=1 f

b
m(i) · x′

i

Run (y1||y2|| . . . ||yk+2) ← Transm(〈Range,Res1, Res2〉((a′, b′),x′,x′)),
where yt := qt||at,1||at,2 for t = 1, . . . , k + 2
For u = 1 to r − 2

(q′
u, a

′
u,1, a

′
u,2) ← Transm(〈Index,Res1, Res2〉(iu,x′,x′))

View ← {(y′
1||y′

2|| . . . ||y′
r−2||q′

r−2||fb
m||s||s′||yr|| . . . ||yk+2),x},

where y′
w := q′

w||a′
w,1||a′

w,2 for w = 1, . . . , r − 2
b′ ← B(View)
Output b′

Fig. 1. Construction of A in Lemma 1

probability that A outputs 1 in the experiment that A receives a function share
of f1 is equal to Pr[B(Viewm

r) = 1]. Therefore, we obtain

Advr
B,Π = |Pr[B(Viewm

r) = 1] − Pr[B(Viewm
r−1) = 1]| = AdvFSS(1λ,A).

Since we assume FSS is secure i.e. that AdvFSS(1λ,A) is negligible for all PTTA
A, we can conclude Advr

B,Π is negligible. �
By using Lemma 1, we can derive

| Pr[D(Viewm
range) = 1] − Pr[D(Viewm

index) = 1]|

≤
k+2∑

r=1

| Pr[D(Viewm
r−1) = 1] − Pr[D(Viewm

r) = 1]| ≤ (k + 2) · negl.

�

Efficiency. We summarize the efficiency of the FSS-based RQ-PIR scheme in
Fig. 2, and compare this to the generic constructions from Sect. 5. The RQ-
PIR scheme requires a FSS scheme for interval functions, and the most efficient
among these was proposed by Boyle et al. [19]. Specifically, let G : {0, 1}λ →
{0.1}2λ+2 be a PRG, and fa,b : Gin → G

out be an interval function. Then, in
their construction, the key size (i.e. the size of the query sent in one round from
the client to the servers in the RQ-PIR scheme) is 8m · (λ + 1) + 2m� + 2λ, and
the size of the evaluation (i.e. the size of the response from servers to the client)
is �, where m = �log2 |Gin|� and � = �log2 |Gout|�.

We note that for range queries in particular, the generic construction is less
efficient, both in terms of communication cost and the number of communication
rounds, compared to the FSS-based construction.

PIR Supporting Range Queries 689

Generic Construction FSS based Construction
Com. Cost Index ccpir ccfss

Rounds Index crpir 1
Com. Cost Range O(ccpir · (k + log n)) (k + 2) · ccfss

Rounds Range O(crpir · (k + log n)) (k + 2)

Fig. 2. The figure above shows the efficiency of the RQ-PIR schemes from Sect. 5
and 6 in terms of communication cost and round complexity of the underlying PIR
and FSS schemes, respectively. We denote communication cost by Com. Cost, and
the communication cost of the PIR and FSS schemes ccpir and ccfss, respectively.
The communication costs for the client and the servers are obtained simply by using
the corresponding values of ccpir and ccfss (note that ccfss corresponds to a FSS
evaluation key when considering the communication cost of the client, and a FSS
evaluation result when considering the communication cost of the servers). We denote
the round complexity by Rounds, and the round complexity of the PIR scheme by
crpir. The parameter k represents the number of data entries in the database hit by
the range query.

7 Discussion

In both the introduction and in Sect. 3, it was highlighted that the definition
of query indistinguishability addresses the structural part of the problem of
hiding range queries, but does not, by itself, address information leakage due
to the timing of queries. Furthermore, it was left open how to take advantage
of multiple clients accessing the same server. In this section, we will provide an
informal discussion of this.

Query indistinguishability guarantees that the server(s) cannot tell from the
queries alone, whether a client makes a set of index queries, a single or multiple
range queries, or a combination of these. However, under the assumption that a
client will always wait a certain amount of time between each query, and that the
individual steps that range queries are comprised of, are executed immediately,
the server(s) will be able to infer from the timing of the queries whether a range
query is being made or not, and potentially the amount of data transfer in the
range query.

To address this, clients might adopt a number of different countermeasures.
The perhaps simplest of these, is for the client to adopt a constant query rate,
in which all index queries and each step of range queries, are executed at a
constant rate. Additionally adding dummy queries to maintain the query rate
in between real queries will eliminate information leakage due to the timing of
queries. However, the drawback of this approach is that if the query rate is high,
dummy queries might cause a significant overhead for servers, as these would
have to be processed like ordinary queries, and if the query rate is low, a delay
with respect to the completion of range queries will be introduced, which might
be significant if large amounts of data are retrieved.

A different approach is to group queries from different clients via a mechanism
that will hide from the server which queries belong to which clients. This will

690 J. Hayata et al.

leave the server(s) unable to analyze the query pattern of individual clients, and
given a sufficient number of clients generating various queries, this can prevent
the server from inferring what type of queries clients are making.

An easily conceivable but naive approach to this, is to use a proxy server
for queries. The clients submit their queries to the proxy server, which will
group queries for a given time interval, and then forward these to the database
server. When the database server responds, the proxy server would forward the
appropriate responses to the appropriate clients. Note, however, this merely
moves the problem of protecting query privacy from the database server itself
to the proxy server. While a proxy server without access to the database itself
might be able to infer less about the queries made by clients, it would still be
able to detect whether or not range queries are made, and estimate the amount
of data being retrieved.

A potential way to resolve this issue, is to use an approach similar to mix
networks (e.g. the Tor network [20]). In a mix network, the origin of a message
is disguised by routing it through various mixing servers, and each intermediate
server will not be able to determine the source of the message. Note, however,
that to avoid the same issue that arose when using a proxy server, client must
distribute their index queries and range query steps across different entry nodes
in the mix network. In order to maximize the number of mixing servers and
entry points, it conceivable that each client would act as a mixing server, and
randomly distribute his own queries among all participating clients and servers,
who would then route the queries through the mix network to the database
server. This is very similar to the approach taken in user-private information
retrieval (UPIR) [21]. In UPIR, multiple clients form a P2P network with a
shared memory, and the clients forward each other’s queries to the database,
thereby preventing the database from learning the identity of the user who sent
a particular query. A full analysis of this type of construction is outside the scope
of this paper, and is left as future work.

Lastly, note that query rate limitation and mixing of client queries can easily
be combined.

Acknowledgment. A part of this work was supported by JST CREST Grant Number
JPMJCR19F6, Japan, JSPS KAKENHI Grant Number 19H01109, Japan and JSPS
KAKENHI Grant Number 17KT0081, Japan.

A Experimental Results

We implemented the client query generation and server response computation
of our RQ-PIR scheme in C++ using FSS library [22]. In our evaluation, we
used a server with a 10-core Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz and
130 GB of RAM. As client, we used a 1.3 GHz Intel Core i5 machine with 8 GB
of RAM.

PIR Supporting Range Queries 691

A.1 Evaluation

Our evaluation was done using a databases with elements consisting of 24-bits
integers, and a total database size of 5, 7.5 and 10 million elements. We measured
the overall time of generating client queries and server responses in our scheme for
range queries retrieving 10, 50 and 100 elements from the database. In addition
to the above, we noted the size of the query that the client generates and the
size of the response from servers.

In our implementation, in each communication round between client and
servers, the client generates a query of size 144 bytes, whereas the size of the
response from each server is 8 bytes. Since our RQ-PIR scheme requires k + 2
rounds of communication when the client makes a range query, the total com-
munication cost for the client is 144 · (k + 2) bytes per server, and each server
needs to generate and send responses with a total size of 8 ·(k+2) bytes, where k
is the number retrieved from the database by the range query. In our particular
network setup, in which the client connected to the server via a Wifi router, the
total round trip time for the client to send 144 bytes of data to the server, and
the server to respond with a 8 byte response, was 24 ms.

The client side computations in each round consists of generating the keys
for the function secret sharing, and retrieving and combining the values from
the servers’ responses. Our measurements show that those computations take
less than 1 ms per communication round for the client to perform. In contrast,
our measurements showed that the server side computation took several orders
of magnitude longer to execute, even for our smallest test case. Hence, almost
the entire execution time is occupied by server side computations, which is the
most important factor when considering practicality.

Figure 3 shows the experimental results of the server side computation time
during the execution of the protocol. Note that our scheme was implemented to
perform parallel processing of the database on the server side to accelerate the
protocol execution. In particular, the server used 20 threads when running the
experiments.

B Proof of Theorem 1

Proof. For all λ, for any database x = (x1, . . . , xn) of size n, for any m ∈ [�],
for any a, b, c, d ∈ [n] such that |{xi | a ≤ xi ≤ b}| = |{xi | c ≤ d ≤ b}| = k, we
consider a PPTA D against the security for range queries in RQ-PIR scheme Π.
The advantage of D is defined by

Advrange
D,Π = |Pr[D(Viewm

a,b) = 1] − Pr[D(Viewm
c,d) = 1]|.

To obtain a proof, we use a sequence of games (Game 0 to Game 2).

Game 0: This game corresponds to the client and servers running 〈Range,Res1,
. . . , Res�〉((a, b),x, . . . ,x).

692 J. Hayata et al.

Fig. 3. Experimental result of server side computation time: n denotes the database
size, and k denotes the number of element that client retrieves from database by range
query.

Game 1: This game corresponds to the client and servers running 〈Index,Res1,
. . . , Res�〉(i1,x, . . . ,x), . . . , 〈Index,Res1, . . . , Res�〉(if(k),x, . . . ,x), where
k := |{xi | a ≤ xi ≤ b}| and i1, . . . , if(k) are chosen randomly from [n].

Game 2: This game corresponds to the client and servers running
〈Range,Res1, . . . , Res�〉((c, d),x, . . . ,x).

For all r, we denote by Viewm
r the view for server m generated in Game r.

Lemma 2. If RQ-PIR scheme Π provides query indistinguishability, then for
any r ∈ {1, 2} and for any PPTA B, it holds that the difference between the
probability that B outputs 1 in Game r − 1 and r is negligible.

Proof. We consider a PPTA B who distinguishes Viewm
r−1 from Viewm

r , and
denote the advantage of B by

Advr
B,Π = |Pr[B(Viewm

r) = 1] − Pr[B(Viewm
r−1) = 1]|.

Then, since Viewm
0 and Viewm

2 are same as Viewm
range in the definition of query

indistinguishability, and Viewm
1 is same as Viewm

index, we can see B as an adver-
sary against query indistinguishability for Π. Thus, we can conclude

Advr
B,Π = |Pr[B(Viewm

r) = 1] − Pr[B(Viewm
r−1) = 1]|

is negligible. �
By using Lemma 2, we can derive

|Pr[D(Viewm
a,b) = 1] − Pr[D(Viewm

c,d) = 1]|

≤
2∑

r=1

|Pr[D(Viewm
r−1) = 1] − Pr[D(Viewm

r) = 1]| ≤ 2 · negl. �

PIR Supporting Range Queries 693

References

1. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS, pp. 41–50 (1995)

2. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

3. Dvir, Z., Gopi, S.: 2-server PIR with sub-polynomial communication. In: STOC,
pp. 577–584 (2015)

4. Cachin, Christian., Micali, Silvio, Stadler, Markus: Computationally private infor-
mation retrieval with polylogarithmic communication. In: Stern, Jacques (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 28

5. Dong, C., Chen, L.: A fast single server private information retrieval protocol with
low communication cost. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11203-9 22

6. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: VLDB, pp. 720–731 (2004)

7. Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 149–180. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 6

8. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: ACM Conference on Computer and Communications
Security, pp. 668–679 (2015)

9. Kellaris, G., Kollios, G., Nissim, K., O’neill, A.: Adam: generic attacks on secure
outsourced databases. In: ACM Conference on Computer and Communications
Security, pp. 1329–1340 (2016)

10. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Pump up the volume:
practical database reconstruction from volume leakage on range queries. In: ACM
Conference on Computer and Communications Security, pp. 315–331 (2018)

11. Gui, Z., Johnson, O., Warinschi, B.: Encrypted databases: new volume attacks
against range queries. In: ACM Conference on Computer and Communications
Security, pp. 361–378 (2019)

12. Li, J., Omiecinski, E.R.: Efficiency and security trade-off in supporting range
queries on encrypted databases. In: Jajodia, S., Wijesekera, D. (eds.) DBSec 2005.
LNCS, vol. 3654, pp. 69–83. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535706 6

13. Chen, K., Kavuluru, R., Guo, S.: RASP: efficient multidimensional range query on
attack-resilient encrypted databases. In: CODASPY, pp. 249–260 (2011)

14. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter:
practical private queries on public data. In: NSDI, pp. 299–313 (2017)

15. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. IACR
Cryptology ePrint Archive 1998, vol. 3 (1998)

16. Tillem, G., Candan, Ö.M., Savaş, E., Kaya, K.: Hiding access patterns in range
queries using private information retrieval and ORAM. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 253–270. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 17

https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/11535706_6
https://doi.org/10.1007/11535706_6
https://doi.org/10.1007/978-3-662-53357-4_17
https://doi.org/10.1007/978-3-662-53357-4_17

694 J. Hayata et al.

17. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private informa-
tion retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 7

18. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

19. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: ACM Conference on Computer and Communications Security, pp. 1292–
1303 (2016)

20. Dingledine, R., Mathewson, N., Syverson, P., Paul, F.: Tor: the second-generation
onion router. In: USENIX Security Symposium, pp. 303–320 (2004)

21. Swanson, C.M., Stinson, D.R.: Extended results on privacy against coalitions of
users in user-private information retrieval protocols. Crypt. Commun. 7(4), 415–
437 (2015). https://doi.org/10.1007/s12095-015-0125-x

22. LibFSS. https://github.com/frankw2/libfss

https://doi.org/10.1007/978-3-642-13013-7_7
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/s12095-015-0125-x
https://github.com/frankw2/libfss

Blockchain II

2-hop Blockchain: Combining
Proof-of-Work and Proof-of-Stake

Securely

Tuyet Duong1, Lei Fan2, Jonathan Katz3, Phuc Thai1,
and Hong-Sheng Zhou1(B)

1 Virginia Commonwealth University, Richmond, USA
{duongtt3,thaipd,hszhou}@vcu.edu

2 Shanghai Jiao Tong University, Shanghai, China
fanlei@sjtu.edu.cn

3 George Mason University, Fairfax, USA
jkatz2@gmail.com

Abstract. Bitcoin-like blockchains use a proof-of-work (PoW) mecha-
nism, where security holds if the majority of the computing power is
under the control of honest players. However, this assumption has been
seriously challenged recently, and Bitcoin-like systems fail if this assump-
tion is violated. In this work we propose a novel 2-hop blockchain protocol
that combines PoW and proof-of-stake (PoS) mechanisms. Our analysis
shows that the protocol is secure as long as the honest players control
a majority of the collective resources (which consist of both computing
power and stake). In particular, even if the adversary controls more than
50% of the computing power, security still holds if the honest parties
hold sufficiently high stake in the system. As an added contribution, our
protocol also remains secure against adaptive adversaries.

1 Introduction

Cryptocurrencies like Bitcoin [28] have been a phenomenal success. At the heart
of Bitcoin is a global, distributed ledger, called a blockchain, that records transac-
tions in successive time windows. The blockchain is maintained by a peer-to-peer
network of miners via a so-called proof-of-work (PoW) mechanism: in each time
window, cryptographic puzzles (also called proof-of-work puzzles [1,15]) are gen-
erated, and all miners are incentivized to solve those puzzles; the first miner who
finds a puzzle solution is allowed to extend the blockchain with a block of trans-
actions. The more computing power a miner invests, the better its chances of
solving a puzzle first.

T. Duong—Work supported in part by a research gift from IOHK.
J. Katz—Portions of this work were done while at the University of Maryland, and were
performed under financial assistance award 70NANB19H126 from U.S. Department of
Commerce, National Institute of Standards and Technology.
P. Thai and H.-S. Zhou—Work supported in part by NSF award #1801470, and a
research gift from Ergo Platform.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 697–712, 2020.
https://doi.org/10.1007/978-3-030-59013-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_34

698 T. Duong et al.

Bitcoin is an open system; any player who invests a certain amount of com-
puting resources is allowed to join the effort of maintaining the blockchain. This
feature, along with a smart incentive strategy, have helped the system attract a
huge amount of computing resources over the past several years.

The Nakamoto consensus protocol underlying Bitcoin has recently been
proven secure in various models. In particular, Garay et al. [19] and Pass
et al. [30] showed that, assuming the majority of mining power is controlled by
honest miners, Nakamoto consensus satisfies several important security proper-
ties. On the other hand, if an adversary controls a majority of the computational
power in the network, security of Bitcoin cannot be guaranteed.

While it is appealing to assume that the majority of computing power in
a blockchain network is honest, this assumption has been seriously challenged
in recent years. For example, in 2014 the mining pool GHash.io exceeded 50%
of the computational power in the Bitcoin network [21]. In 2017, one mining
pool controlled 50% of the mining power in the Zcash system.1 Currently, many
of the top Bitcoin mining pools are in China; at times, they have collectively
controlled more than 60% of the mining power in the Bitcoin ecosystem.2 Efforts
have been made to address this crisis, with some work [27] trying to discourage
the formation of mining pools. However, these ideas have not seen much adoption
in practice, and it is anyway unclear whether they would prevent certain types
of attacks (e.g., nation states who wish to disrupt a cryptocurrency).

In part to address these issues, other design paradigms for blockchains have
been considered. The most prominent such designs are based on proof-of-stake
(PoS) mechanisms, which require miners to own a certain amount of coins
(“stake”) in order to extend the blockchain; the probability that a particular
miner is allowed to extend the blockchain in any iteration is proportional to the
amount of stake it owns.

1.1 Our Results

We propose a hybrid blockchain protocol that uses a combination of PoW
and PoS mechanisms. We prove that security of the blockchain holds as long
as the honest parties control a majority of the collective resources in the system,
where these collective resources consist of both computing power and stake. As
an additional contribution, and in contrast to several other PoS protocols that
have been proposed, we show that our protocol tolerates an adaptive adver-
sary who can decide which parties to corrupt during the course of the protocol
execution. Source code for our protocol is publicly available (https://bitbucket.
org/twinscoinccs/twinscoin), and an experimental evaluation of the protocol has
been done [10]. Our focus here is on definitions and proofs of security. In what
follows, we give an overview of the underlying ideas.

Our main idea is to have two coupled blockchains, one (denoted C) based
a PoW mechanism and another (denoted C̃) using a PoS-based approach; we

1 See https://twitter.com/kyletorpey/status/910622595388715020.
2 See https://www.buybitcoinworldwide.com/mining/pools.

https://bitbucket.org/twinscoinccs/twinscoin
https://bitbucket.org/twinscoinccs/twinscoin
https://twitter.com/kyletorpey/status/910622595388715020
https://www.buybitcoinworldwide.com/mining/pools

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 699

refer to PoW-miners who extend the former and PoS-holders (or stakeholders)
who extend the latter, but of course one entity may play both roles. These
two blockchains are extended alternately, so that their respective heights are
always within one block of each other. Roughly, the overall (logical) blockchain
is extended by first having a PoW-miner extend C and then having a PoS-holder
extend C̃.

A pictorial illustration of our blockchain structure is given in Fig. 1. Rectan-
gular blocks correspond to C, while circular blocks correspond to C̃. (Our 2-hop
blockchain can be bootstrapped3 from an already existing blockchain, denoted
by grey blocks in the figure.) Intuitively, C serves as a (possibly biased) random
beacon for choosing a stakeholder to extend C̃. If Nakamoto consensus is a 1-hop
protocol, then ours is a 2-hopprotocol.

Fig. 1. 2-hop blockchain structure. Rectangular blocks denote the PoW chain, and
circular blocks denote the PoS chain. Grey blocks (which need not be present) represent
a pre-existing blockchain.

In more detail, say we have a PoW chain C consisting of blocks B1, . . . , Bi and
a PoS chain C̃ consisting of blocks B̃1, . . . , B̃i; when we refer to a chain pair we
mean a pair of valid chains C, C̃ of the same height. A new block pair—consisting
of a new block Bi+1 on C and a new block B̃i+1 on C̃—is generated as follows:

1. A PoW-miner extends C in the usual way, but building on both C and C̃.
That is, a miner first computes h = hash(Bi, B̃i), and then attempts to find
a suitable nonce ω such that H(h, ω) < T for some target T. The new block
on C takes the form Bi+1 = 〈h, ω〉.

2. Each PoS-holder holds two pairs of signing keys (vk, sk) and (vk′, sk′), where
the first is for a unique signature scheme and the second can be for an ordinary
signature scheme. A PoS-holder can extend C̃ if H̃(Bi+1, ω̃, vk) < T̃, where
ω̃ = Signsk(Bi+1) and T̃ is the current target. A new block takes the form
B̃i+1 = 〈(Bi+1, ω̃, vk),X , σ, vk′〉, where X ∈ {0, 1}∗ is the payload of the
block (also denoted as payload(B̃i+1)); and σ = Sign′

sk′((Bi+1, ω̃, vk),X).

While we defer a detailed discussion of the security of our protocol to Sect. 4,
we observe some interesting properties of our protocol here:
3 This also implies that our design could be used as a strategy for converting a PoW-

based blockchain into a pure PoS one, via a sequence of hard forks.

700 T. Duong et al.

– We can obtain adaptive security since the identity of the PoS-holder who
can extend C̃ is hidden before it publishes the new block; once the new PoS
block is published and incorporated in the chain, it is too late for adversarial
corruption to have any effect.

– Our protocol can resist a nothing-at-stake attack in which a malicious PoS-
holder attempts to generate new blocks on multiple forks simultaneously. The
reason is that in our 2-hop protocol the PoS chain builds on a PoW chain
that, in general, will have fewer forks.

– Our protocol also resists long-range attacks in which an adversary tries to
create a long chain, starting from the genesis block, that overtakes the main
chain. This is because although creating a long PoS chain may be feasible,
creating a long PoW chain is computationally infeasible.

1.2 Related Work

Bitcoin and the underlying PoW-based Nakamoto consensus protocol have been
analyzed in both rational [16,17,32,33] and adversarial [19,22,23,30,34] settings.
The idea of using proofs of stake in place of proofs of work was first introduced
in an online forum [5], and several PoS-based protocols have been proposed and
implemented in deployed cryptocurrencies [3,11,25,29,35]. These early proposals
lack rigorous security analysis. Subsequent work [2,8,9,12,13,18,20,24,31], done
concurrently with our own (an early version of this work [14] was posted online
in 2016), has given formal proofs of security for PoS-based blockchain protocols.
However, many proof-of-stake solutions [12,24,31] are not adaptively secure.

Hybrid PoW/PoS blockchains have been suggested by some previous work [4,
11,25] and cryptocurrencies (e.g., https://decred.org). However, none of these
systems has a formal proof of security. In addition, they are easily seen to be
insecure against an adaptive adversary.

1.3 Paper Organization

We present our model and definitions in Sect. 2, and the details of our protocol
in Sect. 3. In Sect. 4, we provide the high-level idea of our security analysis; full
proofs are deferred to the full version of our paper.

2 Preliminaries

2.1 System Model

In order to study the security of Bitcoin-like protocols, Garay et al. [19] and
then Pass et al. [30] set up the first cryptographic models by following Canetti’s
formulation of the “real world” executions [6,7]. We further extend their mod-
els so that more blockchain protocols, e.g., 2-hop blockchains, are allowed. The
underlying communication for blockchain protocols is the atomic unauthenti-
cated broadcast in a semi-synchronous setting with an upper bound Δ network
delay.

https://decred.org

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 701

Protocol Players. We consider two types of players, PoW-miners and
PoS-holders, who may generate two types of blocks, PoW blocks and PoS
blocks; We can then define PoW-chain and PoS-chain, for PoW blocks and
PoS blocks respectively. These two types of chains could be tied and grow
together. In our model, without loss of generality, we assume all PoW-miners
have the same amount of computing power and all PoS-holders have the same
amount of stake. Note that this is an “idealized model”. In the reality, each
different honest PoW-miner or PoS-holder may have a different amount of com-
puting power/stake; nevertheless, this idealized model does not sacrifice gen-
erality since one can imagine that real-world honest PoW-miners/PoS-holders
are simply clusters of some arbitrary number of honest idealized-model
PoW-miners/PoS-holders.

Protocol Execution. We consider the execution of the blockchain protocol Π =
(Πw,Πs) that is directed by an environment Z(1κ) (where Πw and Πs denote
the code run by PoW-miners and PoS-holders, and κ is a security parameter),
which activates up to n PoW-miners and up to ñ PoS-holders. For simplicity,
in this paper, we consider the static computing power and stake setting (where
the total amount of computing power and stakes invested to the protocol will
not change over time). We also consider that, all players, i.e., n PoW-miners
and ñ PoS-holders, are activated at the beginning of the protocol execution by
the environment. Note that the environment Z can “manage” protocol players
through an adversary A who may adaptively corrupt honest parties.

Protocol execution typically consists of two phases, initialization phase and
blockchain-extension phase, and the execution proceeds in rounds. In the ini-
tialization phase, each PoW-miner can join the protocol execution by investing
certain amount of computing power. Similarly, each PoS-holder can join the
execution by investing certain amount of stake. Note that, the state of the ini-
tialization phase, if needed, can be recorded in the genesis block of blockchain
system.

The blockchain-extension phase consists of multiple rounds. In each round,
Z provides inputs for all players and receives outputs from them; the players
communicate with each other via the network. More concretely, in each round,
each honest player receives an input from the environment Z, and potentially
receives incoming network messages (delivered by the adversary A), and then
updates its local state; then based on the stored information, the player carries
out some (mining) operations; in the case that a new block is generated, the
player sends out the new block which will be guaranteed to be delivered to all
players in the beginning of the next round.

Let EXECΠ,A,Z be a random variable denoting the joint view of all parties in
the above execution; note that this joint view fully determines the execution.

2.2 Security Properties

As in the original Bitcoin white paper [28], a proof-of-work blockchain is created
and maintained by a set of players called PoW-miners. A PoW blockchain C

702 T. Duong et al.

consists of a sequence of concatenated PoW-blocks B∅‖B1‖B2‖ · · · ‖B�, where
� ≥ 0, and B∅ denotes the genesis block. For each blockchain, we specify several
notations such as head, length, and subchain: (i) blockchain head, denoted
head(C), refers to the topmost block B� in chain C; (ii) blockchain length,
denoted len(C), is the number of blocks in blockchain C after the genesis block,
and here len(C) = �; (iii) subchain, refers to a segment of a blockchain; we use
C[1, �] to denote an entire blockchain, and use C[j,m], with j ≥ 1 and m ≤ �,
to denote a subchain Bj‖ · · · ‖Bm; in addition, we use C[i] to denote the i-th
block Bi in blockchain C; finally, if blockchain C is a prefix of another blockchain
C′, we write C � C′. Similarly, we define a proof-of-stake (PoS) blockchain C̃
by a sequence of concatenated PoS-blocks B̃∅‖B̃1‖B̃2‖ · · · ‖B̃�̃ for �̃ > 0 that is
maintained by a set of PoS-holders; here B̃∅ denotes the genesis block.

Chain Growth, Common Prefix, and Chain Quality. Several important
security properties have been considered for blockchain protocols. The common
prefix and chain quality properties were originally formalized by Garay et al.
[19], with the common prefix property later strengthened by Pass et al. [30].
The chain growth property was first formally defined by Kiayias et al. [22].
We provide corresponding definitions here, specialized to the case of a 2-hop
blockchain protocol.

Definition 1 (Chain growth). Consider 2-hop blockchain protocol Π. The
chain growth property Qcg with parameter g ∈ R, states that for any honest
player with the local chain-pair 〈C, C̃〉 in round r and 〈C′, C̃′〉 in round r′ where
r′ − r > 0, in EXECΠ,A,Z . It holds that len(C′) − len(C) ≥ g · (r′ − r) and
len(C̃′) − len(C̃) ≥ g · (r′ − r).

Definition 2 (Common prefix). Consider 2-hop blockchain protocol Π. The
common prefix property Qcp with parameter κ ∈ N states that for any two honest
players i in round r and j in round r′ with the local chain-pairs 〈Ci, C̃i〉 and
〈Cj , C̃j〉, respectively, in EXECΠ,A,Z where r ≤ r′, it holds that Ci[¬κ] � Cj, and
C̃i[¬κ] � C̃j.

Definition 3 (Chain quality). Consider 2-hop blockchain protocol Π. The
chain quality property Qcq with parameters μ ∈ R and � ∈ N states that for any
honest player with the local chain-pair 〈C, C̃〉 in EXECΠ,A,Z , it holds that for large
enough � consecutive block-pairs of chain-pair the ratio of honest block-pairs (an
honest block-pair is a pair of an honest PoW-block and an honest PoS-block) is
at least μ.

Note that each block-pair consists of a PoW block and a PoS block. When
the payload is attached only to PoS blocks (resp., PoW blocks), we can define
the property of chain quality based on the ratio of honest PoS blocks (resp.,
PoW blocks).

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 703

3 Construction

3.1 The Main Protocol

Our protocol uses standard cryptographic building blocks: As in the original
Bitcoin design, we use hash functions H and hash, and a regular digital signature
scheme Σ′ = (Gen′,Sign′,Verify′); In addition, we need a unique signature scheme
Σ = (Gen,Sign,Verify) and a third hash function H̃.

Initialization. In the initialization phase, PoW players join the system by
investing certain amount of computing power (as in the original Bitcoin design).
To enable PoS players to register to the system, each PoS player first generates
two pairs of signing-verification keys based on the signature schemes Σ and Σ′.
More concretely, for all i ∈ [ñ], PoS player Si computes (ski, vki) ← Gen(1κ)
and (sk′

i, vk
′
i) ← Gen′(1κ). Then based on the identity vki, vk

′
i, the PoS player

Si can join the system via investing certain amount of stake. We note that, the
registration information including all PoS players’ identities {vki, vk

′
i}i∈[ñ] will

be recorded in the genesis block B∅.

Blockchain Extension. Our (logical) blockchain consists of a PoW-chain C
and a PoS-chain C̃. In order to extend the blockchain, for each block height, we
will first extend PoW chain with one PoW-block, and then extend the PoS-chain
with one PoS-block. Concretely, consider that we have a blockchain with height
i; that is, PoW chain C = B∅‖B1‖ . . . ‖Bi and PoS chain C̃ = B∅‖B̃1‖ . . . ‖B̃i.
Next PoW block Bi+1 and then PoS block B̃i+1, will be generated, as follows.

In the first hop, PoW-miners attempt to extend C as usual, but building
on both C and C̃. That is, a miner first computes h = hash(Bi, B̃i), and then
attempts to find a suitable nonce ω such that H(h, ω) < T for some target T. The
new block on C takes the form Bi+1 = 〈h, ω〉.

The protocol now moves to the second hop. Intuitively, C serves as a (pos-
sibly biased) random beacon for choosing a stakeholder to extend C̃. Once the
new PoW-block Bi+1 is published in the system, a PoS-holder is allowed to
extend C̃ if H̃(Bi+1, ω̃, vk) < T̃, where ω̃ = Signsk(Bi+1) and T̃ is the current
target. A new block takes the form B̃i+1 = 〈(Bi+1, ω̃, vk),X , σ, vk′〉, where
X ∈ {0, 1}∗ is the payload of the block (also denoted as payload(B̃i+1)); and
σ = Sign′

sk′((Bi+1, ω̃, vk),X).
At this moment, both PoW-chain C and PoS-chain C̃ have been extended with

one new block Bi+1 and B̃i+1, respectively, and the two-hop iterations continue.
Please refer to Fig. 2 for the details of our main protocol. We note that all players
collect blockchain information from the network, and wining players publish their
generated blocks through the network; The protocol Π is parameterized by a
content validation predicate V (·), which determines the proper structure of the
information that is stored into the blockchain (as in [19,30]).

Best Chain-Pair Strategy. In the above protocol execution, players including
Protocol players, PoW-miners and PoS-holders, need to be aware, which chain-
pair is the best one during the protocol execution. We describe a strategy to
decide the best chain-pair via BestValid process; please see Fig. 3 for details.

704 T. Duong et al.

Protocol Π = (Πw, Πs)

The protocol Π = (Πw, Πs) is executed by (n+ ñ) players, including n PoW-
miners and ñ PoS-holders. Initially, each player holds local state statei :=
{〈Ci, C̃i〉} for 1 ≤ i ≤ n + ñ, where Ci = C̃i = B∅.

PoW-Miner Πw by PoW-miner Wi, for 1 ≤ i ≤ n, with local state statei.
Upon receiving an input message from Z, and/or receiving messages of the
form (Broadcast, 〈C, C̃〉) from the network, player Wi proceeds as follows:

1. Select the best local chain-pair:
Set C to be the set of all chain-pairs collected from the network;
Compute 〈Cbest, C̃best〉 := BestValid(C ∪ {〈Ci, C̃i〉},PoW-miner); // process

BestValid() can be found in Fig. 3 below.

Set Ci := Cbest and C̃i := C̃best.
2. Attempt to extend PoW-chain:

– Compute h := hash(head(Ci), head(C̃i));
– Identify ω so that H(h, ω) < T;

If ω �=⊥, then set B := 〈h, ω〉, Ci := Ci‖B, statei := statei ∪{〈Ci, C̃i〉},
and send (Broadcast, 〈Ci, C̃i〉) to the network;

Return an output message to the environment Z.

PoS-Holder Πs by PoS-holder Sj , for n + 1 ≤ j ≤ n + ñ, with statej .

Upon receiving an input message from Z, and/or receiving messages of the
form (Message, 〈C, C̃〉) from the network, player Sj proceeds as follows:

1. Select the best local chain-pair:
Set C as the set of all chain-pairs collected from the network;
Compute 〈Cbest, C̃best〉 := BestValid(C ∪ {〈Cj , C̃j〉},PoS-holder); // process

BestValid() can be found in Fig. 3 below.

Set Cj := Cbest and C̃j := C̃best.
2. Attempt to extend PoS-chain:

– Set B as the new PoW-block in Cbest; Compute ω̃ := Signsk(B);
– If H̃(B, ω̃, vk) < T̃, then compute σ ← Sign′

sk′((B, ω̃, vk),X), and set
B̃ := 〈(B, ω̃, vk),X , σ, vk′〉; Set C̃j := C̃j‖B̃, and statej := statej ∪
{〈Cj , C̃j〉}. and send (Broadcast, 〈Cj , C̃j〉) to the network.

Return an output message to the environment Z.

Fig. 2. Our main protocol Π = (Πw, Πs).

The BestValid process is parameterized by a content validation predicate V (·)
which determines the proper structure of the information that is stored into
the blockchain as in [19], and takes as input a chain-pair set C

′. Intuitively, the
process validates all chain-pair 〈C, C̃〉 in C

′, then finds the valid chain-pairs with
the longest PoW-chain. It also ensures that, if Type = PoW-miner, every valid
chain-pair should have its member chains C and C̃ of the same length. On the
other hand, if Type = PoS-holder, we allow the PoW-chain to be longer than

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 705

the PoS-chain by one block since there may be a new PoW-block produced in
the previous rounds. We emphasize that since each valid PoS-block is tied to a
PoW-block, and each PoW-block or PoS-block is valid if their peers are valid.
The strategy to deal with multiple chains with the same length is discussed in
Remark 1 at the end of this section.

Process BestValid

Upon receiving the input (C′,Type), the process BestValid proceeds as
follows:

For every chain-pair 〈C, C̃〉 ∈ C
′,

– If len(C) − 1 = len(C̃), then
• Set � := len(C); Parse C[�] into 〈h�, ω�〉.
• If hash(C[� − 1], C̃[� − 1]) �= h�, remove this chain-pair from C

′;
• If H(C[�]) ≥ T, remove this chain-pair from C

′.
– Else if len(C) = len(C̃) and V (payload(C̃)) = 1

)
, or len(C) − 1 =

len(C̃) and Type = PoS-holder
)
, then for i from len(C̃) to 1, proceed

as follows:
• Verify PoW-block C[i]: Parse C[i] into 〈hi, ωi〉;

If hash(C[i − 1], C̃[i − 1]) �= hi, or H(C[i]) ≥ T, set b1 := 0; Else,
set b1 := 1;

• Verify PoS-block C̃[i]: Parse C̃[i] into 〈B, ω̃, vk,X , σ, vk′〉;
If Verify′

vk′((B, ω̃, vk,X), σ) = 1, set b2 := 1; Else set b2 := 0;
If Verifyvk(B, ω̃) = 0, or H̃(B, ω̃, vk) ≥ T̃, or B �= C[i], set b3 := 0;
Else, set b3 := 1;

• If b1 = 0 or b2 = 0, or b3 = 0, remove this chain-pair from C
′.

Find the valid chain-pair 〈Cbest, C̃best〉 ∈ C
′ with the longest PoW-chain.

Then set 〈Cbest, C̃best〉 as the output.

Fig. 3. The chain set validation process BestValid. The process is parameterized by a
content validation predicate V (·).

Remark 1 (Tie breaking). Our protocol primarily deals with length so it makes
sense to adopt a simple tie-breaking strategy to choose the best chain-pair from
two chain-pairs of equal length. While there is work that show the advantages
of choosing a chain randomly (viz. [17]), we follow the simple strategy consid-
ered in [19]; in which the best chain-pair is the one with the PoW-chain that
is lexicographically the smallest. If two chain-pairs have same length, and the
PoW-chains are same, we compare the PoS-chains with the same tie breaking
mechanism for PoW-chains.

706 T. Duong et al.

Remark 2 (Attaching transaction payloads to the PoW-chain). In the 2-hop pro-
tocol description above, the transaction payloads are attached to the PoS-chain.
We note that, this is just a design choice; alternatively, the payloads can be
attached to the PoW-chain. In the full version, we will provide the details.

4 Security Analysis

For simplicity, we analyze security assuming a fixed set of participants. Denote
the total number of PoW-miners by n, and the portion of malicious computing
power by ρ. Let p be the probability that a player can generate a PoW-block
in a round. Let α = (1 − ρ)np be the expected number of PoW-blocks that
honest PoW-miners can find in a round. Let β = ρnp be the expected number
of PoW-blocks that malicious PoW-miners can find in a round. Thus α

β = 1−ρ
ρ .

We assume 0 < α
 1, 0 < β
 1 and α = λβ where λ ∈ (0,∞).
We then describe the important parameters in the second hop (i.e., proof-of-

stake blockchain). Similarly, denote the total number of PoS-holders by ñ, and
the portion of malicious stakes by ρ̃. Let p̃ be the probability that a PoW-block
is mapped to a PoS-holder. We assume p̃ñ
 1. Let α̃ = 1 − (1 − p̃)(1−ρ̃)ñ ≈
(1 − ρ̃)ñp̃ be the probability that a PoW-block is mapped to at least one honest
PoS-holder. Let β̃ = 1 − (1 − p̃)ρ̃ñ ≈ ρ̃ñp̃ be the probability that a PoW-block
is mapped to at least one malicious PoS-holder.

Now, we have a parameter α̂ = αα̃ which is the probability that honest parties
find a new PoW-block and is mapped to an honest PoS-holder in a round. We
also have β̂ = ββ̃, the expected number that malicious parties find new PoW-
blocks and are mapped to malicious PoS-holders in a round. We say α̂ and β̂
are collective resources for honest parties and malicious parties respectively.
Note that γ̂ = α̂

1+2Δα̂ can be viewed as a “discounted” version of α̂ due to the
fact that the messages sent by honest parties can be delayed by Δ rounds; γ̂
corresponds to the “effective” honest collective resource.

As shown in the analysis of PoW protocol [19,30], due to the network delay,
the block time (i.e., the time period between two consecutive blocks) has to be
set very long; in other words, the probability to generate new blocks is very small.
We note however in our 2-hop protocol, the block time of generating PoW-blocks
can be much shorter. As long as the block time of generating new block-pairs is
long, the security properties of our 2-hop protocol can be achieved.

Note that, the expected number of PoW-blocks that are generated in a round
is α + β = pn; the expected number of PoS-blocks that map to a PoW-block is
α̃+ β̃ ≈ p̃ñ. In our analysis, we assume (α+β)(α̃+ β̃)Δ
 1; that is, most of the
time, no block-pair is generated. We are now ready to state our main theorems.

Theorem 1 (Chain growth). Consider 2-hop blockchain protocol Π =
(Πw,Πs) in Sect. 3.1. For any honest player with the local chain-pair 〈C, C̃〉
in round r and 〈C′, C̃′〉 in round r′ = r + t where t > 0. In EXECΠ,A,Z , the
probability that

len(C′) − len(C) ≥ g · t, len(C̃′) − len(C̃) ≥ g · t,

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 707

is at least 1 − e−Ω(t) where g = (1 − δ)γ̂, for any δ > 0.

Theorem 2 (Chain quality). We assume γ̂ = λ̂(α+β)β̃ and λ̂ > 1. Consider
protocol Π = (Πw,Πs) in Sect. 3.1. For any honest player with the local chain-
pair 〈C, C̃〉. In EXECΠ,A,Z , the probability that for large enough � consecutive
block-pairs of chain-pair the ratio of honest block-pairs is no less than

μ = 1 − (1 + δ)
(α + β)β̃ + βα̃

γ̂ + βα̃

is at least 1 − e−Ω(�), for any δ > 0.

Theorem 3 (Common prefix). We assume α̂ = λ̂(α + β)β̃ and λ̂ > 1.
Consider protocol Π = (Πw,Πs) in Sect. 3.1. Let κ be the security parameter.
For any two honest players Pi in round r, and Pj in round r′, with the local
best chain-pairs 〈Ci, C̃i〉, 〈Cj , C̃j〉, respectively, in EXECΠ,A,Z where r ≤ r′, the
probability that,

Ci[¬κ] � Cj , Cj [¬κ] � Ci, C̃i[¬κ] � C̃j , C̃j [¬κ] � C̃i,

is at least 1 − e−Ω(κ).

4.1 Proof Intuition

Due to space limitations, we defer the full security analysis to the full version of
our paper. Here, we present the main ideas underlying the security analysis.

In our protocol, there are two types of players, PoW-miners and PoS-holders.
Both PoW-miners and PoS-holders can be honest or malicious. In order to extend
the pair of blockchains, a PoW-miner needs to generate a PoW-block first, and
then the corresponding stakeholder will sign this block. We note that, our secu-
rity analysis mainly focuses on PoS-chain, and the analysis for PoW-chain is
followed from PoS-chain’s. Consider that players may be honest or malicious, we
have

– Case 1: An honest PoW-miner finds a new PoW-block which is mapped to
an honest PoS-holder. The honest PoS-holder will generate the corresponding
PoS-block faithfully.

– Case 2: A malicious PoW-miner finds a new PoW-block which is mapped
to a malicious PoS-holder. The malicious PoS-holder may generate the cor-
responding PoS-block faithfully, or just discard it.

– Case 3: An honest PoW-miner finds a new PoW-block which is mapped to
a malicious PoS-holder. Again, as in Case 2, the malicious PoS-holder may
generate the corresponding PoS-block faithfully, or just discard it.

– Case 4: When a malicious PoW-miner finds a new PoW-block which is
mapped to an honest PoS-holder. The malicious PoW-miner may publish the
new PoW-block (so that the corresponding honest PoS-holder can generate
the PoS-block), or withhold the PoW-block and discard it.

708 T. Duong et al.

We note that, intuitively in Case 1, the malicious players cannot stop honest
players from extending the chain-pairs; thus the chain growth property can be
ensured. Now let’s consider the total number of PoS-blocks from malicious play-
ers in Case 2 and in Case 3. If the number of PoS-blocks from honest players in
Case 1 is larger than that from the malicious players in Case 2 and Case 3, we
can also see that the common prefix property is ensured.

In Case 2 or Case 3, the malicious PoS-player may generate multiple PoS-
blocks based on a single PoW-block. We remark here that this malicious strategy
will bring no advantage to the attacker, since only one of the multiple PoS-blocks
will be extended by honest PoW-miners.

As discussed above, α̂ = αα̃ and β̂ = ββ̃ are the collective probabilities of
Case 1 and Case 2, respectively. We define them as the collective resources of
the honest and malicious parties, respectively.

In our protocol, the malicious players are allowed to delay communication
messages for at most Δ rounds. When the malicious players delay the communi-
cation messages, each honest player might not be able obtain its best chain-pair
on time. As a consequence, honest miners may work on a wrong chain-pair during
the delayed communication rounds. In our analysis, we thus use the discounted
version of the computing/stake resource to calculate the probability that the
honest players can generate a block in a round.

Chain Growth. The malicious players may delay all of the communication
messages from the honest players up to Δ rounds. Consider that to generate a
block-pair, two hops are needed; The adversary can delay at most 2Δ rounds
for a PoS-block generation. We use γ̂ to denote the discounted collective honest
resources where γ̂ = α̂

1+2Δα̂ .
In the formal proof, we introduce a hybrid execution, formalizing the worst

case communication delay. In the hybrid execution, the malicious players will
not contribute to the chain growth; furthermore, the adversary will delay all
communication messages from the honest players with the goal of stopping the
chain growth as much as possible. When Case 1 occurs, the longest chain-pair
that can be observed by all honest players, will increase by 1 block-pair (one
PoW-block and one PoS-block). Note that the probability that Case 1 occurs in
a round is γ̂. Also note that the probability that Case 1 occurs in our protocol
execution, will not be smaller than that in the worst case hybrid execution. Thus
the chain growth rate is guaranteed by γ̂.

Chain Quality. Assume p̃ñ
 1. With high probability, at the same block
height, there is at most one block-pair in Case 1 or Case 4. During any t con-
secutive rounds, the expected number of block-pairs generated in Case 1, is at
least γ̂t. Let θt denote the number of block-pairs generated in Case 4 during the
t rounds, for some θ. Then we can have 0 ≤ θ ≤ βα̃. The chain growth in the t
round is (γ̂ + θ)t. In addition, the expected number of block-pair that generated
in Case 2 or Case 3 during t rounds, is at most (α + β)β̃t. Therefore, the chain
quality is at least 1 − (α+β)β̃+θ

γ̂+θ ≥ 1 − (α+β)β̃+βα̃
γ̂+βα̃ .

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 709

Common Prefix. Assume 2(α + β)(α̃ + β̃)Δ
 1. We can compute that, the
probability that no new block-pair is generated in a round, is 1−2(α+β)(α̃+β̃)Δ.
We can also compute that, the probability for honest players to generate at least
one new block-pair in a round, is at least α̂. We can further argue that, the
probability for honest players to generate exactly one new block-pair in a round,
is α̂(1 − α̂), which approximates to α̂, given that we assume α̂
 1.

After the publication of one block-pair in the system, if in the upcoming 2Δ
rounds, there is no block-pair published, then all honest players will have the
same best chain-pair, and their views will be convergent. The malicious play-
ers may generate blocks to achieve their goal of stopping the honest players to
develop convergent views of the best chain-pair. However, based on our assump-
tion, the malicious players cannot generate enough number of block-pairs to
achieve this goal.

On Adaptive Corruption. In our protocol, the adversary can corrupt any
player adaptively at any time. We note that in the first hop the adversary cannot
predict which PoW-player will be able to find a solution to the PoW puzzle before
the solution is published. Thus, adaptively corrupting PoW miners will not bring
the adversary any extra advantage. Then in the second hop, the solution to the
PoS puzzle consists of the (unique) signature from a PoS-player. Again, the
adversary cannot predict which PoS-player will be elected before the solution to
the PoS puzzle is published. Similarly, the adaptive corruption strategy will not
bring extra advantage.

A Unique Signature Schemes

Unique signature schemes were introduced in [26], which consists of four algo-
rithms, a randomized key generation algorithm KeyGen, a deterministic key ver-
ification algorithm KeyVer, a deterministic signing algorithm Sign, and a deter-
ministic verification algorithm Verify. We expect for each verification key there
exists only one signing key. We also expect for each pair of message and verifi-
cation key, there exists only one signature. We have the following definition.

Definition 4. We say (KeyGen,KeyVer,Sign,Verify) is a unique signature
scheme, if it satisfies:

Correctness of key generation: Honestly generated key pair can always be verified.
More formally, it holds that

Pr
[
(pk, sk) ← KeyGen(1κ) : KeyVer(pk, sk) = 1

] ≥ 1 − negl(κ)

Uniqueness of signing key: There does not exist two different valid signing keys
for a verification key. More formally, for all ppt adversary A, it holds that

Pr
[

(pk, sk1, sk2) ← A(1κ)
: KeyVer(pk, sk1) = 1 ∧ KeyVer(pk, sk1) = 1 ∧ sk1 �= sk2

]
≤ negl(κ)

710 T. Duong et al.

Correctness of signature generation: For any message x, it holds that

Pr
[

(pk, sk) ← KeyGen(1κ);σ := Sign(sk, x)
: Verify(pk, x, σ) = 1

]
≥ 1 − negl(κ)

Uniqueness of signature generation: For all ppt adversary A,

Pr
[

(pk, x, σ1, σ2) ← A(1κ)
: Verify(pk, x, σ1) = 1 ∧ Verify(pk, x, σ2) = 1 ∧ σ1 �= σ2

]
≤ negl(κ)

Unforgeability of signature generation: For all ppt adversary A,

Pr
[

(pk, sk) ← KeyGen(1κ); (x, σ) ← ASign(sk,·)(1κ)
: Verify(pk, x, σ) = 1 ∧ (x, σ) �∈ Q

]
≤ negl(κ)

where Q is the history of queries that the adversary A made to signing oracle
Sign(sk, ·).

References

1. Back, A.: Hashcash–a denial of service counter-measure (2002). http://hashcash.
org/papers/hashcash.pdf

2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 913–930. ACM Press,
October 2018

3. Bentov, I., Gabizon, A., Mizrahi, A.: Currencies without proof of work. In: Bitcoin
Workshop (2016)

4. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s
proof of work via proof of stake. ACM SIGMETRICS Perform. Eval. Rev. 42, 34–
37 (2014)

5. Bitcointalk: Proof of stake instead of proof of work (2011). Online post by Quantum
Mechanic, https://bitcointalk.org/index.php?topic=27787.0

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

8. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand agreement: super fast
and partition resilient Byzantine agreement (2018). https://eprint.iacr.org/2018/
377

9. Chen, J., Micali, S.: Algorand (2017). http://arxiv.org/abs/1607.01341
10. Chepurnoy, A., Duong, T., Fan, L., Zhou, H.-S.: Twinscoin: a cryptocurrency via

proof-of-work and proof-of-stake. In: Proceedings of the 2nd ACM Workshop on
Blockchains, Cryptocurrencies, and Contracts, pp. 1–13. ACM (2018)

11. CryptoManiac. Proof of stake (2014). NovaCoin wiki. https://github.com/
novacoin-project/novacoin/wiki/Proof-of-stake/

12. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
https://bitcointalk.org/index.php?topic=27787.0
https://doi.org/10.1007/s001459910006
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
http://arxiv.org/abs/1607.01341
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake/
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake/
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 711

13. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

14. Duong, T., Fan, L., Zhou, H.-S.: 2-hop blockchain: combining proof-of-work and
proof-of-stake securely (2016). https://eprint.iacr.org/2016/716

15. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

16. Eyal, I.: The miner’s dilemma. In: IEEE Symposium on Security and Privacy, pp.
89–103. IEEE Computer Society Press, May 2015

17. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

18. Fan, L., Zhou, H.-S.: A scalable proof-of-stake blockchain in the open setting (or,
how to mimic Nakamoto’s design via proof-of-stake), July 2017. https://eprint.
iacr.org/2017/656/

19. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

20. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68. ACM (2017)

21. Goodin, D.: Bitcoin security guarantee shattered by anonymous miner with 51%
network power (2014). http://arstechnica.com/

22. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
Cryptology ePrint Archive, Report 2015/1019 (2015). http://eprint.iacr.org/2015/
1019

23. Kiayias, A., Panagiotakos, G.: On trees, chains and fast transactions in the
blockchain. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol.
11368, pp. 327–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25283-0 18

24. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

25. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake
(2012). https://peercoin.net/assets/paper/peercoin-paper.pdf

26. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

27. Miller, A., Kosba, A.E., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015, pp. 680–691. ACM Press, October 2015

28. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

29. NXT whitepaper (2014). https://www.dropbox.com/s/cbuwrorf672c0yy/
NxtWhitepaper v122 rev4.pdf

https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2016/716
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-45472-5_28
https://eprint.iacr.org/2017/656/
https://eprint.iacr.org/2017/656/
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arstechnica.com/
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
https://doi.org/10.1007/978-3-030-25283-0_18
https://doi.org/10.1007/978-3-030-25283-0_18
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://doi.org/10.1007/3-540-45708-9_38
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf

712 T. Duong et al.

30. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

31. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

32. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

33. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

34. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

35. Vasin, P.: Blackcoin’s proof-of-stake protocol v. 2 (2014). http://blackcoin.co/
blackcoin-pos-protocol-v2-whitepaper.pdf

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-47854-7_32
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

Generic Superlight Client for
Permissionless Blockchains

Yuan Lu1(B), Qiang Tang1,2, and Guiling Wang1

1 New Jersey Institute of Technology, Newark, NJ 07102, USA
{yl768,qiang,gwang}@njit.edu

2 JDD-NJIT-ISCAS Joint Blockchain Lab, Newark, USA

Abstract. We initiate a systematic study on the light-client protocol
of permissionless blockchains, in the setting where full nodes and light
clients are rational. In the game-theoretic model, we design a superlight-
client protocol to enable a light client to employ some relaying full nodes
(e.g., two or one) to read the blockchain. The protocol is “generic”, i.e.,
it can be deployed disregarding underlying consensuses, and it is also
“superlight”, i.e., the computational cost of the light client to predi-
cate the (non)existence of a transaction in the blockchain becomes a
small constant. Since our protocol resolves a fundamental challenge of
broadening the usage of blockchain technology, it captures a wide variety
of important use-cases such as multi-chain wallets, DApp browsers and
more.

Keywords: Blockchain · Light client · Game-theoretic security

1 Introduction

The blockchain can be abstracted as a global ledger [22,38] that can be read and
written by the users of higher level applications [16,17,54]. Nevertheless, the
basic abstraction of reading the ledger1 implicitly requires a so-called personal
full node [8,25] to execute consensus and maintain a local blockchain replica.

However, with the rapid popularity of blockchain, an increasing number of
users become merely caring about the high-level applications such as cryptocur-
rencies instead of maintaining personal full nodes [28]. Let alone many users are
resource-starved, say browser extensions and smartphones [13,55,57] that have
too limited resources to stay on-line and execute the underlying consensus.

Thus an urgent demand of blockchain’s lightweight clients or superlight clients
[10,12,33,36], rises up. Consider a quintessential scenario: Alice is the cashier of
a pizza store; a customer Bob tells her B1,000 has been paid for some pizzas, via
a bitcoin transaction with txid 0xa1075d..., and claims the transaction is already

1 Writing in the blockchain is trivial, as one can gossip with some full nodes to diffuse
its messages to the entire blockchain network (a.k.a., network diffuse functionality
[4,22]). Then the blockchain’s liveness ensures the inclusion of the messages [22].

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 713–733, 2020.
https://doi.org/10.1007/978-3-030-59013-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_35&domain=pdf
https://www.blockchain.com/btc/tx/a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d
https://doi.org/10.1007/978-3-030-59013-0_35

714 Y. Lu et al.

in the blockchain; then, Alice needs to check that, by activating a lite wallet app
installed in her mobile phone. That is to say, Alice, and many typical blockchain
users, need stay off-line to opt out of the consensus, and can still wake up any
time to “read” the blockchain with high security and low computational cost.

1.1 Insufficiencies of Prior Art

The fundamental challenge of designing superlight clients stems from a fact:
the records in the blockchain are de facto “authenticated” by the latest chain
agreed across the whole blockchain network (a.k.a., the main-chain) [34,48,51].
So without a replica of main-chain at hand, the client has to rely on some
other full nodes to forward the main-chain’s records. That said, the protocol of
blockchains’ superlight clients must deal with the probably distrustful full nodes
that might forward fake blockchain readings.

Some Ad-Hoc Attempts. A few proposals attempt to prevent the client being
cheated, by relying on heavyweight assumptions. For example, a few proposals
[14,19] assume a diverse list of known full nodes to serve as relays to forward
blockchain readings. These relays are usually some “mining” pools and a few
so-called blockchain “explorers”, so the client can count on the honest-majority
of these known relays to read the chain. But for many real-world permissionless
blockchains, this assumption is too heavy to hold with high-confidence. Say
Cardano [1], a top-10 blockchain by market capitalization in 2020, has very
few “explorers” on the run; even worse, the naive idea of recruiting “mining”
pools as relays is more elusive, as most of them would not participate without
moderate incentives [28]. It becomes unclear how to identify an honest-majority
set of known relays for each permissionless blockchain in the wild. As such, these
ad-hoc solutions become unreliable for the elusive heavy assumptions.

Cryptographic Approaches. To design the light-client protocol against mali-
cious relay full nodes, a few cryptographic approaches are proposed [10,33,48,
59].
– Straight Use of SPV is Problematic. The most straightforward way to instan-
tiating the idea is to let the client keep track of the suffix of the main-chain,
and then check the existence of transactions by verifying SPV proofs [48], but
the naive approach causes at least one major issue: the client has to frequently
be on-line to track the growth of main-chain. Otherwise, when the client wakes
up from a deep sleep, it needs to at least verify the block headers of the main-
chain linearly. Such bootstrapping can be costly, considering the main-chain is
ever-growing, say the headers of Ethereum is growing at a pace of ∼1 GB per
year. As a result, in many critical use-cases such as web browsers and/or mobile
phones, the idea of straightly using SPV proofs becomes unrealistic.
– PoW-Specific Results. For PoW chains, some existing superlight clients such as
FlyClient and NiPoPoW [10,33] circumvent the problem of SPV proofs. These
ideas notice the main-chain is essentially “authenticated” by its few suffix blocks,
and then develop some PoW-specific techniques to allow the suffix blocks be
proven to a client at only sublinear cost. But they come with one major limit,

Generic Superlight Client for Permissionless Blockchains 715

namely, need to verify PoWs to discover the correct suffix, and therefore cannot
fit the promising class of proof-of-stake (PoS) consensuses [14,24,34].
– Superlight Client for PoS is Still Unavailable. For PoS chains, it is yet unclear
how to realize an actual superlight client that can go off-line to completely opt
out of consensus. The major issue is lacking an efficient way of proving the suffix
of PoS chains to an off-line client, because the validity of the suffix blocks relies
on the signatures of stakeholders, whose validities further depend on the recent
stake distributions, which further are authenticated by the blockchain itself [12,
14,24,34]. Some recent efforts [23,39,44] allow the always-online clients to use
minimal space to track the suffix of PoS chains, without maintaining the stake
distributions. But for enabling off-line, there only exist few fast-bootstrapping
proposals for full nodes [6,41], which still require to download and verify a linear
portion of the PoS chain, thus incurring substantial cost [15,24].

Demands of “Consensus-Oblivious” Light Client. Most existing light-
client protocols are highly specialized for particular consensuses (e.g., PoW).
This not only prevents us adapting them to instantiate actual superlight clients
for the PoS chains, but also hinders their easy deployment and user experience
in many important use-cases in reality. A typical scenario is the multi-chain
wallet that supports various cryptocurrencies atop different chains; each chain
is even running a distinct consensus. Bearing the high-specialization of existing
light-client protocols [10,23,33,39,44], the multi-chain wallet needs to instantiate
different light-client protocols for distinct consensuses and ends up to contain
many independent “sub-wallets”, which not only is burdensome for the client
users but also challenges the developers to correctly implement all sub-wallets. In
contrast, with a generic protocol fitting all, we can simply tune some parameters
at best.

Generic Solution in Another Different Setting. The cryptographic setting
seems to be an inherent obstacle-ridden path to the generic light-client protocol,
as it usually needs the full nodes to prove the main-chain’s suffix validated by
the consensus rules [10,23,33,39]. Even if one puts forth a “consensus-oblivious”
solution in this setting, it likely has to convert all those “suffix proofs” into
a generic statement of verifiable computation (VC) [44], which is unclear how
can be practical, considering VC itself is not fully practical yet for complicated
statements [10] (see the full paper [42] for a thorough review on pertinent topics).

To meet the urgent demand of the generic light-client protocol, we explic-
itly deviate from the cryptographic setting and focus on the game-theoretic
approach, in light of many successful studies such as rational multi-party com-
putation [3,7,21,26,27,29,32,37] and rational verifiable computation [16,52,56].
In the rational setting, we can expect a consensus-independent incentive mecha-
nism to assist a simple light-client protocol, so all rational protocol participants
(i.e., the relay nodes and the client) would follow the protocol for selfishness.

Following that, this paper would present: a systematic treatment to the light-
client problem of permissionless blockchains in the game-theoretic setting.

716 Y. Lu et al.

1.2 Our Results

In the game theoretic setting the players are rational, we design a superlight
protocol to enable a light client to recruit several relay full nodes (e.g., one2 or
two) to securely evaluate a general class of predicates about the blockchain.

Contributions. To summarize, our technical contributions are:

• Our light-client protocol can be bootstrapped in the rational setting, effi-
ciently and generically. First, the protocol is superlight, in the sense that the
client can go off-line and wake up any time to evaluate a general class of chain
predicates at a tiny constant computationally cost; as long as the truthness or
falseness of these chain predicates is reducible to few transactions’ inclusion
in the blockchain.

• Moreover, our generic protocol gets rid of the dependency on consensuses
and can be deployed in nearly any permissionless blockchain (e.g., Turing-
complete blockchains [11,58]) without even velvet forks [60], thus supporting
the promising PoS type of consensuses.

• We conduct a systematic study to understand whether, or to what extent,
the light-client protocol is secure in the rational setting (without trusted
third-parties). We make non-trivial analyses of the incomplete-information
extensive game induced by our light-client protocol and conduct a compre-
hensive study to understand how to design the incentives to achieve security
in different scenarios, from the standard setting of non-cooperative full nodes
to the pessimistic setting of colluding full nodes.

• Our protocol enables the rational client to evaluate non-existence of a given
transaction besides the existence, i.e., the rational client can be convinced
by the rational full nodes that a given transaction is not in the blockchain.
That provides a simple way to performing non-existence “proof”. In contrast,
relevant studies in the cryptographic setting either give up non-existence proof
[36,48] or have to heavily modify the blockchain’s data structure [9,47].

Solution in a Nutshell. Assuming the light client and relay nodes are rational,
we leverage the smart contract to facilitate a simple yet still useful incentive
mechanism, so being honest becomes the best rational choice. From high-level,
the light-client protocol proceeds simply as following:

• Setup. The client and relay node(s) place their initial deposits in an “arbiter”
smart contract. An incentive mechanism can use these deposits to facilitate
rewards/punishments and deter deviations from the light-client protocol.

• Repeated queries. After setup, the client can repeatedly query the relays to
forward blockchain readings (up to k times). Each query proceeds as:
1. Request. The client firstly specifies the details of the predicate to query

in the arbiter contract, which can be done since writing in the contract
is trivial for the network diffuse functionality (see footnote 1).

2 Note that the case of one relay can model the pessimistic scenario that all recruited
full nodes are colluding to form a single coalition.

Generic Superlight Client for Permissionless Blockchains 717

2. Response. Once the relays see the specifications of the chain predicate in
the arbiter contract, they are incentivized to evaluate the predicate and
forward the ground truth to the client off-chain.

3. Feedback. Then the client decides an output, according to what it receives
from the relays. Besides, the client shall report what it receives to the
arbiter contract; otherwise, gets a fine.

4. Payout. Finally, the contract verifies whether the relays are honest,
according to the feedback from the client, and then facilitates an incentive
mechanism to reward (or punish) the relays. The incentive mechanisms
leverage the deposits (placed by the client and relays) to ensure “following
the protocol” to be a desired equilibrium, such that the rational relays
and client would not deviate during any stage of the protocol.

Challenges and Techniques. The instantiation of the above idea is challenged
by the limit of the “handicapped” arbiter contract. In particular, the arbiter con-
tract cannot directly verify the non-existence of transactions, even if it can verify
any transaction’s existence [5,36]. Thus, for a chain predicate whose trueness
(resp. falseness) is reducible to the existence (resp. non-existence) of some trans-
actions, the arbiter contract can only verify its trueness but not its falseness.
This allows the relays to adopt a malicious strategy: “always forward unverifi-
able bogus disregarding the actual ground truth”, because doing so would not
be caught by the contract and thus the relays are still paid.

To circumvent the limit of the arbiter contract, we squeeze the most of its
“handicapped” verifiability to finely tune the incentive mechanism, such that
“flooding fake unverifiable claims” become irrational. Following that, any devi-
ations from the protocol are further deterred, from the standard setting of non-
cooperative relays to the extremely hostile case of colluding relays:

• If two non-cooperative relays (e.g., two competing mining pools in practice)
can be identified and recruited, we leverage the natural tension between these
two selfish relays to “audit” each other. As such, fooling the client is deterred,
because a selfish relay is incentivized to report the other’s (unverifiable) bogus
claim, by producing a proof attesting the opposite of the fake claim.

• In the extremely adversarial scenario where any two recruited relays can form
a coalition, the setting becomes rather pessimistic, as the client is essen-
tially requesting an unknown knowledge from a single party. Nevertheless,
the incentive can still be slightly tuned to function as follows:
1. The first tuning does not rely on any extra assumption. The adjustment

is to let the arbiter contract assign a higher payoff to a proved claim while
make a lower payoff to an unprovable claim. So the best strategy of the
only relay is to forward the actual ground truth, as long as the malicious
benefit attained by fooling the client is smaller than the maximal reward
promised by the client.
Though this result has limited applicabilities, for example, cannot handle
valuable queries, it still captures a variety of meaningful real-world use-
cases, in particular, many DApp browsers, where the relay is not rather
interested in cheating the client.

718 Y. Lu et al.

2. The second tuning relies on another moderate rationality assumption,
that is: at least one selfish public full node (in the entire blockchain net-
work) can keep on monitoring the internal states of the arbiter contract
at a tiny cost and will not cooperate with the recruited relay.
Thus whenever the recruited relay forwards an unprovable bogus claim to
the client, our design incentivizes the selfish public full node to “audit”
the relay by proving the opposite side is the actual ground truth, which
deters the recruited relay from flooding unprovable bogus.

Application Scenarios. Our protocol supports a wide variety of applications,
as it solves a fundamental issue preventing low-capacity users using blockchain:

• Decentralized application browser. The DApp browser is a natural application
scenario. For example, a lightweight browser for CryptoKitties [13] can get
rid of a trusted Web server. When surfing the DApp via a distrustful Web
server, the users need to verify whether the content rendered by the server is
correct, which can be done through our light-client protocol efficiently.

• Mobile wallet for multiple cryptocurrencies. Our protocol can be leveraged to
implement a super-light mobile wallet to verify the (non)existence of cryp-
tocurrency transactions. In particular, it can keep track of multiple coins atop
different blockchains running over diverse types of consensuses.

2 Warm-Up: Game-Theoretic Security

The game-theoretic analysis of an interactive protocol starts by defining an
extensive game [16,31,50] to model the strategies (i.e., probabilistic interac-
tive Turing machines) of each party in the protocol. A utility function would
assign every party a certain payoff, for each possible execution induced by the
strategies of all parties. Then the security is argued by the properties of the
extensive game, for example, its Nash equilibrium [29] or other refined equilibria
[16,30,31,37,50].

relay
x

client

chance

x

a a'

t
f

t
f

A A' A A' A A' A A' A A' A A'

:
uclient
urelay

0
0

-v
αv

0
0

0
0

0
0

0
0

0
0

-v
βv

-v
αv

-v
βv

-v
αv

-v
βv

I1 I2I3

Fig. 1. The extensive game of an oversimpli-
fied light-client “protocol”. The utility func-
tion is an example to clarify the insecurity
of such a trivial idea.

Here we give a simple interactive
“protocol” to exemplify the game-
theoretic setting (c.f., our full paper
[42] for rigor definitions of game-
theory preliminaries). Consider the
oversimplified “light-client protocol”
that be described as the extensive
game as shown in Fig. 1: Alice is a
cashier of a pizza store; her client
asks a full node (i.e., relay) to check
a transaction’s (non)existence, and
simply terminates to output what is
forwarded by the relay.

Strategy, Action, History, and Information Set. Let the above oversim-
plified “protocol” proceed in synchronous round. In each round, the parties will

Generic Superlight Client for Permissionless Blockchains 719

execute its strategy, i.e., a probabilistic polynomial-time ITM in our context, to
produce and feed a string to the protocol, a.k.a., take an action. During the course
of the protocol, a sequence of actions would be made, and we say it is a history by
the convention of game theory literature; moreover, when a party acts, it might
have learned some (incomplete) information from earlier actions taken by other
parties, so the notion of information sets are introduced to characterize what has
and has not been learned by each party (see [42] for formal definitions). In greater
detail, the oversimplified “light-client protocol” is interpreted as Fig. 1:

1. Round 1 (chance acts). A definitional virtual party called chance sets the
ground truth, namely, it determines True or False to represent whether the
transaction exists (denoted by a or a′ respectively). To capture the uncer-
tainty of the ground truth, the chance acts arbitrarily.

2. Round 2 (relay acts). Then, the relay is activated to forward True or False
to the light client, which states whether the transaction exists or not. Note
the strategy chosen by the relay is an ITM that can produce arbitrary strings
in this round, we need to map the strings into the admissible actions, namely,
t, f and x. For definiteness, we let the string of ground truth be interpreted
as the action t, the string of the opposite of ground truth be interpreted as
the action f , and all other strings (including abort) be interpreted as x.

3. Round 3 (client acts). Finally, the client outputs True (denoted by A) or
False (denoted by A′) to represent whether the transaction exists or not,
according to the (incomplete) information acquired from the protocol. Note
the client knows how the relay acts, but cannot directly infer the action
of chance. So it faces three distinct information sets I1, I2 and I3, which
respectively represent the client receives True, False and others in Round 2.
The client cannot distinguish the histories inside each information set.

Utility Function. After the protocol terminates, its game reaches a so-called
terminal history. A well-defined utility function specifies the economic outcome
of each party, for each terminal history induced by the extensive game.

In practice, the utility function is determined by some economic factors of
the parties and the protocol itself [16,29]. For example, the rationale behind the
utility function in Fig. 1 can be understood as: (i) the relay is motivated to fool
the client to believe the nonexistence of an existing transaction, because this
literally “censors” Alice to harm her business by a loss of $v, which also brings a
malicious benefit $α ·v to the relay; (ii) the relay also prefers to fool the client to
believe the existence of a non-existing transaction, so the relay gets free pizzas
valued by $β · v, which causes Alice lose $v (i.e., the amount supposed to be
transacted to purchase pizzas), (iii) after all, the oversimplified protocol itself
does not facilitate any punishment/reward, so will not affect the utility function.

Security via Equilibrium. Putting the game structure and the utility func-
tion together, we can argue the (in)security due to the equilibria in the game. In
particular, we can adopt the strong notion of sequential equilibrium for extensive
games [16,30,31,50] to demonstrate that the rational parties would not deviate,
at each stage during the execution of the protocol. As a negative lesson, the

720 Y. Lu et al.

oversimplified “light-client game” in Fig. 1 is insecure, as the relay can unilat-
erally deviate to fool the client for higher utility. In contrast, if the protocol is
secure in game-theoretic settings, its game shall realize desired equilibrium, s.t.,
rational parties would not diverge for highest utilities.

3 Preliminaries

Blockchain Addressing. A blockchain (e.g., denoted by C) is a chain of block
(headers). Each block commits a list of payload (e.g., transactions). Notation-
wise, we use Python bracket C[t] to address the block (header) at the height t of
the chain C, and C[0] represents the genesis block. W.l.o.g., a block C[t] is defined
as a tuple of (ht−1, nonce, root), where ht−1 is the hash of the block C[t − 1],
nonce is the valid PoX (e.g., the correct preimage in PoW), and root is Merkle
tree root of payload. By C[t].root it denotes the Merkle root of block C[t].

Payload & Merkle Tree. Let TXt := 〈tx1, tx2, · · · , txn〉 denote a sequence
of transactions that is the payload of the block C[t]. Recall TXt is included
by the block C[t] through Merkle tree [48,58], which is an authenticated data
structure scheme of three algorithms (BuildMT,GenMTP,VrfyMTP). BuildMT
inputs TXt = 〈tx1, · · · , txn〉 and outputs a Merkle tree MT with root. GenMTP
takes the tree MT (built for TXt) and a transaction tx ∈ TXt as input, and
outputs a proof πj for the inclusion of tx in TXt at the position j. VrfyMTP inputs
πj , root and tx and outputs either 1 or 0. The Merkle tree scheme satisfies: (i)
Correctness. Pr[VrfyMTP(MT.root, tx, πi) = 1 | πi ← GenMTP(MT, tx), MT ←
BuildMT(TX)] = 1; (ii) Security. for ∀ P.P.T. A, Pr[VrfyMTP(MT.root, tx, πi) =
1 ∧ tx 	= TX[i] | πi ← A(1λ,MT, tx), MT ← BuildMT(TX)] ≤ negl(λ). Note that
by nelg(·) we denote a negligible function through the paper. The construction
of the Merkle tree scheme is deferred to the full version [42].

Smart Contract. Essentially, a smart contract [11,58] can be abstracted as
an ideal functionality with the access to a global ledger subroutine, so it can
faithfully instruct the ledger to freeze “coins” and then correctly facilitate con-
ditional payments [35,38]. This paper explicitly adopts the widely-used notations
invented by Kosba et al. [38] to describe the smart contract, for example:

• The contract can access the global time clock T , which can be seen as an
equivalent notion of the height of the latest blockchain.

• The contract can access a global dictionary ledger for conditional payments.
• We slightly enhance their notations to allow the contract to access a global

dictionary blockhashes. Each item blockhashes[t] is the hash of the block C[t].3

Note the local blockchain replicas of all full nodes would be consistent to
blockhashes (within one clock) according to the global ledger model [35].

3 Remark that the above modeling requires the block hashes can be read by smart
contracts from the blockchain’s internal states (e.g. available global variables) [20]. In
Ethereum, this currently can be realized via the proposal of Andrew Miller [45] and
will be incorporated due to the already-planned Ethereum enhancement EIP-210 [2].

Generic Superlight Client for Permissionless Blockchains 721

• The contract would not send its internal states to the light client, which cap-
tures the client opts out of consensus. However, the client can send messages
to the contract, due to the well abstracted network diffusion functionality.

4 Problem Formulation

This section rigorously defines the light-client problem in the rational model.

4.1 Defining the Readings from the Blockchain

The basic aim is to allow the resource-starved clients to evaluate the falseness or
trueness about some statements over the blockchain [33]. This subsection would
define these statements about blockchain as chain predicates.

Chain Predicate. We focus on a general class of chain predicates whose trueness
can be induced by up to l transactions’ inclusions in the chain, such as “whether a
transaction tx is in the chain”. Formally, the chain predicate is in the form of:

P�(C[0 : N]) =

{
False, otherwise
True,∃C′ ⊂ C[0 : N] s.t. D�(C′) = True

where C′ is a subset of the blockchain C[0 : N], and D�(·) is a computable
predicate taking C′ as input and can be expressed as:

D�(C′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

True,∃ {txi} that |{txi}| ≤ � :
f({txi}) = 1 ∧ ∀ txi ∈ {txi},

∃ C[t] ∈ C′ and P.P.T. computable πi s.t.
VrfyMTP(C[t].root,H(txi), πi) = 1

False, otherwise

where f({txi}) = 1 captures that {txi} satisfies a certain relationship, e.g., “the
hash of each txi equals a specified identifier txidi”, or “each txi can pass the
membership test of a given bloom filter”, or “the overall inflow of {txi} is greater
than a given value”. We let P�

N be short for P�(C[0 : N]).

Examples of Chain Predicate. The definition of chain predicate captures
a wide range of blockchain “readings”. For any predicate under this category,
its trueness can be succinctly attested by up to � transactions’ inclusion in the
chain. For � = 1, some concrete examples are:

• “The transaction tx is included in C[0 : N]”, the trueness of which can be
attested by tx’s inclusion in the chain C[0 : N].

• “tx is included in C[0 : N] and satisfies a given bloom filter f(·)”, which is
reducible to tx’s inclusion in the chain and the value of f(tx).

• “A set of transactions {txj} are included in C[0 : N]”, whose trueness can be
attested by all txj ’s inclusions in the chain.

722 Y. Lu et al.

Limits of Chain Predicate. A chain predicate is a binary question, whose true-
ness is reducible to the inclusion of some transactions. The actual meaning of a
chain predicate depends on how to concretely specify it. A “meaningful” chain
predicate might need certain specifications from an external party outside the
system. For example, the cashier of a pizza store can specify a transaction to
evaluate its (non)existence, only if the customer tells the txid.

“Handicapped” Verifiability of Chain Predicate. We focus on the chain
predicate in form of P�

N , namely, whose trueness is provable.4 Such “handi-
capped” verifiability can be well abstracted through a tuple of two algorithms
(evaluate, validateTrue) along with their properties:

• evaluate(P�
N) → σ or ⊥: The algorithm takes the replica of the blockchain as

auxiliary input and outputs σ or ⊥, where σ is a proof for P�
N = True, and ⊥

represents its falseness; note the proof σ here includes: a set of transactions
{txi}, a set of Merkle proofs {πi}, and a set of blocks C′;

• validateTrue(σ,P�
N) → 0 or 1: This algorithm takes blockhashes as auxil-

iary input and outputs 1 (accept) or 0 (reject) depending on whether σ
is deemed to be a valid proof for P�

N = True; note the validation parses
σ as ({txi}, {πi},C′) and verifies: (i) C′ is included by blockhashes[t] where
t ≤ N ; (ii) each txi is committed by a block in C′ due to Merkle proof πi; (iii)
f({txi}) = 1 where f(·) is the specification of the chain predicate.

The above algorithms satisfy: (i) Correctness. For any chain predicate P�
N ,

there is Pr[validateTrue(evaluate(P�
N), P�

N) = 1 | P�
N = true] = 1, and (ii)

Verifiability. for any P.P.T. A and P�
N , there is Pr[validateTrue(σ ← A(P�),

P�
N) = 1 | P�

N = false] ≤ negl(λ), where evaluate implicitly takes the blockchain
replica as input, and validateTrue implicitly inputs blockhashes. In the remaining
of the paper, evaluate can be seen as a black-box callable by any full nodes, and
validateTrue is a subroutine that can be invoked by any smart contract.

4.2 System and Adversary Model

The system explicitly consists of a lightweight client, some relay(s) and an arbiter
contract. The messages among them can deliver within a known delay ΔT . In
details,

The Rational Lightweight Client. LW is abstracted as:

• It is rational and selfish; moreover, it is computationally bounded, i.e., it
can only take an action computable in probabilistic polynomial-time;

• It opts out of consensus; to capture this, we assume:
– The client can send messages to the contract due to the network diffusion

functionality [22,38];

4 Remark that in the full paper [42], we define another class of chain predicates whose
falseness is provable instead of trueness, which can captured by our protocol as well,
though we omit detailed discussions here for presentation simplicity.

Generic Superlight Client for Permissionless Blockchains 723

– The client cannot receive messages from the contract except a short setup
phase, which can be done in practice because the client user can temporar-
ily boost a personal full node by fast-bootstrapping protocols.

The Rational Full Node. Ri is modeled as:

• It is rational. Also, the full node Ri might (or might not) cooperate with
another full node Rj . The (non)-cooperation of them is specified as:

– The cooperative full nodes form a coalition to maximize the total util-
ity, as they can share all information, coordinate all actions and transfer
payoffs, etc. [49]; essentially, we follow the conventional notion to view
the cooperative relays as a single party [7].

– Non-cooperative full nodes maximize their own utilities independently
in a selfish manner due to the standard non-cooperative game theory,
which can be understood as that they are not allowed to choose some
ITMs to communicate with each other [40];

• It can only take P.P.T. computable actions at any stage of the protocol;
• The full node runs the consensus, such that:

– It stores the complete replica of the latest blockchain;
– It can send/receive messages to/from the smart contract;

• It can send messages to the light client via an off-chain private channel.5

The Arbiter Contract. Gac follows the standard abstraction of smart contracts
[35,38], with a few slight extensions. First, it would not send any messages to the
light client except during a short setup phase. Second, it can access a dictionary
blockhashes [2,45], which contains the hashes of all blocks. The latter abstraction
further allows the contract to invoke validateTrue to verify the proof attesting
the trueness of any predicate P�

N , in case the predicate is actually true.

Economic Factors of Modeling. For the sake of completing our game-
theoretic model, we clarify the economic parameters of the modeling as follows:

• v: The factor means the “value” attached to the chain predicate under query.
If the client incorrectly evaluates the predicate, it loses v. For example, the
cashier Alice is evaluating the (non)existence of a certain transaction; if Alice
believes the existence of a non-existing transaction, she loses the amount to
be transacted; if Alice believes the nonexistence of an existing transaction,
her business is harmed by such censorship.

• vi(P�
N ,C) → [0, vi]: This function characterizes the motivation of the relay Ri

to cheat the light client. Namely, it represents the extra (malicious) utility
that the relay Ri earns, if fooling the client to incorrectly evaluate the chain
predicate. We consider

∑
i vi(P�

N ,C) ≤ v, so the overall malicious utilities
attained by fooling the client is up to the “value” attached to the query.

5 Such assumption can be granted if considering the client and the relays can set up
private communication channels on demand. In practice, this can be done because
(i) the client can “broadcast” its network address via the blockchain [43], or (ii)
there is a trusted name service that tracks the network addresses of the relays.

724 Y. Lu et al.

• In addition, all communications and P.P.T. computations can be done cost-
lessly (unless otherwise specified).

Remark. We describe an advanced modeling of economic factors to capture the
cost of maintaining a personal full node by the client user in the full version [42].
Here we ignore this factor by assuming the client cannot access any personal full
node once the protocol is set up. This simplified modeling still makes sense to
allow us argue security of our protocol, conditioned on the setup phase is done.

4.3 Security Goal

The aim of the light-client protocol ΠLW in the above game-theoretic model is
to allow a rational light client employ some rational relaying full nodes (e.g.,
one or two) to correctly evaluate the chain predicates, and these recruited relay
nodes are correctly paid as pre-specified. In details, we require:

• Correctness. If all parties are honest, we require: (i) the relay nodes are cor-
rectly paid; (ii) the light client correctly evaluates some chain predicates under
the category of P�(·), regarding the chain C[0 : T] (i.e. the chain at the time
of evaluating). Both requirements shall hold with probability 1.

• Security. We adopt a strong game-theoretic security notion of sequential equi-
librium [16,30,31] for incomplete-information extensive games. Consider an
extensive-form game Γ that models the light-client protocol ΠLW , and let
(Zbad,Zgood) as a partition of the terminal histories Z of the game Γ , where
Zgood captures and only captures all protocol executions where no party devi-
ates. Given a ε-sequential equilibrium6 of Γ denoted by σ, the probability of
reaching each terminal history z ∈ Z can be induced, which can be denoted
by ρ(σ, z).
Our security goal requires: there is a ε-sequential equilibrium σ of Γ where
ε is at most a negligible function nelg(λ) in security parameter λ, such that
under the ε-equilibrium σ, the game Γ terminates in Zgood.

5 A Simple Light-Client Protocol

Here we present a simple light-client protocol, in which a client (LW) employs
two (or one) relays to evaluate the chain predicates P�

N (as defined in Sect. 4.1).

5.1 Arbiter Contract and High-Level of the Protocol

The light-client protocol centers around an arbiter smart contract Gac as shown
in Fig. 2. It begins with letting all parties place their initial deposits. Later, the
client can ask the relays to forward some readings about the blockchain, and then
feeds what it receives back to the contract. Once the contract hears the feedback
from the client, it leverages the initial deposits to facilitate some proper incentive
mechanism, thus preventing deviations by rewarding and/or punishing.
6 Remark that due to the notion of ε-sequential equilibrium, the rational game players

are not sensitive for any utility increments that are less than ε.

Generic Superlight Client for Permissionless Blockchains 725

The arbiter contract Gac for m relays (m = 1 or 2)
Init. Let state := INIT, deposits := {}, relays := {}, pubKeys := {}, ctr := 0, predicate := ∅,

predicate.N := 0, Tend := 0
Setup phase

Create. On receiving the message (create, k, p, e, dL, dF , ΔT) from LW:
- assert state = INIT and ledger[LW] ≥ $k · dL

- store k, p, e, r, dL, dF , and ΔT as internal states
- ledger[LW] := ledger[LW] − $k · dL

- ctr := k and state := CREATED
- send (deployed, k, p, e, dL, dF , ΔT) to all

Join. On receiving (join, pki) from Ri for first time:
- assert state = CREATED and ledger[Ri] ≥ $k · dF

- ledger[Ri] := ledger[Ri] − $k · dF

- pubKeys := pubKeys ∪ (Ri, pki)
- state := READY, if |pubKeys| = m

Queries phase
Request. On receiving (request,P�) from LW:

- assert state = READY and ledger[LW] ≥ $(p + e)
- ledger[LW] := ledger[LW] − $(p + e)
- predicate := P�

T //Note T is the current chain height
- Tend := T + ΔT
- send (quering, ctr, predicate) to each full node registered in pubKeys
- state := QUERYING

Feedback. On receiving (feedback, responses) from LW for first time:
- assert state = QUERYING
- store responses for the current ctr

Timer. Upon T ≥ Tend and state := QUERYING:
- call Incentive(responses, predicate) subroutine
- let ctr := ctr − 1
- if ctr > 0 then state := READY
- else state := EXPIRED

Fig. 2. The contract Gac by pseudocode notations in [38]. The Incentive subroutine is
decoupled from the protocol and will be presented separately in the later section.

For security in the rational setting, the incentive mechanism must be pow-
erful enough to precisely punish misbehaviors (and reward honesty). Our main
principle to realize such powerful incentive is letting the arbiter contract to learn
as much as possible regarding how the protocol is actually executed off-chain, so
it can precisely punish and then deter any deviations.

Nevertheless, the contract has “handicapped” abilities. So we have to care-
fully design the protocol to circumvent its limits, for the convenience of designing
powerful incentive mechanisms to deter deviations later.

First, the contract Gac does not know what the relay nodes forward to the
light client off-chain. So the contract Gac has to rely on the client to figure out
what the relays did. At the first glance, the client might cheat the contract,
by claiming that it receives nothing from the relays or even forging the relays’
messages, in order to avoid paying. To deal with the issue, we require that: (i) the
relays authenticate what they forward to the client by digital signatures, so the
contract later can verify whether a message was originally sent from the relays,
by checking the attached signatures; (ii) the contract requires the light client to
deposit an amount of $e for each query, which is returned to the client, only if
the client reports some forwarded blockchain readings signed by the relays.

726 Y. Lu et al.

The light-client protocol ΠLW (where are m relays)
Setup phase

• Protocol for the light client LW:
Create. On instantiating a protocol instance:

- decide k, p, e, dL, dF , ΔT and let ctrlw := k
- send (create, k, p, e, dL, dF , ΔT) to Gac

Off-line. On receiving (initialized, pubKeys) from Gac:
- record pubKeys and disconnect the trusted full node

. .
• Protocol for the relay Ri:

Join. On receiving (deployed, k, p, e, dL, dF , ΔT) from Gac:
- generate a key pair (ski, pki) for signature scheme
- send (join, pki) to Gac

Queries phase
• Protocol for the light client LW:

Request. On receiving a message (from the higher level app) to evaluate the predicate P�:
- Tfeed := T + 2ΔT , and send (request,P�) to Gac

Evaluate. On receiving (response, ctri, resulti, sigi) from the relay Ri:
- assert T ≤ Tfeed and ctri = ctrlw
- assert vrfySig(〈resulti, ctr〉, sigi, pki) = 1
- responses := responses ∪ (resulti, sigi)
- if |responses| = m then

output b ∈ {True, False}, if responses claim b
Feedback. Upon the global clock T = Tfeed:

- ctrlw := ctrlw − 1
- send (feedback, responses) to Gac. .

• Protocol for the relay Ri:
Respond. On receiving (quering, ctr,P�

N) from Gac:
- resulti := evaluate(P�

N)
- sigi := sign(〈resulti, ctr〉, ski)
- send (response, ctr, resulti, sigi) to LW

Fig. 3. The light-client protocol ΠLW among honest relay node(s) and the light client.

Second, the contract has a “handicapped” verifiability, which allows it to effi-
ciently verify a claim of P�

N = True, if being give a succinct proof σ. To leverage
the property, the protocol is designed to let the relays attach the corresponding
proof σ when claiming the provable trueness. Again, this design is a simple yet
still useful way to allow the contract “learn” more about the protocol execution,
which later enables a powerful mechanism to precisely punish deviations.

5.2 The Light-Client Protocol

In the presence of the contract Gac, our light-client protocol can be formally
described as Fig. 3. The protocol starts with a setup phase, during which the
relay(s) and client make initial deposits. Then the client can work independently
and request the relays to help it evaluate up to k chain predicates, repeatedly.

Setup Phase. As shown in Fig. 3, the user of a lightweight client LW connects
to a trusted full node in the setup phase, and announces an “arbiter” smart
contract Gac. After the contract Gac is deployed, some relay full nodes (e.g. one
or two) are recruited to join the protocol by depositing an amount of $k · dF in
the contract. The public keys of the relay(s) are also recorded by contract Gac.

Generic Superlight Client for Permissionless Blockchains 727

Once the setup phase is done, each relay full node places the initial deposits
$k · dF and the light client deposit $k · dL, which will be used to deter their
deviations from the protocol. At the same time, LW records the public keys of
the relay(s), and then disconnects the trusted full node to work independently.

In practice, the setup can be done by using many fast bootstrap methods
[33,41,53], which allows the user to efficiently launch a personal trusted full
node in the PC. So the light client (e.g. a smart-phone) can connect to the
PC to sync. Remark that, besides the cryptographic security parameter λ, the
protocol is specified with some other parameters:

• k: The protocol is expired, after the client requests the relay(s) to evaluate
some chain predicates for k times.

• k · dL: This is the deposit placed by the client to initialize the protocol.
• k · dF : The initial deposit of a full node to join the protocol as a relay node.
• p: Later in each query, the client shall place this amount to cover the well-

deserved payment of the relay(s).
• e: Later in each query, the client shall place this deposit e in addition to p.

Repeatable Query Phase. Once the setup is done, LW disconnects the trusted
full node, and can ask the relay(s) to query some chain predicates repeatedly, as
clarified in Fig. 3. It is immediate to see the correctness of the protocol: when all
parties are honest, the relay(s) receive the payment pre-specified due to incentive
mechanism in the contract, and the client always outputs the ground truth of
chain predicate. However, the security would depend on the payoffs clauses facil-
itated by the incentive subroutine, which will be elaborated in later subsections
as we intentionally decouple the protocol and the incentive design.

6 Adding Incentives for Security

Without a proper incentive subroutine, the simple light-client protocol is insecure
to any extent, as the relays are always motivated to cheat the client. This section
studies on how to squeeze most out of the “handicapped” abilities of the arbiter
contract to design proper incentives to achieve desired equilibrium for security.

6.1 Basic incentive Mechanism and its Security

We firstly design the basic incentive subroutines that are only based the ratio-
nality of the light client and relays, and them analyze that these incentives make
the “light-client game” secure to what extent.

Basic incentive for Two Relays. If two non-cooperative relays can be recruited,
the incentive subroutine takes the feedback message from the client as input, and
then facilitates the incentives following hereunder general principles:

• It firstly verifies whether the feedback sent from the client indeed encapsulates
some responses that were originally sent from R1 and/or R2. If feedback
contains two validly signed responses, return $e to the client; If feedback
contain one validly signed response, return $e/2 to the client.

728 Y. Lu et al.

• If a relay claims P�
N = True with attaching an invalid proof σ, its deposit for

this query (i.e. $dF) is confiscated and would not receive any payment.
• When a relay sends a response message containing ⊥ to claim P�

N = False,
there is no succinct proof attesting the claim. The incentive subroutine checks
whether the other relay full node provides a proof attesting P�

N = True. If
the other relay proves P�

N = True, the cheating relay loses its deposit this
query (i.e. $dF) and would not receive any payment. For the other relay that
falsifies the cheating claim of P�

N = False, the incentive subroutine assigns it
some extra bonuses (e.g. doubled payment).

• After each query, if the contract does not notice a full node is misbehaving
(i.e., no fake proof for truthness or fake claim of falseness), it would pay the
node $p/2 as the basic reward (for the honest full node). In addition, the
contract returns a portion of the client’s initial deposit (i.e. $dL). Moreover,
the contract returns a portion of each relay’s initial deposit (i.e. $dF), if the
incentive subroutine does not observe the relay cheats during this query.

The rationale behind the above incentive clauses is straightforward. First, during
any query, the rational light client will always report to the contract whatever
the relays actually forward, since the failure of doing so always causes strictly
less utility, no matter the strategy of the relay full nodes; Second, since the two
relay full nodes are non-cooperative, they would be incentivized to audit each
other, such that the attempt of cheating the client is deterred.

Basic incentive for One Relay. When any two recruited relays might collude,
the situation turns to be pessimistic, as the light client is now requesting an
unknown information from only a single distrustful coalition. To argue security
in this rather pessimistic case, we consider only one relay in the protocol. To
deal with the pessimistic case, we tune the incentive subroutine by incorporating
the next major tuning (different from the incentive for two relays):

• If the relay claims P�
N = False, its deposit $dF is returned but paid less than

$p, namely, $(p − r) where $r ∈ [0, p] is an incentive parameter.
• Other payoff rules follow those designed for two non-cooperative relays.

The ideas behind the above incentive clauses are letting the only relay node to
“audit” itself, which means: the relay can expect a higher payment as long as it
presents a verifaible claim instead of an unverifiable claim.

Analysis and Security Theorems of Basic incentive. To demonstrate the
above delicately tuned incentive clauses are implementable, we describe them
in the conventional pseudocode notations [38] in the full version [42]. In addi-
tion, due to page limit, we omit the detailed structure of the extensive games
induced by the light-client protocol along with the utility functions induced by
the incentive clauses, c.f., the full paper [42] for the detailed analysis about these
extensive games. Here are the main security theorems (of the basic incentives):

Theorem 1. If two non-cooperative relays are recruited, there exists a ε-
sequential equilibrium in the extensive game of the light-client protocol, under

Generic Superlight Client for Permissionless Blockchains 729

which no rational party deviates from the protocol except with negligible proba-
bility, conditioned on dF + p/2 > vi and dL > (p + e).

Theorem 1 states that: if there are two non-cooperative relays, the sufficient
conditions of security are: (i) the initial deposit dF of relay node is greater
than its malicious benefit vi that can be obtained by fooling the client; (ii) the
initial deposit dL of the client is greater than the payment p plus another small
parameter e. The above conclusion hints us how to safely set up the light-client
protocol to instantiate a cryptocurrency wallet in practice, that is: let the light
client and the relays finely tune and specify their initial deposits, so the client can
query the (non)existence of any transaction, as long as the transacted amount of
the transaction is not greater than the initial deposit placed by the relay nodes.

Theorem 2. If only one relay is recruited, there is a ε-sequential equilibrium in
the light-client protocol’s extensive game, under which no rational party deviates
except with negligible probability, when dF +p− r > vi, r > vi, and dL > (p+e).

Theorem 2 reveals that: even in an extremely hostile scenario where only one
single relay exists, deviations are still prevented when fooling the light client to
believe the non-existence of an existing transaction does not yield better payoff
than honestly proving the existence. The statement presents a feasibility region
of our protocol that at least captures many important DApps (e.g., decentralized
messaging apps) in practice, namely: fooling the client is not very financially
beneficial for the relay, and only brings a payoff vi to the relay.

6.2 Augmented incentive and its Security

In the pessimistic scenario of only one recruited relay full node, we can intro-
duce an extra rationality assumption that: at least one public full node (denoted
by PFN) can monitor the internal states of the arbiter contract at a tiny cost
(say zero for the convenience of analysis) and does not cooperate with the only
recruited relay. This extra rationality assumption can boost an incentive mech-
anism to deter the relay and client from deviating from the light-client protocol.

Augmented incentive for One Relay. The tuning of the incentive mechanism
stems from the observation that: if there is any public full node that does not
cooperate with the recruited relay (and monitor the internal states of the arbiter
contract), it can stand out to audit a fake claim about P�

N = False by producing
a proof attesting P�

N = True. Thus, we slightly tune the incentive subroutine
by adding merely few lines of pseudocode (see [42] for details), which can be
summarized as:

• When the recruited relay node forwards a response that claims P�
N = False,

the incentive subroutine shall wait few clock periods (e.g., one). During the
waiting time, the public full node is allowed to send a proof attesting P�

N =
True to falsify a fake claim of P�

N = False; in this case, the initial deposit
dF of the cheating relay is confiscated and paid to the public full node.

• Other payoff rules are same to the basic incentive mechanism.

730 Y. Lu et al.

Analysis and Security Theorems of Augmented incentive. The formal
instantiation of the above augmented incentive mechanism along with the
detailed security analysis are deferred to the full version [42] due to page limit.
The main security theorem about the augmented incentive mechanism is:

Theorem 3. Given the augmented incentive mechanism, a ε-sequential equilib-
rium exists in the light-client protocol’s extensive game, where no rational party
deviates except with negligible probability when dF > vi, dL > (p+ e) and a non-
cooperative public full node that can “monitor” the arbiter contract costlessly.

The economics behind Theorem 3 can be understood similarly as Theorem1.

7 Discussions

Feasibility. We also shed light on the concrete implementation of the protocol
in the full paper [42]. Our experiments atop Ethereum indicate that a non-
optimized basic instantiation has been arguably practical. In particular, to query
a transaction’s (non)existence, the on-chain handling fee (which characterizes the
on-chain feasibility and excludes the incentives to pay) is less than half US dollar
at the time of writing (see [42] for details).

Future Outlook. As this is the first study that formally discusses the light
clients of permissionless blockchains in game-theoretic settings, the area remains
largely unexplored, and a few potential studies can be conducted for more real-
istic instantiations. For example, many crypto-economic protocols (e.g., PoS
blockchains [14,24,34] and payment channels [18,46] already introduce locked
deposits, and it becomes enticing to explore the composability of using the same
collateral in the light-client protocol and other crypto-economic protocols, with-
out scarifying the securities of all protocols.

Acknowledgment. We thank anonymous reviewers for valuable comments. Qiang is
supported in part by JDDigits via the JDD-NJIT-ISCAS Joint Blockchain Lab and a
Google Faculty Award.

References

1. Cardano. https://www.cardano.org/en/home/
2. Ethereum EIP-210. https://eips.ethereum.org/EIPS/eip-210
3. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game

theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of ACM PODC 2006, pp. 53–62 (2006)

4. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In:
Proceedings of ACM EC 2012, pp. 56–73 (2012)

5. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains

https://www.cardano.org/en/home/
https://eips.ethereum.org/EIPS/eip-210
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains

Generic Superlight Client for Permissionless Blockchains 731

6. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of ACM CCS 2018, pp. 913–930 (2018)

7. Beimel, A., Groce, A., Katz, J., Orlov, I.: Fair computation with rational players
(2011). https://eprint.iacr.org/2011/396

8. Bitcoin Core (2019). https://github.com/bitcoin/bitcoin
9. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-

cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

10. Bünznz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: Super-light clients for cryp-
tocurrencies. In: Proceedings of IEEE S&P 2020 (2020)

11. Buterin, V.: A next-generation smart contract and decentralized application plat-
form (2014)

12. Buterin, V.: Light clients and proof of stake (2015). https://blog.ethereum.org/
2015/01/10/light-clients-proof-stake/

13. CryptoKitties (2018). https://www.cryptokitties.co/
14. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and

applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

15. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

16. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, dis-
trust, and rationality: Smart counter-collusion contracts for verifiable cloud com-
puting. In: Proceedings of ACM CCS 2017, pp. 211–227 (2017)

17. Dziembowski, S., Eckey, L., Faust, S.: FairsWap: how to fairly exchange digital
goods. In: Proceedings of ACM CCS 2018, pp. 967–984 (2018)

18. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs
over cryptocurrencies. In: Proceedings of IEEE S&P 2019, pp. 327–344 (2019)

19. Electrum (2011). http://docs.electrum.org/en/latest/
20. Ethereum Foundation: Solidity Global Variables (2018). https://solidity.

readthedocs.io/en/develop/units-and-global-variables.html
21. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard

communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-
2 25

22. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

23. Gaži, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: Proceedings of
IEEE S&P 2019 (2019)

24. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68 (2017)

25. Go Ethereum (2019). https://github.com/ethereum/go-ethereum

https://eprint.iacr.org/2011/396
https://github.com/bitcoin/bitcoin
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
https://www.cryptokitties.co/
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
http://docs.electrum.org/en/latest/
https://solidity.readthedocs.io/en/develop/units-and-global-variables.html
https://solidity.readthedocs.io/en/develop/units-and-global-variables.html
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://github.com/ethereum/go-ethereum

732 Y. Lu et al.

26. Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 16

27. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 7

28. Gruber, D., Li, W., Karame, G.: Unifying lightweight blockchain client implemen-
tations. In: Workshop on Decentralized IoT Security and Standards (DISS) (2018)

29. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In:
Proceedings of ACM STOC 2004, pp. 623–632 (2004)

30. Halpern, J.Y., Pass, R.: Sequential equilibrium in computational games. ACM
Trans. Econ. Comput. (TEAC) 7(2), 1–19 (2019)

31. Halpern, J.Y., Pass, R., Seeman, L.: Computational extensive-form games. In:
Proceedings of ACM EC 2016, pp. 681–698 (2016)

32. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mech-
anism design. In: Proceedings of IEEE FOCS 2005, pp. 585–594 (2005)

33. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work (2017).
https://eprint.iacr.org/2017/963.pdf

34. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

35. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

36. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Bracciali, A., Clark, J., Pin-
tore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 21–34.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 3

37. Kol, G., Naor, M.: Games for exchanging information. In: Proceedings of ACM
STOC 2008, pp. 423–432 (2008)

38. Kosba, A., Miller, A., Shi, E., et al.: Hawk: the blockchain model of cryptography
and privacy-preserving smart contracts. In: Proceedings of IEEE S&P 2016, pp.
839–858 (2016)

39. Kwon, J., Buchman, E.: Cosmos: a network of distributed ledgers (2017). https://
github.com/cosmos/cosmos/blob/master/WHITEPAPER.md

40. Lepinksi, M., Micali, S., Shelat, A.: Collusion-free protocols. In: Proceedings of
ACM STOC 2005, pp. 543–552 (2005)

41. Leung, D., Suhl, A., Gilad, Y., Zeldovich, N.: Vault: fast bootstrapping for cryp-
tocurrencies. In: NDSS 2019 (2019)

42. Lu, Y., Tang, Q., Wang, G.: Generic superlight client for permissionless
blockchains. arXiv preprint arXiv:2003.06552 (2020)

43. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of ACM CCS 2016, pp.
17–30 (2016)

44. Meckler1, I., Shapiro, E.: Coda: Decentralized cryptocurrency at scale. https://
cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf

45. Miller, A.: Ethereum blockhash contract (2017). https://github.com/amiller/
ethereum-blockhashes

46. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites and state channels:
payment networks that go faster than lightning. In: Proceedings of FC (2019)

https://doi.org/10.1007/11832072_16
https://doi.org/10.1007/978-3-642-29011-4_7
https://eprint.iacr.org/2017/963.pdf
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-030-43725-1_3
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
http://arxiv.org/abs/2003.06552
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://github.com/amiller/ethereum-blockhashes
https://github.com/amiller/ethereum-blockhashes

Generic Superlight Client for Permissionless Blockchains 733

47. Miller, A.E., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.
In: Proceedings of ACM POPL 2014, pp. 411–423 (2014)

48. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
49. Osborne, M., Rubinstein, A.: A Course in Game Theory (1994)
50. Park, S., Kwon, A., Fuchsbauer, G., Gaži, P., Alwen, J., Pietrzak, K.: SpaceMint: a

cryptocurrency based on proofs of space. In: Proceedings of FC 2018, pp. 480–499
(2018)

51. Pass, R., Shi, E.: Rethinking large-scale consensus. In: 2017 IEEE 30th Computer
Security Foundations Symposium (CSF), pp. 115–129. IEEE (2017)

52. Pham, V., Khouzani, M.H.R., Cid, C.: Optimal contracts for outsourced compu-
tation. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp.
79–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12601-2 5

53. Poelstra, A.: Mimblewimble (2016). https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf

54. Protocol Labs: Filecoin: A Decentralized Storage Network (2017). https://filecoin.
io/filecoin.pdf

55. Steemit (2016). https://steemit.com/
56. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017).

https://people.cs.uchicago.edu/∼teutsch/papers/truebit.pdf
57. Tomescu, A., Devadas, S.: Catena: efficient non-equivocation via bitcoin. In: Pro-

ceedings of IEEE S&P 2017, pp. 393–409 (2017)
58. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2014).

https://ethereum.github.io/yellowpaper/paper.pdf
59. Xu, L., Chen, L., Gao, Z., Xu, S., Shi, W.: EPBC: efficient public blockchain client

for lightweight users. In: Proceedings of the 1st Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, p. 1. ACM (2017)

60. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottenbelt,
W.J.: A wild velvet fork appears! inclusive blockchain protocol changes in practice.
In: Proceedings of FC 2018, pp. 31–42 (2018)

https://doi.org/10.1007/978-3-319-12601-2_5
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://steemit.com/
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

LNBot: A Covert Hybrid Botnet
on Bitcoin Lightning Network for Fun

and Profit

Ahmet Kurt1(B), Enes Erdin1, Mumin Cebe2, Kemal Akkaya1,
and A. Selcuk Uluagac1

1 Florida International University, Miami, FL 33174, USA
{akurt005,eerdi001,kakkaya,suluagac}@fiu.edu

2 Computer Science Department, Marquette University, Milwaukee, USA
mumin.cebe@marquette.edu

Abstract. While various covert botnets were proposed in the past, they
still lack complete anonymization for their servers/botmasters or suffer
from slow communication between the botmaster and the bots. In this
paper, we propose a new generation hybrid botnet that covertly and
efficiently communicates over Bitcoin Lightning Network (LN), called
LNBot. LN is a payment channel network operating on top of Bitcoin
network for faster Bitcoin transactions with negligible fees. Exploiting
various anonymity features of LN, we designed a scalable two-layer bot-
net which completely anonymize the identity of the botmaster. In the
first layer, the botmaster sends commands anonymously to the C&C
servers through LN transactions. Specifically, LNBot allows botmaster’s
commands to be sent in the form of surreptitious multihop LN payments,
where the commands are encoded with ASCII or Huffman encoding to
provide covert communications. In the second layer, C&C servers fur-
ther relay those commands to the bots they control in their mini-botnets
to launch any type of attacks to victim machines. We implemented a
proof-of-concept on the actual LN and extensively analyzed the delay
and cost performance of LNBot. Our analysis show that LNBot achieves
better scalibility compared to the other similar blockchain botnets with
negligible costs. Finally, we also provide and discuss a list of potential
countermeasures to detect LNBot activities and minimize its impacts.

Keywords: Lightning Network · Botnet · Covert channel

1 Introduction

Botnets are networks of computing devices infected with malicious software that
is under the control of an attacker, known as bot herder or botmaster [28]. The
owner of the botnet controls the bots (i.e., devices that become part of the botnet)
through command and control (C&C) server(s) which can communicate with
the bots using a C&C channel and can launch various attacks through these

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 734–755, 2020.
https://doi.org/10.1007/978-3-030-59013-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_36&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_36

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 735

bots, including, but not limited to, denial of service (DoS) attacks, informa-
tion and identity theft, sending spam messages, and other activities. Naturally,
a botmaster’s goal is to make it difficult for law enforcement to detect and pre-
vent malicious operations. Therefore, establishing a secure C&C infrastructure
and hiding the C&C server identity play a key role in the long-lasting operation
of botnets.

Numerous botnets have been proposed and deployed in the past [12,31].
Regardless of their communication infrastructure being centralized or peer-to-
peer, existing botnet C&C channels and servers have the challenge of remain-
ing hidden and being resistant against legal authorities’ actions. Such prob-
lems motivate hackers to always explore more promising venues for finding new
C&C channels with the ever-increasing number of communication options on the
Internet. One such platform is the environment where cryptocurrencies, such as
Bitcoin, is exchanged. As Bitcoin offers some degree of anonymity, exploiting
it as a C&C communication channel has already been tried for creating new
botnets [2,3]. While these Bitcoin-based botnets addressed the long transaction
validation times, they still announce the commands publicly, where the botnet
activity can be traced by any observer with the help of the Bitcoin addresses or
nonce values of the transactions. By using Bitcoin for botnet communications,
C&C leaves the history of malicious activities on the blockchain forever.

Nonetheless, the issues regarding the public announcement of commands and
leaving traces in the blockchain are already being addressed in a newly developed
Bitcoin payment channel network called Lightning Network (LN). LN enables
off-line transactions (i.e., transactions which are not announced and thus not
recorded on the blockchain) in order to speed up the transaction by eliminat-
ing the confirmation time and decreasing fees associated with that transaction.
Additionally, users’ identities are still kept anonymous since the transactions are
not announced publicly. In this paper, we advocate using LN as an ideal C&C
infrastructure for botnets with all the aforementioned features (i.e., faster trans-
actions, decreased costs). Specifically, LN offers botmasters numerous advantages
over existing techniques: First, LN provides very high anonymity since transac-
tions on the off-chain channels are not recorded on the blockchain. Thus, a bot-
master can covertly communicate with the C&C server(s). Second, the revelation
of a server does not reveal other servers, and an observer cannot enumerate the
size of the botnet. Most importantly, C&C communication over the LN cannot
be censored.

Although LN is a fast-growing emerging payment network, it only has around
12K nodes which may not be ideal for large-scale botnets. Therefore, we propose
a two-layer hybrid botnet to use LN as an infrastructure to maintain a network
of C&C servers each of which can run its own botnet. The use of multiple C&C
servers has been around for a while [21]. However, the communication with these
servers was still assumed to be through the existing communication infrastruc-
tures which impairs the servers’ anonymity. Therefore, further strengthening of
anonymity is still needed.

736 A. Kurt et al.

Hence, this paper presents LNBot, which is the first botnet that utilizes LN
infrastructure for its communications between the botmaster and C&C servers
with a two-layer hybrid architecture. Specifically, at the first layer, a botmaster
will maintain multiple C&C servers, which are nodes on the LN that have spe-
cialized software to control the bots under them. Essentially, each C&C server
is controlling an independent isolated mini-botnet at the second layer. These
mini-botnets are controlled using a specific C&C infrastructure that can rely on
traditional means such as stenography, IRC channel, DNS, Tor, etc. Botmaster
sends the commands to the C&C servers covertly through LN. This two-layer
command and control topology not only enables scalability, but also minimizes
the burden on each C&C server, which increases their anonymity.

To demonstrate the feasibility of the concept, we implemented the LNBot
using real LN nodes in Bitcoin’s Testnet which is the actual network for Bitcoin.
Utilizing one-to-many architecture (i.e., botmaster sends commands to all C&C
servers separately), we show that by encoding the commands in terms of pay-
ments sent over LN, one can successfully send commands to the C&C servers
that are part of the LN. These C&C servers further relay those commands to
the bots they control to launch any type of attack to victim machines.

Nevertheless, as sending the commands to every C&C server in the form of
payment requires the botmaster to maintain high capacity LN channels (i.e.,
increased monetary cost) and pay forwarding fees to LN, we also propose mech-
anisms to further decrease these costs to the levels where they can be neglected.
Specifically, when the attacks are executed, we circulate the received payments
at C&C servers back to botmaster. Essentially, this means the botmaster will
receive all of his/her money back except the fees charged by LN. To also min-
imize those fees, in addition to ASCII-based encoding, we propose a Huffman-
based encoding mechanism which considers the frequency of characters that
could potentially be used in constructing the attack commands. We demon-
strate that for a network comprising 100 C&C servers, the total fixed fees for
forming LNBot would be lower than $5.

Contrary to the traditional blockchain based communication schemes, LNBot
covertly communicates with the C&C servers by utilizing the strong relationship
anonymity of LN. This covert communication comes with a very little cost and
latency overhead. Additionally, since LNBot does not require a custom C&C
infrastructure, it is very practical to deploy it. All these features of LNBot makes
it a botnet that needs to be taken seriously therefore we provide a list of counter-
measures that may help detect LNBot activity and minimize damages from it.

The rest of the paper is organized as follows: In Sect. 2, we give some back-
ground information about LN. In Sect. 3, we describe the architecture and con-
struction of our proposed LNBot. Section 4 is dedicated to proof-of-concept
implementation in real world settings while Sect. 5 presents the evaluation
results. In Sect. 6, possible countermeasures for LNBot is discussed. Related
work is given in Sect. 7. Finally, we conclude the paper in Sect. 8.

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 737

2 Background

2.1 Lightning Network

The LN concept is introduced in [26]. It is a payment protocol operating on top of
Bitcoin. Through this concept, an overlay payment network (i.e., LN) is started
among the customers and vendors in 2017. The aim in creating the LN was to
decrease the load on the Bitcoin network, facilitating transactions with affordable
fees and reduced transaction validation times, and increasing the scalability of
Bitcoin by establishing peer-to-peer connections. Despite the big fluctuations in
the price of Bitcoin recently, the LN grew exponentially reaching 12,384 nodes
and 36,378 channels in less than two years by the time of writing this paper [1].
In the following subsections, we briefly explain the components of LN.

2.2 Off-Chain Concept

The main idea behind LN is to utilize the off-chain concept [24] which enables
near-instant Bitcoin transactions with negligible fees. This is accomplished
through bidirectional payment channels which are created among two parties
to exchange funds without committing the transactions to Bitcoin blockchain.
The channel is opened by making a single on-chain transaction called funding
transaction. The funding transaction determines the capacity of the channel.
Whenever one of the parties wants to make a transaction, she basically conveys
ownership of that amount of her money to her peer. So, after a transaction takes
place the total capacity in the channel does not change but the directional capac-
ities do. Therefore, the peers can make as many as transactions they want in any
amount unless the amount they want to send does not exceed the directional
capacity. The example shown in Fig. 1 illustrates the concept in more detail.

2-of-2
Multisignature

(A&B): 5

Alice: 5

Bob: 0

A & B

Bob: 1

1

A & B

Bob: 3

2

A & B

Bob: 4

1

2-of-2
Multisignature

(A&B): 5

Alice: 1

Bob: 4

On-chain
Transactions

Off-chain
Transactions

Opening the Channel Closing the Channel1

2

3

Fig. 1. Off-chain mechanism of LN

Per figure, 1© Alice opens a channel to Bob by funding 5 Bitcoins to a multi-
signature address and the multi-signature address is signed by both Alice and

738 A. Kurt et al.

Bob. 2© Using this channel, Alice can send payments to Bob simply by trans-
ferring the ownership of her share in the multi-signature address until her fund
in the address is exhausted. Note that these transactions are off-chain meaning
they are not written to the Bitcoin blockchain which is a unique feature of LN
and that feature is exploited in our botnet. Alice performs 3 transactions at
different times with amounts of 1, 2 and 1 Bitcoin respectively. 3© Eventually,
when the channel is closed, the remaining 1 Bitcoin in the multi-signature wallet
is returned to Alice while the total transferred 4 Bitcoins are settled at Bob.
Channel closing is another on-chain transaction that reports the final balances
of Alice and Bob in the multi-signature address to the blockchain.

2.3 Multihop Payments

In LN, a node can make payments to another node even if it does not have a direct
payment channel to that node. This is achieved by utilizing already established
payment channels between other nodes and such a payment is called multi-hop
payment since the payment is forwarded through a number of intermediary nodes
until reaching the destination. This process is trustless meaning the sender does
not need to trust the intermediary nodes along the route. Figure 2 depicts a
multi-hop payment. As there is a direct payment channel between Alice and
Charlie and between Charlie and Bob, Alice can initiate a transaction to Bob
via Charlie. 1© First, Bob sends an invoice to Alice which includes the hash (H)
of a secret R (known as pre-image). 2© Then, Alice prepares a payment locked
with H, the answer of which is known by Bob. Hash-Locking is required for Alice
to ensure that the payment is received by Bob. So, locked with H, Alice gives
ownership of some of her money destined to Bob if and only if Charlie knows and
discloses the answer to H. Likewise, 3© Charlie promises to give the ownership
of some of his money which is locked by H to Bob if Bob knows the answer.
As Bob receives a payment he naturally discloses the answer to Charlie and in
return he gets the money from Charlie as promised. Now, as Charlie learned
the answer, he discloses the answer to Alice and gets his money from Alice as
promised. This mechanism is realized with the “Hash Time Lock Contracts”
(HTLC). Through this mechanism of LN, as long as there is a path from source
to destination requiring that the channels on the path have enough capacities,
payments can be routed just like the Internet.

Alice

Charlie

BobRHH

2 3

1

Fig. 2. Illustration of a multihop payment. R is the secret (i.e. pre-hash) generated by
Bob, H is the hash of the secret. When the transaction is locked by H, yielding the
secret R opens the lock. Namely, when asked, yielding R changes the ownership of the
money in the channel

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 739

2.4 Key Send Payments

Key send in LN enables sending payments to a destination without needing to
have an invoice first [22]. It utilizes Sphinx [9] which is a compact and secure
cryptographic packet format to anonymously route a message from a sender to
a receiver. This is a very useful feature to have in LN because it introduces new
use cases where payers can send spontaneous payments without contacting the
payee first. In this mode, the sender generates the pre-image for the payment
instead of the receiver and embeds the pre-image into the sphinx packet within
the outgoing HTLC. If an LN node accepts key send payments, then it only
needs to advertise its public key to receive key send payments from other nodes.
In LNBot, we utilize this feature to send payments from botmaster to C&C
servers.

2.5 Source Routing and Onion Routed Payments

With the availability of multi-hop payments, a routing mechanism is needed to
select the best route for sending a payment to its destination. LN utilizes source
routing which gives the sender full control over the route for the transaction to
follow within the network. Senders are able to specify: 1) the total number of
hops on the path; 2) total cumulative fee they will pay to send the payment;
and 3) total time-lock period for the HTLC [14]. Moreover, all payments in
LN are onion-routed payments meaning that HTLCs are securely and privately
routed within the network. Onion routing LN also prevents any nodes from
easily censoring payments since they are not aware of the final destination of
the payment. Additionally, by encoding payment routes within a Sphinx packet,
following security and privacy features are achieved: the nodes on a routing path
do not know: 1) the source and the destination of the payment; 2) their exact
position within the route; and 3) the total number of hops in the route.

2.6 Motivation to Use LN for a Botnet

In this section, we justify why LN is suitable for a perfect botnet design.

– No publicly advertised activity: The drawback of using a cryptocurrency
based communication infrastructure is that all of the activities are publicly
stored in a persistent, transparent, append-only ledger. However, using the
off-chain transaction mechanism, only the intermediary nodes in a multi-hop
payment path know the transactions. Because, they are responsible to keep
the state of their own channels just to prove the ownership of their share in
case of a dispute. Namely, the activities taking place in a payment channel is
locally stored by the nodes responsible for forwarding that transaction.

– Covert messaging: LN was proposed to ease the problems occurring in
the Bitcoin network. Hence, all of the actions taking place in the network is
regarded as financial transactions. In that sense, twisting this idea into using
the channels for covertly forwarding commands will be indistinguishable from
innocent, legitimate, and real financial transactions.

740 A. Kurt et al.

– Relationship anonymity: LN utilizes source-routing for payment forward-
ing. This feature enables the peers to enjoy a higher anonymity. Assume that,
during a transaction let the next node successfully guess that the preceding
node was the origin of the transaction. Ideally, there is no possibility for it
to successfully guess the final destination for that transaction. This applies
to any “curious” node in the network. Namely, without collusion it is impos-
sible to know who communicates to whom, which is known as relationship
anonymity feature.

– Instantaneous communication: Apart from being public, another draw-
back of using Bitcoin network is that a transaction is approved in 10 min the
earliest. Moreover, for a transaction to be approved in the ledger for good,
the peers have to wait for at least 60 min. By moving to the off-chain, a trans-
action simply becomes a network package traversing in the network through
the intermediary nodes. In that sense, the communication latency in LN is
nothing but the time for a packet to traverse on the Internet.

– Minimal cost: Bitcoin network charges fees for every transaction regardless
of its amount. LN was also designed to transform these fees into negligible
amounts. The fees charged by LN is comprised of the combination of a “base
fee” and a “proportional fee” which are close to zero. In the lnd implementa-
tion of LN, default setting for the base fee is 1 millisatoshi1. The proportional
fee is, as name suggests it is proportional with the amount being forwarded,
0.0001% of the payment.

3 LNBot Architecture

In this section, we describe the overall architecture of LNBot with its elements.

3.1 Overview

The overall architecture is shown in Fig. 3. As shown, the LN is used to maintain
the C&C servers and their communication with the botmaster. Each C&C server
runs a separate mini-botnet. Note that it is up to the botmaster how to populate
these mini-botnets. Each C&C server can utilize a different botnet model (i.e.,
based on IRC, DNS, steganography, cryptocurrencies, etc).

The botmaster could set up the C&C servers by creating LN nodes at remote
locations that are accessible to him/her. The botmaster knows the LN public
keys of all C&C servers since s/he sets them up. These public keys are needed
to communicate with them in the LN. Then s/he installs a special software on
the C&C servers which are used to control the bots. In this way, it is enough
for botmaster to release a malware into the wild for infecting user machines
and upon infection, these machines connect to existing available C&C servers
(i.e., they become bots). One possible way to achieve this would be to spread
the malware via embedded advertisements on web pages frequently visited by
1 A satoshi is defined to be 0.00000001 Bitcoin. In other words, 1 Bitcoin is 100 million

satoshi.

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 741

LNBot Master
Server

Botmaster

C&C
Server 1

Lightning
Network

Bots

IRC

Mini Botnet 1

...

...

C&C
Server 2

Bots

DNS

Mini Botnet 2

C&C
Server k

Bots

Steganography

Mini Botnet k

Bitcoin
Network

Botmaster's
BTC Wallet

Lightning
Wallet 1

Lightning
Wallet 2

Lightning
Wallet k...

Outside of
LN and
Bitcoin

Network

Command
Through
Multihop
Payments

Command
Through
Multihop
Payments

Command
Through
Multihop
Payments

C&C Servers are
Funded Here

Commands are
Propagated Here

Botnet Attacks
are Performed

Here

Fig. 3. Overview of LNBot architecture

intended victims. When a viewer clicks on the link, s/he is redirected to a website
hosting malicious code that executes in the background and infects the victim’s
machine without his/her knowledge.

Upon infection, the bot establishes a communication with an available C&C
server. The type of connection used depends on the communication method
chosen by the C&C server the bot connects to. This can be picked among existing
botnet C&C infrastructures such as IRC, DNS, steganography, cryptocurrencies
or even the LN itself.

The botmaster’s commands have to propagate to every C&C server, and
then, ultimately to every single bot through the C&C servers. For this task, we
propose one-to-many propagation where the botmaster sends commands to each
C&C server separately. This approach is described in Sect. 3.5. The botmaster
periodically issues commands to C&C servers by sending payments over LN.
Thus, the commands have to be encoded into a series of LN payments. We
implemented two encoding schemes to represent the commands as LN payments.
These methods are detailed in Sect. 3.6.

742 A. Kurt et al.

With the availability of command propagation, the C&C servers could now
listen to the incoming instructions from the botmaster. Next, we describe the
details of setting up the C&C servers.

3.2 Setting up the C&C Servers

As mentioned earlier, the botmaster can set up the necessary number of C&C
servers s/he would like to deploy. Depending on the objectives, the number of
these servers and the number of bots they will control can be adjusted without
any scalability concern. In Sect. 4, we explain how we set up real C&C servers
running on LN on the real Bitcoin network.

Each C&C server is deployed as a private LN node which means that they do
not advertise themselves within the LN. In this way, the other LN nodes do not
know about the existence of the C&C servers and cannot open channels to them
without knowing their public keys. However, without opening any channels on
the network, C&C servers cannot get botmaster’s payments on LN. Therefore,
each C&C servers open a channel to at least k different random public LN nodes.
To open the channels, they need some Bitcoin in their lightning wallets. This
Bitcoin is provided to C&C servers by the botmaster before deploying them.
The number k may be tuned depending on the size and topology of LN when
LNBot will have deployed in the future.

3.3 Formation of Mini-Botnets

After C&C servers are set up, we need bots to establish connections to C&C
servers. An infected machine (bot) connects to one of the C&C servers. As men-
tioned earlier, the details of bot recruitment and any malware implementation
issues are beyond the objectives of this paper. It is up to the botmaster to decide
which type of infrastructure the C&C servers will use to control the bots in their
possession. This flexibility is enabled by our proposed two-layer hybrid architec-
ture of LNBot. The reason for giving this flexibility is to enable scalability of
LNBot through any type of mini-botnets without bothering for the compromise
of any C&C servers. As it will be shown in Sect. 6, even if the C&C servers are
compromised, this neither reveals the other C&C servers nor the botmaster.

3.4 Forming LNBot

Now that C&C servers are set up and mini-botnets are formed, the next step is
to form the infrastructure to control these C&C servers covertly with minimal
chances of getting detected. This is where LN comes into play. Botmaster has
the public keys of all LN nodes running on C&C server machines. Since C&C
servers have their LN channels ready, they can receive the commands from the
botmaster. The botmaster uses an LN node called LNBot Master Server to
initiate the commands to all the C&C servers through LN payments. Similar to
the C&C servers, LNBot Master Server is also a private LN node and botmaster

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 743

has flexibility on the setup of this node and may change it regularly. Without
using any other custom infrastructure, the botmaster is able to control C&C
servers through LN, consequently controlling all the bots on the botnet.

3.5 Command Propagation in LNBot

Once the LNBot is formed, the next step is to ensure communication from the
botmaster to the C&C servers. We utilize a one-to-many architecture where the
botmaster sends the commands to each C&C server separately. The botmaster
uses key send method mentioned in Sect. 2.4 to send the payments. We designed
a command sending protocol for botmaster-to-C&C server communication as
shown in Algorithm1.

Algorithm 1: Send Command
1 initialize command;
2 int counter = 0;
3 bool isOnline = checkIfC&CServerIsOnline();
4 if isOnline then
5 bool result = send(5 satoshi);
6 if result=success then
7 counter = 0;
8 for character in command do
9 bool result = send(character);

10 if result=success then continue;
11 else if result=fail and counter < k then
12 retry sending character;
13 counter++;

14 else reschedule(command, date, time);

15 end
16 counter = 0;
17 bool result = send(6 satoshi);
18 if result=success then
19 Command has been successfully sent!;
20 else if result=fail and counter < k then
21 retry sending 6 satoshi;
22 counter++;

23 else reschedule(command, date, time);

24 else if result=fail and counter < k then
25 retry sending 5 satoshi;
26 counter++;

27 else reschedule(command, date, time);

28 else
29 reschedule(command, date, time);
30 end

744 A. Kurt et al.

Before sending any payment, the botmaster first checks if the respective C&C
server is online or not (LN nodes have to be online in order to send and receive
payments). If the C&C server is not online, command sending is scheduled for
a later time. Botmaster sends 5 satoshi as the special starting payment of a
command before it sends the actual characters in the command one by one.
Lastly, the botmaster sends 6 satoshi as the special ending payment to finish
sending the command. Note that selection of 5 and 6 in this algorithm depends
on the chosen encoding and could be changed based on the needs. If any of
these separate payments fail, it is re-tried. If any of the payments fail for more
than k times in a row, command transmission to the respective C&C server is
canceled and scheduled for a later time. The details of encoding and decoding
are explained next.

3.6 Encoding/Decoding Schemes

An important feature of LNBot is its ability to encode botmaster commands
into a series of LN payments. We used two different encoding/decoding schemes
for the purpose of determining the most efficient way of sending commands to
C&C servers in terms of Bitcoin cost and time spent. We explain the details of
each method below:

ASCII Encoding. American Standard Code for Information Interchange
(ASCII) is a character encoding standard that represents English characters
as numbers, assigned from 0 to 127. Numbers 0–31 and 127 are reserved for
control characters. The remaining 95 codes from 32 to 126 represent printable
characters. The decimal equivalent of ASCII characters can easily be looked up
from an ASCII table.

Huffman Coding. When there is a need to losslessly compress the information
being sent over a channel, due to its simple yet powerful approach, Huffman
coding is one of the optimal options [13]. In usual communication systems, the
communication is done in binary domain. However, in the communication scheme
defined as in our approach, there is no strict need for binary communication. In
the formation of the Huffman tree, n-ary number systems can be used. The
advantage of n−ary numbering system over binary one is that the messages
can be distributed among more compact symbols, hence the required number of
transmissions per character will be reduced.

In order to come up with a codebook, a dictionary is needed. The frequencies,
so-called probabilities of occurrences of the characters shape the size of the
codebook. In its most frequently adapted style, users prefer to use bulky novels
or texts in order to simulate a more inclusive dictionary.

3.7 Reimbursing the Botmaster

Another important feature of LNBot is the ability of the botmaster to get the
invested funds back from C&C servers’ lightning wallets to his/her Bitcoin wallet.

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 745

Depending on botmaster’s command propagation activity, C&C servers’ chan-
nels will fill up with funds received from the botmaster. Therefore, in our design,
C&C servers are programmed to send the funds in their channels to an LN node
called collector. Collector is set up by the botmaster as a private LN node which
becomes active only when the C&C servers will send funds to it. Its LN pub-
lic key is stored in C&C servers and thus they can send the funds to collector
through LN using the collector’s public key. In this way, the funds accumulate at
the collector. The botmaster gets the funds accumulated at the collector when
his/her channels starts running out of funds. Botmaster get the funds from col-
lector by closing collector’s channels so that the funds at these channels are
settled at collector’s lightning wallet. Then botmaster sends these funds through
an on-chain Bitcoin transfer to his/her Bitcoin wallet.

4 Proof-of-Concept Implementation

In this section, we demonstrate that an actual implementation of the proposed
LNBot is feasible by presenting a proof-of-concept. For development, we used
lnd (version 0.9.0-beta) which is one of the implementations of LN developed
by Lightning Labs [15]. LN nodes should interact with a Bitcoin network in
order to run the underlying layer-1 protocols. There are two real environments
where Bitcoin operations take place: Bitcoin Mainnet and Bitcoin Testnet. As
the names suggest, Bitcoin Mainnet is the chain where Bitcoin transfers with
a real monetary value take place. However, in Bitcoin Testnet, Bitcoins do not
have a monetary value. They are only used for testing and development purposes.
Nonetheless, they both provide the same infrastructure and LNBot will definitely
run in the same manner on the Mainnet as it runs on the Testnet.

Thus, we used Bitcoin Testnet for our proof-of-concept development. We
created 100 C&C servers and assessed certain performance characteristics for
command propagation. We created a GitHub page explaining the steps to set up
the C&C servers.2 The steps include installation of lnd & bitcoind, configuring
lnd and bitcoind, and extra configurations to hide the servers in the network
by utilizing private channels. Nevertheless, to confirm that the channel opening
costs and routing fees are exactly same in both Bitcoin Mainnet and Testnet,
we also created 2 nodes on Bitcoin Mainnet. We funded one of the nodes with
0.01 Bitcoin (∼$67), created channels and sent payments to the other node. We
observed that the costs and fees are exactly matching to that of Bitcoin Testnet.

lnd has a feature called autopilot which opens channels in an automated man-
ner based on certain initial parameters set in advance [17]. Our C&C servers on
Bitcoin Testnet employ this functionality of lnd to open channels on LN. Using
autopilot, we opened 3 channels per server. Note that this number of channels is
picked based on our experimentation on Bitcoin Testnet on the success of pay-
ments. We wanted to prevent any failures in payments by tuning this parameter.
As mentioned, these 3 channels are all private, created with –private argument,

2 https://github.com/LightningNetworkBot/LNBot.

https://github.com/LightningNetworkBot/LNBot

746 A. Kurt et al.

which do not broadcast themselves to the network. A private channel in LN is
only known by the two peers of the channel.

lnd has an API for communicating with a local lnd instance through
gRPC [16]. Using the API, we wrote a client that communicated with lnd in
Python. Particularly, we wrote 2 Python scripts, one running on the C&C servers
and the other on the botmaster machine. We typed the command we wanted
to send to C&C servers in a terminal in the botmaster machine. The command
was processed by the Python code and sent to the C&C servers as a series of
payments.

5 Evaluation and Analysis of LNBot

In this section, we present a detailed cost and time overhead analysis of LNBot.

5.1 Cost Analysis of LNBot Formation

We first analyze the monetary cost of forming LNBot. As noted earlier, we
opened 3 channels per server. The capacity of each channel is 20,000 satoshi
which is the minimum allowable channel capacity in lnd. Therefore, a server
needs 60,000 satoshi for opening these channels. While opening the channels,
there is a small fee paid to Bitcoin miners since channel creations in LN are
on-chain transactions. We showed that, opening a channel in LN can cost as low
as 154 satoshi on both Bitcoin Testnet3 and the Mainnet.4

So the total cost of opening 3 channels for a C&C server is 60,462 satoshi.
While 462 satoshi is consumed as fees, the remaining 60,000 satoshi on the
channels is not spent, rather it is just locked in the channels. The botmaster will
get this 60,000 satoshi back after closing the channels. Therefore, funds locked
in the channels are non-recurring investment cost for the formation of LNBot.
Only real associated cost of forming LNBot is the channel opening fees.

Table 1 shows how the costs change when the number of C&C servers is
increased. The increase in the cost is linear and for 100 C&C servers, the on-
chain fees is only 0.000462 Bitcoin ($3 at current Bitcoin price of $6700).

5.2 Cost and Time Analysis of Command Propagation

To assess the command propagation overhead, we sent the following SYN flood-
ing attack command to C&C servers from the botmaster (omitting start and
end of command characters):

sudo hping3 -i u1 -S -p 80 -c 10 192.168.1.1

3 Check LNB6’s channel (1735152493945290752) opening transaction for instance:
fc46c99233389d24c4fd9517cd503f08265c517a6f0570d806e7cc98b7f7963b.

4 In a similar way, check one of our mainnet node’s channel opening transaction:
1d81b6022ff1472939c4db730ca01b82d43b616e757d799aea17ee0db6427520.

https://1ml.com/testnet/channel/1735152493945290752
https://blockstream.info/testnet/tx/fc46c99233389d24c4fd9517cd503f08265c517a6f0570d806e7cc98b7f7963b
https://blockstream.info/tx/1d81b6022ff1472939c4db730ca01b82d43b616e757d799aea17ee0db6427520

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 747

Table 1. Channel opening fees for different number of C&C servers

Number of C&C servers Channel opening fees

10 0.0000462 Bitcoin

25 0.0001155 Bitcoin

50 0.000231 Bitcoin

100 0.000462 Bitcoin

Table 2. Obtained
codebook for Huffman
coding

‘s’ 234‘n’233‘o’232‘h’231

‘d’224‘g’223‘c’222‘9’ 221

‘6’214‘2’213‘3’212‘u’211

‘p’144‘i’ 143‘8’142‘0’ 141

‘.’ 24 ‘1’12 ‘-’ 13 ‘E’4

‘’ 11 ‘S’3

Table 3. Respective ASCII and Huffman encoding repre-
sentation of ‘sudo hping3 -i u1 -S -p 80 -c 10 192.168.1.1’
command

Command ASCII encoding Quaternary Huffman

encoding

‘sudo’ 115, 117, 100, 111, 322, 3, 4, 2, 1, 1, 2, 2, 4,

2, 3, 2, 1, 1

‘hping3’ 104, 112, 105, 2, 3, 1, 1, 4, 4, 1, 4, 3,

2, 3, 3

110, 103, 51, 32 2, 2, 3, 2, 1, 2, 1, 1

‘-i ’ 45, 105, 32 1, 3, 1, 4, 3, 1, 1

‘u1’ 117, 49, 32 2, 1, 1, 1, 2, 1, 1

‘-S ’ 45, 83, 32 1, 3, 3, 1, 1

‘-p ’ 45, 112, 32 1, 3, 1, 4, 4, 1, 1

‘80’ 56, 48, 32 1, 4, 2, 1, 4, 1, 1, 1

‘-c ’ 45, 99, 32 1, 3, 2, 2, 2, 1, 1

‘10’ 49, 48, 32 1, 2, 1, 4, 1, 1, 1

‘192.168.1.1’ 49, 57, 50, 46, 49 1, 2, 2, 2, 1, 2, 1, 3, 2,

4, 1, 2, 2

54, 56, 46, 49, 46, 49 1, 4, 1, 4, 2, 2, 4, 1, 2,

2, 4, 1, 2

Total number of payments44 108

Total cost 2813 215

We sent this command using both of the encoding methods we proposed
earlier. For Huffman coding, we compared several different base number systems.
The best result was obtained by using the Quaternary numeral system, the
codebook of which is shown in Table 2.

Cost Analysis: The botmaster spent 2813 satoshi for sending the SYN flooding
command using the ASCII encoding while this cost is only 215 satoshi with the
Huffman coding. Table 3 gives details about the number of payments and how
many satoshi have been sent in each payment. While in both cost cases the
botmaster will be reimbursed at the very end, we would like to note that the
lifetime of the channels is closely related with these costs. In case of the ASCII
encoding, the initial funds will be spent faster and the botmaster needs to re-
configure (or re-balance) the channels for continuous operation of the botnet. In
case of the Huffman coding, this is not the case as the consumption of the channel
funds is much slower. So, we can see that if channel lifetime is an important factor

748 A. Kurt et al.

for the botmaster, the Huffman coding could be preferred. In other words, the
Huffman coding gives the botmaster the ability to perform more attacks without
creating high capacity channels.

However, the situation is reverse in case of routing fees. Table 4 shows how the
routing fees change when the number of C&C servers is increased. The increase
in the routing fees is linear for both the ASCII and Huffman coding. For 100
C&C servers, total routing fee paid is only 0.000176 Bitcoin (∼$1 at current
Bitcoin price of $6700) for ASCII while it is 0.000432 Bitcoin (∼$3 at current
Bitcoin price of $6700) for the Huffman coding. This indicates that despite its
increased routing fees, the Huffman coding is still a viable option for longer
operation of LNBot.

Table 4. Routing fees for different number of C&C servers

Number of C&C servers Routing fees (ASCII) Routing fees (Huffman)

10 0.0000176 Bitcoin 0.0000432 Bitcoin

25 0.000044 Bitcoin 0.000108 Bitcoin

50 0.000088 Bitcoin 0.000216 Bitcoin

100 0.000176 Bitcoin 0.000432 Bitcoin

Time Analysis: The propagation time of a command is calculated by multi-
plying the number of payments with the average delivery time of the payments.
To estimate the average delivery time, we sent 90 key send payments with differ-
ent amounts from botmaster to our C&C servers over LN at random times and
measured the time it takes for payments to reach their destinations. The results
are depicted in Fig. 4.

Fig. 4. Time for key send payments to
reach their destinations with varying
satoshi

As shown, key send payments took
7 s on average to reach their desti-
nations and the maximum delay was
never exceeding 10 s. This delay varies
since it depends on the path being used
and the load of each intermediary node
in the LN. We observed that the num-
ber of hops for the payments was 4,
which helps to strengthen unlinkability
of payments and destinations in case of
any payment analysis in LN.

Using an average of 7 s, the total
propagation time for the ASCII-
encoded payments is 7 × 44 = 308 s
while it is 7 × 108 = 756 s for the
Huffman coding. The Huffman coding reduces the cost of sending the command,
but increases the communication delays which is not critical in performing the
attack.

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 749

5.3 Comparison of LNBot with Other Similar Botnets

We also considered other existing botnets that utilize Bitcoin for their command
and control. Using our SYN flooding attack command, we computed their cost
and command propagation times to compare them with LNBot. We also included
their scalability features. Table 5 shows these results.

Table 5. Time, cost and scalability comparison of LNBot with similar botnets

Botnet Cost Time Scalability

Bitcoin testnet botnet [10] 51349 satoshi (Testnet) ∼10min Low, thousands of bots

Zombiecoin 2.0 [3] 10000 satoshi ∼10 s Low, thousands of bots

LNBot 10 satoshi ∼5min High, millions of bots

As seen, LNBot comes with minimal costs with a reasonable propagation time
for attacks and can scale to millions of nodes with its two-layer architecture.

6 Security and Anonymity Analysis and Countermeasures

In this section, we discuss security properties of LNBot and possible counter-
measures to detect its activities in order to minimize its impacts.

• Taking LN down: Obviously, the simplest way to eliminate LNBot’s activities
is taking down the LN as a whole once there is any suspicion about a botnet.
However, this is very unlikely due to LN being a very resilient decentralized
payment channel network. In addition, today many applications are running on
LN and shutting down may cause a lot of financial loss for numerous stakeholders.

• Compromising and shutting down a C&C Server: In LNBot there are many
C&C servers each of which is controlling a mini-botnet. Given the past experi-
ence with various traditional botnets, it is highly likely that these mini-botnets
will be detected at some point in the future paving the way for also the detection
of a C&C server. This will then result in the revelation of its location/IP address
and eventually physical seizure of the machine by law enforcement. Nevertheless,
the seizure of a C&C server will neither reveal the identity of the LNBot botmas-
ter nor other C&C servers since a C&C server receives the commands through
onion routed payments catered with Sphinx’s secure packet format, which does
not reveal the original sender of the message. Additionally, the communication
between botmaster and C&C servers is 1-way meaning that botmaster can talk
to C&C servers, but servers cannot talk back since the LN address of the botmas-
ter is not known by them. This 1-way communication ensures that the identity
of the botmaster will be kept secret at all times.

Note that since the C&C servers hold the LN public key of the collector, it
will also be revealed when a C&C server is compromised. However, since the
collector node’s channels are all private, its IP address or location is not known

750 A. Kurt et al.

by the C&C servers. Therefore, learning the LN public key of the collector node
does not help locating the collector node physically. The only possibility is to
continue monitoring a C&C server when it is compromised and as soon as it
makes a payment (to collector), we can try to do a timing analysis on certain
random nodes that are under our control to determine if one of them would
be forwarding the same amount of money and happens to have a channel with
the collector node. In that case, that node will know the IP address of the
collector since they have a channel. While this possibility is very low, even if
we are successful, the collector can always hide its IP address through certain
mechanisms such as VPN or Tor. Eventually, we can see that taking down a
single C&C server shuts down the botnet partially resulting in less damage to
victims.

• Payment flow timing analysis for detecting the botmaster: As explained in
Sect. 2.5, the intermediary nodes in a payment path do not know the origin
of the payment; therefore they cannot distinguish between the botmaster and
a regular forwarding node on the payment path unless the payment path just
consists of 1-hop [6]. In our tests, we observed that our payments took 4 hops
to reach C&C servers. Therefore, payment analysis for such multiple hops is a
challenge. However, it can help increase our chances to detect the botmaster.

Potential

Botmaster

100 sat

Compromised

Node C

100 sat

100 sat 100 sat

Node ENode D

Node A Node B

Node F

Compromised

50 sat

50 sat 50 sat

50 sat

C&CCompromised

Fig. 5. The payments that are forwarded
by Node A and Node D are monitored by
an observer and the C&C server is com-
promised. Red arrows show the payment
channels between the nodes and the green
arrows show the flow of the payment

To further investigate this attack
scenario, a topology of 8 nodes was
created on Bitcoin Testnet as shown
in Fig. 5. We assume that Node A,
Node D and the C&C server are com-
promised and thus we monitored their
payments. In this setup, a 100 satoshi
payment was sent from the botmaster
to the C&C server through hops Node
A, Node B, and Node C and the pay-
ment was monitored at Node A. By
monitoring the node, we got the pay-
ment forwarding information shown in
Fig. 6.

In the same way, another 50 satoshi
payment was sent from the botmaster
to the same C&C server following hops
Node D, Node E, and Node F and the
payment was monitored at Node D.
Similar payment forwarding informa-
tion is obtained at node D. Here, particularly important information for us is
the timestamp of the payment, and the chan id in and the chan id out argu-
ments which represent the ID of the payment channels that carry the payment
in and out from Node A. We can query these channel IDs to learn the public keys
of the nodes at both ends of the channel by running lncli getchaninfo chan id.
Obtained LN public keys at Node A, in this case, belong to potential botmaster

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 751

and Node B. In the same way, LN public keys of potential botmaster and Node
E is obtained at Node D. After the payment is observed at Node A, payment
with the same amount was observed at the C&C server. We now correlated these
two payments (i.e., timing analysis) and suspected that the sender to Node A
(or D) can be a potential botmaster. Obviously, there is no guarantee for this
(e.g., imagine a different topology where real botmaster is 2 more hops away).
We need to collect more data from many compromised nodes and continue this
analysis for a long time. To increase the chances, well-connected LN nodes could
be requested to cooperate in case of law enforcement investigation to share the
timing of payments passing from them.

Fig. 6. The payment forwarding information
stored on Node A’s local database in JSON format
as the output of the command lncli fwdinghistory

• Poisoning Attack: Another
effective way to counter the bot-
master is through message poi-
soning. Basically, once a C&C
server is compromised, its pub-
lic keys will be known. Using
these public keys one can send
payments to C&C servers to
corrupt the messages sent by
the botmaster at the right time.
There is currently no authenti-
cation mechanism that can be
used by the botmaster without
being exposed to prevent this
issue. Recall that the commands

are encoded in a series of payments and when a different payment is sent during a
command transmission, it will corrupt the syntax and thus eventually there will
not be any impact. The right time will be decided by listening to the payments
and packets arriving at the C&C server. The disadvantage of this, however, is
that one needs to pay for those payments. Nonetheless, this can be an effective
way to continue engaging with the botmaster for detection purposes rather than
just shutting down the C&C server while rendering any attack impossible.

• Analysis of on-chain transactions: Another countermeasure could be through
analyzing the on-chain funding transfers of C&C servers (i.e., channel cre-
ation transactions stored on blockchain). For such forensic analysis, the Bitcoin
addresses of the C&C servers should be known. As with many other real-life bot-
nets, botmasters generally use Bitcoin mixers to hide the source of the Bitcoins.
Usage of such mixers makes it very hard to follow the real source of the Bitcoins
since the transactions are mixed between the users using the mixer service. Even
though the chances of finding the identity of the botmaster through this analysis
is low, it can provide some useful information to law enforcement.

752 A. Kurt et al.

7 Related Work

Botnets have been around for a long time and there have been even surveys
classifying them [5,12]. While early botnets used IRC, later botnets focused on
P2P C&C for resiliency. Furthermore, Tor has also been used for a botnet C&C
but it is shown that botnet activity over Tor can be exposed due to the recogniz-
able patterns in the C&C communication [8]. Our proposed LNBot falls under
covert botnets which became popular much later. As an example, Nagaraja et al.
proposed Stegobot, a covert botnet using social media networks as a command
and control channel [19]. Some work has been done by Natarajan et al. to detect
Stegobot [20]. Pantic et al. proposed a covert botnet command and control using
Twitter [23]. Tsiatsikas et al. proposed SDP-Based Covert Channel for Botnet
Communication [30]. Calhoun et al. presented a MAC layer covert channel based
on WiFi [7].

Recent covert botnets started to utilize Blockchain although these are very
few. For instance, Roffel et al. [27] came up with the idea of controlling a com-
puter worm using the Bitcoin blockchain. [29] discusses how botnet resiliency
can be enhanced using private blockchains. Pirozzi et al. presented the use of
blockchain as a command and control center for a new generation botnet [25].
Similarly, ChainChannels [11] utilizes Bitcoin to disseminate C&C messages to
the bots. These works are different from our architecture as they suffer from the
issues of high latency and public announcement of commands. There are also
Unblockable Chains [32], and BOTRACT [18], which are Ethereum-based bot-
net command and control infrastructures that suffer from anonymity issues since
the commands are publicly recorded on the blockchain. Baden et al. [4] proposed
a botnet C&C scheme utilizing Ethereum’s Whisper messaging. However, it is
still possible to blacklist the topics used by the botmaster. Additionally, there is
not a proof of concept implementation of the proposed approach yet, therefore
it is unknown if the botnet can successfully be deployed or not.

The closest work to ours are ZombieCoin [2] and Bitcoin Testnet botnet [10].
ZombieCoin uses Bitcoin transaction spreading mechanism as the C&C commu-
nication infrastructure. In this study, the botmaster announces the commands
to the bots in terms of legitimate Bitcoin transactions on the Bitcoin network.
Then, any legitimate Bitcoin nodes that receive these transactions check the cor-
rectness of the input address, the digital signature, and in&out Bitcoin amounts
of the transaction. The bots extract the concealed commands from these trans-
actions. However, this scheme has several drawbacks: First, the authors assumed
that the bots identify related transactions from the botmaster’s Bitcoin address,
which Bitcoin miners can blacklist. Second, as in the case of other blockchain-
based botnets, because all transactions are publicly announced, it leaves a pub-
lic record about the botnet activity. To resolve this problem, in a further study
they also proposed to employ subliminal channels [3] to cover the botmaster.
However, subliminal channels require a lot of resources to calculate required sig-
natures which is computationally expensive and not practical to use on a large
scale.

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 753

Bitcoin Testnet botnet is a recently proposed botnet [10], where Bitcoin Test-
net is utilized for controlling the botnet. Even though their C&C communication
is encrypted, non-standard Bitcoin transactions used for communication exposes
the botnet activity. Once the botnet is detected, the messages coming from the
botmaster can be prevented from spreading, consequently stopping the botnet
activity. Additionally, it is possible for Bitcoin developers to reset the current
Bitcoin Testnet (i.e., Testnet3) and create a new Bitcoin testnet (e.g., Testnet4)
to stop the botnet completely.

In contrast, our work is based on legitimate LN payments and does not
require any additional computation to hide the commands. Also, these com-
mands are not announced publicly. Moreover, LNBot offers very unique advan-
tage for a botnet that does not contain any direct relation with C&C. This means
even C&C itself is not aware of the botmaster due to LN’s anonymous multi-
hop structure. As a result, LNBot does not carry any mentioned disadvantages
through its two-layer hybrid architecture and provides ultra scalability and high
anonymity compared to others.

8 Conclusion

LN has been formed as a new payment network to address the drawbacks
of Bitcoin transactions in terms of time and cost. In addition to relationship
anonymity, LN significantly reduces fees by performing off-chain transactions.
This provides a perfect opportunity for covert communications as no transac-
tions are recorded in the blockchain. Therefore, in this paper, we proposed a
new covert hybrid botnet by utilizing the LN payment network formed for Bit-
coin operations. The idea was to control the C&C servers through messages
that are sent in the form of payments through the LN. The proof-of-concept
implementation of this architecture indicated that LNBot can be successfully
created and commands for attacks can be sent to C&C servers through LN with
negligible costs yet with very high anonymity. To minimize LNBot’s impact, we
offered several countermeasures that include the possibility of searching for the
botmaster.

References

1. 1ml.com: Lightning network search and analysis engine (2019). https://1ml.com/
2. Ali, S.T., McCorry, P., Lee, P.H.-J., Hao, F.: ZombieCoin: powering next-

generation botnets with bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff,
K. (eds.) FC 2015. LNCS, vol. 8976, pp. 34–48. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48051-9 3

3. Ali, S.T., McCorry, P., Lee, P.H.J., Hao, F.: Zombiecoin 2.0: managing next-
generation botnets using bitcoin. Int. J. Inf. Secur. 17(4), 411–422 (2018)

4. Baden, M., Torres, C.F., Pontiveros, B.B.F., State, R.: Whispering botnet com-
mand and control instructions. In: 2019 Crypto Valley Conference on Blockchain
Technology (CVCBT), pp. 77–81. IEEE (2019)

https://1ml.com/
https://doi.org/10.1007/978-3-662-48051-9_3

754 A. Kurt et al.

5. Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A survey of botnet tech-
nology and defenses. In: Cybersecurity Applications & Technology Conference For
Homeland Security, CATCH 2009, pp. 299–304. IEEE (2009)

6. Béres, F., Seres, I.A., Benczúr, A.A.: A cryptoeconomic traffic analysis of bitcoins
lightning network. arXiv preprint arXiv:1911.09432 (2019)

7. Calhoun Jr, T.E., Cao, X., Li, Y., Beyah, R.: An 802.11 MAC layer covert channel.
Wirel. Commun. Mob. Comput. 12(5), 393–405 (2012)

8. Casenove, M., Miraglia, A.: Botnet over tor: the illusion of hiding. In: 2014 6th
International Conference On Cyber Conflict (CyCon 2014), pp. 273–282. IEEE
(2014)

9. Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In:
2009 30th IEEE Symposium on Security and Privacy, pp. 269–282. IEEE (2009)

10. Franzoni, F., Abellan, I., Daza, V.: Leveraging bitcoin testnet for bidirectional
botnet command and control systems. In: Bonneau, J., Heninger, N. (eds.) FC
2020. LNCS, vol. 12059, pp. 3–19. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 1

11. Frkat, D., Annessi, R., Zseby, T.: Chainchannels: private botnet communi-
cation over public blockchains. In: IEEE ITHINGS-GREENCOM-CPSCOM-
SMARTDATA 2018, pp. 1244–1252. IEEE (2018)

12. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer
botnets: overview and case study. In: HotBots 2007, p. 1 (2007)

13. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. IRE 40(9), 1098–1101 (1952)

14. Learning Labs: Bolt #4: onion routing protocol (2019). https://github.com/
lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md

15. Learning Labs: Lightning network daemon (2019). https://lightning.engineering
16. Learning Labs: LND gRPC API reference (2019). https://api.lightning.

community/
17. Learning Labs: Sample lnd.conf (2019). https://github.com/lightningnetwork/lnd/

blob/master/sample-lnd.conf
18. Malaika, M.: Botract (2017). https://sector.ca/wp-content/uploads/

presentations17/Majid-Malaika-Botract SecTor.pdf
19. Nagaraja, S., Houmansadr, A., Piyawongwisal, P., Singh, V., Agarwal, P., Borisov,

N.: Stegobot: a covert social network botnet. In: Filler, T., Pevný, T., Craver, S.,
Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 299–313. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24178-9 21

20. Natarajan, V., Sheen, S., Anitha, R.: Multilevel analysis to detect covert social
botnet in multimedia social networks. Comput. J. 58(4), 679–687 (2015)

21. Ollmann, G.: Botnet communication topologies (2009). Accessed 30 Sept 2009
22. Osuntokun, O.: New draft sphinx send mode for spontaneous payments (2019).

https://github.com/lightningnetwork/lnd/pull/2455
23. Pantic, N., Husain, M.I.: Covert botnet command and control using Twitter. In:

Proceedings of the 31st Annual Computer Security Applications Conference, pp.
171–180. ACM (2015)

24. Pass, R., et al.: Micropayments for decentralized currencies. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
207–218. ACM (2015)

25. Pirozzi, A., Paganini, P.: Experts presented botchain, the first fully functional bot-
net built upon the bitcoin protocol (2018). https://securityaffairs.co/wordpress/
77395/malware/botchain-botnet-bitcoin-protocol.html

http://arxiv.org/abs/1911.09432
https://doi.org/10.1007/978-3-030-51280-4_1
https://doi.org/10.1007/978-3-030-51280-4_1
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://lightning.engineering
https://api.lightning.community/
https://api.lightning.community/
https://github.com/lightningnetwork/lnd/blob/master/sample-lnd.conf
https://github.com/lightningnetwork/lnd/blob/master/sample-lnd.conf
https://sector.ca/wp-content/uploads/presentations17/Majid-Malaika-Botract_SecTor.pdf
https://sector.ca/wp-content/uploads/presentations17/Majid-Malaika-Botract_SecTor.pdf
https://doi.org/10.1007/978-3-642-24178-9_21
https://github.com/lightningnetwork/lnd/pull/2455
https://securityaffairs.co/wordpress/77395/malware/botchain-botnet-bitcoin-protocol.html
https://securityaffairs.co/wordpress/77395/malware/botchain-botnet-bitcoin-protocol.html

LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network 755

26. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2015). https://lightning.network/lightning-network-paper.pdf

27. Roffel, D., Garrett, C.: A novel approach for computer worm control using decen-
tralized data structures (2014)

28. Silva, S.S., Silva, R.M., Pinto, R.C., Salles, R.M.: Botnets: a survey. Comput. Netw.
57(2), 378–403 (2013)

29. Sweeny, J.: Botnet resiliency via private blockchains (2017). https://www.sans.org/
reading-room/whitepapers/covert/botnet-resiliency-private-blockchains-38050

30. Tsiatsikas, Z., Anagnostopoulos, M., Kambourakis, G., Lambrou, S., Geneiatakis,
D.: Hidden in plain sight. SDP-based covert channel for botnet communication. In:
Fischer-Hübner, S., Lambrinoudakis, C., Lopez, J. (eds.) TrustBus 2015. LNCS,
vol. 9264, pp. 48–59. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22906-5 4

31. Wang, P., Wu, L., Aslam, B., Zou, C.C.: A systematic study on peer-to-peer bot-
nets. In: 2009 Proceedings of 18th International Conference on Computer Commu-
nications and Networks, pp. 1–8. IEEE (2009)

32. Zohar, O.: Unblockable chains (2018). https://github.com/platdrag/
UnblockableChains

https://lightning.network/lightning-network-paper.pdf
https://www.sans.org/reading-room/whitepapers/covert/botnet-resiliency-private-blockchains-38050
https://www.sans.org/reading-room/whitepapers/covert/botnet-resiliency-private-blockchains-38050
https://doi.org/10.1007/978-3-319-22906-5_4
https://doi.org/10.1007/978-3-319-22906-5_4
https://github.com/platdrag/UnblockableChains
https://github.com/platdrag/UnblockableChains

Author Index

Abu Jabal, Amani I-523
Agrawal, Shweta I-42
Aiolli, Fabio II-165
Akkaya, Kemal II-734
Alcaraz, Cristina I-174
Alves, Fernando I-217
Andongabo, Ambrose I-217
Aparicio-Sánchez, Damián II-230
Ateniese, Giuseppe I-502
Au, Man Ho I-591
Ayday, Erman I-110

Bai, Guangdong I-399
Balagani, Kiran I-720
Belleville, Nicolas I-440
Bernaschi, Massimo I-502
Bertino, Elisa I-523
Bessani, Alysson I-217
Beyah, Raheem I-257
Bossuat, Angèle I-193
Boyen, Xavier II-336
Brasser, Ferdinand I-377
Bultel, Xavier I-193

Cachin, Christian I-133
Cagli, Eleonora I-440
Calo, Seraphin I-523
Calzavara, Stefano I-23, II-421
Camtepe, Seyit I-569
Cao, Yang I-655
Cardaioli, Matteo I-720
Cebe, Mumin II-734
Chen, Bo I-67
Chen, Chen I-399
Chen, Kai I-338
Chen, Li I-461
Chen, Liwei I-338
Chen, Wenzhi I-257
Chen, Xiaofeng I-611
Chen, Xiaojun I-419
Chen, Xihui II-185
Chen, Yu I-591
Chiang, Yu-Hsi II-251

Chow, Ka-Ho I-545, II-460
Ciampi, Michele II-590
Cohen, Dvir I-88
Collins, Daniel I-133
Compagna, Luca I-23
Conti, Mauro I-277, I-720, II-165
Cornélie, Marie-Angela I-440
Cortier, Véronique II-3
Costache, Anamaria II-546
Couroussé, Damien I-440
Crain, Tyler I-133
Curtis, Caitlin I-399

Dalskov, Anders II-654
Delaune, Stéphanie II-3
Deng, Robert H. I-3
Dmitrienko, Alexandra I-377
Dong, Ye I-419
Dreier, Jannik II-3
Du, Yunlan I-316
Dumas, Cécile I-440
Duong, Dung Hoang II-107
Duong, Tuyet II-697

Elovici, Yuval I-88
Erdin, Enes II-734
Erkin, Zekeriya II-378
Ersoy, Oğuzhan II-378
Escobar, Santiago II-230
Esgin, Muhammed F. II-378

Fan, Lei II-697
Fang, Binxing I-419
Ferrara, Pietro II-421
Ferreira, Pedro M. I-217
Fouque, Pierre-Alain I-193
Fu, Lirong I-257

Garg, Rachit I-42
Gashi, Ilir I-217
Gasti, Paolo I-720
Gilboa-Markevich, Nimrod II-42
Gramoli, Vincent I-133

Große-Kampmann, Matteo II-272
Guo, Fuchun I-611
Gursoy, Mehmet Emre I-480, I-545, II-460
Gutiérrez, Raúl II-230

Haines, Thomas II-336
Halimi, Anisa I-110
Hanaoka, Goichiro II-65, II-674
Hayata, Junichiro II-674
Holz, Marco II-401
Holz, Thorsten II-272
Hou, Botao II-131
Hou, Y. Thomas II-610
Hranický, Radek I-701
Hsiao, Hsu-Chun II-251
Huang, Weiqing I-295
Huang, Xinyi I-3
Humayed, Abdulmalik I-153

Jancar, Jan II-209
Janovsky, Adam II-505
Ji, Shouling I-257
Jiang, Jianguo I-295
Jiang, Weipeng I-359
Jin, Hongxia I-655
Jing, Jiwu I-67
Johnsten, Tom I-461

Kamp, Manuel I-88
Karayannidis, Nikos II-590
Katz, Jonathan II-697
Keller, Marcel II-654
Këpuska, Ema II-185
Kiayias, Aggelos II-590
Kim, Tiffany Hyun-Jin II-251
Kiss, Ágnes II-401
Ko, Ryan K. L. I-399
Koisser, David I-377
Kolář, Dušan I-701
Komatsu, Misaki II-65
Küennemann, Robert II-525
Kumar, Nishant I-42
Kurt, Ahmet II-734
Kutyłowski, Mirosław I-736

Laine, Kim II-546
Lauks-Dutka, Anna I-736

Law, Mark I-523
Le, Huy Quoc II-107
Lee, Wei-Han I-257
Li, Fengjun I-153
Li, Gang I-295
Li, Gengwang I-295
Li, Jin I-461, II-610
Li, Jinfeng I-338
Li, Weiping II-146
Li, Xue I-399
Li, Yongqiang II-131
Lin, Jingqiang I-153
Lin, Yueh-Hsun I-316
Liu, Chao I-295
Liu, Jinfei I-655
Liu, Limin I-67
Liu, Ling I-480, I-545, II-460
Liu, Peiyu I-257
Liu, Wenling II-357
Liu, Zhen II-357
Lobo, Jorge I-523
Loh, Jia-Chng I-3
Loper, Margaret I-545
Lopez, Javier I-174
Lou, Jiadong I-461
Lou, Wenjing II-610
Lu, Kangjie I-257
Lu, Tao I-257
Lu, Yuan II-713
Lucchese, Claudio II-421
Luo, Bo I-153
Lv, Bin I-295
Lv, Zhiqiang I-295
Lyerly, Robert I-237

Ma, Xuecheng I-591
Maingault, Laurent I-440
Mao, Bing I-316
Martin, Tobias I-88
Masure, Loïc I-440
Matsuura, Kanta II-674
Matyas, Vashek II-505
Mauw, Sjouke II-185
McMurtry, Eleanor II-23
Meng, Dan I-338
Mikuš, Dávid I-701
Mirsky, Yisroel I-88

758 Author Index

Mo, Tong II-146
Mosli, Rayan II-439
Müller, Johannes II-336

Nemati, Hamed II-525
Nemec, Matus II-505
Nepal, Surya I-569
Neureither, Jens I-377
Nguyen, Khoa II-357
Ning, Jianting I-3
Ning, Zhenyu I-316

Ohara, Kazuma II-65
Oleynikov, Ivan I-677
Onete, Cristina I-193
Orlandi, Claudio II-654

Pagnin, Elena I-677
Pan, Jiaxin II-485
Pan, Yin II-439
Park, Jeongeun II-86
Pasquini, Dario I-502
Paul, Sebastian II-295
Pereira, Olivier II-23
Picek, Stjepan II-165
Pieprzyk, Josef II-107
Pijnenburg, Jeroen I-635
Player, Rachel II-546
Poettering, Bertram I-635
Poh, Geong Sen I-3
Pohlmann, Norbert II-272
Polato, Mirko II-165
Prabhakaran, Manoj I-42
Puzis, Rami I-88

Ramírez-Cruz, Yunior II-185
Rathee, Deevashwer II-401
Ravindran, Binoy I-237
Ringerud, Magnus II-485
Rios, Ruben I-174
Roman, Rodrigo I-174
Ruan, Na II-569
Rubio, Juan E. I-174
Russo, Alessandra I-523
Ryšavý, Ondřej I-701

Sabelfeld, Andrei I-677
Sadeghi, Ahmad-Reza I-377
Sakai, Yusuke II-65

Sapiña, Julia II-230
Scheible, Patrik II-295
Schneider, Thomas II-401
Schuldt, Jacob C. N. II-674
Sedlacek, Vladimir II-209
Sekan, Peter II-505
Shabtai, Asaf I-88
Shen, Jun I-611
Shen, Liyan I-419
Shen, Yilin I-655
Shi, Gang I-338
Shi, Jinqiao I-419
Shrishak, Kris II-654
Shulman, Haya II-654
Su, Chunhua II-569
Sultan, Nazatul Haque I-569
Sun, Hanyi II-569
Susilo, Willy I-611, II-107
Svenda, Petr II-209, II-505

Takagi, Shun I-655
Tang, Cong I-591
Tang, Qiang II-713
Tatang, Dennis II-272
Teague, Vanessa II-23
Thai, Phuc II-697
Tian, Haibo II-317
Tian, Linan I-338
Tibouchi, Mehdi II-86
Tolpegin, Vale I-480
Tricomi, Pier Paolo I-277
Truex, Stacey I-480, I-545, II-460
Tsudik, Gene I-277
Tzeng, Nian-Feng I-461

Uluagac, A. Selcuk II-734
Urban, Tobias II-272

van der Merwe, Thyla I-193
Varadharajan, Vijay I-569
Verma, Dinesh I-523
Veronese, Lorenzo I-23

Wang, Guiling II-713
Wang, Xiaoguang I-237
Wang, Zhilong I-316
Wei, Wenqi I-545, II-460
Weng, Jian I-3
Wool, Avishai II-42

Author Index 759

Wright, Matthew II-439
Wu, Bin I-359, II-131
Wu, Bo II-146
Wu, Yanzhao I-545, II-460

Xiao, Yang II-610
Xiao, Yonghui I-655
Xing, Xinyu I-316
Xiong, Li I-655
Xu, Jun I-316
Xu, Qizhen I-338
Xu, Shengmin I-3
Xu, Xiaofeng I-655
Xue, Rui I-359

Yamada, Shota II-65
Yang, Guomin II-357
Yoshikawa, Masatoshi I-655
You, Weijing I-67
Yu, Chia-Mu II-251
Yu, Min I-295

Yu, Xingxin I-359
Yu, Yu II-357
Yu, Zhengmin I-359
Yuan, Bo II-439
Yuan, Xu I-461
Yung, Moti I-736

Zhang, Fangguo II-317
Zhang, Fengwei I-316
Zhang, Ning II-610
Zhang, Rong II-146
Zhang, Xuhong I-257
Zhang, Yanjun I-399
Zhang, Yihe I-461
Zhang, Zhuoran II-317
Zhao, Haoyue II-131
Zhao, Yunlei II-633
Zhou, Hong-Sheng II-697
Zhou, Qifei II-146
Zindros, Dionysis II-590
Zobal, Lukáš I-701

760 Author Index

	Preface
	Organization
	Keynotes
	Decentralising Information and Communications Technology: Paradigm Shift or Cypherpunk Reverie?
	Lattices and Zero-Knowledge
	Accountability in Computing
	Contents – Part II
	Contents – Part I
	Formal Modelling
	Automatic Generation of Sources Lemmas in Tamarin: Towards Automatic Proofs of Security Protocols
	1 Introduction
	2 Overview
	3 Tamarin Syntax and Semantics
	3.1 Term Algebra
	3.2 Transition System
	3.3 Execution Traces
	3.4 Properties

	4 Automatically Generated Sources Lemmas
	4.1 Definitions
	4.2 Algorithm
	4.3 Dealing with Composed Rules

	5 Implementation and Experimental Evaluation
	6 Conclusion
	A Proofs of Theorems 1 and 2
	References

	When Is a Test Not a Proof?
	1 Introduction
	1.1 Addressing the Problem
	1.2 Our Contribution

	2 The Jakobsson-Juels PET
	2.1 Plaintext Equivalence Test
	2.2 Why the PET Is Not a Proof

	3 Flaws in a Practical Implementation of the PEP
	3.1 Use of Zero Knowledge Proofs (ZKPs)
	3.2 Making Equivalent Ciphertexts Look Different
	3.3 Making Encryptions of Different Messages Look Equivalent
	3.4 Summary and Implications of These Vulnerabilities

	4 Why this Undermines Universal Verifiability in JCJ/Civitas and Other Protocols
	4.1 JCJ/Civitas
	4.2 A Linear-Time Enhancement to JCJ
	4.3 Introduction to Cryptography Textbook
	4.4 Pretty Good Democracy
	4.5 Selections
	4.6 Cobra
	4.7 Caveat Coercitor
	4.8 Universally Verifiable Auctions

	5 Correcting the Problems to Achieve UV
	5.1 The Fiat-Shamir Transform
	5.2 The Correct Plaintext Equivalence Proof
	5.3 Security Proof for the Corrected PEP

	6 Discussion and Conclusion
	References

	Hardware Fingerprinting for the ARINC 429 Avionic Bus
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contributions

	2 Preliminaries
	2.1 The ARINC 429 Standard
	2.2 The Adversary Model

	3 The Data Set
	4 The Hardware Fingerprinting Approach
	4.1 IDS Overview
	4.2 Anomaly Detection per Segment
	4.3 Voting
	4.4 Suspicion Counter

	5 Signal Segmentation
	6 Feature Sets
	7 Detection Based on a Single Word
	7.1 Methodology
	7.2 Identifying a Rogue Transmitter

	8 Modeling the Suspicion Counter
	9 Performance of the Complete Method
	10 Conclusions
	References

	Applied Cryptography I
	Semantic Definition of Anonymity in Identity-Based Encryption and Its Relation to Indistinguishability-Based Definition
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Identity-Based Key Encapsulation Mechanism
	2.2 Security Definitions for IB-KEM

	3 Simulation-Based Definition of Anonymity
	3.1 Defining Ano-SS for IB-KEM
	3.2 Proof that Ano-SS Implies Ano-LOR

	4 Equivalence Between Ano-LOR and Ano-SS
	5 Discussion
	A Attempt to Define Anonymity Based on Goldwasser and Micali's Approach
	References

	SHECS-PIR: Somewhat Homomorphic Encryption-Based Compact and Scalable Private Information Retrieval
	1 Introduction
	1.1 Achieving Efficient cPIR
	1.2 Our Contribution
	1.3 A Note on Communication Cost

	2 Basic Tools (Homomorphic Encryption Scheme)
	2.1 Homomorphic Encryption
	2.2 TLWE and TRLWE
	2.3 TRGSW and CMUX Gate
	2.4 Basic Algorithms for TFHE

	3 Overall Description
	3.1 Our PIR Protocol
	3.2 Concrete PIR Protocol (SHECS-PIR) from TFHE

	4 Implementation Details
	4.1 Reducing Communication Cost
	4.2 Comparison with Other Protocols
	4.3 Security

	5 Experimental Result
	A Optimization Options of Reducing Communication Cost
	A.1 Modulus Switching
	A.2 Smaller Polynomial Degree

	B Multi-query PIR
	References

	Puncturable Encryption: A Generic Construction from Delegatable Fully Key-Homomorphic Encryption
	1 Introduction
	2 Preliminaries
	2.1 Framework of Puncturable Encryption
	2.2 Background on Lattices

	3 Generic PE Construction from DFKHE
	3.1 Delegatable Fully Key-Homomorphic Encryption
	3.2 Generic PE Construction from DFKHE

	4 DFKHE and FE Construction from Lattices
	4.1 Key-Homomorphic Mechanism for Arithmetic Circuits
	4.2 LWE-Based DFKHE Construction
	4.3 LWE-Based PE Construction from DFKHE

	5 Discussion on Unbounded Number of Ciphertext Tags
	6 Conclusion and Future Works
	References

	Analyzing Attacks
	Linear Attack on Round-Reduced DES Using Deep Learning
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organization

	2 Preliminaries
	2.1 DES
	2.2 Linear Attack

	3 Network Architectures
	4 Attack Architecture
	4.1 One Bit Key Recovery
	4.2 Multiple Bits Key Recovery

	5 Conclusion
	References

	Detection by Attack: Detecting Adversarial Samples by Undercover Attack
	1 Introduction
	2 Background and Related Work
	2.1 Adversarial Attack
	2.2 Adversarial Defense

	3 Detection by Attack
	3.1 Adversarial Training with L-bounded FGSM
	3.2 Detecting via DBA
	3.3 Why DBA is Effective?

	4 Experiments
	4.1 Vulnerability Asymmetry Analysis
	4.2 Detecting in Detector-Unaware Scenario
	4.3 Detecting in Detector-Aware Scenario
	4.4 DBA vs. Other Detectors
	4.5 Impact of Perturbation Size and Confidence

	5 Conclusion
	References

	Big Enough to Care Not Enough to Scare! Crawling to Attack Recommender Systems
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Crawling a Recommendation-Based Website
	2.3 Datasets

	3 Related Works
	3.1 Crawling
	3.2 Shilling Attack

	4 Methodology
	4.1 Threat Model
	4.2 Crawling
	4.3 Shilling Attack on Recommender Systems
	4.4 Neighborhood Reconstruction

	5 Experiments and Results
	5.1 Crawling and Recommendation Graph Coverage
	5.2 Shilling Attack Using Crawled Information
	5.3 Neighborhood Reconstruction

	6 Conclusions and Future Work
	A Neighborhood Reconstruction: User-Based with Cosine Similarity
	B Neighborhood Reconstruction: Item-Based with Pearson's Correlation
	References

	Active Re-identification Attacks on Periodically Released Dynamic Social Graphs
	1 Introduction
	2 Related Work
	3 A Dynamic Active Attack on Periodical Graph Publication
	3.1 Notation and Terminology
	3.2 Overview
	3.3 Temporal Consistency Constraints
	3.4 Stages of the Attacker-Defender Game

	4 Experiments
	4.1 Experimental Setting
	4.2 Results and Discussion

	5 Conclusions
	A Implementation Details of Sybil Subgraph Creation and Update
	B Implementation Details of Dynamic Re-identification
	References

	System Security II
	Fooling Primality Tests on Smartcards
	1 Introduction
	2 Previous Work
	3 Attack Scenarios
	3.1 Rationale for the Attack Scenarios
	3.2 Attacks Overview

	4 Methodology for Assessing Primality Tests
	4.1 Domain Parameters
	4.2 Generating Pseudoprimes
	4.3 Generating Special Composites
	4.4 Generating Complete Domain Parameters
	4.5 ECDSA/ECDH: Prime p, Composite n
	4.6 ECDSA/ECDH: Composite p, Arbitrary n
	4.7 DSA/DH: Prime p, Composite q
	4.8 DSA/DH: Composite p, Prime q

	5 Practical Results
	6 The Attacks in Detail
	6.1 Attack on ECDSA/ECDH with Prime p and Composite n
	6.2 Attack on ECDSA/ECDH with Composite p, and Arbitrary n
	6.3 The Attack on DSA/DH with Prime p and Composite q
	6.4 The Attack on DSA/DH with Composite p and Prime q

	7 Proposed Defences
	8 Summary
	1 The Miller-Rabin Primality Test
	2 Constructing Pseudoprimes
	2.1 Generated Domain Parameters

	3 Examples of Attacks
	3.1 ECDSA/ECDH: Composite n
	3.2 ECDSA/ECDH: Composite p
	3.3 DSA/DH: Composite q
	3.4 DSA/DH: Composite p

	References

	An Optimizing Protocol Transformation for Constructor Finite Variant Theories in Maude-NPA
	1 Introduction
	2 Preliminaries
	3 The Maude-NPA
	4 Protocol Transformation
	4.1 Finite Variant Theories
	4.2 Constructor Finite Variant Theories

	5 Case Studies
	5.1 The Diffie-Hellman Protocol
	5.2 The STR Protocol
	5.3 The Joux Protocol
	5.4 The TAK Group Protocols

	6 Experiments
	7 Conclusions
	References

	On the Privacy Risks of Compromised Trigger-Action Platforms
	1 Introduction
	2 Problem Definition
	2.1 Threat Model
	2.2 Desired Properties

	3 Case Study: Privacy-Risks of IFTTT
	3.1 Background: IFTTT & Trigger-Action Platforms
	3.2 Methodology
	3.3 Results

	4 Proposed Solutions
	4.1 Obfuscated Trigger-Action Platform (OTAP)
	4.2 Anonymous Trigger-Action Platform (ATAP)
	4.3 Security Analysis

	5 Performance Evaluation
	5.1 Latency
	5.2 Goodput

	6 Discussion
	7 Related Work
	8 Conclusion
	A Formal Security Analysis
	B Triggering Delay Analysis
	C Trigger Distribution
	D Supporting Filter Code
	References

	Plenty of Phish in the Sea: Analyzing Potential Pre-attack Surfaces
	1 Introduction
	2 Background
	2.1 Advanced Persistent Threats
	2.2 MITRE Framework

	3 Advance Persistent Threat Analysis
	3.1 APT Report Analysis
	3.2 MITRE PRE-ATT&CK Analysis

	4 Measuring Data Collection Opportunities
	4.1 Data Description
	4.2 Data Collection
	4.3 Identified Data

	5 Assessing Potential Phishing Targets
	5.1 Identifying Potential Phishing Targets
	5.2 Spear Phishing Targets in the Wild

	6 Related Work
	7 Ethical Consideration
	8 Discussion and Conclusion
	A Analyzed MITRE PRE-ATT&CK Techniques
	References

	Post-quantum Cryptography
	Towards Post-Quantum Security for Cyber-Physical Systems: Integrating PQC into Industrial M2M Communication
	1 Introduction
	2 Preliminary Background
	2.1 OPC UA in Industrial Communication
	2.2 Post-quantum Cryptography

	3 Related Work
	4 Integration of PQC into OPC UA
	4.1 Hybrid OPC UA
	4.2 Post-quantum OPC UA
	4.3 Selection of Quantum-Resistant Primitives

	5 Experimental Results and Evaluation
	5.1 Implementation Notes
	5.2 Measurement Setup
	5.3 Results and Evaluation

	6 Conclusion
	A Algorithm Overview
	References

	CSH: A Post-quantum Secret Handshake Scheme from Coding Theory
	1 Introduction
	2 Preliminaries
	2.1 Linear Codes
	2.2 Goppa Codes and CFS Digital Signature System
	2.3 Stern Identification System

	3 Model and Security Properties
	4 Secret Handshake from Coding Theory
	4.1 The CSH Scheme
	4.2 Security Analysis
	4.3 Performance
	4.4 Application

	5 Conclusion
	References

	A Verifiable and Practical Lattice-Based Decryption Mix Net with External Auditing
	1 Introduction
	2 Feasibility of Post-quantum Secure Mixing
	3 Plain Decryption Mix Net
	3.1 Idea
	3.2 Protocol

	4 Trip Wire Technique
	4.1 Idea
	4.2 Protocol

	5 Verifiability
	5.1 Notation
	5.2 Verifiability Definition
	5.3 Verifiability Result

	6 Implementation
	6.1 Design
	6.2 Technical Details
	6.3 Local-Scale Performance
	6.4 Whole-System Performance

	7 Discussion
	8 Conclusion
	A Optimizations
	References

	A Lattice-Based Key-Insulated and Privacy-Preserving Signature Scheme with Publicly Derived Public Key
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminary
	2.1 Definition of Publicly Derived Public Key Scheme
	2.2 Lattice Backgrounds
	2.3 Key-Privacy in Public Key Encryption

	3 Our Lattice-Based PDPKS Construction
	3.1 Correctness
	3.2 Proof of Security
	3.3 Proof of Privacy
	3.4 Parameter Choosing
	3.5 Lattice-Based Key-Private Public Key Encryption

	4 Conclusion
	A Construct Quantumly CCA2-Secure PKE Scheme with CCA2 with IK-CCA Security
	References

	Post-Quantum Adaptor Signatures and Payment Channel Networks
	1 Introduction
	2 Preliminaries
	2.1 Security Assumptions: Module-SIS and Module-LWE
	2.2 Lattice-Based Signature and Rejection Sampling
	2.3 Adaptor Signatures

	3 LAS: An Efficient Adaptor Signature from Lattices
	3.1 Security Analysis
	3.2 Parameter Setting and Performance Analysis

	4 Applications
	4.1 Atomic Swaps
	4.2 Payment Channel Networks

	5 Conclusion
	References

	Security Analysis
	Linear-Complexity Private Function Evaluation is Practical
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Circuit-Based Secure Function Evaluation
	3.2 Private Function Evaluation
	3.3 Homomorphic Encryption

	4 Linear-Complexity Private Function Evaluation
	4.1 The ch20KM11 Protocol
	4.2 Optimizations of the ch20KM11 Protocol
	4.3 Instantiating ch20KM11 with EC ElGamal
	4.4 Instantiating ch20KM11 with BFV Homomorphic Encryption

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Evaluation

	References

	Certifying Decision Trees Against Evasion Attacks by Program Analysis
	1 Introduction
	2 Background
	2.1 Security of Supervised Learning
	2.2 Decision Trees
	2.3 Abstract Interpretation

	3 Security Verification of Decision Trees
	3.1 Threat Model
	3.2 Conversion to Imperative Program
	3.3 Proving Security by Program Analysis
	3.4 Extensions

	4 Implementation
	4.1 TreeCoder
	4.2 AttackerAnalyzer
	4.3 TreeAnalyzer

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Datasets
	5.3 Experimental Results

	6 Related Work
	7 Conclusion
	References

	They Might NOT Be Giants Crafting Black-Box Adversarial Examples Using Particle Swarm Optimization
	1 Introduction
	2 Related Work
	2.1 White-Box Attacks
	2.2 Black-Box Attacks

	3 Particle Swarm Optimization
	3.1 Conventional PSO
	3.2 Adversarial PSO

	4 Evaluation
	4.1 Setup
	4.2 Untargeted MNIST and CIFAR-10
	4.3 Untargeted Imagenet
	4.4 Targeted Imagenet
	4.5 AdversarialPSO on Adversarially Trained Models
	4.6 Swarm-Size Analysis

	5 Conclusions
	A Appendix
	References

	Understanding Object Detection Through an Adversarial Lens
	1 Introduction
	1.1 Related Work and Problem Statement
	1.2 Scope and Contribution

	2 Proposed Framework - Attack Module
	2.1 DNN-based Object Detection and Adversarial Attacks
	2.2 TOG: Targeted Objectness Gradient Attacks
	2.3 DAG: Dense Adversary Generation
	2.4 RAP: Robust Adversarial Perturbation
	2.5 UEA: Unified and Efficient Adversary

	3 Proposed Framework - Evaluation Module
	3.1 Attack Effectiveness
	3.2 Attack Cost
	3.3 Attack Transferability
	3.4 Model Applicability

	4 Experimental Analysis
	4.1 Untargeted Random Attacks
	4.2 Targeted Specificity Attacks
	4.3 Transferability of Attacks
	4.4 Model Applicability and Physical Attacks

	5 Conclusion
	A Appendix
	References

	Applied Cryptography II
	Signatures with Tight Multi-user Security from Search Assumptions
	1 Introduction
	1.1 Our Contribution: Multi-User Security from Search Assumptions

	2 Preliminaries
	2.1 The Computational Diffie-Hellman Assumption
	2.2 The Factoring Assumption
	2.3 Digital Signature

	3 Construction from the CDH Assumption
	3.1 Proof of Lemma 3

	4 Construction from the Factoring Assumption
	4.1 Proof of Lemma 5

	A On the Multi-user Security of DSA
	References

	Biased RSA Private Keys: Origin Attribution of GCD-Factorable Keys
	1 Introduction
	2 Bias in RSA Keys
	2.1 Dataset of RSA Keys
	2.2 Choice of Relevant Biased Features
	2.3 Clustering of Sources into Groups

	3 Model Selection and Evaluation
	3.1 Model Selection
	3.2 Model Evaluation

	4 Classification with Prior Information
	4.1 Performance in the Smartcards Domain
	4.2 Performance in the TLS Domain
	4.3 Performance in the Single-Prime TLS Domain
	4.4 Methodology Limitations

	5 Real-World GCD-Factorable Keys Origin Investigation
	6 Datasets of GCD-Factorable TLS Keys
	6.1 Batching of GCD-Factorable Keys
	6.2 Source Libraries Detected in GCD-Factorable TLS Keys

	7 Related Work
	8 Conclusions
	A Classifier Results Discussion and Datasets Preparation
	B Obtaining Dataset of GCD-Factorable Keys
	References

	MAC-in-the-Box: Verifying a Minimalistic Hardware Design for MAC Computation
	1 Introduction
	2 Related Work
	3 Hardware Design
	4 Security Goals
	5 Formalising the MITB
	6 Formalizing Security
	6.1 Universal Composability
	6.2 Security Definition

	7 Proof Overview
	8 Applications
	9 Conclusion
	A Two-Factor Authentication
	References

	Evaluating the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE
	1 Introduction
	2 Preliminaries
	3 BGV Noise Growth in Practice
	3.1 Noise Growth Behaviour
	3.2 Practical Experiments

	4 FV Noise Growth in Practice
	4.1 Heuristic Upper Bounds
	4.2 Practical Experiments

	5 Updated Comparison Between BGV and FV
	6 Improving the Heuristic-to-practical Gap
	A The BGV scheme
	B The FV scheme
	References

	Blockchain I
	How to Model the Bribery Attack: A Practical Quantification Method in Blockchain
	1 Introduction
	2 Background
	2.1 Bitcoin Mining Process
	2.2 Double-Spending
	2.3 Bribery Attack

	3 Quantitative Analysis
	3.1 General Model
	3.2 Analysis of Existing Models
	3.3 Observation

	4 Model Design
	4.1 Assumptions
	4.2 Strategies
	4.3 Profit Calculations

	5 Simulation and Analysis
	5.1 Scenario
	5.2 Result and Analysis

	6 Defensive Strategy for Bribery Attack
	7 Conclusion
	References

	Updatable Blockchains
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques

	2 The Model
	2.1 Ledger Consensus: Model
	2.2 Genesis Block Functionality

	3 Secure Updatable Ledgers
	3.1 Defining Secure Updatable Ledgers

	4 Our Constructions
	4.1 First Approach
	4.2 Second Approach

	A Modeling Synchrony
	B Functionalities with Dynamic Party Sets
	References

	PrivacyGuard: Enforcing Private Data Usage Control with Blockchain and Attested Off-Chain Contract Execution
	1 Introduction
	2 Background
	3 PrivacyGuard Overview
	3.1 System Goal and Architecture
	3.2 PrivacyGuard High-Level Workflow
	3.3 Threat Model and Assumptions

	4 Data Market of User-Defined Usage with Blockchain
	4.1 Encoding Data Usage Policy with Smart Contract
	4.2 Using Data Broker to Address the On-Chain Scalability Challenge

	5 Off-Chain Contract Execution
	5.1 Establishing Trust on the Execution of Contracted Operation Through ``Local Consensus''
	5.2 Enforcing Data Obligation and Confidentiality
	5.3 Ensuring Atomicity in Contract Execution and Result Commitment
	5.4 Data Broker for Scalability in the Data Plane

	6 Implementation and Evaluation
	6.1 Control Plane Runtimes
	6.2 Control Plane Cost
	6.3 Data Plane Runtimes

	7 Related Work
	8 Conclusion
	A Data Broker Contract CDB
	References

	Applied Cryptography III
	Identity-Based Authenticated Encryption with Identity Confidentiality
	1 Introduction
	1.1 Motivational Applications
	1.2 Contribution

	2 Preliminaries
	2.1 Authenticated Encryption
	2.2 Bilinear Pairings, and Hard Problems

	3 Identity-Based Higncryption: Definition and Security Model
	3.1 Definition of IBHigncryption
	3.2 Security Model for IBHigncryption

	4 IBHigncryption: Construction and Discussion
	4.1 Comparison and Discussion

	5 Security Analysis of IBHigncryption
	A IBHigncryption Constructions with Asymmetric Bilinear Pairings
	A.1 Construction with Bilinear Pairings of Type 3

	References

	Securing DNSSEC Keys via Threshold ECDSA from Generic MPC
	1 Introduction
	1.1 Threshold Signing
	1.2 Contributions
	1.3 Outline

	2 Quantifying Multiple Operators
	2.1 Data Collection Methodology
	2.2 Data Analysis

	3 System and Threat Model
	3.1 System and Communication Model
	3.2 Threat Model

	4 Threshold ECDSA
	4.1 ECDSA Signing
	4.2 Secure Multiparty Computation
	4.3 Secure Computation on Groups
	4.4 Active Security Using SPDZ Like MACs
	4.5 Multiparty ECDSA Protocol Using the ABB+

	5 Multiparty Zone Signing System
	5.1 Setup
	5.2 Key Generation/Rollover
	5.3 Zone Signing

	6 Evaluation
	6.1 MASCOT– Optimizations
	6.2 Comparison with Prior Work
	6.3 Key Generation
	6.4 Amortizing Signing
	6.5 Overhead for Operators

	7 Related Works
	8 Conclusion
	References

	On Private Information Retrieval Supporting Range Queries
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works
	1.3 Paper Organization

	2 Preliminaries
	3 Syntax and Security Models for PIR Schemes Supporting Range Queries
	3.1 Syntax of RQ-PIR
	3.2 Security of RQ-PIR

	4 Relation Among Security Notions
	5 Generic Construction of RQ-PIR from PIR
	6 Construction of RQ-PIR Scheme from FSS
	6.1 Construction of Two-Server RQ-PIR Scheme

	7 Discussion
	A Experimental Results
	A.1 Evaluation

	B Proof of Theorem 1
	References

	Blockchain II
	2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 System Model
	2.2 Security Properties

	3 Construction
	3.1 The Main Protocol

	4 Security Analysis
	4.1 Proof Intuition

	A Unique Signature Schemes
	References

	Generic Superlight Client for Permissionless Blockchains
	1 Introduction
	1.1 Insufficiencies of Prior Art
	1.2 Our Results

	2 Warm-Up: Game-Theoretic Security
	3 Preliminaries
	4 Problem Formulation
	4.1 Defining the Readings from the Blockchain
	4.2 System and Adversary Model
	4.3 Security Goal

	5 A Simple Light-Client Protocol
	5.1 Arbiter Contract and High-Level of the Protocol
	5.2 The Light-Client Protocol

	6 Adding Incentives for Security
	6.1 Basic magentaincentive Mechanism and its Security
	6.2 Augmented magentaincentive and its Security

	7 Discussions
	References

	LNBot: A Covert Hybrid Botnet on Bitcoin Lightning Network for Fun and Profit
	1 Introduction
	2 Background
	2.1 Lightning Network
	2.2 Off-Chain Concept
	2.3 Multihop Payments
	2.4 Key Send Payments
	2.5 Source Routing and Onion Routed Payments
	2.6 Motivation to Use LN for a Botnet

	3 LNBot Architecture
	3.1 Overview
	3.2 Setting up the C&C Servers
	3.3 Formation of Mini-Botnets
	3.4 Forming LNBot
	3.5 Command Propagation in LNBot
	3.6 Encoding/Decoding Schemes
	3.7 Reimbursing the Botmaster

	4 Proof-of-Concept Implementation
	5 Evaluation and Analysis of LNBot
	5.1 Cost Analysis of LNBot Formation
	5.2 Cost and Time Analysis of Command Propagation
	5.3 Comparison of LNBot with Other Similar Botnets

	6 Security and Anonymity Analysis and Countermeasures
	7 Related Work
	8 Conclusion
	References

	Author Index

