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Abstract. Nowadays, with easily accessible 3D point cloud acquisition
tools, the field of point cloud processing gained a lot of attention. Extract-
ing features from 3D data became main computer vision task. In this
paper, we reviewed methods of extracting local features from objects
represented by point clouds. The goal of the work was to make the-
oretical overview and evaluation of selected point cloud detectors and
descriptors. We performed an experimental assessment of the repeata-
bility and computational efficiency of individual methods using the well
known Stanford 3D Scanning Repository database with the aim of iden-
tifying a method which is computationally-efficient in finding good cor-
responding points between two point clouds. We combine the detectors
with several feature descriptors and show which combination of detector
and descriptor is suitable for object recognition task in cluttered scenes.
Our tests show that choosing the right detector impacts the descriptor’s
performance in the recognition process. The repeatability tests of the
detectors show that the data which contained occlusions have a high
impact on their performance. We summarized the results into graphs
and described them with respect to the individual tested properties of
the methods.

Keywords: 3D detector · 3D descriptor · Point cloud · Feature
extraction

1 Introduction

With easily accessible 3D point cloud acquisition tools it is natural that the
field of point cloud processing gained a lot of attention in the past decade.
Many computer vision tasks working with 3D point clouds benefit from using 3D
local features. Among possible applications of 3D local features are point cloud
registration (pose estimation) [6], automatic object localization and recognition
in 3D point cloud scenes [26], model retrieval [3] or face recognition [15].
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The pipeline of these applications usually starts with detecting keypoints
using detectors designed by studying the geometric properties of local struc-
tures [6]. The next step is the description of the keypoints and finally the classifi-
cation or matching of the keypoints. The latest deep learning approach combines
all three steps into one. The features and their descriptions are learned during
the training of the classifier [13,17].

When using the hand crafted features we need to ensure that the detected
keypoints are representative and the descriptors are robust to clutter and occlu-
sion in order to get reliable results (classification, localization,...).

The goal of the paper is to provide the performance evaluation of hand
crafted feature detectors for point clouds. First we address the ability to detect
repeatable points. Second, since the efficiency of the descriptors can influence
the results, we combine the detectors with several feature descriptors and show
which combination of detector and descriptor is suitable for object recognition
task in cluttered scenes.

2 Related Work

Many existing works test and compare methods to extract 3D local features.
Filipe and Alexandre [7] work with a real dataset of different RGB-D objects.
They test 3D detectors in the Point Cloud Library (PCL) [20] that work directly
on RGB-D data. They only evaluate the performance of the detectors in terms
of various transformations. Tombari, Salti and di Stefano [25] perform in-depth
testing of state-of-the-art detectors, which they divide into two new categories
(fixed-scale, adaptive-scale). Testing is performed on 3D scene built by randomly
rotating and translating the selected 3D models of synthetic data. A quantitative
comparison of the performance of the three most general detectors and two
descriptors for monitoring plant health and growth is given in [1]. The choice of
test methods was based on their most common use in various applications. Mian,
Bennamoun and Owens [16] propose a multi-scale keypoint detection algorithm
for extracting scale invariant local features. They also propose a technique for
automatically selecting the appropriate scale at each keypoint and extract multi-
scale and scale invariant features. They test the methods for 3D object retrieval
from complex scenes containing clutter and occlusion. Hänsch, Weberand and
Hellwich [10] explore the benefits of 3D detectors and descriptors in the specific
context of point cloud fusion that can be used, for example, to reconstruct a
surface.

Recent trends in data driven approaches encouraged to employ deep learn-
ing. Representative works include PPFNet [5], PCPNet [9], 3D-FeatNet [27] and
PPF-FoldNet [4]. All the mentioned works surpassed the handcrafted alterna-
tives with a big margin. 2D features are usually supplemented by useful informa-
tion about the local orientation, derived from the local visual part of the image.
For 3D features, it is very difficult to find a unique and consistent local coor-
dinate frame. None of the aforementioned works were able to attach the local
orientation information to 3D patches.
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Inspired by [25], we propose a comparison of 3D detectors that work primarily
on the point clouds without the use of the color information. Like [25], we focus
on the object recognition scenario, which is characterized mainly by a large
occlusion. Subsequently, we assess the performance of the selected 3D descriptors
in combination with the tested detectors because, it is not clear how different
keypoints detectors and descriptors work together. Our purpose is to show the
performance of selected combinations in recognizing objects in a scene, as we
have not found these combinations in the existing papers.

3 3D Keypoint Detectors, Descriptors and Matching

In this section we will describe detectors and descriptors we have used in our
tests together with the matching method we have used.

3.1 3D Keypoint Detectors

Harris3D. The Harris3D detector [22] is the extension of the 2D corner detec-
tion method of Harris and Stephens [11]. Harris3D is using first order derivatives
along two orthogonal directions on the surface. The derivatives are obtained so
that the neighboring area is approximated by quadratic surface. Afterwards,
similarly to 2D detector, the covariance matrix is calculated, but the image gra-
dients are replaced by the surface normals. For final detection of keypoints, the
Hessian matrix of intensity is used for every point, smoothed by an isotropic
Gaussian filter.

Intrinsic Shape Signatures 3D (ISS3D). The ISS3D keypoint detector [28]
relies on measuring the local distances or the points density. It uses the eigen-
values and eigenvectors of the scatter matrix, created from supporting region
points. The eigenvector corresponding to the smallest eigenvalue is used as a
surface normal and the ratio between two successive eigenvalues is used to reject
similar points.

Normal Aligned Radial Feature (NARF). Detector NARF [23] is designed
to choose the keypoints, so that they are able to repair the information about
the object borders and its surface to obtained highest robustness of the method.
The selected points are supposed to be in positions where the surface is stable
and where there are sufficient changes in the local neighborhood to be robustly
detected in the same place even if observed from different perspectives. At first,
the detector determines the object border, for which the change of distances
between two adjacent points is used. To achieve the keypoint stability, for every
point and its local neighborhood, the amount and dominant direction of the
surface changes at this position are determined. The interest value is calculated
as the difference between orientations in area and changes of the surface. After-
wards, the smoothing of the interest values and non-maximum suppression is
performed to determine the final keypoints.
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SIFT3D. SIFT 3D is an extension of the original 2D SIFT detector, where for
finding the keypoints the scale pyramid of difference of Gaussians (DoG) is used
[14]. SIFT 3D is using 3D version of Hessian matrix, where the density function is
approximated by sampling the data regularly in space. Over the density function
a scale space is built, where search for local maxima of the Hessian determinant
is performed. The input cloud is convolved with a number of Gaussian filters
whose standard deviations differ by a fixed scale factor. Using the convolution
the point clouds are smoothed and the difference is calculated to obtained three
to four DoG point clouds. These two steps are repeated to get higher number of
DoG in the scale-space. The 3D SIFT keypoints are identified as the scale-space
extrema of the DoG function similarly to 2D SIFT.

3.2 3D Local Features Descriptors

Many existing 3D local features descriptors use histograms to represent different
characteristics of the local surface. Principally, they describe the local surface by
combining geometric or topological measurements into histograms according to
point coordinates or geometric attributes. We classify these descriptors into two
groups: geometric attribute histogram and spatial distribution histogram based
descriptors.

Geometric Attribute Histogram Based Descriptors. These descriptors
represent local surface by generating histograms based on geometric attributes,
as normals or curvatures, of the points on the surface. These descriptors also
mostly construct the Local Reference Frame (LRF) and/or Local Reference Axis
(LRA).

Point Feature Histogram (PFH): The PFH descriptor [19] works with point
pairs in the support region. First, the Darboux frame is defined by using the
surface normals and point positions, for each pair of the points in the support
region. Then, four features for each point pair using the Darboux frame, the
surface normals, and their point positions are calculated. The PFH descriptor is
generated by accumulating points in particular bins along the four dimensions.
The length of the final PFH is based on the number of histogram bins along
each dimension.

Fast Point Feature Histogram (FPFH): The FPFH descriptor [18] consists
of two steps. In the first step, a Simplified Point Feature Histogram (SPFH) is
generated for each point by calculating the relationships between the point and
its neighbors. In SPFH, the descriptor is generated by chaining three separate
histograms along each dimension. In the second step, FPFH descriptor is con-
structed as the weighted sum of the SPFH of the keypoint and the SPFHs of
the points in the support region. The length of the FPFH descriptor depends on
the number of histogram bins along each dimension.

Signature of Histograms of OrienTations (SHOT): The SHOT descriptor
[21] originated as an inspiration by SIFT descriptor. The descriptor encodes the
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histograms of the surface normals in different spatial locations. First, the LRF is
constructed for each keypoint and its neighboring points in the support region are
aligned with the LRF. The support region is divided into several units along the
radial, azimuth and elevation axes. Local histogram for each unit is generated by
accumulating point counts into bins according to the angles between the normals
at the neighboring points within the volume and the normal at the keypoint. The
final descriptor is chaining all the local histograms.

Spatial Distribution Histogram Based Descriptors. These descriptors
represent local surface by generating histograms according to spatial coordi-
nates. They mostly start with the construction of a LRF or LRA for keypoint,
and divide 3D support region to the LRF/LRA. Afterwards, they generate a his-
togram for local surface by accumulating the spatial distribution measurements
for each spatial bin.

3D Shape Context (3DSC): 3DSC descriptor [8] is extension of the 2D Shape
Contexts descriptors [2]. The algorithm use the surface normal at the keypoint as
its LRA. First, a spherical grid is placed at the keypoint, which is the center of the
grid, with the north pole of the grid being aligned with the surface normal. The
support region is divided into several bins, logarithmic along the radial dimension
and linear along the azimuth and the elevator dimensions of the spherical grid.
The 3DSC descriptor is generated by counting the weighted number of points
falling into each bin of the 3D grid. The final descriptor is chaining the three
partial descriptors, that represent the numbers of bins along the radial, azimuth
and elevation axes.

Unique Shape Context (USC): USC descriptor [24] is extension of 3DSC,
which bypasses computing multiple descriptors at a given keypoint. LRF is con-
structed for each keypoint and aligned with the local surface in order to provide
invariance to rotations and translations. The support region is divided into sev-
eral bins. Final USC descriptor is generated analogous to the approach used in
3DSC.

3.3 Descriptors Matching

In our experiments the objects in the scenes are recognized using the near-
est neighbor distance ratio matching method (NNDR). In the nearest neighbor
matching method, two descriptors match, if they are the closest and their dis-
tance is below a threshold. With this strategy, there is at most one match but it
might not be correct, especially when there are few keypoints with similar geo-
metric properties in the point cloud. In this case, the distances from the nearest
and the second nearest descriptors are similar. To overcome this property we use
the NNDR matching, where the descriptors DA and DB are matched if

||DA − DB ||/||DA − DC || < t, (1)

where DB is the first and DC is the second nearest neighbor to DA and t is a
specified threshold.
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4 Testing

We tested the performance of detectors and descriptors separately in combina-
tion with the tested detectors. In this section we provide the evaluation criteria
we have used for the tests and the results we have obtained.

4.1 Dataset

For performing our experiments, we selected four models well known in com-
munity of 3D point clouds researchers (the Stanford Bunny, the Happy Budha,
the Dragon, the Armadillo) from the publicly available 3D model database the
Stanford 3D Scanning Repository [12]. All the selected models were scanned by
a Cyber-ware 3030 MS scanner. For the testing we used the models individually
and scaled them using the scale of 6, 9, 12, 15 times the cloud resolution. We also
combined several transformed models to create 15 testing scenes having 265–290
thousands of points. The scenes were created so that different parts of individual
models were occluded. The occlusion was from 30% to 60%.

4.2 Evaluation Criteria

A keypoint can be useful for identifying an object, when it is detectable under
changing conditions including viewpoint change, noise, partial neighborhood
occlusion, etc. This property is called repeatability.

A keypoint is repeatable, if it is found in a small neighborhood of the expected
location in the scene. Let kM be a keypoint found on the original model. The
expected location in the scene is then T (kM ), where T () is the transformation of
the original model (rotation and translation) when inserted into the scene. Let
kS be the keypoint in the scene, which is the closest to T (kM ). The keypoint kM
is repeatable, when

‖T (kM ) − kS‖ < ε. (2)

As in [25] we evaluate the absolute and relative repeatability of the keypoints.
When R is the set of repeatable keypoints found on a given model in a given
scene, the absolute repeatability is the number of the repeatable keypoints

ra = |R| (3)

and the relative repeatability is measured relatively to the number of keypoints
found on the model in the scene having a corresponding keypoint on the original
model (KS)

rr =
|R|
|KS | . (4)

While testing the detectors, the scale was set to 6, 9, 12, 15 times the cloud
resolution. The results are averaged over the scales and the scenes.

The descriptiveness of selected descriptors is evaluated by combining them with
the tested detectors. The purpose is to demonstrate the effect of different detec-
tors on the performance of the feature descriptors. The performance of each
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(a)

(b)

Fig. 1. (a) The average absolute repeatability of tested detectors with 60% occlusion in
the scene (b) The average absolute repeatability of tested detectors with 30% occlusion
in the scene

detector-descriptor combination is also measured by the Precision and Recall
generated as follows. First, the keypoints are detected from all the scenes and
all the models. A feature descriptor is then computed for each keypoint (not
just repeatable points) using the selected descriptors. Next, we use NNDR to
perform feature matching of the models with the scenes. If the distance between
the pair of keypoint descriptors is less than half of the support radius, which is
the threshold, the match is assumed correct. Otherwise, it is a false match. The
precision is calculated as

precision =
Nr. of correct matches

Nr. of identified matches
. (5)

The recall is calculated as

recall =
Nr. of correct matches

Nr. of corresponding features
. (6)

We also evaluate the computational effectiveness of the detectors and descrip-
tors. We calculate the time needed for detecting the keypoints on several objects
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(a)

(b)

Fig. 2. (a) The average relative repeatability of tested detectors with 60% occlusion in
the scene (b) The average relative repeatability of tested detectors with 30% occlusion
in the scene

or scenes with various point density to determine the effectiveness of detector.
Also, we calculate the time needed to describe the extracted keypoints.

All methods are used as implemented in the Point Cloud Library (PCL),
which is an open-source library of algorithms for 2D/3D image and point cloud
processing. For all the selected detectors, we use the default parameters proposed
in the original publications.
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Fig. 3. Time performance of the detectors. Scale is kept fixed to 6. The scenes have
265–290 thousands of points

4.3 Results

Detectors. Based on the proposed experiments and their results we can draw
interesting conclusions. In Figs. 1 and 2, we present the results of absolute and
relative repeatability of HARRIS3D, NARF, SIFT3D and ISS3D detectors. To
test the effect of occlusion in scenes on the detector performance, we investigate
scenes that contain highly and low occluded test models. For scenes with high
occlusion, up to 60% of each object is occluded, whereas the low occlusion scenes
contain objects with 30% occlusion. The repeatability rates in the scenes with
high occlusion are very low. Nevertheless, we can see that NARF and ISS3D
detectors achieve higher rates than HARRIS3D and SIFT3D in both scenarios.
The only exception is the absolute repeatability rate of SIFT3D for scale 6 in
low occlusion scenes.

In the highly occluded scenes is the relative repeatability of all detectors very
low. An the average number of detected keypoints does not exceed 6.

In the scenes with lower occlusion the relative repeatability reaches 80% for
NARF and ISS3D detectors, which means that the points are highly repeatable,
while the absolute number of detected points is also high. For HARRIS3D and
SIFT3D even though the absolute numbers of detected keypoints is high for
scales 6 and 9, the relative repeatability rate reaches only 40%.

The error-bar chart in Fig. 3 reports the measured detection time (in seconds)
of methods computed on each model. Because all methods are implemented in
the same framework, their performance can be compared by taking the average
detection time on the same set of objects. The detection time is almost constant
over scenes with varying number of points. The only exception is the ISS3D,
where the trend is constant with higher variance.
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Descriptors. In Fig. 4 we present the precision and recall measures of the
descriptor matching task on scale 6 objects. All detector–descriptor combina-
tions achieve more than 65% recall, and 50% precision (except SIFT3D–USC
with 38%). We can see that the USC descriptor causes the worst performance
regardless of the detector and the SIFT3D detector is the weakest from all when
combined with any descriptor. The best performance was achieved by the FPFH
descriptor for all the detectors. The performance of PFH, 3DSC and SHOT
descriptors varies with the used detectors. The order of decreasing performance
is PFH, SHOT and 3DSC descriptors for HARRIS3D, NARF and ISS3D detec-
tors and the other way round for the SIFT3D detector. The best performance
overall is achieved by the pair ISS3D–FPFH.

Fig. 4. Performance of the selected descriptors combined with different 3D keypoint
detectors

Fig. 5. Average time to generate a feature descriptor for a local surface with different
number of points in the support region. The scale of both axes is logarithmic
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The graph in Fig. 5 reports the measured average time (in milliseconds) of
keypoint description according to the number of points in its local region. As
with the detectors, the descriptors are implemented in the same framework,
so their performance can be compared by taking the average time needed to
generate the descriptor of the same model represented in different scales.

We can see that for small-sized support regions (100–1000 points) the PFH
a FPFH descriptors are orders of magnitude faster than the other descriptors,
but for 10000, they are 10 times slower. All descriptors are comparably fast for
neighborhoods with around 5000 points.

5 Conclusions

This paper presents the performance evaluation of hand crafted feature detectors
for point clouds. The repeatability tests of the detectors show that the data
which contained occlusions have a high impact on their performance. The best
repeatable detector of the set of test detectors in scale 6 is ISS3D. For the
scenes with lower occlusion are the best repeatable NARF and ISS3D detectors.
The best detector–descriptor pairs performance for object recognition scenario
is achieved by ISS3D–FPFH combination. Our tests also show that choosing the
right detector impacts the descriptor’s performance in the recognition process.
The FPFH ann PFH descriptors are the fastest in time measurements for small
number of local region’s point. At higher points, the descriptors measurements
are comparable.
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