
PhoeniQ: Failure-Tolerant Query
Processing in Multi-node Environments

Yutaro Bessho1(B) , Yuto Hayamizu1 , Kazuo Goda1 ,
and Masaru Kitsuregawa1,2

1 The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo, Japan
{bessho,haya,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

2 National Institute of Informatics, 2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Abstract. Parallel processing is a flagship approach for answering ana-
lytical queries on large-scale database. As the database scale increases,
a larger number of processing nodes are likely to be incorporated to
increase the degree of parallelism. However, this solution results in an
increased probability of node failure. If such a failure happens during
query processing, the processing often has to restart from scratch. This
temporal cost may not be acceptable for the user. In this paper, we pro-
pose PhoeniQ, a fault-tolerant query processing mechanism for analytical
parallel database systems. PhoeniQ takes a package-level checkpoint for
every operator pipeline and replicates the output of stateful operators
among different processing nodes. If a single processing node fails during
processing, another node is enabled to resume the execution state of the
failed node, so that the query can continue to run. This paper presents
our intensive experiments based on our prototype, which demonstrate
that PhoeniQ can continue the query processing in the face of node fail-
ures with significantly smaller cost than the conventional approach.

Keywords: Parallel database system · Fault tolerance · Query
processing

1 Introduction

A wide spectrum of big data applications have spurred the growth of database
capacity. Petabyte-scale databases are no longer uncommon, especially in cloud-
scale companies [6,11,20,23]. The trend of utilizing IoT sensor data is likely to
boost the growth further [2].

Parallel query processing is a standard tactic to service analytical queries
on large database [5,13,15]. A parallel database system is composed of multiple
processing nodes, each of which executes the processing of an assigned part of
a given query in parallel. This approach has been actively studied in academia
and widely deployed in industry.

Y. Bessho—Currently, he works for NTT.

c© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2020, LNCS 12391, pp. 71–85, 2020.
https://doi.org/10.1007/978-3-030-59003-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59003-1_5&domain=pdf
http://orcid.org/0000-0002-3973-7849
http://orcid.org/0000-0002-5746-1743
http://orcid.org/0000-0003-0618-4157
http://orcid.org/0000-0003-4027-2994
https://doi.org/10.1007/978-3-030-59003-1_5

72 Y. Bessho et al.

A major drawback of such parallel processing is that query processing
becomes vulnerable to node failures [17]. As database accommodates larger data,
an increased number of processing nodes are often incorporated into the database
system. This approach performs well to increase the parallelism. At the same
time, it causes a higher aggregate probability of node failure. A relational query
is often composed of one or more pipelined operators, each of which can hold
an internal execution state. For example, an aggregation operator keeps its in-
process data in the memory buffer. If a processing node fails during query pro-
cessing, the database system loses such an execution state held in the failed node.
The system needs to restart the query from ground zero, no matter how far the
process has progressed at the point of failure. This time penalty is likely to be
unacceptable, particularly for users who run hour-long or day-long analytical
queries.

This paper proposes PhoeniQ, a novel fault-tolerant query processing mech-
anism for analytical parallel database systems. The technical points of PhoeniQ
are two-fold. First, PhoeniQ takes a package-level checkpoint for every operator
pipeline. Second, it replicates the output of stateful operators among differ-
ent processing nodes. If a single processing node fails during query processing,
another node is enabled to resume the execution state of the failed node, so that
the query can continue to run. This paper presents an intensive experiment that
we performed with our prototype in a public cloud infrastructure. The exper-
imental result demonstrates that PhoeniQ can continue the query processing
in the face of node failure with a significantly smaller time penalty than the
conventional approach.

The rest of this paper is structured as follows. Section 2 presents a design
overview of PhoeniQ, and Sect. 3 offers a technical deep-dive. Section 4 provides
prototype-based experiments in a public cloud environment. Section 5 reviews
related work and Sect. 6 concludes the paper.

2 Overview of PhoeniQ

First of all, we present a design overview of PhoeniQ, a novel fault-tolerant
query processing mechanism for analytical parallel database systems. Figure 1
highlights PhoeniQ by comparing it with the conventional execution mechanism.
In this paper, we assume a shared-storage architecture [14] for simplicity1. As
Fig. 1(a) illustrates, a parallel database system is composed of a single storage
node that stores the entire database and multiple processing nodes that process
query operators by fetching data from the storage node. According to the query
execution plan generated from a given query, a set of pipelined operators are
assigned to each node. The first operator in the pipeline is mostly a scan operator
that fetches tuples from the storage node, processes them, and passes output
tuples to its next operator. The next operator similarly processes received tuples
and passes its output tuples to its next operator. Such data flow may travel over
1 The idea of PhoeniQ can be easily extended to a shared-nothing architecture [26].

Due to the space limitation, we will present further discussion in a separate paper.

PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments 73

(a)

(b)

Fig. 1. Execution comparison. PhoeniQ takes a package-level checkpoint for every oper-
ator pipeline and replicates the output of tail (sometimes stateful) operators among
different processing nodes.

74 Y. Bessho et al.

multiple processing nodes via the network connection. Finally, the last operator
(which we refer to as the tail operator in this paper) generates the result of the
operator pipeline; the result is often buffered in the memory to be shipped to
the user or another operator pipeline or stored in the memory to be accessed
later. Note that the tail operator can be stateful, while the other operators are
stateless.

Assume that one processing node fails during query processing. The failed
node loses intermediate data flows traveling on the node at the moment of failure.
Worse, if some operators hold runtime execution states, such data is also lost
and the system can no longer continue the query processing. In conventional
practice, the database system terminates all the processing whenever a node
failure happens, and restarts the query from scratch. This naive solution works,
but all the work done so far gets discarded no matter how far the process has
progressed. This restarting strategy obviously incurs a significant time penalty.

In contrast, PhoeniQ allows the database system to continue query processing
even when a single processing node fails2. This unique feature is enabled by two
novel techniques illustrated in Fig. 1(b). First, package-level checkpointing takes
a checkpoint for every operator pipeline, so that the database system can be
ready to identify the lost intermediate data flow at the moment of failure and
restart merely the affected processing that is necessary to recover the lost data.
Second, operator output replication copies the output of tail operators to another
processing node, allowing the node to resume the execution states of the failed
node even when the tail operator is stateful. Section 3 focuses on the technical
details of these techniques.

3 Execution Mechanism of PhoeniQ

This section gives a technical deep-dive into PhoeniQ. Sections 3.1 and 3.2
explain the two techniques: package-level checkpointing and operator output
replication, respectively. Section 3.3 describes a tagging technique behind them.
Finally, Sect. 3.4 shows a recovery procedure for PhoeniQ.

3.1 Package-Level Checkpointing of Operator Execution States

PhoeniQ allows each processing node to take a checkpoint for every operator
pipeline to the storage node. Thanks to this unique capability, whenever a pro-
cessing node fails, the remaining processing nodes can identify the lost interme-
diate data flow and restart the only processing that is necessary to recover the
lost data. In this subsection, we firstly explain how the storage node manages
the execution states of every operator pipeline. The execution state is managed
for each tuple of relations scanned by the first operator of the pipeline. However,
2 For simplicity and due to the space limitation, this paper merely presumes a single-

node crash failure of processing nodes. The same idea can be easily applied to other
cases, such as a double-node failure. Another exploration is necessary to protect
against a failure of the storage node.

PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments 75

Fig. 2. The execution state management and checkpointing by PhoeniQ. In this figure,
the tail operator is stateless and result tuples are immediately materialized.

a naive implementation leads to significant performance overhead. We secondly
introduce a package-level state management technique to mitigate the overhead.

Execution State Management at the Storage Node. As mentioned earlier,
we assume the shared-storage architecture. The basic function of the storage
node is to store the database and to deliver a tuple upon a fetch request from a
processing node. In processing a given query, each processing node requests tuple
fetches to the storage node (mostly for executing a scan operator). In response
to each request, the storage node feeds back a tuple to the requesting processing
node in the on-demand manner [16].

Our novel idea is to let the storage node additionally manage an execution
state of the operator pipeline for each tuple of scanned relations. After delivering
a tuple to a processing node, the storage node tracks the execution state of the
pipeline for the concerned tuple (Fig. 2). This mechanism enables the storage
node to identify if the pipeline execution for each tuple has been completed or
not. Thanks to this capability, the storage node can identify the lost part of the
query processing in the face of failure, offering the recoverability for the failed
query processing. We call this technique checkpointing in this paper.

PhoeniQ defines three states for a tuple in the scanned relation as follows.

Unprocessed. The initial state. An unprocessed tuple is not being processed
by any of the processing nodes.

Active. An active tuple has been fetched and is being processed by the pro-
cessing nodes. The tuples generated from an active tuple are not all fault-safe
(defined later).

Committed. The tuples generated from a committed tuple are all fault-safe.

For a tuple in the pipeline, to be fault-safe means that it would not be
lost in the face of a failure. If the tail operator is stateless and immediately

76 Y. Bessho et al.

materializes the result tuples (e.g. by delivering them to another processing
node, a client terminal, or the storage node), the result tuples become fault-safe
automatically and immediately when they have been generated and materialized.
In contrast, if a tail operator holds an internal state or buffers the result tuples
in the memory buffer, the result tuples do not automatically become fault-safe in
the conventional approach. PhoeniQ introduces another technique for handling
this case, which is explained later in Sect. 3.2.

At the start of a pipeline execution, all the tuples managed in the database
are in the unprocessed state. An unprocessed tuple is turned active when fetched
by a processing node. Upon a fetch request by a processing node, the storage
node selects an unprocessed tuple and provides it to the requesting node in the
on-demand manner.

An active tuple is turned committed when the storage node has received
from every processing node a message called ACK associated with the tuple.
Each processing node sends an ACK for a managed (active) tuple when it has
finished its assigned part of the process to make the in-flight tuples generated
from the managed tuple all fault-safe. As illustrated in Fig. 2, if the tail operator
is stateless and result tuples are immediately materialized, each processing node
sends an ACK for the tuple when all the corresponding result tuples generated
in the node have been materialized. At the end of the pipeline execution, all the
managed tuples have reached the committed state.

On a node failure, only the in-flight tuples corresponding to active tuples
are lost and reprocessed after recovery. The recovery procedure is explained in
Sect. 3.4.

Unprocessed [1-1000]

Active

Unprocessed [301-1000]

Active [1-100], [101-200], [201-300]

Unprocessed [301-1000]

Active [1-100], [201-300]

Unprocessed [1-100], [201-300], [301-1000]

Active

Unprocessed [201-300], [301-1000]

Active [1-100]

Unprocessed [401-1000]

Active [1-100], [201-300], [301-400]

(1) Three 100-tuple fetch requests by PNs

(2) The SN gathers as many ACKs
 as the PNs for the package [101-200]

(3) A node failure / recovery
 (explained in Section 3.4)

(4) A PN requests 100 tuples

(5) Two more 100-tuple fetch requests

(Before the start of the pipeline execution)

* Each underlined range is a package

Fig. 3. An example of tuple processing states management at the storage node. This
shows the tuple states changing over a pipeline execution where a 1000-tupled relation
is scanned. [x, y] denotes a range of tuples whose ID is between x and y (containing
both ends).

PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments 77

Package-Based State Management. A naive implementation of the check-
pointing scheme would be to take checkpoints at the granularity of tuple. This
is impractical, however, because it would incur significant memory footprint and
considerable performance overhead. PhoeniQ instead takes a range-based app-
roach to reduce the managed information and the processing overhead. This is
achieved with the following three techniques.

– The processing nodes fetch multiple tuples from the storage node in one fetch
request, instead of one tuple in one request.

– The storage node manages ranges of tuples for each state in a bulky manner,
instead of managing a state of each tuple.

– The storage node explicitly manages information of unprocessed or active
tuples only and omits that of committed ones. Tuples not present in the
unprocessed nor active range list are regarded as committed.

Figure 3 illustrates an example of the package-based state management.
Before the pipeline execution, the managed information consists of one range
of tuples in the unprocessed state containing all the managed tuples. On receiv-
ing a fetch request from a processing node, the storage node cuts out a subset
range from the unprocessed range, reads and sends the selected range of tuples
to the processing node, and finally turns the tuples active. We call such a group
of tuples read out and turned active in response to a fetch request a package.

This package-level checkpointing method poses the requirement to process
tuples so that the tuples in every package are committed at once, i.e., the tuples
generated from a package become fault-safe at once. When the tail operator is
stateless and result tuples are materialized as soon as generated, every group of
result tuples generated from a package are buffered, gathered, and then mate-
rialized at once. How PhoeniQ meets the requirement when result tuples are
buffered in the memory during the pipeline execution is explained in Sect. 3.2.

3.2 Operator Output Replication Among Different Processing
Nodes

In addition to the checkpointing method, PhoeniQ employs operator output repli-
cation technique, which copies the output of the tail operator to another pro-
cessing node. This technique is motivated by situations where the pipeline result
needs to be buffered until the end of the pipeline processing (e.g., when the tail
operator is stateful). Such accumulated execution states are lost in a failure.

As shown in Fig. 1(b), when operator output replication is enabled, each
processing node replicates the computation of the tail operator and its result
partition in the logically neighboring node. Thanks to this redundancy, a spare
node can restore the lost result as the failed node had at the moment of failure,
by receiving it from the neighbors (explained in Sect. 3.4).

Tuples are not immediately input to the tail operator, but are buffered before
it. We call this buffer a pre-tail buffer of the pipeline. Pre-tail buffers enable
tuples to be replicated and fed to the tail operator at the granularity of package.
Only tuples generated from committed packages can be fed to the tail operator.

78 Y. Bessho et al.

When a processing node knows that it has buffered all the tuples generated
from a package and are to come to the node, it sends a copy of the tuples to its
logically neighboring node. The receiver again buffers the tuples before the tail
operator which leads to the backup copy of the sender node’s result partition.
We call this buffer the backup copy of the sender node’s pre-tail buffer.

When all the processing nodes have successfully replicated tuples made from
a certain package, those tuples become fault-safe. Thus, operator output replica-
tion allows each processing node to send an ACK for the package to the storage
node when its copying to the neighbor node has been completed.

Each processing node periodically asks the storage node which of the tuples
in their pre-tail buffers can be forwarded to the tail operator. This query is
performed by sending a set of package identifiers to which the buffered tuples
correspond. The storage node responds by sending back the set of committed
packages. On receiving the answer, the processing node proceeds to deliver the
ready tuples (corresponding to committed packages) in its master pre-tail buffer
to the tail operator. Similarly, the neighbor node selects tuples in the backup
copy of the pre-tail buffer and deliver them to the backup tail operator.

(a) (b)

Fig. 4. PhoeniQ tags in-flight tuples so that it can identify the origin package of every
tuple and detect the end of tuples generated from every package.

3.3 Tuple Tagging for Package-Level Commit

Package-level checkpointing requires additional information to be attached to
in-flight tuples. For a processing node to decide when to send an ACK for a
package, the following two conditions must be satisfied.

1. Each processing node can identify the origin package of every in-flight tuple.
2. Each processing node can identify whether or not all the tuples in a package

have undergone the processing necessary to become fault-safe.

PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments 79

The first condition is satisfied by tagging each tuple in the pipeline. When
a processing node fetches a package of tuples from the storage, the tuples get
tagged with the identifier of the package. When these tuples undergo non-tail
(stateless) operators, the result tuples are tagged with the same identifier as the
input.

The second condition is satisfied by introducing marker tuples denoting that
no following tuples correspond to a certain package (called terminal marker
for a package), as shown in Fig. 4(a)(b). When a processing node has fetched
a package of tuples, it appends to the fetched tuples a terminal marker tagged
with the package identifier. When an operator redistributes (i.e., shuffles) output,
terminal markers passed to it get broadcast.

If the pipeline has multiple shuffles, tuples made from a package can arrive
from all the processing nodes. In this case, an operator knows that it has received
all the tuples derived from the package only when it has received a terminal
marker for the package from all the processing nodes. If the operator is non-tail
(stateless) and redistributes output (Fig. 4(a)), it merges the N markers and then
broadcasts it (where N is the number of processing nodes). If the operator is the
tail operator (Fig. 4(b)), it knows it has gathered all the tuples corresponding
to a package when it has seen N terminal markers for the package. It then can
(replicate the tuples if operator output replication is enabled, and) issue its ACK
for the package.

3.4 Query Processing Recovery

When a processing node fails, the remaining processing nodes invalidate all the
in-flight tuples in the executed pipeline whose origin packages are in the active
state. The storage node proceeds to rewind all the tuples in the active state
to the unprocessed state, so that they can be refetched and reprocessed after
recovery3. When a spare processing node has joined the query processing to
replace the failed node, the pipeline can be restarted immediately if operator
output replication is not enabled. Otherwise, the new processing node proceeds
to receive the execution states from the two logically neighboring nodes before
restarting the pipeline. In Fig. 1(b), for example, when processing node #2 fails,
the new node receives the master result of processing node #1 and the backup
result of processing node #3.

4 Evaluation

To demonstrate the feasibility and evaluate the effectiveness of our approach,
we conducted a series of experiments with our prototype implementation. The
experiments consist of two parts: an evaluation of the reduction of failure-
recovery time and an evaluation of runtime overhead. In Sect. 4.1, we will
describe the experimental setup and the benchmark query for the evaluations,
and explain the execution plan. Then, Sect. 4.2 presents the experimental results.
3 As long as all the non-tail operators are stateless as we have assumed, the reprocess-

ing causes only marginal overhead compared to the entire pipeline processing.

80 Y. Bessho et al.

4.1 Experimental Setup and Workload

We built our experimental system on public cloud services provided by Amazon
Web Services. We used EC2 instances as the processing nodes and the storage
node, whose specifications are shown in Table 1. For the storage, we used the
instance store of the storage node instance (a SSD drive connected via NVMe).

Table 1. Experimental setup. The prototype system consists of up to sixteen processing
nodes (PNs) and one storage node (SN).

Processing node Storage node

Instance t2.medium i3.xlarge

CPU 2 vCPUs 4 vCPUs

Memory 4 GiB 30.5 GiB

Storage 8 GB 950 GB

(General purpose, SSD) (Instance store, NVMe SSD)

OS Amazon Linux 2 Amazon Linux 2

SELECT l_orderkey,
sum(l_extendedprice * (1 - l_discount)),
o_orderdate, o_shippriority
FROM customer, orders, lineitem
WHERE c_mktsegment
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < 1995-03-15
and l_shipdate > 1995-03-15
GROUP BY l_orderkey, o_orderdate, o_shippriority

Test query Query plan(a) (b)

Fig. 5. The test query and its query plan.

Our implementation was configured to run with or without PhoeniQ enabled.
When enabled, our system ran with package-level checkpointing and operator
output replication introduced in the previous section. In each experiment, we
compared the results obtained with our approach enabled and disabled.

We prepared three relations and two indexes in the shared storage. The
relations were customer, orders and lineitem from the TPC-H Benchmark [3]
with scale factor 100. orders had an index file created on its primary key field
o custkey, and lineitem on l orderkey. The relations were stored as arrays of
C structures, and the indexes were Berkeley DB [1] B+ trees (version 18.1.32).

In the experiments, we ran a benchmark query shown in Fig. 5(a) to this
dataset. The query involved selections and a joining of the three relations, fol-
lowed by an aggregation, as illustrated in Fig. 5(b).

PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments 81

The entire query was processed with a single pipeline. The joining of the
three relations was performed by scanning customer and taking advantage of
the indexes. Each processing node first fetched customer tuples and applied the
selection, and queried the storage node for joining orders tuples by join attribute
values. The storage node looked up order index and provided joining orders
tuples. Similarly, each processing node demanded joining lineitem tuples, and
the storage node answered the query by reading lineitem index. Joined tuples
underwent a hash-based shuffle before input to the aggregation.

Fig. 6. PhoeniQ incurs almost zero penalties for the failure regardless of the query
processing progress, whereas the conventional case incurs much longer execution time
if the failure happens at later points in time.

When PhoeniQ was enabled, the computation and the result of the aggre-
gation were replicated among two nodes. The system tracked the progress of
the pipeline by managing the states of customer tuples. The processing nodes
fetched 4096 customer tuples in each request, creating 4096-tupled packages.

The storage node ran worker threads, each of which was in charge of pro-
cessing for each processing node. Each processing node ran two threads when
PhoeniQ was disabled: one for the selections and the joining, and one for the
aggregation. With PhoeniQ, each processing node ran one extra thread for check-
pointing and replicating pre-tail buffers.

4.2 Experimental Results

We performed a scenario where a single node failed during a query execution. The
benchmark query was run with 16 processing nodes. After t seconds, the program
on one of the processing node instances was terminated. Three seconds after the
failure, the failed program was restarted and joined the system. Depending on
whether PhoeniQ was enabled or not, the system handled the failure differently.
When PhoeniQ was disabled, all the nodes terminated their program, waited for
the spare to join, and restarted the query from the beginning. When PhoeniQ was
enabled, the system performed the recovery procedure and resumed the query. In
either case, after the failure handling, the query was completed without failure.

82 Y. Bessho et al.

Fig. 7. PhoeniQ dynamically continues query execution even in the face of node failure.
PN#1 (fail) terminates the execution at 720 s, but PN#1 (spare) immediately recovers
the execution.

Figure 6 shows the total execution time with varying points of failure t (sec-
onds). Without our approach, more time was spent to get the result when the
failure took place later. In contrast, no noticeable penalty was present with our
approach. At t = 720 s (when about 90% of customer relation has been scanned),
our approach almost halved (−45%) the total execution time.

PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments 83

Figure 7 shows a recovery behavior at t = 720 s. In the recovery procedure,
the spare node joined the cluster, and received around 80 K tuples in total from
the two logically neighboring nodes in around 1.4 s. The spikes in the network
throughput of the two nodes after the recovery were caused by the restoration
of the result onto the new node. It could also be seen from the network and
storage throughput that the system regained processing speed shortly after the
recovery. During the entire execution, the CPUs of the storage node were almost
fully utilized, whereas those of the processing nodes were underutilized because
of the I/O bound characteristics of the workload. It can therefore be inferred
that the additional CPU cost added by operator output replication did not affect
the execution time in this workload.

Overhead Speedup(a) (b)

Fig. 8. PhoeniQ enables query continuation with negligible execution overhead and
does not disturb scale-out.

Fig. 8(a) shows execution times without failure with varying numbers of pro-
cessing nodes. Our approach incurred at most 1.6% execution overhead (at 4
processing nodes). This result implies that the overhead introduced by package-
level checkpointing, as well as operator output replication, was quite marginal.
Figure 8(b) shows that PhoeniQ did not disturb the scale-out.

These experiments demonstrated that PhoeniQ can continue the query pro-
cessing in the face of node failures with significantly smaller cost than the con-
ventional approach.

5 Related Work

This section outlines the previous work on query restarting techniques.
The previous work for centralized systems mostly aims to restart interrupted

queries in favor of those of higher priority [8,10].
For distributed systems, a variety of methods have been proposed to support

query fault tolerance. Early MapReduce [12] frameworks write out the output of
every process stage to storage. While this allows the query to restart from the

84 Y. Bessho et al.

latest persisted state, additional I/O cost is not negligible, as demonstrated in
[22]. Fault-tolerant query on systems where input data is dynamically provided
(as known as stream-based systems [4,7,9]) have been relatively well studied. For
example, [24] replicates every computation to backup nodes. In [19,21], master
nodes take periodical checkpoints into spare nodes.

For parallel database systems that run queries on static data, several methods
[18,25] aim to reduce reprocessing. However, [25] does not consider aggregation
operators, and [18] allows a fair amount of recomputation of aggregation. OTPM
[17] by B. Han et al. is close to our approach in that it curtails reprocessing of
aggregation. In OTPM, operators track the progress of their upstream opera-
tor by monitoring the IDs of incoming tuples. The system requires additional
nodes to store intermediate results. They have shown promising results from
simulation-based evaluation, but a working implementation is not shown. One
of the major differences between this approach and ours is that PhoeniQ does not
track the progress of every operator. Furthermore, our approach replicates results
in a way that does not require additional nodes. Lastly, our approach assumes
shared-storage systems, while theirs and all the other work mentioned proposed
for distributed settings assumes shared-nothing systems. Shared-storage app-
roach is advantageous in that it does not require sending the data partitions of
failed nodes to spare nodes as in a shared nothing system.

6 Conclusion

In this paper, we have proposed a method for parallel database systems to restore
execution states on a spare node and to resume query processing. This is achieved
by package-level checkpointing and operator output replication. We have imple-
mented a prototype system and performed an experiment with up to 16 process-
ing nodes in a cloud environment. The result shows that our approach success-
fully reduces restarting temporal penalty on failures with negligible overhead
under I/O bound workload. Future work includes conducting experiments with
an increased variety of queries. Hash join workloads, for example, are an inter-
esting target. They involve multiple pipelines (separate pipelines for hash build
and probe), and a single pipeline can involve multiple shuffles. Moreover, the
performance overhead of operator output replication needs careful investigation,
because hash joins are generally more CPU-heavy than index joins.

References

1. Oracle Berkeley DB. https://www.oracle.com/database/berkeley-db/db.html
2. The Internet of Things: Data from Embedded Systems Will Account for 10% of

the Digital Universe by 2020. https://www.emc.com/leadership/digital-universe/
2014iview/internet-of-things.htm

3. The TPC-H benchmark. http://www.tpc.org/tpch/
4. Abadi, D.J., et al.: The design of the borealis stream processing engine. In: Pro-

ceedings CIDR, pp. 277–289 (2005)

https://www.oracle.com/database/berkeley-db/db.html
https://www.emc.com/leadership/digital-universe/2014iview/internet-of-things.htm
https://www.emc.com/leadership/digital-universe/2014iview/internet-of-things.htm
http://www.tpc.org/tpch/

PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments 85

5. Boral, H., et al.: Prototyping bubba, a highly parallel database system. IEEE
Trans. Knowl. Data Eng. 2(1), 4–24 (1990)

6. Borthakur, D.: Petabyte scale databases and storage systems at facebook. In: Pro-
ceedings SIGMOD, pp. 1267–1268 (2013)

7. Carney, D., et al.: Monitoring streams - a new class of data management applica-
tions. In: Proceedings VLDB, pp. 215–226 (2002)

8. Chandramouli, B., Bond, C.N., Babu, S., Yang, J.: Query suspend and resume. In:
Proceedings SIGMOD, pp. 557–568 (2007)

9. Chandrasekaran, S., et al.: Telegraphcq: continuous dataflow processing for an
uncertain world. In: Proceedings CIDR (2003)

10. Chaudhuri, S., Kaushik, R., Ramamurthy, R., Pol, A.: Stop-and-restart style execu-
tion for long running decision support queries. In: Proceedings VLDB, pp. 735–745
(2007)

11. Daniel Weeks: Netflix: Integrating Spark at petabyte scale. https://conferences.
oreilly.com/strata/big-data-conference-ny-2015/public/schedule/detail/43373

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

13. DeWitt, D.J., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35(6), 85–98 (1992)

14. DeWitt, D.J., Madden, S., Stonebraker, M.: How to build a high-performance data
warehouse how to build a high-performance data warehouse. http://db.csail.mit.
edu/madden/high perf.pdf

15. Ghandeharizadeh, S., DeWitt, D.J.: Hybrid-range partitioning strategy: a new
declustering strategy for multiprocessor database machines. In: Proceedings
VLDB, pp. 481–492 (1990)

16. Goda, K., Tamura, T., Oguchi, M., Kitsuregawa, M.: Run-time load balancing
system on san-connected PC cluster for dynamic injection of CPU and disk resource
- a case study of data mining application. Proc. DEXA. 2453, 182–192 (2002)

17. Han, B., Omiecinski, E., Mark, L., Liu, L.: OTPM: failure handling in data-
intensive analytical processing. In: Proceedings CollaborateCom, pp. 35–44. IEEE
(2011)

18. Hauglid, J.O., Nørv̊ag, K.: Proqid: partial restarts of queries in distributed
databases. In: Proceedings CIKM, pp. 1251–1260. ACM (2008)

19. Hwang, J., Xing, Y., Çetintemel, U., Zdonik, S.B.: A cooperative, self-configuring
high-availability solution for stream processing. In: Proceedings ICDE, pp. 176–185
(2007)

20. Jeff Barr: Migration Complete - Amazon’s Consumer Business Just Turned off its
Final Oracle Database. https://aws.amazon.com/blogs/aws/migration-complete-
amazons-consumer-business-just-turned-off-its-final-oracle-database/

21. Kwon, Y., Balazinska, M., Greenberg, A.G.: Fault-tolerant stream processing using
a distributed, replicated file system. Proc. VLDB 1(1), 574–585 (2008)

22. Pavlo, A., et al.: A comparison of approaches to large-scale data analysis. In:
Proceedings SIGMOD, pp. 165–178 (2009)

23. Reza, S.: Uber’s Big Data Platform: 100+ Petabytes with Minute Latency. https://
eng.uber.com/uber-big-data-platform/

24. Shah, M.A., Hellerstein, J.M., Brewer, E.: Highly available, fault-tolerant, parallel
dataflows. In: Proceedings SIGMOD, pp. 827–838. ACM (2004)

25. Smith, J.E.T., Watson, P.: A rollback-recovery protocol for wide area pipelined
data flow computations (2004)

26. Stonebraker, M.: The case for shared nothing. IEEE Database Eng. Bull. 9, 4–9
(1985)

https://conferences.oreilly.com/strata/big-data-conference-ny-2015/public/schedule/detail/43373
https://conferences.oreilly.com/strata/big-data-conference-ny-2015/public/schedule/detail/43373
http://db.csail.mit.edu/madden/high_perf.pdf
http://db.csail.mit.edu/madden/high_perf.pdf
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/
https://aws.amazon.com/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/
https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/uber-big-data-platform/

	PhoeniQ: Failure-Tolerant Query Processing in Multi-node Environments
	1 Introduction
	2 Overview of PhoeniQ
	3 Execution Mechanism of PhoeniQ
	3.1 Package-Level Checkpointing of Operator Execution States
	3.2 Operator Output Replication Among Different Processing Nodes
	3.3 Tuple Tagging for Package-Level Commit
	3.4 Query Processing Recovery

	4 Evaluation
	4.1 Experimental Setup and Workload
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

