
RandomLink – Avoiding Linkage-Effects
by Employing Random Effects for

Clustering

Gert Sluiter1, Benjamin Schelling1,2,3(B), and Claudia Plant1,4

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
benjamin.schelling@univie.ac.at

2 MCML, Munich, Germany
3 Ludwig-Maximilians-Universität München, Munich, Germany

4 ds:UniVie, Vienna, Austria

Abstract. We present here a new parameter-free clustering algorithm
that does not impose any assumptions on the data. Based solely on the
premise that close data points are more likely to be in the same cluster,
it can autonomously create clusters. Neither the number of clusters nor
their shape has to be known. The algorithm is similar to SingleLink in
that it connects clusters depending on the distances between data points,
but while SingleLink is deterministic, RandomLink makes use of random
effects. They help RandomLink overcome the SingleLink-effect (or chain-
effect) from which SingleLink suffers as it always connects the closest
data points. RandomLink is likely to connect close data points but is not
forced to, thus, it can sever chains between clusters. We explain in more
detail how this negates the SingleLink-effect and how the use of random
effects helps overcome the stiffness of parameters for different distance-
based algorithms. We show that the algorithm principle is sound by
testing it on different data sets and comparing it with standard clustering
algorithms, focusing especially on hierarchical clustering methods.

1 Introduction

Most clustering algorithms are based on some kind of assumptions about the
distribution or form of the data. K-Means [9], for example, is based on the
assumption of Gaussian distributed clusters, with the variance in all directions
being basically the same. EM [2], on the other hand, does not necessarily assume
a uni-directional variance but is capable of finding lopsided, stretched Gaussian-
distributed clusters. The assumption behind it though is a Gaussian distribution.

To overcome these restrictions, purely distance-based clustering techniques
like SingleLink [12] and DBSCAN [3], which no longer make assumptions about
the distribution of data, have been created. These techniques, however, often
need at least one parameter to help them to estimate how dense the expected

G. Sluiter and B. Schelling are contributed equally to the paper and share first author-
ship.

c© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2020, LNCS 12391, pp. 217–232, 2020.
https://doi.org/10.1007/978-3-030-59003-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59003-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-59003-1_15

218 G. Sluiter et al.

clusters should be. Since the density of the data set might vary, this may cause
that clusters with different densities can be cut out very poorly. DBSCAN is
well known to have problems with varying densities [11]. SingleLink, on the
other hand, suffers from the “SingleLink-Effect”, where clusters are combined,
if they have a “bridge” of data points connecting them. All these difficulties are
caused by the strict focus on the given parameters, which does not always give
the leeway needed.

The technique that we would like to present here, RandomLink, avoids such
problems by using randomised effects to determine the clusters. It does not need
parameter(s) or model assumptions to find the clusters. Its only premise is that
the closer data points are, the more likely they belong into the same cluster. It
starts with a fully connected data set (all data points are connected) and deletes
all connections between data points. The order of deletion is remembered and
inverted to connect data points until a certain number of clusters is found. This
number of clusters would be a parameter which we want to avoid. Therefore, we
also present a simple strategy to get rid of it. Connections are deleted depending
on their length. A long connection is more likely to be deleted. Thus, every pair
of data points can stay connected, but distant ones are less likely to. Direct
connections between them are highly unlikely to consist for a long time, but
they can nevertheless be connected via other data points. If the density between
them is high, then there might be a path of data points linking them. If there
is a path between them, then they are part of the same cluster, as clusters are
defined as “connected components”, i.e. all data points that are connected via
paths.

(a) Possible paths (b) A possible final clustering result.

Fig. 1. The principle behind RandomLink.

See Fig. 1 for this. The direct connection between data points A and B is
highly unlikely to exist for a long time, as it is rather long. Compared to it,
the line between B and C has a relatively high chance to remain for longer.
This would link two clusters, which clearly do not belong together, and split one
cluster into two, which do. RandomLink removes – with a certain probability
– longer links first, which means that while it does remove the link between A
and B, it will eventually also remove the link between B and C. Since the links
between clusters are – as a tendency – longer than many links inside a cluster,
the connection between clusters will eventually be cut. Inside the cluster though,

RandomLink 219

many links will consist for a long time and thus a path (like the one shown in
the Fig. 1) between A and B may remain and link them indirectly. There is, of
course, the chance that this specific path is also interrupted, but as there is a
high number of possible paths between A and B, at least one will - most likely
- remain.

Thus, not only the distance between data points is relevant for RandomLink,
but also the placement and relative distances of the other data points are very
important to decide if data points are considered part of the same cluster. While
the direct connection will be – very often – erased, indirect paths will remain
inside the cluster, that link different parts of the cluster with each other. One
possible clustering result then might look like Fig. 1b. The direct connection
between A and B is gone, but an indirect path remains. RandomLink poten-
tially takes all connections between data points into account in every step. One
might state that RandomLink considers the whole data set, not only the local
environment.

The similarity to SingleLink is clear. SingleLink connects the closest data
points, while RandomLink is only likely to connect them or might link them
via other close data points. It has a broader approach because the length gives the
probability of a link remaining, not the absolute 0/1-decision of SingleLink. With
this RandomLink can e.g. alleviate the SingleLink-effect (or chain effect), from
which SingleLink suffers and cluster a data set more naturally. The SingleLink-
effect is caused by a sort of bridge between clusters, which will keep them con-
nected, no matter how long the bridge. With RandomLink the connections of
the bridge will be thinned out while clustering until it eventually is no longer
connecting. The specifics, of course, depend on the length, density, etc of the
bridge, but RandomLink can overcome, or at least lessen, the difficulty of the
SingleLink-effect. RandomLink is as a whole not purely dependent on local den-
sity, as e.g. DBSCAN is, but evaluates on a broader spectrum, as stated before.
This leads to a reduced dependency on the rigidity of fixed parameters compared
to DBSCAN or SingleLink have. We will talk in more detail about this in Sect. 4,
on how we intend to use random effects to our advantage.

1.1 Related Work

RandomLink computes the distances between all data points and determines
an order by deleting them depending on their length combined with random
numbers. After this order is fixed, it starts connecting the data points until the
clusters are found. The closest related methods are clearly hierarchical clustering
approaches like SingleLink. The differences in these methods are how they decide
on the order of connecting the data points to clusters. SingleLink connects data
points/clusters depending on the closest data points in the clusters, AverageLink
[13] connects the clusters depending on the average distance between data points,
CompleteLink [1] on the maximal distance between data points and Ward’s
Criterion [16] on the change in variance in the clusters. These methods all decide
on the order of connecting data points deterministic while RandomLink uses
random effects and connects the likely closest clusters. As a distance between

220 G. Sluiter et al.

clusters, we use the SingleLink approach of the minimal distance between data
points in clusters. It could be easily adapted to other definitions of distance, as
e.g. AverageLink uses.

One could consider Graph-clustering methods like Highly Connected Sub-
graphs (HCS) [5] or Chameleon [7] as related, as we plot various Graph-like
Figures, but these are used to explain RandomLink. Graph-clustering methods
are focused on clustering graphs, while RandomLink clusters numerical data.
One can create a Graph out of numerical data and employ these methods, but
other clustering approaches are more closely related. HCS divides graphs along a
minimum cut [6] multiple times before it starts re-connecting them. Chameleon
[7] creates a sparse kNN graph, partitions it into many sub-graphs and merges
them using a minimum cut criterion.

Both these methods have parameters which are hard to tune. RandomLink
needs no parameters at all. In the straightforward implementation, we would
leave the number of clusters to be found to the user, but we created an approach
for estimating the optimal stopping point in creating the final clusters (details in
Sect. 2.2). This stopping criterion could be construed as an ensemble-approach
(also called consensus clustering, see [8] for an introduction). Ensemble methods
are a relatively new approach to data mining. They try to combine multiple
clustering results into one and this single result should be better than any of the
input clusterings. RandomLink uses k-Means to find the best stopping point, but
it does not combine clustering results, so it is not exactly an ensemble-approach.

Spectral Clustering-approaches start with a similarity/distance matrix on
which they eventually employ k-Means. RandomLink computes the distances
and uses k-Means to decide the stopping point. There are some similarities and
we take them as interesting comparison methods, in particular, the fundamental
algorithm of Ng, Jordan and Weiss [10], which has become one of the classical
clustering approaches by now. These standard methods should be used as com-
parison methods as they provide a baseline of what one can expect as a clustering
result. Another standard approach is DBSCAN, one of the best-known examples
of distance-based clustering methods, which we will discuss in more detail later.

1.2 Contributions

In this paper we propose the clustering algorithm RandomLink, which is exten-
sively tested on various real world datasets. It performs especially well on data
sets where other clustering approaches have difficulties to reach even a mini-
mal level of clustering quality. Thus, it can be used as an approach for difficult
data sets, where not much is known. The advantages of RandomLink are the
following:

– RandomLink tends to find decent clusterings even when well-established algo-
rithms fail.

– RandomLink is completely parameter-free and needs no input from the user.
It does not need the number of clusters and stops completely automatic.

– RandomLink has no assumption about the shape of distribution of clusters.
They can be of arbitrary shape and distributions.

RandomLink 221

– The source code of RandomLink is publicly available for everyone to corrob-
orate our results.

2 The Algorithm

As stated, RandomLink determines the order of connecting clusters by first
deleting them using their length as probability for being deleted. Thus, we start
by computing the distances between all data points and store them in a distance
matrix S. We can imagine the data as a fully connected data set, i.e. each pair of
data points has an edge, i.e. link, e in between them with the length of this link
defined by the Euclidean distance of the data points. The algorithm now deletes
one link after another, with the length of an link determining the probability of
that happening.

2.1 Deleting Links

All links are lined up and the total length of all links sumS is computed. See Fig. 2
for a simple example. A random number in the interval [0, sumS] is drawn, here
it is 3.1415, and the corresponding link e2 is removed. It is simply the link into
which’ interval the number falls. Link e2 is then removed from the concatenated
links and the total length is now 18, i.e. sumS − l(e2) with l(e) being the length
of link e. A new number is now drawn from the interval [0, sumS − l(e2)] and
the same step is repeated.

(a) Links listed with their length. The total length of all links is 23.

(b) We draw the random number r=3.1415 from the range [0, 23].
The corresponding link is e2.

(c) We remove e2. The total length of the links is now 18.

Fig. 2. How we determine the order of connecting clusters.

The probability of a specific link ex being removed is thus

p(ex) =
l(ex)

∑
e l(e)

(1)

222 G. Sluiter et al.

It is linearly dependent on the length of the e, i.e. longer links are more likely
of being removed. This approach is commonly referred to as Roulette Wheel
Selection [4].

RandomLink starts by creating a distance matrix Sn×n computed from a data
set Dd×n using a distance function. We use the Euclidean distance, but any
other distance or similarity measure could be used as well. Using Manhattan
distance or Cosine and Gaussian similarity lead only to tiny differences. The
results reported in Sect. 3 are almost uninfluenced by the used distance/similarity
function. The values in S give the probability (if scaled as in Eq. (1)) for every
link connecting two data points to be deleted. We calculate the sum of S and
store it as sumS . As explained earlier, we choose a random value r in the range
[0, sumS]. There is a link corresponding to r and this link is deleted from the
data set and its value in S set to 0. Its index is stored in a stack and identifies
the deleted link. This procedure is then continued until all links are deleted.

Algorithm 1. RandomLink
Require: Data D

procedure RandomLink(D)
S ← similarity matrix(D)
sumS ← ∑

(S), scoremax ← 0
while sumS > 0 do

delete random link e
sumS ← sumS-length(e)
set index of e 0 in S
stack.push(index of e)

end while
ds ← Disjoint Set.make set(S)
while ds.n connected components > 1 do

ds.union(stack.pop())
if (ds.n connected components changed) then

score ← stopping criterion(ds.connected components, D)
end if
if (score > maxscore) then

Labels ← ds.connected components, scoremax ← score
end if

end while
return Labels

end procedure

The algorithm starts with a fully connected data set from which the links are
deleted until every data point is a singleton. Thus, the order of the links between
the data points is determined and the algorithm can start connecting them, i.e.
the clusters will be created. The algorithm adds the first link as determined in
the order of the links, reducing the number of connected components from n to
n − 1. After a few links are added, we will have a situation like in Fig. 3d. Many
clusters exist and the correct clusters are still separated. Adding a few more links

RandomLink 223

(a) Clusters are well interconnected (b) Clusters are interconnected by few links

(c) More and more clusters appear. (d) Few links are inserted

Fig. 3. Different amount of links and the connected components. The algorithm deletes
more and more connections, until eventually all data points are singletons. The order
of the connections is determined by the deletion of links and the clusters found by
inserting the links in reverse order.

will lead to Fig. 3c, where the clusters start to make sense. In the beginning, most
added links will be small until, eventually, longer links are added. Connections
between the clusters become more and more likely. This is the situation depicted
in Fig. 3b. The number of connected components decreases with those longer
links being added and interconnecting clusters. The algorithm terminates as
soon as the number of connected components |cc| becomes one. All data points
are connected and the clustering no longer changes.

Somewhere between the two extremes of |cc| = n and |cc| = 1 is the point
where we want to stop. If we were to look for exactly k clusters, we could
simply stop as soon as we found k connected components, but we want to have a
completely parameter-free clustering approach which determines the number of
clusters automatically. It is possible to apply RandomLink with k as a parameter,
but knowing the correct number of clusters is seldom trivial and we can not
expect that the user always knows exactly for what he/she is looking for. We
found a heuristic that helps us find the optimal stopping point.

We make here use of a union-find data structure which is also known as
disjoint-set for an online connected components analysis and benefit from quasi
constant time per operation [14]. Every time clusters are merged the number of
connected components decreases by one and the root nodes for every data point
in the disjoint-set data structure are used as cluster labels.

224 G. Sluiter et al.

2.2 Stopping Criterion

In-between |cc| = n and |cc| = 1 is the point where we want to stop. If |cc| = n
then every point is its own cluster. Adding links leads to the data points creating
clusters. Adding even more links leads to the clusters becoming connected until
eventually |cc| = 1. The typical progress of this can be seen in Fig. 4. The mea-
sure for clustering quality used there is Normalised Mutual Information (NMI)
[15] which is widely used to evaluate clustering results. NMI scales between 1.0
(perfect clustering) and 0.0 (purely random cluster assignments). We see in Fig. 4
that there is a peak between the fully connected data set and fully isolated data
points. The NMI is maximal there, i.e. it is the best result that can be reached
with our approach and we find it the following way:

Fig. 4. Average NMI when deleting links for our running example.

Whenever the number of connected components |cc| changes, a score is com-
puted by our stopping criterion (Algorithm 2). This score changes for different
values of |cc|. When the score has become maximal, maxscore, the ideal state of
the clustering has been reached and the connected components cc at that time
will be returned as the clustering result. The score itself is computed by compar-
ing our current clustering result with the result of k-Means by executing k-Means
on the data D and using the number of connected components |cc| as the num-
ber of clusters k. Thus, we compare the clusterings of RandomLink and k-Means
with NMI and remember the comparison value. Finding the stopping point this
way ensures that we need no further parameters (the k for k-Means is given by
RandomLink) and although it is purely heuristic, it is easy to understand.

Algorithm 2. Stopping Criterion
Require: connected components cc, Data D

procedure evaluate stopping criterion(cc,D)
Label ← k-Means (D,k=|cc|)
return NMI (Label,cc)

end procedure

RandomLink 225

Thus, we know when the algorithm should stop. It would be beneficial for
RandomLink to know k, as we will see in Sect. 3.2, but this way we remove the
last parameter at the cost of a relatively small loss in clustering quality. Hence,
one can use RandomLink and set a number of clusters as e.g. SingleLink does
it, or use it automatically in combination with this stopping criterion.

3 Experiments

3.1 Real World Data

We tested RandomLink with various real world data sets from the UCI Machine
Learning Repository to evaluate its performance. The most important compari-
son method is clearly SingleLink, as it is closest to our approach. We also included
AverageLink [13], CompleteLink [1] and Ward’s method [16] as further repre-
sentatives of hierarchical clustering methods. We also included the standard
clustering methods, i.e. EM [2], as they give a realistic value of what can be
expected from clustering for a data set. K-Means [9] is a standard approach and
also employed to evaluate the optimal stopping point and therefore a necessary
comparison method. DBSCAN [3] is one of the most prominent distance-based
clustering methods which we will talk about more later on. We mentioned the
similarities to Spectral Clustering-methods and have thus also included STSC
[17] as a popular method and FUSE [18] as a more recent one. With Spectral
Clustering we refer to the essential algorithm by Ng et al. [10], which was foun-
dational for this type of clustering methods. Furthermore, the aforementioned
Chameleon [7] is chosen to represent graph clustering methods.

The results are shown in Table 1. “RandomLink max” value stands for the
best result which could have been reached with our approach, while “Random-
Link” denotes the actual result we reach in combination with the stopping cri-
terion. On the data sets, RandomLink always yields a good NMI value while
the other algorithms partially completely fail and are sometimes clearly outper-
formed by RandomLink. RandomLink is the best choice on all of the 8 data
sets and loses only once by a tiny deficit. The data sets have a wide range of
dimensionality and number of clusters, which shows that RandomLink is not
restricted in these regards. We want to especially emphasise the improvement
over SingleLink. Including these random effects into it, massively improved the
clustering results. The stopping criterion works most of the time as intended and
returns a result close to the optimum. Furthermore, the clustering results are
mostly stable. The small deviations in clustering quality show that the algorithm
behaves predictably in a certain range.

Parameters. We tried to be as fair as possible to the comparison methods.
The algorithms were given correct k if needed and using Euclidean distance. For
DBSCAN we performed a grid search on the parameter range ε = [0.01−−10.0]
in 0.5 increments and minPts = 2, 5, 8, 11, 14 and report the best found NMI
value. For Chameleon, the kNN graph was constructed with k = 10 and the

226 G. Sluiter et al.

Table 1. Experimental results. All non-deterministic results have been repeated 100
times and the average is given. The correct value for k is always given for the comparing
algorithms. Results given in NMI and best result bold marked.

Data set Yeast Fish User know. Crowdsourced.

of dimensions 8 463 5 28

of classes 10 7 4 2

RandomLink max 0.48 0.57 0.47 0.55

RandomLink 0.45 ± 0.01 0.55 ± 0.01 0.46 ± 0.01 0.49 ± 0.02

SingleLink 0.12 0.03 0.05 0.03

CompleteLink 0.23 0.19 0.29 0.34

AverageLink 0.11 0.13 0.32 0.40

Ward’s method 0.27 0.35 0.28 0.43

k-Means 0.27 0.28 0.23 0.43

DBSCAN 0.12 0.39 0.11 0.00

EM 0.17 0.25 0.42 0.42

Chameleon 0.00 0.47 0.35 —

Spectral Clustering 0.28 0.39 0.23 0.43

STSC 0.06 0.10 0.04 0.12

FUSE — 0.19 0.02 0.01

Data set Glass Id. Thyroid Libras Move. Arrhythmia

of dimensions 9 13 90 278

of classes 6 6 15 11

RandomLink max 0.50 0.54 0.68 0.61

RandomLink 0.47 ± 0.02 0.52 ± 0.02 0.64 ± 0.02 0.56 ± 0.05

SingleLink 0.07 0.51 0.12 0.35

CompleteLink 0.38 0.47 0.54 0.43

AverageLink 0.11 0.51 0.60 0.40

Ward’s method 0.40 0.44 0.62 0.47

k-Means 0.43 0.46 0.59 0.44

DBSCAN 0.46 0.00 0.59 0.00

EM 0.34 0.44 0.59 0.43

Chameleon 0.00 0.44 0.00 0.54

Spectral Clustering 0.31 0.44 0.62 0.46

STSC 0.09 0.11 0.22 0.44

FUSE 0.28 — 0.18 0.31

default value of α = 2.0 was used for the cluster merging, besides that, the
authors stated that Chameleon is not very sensitive to the parametrization [7].
The similarity matrix for spectral clustering was created by using the Euclidean
distance of the 10-nearest neighbours reassuring a connected graph. For Self

RandomLink 227

Tuning Spectral Clustering (STSC) [17] the default parameters were used. For
SingleLink, FUSE, k-Means etc. the correct k is always given, as stated. Ran-
domLink was executed 100 times for every data set listed in Table 1 and the
mean NMI is reported as well as the standard deviation. We use NMI to eval-
uate clustering quality, as it is widely used and often considered the standard
when evaluating clustering results.

Table 2. We compare the clustering result of the stopping criterion to knowing k in
regard to clustering quality (NMI) and runtime. Best result in bold.

Stopping criterion Knowing the number of clusters

Dataset Mean NMI Runtime Mean NMI Runtime

Yeast 0.45 ± 0.01 100% 0.48 ± 0.00 68.8%

Fish 0.55 ± 0.01 100% 0.57 ± 0.00 49.5%

User Know. 0.46 ± 0.01 100% 0.48 ± 0.00 53.0%

Crowdsourced. 0.49 ± 0.02 100% 0.55 ± 0.00 52.4%

Glass Id. 0.47 ± 0.02 100% 0.53 ± 0.00 50.5%

Thyroid 0.52 ± 0.02 100% 0.58 ± 0.04 37.6%

Libras Move 0.64 ± 0.02 100% 0.69 ± 0.00 34.8%

Arrhythmia 0.56 ± 0.05 100% 0.65 ± 0.02 24.1%

Sourcecode. Under the following links, one can find code and data sets:
https://github.com/53RT/RandomLink
https://dm.cs.univie.ac.at/research/downloads/
We do so as we feel that it is important that our claims can be validated and
fellow researchers can build upon our results if they feel so inclined.

3.2 Adding the Number of Clusters as a Parameter

We pride ourselves on RandomLink being completely parameter-free, i.e. no
density-parameter or number of clusters is needed. The question is whether this
has deteriorated the clustering quality, and if so, by how much? Thus, we ran
RandomLink to find exactly |cc| = k clusters and compared it to the results of
our stopping criterion. In Table 2 is the effect of supplying k described.

Two relevant effects can be observed here: 1) The runtime does clearly
decrease if k is supplied as a parameter. Computing the stopping criterion is
no longer necessary and one can stop the algorithm as soon as the correct num-
ber of clusters is reached, which means one has to perform less operations with
the disjoint-set data structure used in the link insertion phase. 2) The difference
in NMI is small. This means that our method either stops at the correct number

https://github.com/53RT/RandomLink
https://dm.cs.univie.ac.at/research/downloads/

228 G. Sluiter et al.

of clusters or, if it stops at a different point, finds a stopping point that is com-
parable in regard to clustering quality. There is a tendency for the results to be
better with given k, but this is not exactly surprising as the additional informa-
tion makes things easier. Knowing when to stop, reduces the risk of generating
poor clustering results.

A user has, therefore, the possibility to either let the algorithm find the
number of clusters automatically or ask for a specific number of clusters, which
entails a speed-up of a factor of roughly 2–3. Automatic setting of k is a major
advantage in an unsupervised setting, as most of the time the data set is not very
well understood and any decision a user has to make might be false. RandomLink
takes this responsibility from the user, though, at the cost of runtime, but in
similar clustering quality.

3.3 Runtime

We omit extensive experiments on runtime, as we are more interested if this
approach is valid in principle, but we do calculate the estimations. For the algo-
rithm RandomLink itself, we first need to compute the distances between all
data points. This takes O(n2) operations to do. Alternatively, we can also start
with an adjacency matrix, and perform RandomLink on it, but this is not a mas-
sive overall improvement, as we still need to determine the order of links. There
are n2 many links. Selecting a specific one, as described in Sect. 2.1, entails a
binary search, i.e. a runtime of O(log2(n2)). This link is now removed. Finding
the next link entails again a binary search, but this time on n2 − 1 many ele-
ments, thus the runtime for it is O(log2(n2 − 1)). Summing up over all binary
searches from n2 to 1 link(s) is

∑n2

i=0 log2(i). Using Stirling’s approximation this
can be estimated as

O(n2 · log2(n)) (2)

With this, the order of the links is determined and we start to create the
clusters. The stopping criterion consists of executing k-Means, whenever the
number of connected components changes. K-Means has an estimation of O(n)
and has to be computed at most n times. Thus, it adds to the total actual
runtime but does not add anything in regards to the O-calculation.

The second phase of RandomLink - inserting the links in the reversed top-
down order - can be solved efficiently using a disjoint-set data structure [14].
First the make set method initialises the data structure with creating a node for
every item with the parent node pointing at itself. This takes O(n) time. The
parent node is used for a recursive traversal to determine if two data objects are
connected which is true if they have the same root. If path compression and union
by size or rank is used in the data structure the complexity reduces to O(α(n)) for
the find and union operations which is optimal and quasi constant. As we have
≈ n2 links to insert in a fully connected setting there will be at most O(n2 ·α(n))
operations which is never reached in reality as the connected components reaches
one with a fraction of inserted links. The number of connected components can

RandomLink 229

be retrieved as a byproduct as it always decreases by one if clusters are united
and the cluster labels can be easily extracted from the root node of every item.

Since α(n) is essentially constant, creating the clusters is O(n2) and the
dominating part of the estimation is computing the order of the links, i.e.
O(n2 · log2(n)). Equation (2) gives therefore the total of the runtime-estimation.

4 Using Random Effects

Every pair of data points entertains the possibility in RandomLink to not be
connected with each other. This drastically lessens linkage-effects, which neces-
sarily happens for SingleLink for data sets like the one depicted in Fig. 5. The
SingleLink-effect, often referred to as chaining-effect or chain-effect, describes
the tendency of SingleLink to create long chains of clusters, i.e. linking clusters
through small bridges of data points which do not belong together. The exam-
ple, shown in Fig. 5 is a prime, if somewhat extreme, example of this happening.
The two clusters do have a bridge in between them and this bridge needs to
be broken for them to be correctly clustered. SingleLink is not capable of this.
Even if the bridge were far longer SingleLink would still connect the two clusters.
RandomLink, on the other hand, will break this bridge and the further away the
two clusters are, the faster this will happen.

Somewhat similar is the situation for DBSCAN. We see in Fig. 6 two Gaussian
clusters with different density. DBSCAN is well known to have problems with
this type of setting, where density varies. We see the difference in NMI and how
much more capable RandomLink is in clustering this data set.

Distance-based techniques are most of the times deterministic and, therefore,
forced to “obey” their parameters. Since these parameters are necessarily based
on local density (that is either the closest neighbour (e.g. SingleLink) or the num-
ber of neighbours in a certain environment (e.g. DBSCAN)), the local density
determines if data points are put into the same cluster. The difficulty now lies
therein that only taking local density into account might lead to troubling clus-
tering results. This is obvious for SingleLink with data sets like the one shown
in Fig. 5, where the local density in the bridge between clusters is relatively
high and SingleLink will, therefore, connect the clusters. This drawback is also
present in DBSCAN, as it is not fit to handle clusters with different densities (see
Fig. 6). Such a situation will lead to sub-par clustering results. RandomLink, on
the other hand, can handle such situations due to its more “holistic” approach
as it takes the whole data set into account. It splits the clusters in Fig. 5 apart,
without falling into the same trap as SingleLink. It can also handle a situation
like in Fig. 6, where DBSCAN (as well as SingleLink) would fare very badly. The
idea for the future is to combine random effects with DBSCAN and SingleLink
to overcome these difficulties these algorithms have with such data sets. The
approach of RandomLink that employs randomised effects, helps overcome the
restrictions of “fixed” parameters.

This is what we did with SingleLink: In the classical form, SingleLink first
computes all distances and then continues linking the closest clusters until either

230 G. Sluiter et al.

k connected components are created, with k as a given parameter, or a stopping
criterion tells it to. RandomLink, on the other hand, computes all distances,
deletes them and then continues linking the likely closest clusters until the
stopping criterion tells it to stop. The similarities are obvious. One can consider
RandomLink as an extension of SingleLink with the help of random effects, and a
stopping criterion. SingleLink is essentially the expected result of RandomLink,
but the random effects present in RandomLink help to overcome the chaining-
effect and to break the bridge between clusters.

Figure 6 also suggests that the same approach is also possible for other deter-
ministic distance-based methods like DBSCAN, i.e. that we can to combine
DBSCAN with randomized effects to lessen the dependency on fixed parameters.
The goal is to establish the inclusion of randomised effects into distance-based
clustering algorithms as a general principle, which helps with overcoming certain
restrictions, that these algorithms suffer as a consequence of their rigidity.

(a) Groundtruth (b) RandomLink NMI: 0.86 (c) SingleLink NMI: 0.015

Fig. 5. SingleLink-Effect for two Gaussian cluster with a bridge in between. Random-
Link separates the Link, while SingleLink cannot.

(a) Groundtruth (b) RandomLink NMI: 0.71 (c) DBSCAN NMI: 0.35

Fig. 6. Gaussians with different density. RandomLink can separate them better than
the carefully parametrized DBSCAN.

5 Outlook and Conclusion

RandomLink in combination with the stopping criterion is a completely
parameter-free clustering approach that can handle a wide range of data sets. It
assumes no specific distribution for a cluster, thus, can handle clusters of arbi-
trary shape. One might think that the use of k-Means to estimate the optimal
stopping point, limits it to Gaussian clusters, but k-Means has no influence on

RandomLink 231

how the clusters are constructed. The shape of the clusters found is determined
solely by the order in which the links are added to the data set. Instead of
k-Means, we also tried Spectral Clustering, which can handle non-convex clus-
ters, and the results barely differ. Since it does increase runtime, we stuck with
k-Means.

RandomLink does not have some of the drawbacks of other distance-based
clustering approaches, as we have shown in comparisons with SingleLink and
DBSCAN, the main representatives of this group. It can handle bridges between
clusters and clusters with varying density. We outlined our idea about including
randomised effects into other distance-based clustering algorithms, as we have
done here with RandomLink for SingleLink. The idea to use random effects for
clustering might not be the most obvious one, but we are convinced that we
established here the usefulness of such an approach, especially when comparing
the clustering results of SingleLink and RandomLink in Table 1. RandomLink
can be taken as an extension of SingleLink with random effects (and a stopping
criterion) and we are certain that this can also be done with other algorithms.
Our main concern in this work has been to establish that the combination of
clustering with random effects can prove useful, especially for overcoming the
restrictions that these algorithms have. We are optimistic that this has been
implied heavily by RandomLink for SingleLink and we are looking forward to
combining this approach with other methods like DBSCAN.

References

1. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20,
364–366 (1977)

2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD (1996)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

5. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf.
Process. Lett. 76(4–6), 175–181 (2000)

6. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)
7. Karypis, G., Han, E.H.S., Kumar, V.: Chameleon: Hierarchical clustering using

dynamic modeling. Computer 32(8), 68–75 (1999)
8. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble

learning for data stream analysis: A survey. Inf. Fusion 37, 132–156 (2017)
9. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-

vations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

10. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural
Information Processing Systems 14, pp. 849–856. MIT Press (2002)

11. Sang, Y., Yi, Z.: Motion determination using non-uniform sampling based density
clustering. In: 2008 Fifth International Conference on Fuzzy Systems and Knowl-
edge Discovery, vol. 4, pp. 81–85 (2008)

232 G. Sluiter et al.

12. Sibson, R.: Slink: An optimally efficient algorithm for the single-link cluster
method. Comput. J. 16(1), 30–34 (1973)

13. Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic rela-
tionships. Univ. Kans. Sci. Bull. 38, 1409–1438 (1958)

14. Tarjan, R.E.: A class of algorithms which require nonlinear time to maintain dis-
joint sets. J. Comput. Syst. Sci. 18(2), 110–127 (1979)

15. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

16. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat.
Assoc. 58(301), 236–244 (1963)

17. Yang, C., Zhang, X., Jiao, L., Wang, G.: Self-tuning semi-supervised spectral clus-
tering. In: 2008 International Conference on Computational Intelligence and Secu-
rity, pp. 1–5 (2008)

18. Ye, W., Goebl, S., Plant, C., Böhm, C.: Fuse: Full spectral clustering. In: Proceed-
ings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2016, pp. 1985–1994. ACM, New York (2016)

	RandomLink – Avoiding Linkage-Effects by Employing Random Effects for Clustering
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 The Algorithm
	2.1 Deleting Links
	2.2 Stopping Criterion

	3 Experiments
	3.1 Real World Data
	3.2 Adding the Number of Clusters as a Parameter
	3.3 Runtime

	4 Using Random Effects
	5 Outlook and Conclusion
	References

