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Preface

This volume contains the papers presented at the 31st International Conference on
Database and Expert Systems Applications (DEXA 2020). This year, DEXA was held
as a virtual conference during September 14–17, 2020, instead of as it was originally
planned to be held in Bratislava, Slovakia.

On behalf of the Program Committee we commend these papers to you and hope
you find them useful.

Database, information, and knowledge systems have always been a core subject of
computer science. The ever increasing need to distribute, exchange, and integrate data,
information, and knowledge has added further importance to this subject. Advances in
the field will help facilitate new avenues of communication, to proliferate interdisci-
plinary discovery, and to drive innovation and commercial opportunity.

DEXA is an international conference series which showcases state-of-the-art
research activities in database, information, and knowledge systems. The conference
and its associated workshops provide a premier annual forum to present original
research results and to examine advanced applications in the field. The goal is to bring
together developers, scientists, and users to extensively discuss requirements, chal-
lenges, and solutions in database, information, and knowledge systems.

DEXA 2020 solicited original contributions dealing with all aspects of database,
information, and knowledge systems. Suggested topics included, but were not limited
to:

– Acquisition, Modeling, Management and Processing of Knowledge
– Authenticity, Privacy, Security, and Trust
– Availability, Reliability and Fault Tolerance
– Big Data Management and Analytics
– Consistency, Integrity, Quality of Data
– Constraint Modeling and Processing
– Cloud Computing and Database-as-a-Service
– Database Federation and Integration, Interoperability, Multi-Databases
– Data and Information Networks
– Data and Information Semantics
– Data Integration, Metadata Management, and Interoperability
– Data Structures and Data Management Algorithms
– Database and Information System Architecture and Performance
– Data Streams and Sensor Data
– Data Warehousing
– Decision Support Systems and Their Applications
– Dependability, Reliability, and Fault Tolerance
– Digital Libraries and Multimedia Databases
– Distributed, Parallel, P2P, Grid, and Cloud Databases
– Graph Databases



– Incomplete and Uncertain Data
– Information Retrieval
– Information and Database Systems and Their Applications
– Mobile, Pervasive, and Ubiquitous Data
– Modeling, Automation, and Optimization of Processes
– NoSQL and NewSQL Databases
– Object, Object-Relational, and Deductive Databases
– Provenance of Data and Information
– Semantic Web and Ontologies
– Social Networks, Social Web, Graph, and Personal Information Management
– Statistical and Scientific Databases
– Temporal, Spatial, and High Dimensional Databases
– Query Processing and Transaction Management
– User Interfaces to Databases and Information Systems
– Visual Data Analytics, Data Mining, and Knowledge Discovery
– WWW, Databases and Web Services
– Workflow Management and Databases
– XML and Semi-structured Data

Following the call for papers which yielded 190 submissions, there was a rigorous
refereeing process that saw each submission reviewed by three to five international
experts. The 38 submissions judged best by the Program Committee were accepted as
full research papers, yielding an acceptance rate of 20%. A further 20 submissions were
accepted as short research papers.

As is the tradition of DEXA, all accepted papers are published by Springer. Authors
of selected papers presented at the conference were invited to submit substantially
extended versions of their conference papers for publication in special issues of
international journals. The submitted extended versions underwent a further review
process.

We wish to thank all authors who submitted papers and all conference participants
for the fruitful discussions.

This year we have five keynote talks addressing emerging trends in the database and
artificial intelligence community:

• “Knowledge Graphs for Drug Discovery” by Prof. Ying Ding (The University of
Texas at Austin, USA)

• “Incremental Learning and Learning with Drift” by Prof. Barbara Hammer (CITEC
Centre of Excellence, Bielefeld University, Germany)

• “From Sensors to Dempster-Shafer Theory and Back: the Axiom of Ambiguous
Sensor Correctness and its Applications” by Prof. Dirk Draheim (Tallinn University
of Technology, Estonia)

• “Knowledge Availability and Information Literacies” by Dr. Gerald Weber (The
University of Auckland, New Zealand)

• “Explainable Fact Checking for Statistical and Property Claims” by Paolo Papotti
(EURECOM, France)

vi Preface



In addition, we had a panel discussion on “The Age of Science-making Machines”
led by Prof. Stéphane Bressan (National University of Singapore, Singapore).

This edition of DEXA features three international workshops covering a variety of
specialized topics:

• BIOKDD 2020: 11th International Workshop on Biological Knowledge Discovery
from Data

• IWCFS 2020: 4th International Workshop on Cyber-Security and Functional Safety
in Cyber-Physical Systems

• MLKgraphs 2020: Second International Workshop on Machine Learning and
Knowledge Graphs

The success of DEXA 2020 is a result of collegial teamwork from many individuals.
We like to thank the members of the Program Committee and the external referees for
their timely expertise in carefully reviewing the submissions.

Warm thanks to Ismail Khalil and the conference organizers as well as all workshop
organizers.

We would also like to express our thanks to all institutions actively supporting this
event, namely:

• Comenius University Bratislava (who was prepared to host the conference)
• Institute of Telekoopertion, Johannes Kepler University Linz (JKU)
• Software Competence Center Hagenberg (SCCH)
• International Organization for Information Integration and Web based Applications

and Services (@WAS)

We hope you enjoyed the conference program.

September 2020 Sven Hartmann
Josef Küng
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Knowledge Graph for Drug Discovery

Ying Ding

The University of Texas at Austin, USA

Abstract. A critical barrier in current drug discovery is the inability to utilize
public datasets in an integrated fashion to fully understand the actions of drugs
and chemical compounds on biological systems. There is a need to intelligently
integrate heterogeneous datasets pertaining to compounds, drugs, targets, genes,
diseases, and drug side effects now available to enable effective network data
mining algorithms to extract important biological relationships. In this talk, we
demonstrate the semantic integration of 25 different databases and showcase the
cutting-edge machine learning and deep learning algorithms to mine knowledge
graphs for deep insights, especially the latest graph embedding algorithm that
outperforms baseline methods for drug and protein binding predictions.



Incremental Learning and Learning with Drift

Barbara Hammer

CITEC Centre of Excellence, Bielefeld University, Germany

Abstract. Neural networks have revolutionized domains such as computer
vision or language processing, and learning technology is included in everyday
consumer products. Yet, practical problems often render learning surprisingly
difficult, since some of the fundamental assumptions of the success of deep
learning are violated. As an example, only few data might be available for tasks
such as model personalization, hence few shot learning is required. Learning
might take place in non-stationary environments such that models face the
stability-plasticity dilemma. In such cases, applicants might be tempted to use
models for settings they are not intended for, such that invalid results are
unavoidable.
Within the talk, I will address three challenges of machine learning when

dealing with incremental learning tasks, addressing the questions: how to learn
reliably given few examples only, how to learn incrementally in non-stationary
environments where drift might occur, and how to enhance machine learning
models by an explicit reject option, such that they can abstain from classification
if the decision is unclear



From Sensors to Dempster-Shafer Theory
and Back: The Axiom of Ambiguous Sensor

Correctness and Its Applications

Dirk Draheim

Tallinn University of Technology, Estonia
dirk.draheim@taltech.ee

Abstract. Since its introduction in the 1960s, Dempster-Shafer theory became
one of the leading strands of research in artificial intelligence with a wide range
of applications in business, finance, engineering, and medical diagnosis. In this
paper, we aim to grasp the essence of Dempster-Shafer theory by distinguishing
between ambiguous-and-questionable and ambiguous-but-correct perceptions.
Throughout the paper, we reflect our analysis in terms of signals and sensors as a
natural field of application. We model ambiguous-and-questionable perceptions
as a probability space with a quantity random variable and an additional per-
ception random variable (Dempster model). We introduce a correctness property
for perceptions. We use this property as an axiom for ambiguous-but-correct
perceptions. In our axiomatization, Dempster’s lower and upper probabilities do
not have to be postulated: they are consequences of the perception correctness
property. Furthermore, we outline how Dempster’s lower and upper probabili-
ties can be understood as best possible estimates of quantity probabilities.
Finally, we define a natural knowledge fusion operator for perceptions and
compare it with Dempster’s rule of combination.



Knowledge Availability and Information
Literacies

Gerald Weber

The University of Auckland, New Zealand

Abstract. At least since Tim Berners-Lee’s call for ‘Raw Data Now’ in 2009,
which he combined with a push for linked data as well, the question has been
raised how to make the wealth of data and knowledge available to the citizens
of the world. We will set out to explore the many facets and multiple layers of
this problem, leading up to the question of how we as users will access and
utilize the knowledge that should be available to us.



Explainable Fact Checking for Statistical
and Property Claims

Paolo Papotti

EURECOM, France

Abstract. Misinformation is an important problem but fact checkers are over-
whelmed by the amount of false content that is produced online every day. To
support fact checkers in their efforts, we are creating data-driven verification
methods that use structured datasets to assess claims and explain their decisions.
For statistical claims, we translate text claims into SQL queries on relational
databases. We exploit text classifiers to propose validation queries to the users
and rely on tentative execution of query candidates to narrow down the set of
alternatives. The verification process is controlled by a cost-based optimizer that
considers expected verification overheads and the expected claim utility as
training samples. For property claims, we use the rich semantics in knowledge
graphs (KGs) to verify claims and produce explanations. As information in a
KG is inevitably incomplete, we rely on rule discovery and on text mining to
gather the evidence to assess claims. Uncertain rules and facts are turned into
logical programs and the checking task is modeled as a probabilistic inference
problem. Experiments show that both methods enable the efficient and effective
labeling of claims with interpretable explanations, both in simulations and in
real world user studies with 50% decrease in verification time. Our algorithms
are demonstrated in a fact checking website (https://coronacheck.eurecom.fr),
which has been used by more than twelve thousand users to verify claims related
to the coronavirus disease (COVID-19) spread and effect.

https://coronacheck.eurecom.fr


“How Many Apples?” or the Age
of Science-Making Machines (Panel)

Stéphane Bressan (Panel Chair)

National University of Singapore, Singapore

Abstract. Isaac Newton most likely did not spend much time observing apples
falling from trees. Galileo Galilei probably never threw anything from the tower
of Pisa. They conducted thought experiments.
What can big data, data science, and artificial intelligence contribute to the

creation of scientific knowledge? How can advances in computing, communi-
cation, and control improve or positively disrupt the scientific method?
Richard Feynman once explained the scientific method as follows. “In gen-

eral, we look for a new law by the following process. First, we guess it; don’t
laugh that is really true. Then we compute the consequences of the guess to see
what, if this is right, if this law that we guessed is right, we see what it would
imply. And then we compare those computation results to nature, or, we say,
compare to experiment or experience, compare directly with observations to see
if it works. If it disagrees with experiment, it’s wrong and that simple statement
is the key to science.” He added euphemistically that “It is therefore not
unscientific to take a guess.”
Can machines help create science?
The numerous advances of the many omics constitute an undeniable body of

evidence that computing, communication, and control technologies, in the form
of high-performance computing hardware, programming frameworks, algo-
rithms, communication networks, as well as storage, sensing, and actuating
devices, help scientists and make the scientific process significantly more effi-
cient and more effective. Everyone acknowledges the unmatched ability of
machines to streamline measurements and to process large volumes of results, to
facilitate complex modeling, and to run complex computations and extensive
simulations. The only remaining question seems to be the extent of their
unexplored potential.
Furthermore, the media routinely report new spectacular successes of big data

analytics and artificial intelligence that suggest new opportunities. Scientists are
discussing physics-inspired machine learning. We are even contemplating the
prospect of breaking combinatorial barriers with quantum computers. However,
except, possibly for the latter, one way or another, it all seems about heavy-duty
muscle-flexing without much subtlety nor finesse.
Can machines take a guess?
Although the thought processes leading to the guesses from which theories

are built are laden with ontological, epistemological, and antecedent theoretical
assumptions, and the very formulation of the guesses assumes certain conceptual
views, scientists seem to have been able to break through those glass ceilings
again and again and invent entirely new concepts. Surely parallel computing,
optimization algorithms, reinforcement learning, or genetic algorithms can assist



in the exploration of the space of combinatorial compositions of existing con-
cepts. In the words of Feynman again: “We set up a machine, a great computing
machine, which has a random wheel and if it makes a succession of guesses and
each time it guesses a hypothesis about how nature should work computes
immediately the consequences and makes a comparison to a list of experimental
results that it has at the other hand. In other words, guessing is a dumb man’s
job. Actually, it is quite the opposite and I will try to explain why.” He con-
tinues: “The problem is not to make, to change or to say that something might be
wrong but to replace it with something and that is not so easy.”

Can machines create new concepts?
The panelists are asked to share illustrative professional experiences, anec-

dotes, and thoughts, as well as their enthusiasm and concerns, regarding the
actuality and potential of advances in computing, communication, and control in
improving and positively disrupting the scientific process.

xxii S. Bressan
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Abstract. Since its introduction in the 1960s, Dempster-Shafer theory
became one of the leading strands of research in artificial intelligence
with a wide range of applications in business, finance, engineering and
medical diagnosis. In this paper, we aim to grasp the essence of Dempster-
Shafer theory by distinguishing between ambiguous-and-questionable and
ambiguous-but-correct perceptions. Throughout the paper, we reflect our
analysis in terms of signals and sensors as a natural field of applica-
tion. We model ambiguous-and-questionable perceptions as a probability
space with a quantity random variable and an additional perception ran-
dom variable (Dempster model). We introduce a correctness property
for perceptions. We use this property as an axiom for ambiguous-but-
correct perceptions. In our axiomatization, Dempster’s lower and upper
probabilities do not have to be postulated: they are consequences of the
perception correctness property. Even more, we outline how Dempster’s
lower and upper probabilities can be understood as best possible esti-
mates of quantity probabilities. Finally, we define a natural knowledge
fusion operator for perceptions and compare it with Dempster’s rule of
combination.

Keywords: Dempster-Shafer theory · Dempster’s rule of
combination · Knowledge fusion · Sensor fusion · Artificial
intelligence · Machine learning · Probabilistic reasoning · Bayesian
inference · Uncertainty

1 Introduction

Reasoning under uncertainty has been thoroughly investigated for at least a
century, leading to a proliferation of different theories and mechanisms, each of
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which is well suited for certain kinds of problems and ill-suited for other kinds.
Dempster-Shafer theory [1–6] is one of the major frameworks for reasoning under
uncertainty. Since its introduction in the 1960s, Dempster-Shafer theory became
one of the leading strands of research in artificial intelligence [7] with a wide
range of applications in business [8,9], finance [10,11], engineering [12,13] and
medical diagnosis [14,15].

In this paper, we aim to grasp the essence of Dempster-Shafer theory by
distinguishing between ambiguous-and-questionable and ambiguous-but-correct
perceptions. We model ambiguous-and-questionable perceptions as a probability
space with a quantity random variable and an additional perception random
variable (Dempster model). On the basis of this, this paper features the following
contributions:

(i) We introduce a correctness property for perceptions. We use this property
as an axiom for ambiguous-but-correct perceptions.

(ii) In our axiomatization, Dempster’s lower and upper probabilities do not
have to be postulated: they are consequences of the perception correctness
property.

(iii) We outline how Dempster’s lower and upper probabilities can be understood
as best possible estimates of quantity probabilities.

(iv) We define a natural knowledge fusion operator of perceptions and compare
it with Dempster’s rule of combination.

Throughout the paper we reflect our analysis in terms of signals and sensors.
Signals are a natural and particularly successful field of application of Dempster-
Shafer theory [16–18]; and arguments are often particularly easy to follow when
presented against the ad hoc understanding of technical signals/sensors. A kind
of tension comes in through this approach due to the fact that signal/sensor
examples lay rather in the realm of frequentist interpretation of probability the-
ory, whereas Dempster clearly localizes Dempster-Shafer theory in the strand of
Bayesian inference [4] and subjective/epistemic probabilities [19] (although his
original motivating example in [3,4], i.e., a partially covered map with regions
of land and sea, is, in our humble opinion, rather an example from the realm
of frequentist probability). For us, this is not a problem, as we are rather
agnostic with respect to the debate of Bayesian/subjective probability (Car-
nap’s probability-1 [20,21]) versus frequentist/objective probability (Carnap’s
probability-2) [20,21], see [22], pp. 5–7, for a discussion, compare also with [23].
Actually, the understanding of signals/sensors can be (quite) easily generalized
from technical signals/sensors to more conceptual perceptions: at least for the
purpose of this paper, we see all this rather as a matter of presentation and
instruction (in our role as working data scientists, we anyhow rather agree with
Jerzy Neyman [24]).

In Sect. 2, we set the stage by informally describing the scenarios of
ambiguous-and-correct perception through a simple signals/sensors example.
In Sect. 3, we formalize ambiguous-and-questionable perceptions as a probabil-
ity space with two random variables, which actually meets the original model
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of Dempster as introduced in the 1960s. In Sect. 4 we introduce the axiom of
ambiguous sensor correctness and introduce a central Lemma, which states that
Dempster’s lower and upper probabilities are actually lower and upper bounds
for probabilities of signal events – as a consequence of the sensor correctness
axiom. In Sect. 5, we deal with the exact relationship between signals and their
perceptions. The corresponding lemma also provides the proof for the lower-
and upper-bound lemma of the previous section. In Sect. 6, we explain in how
far Dempster’s lower and upper probabilities are best possible estimates (and
not only lower and upper bounds for probabilities of signal events). In Sect. 7, we
introduce a natural knowledge fusion operator and compare it with Dempster’s
rule of combination. We finish the paper with a conclusion in Sect. 8.

2 Ambiguous-but-Correct Perception

Let us start – in medias res – with a very small example. The purpose of this
example is to explain the scenario with which we deal in this paper: ambiguous-
but-correct perceptions. Please note, that all essential ingredients (such as the
fact that a certain sensor message is correct with respect to certain signals) are
meant to be basic assumptions of the scenario and not just properties of that
particular example.

2.1 A Simple Signal/Sensor Example

Let us assume that we have a signal source that periodically sends one of the
following light signals:

– ‘red’, ‘green’, ‘blue’ (1)

The signal can have exactly one of the colors in (1), i.e., the signal color is
unambiguous and there are no more than three signal colors. Next, there is a
sensor that detects the light signal and reports its signal detection to a decision
maker. The crucial point is that the sensor is sometimes not sure about the
exact color of the signal. Actually, the sensor might report any of the following
information to the decision maker:

– “red”, “green”, “blue”
– “either red or green”, “either red or blue”, “either green or blue”
– “either red or green or blue”

(2)

For example, if the sensor reports “red”, then the decision maker can be
absolutely sure that the signal has been ‘red’ (similarly for “green” and “blue”).
Now, if the sensor reports, e.g., “either red or green”, the decision maker cannot
be sure any more, whether the signal has been ‘red’ or ‘green’; however (and
this is crucial for the described scenario), he can be sure that the signal has
not been ‘blue’ ! So, the sensor report “either red or green” is ambiguous but
still carries some information, i.e., that the signal must have been either ‘red’ or
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‘green’ (similarly for “either red or blue” and “either green or blue”). The least
information is carried by the sensor message “either red or green or blue”, here,
the decision maker does not know at all anymore, which color the signal actually
had. We can summarize what we just explained as a correctness property, i.e.:

The sensor messages might be ambiguous, but they are correct; i.e., a
sensor might not be sure which signal has occurred exactly; however,
with respect to the potential signals that the sensor flags, the sensor is
always correct.

(3)

We are not ready with the description of the scenario yet. First, each of the
signal colors in (1) occurs with a certain probability. Next, also the sensor mes-
sages in (2) occur with certain probabilities. Now, the probabilities of the sensor
messages are all known to the decision maker, whereas the exact probabilities
of the signal colors are not known to him! Still, even if the exact probabilities
of the signal colors are not know to him, he at least knows certain guaranteed
lower and upper bounds for them, because he can infer those from the probabil-
ities of the sensor messages; and those lower and upper bounds is exactly what
Dempster-Shafer theory is about: in Dempster’s writing [2–4] they are simply
called lower probability and upper probability, in Shafer’s writing belief and again
upper probability [6], in further literature [7,25] they might be called belief and
plausibility and so on; whereas we will coin the terms certainty and possibility
for them, for reasons to become clear in due course – compare with Table 2.

Sensors can greatly vary with respect to their ambiguity – it is all up to the
distribution of probabilities that the several sensor messages have. A perfectly
unambiguous sensor would always only show either “red”, “green” or “blue”,
i.e., all other “ambiguous” sensor messages have a probability of 0% (i.e., never
occur). For a perfectly unambiguous sensor, the probabilities of “red”, “green”
and “blue” are exactly the same as of the corresponding signals ‘red’, ‘green’
resp. ‘blue’. This follows immediately from the correctness requirement that we
have formulated for sensors in our scenario. The most “ambiguous” sensor always
shows “either red or green or blue” (i.e., with probability 100%) and is actually
useless as a sensor. Dempster-Shafer theory deals with scenarios that lay some-
where in between the two extremes of perfectly unambiguous and completely
ambiguous (useless) sensors.

The described scenario can be naturally modelled as a probability space
[26–28] with signals as outcomes and two random variables: one modeling the
sent signals as would be perceived by the decision maker directly, and one for the
information as detected by the sensor (and handed over to the decision maker
as message). This is what we will do in Sect. 3 and also, what Dempster did
in [2–4] up to some technical and terminological details, as we will see in due
course. As a preparation of what comes in Sect. 3, let us delve a little bit deeper
into our current example. We have said that the the signal source sends one out
of the three signals listed in (1). That was good in order to start the discussion,
but now, after the explanation of the scenario so far, we can (and need to)
understand, that the structure of the sent signals is actually more fine-grained.
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The signals in (1), i.e., ‘red’, ‘green’ and ‘blue’ are actually the signals that can
be perceived by the decision maker, if he could look at the signals directly, i.e.,
without the intermediate sensor. But signals of the same color (as perceived
by the decision maker), might be different with respect to the message they
trigger in the sensor, so the actual structure of the signals is more fine-grained
which could be modeled artificially (and explained in due course), for example,
as follows:

– 〈‘red’,“red”〉, 〈‘red’,“green”〉, 〈‘red’,“blue”〉,
〈‘red’,“either red or green”〉, 〈‘red’,“either red or blue”〉,
〈‘red’,“either green or blue”〉, 〈‘red’,“either red or green or blue”〉

– 〈‘green’,“red”〉, 〈‘green’,“green”〉, 〈‘green’,“blue”〉,
〈‘green’,“either red or green”〉, 〈‘green’,“either red or blue”〉,
〈‘green’,“either green or blue”〉, 〈‘green’,“either red or green or blue”〉

– 〈‘blue’,“red”〉, 〈‘blue’,“green”〉, 〈‘blue’,“blue”〉,
〈‘blue’,“either red or green”〉, 〈‘blue’,“either red or blue”〉,
〈‘blue’,“either green or blue”〉, 〈‘blue’,“either red or green or blue”〉

(4)

If the decision maker would look at a signal from (4) directly, he would
perceive signal colors from (1), modeled as left-hand components of the signals
in (4). For the sensor, some further conditions to the signals (or properties of the
signals) are relevant that make the sensor to detect the signals ambiguously (at
least sometimes). Such conditions/properties are modeled as right-hand compo-
nents of the signals in (4). Note, that we conduct the explicit construction of
the outcome signals in (4) only for explanatory purposes. It is something that
we usually would never do in a mathematical model. In probability theory, we
usually keep the outcome space Ω abstract and model the probability of a con-
crete phenomena Y that interests us only via a random variable Y : Ω −→ I.
Again, that is exactly, what Dempster did and what we will do in Sect. 3.

2.2 Generalizing from Signals/Sensors

The example in Sect. 2.1 heavily relies upon the reader’s ad-hoc intuition of
signals and sensors. Henceforth, we often stay in the picture of signal/sensors
even when it comes to more abstract concepts (all in service of readability).
However, the concepts that we discuss in this paper are not bound to the domain
of signal/sensors. Also, signal/sensors can be interpreted themselves differently
from an ad hoc understanding of technical signals and their detection, compare
with Table 1.

Table 1 is a first attempt to grasp some possible, tentative terminology for
concepts of ambiguous-but-correct perceptions in different (both technical and
cognitive) domains. Throughout the paper we use signal as synonym for signal
source, if clear from the context. Similarly, we equally use quantity for signals
(and signal sources), as well as perception for sensor messages and sensors them-
selves.
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Table 1. Concepts of ambiguous-but-correct perceptions: some possible, tentative ter-
minology in different technical and cognitive domains (structured by the components
of Dempster models V , φ, and Ψ according to Definition 1).

V φ Ψ P(Ψ ⊆T ) P(Ψ ∩T =∅)

This paper values quantity perception certainty possibility

Sensor signals signal sensor must may

Human signals signal sense is convinced can imagine

Kolmogorov outcomes experiment observation must may

Transmission messages sender receiver clearly noisy

Production goods producer consumer demand potential

Accounting assets asset utility debitable credible

Epistemology facts truth knowledge trustable speculative

Estimating facts knowledge guess reliable possible

News facts fact news believable probable

Opinion facts fact opinion insisted debatable

Experience happenings happening experience worst case best case

We say that ambiguous-but-correct perception is essentially what Dempster-
Shafer theory is about. Actually, we do not claim that Dempster have stated
it in that way or that the model that he introduced is restricted to what we
will explain and formalize as correct perception. However, the concepts of lower
probability (called belief by Shafer) and upper probability, which are at the core
of Dempster-Shafer theory, are valid (and, in general, only valid) in scenarios of
ambiguous-but-correct perception.

3 Dempster Models and Dempster-Shafer Theory

In this section we formalize the scenario as described in Sect. 2, however, yet
without formalizing the notion of perception correctness as outlined in (3). This
means, we only formalize the part of ambiguous-and-questionable perception; the
formalization of ambiguous-but-correct perception is deferred until Sect. 4.

We immediately give our own formalization in terms of well-established, stan-
dard measure-theoretic terminology in Definition 1. Next, we will explain it by
one-to-one comparison with the basic example from Sect. 2 – again: this is for
explanatory reasons only, the actual, conceptual formalization of ambiguous-
and-questionable perception is only in Definition 1. Only after that explanation,
we will compare our definition with the original contribution and formalization
of Dempster [2–4] and, furthermore, its reformulation by Shafer.

Definition 1 (Ambiguous-and-Questionable Perception) An
ambiguous-and-questionable perception, also called Dempster model for short, is
a tuple ((Ω,Σ,P), V, φ,Ψ) that consists of a probability space (Ω,Σ,P), a finite
set of (quantity) values V , a quantity random variable φ : Ω −→ V , and a
perception random variable Ψ : Ω −→ P(V )\∅.
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We now model our signal/sensor example from Sect. 2 as a Dempster model
according to Definition 1. We assume that signals are sent and that we draw them
from the set of outcomes Ω of the model. Signals are subject to probability, as
determined via the σ-algebra Σ and the probability measure P of the model.
As we have said earlier, we can keep the set Ω abstract; there is no need to
construct the signal outcomes in Ω in a concrete manner and it would be rather
unusual to do so. Still, if the reader finds it instructive, he might think of Ω as
the set of artificially constructed signal outcomes in (4).

The set of signals ‘red’, ‘green’ and ‘blue’ from (1) becomes the set of quantity
values V . Now, the event that a signal is sent that is either ‘red’, ‘green’ or ‘blue’
is modeled via the quantity random variable φ.

Next, the event that a sensor reports a certain message back to the deci-
sion maker is modeled by the quantity random variable Ψ . Consequentially, the
range of Ψ is the power set P({‘red’, ‘green’, ‘blue’}) of the quantity values V ,
which perfectly corresponds to the sensor messages listed in (2). We are done.
Henceforth, we can express the probabilities of arbitrary events. For example,
we could express the probability that the sensor detects that the sent signal is
either ‘red’ or ‘green’, although the sent signal was actually ‘blue’ as

P
(
(Ψ = ‘red’ ∨ Ψ = ‘green’) ∧ φ = ‘blue’

)
(5)

Now: is it possible that the probability of (5) is greater than 0%, i.e., that
actually ‘blue’ has been sent, although the sensor does not report it as a poten-
tially detected signal? Yes and no. Formally: yes, it is possible, because we have
not yet forbidden it in our formal model. Informally: no, it should not be possible
according to the informal correctness property (3) of our scenario description. It
will be exactly the task of Definition 2 in Sect. 4 to turn the informal constraint
(3) into a formal axiom.

The model provided in Definition 1 formalizes the notion of ambiguous per-
ception as described in our scenario. Up to technical details and terminology, it is
the same model that has been introduced by Dempster in [2–4]. In [3,4], Demp-
ster refers to his model as the tuple (X,S, μ, Γ ). X and S are two spaces, μ is a
probability measure carried by X, and Γ is a multivalued mapping from X to S,
i.e., in symbols: Γ : X −→ P(S). The model is slightly richer. First, as a minor,
necessary technical detail, there is also the σ-algebra F over X [2], i.e., (X,F, μ)
forms a probability space. Next, there is also a random variable ψ : X −→ S.
This random variable ψ is there, but Dempster keeps is anonymous, i.e., he does
not talk about it explicitly as a function. But is is surely there and is it very
important, e.g., Dempster talks about the probability P(ψ = s) as “probability
judgement [...] about [...] s ∈ S” [2]. Given that Γ : X −→ P(S) and (X,F, μ)
is a probability space, we have that Γ is a random variable, although Dempster
does not call it a random variable and also does not use the established notation
usually used when working with random variables. To summarize, we have that
Dempster’s model ((X,F, μ), S, ψ, Γ ) (almost) exactly corresponds to our model
((Ω,Σ,P), V, φ,Ψ) in Definition 1; actually, the only difference between the two
models is in the target domains of Γ respectively Ψ . Γ ranges over the full
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power set P(S), whereas Ψ ranges over P(V )\∅, which conceptually makes no
difference: actually, ∅ needs to be excluded. Dempster maintains the exclusion
of ∅ in all his subsequent definitions; whereas, we exclude it from the beginning
(Similarly, Shafer does not exclude ∅ from the beginning [6]; therefore, he needs
to care for the special case of ∅ explicitly by setting his probability mass function
m to zero for ∅, i.e., m(∅) = 0.).

In [6], Shafer reformulates Dempster’s model. He gets rid of Dempster’s
underlying structure ((X,F, μ), S, ψ, Γ ) and introduces the probability mass
function P(Γ = ) : P(S) −→ [0, 1] directly as a function called m, i.e., with-
out reference to the random variable Γ , by explicitly axiomatizing its properties
that otherwise (in Dempster’s original contribution) follow from the Kolmogorov
axioms. In Table 2, we summarize common terminology in existing literature for
concepts of ambiguous-but-correct perceptions and Dempster-Shafer theory, in
particular.

Table 2. Concepts of ambiguous-but-correct perceptions: some common terminology
in existing literature.

V φ Ψ P(Ψ ⊆A) P(Ψ ∩A=∅)

This paper values quantity perception certainty possibility

Dempster
[2–4]

space S outcome of
s ∈ S

multivalued
mapping Γ

lower
probability
μ(A�)

upper
probability
μ(A�)

Shafer [6] true values,
Θ, frame of
discernment

quantity basic proba-
bility, m

belief,
Bel(A)

upper
probability,
P �(A)

Dempster-
Shafer as in,
e.g., [7,25]

answers [7],
frame of
discern-
ment [25]

question [7] basic proba-
bility[7], m,
basic belief
[25]

belief,
Bel(A)

plausibity,
Pl(A)

4 The Axiom of Ambiguous Sensor Correctness

4.1 γ-Perception Models

We now step from ambiguous-and-questionable perception to ambiguous-but-
correct perception: we formalize (3) by the so-called γ-property in (6) and restrict
the Dempster models from Definition 1 to those that fulfill this property.

Definition 2 (γ-Perception) An ambiguous-but-correct perception, also
called γ-perception model for short, is a Dempster model ((Ω,Σ,P), V, φ,Ψ) so
that the following perception correctness (also called Ψ -correctness of γ-property
for short) holds for all A ⊆ V for which P(Ψ = A) 
= 0:

P(φ ∈ A | Ψ = A) = 1 (6)
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The γ-property connects the behavior of the sensor Ψ to the behavior of
the signal φ. Equation (6) simply states, that one of the signals that has been
detected by the sensor as potential signal must have actually occurred (been
sent by the signal source); or, to express it differently, no other signal than those
that have been detected as potential must have occurred:

P(φ 
∈ A | Ψ = A) = 0 (7)

Actually, we have that (6) and (7) are equivalent due to the law of total prob-
abilities. It is also instructive to look at the γ-property from the perspective of
signal outcomes. Lemma 1 rephrases (6) only in terms of signal outcomes and
the random variables φ and Ψ .

Lemma 1 (Ambiguous-but-Correct Perception) Given a γ-perception
model ((Ω,Σ,P), V, φ,Ψ) we have the following for all ω ∈ Ω:

φ(ω) ∈ Ψ(ω) (8)

Corollary 1 lists some consequences of the γ-property (6) from different
instructive angles.1

Corollary 1 (Perception Correctness) Given a γ-perception model
((Ω,Σ,P), V, φ,Ψ) and sets A,B ⊆ V , we have that:

P(φ ∈ A,Ψ = A) = P(Ψ = A) (9)
A ⊆ B =⇒ P(φ ∈ A,Ψ = B) � P(Ψ = B) (10)
B ⊆ A =⇒ P(φ ∈ A,Ψ = B) = P(Ψ = B) (11)

P(φ ∈ A,Ψ ⊆ A) = P(Ψ ⊆ A) (12)

P(φ 
∈ A,Ψ = A) = 0 (13)
a 
∈ B =⇒ P(φ = a,Ψ = B) = 0 (14)

A ∩ B = ∅ =⇒ P(φ ∈ A,Ψ = B) = 0 (15)
P(φ ∈ A,Ψ ∩ A = ∅) = 0 (16)

4.2 Certainties and Possibilities

Given an ambiguous-but-correct perception, it is common to assume that the
probabilities of the perceptions (sensor messages) are known, but the probabili-
ties of the signals are not. Still, the probabilities of the perceptions reveal (more
or less vague) information about the probabilities of the signals. Given the prob-
abilities of the perceptions, we at least know lower bounds and upper bounds
for the probabilities of signal events, as expressed (see Footnote 1) by Lemma 2.
1 Note, that standard the notation for random variables applies throughout all the

paper, i.e., given a random variables X : ω −→ I, we have that Expr(X) denotes
the event {ω |Expr(X(ω))} for each common mathematical expression Expr( ). For
example, (X = y) stands for X−1(y) = {ω |X(ω) = y} as usual; X ⊆ A stands for
{ω |X(ω) ⊆ A}; A ⊂ X stands for {ω |A ⊂ X(ω)} etc.
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Lemma 2 (Lower and Upper Probabilities in γ-Perception Models)
Given a γ-perception model ((Ω,Σ,P), V, φ,Ψ) and a set A ⊆ V , we have that:

P(Ψ ⊆ A) � P(φ ∈ A) � P(Ψ ∩ A 
= ∅) (17)

Proof. Immediate corollary from Lemma 3. �
We call φ ∈ A a signal event. If clear from the context, we call also A ⊆ V

itself a signal event. Similarly, if clear from the context, we call A a perception
(i.e., depending on the context, A sometimes plays the role of a signal event,
sometimes it plays the role of a perception). We call the lower probability bound
P(Ψ ⊆ A) of a signal event φ ∈ A the certainty of A – it is certain that P(φ ∈ A)
is at least P(Ψ ⊆ A). Similarly, we call the upper probability bound P(Ψ∩A 
= ∅)
of a signal event φ ∈ A the possibility of A – at most it is possible that P(φ ∈ A)
is P(Ψ ⊆ A). Lemma 2 only gives us known lower and upper probability bounds;
but it is not yet clear whether those are tightest bounds, i.e., in a sense greatest
lower bounds and least upper bounds. It is not as straightforward to come up
with appropriate notions of best possible estimates; this will be the subject of
Sect. 6.

Definition 3 (Certainties and Possibilities) Given a γ-perception model
((Ω,Σ,P), V, φ,Ψ) and a set of signals A ⊆ V , we call P(Ψ ⊆ A) the certainty
of the signal event A, whereas we call P(Ψ ∩ A 
= ∅) its possibility.

Lemma 2 provides known lower and upper bounds for signal events. It is
instructive to see the lower and upper bounds for single signals. For a single
signal a ∈ V , Lemma 2 shows as follows:

P(Ψ = {a}) � P(φ = a) � P(a ∈ Ψ) (18)

Table 2 summarizes different terminology and notation for the probabilities
P(Ψ ⊆ A) and P(Ψ ∩ A 
= ∅). In [2–4], Dempster introduces the notation A� for
the event (Ψ ⊆ A) and the notation A� for the event (Ψ ∩ A 
= ∅). He calls the
probability P(A�) lower probability and the probability P(A�) upper probability.
In [6], Shafer explicitly defines the belief of A (which he denotes as Bel(A)) and
the upper probability of A (which he denotes as P �(A)) via the probability mass
function m : P(V ) −→ [0, 1] as follows:

Bel(A) =
∑

B⊆A

m(B) P �(A) =
∑

B∩A �=∅
m(B) (19)

Now, by the law of total probabilities, we have that (17) is equivalent to:
∑

B⊆A

P(Ψ = B)

︸ ︷︷ ︸
Bel(A)[6], P(A�)[2]

� P(φ ∈ A) �
∑

B∩A �=∅
P(Ψ = B)

︸ ︷︷ ︸
P�(A)[6], P(A�)[2]

(20)

In our framework, the probability mass function m shows as P(Ψ = ),
i.e., m(A) equals P(Ψ = A) for each A. Against this background, please note
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the direct correspondences between (20) and (19). Again, note that in Dempster-
Shafer theory, Bel(A) and P �(A) (and P(A�) and P(A�) likewise) are introduced
explicitly (postulated); whereas (20) is a consequence of the γ-property of γ-
perception models (via Lemma 2).

5 The Exact Relationship of Quantities and Perceptions

With Lemma 2, we have determined lower and upper bounds for the probability
of signal events. In this section, we turn the inequations (17) into equations of
the following form:

P(Ψ ⊆ A) + Δ = P(φ ∈ A) = P(Ψ ∩ A 
= ∅) − Δ′ (21)

With equations of the form (21), we exactly characterize the relationship
between signal probabilities and perception probabilities on the basis of the cer-
tainties and possibilities as provided by Lemma 2. The characterization is pro-
vided by Lemma 3. Note, that the differences Δ and Δ′ as provided by Lemma3
involve knowledge about the signal random variable, and, therefore, are not
known to the decision maker in our described scenario. Still, Lemma 3 is instruc-
tive for considerations such as conducted in Sect. 6 and, furthermore, yields us
the yet missing proof of Lemma 2 (Lemma 2 follows from Lemma 3 as an imme-
diate corollary).

Lemma 3 (Exact Relationship of φ- and Ψ-Probabilities) Given a
γ-perception model ((Ω,Σ,P), V, φ,Ψ) and a set of values A ⊆ V , we have that:

P(φ ∈ A) = P(Ψ ⊆ A) + P(φ ∈ A, A ⊂ Ψ) (22)
P(φ ∈ A) = P(Ψ ∩ A 
= ∅) − P(φ 
∈ A,A ⊂ Ψ) (23)

Proof. We start with proving (22). By the law of total probabilities (case dis-
tinction), we have that P(φ ∈ A) equals

P(φ ∈ A,Ψ ⊆ A) + P(φ ∈ A,Ψ 
⊆ A) (24)

By a further case distinction, we have that (24) equals

P(φ ∈ A,Ψ ⊆ A) + P(φ ∈ A,A ⊂ Ψ) + P(φ ∈ A,Ψ ∩ A = ∅) (25)

Due to (12), we have P(φ ∈ A,Ψ ⊆ A) equals P(Ψ ⊆ A). Furthermore, due to
(16), we have that P(φ ∈ A,Ψ ∩A = ∅) equals zero. Therefore, we have that (25)
equals

P(Ψ ⊆ A) + P(φ ∈ A,A ⊂ Ψ) (26)

which proofs (22).
We proceed with (23). Actually, we can step further from (26). By (22), we

have that P(φ ∈ A) equals (26). Due to the fact that Ψ : Ω −→ P(V )\∅, we have
that (26) equals

P(Ψ ∩ A 
= ∅,Ψ ⊆ A) + P(φ ∈ A,A ⊂ Ψ) (27)
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Due to the law of total probabilities, we have that (27) equals

P(Ψ ∩ A 
= ∅,Ψ ⊆ A) + P(A ⊂ Ψ) − P(φ 
∈ A,A ⊂ Ψ) (28)

Again, due to Ψ : Ω −→ P(V )\∅, we have that (28)

P(Ψ ∩ A 
= ∅,Ψ ⊆ A) + P(Ψ ∩ A 
= ∅, A ⊂ Ψ) − P(φ 
∈ A,A ⊂ Ψ) (29)

Next, by a simple transformation, we have that (29)

P(Ψ ∩ A 
= ∅,Ψ ⊆ A) + P(Ψ ∩ A 
= ∅,Ψ 
⊆ A) − P(φ 
∈ A,A ⊂ Ψ) (30)

Finally, due to the law of total probabilities, we have that (30) equals

P(Ψ ∩ A 
= ∅) − P(φ 
∈ A,A ⊂ Ψ) (31)

�

6 Certainty and Possibility as Optimal Estimates

In how far are the lower and upper probability bounds of a signal event as pro-
vided by Lemma 2 best possible estimates? In this section, we provide an answer
to this question. The target is to characterize the lower bound as a greatest
lower bound, and the upper bound as a least upper bound. The key is to look
at systems of sensor messages (and only sensor messages, as information about
probabilities is only available for sensor messages in our prescribed scenario)
in regards of all possible (unknown) probability measures ranging over poten-
tial γ-perception models. Technically, we introduce the notion of a Dempster
pre-model for this purpose, which is a Dempster model without a probability
measure plus an operator that turns a Dempster pre-model D and a compatible
probability measure μ (i.e., a probability measure that fulfills the γ-probability)
into a γ-perception model, denoted as D · μ.

Definition 4 (Dempster Pre-Model) A Dempster pre-model is a tuple
(Ω,Σ, V, φ,Ψ) that consists of a set of outcomes Ω, a σ-algebra Σ over Ω, a
finite set V , a function φ : Ω −→ V , and a function Ψ : Ω −→ P(V )\∅. Given a
Dempster pre-model D = (Ω,Σ, V, φ,Ψ) and a probability measure μ : Ω −→ V ,
we denote the tuple ((Ω,Σ, μ), V, φ,Ψ) as D ·μ, if and only if ((Ω,Σ, μ), V, φ,Ψ)
forms a γ-perception model.

For the best possible lower bound, we look at all of those systems of sensor
messages that have a combined probability that is smaller than the probability
of a specified signal event A with respect to all possible compatible probability
measures. Out of those, the system of sensor messages {B|B ⊆ A} has always
the largest combined probability (which is P(Ψ ⊆ A)). This characterization of
P(Ψ ⊆ A) as best possible (lower) estimate is formalized by Lemma 4 (similarly
for the upper probability bounds as provided by Lemma2).
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Corollary 2 (Lower and Upper Probabilities are Optimal Estimates)
Given a Dempster pre-model D = (Ω,Σ, V, φ,Ψ) we have that the following holds
for each probability measure μ : Σ −→ [0, 1], each system S ⊆ P(V ) of subsets
of V and each subset A ⊆ V :

(
∀D · μ . μ(Ψ ∈ S) � μ(φ ∈ A)

)
=⇒

(
∀D · μ . μ(Ψ ∈ S) � μ(Ψ ⊆ A)

)
(32)

(
∀D ·μ.μ(Ψ ∈ S) � μ(φ ∈ A)

)
=⇒

(
∀D ·μ.μ(Ψ ∈ S) � μ(Ψ ∩A 
= ∅)

)
(33)

7 Knowledge Fusion

In this section, we define a natural knowledge fusion operator for perceptions.
The combinator only works for perceptions that are founded in the same prob-
ability space. This is natural, as we deal with two different sensors, but the
signals are the same (independent of which sensor they are detected). We do
not know exactly the probabilities of the signals, i.e., we only know the prob-
abilities up to the bounds provided by Lemma2. However, we know that the
signals and their probabilities are the same for the two sensors. The decision
maker can exploit that fact. For example, image that one sensor reports the
message “either red or green” upon detection of a signal. Due to the γ-property
the decision maker knows that the signal must have been either ‘red’ or ‘green’.
Now, imagine that the decision maker has a second, different sensor available
that reports back (simultaneously to the first sensor, i.e., with respect to the
same signal) the sensor message “either green or blue”. In this situation, the
decision maker can be sure, that the signal must have been ‘green’, as he can
combine the ambiguous-but-correct information of both sensors!

For a given signal, and sensor messages from different sensors the signal must
be among the cut of potential signals of all involved sensors. This is exactly, how
we formalize our fusion operator in Definition 5.

Definition 5 (Knowledge Fusion) Given two γ-perception models
((Ω,Σ,P), V,M, φ,Ψ) and ((Ω,Σ,P), V,M, φ,Ψ ′) we define the knowledge
fusion Ψ ·Ψ ′ as follows:

Ψ ·Ψ ′ =
(
ω ∈ Ω �→ Ψ(ω) ∩ Ψ ′(ω)

)
(34)

Note that the knowledge fusion Ψ ·Ψ ′ is always well-defined. In particular,
the event Ψ(ω) ∩ Ψ ′(ω) can never by empty, because neither Ψ(ω) nor Ψ ′(ω)
can be empty; and, furthermore, due to the γ-property, the events Ψ(ω) and
Ψ ′(ω) must at least overlap on the actual signal φ(ω).

The definition of the fusion operator in Definition 5 is intuitive, and it is
useful, because the combined perception is always less ambiguous than both of
the perceptions individually (more precisely: usually less ambiguous, but never
more ambiguous). Yet, the fusion operator is not very useful in decision scenarios.
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We need to know, how the fusion operator works on the known probabilities
of sensor messages. This is exactly, what is provided next in Lemma 4, i.e., it
tells us the probability of a combined perception in terms of probabilities of
simultaneously occurring perceptions.

Lemma 4 (Knowledge Fusion) Given two γ-perception models
((Ω,Σ,P), V, φ,Ψ) and ((Ω,Σ,P), V, φ,Ψ ′) we have that the following holds for
all A ⊆ V :

P(Ψ ·Ψ ′ = A) =
∑

B∩C=A

P(Ψ = B,Ψ ′ = C) (35)

Proof. Due to random variable notation, we have that P(Ψ ·Ψ ′ = A) equals

P
({ ω

∣
∣ Ψ ·Ψ ′(ω) = A})

(36)

Due to Definition 5, we have that (36) equals

P
({ ω

∣
∣ Ψ(ω) ∩ Ψ ′(ω) = A}) (37)

Next, we can rewrite (37) as

P
( ⋃

B∩C=A

{ ω
∣
∣ Ψ(ω) = B ∧ Ψ ′(ω) = C}

︸ ︷︷ ︸
(i)

)
(38)

Now, all sets of the form (i) in (38) are disjoint for different B,B′ and/or different
C,C ′. Therefore, we have that (38) equals

∑

B∩C=A

P
({ ω

∣
∣ Ψ(ω) = B ∧ Ψ ′(ω) = C}) (39)

Finally, we have that (39) equals
∑

B∩C=A

P(Ψ = B,Ψ ′ = C) (40)

�
In order to apply the knowledge fusion Ψ ·Ψ ′ along the lines of Lemma 4, it is

not sufficient to know the probabilities of perceptions P(Ψ = A) and P(Ψ ′ = A)
for all A ⊆ V individually. Instead we need the probabilities of simultaneous
perceptions P(Ψ = B,Ψ ′ = C) for all possible combinations of perceptions
B ⊆ V and C ⊆ V . This might be considered a limitation, e.g., in scenarios where
the perceptions take the form of judgments provided by individuals separately.
We could argue, that we should always have enough empirical data to know
about the probabilities of simultaneously occurring perceptions. We do not want
to delve into this discussion here, but want to leave it for further writings instead.

Next, we compare the knowledge fusion Ψ ·Ψ ′ with the knowledge fusion
as provided by Dempster’s rule of combinations that we denote as Ψ ⊕Ψ ′ in
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this paper. In order to distinguish our knowledge fusion Ψ ·Ψ ′ from other fusion
operators, we sometimes also call it sensor fusion.

Actually, Ψ ·Ψ ′ and Ψ ⊕Ψ ′ behave completely differently, as we will see
in due course with a simple example. Technically, the operators are different, as
Ψ ·Ψ ′ combines two random variables and Ψ ⊕Ψ ′ combines two mass probability
functions. However, conceptually, this is a minor detail that can be neglected;
what counts is the different behavior with respect to the probabilities resulting
from the different knowledge fusions. Dempster’s rule of combination is defined
in Definition 6 along the lines of [6], compare also with [7].

Definition 6 (Dempster’s Rule of Combination [6]) Given two
probability mass functions Ψ : P(V )\∅ −→ [0, 1] and Ψ ′ : P(V )\∅ −→ [0, 1],
Dempster’s rule of combination [6] defines the new combined probability mass
function Ψ ⊕Ψ ′ : P(V )\∅ −→ [0, 1] as follows (compare also with [7], p. 5) for all
A ⊆ V as follows:

Ψ ⊕Ψ ′(A) =

∑

B∩C=A

(
Ψ(B) × Ψ ′(C)

)

∑

B∩C �=∅

(
Ψ(B) × Ψ ′(C)

) (41)

Now, let us explore the different behavior of Ψ ·Ψ ′ and Ψ ⊕Ψ ′. Let us look
into a most reductionist example for this purpose, i.e., a signal source that can
send either of exactly two values ‘red’ and ‘green’ plus two completely unambigu-
ous sensors Ψ and Ψ ′, i.e., the probability of the perception “either red or green”
is zero, and the probabilities of the perceptions “red” and “green” are exactly
the probabilities of the signals ‘red’ and ‘green’, please compare with Table 3.
Note, that for the example, it is important that the probabilities of ‘red’ and
‘green’ are not equal.

Now, the sensor fusion Ψ ·Ψ ′ behaves neutral. It does not change any of the
probabilities, as one might expect, given that Ψ and Ψ ′ are exactly the same.
Ψ ⊕Ψ ′ behaves differently; it further increases the higher probability of the
perception “red” and further decreases the lower probability of the perception
“green”, again, please compare with Table 3. At this point, we want to stop
the discussion with this important observation and leave a deeper discussion of
knowledge fusion for further writings.

Table 3. Sensor fusion Ψ ·Ψ ′ vs. Dempster’s rule of combination Ψ ⊕Ψ ′.

A ∈ P(V )
P(Ψ =A)

Ψ(A)

P(Ψ ′ =A)

Ψ ′(A)
P(Ψ ·Ψ ′ = A) Ψ⊕Ψ ′(A)

“red” 0.6 0.6 0.6 ≈ 0.69

“green” 0.4 0.4 0.4 ≈ 0.31

“either red or green” 0 0 0 0
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8 Conclusion

We have characterized ambiguous-and-correct perception through an informal
description of a simple signals/sensors example. We claim that ambiguous-but-
correct perceptions can be considered as the universe of discourse of Dempster-
Shafer theory. The reader might not want to agree with that. Still, we claim
that ambiguous-but-correct perceptions are worth considering and that we have
introduced them as a well-defined notion. We have formalized ambiguous-and-
questionable perceptions as a probability space with two random variables, one
for the signal (quantity) and one for the perception. We have explained that this
is actually, what Dempster did with his original model as introduced in the 1960s.
We have formalized ambiguous-and-correct perceptions via the introduction of a
sensor correctness axiom. We have proven that Dempster’s lower and upper prob-
abilities are actually lower and upper bounds for probabilities of signal events –
as a consequence of the sensor correctness axiom. We have stepped beyond that
and have explained, in how far Dempster’s lower and upper probabilities are
best possible estimates. Finally, we have introduced a natural knowledge fusion
operator and started comparing it with Dempster’s rule of combination.
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Adnan El Moussawi(B), Nacéra Bennacer Seghouani, and Francesca Bugiotti

Laboratoire de Recherche en Informatique LRI, 91190 Gif-sur-Yvette, France
{adnan.moussawi,nacera.seghouani,francesca.bugiotti}@lri.fr

http://www.lri.fr

Abstract. The definition of effective strategies for graph partitioning is
a major challenge in distributed environments since an effective graph
partitioning allows to considerably improve the performance of large
graph data analytics computations. In this paper, we propose a multi-
objective and scalable Balanced GRAph Partitioning (B-GRAP) algo-
rithm to produce balanced graph partitions. B-GRAP is based on Label
Propagation (LP) approach and defines different objective functions to
deal with either vertex or edge balance constraints while considering edge
direction in graphs. The experiments are performed on various graphs
while varying the number of partitions. We evaluate B-GRAP using sev-
eral quality measures and the computation time. The results show that
B-GRAP (i) provides a good balance while reducing the cuts between the
different computed partitions (ii) reduces the global computation time,
compared to Spinner algorithm.

Keywords: Large graph partitioning · Vertex balance · Edge
balance · Parallel processing.

1 Introduction

In recent years, large-scale graph analytics and mining have been widely used
in various domains such as communication network, urban transportation, bio-
logical data and social networks. In this context the efficient processing of large
graphs becomes a new challenging task. Many research works focused on graph-
based parallel computation algorithms in distributed systems [7,19,29]. The dis-
tribution of the workloads on several machines helps to reduce the overhead
computation time. However, this distribution requires multiple exchanges of mes-
sages between the machines with a typically high cost.

Graph Partitioning (GP) algorithms have taken a lot of attention in recent
decade as a key prerequisite for an efficient processing and many works focused on
this problem [3,6,17,22]. An efficient partitioning algorithm allows to minimize
the total computation cost while a good balanced load makes better leverage of
the entire system. The GP problem aims to divide the graph into a given number
of partitions while minimizing the number of their inter-connecting edges (called
c© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2020, LNCS 12391, pp. 23–37, 2020.
https://doi.org/10.1007/978-3-030-59003-1_2
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cuts) and balancing their sizes w.r.t. the number of vertices or the number of
edges. An edge-balanced GP divides the edges of the graph into nearly equal sized
partitions. In contrast, a vertex-balanced GP divides the vertices of the graph into
equisized partitions. Each objective has its own advantage. For a graph analysis
task that needs few communications between vertices, the vertex-balanced GP is
more beneficial. On the contrary, for task where the vertices exchange messages
frequently, balancing the number of edges has more advantage.

Different GP partitioning strategies approaches have been studied in the liter-
ature. Multilevel GP approaches [12] defined a well vertex-balanced partitioning
algorithm which shown high quality in terms of cuts. But it requires high resource
usage and computation time and it does not scale with large graphs. Streaming
GP methods [11,27] used an online graph partitioning, by considering vertex-
balance or edge-balance constraints which reduces the overhead computation
comparing to multilevel approaches. But on the other hand, the results of such
methods are of less quality and depend on the order of vertex or edge processing.
Moreover the partitioning is not adaptive to the graph’s changes. Recent works
have taken advantage of the lightweight mechanism of Label Propagation (LP)
approach to improve the partitioning process [20,21,28]. In [21,26], the authors
used LP to coarsen the graph in a multilevel partitioning approach while balanc-
ing the vertices. [20] extended LP to compute the entire partitioning basing on
Giraph [7] programming model, while considering only edge-balance constraint.

In this paper we propose a new multi-objective and scalable Balanced GRAph
Partitioning algorithm (B-GRAP), based on LP approach, to produce balanced
graph partitions. Our main contributions are:

– An optimized partitioning initialization that helps to improve the propagation
of labels and to reduce the computational overhead comparing to similar
approaches.

– A new scalable and parallel partitioning algorithms B-GRAPVB and
B-GRAPEB that respectively address the vertex balance and the edge balance
problems on both directed and undirected graphs.

– We implement our algorithm on top of the open source distributed graph
processing system Giraph [7]. This allows us to take advantage from the
parallel processing architecture in order to effectively parallelize B-GRAP.

– The evaluation of B-GRAP, using different measures (quality and time) on
heterogeneous real-worlds and synthetic graphs, shows good performance
while scaling with the number of partitions and size of a graph.

This paper is structured as follows. In Sect. 2, we detail some approaches
related to graph partitioning problem. In Sect. 3, we present LP approach and
B-GRAP main notations. In Sect. 4, we define B-GRAP, its initialization, the
propagation functions for vertex or edge balance, then the measures we use to
evaluate the quality of the partitioning are presented in Sect. 5. In Sect. 6, we
provide the experimental study conducted in order to evaluate B-GRAP. Finally,
in Sect. 7, we give our conclusions and future perspectives.
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2 Related Work

During the last decade, research communities working on graph datasets have
given a lot of interest to the definition of new strategies for large graph parallel
computing and analytics in a distributed environment. This context opened up
new challenges to define efficient graph partitioning algorithms [2,3,10,21,22].
One of the main challenges consists in defining graph partitioning algorithms
that allow to balance the workload among the nodes of a distributed computing
environment and to reduce, at the same time, the communication load over the
network.

A common strategy in large graph partitioning is to use multilevel approaches
[3]. The idea is to generate a first partition on the basis of a reduced view of
the graph in which a vertex represents many vertices of the original graph. For
example a triangle of three vertices can be reduced to one. The algorithms then
expands the graph taking into account the whole initial graph. This family of
approaches alternates three main phases: (i) coarsen the graph by collapsing
adjacent vertices satisfying some matching criteria, (ii) partition the coarsened
graph using any partitioning algorithm, (iii) the un-coarsening or refinement,
which means generalizing the partition from last phase by mapping back the
results to the original graph. METIS [12] is one of the multilevel graph par-
titioning algorithm family. This algorithm is known for its ability to produce
partitioning with high quality w.r.t. the number of cuts, but with the disad-
vantage of the high computation time to obtain several intermediate results.
Another known multilevel graph partitionner is Scotch [23] which deals with the
graph changes and does not require to start the partitioning from scratch, in
contrast to METIS. The parallel version of both algorithms, ParMETIS [13] and
Pt-Scotch [5], show good cuts quality but their performance scales poorly with
respect to the number of processors as shown in [21].

During the last years stream graph partitioning has been proposed in order to
reduce the complexity [27] of multilevel approaches, since they take into account
the entire input graph during the whole computation. These algorithms assign
edges and vertices to various partitions by running a single pass through the
whole graph. The goal, of the most part of these algorithms, is to guarantee
the edge balance [8,27] and to find a partitioning that reduces the usage of
the resources and the computation overhead. These methods are faster than
multilevel algorithms but they build partitioning with lower quality, in term of
cuts, due to the sensitivity to the stream order. Moreover, it’s generally difficult
to parallelize streaming algorithms.

Other works have used the label propagation approach (LP) [24] to parti-
tion large graphs. LP was mainly used for community detection in social net-
works [4,9]. Making use of LP for the graph partitioning problem was moti-
vated by the lightweight mechanism that uses the network structure to guide
its progress. LP partitioning methods generate less intermediary results than
multilevel approaches, which need to store many intermediate results such as
the coarser graph, and run with a lower complexity. Furthermore, LP method is
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semantic-aware, given the existence of local closely connected substructures, a
label tends to propagate within such structures.

The authors of [21] propose ParHIP, a distributed memory parallel parti-
tioning algorithm, that takes advantage of both multilevel and LP approaches.
The authors adapt and parallelize LP technique for both coarsening and refine-
ment step, using the Message Passing Interface (MPI), while considering the
vertex-balance constraint. Their experimental results show that ParHIP is more
scalable and achieves higher quality than existing state of the art methods like
ParMETIS and PT-Scotch.

Finally, in [20] the authors define a distributed partitioning algorithm called
Spinner that considers only edge balance. Spinner is based on LP approach
and runs on the top of Giraph API [7]. Compared to the previous work, Spinner
supports the parallelism and can adapt an existing partitioning to consider graph
updates by adding or removing vertices and edges and changing the number of
partitions. The algorithm divides N vertices across K partitions, while trying to
keep similar the number of edges in each partition.

In this paper we present a new algorithm for balanced graph partitioning
based on LP approach and using Giraph programming model. Compared to
the literature, our algorithm B-GRAP deals with edge-based or vertex-based
balanced partitioning while decreasing the number of cuts and computation time.
Moreover, B-GRAP defines an initialization heuristic which allows to improve
the propagation of labels across the graph and to accelerate the convergence of
the algorithm on large graphs.

3 Preliminaries

Given a number of partitions K, a directed graph G = 〈V,E, ω〉, where V is a
set of vertices and E a set of weighted edges with ω : E → R

+. Let L = {l}K
l=1

be a set of partition labels defined by a labeling function φ : V → L such
that φ(v) = l means that v belongs to the partition with label l. The näıve
LP algorithm proceeds as follows. Initially, a unique label lv is assigned to each
vertex v. Then, the label of each v ∈ V is propagated and updated iteratively
to its neighborhood N(v) = {u ∈ V |(v, u) ∨ (u, v) ∈ E} and is updated until a
given convergence criteria is reached. The label updating is done by taking into
account the most frequent label among N(v) labels. More formally, let FLP(v, l)
be the frequency of a label l in the neighborhood of v, defined by:

FLP(v, l) =
∑

u∈N(v)

ω(v, u)δ
(
φ(u), l

)
(1)

where φ(u) gives the current label of u and δ is the Kronecker delta function,
which equals 1 if φ(u) = l, and 0 otherwise. The label of vertex v is replaced by
the label that maximizes the frequency function:

lv = argmax
l

FLP(v, l) (2)
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Fig. 1. Vertex-balanced and edge-balanced 2-partitioning graph example

If many maximal labels exist and do not include the current label of v, one of
them is randomly chosen. LP algorithm stops if

∑
v∈V

∑
l∈L FLP(v, l) converges

according to a given threshold ε.
We note that näıve LP algorithm does not take into account the directions of

edges. To consider directed graphs, virtual edges are added such that: ∀(v, u) ∈
E,ω(v, u) = 2 and if (u, v) /∈ E, (u, v) is added with ω(u, v) = 1 which we call
virtual edge. Note that the Giraph data model is a distributed directed graph,
where every vertex is aware of its outgoing edges only, but not of the incoming
ones. Adding virtual edges in this case, allows to a vertex to discover its entire
neighborhood N(v), while the weight allows to consider the direction as well as
to distinguish these virtual edges added.

4 B-GRAP Algorithm

Our goal is to define a K-balanced and LP-based partitioning algorithm that
decreases the total cuts while considering the vertex balance or the edge balance
constraints in directed graphs.

To illustrate our objectives we consider the example provided in Fig. 1.
This example presents a small graph of 10 vertices and 16 directed edges. We
would divide the graph into two balanced partitions, using either a vertex-
balanced partitioning or the edge-balanced partitioning. First, we note that
the best 2-partitioning that minimizes the edge cuts is P1 = {v1, v2, v3, v4}
and P2 = {v5, v6, v7, v8, v9, v10}, where the cuts (v4, v5), (v4, v10), (v10, v4). To
achieve a vertex-balanced partitioning, a vertex from P2 should be moved to P1,
while caring about the cuts. In this case, moving v10 to P1 is the most advanta-
geous because it introduces less edge cuts. For the edge-balanced partitioning,
no change is needed. Indeed, both partitions holds |E|/2 directed edges and the
number of edge cuts is minimized. Note that if the directness of edges is ignored,
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Algorithm 1. B-GRAP
input G = 〈V, E, w〉, K, τ , ε
output a partitioned graph G = 〈V, E, w, L〉
1: Initialize the set of labels L = {l}K

l=1

2: for
(
v ∈ V, d+(v) > τ

)
initialize φ(v) randomly from L and propagate to N(v)

3: repeat
4: {Search frequent labels}
5: for (v ∈ V, l ∈ L) get the set of frequent labels w.r.t an update function
6: {Update and propagate}
7: Update and propagate φ(v) to N(v)
8: {Check unassigned vertices}
9: for

(
v ∈ V, φ(v) = ∅)

initialize φ(v) randomly from L and propagate to N(v)
10: until Δ

(FLP(G, L)
) ≤ ε

11: return G = 〈V, E, w, L = {φ(v)}v∈V 〉

this partitioning remains unbalanced. In fact, in an undirected graph, each edge
is considered to be bidirectional, as a result the number of edges in P1 is 12 and
16 in P2.

In the following, we present in detail B-GRAP algorithm. First, we present
the initialization strategy, then we define the update functions F to build vertex
(or edge) balanced partitions, and finally we present the measures used for the
evaluation of partitioning quality.

4.1 Initialization Optimization

To improve the performance of propagation approach in our algorithm, we define
an initialization strategy, called B-GRAPinit, which considers only hub vertices
having a high outgoing degree d+(.). The intuition behind this choice is that
the higher d+(v), the more φ(v) will be propagated and considered as frequent
label. This differs from LP approach that considers all the vertices. As a result,
the candidates to be considered as frequent labels (i.e. the labels with high
probability to be the most frequent) are propagated faster at the first partial
propagation iteration. The initialization we defined should guarantee a faster
label propagation and smaller number of exchanges between vertices given the
fact that the nodes having the higher probability to be selected to propagate
their label have been already initialized.

B-GRAP is described in Algorithm 1. Let τ be a given minimum out degree
threshold to consider that a vertex v as a hub vertex. The algorithm proceeds
as follows. First, we initialize the set of labels L (Line 1). Then, each v ∈ V ,
such d+(v) > τ is assigned a random label ∈ L and those labels are propagated
to neighbors (Line 2). Then, the label of these neighbors are updated and prop-
agated iteratively using an update function (Lines 4–7). The vertices are then
checked and those not reached by the update/propagation step are initialized
randomly, to ensure that all vertices are assigned a label (Line 9). The algorithm
repeats the update/propagate step until convergence (Line 10).
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4.2 Balanced Partitioning

In the basic LP partitioning, the label update is done without caring about the
size of the partitions. Consequently, this can lead to an unbalanced partitioning.
Moreover the update function of LP (Eq. 1) has a trivial optimal solution that
consists of assigning all vertices to a single label, i.e. to a single partition. A
standard resolution approach to deal with such a problem is to integrate the
balance constraints to the update function via a penalty function. The LP update
function becomes:

F = FLP + λP (3)

where P represents penalty terms and λ is a weight parameter. In B-GRAP
algorithm, we define two update functions FVB and FEB which respectively deal
with vertex and edge balance constraints.

Vertex Balance: Given a directed graph G = 〈V,E, ω〉, a vertex-balanced
partitioning divides the vertices into disjoint partitions of nearly equal size, while
minimizing the number of edge cuts between partition. Let size(V, l) be number
of vertices having l as label, size(V, l) = |{v ∈ V | φ(v) = l}|.

In a perfect balanced partitioning, the size of each partition should be equal
to |V |/K. In other words, the distribution of vertices in the partitions should
be close to a uniform distribution U = 〈1/K, . . . , 1/K〉, where 1/K is called the
balance factor. To handle the balance between the partitions, we define vertex-
balance PVB penalty function that penalizes F when trying to assign a vertex
to a partition violating the balance constraints as follows:

PVB(l) =
1
K

− size(V, l)
|V | (4)

This function measures the difference between the balance factor 1/K and the
ratio of vertices assigned to l label. The larger the ratio of vertices with label l
is, the higher the penalty to update the vertex label with l is.

At this stage, the number of edge cuts between the partitions is not con-
sidered. Thus, a vertex could move to a partition that increases the edge cuts.
Given a vertex v and label l, we define a second penalty function as follows:

PEC(v, l) =
|cut(v, l)|

d+(v)
(5)

where cut(v, l) = {(v, u) ∈ E | φ(u) = l} is the set of edges outgoing from v
to vertices in a partition with label l. This function measures the ratio of cuts
which penalizes a vertex v to move to a partition with l label if the number of
its outgoing edges to this partition is low (normalized to the out degree of v).
Thus, when a vertex has more connections to a partition than to the others,
the penalty gives more advantage to move to this partition and vice versa. By
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considering the penalty functions defined in Eq. 4 and Eq. 5, the vertex balance
update function is defined in the following equation:

FVB(v, l) = nFLP + λ
(
κPEC(v, l) + (1 − κ)PVB(v, l)

)
(6)

where n is a normalization constant equal to 1∑
u∈N(v) ω(v,u) . The balance factor 1

K

could be omitted as it is constant, in this case PVB variate ∈ [0..1]. The parameter
κ is a weight ranging between 0 and 1 which gives more or less importance to
balance penalty against the edge cuts penalty. We set κ to 0.5 by default.

Edge Balance: An edge-balanced partitioning divides the graph into disjoint
partitions holding nearly equal number of edges, while minimizing the number of
edge cuts between partition. Let size(E, l) be the number of outgoing edges from
a partition with label l, size(E, l) =

∑
v∈V,φ(v)=l |d+(v)|. Similarly to the vertex-

balance partitioning, we define the following edge-balance penalty function:

PEB(l) =
1
K

− size(E, l)
|E| (7)

This function discourages a vertex move to a partition with l label, when
the ratio of edges in the partition l is closer or larger than the balance factor.
Comparing to vertex balance, edge balance maximizes the edge locality in each
partition, which contributes to minimizing the edge cuts. Thus, there is no need
to add additional penalty to the update function as defined in Eq. 6. The edge-
balance update function is formulated as follows:

FEB(v, l) = nFLP + λPEB(l) (8)

We note that Spinner algorithm [20] (see Sect. 3) uses the normalized unbal-
ance as penalty function. Comparing to Eq. 7, the edge-size of a partition is
normalized by the size of a perfect balanced partition, i.e. |E|

K . Moreover, their
penalty function that measures the edge balance for each partition, considers
both virtual and real edges. The function we defined in Eq. 8 considers only real
edges.

5 Partitioning Evaluation Measures

To evaluate the quality of the partitioning produced by our algorithm B-GRAP,
we use two standard measures: the ratio of edge cuts EC and the Jensen Shannon
divergence (JSD) [18].

The edge cuts ratio is the ratio of edges connecting each two vertices in
two different partitions w.r.t the total number of edges.

EC =
∑

v∈V

∑K
l=1 |cut(v, l)|
|E| (9)
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The Jensen Shannon divergence (JSD) is the symmetric version of
the Kullback–Leibler divergence known as a standard measure to compute the
divergence between two distributions. This is a symmetric measure varying in
the interval [0 . . . 1], where a value close to 0 indicates that the distributions are
similar. Let P = 〈p1, . . . , pK〉 and Q = 〈q1, . . . , qK〉 two distributions with the
same size. The JSD divergence is computed as follows:

JSD(P||Q) =
1
2

(
DKL(P‖M) + DKL(Q‖M)

)
(10)

with DKL(P‖Q) =
K∑

l=1

pl log(
pl

ql
) and M =

1
2
(
P + Q

)

In our case, P represents the distribution of vertices (or edges) on the parti-
tions, where pl is the ratio of vertices (or edges) in the partition with label l, and
Q equals to the uniform distribution U. The JSD considers the balance of the
whole partitioning, comparing to other measures such the maximum normalized
unbalance metric (MNU) [20]. This last used to measure unbalance and repre-
sents the percentage-wise difference of only the largest partition from a perfectly
balanced partition.

MNUVB =
max(|Vl|)
|V |/K

, (11)

MNUEB =
max(|El|)

|E|/K
, with l ∈ L.

Finally, it is important to notice that for EC, JSD, and MNU we con-
sider the directed edges in the original input graph. The virtual edges added for
neighborhood discovery (see Sect. 3) are note taken into account.

6 Experiments

We achieve different experiments on different graph data sets in order to evaluate
the quality of edge and vertex-balanced partitioning using EC, JSD and MNU
measures defined previously. We compare our approach to Spinner [20] because it
has shown better results comparing to some existing algorithms. Moreover, since
both B-GRAP and Spinner are developed using Apache Giraph environment, we
can also provide an evaluation in the same system conditions.

In the following, we first describe the data sets and the experiment settings.
Then, we present in detail the results of B-GRAPVB and B-GRAPEB, compared
against Spinner, and achieved on nine graphs.

6.1 Data Sets Description and Experiment Settings

All the experiments are done on a Hadoop cluster of 8 machines, with 64 GB
RAM and 8 compute cores. B-GRAP algorithm is implemented in Java using
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Table 1. Data sets description

Graph WikiTalk

(W)

BerkeleyStanf

(B)

Flixster

(F)

DelaunaySC

(F)

Pokec

(P)

LiveJournal

(L)

Orkut

(O)

Graph500

(G)

SK-2005

(S)

Directed yes yes yes yes yes yes yes no yes

|V | 2.4M 0.7M 2.5M 8.4M 16M 4.8M 2.7M 4.6M 50.6M

|E| 5M 7.6M 7.9M 25.2M 30.1M 69M 117.2M 258.5M 1.9B

Source [14] [16] [25,30] [2,25] [15] [1] [25] [25] [21]

Apache Giraph environment [7]. Giraph is an open source implementation of dis-
tributed programming framework Pregel [19], designed for Google cluster archi-
tecture, with several performance improvement like multi-threading and mem-
ory usage optimization. It’s built on Hadoop infrastructure to make distributed
graph processing and can work with many data storage system supporting graph
data (Neo4j, DEX, RDBMS, etc.). In Giraph, the graph is randomly partitioned
on several workers (machines) after a complete in-memory load. As in Pergel,
Giraph uses a vertex-centric approach to deal with large scale graph processing.
In their approach, the computation of the user defined function is done locally,
i.e. on each vertex, and in parallel. A vertex contains information about itself
and its outgoing edges, it can change its state and the state of these edges by
exchanging messages with other vertices at the same iteration, called super-step.

In our experiments, we use nine graph data sets of different degree distri-
butions and different sizes in terms of edge and vertex number as summarized
in Table 1. Wikitalk (W), Pockec (P), Flixster (F), LiveJournal (L) and Orkut
(O) are social online networks graphs. BerkeleyStanf (B) is the berkely.edu and
stanford.edu web graph, SK-2005 (S) is hyperlinks on ‘.sk’ web. DelaunaySC (D)
and Graph500 (G) are synthetic graphs. Notice that only (G) is an undirected
graph.

Experimental setting: We evaluate our algorithm over all the graphs presented in
Table 1, by varying the number of partitions K from 2 to 32. More precisely, we
execute 10 runs of B-GRAPVB and B-GRAPEB for each graph and each value
of K to ensure the significance of the results. For all experiments, we compute
the average variation of the following measures with respect to the number of
partitions K and over the runs:

– The maximum normalized unbalance of vertices (MNUVB) and of edges
(MNUEB).

– The divergence between the distribution of vertices (respectively of edges)
and the uniform distribution JSDVB (respectively JSDEB).

– The edge-cuts ratio (EC).
– The computation time saving ratio (ΔTime) of B-GRAP w.r.t Spinner1. This

ratio is computed using the total CPU time in seconds spent to execute the
algorithm, from the initialization until the convergence.

1 ΔTime = Time(Spinner)−Time(B-GRAP)
Time(Spinner)

.
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Note that ΔTime > 0 means a better performance of our algorithm and a value
close to 0 means similar performances with Spinner.

For all experiments, we set ε = 10−3 as a threshold stop value and we set
τ average out degree d̄+ = |E|

|V | . The penalty term weight parameter λ in the
update function F is set to 1. This gives an equal importance to the penalty
term P and to FLP according to the update functions defined in Sect. 4.2.
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Fig. 2. Variation of the average scores of MNUVB, JSDVB, EC, and ΔTime for the
partitioning obtained with B-GRAPVB and Spinner, w.r.t. K

6.2 B-GRAP Vertex Balance

The experiments presented in this section consider the vertex balance constraints
to partition a graph. The main objective is to evaluate the ability of our algo-
rithm B-GRAPVB to produce balanced partitions with respect to the number
of vertices, while improving the quality of cuts, using the vertex-balance update
function defined in Eq. 6.

For this aim, using the experimental protocol described in Sect. 6.1, we com-
pare the balance and the cuts quality of B-GRAPVB partitioning with Spinner
partitioning.

Results: The results are presented in Fig. 2. This figure shows, for each graph
and algorithm, the average variation of the MNUVB, JSDVB, EC, and ΔTime
according the number of partitions K.

We analyze first the variation of the unbalance degree MNUVB and the
total balance of the partitioning JSDVB. As shown on the Fig. 2, B-GRAPVB

produces generally a low unbalance degree for the most part of graphs (seven over
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nine w.r.t. MNUVB) while varying the number of partitions K. On the other
side, the results of Spinner show a high unbalance degree MNUVB (> 1.1) when
scaling with K, in particular for K ≥ 4, except for (D) graph. We notice only
two exceptions for B-GRAPVB on (B) and (W) graphs, when K ≥ 24. However,
the MNUVB of B-GRAPVB is still lower then Spinner for (B) graph.

Similarly, the results of JSDVB show that B-GRAPVB performs generally
better than Spinner. The value of JSDVB is very close to 0 over all graphs
and for all K. This means that B-GRAPVB produces high balanced partitions.
B-GRAPVB gives better results for 6 graphs over 9 (with 5 significant differences
for (B), (D), (P), (O), and (S) and similar results for the others). We note that
for the exceptions on (W) and (B) noticed previously for MNUVB, the JSDVB

values are very close to 0 which means that the partitioning has a high global
balance degree.

We compare the quality of cuts for both algorithms. Figure 2 shows similar
quality of EC. B-GRAPVB shows significant better results on BerkeleyStanf and
WikiTalk graphs.

Finally, the ΔTime curves show that B-GRAPVB improves significantly the
computation time on all graphs. The time saving percent ΔTime is higher than
10% for all the graphs and all K values, except of (O) graph, where the results
are better but less significant.

6.3 B-GRAP Edge Balance

Now we compare the performance of our algorithm B-GRAPEB with Spinner,
using the edge-balance update function defined in Eq. 8.

Results: We present the results of this experiment in Fig. 3. For each graph and
algorithm we show the average variation of the following measures w.r.t. K:
MNUEB, JSDEB, EC, and ΔTime.

Figure 3 shows that the partitioning produced by B-GRAPEB has a low edge
unbalance degree for all graphs under analysis. In fact, the average MNUEB is
generally less than 1.05, except in the case of WikiTalk for K = 28 and K = 32
where the average MNUEB is equal to 1.12 and 1.13, respectively. However, if
we analyze the results obtained from running Spinner, we see that we obtain
an unbalance degree MNUEB generally higher than 1.05 and MNUEB shows
bad values while increasing the number of partitions K. On the contrary, the
variation of MNUEB for B-GRAPEB shows that it scales with K with a stable
balance quality.

The behaviour of JSDEB shows that B-GRAPEB generally scales up with
K while maintaining a good global balance, with few exceptions. Furthermore,
B-GRAPEB obtains better performance than Spinner over five graphs and gives
similar JSDEB scores for the others.

The quality of cuts is generally close for both algorithms (Fig. 3), with only
one significant better result on WikiTalk.
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Fig. 3. Variation of the average scores of MNUEB, JSDEB, EC and ΔTime for the
partitioning obtained with B-GRAPEB and Spinner, w.r.t. K

Finally, ΔTime variation shows significant better results for B-GRAPEB on
(W), (B), (F) and (G) graphs. The computation time is slightly better for other
graphs. In fact, this is only with few exceptions on (G) for K ≤ 4 and for (S).

Summary: B-GRAPEB algorithm computes higher edge balanced partitioning
without impacting the quality of cuts and while showing generally faster compu-
tation time. Moreover, the results on the undirected graph Graph500 show that
the initialization step is efficient for the time execution of the algorithm. Finally,
the results given for the JSDEB and MNUEB show that a better balance can
be obtained if we consider the directness of edges for a directed graph.

7 Conclusion and Perspectives

In this paper we proposed two scalable and parallel partitioning algorithms
B-GRAPVB and B-GRAPEB, based on LP, that address the vertex balance and
the edge balance problems respectively on both directed and undirected graphs.
We defined the initialization strategy of our algorithm that allows to speed up
the convergence and two update functions to produce either vertex balanced or
edge balanced partitioning.

Our results show good performances of B-GRAP on various graphs and with
different scales. We show that B-GRAP produces high vertex balanced and high
edge balanced partitioning with a good cuts quality comparing to Spinner algo-
rithm (significant values for 5 graphs and slightly better values for others),
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on either directed and undirected graphs. Moreover, the computation time of
B-GRAP is better than Spinner, with few exception for B-GRAPEB on two
graphs.

The additional experiments we conducted to study the initialization step
B-GRAPinit show that the selection of the seed vertices has an impact on the
quality of the partitioning and the computation time. We would study more
deeply this step in order to optimize our method.

We would also study the impact of the partitioning on algorithms of graph
analytics with respect to the balance strategy, such as Shortest Path Computa-
tion, PageRank, and Community Detection.
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3. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering.
LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49487-6 4

4. Chakraborty, T., Dalmia, A., Mukherjee, A., Ganguly, N.: Metrics for community
analysis: a survey 50(4), 1–37 (2016)

5. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering.
Technical report, pp. 6-8 (2008)

6. Das, H., Kumar, S.: A parallel TSP-based algorithm for balanced graph partition-
ing. In: 2017 46th International Conference on Parallel Processing (ICPP), pp.
563–570. IEEE (2017)

7. Giraph, A.: Giraph : Large-scale graph processing in Hadoop (2012)
8. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-

tributed graph-parallel computation on natural graphs. In: Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, pp. 17–30
(2012)

9. Gregory, S.: Finding overlapping communities in networks by label propagation
12(10), 103018 (2010)

10. Heidari, S., Simmhan, Y., Calheiros, N., Buyya, R.: Scalable graph processing
frameworks: a taxonomy and open challenges 51, 1–53 (2018)

11. Henzinger, A., Noe, A., Schulz, C.: ILP-based local search for graph partitioning
(2018)

12. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: Proceedings of
the 24th International Conference on Parallel Processing (ICPP) 1955, vol. 3, pp.
113–122 (1995)

13. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering, 48(1), 71–95 (1998)

14. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In:
Proceedings of the 28th International Conference on Human factors in computing
systems, p. 1361 (2010)

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4


A Graph Partitioning Algorithm for Edge or Vertex Balance 37

15. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection
(2014). https://snap.stanford.edu/data/index.html

16. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters
6(1), 29–123 (2009)

17. Li, Y., Constantin, C., du Mouza, C.: A block-based edge partitioning for random
walks algorithms over large social graphs. In: Cellary, W., Mokbel, M.F., Wang, J.,
Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10042, pp. 275–289.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48743-4 22

18. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf.
Theory 37(1), 145–151 (1991)

19. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, pp. 135–146 (2010)

20. Martella, C., Logothetis, D., Loukas, A., Siganos, G.: Spinner: scalable graph par-
titioning in the cloud. In: Proceedings - International Conference Data Engineering
(2017)

21. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex
networks, 28, 2625–2638 (2017)

22. Nguyen, D.: Graph Partitioning. ISTE (2011)
23. Pellegrini, F., Roman, J.: Scotch: a software package for static mapping by dual

recursive bipartitioning of process and architecture graphs. In: Proceedings of the
International Conference and Exhibition on High-Performance Computing and
Networking, pp. 493–498. HPCN Europe 1996 (1996)

24. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks, p. 036106 (2007)

25. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: Proceedings of the 29 AAAI (2015)

26. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph parti-
tioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38527-8 16

27. Tsourakakis, C., Gkantsidis, C., Radunovic, B., Vojnovic, M.: FENNEL: stream-
ing graph partitioning for massive scale graphs. In: Proceedings of the 7th ACM
International Conference on Web search and data mining, pp. 333–342 (2014)

28. Ugander, J., Backstrom, L.: Balanced label propagation for partitioning massive
graphs. In: Proceedings of the 6th ACM International Conference on Web Search
and Data Mining, pp. 507–516. WSDM 2013, ACM (2013)

29. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed
graph system on spark. In: First International Workshop on Graph Data Manage-
ment Experiences and Systems, pp. 1–6. ACM Press (2013)

30. Zafarani, R., Liu, H.: Users joining multiple sites: distributions and patterns (2014)

https://snap.stanford.edu/data/index.html
https://doi.org/10.1007/978-3-319-48743-4_22
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1007/978-3-642-38527-8_16


DSCAN: Distributed Structural Graph
Clustering for Billion-Edge Graphs

Hiroaki Shiokawa1(B) and Tomokatsu Takahashi2

1 Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
shiokawa@cs.tsukuba.ac.jp

2 Graduate School of SIE, University of Tsukuba, Tsukuba, Japan
shihakata@kde.cs.tsukuba.ac.jp

Abstract. The structural graph clustering algorithm (SCAN) is an
essential graph mining tool that reveals clusters, hubs, and outliers
included in a given graph. Although SCAN is used in various appli-
cations, it has two serious drawbacks when handling large graphs. First,
SCAN is computationally expensive since it requires iterative computa-
tions for all nodes and edges. Second, SCAN is not designed to handle
large graphs that cannot fit in the main memory. This paper presents
a distributed structural graph clustering algorithm, DSCAN, to address
the aforementioned problems on a cluster of computers. DSCAN employs
edge pruning techniques to reduce the communication and computation
overheads of the distributed algorithm. Our extensive experiments on
real-world billion-edge graphs demonstrate that DSCAN outperforms
state-of-the-art algorithms in terms of running time even though DSCAN
outputs the same clusters as SCAN.

Keywords: Graph · Clustering · Distributed algorithm · Community
detection

1 Introduction

Graph clustering is a fundamental data mining tool that reveals community
structures hidden in complex networks. The structural graph clustering algo-
rithm (SCAN) [23] is one of the most successful graph clustering methods. The
main idea underlying SCAN is it places nodes into the same cluster only if
the nodes have dense internal connections. SCAN excludes sparsely connected
nodes from the clusters, and instead classifies them as hubs or outliers. Unlike
conventional graph clustering algorithms [1,7,13], SCAN finds clusters, hubs,
and outliers in a graph simultaneously.

Although SCAN helps find accurate clusters, it has two serious drawbacks
when handling large-scale graphs with millions or even billions of edges. First,
SCAN is computationally expensive because it must find all clusters included
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in a given graph before classifying hubs and outliers. In the worst case, this
computation entails O(m1.5) time [3], where m is the number of edges in the
graph. Second, SCAN cannot handle a large graph whose memory footprint
exceeds the main memory size. Although graph sizes have recently exceeded 600
GiB (Table 1), SCAN does not deal with such large memory footprints. Thus,
SCAN suffers from large I/O overheads between the main memory and storage,
which significantly degrades the clustering efficiency.

1.1 Existing Works and Challenges

Recently, many studies have strived to overcome the above problems. One major
approach is to reduce the number of computed nodes and edges by skipping
unnecessary computations. SCAN++ [17] and pSCAN [3] are the most suc-
cessful ones to date. SCAN computes the structural similarity for all edges to
evaluate how adjacent nodes are densely connected. However, it is more reason-
able to compute the structural similarity only for adjacent nodes that yield a
dense connection. By incrementally removing nodes that cannot be in any clus-
ters, SCAN++ and pSCAN successfully improve the clustering efficiency. Seo
and Kim, however, recently pointed out that SCAN++ and pSCAN are still
computationally expensive for billion-edge graphs [15]. That is, they require a
large running time for large graphs.

Instead of the above pruning-based approaches, thread-parallel algorithms,
e.g., ppSCAN [4] and ScaleSCAN [19,22], have been proposed. Modern CPUs
are generally equipped with multiple physical cores that share a main mem-
ory. Thus, the algorithms load all nodes and edges into the main memory, and
then compute the structural similarity in a thread parallel manner. Although
they certainly reduce the running time of SCAN, it is not trivial to compute
large graphs whose memory footprint exceeds the main memory size. To han-
dle such large memory footprints, several distributed algorithms [8,25] have also
been proposed in a recent few years. For instance, PSCAN [25] and CASS [8]
implemented SCAN algorithm on distributed frameworks, Apache Hadoop [20]
and Apache Spark [24], respectively. However, those distributed algorithms incur
expensive I/O costs and communication overheads among distributed machines
resulting in large computation time for billion-edge graphs. Hence, designing
the structural graph clustering algorithm to efficiently compute massive graphs
remains a challenging task.

1.2 Our Approaches and Contributions

This paper addresses the problem of speeding up SCAN for billion-edge graphs
that do not fit on a main memory. We present a novel distributed parallel SCAN
algorithm, namely DSCAN, which efficiently performs structural graph cluster-
ing on distributed memories. Given a graph, DSCAN first deploys disjointed
subgraphs of the graph to the memories. Then it performs the structural graph
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clustering in distributed and parallel ways. By distributing the disjointed sub-
graphs to multiple memories, DSCAN deals with a large memory footprint that
does not fit a single main memory.

To further improve the clustering efficiency, DSCAN employs skewness-
aware edge-pruning. As we briefly described in Sect. 1.1, distributed graph
algorithms [8,25] typically suffer from large communication overheads among
the distributed memories since many edges are spread across the distributed
machines [11,25]. To reduce the overheads, distributed frameworks generally
apply graph partitioning algorithms [11] before the distributed computation.
However, this approach is impractical for billion-edge graphs because graph par-
titioning itself consumes a larger memory footprint than the main memory, even
though we utilize parallel partitioning approaches [12]. That is, DSCAN needs
to deploy subgraphs so that they reduce the overhead without using graph par-
titioning algorithms. By employing skewness-aware edge-pruning, DSCAN tries
to reduce edges that involve unnecessary communications even if the subgraphs
are randomly generated. Consequently, our proposed algorithm DSCAN has the
following attractive properties:

Algorithm 1. SCAN
Procedure SCAN(G, ε, μ)
1: for each edge (u, v) ∈ E do
2: Compute σ(u, v) by Definition 1;

3: C = ∅;
4: for each non-visited node u ∈ V do
5: Cu = {u};
6: for each non-visited node v ∈ Cu do
7: if |N ε

v | ≥ μ then
8: Cu = Cu ∪ N ε

v ;
9: Mark v as visited;

10: if |Cu| ≥ 2 then
11: C = C ∪ Cu;

12: Detect H and O;
13: return C, H, and O;

1. Efficiency: Compared with state-of-the-art sequential and distributed algo-
rithms, DSCAN is superior in terms of running time on billion-edge graphs.

2. Scalability: DSCAN has good scalability. As the numbers of threads and
machines increase, the speed-up is almost linear.

3. Exactness: Although we employ pruning techniques to improve efficiency,
DSCAN outputs the same clusters as those of the original algorithm SCAN.

Extensive evaluations clarified that DSCAN runs up to 763.4 times faster than
state-of-the-art distributed methods while keeping its clustering qualities. Specif-
ically, DSCAN computes a graph with 5.5 billion edges within 10 s, while most
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of the state-of-the-art methods could not handle the graph because they ran out
of memory. Although the structural graph clustering is essential in many appli-
cations, it suffers from performance limitations and cannot handle billion-edge
graphs. By introducing our approaches, DSCAN helps improve the effectiveness
of future applications.

Organization: The rest of this paper is organized as follows: In Sect. 2, we
briefly review the baseline algorithm SCAN. Section 3 presents our proposed
algorithm DSCAN. After that we report our experimental analysis in Sect. 4,
and we briefly review related work in Sect. 5. Finally, we conclude this paper in
Sect. 6.

2 Baseline Method: SCAN

In this section, we briefly introduce the baseline algorithm SCAN. Let G = (V,E)
be an unweighted and undirected graph, where V and E denote a set of nodes and
edges, respectively. Given a density threshold ε ∈ [0, 1] and a minimum size of a
cluster μ ∈ N , the structural graph clustering SCAN [23] returns sets of clusters
C, hubs H, and outliers O simultaneously (Algorithm 1). SCAN initially extracts
C as groups of densely connected nodes before detecting sparsely connected
nodes as H or O. SCAN places the nodes into the same cluster only if two nodes
have a dense connection. To measure the density, SCAN evaluates the structural
similarity, which is defined as:

Fig. 1. Overview of DSCAN

Definition 1 (Structural similarity). Let Nu be a structural neighborhood
of node u such that Nu = {v ∈ V |(u, v) ∈ E} ∪ {u}, the structural similarity
σ(u, v) between node u and v is defined as σ(u, v) = |Nu ∩ Nv|/√

dudv, where
di = |Ni|.
We denote nodes u and v are similar if σ(u, v) ≥ ε; otherwise, dissimilar.

SCAN first computes σ(u, v) for all edges (lines 1–2 in Algorithm 1). Then
it finds a seed of a cluster, called core node, defined as follows:
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Definition 2 (Core node). Given user-specified parameters, ε and μ, node u
is a core node iff |N ε

u| ≥ μ, where N ε
u = {v ∈ Nu|σ(u, v) ≥ ε}.

Once SCAN finds a core node, it expands to a cluster from the core node
(lines 7–9 in Algorithm 1). Let node u be a core node, SCAN places all nodes
in N ε

u into the same cluster of node u, which is denoted by Cu (line 8). If Cu

has non-visited core nodes, SCAN recursively expands the cluster until no non-
visited nodes can be found in Cu (lines 6–9). Formally, cluster Cu ∈ C is defined
as follows:

Definition 3 (Cluster). Let node u be a core node and Cu be a cluster that is
initially set to Cu = {u}. SCAN finds a cluster Cu defined as Cu = {w ∈ N ε

v |v ∈
Cu}.
By following Definition 3, SCAN finds all clusters in G.

Finally, SCAN identifies hubs and outliers from non-clustered nodes (line 12).
SCAN regards node u as a hub if it bridges multiple clusters in C; otherwise,
it is an outlier. Once C is obtained, hubs and outliers can be detected in a
straightforward manner in O(n + m) time, where n and m are the number of
nodes and edges, respectively. Hereafter, we thus focus on only extracting C

in G.

3 Proposed Method: DSCAN

DSCAN can efficiently compute billion-edge graphs that cannot fit on a single
main memory. Here we overview DSCAN and describe our algorithm.

3.1 Overview of DSCAN Algorithm

Our goal is to efficiently compute billion-edge graphs even if the graphs do not
fit on a single main memory. To handle large volumes of graphs, we designed
DSCAN to exploit distributed memories on multiple machines.

Figure 1 shows an overview of DSCAN. Given graph G, parameters, ε and μ,
and machines M = {M1,M2, . . . ,M|M |}, DSCAN first randomly deploys a set of
nodes Vi resulting in subgraph Gi = (Vi, Ei) for each machine Mi. As described in
Sect. 1, traditional distributed frameworks employ graph partitioning algorithms
to obtain disjointed subgraphs that reduce the communication overheads among
machines. However, partitioning algorithms are not applicable to billion-edge
graphs since (1) billion-edge graphs have larger memory footprints than a sin-
gle main memory and (2) graph partitioning itself is computationally expensive.
Hence, to achieve a low communication overhead for billion-edge graphs, DSCAN
employs skewness-aware edge-pruning (Sect. 3.2) before performing distributed
graph clustering. First, DSCAN randomly partitions V into equally sized parti-
tion, i.e., |V1| ≈ |V2| ≈ . . . |V|M ||, each of which yields a subgraph Gi = (Vi, Ei).
Then, DSCAN assigns the subgraphs to a machine to balance the loads. Last,
DSCAN drops unnecessary edges that entail extraneous communication over-
heads among the machines by skewness-aware edge-pruning.
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Afterwards DSCAN invokes local clustering (Sect. 3.3) in each machine to
find all core nodes included in each subgraph. As discussed in Sect. 2, structural
similarity computations require O(m1.5) time, where m is the total number of
edges in G. Consequently, each machine Mi still requires O(|Ei|1.5) time to
extract all core nodes in Gi. To reduce the computational costs, DSCAN per-
forms thread-parallel and data-parallel algorithms for the structural similarity
computations.

Finally, DSCAN constructs clusters from the core nodes over distributed
machines (Sect. 3.4). To maintain clustering results over distributed machines,
DSCAN employs a union-find tree [5] in distributed and parallel ways, and
returns C by merging the results obtained from each machine.

3.2 Skewness-Aware Edge-Pruning

We propose skewness-aware edge-pruning to reduce the communication costs
entailed by distributed computing. DSCAN prunes unnecessary edges that do
not contribute to the clusters prior to distributed clustering.

Suppose that edge (u, v) spans across two machines Mi and Mj , i.e., u ∈ Vi

on Mi and v ∈ Vj on Mj . In this case, we need to perform communications
between Mi and Mj to compute structural similarity σ(u, v) since Nu �⊆ Vj and
Nv �⊆ Vi. However, we can skip the communications for edge (u, v) if the edge
is dissimilar since v /∈ N ε

u and u /∈ N ε
v when σ(u, v) < ε. That is, edge (u, v)

does not need to be computed because it is not used to construct clusters by
Definition 3.

To eliminate unnecessary communication overhead, DSCAN prunes dissimi-
lar edges (u, v), i.e., σ(u, v) < ε, without computing the structural similarity. To
find dissimilar edges without structural similarity computations, we introduce a
simple criterion that evaluates the degree skewness of adjacent nodes:

(a) uk (b) gsh (c) sk

Fig. 2. Distribution of degree ratio λ(u,v)

Definition 4 (Degree-skewness λ(u,v)). Let edge (u, v) be in E, degree-

skewness λ(u,v) is defined as λ(u,v) = min
{

du

dv
, dv

du

}
, where di = |Ni|.
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Algorithm 2. Skewness-aware edge-pruning
Procedure edge pruning(Gi, ε)
1: Eprune

i = ∅;
2: for each (u, v) ∈ Ei do in thread-parallel
3: if λ(u,v) < ε2 then Eprune

i ∪ {(u, v)};

4: E′
i = Ei\Eprune

i ;
5: Esend

i = {(u, v) ∈ E′|u ∈ Vi, v ∈ Vj for i �= j}
6: for each (u, v) ∈ Esend

i do in thread-parallel
7: send Nu to Mj , receive Nv from Mj , and Vi ∪ Nv;

8: return G′
i = (Vi, E

′
i);

Definition 4 implies that λ(u,v) becomes small if nodes u and v have imbalanced
degrees; otherwise, λ(u,v) approaches 1.

From Definition 1 and 4, we have the following lemma:

Lemma 1 (Prunable-edges). If λ(u,v) < ε2, the structural similarity between
u and v is always smaller than ε, i.e.,σ(u, v) < ε.

Proof. We suppose du < dv without loss of generality. Since λ(u,v) = du/dv,
we have du/ε2 < dv if λ(u,v) < ε2. Thus, from Definition 1, σ(u, v) = |Nu ∩
Nv|/√

dudv < ε|Nu ∩ Nv|/du < ε, which completes the proof. 
�
Lemma 1 indicates that DSCAN regards edge (u, v) as dissimilar if λ(u,v) < ε2.
From Definitions 2 and 3, dissimilar edges are not included in any clusters. Thus,
edges whose degree ratio is less than ε are pruned prior to distributed clustering.

We experimentally observed the impact of the skewness-aware edge-pruning
on real-world graphs. Figure 2 shows the distributions of λ(u,v) in the real-world
billion-edge graphs shown in Table 1. Each plotted point indicates the number
of edges that yield λ(u,v) value in the corresponding graph. As shown in Fig. 2,
the three graphs have almost the same distributions. Most edges have quite
small λ(u,v) values. These observations imply that edges in billion-edge graphs
prefer to connect nodes whose degrees are significantly different. Consequently,
DSCAN effectively excludes a large part of Ei by skewness-aware edge-pruning.
For example, existing studies [17,23] have reported that ε ∈ [0.5, 0.8] is a rea-
sonable choice to obtain accurate clustering results. That is, if ε = 0.5, DSCAN
can prune up to 91% of the edges from the graphs.

Finally, Algorithm 2 shows the pseudo codes for skewness-aware pruning. To
reduce the communication overheads, DSCAN prunes edges using Lemma 1 in a
thread-parallel manner (line 2–3). DSCAN can check if an edge is dissimilar in
O(1) by Lemma 1. Thus, by letting T be the number of threads invoked in Mi,
DSCAN finds all dissimilar edges of Ei in O( |Ei|

T ) ≈ O( |E|
|M |T ) time.

DSCAN then shares structural neighborhoods of similar edges if they span
across different machines (lines 4–7). First, a set of similar edges Esend

i are
extracted (line 5). Then the structural neighborhoods Nu and Nv for each edge
(u, v) are exchanged (lines 6–7). Suppose that u and v are located in Mi and
Mj , respectively. DSCAN sends Nu to Mj , and it receives Nv from Mj .
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Algorithm 3. Local clustering

Procedure local clustering(G′
i, ε, μ)

1: for each (u, v) ∈ E′
i do in thread-parallel

2: if sd[u] < μ and ed[u] ≥ μ then
3: Compute σ(u, v) in data-parallel;

4: return Ecore
i = {(u, v) ∈ E′

i|sd[u] ≥ μ and sd[v] ≥ μ};

3.3 Local Clustering

In each machine, DSCAN computes the structural similarities and detects all
core nodes in Gi in a thread-parallel manner. Algorithm 3 shows the pseudo
codes. To reduce redundant similarity computations, a node-pruning technique
is performed [3] (line 2). DSCAN maintains two integers for each node in Vi:
similar degree sd and effective degree ed. Let similar and effective degrees of
node u be sd[u] and ed[u], respectively. sd[u] is the number of nodes in Nu

that have already been computed as similar, i.e., σ(u, v) ≥ ε, while ed[u] is the
number of non-computed nodes in Nu. From Definition 2, if sd[u] ≥ μ, then node
u is a core node. By contrast, node u is not a core node if ed[u] < μ. DSCAN
compares sd[u] and ed[u] in the thread-parallel manner (lines 1–3). σ(u, v) is
not computed only if sd[u] ≥ μ and ed[u] < μ (or sd[v] ≥ μ and ed[v] < μ);
otherwise, DSCAN computes σ(u, v).

To further improve efficiency, DSCAN computes the structural similarities in
a data-parallel manner (line 3). As shown in Definition 1, each structural simi-
larity computation σ(u, v) requires a set intersection between Nu and Nv, this is,
however, a time-consuming task. Thus, we employed SIMD-wise set intersection
method, proposed by Inoue et al. [6], to compute Nu ∩ Nv in Definition 1. We
omit the details of the SIMD-wise set intersection due to the space limitation.

3.4 Cluster Construction

Finally, DSCAN runs Algorithm 4 to construct clusters over distributed
machines. To efficiently find clusters, DSCAN employs a union-find tree [5] in
each machine. The union-find tree efficiently maintains a set of nodes parti-
tioned into disjoint clusters by two fundamental operators, called find(u) and
union(u, v). find(u) looks up a cluster Cu, and union(u, v) merges two clusters
Cu and Cv into the same cluster. Both operators run at most Ω(A(n)) times,
where A is Ackermann function.

In Algorithm 4, DSCAN first constructs local clusters in each machine by a
thread-parallel manner. DSCAN initializes a union-find tree Ti in each machine
Mi (line 1), and DSCAN finds out all clusters from core nodes by checking edges
included in Ecore

i obtained by Algorithm 3 (lines 2–5). Given (u, v) ∈ Ecore
i ,

DSCAN looks up Cu and Cv by find(u) and find(v) operations (line 3). If
Cu �= Cv, Cu and Cv are merged by union(u, v) operation only if (u, v) is
similar, i.e., σ(u, v) ≥ ε (lines 3–5). To avoid write-write conflicts of union
operations among multiple threads, DSCAN employs CAS atomic operations
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Algorithm 4. Cluster construction

Procedure cluster construction(G′
i, ε, μ, Ecore

i )
1: initialze union-find tree Ti for all u ∈ Vi;
2: for each (u, v) ∈ Ecore

i do in thread-parallel
3: if Ti.find(u) �= Ti.find(v) then
4: if (u, v) has not been computed then compute σ(u, v);
5: if (u, v) is similar then Ti.union(u, v);

6: execute (lines 2-5) for E′
i\Ecore

i instead of Ecore;
7: for each (u, v) ∈ E′

i do in thread-parallel
8: if u ∈ Gi and v ∈ Gj then
9: send 〈〈u, v〉, Ti.find(u)〉 to Mj ;

10: receive 〈〈u, v〉, Tj .find(v)〉 from Mj ;
11: Ti.union(u, v);

Table 1. Statistics of real-world datasets

Dataset name # of nodes # of edges Memory footprint Data source

uk 39,459,925 936,364,282 16 GiB uk-2005 [2]

gsh 68,660,142 1,802,747,600 30 GiB gsh-2015-host [2]

sk 50,636,154 1,949,412,601 33 GiB sk-2005 [2]

union 133,633,040 5,507,679,822 86 GiB uk-union-2006-06-2007-05 [2]

clueweb 978,408,098 42,574,107,469 691 GiB clueweb12 [2]

before merging the clusters. DSCAN also clusters non-core nodes whose edges
included in Ei\Ecore

i in the same way (line 6).
After finding all local clusters, DSCAN tries to merge local clusters over

distributed machines (lines 7–11). Each machine sends its local clustering results
as pairs of 〈〈u, v〉, Ti.find(u)〉 only if edge (u, v) ∈ E′

i spans two machines. As
shown in Algorithm 2, E′

i is a set of edges with λ(u,v) ≥ ε2. Hence, DSCAN
merges Cu and Cv by union(u, v) once it receives 〈〈u, v〉, Tj .find(v)〉 from the
other machines (lines 10–11).

4 Experimental Analysis

We conducted extensive experiments to evaluate the effectiveness of our proposed
algorithm. We designed our experiments to demonstrate that:

– Efficiency: DSCAN is faster than the state-of-the-art algorithms on billion-
edge graphs. Our proposal computes a graph having 5.5 billion edges within
10 s.

– Scalability: DSCAN shows better scalability than the state-of-the art meth-
ods. It linearly increases performances as increasing numbers of threads and
machines.

– Exactness: Although DSCAN drastically reduces clustering time, it always
returns exactly same clustering results as those of the original algorithm.
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Fig. 3. Running time by varying ε.

4.1 Experimental Setup

Datasets: We evaluated our proposed algorithm DSCAN on five real-world
graphs, which were from the Laboratory of Web Algorithmics (LAW) [2]. Table 1
summarizes the statistics of real-world datasets. In addition, we also used syn-
thetic graphs generated by LFR-benchmark [9], which is considered as the de
facto standard model for generating graphs. The settings will be detailed later.
Methods: In our experiments, we compared DSCAN with the state-of-the-art
sequential algorithm pSCAN [3], the state-of-the-art thread-parallel algorithms
SCAN-XP [22] and ScaleSCAN [19], and the state-of-the-art distributed algo-
rithm CASS [8]. We also tested an another recent distributed algorithm proposed
by Zhao et al. [25], which is implemented on distributed computation frame-
works. However, we omitted the results from this paper since the algorithm
could not return any results within 24 h on all datasets shown in Table 1.

We implemented the above algorithms, except for CASS, in C++ and com-
piled them by gcc compiler with -O3 compile option. Since CASS requires Apache
Spark framework [24], we implemented CASS in Java by following the original
paper [8]. For the thread-parallel and data-parallel implementations (SCAN-XP,
ScaleSCAN, and DSCAN), we used OpenMP and AVX512 instructions, respec-
tively. Additionally, we used MPI for the distributed processing in DSCAN.

All experiments were conducted on a computer cluster composed of 16
machines that are inter-connected by Intel Omni Path (12 GiB/s). Each machine
was equipped with one Intel Xeon Phi 7250 processor (64 physical cores with
1.40 GHz default frequency) and 96 GiB DDR4 RAM. Unless otherwise stated,
we used 64 threads for SCAN-XP, ScaleSCAN, and DSCAN, which is the same
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Fig. 4. Running time by varying μ.

number as the physical cores. Additionally, we run pSCAN, SCAN-XP, and
ScaleSCAN on one machine since they are not distributed algorithms. We report
the average score of 20 tests for each method.

4.2 Efficiency

We assessed the running time of DSCAN through wall clock time. In this eval-
uation, we tested two types of settings for DSCAN and CASS. DSCAN-1 and
CASS-1 were performed on one machine, and DSCAN-16 and CASS-16 were on
16 machines. Figure 3 shows the running times of the algorithms for different ε
settings with a fixed μ value, i.e., μ = 5. Similarly, Fig. 4 shows the running time
with a fixed ε = 0.5 and different μ values such as 5, 10, and 20. Note that we
omitted several results (1) if the algorithms crashed due to the out of memory
problem or (2) if they could not return any results within 24 h.

Overall, DSCAN-16 outperforms the state-of-the-art algorithms CASS,
ScaleSCAN, SCAN-XP, and pSCAN, although DSCAN-1 is competitive with
ScaleSCAN. In specific, DSCAN-16 is up to 763.4, 5.94, 17.1, and 234.9 times
faster than CASS, ScaleSCAN, SCAN-XP, and pSCAN, respectively. Further-
more, only DSCAN-16 returns clustering results for clueweb. Actually, DSCAN-
16 computes union and clueweb within 9.55 s and 68.2 s on average, respec-
tively. This is because we designed DSCAN-16 so that (1) it effectively drops off
unnecessary communications among distributed machines and (2) it utilizes dis-
tributed memories even if the graph volumes do not fit on a single main memory.
Consequently, DSCAN-16 reduces the running time for billion-edge graphs.
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Fig. 5. Running time by varying # of threads (ε = 0.5, μ = 5).

We observed from Fig. 3 that DSCAN-16 very slightly decreases its running
time as the size of ε increases, but is nearly independent of μ. This is due to
the skewness-aware edge pruning shown in Sect. 3.2. From Lemma 1, DSCAN-
16 excludes edges that require communication overheads among machines if the
edges have a degree skewness smaller than ε2, i.e., λ(u,v) < ε2. As observed
in Fig. 1, most of the edges can be pruned by Lemma 1 for large ε settings
in the real-world graphs. That is, DSCAN-16 can remove a large quantity of
communication overheads if ε is large. As a result, DSCAN-16 can improve its
efficiency by increasing the size of ε. By contrast, the running time for DSCAN-
16 is almost constant for all μ settings (Fig. 4). However, as discussed in the
literature [23], large μ settings are not suitable to detect clusters with high
accuracy; In practice, μ = 2 is recommended for real-world graphs.

4.3 Scalability

Thread-Parallel Scalability: To assess the scalability of DSCAN, we first
compared the running times of the parallel algorithms by varying the number of
threads invoked in each machine. Figure 5 shows the running times of the parallel
algorithms. Similar to the previous section, we evaluated two types: DSCAN-16
and DSCAN-1, which perform structural graph clustering on 16 machines and a
single machine, respectively. Since DSCAN-1, ScaleSCAN, and SCAN-XP cannot
handle clueweb on a single main memory, the results are omitted from Fig. 5.
As we can see from Fig. 5, all the algorithms linearly improve their running
time as the number of threads increases. Especially, DSCAN-16 shows a better
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Fig. 6. Strong-scaling test by varying # of machines (ε = 0.5, μ = 5).

scalability than the other parallel algorithms. These results clarify that DSCAN
is scalable against the number of threads.

Strong-Scaling Test: We then assessed the strong-scalability of distributed
algorithms including DSCAN against the number of machines increases. To eval-
uate the impact of our pruning approach, we also tested DSCAN (w/o pruning)
that lacks the skewness-aware edge-pruning. Figure 6 shows the speed-up ratio
against the running time on one machine by varying the number of machines (1,
2, 4, 8, or 16). Note that results of CASS are omitted from union since CASS on
one machine could not finish within 24 h. Similarly, we do not report the scal-
ability on clueweb because all methods on one machine did not return results
within 24 h.

As shown in Fig. 6, the performance of DSCAN increases almost linearly as
the number of machines increases if the graphs are sufficiently large. By contrast,
the performance of DSCAN (w/o pruning) and CASS peak earlier. By compar-
ing the speed-up ratio between DSCAN and DSCAN (w/o pruning), DSCAN is
approximately twice as efficient as DSCAN (w/o pruning). These results imply
that our skewness-aware edge pruning successfully moderates the communication
overheads, which degrades the scalability of distributed algorithms. As discussed
in Sect. 3.2, DSCAN removes a large subset of given edges that cause the commu-
nication overheads by checking the degree skewness (Lemma 1). Hence, DSCAN
shows a better scalability than DSCAN (w/o pruning) and a strong-scaling prop-
erty for large graphs.

Weak-Scaling Test: For weak-scaling test, we generated synthetic graphs by
using LFR benchmark with 16, 32, 64, 128, and 256 million nodes with an average
degree 30. We compute those synthetic graphs by DSCAN and CASS on 1, 2, 4, 8,
16, and 32 machines, respectively. We also examined the running time of DSCAN
w/o edge-pruning by using the same settings. Figure 7 shows the running time
of each experimental setting. In Fig. 7, DSCAN keeps its running times almost
constant even if we increase the number of nodes and machines. In contrast,
DSCAN w/o edge-pruning and CASS gradually increase the running time as
the number of machines and the graph size increased. As discussed in Sect. 3.2,
DSCAN reduces the communication costs by using the skewness-aware edge-
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Table 2. NMI varying ε

Parameters uk gsh sk union

ε = 0.3, μ = 5 1.0 1.0 1.0 1.0

ε = 0.6, μ = 5 1.0 1.0 1.0 1.0

ε = 0.9, μ = 5 1.0 1.0 1.0 1.0

Table 3. NMI varying μ

Parameters uk gsh sk union

ε = 0.5, μ = 5 1.0 1.0 1.0 1.0

ε = 0.5, μ = 10 1.0 1.0 1.0 1.0

ε = 0.5, μ = 20 1.0 1.0 1.0 1.0

pruning. Hence, DSCAN shows better weak-scaling performances than DSCAN
w/o edge-pruning and CASS.

4.4 Exactness of Clustering Results

Finally, we experimentally verified the exactness of the clustering results
obtained by DSCAN. We used the information-theoretic metric, Normalized
Mutual Information (NMI) [10], which outputs 1 if two clustering results are
the same. As reported in [22], SCAN-XP returns the same clustering results as
the original algorithm SCAN [23]. Thus, we measured the NMI scores between
DSCAN and SCAN-XP.

Tables 2 and 3 show the NMI scores of DSCAN on various ε and μ settings.
Since SCAN-XP did not finish clustering on clueweb due to the out of memory
problem, the results are omitted. As shown in Table 2 and 3, DSCAN shows 1
for all conditions we examined. These results indicate that the clusters obtained
by DSCAN are the same as the original algorithm SCAN even though DSCAN
removes edges by skewness-aware edge pruning. As discussed in Lemma 1, our
edge-pruning approach does not exclude edges that yield σ(u, v) ≥ ε. Thus,
DSCAN does not sacrifice the clustering quality compared with the original
algorithm.

5 Related Work

The structural graph clustering [23] is a fundamental tool to analyze complex
data structures obtained from various applications [14,18]. Unlike traditional
graph clustering algorithms [16], it can reveal not only densely connected clusters
but also hubs and outliers from a given graph. As we described in Sect. 1, the
original algorithm SCAN incurs O(m1.5) time, which is known as the worst-case
optimal cost. To overcome this expensive cost, several distributed and parallel
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algorithms have been proposed in a recent few years. Here, we briefly review
several successful algorithms.

Parallel Algorithms: With the development of the many-core processors, par-
allel algorithms are one of the popular ways to efficiently perform large-scale
structural graph clustering. SCAN-XP [22] and GPUSCAN [21] are the first
parallel algorithms that provide scalable and exact algorithm for the structural
graph clustering. The key ideas underlying those algorithms are to parallelize the
structural similarity computation by using the many physical cores equipped on
Intel Xeon Phi co-processors and GPUs. Shiokawa et al. [19] and Che et al. [4]
further extended those algorithms by introducing several edge-pruning and opti-
mization techniques. As a result, they succeeded in reducing the clustering time
of SCAN for the real-world graphs. However, as we described in Sect. 1, the
computation time for billion-edge graphs are still large, and they can not handle
large graphs whose memory footprint exceeds the main memory size.

Distributed Algorithms: To address the large memory foot prints, the dis-
tributed algorithms are natural choices for improving the running time of SCAN.
To the best of our knowledge, PSCAN [25] is the first solution that performs
SCAN on distributed frameworks [20,24]; PSCAN also leads several extension
works [8,11] in a recent few years. The common strategy among those distributed
algorithms is to partition a given graph into disjoint subgraphs so that those
subgraphs mitigate the communication overheads among distributed machines.
However, this strategy is impractical for billion-edge graphs since graph parti-
tioning [7] generally requires a large time- and space-complexity than those of
SCAN. By contrast, DSCAN can reduce the communication overheads by the
skewness-aware edge-pruning even though it does not use graph partitioning
algorithms. Consequently, as we experimentally confirmed in Sect. 4, DSCAN
shows better efficiency and scalability than those distributed algorithms.

6 Conclusion

We developed a novel distributed algorithm DSCAN for the structural graph
clustering problem. DSCAN employs skewness-aware edge-pruning to reduce
the communication overheads of the distributed algorithm. Our extensive exper-
iments clarified that DSCAN outperforms the state-of-the-art methods with-
out sacrificing clustering quality. Of particular interest, DSCAN successfully
computes a graph whose memory footprint is 691 GiB within 1.5 min on 16
machines. The structural graph clustering is a fundamental graph data mining
tool for current and prospective applications in various disciplines. By providing
our efficient distributed method, DSCAN will help to improve the effectiveness
of future applications.
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Abstract. The subgraph counting problem is the problem of counting
the number of occurrences of graph patterns in the target graph and is
widely used as a fundamental technique for network analyses in different
domains. The computational cost of subgraph counting grows drasti-
cally as the size of the pattern increases; it takes much time even with
the state-of-the-art algorithms when counting 5-vertex patterns. To this
problem, this paper proposes a subgraph counting method using GPUs.
More precisely, we employ one of the state-of-the-art algorithms for 5-
vertex subgraph counting and extend it so that counting is executed in
parallel using massive threads. We conducted experiments for evaluating
the performance of our proposed method by using real-world datasets,
and the results demonstrate that our proposed method is about 4x to 10x
and about 3× to 5× times faster than the original method in computing
5-vertex and 4-vertex subgraphs, respectively.

Keywords: Subgraph counting · GPU computing · Graphlet counting

1 Introduction

Given a set of patterns and a target graph, the subgraph counting is to count
the number of occurrences of the pattern in the target graph. As opposed to
the global features of a graph, the subgraph counts of a graph show a local
feature and have been widely used in different problems, such as community
detection [25], analysis of biological networks [10,24], and social networks [6,23],
and others [7,21].

One of the biggest problems of subgraph counting is that it is computationally
demanding. More precisely, the cost drastically increases as the size of patterns
increases, especially when the subgraph pattern has more than five vertices. This
is due to the combinatorial explosion; i.e., as described in [15], the frequencies of
most 5-vertex subgraphs are more than billions in the graph, even with graphs
with only millions of edges. Besides, to count the occurrences of a pattern, we
need to manage the candidate patterns whose occurrences are far more than the
target pattern, which deteriorates the performance.
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For this reason, most of the existing work for subgraph counting dealt with
up to 4-vertex subgraphs for exact cases [3,13] and approximated cases [16,26].
Recently, ESCAPE [15] addressed the problem of a 5-vertex subgraph counting
by adopting the following techniques: (1) dividing patterns into smaller patterns
and (2) conversion of edges to directed edges for reducing the search space.

Nevertheless, the performance of ESCAPE is not sufficient in particular when
dealing with huge graphs, because of the long execution time. One promising way
to address this problem is to apply parallelization. Especially, GPU (graphics
processing unit) has shown remarkable progress in its performance and has been
applied in a wide range of data-intensive workloads, including graph analysis.
In this paper, we propose parallel subgraph counting methods for a GPU. We
basically use the algorithm proposed in ESCAPE and parallelize it for GPU.
To this end, we divide the algorithm into two parts; i.e., the part for extracting
candidate patterns from the target graph and the part of computing aggregations
based on the extracted candidates. The first part is executed on CPU, while the
second part is executed in parallel on GPU. To our knowledge, among the GPU-
based method for subgraph counting, this is the only method that can compute
5-vertex subgraph countings for large graphs. Our experiments using real-world
datasets showed that our GPU-based methods could count all 5-vertex patterns
up to 10× faster than ESCAPE. Besides, our methods can compute all 4-vertex
patterns 3× to 5× faster than ESCAPE.

2 GPU Computing

“GPU computing” means using GPUs (graphics processing units) for general-
purpose computing. Although GPUs have been originally designed for graphic
processing, they have been used in different problem domains for accelerating
tasks such as machine learning and scientific computation by its high parallelism.

In general, designing a parallel algorithm or converting non-parallel algo-
rithms to parallel one is not easy. Moreover, it is even harder for us to make
the best use of the GPUs’ performance due to their characteristics, i.e., inde-
pendent memory space, hierarchical memory structure, different programming
environments, such as CUDA and OpenCL, etc.

In this work, we use NVIDIA’s GPU and OpenACC [2] for GPU computing.
Compared to CUDA, which has been widely used so far, OpenACC is a relatively
new programming model and has been gathering attention due to its portabil-
ity, maintainability, and productivity. The following describes the structure of
NVIDIA’s GPU and a program using OpenACC.

2.1 NVIDIA GPU

The GPU computing model consist of multiple SMs (Streaming Multiprocessors)
which is composed of many SPs (Scalar Processors). SP is also called “CUDA
core” or simply “core.” For instance, the NVIDIA Tesla V100 GPU has 80 SMs,
and each of them has 64 FP32 cores and 32 FP64 cores.
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GPUs have roughly three types of memories: global memory, shared memory,
and registers. Global memory is the largest memory on the GPU, and all SMs
can access to it, but the latency is high. Meanwhile, shared memory is a memory
with a capacity smaller than the global memory and can be accessed only from
SPs on the same SM. The feature is that it presents much higher bandwidth
and lower latency than global memory. Registers are the fastest memory among
others, but the size is limited. So, to improve the performance, it is important
to use registers and shared memory as much as possible, while reducing accesses
to global memory.

2.2 OpenACC

OpenACC is a parallel programming standard for many-core accelerators [2].
Similar to OpenMP, OpenACC takes the directive-based programming model;
programmers use directives to annotate their C/C++ or Fortran codes for paral-
lelization. An OpenACC compatible compiler, like the PGI compiler, interprets
the directives and generates code that can be executed in parallel by accelerators
like GPU.

The OpenACC directives can be classified into three types: compute direc-
tives, data management directives, and loop directives. Compute directives spec-
ify a block of code to be executed in parallel on the accelerator. Data manage-
ment directives instruct the program to transfer data from the host memory to
the device memory on the accelerator and vice versa. Note that data transfer
between the host and the device memory prone to be the bottleneck of the per-
formance. So, we need to design the data transfer strategy on a parallel program
carefully. Loop directives indicate how loop-iterations are distributed among dif-
ferent hardware components. This is another point to achieve high performance
in an OpenACC program.

3 Preliminaries

In this paper, we focus on a connected, unweighted, and undirected graph
G = (V (G), E(G)), where V (G) and E(G) are a set of vertices and edges of
G, respectively. We assume that the graph does not contain any multiple edges
or self-loops. We denote by G→ the directed graph. The set of out-neighbors and
in-neighbors of v ∈ V (G) of G→ is denoted by N+(v) and N−(v), respectively.

Figure 1 shows all possible graphs containing up to five vertices. We call them
patterns and denote by Hi the i-th pattern; e.g., in Fig. 1, we refer to the 29th
pattern (5-clique) by H29. Besides, Table 1 shows the main notations used in
the sequel discussion. To discuss subgraph counting, we must differentiate the
induced subgraph from the subgraph. The following gives the concrete defini-
tions.

Definition 1. (SUBGRAPH) Given a graph G = (V (G), E(G)), a graph G′ =
(V (G′), E(G′)) is subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
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Fig. 1. All graphs with at most five vertices

Definition 2. (INDUCED SUBGRAPH) Let G′ = (V (G′), E(G′)) be a sub-
graph of G = (V (G), E(G)). G′ is a induced subgraph of G if G′ contains all
edges (u, v) ∈ E(G) with u, v ∈ V (G′). We also denote G′ by G[V (G′)].

We may call a non-induced subgraph a subgraph when there is no ambiguity.
In the following, we define the terminology used in this paper.

Definition 3. (ISOMORPHISM) A graph G′ = (V (G′), E(G′)) is said to be
isomorphic to G = (V (G), E(G)) if there exists a bijection φ : V (G) → V (G′)
such that (u, v) ∈ E(G) iff (φ(u), φ(v)) ∈ E(G′) and such a map φ is called
isomorphism.

Definition 4. (AUTOMORPHISM) Let G = (V (G), E(G)) be a graph. A auto-
morphism is an isomorphism with itself, i.e., there exists a bijection φ : V (G) →
V (G) such that (u, v) ∈ E(G) iff (φ(u), φ(v)) ∈ E(G). The set of automorphisms
of G is denoted by AUT (G).

Now, we introduce the subgraph counting and graphlet counting.

Definition 5. (SUBGRAPH COUNTING and GRAPHLET COUNTING )
Given a (potentially large) graph G and a set of mutually non-isomorphic graphs
G, the subgraph (graphlet) counting of G over G is to count for each g ∈ G the
number of non-induced (induced) subgraphs G′ in G that are isomorphic to g.

3.1 Problem Statement

Our goal in this paper is, given a graph G and a set H of all 5-vertex pat-
terns shown in Fig. 1, to compute the subgraph or graphlet counting as quick as
possible

The result of the subgraph and graphlet counting of Hi is denoted by Fi and
F IND

i , respectively. As shown in [15], the subgraph counts of the disconnected
patterns can be derived from the subgraph counts of connected patterns by a
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simple conversion. Besides, it demonstrates that we can convert all Fi into F IND
i

by a linear transformation. (We omit this matrix due to the space limitation.)
Hence, it is sufficient to compute the subgraph counts for a graph G and a set
of H = {Hi|i ∈ N, 1 � i � 29}.

Table 1. Notations

Symbol Definition

G Undirected graph

G→ Directed graph

V (G) Set of vertices in G

E(G) Set of edges in G

N(v) Set of neighbors of vertex v

d(v) Degree of vertex v

G[S] Subgraph of G induced by S

N+(v) Set of out-neighbors of vertex v

N−(v) Set of in-neighbors of vertex v

W (u, v) The number of wedges between vertices u, v

W++(u, v) The number of out-wedges between vertices u, v

W+−(u, v) The number of in-wedges from vertex v to vertex u

T (u, v) Set of triangles incident to edge (u, v)

T+(u, v) Set of vertices w such that (u, v, w) is a triangle and u, v ≺ w

k+
4 (u, v, w) Set of vertex k such that (u, v, w) is a triangle and (k, u, v, w) is a 4-clique and u, v, w ≺ k

Fig. 2. Fundamental patterns

3.2 ESCAPE

We briefly introduce the algorithm of ESCAPE proposed by Pinar et al. [15],
which is the base of our proposed method. ESCAPE is one of the state-of-the-art
algorithms for counting all 5-vertex patterns based on the two main ideas for
preventing the combinatorial explosion, which is one of the biggest problems in
counting algorithms.

The first idea is cutting (or decomposing) patterns into smaller patterns;
all connected k-vertex patterns except for k-clique can be split into smaller
disconnected patterns with size less than k by removing some vertices (called
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cutset), thereby making it possible to count the frequency as a combination of
smaller patterns. More details can be found below.

The second idea is to convert undirected graph G into the DAG G→ to
reduce the search space. This idea has been employed in many triangle counting
algorithms [5,22]. More precisely, we get G→ from G as follows. Note here that
the degree ordering is denoted by ≺. For vertex u and v, we order u ≺ v if either
d(u) < d(v) or d(u) = d(v) and u < v (i.e., order by vertex ID). Thus, undirected
graph G covert into directed graph G→ by orienting all edges following the degree
ordering ≺. Since degree ordering is a total order, G→ is DAG.

The Cutting Framework. We describe the cutting framework. Let H be a pattern
we want to count and C be a cutset of H. For convenience, we assume that G and
H are labeled, although they are actually unlabeled. Actually, at the final step,
we compensate the difference between labeled and unlabeled graphs, thereby
allowing us to compute the correct answer.

We define match1 on follows.

Definition 6. (MATCH) A match of H in G is a bijection π : S → V (H)
where S ⊆ V (G) and ∀u, v ∈ S is an edge of G if (π(u), π(v)) ∈ E(H). The set
of disjoint match of H in G is denoted by match(H).

If π is only an injection (i.e., |S| < |V (H)|), we call π a partial match.

Definition 7. (EXTEND) A match π : S → V (H) extends a partial match
σ : S′ → V (H) if S′ ⊂ S and ∀u ∈ S′, π(u) = σ(u).

Next, we define H-degree.

Definition 8. (H-DEGREE) Let σ be a partial match of H in G. We call the
number of matches of H that extend σ H-degree and denote it by DegH(σ).

The fragment of G is obtained by splitting H into smaller patterns, which is
defined as follows:

Definition 9. (FRAGMENT) Let H be divided into connected components
S1, S2, . . . by removing the vertices of C. The C-fragments of H are the sub-
graphs of H induced by C ∪ S1, C ∪ S2, . . . . The set of C-fragments of H is
denoted by FragC(H).

Let us consider a match σ of H[C]. If σ can extend to all elements of FragC(H)
and these elements are disjoint with each other, we can extend σ to H by merging
these elements. When these elements of FragC(H) are not disjoint, merging
these elements result in patterns that are different from H, i.e., H ′, which we
call a shrinkage.

Definition 10. (C-SHRINKAGE) Let H ′ be a pattern different from H and
FragC(H) = {F1, F2, . . . F|FragC(H)|}. A C-shrinkage of H into H ′ is a set of

1 We have slightly changed the definition from the original one in the ESCAPE paper
to maintain the consistency of the theorem.
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maps {σ, π1, π2, . . . , π|FragC(H)|} such that σ : H[C] → H ′ is a partial match
of H ′ and ∀Fi ∈ FragC(H), πi : Fi → H ′ is a partial match of H ′ extends σ
and ∀(u′, v′) ∈ V (H ′), there are some index i ∈ |FragC(H)| and u, v ∈ Fi such
that πi(u) = u′ and πi(v) = v′. The ShrinkC(H) denotes the set of patterns
H ′ ( 	= H) such that there exists at least one C-shrinkage of H in H ′. For H ′ ∈
ShrinkC(H), the number of disjoint C-shrinkage is denoted by numShC(H,H ′).

Now, we are ready to introduce main lemma:

Lemma 1.

|match(H)| =
∑

σ∈match(H[C])

∏

F∈FragC(H)

degF (σ)

−
∑

H′∈ShrinkC(H)

numShC(H,H ′) · match(H ′)

This lemma implies that we can compute |match(H)| if we find the following
three things: degF (σ) for every copy of H[C], for every C-fragment, the counts
of every possible shrinkage.

Conversion from a Match of H to a Subgraph Count of H. As mentioned above,
we consider H and G to be labeled graphs. In practice, however, H and G are
unlabeled graphs. Hence, in order to obtain subgraph counts from |match(H)|,
we have to divide |match(H)| by AUT (H).

(a) Graph example (b) Example of graph data representation

(c) Example of from array

(d) Example of wedge data representation

Fig. 3. Example of data representation

4 Proposed Method

In this section, we introduce our proposed method. We aim to accelerate the
subgraph counting by parallelizing the counting part of ESCAPE using GPU. To
this end, we reorganize the method of ESCAPE by introducing two stages. The
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first stage is to extract candidate patterns from the target graph and construct
a dedicated data structure on CPU. Then, in the second stage is to compute
aggregations based on the extracted candidates on GPU in parallel. This design
is due to the separated memory space between CPU and GPU.

4.1 Data Structure

We introduce a data structure used in this paper. To store graph data, we adopt
a data structure based on CSR (compressed sparse row), which is a common
data structure to store graph data. A graph is stored using ptr array and to
array when the graph is unweighted. to array records the adjacent vertices of all
vertex, and each element in ptr array points the border of the list of adjacent
vertices belonging to the neighbor vertices in to array. In Fig. 3, for example, the
graph in Fig. 3a is represented as CSR format (Fig. 3b).

In this work, in addition to the arrays mentioned above, we use from array
that stores reverse edge information. This is necessary for us to process the graph
edge-centric manner rather than a node-centric manner, thereby allowing us to
achieve better load balancing among different threads. This feature is important
when dealing with power-law graphs where degree distribution follows a power-
law distribution.

(a) All directed acyclic
of ths 5-cycle

(b) All shrinkage of 5-cycle
DAGs

(c) DAG version of 5-
clique

Fig. 4. Directed patterns and shrinkages

4.2 Counting Algorithm

This section describes how to compute 5-vertex subgraph counting, and hence
we assume that the result of up to 4-vertex subgraph counting is ready.

First Step: Extracting Candidate Patterns. The first step is to extract from the
graph three candidate patterns, namely, triangle, wedge, and diamond. More
precisely, we maintain the following information for each candidate. Regarding
triangles, for each edge, we maintain all vertices that form triangles. Regarding
wedges, for each vertex, we maintain all vertices corresponding to in- and out-
wedges. Regarding diamonds, for each wedge, we maintain all vertices that form
a diamond. For example, in Fig. 2, we can see a vertex that forms an out-wedge
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Algorithm 1. Counting H16 (5-cycle) by GPU
1: F16 ← 0
2: for each (i, j) ∈ E do in parallel // i ≺ j

3: for all k ∈ N−(j) do // k ≺ j

4: for all l ∈ N+(k) do // k ≺ l
5: if vertex i, l is out-wedge or inout-wedge then
6: F16 ← F16 + W++(i, l) + W+−(i, l)
7: end if
8: if i ∈ N(k) then // i, k is an edge.
9: F16 ← F16 − 1
10: end if
11: if j ∈ N(l) then // j, l is an edge.
12: F16 ← F16 − 1
13: end if
14: end for
15: end for
16: end for

for vertex i is the ones that correspond to vertex j. Notice that we do not care
whether i and j is connected or not.

We maintain the above information using CSR format. For example, let us
assume wedges. For counting the number of candidates, we need to maintain
not only the connectivity between two vertices but also the number of possible
wedges between them. This information cannot be stored only using ptr and to
arrays. In this work, we additionally use value array to store the count infor-
mation. For example, the wedges in the graph in Fig. 3a can be represented
as shown in Fig. 3d; e.g., vertex 0 and 2 form a couple of wedges, (0, 1, 2) and
(0, 4, 2). So, the value in the value array is 2. Similarly, we store information
related to diamonds using CSR format, but it requires value array only.

Second Step: Computing Aggregations. Having constructed the data structure,
we transfer it to GPU and process it in parallel on GPU.

In this work, we carefully designed algorithms for all 5-vertex patterns, but
we cannot describe all of them due to the page limitation. So, we will describe
algorithms for computationally heavy patterns, i.e., H16, H25, H28, and 5-clique
(H29).

H16 (5-cycle): If we ignore the symmetric cases, there are two patterns of DAGs,
as shown in Fig. 4a. If we let i, l be the cutset, then we get directed 3-path and
a wedge as the fragments where there are two different directions in the wedge.
Thus, we find these patterns from G→. The algorithm is shown in Algorithm 1.

H25 (Diamond-wedge): The fragments of diamond-wedge is a diamond and a
wedge. Consequently, we search for them from the graph. Algorithm 2 shows the
algorithms. Line 2 to 4 is to find i, j, and k that form a diamond, followed by
checking whether i and j form a wedge in Line 5. If it forms a wedge, then we
count up the counter by W(i, l).

H28 (Almost-5clique): Algorithm 3 shows the algorithm for counting H28

(almost-5clique). It first identifies the vertices k that form triangles with the
edge (i, j) in Line 3. In Line 5, identifies vertices l that form triangles with the
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Algorithm 2. Counting H25 (diamond-wedge) by GPU
1: F25 ← 0
2: for each (i, j) ∈ E do in parallel
3: for all k ∈ T (i, j) do
4: for all l ∈ T (j, k) do
5: if vertex i, l is a wedge then
6: F25 ← F25 + W (i, l)
7: end if
8: end for
9: end for
10: end for

Algorithm 3. Counting H28 (almost-5clique) by GPU
1: F28 ← 0
2: for each (i, j) ∈ E do in parallel
3: for all k ∈ T (i, j) do
4: fourClique ← 0
5: for all l ∈ T (i, j) do
6: if k ≺ j and i ≺ k and k ∈ N(l) then
7: fourClique ← fourClique + 1
8: end if
9: end for
10: F28 ← F28 +

(fourClique
2

)

11: end for
12: end for

Algorithm 4. Counting H29 (5-clique) by GPU
1: F29 ← 0
2: for each (i, j) ∈ E do in parallel

3: for all k ∈ T+(i, j) do

4: // we assume that k+
4 (i, j, k) has already sorted by degree ordering

5: for all lu ∈ k+
4 (i, j, k) do

6: for all lv ∈ {lu+1, . . . l|k+
4 (i,j,k)|} do

7: if lv ∈ N(lu) then
8: F29 ← F29 + 1
9: end if
10: end for
11: end for
12: end for
13: end for

edge (i, j), and Line 6 checks the condition; if it passes, variable fourClique is
incremented. Line 10 increments F28 according to the formula.

H29(5-clique): Since we cannot cut a clique into smaller fragments, we only
exploit edge direction as the clue to count the occurrences. If we ignore sym-
metric cases, there exists only one pattern (Fig. 4c). So, we find this from G→.
Algorithm 4 shows the algorithms. We assume that 4-clique k+

4 (i, j, k) are already
identified. Line 2 to 4 search for triangles (i, j, k) such that i ≺ j ≺ k. Line 5
and 6 choose two vertices from k+

4 (i, j, k) such that lu ≺ lv. In Line 5, if there
exists an edge between lu ≺ lv, then {i, j, k, lu, lv} forms a 5 clique.
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4.3 Handling Huge Graphs

Although CSR format is a space-efficient data structure, when processing huge
graphs containing massive wedges or diamonds, the data cannot be loaded on
the GPU’s device memory. For such graphs, we partition the array for wedges
(or diamonds) and send each partition to GPU one by one. GPU process partial
data and the final part of the program collects the partial results and aggregates
them for generating the final result.

Table 2. Elapsed time for subgraph counting (Second).

Dataset |V | |E| |T | ESCAPE-4 Proposal-4 ESCAPE-5 Proposal-5

soc-brightkite 56.7K 426K 494K 0.13 0.03 7.16 1.79

soc-pokec 1.63M 22.3M 32.6M 36.05 11.2 1.79K 174.1

tech-as-skitter 1.69M 28.8M 28.8M 11.3 2.68 1.27K 321.5

web-wiki-ch-internal 1.93M 8.5M 18.2M 12.8 3.87 1.73K 210.4

web-hudong 1.98M 14.43M 21.6M 22.2 5.37 2.55K 396.7

web-baidu-baike 2.14M 17.01M 25.2M 27.1 9.41 3.61K 596.7

tech-ip 2.25M 21.6M 2.3M 60.8 11.67 - 18.1K

5 Experiments

To test the performance of the proposed scheme, we have conducted a set of
experiments. We have implemented our proposed method using C++ compiled
by pgc++ 18.5-0.

5.1 Experimental Setup

As we will discuss later in related work, there are some subgraph counting algo-
rithms up to five vertices, such as ORCA [9] and ESCAPE. However, ORCA
takes plenty of time to execute 5-vertex subgraph counting. Therefore, we chose
ESCAPE, the state-of-the-art method for 4- and 5-vertex subgraph counting, as
the comparative method. The implementation of ESCAPE is based on the code
provided by the authors of the original paper [1], which runs on a CPU with
single thread. ESCAPE is compiled with g++ (GCC) 4.8.5. Notice that we also
tested pgc++ compiler to compile ESCAPE, which turned out to be slower than
g++.

For running the codes, we used a Linux server with Intel(R) Xeon(R) CPU
E5-2660 v4 (2.00 GHz) and 64 GB memory running Red Hat Enterprise Linux
Workstation release 7.7. For GPU, we used NVIDIA Tesla V100 with 32 GB
device memory. Besides, the version of OpenACC is 2.6.

5.2 Dataset

We used a couple of graph datasets, namely, Citation Network Dataset [19] and
SNAP [12]. For the dataset with directed edges, we ignored the edge direction
and removed self-loops. Table 2 summarizes the characteristics of the datasets.
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5.3 Experimental Results

Execution Time. Table 2 shows the comparison of the execution time of ESCAPE
and the proposed scheme. The excution time is average of three runs. In the
table, the suffix denotes the size of the pattern, e.g.,“proposal-4” means the
execution time for processing 4-vertex subgraph counting. Notice that the result
of ESCAPE-5 for tech-ip is not shown due to the long-running time.

As can be seen from the results, the proposed scheme significantly outper-
formed ESCAPE for both 4- and 5-vertex subgraph counting. The proposed
scheme was about 5× faster than ESCAPE for 4-vertex subgraph counting on
tech-ip dataset with 2.25M vertices and 21.6M edges.

Interestingly, the proposed scheme took almost the same time (11 s) for soc-
pokec and tech-ip datasets while ESCAPE took about 36 s and 60 s soc-pokec
and tech-ip datasets, respectively. This result implies that, for the proposed
scheme, most of the time was spent on finding wedges by CPU. More precisely,
it took almost the same time to find wedges in soc-pokec and tech-ip. Mean-
while, the proposed scheme successfully reduced the time required for subsequent
counting phase by GPU-based parallelization (less than one second), while the
counting phase took longer in ESCAPE, resulting in the different execution times
between the datasets.

As for 5-vertex subgraph counting, the proposed scheme was about 10× faster
than ESCAPE for soc-pokec with 1.63M vertices and 22.3M edges, while the
proposed scheme showed the least speed-up rate (about 4×) with tech-as-skitter
dataset with 1.69M vertices and 28.8M edges. One of the reasons for the different
speed-up rates is the number of substructures, such as wedges and diamonds,
differs depending on the datasets; i.e., a large number of substructures lead to
long execution time.

Fig. 5. Time breakdown of the proposed scheme for 5-vertex subgraph counting (tech-
as-skitter: 1.69M vertices, 28.8M edges).

5.4 Bottleneck Analysis

To further discuss the bottleneck of the proposed scheme, we have measured the
time required for different processes in the algorithm. Figure 5 shows the result.
We measured the time for 5-vertex subgraph counting on tech-as-skitter dataset
and measured the time for (1) preprocessing on CPU for finding substructures,
such as wedges and diamonds, (2) counting and aggregation by GPU, and (3)
data transfer between CPU and GPU memory. As we can see from the figure,



Accelerating All 5-Vertex Subgraphs Counting Using GPUs 67

the preprocessing on CPU took the longest time. So, to further improve the
performance, we need to speed up the process of finding substructures, which is
a part of our future work.

6 Related Work

The problem of subgraph counting, which is to count the number of (small)
subgraphs called patterns in the target graph, has been well studied [18] and
applied in various problem domains, e.g., computer science and bioinformatics.
Due to the page limitation, we only review the ones that are most relevant to
this work, i.e., we discuss the methods that deal with 4- or 5-vertex subgraph
counting, while we do not mention triangle counting.

4-vertex Subgraph Counting. For the method of 4-vertex subgraph counting,
there have been many works, such as RAGE by Marcus et al. [13], Ortman et
al. [14], and PGD by Ahmed et al. [3]. PGD is relatively faster than others by
edge-based parallelization, which requires less than 1 h for graphs with 10M
edges.

There have been methods that exploit GPUs. Rossi [20] proposed a method
that computes not only the number of occurrences of 4-vertex subgraph patterns
but also the number of occurrences of 4-vertex patterns for each edge.

5-vertex Subgraph Counting. There are some works for 5-vertex subgraph count-
ing, such as ORCA by Hočeva et al. [9] and ESCAPE by Pinar et al. [15].
Note that ORCA not only computes the number of occurrences of each 5-vertex
pattern but also computes, for each vertex, the occurrences of each subgraph
pattern. However, it is too slow to deal with huge graphs. In the meantime,
ESCAPE is regarded as the state-of-the-art method. Besides, ESCAPE is faster
than PGD for counting 4-vertex subgraph patterns. Our proposed method is
based on ESCAPE.

6.1 Approximate Methods

The above methods output exact counts of subgraph patterns and are called
exact methods. On the other hand, there is another line of researches on appro-
priate subgraph counting that output approximate counts of subgraph patterns.
Such methods are needed due to the high computational cost of exact methods,
and, in some applications, an exact number of counts is not necessary.

There have been several works on approximate 4-vertex subgraph counting,
such as Elenberg et al. [8] and Madhav et al. [11]. In particular, the method by
Elenberg et al. can compute more accurate results than GUISE and GRAFT,
which we will mention below, and is faster than them by tens to hundred times.
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For approximate 5-vertex subgraph counting, there have been works by
GUISE by Bhuiyan et al. [4], GR AFT by Rahman et al. [17], and MOSS-5
by Wang et al. [26]. Among this category, MOSS-5 is the fastest and is hundreds
to thousand times faster than GRAFT and GUISE and more accurate as well.

7 Conclusion

In this paper, we have proposed a parallel subgraph counting methods up to
five vertices for a GPU. Our proposed methods consist of two parts. First part
is a precomputation on CPU and second part is a counting and aggregation in
parallel by GPU. Experiments show that our proposed methods can count all
5-vertex subgraphs up to 10 times faster and all 4-vertex subgraphs 3 to 5 times
faster than one of the state-of-the-art algorithm for 4- and 5-vertex subgraph
counting. In the future, we will improve first part which is the current bottleneck
by executing in parallel, and also we will compare the results with other GPUs
like GTX.
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Appendix

A Counting Other Subgraphs

Table 3. Additional Notation

Symbol Definition

t(v) The number of triangles incident to vertex v

C4(G) The number of 4-cycle in graph G

C4(v), C4(u, v) The number of 4-cycle incident to vertex v, and edge (u, v)

K4(u), K4(u, v) The number of 4-clique incident to vertex v, edge (u, v)

D(G) The number of diamond in graphG

TT (G) The number of tailed-triangle in graph G

For other subgraphs, we can use simple formulas as described below. We can
easily parallelize them.
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Abstract. Parallel processing is a flagship approach for answering ana-
lytical queries on large-scale database. As the database scale increases,
a larger number of processing nodes are likely to be incorporated to
increase the degree of parallelism. However, this solution results in an
increased probability of node failure. If such a failure happens during
query processing, the processing often has to restart from scratch. This
temporal cost may not be acceptable for the user. In this paper, we pro-
pose PhoeniQ, a fault-tolerant query processing mechanism for analytical
parallel database systems. PhoeniQ takes a package-level checkpoint for
every operator pipeline and replicates the output of stateful operators
among different processing nodes. If a single processing node fails during
processing, another node is enabled to resume the execution state of the
failed node, so that the query can continue to run. This paper presents
our intensive experiments based on our prototype, which demonstrate
that PhoeniQ can continue the query processing in the face of node fail-
ures with significantly smaller cost than the conventional approach.

Keywords: Parallel database system · Fault tolerance · Query
processing

1 Introduction

A wide spectrum of big data applications have spurred the growth of database
capacity. Petabyte-scale databases are no longer uncommon, especially in cloud-
scale companies [6,11,20,23]. The trend of utilizing IoT sensor data is likely to
boost the growth further [2].

Parallel query processing is a standard tactic to service analytical queries
on large database [5,13,15]. A parallel database system is composed of multiple
processing nodes, each of which executes the processing of an assigned part of
a given query in parallel. This approach has been actively studied in academia
and widely deployed in industry.
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A major drawback of such parallel processing is that query processing
becomes vulnerable to node failures [17]. As database accommodates larger data,
an increased number of processing nodes are often incorporated into the database
system. This approach performs well to increase the parallelism. At the same
time, it causes a higher aggregate probability of node failure. A relational query
is often composed of one or more pipelined operators, each of which can hold
an internal execution state. For example, an aggregation operator keeps its in-
process data in the memory buffer. If a processing node fails during query pro-
cessing, the database system loses such an execution state held in the failed node.
The system needs to restart the query from ground zero, no matter how far the
process has progressed at the point of failure. This time penalty is likely to be
unacceptable, particularly for users who run hour-long or day-long analytical
queries.

This paper proposes PhoeniQ, a novel fault-tolerant query processing mech-
anism for analytical parallel database systems. The technical points of PhoeniQ
are two-fold. First, PhoeniQ takes a package-level checkpoint for every operator
pipeline. Second, it replicates the output of stateful operators among differ-
ent processing nodes. If a single processing node fails during query processing,
another node is enabled to resume the execution state of the failed node, so that
the query can continue to run. This paper presents an intensive experiment that
we performed with our prototype in a public cloud infrastructure. The exper-
imental result demonstrates that PhoeniQ can continue the query processing
in the face of node failure with a significantly smaller time penalty than the
conventional approach.

The rest of this paper is structured as follows. Section 2 presents a design
overview of PhoeniQ, and Sect. 3 offers a technical deep-dive. Section 4 provides
prototype-based experiments in a public cloud environment. Section 5 reviews
related work and Sect. 6 concludes the paper.

2 Overview of PhoeniQ

First of all, we present a design overview of PhoeniQ, a novel fault-tolerant
query processing mechanism for analytical parallel database systems. Figure 1
highlights PhoeniQ by comparing it with the conventional execution mechanism.
In this paper, we assume a shared-storage architecture [14] for simplicity1. As
Fig. 1(a) illustrates, a parallel database system is composed of a single storage
node that stores the entire database and multiple processing nodes that process
query operators by fetching data from the storage node. According to the query
execution plan generated from a given query, a set of pipelined operators are
assigned to each node. The first operator in the pipeline is mostly a scan operator
that fetches tuples from the storage node, processes them, and passes output
tuples to its next operator. The next operator similarly processes received tuples
and passes its output tuples to its next operator. Such data flow may travel over
1 The idea of PhoeniQ can be easily extended to a shared-nothing architecture [26].

Due to the space limitation, we will present further discussion in a separate paper.
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(a)

(b)

Fig. 1. Execution comparison. PhoeniQ takes a package-level checkpoint for every oper-
ator pipeline and replicates the output of tail (sometimes stateful) operators among
different processing nodes.
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multiple processing nodes via the network connection. Finally, the last operator
(which we refer to as the tail operator in this paper) generates the result of the
operator pipeline; the result is often buffered in the memory to be shipped to
the user or another operator pipeline or stored in the memory to be accessed
later. Note that the tail operator can be stateful, while the other operators are
stateless.

Assume that one processing node fails during query processing. The failed
node loses intermediate data flows traveling on the node at the moment of failure.
Worse, if some operators hold runtime execution states, such data is also lost
and the system can no longer continue the query processing. In conventional
practice, the database system terminates all the processing whenever a node
failure happens, and restarts the query from scratch. This naive solution works,
but all the work done so far gets discarded no matter how far the process has
progressed. This restarting strategy obviously incurs a significant time penalty.

In contrast, PhoeniQ allows the database system to continue query processing
even when a single processing node fails2. This unique feature is enabled by two
novel techniques illustrated in Fig. 1(b). First, package-level checkpointing takes
a checkpoint for every operator pipeline, so that the database system can be
ready to identify the lost intermediate data flow at the moment of failure and
restart merely the affected processing that is necessary to recover the lost data.
Second, operator output replication copies the output of tail operators to another
processing node, allowing the node to resume the execution states of the failed
node even when the tail operator is stateful. Section 3 focuses on the technical
details of these techniques.

3 Execution Mechanism of PhoeniQ

This section gives a technical deep-dive into PhoeniQ. Sections 3.1 and 3.2
explain the two techniques: package-level checkpointing and operator output
replication, respectively. Section 3.3 describes a tagging technique behind them.
Finally, Sect. 3.4 shows a recovery procedure for PhoeniQ.

3.1 Package-Level Checkpointing of Operator Execution States

PhoeniQ allows each processing node to take a checkpoint for every operator
pipeline to the storage node. Thanks to this unique capability, whenever a pro-
cessing node fails, the remaining processing nodes can identify the lost interme-
diate data flow and restart the only processing that is necessary to recover the
lost data. In this subsection, we firstly explain how the storage node manages
the execution states of every operator pipeline. The execution state is managed
for each tuple of relations scanned by the first operator of the pipeline. However,
2 For simplicity and due to the space limitation, this paper merely presumes a single-

node crash failure of processing nodes. The same idea can be easily applied to other
cases, such as a double-node failure. Another exploration is necessary to protect
against a failure of the storage node.
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Fig. 2. The execution state management and checkpointing by PhoeniQ. In this figure,
the tail operator is stateless and result tuples are immediately materialized.

a naive implementation leads to significant performance overhead. We secondly
introduce a package-level state management technique to mitigate the overhead.

Execution State Management at the Storage Node. As mentioned earlier,
we assume the shared-storage architecture. The basic function of the storage
node is to store the database and to deliver a tuple upon a fetch request from a
processing node. In processing a given query, each processing node requests tuple
fetches to the storage node (mostly for executing a scan operator). In response
to each request, the storage node feeds back a tuple to the requesting processing
node in the on-demand manner [16].

Our novel idea is to let the storage node additionally manage an execution
state of the operator pipeline for each tuple of scanned relations. After delivering
a tuple to a processing node, the storage node tracks the execution state of the
pipeline for the concerned tuple (Fig. 2). This mechanism enables the storage
node to identify if the pipeline execution for each tuple has been completed or
not. Thanks to this capability, the storage node can identify the lost part of the
query processing in the face of failure, offering the recoverability for the failed
query processing. We call this technique checkpointing in this paper.

PhoeniQ defines three states for a tuple in the scanned relation as follows.

Unprocessed. The initial state. An unprocessed tuple is not being processed
by any of the processing nodes.

Active. An active tuple has been fetched and is being processed by the pro-
cessing nodes. The tuples generated from an active tuple are not all fault-safe
(defined later).

Committed. The tuples generated from a committed tuple are all fault-safe.

For a tuple in the pipeline, to be fault-safe means that it would not be
lost in the face of a failure. If the tail operator is stateless and immediately
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materializes the result tuples (e.g. by delivering them to another processing
node, a client terminal, or the storage node), the result tuples become fault-safe
automatically and immediately when they have been generated and materialized.
In contrast, if a tail operator holds an internal state or buffers the result tuples
in the memory buffer, the result tuples do not automatically become fault-safe in
the conventional approach. PhoeniQ introduces another technique for handling
this case, which is explained later in Sect. 3.2.

At the start of a pipeline execution, all the tuples managed in the database
are in the unprocessed state. An unprocessed tuple is turned active when fetched
by a processing node. Upon a fetch request by a processing node, the storage
node selects an unprocessed tuple and provides it to the requesting node in the
on-demand manner.

An active tuple is turned committed when the storage node has received
from every processing node a message called ACK associated with the tuple.
Each processing node sends an ACK for a managed (active) tuple when it has
finished its assigned part of the process to make the in-flight tuples generated
from the managed tuple all fault-safe. As illustrated in Fig. 2, if the tail operator
is stateless and result tuples are immediately materialized, each processing node
sends an ACK for the tuple when all the corresponding result tuples generated
in the node have been materialized. At the end of the pipeline execution, all the
managed tuples have reached the committed state.

On a node failure, only the in-flight tuples corresponding to active tuples
are lost and reprocessed after recovery. The recovery procedure is explained in
Sect. 3.4.

Unprocessed [1-1000]

Active 

Unprocessed [301-1000]

Active [1-100], [101-200], [201-300]

Unprocessed [301-1000]

Active [1-100], [201-300]

Unprocessed [1-100], [201-300], [301-1000]

Active 

Unprocessed [201-300], [301-1000]

Active [1-100]

Unprocessed [401-1000]

Active [1-100], [201-300], [301-400]

(1) Three 100-tuple fetch requests by PNs

(2) The SN gathers as many ACKs
     as the PNs for the package [101-200]

(3) A node failure / recovery
     (explained in Section 3.4)

(4) A PN requests 100 tuples

(5) Two more 100-tuple fetch requests

(Before the start of the pipeline execution)

* Each underlined range is a package

Fig. 3. An example of tuple processing states management at the storage node. This
shows the tuple states changing over a pipeline execution where a 1000-tupled relation
is scanned. [x, y] denotes a range of tuples whose ID is between x and y (containing
both ends).
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Package-Based State Management. A naive implementation of the check-
pointing scheme would be to take checkpoints at the granularity of tuple. This
is impractical, however, because it would incur significant memory footprint and
considerable performance overhead. PhoeniQ instead takes a range-based app-
roach to reduce the managed information and the processing overhead. This is
achieved with the following three techniques.

– The processing nodes fetch multiple tuples from the storage node in one fetch
request, instead of one tuple in one request.

– The storage node manages ranges of tuples for each state in a bulky manner,
instead of managing a state of each tuple.

– The storage node explicitly manages information of unprocessed or active
tuples only and omits that of committed ones. Tuples not present in the
unprocessed nor active range list are regarded as committed.

Figure 3 illustrates an example of the package-based state management.
Before the pipeline execution, the managed information consists of one range
of tuples in the unprocessed state containing all the managed tuples. On receiv-
ing a fetch request from a processing node, the storage node cuts out a subset
range from the unprocessed range, reads and sends the selected range of tuples
to the processing node, and finally turns the tuples active. We call such a group
of tuples read out and turned active in response to a fetch request a package.

This package-level checkpointing method poses the requirement to process
tuples so that the tuples in every package are committed at once, i.e., the tuples
generated from a package become fault-safe at once. When the tail operator is
stateless and result tuples are materialized as soon as generated, every group of
result tuples generated from a package are buffered, gathered, and then mate-
rialized at once. How PhoeniQ meets the requirement when result tuples are
buffered in the memory during the pipeline execution is explained in Sect. 3.2.

3.2 Operator Output Replication Among Different Processing
Nodes

In addition to the checkpointing method, PhoeniQ employs operator output repli-
cation technique, which copies the output of the tail operator to another pro-
cessing node. This technique is motivated by situations where the pipeline result
needs to be buffered until the end of the pipeline processing (e.g., when the tail
operator is stateful). Such accumulated execution states are lost in a failure.

As shown in Fig. 1(b), when operator output replication is enabled, each
processing node replicates the computation of the tail operator and its result
partition in the logically neighboring node. Thanks to this redundancy, a spare
node can restore the lost result as the failed node had at the moment of failure,
by receiving it from the neighbors (explained in Sect. 3.4).

Tuples are not immediately input to the tail operator, but are buffered before
it. We call this buffer a pre-tail buffer of the pipeline. Pre-tail buffers enable
tuples to be replicated and fed to the tail operator at the granularity of package.
Only tuples generated from committed packages can be fed to the tail operator.
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When a processing node knows that it has buffered all the tuples generated
from a package and are to come to the node, it sends a copy of the tuples to its
logically neighboring node. The receiver again buffers the tuples before the tail
operator which leads to the backup copy of the sender node’s result partition.
We call this buffer the backup copy of the sender node’s pre-tail buffer.

When all the processing nodes have successfully replicated tuples made from
a certain package, those tuples become fault-safe. Thus, operator output replica-
tion allows each processing node to send an ACK for the package to the storage
node when its copying to the neighbor node has been completed.

Each processing node periodically asks the storage node which of the tuples
in their pre-tail buffers can be forwarded to the tail operator. This query is
performed by sending a set of package identifiers to which the buffered tuples
correspond. The storage node responds by sending back the set of committed
packages. On receiving the answer, the processing node proceeds to deliver the
ready tuples (corresponding to committed packages) in its master pre-tail buffer
to the tail operator. Similarly, the neighbor node selects tuples in the backup
copy of the pre-tail buffer and deliver them to the backup tail operator.

(a) (b)

Fig. 4. PhoeniQ tags in-flight tuples so that it can identify the origin package of every
tuple and detect the end of tuples generated from every package.

3.3 Tuple Tagging for Package-Level Commit

Package-level checkpointing requires additional information to be attached to
in-flight tuples. For a processing node to decide when to send an ACK for a
package, the following two conditions must be satisfied.

1. Each processing node can identify the origin package of every in-flight tuple.
2. Each processing node can identify whether or not all the tuples in a package

have undergone the processing necessary to become fault-safe.
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The first condition is satisfied by tagging each tuple in the pipeline. When
a processing node fetches a package of tuples from the storage, the tuples get
tagged with the identifier of the package. When these tuples undergo non-tail
(stateless) operators, the result tuples are tagged with the same identifier as the
input.

The second condition is satisfied by introducing marker tuples denoting that
no following tuples correspond to a certain package (called terminal marker
for a package), as shown in Fig. 4(a)(b). When a processing node has fetched
a package of tuples, it appends to the fetched tuples a terminal marker tagged
with the package identifier. When an operator redistributes (i.e., shuffles) output,
terminal markers passed to it get broadcast.

If the pipeline has multiple shuffles, tuples made from a package can arrive
from all the processing nodes. In this case, an operator knows that it has received
all the tuples derived from the package only when it has received a terminal
marker for the package from all the processing nodes. If the operator is non-tail
(stateless) and redistributes output (Fig. 4(a)), it merges the N markers and then
broadcasts it (where N is the number of processing nodes). If the operator is the
tail operator (Fig. 4(b)), it knows it has gathered all the tuples corresponding
to a package when it has seen N terminal markers for the package. It then can
(replicate the tuples if operator output replication is enabled, and) issue its ACK
for the package.

3.4 Query Processing Recovery

When a processing node fails, the remaining processing nodes invalidate all the
in-flight tuples in the executed pipeline whose origin packages are in the active
state. The storage node proceeds to rewind all the tuples in the active state
to the unprocessed state, so that they can be refetched and reprocessed after
recovery3. When a spare processing node has joined the query processing to
replace the failed node, the pipeline can be restarted immediately if operator
output replication is not enabled. Otherwise, the new processing node proceeds
to receive the execution states from the two logically neighboring nodes before
restarting the pipeline. In Fig. 1(b), for example, when processing node #2 fails,
the new node receives the master result of processing node #1 and the backup
result of processing node #3.

4 Evaluation

To demonstrate the feasibility and evaluate the effectiveness of our approach,
we conducted a series of experiments with our prototype implementation. The
experiments consist of two parts: an evaluation of the reduction of failure-
recovery time and an evaluation of runtime overhead. In Sect. 4.1, we will
describe the experimental setup and the benchmark query for the evaluations,
and explain the execution plan. Then, Sect. 4.2 presents the experimental results.
3 As long as all the non-tail operators are stateless as we have assumed, the reprocess-

ing causes only marginal overhead compared to the entire pipeline processing.
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4.1 Experimental Setup and Workload

We built our experimental system on public cloud services provided by Amazon
Web Services. We used EC2 instances as the processing nodes and the storage
node, whose specifications are shown in Table 1. For the storage, we used the
instance store of the storage node instance (a SSD drive connected via NVMe).

Table 1. Experimental setup. The prototype system consists of up to sixteen processing
nodes (PNs) and one storage node (SN).

Processing node Storage node

Instance t2.medium i3.xlarge

CPU 2 vCPUs 4 vCPUs

Memory 4 GiB 30.5 GiB

Storage 8 GB 950 GB

(General purpose, SSD) (Instance store, NVMe SSD)

OS Amazon Linux 2 Amazon Linux 2

SELECT l_orderkey,  
sum(l_extendedprice * (1 - l_discount)), 
o_orderdate, o_shippriority 
FROM customer, orders, lineitem 
WHERE c_mktsegment
and c_custkey = o_custkey 
and l_orderkey = o_orderkey 
and o_orderdate < 1995-03-15 
and l_shipdate > 1995-03-15 
GROUP BY l_orderkey, o_orderdate, o_shippriority 

Test query Query plan(a) (b)

Fig. 5. The test query and its query plan.

Our implementation was configured to run with or without PhoeniQ enabled.
When enabled, our system ran with package-level checkpointing and operator
output replication introduced in the previous section. In each experiment, we
compared the results obtained with our approach enabled and disabled.

We prepared three relations and two indexes in the shared storage. The
relations were customer, orders and lineitem from the TPC-H Benchmark [3]
with scale factor 100. orders had an index file created on its primary key field
o custkey, and lineitem on l orderkey. The relations were stored as arrays of
C structures, and the indexes were Berkeley DB [1] B+ trees (version 18.1.32).

In the experiments, we ran a benchmark query shown in Fig. 5(a) to this
dataset. The query involved selections and a joining of the three relations, fol-
lowed by an aggregation, as illustrated in Fig. 5(b).
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The entire query was processed with a single pipeline. The joining of the
three relations was performed by scanning customer and taking advantage of
the indexes. Each processing node first fetched customer tuples and applied the
selection, and queried the storage node for joining orders tuples by join attribute
values. The storage node looked up order index and provided joining orders
tuples. Similarly, each processing node demanded joining lineitem tuples, and
the storage node answered the query by reading lineitem index. Joined tuples
underwent a hash-based shuffle before input to the aggregation.

Fig. 6. PhoeniQ incurs almost zero penalties for the failure regardless of the query
processing progress, whereas the conventional case incurs much longer execution time
if the failure happens at later points in time.

When PhoeniQ was enabled, the computation and the result of the aggre-
gation were replicated among two nodes. The system tracked the progress of
the pipeline by managing the states of customer tuples. The processing nodes
fetched 4096 customer tuples in each request, creating 4096-tupled packages.

The storage node ran worker threads, each of which was in charge of pro-
cessing for each processing node. Each processing node ran two threads when
PhoeniQ was disabled: one for the selections and the joining, and one for the
aggregation. With PhoeniQ, each processing node ran one extra thread for check-
pointing and replicating pre-tail buffers.

4.2 Experimental Results

We performed a scenario where a single node failed during a query execution. The
benchmark query was run with 16 processing nodes. After t seconds, the program
on one of the processing node instances was terminated. Three seconds after the
failure, the failed program was restarted and joined the system. Depending on
whether PhoeniQ was enabled or not, the system handled the failure differently.
When PhoeniQ was disabled, all the nodes terminated their program, waited for
the spare to join, and restarted the query from the beginning. When PhoeniQ was
enabled, the system performed the recovery procedure and resumed the query. In
either case, after the failure handling, the query was completed without failure.
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Fig. 7. PhoeniQ dynamically continues query execution even in the face of node failure.
PN#1 (fail) terminates the execution at 720 s, but PN#1 (spare) immediately recovers
the execution.

Figure 6 shows the total execution time with varying points of failure t (sec-
onds). Without our approach, more time was spent to get the result when the
failure took place later. In contrast, no noticeable penalty was present with our
approach. At t = 720 s (when about 90% of customer relation has been scanned),
our approach almost halved (−45%) the total execution time.
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Figure 7 shows a recovery behavior at t = 720 s. In the recovery procedure,
the spare node joined the cluster, and received around 80 K tuples in total from
the two logically neighboring nodes in around 1.4 s. The spikes in the network
throughput of the two nodes after the recovery were caused by the restoration
of the result onto the new node. It could also be seen from the network and
storage throughput that the system regained processing speed shortly after the
recovery. During the entire execution, the CPUs of the storage node were almost
fully utilized, whereas those of the processing nodes were underutilized because
of the I/O bound characteristics of the workload. It can therefore be inferred
that the additional CPU cost added by operator output replication did not affect
the execution time in this workload.

Overhead Speedup(a) (b)

Fig. 8. PhoeniQ enables query continuation with negligible execution overhead and
does not disturb scale-out.

Fig. 8(a) shows execution times without failure with varying numbers of pro-
cessing nodes. Our approach incurred at most 1.6% execution overhead (at 4
processing nodes). This result implies that the overhead introduced by package-
level checkpointing, as well as operator output replication, was quite marginal.
Figure 8(b) shows that PhoeniQ did not disturb the scale-out.

These experiments demonstrated that PhoeniQ can continue the query pro-
cessing in the face of node failures with significantly smaller cost than the con-
ventional approach.

5 Related Work

This section outlines the previous work on query restarting techniques.
The previous work for centralized systems mostly aims to restart interrupted

queries in favor of those of higher priority [8,10].
For distributed systems, a variety of methods have been proposed to support

query fault tolerance. Early MapReduce [12] frameworks write out the output of
every process stage to storage. While this allows the query to restart from the
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latest persisted state, additional I/O cost is not negligible, as demonstrated in
[22]. Fault-tolerant query on systems where input data is dynamically provided
(as known as stream-based systems [4,7,9]) have been relatively well studied. For
example, [24] replicates every computation to backup nodes. In [19,21], master
nodes take periodical checkpoints into spare nodes.

For parallel database systems that run queries on static data, several methods
[18,25] aim to reduce reprocessing. However, [25] does not consider aggregation
operators, and [18] allows a fair amount of recomputation of aggregation. OTPM
[17] by B. Han et al. is close to our approach in that it curtails reprocessing of
aggregation. In OTPM, operators track the progress of their upstream opera-
tor by monitoring the IDs of incoming tuples. The system requires additional
nodes to store intermediate results. They have shown promising results from
simulation-based evaluation, but a working implementation is not shown. One
of the major differences between this approach and ours is that PhoeniQ does not
track the progress of every operator. Furthermore, our approach replicates results
in a way that does not require additional nodes. Lastly, our approach assumes
shared-storage systems, while theirs and all the other work mentioned proposed
for distributed settings assumes shared-nothing systems. Shared-storage app-
roach is advantageous in that it does not require sending the data partitions of
failed nodes to spare nodes as in a shared nothing system.

6 Conclusion

In this paper, we have proposed a method for parallel database systems to restore
execution states on a spare node and to resume query processing. This is achieved
by package-level checkpointing and operator output replication. We have imple-
mented a prototype system and performed an experiment with up to 16 process-
ing nodes in a cloud environment. The result shows that our approach success-
fully reduces restarting temporal penalty on failures with negligible overhead
under I/O bound workload. Future work includes conducting experiments with
an increased variety of queries. Hash join workloads, for example, are an inter-
esting target. They involve multiple pipelines (separate pipelines for hash build
and probe), and a single pipeline can involve multiple shuffles. Moreover, the
performance overhead of operator output replication needs careful investigation,
because hash joins are generally more CPU-heavy than index joins.
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Abstract. Data is getting more and more ubiquitous while its impor-
tance rises. The quality and outcome of business decisions is directly
related to the accuracy of data used in predictions. Thus, a high data
quality in database systems being used for business decisions is of high
importance. Otherwise bad consequences in the form of commercial loss
or even legal implications loom.

In this paper we focus on automating advanced data quality mon-
itoring, and especially the aspect of expressing and evaluating rules
for good data quality. We present a domain specific language (DSL)
called RADAR for data quality rules, that fulfills our main requirements:
reusability of check logic, separation of concerns for different user groups,
support for heterogeneous data sources as well as advanced data quality
rules such as time series rules. Also, it provides the option to automat-
ically suggest potential rules based on historic data analysis. Further-
more, we show initial optimization approaches for the execution of rules
on large data sets and evaluate our language based on these optimiza-
tions.

All in all the language presents a novel approach for a flexible and pow-
erful management of data quality in practical applications while meeting
the needs of actual data quality managers in being pragmatic and effi-
cient.

Keywords: Data quality · Domain specific language · Data quality
monitoring · Rule based data quality · Data heterogeneity

1 Introduction

Data is the core of many modern businesses. Data is typically stored in different
distributed databases and business decisions rely on an integrated view on this
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data. In order to take right decisions it is important that data used is of high
quality. While there are many different definitions of data quality in the literature
(e.g. [14] defines 16 dimensions), we focus, in line with practical requirements
from our project partners, on the quality dimensions of accuracy, completeness,
consistency and integrity. The DSL presented in this paper is applicable both to
classical data warehouses as well as to heterogeneous, distributed data sources
including non-relational data. An important part of data quality monitoring is
to check internal consistency of a database and its conformance with external
datasets. These checks can be rather simple checks like NOT NULL, structural
checks like referential integrity checks, or complex statistical checks like confor-
mance to a distribution or time series model. Our DSL integrates all these kinds
of checks.

In order to detect quality problems reliably, it is important to check the data
regularly. An extreme solution would be to run checks as database constraints,
effectively avoiding the insertion of wrong data. However, this approach has mul-
tiple drawbacks: 1) The check logic slows down all processes that modify the data.
2) The check logic must be implemented inside the database and thus depends
on the capabilities of the database. Not every check can be implemented on every
system, especially more complex checks like statistical checks. 3) These kinds of
checks often rely on proprietary languages like stored procedure languages. 4)
Implementing these checks in a modular way, in order to apply the same logic to
different databases, is often impossible. 5) Some checks, esp. statistical checks,
do not always indicate clear errors. They rather result in warnings indicating an
unusual data distribution that should be checked. Thus always rejecting non-
conformant data is not possible. 6) Checks that span multiple databases (e.g. a
relational database and a document database) are impossible with this approach.

Thus, our approach is to run the checks from an external engine that has
its own language to encode the checks, called rules in our system. For this, we
designed the RADAR1 DSL. It has been developed in the context of the project
IQM4HD2, which not only targets the execution engine for RADAR , but also an
approach to create and maintain the set of rules with low effort. This approach
includes a profiling module that can analyze existing data to make suggestions
for rules and a feedback system where the data steward can classify detected data
quality problems and warnings (e.g. as real quality problems, exceptions, or new
patterns). The feedback system can then use these classifications to suggest new
or adapted rules. Note that automated data correction is not in the scope of our
work.

The focus and contribution of this paper is the DSL RADAR which we
designed and implemented for our data quality engine, together with optimiza-
tion approaches to execute the rules efficiently also on large data sets. The pro-
filing module and the feedback system are not discussed in this paper due to
space constraints.

1 Rule Language for Automated Data Quality Assessment and Reporting.
2 http://iqm4hd.wp.hs-hannover.de/english.html.

http://iqm4hd.wp.hs-hannover.de/english.html
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The remaining paper is structured as follows. First, the main concepts and
design decisions of the DSL along with illustrative examples are presented in
Sect. 2. Approaches to efficient execution code are described in the following
section. Then we show the achievements and effectiveness of first optimization
approaches in Sect. 4. After that, Sect. 5 covers related work and compares it
with the specific contributions of this paper. Finally, the paper closes with a
conclusion and ideas for future work.

2 Data Quality Rule Language RADAR

This chapter introduces the proposed language RADAR to specify data quality
rules. For presenting details about the language we at first look at what infor-
mation is needed to compose data quality rules, and secondly which types of
users are present in our system. Information needed for quality rules includes (i)
what data should be checked, (ii) what quality aspect should the data be checked
for and lastly (iii) what should be done with the result. Regarding user types,
we suggest a separation between the technical aspects of data retrieval and the
subject-specific knowledge needed for writing coherent rules. The technical user
has technical knowledge concerning the databases while the data quality man-
ager has business knowledge about the data’s meaning. Whereas the technical
user just prepares the data for the data quality manager, the latter will - with
his business knowledge - compose data quality rules or adjust automatically
generated rules. The three aformentioned aspects are reflected in the quality
rules in RADAR by three different components, namely Sources, Checks and
Actions. An overview of the system architecture is given in Fig. 1. Note that a
developer is only needed in case the Checks already provided with the system

Fig. 1. Overview of DQ Monitoring with RADAR .
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need to be extended. Details about these components will be explained in sub-
sequent sections focusing on illustrative examples rather than a complete formal
description.

It is important to note though, that for implementation we used a formal
specification of RADAR in terms of a EBNF grammar definition that has been
used to generate a parser for the quality rules language using antlr. Details on
this have been omitted here due to space constraints, but can be found in [13]
for the interested reader. We try to present both simple rules that are easy to
understand and more complex ones to document the potential of the language.

2.1 Internal Data Model

The basic data type in our DSL is a record, which is similar to a relational
tuple, however, with one important distinction. Each record carries so-called
roles instead of attribute names. Each attribute can have multiple roles, and
each role can be assigned to multiple attributes. As an example, the following
illustrates a customer record:

Group identifier Id identifier Firstname name Lastname name Birthdate Telephone

A 12345 Jon Doe 5/7/1980 111-222-33333

In this case, the first attribute has the roles “group” and “identifier”. How-
ever, the role “identifier” is assigned to the first two columns. When we access
this role in our DSL, we effectively access the two-attribute record (‘A’, 12345).
This is a very flexible and convenient way to write code that can handle either
attributes or compound data using a single identifier. The order of the attributes
is relevant. The attributes of the record have basic data types, like strings, inte-
gers, doubles or booleans, and there is a NULL value. There is no explicit data
type definition, each value carries its own type information. A non-existing role
in a record is implicitly treated as value NULL.

The next higher level structure is a list of records, similar to a relation. The
records in a single list, however, do not need to be homogeneous, each record
can have a different set of roles and the data types of the same role could vary
across the records.

This way, we can map both structures from relational databases as well as
document-oriented databases to our internal model. Even other data sources
are supported as long as they can be mapped to a list of records. The relational
mapping is straightforward, while the mapping from documents flattens the doc-
uments. Sub-documents are mapped into a flat structure using role names with
dot notation. Arrays are either ignored or an unwind operation3 is used to map
each array element to a new instance of the surrounding document together with
this element, according to needs of the quality check logic.

3 https://docs.mongodb.com/manual/reference/operator/aggregation/unwind.

https://docs.mongodb.com/manual/reference/operator/aggregation/unwind
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1 SOURCE ageHistogram TYPE LIST CONST ROLES (frm , too , perc):

2 [0, 18, .05], [18, 25, .20], [25, 35, .15], [35, 50, .25],

3 [50, 65, .19], [65, 80, .10], [80, 95, .05], [95, NULL , .01]

4 END

5
6 SOURCE Customer TYPE LIST QUERY ROLES (id: IDENTIFIER ):

7 DATABASE mondrian NATIVE

8 SELECT id , name , date_part(’year ’, age(dob)) AS age , email

9 FROM customer

10 END

Listing 1. DSL code for a reference histogram and a relational Customer Source.

Since we only need to map results of queries to our internal data model for
use in quality checks and not the entire database schemata, we do not have to
consider more generic schema matching models here.

2.2 Sources

Sources are the interface to data from databases or other reference values a
domain expert may work with when composing data quality rules. There are
two main types of Sources. On one hand, there is the domain mapping layer,
which maps database structures to Sources, like the customer Source (lines 6–
10 in Listing 1), referring to a customer table in a relational database system.
On the other hand, there are constant values, patterns or complex values that
contain the parameters for statistical models. A simple example for this kind
of Source could be an email pattern used to check customers’ emails for invalid
entries. A statistical parameter set could be a histogram containing a reference
distribution to check the age distribution of customers against, as shown in lines
1–4 in Listing 1.

The domain mapping layer has been designed to create an interface between
the technical and the domain-specific side of data quality rules. The goal is
to provide an easy way for domain experts to work with the underlying data
without having to know details about where and how the original data is stored.
Since non-constant Sources are specified in the database’s own language, it is
an assignment for technical users to prepare Sources for domain experts. The
customer example in lines 6–10 in Listing 1 shows a generic SQL statement
selecting the id, name, dob (date of birth), converted to an age, and email from
the customer relation. Additional meta information is added by declaring the
field id to be an identifier. Having the source layer as an intermediate layer
between rules and the source database allows a very flexible way to define data
access for any system using the system’s native query language and to map
structures to the domain layer accessed in the Checks of the DSL.

Beside the simple selection of e.g. relations and fields, it is also possible to use
the full power of the data source’s query language. This may range from simple
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pre-filtering of data for use in quality rules up to assembling data in a way
that is best suited for the future quality checks, by e.g.. using joins in relational
sources. Data filtering may be beneficial for either legal reasons (i.e. the DQ
manager is only allowed to access data for his country) or practical reasons,
e.g.. quality rules that are varying over countries due to different formats. Data
assembly may be beneficial to create a quality specific view on the source data
in an efficient way in the source system. However, a Source should be defined
as simple as possible and should not contain calculations related to data quality
checks but be constrained to retrieving data for a future quality check only.

2.3 Checks

Checks are the functional skeletons of data quality rules, they can be compared
to functions/methods from general purpose programming languages. A Check is
basically a method for data quality control. They operate on data in the internal
data model (cf. Sect. 2.1) and are either already implemented in the system core
such as the examples presented below or can be implemented by a developer using
the constructs of the Check part of RADAR . Note that while the simple Check
examples below at first sight seem similar to database constraints, there are two
important differences: for one, the Checks can be used on arbitrary Sources,
including data sources that do not provide constraints such as many NoSQL
systems. Secondly, while constraints will typically be enforced on database oper-
ation level (which is not always desriable, esp. in DWH scenarios) our Checks
provide a “softer” view on the current state of a quality aspect without direct
influence on operations. Checks always include RETURN statements, which yield
detected quality problems. Thus the overall result is a list of potential quality
problems that will later be evaluated by the Action.

Lines 1–3 in Listing 2 shows one of the most basic Checks, a check for NULL
values. Lines 5–9 in Listing 2 compare two lists and check whether they have
the same amount of entries. Note that the lists may originate from completely
different data sources as assigned in the Actions below. Lines 11–20 in Listing 2
show a check for distribution matches. The dist parameter is a reference distri-
bution, that defines bins for the values and a probability p for each bin. The age
histogram in Listing 1 is an example. In the check code, first the number of data
items is counted. Then, each value val is translated to a bucket name (bin) using
the build-in function val2bin according to the buckets defined in the reference
distribution dist. In the next step, a histogram is constructed and stored in the
local LIST-type variable hist. Thereafter the score for each bucket is computed
by (Oi −Ei)2/(Oi −Ei). In this case, the observed count Oi is the bucket count
from the previous statement, and the expected count Ei is calculated using the
size of the relation times the expected fraction from the reference distribution.
The bucket scores are finally aggregated into a χ2 score. This part shows the
SQL-like syntax of RADAR for defining the Checks which works nicely with the
lists of records internal data model produced by the Sources.

Since Checks are just archetypes of data quality rules, they provide param-
eters to utilize them for many different concrete cases. There are two kinds of
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1 CHECK NotNullCheck ON value:

2 RETURN value IS NULL;

3 END

4
5 CHECK QuantityCheck ON LIST list1 WITH LIST list2:

6 cnt1 := SELECT COUNT (*) FROM list1;

7 cnt2 := SELECT COUNT (*) FROM list2;

8 RETURN cnt1 != cnt2;

9 END

10
11 CHECK DistChk ON LIST data(val) WITH dist(frm , to , bin , perc):

12 cnt := SELECT COUNT (*) FROM data;

13 bindata := SELECT val2bin(val , dist) ROLE val FROM data;

14 hist := SELECT bin , perc , COUNT (val) ROLE acnt

15 FROM bindata RIGHT JOIN dist ON val = bin

16 GROUP BY bin , perc;

17 scorebin := SELECT (acnt - cnt*perc) * (acnt - cnt*perc)

18 / (cnt*perc) ROLE score FROM hist;

19 RETURN SELECT SUM(score) ROLE score FROM binscore;

20 END

Listing 2. DSL code for different Checks.

parameters for Checks, the first parameter provides the information, which data
has to be checked for quality issues. The second type of parameters are control
parameters, which are used to aid in checking. For example the QuantityCheck
(lines 5–9 in Listing 2) expects two parameters, the first being a list of values,
e.g. the content of a customer table from a Data Warehouse (DWH), whose
quantity should be checked against the amount of values of the second parame-
ter, another list of values (e.g. the content of the original customer table before
inserted into the DWH). These parameters are divided via the keywords ON for
“data-to-be-checked” and WITH for control parameters.

Thus the definition of the Checks is still generic in two ways. For one, the
same Check can be applied to many different data sets. Also, the same Check
can be used with different control parameters. The connection between Sources
and Checks will be defined in the Actions explained below. Hence there is no
reference to a specific age distribution in the DistChk. The exact same Check
can be used for checking against an age reference distribution as well as a salary
reference distribution depending on which parameter is passed to the Check as
WITH parameter later. This significantly reduces the number of Checks required in
a data quality monitoring system. Most basic and some complex analysis Checks
are predefined in a rule catalog provided with the IQM4HD prototype. The goal
is to provide a substantial foundation in order to cover most needs. Additional
Checks can be implemented based on the provided language by developers as
needed.
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To cover all needs without creating a too complex language the expressiveness
is three-tiered. First, there are boolean and mathematical expressions described
directly by the language in combination with variable usage, IF statements and
FOR loops as known from normal programming languages. Second, there is an
SQL-like language to process data sets using typical operations like projection,
selection, join and grouping as shown in lower part of Listing 2 already. Third,
there are built-in methods to hide complexity, like a method to check multidi-
mensional cube data.

Accessing Sources within the SQL-like statements in the Checks works
straightforward for lists of homogeneous records as internal representation of
list Sources originating, e.g. from relational or document databases. The name
of a Source can be used in the FROM part to reference it. Individual columns within
such Sources are identified by their attribute names. Attributes are assumed to
be of non-complex data types. If a referenced attribute name is not present in any
of the list elements (e.g. in the case of heterogeneous documents), this element
is excluded from consideration in this Check.

For attributes of complex data types (e.g. sub-documents from a document
database) the classical dot notation may be used to access key-value pairs within
such an attribute. As documents may be nested hierarchically, path expressions
separated by dots may be used to navigate into the hierarchy. In most cases the
value specification using dot notation will rather be used in the Action part,
because the Checks should be generic and operate on roles that are assigned in
the Action part.

In order to present potential data quality issues to the DQ manager later,
the RETURN statement is used. For proper storage and evaluation of the detected
quality problems, a unified format to identify problems is necessary. Thus we
classify quality problems according to the unit of data that is related to the
problem: 1) Problems that are related to individual records like NULL values;
2) Problems that are related to values that relate to multiple records, like unique-
ness problems; 3) Problems that are related to a whole data source, like skewed
distributions. All returned values are bundled and will later be evaluated by the
result part of the Action invoking this Check.

2.4 Actions

Actions are responsible for two things. Firstly, they connect Sources and Checks
resulting in data quality rules. Secondly, they deal with the result and therefore
conclude data quality rules. Actions were designed with natural language in
mind, so that a rule composed in the DSL reads as a self-explaining sentence.
Following are a few examples of Actions which cover different kinds of Checks.

Lines 1–3 in Listing 3 show an Action testing the customer names for NULL
values. The NotNullCheck is designed for single values, because there is no LIST

keyword in front of the parameter in the Check. Thus the action includes the EACH

keyword in order to call the check for each item of the data source individually.
Lines 5–8 in Listing 3 are an example of a check of the result of an Extract-
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1 ACTION NotNullCheckCustomerName :

2 EXECUTE NotNullCheck ON EACH Customer(name) RESULT IN ERROR

3 END

4
5 ACTION DWHQuantityCheckCustomer :

6 EXECUTE QuantityCheck ON DWH_Customer WITH Customer

7 RESULT IN ERROR

8 END

9
10 ACTION AgeDistributionCheckCustomer :

11 EXECUTE DistributionCheck ON Customer(age) WITH ageHistogram

12 RESULT IN WARNING ABOVE 14.07 AND ERROR ABOVE 18.48

13 END

14
15 ACTION NullCheckCustomerStreetName :

16 EXECUTE NotNullCheck

17 ON EACH CustomerAddress (address.street.name: value)

18 RESULT IN ERROR

19 END

Listing 3. DSL code example Actions.

Transform-Load (ETL) process, it checks whether the amount of tuples in the
DWH table fits the original table.

A more complex example is in lines 10–13 in Listing 3. It uses the customers
dates of birth and a reference age distribution to compare the current customer
ages with a saved reference distribution. The result is a score computed by a
X 2 test, which is evaluated by the RESULT IN part of the Action. The chosen
threshold values 14.07 and 18.48 will issue a warning when the 95% value of the
X 2 test is not met and an error if even the 99% value of the test is not achieved.
These concrete values are typically computed by the profiling component of the
IQM4HD system.

The notation to access parts of a source definition follows the same logic
as described for the Checks previously. Key-value pairs in nested documents
within a document can be accessed by using the Source name together with a
path expression. Lines 15–19 in Listing 3 show a NOT NULL Check on the name

key inside the street sub-document of the address sub-document of the Source
CustomerAddress.

3 Implementation / Optimization

An important goal of our execution engine implementation is flexibility with
respect to location of execution of check logic. In principle, checks can be exe-
cuted in the quality engine itself or moved to the source databases by rewriting
the source query. On the one hand, the execution engine should be able to exe-
cute all logic on its own, in cases where the target database does not have enough
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capabilities, either because of resource constraints or because of a lack of fea-
tures. On the other hand, if possible, logic should be moved to the database for
more efficient execution due to co-location with the data.

To reach this goal, we distinguish two cases. First, we have checks for indi-
vidual records, that are called in a loop for each item of the source database.
In this case, we extract what we call safe conditions from the Check, i.e. con-
ditions that need to be fulfilled for the Check to find quality problems. These
conditions are then translated to filter conditions that are added to the native
database query in the source database. This step needs individual code for each
native query language and might fail, if the target dialect does not support the
relevant conditions. However, if it succeeds, we avoid fetc.hing large numbers of
records that will not produce output for the quality check anyway. As a very
simple example, consider the NotNullCheckCustomerName in Listing 3. From
the referenced check, we extract the condition value IS NULL. The role value is
then back-substituted to name and the original query is modified to

SELECT * FROM (... original query ...) WHERE name IS NULL

For checks that work on LISTs, we follow a similar strategy. The first compo-
nent is deferred execution. This means, that list expressions are evaluated only
symbolically, i.e. variables are substituted with their current values. However,
the list expression itself is not evaluated until it is actually needed (i.e. because
it is part of a return statement or part of a condition that determines control
flow). This leads to larger expressions that are build up part by part.

Once execution is requested, the whole expression is optimized quite similarly
to normal database optimizers. Our optimizer tries to push as much logic towards
the data sources, where the logic is added to the original database query (similar
to the above simple modification for NotNullCheckCustomerName). However,
as soon as different source databases are involved in an evaluation, no further
pushing of operations to the Sources is possible and the quality engine has to
take over evaluation from this point on. For example, a join of two sources from
different databases has to be processed internally in the data quality engine.
While the execution optimization already provides promising results (cf. Sect. 4),
this part still remains an important issue for future improvements (cf. Sect. 6).

4 Evaluation

4.1 Functional Evaluation

In this section, we review the main features of our proposed DSL RADAR and
discuss how they meet important DQ monitoring requirements.

Extensibility and Reusability. We think that an extensible rule logic is essen-
tial, so that users can specify new rule types in a flexible and reusable way. To
achieve reusability, the logic behind the user-defined rules must be decoupled
from the actual data source, so that the same logic be applied to multiple data
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sources. The separation between Sources, Checks and Actions fulfills this require-
ment. The check logic is independent of the data source, and of the type of the
data source.

Heterogeneous Data Sources. Data is stored using various technologies and
different data models. A DQ system must be able to access and compare data
from such heterogenous sources. This requires flexibility w.r.t. technological
aspects and aspects of the data model. We resolve this by translating the data
into the common internal format, so that all further components can be agnostic
of the particular type of data source. A single Check can e.g. use data from a
relational and a document database to test consistency constraints between the
two databases.

Optimizability. As data sources might be huge, execution speed is an important
issue, even though the checks are typically scheduled and executed in batch
mode. For this, it is beneficial to make use of the features of the underlying
DBMS like query optimization and available indices. However, as the available
features differ, our optimizer component can decide which parts of the logic are
executed using native DBMS features or within our execution engine.

User Groups. In DQ teams, multiple persons with different expertise are
involved. First, there are experts for the data sources to be monitored, that
understand the data models of these systems. Second, we have domain experts
that understand the business logic and can define which data is valid from a
business point of view. Third, there are programmers that understand how to
code the business logic programmatically. We need the respective parts of the
language to be accessible by the corresponding groups. Again, the separation in
Sources, Checks and Actions supports this requirement. Sources are defined by
database experts that know the underlying database models; Checks are either
pre-defined by our system or can be extended by technical experts, and Actions
are defined by domain experts.

Advanced Quality Rules. Apart from rather simple data quality checks such
as non-null or range checks the rule language should also provide the option to
specify advanced data quality checks. With the DistributionCheck one example
of an advanced rule is given in this paper. Other examples not shown here include
outlier identification in time series data and a check on cube data analyzing
relevant aggregations of the data.

4.2 Performance Evaluation

In this section, we look at the efficiency of our execution engine and especially at
the effectiveness of our optimization approaches as performance will be a critical
feature in large scale use cases. The goal is not an exhausitive evaluation of all
types of rules, but rather to show the potential of our optimization strategies. For
this, we use three different scenarios. First, we look at a simple NOT NULL check
(NN), which is an example of a single record check. In this case, the optimizer
modifies the source statement so that only critical records (i.e. NULL values) are
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Table 1. Evaluation results (averages over 5 runs)

Errors 0% 1% 10%

Size 1% 10% 100% 1% 10% 100% 1% 10% 100%

NN Std. 0.25 1.57 16.45 0.22 1.35 18.15 0.21 1.36 17.22

Optim 0.06 0.05 0.33 0.04 0.06 0.48 0.05 0.23 2.85

SQL 0.01 0.04 0.53 0.01 0.04 0.53 0.01 0.12 1.85

RI Std. 0.66 5.44 106.38 0.56 5.62 142.90 0.67 11.98 458.45

Optim 0.15 0.79 16.38 0.12 0.84 14.11 0.11 1.28 16.74

SQL 0.11 0.76 11.24 0.10 0.87 10.75 0.12 1.37 11.01

Dist Std. 0.82 6.40 74.01

Optim 1.07 7.80 73.04

SQL 1.23 7.97 70.21

selected. Second, we look at a referential integrity check (RI) which checks which
records in one list do not reference valid records in the other list. This contains
more complex list expressions that are translated to SQL by the optimizer in
case of a relational data source. As a final, more complex, example of this list
expression to SQL translation, we use a distribution check (Dist) checking to
which degree records in a source comply with a reference distribution.

For evaluation, we use a person (approx. 5,000,000 records) and a plays rela-
tion (approx. 8,400,000 records) from a movie database4. For each scenario, we
look at different sizes of the data to check (1%, 10% and 100% of the original
data). As the runtime might be influenced by the number of errors in the first
two scenarios, we also use different numbers of errors (no errors, 1% errors, 10%
errors).5 The distribution check calculates an overall score for the target relation
taking each record into account, thus here we have no difference in effort related
to error ratio. As benchmark, we also list runtimes of SQL statements running
directly on the database that perform the same check. This is only possible as
long as all data originates from a single database and also sacrifices all other
benefits of RADAR as explained in Sect. 4.1.

The results are summarized in Table 1. For the NN check, we see that the
optimized version performs much better than the standard version. The standard
version suffers from a large number of calls to the check (for each person record)
and is almost independent of error ratio. The optimized version is a significant
improvement that is the better the smaller the error ratio (since fewer data has
to be transferred to the engine). Also, the scaling behavior looks good as the
runtime is roughly proportional to the data size. Runtimes for the optimized
version are within the same order of magnitude as the raw SQL statement (that

4 ftp://ftp.fu-berlin.de/pub/misc/movies/database/.
5 The errors were introduced by updating values to NULL or to non-existing FK values

for a random subset of the records.
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does not include any DSL processing). As the optimized version can only filter
correct records, the runtime becomes larger with larger error ratio.

For the RI check in the standard version the scaling is not as good, both
in terms of data size and error ratio. We assume that this is mainly due to
our join implementation in the engine, which is currently not very efficient and
subject to future improvements. However, the optimizer works quite well for this
scenario again, reaching runtimes in the same order of magnitude as the raw
SQL benchmark and similar scaling behaviour. Also, as expected, the runtime
is almost agnostic of the error ratio in this case.

Finally, the Dist scenario shows a different picture. Here, the scaling works
well, however the optimized version does not yield any improvement. A com-
parison with the raw SQL statement shows, that this statement already con-
sumes nearly all of the runtime so that no improvement is possible. A closer
look revealed that this is due to the stored procedure we used to translate the
val2bin method to SQL. A hand-crafted SQL version that avoids this procedure
can be much faster, so we plan to modify our SQL generation to output this
result in the future.

Overall, we can conclude that the optimizer works very well in general and
establishes runtimes close to raw SQL statements that implement the same logic.
However, as we cannot always count on it in cases when the underlying database
has limited query capabilities (NoSQL) or when data from multiple sources is
combined, we will also continue to improve the DSL interpreter. However, the
efficiency improvements here are more tied to improvements in small details (e.g.
join implementation, implementation of the expression evaluation) and not to
general architectural issues. Thus the engine to execute RADAR can be consid-
ered sufficiently efficient.

5 Related Work

Older papers, including our own predecessor project Data Checking Engine
(DCE) [11], that address partial aspects discussed in this paper (e.g. heteroge-
neous data integration) are typically not applicable for non-RDBMS data sources
and thus cannot satisfy an important requirement of our solution. However, many
solutions and tools for DQ measurement and monitoring exist that also address
data not stored in RDBMS. For a recent tool survey, e.g. see [6]. We now describe
examples of individual tools and then summarize the key differences.

In Apache Griffin6 (based on Spark and Hive), there is a DSL. However, it
only contains the parameters to predefined rule types. E.g., for the type “accu-
racy”, the rule essentially contains a logical expression that provides the link
between two tables that are to be compared. In general, the parameters are used
to instantiate predefined SQL patterns according to the rule type. For more
specific rules, direct SQL can be inserted.

6 http://griffin.apache.org.

http://griffin.apache.org
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Our main components Sources, Checks, and Actions are structurally similar
to MobyDQ7, however our Checks and Actions can be much more complex than
indicators and alerts there and, in addition, data sources can be more diverse in
RADAR.

Endler et al. developed an architecture for continuous data quality monitoring
in medical centers [8]. They handle data quality monitoring with a rule-based
approach. The most basic shown rules are simple boolean operations directly
defined for the underlying database.

In [16], an approach with the goal to automate data quality checks in large
data sets is presented. A wide range of basic types of checks is present, there
are methods to automatically suggest potential quality rules, and integration
of heterogeneous data sources is possible. They use a sophisticated optimization
procedure to efficiently process the checks based on Spark and address differential
quality checking in detail.

The work of Ehrlinger [7] focuses on automated and frequent execution of the
DQ checks. Similarly, [5] also focuses on a highly efficient evaluation of rather
simple rules (and with a more specific target, namely improvement of machine
learning algorithms). In principle, these approaches complement each other as
these efficient execution engines could be applied in principle to our simple rules
part as well. However, the actual implementation technologies differ.

In summary, the main difference of our approach to these works is our DSL
RADAR . It allows to extend the core functionality of the system with user-
defined rule types. The logic of the rules is independent of the concrete data
sources and independent of the target execution environment (i.e. Hive or a
RDBMS or MongoDB). The action part of the DSL allows to instantiate rules
in combination with specific sources. With its well-defined internal data model,
the DSL also independent of the data model of the underlying DBMSes. Each
rule can even execute on heterogeneous environments, combining data from dif-
ferent systems for cross-checking. The engine can execute the logic either by
itself, thereby retrieving the source data without any transformations, or it can
decide to execute parts of the logic using the features of the underlying DBMS.
To the best of our knowledge, these are unqiue features, making our approach
extremely flexible with respect to rule types and heterogeneous execution envi-
ronments, while still allowing less technical users to define quality measurements.
Furthermore, our DSL allows for advanced rule types like distribution checks
(cf. [12]).

From the operational and query side, our work touches multiple lines of
work in the database research that we are going to mention here. First of all,
our RADAR language allows to formulate queries integrated into an imperative
language. This is similar on the one hand to approaches like Oracle’s PL/SQL [9]
or other stored procedure languages, and on the other hand to LINQ-approaches
(language integrated queries), see [4]. Yet another approach is to integrate SQL
with functional programming [2]. However, our combination is specific to the
domain of data quality and offers specific features.

7 https://github.com/ubisoftinc/mobydq.

https://github.com/ubisoftinc/mobydq
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Furthermore, RADAR can act as a mediator [10] allowing to query and inte-
grate multiple sources using a single piece of code. Thus the query optimization
issues are quite similar to those in mediator-based systems. However, we don’t
define a global schema but allow the checks to directly access the individual
sources, which is more appropriate for data quality checks. Similarly, a lot of
work has been published in federated query processing which can complement
our system in the future.

RADAR can access both relational and NoSQL databases from the same
code, which again is a generic problem in heterogeneous environments. Here,
both query languages (i.e. UnQL, [3]) and systems have been developed. There
are multiple mediator approaches, e.g. [1,15,18] that allow to query relational
and NoSQL-data from a unified SQL-like language. They are to some degree
comparable, however, they lack the parametrizing features vital for our approach.

Parametrizing SQL in the way we do it – i.e. parameterizing also schema
elements like attributes and relations and with the option to e.g. use a compound
foreign key as actual parameter for a single attribute parameter – is, as far as
we know, a new feature. From our point of view it is vital to achieve the flexible
modularization and reuse-capabilities we are targeting. The only comparable
approach uses the Maude system [17] to rewrite parametrized SQL statements.
However, we integrated the parametrization capabilities into our core language.

6 Conclusion and Future Work

In this paper we have presented the DSL RADAR to specify data quality rules.
The DSL has been developed based on a fixed set of requirements that have been
set up together with company partners as potential users. We have shown the
benefits of separating quality rules into Sources, Checks and Actions for different
user groups and varying technical expertise. We have also illustrated how simple
(NOT NULL check) as well as more complex (distribution check) quality rules
are expressed in this language. More advanced quality rules (multidimensional
checks) have already been discussed in a previous paper [12]. Our prototype is
able to execute these quality checks on heterogeneous types of databases provid-
ing the source data. We have also shown how our engine optimizes rule execution
by pushing parts of the execution logic towards the sources whenever possible.
The implementation of the DSL allows for easy extensibility in case additional
functionality is required. Other complex quality rules can also be specified and
simple as well as complex quality rules can also be generated automatically based
on analysis of existing data (profiling). Both has not been explained in detail
here due to space constraints.

Within the project RADAR rules to check quality of real-world data provided
by our project partner CTS Eventim, a large European online ticket seller, have
been successfully used. In particular, rules have been applied to web tracking
data to detect potential data quality issues, e.g. caused by a malfunctioning
detection of user agent types. However, the need for further execution opti-
mization on such large datasets has also been disclosed. In summary, RADAR
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together with the prototypical implementation provides an important step for-
ward in efficiently managing data quality in data warehouses.

Several issues remain to be resolved in the future. While the applicability to
different types of data sources has been shown in principal by using relational
as well as document databases in the prototype, an extension to more types of
data sources needs to be implemented. As stated before, execution optimization
remains a major task in future work. From the practical experiments with the
CTS Eventim data we can conclude that further optimization for relational data
sources is beneficial. Separating functionality between DQ system and native
source has to be addressed for non-relational data sources as well. Nevertheless,
the DSL itself will remain unchanged even for different types of sources. Based
on the formalized antlr grammar managing Sources, Checks and Actions could
be simplified for the DQ manager with advanced editing capabilities such as
syntax highlighting and automated code completion. Finally, future extensions
of the DSL capabilities, particularly in the body of Checks, might be necessary
to provide functionality that has not been necessary so far.
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S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706,
pp. 227–237. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27615-
7 17
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Abstract. Uncertain graphs commonly represent noisy and unreliable
real-world datasets in various applications. One fundamental primitive
on uncertain graphs is reliability, which evaluates the connection robust-
ness between two specific nodes. Although reliability is helpful to analyze
uncertain graphs, it is computationally expensive because (1) the relia-
bility estimation is #P-hard problem and (2) many applications require
reliability computations among all possible pairs of nodes. To overcome
the aforementioned problems, we present a novel algorithm called Shar-
ing RCSS+, which efficiently computes the reliability among all possible
pairs of nodes. Our extensive experiments on both real-world and syn-
thetic uncertain graphs clarified that Sharing RCSS+ achieves a more
efficient estimation than the state-of-the-art methods.

Keywords: Uncertain graphs · Reliability · Sampling algorithm

1 Introduction

Recently, uncertainty has been recognized as an essential concept to model real-
world data as graphs since those data generally involve measurement noises,
prediction errors, etc. For instance, protein-protein interactions (PPIs) are usu-
ally modeled as a graph, where nodes and edges represent proteins and inter-
actions between proteins, respectively [12]. To infer the interactions, electrical
simulations are necessary, but they are usually error prone. Thus, a PPI graph
is inherently uncertain. Similarly, various applications of uncertainty in graphs
arise in the fields of mobile ad-hoc networks, text mining, etc. [13]

Graphs accompanied with uncertainty are modeled by uncertain graphs
G = (V,E, p), where V is a set of nodes, E is a set of edges, and p is a prob-
ability function p : E → (0, 1]. Graph G is regarded as a probability space
whose outcomes (called as possible worlds) are graphs G = (V,E′), where edge
e ∈ E is included in E′ with probability p(e) and is independent of the other
edges. Because many real-world applications often involve uncertainty, and it is
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more preferable to model data obtained from such applications as the uncer-
tain graphs. Thus, various applications call for the development of fundamental
primitives for mining uncertain graphs [3,14].

This work introduces a novel strategy for computing reliability [6] on uncer-
tain graphs. Reliability is a fundamental primitives, which measures the proba-
bility that two given nodes are reachable [1]. This primitive can be regarded as
a similarity between two nodes since it measures a connection robustness. Thus,
reliability has been used to mine uncertain graphs such as uncertain graph clus-
tering [3], and top-k similarity searches [14]. However, the complexity of the
exact reliability computation is #P-hard [2] because all possible worlds G must
be materialized from G.

1.1 Existing Works and Challenges

To reduce the computational costs, sampling-based methods (e.g., Monte-Carlo
(MC) sampling [4], Lazy sampling [8], and Prob Tree [9]) have been proposed.
These methods first sample K possible worlds G1, G2, . . . , GK from G accord-
ing to the independent edge probabilities. Given two nodes s and t in V , they
estimate the reliability between s and t by the fraction of s-t reachable possi-
ble worlds among K samples. By letting n = |V | and m = |E|, these methods
require O(K(n+m)) time [6] to estimate the reliability between a pair of nodes.

The computational cost to analyze large uncertain graphs is hefty if such
methods are used to mine uncertain graphs (e.g., graph clustering and top-k
search) due to two main reasons:

1. The sampling methods must sample many possible worlds to achieve a reason-
able estimation accuracy [5,10] because the estimated reliability has a large
variance. Furthermore, large uncertain graphs impose high computational
costs to check the s-t reachability in each possible world. Consequently, it is
time-consuming to estimate the reliability between a pair of nodes.

2. Sampling methods estimate the reliability only for a specific pair of nodes
(one-to-one reliability), even though many applications require that the reli-
abilities from one node to all of the others (one-to-many reliabilities) are
computed. For example, the clustering [3] and the top-k search [14] need to
compute the one-to-many reliabilities for all nodes in the graph. To compute
such reliabilities, the sampling methods have to perform multiple one-to-one
reliability estimations, each of which requires Ω(nK(n + m)) time.

To overcome the above problems, Zhu et al. recently proposed BFS Sharing
(BFSS) [14], which integrates a bit-wise offline sampling with the breadth-first
search. Although BFSS enables one-to-many estimations, a large number of pos-
sible worlds must be sampled to ensure the estimation accuracy since BFSS
estimates the reliabilities based on the MC sampling technique. That is, BFSS is
also time-consuming on large uncertain graphs. Therefore, realizing an efficient
one-to-many reliability estimation remains a challenge.
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1.2 Our Contributions

This work focuses on the problem of speeding up the one-to-many reliability
estimations on uncertain graphs. We present a novel reliability estimation algo-
rithm, Sharing RCSS+, which is designed to efficiently estimate the reliabilities
while maintaining a high estimation accuracy. The basic idea underlying Sharing
RCSS+ is to achieve a higher estimation accuracy while sampling fewer possi-
ble worlds compared to other methods. Existing methods (e.g., MC sampling
and BFSS) require sampling of many possible worlds to guarantee the accuracy
because they repeatedly sample duplicate or unpromising possible worlds, which
do not increase the estimation accuracy. However, such samples do not increase
the estimation accuracy. To overcome this issue, Sharing RCSS+ employs recur-
sive cut-set sampling (Sect. 3.2) before estimating one-to-many reliabilities. Our
algorithm partitions a given uncertain graph into small subspaces to avoid sam-
pling unpromising possible worlds. By discarding duplicate and unpromising
samplings, Sharing RCSS+ tries to achieve fast and accurate one-to-many reli-
ability estimations with a small number of possible worlds. As a result, our
proposed method achieves the following attractive characteristics:

– Efficient: Sharing RCSS+ achieves a faster one-to-many reliability estima-
tion than the state-of-the-art methods (Sect. 4.3).

– Accurate: Sharing RCSS+ has a smaller variance in the estimated reliabil-
ities compared to the state-of-the-art methods (Theorem 1). Consequently,
our proposed method achieves an accurate estimation with a smaller number
of samples than the others (Sect. 4.2).

– Scalable: As the size of the uncertain graph increases, the time required to
execute Sharing RCSS+ increases almost linearly (Sect. 4.3), and it is more
scalable than the other estimation algorithms.

Our experiments show that our proposed method provides up to a 200 times
faster estimation than MC sampling without sacrificing the estimation accuracy.
Additionally, Sharing RCSS+ achieved 71 times faster estimations than those of
the state-of-the-art algorithm [14]. Although the reliability estimation effectively
enhances the application quality, it has been difficult to apply existing methods
to real-world uncertain graphs. However, Sharing RCSS+ should improve the
effectiveness of a wider range of applications because it is scalable and appropri-
ate for a one-to-many reliability estimation.
Organization: The rest of this paper is organized as follows. Section 2 intro-
duces basic notations and the backgrounds. Section 3 presents our proposed
method, Sharing RCSS+, which achieves a fast reliability estimation on uncer-
tain graphs. Then the experimental results are reported to verify the effectiveness
of our approach in Sect. 4. Finally, Sect. 5 concludes this work.

2 Preliminary

2.1 Basic Notations

We here introduce the basic notation used in this paper. Table 1 summarizes the
main symbols and their definitions. Let G = (V,E, p) be an uncertain graph,
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Fig. 1. Example of an uncertain graph.

Table 1. Definition of main symbols.

Symbol Definition

G Uncertain graph

V Set of nodes

E Set of directed edges

p Probability function such that p : E → (0, 1]

n Number of nodes in V , i.e. n = |V |
m Number of edges in E, i.e. m = |E|
Gi Possible world of G, i.e. Gi � G
Ei Set of edges included in Gi

Pr(Gi) Probability that G generates a possible world Gi

Gi Probability subspace in G (Definition 2)

Pr(Gi) Generating probability of subspace Gi (Definition 3)

C(Gi) Set of cut-set edges in Gi (Definition 4)

K Number of sampled possible worlds

θ Sampling threshold, θ ∈ N

r Upper bound size of |C(Gi)|
RG(s, t) Exact reliability between nodes s and t in G
R̂G(s, t) Estimated reliability between nodes s and t in G
Var(R̂G(s, t)) Variance of the estimated reliability R̂G(s, t)

where V and E are sets of nodes and directed edges, respectively. For conve-
nience, we denote n = |V | and m = |E|. p is a probability function p : E → (0, 1].
That is, each edge e ∈ E has a probability p(e) ∈ (0, 1]. An uncertain graph G can
be viewed as a probability space whose outcomes are subgraphs of G where any
edge e ∈ E occurs with probability p(e), which is independent of the other edges.
These subgraphs are called possible worlds. A possible world of G is defined as
Gi = (V,Ei), where Ei is a set of edges occurring in Gi such that Ei ⊆ E. For
convenience, we denote Gi � G if and only if Gi is a possible world of G.
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From a given uncertain graph G, up to 2m possible worlds can be generated.
For each possible world Gi, we define the generating probability of Gi as follows:

Pr(Gi) =
∏

e∈Ei
p(e)

∏
e∈E\Ei

(1 − p(e)). (1)

Note that
∑

Gi�G Pr(Gi) = 1 clearly holds.
Figure 1 shows an example uncertain graph G, and its possible worlds G1, G2,

and G3. The dashed arrows are edges in G that are associated with a probability.
By contrast, the solid arrow represents a materialized edge in possible worlds.
As shown in Eq. (1), G generates the possible world G1 with the probability
Pr(G1) = 0.8 × 0.7 × 0.6 × (1 − 0.4) × (1 − 0.5) = 0.1008. Similarly, G2 and G3

are generated from G by Pr(G2) = 0.0672 and Pr(G3) = 0.0432, respectively.
Note that the possible worlds are not limited to G1, G2, and G3. In fact, G has
25 = 32 possible worlds.

We then define reliability on uncertain graphs. Given two nodes s and t in
V , the reliability is the probability that node t is reachable from node s on an
uncertain graph. Let IGi

(s, t) be an indicator function that returns 1 if node t
is reachable from node s on a possible world Gi. Otherwise, IGi

(s, t) = 0. The
reliability RG(s, t) is defined as follows:

RG(s, t) =
∑

Gi�G IGi
(s, t) · Pr(Gi). (2)

That is, RG(s, t) is a sum of the generating probability of Gi with a path from
node s to node t among all possible worlds. The complexity of the exact reliability
detection is #P-hard since all possible worlds need to be enumerated from G.

Finally, we introduce the problem definition that we tackle in this work.

Definition 1 (One-to-many reliability). Given uncertain graph G and node
s ∈ V , one-to-many reliability is a problem to efficiently compute reliabilities
RG(s, t) for all nodes t ∈ V .

As shown in Definition 1, the reliability RG(s, t) needs to be computed multiple
times to answer the one-to-many reliability problem.

2.2 Existing Sampling Algorithms

The reliability estimation is #P-hard problem. This leads to approximation tech-
niques based on possible world sampling such as MC sampling [4] and BFSS [14].
Here, we briefly review these algorithms.

Monte-Carlo (MC) Sampling [4]: MC sampling is the most standard approx-
imation algorithm to estimate the reliability between two nodes s and t. By fol-
lowing the probability of each edge, MC sampling randomly selects K possible
worlds, G1, G2, . . . , GK , from a given uncertain graph G. Estimated reliability
R̂G(s, t) is computed from these possible worlds as follows:

R̂G(s, t) = 1
K

∑K
i=1 IGi

(s, t). (3)
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The above equation indicates that MC sampling approximates the reliability
by the fraction of s-t reachable possible worlds among all samples. If RG(s, t)
represents the exact reliability, Eq. (3) follows a Bernoulli trial with the proba-
bility of success RG(s, t). Therefore, in MC sampling, the estimator R̂G(s, t) has
a variance given by

Var(R̂G(s, t)) = 1
K2 Var

(∑K
i=1 IGi

(s, t)
)

= RG(s,t)·(1−RG(s,t))
K . (4)

The variance decreases as the size of K (i.e., a number of sampled possible
worlds) increases. However, Eq. (4) also implies that MC sampling needs to
sample a large number of possible worlds to reduce the variance because the
standard deviation of R̂G(s, t) decreases as the size of

√
K increases. That is,

MC sampling requires 4K samples to reduce the standard deviation to half of
that obtained from K.

To solve the one-to-many reliability (Definition 1), we need to compute
R̂G(s, t) for all nodes in V , which entails totally Ω(nK(n + m)) time. Hence,
MC sampling requires a large computation time for the one-to-many reliability.

BFS Sharing [14]: Zhu et al. recently proposed an efficient one-to-many relia-
bility estimation method called BFSS [14] by extending MC sampling. By using
bit-wise operations, BFSS estimates multiple reliabilities from a single breadth-
first search (BFS) traversal.

Given a source node s ∈ V , BFSS performs the following offline sampling
before the reliability estimation. First, BFSS randomly samples K possible
worlds from G. BFSS then assigns a K-bit vector Be for each edge e ∈ E,
whose i-th bit Be[i] is 1 if e is included in a possible world Gi (i,e., e ∈ Ei).
Otherwise Be[i] = 0. Similarly, each node v ∈ V also has a K-bit vector Bv to
maintain reliability of node v from node s. The i-th bit Bv[i] is 1 only if node v
is reachable from node s in the possible world Gi. Otherwise, Bv[i] = 0. That is,
for all i ∈ K, BFSS initially sets to Bs[i] = 1, and Bv[i] = 0 for v �= s.

After that, BFSS estimates the one-to-many reliabilities by performing a
BFS traversal from the source node s. If the BFS traversal reaches node v from
node u, BFSS updates Bv by a bit-wise AND operation (i.e., Bv = BuANDBe,
where e = (u, v)). BFSS continues the above BFS traversal until all bit vectors
of nodes are updated. Finally, BFSS estimates the one-to-many reliabilities. By
letting 1l(Bv) represents the number of 1’s in a bit vector Bv, BFSS computes
the reliability from node s to node v by R̂G(s, v) = 1l(Bv)/K. Since every node
v ∈ G maintains Bv, the one-to-many reliabilities can be estimated from node s
by computing R(s, v) = 1l(Bv)/K for all nodes in G.

However, as described in Sect. 1, BFSS requires to sample a large number of
possible worlds to ensure estimation accuracy. This is because, BFSS still ran-
domly samples possible worlds from G, which is the same way as MC sampling.
Consequently, BFSS also yields the same variance as MC sampling.
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3 Proposed Method: Sharing RCSS+

The one-to-many reliability estimation requires a long computation time on large
uncertain graphs. To address this issue, we present an efficient estimation algo-
rithm called Sharing RCSS+.

3.1 Overview

To efficiently compute one-to-many reliabilities, we extend BFSS so that we can
estimate the reliabilities from a smaller number of sampled possible worlds than
BFSS. The proposed method has two main components:

(Step 1) Possible World Sampling: Our proposed method, Sharing RCSS+,
performs offline sampling to construct a bit vector for each edge in G. Given
uncertain graph G, number of samples K, and node s ∈ V , this step samples
at most K possible worlds from G. The goal of this step is to find K possible
worlds that achieve a smaller variance than those of MC sampling and BFSS.
To sample effective possible worlds, we present a recursive cut-set sampling in
Sect. 3.2. Because the uncertain graph G can be regarded as a probability space,
our algorithm recursively partitions the probability space into subspaces, and
subsequently samples possible worlds from each subspace. In this manner, Shar-
ing RCSS+ avoids sampling unpromising possible worlds.

(Step 2) Reliability Estimation: Sharing RCSS+ estimates the one-to-many
reliabilities from node s to all of the other nodes in the uncertain graph G. To
detect the reliabilities, our algorithm uses the BFS-based estimation similar to
BFSS shown in Sect. 2.2 on the K possible worlds obtained in (Step 1). Herein
details of this step are omitted due to space limitations.

3.2 Recursive Cut-Set Sampling (RCSS)

We propose a recursive cut-set sampling (RCSS) that reduces the number of
sampled possible worlds necessary to guarantee the estimation accuracy. The
main idea underlying RCSS is that it discards duplicated and unpromising pos-
sible worlds containing many non-reachable nodes. To achieve this strategy,
RCSS employs two key techniques: (1) cut-set-based partitioning and (2) cut-set
bounding. By the cut-set-based partitioning, RCSS divides an uncertain graph
into non-overlapping probability subspaces so that each one has many reachable
nodes. Then RCSS samples a proportional number of possible worlds to the gen-
erating probability of each subspace. To further improve the estimation efficiency,
RCSS selects several effective subspaces by the cut-set bounding. Here, we first
define the probability subspace and then provide the detailed descriptions of the
two key techniques.

Probability Subspace: First, we define the probability subspace as follows:
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Definition 2 (Probability subspace). Given uncertain graph G = (V,E, p),
we suppose that sets of sampled edges E1

i and non-sampled edges E0
i exist such

that E1
i ∪ E0

i ⊂ E and E1
i ∩ E0

i = ∅. We define the probability subspace of G as
Gi = (V,E1

i , E0
i , E∗

i , p), where E∗
i = E\{E1

i ∪ E0
i }.

By determining whether several edges are sampled or non-sampled, subspaces
are generated from G. For example, Fig. 2 shows three probability subspaces, G1,
G2, and G3 generated from an uncertain graph G. The solid arrows are sampled
edges (i.e., E1

i = {(u1, u2)}, E1
2 = {(u1, u3)}, and E1

3 = {(u1, u4)}). If the
edges are non-sampled, then they are not shown in the subspaces (i.e., E1

1 = ∅,
E0

2 = {(u1, u2)}, and E0
3 = {(u1, u2), (u1, u3)}).

Fig. 2. Example of probability subspaces.

Definition 3 (Generating probability of Gi). Let Pr(Gi) be the generating
probability of a subspace Gi. Then probability Pr(Gi) is given as

Pr(Gi) =
∏

e∈E1
i
p(e)

∏
e∈E0

i
(1 − p(e)). (5)

The generating probability of each subspace is given by the probability of sam-
pled and non-sampled edges. For instance, the subspace G1 can be generated
by sampling edge (u1, u2) (Fig. 2). Thus, the generating probability of G1 is
Pr(G1) = 0.8. Similarly, G outputs G2 by non-sampling (u1, u2) and sampling
(u1, u3), resulting in Pr(G2) = (1 − 0.8) × 0.2 = 0.04.

Cut-Set-Based Partitioning: From a given uncertain graph G, Sharing
RCSS+ recursively partitions G into non-overlapping subspaces by fixing the
states of several edges in E. To effectively generate the subspaces, Sharing
RCSS+ determines the state of cut-set edges for each subspace. A cut-set is
a set of edges that splits a given graph G into two non-connected subgraphs by
removing all edges in the cut-set. Formally, we define the cut-set edges as follows:

Definition 4 (Cut-set edges). Given Gi = (V,E1
i , E0

i , E∗
i , p), a set of cut-set

edges is denoted as C(Gi) = {(u, v) ∈ E∗
i |u ∈ V 1

i , v ∈ V 0
i }, where V 1 is a set

of nodes that can be reached from the source node s via edges in E1
i , and V 0

i

denotes the rest of the nodes, i.e., V 0
i = V \V 1

i .
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For example, suppose we have subspace G2 shown in Fig. 2. If node u1 is a
source node, the cut-set edges should be C(G2) = {(u1, u4), (u3, u5)} since
V 1
2 = {u1, u3} and V 0

2 = {u2, u4, u5}. Similarly, if G = Go is given, C(G0) =
{(u1, u2), (u1, u3), (u1, u4)} is cut-set edges.

Table 2. Sampling patterns.
Subspace e1 e2 e3 . . . e|C(Gi)|

G0 0 0 0 . . . 0
G1 1 ∗ ∗ . . . ∗
G2 0 1 ∗ . . . ∗
G3 0 0 1 . . . ∗
...

. . .

G|C(Gi)| 0 0 0 . . . 1

Once we receive probability subspace Gi,
a set of cut-set edges C(Gi) is obtained by
Definition 4. Then, |C(Gi)| + 1 edge sam-
pling patterns are generated so that the pat-
terns do not yield overlapping subspaces. Sup-
pose C(Gi) = {e1, e2, e3, . . . , e|C(Gi)|}, Table 2
shows the sampling patterns generating non-
overlapping subspaces. In Table 2, 1 and 0
denote that ei ∈ C(Gi) is and is not sampled,
respectively. If ej is ∗, ej ∈ E∗

i in a subspace Gi.
In Table 2, G0 can be regarded as an unpromising subspace because most

nodes in G0, except for V 1
0 , are not reachable due to the lack of cut-set edges.

Hence, for such unpromising subspace G0, (1) only 〈t, Pr(G0)〉 is kept for each
node t ∈ V 1

0 to balance the estimation later, and (2) G0 is removed from RCSS
regardless of its generating probability. That is, |C(Gi)| subspaces are finally
obtained from Gi.

After generating |C(Gi)| subspaces (i.e., G1, . . . ,G|C(Gi)|), we compute their
generating probabilities by Definition 3. Let θ ∈ N be a user-specified threshold
and K be the maximum sample size. We perform the following steps for each
subspace Gj ∈ C(Gi):

1. If Pr(Gj) · K < θ, we sample �Pr(Gj) · K� possible worlds from Gj by MC
sampling.

2. Otherwise, Gj is recursively partitioned in the same way.

The above partitioning is repeated until all non-partitioned subspaces are sam-
pled. Consequently, we obtain at most K possible worlds.

Cut-Set Bounding: Sharing RCSS+ partitions a subspace Gi into at most
|C(Gi)| subspaces. However, this strategy fails to improve the accuracy if |C(Gi)|
is too large because a large |C(Gi)| generates many subspaces with a small gener-
ating probability. That is, we need to sample so many possible worlds with quite
low probability without discarding unpromising possible worlds. To avoid this
issue, we introduce an upper bound size of |C(Gi)| as r. Once we have |C(Gi)| > r,
we first sort all edges in C(Gi) by their probability in ascending order. Then, we
select smaller r edges from C(Gi) by removing edges whose probability is larger
than r-th smallest one.

3.3 Algorithm

Algorithm 1 shows the pseudo-code of Sharing RCSS+, which consists of the
possible world sampling (lines 1–19) and the reliability estimation (lines 20–22).
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Algorithm 1. Sharing RCSS+
Require: Graph G, source node s ∈ V , parameters K, r, and θ.
Ensure: One-to-many reliabilities R̂G(s, t) for all t ∈ V .
1: Queue Q ← {G}, and Queue P ← ∅;
2: while Q �= ∅ do
3: Dequeue Gi from Q, and Set S ← ∅;
4: Obtain C(Gi) by Definition 4;
5: if |C(Gi)| > r then
6: Sort C(Gi);
7: Select r edges, e1, e2, . . . , er, from C(Gi) by the cut-set bounding;
8: C(Gi) ← {e1, e2, . . . , er};
9: Generate subspaces G0, G1, . . . , Gr by Table 2;

10: S ← {G0, G1, . . . , Gr};
11: else
12: Generate subspaces G0, G1, . . . , G|C(Gi)| by Table 2;
13: Enqueue 〈t, Pr(G0)〉 to P for each reachable node t ∈ G0;
14: S ← {G1, . . . , Gr};

15: for each Gj in S do
16: if Pr(Gj) · K < θ then
17: Sample �Pr(Gj) · K� possible worlds from Gj by MC sampling;
18: else
19: Enqueue Gj into Q;

20: Estimate R̂G(s, t) for all t ∈ V by BFSS (Section 2.2);
21: for each 〈t, Pr(G0)〉 ∈ P do
22: R̂G(s, t) ← R̂G(s, t) + Pr(G0);

In the possible world sampling, Sharing RCSS+ starts the cut-set based par-
titioning shown in Sect. 3.2. First, it obtains cut-set edges C(Gi) by Definition 4
(line 4). If |C(Gi)| > r, our algorithm selects r edges from C(Gi) by the cut-set
bounding (lines 5–8), and then generates the subspaces (lines 9–10). Otherwise,
it first generates the probability subspaces, G0,G1, . . . ,Gr from Table 2 (line 12).
Then, our algorithm removes unpromising subspace G0 after saving 〈t, Pr(G0)〉
to balance the reliability estimation later (lines 12–13). For each subspace Gj ,
Sharing RCSS+ samples �Pr(Gj) · K� possible worlds from Gi by MC sampling
if Pr(Gj) · K < θ (lines 16–17); otherwise, it recursively partitions Gj into sub-
spaces (lines 18–19). Finally, Sharing RCSS+ obtains at most K possible worlds
after the termination.

After that, our algorithm starts the reliability estimation (lines 20–22). Shar-
ing RCSS+ initially estimates the reliabilities by using BFSS (line 20). Then, our
proposal balances the estimated reliabilities (lines 21–22) by using �Pr(Gj) · K�
obtained by unpromising subspace G0 (line 13). Finally, Sharing RCSS+ outputs
the estimated reliabilities.

3.4 Theoretical Analysis

Finally, we assessed the variance of our reliability estimation approach.
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Theorem 1. If uncertain graph G is divided into r subspaces, G1,G2, . . . ,Gr, the
estimator R̂G(s, t) of Sharing RCSS+ has the following variance:

Var(R̂G(s,t)) =
∑r

i=1 Pr(Gi)
RGi

(s,t)(1−RGi
(s,t))

K , (6)

where RGi
(s, t) is the exact reliability between nodes s and t on Gi.

Proof. For each subspace Gi, Sharing RCSS+ samples Pr(Gi) ·K possible worlds
from Gi by MC sampling. That is, by following Eq. (4), Sharing RCSS+ has the
estimator R̂G(s, t) is given as follows:

R̂G(s, t) =
∑r

i=1 Pr(Gi) · R̂Gi
(s, t), (7)

where R̂Gi
(s, t) is the estimated reliability between nodes s and t on a subspace

Gi. Hence, estimator R̂G(s, t) has the following variance:

Var(R̂G(s, t)) =
∑r

i=1 Pr(Gi)
RGi

(s,t)(1−RGi
(s,t))

K , (8)

which completes the proof. ��
By comparing Theorem 1 with Eq. (4), our proposed algorithm has a smaller
variance than MC sampling and BFSS. Therefore, Sharing RCSS+ can achieve
accurate estimations with fewer samples.

4 Experimental Analysis

We conducted extensive experiments to evaluate the effectiveness of Sharing
RCSS+. Our experiments demonstrate that:

– Sampling size: Sharing RCSS+ requires fewer samples to estimate accurate
reliabilities compared to the state-of-the-art methods (Sect. 4.2).

– Efficiency and scalability: Sharing RCSS+ performs faster estimations
than the state-of-the-art algorithms (Sect. 4.3). Also, Sharing RCSS+ has a
nearly linear scalability for graph sizes.

– Effectiveness: The key techniques of Sharing RCSS+, cut-set-based parti-
tioning and the cut-set bounding, improve the estimation time on real-world
graphs (Sect. 4.4).

4.1 Experimental Setup

We compared Sharing RCSS+ with the baseline algorithm MC sampling [4]
and the state-of-the-art method BFSS [14]. All algorithms were implemented in
C++ and compiled with GNU gcc 8.2.0 using -O3 option. All experiments were
conducted on a server with an Intel Xeon CPU (3.50GHz) and 128 GiB RAM.
Unless otherwise stated, we used default parameters of r = 50 and θ = 5.

Reproducibility: Other researchers can confirm the reproducibility as we plan
to share our codes publicly after the acceptance of this paper.
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Datasets: We evaluated the algorithms on four real-world uncertain graphs,
which were published by Ke et al. [6] and Sasaki et al. [11]. Table 3 summarizes
the statistics of real-world datasets. 1 In addition, we also used synthetic graphs
generated by LFR-benchmark [7], which is considered as the de facto standard
model for generating graphs. The settings will be detailed later.

Table 3. Statistics of real-world datasets.

Dataset |V | |E| Average degree Mean probability (±SD) Data source

LastFM 6,899 23,696 3.43 0.29 (±0.25) [6]

NetHEPT 15,233 62,774 4.12 0.04 (±0.04) [6]

Tokyo 26,370 64,596 2.45 0.39 (±0.15) [11]

NYC 180,188 416,880 2.31 0.29 (±0.13) [11]
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Fig. 3. Number of sampled possible worlds until convergence.

4.2 Sampling Sizes to Estimate Converged Reliabilities

We first assessed the number of sampled possible worlds to obtain converged reli-
abilities on the real-world graphs. To define when the estimated reliabilities are
converged, we introduced the dispersion index ρK , which is used in [6]. Given
100 distinct pairs of nodes (i.e., 〈s1, t1〉, 〈s2, t2〉, . . . , 〈s100, t100〉), the disper-
sion index is computed as ρK =

∑100
i=1

Var(R̂G(si,ti))

Avg(R̂G(si,ti))
, where Var(R̂G(si, ti)) and

1 In Table 3, “SD” means the standard deviation of the edge probabilities.
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Fig. 4. Reliability estimation time.

Avg(R̂G(si, ti)) are the variance and average of R̂G(si, ti), respectively. Here,
we derived Var(R̂G(si, ti)) and Avg(R̂G(si, ti)) from 1,000 trials of each estima-
tion algorithm with a sampling size K. K was increased in steps of 100. The
estimations converged when the dispersion index reached ρK < 0.001.

Figure 3 shows the number of possible worlds (K) that are sampled when
the reliability estimations converged (i.e., ρK < 0.001). We tested three types of
distinct node pairs: 2-hops, 4-hops, and 6-hops away node pairs. Also, we varied
the size of r in Sharing RCSS+ as 10, 30, and 50. As we can see from the figure,
our proposed method requires a significantly smaller numbers of possible worlds.
For example, MC sampling and BFSS require up to four times as many possi-
ble worlds to converge the reliability estimation. Due to the recursive cut-set
sampling, Sharing RCSS+ successfully samples possible worlds from promising
subspaces containing reachable paths from si to ti. Furthermore, Sharing RCSS+
avoids sampling that overlaps possible worlds, which causes inefficient reliability
estimations. On the other hand, MC sampling and BFSS must generate possible
worlds from probability space G, resulting in overlapping possible worlds. Con-
sequently, they require many samples to preserve low variances ρK . In summary,
our proposed method requires fewer number of samples to estimate accurate
reliabilities compared to those necessary for the state-of-the-art methods.

4.3 Efficiency and Scalability
Efficiency: Next, we assessed the efficiency of each algorithm to estimate the
reliabilities. Similar to Sect. 4.2, we measured the running time to estimate the
reliabilities of 100 distinct node pairs. We tested on the three types of node
pairs: 2-hops, 4-hops, and 6-hops away node pairs, and varied the size of r in
Sharing RCSS+ as 10, 30, and 50. In addition, we set the sampling sizes K for
each experimental setting to the same sizes as shown in Fig. 3.
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Figure 4 shows the running times to estimate the reliabilities on the real-world
graphs. Our proposed method outperforms all the other examined algorithms. Of
particular interest, Sharing RCSS+ achieves up to a 200 times faster estimation
than MC sampling. Our algorithm is up to 71 times faster than the state-of-the-
art method BFSS. Additionally, Sharing RCSS+ effectively reduces the sampling
sizes compared to those of MC sampling and BFSS. As proven in Theorem 1, our
proposed algorithm has a better variance than those of MC sampling and BFSS.
Hence, Sharing RCSS+ achieves faster one-to-many reliability estimations than
the other competitive algorithms.

Scalability: We also assessed the scalability of Sharing RCSS+ by using the
synthetic graphs generated by LFR-benchmark [7]. We generated four synthetic
datasets by varying the number of nodes from 103 to 106 with an average degree
5 and a maximum degree 20. For each directed edge from node u, we assigned
log(du+1)/ log(dmax+2) as the edge probability by following [11], where du and
dmax are the degree of u and the maximum degree in each graph, respectively.

Figure 5 shows the running time to the estimate reliabilities of 100 distinct
4-hops away node pairs. We used the same sampling sizes K for each algorithm
as those in Fig. 3. In this evaluation, we also tested the scalability for 2-hops
away and 6-hops away node pairs, but the results are omitted because they
are similar to those for 4-hops away node pairs. As we can observe from Fig. 5,
Sharing RCSS+ is still faster than the others even when the graph sizes increases.
Furthermore, our proposed algorithm shows a nearly linear scalability in terms
of the number of nodes, demonstrating that Sharing RCSS+ shows a better
scalability than the state-of-the-art methods.
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Fig. 5. Scalability by varying node sizes.

4.4 Effectiveness of Key Techniques

Finally, we examined the effectiveness of the key techniques of Sharing RCSS+.
Sharing RCSS+ employed (1) the cut-set-based partitioning and (2) the cut-
set bounding to effectively sample possible worlds. We compared the estimation
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Fig. 6. Effectiveness of key techniques.

time of our proposed algorithm with two variants of Sharing RCSS+: Sharing
RSS and Sharing RCSS. Sharing RSS lacks the cut-set-based partitioning and
the cut-set bounding. It randomly samples r edges without considering the cut-
set edges shown in Definition 4 and then partitions a subspace in the same way.
Sharing RCSS is a minor variant, which does not perform the cut-set bounding.

Figure 6 shows the estimation time when each algorithm obtained converged
reliabilities for each experimental setting. Sharing RCSS+ is up to 60 and
15 times faster than Sharing RCSS and Sharing RSS, respectively. Moreover,
the cut-set-based partitioning achieves significant improvements in all datasets,
demonstrating that our approach effectively improve the estimation efficiency.

5 Conclusion

We propose a novel algorithm, Sharing RCSS+, to efficiently compute one-to-
many reliabilities on uncertain graphs. By employing recursive cut-set-based
partitioning, Sharing RCSS+ reduces the number of sampled possible worlds to
ensure the estimation accuracy (Theorem 1 and Sect. 4.2). Our proposal esti-
mates the reliabilities within a shorter running time than the state-of-the-art
methods (Sect. 4.3).
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Abstract. Incomplete data is a crucial challenge to data exploration, analytics,
and visualization recommendation. Incomplete data would distort the analysis
and reduce the benefits of any data-driven approach leading to poor and mislead-
ing recommendations. Several data imputation methods have been introduced to
handle the incomplete data challenge. However, it is well-known that those meth-
ods cannot fully solve the incomplete data problem, but they are rather a miti-
gating solution that allows for improving the quality of the results provided by
the different analytics operating on incomplete data. Hence, in the absence of a
robust and accurate solution for the incomplete data problem, it is important to
study the impact of incomplete data on different visual analytics, and how those
visual analytics are affected by the incomplete data problem. In this paper, we
conduct a study to observe the interplay between incomplete data and recom-
mended visual analytics, under a combination of different conditions including:
(1) the distribution of incomplete data, (2) the adopted data imputation methods,
(3) the types of insights revealed by recommended visualizations, and (4) the
quality measures used for assessing the goodness of recommendations.

Keywords: Incomplete data · Visualization recommendation · Data exploration

1 Introduction

To support effective data exploration, there has been a growing interest in developing
solutions that can automatically recommend data visualizations that reveal important
data-driven insights. Several visual analytic tools have been introduced such as Tableau
[9], Spotfire [8], Power BI [7]. The aim of those tools is to provide aesthetically high-
quality visualizations that reveal interesting insights. Without any prior knowledge of
the explored data, it is a challenging task for the analyst to manually select the combina-
tions of attributes and measures that lead to interesting visualizations. Clearly, manually
looking for insights in each visualization is a labor-intensive and time-consuming pro-
cess. Such challenge motivated research efforts that focused on automatic recommen-
dation of visualizations based on some metrics that capture the utility of recommended
visualizations (e.g., [15,17–19,22,23,28,35,36]). However, all of those approaches
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(a) top-1 (b) top-2 (c) top-3

Fig. 1. Top-k recommended visualizations obtained from complete heart disease dataset, k = 3

(a) top-1 (b) top-2 (c) top-3

Fig. 2. Top-k recommended visualizations obtained from incomplete heart disease dataset (20%
missing values), k = 3, NaN values are ignored

operate under the assumption that the analyzed data is clean and overlook the data
quality problems that might impair the recommendation process.

Data quality is a crucial challenge to data exploration and analytics. Poor data qual-
ity would distort the analysis and reduce the benefits of any data-driven approach. That
is, garbage in, garbage out (GIGO) phenomenon. In real world settings, most datasets
exhibit data quality problems, such as incomplete data, which in turn leads to incor-
rect analytical results (e.g., [22,26]). This is true for descriptive analytics, in which
incomplete data leads to incorrect results for aggregate and statistical queries [39]. It
is also equally true for predictive analytics, where reduced accuracy in classification
and prediction are common side effects of working with incomplete data (e.g., [10,16]).
Moreover, in the general context of recommendation systems, incomplete data has been
shown to result in inaccurate rankings, which has the expected effect of producing poor
and misleading recommendations [31].

Several data imputation methods have been introduced to handle the incomplete
data challenge (e.g., [13,24,27]). However, it is well-known that those methods cannot
fully solve the incomplete data problem, but they are rather a mitigating solution that
allows for improving the quality of the results provided by the different analytics oper-
ating on incomplete data [10]. Hence, in the absence of a robust and accurate solution
for the incomplete data problem, it remains especially important to study the impact
of incomplete data on different visual analytics, and how those visual analytics are
affected by the incomplete data problem. This has been the focus of several research
studies, including assessing the impact of incomplete data on analytics that rely on
aggregate and statistical queries [39], predictions and classifications (e.g., [10,16]), or
recommendation [31].

To the best of our knowledge, this work is the first to explore the impact of incom-
plete data on the quality of recommended visualizations. In particular, our focus in this
work is to study the interplay between incomplete data and recommended visual ana-
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lytics, under a combination of different conditions including: the distribution of incom-
plete data, the adopted data imputation methods, the types of insights revealed by those
visualizations, and the quality measures used for assessing the goodness of recommen-
dations.

To further illustrate the problems addressed in this work, consider the motivating
example shown in Figs. 1 and 2. Both figures show the recommended top-k visual
insights from a heart disease dataset [4] under two different settings: (1) complete data
(Fig. 1), versus (2) incomplete data, with 20% missing values (Figure 2). The detail
about the figures is explained further in Fig. 3a. In both settings, the top-k visual insights
are generated using the deviation-based approach [36], where k = 3, and any missing
cells (i.e., NaN values) are ignored.

Meanwhile, comparing Figs. 1 and 2, we notice the following: 1) the recommenda-
tions from complete data (Fig. 1) are significantly different from those on incomplete
data (Fig. 2); 2) the two sets of recommendations have only one visualization in com-
mon (i.e., visualization based on sum oldpeak vs. thal1); and 3) that one common visu-
alization was ranked top-3 based on the complete data, whereas it is ranked top-1 based
on the incomplete data!

Based on the example above, a user who is analyzing an incomplete data with
20% missing values, would obtain a top-k recommended visualizations that are sig-
nificantly different from those obtained from a complete dataset, and in turn gaining
“false” insights from the data. Since incomplete data is a prevailing problem that can
only be slightly mitigated by data imputation methods, it becomes essential to evaluate
and quantify its impact on the insights gained from visual data analytics approaches.
That is precisely the goal of this work, in which our main contributions are summarized
as follows:

1. We study the different types of visual insights that are generally sought by data
analysts in their data exploration workflows (Sect. 2).

2. We present three quality measures to quantify the impact of incomplete data on the
quality of visualization recommendation (Sect. 3).

3. We conduct an extensive experimental evaluation on real datasets and present the
impact of incomplete data on recommended visualizations with different data clean-
ing methods and different type of visual insights (Sect. 4).

2 Recommending Visual Insight

To recommend visual insight, we consider a multi-dimensional database D, which con-
sists of a set of dimensional attributes A and a set of measure attributes M. Also, let F
be a set of possible aggregate functions over measure attributes. Hence, specifying dif-
ferent combinations of dimension and measure attributes along with various aggregate
functions, generates a set of possible visualizations V over D. For instance, a possible
visualization Vi is specified by a tuple < Ai, Mi, Fi >, where Ai ∈ A, Mi ∈ M,
and Fi ∈ F, and it can be formally defined as: V i : VISUALIZE bar (SELECT
A, F(M) FROM D WHERE T GROUP BY A). Where VISUALIZE specifies the

1 thal: Thallium heart scan (normal, fixed defect, reversible defect).
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visualization type (i.e., bar chart), SELECT extracts the selected columns which can
be dimensional attributes A ∈ A or measures M ∈ M, T is the query predicate (e.g.,
disease = ‘Yes’), and GROUP BY is used in collaboration with the SELECT statement
to arrange identical data into groups.

Figure 1 shows the top-k recommended visual insights obtained from the complete
heart disease dataset where k = 3. Figure 1a is obtained from Vi : VISUALIZE bar
(SELECT cp, SUM(oldpeak) FROM HeartDiseaseDB WHERE disease=‘Y’
GROUP BY cp). However, obtaining this visualization Vi is only possible if the analyst
knows exactly the parameters, which specify some aggregate visualizations that lead to
those valuable visual insights (e.g., dimensional attributes, measures, aggregate func-
tions, grouping attributes, etc.). Hence, it is time-consuming to iteratively create and
refine visualizations to search for the ones that are useful and interesting.

Motivated by the need for efficient data analysis and exploration, several solu-
tions for recommending visualizations have recently emerged (e.g., [14,15,18,28,29,
35,36]). In such solutions, a large number of possible data visualizations V are gener-
ated and ranked according to some metrics that capture the utility of recommended visu-
alizations. Towards this, the utility of each visualization Vi in V is calculated according
to the type of insight, which is described next.

In this work, we study three types of visual insights: The first type is the aggregate-
based insight which has been shown to be effective in recommending visualizations
based on some metrics that capture the utility of a recommended visualizations (e.g.,
[15,35,36]). The second type is the correlation-based insight. This insight type is gen-
erally sought by data analysts looking for the attribute pairs with the highest correla-
tions [14]. The third type is the distribution-based insight (e.g., skewness and kurto-
sis) (e.g., [14,32]). In general, data analysts utilize distribution-based insight in order
to find the dimensions that deviate from the normal distribution. Hence, by considering
those insight types, we study insights based on single dimension (i.e., distribution-based
insight), pairs of measures (i.e., correlation-based insight) and combination of dimen-
sional attributes and aggregate functions of measures (i.e., aggregate-based insight). An
example of those three types of visual insights can be seen in Fig. 3. Given three types
of the insights above, our problem definition as follows:

Definition 1. Recommending top-k visual insights: Given a dataset D, insight type
Y , the goal is to recommend a set top-k visual insight S ⊆ V, where |S| = k, and V

is the set of all possible generated visualizations from D, such that the overall utility
U (S) based on Y is maximized.

Meanwhile, the utility of each visualization Vi is computed based on the type of
insight shown by recommended visualizations, which are explained next.

2.1 Aggregate-Based Insight

In this paper, we address two types of aggregate-based insight: outstanding and sim-
ilarity (e.g., [34,36]). Outstanding-based insight recommends the most outstanding
visualizations based on deviation-based approach (e.g., [17,29,36]). The deviation-
based approach is able to provide analysts with interesting visualizations that high-
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Fig. 3. Top-1 recommended visualization of (a) aggregate/outstanding, (b) correlation and (c)
skewness-based insight from heart disease dataset where NaN values are ignored

light some of the particular trends of the analyzed datasets. The deviation-based app-
roach compares an aggregate visualization generated from the selected subset dataset
DQ (i.e., target visualization Vi(DQ)) to the same visualization if generated from a
reference dataset DR (i.e., reference visualization Vi(DR)). To calculate the outstand-
ing/deviation score, each target visualization Vi(DQ) is normalized into a probability
distribution P [Vi(DQ)] and similarly, each reference visualization into P [Vi(DR)]. In
particular, consider an aggregate visualization Vi =< A,M,F >. The result of that
visualization can be represented as the set of tuples: < (a1, g1), (aj , gj), ..., (at, gt)>,
where t is the number of distinct values (i.e., groups) in attribute A, aj is the j-th group
in attribute A, and gj is the aggregated value F (M) for the group aj . Hence, Vi is

normalized by the sum of aggregate values G =
t∑

j=1

gj , resulting in the probability

distribution P [Vi] =< g1
G , g2

G , ..., gt

G >. Finally, the utility score of Vi is measured in
terms of the distance between P [Vi(DQ)] and P [Vi(DR)], and is simply defined as:
U (Vi) = dist (P [Vi(DQ)] , P [Vi(DR)])

Figure 3a shows the top-1 recommended visualization of outstanding-based insight
which is generated by [36] from heart disease dataset. The figure shows that an aggre-
gate visualization based on sum oldpeak (i.e., pressure of the ST segment, where
ST segment is an isoelectric section of the ECG) vs. chest pain types exhibits a
large deviation between the target visualization (disease) and reference visualization
(no-disease). That is, patients with a heart disease often suffer more from asymp-
tomatic chest pains, in comparison to those without heart disease.

Meanwhile, similarity-based insight is the opposite to the outstanding-based insight.
This insight type recommends the closest visualizations compared to the reference
dataset [34].

2.2 Correlation-Based Insight

In the context of data exploration, data analysts generally derive insights from the
data by iteratively computing and visualizing correlations looking for the attribute
pairs with the highest correlations [14], either high positive or negative correlated
[32]. Hence, the correlation-based insight recommends visualizations with the high
correlated pair of measures. A visualization of correlation-based insight Vi is speci-
fied by a tuple < B, C >, where B and C ⊆ M. The result of that visualization
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can be represented as the set of tuples: < (b1, c1), (b2, c2), ..., (bn, gn) >. Finally,
the utility score of Vi is measured in terms of correlation coefficient of a tuple
< B, C >. We use the Pearson correlation coefficient, which is formally defined

as: U(Vi) =
∑n

i=1(bi−b̄)(ci−c̄)√∑n
i=1(bi−b̄)2

√∑n
i=1(ci−c̄)2

. Figure 3b shows top-1 recommended visu-

alization Vi of correlation-based insight which is generated from the heart disease
dataset, where Vi : VISUALIZE scatter (SELECT thalach, age FROM
HeartDiseaseDB WHERE disease=‘Y’). The figure shows the high negative
correlation of two measures (thalach: maximum heart rate achieved vs. age) where the
correlation score is −0.53.

2.3 Distribution-Based Insight

Many classical statistical tests depend on normality assumptions [3]. Significant skew-
ness and kurtosis clearly indicate that the data is not normaly distributed. Skewness is
a measure of the lack of symmetry, while kurtosis is a measure of whether the data
is heavy-tailed or light-tailed relative to a normal distribution. Generally, data analysts
utilize values of skewness and kurtosis in order to find the attributes and measures that
deviate from the normal distribution [12].

The distribution-based insight recommends the dimensional attributes or mea-
sures that most deviate from the normal distribution (e.g., [12,14]). A visualization of
distribution-based insight Vi is specified by a tuple <E, COUNT(E)>. The utility score
for Vi is measured in terms of the third standardized moment μ3 of Vi for the skewness-
based insight and the fourth standardized moment μ4 of Vi for the kurtosis-based

insight. Hence, U(Vi) for the skewness-based insight is μ3
σ3 , where μ3 =

∑n
i=1(ei−ē)3

n

and σ =
∑n

i=1(ei−ē)2

n . Meanwhile, U(Vi) for the kurtosis-based insight is μ4
σ4 , where

μ4 =
∑n

i=1(ei−ē)4

n and σ =
∑n

i=1(ei−ē)2

n . In all cases, μ is the mean, σ is the standard
deviation. Figure 3a shows the top-1 recommended visualization Vi of the skewness-
based insight, where Vi : VISUALIZE bar (SELECT ca, COUNT(ca) FROM
HeartDiseaseDB WHERE disease=’Y’ GROUP BY ca). The figure shows
ca is the dimension with the highest skewness score: +2.8, where ca is the number of
major vessels colored by flourosopy.

3 Incomplete Data and Visualization Recommendation Quality

In this section, we first discuss the incomplete data problems (Sect. 3.1). Then, we
introduce the quality measures used for assessing the quality of recommendations.
(Sect. 3.2).

3.1 The Incomplete Data Problem

Data quality is a crucial challenge to data exploration and analytics. Poor quality data
would distort the analysis and reduce the benefits of any data-driven approach causing
profound economic impact. Research has shown that the average cost of poor data on
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a business is 30% or more of its revenue [1]. The New York Times has also reported
that analysts spend 50%–80% of their time preparing dirty data before it can be used
for data analytics [6]. Common examples of data quality challenges include multiple
representations as a result of merging data from a variety of sources, incomplete data,
anomalies, invalid, extreme, erroneous or duplicate values (e.g., [22,26]).

In this paper, we focus on the incomplete data challenge. Incomplete data is com-
mon problem for data analytics (e.g., [10,16,26]). In descriptive analytics, incomplete
data can lead to misleading conclusions such as wrong results for aggregate queries
[39]. Meanwhile, in predictive analytics, incomplete data can introduce bias into a pre-
diction or classification models (e.g., [10,16]). Moreover, in the context of recommen-
dation systems, incomplete data has been shown to result in inaccurate rankings, which
has the expected effect of producing misleading recommendations [31].

Several data cleaning techniques have been introduced to overcome incomplete data
issues include substituting missing data values by mean, median, or the most frequent
value (e.g., [24,27]), or using k-Nearest Neighbor [11], or association rules [38]. How-
ever, it is well-known that those imputation methods cannot fully solve the incomplete
data problem. For instance, recent studies such as [10,20] compared the performance of
several imputation methods (e.g., median, linear regression) and showed the reduction
of prediction and classification accuracy using those imputation methods.

Instead of proposing a new imputation method, this work investigates the impact of
incomplete data on the quality of recommended visualizations. To the best of our knowl-
edge, there is no prior work that focuses on that area. Existing work (e.g., [25,33]) used
sampling techniques to generate data visualizations and inspect the quality of the visu-
alizations. However, our problem differs from those studies. Those studies focus on the
quality of visualization while our work focuses on the quality of recommended visual-
izations. Another work is Profiler [22], which visualizes the data quality problems. This
study also differs from ours. Profiler recommends visualizations that reveal data quality
problems while our work recommends visualizations that reveal insights.

Recent data quality studies investigated the impact of incomplete data in predictive
analytics (e.g., [10,20]). Those studies compared the performance of various imputa-
tion methods on different supervised classifiers and explored the impact of incomplete
data on the quality of classification and prediction models. Our problem differs from
those studies in two ways. First, those studies focus on the impact of incomplete data
in predictive analytics while our work is studying the impact of incomplete data in
descriptive analytics. Second, the context of those studies are on general classification
and prediction problems while our context is on visualization recommendation.

Toward investigating the impact of incomplete data on the quality of visualization
recommendation, we introduce three measures for assessing the quality of recommen-
dations, which explained next.

3.2 Quality of Recommended Visualizations

Recall from definition 1 that the goal of visualization recommendation is to recom-
mend a set of top-k visualizations that reveal insights, in particular, as formulated in the
definition 1, given a multi-dimensional dataset D, the set of top-k visualizations S is



Quality Matters: Understanding the Impact of Incomplete Data on 129

U R SC
0.96 1 U
0.95 2 V
0.94 3 W
0.92 4 X
0.89 5 Y

SI R U
U 1 0.96

V 2 0.95

W 3 0.94

X 4 0.92

Z 5 0.89
Jaccard

RBO CD

Fig. 4. A set of visualizations generated from complete data SC = (U, V,W,X, Y ) and visu-
alizations generated from incomplete data SI = (U, V,W,X,Z), R is ranking and U is utility
score. (Color figure online)

recommended. Let us consider DI is the incomplete version of D. To facilitate the dis-
cussion, let us assume SC is the set of top-k visualizations from the complete data, and
it is equally to S. Moreover, SI is the set of top-k visualizations from the complete data
D. In order to understand the interplay between incomplete data and recommended
visualizations, the top-k set obtained from an incomplete data SI is compared to the
top-k set obtained from the complete data SC .

In this work, we utilize various metrics to assess the quality of the recommended
visualizations in SI compared to SC . First, we utilize the Jaccard distance [30], which
compares the composition of two sets as in Fig. 4. The score of Jaccard distance is
calculated by the number of visualizations in common, divided by the total number
of visualizations. Accordingly, when applied to the set comparison, two sets with the
same composition will have the same similarity score. However, in our work, the order
of visualizations in the top-k set is essential. For instance, the top-1 visualization is
more important than the top-10 visualization. Hence, we utilize the second metric, Rank
Biased Overlap (RBO) [37], to consider the visualization ranking when assessing the
quality of recommendations. As shown in Fig. 4, RBO considers the composition of the
two sets and their ranking, and it can be seen within the blue dotted line.

Finally, we have two metrics to evaluates our recommended visualizations. How-
ever, both metrics only compare the composition of the sets without considering the
utility score of each visualization inside the set. Thus, we utilize the third metric called
Cumulative Distance (CD) [21]. This metric captures both the utility score of each visu-
alization U(Vi) and visualization ranking. Figure 4 within the red dashed line illustrates
the scope of the CD metric. The detail of those three metrics is explained next.

Jaccard Distance. Jaccard distance [30] is defined as the magnitude of the inter-
section divided by the magnitude of the union of the two sets, which is formally
defined as: Jaccard(SI , SC) = |SI

⋂
SC |

|SI

⋃
SC | . This distance is bounded by 1. The value

is between 0 for no similarity and 1 for identical sets. According to Figure 4, consider
SC = (U, V,W,X, Y ) and SI = (U, V,W,X,Z), Jaccard distance score of SI to SC

is 4
6 = 0.66. The score is obtained from the number of intersection (i.e., four visual-
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izations in common U, V,W,X) divided by the union (i.e., six visualizations in total
U, V,W,X, Y, Z). This computation is based on the composition of both sets, the visu-
alization ranking inside the set is not counted. For instance, if the visualizations in SI

is reversed (i.e., SI = (Z,X,W, V, U)), the Jaccard distance score is still same 0.66.

Rank Biased Overlap (RBO). Since Jaccard distance is discounting the visualization
order, we utilize the second metric called RBO [37]. RBO is a popular metric in Infor-
mation Retrieval, which commonly used for the problem of comparing two ranked lists.
RBO is compatible with item order and also compatible with the dis-jointness problem
(i.e., an item is present only in one ranked list). In this work, we adopt RBO to quantify
the quality of recommended visualizations in SI compared to SC .

To calculate RBO score, RBO determines the fraction of content overlapping at
different depths. Consider at each depth d, the intersection of sets SI and SC to depth
d is: ISI ,SC ,d = SI :d

⋂
SC :d. The size of this intersection is the overlap of sets SI

and SC to depth d, XSI ,SC ,d = |ISI ,SC ,d| and the proportion of SI and SC that are

overlapped at depth d is their agreement, A′
SI ,SC ,d = XSI,SC,d

d . Hence, the RBO score
of SI and SC is defined as: RBO(SI , SC , p) = (1−p)

∑∞
d=1 pd−1 ∗A′

SI ,SC ,d. Similar
to Jaccard, RBO has a range between 0 and 1, where 0 means disjoint, and 1 means
identical. The parameter p models the user’s persistence which is the probability of the
user continuing to the next visualization. In particular, the smaller p, e.g., p = 0, only
the top-ranked visualization is considered, and the RBO score is either zero or one.
Meanwhile, if p = 1, the evaluation becomes arbitrarily deep due to the probability of
deciding to stop is 0. The suggested p value is 0.95 or 0.97 [37]. In this work, we used
p = 0.95, it means that the first 20 ranks have 86% of the weight of the evaluation.

Consider the example in Fig. 4, using RBO the effectiveness score of SI in compar-
ison to SC is 0.84 due to the both sets SI , and SC have only one different visualization
on the tail. The Y is the last visualization in SC , while the Z is the last visualization in
SI . However, if both sets have different on the head (i.e., top-1 visualization), the RBO
score is 0.7. This example shows the visualization ranking is counted in RBO.

Cumulative Distance (CD). We utilize Cumulative Distance as our third metric. We
adopt CD from DCG (Discounted Cumulative Gain) [21]. Similar to RBO, the DCG
metric is generally used in Information Retrieval. This metric is a popular method for
measuring the quality of search results. It assumes that highly relevant results are more
valuable than marginally relevant results, and the top result is more important than the
tail. The DCG works by combining the degree of relevance and the rank of the search
results in a coherent way. Meanwhile, the DGC score is unbounded. Hence, we can use
the normalized DCG (nDCG). The nDCG is defined as the actual DCG performance for
a search query divided by the ideal DCG performance. To the best of our knowledge,
this work is the first to use CD (i.e., mapped from nDCG) in the context of visualization
recommendation. In our work, the degree of relevance of the visualization Vi is the
utility score U(Vi), where the utility score U(Vi) is calculated according to the type of
insight as explained in Sect. 2. The CD score of SI to SC is defined as the DCG of SI
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divided by DCG of SC : CD =
∑n

i=1,i∈SI

1
log2(i+1)∗Ui

∑n
i=1,i∈S

1
log2(i+1)∗Ui

, where Ui is utility score of each

visualization from the complete dataset D.
Accordingly, Jaccard and RBO score from the example in Fig. 4 are 0.66 and 0.84.

Those scores indicate that both sets have quite a lot of differences. However, when we
look at the CD score, it provides a different perspective. The score of the CD is 0.99.
It is close to 1 (i.e., almost identical). That is because the utility score of Y and Z is
precisely same (U(Y ) = U(Z) = 0.89), which means the degree of importance of both
visualizations (Y and Z) is the same.

4 Experimental Evaluation

In this section, we first discuss our experimental testbed (Sect. 4.1). Then, we present
and discuss our experimental evaluation. (Sect. 4.2).

4.1 Experimental Testbed

Data cleaning methods: In this work, we utilize and compare various well-known data
cleaning methods, which are summarized as follows:

1. Ignore cell: The top-k visual insights are generated directly from the incomplete
dataset by ignoring missing cells. In this approach, the process of handling incom-
plete data is on the cell level (e.g., [10,20]).

2. Eliminate row : The process of handling incomplete data is on the row or tuple level.
Particularly, a row that contains a missing cell is dropped. If the amount of missing
cells is large, it may end up eliminating a huge amount of data [27].

3. Impute cell: In this approach, we utilize two common imputation techniques:
(a) Median and most frequent imputation: This approach works by calculating the

median of the non-missing values in a column and then replacing the missing
values with the median within each column if the missing values are numerical
data. Meanwhile, if the missing values are categorical data (strings or numerical
representations), the missing values are imputed with the most frequent values
within each column (e.g., [10,20]).

(b) KNN imputation: This approach imputes the missing data by finding the k clos-
est neighbors to the observation with missing data and then imputing them based
on the non-missing values in the neighbors.

Datasets: We conduct our experiments over the following datasets: (1) The Cleveland
heart disease dataset is comprised of 8 dimensional attributes, 6 measures, and 299
tuples [4]. (2) The New York Airbnb dataset is comprised of 4 dimensional attributes,
4 measures, and 30249 tuples [5]. (3) The Diabetes 130 US hospital dataset consists of
14 dimensional attributes, 13 measures and 100 thousand tuples [2]. We conduct our
experiments over those three datasets, however, due to space limit, the Cleveland heart
disease dataset is the default dataset for presenting the results in this paper.

Incomplete Data: We simulate missing data completely at random (MCAR) with dif-
ferent settings: (1) the distribution of missing values is on dimensional attributes A, (2)
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(a) Jaccard (b) RBO (c) CD

Fig. 5. Impact of data cleaning methods on effectiveness of outstanding-based insight using dif-
ferent data cleaning methods, k = 10

the distribution of missing values is on dimensional measures M, and (3) the distribu-
tion of missing values is on the whole data A+M. Recall from definition 1, in this
experiment, we create an incomplete version data DI from D. Then compare the top-k
set SI , which generated from the incomplete data DI to the top-k set SC , which gen-
erated from complete data D. In order to avoid bias, 100 versions of DI with different
random missing seed are generated. Finally, we repeat the experiments with different
settings including: the percentage of missing values (i.e., 0%– 90%), the number of
k, the type of insights, the data cleaning methods, and the quality measures used for
assessing the quality of recommendation.

Default Parameters: The default parameters used in our evaluation are k = 10, the
percentage of missing data is 10%, the default of data cleaning method is ignore cell,
the default dataset is Cleveland heart disease. The final result is the average from 100
versions of DI and we present the results with confidence interval CI = 0.95.

Aggregate-Based Insight: In the case of aggregate-based insight, we use five
aggregate functions (COUNT, AVG, SUM, MIN and MAX) where COUNT is only
COUNT(*). We use different query predicates T to understand the impact of input
queries on the quality of recommendation with different percentages of missing val-
ues. For example, we want to compare an aggregate visualization generated from the
selected subset dataset chest pain types = ‘typical angina’ to the visualization if gen-
erated from a reference dataset chest pain types != ’typical angina’. In this work, to
study the impact of query predicate T on the quality of recommendation, we use three
different queries for heart disease dataset: 1) q1: cp = typical angina vs cp != typical
angina; 2) q2: sex = Female vs sex = Male; 3) q3: exang = exercise induced angina vs
exang != exercise induced angina.

4.2 Experimental Evaluation

In this section, we discuss our experiment results under a combination of different set-
tings including: (1) the adopted data imputation methods, (2) the distribution of incom-
plete data, (3) the types of insights revealed by those visualizations, and (4) the quality
measures used for assessing the quality of recommended visualizations.
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(a) Ignore cell (b) Median and most frequent
imputation (c) Impact k with ignore cell

Fig. 6. Impact of Data Cleaning Methods on Effectiveness with Different Datasets - (a,b) ignore
cell vs. median and most frequent imputation, (c) impact of k on effectiveness using ignore cell
method

Impact of the Data Cleaning Methods on Effectiveness. In this experiment, we ana-
lyze the effectiveness of data cleaning methods under different percentage of missing
values and the quality measures (Jaccard, RBO, and CD). We compare four common
data cleaning methods (e.g., ignore cell, eliminate row, median and most frequent impu-
tation, and KNN imputation). Since the eliminate rowmethod is included, the maximum
percentage of missing values for this experiment is 30%. Moreover, the missing values
are distributed on the whole data and the results of this experiments are generated based
on the outstanding-based insight. As shown in Fig. 5, the best data cleaning method is
ignore cell and the worst is eliminate row. That is because that eliminate row leads to
eliminate a huge amount of data. To the contrary, by ignoring missing cells without
eliminating row, ignore cell outperforms other data cleaning methods. Meanwhile, in
terms of imputation methods, KNN imputation has a better effectiveness than Median
and most frequent imputation method. The result shows that the patterns are consistent
for the three quality measures.

Impact of the Data Cleaning Methods on Different Datasets. In this experiment, we
analyze the effectiveness of data cleaning methods under different datasets. We compare
two data cleaning methods, which are ignore cell and median and most frequent impu-
tation and the results of this experiments are generated based on the outstanding-based
insight. The missing values are distributed on the whole data and maximum percentage
of missing values for this experiment is 80%. As shown in Fig. 6, overall, the pattern
from three datasets are similar. In particular, in terms of the impact of missing values
(Figs. 6a and 6b), the effectiveness is decreasing when the number of missing values are
increased. Moreover, in terms of the impact of k (Fig. 6c), the effectiveness is increas-
ing when k is increased. Meanwhile, if we compare Figs. 6a and 6b, the effectiveness of
ignore cell is better than median and most frequent imputation, especially for heart dis-
ease dataset. That is because the heart disease dataset has more dimensional attributes
rather than measures. Imputing missing values on categorical data using most frequent
method reduces the effectiveness. Further, the result of the Airbnb dataset is contrary
to the result of the heart disease dataset. That is because the Airbnb dataset has more
measures rather than dimensional attributes. The airbnb dataset consists of four dimen-
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(a) Jaccard (b) RBO (c) CD

Fig. 7. Impact of incomplete data on effectiveness of different insight types, k = 10

(a) Jaccard (b) RBO (c) CD

Fig. 8. Impact of k on effectiveness of different insight types, 10% missing values

sional attributes and four measures. However, since no incomplete data on predicate, the
missing values are distributed on three dimensional attributes and four measures. Based
on the results, we can conclude that median and most frequent imputation outperforms
ignore cell if the data has more missing values on measures.

Impact of Incomplete Data on Effectiveness. Figure 7 shows the impact of incom-
plete data on effectiveness under different types of insights. The figure shows that if
the percentage of missing data is higher then it reduces the quality of visualization rec-
ommendation. The most resilient insight type to incomplete data is distribution-based
insight (i.e., skewness, kurtosis), then the correlation-based insight, and the less resilient
is aggregate-based insight. The skewness-based insight and kurtosis-based insight are
specified by a single attribute or measure. Hence, losing a certain percentage of data
will not change much of the data in each dimension. Meanwhile, the correlation-based
insight is based on a pair of measures. Hence, the correlation-based insight less toler-
ance to the incomplete compared to the distribution-based insight. The aggregate-based
insight is the most complex insight type. It is specified by the combination of dimen-
sional attributes and the aggregate function of measures. Hence, the aggregate-based
insight is the most sensitive to incomplete data, especially the similarity-based insight.

Impact of k on Effectiveness. As shown in Fig. 8, the higher number of k results in
the higher effectiveness due to the probability of the top-k set from the incomplete data
having same content to the top-k set from the complete data is higher if the number of
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k is larger. For instance, Jaccard score is equal to 1, if k = |V|, where the number of k
equal to the number of candidate visualizations, however, it is only applies to Jaccard
not to RBO and CD

(a) the average of gap (variance)
of utility score

(b) Jaccard (c) RBO

Fig. 9. Impact of input queries on effectiveness of outstanding-based insight, k = 10

Impact of Input Queries on Effectiveness. Figure 9 shows the impact of predicate
queries on the quality of visualization recommendation. Three different queries are
used: 1) q1: cp = typical angina vs cp != typical angina; 2) q2: sex = Female vs sex
= Male; 3) q3: exang = exercise induced angina vs exang != exercise induced angina.
Figure 9a shows that q1 is more resilient to the incomplete data compared to other input
queries (Fig. 9b and 9c). The results show that if the input query generates top-k set that
the variance among utility score of visualizations is very low, this low variance leads to
more loss on effectiveness especially if the number of missing values is high.

Impact of Dimensional Attributes, Measures, and Attributes+Measures on Effec-
tiveness. Do the incomplete data on dimensional attributes have more impact rather
than on measures? If so, when data analyst has a dataset with missing values on both
dimensional attributes and measures, then she should give more attention to dimen-
sional attributes rather than measures. Based on the experiment results, missing values
on attributes and measures have the same impact on the effectiveness. Figure 10 shows
the impact of dimensional attributes, measures, and both on effectiveness with differ-
ent percentage of missing values. The results are generated based on the heart disease
dataset with the distribution of missing values on attributes and measures are equal. The
results show that categorical and numerical data are equally important.

Impact of Recommendation Quality Metrics on Effectiveness Using Different
Number of k and Different Missing Data Distributions. Figure 11 shows the impact
of k on effectiveness if the incomplete data only on attributes, only on measures, and
on both attributes and measures. As mentioned above, missing values on attributes and
measures have the same impact on effectiveness (Figure 11a and 11b). The results also
show how the performance of our three quality measures (i.e., Jaccard, RBO, and CD)
under different number of k. Cumulative distance CD always performs above Jaccard
and RBO. It is because of the default of percentage of missing values is quite small
(10%). Meanwhile, there is an interesting pattern in Fig. 11c, the figure shows that if
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(a) Impact dimensional at-
tributes A on effectiveness

(b) Impact measures M on ef-
fectiveness

(c) Impact attributes and mea-
sures A+M on effectiveness

Fig. 10. Impact of dimensional attributes, measures, and attributes + measures on effectiveness of
outstanding-based insight, k = 10

(a) Impact k when the distribu-
tion of missing values on A

(b) Impact k when the distribu-
tion of missing values on M

(c) Impact k when the distri-
bution of missing values on
A+M

Fig. 11. Impact of k on effectiveness of outstanding-based insight 10% missing values

the number of k is small (e.g., 5, 10), Jaccard performs under RBO, however, when k is
large (e.g., > 20), Jaccard performs above RBO and there is a crossover between both
of them. Hence, the higher number of k results in the higher effectiveness in terms of
Jaccard but not RBO. Jaccard score is equal to 1, if k = |V| where the number of k
equal to the number of candidate visualizations. To the contrary, RBO has a different
pattern, RBO score can be equal to 1 if visualizations inside the two top-k sets are in the
same order, which is hard to be achieved. Hence, by increasing the number of k does
not necessarily result in increased effectiveness in terms of RBO.

5 Conclusions

In this work, we investigate the interplay between incomplete data and recommended
visual analytics under a combination of different conditions. This study lays the founda-
tion for further exploring appropriate ways to deal with incomplete data and minimize
the impact of incomplete data on visualization recommendation. We believe that this
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work can provide valuable insights for data analysts rather than blindly believing a rec-
ommendation result over low-quality data.
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Abstract. With data evolution in terms of volume, variety and velocity,
Information Systems (IS) administrators need to find the best solution
to store and manipulate data with respect to their requirements. So far,
existing approaches provide rules to transform a source model to a tar-
get model, but none of them propose a method to lead the choice of the
most suitable solution. ModelDrivenGuide suggests a model transforma-
tion approach that focuses on proposing the different relevant solutions
to the case of study. It is based on a common meta-model for the 5 fam-
ilies (Relational & NoSQL) and a generation heuristic. Our approach is
validated using the TPC-C benchmark.

Keywords: NoSQL · Information Systems · User guide · MDA ·
Model transformation · Schema denormalization

1 Introduction

For several decades, the storage and the exploitation of data has mainly relied on
Relational Databases (RDB). With the advent of Big Data, the volume of data
has exploded, the heterogeneity has increased, causing problems of transforma-
tion from traditional databases to new storage on the Cloud, whether in terms
of storage management, data query, cost or performance. These new data man-
agement systems are called NoSQL systems since 2009. The NoSQL data models
correspond to various families of data structures: key-value oriented (KVO), col-
umn oriented (CO), document oriented (DO), and graph oriented (GO).

With more than 225 different NoSQL solutions, it is difficult for a company’s
CIO to determine the most suitable solution for its functional needs. Indeed,
transferring the database to a NoSQL solution is an extremely heavy and costly
process. Inadequate choices can lead to problems of scalability, data consistency
or pricing. Our present work aims to provide an answer by driving the choice of
digital transformation solutions.

c© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2020, LNCS 12391, pp. 141–151, 2020.
https://doi.org/10.1007/978-3-030-59003-1_9
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Existing solutions for the digital transformation of a relational database
remain essentially limited in their approach. Indeed, proposed methods are based
either on a transformation of the physical model causing problems of scaling, or
a purely logical model providing transformations with respect to the business
logic. However, they do not take into account the optimization problems inherent
to the origin problem of this transformation (scaling up).

Our ModelDrivenGuide approach provides logical modeling suitable for mod-
els refinement in order to generate all types of optimized physical schemas. Based
on rules, it provides a decision making process that integrates the use case to
guide the implementation choice of the SQL and/or NoSQL solution(s). The
main contributions of this paper are: (i) an approach that subtly combines con-
ception with optimization in DB transformation process; (ii) a common meta-
model that supports all families (relational and NoSQL) and schema transfor-
mation; (iii) a heuristic to reduce the search space of model generation.

The rest of this paper is organized as follows: the state of the art is presented
in Sect. 2. Then our approach is developed in Sect. 3. We finally validate our
approach on the TPC-C benchmark in Sect. 4 and conclude in Sect. 5.

2 Related Works

Most of the existing studies have proposed either (i) a comparative study between
RDB and NoSQL DB and/or how to transform relational data into NoSQL data
or (ii) how to transform a conceptual model into a specific NoSQL DB; (iii)
while very few studies have proposed criteria for the choice of physical model
and implantation platforms.

Transformation of a Relational DB into NoSQL DB. These approaches
define a set of mapping rules that transform a relational schema into a NoSQL
schema. We can cite [11] for CO families with HBase, [18] with several CO DB, or
[16] for DO families with MongoDB. Other techniques are concerned with queries
to define the target data model [8,10].

Transformation of a Conceptual Model into NoSQL DB. [7] proposes to
transform an Entity Relationship (ER) model into a CO model, based on the
definition of a CO schema using primary and foreign keys, and on transformation
rules. Similarly, [2] suggests a query-driven approach for modeling Cassandra
starting from an ER model. They define dedicated logical and physical mod-
els, as well as transformation rules between models. [5] proposes a conceptual
transformation approach which converts an ER model into one of the 4 NoSQL
families with an abstract formalization of the mapping rules.

Other studies adopt a model-driven architecture (MDA) to transform a class
diagram into NoSQL DB. [1] transforms a class diagram into a NoSQL DB.
The authors present a common logical model which describes the four families
of NoSQL DB. Then, this logical model is transformed into physical models
related to the four families. In [3], the authors propose UMLtoNoSQL, a MDA
based framework to map conceptual models to several data storage solutions.
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Their approach combines model mapping techniques with a set of rules to trans-
late OCL constraints into various query languages. [12] and [4] systematically
transform a class diagram into a CO DB with HBase and GO DB respectively.

NoSQL DB Choice Orientation. To guide the choice of the NoSQL DB, we
find performance comparisons for dedicated needs [9,15,17], studies of applica-
bility to specific scenarios or software quality choices [13]. A comparative clas-
sification model [6] proposes to link functional and non-functional requirements
to the techniques of each NoSQL family. The result is presented as a decision
tree that guides the choice of the NoSQL system based on sharding, volume of
data and CAP properties.

To conclude on the state of the art, existing approaches that compared RDB
and NoSQL DB are basically based on technical criteria, and do not cover all the
factors that can impact performance such as the data model, the type and the
frequency of queries, the optimization structures, and the case of study. Model
transformation approaches provide rules that transform a source model into a
target model. However, these approaches do not favor the flexibility of the schema
offered by NoSQL DB as a whole, and do not allow to move from one model to
another, or from one NoSQL family to another via transformations; splitting a
source concept into several target concepts, or merging several source concepts
into one target concept. Thus, the flexibility of models has not been sufficiently
exploited to facilitate transformations and improve performances. Finally, the
few existing works on NoSQL DB choice orientation are basically based on tech-
nical criteria and do not consider data model nor functional requirements.

3 ModelDrivenGuide: Implementing Conceptual Model

We propose an approach for the generation of logical models for each family
(NoSQLs and relational). Our approach is based on transformation rules start-
ing from the conceptual model, then going from one logical model to an other
by refinement. We adopt a Model-Driven Architecture1 that offers 3 types of
models, namely 1) the Computation Independent Model (CIM) that describes
the requirements; 2) the Platform Independent Model (PIM) which describes the
components of the system independently of platforms; 3) and the Platform Spe-
cific Model (PSM) which describes the components of the system using a precise
technical platform. MDA also recommends transforming models by formalizing
the transformation rules in a language such as the Query-View-Transformation
(QVT)2, which is the standard proposed by the OMG for models transformation.

3.1 Overview of Our Approach

Our approach provides a modeling framework based on those multiple dimen-
sions of choice as illustrated in Fig. 1.

1 MDA: https://www.omg.org/mda/index.htm.
2 https://www.omg.org/spec/QVT/About-QVT/.

https://www.omg.org/mda/index.htm
https://www.omg.org/spec/QVT/About-QVT/
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Fig. 1. ModelDrivenGuide: From conceptual to physical models

The PIM1 integrates the functional needs of the IS, both in terms of data
and queries. This traditional UML class diagram serves as a basis for modeling
the user requirements.

The PIM2 is the second level independent model, common to the five families
of models (NoSQL & relational). It allows to carry out refinements by generating
all the possible denormalized models using merge and split rules. To reduce
the search space, a generation heuristic keeps only the effective solutions by
simplification based on the use case.

The PSMx are obtained by the transformation of compatible PIM2 into the
target data family (e.g. nesting for DO, rows for CO, edges for GO, etc.). Choices
of sharding and indexing strategies are obtained using a generic cost model for
the 5 families. All solutions can be proposed and sorted in relevance order.

This article focuses especially on the PIM2 5Families meta-model used
to generate all possible data models, the transformation and refinement rules
(between and inside meta-models) and also the heuristic that reduces the search
space of PIM2 data-models by removing useless solutions. The choice of proper
data-models determined by a global cost model is out of the scope of this paper.

3.2 The 5Families Meta-Model

The common meta-model seeks to produce different schemas compatible with
the PSM constraints while remaining independent. The subtlety of the common
PIM2 is to integrate the 5 families of data models. A major advantage of this
meta-model is that if a denormalization (or normalization) solution proves to be
well suited to a case of study using a family, it may also be the suited one to the
four other families. Thanks to the refinement rules, it will be possible to merge
or split concepts to adapt them to all the data models.

Figure 2 shows the PIM2 5Families meta-model integrating all the concepts
used in the 5Families data models: the concepts contain rows (for column-
oriented models), key-values with simple or complex values. Concepts can also
be linked by edges to facilitate the integration of a graph database.
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Fig. 2. PIM2 common meta-model for the 5 families of data models

Fig. 3. PIM2 5Families Model Refinement - Concepts’ Rows Merge QVT Rule

Complex Values are represented by the composition of rows. A loop occurs
between rows and complex values, it shows that a value can be multiple, and
is structurally identical to a concept. This modeling choice enables the applica-
tion of refinement rules without iteration limits, allowing the production of new
schemas. Meta-constraints are associated with the Complex Value to avoid the
mutual composition of instances. Constraints and references are associated with
keys, which can belong to distinct concepts. The idea is to be able to transform
these constraints into new representations using refinement rules. For example,
a Reference can be transformed into an Edge for graph-oriented models or into
a Foreign Key in relational databases. UML classes from the PIM1 are trans-
formed to the PIM2 using traditional mappings between concepts, keys and their
values. Rules are expressed in QVT (for more details, see [1]).

3.3 Common Model Transformation and Refinement

The common meta-model helps to refine models iteratively while respecting the
meta-model. The PIM2 refinement relies on three transformation rules:

– Merge rows between concepts to produce complex values for nesting (CO, DO)
or to merge keys for values concatenation (KVO),

– Split rows to produce new columns in a same concept (CO),
– Transform references into the equivalent edges (GO).
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At PIM2 level, models’ refinement uses endogenous transformations where
both the source model and the target model are conform to the same meta-
model, here the 5Families meta-model. Here, we focus on the RowConceptsTo-
NestedRowConcept QVT rule (Fig. 3) that merges rows belonging to two differ-
ent concepts. Thus, two rows from two different concepts referring to each other
(initially classes associated at the PIM1 level) can be merged into a single row
with a complex value. Row r2 of concept co2 is linked by reference ref to concept
co1 through row r1. To merge rows, row r2 is then nested into a complex value
cv which corresponds to the transformation of the reference into a new key value
k. The latter corresponds to the transformation of the reference key k1. This rule
can be applied in both directions by switching co1 and co2 (generating a list of
complex values in k). As detailed in the following, the generation of data models
will rely on those rules by applying them recursively on various combinations of
transformations. Each new schema produced by QVT rules can be transformed
to target PSMx.

3.4 Transformation Heuristic to Generate Data Models

Models’ refinement produces plenty of new data models in which we will find
the target solution. The number of generated models and solutions is huge, since
splits can be applied on each key and merges can be done in several ways. We
need to apply a heuristic to reduce the search space and avoid cycles. It is based
on the idea of avoiding to produce the same data models with two different
paths. In fact, applying splits and merges in different orders will produce the
same effects on the resulting data models. Moreover, one can reverse the effect
of a path and produce a cycle in the production of data models. Thus, four main
rules have to be adopted and can be summarized in the following:

– A split cannot be applied on a Row with Complex Values. Schemas generation
should not go back after merges to avoid cycles.

– A merge cannot be applied between two Rows of the same Concept, which
would cancel a split and generate a cycle.

– A split should not separate keys if queries from the use case express a link
between them. This will avoid solutions which require instance reconstruction
with costly joins.

– The merge of Concepts is led by the use case with queries combining rows
of different concepts through references. The goal is to reduce the number of
joins. It should be noted that the merge can be done in different ways.

4 Experimentations

To illustrate our approach, we used the TPC-C3 benchmark giving a full use
case mixing at the same time transactions, joins and aggregations. For the imple-
mentation of our approach, we generated different denormalized schemas that
3 http://www.tpc.org/tpc documents current versions/pdf/tpc-c v5.11.0.pdf.

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
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Fig. 4. PIM1 of TPC-C benchmark
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Fig. 5. The Chosen PSM documents
after several PIM2 fusions of TPC-C

we have integrated into a MongoDB database. The choice was led by the fact that
MongoDB is one of the rare NoSQL solutions integrating ACID transactions in
sharding required by the TPC benchmark. All experiments were run on Mon-
goDB 4.2 on a cluster of 30 physical servers with a 3.60 GHz quad-core processor
with 16 GB memory. For distribution, each shard corresponds to a distinct server.
All showed processing times correspond to the average time given by 10 runs.

The TPC-C benchmark simulates the behavior of a logistic DB on user orders
with transaction-oriented stock management (OLTP). To simplify, we will focus
on the three main classes (Customer, Order and OrderLine) as illustrated in the
PIM1 depicted in Fig. 4. TPC-C covers four transactions describing the activities
of a management environment: T1 - create an order and its delivery, T2 - update
by payments, T3 - process 10 new orders and T4 - supply warehouses’ stock
monitoring. When looking for a client, he is identified by his identifier (c id in
T2.1 and T4.1) or by his last name (c last in T2.2 and T4.2).

Our experiments focus on the three most relevant document-oriented PSM
models presented in Fig. 5. They correspond to three refinements of PIM2 for
which were applied: the normalized model (M1), a merge of Order & Order-Line
concepts (M2 by nesting the list of Order-Line), and a second merge of M2 &
Customer concepts (M3 with a list of Order M2 ). Sharding keys are placed on
c id or o id, and indexes on secondary keys c last or nested keys.

4.1 Data Volume Variation

The increase in volume is tested on the M1 schema (equivalence). The data
is distributed over two shards and the volume of data varies from 5 to 100
warehouses, representing 16 GB of data. Figure 6 shows the execution time of
transactions’ queries T1 to T4. The T3 query witnesses a different dimension
due to its costly grouping operation thus it is shown separately.

We can notice that T1, T2.2 and T4.1 give weakly growing execution times
wrt. the volume of data as a result of a good use of the sharding key which
supports well the load of small updates. However, T2.2 and T4.2 transactions
show a strong increase in execution time due to the use of secondary indexes on
the c last key. Their low selectivity does not support the increase of volume.
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Fig. 6. Variation of data volume with M1

Fig. 7. Variation of the number of servers with M1 for 100 warehouses

The T3 must, on each iteration, process 10 new orders and the associated
order lines. In fact, each order must be searched for, modified, and updated
according to linked order lines. Thus, the volume of data has a huge impact on
this heavy transaction requiring a strong monopolization of chunks and reducing
the cache effect [14]. The threshold obtained after 70 warehouses corresponds to
a null cache effect given the amount of data and the number of available chunks.

4.2 Number of Shards Variation

Here, we show the distribution effect by increasing the number of shards
(nodes/servers). The M1 collection with 100 warehouses is distributed in order
to define the number of servers necessary to reach convergence. Figure 7 shows
the effect of parallelism until reaching stability starting from 7 shards. The gain
is low for T1, T2.1 and T4.1 transactions (twice faster) since these are short
transactions. For T2.2 and T4.2 based on c last, a significant gain is obtained,
since the query is carried out on smaller sets on each server (local indexes). In
fact, time was divided by 4. The T3 transaction distributes updates for 10 orders
and achieves a constant processing time per order (1,699 ms).

4.3 Data Models Performance

The last test case is to compare the 3 data models in order to see the impact
of data modeling on the performance of the system. To do so, we used 100
warehouses on 9 shards. Each of the transactions was tested on the 3 data models
M1, M2 and M3. Figure 8 shows the execution times for the M1 normalized
model, the semi-denormalized M2 and the fully denormalized M3.

The first transaction T1 deals with order’s insertion and associated order
lines. In the M1 model each element is individually inserted. On the other hand,
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Fig. 8. Data models performance

the M2 model must gather the command lines to nest them as a block in the com-
mand, generating a delay. The M3 model generates a substantial additional cost
(+20%). In fact, rewriting chunks force the placement of the modified document
(more space), and thus adds processing time at concerned shard ’s level.

For transaction T2.1 that consults orders and their order lines for a given
customer, the M2 model is more efficient, since it merges them. The M1 model
must perform the “join” during the process. However, the M3 model goes through
all the orders to retrieve the last one, so it is more expensive. Transaction T2.2
searches for customers by last name. We note that the M3 model becomes more
efficient because the additional cost of searching for orders is compensated by
the search for the last name. This is not the case for the M1 and M2 models
that must search for all of the homonyms before consulting the commands.

For T4.1 and T4.2 which update the payment of customers order, we observe
a similar behavior with the additional cost of the updates of orders’ “states”.

Transaction T3 is very representative of the denormalization gain. Indeed,
we can see the significant gain by merging concepts of −63% for M2 and −78%
for M3. Indeed this transaction requires to join all concepts in order to process
order lines’ updates. Consequently, the normalized model M1 requires many
“joins”, while M2 and M3 merge order lines into orders and thus update a single
document to process the transaction. M3 is slightly more efficient, as the delivery
status is also notified to the customer (data linked to the document).

We conclude from above experiments, that : a) as expected, normalized stan-
dard modeling increases the number of treatments between collections, in par-
ticular on linked updates, b) complete denormalization of the schema increases
the processing of a certain number of queries due to 1) generating insertions in
lists, and 2) browsing lists for each consultation. However, queries requiring to
link all the collections are optimal, c) the semi-denormalized data model brings
a good compromise between the targeted search with and without “joins”.

5 Conclusion and Future Work

In this paper, we have proposed ModelDrivenGuide, an IS modeling and imple-
mentation MDA approach that guides the user from conceptual model to plat-
form technical choices. The cornerstone of our approach is the common logical
meta-model that describes the 5 families of models. We have presented QVT
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refinement rules, particularly for merging concepts’ rows. Those rules generate
optimized schema and produce potential target models. This mix between data
modeling and optimization rises to an approach that aims to find the efficient
target model among the 5 families of data models. A heuristic reduces the search
space and targets relevant models since they rely on the IS’s use case.

In future work, we wish to define a generic cost model for PIM2, allow-
ing to compare the solutions produced. This cost model will integrate different
dimensions (storage, bandwidth, CPU/energy impact, etc.). We also work on the
definition of the eligibility of a PIM2 in the target PSM. Indeed, the generated
models must be compatible with a dedicated PSM model and it is necessary to
define mapping rules (a key & a value for KVO, Concepts & Links for GO, etc.).
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Abstract. Popular document-oriented systems store JSON-like data
(e.g. MongoDB). Such data formats combine the flexibility of semi-
structured models and traditional data structures like records and arrays.
This allows numerous structuring possibilities even for simple data. The
data structure choice is important as it impacts many aspects such as
memory footprint, data access performances and programming complex-
ity. Our work aims at helping users in selecting data structuring from
a set of automatically generated alternatives. These alternatives can be
analyzed considering complexity metrics, query requirements and best
practices using such “schemaless” databases. Our approach for “schema”
generation has been inspired from Software Product Lines strategies
based on feature models. From a UML class diagram that represents
user’s data, we generate automatically a feature model that implicitly
contains the structure alternatives with their variations and common
points. This feature model satisfies document-oriented constraints so as
user constraints reflecting good practices or particular needs. It leads to
a set of data structuring alternatives to be considered by the user for his
operational choices.

Keywords: NoSQL · Document-oriented systems · Variability ·
Feature models

1 Introduction

Flexibility of semi-structured models supported by document-oriented NoSQL
systems opens the door to many possibilities for data representation. The choice
of data structuring has a significant impact on the database and the applications.
These concerns aspects such as performance, readability, usability, maintainabil-
ity and evolution of code and system [5]. The data structuring alternatives can be
numerous and the choice is not obvious in many cases. Our proposal aims at help-
ing developers to carry out design and analysis phases despite the many possible
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Fig. 1. Links between the features of a model of features

alternatives of a system without database schema (Schemaless). We propose the
SCORUS approach [4] where the developer models the data using UML. This
model is processed to automatically generate a set of document-oriented struc-
turing alternatives presented as a set of AJSchema. It is a simple and readable
format, which without playing the role of DB schema, highlights the data types
and facilitates reasoning about the structure. SCORUS automatically evaluates
metrics for each AJSchema. These metrics are objective indicators of the char-
acteristics of the structures. An analysis phase, completes the approach based
on metrics and user preferences as presented in [6,7]. The ScorusTool prototype
implements this approach.

This article focuses on the automatic generation of structuring alternatives.
The approach has been inspired from Software Product Lines strategies based
on feature models [9]. These models represent the variability between differ-
ent alternatives of a product. We consider document-structures as products and
generate several alternatives to represent the UML class diagram given by the
user. The UML is automatically processed to create a feature model reflecting
the document-oriented structuring possibilities. The feature model includes con-
straints imposed by the document-oriented model definition and known good
practices to discard invalid or irrelevant structures1. Each possibility is derived
into an AJSchema to facilitate further analysis.

Section 2 presents the principles of product lines and feature models whereas
Sect. 3 details how we use it to obtain document-oriented structuring alterna-
tives. In Sect. 4 we introduce the AMISS algorithm to create the feature model.
Section 5 details user restrictions allowing to customize the set of alternatives.
Section 6 introduces the ScorusTool prototype. Related work is described in
Sect. 7. Our conclusions and perspectives are presented in Sect. 8.

2 Background: Feature Models and Variability

It is essential to Software product lines (SPLs) to state common characteristics
and variations among the products to build. To solve this, most strategies are
based on feature modelling [8]. SPL define steps for feature modeling, product
configuration and product derivation. We describe those steps briefly below.

Feature Modeling. A feature model, fm, consists of a set of features F , links
connected them L , a root rc and a set of constraints D that force or prohibit

1 Specific user preferences can also be added as constraints.
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Fig. 2. a) Class model for agencies and business b) Basic case: two classes and one
association

two or more features to be in the same product. Constraints follow the form
X =⇒ Y .

fm = (F ,L , rc,D)

Features are organized in a tree structure forming groups. Figure 1 shows the
links used to designate the variations between features: Mandatory, Optional,
OR and XOR groups.

Configuration Process. Once the feature model fm is created, the configura-
tion step consists in selecting the set of valid combination of features ‖fm‖. Each
combination or configuration C consists of a subset containing the names of the
chosen features. A valid configuration conforms to the constraints D specified in
the feature model fm.

C(fm) = {f |f ∈ F (fm)}

Derivation Process. Once configurations identified, each one can be used to
produce an “artifact” with the selected features. For instance, an application or
a hardware.

3 Generating Document-Oriented Structuring
Alternatives

We adopt the product line approach because of the flexibility and the large
number of structure possibilities offered by a document-oriented NoSQL system
as MongoDB. In our work, a product is a possible “schema”. This section presents
how we build a feature model to derive document-structuring alternatives for a
UML diagram.

3.1 Data Types and Data Modeling: Example and Notation

Document-oriented systems manage data as collections of documents. A doc-
ument is a set of attribute:value pairs. The value type can be atomic or
complex. A complex type is either an array of values of any type or a nested
document. An attribute value can be the identifier of a document. This allows
referencing one or more documents. This type system provides a lot of flexibility
in creating complex structures.

Let’s consider Fig. 2. The class Agency represents an agency handling busi-
ness, represented by the class Business with the role bLines. A business is
managed by a single agency (role ag). There are several ways to model such



Automatic Schema Generation for Document-Oriented Systems 155

Fig. 3. Semi-structuring alternatives for the UML model of Fig. 2

data in a document-oriented base. Each class can lead (but is not mandatory) to
a collection whose documents contain the class attributes. For instance, collec-
tion Agencies would have documents containing the attributes of class Agency.
Relationship r1 can be materialized either by nesting or by referencing informa-
tion from the related classes. This allows several ways to structure collections.
Figure 3 shows some representations. Alternative 2 shows nesting and possible
duplication of business data. Some alternatives should be discarded because
they do not show completeness with respect to the model. For example, collec-
tion Agencies does not reference or nested the related documents. The space
of alternatives can be reduced according appropriate criteria such as structuring
constraints following modeling guidelines, good practices or data-access priori-
ties.

In the following we will use UML class models (Fig. 2b) noted as mU =
(E,R) where:

• E = {e1, ..., en} is the set of classes
• R = {r1, ..., rn} is the set of relationships. We limit to binary relationships without

attributes.
• R(ei) = {r1, ..., rn} is the set of relationships of the class ei
• E(rn) = {ei, ej} are the classes connected by the relationship rn. ei �= ej
• card(rn, ei) and rol(rn, ei) are the cardinality and the role of rn regarding to ei.
• A(ei) = {a1, ..., an} are the attributes of the class ei. ai = {ai.name : ai.type}
• tei = {A(ei), aid} is the type of ei. It contains the class attributes and a default

identifier2.

3.2 Modeling Document-Oriented Structuring Variations
with Feature Models

We use a feature model to represent structuring differences and to control the
number of possibilities. These differences are guided by document-oriented struc-
turing guidelines such as nesting, referencing, depth, and duplication. The valid
configurations are treated as variants of our product, the schema. Products can
be used for structure analysis.

We create the feature model, noted fms, from a UML model. The structuring
alternatives express different collection definitions considering the following main
modeling choices:

2 This type is introduced to facilitate the explanation of our proposals.
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1. A class ei can lead to the creation of a collection of documents of type tei.
2. A relationship r between ei and ej , can be materialized by nesting or refer-
encing of ei in ej or vice versa.
3. A relationship r can be materialized by a separate collection called collection-
link.

In the following, we incrementally present the process to create the feature model.

Modeling a Class
To model the variability of alternatives for structuring a collection for a class ei, we
propose the feature model fmcol, depicted by the gray area of Fig. 4a. Its features
allow to treat the specific information of the class ei and a relationship r:

– The “root” feature, named colei, defines the collection for the class ei.
– The type of documents in this collection (the first level) is defined as a manda-

tory child feature, named tei. This type includes the attributes of ei and the
identifier aid.

Modeling Class Relationships introduces the extension of the type tei by adding
attributes to the documents at level 0. It uses the optional feature tei l0 ext, child
of the feature tei. This extension introduce the materialization of the association
r regarding documents ej by an XOR group depending of feature r rolej . Two
alternatives are considered:

1. Feature teiEMBcej tej indicates the nesting in tei of one or more documents
of type tej . cej is the cardinality. “many” leads to the nesting of an array
of documents whereas cardinality 1 corresponds to the nesting of a single
document.

2. Feature tei REF cej tej indicates the referencing form. Type tei is extended
with an attribute referencing one or several documents of type tej according
cardinality cej . One reference or an array of references. References use the
identifier aid.

Modeling Two Classes and a Relationship
Based on modeling features of a collection, fmcol, we model the alternatives of
two classes and a relationship. We propose the feature model fmasso (see Fig. 4)
as follows:

– The root feature, called Schema, has two child features, one mandatory,
named colByClass, and another optional, named colByAssoc.

– colByClass defines an OR group, the collections that may exist according to
the UML classes. A child feature corresponds to an fmcol per class.

– colByAssoc defines a collection-link per relationship by the feature colreiej
.

Their documents reference those of type tei and tej to represent the relation-
ship.

Section 4 presents our algorithm AMISS that is a generalization of the strat-
egy presented above to create incrementally the feature model for a complete
class diagram.
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Fig. 4. Feature model fmasso : two classes and a relationship

3.3 Valid Structures Definition

To reduce the combinatorial of configurations in the created feature model, we
define additional constraints, based on characteristics related to the document-
oriented model and good practices about data structuring:

Isolation Constraints DI , prevent the isolation of a collection. If a collection
of type tei, at the first level, does not represent the relationship rn, then rn

has to be represented elsewhere. From a collection-link or from a nested level
belonging to another collection:

D I
= { tei ∧ ¬tei l0 ext =⇒ coleiej ∨ r rolej , tej ∧ ¬tej l0 ext =⇒ colejei ∨ r rolei }

Existence Constraints DE guarantee the existence of a referenced collection.
If a type tei is referenced, then a collection of the same type must exist.

DE
= { tei REF

cej tej =⇒ colej , tej REF
cej tei =⇒ colei }

Nested Loop Constraints DBI prevent collections from being referenced
together. If tei refers the type tej , then tej can not nest tei.

DBI
= { tei REF

cej tej =⇒ ¬ tej EMB
cei tei , tej REF

cei tei =⇒ ¬ tei EMB
cej tej }

Looped References Constraints DRB prevent collections that nest doc-
uments of type tei being referenced by another collection of the same type. If
tei refers the type tej , then tej can not refer tei.

DBR
= { tei REF

cej tej =⇒ ¬ tej REF
cei tei }

Relationship Links Constraints DL guarantee that a collection-link concern-
ing a relationship rn refers only collections whose type is not extended by the
second type defined by rn. If the collection-link coleiej exists, there is a collec-
tion of type tei not extended by tej and a collection of type tej not extended by
tei.

DL
= { coleiej =⇒ (colei ∧ ¬r rolej) ∧ (colej ∧ ¬r rolei) }
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Fig. 5. Model fmasso representing alternatives for the UML model of Fig. 2

The constraints of feature model fmasso include constraints of isola-
tion, existence, nested loops, looped references and links: D(fmasso) =
{DI ,DE ,DBI ,DBR,DL}.

3.4 Configuration and Derivation of Alternatives

The feature model fmasso with constraints D(fmasso) provides 8 configura-
tions3 for two classes and one relationship, ‖fmasso‖ = {C1, C2, C3, C4,
C5, C6, C7, C8}.

C1 = {Schema, colByClass, colei, tei, tei l0 ext, r rolej , teiEMBcej tej}
C2 = {Schema, colByClass, colei, tei, tei l0 ext, r rolej , teiEMBcej tej , colej, tej}
C3 = {Schema, colByClass, colei, tei, tei l0 ext, r rolej , teiEMBcej tej ,

colej, tej , tej l0 ext, r rolei, tejEMBcei tei}
C4 = {Schema, colByClass, colej, tej , tej l0 ext, r rolei, tejEMBcei tei}
C5 = {Schema, colByClass, colei, tei, colej, tej , tej l0 ext, r rolei, tejEMBcei tei}
C6 = {Schema, colByClass, colei, tei, tei l0 ext, r rolej , teiREF cej tej , colej, tej}
C7 = {Schema, colByClass, colei, tei, colej, tej , tej l0 ext, r rolei, tejREF cei tei}
C8 = {Schema, colByClass, colei, tei, colej, tej , colByAssoc, colreiej}

Configurations C1 to C5 correspond to structures with nested documents,
whereas C6 to C8 use document referencing. For example, configuration C2 con-
tains the features colei and teiEMBcej tej indicating the existence of a collec-
tion colei with nested documents of type tej . C2 also contains the feature colej

without features EMB or REF related to it. That implies the existence of a
collection colej without extension its type tej . These configurations provided by
the feature model of Fig. 5 correspond to the alternatives illustrated by Fig. 3.

Structure alternatives are derived from the feature model as AJSchemes. Figure 6
shows those produced by the feature model in Fig. 5. The AJSchema format
facilitates the analysis of the structures and allows to automatically evaluate
structural metrics [7]. Metrics quantify the complexity of the structure to help
developers deciding about data structures to use.

3
We used the SAT solver S.P.L.O.T. to calculate the number of valid configurations http://www.
splot-research.org/ .

http://www.splot-research.org/
http://www.splot-research.org/
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Fig. 6. Products of fmasso of Fig. 5 in the form of AJSchema

4 AMISS : Algorithm for Modeling Semi-structured
Schemes

We generalize our approach so as to create a feature model fms for all classes and
relationships of a given class diagram. We propose the Algorithm for M odelIng
Semi-Structured Schemes, AMISS here after. The creation of the feature model
starts from

one class having
relationships. One rel-
ationship of the class
is treated and gives
rise to a feature model
fmasso (line 8). The
other classes and rel-
ationships are then
treated. Each associ-
ation leads to a fea-
ture model fmasso

which is then inte-
grated into the com-
plete model fms (line
10). The feature mod-
els are “merged”.

FusionAssociation, see Algorithm
2, modifies fms to integrate the
modeling (represented in fmasso)
of a new association rn with its classes ei and ej . Figure 7 illustrates the main
actions (numbered with stars) that enrich fms. A stands for Agency, B for
Business and C for CoWorker.

1. Integrate the partial model rn into collection colei. For this, add the branch
r rolej of the fmasso to the features of fms that nest documents of type tei

(see Lines 1–9).
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Algorithm 2 - FusionAssociation (fms, fmasso, rn, ei, ej) : fms
� Complete types tei at level 0 or nested

1: fmbranch ← extractExtension(fmasso, ei, rn) � Extract branch r rolej and constraints
2: fms ← insertBranchCommonClass(fms, fmbranch, ei)
3: foreach f ∈ F (fms) ∧ f =

⊗
embcei tei do

4: if f is leaf then
5: fms ← addFeatureExtension(fms, f, ei, cse(ei))
6: end if
7: fmbranchV ← createBranchVersion(fmbranch, ei, ej , csr(rn, ej))
8: fms ← embedBranch(fms, fmbranchV , f.child)
9: end foreach
10: fmcol ← extractFMcol(fmr, ej , rn) � Add new collection colej

11: fms ← insertFMcolNewClass(fms, fmcol, ej)
� Complete type tei nested with colej

12: fms ← addFeatureExtension(fms, tejembcei tei, ei, cse(ej))
13: foreach fmbranch filsOf (tei l0 ext) ∈ fms

∧
fmbranch.root �= r rolej do

14: fmbranchV ← createBranchVersion(fmbranch, ei, ej , csr(rn, ei))
15: fms ← embedBranch(fms, fmbranchV , ej , cset)
16: end foreach
17: fms ← insertBranchRelation(fms, fmasso, rn, ei, ej) � Add collection-link for rn

Fig. 7. Fusion of fmasso (left) to obtain the global model fms (right) integrating
fmasso

2. Add the model of the new collection created for ej . The model fmcol cor-
responding to the branch colej of fmasso is added to the group OR of feature
ColByClass of fms (see Lines 10–11).
3. Complete the type tei nested in the new branch colej of fms. For this, add to
it the already existing model of relationships other than rn. These relationships
are in type tei of colei in fms (see Lines 12–16).
4. Add the collection-link for rn. This is represented by the feature colassoeiej

of fmasso and must be inserted in the tree of the feature colByAssoc of fms

(Line 17).

The resulting fms model represents a set of valid configurations corresponding
to structuring alternatives. The feature tree can yield to a large number of valid
configurations. The following Section discusses how to include user knowledge
to reduce and to customize the set of alternatives.
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5 Customizing Structuring Alternatives

The alternatives produced by the feature model created by AMISS can be filtered
and customized to capture user preferences. For example, good practices issued
by the software developer community (e.g. Avoid nesting more than N docu-
ments) or application specific preferences. Globally accepted constraints can be
predefined as packages to be included automatically. We help constraint defini-
tion by providing an interactive module. Users simply choose the constraint type
and value and the system automatically adds it to the feature model without
effort for the user. Feature model fms (Fig. 7) leads to 119 valid structuring
alternatives if no user constraint is used.

Avoiding References From a Collection: To discard alternatives considering
references from Agencies, a user can choose the option “avoid references starting
from a certain level of a collection”. Then, she selects collection Agencies (colA
in fms) and level 0. The following constraint is automatically created and added
to the model:

coltA =⇒ ¬ tA REFn tB ∧ tB REFn tC 1

This constraint discards all the structuring alternatives where collection
Agencies refers to documents of type Business or CoWorker. After that, 97
structuring alternatives still available.

Forcing Collections Existence: If a user wants to preserve the existence
of collections corresponding to embedded types into collection Agencies (colA)
until level 2, she selects the appropriate option and gives the collection name and
level. The following constraint will be automatically created: colA =⇒ coltB ∧
coltC

Users may also introduce preferences according to a given application context.
The interactive module, helps an easy declaration of constraints without conflict
with the mandatory structuring constraints enforced by AMISS. Due to space
limitation no further explanation are given in this paper.

6 ScorusTool Prototype

ScorusTool implements the schema generator and a module to evaluate struc-
tural metrics. Given a user provided UML class diagram, the tool creates a
feature model and translates configurations of the fms model into AJSchemes
(as in Fig. 6) and a tree structure, AJTree. We use the FAMILIAR language
[2] to manage the feature models and to implement the AMISS algorithm. An
interactive interface helps users to easily declare constraints and related values.

7 Related Work

The use of feature models to generate document-oriented data structuring alter-
natives has proven to be relevant. This approach is, to the best of our knowl-
edge, original for the design of databases. It allows to explore and to manage
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several structuring alternatives and offers interesting possibilities for taking into
account a variety of constraints. Related work on NoSQL data modeling use
other approaches. The motivation for most of these works was the almost ad-
hoc choice of a data structure favorable to the performance for a given set of
queries. [13] presents an algorithm for the systematic creation of a structure for
an entity-relationship model. The structure is “denormalized” and relationships
are represented by nesting documents. This implies a kind of pre-calculation of
natural joins. The solution usually leads to data redundancy.

Works such as [10–12] focus on alternative data representation in Cassandra’s
“big table” model. The objective is storage and performance optimization. [10]
proposes the creation of copies of the data with different structures according to
pre-calculated queries.

The approaches presented in [1,3] target heterogeneous systems. They are
based on a meta-model representing the characteristics of NoSQL data models.
For the same information, they propose structuring alternatives according to the
target system. [1] uses a model driven approach. They transform a UML model
into a generic logic model containing the common concepts of Cassandra, Neo4J
and MongoDB. A transformation phase creates structuring alternatives for each
NoSQL system. Specific rules are used for transforming a relationship for each
system. Five solutions are proposed for MongoDB but the process for several
relationships is not explained.

8 Conclusion and Future Work

The flexibility of data structuring offered by document-oriented NoSQL systems,
such as MongoDB, allows many modeling options. Taking into account the stakes
and the difficulty of the choice, we offer to the user a solution to generate auto-
matically alternatives and to constraint them according to user criteria. Alter-
natives are created as a feature model for a UML class diagram. The feature
model captures (1) the flexibility and restrictions of the document-oriented type
systems and (2) the context needs, given as constraints. Constraints allow better
targeting the set of alternatives. The set of constraints can evolve to incorporate
new criteria appropriate to specific contexts. Our research perspectives focus on
large scale experiments on the whole Scorus approach and in handling irregular
structures.

Acknowledgments. We thank G. Vega, J. Chavarriaga, JP. Giraudin and anonymous
reviewers for their valuable feedback.
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Abstract. We propose a scheduling method for a “detour-type demand
bus” as a public transportation service suitable for densely populated
areas with a “star-type demand distribution” that has a demand accu-
mulation point. To address regular usage, which is the key to public
transportation on-demand buses, we consider construction of a schedule
for each vehicle from trip data. We designate the schedule for each vehicle
constructed from regular usage data as the “basic schedule”. However,
one-time reservation usage, which is a feature of a demand bus, is handled
by adding a transit point to the basic schedule. The schedule for each
vehicle in the stage of responding to this reservation usage is designated
as the “operation schedule”. We conducted simulation experiments using
data from the Katsura area, a residential suburb of Kyoto, Japan. The
proposed method has good results in terms of stable transportation of
regular usage, but it is inferior to conventional demand buses in terms
of flexible response to reservation usage.

Keywords: Demand responsive transport · Dial-a-ride problem ·
Detour-type demand bus · Public transportation

1 Introduction

Development of public transportation networks has not kept pace with rapid
population concentrations in many areas. Efficient intra-regional transportation
systems functioning as feeder networks will be established in such densely pop-
ulated areas.

These areas have a certain level of regular trip demand for commuting. It
causes a characteristic tendency of the distribution of demand, a so-called star-
type demand distribution, for which the demand for moving in and out of a
demand accumulation point, such as a station from within the area occupies
a certain percentage of traffic during a specific time period. Noda et al. [5]
demonstrated by simulation that a “demand bus” is effective for such a star-
type demand distribution of a certain scale. A “demand bus” accepts reserva-
tions from a user, such as a departure and arrival point, and a departure and
c© Springer Nature Switzerland AG 2020
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arrival time, in the form of a reservation. Then the service constructs an opera-
tion schedule that is able to satisfy as many reservations as possible. However,
demand buses have an important shortcoming: it is difficult to accommodate reg-
ular usage stably because of the characteristics of dynamic schedules. To resolve
this difficulty, we construct schedules for a detour-type demand bus using reg-
ular usage data, which represent trip demand information collected from users
who make the same trip every day.

To confirm the effectiveness of our proposed method, we conducted a sim-
ulation experiment using data from the Katsura in Kyoto, Japan, which has a
star-type demand distribution. We compared the proposed method, non-detour-
type demand bus, and Kyoto City Bus, which is an existing bus service in the
area, and discussed their benefits and shortcomings. In terms of the acceptance
rate of regular usage data, the proposed method outperforms both a non-detour-
type demand bus and the Kyoto City Bus. However, it is slightly inferior to
a non-detour-type demand bus in terms of the acceptance rate of the entire
demand including one-time reservation usage. Whereas the existence of the basic
schedule contributes to the stable response to regular usage, it also causes con-
straints for the operation schedule. Therefore, it becomes an obstacle to flexible
response to the reservation usage. As described herein, construct the operation
schedule without modification is done using the Insertion Heuristics reported by
Solomon [8]. Some room for improvement remains.

2 Basic and Operation Schedules

We construct a detour-type demand bus schedule according to the following two
stages. In the first stage, a basic schedule is constructed for each vehicle using
regular usage data. This schedule is constructed before beginning the service
using it. In the second stage, during application period of the basic schedule, the
operation schedule is constructed by dynamically modifying the basic schedule
according to reservation data. We adopt this design to handle regular usage
data representing long-term demand and reservation data representing one-time
demand.

Basic Schedule. For simplicity, assuming that the vehicles stop only at inter-
sections, the basic schedule can be represented as a sequence of intersections
and transit times assigned to each vehicle. The route that is run between these
intersections is free as long as the fixed transit time is known.

We construct the basic schedule according to the usage of regular users to
meet the demands of regular users, who are crucially important for public trans-
portation. By collecting “regular usage data” indicating the regular user trips
every day in advance, one can ascertain when and where the regular users embark
on the bus and disembark from it. Of course, because of the limitations of the
speed and the number of vehicles, not all regular usage data are satisfied in
the basic schedule. It is important to construct an algorithm generating a basic
schedule that satisfies as many regular usage data as possible.



166 Y. Sakai et al.

Operation Schedule. Whereas the basic schedule responds to regular usage
data as long-term demands, the operation schedule responds to reservation data
as one-time demands. Because the reservation data are input in real-time by
reservations from users during operating hours, the operation schedule must be
dynamically changed accordingly.

The representation format of the operation schedule we propose is the same
as that of the basic schedule, a sequence of intersections and their transit times
given to each vehicle. The operation schedule is changed by inserting the source
and destination intersections and times of the reservation data into the transit
sequence defined by the basic schedule and the reservation data inserted earlier.
Insertion should be done by selecting the target vehicle so that as much reser-
vation data as possible can be satisfied, and as the basic schedule, so that not
all reservation data can be satisfied because of resource limitations.

3 Algorithms for Generating Schedules

Each vehicle has one basic schedule and one operation schedule. A basic schedule
set is constructed by allocating regular usage data to an optimal vehicle. An
operation schedule set is constructed by allocating reservation data to an optimal
vehicle.

3.1 Preliminaries

Map Data. We employ a representation of the road network in that area as a
weighted undirected graph as map data. The weight represents the road length.
In addition, an intersection that is regarded as the depot position and an inter-
section that is regarded as the demand accumulation point are determined.

Regular Usage Data. We assume that each regular user uses the same source
and destination intersections simultaneously every day for commuting. Regular
usage data indicate usage information of the corresponding regular user, i.e.,
source and destination intersections, and the source and destination time.

Reservation Data. Reservation data include usage information of the corre-
sponding reservation user. Their representations are the same as those of regular
usage data.

Vehicle Data. Each vehicle is assigned a basic schedule and an operation sched-
ule to follow. The number of vehicles is determined in advance.
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3.2 Basic Schedule Construction Algorithm

The basic schedule set is constructed by allocating regular usage data to appro-
priate vehicles. Although allocation procedure details differ among methods, the
basic strategy of repeating the allocation recursively between the regular usage
dataset and the vehicle set is the same. Regular usage data that do not meet
the allocation constraints explained later will not be accepted. As a result, a
sequence of transit intersections and times is assigned to each vehicle as a basic
schedule.

Notation. Let G = (V,E) denote the map data, for which V is the intersection
set and E is the road set. The distance between intersections va ∈ V and vb ∈ V
by the shortest path is represented as |va, vb|. In addition, set depot vbase ∈ V
and the demand accumulation point vaccum ∈ V .

Each regular usage data ck of user k consists of (vsk, t
s
k, v

d
k, t

d
k), where vsk

and vdk represent the source and destination intersections, and tsk and tdk respec-
tively represent the source and destination time. Consequently, the regular usage
dataset C consists of {c1, . . . , c|C|}.

For these analyses, we assume that vehiclei denotes vehicle i. All vehicles
have a uniform speed limit Speed. The basic schedule for vehiclei is bi. The
basic schedule bi has a sequence of intersections V b

i through which vehiclei must
pass, and a corresponding sequence of transit times T b

i . Consequently, the vehicle
set V ehicle consists of {vehicle1, . . . , vehicle|V ehicle|}. The basic schedule set B
consists of {b1, . . . , b|V ehicle|}.

Constraints in Allocation. Vehicle vehiclei must pass on time at all inter-
sections specified by the accepted regular usage data because the vehicle must
observe the speed limit Speed. Furthermore, the operation start time tstart and
end time tend are set for vehicle vehiclei. If all constraints can be satisfied, then
the regular usage data ck can be allocated to vehicle vehiclei.

Minimum Cost Priority Allocation Method. The Minimum Cost Priority
Allocation method finds which vehicle to use for regular usage data based on
the allocation cost, i.e., the increased mileage of the vehicle attributable to the
allocation. The initial value of the mileage of each vehicle is calculated based
on the assumption that the vehicle runs back and forth along the shortest route
between the depot vbase and the demand accumulation point vaccum. This tem-
porary calculation formula is used for setting an appropriate initial value. For
vehicles with at least one set of regular usage data allocated, the vehicle mileage
vehiclei is calculated assuming that the vehicle runs on the shortest route while
passing through the sequence of transit intersections V b

i in order according to
the basic schedule bi.

In this method, regular usage data and a vehicle allocation pair are selected
such that the total mileage of vehicles is reduced using the allocation cost. By
making the total mileage as small as possible, a basic schedule with more time
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to spare is constructed. More reservation data can be accepted at the stage of
constructing the operation schedule.

The outline of the method is to repeat the allocation using the combina-
tion of the regular usage and the vehicle, i.e., the allocation pattern with the
smallest allocation cost. For regular usage data not yet allocated to any vehicle
Cunallocated and vehicle set V ehicle, the allocation cost in all allocation patterns
is calculated. Then the process of allocation according to the pattern that min-
imizes the cost is repeated. If the allocation cannot be made with the minimum
cost pattern, then the allocation process ends because the same applies to any
allocation pattern.

Algorithm 1. Minimum Cost Priority Allocation Method
1: Cunallocated = C
2: while |Cunallocated| > 0 do
3: for all vehiclei ∈ V ehicle do
4: for all ck ∈ cunallocated do
5: Calculate the allocation cost when ck is allocated to vehiclei.
6: end for
7: end for
8: Let (vehiclemin, cmin) be a pair achieving the minimum allocation cost where

vehiclemin ∈ V ehicle, cmin ∈ Cunallocated.
9: if cmin can be allocated to vehiclemin then
10: Allocate cmin to vehiclemin

11: Remove cmin from Cunallocated

12: else
13: break
14: end if
15: end while

Transport Density Priority Allocation Method. The Transport Density
Priority Allocation method is not aimed at optimizing only the allocation cost,
i.e., the mileage; it also specifically examines the transport density of each vehi-
cle. The transport density of vehiclei is the sum of the boarding distance of the
regular usage data accepted by vehiclei divided by the total mileage of vehiclei.
Transport density increases when vehicles transport users densely, such as when
many users board the same vehicle simultaneously. This method is devised to
make the transport density of each vehicle uniform. As a result, each vehicle
with various transit intersections and times has the same margin for accept-
ing new reservations in the operation schedule construction; each is expected to
contribute to the reservation data acceptance rate.

To make the transport density uniform, regular usage data are allocated to
vehicles with the lowest transport density in this method. The allocation pattern
by which the allocation cost is calculated for each recursion is “the vehicle with
the lowest transport density vehiclelow and each unallocated regular usage data
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ck ∈ Cunallocated”. From the calculated |Cunallocated| allocation costs, select regu-
lar usage data cmin that minimize the cost; if cmin can be allocated to vehiclelow,
then allocate cmin to vehiclelow and recalculate the vehicle transportation den-
sity of vehiclelow. If allocation is not possible, then vehiclelow cannot accept any
unallocated regular usage data. It will be ignored in subsequent recursion. This
process is repeated there are no unallocated regular usage data or no vehicle can
accept further regular usage data.

Algorithm 2. Transport Density Priority Allocation Method
1: Cunallocated = C
2: V ehicleallocatable = V ehicle
3: while |Cunallocated| > 0 and |V ehicleallocatable| > 0 do
4: vehiclelow = vehiclelow ∈ V ehicleallocatable with the lowest transport density
5: for all ck ∈ Cunallocated do
6: Calculate the allocation cost when ck is allocated to vehiclelow.
7: end for
8: cmin = c ∈ Cunallocated with the lowest allocation cost to vehiclelow
9: if cmin can be allocated to vehiclelow then
10: Allocate cmin to vehiclelow
11: Remove cmin from Cunallocated

12: Recalculate the transport density of vehiclelow
13: else
14: Remove vehiclelow from V ehicleallocatable.
15: end if
16: end while

3.3 Operation Schedule Construction Algorithm

We adopt insertion heuristics reported by Solomon [8] for construction of the
operation schedule. Insertion heuristics allocates reservation data to vehicles
in the order of receipt. The initial operation schedule of each vehicle is equal
to its basic schedule. When reservation data are input, their allocation cost is
calculated for all vehicles. It will be allocated to the vehicle with the lowest
cost. If no vehicle can meet the constraints, then the reservation data will be
rejected. The reservation will not be established. The constraints and definition
of allocation cost are almost identical, as in basic schedule construction.

The reason for adopting insertion heuristics is that allocation can be per-
formed quickly. In constructing the operation schedule, one can process reser-
vation data input in real-time without delay. Therefore, insertion heuristics has
been adopted for studies of demand buses with real-time processing of reserva-
tions, such as the model of the demand bus for feeder networks in Okinawa by
Uehara et al. [11] and the detour-type demand bus design by Uesugi et al. [12].

For reservation users, source and destination intersections might be different
from their desired intersections represented in the reservation. These intersec-
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tions must each be reachable within walking distance from the indicated inter-
sections. To select an optimal vehicle and intersections, the allocation cost is cal-
culated for all allocation patterns of intersection candidates and vehicles. Then
the one that minimizes the cost is adopted. For simplicity, deviation of departure
and arrival times that is attributable to the time for walking is ignored.

4 Experiment and Discussion

We conducted a simulation experiment using data from the Katsura area of
Kyoto, Japan.

Fig. 1. Graph created from Katsura area map.

4.1 Used Data

Map Data. We created a graph as map data from latitude 34.9455◦ −34.9944◦

and longitude 135.656◦ − 135.7206◦ in OpenStreetMap [6]. We deleted roads
that are unsuitable for bus vehicles, such as residential roads. Additionally, some
vertices and edges were deleted so that the graph is connected and so that no
vertices of degree 1 or fewer exist. The number of vertices is 1072; the number of
edges is 1540. The depot vbase is an intersection near Rakusai Bus Terminal: the
largest operation base in this area. The demand accumulation point vaccum is the
intersection near Hankyu Railway Katsura Station, which is the main station in
this area.

Reservation Data. We estimated a reservation dataset for one day from the
query log of the transfer search “Aruku machi Kyoto” (Jul. 1–Dec. 31, 2016)
service and usage data of bus stops by the Kyoto Municipal Transportation
Bureau.
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Regular Usage Data. From the generated reservation data, we extracted
regular usage data where the source or destination intersection is close to Katsura
Station: the demand accumulation point. Considering the number of regular
users of Katsura Station, we set the number of extractions as 5000 with the
dataset at 200 m. With the dataset at 500 m, the extracted data were 4473.

Probe Data of Kyoto City Bus. Based on the GPS location data of Kyoto
City Buses, we created a running result for Kyoto City Buses on July 1, 2016 in
the Katsura area.

4.2 Settings

Methods to be Compared. Basic schedule construction algorithms of two
types are proposed, along with the option of not using the basic schedule, i.e., not
using the demand bus as a detour-type. We compared the schedules constructed
using these three methods and the Kyoto City Bus schedule.

Parameter Settings. The demand bus speed of Speed is set to 19.8 km/h,
referring to the scheduled speed of West No. 1, the main line of the Kyoto City
Bus service in the Katsura area. Service hours of demand buses extend from 4:00
a.m. to 1:00 a.m. the following day. Assuming that vehicles of sufficient size can
be prepared, the vehicle capacity is not considered for both demand buses and
the Kyoto City Bus. The number of vehicles for demand buses is set at 75.

As discussed in Sect. 4.1, parameters of two types exist in data generation
for the reservation and regular usage datasets. The reservation dataset selected
from 200 m around Kyoto City Bus stop was influenced heavily by bus stops
in the original search log. The distribution was biased. However, the dataset

Table 1. Minimum cost priority allocation method

Reservation dataset 200 m 500 m

Walking distance limit 200 m 500 m 200 m 500 m

Acceptance rate of reservation data 56.6% 66.1% 51.8% 64.5%

Acceptance rate of regular usage data 99.8% 99.8% 99.8% 99.8%

Total mileage 17,524 km 16,730 km 17,874 km 16,849 km

Table 2. Transport density priority allocation method

Reservation dataset 200 m 500 m

Walking distance limit 200 m 500 m 200 m 500 m

Acceptance rate of reservation data 57.0% 66.4% 52.2% 65.0%

Acceptance rate of regular usage data 93.8% 93.8% 93.4% 93.4%

Total mileage 17617 km 16945 km 17968 km 17049 km
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at around 500 m is closer to an even distribution by expanding the selection
of intersections. We prepared these two datasets to consider both the “dataset
assuming the route network of Kyoto City Bus” and the “dataset including the
potential trip demand”. In general, many “potential usages” are likely to be those
with a source or destination intersection that is not part of the roadway through
which the buses run. These users gave up using Kyoto City Buses because of the
distance to the bus stops.

According to the dataset, the walking distance limit is set as 200 m, which is
a realistic walking distance for using the bus, and at 500 m, which allows most
users to walk to the bus stop even with the reservation dataset at around 500
m.

4.3 Discussion

Effects of Reservation Dataset Settings. First, we consider the relation
between the dataset used and the acceptance rate of the proposed detour-type
demand bus. Tables 1 and 2 show that, in experiments using either the Minimum
Cost Priority Allocation method or the Transport Density Priority Allocation
method for constructing the basic schedule, the difference in the acceptance rate
of reservation data between the two datasets is 4.8%, at most, if the walking dis-
tance limits are the same. Although the reservation dataset at 200 m is regarded

Table 3. Demand bus without basic schedule

Reservation dataset 200 m 500 m

Walking distance limit 200 m 500 m 200 m 500 m

Acceptance rate of reservation data 66.0% 81.8% 61.2% 77.9%

Acceptance rate of regular usage data 72.6% 87.7% 66.5% 83.6%

Total mileage 18,912 km 15,658 km 19,431 km 16,500 km

Table 4. Kyoto City bus

Reservation dataset 200 m 500 m

Walking distance limit 200 m 500 m 200 m 500 m

For users near bus route

No. reservations 12,276 14,895 4829 13,661

No. regular uses 4255 4915 2420 4210

Acceptance rate of reservation data 48.0% 59.0% 39.1% 54.5%

Acceptance rate of regular usage data 50.6% 60.3% 43.6% 56.7%

For all users

Acceptance rate of reservation data 38.8% 57.9% 12.4% 49.1%

Acceptance rate of regular usage data 43.0% 59.3% 23.6% 53.3%

Total mileage 16116 km
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as easier for riders because of the biased distribution of reservation data, the fact
that the acceptance rate does not change much between the dataset at 200 m
and the dataset at 500 m indicates that the proposed demand bus can respond
flexibly to widely diverse user demands.

Second, we consider “potential reservation usage and usage” as described in
Sect. 4.2. Results of the experimental pattern of “datasets at 500 m, walking
distance limit: 200 m” show the number of data near the bus route as greatly
reduced. To ensure convenience in terms of “shortening the walking distance
before and after boarding and alighting the bus”, one must increase the variety
of bus stops. However, considering the fact that Kyoto City Bus has increased
the number of routes in the Katsura area to ensure a variety of bus stops, it is
difficult to establish a route network that covers more bus stops than the current
one.

Effects of Basic Schedule. Because the basic schedule exists, the proposed
detour-type demand bus guarantees that the regular usage accepted in the basic
schedule is also accepted in the operation schedule. However, the operation sched-
ule flexibility is reduced by constraints imposed by accepting regular usage. This
constraint is also evident in the experimentally obtained results when comparing
Tables 1 and 2, where basic schedules are used, and Table 3, where basic sched-
ules are not used. Regarding acceptance rates of reservation data, absence of a
basic schedule gives a higher rate than the presence of one. For the acceptance
rate of regular usage data, the presence a basic schedule gives a higher rate.

The existence of the basic schedule markedly improves the acceptance rate
of regular usage, leading to the purchase of commuter passes. Therefore, the
basic schedule can contribute to the improvement of profitability in this respect.
Comparison of the detour-type demand bus with the Transport Density Prior-
ity Allocation method (Table 2) and the demand bus without a basic schedule
(Table 3) in the results with the pattern “dataset at 500 m, walking distance
limit: 200 m” shows that the difference in acceptance rate of reservation data
is 9.0% (1369 cases), whereas that of regular usage data is 26.9% (1204 cases).
These represent the number of regular users secured by adopting the basic sched-
ule and the number of reservations that are no longer accepted. In terms of prof-
itability, we believe that the existence of the basic schedule is working positively
because an earlier study showed that the availability of service for commuting is
an important factor for evaluating demand buses from users [10].

However, the acceptance rate of reservation data is related directly to the
great advantage of the demand bus. We adopt the insertion heuristics used in
earlier studies [5,12] for the operation schedule construction algorithm. We also
set the allocation cost as a simple increment of vehicle mileage. In this respect,
much room exists for improvement. We would like to address this important
issue in a future study.
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Comparison of Basic Schedule Construction Algorithms. We consider
basic schedule construction algorithms of two types: The Minimum Cost Priority
Allocation method and the Transport Density Priority Allocation method.

Comparison of Table 1 and 2 shows that the Minimum Cost Priority Alloca-
tion method is favorable in terms of the acceptance rate of regular usage data.
Although the computational complexity is greater than that of the Transport
Density Priority Allocation method, the computational time is not a major hin-
drance to the construction of the basic schedule if the computation is completed
within a realistic execution time. However, a slightly higher acceptance rate
of reservation data is achieved using the Transport Density Priority Allocation
method. Comparison of the acceptance rate of regular usage data and that of
reservation data indicates that the superior method is the Minimum Cost Pri-
ority Allocation method, which achieves stable acceptance of regular usage. As
described in this paper, we specifically examined only those vehicles with the
lowest transport density during allocation with the Transport Density Priority
Allocation method, but attempting allocation by checking more vehicles might
have been better.

Comparison Between the Proposed Detour-Type Demand Bus and
Kyoto City Bus. In terms of the acceptance rates of both regular usage
data and reservation data, the proposed method outperformed the Kyoto City
Bus. These have almost equal total mileage. Moreover, the acceptance rates are
comparable in terms of profitability. As a comparative experiment, it would be
preferable to use a optimized fixed-route bus that is also optimized, for example,
with route planning particularly addressing many-to-one commuting trips such
as the star-type demand distribution described in a study by Chien et al. [1],
or a method using a genetic algorithm described by Sadrsadat et al. [7]. These
comparisons are left as subjects for future work.

5 Related Work

Demand bus studies have been conducted for many years, yielding many exam-
ples of demonstrations and services. Yamato et al. [13] conducted a demonstra-
tion experiment in a sparsely populated area of Kashiwa City, Chiba, Japan,
and administered a questionnaire survey of participants. Among the demand
bus features, participants particularly appreciated that many potential source
and destination points were provided. A demonstration experiment reported
by Tsubouchi et al. [10] in Unzen, Nagasaki, Japan, revealed characteristics of
demand buses that users value. They differ depending on which mode of trans-
portation a person usually uses. These results suggest the importance of clearly
assuming a mode of usage when designing a public transport service. Hiawata et
al. [3] and Enoch et al. [2] respectively surveyed demand bus services provided
to the public in Japan and the United Kingdom. The services presented in both
papers are mainly operations in rural areas, operating with few resources, and
often provided as an alternative to traditional bus service.
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However, Noda et al. [5] demonstrated the effectiveness of demand bus ser-
vice in densely populated areas through simulation experiments. They compared
demand buses with fixed route buses under various conditions and found that
demand buses are particularly good to address situations in which high demand
is generated and in which its distribution tendency resembles a star-type demand
distribution. As an earlier study of detour-type demand buses, Uesugi et al. [12]
designed a demand bus that operates between two fixed points in parallel. They
constructed a schedule by appropriately selecting allocation of destinations of
reservations from multiple vehicles. As a study with an idea resembling ours,
Uehara et al. [11] proposed a feeder network with a demand bus to transport
commuters in coordination with a railway in the suburban areas of Naha, the
central city of Okinawa in Japan.

In constructing the operation schedule, we use Insertion Heuristics using
Solomon [8]. Insertion heuristics is designed for the Vehicle Routing and Schedul-
ing Problem with time window constraints (VRSPTW), which can rapidly find
a near-optimal solution.

6 Conclusion

We proposed a scheduling method for a detour-type demand bus with two stages
of schedule construction. We aimed for stable acceptance of regular usage such
as commuting by collecting regular usage data in advance and by using the data
to construct basic schedules, which worked well and which outperformed the
non-detour-type demand bus without a basic schedule in this respect. We pro-
posed two methods for constructing a basic schedule set: Minimum Cost Priority
Allocation method and Transport Density Priority Allocation method. The for-
mer can achieve both stable acceptance of regular usage and flexible handling of
reservation usage to some degree, but the latter can be improved in the method
design. However, we used Solomon’s insertion heuristics [8] to construct the
operation schedule. For handling reservation usage, the proposed detour-type
demand bus performed worse than the non-detour-type demand bus. Improved
insertion heuristics might alleviate this shortcoming. However, compared to a
traditional bus service, Kyoto City Bus, the proposed method demonstrated a
higher capacity for both regular and reservation usage. Future studies will be
undertaken to improve our algorithm using new techniques such as an algo-
rithm to address various vehicle routing problems reported by Subramanian et
al. [9] and the algorithm particularly addressing demand uncertainty reported
by Moghaddam et al [4]. In addition, real-world public roads present obstacles
such as congestion and waiting at traffic lights. Therefore, the simulation should
reflect these difficulties.
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Abstract. In data science, the process of development focuses on the
improvement of methods for individual data analytical tasks. However,
their combination is not properly researched. We believe that this situ-
ation is caused by a missing framework, that would focus solely on data
analytical tasks, instead of complicated transformation between individ-
ual methods. In this paper, a new analytical algebra is defined. This
algebra is based on a flat structure of transaction file and operations
over it. As a part of the paper, definitions of several data analytical
tasks are proposed. Algebra is recursive and extendable. As an exam-
ple of usability of the algebra, one complex analytical task created by a
combination of analytical operators is described.

Keywords: Data analysis · Analytical algebra · Similarity · Pattern
mining

1 Introduction

The technology advanced in such a way that a lot of data from many resources
is produced daily. Users digitise enormous amounts of information in the form
of images, messages, posts, trajectories, timestamps, geotags, systems produce
logs about their behaviour, internet of things provides data about interactions
of smart devices, etc. In the last decades, dynamicity of the data forms made
it harder and harder to analyse data compared to the past. Database systems
are no longer fully sufficient to capture whole information. The more complex
forms of storage such as graph databases and other NoSQL databases emerged
to handle new types of information.

Hand in hand with this change in storage a need for more complex analysis
also emerged. Such analysis should not only analyse standard statistical prop-
erties of the data, which were sufficient in the past, but also focus on analysing
structures of this complex data and should take into account also context of the
data. Techniques like pattern mining or analysis based on similarity are often
involved in proper data analysis.

Although there is a demand for more complex analyses, it is not easily deliv-
erable. Most of the libraries focus on one specific area and provide a large amount
of optimised methods solving one specific task. To create ensemble of methods
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provided by different libraries, nontrivial data transformations are necessary. In
some cases, transformations are not even realisable.

Recently, tools like python’s Jupyter notebooks [10] or complex multipurpose
environments like R [21] or Matlab [12] have been used for the creation of such
complex analytical processes. However, the development of pipelines takes a huge
amount of focus on data type manipulation.

To tackle the before-mentioned problems, we propose a new analytical alge-
bra for the description of complex analytical functions created by a combination
of basic analytical tasks. This algebra is task-oriented to alleviate the need to
focus on specific analytical algorithms. Another important aspect is the extensi-
bility of this algebra, so it can be supplemented with new operations as needed.

The main contributions of this paper are the following:

– We introduce a new unifying structure for data analysis, transaction file.
– We define an extensible and recursive algebra based on the proposed struc-

ture.
– Several data analytical tasks are defined in the context of this new algebra.

2 Previous Work

Because data science is a broad area, we focus on its sub-part consisting of
pattern mining and similarity-based methods. However the same approach is
applicable to other areas of data analysis. For the purpose of this paper, we
refer to tasks such as clustering, outlier detection and similarity searching as
similarity-based analysis.

The main focus of researchers in these areas is invested in the development of
optimised approaches for each of these tasks. In the case of pattern mining tasks,
this can be seen in tasks such as frequent item-set mining algorithms [2,3,9,24],
sequence mining algorithms [16,20,23], graph mining algorithms [14,22], and
many others [1]. An extensive amount of algorithms for several clustering tasks
can be seen in [7]. In the case of similarity searching, research is mostly divided
into development of the indexing structures [5,15] or hashing techniques [11,13].

These techniques are often grouped in libraries such as pattern mining algo-
rithms in SPMF [6] or clustering techniques in ELKI [19] or in WEKA [8]. Such
libraries focus very often on one specific task and do not expect a combination
of included methods. Because of that, input and output format differs to such
extent, that complicated transformations must be developed by an expert with
coding knowledge. In some cases, this transformation requires multiple accesses
into underlying storage.

As mentioned in the introduction, this problem is often solved by the usage of
multipurpose environment or language. An example of such an environment can
be Jupyter notebook that allows creating complete pipelines written in python
language with the usage of open-source libraries providing methods and trans-
formation written by the programmer. Although this approach is a commonly
accepted way to provide complex analytical pipelines with presentable results, it
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requires nontrivial time spent on the development of transformations and selec-
tion of best suited algorithms, which can be in many cases selected automatically.

Each task of the data analysis has an expected input and output format.
So if the whole pipeline is defined and the conditions on data are implied, then
transformations of such data can be done without further need to define them
in multipurpose language.

3 Analytical Algebra

We propose a new data model, which shares similarities with relational model.
The data model consists of unifying structure called transaction file and analyt-
ical algebra with potential extension to query language for ease of use. Although
this restricts the number of useful tools available at the moment, the benefit
of this approach leads to a more optimised system of analysis focused on the
analysis itself.

3.1 Transaction File

The core of our proposal is a universal data-structure, transaction file, that has
been introduced in [17]. It is a unifying structure for most of the data analytical
tasks, as shown later in Sect. 3. Transaction file is a set of transactions:

T : {t1, ..., tn}|n ∈ N

Transaction t is a pair of a list of data items data and set of attributes.

t : (data, {Attr1, Attrm})|n,m ∈ N

Structure data : (i1, ..., in) is a list of variable length containing data items.
The form of a list was used, because most of the other structures often used in
data analysis can be derived, such as set, multi-set, vector, matrix, etc.

Examples of possible data stored in data are DeCAF descriptors for image
analysis, sets of neighbouring e-mail accounts, DNA sequences, etc.

Data item, denoted as i, is a distinguishable application dependent object.
The structure of data item can be compared by specialised distance functions,
but for most of the provided methods, the method for comparison of identity is
sufficient for most of the analytical techniques.

Attributes Attr are key:value pairs. Attributes serve as intermediate storage
of information, which is not used for analytical operations itself, but is rather
used for filtering or as a storage of an analytical result.

3.2 Properties of Analytical Algebra

This analytical algebra consists of operators working over a transaction file. The
functions are constrained by this requirement. Definition of the operator is:

f : ([T, ...], params)− > T
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where params are additional parameters of a specific operator.
An important feature of this analytical algebra is extensibility. Any ana-

lytical function can be added into this analytical algebra without changing its
behaviour.

Due to this strict definition of input and output, recursivity of operators
is possible. The result of one operator can be used as an input to others. This
property is used to create a complex operation by a combination of simpler ones.

At the moment, this algebra contains two types of operators, analytical oper-
ators and supporting operators. Due to the high modularity of the algebra, more
groups of operators can emerge.

3.3 Analytical Operators

Analytical operators are analytical functions that define the semantics of the
whole analytical pipeline.

Many of the analytical operators have individual transaction or pattern as
an input parameter. There is a possibility to pass the whole collection of such
parameters as an input for simplicity. The operators are then evaluated for each
of such item individually, and a relevant query object is stored in attribute
“query” in each resulting transaction.

The proposed operator supports the high modularity of this algebra. Due to
no restrictions on the process, a lot of analytical operations can be defined and
added. We provide an example of several such operators:

Range Search. One of the traditional tasks in data analysis is a similarity
search task. The goal of the search task is to obtain the relevant objects in
database D. The similarity to the query is measured to define the relevance
of the object. The two most used query types are range query and k-nearest
neighbours query.

The goal of the range query is to obtain all objects with distance to the query
object less than a user-defined threshold. To measure distance, distance function
dist must be provided. At the moment we expect usage of function that meets
the metric postulates: identity, symmetry, non-negativity, triangle inequality.

For purposes of our algebra, database D corresponds to transaction file T .
Definition of a respective analytical operator is:

RS : (T, q, dist, r) →{(ti, {“distance” : dist(q, t)})|ti ∈ T : dist(q, ti) ≤ r};

r ∈ R
+
0

where q is an query object in the form of transaction.
Distance function dist is expected to follow:

(T, T )− > R
+
0

As mentioned before, most of the methods also expect, that distance function
is a metric function. An example of such distance functions can be Jaccard
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coefficient or Edit distance. If additional conditions on data of transaction files,
as the same length or addition of zeroes to the same length, are set, distance
functions like L2 distance can be used.

Example: To show the usability of this operator, a small example follows. Let
assume e-mail communication as input data. Data in transactions will consist
of communication partners of each e-mail account. Information about e-mail
account can be stored in the attribute for simple access.

The goal is to find all the users whose composition of communication part-
ners has 80% overlap with the pre-selected group of e-mail accounts. Query will
look as:

RS(T, tq, distJaccard, 0.2)

Result of such analysis is a set of e-mails where 80% of items in data are
from the originally pre-selected set.

K-NN Search. Another task from the similarity search area is K-NN search.
The goal of this task is to find k objects for provided query object in database
D. To search for objects, similarity measure must be provided as in range search.

In this algebra, the role of the database D is supplemented by the transaction
file T . Definition of respective function is:

KNNS : (T, q, dist, k) →{(ti, {“distance” : dist(q, ti.data})}|ti ∈ R; |R| = k;
∀tj ∈ T − R : dist(q, ti.data) ≤ dist(q, tj .data)}

Query object q and amount of search neighbours k must be provided by user
beforehand. Distance function dist has same restrictions as in range search.

Example: To show this operator, we assume data in form of objects having
coordinates stored. The goal is to find the 10 closest objects in our vicinity. Each
object is transformed into the transaction with longitude and latitude stored in
data of the transaction. Our location is stored in the data in query object q.
To measure the distance between objects, euclidian distance will be used. The
query will be:

KNNS(T, q, disteuclidian, 10)

As a result of this query, transaction file with ten transactions will be
returned. Transactions contain distance in the form of an attribute of the respec-
tive transaction.

Frequent Item-Set Mining. The second group of tasks we are focusing on in
this paper is pattern mining. In pattern mining, the main goal is to obtain hidden
information about patterns occurring in database D. Patterns are a collection
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of data item occurring in database records that occurs frequently. Frequency
is defined by user-defined threshold θ. The threshold can be either absolute or
relative to the size of the database.

There are several types of pattern mining tasks, first of them frequent item-
set mining. The goal of this mining is to obtain subsets of original sets stored in
the database.

Database for the frequent item-set mining contains sets of individual items.
To cope with this expected format, data in transactions are viewed as sets.
Duplicity and order are ignored. The definition of frequent item-set mining fol-
lows:

IM : (T, θ) → {(p, {“support” : sp}) | p ⊆ t.data; t ∈ T ; sp ≥ θ}
where p is a set of items and sp is support computed over the original transaction
database.

Example: To show the usability of this definition, we assume data in the form of
e-mails. Each e-mail has in header a set of receivers. The goal of the analysis is to
uncover if there is a set of e-mails, that are very often part of the correspondence.
To establish what is very often, we define the threshold of one per cent to be
frequent enough.

Transactions in the transaction file T will contain a set of e-mail addresses in
the data. Ordering is not relevant in this case, because the IM operator ignores
it. The query will be in the form of:

IM(T, 0.1)

The result of such an operator is a set of transactions, each containing a
group of e-mail addresses with respective frequency stored in attribute “sup-
port”. Support of each such transaction is bigger than the selected threshold,
more than one per cent in this case.

Sequence Mining. Similarly to frequent item-set mining, sequence mining is
the task of pattern mining, where frequent patterns are searched. In the case
of sequence mining, the goal is to obtain frequent subsequences in sequence
database D. Frequency is defined by a user-selected threshold of θ.

For the purpose of analytical algebra, database D is provided by the trans-
action file. Sequences are stored in data of individual transactions. The task of
sequence mining is formalised as:

SM : (T, θ) → {(p, {“support” : sp})|p ⊆ t.data; t ∈ T ; sp ≥ θ}
where sp is support computed over original transaction database.

Example: In genomics, one of the tasks is to discover sequence motifs in DNA.
These are subsequences frequently occurring within nucleic acids. For this task,
a database of DNA sequences is assumed. Individual transactions correspond to
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respective proteins. Sequences of amino-acids are stored in transaction’s data.
In this case, the threshold is expected to be high at around 0.9%. The query will
be in the form of:

SM(T, 0.9)

The result of such query is transaction file with transactions corresponding to
possible motifs. Motifs are expected to be not only frequently occurring, but also
of biological significance, so post-evaluation of individual sequences by an expert
is needed.

Association Rule Mining. Another task of pattern mining is association rule
mining. The goal of this task is to obtain association rules. This task is often
connected with other specific mining task and is considered as post-process.

Association rule describes the probability that the presence of one pattern
leads to the occurrence of the other. The probability is computed based on the
measures such as confidence, lift, all-confidence and many others. This measure
is a function:

conf : (pq, psub, T ) → R|psub ⊆ pq

Association rule mining in context of this analytical algebra is understood
as searching for all sub-patterns of a user-selected pattern in transaction file T
that has their evaluation higher than user-defined threshold θ. Association rule
mining is defined in this analytical algebra as:

ARM : (T, pq, conf, θ) →{(pi, {“confidence” : conf(pq, pi, T )})|
∃tj : tj ∈ T, pi ⊆ tj .data}

Example: As a part of the analysis, there often may be interest in deriving rules
for the purpose of optimisation. As an example, the network of communication
partners from a range search can be used. The goal is to analyse if all the mem-
bers of top management are informed together. As a query, there is a prepared
set of e-mail addresses of top management. The threshold will be set, if in at
least 99% of time the subset was a part of the whole group. Confidence is used
as a measure. The query looks like:

ARM(T, addresses, conf, 0.99)

As a result, we get groups of e-mail addresses that were most of the time (in
99%) a part of the e-mail conversation addressing all the selected e-mails.

Similarity Join. The last analytical operator defined in this paper is similarity
join. The goal of the join operation is to assign objects from one set to objects from
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another. In similarity join, the assignment is done based on the similarity of indi-
vidual items. In this paper, we assume that similarity join assigns for each item the
most similar one. Other variants of the task can be defined in a similar way.

SJ : (Tq, T, dist, k) →{(ti, {“distance” : d, “query” : tq})|
∀tq ∈ Tq : ti ∈ KNNS(T, tq, dist, k)}

Example: In online games, the creation of multiple accounts is often prohibited.
For this purpose, the administrators of the game are analysing the behaviour
of the player. One possibility of uncovering duplicit accounts is to analyse sim-
ilar behaviour of different accounts such as interaction with the same accounts.
Similarity join can be used for discovery of such accounts. The interactions are
often recorded for every account. These can be transformed into a list and a
transaction for each account can be created. Then the similarity of each item is
compared with the other set, and the selected amount of similar ones is captured.
The query for such a task looks like:

SJ(T, T, distJaccard, 2)

For every item from first set the result of this query contains two most similar
items from the second set. Because the query is using the same sets, the first
transaction for each pair will consist of two identical items, because their distance
is zero.

3.4 Supporting Operators

During analysis, it is necessary to filter and modify data in-between individual
tasks. Although we try to minimise the amount of transformation needed, in
some cases, it is more feasible to filter or transform data in-between instead of
storing all the intermediate results and creating relevant transaction files from
them. For this reason, analytical algebra contains the second type of operators
called supporting operators. They share the same structure of universal operator
defined in analytical algebra.

In this stage, we propose two supporting operators:

Filtration: This operator serves for definition of a new selection of transactions
in the transaction file. Filtration is similar in behaviour to a selection in
relational algebra. Operation is defined as:

σ : (T, “condition expression”)− > T

where transactions are filtered based on condition expression. In condition
expression, standard application dependent operations can be used. For the
selection of relevant attributes, dot notation is used.

Transformation Second operator serves for modification of existing attributes
of transactions. This does not allow modification of analysed data, which
should stay without modification.

ρ : (T, “modification expression”)− > T
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3.5 Example of Complex Analytical Function

The main purpose of analytical algebra is to allow the creation of complex ana-
lytical functions based on the application of multiple analytical operators. As an
example, we provide the task of community mining in this paper.

Community Mining. The problem of community mining consists of detec-
tion of potentially overlapping groups where items are related to one another.
The non-exclusivity of the groups creates a difference compared to the classical
problem of data science, clustering.

Community: There has not been a commonly accepted definition of community,
but there are two major groups of definitions. [4,18] The first group of definitions
is based on the density of connection between the nodes. Loosely defined, a group
of nodes is marked as a community if the number of in-between connections is
significantly higher than the number of outgoing connections. The second group
of definitions is based on a combination of motifs, i.e. structures occurring more
frequently than in a random graph. In this example, we incline more to the first
group of definitions. The community is a group of densely interconnected nodes.

The data for community mining are expected to be in graph form. They are
expected to have connections between them. For the proposed data model, we
use an adjacency list as a suitable representation of the underlying graph. This
representation can be transformed into a transaction file, where each transaction
corresponds to one node in the original network. For the purpose of community
mining, it is necessary to add node itself into the list of neighbours and store
information about the source of the node.

Such a prepared transaction file is used as input into frequent item-set min-
ing. The fully interconnected sub-graphs will occur in at least each transac-
tion corresponding to the node in the group. This will result in the discovery
of approximation of such highly interconnected groups. These interconnected
groups are then used as cores of groups and nodes are assigned by range query.

Fig. 1. Example of graph resulting in discovery of non-existing communities. (Left:
Bipartite graph, Right: simplification of transaction file)
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There is a possibility of obtaining groups of nodes, that are not interconnected
at all. The example can be seen in Fig. 1. This situation can be then corrected
by application of filtration on the result of the range query. Each node is then
checked if it is part of the community. The combined query can be constructed,
and it is as follow:

σ(RS(T, IM(T, 15), distJaccard, 0.8)), (t)− > t.query.contains(t.source))

The result of this query is a transaction file containing transactions that have
an overlap of communication with frequent item-sets of size at least 15, and they
have an overlap bigger than the selected threshold of 80%.

4 Summary

In this paper, we presented the basis of new analytical algebra for the description
of complex analytical operations. This algebra is based on a transaction file
structure which is a part of the analytical system ADAMiSS. This algebra is
modular and allows easy addition of possible operators both supporting, for
better transition of data, and analytical, for semantic analysis of the data. Due to
a suitable representation of data in the form of transaction file, this algebra allows
a recursive application, thus easier creation of complex analytical operation.

This algebra is going to be integrated into the system ADAMiSS and similarly
to the database system and relational algebra; it is going to provide simple means
of creation of complex analytical functions. As a next step, there is expected to
be provided a simple query language similar to SQL to allow an easier description
of expected pipelines for complex data analysis.
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Abstract. Variational autoencoders (VAEs) are artificial neural net-
works used to learn effective data encodings in an unsupervised manner.
Each input x provided to a VAE is indeed mapped to an internal repre-
sentation, say z, in a low-dimensional space, called the latent space, from
which an approximate version x̃ of x can be eventually reconstructed via
a decoding phase. VAEs are very popular generative models because, by
randomly sampling points from the latent space, we can generate novel
and unseen data that still reflect the characteristics of the dataset used
for the training. In many application domains, however, generating ran-
dom instances is not enough. Rather, we would like mechanisms that
can generate instances enjoying some high-level features that are desired
by the users. To accomplish this goal, a novel VAE architecture—named
Feature Driven VAE—is presented. Internally, it uses Gaussian Mixture
Models to structure the latent space into meaningful partitions, and it
allows us to generate data with any desired combination of features,
even when that specific combination has been never seen in the training
examples. The architecture is orthogonal to the underlying application
domain. However, to show its practical effectiveness, a specialization
to the case of image generation has been presented and implemented.
Results of experimental activity conducted on top of it are eventually
discussed.

Keywords: Data generation · Generative models · Deep learning

1 Introduction

Synthetic data generation is a challenging task aiming at producing artificial
data, either from scratch or by using advanced data manipulation techniques
that synthesize novel and possibly unseen examples from real ones. In fact, in
real world applications, it might happen that the possibility of implementing
some advanced reasoning mechanism, based on Artificial Intelligence techniques,
is limited by the lack of sufficient training data, for instance due to privacy con-
straints or legal restrictions, or just because the underlying application has been
not yet deployed. In these cases, it is of utmost importance to use synthetic data,
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generated in compliance with the properties or conditions that are envisaged to
emerge in practice or with a few examples that have been collected to this end.

Generative models are increasingly used in the literature as infrastructures
to generate complex data having properties that are as close as possible to those
characterizing the samples in some given dataset at hand. In particular, varia-
tional autoencoders (VAEs) [9,14] are well-known generative models that learn
the dimensional dependencies among data and produce new samples that are
similar to those in the original dataset, but not exactly the same. A trained
variational autoencoder can generate new samples by taking a random vector in
its latent space. This is fundamental because those models that do not generate
a continuous latent space cannot be easily used for sampling novel data. More-
over, unlike other generative models, which either require strong assumptions
about the structure of the data or rely on computationally expensive inference
procedures, VAEs only make weak assumptions on the data, and the training
procedure is fast via back-propagation.

In many application domains, however, generating a random instance is not
enough. The latent space of classical VAEs, indeed, has no special structure and
it does not reflect in a clear and interpretable manner the high-level features that
might be desired by the user. Consider, for instance, the task of generating some
images of faces of persons. Typical high-level features are related to whether
the person wear glasses, to the color of her/his eyes, to the kind of hair he/she
has, and so on. An ideal generative mechanism should be capable of taking as
an additional input the specific combination of such high-level feature desired
by the user and produce a synthetic phase accordingly. With current VAEs,
however, this is not possible. Our only hope is to have an image with that
specific combination of features, so that we can sample a point close to the point
into which such image is mapped in the latent space.

To overcome this drawback, we move forward the current research on VAEs
by proposing a neural model that can force the latent space to some pre-fixed
form, so that the random sampling can be guided on the basis of the high-level
features that are desired. Our model, named Feature Driven VAE (FD-VAE),
allow users to select the features that are the most desired and produce novel
data according to them, even in the cases where the specific combination of
features has been not registered at all in the given training examples. Technically,
this is achieved by using a VAE architecture where each possible value of each
feature is dealt with by a specific encoder, and where the resulting latent space
is modeled by using Gaussian Mixture Models (GMM). Indeed, trained GMMs
can be used to probabilistically produce new samples from the latent space with
high precision according to the features that are desired by the user.

Organization. The overall FD-VAE architecture is illustrated in detail in Sect. 3,
after having introduced works that are relevant in the context of generative
models (cf. Sect. 2). Note that the architecture is entirely orthogonal to the
underlying application domain. For the sake of concreteness, however, we present
in Sect. 4 a specialization to the problem of image generation, and we report
results of experimental activity conducted in this specific setting. A few final
comments and remarks are eventually illustrated in Sect. 5.
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2 Related Work

Generative adversarial networks (GANs) are generative models used to generate
synthetic data [2]. They achieve very good performances in increasing the quality
of images. However, the latent space associated with GANs is discrete, while we
are interested in approaches that allows us to have a continuous latent space
to get samples characterized by different features and to navigate new samples
similar to training data. Variational autoencoders (VAE) [9,14] are other popular
generative models that facilitate the generation of novel examples and that are
capable to deal with complex data distributions. Differently from GAN, VAEs
use Bayesian probabilistic loss functions to enforce a continuous latent space and,
in fact, they found numerous applications in different real world domains. VAEs
found several application in data generation [6,7,10], including for instance the
Graph Variational Autoencoder proposed in [10] for generating and optimizing
chemical molecules, and the Action Point Process VAE [12] that generates action
sequences and to model categorical and temporal variability.

Our solution approach will use VAEs by coupling them with Gaussian Mix-
ture Models (GMMs) [1]. These models are probabilistic models that are widely
used in pattern recognition, data mining, image analysis, machine learning and in
many problems involving clustering and classification methods [17–19]. A VAE-
based architecture based on GMMs has been earlier proposed in [15], where
the authors actually use GMMS to preprocess the data in order to improve
the controllability and interpretability in text generation. That work extends
the results on an earlier model presented in [4,8], whose goal is to prevent the
mode-collapse problem in language generation, where the multiple Gaussian pri-
ors tend to concentrate during training and eventually degenerate into a single
Gaussian. Clearly enough, the usage of GMMs in these works is entirely differ-
ent from ours, where indeed GMMs are not used in pre-processing phases but
constitute an core part of the architectural infrastructure.

3 Overview of the Approach

Our approach to produce synthetic data in a way that complies with some high-
level user-desired features is based on three different ingredients.

First, we use a novel kind of variational autoencoder architecture (VAE) that
distinguishes itself from earlier approaches in the literature because of its ability
of partitioning the latent space on the basis of the possible values taken by the
features. After that the latent space is learned on the basis of some available
training data, novel data can be generated by sampling from this space and by
providing the sampled point to the decoder block (of the autoencoder). However,
sampling must be carefully performed, since our goal is that the generation of
the novel data must be guided by the high-level features that are desired by
the user. This motivates the introduction of a second ingredient in our method,
namely the use of some probabilistic models—in fact, Gaussian mixture models—
whose parameters are learned on the basis of the characteristics of the latent
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Fig. 1. FD-VAE architecture.

space, for each possible value taken by the features over the training data. By
suitably combining the resulting probabilistic models, we can eventually conceive
a sophisticated sampler that, in combination with the decoder, will act as our
user-driven synthetic data generator.

The overall architecture is detailed in the rest of the section. Hereinafter, let
D be the training dataset and let us assume that inputs are characterized by
certain high-level features F1, ..., Fn. For instance, over a dataset of (images of)
faces, F1 might be the feature indicating whether the person wear some glasses
while F2 might be the feature indicating the characteristics of his/her hair. Each
feature Fi, with i ∈ {1, ..., n}, takes values from some discrete domain, say Λi.
For instance, in the above exemplification, Λ1 might be just the Boolean domain,
while Λ2 might be the domain {long , short , ...} .

3.1 Feature Driven VAE

The first building block of our architecture is a novel kind of variational autoen-
coder, which we call Feature Driven VAE (FD-VAE) and which is schematically
described in Fig. 1. Hereinafter, let x ∈ D be a training input in our dataset and
assume that its features are λ1 ∈ Λ1, ..., λn ∈ Λn.

Each feature λi, with i ∈ {1, ..., n}, is firstly pre-processed with a one-hot
encoding. That is, we define λi,1, ..., λi,ki

Boolean values with ki = |Λi| such that
λi,j = 1 (resp, λi,j = 0) if λi corresponds (resp., does not correspond) to the
j-th value in Λi according to some given, but prefixed arbitrary order. Note that
in total we have K = k1 + ... + kn Boolean values.

The input point x ∈ D is passed in parallel to K encoders, indexed
from ENC1,1 to ENCn,kn

, which are precisely one-to-one associated with such
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Boolean values encoding the input features. Intuitively, one might think that
each encoder will be trained in a way that it focuses on precisely one value
of the features. Internally, all of them have the same internal structure (but, of
course, with different parameters). In fact, the structure actually depends on the
kind of data that is processed—a specific architecture will be discussed in the
next section while overviewing an application to image generation. The result
of the encoding ENCi,j , with i ∈ {1, ..., n} and j ∈ {1, ..., ki}, is a compressed
representation of x, which we typically distinguish in two parts named μi,j and
σi,j . The interpretation is that these two parameters correspond to the mean
value and to the covariance of a multivariate Gaussian distribution defining the
latent space of the autoencoder.

Since all encoders are identically in their structure, it is natural to expect
that at some point their output must be combined with the features of x. This
is precisely the goal of the reset components illustrated in Fig. 1. Basically, the
output of ENCi,j is passed to a corresponding reset component, which also takes
as input λi,j . The output μ′

i,j and σ′
i,j is easily defined: we have μ′

i,j = μi,j and
σ′
i,j = σi,j in the case where λi,j = 1; otherwise, we have μ′

i,j = σ′
i,j = 0.

After these phase all values μ′
i,j and σ′

i,j are respectively concatenated, then
resulting in just to vectors μ′ and σ′. At this point, the architecture of our
FD-VAE resemble that of a standard VAE. In particular, we sample over the
latent space from the Gaussian distribution with parameters μ′ and σ′, thereby
getting a novel point z in the latent space. Eventually, z is passed to a single
decoder whose output is meant to precisely correspond with the input data x—
the architecture of the decoder is typical symmetric to that of the encoder, and
depends on the specific data being processed.

The whole training phase of the FD-VAE is guided by the standard loss func-
tion for variational autoencoders aiming at minimizing the difference between
the original point x and its reconstructed version.

3.2 Gaussian Mixture Models

After that the FD-VAE has been trained, it can be used in principle to generate
novel data by exploring the latent space. However, our goal is more ambitious
as we do not want to generate data at random, but we would like to guide the
generation in a way that data is produced that complies with some desired high-
level features. For instance, after that we learn the parameters of the FD-VAE on
some images of faces, we might want to generate a novel face of a person wearing
glasses having long hair. In particular, this is challenging, since we would like
to achieve this goal even if the training data does not contain no example with
such specific combination of values for the features—which is likely the case in
presence of many input features.

To address this challenge, a further ingredient is needed to be put in place.
Essentially, we need to learn how the latent space reflects the high-level features,
which we accomplish by using the architecture depicted in Fig. 2.

The figure shows that we consider the encoding block of our FD-VAE, after
that it has been trained (so, its parameters are freezed in this phase). Again,
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Fig. 2. GMM learning scheme.

let x ∈ D be an input data and let λi,j the one-hot encoding. We already know
that, on input x, the encoding block produces a vector z in the latent space. This
vector is now split in its coordinates, say z1,1, ..., zn,kn

, over the various values
for the features, and each entry zi,j is filtered based on the actual value of λi,j .
In particular, the filter component depicted in the figure blocks zi,j if, and only
if, λi,j = 0. Whenever zi,j passes the filter, it eventually becomes the input for a
module called GMMi,j whose role is to learn a Gaussian mixture model [5] that
best reflects the distribution of its inputs.

3.3 Sampling Component

After that the various Gaussian mixture models GMMi,j have been learned, we
have all ingredients in place to generate random data guided by the high-level
features desired by the user. The last architectural element of our method which
accomplish this task is shown in Fig. 3.

The input in this case is not longer some training data (x), but rather the
features desired by the user, say f1, ..., fn. As usual, these feature are encoded
then leading to the values f1,1, ..., fn,kn

. Now, the crucial observation is that, for
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Fig. 3. Sampling scheme.

each possible value taken by each of the feature (leading to a pair of indices i, j),
we use the corresponding module GMMi,j by sampling at random an element
from the distribution it has learned from the data. Let wi,j be the value that has
been sampled. This value is passed to a reset component that is activated via
the value fi,j—precisely as we have seen in the discussion of the FD-VAE archi-
tecture. The resulting values w′

1,1, ..., w
′
n,kn

are concatenated, thereby leading to
a value z in the latent space. The intuition is now that z has been generated in
a way that is fully coherent with the specific properties of the latent space when
considering data having the features desired by the user.

Eventually, z is passed to the decoding block of the FD-VAE and we produce
as output the desired novel data. By just repeating the sampling process, we can
get an entirely novel dataset with the required characteristics.

4 Specialization and Experiments

The architecture we have discussed in Sect. 3 is orthogonal to the underlying
application domain. In particular, depending on the specific data to hand, the
encoders ENCi,j and the decoder have to be properly specialized. For the sake
of concreteness and to show the practical effectiveness of our approach, in this
section we discuss a simple specialization to the setting of image generation.

In fact, we point out that our goal is not to propose a highly-optimized
solution for image generation, but rather to show a significant exemplification
of the various ingredients discussed so far. In more details, in the context of
image generation, each encoder has been implemented as a simple stack consist-
ing of a flatten module, plus two convolutions layers, plus a final dense layer.
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Female, No Glasses, and Smile. Male, Glasses, and Smile

Fig. 4. Examples of generated images.

We implemented this kind of architecture by using the tensorflow library [3],
and exploiting numpy [13] for the backend scientific calculations and CUDA
for GPU parallelization. To evaluate the effectiveness of the implementation,
we have considered the well-known Large-scale CelebFaces Attributes Dataset
(CelebA) dataset, a benchmark of images of celebrity faces [11], where each
image is annotated as a set of attributes/features. CelebA contains more than
200.000 celebrity images, each with 40 attribute annotations. The images in this
dataset cover large pose variations and background clutters. CelebA has large
diversities, large quantities, and rich annotations, including 10.177 number of
identities, 202.599 number of face images, 5 landmark locations, and 40 binary
attributes annotations per image. The dataset has been employed in a large
number of research works, and it has been used to provide solutions in a number
of computer vision tasks, including face attribute recognition, face detection,
landmark (or facial part) localization, and face editing and synthesis. Moreover,
correlations between attributes and their predictive quality of for user’s person-
ality traits has been investigated in [16].

Our experiments have been conducted at the varying of the number of fea-
tures being considering, up to 10. Basically, we generated a large number of
images whose features have been a-priori defined by the user and, for each of
them, we actually checked (by human inspection) that the desired features actu-
ally occur in it. As a matter of facts, this happened in every single experiment
we have conducted, hence confirming the validity of our approach.

As an example, in Fig. 4a we report some images that our system generated
by considering the features Female, No Glasses, and Smile. Another example,
for a different set of features, is shown in Fig. 4b. In all cases, it clearly emerges
that the system is capable to produce the faces with the given features. Showing
that this is the case is precisely the main goal of our experimentation. In fact,
the specific quality of the images can be then further improved by considering
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Fig. 5. Transformations to a test case: vertical axis toggles Glasses, while horizontal
adds Smile.

deeper (and more involved) encoders and decoders and by considering specific
heuristics for image generation—but this is an issue that is out of the scope of
the paper and we leave it as a subject of further research.

Another kind of experimentation has been conducted by taking some initial
(randomly) generated imaged and by transforming by adding/removing certain
features. In this case, we start by applying the sampling component illustrated
in Fig. 3 by considering some initial desired set of features. Let wi,j be the values
sampled and corresponding to that features. Then, to transform the value of a
feature fi, we just re-apply the architecture in the figure, without sampling novel
points, but just updating the values provided as input to the reset components.
As an example, in Fig. 5 we show the results of toggling Glasses and add Smile
to a given image.

5 Conclusions and Future Work

We have introduced a novel VAE architecture supporting the capability to con-
trol data generation according to desired sets of features. The features are high-
level ones, and our architecture is capable to use them to structure the latent
space in a way that data can be created to comply even to specific combination
of features that have no occurrences in the training examples. An interesting
avenue of further research is to look for other possible applications of our archi-
tecture, in particular to time series data where the various features can control
the specific patterns of occurrence of the various event over the time
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Abstract. The power of associative classifiers is to determine patterns
from the data and perform classification based on the features that are
most indicative of prediction. Although they have emerged as compet-
itive classification systems, associative classifiers suffer from limitations
such as cumbersome thresholds requiring prior knowledge which varies
with the dataset. Furthermore, ranking discovered rules during inference
rely on arbitrary heuristics using functions such as sum, average, mini-
mum, or maximum of confidence of the rules. Therefore, in this study,
we propose a two-stage classification model that implements automatic
learning to discover rules and to select rules. In the first stage of learn-
ing, statistically significant classification association rules are derived
through association rule mining. Further, in the second stage of learn-
ing, we employ a machine learning-based algorithm which automatically
learns the weights of the rules for classification during inference. We use
the p-value obtained from Fisher’s exact test to determine the statistical
significance of rules. The machine learning-based classifiers like Neural
Network, SVM and rule-based classifiers like RIPPER help in classify-
ing the rules automatically in the second stage of learning, instead of
forcing the use of a specific heuristic for the same. The rules obtained
from the first stage form meaningful features to be used in the sec-
ond stage of learning. Our approach, BiLevCSS (Bi-Level Classification
using Statistically Significant Rules) outperforms various state-of-the-
art classifiers in terms of classification accuracy.

Keywords: Associative classification · Classification rules · Statistical
significance

1 Introduction

Classification is the process of organizing and categorizing data into distinct
classes. It involves various tasks like building a model based on the distribution
of the data in consideration and further using this model for identification of the
class label of new data. An associative classifier is a kind of supervised classifi-
cation model that learns on association rules that attribute features with class
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labels. The association rule mining identifies patterns in the data by extract-
ing associations between items in a dataset. The class association rules (CARs)
obtained from mining are represented in the form, X →Y, where X and Y are the
antecedent and consequent respectively. For an associative classifier, we choose
the consequent to be the class label while the antecedent set includes the set of
items that are highly indicative of their association with the class label based
on association rules.

Most of the previously proposed associative classification algorithms like
CMAR [16], CBA [17] and CPAR [19] have different rule discovery, rule prun-
ing, rule prediction and evaluation methods. However, a predefined weighting
scheme is required, for each of these methods in order to predict the class from
the association rules. Heuristics like maximum/minimum of confidence, average
of confidence or sum of confidence of the rules for the classes can be used to
decide the predicted value for the new samples. However, the weighting scheme
may differ for various applications when using associative classifiers. Deciding the
heuristics to select rules to apply during inference and therefore to predict the
class from the derived classification rules is a challenging task, and is typically
fixed as part of the algorithm.

This form of classification offered by associative classifiers is easily under-
standable, flexible and does not assume independence between attributes, how-
ever, it requires prior knowledge to choose appropriate support and confidence
threshold values for rule mining. Moreover, they contain a large number of noisy
rules which are redundant, uninteresting and lead to longer classification time.
Various pruning techniques have been designed to deal with this limitation, for
instance, removing the low ranked specialized rules, removing conflicting rules
or using database coverage based pruning strategy. A two level classification
method was initially proposed by Antonie and Zaiane in [4], where the first
stage used Apriori-based approach [1] to generates associative rule classification
model which is followed by a stage of machine learning classifiers to learn the
weights for classification in the second stage. We extended their work and com-
pare the performance of SVM [10], Neural Networks [6] and RIPPER [9] in the
second stage of learning. Although, this automatic approach of learning to use
the rules is expected to give better classification results, it suffers with certain
limitations. Firstly, the setting up of an optimal support and confidence thresh-
old values to mine the rules in the first stage is a cumbersome task. Secondly, the
rules generated using the former approach may contain noisy, non statistically
significant rules and may not cover all the important features in the selected
rules.

Therefore, in order to address the above given limitations, we propose
BiLevCSS (Bi-Level Classification using Statistically Significant Rules), which
uses statistically significant rules generated from a first stage, to form features
that are made full use of, for classification in the second stage of learning. We
follow the approach proposed by Li and Zaiane in [15] for generation of statis-
tically significant CARs. We also use Fisher’s exact test to obtain the p-value
which is used to determine the statistical significance of the association rules. We
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further extract features from these significant association rules and then train
the supervised learning classifiers like Neural Network, SVM and RIPPER on
them. Finally, the trained model from the second stage is used to find the class
label for a new data point.

Traditional association rules mining methods mostly prune the infrequent
items on the basis of frequency of the itemset and thereafter calculate the
strength of the rule in the form of its confidence values. This also ignores the sta-
tistically significant rules. Although most of the associative classifiers deal with
this limitation by setting up small minimum threshold values, however, this leads
to the generation of a huge number of insignificant rules. Therefore, in our pro-
posed model, we use the instance-centric pruning strategy as used in SigDirect
[15] to find globally optimal CAR (Class Association Rules) for each instance in
the training dataset without compromising the classification accuracy.

Furthermore, we use Neural networks [6] and Support Vector Machines [10]
in our approach as they are strong machine learning classifiers, that have proved
their worth in various applications. With the aim to build an efficient classifica-
tion strategy, we train them using meaningful features obtained from the first
stage of learning. However, many real time applications specifically in health-
care and medicine require explainable models in order to interpret the results
post classification. In our proposed strategy, although the statistically significant
rules and derived features obtained in the first stage form an explainable model,
Neural Network and SVM used in the second stage for classification might make
the results un-explainable for such applications Therefore, in order to make our
approach interpretable, we explored the applicability of a rule-based classifier
like RIPPER in the second stage for classification of derived features. Ripper [9]
is a rule-based classifier which was found to produce a minimal set of explain-
able classification rules when given meaningful features in the second stage of
our proposed approach, without compromising on the classification accuracy.

Therefore, in our study we propose a novel bi-level classification model, which
uses the association rule mining to produce statistically significant rules. Further
these rules are used to form more meaningful and non redundant features to be
given as input in the second stage of learning comprised of a second classifier.
The proposed algorithm helps in automatic learning of non noisy, statistically
significant rules and further, it leads to a higher classification accuracy. The main
contributions of this work are:

– We propose BiLevCSS, (Bi-Level Classification using Statistically
Significant Rules), which is an effective two stage learning model. In the first
stage of learning, we build an associative rules classifier (ARC) model based
on statistically significant rules, followed by a supervised learning classifier in
the second stage of learning for classification.

– We evaluate the performance of Neural Networks and SVM against rule-
based classifier RIPPER to compare their accuracy and suitability for differ-
ent datasets when used in the second phase of BiLevCSS.

– We evaluate the proposed algorithm BiLevCSS on 10 UCI datasets and with
other commonly used classifiers on the basis of classification accuracy. The
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results show that our classifier gives better classification accuracy than various
state-of-the-art classifiers.

The rest of the paper is organized as follows: Sect. 2 gives a literature
review about some previously proposed associative classifiers; Sect. 3 explains
the methodologies we have adapted in our algorithm; Sect. 4 shows the evalua-
tion results of our proposed classifier on UCI Datasets; and lastly, Sect. 5 gives
the conclusion and directions about our future work.

2 Related Work

The idea of associative classifiers was first presented by Liu et al. [17], while
the concept of using association rules as CARs was proposed earlier by Bayardo
Jr. [5]. Liu et al. proposed CBA, an approach to perform classification using
the class association rules in [17]. The proposed work used Apriori based rule
generation algorithm, involving the cumbersome process of tuning support and
confidence values. Furthermore, CBA applies the paradigm of “database cover-
age” for rule pruning and uses highest ranked matching rules as the heuristic for
classification. This work paved the way for the associative classification. Li et
al. proposed another associative classifier called CMAR in [16]. CMAR uses FP-
growth [12] which is a frequent pattern mining based approach to produce a set
of association rules. The authors also use a novel data structure called CR-tree
to store the CARs. Furthermore, CMAR determines the class label based on the
set of matching rules using weighted chi-square measure. Antonie and Zaiane
propose an associative rule-based classifier by category for automatic text cate-
gorization called ARC-BC [2]. ARC-BC forms association rules grouped by the
category for each set of documents. The average confidence value is calculated
for each category and finally the class label of the group with highest confidence
value is considered as the predicted category. The proposed algorithm works for
both single and multi class.

Antonie and Zaiane further proposed the first associative classifier that uses
both the positive and negative CARs in [3]. They use Pearson’s coefficient as
the interestingness measure to mine positively and negatively correlated CARs.
They were able to prove that a much smaller set of positive and negative CARs
was efficient enough to compete and outperform various other categorization
systems. The classification is made by using an average confidence heuristic.

Coenen and Leng have reviewed three case satisfaction mechanisms namely,
Best First Rule, Best K Rules and All Rules in [8] and various alternative rule
ordering strategies. The authors have evaluated these case satisfactions as they
have been commonly used in numerous Classification Association Rule Mining
(CARM) algorithms to use the classifier thus formed, for the prediction task.

A two stage classification model called 2SCARC was proposed in [4], which
automatically learns to use the rules for classification. Antonie and Zaiane used
an Apriori based algorithm in the first stage to generate features from class asso-
ciation rules, which are given to the next stage for training a Neural Network
to automatically learn the weights for classification. The main aim of this work
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was to overcome the cumbersome task of tuning support and confidence values
for every dataset. Although, the results obtained are interesting, however they
are not convincing as they tend to ignore the statistical significance of the rules.
Noisy and meaningless rules produced in the first stage might mislead the clas-
sification in the second phase. This forms the baseline of our work as described
in further sections.

Furthermore, Li et al. presented a novel associative classifier which is built
upon both positive and negative association classification rules in [14]. The pro-
posed classifier incorporates, rule generation where statistically significant posi-
tive and negative CARs are discovered and a rule pruning phase where irrelevant
rules are pruned. Further, these rules are used for the prediction of the unlabeled
data. They propose a very efficient rule pruning strategy so as to prune both
negative and positive CARs simultaneously. Li et al. concluded that summing up
the confidence values of all matching rules and accordingly making the class label
prediction proved to be the best classification strategy. Li et al. have also pre-
sented an associative classifier called SigDirect [15] which produces statistically
significant and meaningful rules for classification. The authors have obtained
globally optimal association rules using a novel instance-centric rule pruning
strategy instead of more prevalent pruning strategy like database coverage. Li
et al. evaluate various heuristics for the classification and infer that SigDirect,
with a specific heuristic, gives high classification accuracy using a minimum set
of association rules.

3 Methodology

In this section, we introduce the details about the proposed Bi-Level classification
technique. We initially describe the baseline technique of developing a two level
classifier by using the Apriori algorithm for building the ARC model in the
first level. However, this technique was found to suffer limitations with regard
to selecting the optimum support and confidence threshold values for different
datasets. Therefore, we extended our baseline to include the approach proposed
by Li et al. [15]. In our proposed method we use statistically significant CARs
to obtain rule features that are used in the second stage of learning.

3.1 Notations and Definitions

Definition 1. Dependency of a CAR [15]
If a transaction database T consists of a set of items I = {i1, i2, ..., im} and a
set of class labels C = {c1, c2, ..., cL}, a transaction X in T consists of a set of
items A = {a1, a2, ..., an}and a particular class label ck such that A ⊆ I and
ck ∈ C. A CAR R in the form of A →ck is called dependent if the antecedent
part and the consequent class label of the CAR satisfy P (A, ck) �= P (A)P (ck),
where P(A) denotes the probability of occurrence of itemset A.

Definition 2. Fisher’s exact test [14]
Consider a null hypothesis in which A and ck are assumed to be independent
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of each other. The dependency of the CAR A →ck is said to be statistically
significant at level α, if the probability p of obtaining an equal or stronger depen-
dency in a dataset complying with a null hypothesis is not greater than α. The
probability p, i.e., p-value, can be calculated by Fisher’s exact test:

pf (A → ck) =
min{σ(A,¬ck)σ(¬A,ck)}∑

i=0

(
σ(A)

σ(A,ck)+i

)(
σ(¬A)

σ(¬A,¬ck)+i

)

( |T |
σ(ck)

) (1)

where σ(X) denotes the support count of X. The significance level α is usually
set to be 0.05.

Definition 3. Potentially Statistically Significant [15]
The CAR A →ck is defined as “Potentially Statistically Significant” (PSS), if
it meets either of the following conditions:

1. σ(A) ≤ σ(ck) holds, and the lower bound σ(¬A)!σ(ck)!
|T |!(σ(ck)−σ(A))! is smaller than or

equal to α;
2. σ(A) > σ(ck) holds.

where A ⊆ IRemaining and ck ∈ {c1, c2, ..., cL}
If a CAR is PSS, we need to calculate the exact p-value to see if it is indeed
statistically significant.

3.2 Method 1

The aim of associative classification is to find knowledge from data in the form
of association rules associating features and class labels. During inference one or
a set of rules are selected and used to predict the class label. This selection is
typically based on heuristics for ranking rules.

Using the proposed approach of two stage classification in [4], we have imple-
mented the same technique for building a model which would learn to select and
use the discovered rules automatically rather than relying on heuristics to select
them. In brief, the first stage is to learn an associative classifier and the second
stage is to extract features from the learned rules to learn a second predictor
predicting which rule is best to use during inference. The initial training dataset
is split into two parts, one used to derive rules with association rule mining and
the second part to extract features for the second training level. These two sets
are disjoint in order to avoid overfitting. On the TrainSet 1, the first stage of
learning is performed. Here, our algorithm uses a constrained form of Apriori
[1] to perform association rule mining to obtain a set of rules that have features
on the left and class labels on the right side of the rule and that are above the
minimum threshold values for support and confidence. This ARC Model is used
to collect a set of features from the samples present in TrainSet 2. As proposed
in [4], we have used two approaches namely, the class based and the rules based
feature extraction, to get the set of features and class labels from the ARC
model.
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Class Based Features. For the class based feature extraction technique, we
derive rules from TrainSet 1 and we match the features from our TrainSet 2 with
the antecedents of the rules in the ARC Model. A rule is said to be applicable
to a new instance of TrainSet2 if the antecedent of the rule is a subset of the
features of the instance. Using the set of rules that apply to the instances in
TrainSet 2, we count the number of rules that match for each class. Using this
approach we derive a transformed feature set as shown in Table 1, where we state
the average confidence and the count of all the matching rules for an example of
three given class labels. This dataset of class-based features is given to the next
level of learning in order to train a classification model that selects rules.

Table 1. Example for transformed set of features in Class based

Class1 Class2 Class3

Avg Conf #Rules Avg Conf #Rules Avg Conf #Rules

85 1 81.6 3 80 2

Table 2. Example for transformed set of features in Rule based

R1 R2 R3

Conf Sup Match Conf Sup Match Conf Sup Match

80 10 0 90 10 1 85 15 1

Rule Based Features. For the rule based approach, we use the characteristics
of the rules derived from TrainSet 1 to create a new feature space. For each
instance in the dataset TrainSet 2, we check if each of the rules in the ARC
model apply or not, that is we match the features from the sample with the
antecedents of the rule. This feature is denoted by a boolean value 1 to represent
a match, 0 for absent. Along with this, information of support and confidence
is added as features in the new set. An example is shown in Table 2, where one
row in the dataset is taken and a new feature is generated for 3 rules of the ARC
Model.

The features derived using the ARC model are further given as a training
input to the next level, consisting of the classifier, which learns how to use the
rules in the prediction process. In the second level, machine learning based classi-
fiers like Neural network (NN) and Support Vector Machine(SVM) or rule based
classifier like RIPPER, are used to automatically learn on rules to determine the
weighting scheme for classification and obtain the final model.

For testing, we use the ARC model to derive the set of features for the Test
dataset. Further, these features are given to the trained model of Neural network,
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SVM or RIPPER to classify the new samples. The ARC model and the trained
model in the second level together predict the class for any new sample given
for classification.

3.3 Method 2

In our second approach, we extend the bi-level classification technique by using
statistically significant CARs. For this purpose, we derive positive and negative
rules which are statistically significant [14]. Li et al. proposed to use Fisher’s
exact test to extract the statistical significance of rules. The proposed algorithm
determines non-redundant association rules for classification which show statis-
tical dependency between the antecedent items and the consequent labels by
using the p-value.

We split our training dataset into two parts as illustrated in Algorithm 1.
On the TrainSet 1, the first level of learning is performed. The association rule
mining is done by building Apriori like tree to form the ARC model, which
gives us the set of association classification rules. The rules described by this
ARC model are statistically significant, giving us the p-value for each rule. The
rules obtained in the first level are used to extract the transformed feature set
from the TrainSet 2. We used rule-based approach as described in Method 1 to
extract features for this classifier as well. This is because the rule-based features
in Method 1 shows better results than class-based features, as will be discussed
in Sect. 4.

As proposed in [15], initially, all the impossible items are removed. An item is
termed as impossible to appear in a statistically significant CAR if it has support
value below γ|T |, where γ ≤ 0.5 and T is the transaction database. These items
are removed and thereafter all the left over items (IRemaining) are sorted in
the ascending order of their support values. Further the tree is enumerated to
generate class association rules and only those with one antecedent are listed.
These rules are then checked for their PSS value (Definition 3). Rules that do not
satisfy either of the PSS conditions are pruned and the other rules are checked
for statistical significance. From PSS 1-itemset rules, PSS 2-itemset rules are
generated considering the property that if a rule is PSS, then its parent rule will
also be PSS, i.e. if CAR A →ck is PSS, then any of its parent rule B →ck is
also PSS, where B � A and |B| = |A| − 1. The process repeats until no PSS
rules are generated at a certain level. Also, if a rule is marked as minimal, the
expansion from this rule is stopped because all of its children rules can not get
a lower p-value.

The number of rules generated by the above approach may be large and
might contain some unnecessary rules as well. In order to make the classification
efficient and to obtain globally best rules from the training dataset, we use the
proposed instance-centric rule pruning approach [15]. These pruned rules form
the ARC model for this method.

We further apply the rule based approach to extract the features for the
TrainSet 2 using this ARC model. An example for rule-based feature extrac-
tion for Method 2 is shown in Table 3 with just two rules. For each sample in
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TrainSet 2, we take the boolean value representing whether the rule matches the
sample or not. Along with this, we take the characteristics of the rule as fea-
tures in the transformed feature set. These include support value of the rule, its
confidence and the log of the p-value. The lower the p-value, the better the rule,
and summing up the p-value is not a suitable heuristic for a set of rules. Hence,
we take the log value of p-value in order to generalize the process for rule-based
and class based feature extraction. The features are extracted for each row in the
testing dataset using the ARC model and the learnt classification model predicts
the class label for each data point.

Table 3. Example for transformed set of features for method 2

R1 R2

Conf Sup ln(p-value) Match Conf Sup ln(p-value) Match

80 10 −10.6 0 90 10 −5.1 1

We also evaluate the BiLevCSS with SigDirect associative classifier in the
second level. However, SigDirect is found to have a limitation of not being able
to work well with very high dimensional datasets. For some datasets when using
BiLevCSS, the features extracted for the second phase are found to have a large
dimensionality due to a sizeable number of generated rules. This greatly increases
the runtime of the SigDirect algorithm when used in the second phase. Therefore,
we do not report the results of SigDirect as a predictor in the second stage.

4 Experimental Results

We have evaluated our algorithm on 10 UCI datasets to compare the classifi-
cation accuracy with other rule based and machine learning based algorithms
that exist in the literature. We report the average of the results obtained for
every dataset on the 10 fold cross validation in our experiments. We compare
the performance with common machine learning techniques like SVM and Neural
networks, rule-based classifiers like C4.5 and RIPPER and previously proposed
associative classifiers like CBA, CMAR and CPAR. We also compare our base-
line approaches 2SARC1 (NN) [4], 2SARC2 (NN) [4], 2SARC1 (SVM), 2SARC2
(SVM), 2SARC1 (RIPPER) and 2SARC2 (RIPPER) with these classifiers.

4.1 Classification Accuracy

We compare our proposed model BiLevCSS with the above stated contenders on
the basis of classification accuracy. We evaluate the performance of BiLevCSS
model with three different classifiers in the second level; Neural Network at
the second stage (regarded as BiLevCSS (NN)), RIPPER in the second stage
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Algorithm 1: Algorithm for BiLevCSS
Data: Train Dataset: Initial training dataset. Test Dataset: Initial testing

dataset. TransformedTestSet: Testing dataset for classification model.
TrainSet1: Training set used to build the ARC Model. TrainSet2:
Training set used to build features using the ARC model and train the
classication model.

Result: Predict class label of each instance in TestSet.
1 Use TrainSet1 to generate all statistically significant CARs A →ck. ; � Follow

the Algorithm 1 and 2 in [15]

2 classLabelsSet ←− Unique set of class labels in dataset
3 ARC Model = { CARs A →ck | ck ∈ classLabelSet}
4 for each instance T in TrainSet2 do
5 NewFeature=[]
6 for each rule R in ARC model do
7 match(T, R) ; � Determine if instance T matched the antecedent

of rule R.

8 if match(T, R)==True then
9 NewFeature.append(Conf(R), Support(R), log(P-value(R)), 1);

10 else
11 NewFeature.append(Conf(R), Support(R), log(P-value(R)), 0);
12 end

13 end
14 TransformedTrainSet.append(NewFeature);

15 end
16 Train a supervised learning model using TransformedTrainSet dataset for

classification.
17 Repeat steps 4 to 15, to extract features from Test Dataset using ARC model to

build TransformedTestSet for second stage of learning.
18 Derive the accuracy of the classification model using the Test dataset.

(regarded as BiLevCSS (RIPPER)) and SVM in the second stage (regarded as
BiLevCSS (SVM)).

We follow the default parameter values for SVM [10], C4.5 [18], CBA [17],
CMAR [16], CPAR [19] as stated in the original papers. For RIPPER as a
standalone rule based classifier, we have used default parameters from Weka [13]
which are also stated to be the best by the authors in [9]. For vanilla Neural
Network, we use a single hidden layer with the number of nodes to be the average
of the number of input and output nodes and we also tune ReLU or sigmoid
activation functions with a learning rate of 0.1.

For our baseline Method 1, we perform experiments using Apriori [1] based
rule generation in the first level learning. Further, we test the accuracy of the
rule-based feature extraction approach to build the bi-level classifier with Neural
Network, SVM or RIPPER in the second stage. Similarly, we also measure the
accuracy, of the bi-level classifier, which uses class-based features. For Apriori,
we use a range of support values from 5% to 30% depending on the size of
the dataset. The threshold value for confidence is set around 50%. In Table 4,
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Table 4. Comparison of classification accuracy using Rule-based and Class-based Fea-
tures extraction in Method 1

Datasets #cls #rec 2SARC2
(NN)

2SARC2
(SVM)

2SARC2
(RIPPER)

2SARC1
(NN)

2SARC1
(SVM)

2SARC1
(RIPPER)

Iris 3 150 93.74 89.74 94.28 94.11 89.3 90.94

Glass 7 214 48.9 52.2 69.17 50 52.2 51.74

Heart 5 303 63.5 54.34 54.95 62.34 57.14 54.02

Hepati 2 155 85 81.25 79.97 70 75 80.48

Pima 2 768 66.45 65.2 72.74 64.39 67.53 70.93

Flare 9 1389 74.5 70.58 84.35 74.39 70.6 83.96

Anneal 6 989 77 82 96.41 79.5 78.04 83.74

Horse 2 368 67.6 63.3 81.40 72.97 70.96 63.75

Breast 2 699 89.7 93 93.14 93.75 98.6 93.78

Wine 3 178 97.18 77.97 85.15 94.92 72.02 53.84

Average 76.35 72.95 81.15 75.63 73.13 72.71

we report the accuracy obtained for the 10 UCI datasets using our baseline
approach. Along with the classification accuracy values, the name of the dataset
and the number of records have also been reported. As can be seen from Table 4,
the overall accuracy does not follow a pattern and nothing conclusive could be
derived from the results aforementioned. However, the results from Method 1
showed that, for most of the UCI datasets, the rule-based feature extraction
approach is found to give altogether a better average accuracy over the class-
based feature extraction approach.

Therefore, in the second method, we adapt the rule-based feature extraction
approach to build the bi-level classification model with statistically significant
rules. For the following experiments, we discretize the numerical attributes of
the datasets as stated in [7]. All the results reported in this section have been
performed on the same discretized dataset for fair comparison.

Moreover, as suggesed by Li et al. in [15], we use the Fisher exact test to
analyse the statistical significance of the class association rules. The threshold
for p-value is set to be 0.05. The use of only statistically significant rules and
the addition of p-value value along with support and confidence as a feature in
the rule-based classification gives us much better results for Method 2 than the
baseline Method 1. For the second layer of both the methods, we use Neural
Network with single hidden layer, with ‘ReLU’ or ‘sigmoid’ as the activation
functions and a learning rate of 0.1. We also tune the hyper parameter values
of gamma, kernel and regularization parameters for the SVM classifier. We have
performed 5 fold internal cross validation for SVM and NN to tune their respec-
tive hyper parameter values. For RIPPER at the second stage of learning, we use
the default best parameters from Weka. It can be observed that, in Table 5, the
BiLevCSS model gives the best overall classification accuracy for the considered
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Table 5. Comparison of classification accuracy of BiLevCSS with other state-of-the-art
classifiers

Datasets BilevCSS
(RIPPER)

BilevCSS
(NN)

BilevCSS
(SVM)

RIPPERNN SVMC4.5 CBA CMARCPAR

Iris 95.72 100 98.66 94 98.09 94.6 94 94.67 94 94.7

glass 69.27 86.60 59.52 68.69 70.14 68.6 71.47 73.9 70.1 74.4

Heart 56.51 78.64 52.84 53.97 56.72 55.4 61.5 57.8 56.2 53.8

Hepati 82.57 84.95 88.41 78.06 82.89 79.3 79.25 81.82 80.5 79.4

Pima 73.64 81.24 73.2 66.36 75.95 74 73.7 72.9 75.1 73.8

Flare 84.27 96.1 83.1 72.13 84.61 73.8 82.1 84.2 84.3 63.9

Anneal 96.93 96.96 96.25 95.8 93.96 85 89.87 97.91 97.3 98.4

Horse 83.34 87.78 77.27 84.23 81.321 72.5 85.04 82.36 82.6 84.2

Breast 93.05 94.26 92.80 95.42 96.83 95.7 94.71 96.28 96.4 96

Wine 89 94.94 84.20 91.57 91.66 94.9 71.7 49.6 92.7 88.2

Average 82.43 90.14 80.62 80.02 83.21 79.38 80.33 79.14 82.92 80.68

datasets. Our algorithm BiLevCSS(NN) outperforms all the other classification
algorithms in the 10 UCI datasets with highest average accuracy.

We further perform a comparison between BiLevCSS with Neural Network at
the second level against the vanilla Neural Network with 1 hidden layer, to val-
idate the efficiency of the model. The results show that the proposed algorithm
outperforms the vanilla NN. Similarly, BiLevCSS(SVM) was found to outper-
form vanilla SVM and BiLevCSS(RIPPER) outperformed the vanilla RIPPER
algorithm. Figure 1 illustrates the comparison of results given by the best model
BiLevCSS(NN) with vanilla Neural Network.

Fig. 1. Comparison of classification accuracy for BiLevCSS(NN) with vanilla Neural
Network, 2SARC1(NN) and 2SARC2(NN).
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The results shown in Table 5 highlight that the BiLevCSS model outperforms
other rule based and associative classifiers on comparison. Next, we compared
the three proposed strategies namely, BilevCSS (Ripper), BiLevCSS (NN) and
BiLevCSS (SVM) with SigDirect. The results of this comparison are summarized
graphically in Fig. 2. The graph shows that BiLevCSS (NN) performs better
than the rest, which proves that, when meaningful, statistically significant and
non-noisy rules are given to Neural Network, the classification accuracy of the
classifier improves. The results obtained from BiLevCSS (Ripper) are motivating,
however do not beat BiLevCSS (NN) in performance. Therefore, in the future
we aim to evaluate more explanatory classification models in the second phase
of learning, for a more explainable model since Neural Networks are more of a
black box compared to Ripper.

Fig. 2. Comparison of classification accuracy for BiLevCSS(NN) with BiLevCSS
(RIPPER), BiLevCSS(SVM) and SigDirect.

4.2 Statistical Analysis

The accuracy values report that BiLevCSS performs better for most of the
datasets. To confirm this statement, we perform statistical analysis as shown
in Table 6. We follow Demsar’s study [11] and use Friedman’s test to compare
the statistical significance of the results obtained from the comparison of all the
algorithms on the basis of classification accuracy. Since the p-value obtained from
this test was less than the critical value (alpha) which is equal to 0.05, it proves
that the results are statistically significant and the algorithms are significantly
different from one another.

Furthermore, to investigate the statistical significant of the proposed algo-
rithm with other contenders pair-wise, we perform another non-parametric test
called Wilcoxon signed ranked test [11]. In this test, for every pair of algorithm
in consideration, the difference of their classification accuracy, Di is calculated
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to analyse the ranks based on the absolute values of these differences, |Di|.
Further, positive ranks R+

i and negative ranks R−
i are calculated based on the

original values of Di for two algorithms. Adding up all the values of R+
i and

R−
i , Wstat is calculated as min(

∑
R+

i ,
∑

R−
i ) which gives us the critical value

Z. For alpha value equal to 0.05, the corresponding Z-value is −1.96, therefore,
the null hypothesis is rejected if the obtained critical value Z is less than −1.96.

Table 6 reports the p-values obtained by comparing the most accurate model,
BiLevCSS(NN) against other classifiers using Wilcoxon test. We also compare
the number of times the different algorithms win or lose against BiLevCSS(NN)
and if there is a tie between them. The p-values obtained are less than 0.05
which show that BiLevCSS(NN) is statistically significantly better than all the
contenders. The results show that the proposed BiLevCSS algorithm with Neural
Network at the second stage of learning outperforms the rest of the algorithms
by winning in at least 8 out of 10 instances.

Table 6. BiLevCSS(NN) compared to the rest of the algorithms on 10 UCI datasets

Classifiers Wins Losses Ties P-value

BiLevCSS(NN) vs BiLevCSS(SVM) 9 1 0 0.017

BiLevCSS(NN) vs RIPPER 9 1 0 0.007

BiLevCSS(NN) vs NN 9 1 0 0.013

BiLevCSS(NN) vs SVM 9 1 0 0.009

BiLevCSS(NN) vs 2SARC2(NN) 8 2 0 0.013

BiLevCSS(NN) vs 2SARC2(SVM) 10 0 0 0.005

BiLevCSS(NN) vs 2SARC2(RIPPER) 10 0 0 0.005

BiLevCSS(NN) vs 2SARC1(NN) 10 0 0 0.005

BiLevCSS(NN) vs 2SARC1(SVM) 9 1 0 0.007

BiLevCSS(NN) vs 2SARC1(RIPPER) 10 0 0 0.005

BiLevCSS(NN) vs BiLevCSS(RIPPER) 10 0 0 0.05

BiLevCSS(NN) vs C4.5 9 1 0 0.007

BiLevCSS(NN) vs CBA 8 2 0 0.013

BiLevCSS(NN) vs CPAR 8 2 0 0.013

BiLevCSS(NN) vs CMAR 8 2 0 0.013

5 Conclusion and Future Work

In this project, we have introduced a novel approach BiLevCSS, a two level classi-
fier built on statistically significant dependent CARs. The proposed classification
model consists of four steps of rule generation, rule pruning, transformed feature
extraction for the next phase using the obtained rules and finally, the prediction



Bi-Level Associative Classifier Using Automatic Learning on Rules 215

on the learned model using Neural Network in the second stage. Rule genera-
tion leads to the generation of all statistically significant rules which are further
used to train a second classification model to select appropriate rules. Since,
these rules might be noisy with some irrelevant information, they are pruned
using the instance-centric rule pruning strategy. Furthermore, the features are
extracted using rule based or class based techniques. Finally, the classification
is done by using the learned NN, SVM or RIPPER in the second level. The
idea of using statistically significant rules has made our algorithm more effi-
cient by selecting only valuable CAR and providing new features for the second
stage. The experimental results are very encouraging. The proposed classifier
especially BiLevCSS(NN) is found to have achieved better prediction than other
state-of-the-art classification algorithms in terms of accuracy.

In the future, we aim to experiment our algorithm by incorporating more
features other than support, confidence, lift and p-value. We would also like to
evaluate the performance of our model with explainable associative classifiers
in the second stage of learning. We would also extend our work for multi-label
classification.
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Abstract. We present here a new parameter-free clustering algorithm
that does not impose any assumptions on the data. Based solely on the
premise that close data points are more likely to be in the same cluster,
it can autonomously create clusters. Neither the number of clusters nor
their shape has to be known. The algorithm is similar to SingleLink in
that it connects clusters depending on the distances between data points,
but while SingleLink is deterministic, RandomLink makes use of random
effects. They help RandomLink overcome the SingleLink-effect (or chain-
effect) from which SingleLink suffers as it always connects the closest
data points. RandomLink is likely to connect close data points but is not
forced to, thus, it can sever chains between clusters. We explain in more
detail how this negates the SingleLink-effect and how the use of random
effects helps overcome the stiffness of parameters for different distance-
based algorithms. We show that the algorithm principle is sound by
testing it on different data sets and comparing it with standard clustering
algorithms, focusing especially on hierarchical clustering methods.

1 Introduction

Most clustering algorithms are based on some kind of assumptions about the
distribution or form of the data. K-Means [9], for example, is based on the
assumption of Gaussian distributed clusters, with the variance in all directions
being basically the same. EM [2], on the other hand, does not necessarily assume
a uni-directional variance but is capable of finding lopsided, stretched Gaussian-
distributed clusters. The assumption behind it though is a Gaussian distribution.

To overcome these restrictions, purely distance-based clustering techniques
like SingleLink [12] and DBSCAN [3], which no longer make assumptions about
the distribution of data, have been created. These techniques, however, often
need at least one parameter to help them to estimate how dense the expected
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clusters should be. Since the density of the data set might vary, this may cause
that clusters with different densities can be cut out very poorly. DBSCAN is
well known to have problems with varying densities [11]. SingleLink, on the
other hand, suffers from the “SingleLink-Effect”, where clusters are combined,
if they have a “bridge” of data points connecting them. All these difficulties are
caused by the strict focus on the given parameters, which does not always give
the leeway needed.

The technique that we would like to present here, RandomLink, avoids such
problems by using randomised effects to determine the clusters. It does not need
parameter(s) or model assumptions to find the clusters. Its only premise is that
the closer data points are, the more likely they belong into the same cluster. It
starts with a fully connected data set (all data points are connected) and deletes
all connections between data points. The order of deletion is remembered and
inverted to connect data points until a certain number of clusters is found. This
number of clusters would be a parameter which we want to avoid. Therefore, we
also present a simple strategy to get rid of it. Connections are deleted depending
on their length. A long connection is more likely to be deleted. Thus, every pair
of data points can stay connected, but distant ones are less likely to. Direct
connections between them are highly unlikely to consist for a long time, but
they can nevertheless be connected via other data points. If the density between
them is high, then there might be a path of data points linking them. If there
is a path between them, then they are part of the same cluster, as clusters are
defined as “connected components”, i.e. all data points that are connected via
paths.

(a) Possible paths (b) A possible final clustering result.

Fig. 1. The principle behind RandomLink.

See Fig. 1 for this. The direct connection between data points A and B is
highly unlikely to exist for a long time, as it is rather long. Compared to it,
the line between B and C has a relatively high chance to remain for longer.
This would link two clusters, which clearly do not belong together, and split one
cluster into two, which do. RandomLink removes – with a certain probability
– longer links first, which means that while it does remove the link between A
and B, it will eventually also remove the link between B and C. Since the links
between clusters are – as a tendency – longer than many links inside a cluster,
the connection between clusters will eventually be cut. Inside the cluster though,



RandomLink 219

many links will consist for a long time and thus a path (like the one shown in
the Fig. 1) between A and B may remain and link them indirectly. There is, of
course, the chance that this specific path is also interrupted, but as there is a
high number of possible paths between A and B, at least one will - most likely
- remain.

Thus, not only the distance between data points is relevant for RandomLink,
but also the placement and relative distances of the other data points are very
important to decide if data points are considered part of the same cluster. While
the direct connection will be – very often – erased, indirect paths will remain
inside the cluster, that link different parts of the cluster with each other. One
possible clustering result then might look like Fig. 1b. The direct connection
between A and B is gone, but an indirect path remains. RandomLink poten-
tially takes all connections between data points into account in every step. One
might state that RandomLink considers the whole data set, not only the local
environment.

The similarity to SingleLink is clear. SingleLink connects the closest data
points, while RandomLink is only likely to connect them or might link them
via other close data points. It has a broader approach because the length gives the
probability of a link remaining, not the absolute 0/1-decision of SingleLink. With
this RandomLink can e.g. alleviate the SingleLink-effect (or chain effect), from
which SingleLink suffers and cluster a data set more naturally. The SingleLink-
effect is caused by a sort of bridge between clusters, which will keep them con-
nected, no matter how long the bridge. With RandomLink the connections of
the bridge will be thinned out while clustering until it eventually is no longer
connecting. The specifics, of course, depend on the length, density, etc of the
bridge, but RandomLink can overcome, or at least lessen, the difficulty of the
SingleLink-effect. RandomLink is as a whole not purely dependent on local den-
sity, as e.g. DBSCAN is, but evaluates on a broader spectrum, as stated before.
This leads to a reduced dependency on the rigidity of fixed parameters compared
to DBSCAN or SingleLink have. We will talk in more detail about this in Sect. 4,
on how we intend to use random effects to our advantage.

1.1 Related Work

RandomLink computes the distances between all data points and determines
an order by deleting them depending on their length combined with random
numbers. After this order is fixed, it starts connecting the data points until the
clusters are found. The closest related methods are clearly hierarchical clustering
approaches like SingleLink. The differences in these methods are how they decide
on the order of connecting the data points to clusters. SingleLink connects data
points/clusters depending on the closest data points in the clusters, AverageLink
[13] connects the clusters depending on the average distance between data points,
CompleteLink [1] on the maximal distance between data points and Ward’s
Criterion [16] on the change in variance in the clusters. These methods all decide
on the order of connecting data points deterministic while RandomLink uses
random effects and connects the likely closest clusters. As a distance between
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clusters, we use the SingleLink approach of the minimal distance between data
points in clusters. It could be easily adapted to other definitions of distance, as
e.g. AverageLink uses.

One could consider Graph-clustering methods like Highly Connected Sub-
graphs (HCS) [5] or Chameleon [7] as related, as we plot various Graph-like
Figures, but these are used to explain RandomLink. Graph-clustering methods
are focused on clustering graphs, while RandomLink clusters numerical data.
One can create a Graph out of numerical data and employ these methods, but
other clustering approaches are more closely related. HCS divides graphs along a
minimum cut [6] multiple times before it starts re-connecting them. Chameleon
[7] creates a sparse kNN graph, partitions it into many sub-graphs and merges
them using a minimum cut criterion.

Both these methods have parameters which are hard to tune. RandomLink
needs no parameters at all. In the straightforward implementation, we would
leave the number of clusters to be found to the user, but we created an approach
for estimating the optimal stopping point in creating the final clusters (details in
Sect. 2.2). This stopping criterion could be construed as an ensemble-approach
(also called consensus clustering, see [8] for an introduction). Ensemble methods
are a relatively new approach to data mining. They try to combine multiple
clustering results into one and this single result should be better than any of the
input clusterings. RandomLink uses k-Means to find the best stopping point, but
it does not combine clustering results, so it is not exactly an ensemble-approach.

Spectral Clustering-approaches start with a similarity/distance matrix on
which they eventually employ k-Means. RandomLink computes the distances
and uses k-Means to decide the stopping point. There are some similarities and
we take them as interesting comparison methods, in particular, the fundamental
algorithm of Ng, Jordan and Weiss [10], which has become one of the classical
clustering approaches by now. These standard methods should be used as com-
parison methods as they provide a baseline of what one can expect as a clustering
result. Another standard approach is DBSCAN, one of the best-known examples
of distance-based clustering methods, which we will discuss in more detail later.

1.2 Contributions

In this paper we propose the clustering algorithm RandomLink, which is exten-
sively tested on various real world datasets. It performs especially well on data
sets where other clustering approaches have difficulties to reach even a mini-
mal level of clustering quality. Thus, it can be used as an approach for difficult
data sets, where not much is known. The advantages of RandomLink are the
following:

– RandomLink tends to find decent clusterings even when well-established algo-
rithms fail.

– RandomLink is completely parameter-free and needs no input from the user.
It does not need the number of clusters and stops completely automatic.

– RandomLink has no assumption about the shape of distribution of clusters.
They can be of arbitrary shape and distributions.
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– The source code of RandomLink is publicly available for everyone to corrob-
orate our results.

2 The Algorithm

As stated, RandomLink determines the order of connecting clusters by first
deleting them using their length as probability for being deleted. Thus, we start
by computing the distances between all data points and store them in a distance
matrix S. We can imagine the data as a fully connected data set, i.e. each pair of
data points has an edge, i.e. link, e in between them with the length of this link
defined by the Euclidean distance of the data points. The algorithm now deletes
one link after another, with the length of an link determining the probability of
that happening.

2.1 Deleting Links

All links are lined up and the total length of all links sumS is computed. See Fig. 2
for a simple example. A random number in the interval [0, sumS ] is drawn, here
it is 3.1415, and the corresponding link e2 is removed. It is simply the link into
which’ interval the number falls. Link e2 is then removed from the concatenated
links and the total length is now 18, i.e. sumS − l(e2) with l(e) being the length
of link e. A new number is now drawn from the interval [0, sumS − l(e2)] and
the same step is repeated.

(a) Links listed with their length. The total length of all links is 23.

(b) We draw the random number r=3.1415 from the range [0, 23].
The corresponding link is e2.

(c) We remove e2. The total length of the links is now 18.

Fig. 2. How we determine the order of connecting clusters.

The probability of a specific link ex being removed is thus

p(ex) =
l(ex)

∑
e l(e)

(1)
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It is linearly dependent on the length of the e, i.e. longer links are more likely
of being removed. This approach is commonly referred to as Roulette Wheel
Selection [4].

RandomLink starts by creating a distance matrix Sn×n computed from a data
set Dd×n using a distance function. We use the Euclidean distance, but any
other distance or similarity measure could be used as well. Using Manhattan
distance or Cosine and Gaussian similarity lead only to tiny differences. The
results reported in Sect. 3 are almost uninfluenced by the used distance/similarity
function. The values in S give the probability (if scaled as in Eq. (1)) for every
link connecting two data points to be deleted. We calculate the sum of S and
store it as sumS . As explained earlier, we choose a random value r in the range
[0, sumS ]. There is a link corresponding to r and this link is deleted from the
data set and its value in S set to 0. Its index is stored in a stack and identifies
the deleted link. This procedure is then continued until all links are deleted.

Algorithm 1. RandomLink
Require: Data D

procedure RandomLink(D)
S ← similarity matrix(D)
sumS ← ∑

(S), scoremax ← 0
while sumS > 0 do

delete random link e
sumS ← sumS-length(e)
set index of e 0 in S
stack.push(index of e)

end while
ds ← Disjoint Set.make set(S)
while ds.n connected components > 1 do

ds.union(stack.pop())
if (ds.n connected components changed) then

score ← stopping criterion(ds.connected components, D)
end if
if (score > maxscore) then

Labels ← ds.connected components, scoremax ← score
end if

end while
return Labels

end procedure

The algorithm starts with a fully connected data set from which the links are
deleted until every data point is a singleton. Thus, the order of the links between
the data points is determined and the algorithm can start connecting them, i.e.
the clusters will be created. The algorithm adds the first link as determined in
the order of the links, reducing the number of connected components from n to
n − 1. After a few links are added, we will have a situation like in Fig. 3d. Many
clusters exist and the correct clusters are still separated. Adding a few more links
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(a) Clusters are well interconnected (b) Clusters are interconnected by few links

(c) More and more clusters appear. (d) Few links are inserted

Fig. 3. Different amount of links and the connected components. The algorithm deletes
more and more connections, until eventually all data points are singletons. The order
of the connections is determined by the deletion of links and the clusters found by
inserting the links in reverse order.

will lead to Fig. 3c, where the clusters start to make sense. In the beginning, most
added links will be small until, eventually, longer links are added. Connections
between the clusters become more and more likely. This is the situation depicted
in Fig. 3b. The number of connected components decreases with those longer
links being added and interconnecting clusters. The algorithm terminates as
soon as the number of connected components |cc| becomes one. All data points
are connected and the clustering no longer changes.

Somewhere between the two extremes of |cc| = n and |cc| = 1 is the point
where we want to stop. If we were to look for exactly k clusters, we could
simply stop as soon as we found k connected components, but we want to have a
completely parameter-free clustering approach which determines the number of
clusters automatically. It is possible to apply RandomLink with k as a parameter,
but knowing the correct number of clusters is seldom trivial and we can not
expect that the user always knows exactly for what he/she is looking for. We
found a heuristic that helps us find the optimal stopping point.

We make here use of a union-find data structure which is also known as
disjoint-set for an online connected components analysis and benefit from quasi
constant time per operation [14]. Every time clusters are merged the number of
connected components decreases by one and the root nodes for every data point
in the disjoint-set data structure are used as cluster labels.
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2.2 Stopping Criterion

In-between |cc| = n and |cc| = 1 is the point where we want to stop. If |cc| = n
then every point is its own cluster. Adding links leads to the data points creating
clusters. Adding even more links leads to the clusters becoming connected until
eventually |cc| = 1. The typical progress of this can be seen in Fig. 4. The mea-
sure for clustering quality used there is Normalised Mutual Information (NMI)
[15] which is widely used to evaluate clustering results. NMI scales between 1.0
(perfect clustering) and 0.0 (purely random cluster assignments). We see in Fig. 4
that there is a peak between the fully connected data set and fully isolated data
points. The NMI is maximal there, i.e. it is the best result that can be reached
with our approach and we find it the following way:

Fig. 4. Average NMI when deleting links for our running example.

Whenever the number of connected components |cc| changes, a score is com-
puted by our stopping criterion (Algorithm 2). This score changes for different
values of |cc|. When the score has become maximal, maxscore, the ideal state of
the clustering has been reached and the connected components cc at that time
will be returned as the clustering result. The score itself is computed by compar-
ing our current clustering result with the result of k-Means by executing k-Means
on the data D and using the number of connected components |cc| as the num-
ber of clusters k. Thus, we compare the clusterings of RandomLink and k-Means
with NMI and remember the comparison value. Finding the stopping point this
way ensures that we need no further parameters (the k for k-Means is given by
RandomLink) and although it is purely heuristic, it is easy to understand.

Algorithm 2. Stopping Criterion
Require: connected components cc, Data D

procedure evaluate stopping criterion(cc,D)
Label ← k-Means (D,k=|cc|)
return NMI (Label,cc)

end procedure
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Thus, we know when the algorithm should stop. It would be beneficial for
RandomLink to know k, as we will see in Sect. 3.2, but this way we remove the
last parameter at the cost of a relatively small loss in clustering quality. Hence,
one can use RandomLink and set a number of clusters as e.g. SingleLink does
it, or use it automatically in combination with this stopping criterion.

3 Experiments

3.1 Real World Data

We tested RandomLink with various real world data sets from the UCI Machine
Learning Repository to evaluate its performance. The most important compari-
son method is clearly SingleLink, as it is closest to our approach. We also included
AverageLink [13], CompleteLink [1] and Ward’s method [16] as further repre-
sentatives of hierarchical clustering methods. We also included the standard
clustering methods, i.e. EM [2], as they give a realistic value of what can be
expected from clustering for a data set. K-Means [9] is a standard approach and
also employed to evaluate the optimal stopping point and therefore a necessary
comparison method. DBSCAN [3] is one of the most prominent distance-based
clustering methods which we will talk about more later on. We mentioned the
similarities to Spectral Clustering-methods and have thus also included STSC
[17] as a popular method and FUSE [18] as a more recent one. With Spectral
Clustering we refer to the essential algorithm by Ng et al. [10], which was foun-
dational for this type of clustering methods. Furthermore, the aforementioned
Chameleon [7] is chosen to represent graph clustering methods.

The results are shown in Table 1. “RandomLink max” value stands for the
best result which could have been reached with our approach, while “Random-
Link” denotes the actual result we reach in combination with the stopping cri-
terion. On the data sets, RandomLink always yields a good NMI value while
the other algorithms partially completely fail and are sometimes clearly outper-
formed by RandomLink. RandomLink is the best choice on all of the 8 data
sets and loses only once by a tiny deficit. The data sets have a wide range of
dimensionality and number of clusters, which shows that RandomLink is not
restricted in these regards. We want to especially emphasise the improvement
over SingleLink. Including these random effects into it, massively improved the
clustering results. The stopping criterion works most of the time as intended and
returns a result close to the optimum. Furthermore, the clustering results are
mostly stable. The small deviations in clustering quality show that the algorithm
behaves predictably in a certain range.

Parameters. We tried to be as fair as possible to the comparison methods.
The algorithms were given correct k if needed and using Euclidean distance. For
DBSCAN we performed a grid search on the parameter range ε = [0.01−−10.0]
in 0.5 increments and minPts = 2, 5, 8, 11, 14 and report the best found NMI
value. For Chameleon, the kNN graph was constructed with k = 10 and the
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Table 1. Experimental results. All non-deterministic results have been repeated 100
times and the average is given. The correct value for k is always given for the comparing
algorithms. Results given in NMI and best result bold marked.

Data set Yeast Fish User know. Crowdsourced.

# of dimensions 8 463 5 28

# of classes 10 7 4 2

RandomLink max 0.48 0.57 0.47 0.55

RandomLink 0.45 ± 0.01 0.55 ± 0.01 0.46 ± 0.01 0.49 ± 0.02

SingleLink 0.12 0.03 0.05 0.03

CompleteLink 0.23 0.19 0.29 0.34

AverageLink 0.11 0.13 0.32 0.40

Ward’s method 0.27 0.35 0.28 0.43

k-Means 0.27 0.28 0.23 0.43

DBSCAN 0.12 0.39 0.11 0.00

EM 0.17 0.25 0.42 0.42

Chameleon 0.00 0.47 0.35 —

Spectral Clustering 0.28 0.39 0.23 0.43

STSC 0.06 0.10 0.04 0.12

FUSE — 0.19 0.02 0.01

Data set Glass Id. Thyroid Libras Move. Arrhythmia

# of dimensions 9 13 90 278

# of classes 6 6 15 11

RandomLink max 0.50 0.54 0.68 0.61

RandomLink 0.47 ± 0.02 0.52 ± 0.02 0.64 ± 0.02 0.56 ± 0.05

SingleLink 0.07 0.51 0.12 0.35

CompleteLink 0.38 0.47 0.54 0.43

AverageLink 0.11 0.51 0.60 0.40

Ward’s method 0.40 0.44 0.62 0.47

k-Means 0.43 0.46 0.59 0.44

DBSCAN 0.46 0.00 0.59 0.00

EM 0.34 0.44 0.59 0.43

Chameleon 0.00 0.44 0.00 0.54

Spectral Clustering 0.31 0.44 0.62 0.46

STSC 0.09 0.11 0.22 0.44

FUSE 0.28 — 0.18 0.31

default value of α = 2.0 was used for the cluster merging, besides that, the
authors stated that Chameleon is not very sensitive to the parametrization [7].
The similarity matrix for spectral clustering was created by using the Euclidean
distance of the 10-nearest neighbours reassuring a connected graph. For Self
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Tuning Spectral Clustering (STSC) [17] the default parameters were used. For
SingleLink, FUSE, k-Means etc. the correct k is always given, as stated. Ran-
domLink was executed 100 times for every data set listed in Table 1 and the
mean NMI is reported as well as the standard deviation. We use NMI to eval-
uate clustering quality, as it is widely used and often considered the standard
when evaluating clustering results.

Table 2. We compare the clustering result of the stopping criterion to knowing k in
regard to clustering quality (NMI) and runtime. Best result in bold.

Stopping criterion Knowing the number of clusters

Dataset Mean NMI Runtime Mean NMI Runtime

Yeast 0.45 ± 0.01 100% 0.48 ± 0.00 68.8%

Fish 0.55 ± 0.01 100% 0.57 ± 0.00 49.5%

User Know. 0.46 ± 0.01 100% 0.48 ± 0.00 53.0%

Crowdsourced. 0.49 ± 0.02 100% 0.55 ± 0.00 52.4%

Glass Id. 0.47 ± 0.02 100% 0.53 ± 0.00 50.5%

Thyroid 0.52 ± 0.02 100% 0.58 ± 0.04 37.6%

Libras Move 0.64 ± 0.02 100% 0.69 ± 0.00 34.8%

Arrhythmia 0.56 ± 0.05 100% 0.65 ± 0.02 24.1%

Sourcecode. Under the following links, one can find code and data sets:
https://github.com/53RT/RandomLink
https://dm.cs.univie.ac.at/research/downloads/
We do so as we feel that it is important that our claims can be validated and
fellow researchers can build upon our results if they feel so inclined.

3.2 Adding the Number of Clusters as a Parameter

We pride ourselves on RandomLink being completely parameter-free, i.e. no
density-parameter or number of clusters is needed. The question is whether this
has deteriorated the clustering quality, and if so, by how much? Thus, we ran
RandomLink to find exactly |cc| = k clusters and compared it to the results of
our stopping criterion. In Table 2 is the effect of supplying k described.

Two relevant effects can be observed here: 1) The runtime does clearly
decrease if k is supplied as a parameter. Computing the stopping criterion is
no longer necessary and one can stop the algorithm as soon as the correct num-
ber of clusters is reached, which means one has to perform less operations with
the disjoint-set data structure used in the link insertion phase. 2) The difference
in NMI is small. This means that our method either stops at the correct number

https://github.com/53RT/RandomLink
https://dm.cs.univie.ac.at/research/downloads/
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of clusters or, if it stops at a different point, finds a stopping point that is com-
parable in regard to clustering quality. There is a tendency for the results to be
better with given k, but this is not exactly surprising as the additional informa-
tion makes things easier. Knowing when to stop, reduces the risk of generating
poor clustering results.

A user has, therefore, the possibility to either let the algorithm find the
number of clusters automatically or ask for a specific number of clusters, which
entails a speed-up of a factor of roughly 2–3. Automatic setting of k is a major
advantage in an unsupervised setting, as most of the time the data set is not very
well understood and any decision a user has to make might be false. RandomLink
takes this responsibility from the user, though, at the cost of runtime, but in
similar clustering quality.

3.3 Runtime

We omit extensive experiments on runtime, as we are more interested if this
approach is valid in principle, but we do calculate the estimations. For the algo-
rithm RandomLink itself, we first need to compute the distances between all
data points. This takes O(n2) operations to do. Alternatively, we can also start
with an adjacency matrix, and perform RandomLink on it, but this is not a mas-
sive overall improvement, as we still need to determine the order of links. There
are n2 many links. Selecting a specific one, as described in Sect. 2.1, entails a
binary search, i.e. a runtime of O(log2(n2)). This link is now removed. Finding
the next link entails again a binary search, but this time on n2 − 1 many ele-
ments, thus the runtime for it is O(log2(n2 − 1)). Summing up over all binary
searches from n2 to 1 link(s) is

∑n2

i=0 log2(i). Using Stirling’s approximation this
can be estimated as

O(n2 · log2(n)) (2)

With this, the order of the links is determined and we start to create the
clusters. The stopping criterion consists of executing k-Means, whenever the
number of connected components changes. K-Means has an estimation of O(n)
and has to be computed at most n times. Thus, it adds to the total actual
runtime but does not add anything in regards to the O-calculation.

The second phase of RandomLink - inserting the links in the reversed top-
down order - can be solved efficiently using a disjoint-set data structure [14].
First the make set method initialises the data structure with creating a node for
every item with the parent node pointing at itself. This takes O(n) time. The
parent node is used for a recursive traversal to determine if two data objects are
connected which is true if they have the same root. If path compression and union
by size or rank is used in the data structure the complexity reduces to O(α(n)) for
the find and union operations which is optimal and quasi constant. As we have
≈ n2 links to insert in a fully connected setting there will be at most O(n2 ·α(n))
operations which is never reached in reality as the connected components reaches
one with a fraction of inserted links. The number of connected components can
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be retrieved as a byproduct as it always decreases by one if clusters are united
and the cluster labels can be easily extracted from the root node of every item.

Since α(n) is essentially constant, creating the clusters is O(n2) and the
dominating part of the estimation is computing the order of the links, i.e.
O(n2 · log2(n)). Equation (2) gives therefore the total of the runtime-estimation.

4 Using Random Effects

Every pair of data points entertains the possibility in RandomLink to not be
connected with each other. This drastically lessens linkage-effects, which neces-
sarily happens for SingleLink for data sets like the one depicted in Fig. 5. The
SingleLink-effect, often referred to as chaining-effect or chain-effect, describes
the tendency of SingleLink to create long chains of clusters, i.e. linking clusters
through small bridges of data points which do not belong together. The exam-
ple, shown in Fig. 5 is a prime, if somewhat extreme, example of this happening.
The two clusters do have a bridge in between them and this bridge needs to
be broken for them to be correctly clustered. SingleLink is not capable of this.
Even if the bridge were far longer SingleLink would still connect the two clusters.
RandomLink, on the other hand, will break this bridge and the further away the
two clusters are, the faster this will happen.

Somewhat similar is the situation for DBSCAN. We see in Fig. 6 two Gaussian
clusters with different density. DBSCAN is well known to have problems with
this type of setting, where density varies. We see the difference in NMI and how
much more capable RandomLink is in clustering this data set.

Distance-based techniques are most of the times deterministic and, therefore,
forced to “obey” their parameters. Since these parameters are necessarily based
on local density (that is either the closest neighbour (e.g. SingleLink) or the num-
ber of neighbours in a certain environment (e.g. DBSCAN)), the local density
determines if data points are put into the same cluster. The difficulty now lies
therein that only taking local density into account might lead to troubling clus-
tering results. This is obvious for SingleLink with data sets like the one shown
in Fig. 5, where the local density in the bridge between clusters is relatively
high and SingleLink will, therefore, connect the clusters. This drawback is also
present in DBSCAN, as it is not fit to handle clusters with different densities (see
Fig. 6). Such a situation will lead to sub-par clustering results. RandomLink, on
the other hand, can handle such situations due to its more “holistic” approach
as it takes the whole data set into account. It splits the clusters in Fig. 5 apart,
without falling into the same trap as SingleLink. It can also handle a situation
like in Fig. 6, where DBSCAN (as well as SingleLink) would fare very badly. The
idea for the future is to combine random effects with DBSCAN and SingleLink
to overcome these difficulties these algorithms have with such data sets. The
approach of RandomLink that employs randomised effects, helps overcome the
restrictions of “fixed” parameters.

This is what we did with SingleLink: In the classical form, SingleLink first
computes all distances and then continues linking the closest clusters until either
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k connected components are created, with k as a given parameter, or a stopping
criterion tells it to. RandomLink, on the other hand, computes all distances,
deletes them and then continues linking the likely closest clusters until the
stopping criterion tells it to stop. The similarities are obvious. One can consider
RandomLink as an extension of SingleLink with the help of random effects, and a
stopping criterion. SingleLink is essentially the expected result of RandomLink,
but the random effects present in RandomLink help to overcome the chaining-
effect and to break the bridge between clusters.

Figure 6 also suggests that the same approach is also possible for other deter-
ministic distance-based methods like DBSCAN, i.e. that we can to combine
DBSCAN with randomized effects to lessen the dependency on fixed parameters.
The goal is to establish the inclusion of randomised effects into distance-based
clustering algorithms as a general principle, which helps with overcoming certain
restrictions, that these algorithms suffer as a consequence of their rigidity.

(a) Groundtruth (b) RandomLink NMI: 0.86 (c) SingleLink NMI: 0.015

Fig. 5. SingleLink-Effect for two Gaussian cluster with a bridge in between. Random-
Link separates the Link, while SingleLink cannot.

(a) Groundtruth (b) RandomLink NMI: 0.71 (c) DBSCAN NMI: 0.35

Fig. 6. Gaussians with different density. RandomLink can separate them better than
the carefully parametrized DBSCAN.

5 Outlook and Conclusion

RandomLink in combination with the stopping criterion is a completely
parameter-free clustering approach that can handle a wide range of data sets. It
assumes no specific distribution for a cluster, thus, can handle clusters of arbi-
trary shape. One might think that the use of k-Means to estimate the optimal
stopping point, limits it to Gaussian clusters, but k-Means has no influence on
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how the clusters are constructed. The shape of the clusters found is determined
solely by the order in which the links are added to the data set. Instead of
k-Means, we also tried Spectral Clustering, which can handle non-convex clus-
ters, and the results barely differ. Since it does increase runtime, we stuck with
k-Means.

RandomLink does not have some of the drawbacks of other distance-based
clustering approaches, as we have shown in comparisons with SingleLink and
DBSCAN, the main representatives of this group. It can handle bridges between
clusters and clusters with varying density. We outlined our idea about including
randomised effects into other distance-based clustering algorithms, as we have
done here with RandomLink for SingleLink. The idea to use random effects for
clustering might not be the most obvious one, but we are convinced that we
established here the usefulness of such an approach, especially when comparing
the clustering results of SingleLink and RandomLink in Table 1. RandomLink
can be taken as an extension of SingleLink with random effects (and a stopping
criterion) and we are certain that this can also be done with other algorithms.
Our main concern in this work has been to establish that the combination of
clustering with random effects can prove useful, especially for overcoming the
restrictions that these algorithms have. We are optimistic that this has been
implied heavily by RandomLink for SingleLink and we are looking forward to
combining this approach with other methods like DBSCAN.
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Abstract. The community search algorithm is an essential graph data
management tool to identify a community suited to a user-specified query
node. Although the community search algorithms are useful in various
applications, it is difficult for them to handle attributed graphs since (1)
traditional algorithms ignore node attributes and (2) algorithms require
strict topological constraints to find a community. In this paper, we
define a novel class of the community search problem on attributed
graphs called the flexible attributed truss community (F-ATC) prob-
lem. To overcome the aforementioned limitations, the F-ATC problem
relaxes the topological constraints and evaluates node attributes. Since
the F-ATC problem is NP-hard, we propose two greedy algorithms to
solve it efficiently. Our extensive experiments on real-world graphs clar-
ify that our approach achieves higher efficiency and accuracy than the
state-of-the-art method.

Keywords: Graphs · Community search · Clustering.

1 Introduction

Given an attributed graph, how can we efficiently find the most suitable (or rele-
vant) community to a user-specified query node among all possible communities?
Recent advances in information and social sciences have shown that attributed
graphs are becoming increasingly important as they represent complicated and
schema-less data. For example, in the case of a friendship network (e.g., Face-
book), each user node has several attributes such as affiliation, residential area,
and topics of interests.

To understand such complicated graphs, community search algorithms
[2,4,17] play an important role in various applications. Once they receive a query
node from a user, the community search algorithms explore a single commu-
nity (cluster) that has dense inner-community connections with the largest rele-
vance to the query node. Unlike traditional community detection algorithms (e.g.,
modularity-based methods [1,13] and density-based methods [15,16]), community
search algorithms can return a search result within a short computation time since
c© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2020, LNCS 12391, pp. 233–249, 2020.
https://doi.org/10.1007/978-3-030-59003-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59003-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-59003-1_16


234 S. Matsugu et al.

they do not need to compute the entire graph. Due to their efficiency, such algo-
rithms have been applied to various applications, including social analysis and pro-
tein analysis.

Although community search algorithms are useful in various applications,
they have a serious weakness when handling real-world attributed graphs. Tra-
ditional community search algorithms [2,4,17] cannot find accurate communities
on attributed graphs. Many real-world graphs consist of relationships among var-
ious attributes [12,20]. However, traditional algorithms attempt to detect a dense
subgraph such as k-core [17] or k-truss [2,4], which is the most relevant to the
query node without measuring attribute similarities between the query and the
community. That is why traditional algorithms fail to capture attributed-driven
communities [3].

1.1 Existing Approaches and Challenges

To address the above issue, Huang et al. recently proposed LocATC [3], which
is a novel community search algorithm for attributed graphs. Once parame-
ters k and d are specified, LocATC searches a (k, d)-truss [3] that yields the
largest attribute similarity for the query node. In this study, (k, d)-truss is a
subgraph (1) whose nodes are at least d-hop reachable from the query node
and (2) whose edges have at least (k − 2) triangles (a.k.a., 3-cliques). Although
LocATC successfully handles attributed graphs, its community search accuracy
is limited for real-world graphs because LocATC searches (k, d)-trusses under
the assumption that each community contains a sufficient number of triangles.
However, this assumption is not suitable for real-world graphs since they have
very diverse topological structures. For example, as Leskovec and Krevl reported
in [6], the average fraction of triangles is only 5.68% in various real-world graphs.
In addition, Shiokawa et al. reported that real-world graphs show a wide range
of clustering coefficient values [15]; that is, real-world graphs may not contain
many triangles. Consequently, LocATC fails to detect precise communities in
various real-world graphs, which makes it difficult to efficiently find accurate
communities in attributed graphs.

1.2 Our Approaches and Contributions

Our goal is to achieve fast and accurate community searches on large-scale
attributed graphs. In this paper, we define a novel community search problem
called the flexible attributed truss community (F-ATC) problem and present novel
heuristic community search algorithms to efficiently solve it. To overcome the
aforementioned limitations, the F-ATC problem finds a (k, d)-truss that max-
imizes the attribute similarity under all possible k settings, whereas LocATC
explores communities only for a specific k value. Although such a relaxation
increases the computational cost compared to LocATC, the F-ATC problem
allows community search algorithms to explore diverse subgraphs regardless
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of the actual topological structures included in real-world graphs. To moder-
ate the computational costs incurred by the F-ATC problem, herein we pro-
pose two heuristic community search algorithms based on the well-known beam-
search algorithm [11]. Consequently, our proposed methods achieves the following
attractive characteristics:

– Accurate: Our proposed method can identify more accurate communities
than those obtained by the state-of-the-art method LocATC because param-
eter k of (k, d)-truss is relaxed (Sect. 4.2).

– Fast: Compared with the state-of-the-art method LocATC, our proposal
achieves high-speed community searches on attributed graphs (Sect. 4.3).
That is, our proposed method can find accurate communities without sac-
rificing the community search efficiency (Sect. 4.4).

– Easy to deploy: Our proposed method does not require parameter k,
which determines the number of triangles included in each community
(Algorithm 1). Therefore, our proposal provides a simple solution for diverse
applications.

Fig. 1. Examples of (k, 1)-truss.

Table 1. Definition of main symbols.

Symbol Definition

G Connected attributed graph

V Set of nodes in G

E Set of edges in G

A Set of attributes in G

attr(u) Set of attributes attached on node u ∈ V

V (H) Set of nodes in a subgraph H

Va(H) Set of nodes having an attribute a ∈ A in a subgraph H

E(H) Set of edges in a subgraph H

q User-specified query

vq User-specified query node such that vq ∈ V

Aq User-specified query attributes such that Aq ⊆ A

dist(vq, H) Query distance between a query node vq and a subgraph H (Definition 1)

sup(e) Number of triangles (3-cliques) with an edge e ∈ E in G

Δk,d Set of (k, d)-trusses in G (Definition 2)

f(H, Aq) Attribute score function (Definition 3)

N(H) Set of 1-hop neighbor nodes of a subgraph H (Definition 5)

C(H) Set of candidate communities obtained from a subgraph H (Definition 6)
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Our extensive experiments showed that our proposed algorithms run up to
50 times faster than LocATC without sacrificing the community search accuracy.
For example, our algorithm can compute an attributed graph with 1.1 million
nodes and 3 million edges in 0.1 seconds. Although previous community search
algorithms have effectively enhanced application quality, they are difficult to
apply to large-scale attributed graphs due to their accuracy and efficiency limi-
tations. On the other hand, our propose method should improve the effectiveness
of a wide range of applications and realize a fast and accurate approach appro-
priate to real-world graphs.

Organization: This paper is organized as follows. Section 2 introduces basic
notations and definitions of this work. Section 3 defines the F-ATC problem,
and presents two greedy algorithms; baseline algorithm and fast enumeration
algorithm. Section 4 describes the experiments to verify the effectiveness of our
approaches. Related works are briefly reviewed in Sect. 5. Finally, Sect. 6 con-
cludes this paper.

2 Basic Notations and Definitions

Here, we formally define basic notations and definitions used in this paper. Let
G = (V,E,A) be a connected attributed graph, where V , E, and A are sets
of nodes, edges, and attributes, respectively. Each node u ∈ V has a set of
attributes denoted by attr(u) ⊆ A. To simplify the representaions, each node is
assumed to have one or two attributes (i.e., 1 ≤ |attr(u)| ≤ 2). Without loss of
generality, other types of attributed graphs can be handled even if each node has
more than two attributes. For convenience, V (H) and E(H) are denoted as sets
of nodes and edges included in subgraph H, respectively. Here, a ∈ A, Va(H) is a
set of nodes with attribute a in subgraph H. Similarly, we define a user-specified
query as q = (vq, Aq), where vq is a query node included in V (G), and Aq is a
set of query attributes such that Aq ⊆ A. Table 1 summarizes symbols and their
corresponding definitions used in this paper. The following basic definitions are
necessary to discuss the new community search algorithms in the next section:

Definition 1 (Query distance)
Let dist(u, v) be the shortest path distance between nodes u and v on graph G.
Given subgraph H ⊆ G and query node vq, the query distance between query
node vq and subgraph H is defined as dist(vq,H) = maxv∈V (H) dist(vq, v).

Definition 2 ((k, d)-truss [3])
Let sup(e) be the number of triangles containing the edge e ∈ E. Given query
node vq and parameters k and d, a set of (k, d)-trusses is defined as

Δk,d = {H ⊆ G|∀e ∈ E(H), sup(e) ≥ k − 2, dist(vq,H) ≤ d}.

Definition 2 indicates that a (k, d)-truss is a subgraph such that (1) the nodes
are d-hop reachable from the query node vq and (2) each edge has more than
k−2 triangles, (i.e., sup(e) ≥ k−2 for each e ∈ E(V )). By controlling the values
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of k and d, we can determine the density and the size of (k, d)-trusses. Figure 1
shows examples of (k, 1)-trusses for various k settings. For instance, as shown
in Fig. 1, all (k, 1)-trusses are 1-hop reachable from the query node vq. If k = 2,
each edge in (2, 1)-truss does not need to have any triangles. By contrast, in the
case of k = 5, (5, 1)-truss should contain at least three triangles for each edge.

Finally, we introduce an attribute score function [3] that evaluates the
attribute similarity between the query and a community.

Definition 3 (Attribute score function [3])
Given subgraph H and set of query attributes Aq, attribute score function

f(H,Aq) is defined as

f(H,Aq) =
∑

a∈Aq

|Va(H)|2
|V (H)| .

Definition 3 implies that attribute score function f(H,Aq) increases as the sub-
graph contains more attributes in query attributes Aq.

3 Proposed Method

Our goal is to efficiently find an accurate community in G that corresponds
to the user-specified query. To achieve a highly accurate community search,
we first present a novel class of the community search problem, called the F-
ATC problem, in Sect. 3.1. In Sects. 3.2 and 3.3, we propose two heuristic search
algorithms to efficiently solve the F-ATC problem.

3.1 The F-ATC Problem

LocATC imposes strict topological constraints such that each community should
contain a sufficient number of triangles based on user-specified parameter k.
However, this assumption is not suitable for real-world graphs, which generally
have diverse topological structures and may not contain triangles [6]. Thus, we
introduce a new class of the community search problem that relaxes the strict k
setting in LocATC.

Definition 4 (the F-ATC problem)
Given graph G = (V,E,A), query q = (vq, Aq), and parameter d, the F-ATC
problem finds subgraph H ∈ ⋃

k≥2 Δk,d that yields the largest value of f(H,Aq).

Unlike LocATC [3], the F-ATC problem does not require parameter k. It
attempts to find (k, d)-truss maximizing the attribute score function under all
possible k settings. For example, if d = 1, the F-ATC problem explores all (k, 1)-
trusses shown in Fig. 1 and returns a single (k, 1)-truss that yields the largest
score of the attribute score function.

By relaxing user-specified parameter k, the F-ATC problem can handle
diverse typologies of real-world graphs. However, the F-ATC problem requires
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exhaustive subgraph searches to obtain a subgraph that maximizes the attribute
score function. Let k be the maximum k setting for a given graph. We can reduce
the F-ATC problem to the (k, d)-truss search problem in the polynomial time
by performing LocATC [3] for k = 2 to k = k. As discussed in [3], the (k, d)-
truss search problem is NP-hard. Therefore, the F-ATC problem is also NP-hard.
Below, we present two heuristic search algorithms to efficiently solve the F-ATC
problem.

3.2 Baseline Algorithm

We refine [9] as our baseline algorithm, which is an algorithm to improve the
accuracy of LocATC [3]. The baseline algorithm is based on the well-known
beam search technique [11]. By letting β represent the beam width that controls
a number of search results, a beam search explores graphs maintaining top-β
search results under an objective function. Based on this search strategy, the
baseline algorithm greedily explores top-β (k, d)-trusses by the attribute score
function.

Before providing detailed descriptions of the baseline algorithm, we introduce
the following definitions:

Definition 5 (1-hop neighbor nodes)
Given subgraph H ⊆ G, N(H) is 1-hop neighbor nodes of H defined as

N(H) = {v ∈ V (G)|(u, v) ∈ E(G) for u ∈ V (H) and v /∈ V (H)}.

Definition 6 (Candidate communities)
Given subgraph H ⊆ G and beam width β, we denote a set of candidate com-
munities as C(H), which is defined as

C(H) = {C1(H), C2(H), . . . , Cβ(H)} ⊆ 2|V (H)∪N(H)|,

where Ci(H) is a (k, d)-truss composed of nodes in V (H) ∪ N(H) such that
f(C1(H), Aq) ≥ f(C2(H), Aq) ≥ · · · ≥ f(Cβ(H), Aq) ≥ f(Cβ+j(H), Aq) for all
j ∈ N.

Definition 6 indicates that (1) C(H) expands subgraph H as V (H) ∪ N(H)
and (2) C(H) lists the top-β (k, d)-trusses from V (H) ∪ N(H) so that C(H)
maximizes the attribute score function among all possible (k, d)-trusses.

Algorithm: Based on the above definitions, we present the baseline algorithm
to solve the F-ATC problem. Given graph G = (V,E,A), query q = (vq, Aq),
parameter d, and beam width β, we initially set a subgraph as H = {vq}.
Afterwards, the baseline algorithm performs the following three steps:

(Step 1) Obtain N(H) from subgraph H by Definition 5.
(Step 2) Construct C(H) from V (H) ∪ N(H) by Definition 6.
(Step 3) Select a (k, d)-truss Ci(H) from C(H), and set H = Ci(H).
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The baseline algorithm iterates the above steps until all the d-hop reachable
nodes of vq are computed. After the terminating, it returns a (k, d)-truss that
yields the largest score of the attribute score function in C(H).

By iteratively enumerating C(H) in (Step 2), the baseline algorithm explores
(k, d)-trusses for various k settings so that the trusses increase the attribute score
function. However, (Step 2) requires Ω(2|V (H)∪N(H)||E(N(H))|1.5) time to find
top-β candidate communities from Definition 6. This is because (1) (k, d)-trusses
need to be explored from all possible subgraph in |V (H)∪N(H)| and (2) (k, d)-
truss detection requires Ω(|E(N(H))|1.5) time [7]. If a given graph is large, the
size of V (H)∪N(H) clearly increases. To improve the efficiency, it is important
to reduce the computational cost of (Step 2).

3.3 Fast Enumeration Algorithm

To solve the F-ATC problem on large attributed graphs, we present a fast enu-
meration algorithm to search the candidate communities in the baseline algo-
rithm. Instead of enumerating all possible candidates, the fast enumeration algo-
rithm directly lists the top-β candidates using attribute-aware candidate selec-
tion techniques.

For simplicity, we denote the query attributes as Aq = {a1, a2} without loss
of generality. To achieve fast top-β candidate enumeration, we have the following
properties from Definition 3.

Lemma 1. Given subgraph H and node v ∈ N(H), f(H ∪ {v}, Aq) > f(H,Aq)
holds, if a1, a2 ∈ attr(v) holds.

Proof. Since a1, a2 ∈ attr(v), the following equation is derived from Definition 3,

f(H ∪ {v}, Aq) − f(H,Aq) =
∑

a∈Aq

{
(|Va(H)| + 1)2

|V (H)| + 1
− |Va(H)|2

|V (H)|

}

=

∑
a∈Aq

{|V (H)|(|Va(H)| + 1)2 − (|V (H)| + 1)|Va(H)|2}

|V (H)|(|V (H)| + 1)
.

Clearly, |V (H)| ≥ |Va(H)| for all attribute a ∈ Aq. Hence,

|V (H)|(|Va(H)| + 1)2 − (|V (H)| + 1)|Va(H)|2 > 0.

Therefore, we have f(H ∪ {v}, Aq) − f(H,Aq) > 0, which completes the
proof. �	
Lemma 2. Given subgraph H and node v ∈ N(H), f(H ∪ {v}, Aq) < f(H,Aq)
holds, if a1, a2 /∈ attr(v) holds.
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Proof. Due to a1, a2 /∈ attr(v), |Va(H ∪ {v})| = |Va(H)| clearly holds for all
attribute a ∈ Aq. That is, from Definition 3,

f(H ∪ {v}, Aq) − f(H,Aq) =
∑

a∈Aq

{ |Va(H ∪ {v})|2
|V (H)| + 1

− |Va(H)|2
|V (H)|

}

=
∑

a∈Aq

{ |Va(H)|2
|V (H)| + 1

− |Va(H)|2
|V (H)|

}
< 0,

which completes the proof of Lemma 2. �	
For a given subgraph H and its 1-hop neighbor node v, Lemma 1 and Lemma 2
imply that (1) if node v has all query attributes in Aq, (k, d)-trusses composed
of H ∪{v} always increase the attribute score function, and (2) if node v has no
query attributes in Aq, the (k, d)-trusses decreases the function. We also iden-
tify the following properties, which play essential roles in our fast enumeration
algorithm.

Lemma 3. Given subgraph H and node v ∈ N(H) such that a1 ∈ attr(v) and
a2 /∈ attr(v), f(H ∪ {v}, Aq) > f(H,Aq) if and only if |V (H)|(2|Va1(H)| + 1) >
|Va1(H)|2 + |Va2(H)|2 holds.

Proof. We first prove the sufficient condition. From Definition 3,

f(H ∪ {v}, Aq) − f(H,Aq) =
2|Va1(H)| + 1

|Va1(H)|2 + |Va2(H)|2 − 1
|V (H)| .

Since we clearly have f(H ∪ {v}, Aq) − f(H,Aq) > 0, we can derive
|V (H)|(2|Va1(H)| + 1) > |Va1(H)|2 + |Va2(H)|2 from the above equation, which
completes the proof.

Next, we prove the necessary condition. From |V (H)|(2|Va1(H)| + 1) >
|Va1(H)|2 + |Va2(H)|2, the following condition is derived;

0 <
2|Va1(H)| + 1

|Va1(H)|2 + |Va2(H)|2 − 1
|V (H)| = f(H ∪ {v}, Aq) − f(H,Aq).

Thus, f(H ∪ {v}, Aq) > f(H,Aq) holds. �	
Lemma 3 leads the following corollary for given subgraph H and node v ∈

N(H) such that a1 ∈ attr(v) and a2 /∈ attr(v).

Corollary 1. f(H∪{v}, Aq) ≤ f(H,Aq) holds if and only if |V (H)|(2|Va1(H)|+
1) ≤ |Va1(H)|2 + |Va2(H)|2 holds.

Proof. We omit the proof of Corollary 1 due to space limitations. �	
From Lemma 3 and Corollary 1, several nodes in N(H) can increase the attribute
score function, even if the nodes have only a subset of Aq. Consequently, from
Lemmas 1, 2, and 3, Theorem 1 can be theoretically derived.
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Algorithm 1. Fast enumeration
Require: A subgraph H, a parameter β, and a parameter d
Ensure: A set of candidate communities C(H)
1: Obtain a subgraph H ′ from V (H) ∪ N(H) by Theorem 1;
2: while |C(H)| < β do
3: k ← maxe∈E(H′) sup(e);

4: for k = k to 2 do
5: Add all (k, d)-trusses in H ′ into C(H);
6: if |C(H)| ≥ β then
7: break;
8: end if
9: end for

10: Obtain a node v ∈ V (H ′) ∩ N(H) decreasing f(H ′, Aq) by Corollary 1;
11: H ′ ← H ′\{v};
12: end while

Theorem 1. Given subgraph H and its 1-hop neighbor node set N(H), f(H,Aq)
shows the largest score among all possible communities in H ∪ N(H) if the sub-
graph H is marged with all nodes satisfying Lemma 1 and 3 in N(H).

Proof. We can clearly prove Theorem 1 from Lemma 1, 2, and 3 and Corollary 1.
Thus, we omit the details of the proof due to space limitations. �	
Theorem 1 implies that a set of nodes that maximizes the attribute score function
can be directly found from a given H ∪ N(H).

Algorithm: Based on the above properties, we design a fast enumeration algo-
rithm for (Step 2) in Sect. 3.2. Algorithm 1 shows details of our algorithm. First,
the fast enumeration algorithm obtains subgraph H ′ from V (H)∪N(H) so that
f(H ′, Aq) is maximized (line 1). As we proved in Theorem 1, such subgraph H ′

can be obtained by adding nodes in N(H) into H if the nodes satisfy Lemma 1 or
Lemma 3. Then the algorithm adds all (k, d)-trusses composed of H ′ into C(H)
(lines 4–9). Afterwards that the algorithm removes node v ∈ V (H ′)∩N(H) from
H ′ so that removing node v decreases f(H ′, Aq) based on Corollary 1 (lines 10–
11). Finally, the algorithm terminates if |C(H)| reaches β (lines 2 and 6–8).

Theoretical Analysis: Finally, we theoretically assess the time complexity of
the fast enumeration algorithm.

Theorem 2. The enumeration algorithm requires Ω(|V (N(H))| + β|E(N
(H))|1.5) time to find the top-β candidates from V (H) ∪ N(H).

Proof. As shown in Algorithm 1 (line 1), the algorithm obtains subgraph H ′ by
Theorem 1 before starting the while loop. This procedure requires Ω(|V (N(H))|)
time since all nodes in V (H) must be checked using Theorem 1. Afterwards,
that our algorithm explores (k, d)-trusses that yield large scores of the attribute
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Table 2. Statistics of real-world datasets.

Name |V | |E| |A| Number of triangles Fraction of triangles

Cornell 195 304 1,588 59 0.04

Texas 187 328 1,501 67 0.03

Amazon 335 K 926 K 157 667K 0.08

YouTube 1.10 M 3.00 M 5,327 3.0 K 0.002

score function. In the worst case, the algorithm adds only a single (k, d)-truss
to C(H) in each while loop. That is, the while loop (lines 2–12) must be iter-
ated Ω(β) time. In each while loop, the algorithm can find a (k, d)-truss, which
incurs Ω(|N(H)|1.5) time [7], and it removes node v from H ′ in O(1) time.
Hence, the algorithm requires Ω(β|N(H)|) time. Therefore, Algorithm 1 incurs
Ω(|V (N(H))| + β|E(N(H))|1.5) time. �	
Recall that the baseline algorithm requires Ω(2|V (H)∪N(H)||E(N(H))|1.5)
time for each (Step 2). By contrast, our enumeration algorithm consumes
Ω(|V (N(H))| + β|E(N(H))|1.5) time which is clearly a smaller cost than the
baseline. Thus, our enumeration algorithm can reduce the computational cost
for the F-ATC problem.

4 Experimental Analysis

In this section, we experimentally discuss the effectiveness of our proposed algo-
rithms. We designed our experiments to demonstrate that:

– High accuracy: Our proposed algorithms achieve higher community search
accuracy than those of the state-of-the-art algorithm (LocATC) on real-world
graphs.

– High efficiency: Although our fast enumeration algorithm outputs more
accurate communities than LocATC, it outperforms LocATC and the baseline
algorithm in terms of community search time on real-world graphs.

4.1 Experimental Setup

Methods: We compared our proposed algorithms (the baseline algorithm and
the fast enumeration algorithm) with LocATC [3]. As we described in Sect. 1,
LocATC is the state-of-the-art community search method for attributed graphs.
Given a user-specified query and parameters k and d, LocATC finds a single
(k, d)-truss that maximizes the attribute score function shown in Definition 3.
In our experimental analysis, we used the k optimization technique recommended
in the original paper [3].

All algorithms were implemented in C++ and compiled with gcc-8.2.0 using
the -O3 option. All experiments were conducted on a server with an Intel Xeon
CPU (3.50GHz) and 128 GiB RAM. Here we report the average results of 100
queries.
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Datasets: We used four real-world graphs, which were published in a previous
study [3] and the SNAP repository [6]. Table 2 shows their statistics. Since all
datasets have ground-truth communities, they were used to evaluate the com-
munity search accuracy. Each node in Cornell and Texas has at most two node
attributes. Because Amazon and YouTube do not provide node attributes to
their nodes, we assigned synthetic attributes for each node by following the
same method as the previous study [3]. Specifically, we assigned the synthetic
attributes as follows:

– For each graph, we generated |A| = 0.005|V | synthetic attributes.
– For each ground-truth community, we randomly selected three attributes in

A, and assigned each one to 80% nodes in the community.
– To model noise attributes, we assigned randomly selected attributes to each

node.

Queries: We generated 100 queries for each dataset by following the settings in
the previous work [3]. Specifically, we randomly selected 100 query nodes from
each graph. For each query node vq, we set two attributes as query attributes
Aq using the most frequent attributes in the ground-truth community, including
node vq.

4.2 Accuracy

To assess whether the F-ATC problem achieves higher accuracy than LocATC,
we evaluated the community search accuracy on real-world graphs. We compared
the community search results with the ground-truth through F1-measure [8].
Figure 2 shows the community search accuracy of each algorithm by varying the
size of d from 2 to 5. We also varied β for our proposed algorithms since they
require the beam width size β for the beam searches. Note that the results of our
baseline algorithm are omitted from Fig. 2 because it did not return any results
within one hour on Amazon or YouTube.

Figure 2 shows that our proposed algorithms outperform LocATC in terms
of the F1-score if the beam width sizes are large. Moreover, our proposed algo-
rithms show higher accuracies than LocATC, except for Texas, even if the β
values are small. As we described in Sect. 1, LocATC assumes that real-world
graphs contain a sufficient number of triangles although they can contain very
diverse topological structures. Hence, LocATC fails to capture the ground-truth
communities if those communities have a small number of triangles. By con-
trast, the F-ATC problem allows more diverse typologies along with the max-
imization of the attribute score function to be explored. Hence, our proposed
method can achieve higher accuracy on a wider range of real-world graphs than
LocATC. Specifically, our proposed method maintains higher accuracy than that
of LocATC on YouTube even though the datasets have relatively smaller frac-
tions of triangles than the others. These results imply that the F-ATC problem
successfully captures diverse typologies in real-world graphs.
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Figure 2 also indicates that the fast enumeration algorithm does not sacrifice
the community search accuracy compared with the baseline algorithm. As theo-
retically discussed in Sect. 3.3, the fast enumeration algorithm can directly find
a subgraph that maximizes the attribute score function (Theorem 1). Therefore,
the fast enumeration algorithm does not degrade the community search accuracy
compared with the baseline algorithm, which performs exhaustive searches.

4.3 Efficiency

We evaluated the community search time of each algorithm on four real-world
datasets. Similar to the previous section, we varied beam width β of our proposed
methods for each d setting. Figure 3 shows the community search time on the

Fig. 2. F1-scores by varying β.
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real-world datasets. The results for the baseline algorithm are omitted since it
did not finish the community search on Amazon or YouTube within one hour.

Fig. 3. Query processing time by varying β.

The fast enumeration algorithm outperforms LocATC and the baseline algo-
rithm under all examined conditions (Fig. 3). Although the baseline algorithm is
10 times slower than the query processing time of LocATC, the fast enumeration
algorithm successfully mitigates the expensive enumeration cost in the baseline
algorithm. In our experimental results, the fast enumeration algorithm has an
improved speed up to three orders of magnitude higher than the baseline algo-
rithm. Furthermore, the fast enumeration algorithm has up to 50 times faster
query processing time than the state-of-the-art method LocATC. By compar-
ing the running time among different parameter settings, the fast enumeration
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algorithm gradually increases the running time as the sizes of β and d increase.
This is because the F-ATC problem requires a large number of community can-
didates to be searched if those parameters are large. However, the community
search accuracy reaches a plateau on the real-world graphs, even if β and d
are small (Fig. 2). For instance, our proposed method shows an almost constant
accuracy on Amazon and YouTube at β = 50 and d = 3. Hence, the fast enumer-
ation algorithm can reduce the running time while keeping its highly accurate
community search results.
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Fig. 4. Query processing time at best beam width size β.

4.4 Peak Performance Analysis

The fast enumeration algorithm shows a trade-off between the community search
accuracy and processing time. Thus, we discuss the peak query processing per-
formance. In this evaluation, we compared the running time of our proposed
algorithms with the best β value, which returns the highest F1-score among all
possible β settings. Figure 4 shows that our fast enumeration algorithm outper-
forms the community search time of LocATC for all settings. Specifically, our



Fast and Accurate Community Search Algorithm for Attributed Graphs 247

proposed method provides a community search that is up to 50 times faster than
LocATC. Additionally, the fast enumeration algorithm outputs more accurate
communities than LocATC in the case of the best β settings. That is, these
results imply that our proposed method achieves higher peak performances than
LocATC on real-world graphs.

5 Related Work

Community search algorithms are fundamental tools to analyze complex data
structures obtained from various applications [5,17,18]. Unlike traditional com-
munity detection algorithms [10,14,19], community search algorithms do not
compute the entire given graph. Consequently, they efficiently find a community
for the user-specified query. Here, we briefly review some of the more successful
community algorithms.

Traditionally, community search algorithms are considered as a problem to
detect cohesive communities that contain user-specified query nodes on non-
attributed graphs. For example, Sozio and Gionis [17] designed a community
search problem to find k-core that includes query nodes. Similarly, Huang et al.
proposed the k-truss search algorithm to reveal the most relevant communities
against a given query. Because these algorithms assume that the community
has dense and robust inner-community connections, they perform local search
methods to retrieve dense subgraphs (i.e. k-core and k-truss). However, these
methods are designed for non-attributed graphs. Hence, they are unsuited to
extract attribute-driven communities.

To overcome the above issue, Huang et al. recently proposed another class of
the community search problem, namely the ATC problem [3]. The ATC problem
is designed to find the (k, d)-truss, which is shown in Definition 2 that yields
the largest attribute similarity with the query. Since the ATC problem is NP-
hard, Huang et al. proposed the LocATC algorithm. This is the state-of-the-art
algorithm to solve such a problem within a short running time. By introducing
the ATC problem, LocATC can efficiently extract communities while ensuring
a high cohesiveness and a high attribute similarity. However, LocATC assumes
that each community has a sufficient number of triangles. This is unrealistic
because real-world graphs have very diverse topological structures [6]. In this
paper, we experimentally confirm that the accuracy of LocATC reaches a plateau
if a given graph is sparse and has a small fraction of triangles. By contrast,
our proposed algorithms overcome these performance limitations by relaxing
the topological constraints. Consequently, our proposed method achieves faster
community searches and higher accuracies than LocATC.

6 Conclusion

Herein we propose a novel community search problem called the F-ATC problem
for attributed graphs. By relaxing the topological constraints of the community
search, the F-ATC problem can explore divergent community structures included
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in real-world graphs. Because the F-ATC problem is NP-hard, we also present
two heuristic algorithms based on the beam search to solve the F-ATC problem
efficiently. Our experiments on real-world graphs demonstrate the advantages of
our proposed algorithms compared to the state-of-the-art method.

Acknowledgement. This work was supported by JSPS KAKENHI Early-Carrer Sci-
entists Grant Number JP18K18057, and JST ACT-I.
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Abstract. A differential evolution based algorithm for detecting com-
munity structure in multilayer networks with node attributes is proposed.
The method optimizes a fitness function that combines structural connec-
tivity of each layer with node similarity to obtain multilayer communities
with high link density and composed by nodes having similar attributes.
Experiments on synthetic networks show that the method finds commu-
nities almost equal to the ground-truth ones. Moreover, we compared
our approach with a clustering method using only the attribute infor-
mation, and a method which clusters nodes using only the multilayer
network structure, on four real-world multilayer networks enriched with
attributes. The results point out that the exploitation of the informa-
tion coming from both all the layers and the node features allows the
identification of accurate network divisions.

Keywords: Community detection · Multilayer networks · Attributed
networks

1 Introduction

Community detection in complex networks is one of the most studied research
problems in the field of network science [17]. A lot of methods have been proposed
since the appearance of the seminal paper of Girvan and Newman [18], presenting
an approach to detect communities by identifying the inter-community edges
to remove in order to isolate them. As research in this area regarding simple
graphs, constituted by nodes and single links connecting them, has matured, the
study of complicated structures, more similar to real-worlds networks, received
a lot of attention in the last years. In fact, modeling a complex system with
a network in which entities are interrelated by only one type of relationship,
with no additional information regarding such entities, has been recognized a
rather poor approximation of reality [2,4,20]. In complex networks, objects can
be intertwined by multiple relationships, each representing a different kind of
interaction, for instance working or friendship relationships in social networks.
Moreover, often nodes are enriched with feature vectors representing information
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content associated with such objets. Thus, the design of new methods, able to
detect community structure by considering at the same time the information
coming from all the layers and the node attributes, is a challenging research
problem which deserves investigation.

In this paper, a method based on Differential Evolution (DE) [15], named
ML@NetDE, to find a partition of attributed multilayer networks is proposed.
The method employs a fitness function, introduced in [28], which optimizes,
simultaneously for all the layers, the connectivity between nodes of the same com-
munity and, at the same time, the homogeneity of their features. Experiments
on synthetic networks, for which the ground truth division is known, show that
the method finds communities very similar to the ground-truth ones. Moreover,
ML@NetDE has been compared with the k-means method, which groups nodes
by considering only the node attributes, and the Louvain method, generalized
to multilayer networks [24], which clusters networks by using only the network
structure, on four real-world multilayer networks enriched with attributes. The
results point out that the exploitation of the information coming from both all
the layers and the node features allows the identification of network divisions
with high edge density and node homogeneity.

The paper is organized as follows. The next section introduces the concept of
multilayer network with attributes and defines the problem of community detec-
tion. Section 3 gives an overview of methods detecting communities in multilayer
networks or attributed networks. Section 4 defines the fitness function optimized
by the method. Section 5 describes the proposed approach. Section 6 reports the
experimental evaluation and shows the results. Finally, Sect. 7 concludes the
paper.

2 Preliminaries

In this section the definition of attributed multilayer network is presented and
the problem of community detection in this kind of networks is introduced.
The definition combines the concepts of multilayer/multiplex network and edge-
attributed network given in [2,4].

An attributed multilayer network G = {Gl}L
l=1 is a family of L net-

works, called layers, representing different types of connections among the same
set V of n nodes. Each layer is an attributed graph Gl = (V,El, A, F ), where
El = {(i, j, l) : i, j ∈ V, 1 ≤ l ≤ L, i �= j} is the set of (eventually weighted)
edges between the nodes of the same layer l, A = {α1, α2, . . . , αA} is the set of
numerical and categorical attributes (features), and F = {a1, a2, . . . , aA} is a
set of functions. Each node of V is characterized by the same vector of features,
whose values are determined by the functions aα : V → Dα, 1 ≤ α ≤ A, with
Dα the domain of attribute α.

The n × n adjacency matrix W l of each layer Gl is such that the element
W l

ij ≥ 1 if nodes i and j are connected in the l-th layer, i.e. (i, j, l) ∈ El, W l
ij = 0

otherwise. If W l
ij = 1 the network is unweighted.
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The intuitive concept of community in a network, either monolayer or multi-
layer, assumes that the interactions among the nodes of the same community are
denser than those between nodes of different communities. However, as outlined
in [17,20], there is no a generally accepted definition of what is a community.
The most popular definition is based on the idea that a graph presents commu-
nity structure if it differs from a random graph. To this end, a null model, i.e.
a graph with structural features matching the original graph can be built, and
then used as a term of comparison. The famous null model proposed by Newman
and Girvan [26], which builds a random graph from the original one by rewiring
edges at random, but assuring that the expected degree and the original degree
of each node are the same, is at the base of the definition of modularity, the most
popular criterion defining a community. The modularity of a graph is defined as
follows:

Q =
1

2 | E |
∑

ij

(
Wij − kikj

2 | E |
)

δij (1)

where W is the adjacency matrix of the graph, ki and kj are the degrees
of nodes i and j respectively, and δij = 1 if i and j are in the same commu-
nity, zero otherwise. It is generally assumed that a good community structure
has a high modularity value. An extension of the concept of good partition in
multilayer networks has been proposed by Tang et al. [34,35]. Given a partition
C = {C1, . . . , Ck} of the set V of vertices, the modularity Ql(C), l = 1, . . . , L on
each of the layers is different. C is considered a good community structure if the
modularity values on all the layers are high [34,35].

However, since each layer is a graph with attributes, another criterion to
optimize to have a community structure of good quality is the intra-cluster node
similarity.

Thus the problem we want to solve is the following.

Problem Definition: Find a division C = {C1, . . . , Ck} of an attributed mul-
tilayer network G = {Gl}L

l=1 such that:

– intra-cluster density is high and inter-cluster density is low for all the graphs
Gl ∈ G;

– for each layer, nodes belonging to the same community are similar, while
nodes of different communities are dissimilar.

The similarity between nodes is computed by using the vector of feature
values associated with each node.

3 Related Work

In the last years the interest in multilayer networks and attributed networks has
sensibly increased and many approaches have been proposed to detect commu-
nity structure [4,19,23]. However, the majority of the algorithms in the litera-
ture consider either the multiple level aspect or the attribute information, while
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methods exploiting both different kinds of relationships and the rich contents of
nodes are missing. In the following, we thus describe some of the most popular
approaches for detecting communities in multilayer and/or attributed networks.

3.1 Community Detection in Multilayer Networks

A main strategy for mining multilayer networks consists in aggregating layers
to obtain a single graph and then use classical methods for community detec-
tion [7,8,23,34]. However, the collapsed graph may not reflect the true com-
munity structure and important information may be lost. Another approach
obtains communities for each layer by optimizing a score function and then find-
ing a consensus partition [35]. In [30] a many-objective evolutionary algorithm
which optimizes the modularity value on each layer and then chooses a solution
from the Pareto front by applying the consensus clustering strategy, is proposed.
Mucha et al. [24], generalized the concept of modularity to the multilayer case,
thus allowing the use of algorithms which optimize modularity, like the Louvain
method [1], for multilayer networks.

Boutemine and Bouguessa [5] proposed a method based on label propaga-
tion which identifies communities and relevant dimensions by using an objective
function implementing the selection process of the dimensions during the opti-
mization. Boden et al. [3] deal with multilayer graphs where edges are labelled,
thus they propose a method to find clusters of densely connected nodes with
similar edge labels.

3.2 Community Detection in Attributed Networks

Several methods for community detection in attributed networks have been pro-
posed in recent years [4,9] and classified in different categories on the base of
the adopted strategy. A common approach consists in reducing the network to a
weighted graph by computing the similarity between nodes and then use a clas-
sical community detection method [10–12,25,33]. Another approach augments
the graph with new nodes representing the attributes [36]. Elhadi and Agam [16]
proposed an algorithm that, depending on the type of graph, either uses either
the structure data and applies the Louvain method [1], or the attribute data,
and then executes the k-means method. Li et al. [22] presented a multiobjective
evolutionary algorithm for attributed networks which defines a new node simi-
larity measure between nodes and optimizes the modularity function. In [31] a
multiobjective genetic framework to uncover community structure in attributed
networks, which evaluates different structural measures and different similar-
ity measures between attributes, to obtain densely connected communities and
homogeneous attributes, is proposed.

Neither of the described methods is able to find communities when the net-
work has multiple layers and nodes are characterized by features. In the following,
we introduce an objective function which takes into account both node informa-
tion and multiple layers, whose optimization allows the detection of community
structure on this kind of complex networks.
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4 Unified Distance Measure

The unified distance measure is a measure introduced by Papadopoulos et al.
[28] for attributed multi-graphs. In this kind of graph each couple of nodes can
be connected by multiple relations and each node is characterized by more than
one heterogeneous attribute, describing the properties of the object represented
by that node. This definition of attributed multi-graph directly corresponds to
the definition of attributed multilayer network given in Sect. 2 if we consider as
many layers as the number of different links of the multi-graph, and on the l-th
layer nodes are connected only through the l-th type of connection. The unified
distance measure can then be applied also to multilayer networks. However, in
a multilayer network the attribute values of nodes can be different for differ-
ent layers, thus an attributed multilayer network is a more general concept of
attributed multi-graph.

The unified distance measure is a combination of two terms: the similar
connectivity of each couple of nodes, which considers the structural part of a
network, and the attribute distance, which takes into account the information
associated with nodes.

Given an attributed multilayer network G = {Gl}L
l=1 with L layers, each layer

being an attributed graph Gl = (V,El, A, F ), the similar connectivity between
two nodes i and j for the layer l, denoted SCl(i, j), measures how dissimilar they
are on the l-th layer with respect to their shared neighbors. Low values mean
that the two nodes i and j should be grouped together. It is defined as

SCl(i, j) =
1
n

n∑

k=1

[wl(i, k) − wl(j, k)]2 (2)

where

wl(i, j) =

⎧
⎨

⎩

wl(i, j) if (i, j, l) ∈ El

1 if (i = j)
0 otherwise

(3)

The total similar connectivity of two nodes is computed as:

SC(i, j) =
1
L

L∑

l=1

SCl(i, j) (4)

The attribute distance between two nodes i and j for the layer l, denoted
ADl(i, j), measures how dissimilar they are with respect to their attribute values
on the l-th layer. It is computed as:

ADl(i, j) =
∑

α∈A

Wα · δα(i, j),
∑

α∈A

Wα = 1 (5)

where Wα is the weight of attribute α, and δα(i, j) is the attribute distance
between nodes i and j for attribute α. For numerical attributes scaled in the
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interval [0, 1], δα(i, j) = [aα(i) − aα(j)]2, while, for the categorical attributes

δα(i, j) =
{

0 if aα(i) = aα(j)
1 otherwise (6)

The total attribute distance of two nodes is computed as:

AD(i, j) =
1
L

L∑

l=1

ADl(i, j) (7)

The unified distance measure (udm) combines the attribute distance (AD)
and the similar connectivity (SC) between two nodes as follows:

d(i, j) = Wattr · AD(i, j) + Wlinks · SC(i, j) (8)

where Wattr and Wlinks are weights representing the importance of attributes
and edges, respectively.

Given a network division C = {C1, . . . , Ck}, the clustering unified distance
measure cudm(C) of the solution C is defined as

cudm(C) =
1
k

∑

C∈C

∑

{i,j}∈C i �=j

d(i, j) (9)

where k is the number of communities of the solution C, i and j are nodes of
a community C ∈ C and d(i, j) is the unified distance measure between nodes i
and j.

5 Method Description

In this section, the method for detecting communities in multilayer networks
with attributes, based on DE, is described in detail.

Any general framework for solving a problem with differential evolution needs
to choose the mutation and crossover operators, the representation of the prob-
lem and the fitness function to optimize.

ML@NetDE uses the Indexed locus-based representation, based on the Rel-
ative Position Indexing approach for combinatorial problems [27]. In this repre-
sentation, a chromosome is a vector of size n, where n is the number of nodes.
The value associated with node i, instead of being the identifier j of one of its
neighbors, as in the locus-based representation [29], is the relative position of
node j in the i-th row of the adjacency list of the graph.

Consider the two-layer network of Fig. 1(a) with the associated adjacency
list. The locus-based and indexed locus-based representations of the network
division in the two communities {1, 2, 3, 4}, {5, 6, 7} are shown in Fig. 1(b). For
instance, in the locus-based representation node 7 is connected with node 5, in
the indexed one, 5 is substituted with 2 since 5 is the second neighbor of 7, as
shown in the adjacency list.
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Fig. 1. (a) A two level network with attributes with the adjacency list. (b) Locus-based
and Indexed locus-based representation of the network division {1, 2, 3, 4}, {5, 6, 7}.

Regarding the operators, ML@NetDE uses the DE/current-to-rand/1 muta-
tion operator and classical binomial crossover [14].

Let P = {x1, . . . ,xnP } be a population of nP n-dimensional target vectors
generated at random, where n is the number of nodes.

A target vector xt
i, at a generic generation t, generates a mutant vector

by applying the DE/current-to-rand/1 mutation operator. This operator com-
putes the mutant vector by using the current target vector xt

i and three random
parameter vectors, as follows:

vt
i = xt

i + F ∗ (xt
r1 − xt

i) + F ∗ (xt
r2 − xt

r3) (10)

where F is a scaling factor. The binomial crossover operator generates the
trial vector ut

i from the mutant vector vt
i as

ut
i,j =

{
vt

i,j if randj ≤ CR or j = jrand

xt
i,j otherwise (11)

where ut
i,j , xt

i,j , and vt
i,j are the jth dimension of ut

i, x
t
i, and vt

i, respectively,
randj is a random number between 0 and 1, CR is the crossover control param-
eter, jrand is a random number between 1 and n. The target vector xt+1

i at
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The ML@NetDE Method:
Input: The attributed multilayer network G = {Gl}L

l=1;
nP : population size;
T : maximum number of generations;

Output: C = (C1, . . . , Ck): network division in k communities.

1 nMax=5; //max number of generations the objective function is allowed to not improve
2 n0=5; //number of trial vectors generated at each generation
3 Fmin = 0.01; //lower bound of the scaling factor ;
4 Fmax = 0.1; //upper bound of the scaling factor
5 Initialize the population P with random individuals xi, 1 ≤ i ≤ nP ,
6 evaluate each individual xi to obtain xi.F it
7 Let t = 1 and xbest be the individual with the minimum fitness value xbest.F it
8 while t ≤ T do
9 For i=1 to nP do
10 For j=1 to n0 do
11 Select randomly from the population the individuals r1 �= r2 �= r3 �= i
12 compute the mutant vector vt

j by applying the DE/current-to-rand/1 mutation operator
13 compute the trial vector ut

j = binomialCrossover(xt
i,v

t
j);

14 end for
15 let ut

best be the trial vector with the minimum fitness value among ut
j , j = 1, n0

16 if (ut
best.F it < xt

i.F it) then

17 xt+1
i

= ut
best;

18 else

19 xt+1
i

= xt
i

20 end if

21 if ( xt+1
i

.F it < xbest.F it )
22 xbest = xt+1

i
23 end for //end for each element of the population
24 if xbest does not improve for nMax generations then
25 Initialize the 50% of the population P with random individuals
26 Fmax = Fmax + 0.1
27 end if
28 t = t + 1;
29 end while
30 return the partition C = {C1, . . . , Ck} corresponding to the solution x∗ with the best fitness value
31 merge a community Ci with a neighboring community Cj if the number of connections

from nodes of Ci to nodes of Cj is higher than the number of links among nodes inside Ci.

Fig. 2. The pseudo-code of the ML@NetDE algorithm.

the next generation is obtained by choosing the best, in terms of fitness value,
between the mutant vector ut

i and the target vector xt
i:

xt+1
i =

{
ut

i if cumd(ut
i) ≤ cumd(xt

i)
xt

i otherwise (12)

where cumd is the unified distance measure described in Sect. 4.
It is worth pointing out that, as already experimented in [32] for community

detection in monolayer graphs, differential evolution may suffer of premature
convergence, probably because of the number of discrete values which the posi-
tions of a mutant vector can have, i.e. at most the number of neighbors of the
corresponding node. To dampen this problem, we adopt the same strategies pro-
posed in [32]. First of all, the scaling factor is generated, different for each node,
from a continuous uniform distribution with lower bound 0.01 and upper bound
0.1. Then, if the method does not improve the fitness function for a fixed num-
ber nMax of generations, the upper bound is progressively incremented to allow
more variation and the half of the population is reinitialized with random indi-
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viduals. Moreover, instead of one, a number n0 of trial vectors are generated and
that having the best fitness value is chosen to compete with the target vector to
survive at the t + 1 generation.

Table 1. mLFR-128 parameters setting.

Parameter Value

Number of nodes 128

Node average degree 8

Node maximal degree 16

Mixing parameter μ [0.1, 0.2, 0.3, 0.4, 0.5]

Attribute noise ν [0.1, 0.2, 0.3, 0.4, 0.5]

Exponent for power law creating degree sequence 2

Exponent for power law creating community sizes 1

Maximal community size 32

Minimal community size 8

Number of layers 2

Number of attributes 2

Degree change chance 0.2

Exponent for power law of nodes through layers 2

The pseudocode of the algorithm is reported in Fig. 2. ML@NetDE needs as
input parameters the population size nP and the maximum number of genera-
tions T . The population is initialized with random individuals xi by assigning to
each node the index of one of its neighbors and their fitness xi.F it is computed
(steps 5–6). Then, for a maximum number T of generations and for each element
of the population, a number n0 of trial vectors are generated by applying the
DE/current-to-rand/1 mutation and binomial operators (steps 10–14). The best
among these n0 vectors is chosen to compete with the target vector to survive
for the next generation (steps 16–20).

If the fitness value does not increase for nMax generations, half of the pop-
ulation is substituted with new random individuals and the value of the upper
bound of the scaling factor is incremented (steps 24–26). Finally, the returned
solution is checked for merging (step 31).

6 Experimental Evaluation

In this section we evaluate the performance of ML@NetDE both on synthetic
networks, for which the partitioning in communities is known, and on real-world
networks where the ground truth is not known. For the first class of networks,
since there is no a benchmark network generator for multiple layers and node
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attributes, we first generated synthetic multilayer networks by using the bench-
mark generator1 proposed by Bródka and Grecki [6], which is an extension of
the LFR benchmark generator by Lancichinetti et al. [21], and then enriched the
nodes of networks with attributes as follows. The attributes have been synthet-
ically generated setting a certain level of attribute noise (i.e. a certain level of
dissimilarity). For example, if a network has a value of attribute noise of 0.1, the
10% of the nodes will have attributes dissimilar with respect to those of their
community. We generated numerical attributes by using a uniform distribution
over an interval that we have initially set different for each community. Then,
given an attribute noise level, we randomly chose the corresponding number of
nodes on which varying the attributes accordingly. Specifically, for each node on
which varying the attributes, we added to the initial attribute values an offset.

The method has been implemented in Matlab.The results of ML@NetDE are
the average values obtained by running the method 10 times, crossover proba-
bility 0.9, population size 100 and 50 generations. In the following subsections
we first describe the datasets and the evaluation measures used, and then the
results obtained.

6.1 Datasets

Synthetic Networks. The parameters used for generating the mLFR networks
with attributes are shown in Table 1. Each layer consists of 128 nodes parti-
tioned in different communities having variable sizes. Specifically, we generated
networks with two layers by varying two parameters: the mixing parameter μ and
the degree change chance (DCC), as reported in Table 1. The mixing parameter
μ is the fraction of links shared by a node with the nodes of its community. When
μ < 0.5 the number of neighbors of a node inside its group are more than the
number of neighbors belonging to the other groups. The degree change chance
controls how much different the network layers are in terms of node degree. The
higher the DCC of a network, the more the nodes may have different degree
values within different layers, and thus the more diverse the networks on differ-
ent layers. Attributes have been generated by varying between 0.1 and 0.5 the
noise level ν of attribute similarity between nodes of the same community. For
instance, if ν = 0.1 then the 10% of nodes have values different from the other
nodes of the same community.

Real-World Networks. We considered the following four real-world attributed
multilayer networks.2 In Table 2 their main characteristics are summarized.

Krackhardt High-Tech Managers. These data were collected from the 21
managers of a United States high-tech company. The three layers have been
obtained by asking each manager the three questions: “To whom do you go

1 mLFR Java code is available at https://www.ii.pwr.edu.pl/∼brodka/mlfr.php.
2 See http://moreno.ss.uci.edu/data.html.

https://www.ii.pwr.edu.pl/~brodka/mlfr.php
http://moreno.ss.uci.edu/data.html
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to for advice?”, “Who is your friend?”, and “To whom do you report?”. The
attribute information consists of managers age (in years), length of service or
tenure (in years), level in the corporate hierarchy (coded as 1 = CEO, 2 = Vice
President, 3 = manager) and department (coded 1,2,3,4).

Dutch College Freshmen. The data were collected among a group of univer-
sity freshmen who were asked to rate their relationships at 7 time points. Each
student is characterized by gender (1 = F, 2 = M), education program (2-year,
3-year, 4-year), and smoking behavior (1 = yes, 2 = no).

Lazega Law Firm. This dataset was generated from a network study of cor-
porate law partnership, carried out in a Northeastern US corporate law firm. It
includes measurements of networks among the 71 attorneys (partners and asso-
ciates) of this firm, i.e. their strong-coworker network, advice network, friendship
network. Each attorney is characterized by 7 attributes: status (1 = partner;
2 = associate), gender (1 = man; 2 = woman), office (1 = Boston; 2 = Hartford;
3 = Providence), years with the firm, age, practice (1 = litigation; 2 = corporate),
law school (1: harvard, yale; 2: ucon; 3: other).

Table 2. Features of the real-world datasets.

Dataset # nodes # edges # attributes # layers

High-tech managers 21 312 4 3

Dutch college freshmen 32 880 3 7

Lazega law firm 71 2223 7 3

CKM physicians innovation 246 1551 13 3

Table 3. NMI values obtained by ML@NetDE for the the mLFR-128 networks.

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.5

μ = 0.1 0.923 (0.064) 0.894 (0.035) 0.845 (0.041) 0.9 (0.005) 0.888 (0.035)

μ = 0.2 0.858 (0.066) 0.907 (0.066) 0.902 (0.023) 0.845 (0.095) 0.911 (0.043)

μ = 0.3 0.909 (0.031) 0.959 (0.024) 0.885 (0.101) 0.925 (0.06) 0.893 (0.064)

μ = 0.4 0.876 (0.147) 0.812 (0.121) 0.876 (0.198) 0.865 (0.12) 0.822 (0.081)

μ = 0.5 0.908 (0.067) 0.786 (0.236) 0.812 (0.129) 0.856 (0.127) 0.785 (0.138)

CKM Physicians Innovation. This dataset contains data collected by Cole-
man, Katz and Menzel on medical innovation, considering a set of physicians
in four towns of Illinois (Peoria, Bloomington, Quincy and Galesburg). Data
concerne with the impact of network ties on the physicians’ adoption of a new
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drug, the tetracycline. Three social networks were generated, based on: (1) infor-
mation or advice about questions of therapy, (2) physicians often asked for dis-
cussing therapy (3) friends most often seen. The resulting network has 246 nodes
in total with 1551 connections, with 13 attributes: city of practice, recorded date
of tetracycline adoption date, years in practice, meetings attended, journal sub-
scriptions, free time activities, discussions, club memberships, friends, time in
the community, patient load, physical proximity to other physicians and medical
specialty.

6.2 Evaluation Measures

Normalized Mutual Information. For the synthetic networks the ground
truth partitioning is known, thus, to evaluate the quality of the solutions we use
the well known measure of Normalized Mutual Information (NMI) [13].

The normalized mutual information NMI(A,B) of two divisions A and B
of a network is defined as follows. Let C be the confusion matrix whose element
Cij is the number of nodes of community i of the partition A that are also in
the community j of the partition B.

NMI(A, B) =
−2

∑cA
i=1

∑cB
j=1 Cij log(Cijn/Ci.C.j)

∑cA
i=1 Ci.log(Ci./n) +

∑cB
j=1 C.j log(C.j/n)

(13)

where cA (cB) is the number of groups in the partition A (B), Ci. (C.j) is the
sum of the elements of C in row i (column j), and n is the number of nodes. If
A = B, NMI(A,B) = 1. If A and B are completely different, NMI(A,B) = 0.

Regarding the real-world networks, the true division is not known, thus we
use the two standard indexes of density and entropy, the former considers the
network structure and measures the internal edge density of a partitioning, the
latter the attribute homogeneity.

Density. It is defined as
D =

∑

C∈C

mc

m
(14)

where mc is the number of edges of the community C and m is the total number
of edges of the network.

Entropy. It is based on the information theory concept of entropy, and it mea-
sures the average Shannon information content of a set. A highly disordered set
with different elements has a high entropy. Thus, the lower the entropy, the more
homogeneous the attribute values. Entropy is defined as

E = −
∑

C∈C

nc

n

∑

a∈A

pac log(pac) (15)

where pac is the percentage of nodes in community C with the attribute value a,
nc is the number of nodes on the community C and n is the number of vertices
of the network.
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6.3 Results

Table 3 shows the normalized mutual information results for the mLFR-128 net-
works with attributes for different values of the mixing parameter μ and the
attribute noise ν. As outlined above, each value in the table corresponds to an
NMI value averaged over 10 runs; between brackets we report the standard devi-
ation. For this first experiment, we focused on understanding how ML@NetDE
behaves as the structure of the communities of the multilayer network and the
attribute homogeneity vary. By fixing a certain level of mixing parameter μ and
varying the attribute noise ν, we observe that ML@NetDE is able to obtain
high values of NMI in most cases around 0.9, even if the attributes are not so
homogeneous within the communities. Hence, ML@NetDE independently from
the attribute noise level, finds good partitions. Similarly, when fixing a certain
level of attribute noise, we note that even if μ increases, i.e. the communities are
not well separated, the algorithm returns high NMI values. Thus we can con-
clude that ML@NetDE is able to uncover good partitions, independently from
the structure of the communities and the attribute noise.

The second experiment aimed to compare ML@NetDE with two methods on
real-world networks for which the ground truth is not known. In this case, we
measured the performance of all the methods in terms of density and entropy.
The first method is the classical k-means clustering algorithm which consid-
ers only the attributes of the network. The second one is the extension of the
Louvain method to multilayer networks3 [24]. In Table 4, the results in terms
of density are shown. Again, each value corresponds to an average over 10 runs.
Here, we do not report the standard deviation since the values are very low.
Since ML@NetDE and Louvain find 3, 3, 3 and 12 communities, over High-tech,
Dutch college, Lazega and CKM, respectively, we set the k value for the k-means
algorithm to these values. Overall, ML@NetDE outperforms the other two algo-
rithms, thus showing that combining network structure and attributes, the algo-
rithm is able to find more dense communities (i.e. better partitions). Instead,
considering only the structure or the attributes such as in the case of Louvain
and k-means, respectively, the resulting density values are lower. Table 5 shows
the entropy results. For the High-tech network, the three algorithms obtain zero
values. This means that all the algorithms find communities where the attributes

Table 4. Density values for the real-world datasets.

Dataset ML@NetDE k-means Louvain

High-tech managers 0.531 0.449 0.531

Dutch college freshmen 0.476 0.351 0.442

Lazega law firm 0.642 0.438 0.628

CKM physicians innovation 0.941 0.127 0.899

3 https://github.com/GenLouvain.

https://github.com/GenLouvain
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are homogeneous. For the other datasets, ML@NetDE outperforms k-means and
Louvain resulting in the lowest entropy values.

Table 5. Entropy values for the real-world datasets.

Dataset ML@NetDE k-means Louvain

High-tech managers 0 0 0

Dutch college freshmen 0 0 0.05

Lazega law firm 0.06 0.129 0.133

CKM physicians innovation 0.063 0.136 0.078

7 Conclusions

The paper proposed a new approach based on differential evolution for uncover-
ing community structure in multilayer networks with node features. The experi-
mentation of the method on synthetic networks showed that it is able to recover
the true community structure with high accuracy. A comparison with the k-
means method, which uses only the attribute information, and the extended
Louvain method, which considers only the layer information, has highlighted
that ML@NetDE obtains network divisions with higher density and lower entropy
values, meaning that the nodes of the communities are well connected and with
high feature homogeneity. It is worth pointing out that, since the research in
this field is rather recent, a comparison with other methods is difficult because
of two main problems. The first is the lack of real-world networks for which
the ground-truth division is known and a generator of synthetic networks, like
LFR, with multiple layers and attributes. The second one is that the main pro-
posals of the last years either do not consider both the multilayer aspect and
the attribute information, or they transform the network in a form apt for single
layer methods. Our approach is a first proposal in this direction. Future work
aims to evaluate the performance of the method on networks of larger size and
with different mutation operators.
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Abstract. The enormous volume and high variety of information that
is constantly produced by computing systems requires storage technolo-
gies able to provide high processing velocity and data quality. The suit-
ability for modeling complex data and for delivering performance are
characteristics that are making graph databases become very popular.
However, existing limitations still prevent database management sys-
tems that adopt the graph model to fully ensure data consistency, given
that the means for ensuring data consistency are usually nonexistent or
at most very simple. This work intends to overcome this limitation by
extending the support for defining and enforcing integrity constraints
on graph databases, in order to prevent the graph to reach an inconsis-
tent state and compromise the correctness of applications. The proposed
integrity constraints are implemented on OrientDB. Experimental results
show that the prototype implementation can improve the performance
in comparison to verification of constraints on a client application.

Keywords: Graph databases · Data consistency · Integrity
constraints · Data integrity · OrientDB

1 Introduction

A well-known fact regarding the present state of information technology is that
the amount of data produced and stored by computer systems is in constant
growth. This phenomenon, known as Big Data, is nowadays the subject of a
substantial amount of research work. Not only data is produced in larger volumes,
but it is generated by multiples sources in different formats (variety), and must
be stored and processed quickly (velocity) without compromising its validity.

Along with the volume of data, the need for better performance and for more
efficient management became very relevant issues [13]. However, the traditional
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Pesquisa e Inovação do Estado de Santa Catarina”).

c© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2020, LNCS 12391, pp. 269–284, 2020.
https://doi.org/10.1007/978-3-030-59003-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59003-1_18&domain=pdf
http://orcid.org/0000-0002-7193-3639
http://orcid.org/0000-0003-2723-0546
http://orcid.org/0000-0002-2134-2048
http://orcid.org/0000-0002-8275-5751
https://doi.org/10.1007/978-3-030-59003-1_18


270 F. Reina et al.

databases (DBs) are not always able to handle all the requirements of such
large volumes [17]. As a result, the category of Database Management Systems
(DBMSs) known as Not only SQL (NoSQL) has emerged aiming to fulfill these
requirements. The main characteristic of NoSQL DBMSs is that data consistency
is relaxed with the aim of improving performance. It allows data to be incon-
sistent for some time, which may be prohibitive for some applications. Among
the existing categories of NoSQL systems, graph DBMSs have been increasing
in popularity, and are the subject of this work.

In general, when graph DBMSs offer support for specifying and enforcing
Integrity Constraints (ICs), the supported ICs are usually very limited. The
most common constraints allow database administrators to enforce attributes to
have unique values, limit minimum and maximum values, and define attribute
types. Due to the lack of support for more complex ICs, data validation often
becomes the responsibility of the application that uses the graph DB, resulting
in an increase of development effort.

The work presented in this paper aims to tackle the lack of support for
complex ICs in graph DBMSs. Thus, it is possible to create rules using two or
more elements (attribute, node or edge) at the same time. Therefore, we propose
a specification syntax for ICs as well as a mechanism for their enforcement during
operations that modify the graph. To achieve this goal we define six new ICs
and implement them on the OrientDB, allowing the definition of: (1) conditions
on node attributes, (2) required edges, (3) type of in/out nodes of an edge, (4)
edge cardinality, (5) bidirectionality of edges, and (6) conditions on attributes
of nodes linked by an edge. We evaluate the impact of these constraints over
the performance of OrientDB. With these extensions, we intend to transfer the
responsibility for validating data constraints from the client application to the
DBMS, enforcing data integrity with less effort when developing applications.

The remainder of this paper is organized as follows. Section 2 presents the
most relevant concepts used in this work. Section 3 explains our proposal, spec-
ifying in more detail the ICs that are supported by our extended version of
OrientDB. Then, Sect. 4 describes the evaluation study performed over our
implementation. Next, Sect. 5 identifies some similar proposals described in the
literature and compares them to the solution proposed in this paper. Finally,
Sect. 6 presents the conclusions reached with the development of this work and
singles out some open issues that require further research.

2 Fundamental Concepts

A Graph DB is essentially a DB that uses the explicit structure of a graph to
store, query and manipulate data. Vertices, also called nodes, represent database
records, while edges represent relationships between data [3]. In general, every
edge has a label that identifies the relationship it represents. Vertices and edges
may also have properties. Therefore, edges are as important as vertices, due
to the potentially relevant information they carry. Due to its composition of
vertices, edges and properties, this structure is said to be a property graph [19].
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This work considers property graphs as defined in Definition 1. This definition
was adapted from [2] to remove multiple labels and multiple attribute values,
aiming to better align with current graph DBMSs implementations, including
Neo4J, OrientDB, InfinityGraph, Trinity, Titan and ArangoDB.

Definition 1. A property graph is a tuple G = (N,E, ρ, λN , λE , σ), such that:

1. N is a set of nodes;
2. E is a set of edges;
3. ρ : E → (N × N) is a function that associates an edge in E with a pair (o, t)

of origin and target nodes in N ;
4. λN : N → LN is a function that associates a node with a node label;
5. λE : E → LE is a function that associates a edge with a edge label;
6. σ : (N ∪ E) × P → K is a function that given a node or edge together with a

property P , associates the pair to a value from K.

The representation of highly connected data in a relational model is possi-
ble, however it results in several many-to-many relationships. A query under this
conditions may require a big number of joins, which can degrade the performance
[18]. In contrast, the graph structure allows a better management of this type
of data, resulting in faster query processing [5]. The most recurring example of
application that benefit from using graph DBMSs are social networks. Never-
theless, graph DBs are very useful in financial systems, for fraud detection and
transaction monitoring [6,18]; on document analysis to analyze speech data and
identify stakeholders’ intention [15]; on the retail sector, helping with decision
making and product recommendation [1]; among several other applications.

Differently from relational DBs, which have a well-defined schema, graph DBs
do not have a rigid structure. It means that while in a relational DB an insert
operation can only set properties defined in the DB schema, in a graph DB it
can add new properties that were not defined on the schema. This characteristic
results in faster execution of operations. However, it becomes harder to impose
ICs, given that there is no schema to follow. As a result, graph DBs in general
either do not provide tools to ensure consistency, or only support very basic ICs.

Graph DBs are categorized under a larger category of DBMSs, named NoSQL
DBs. Unlike the acronym suggests, this category does not preclude the use of
SQL, but indicates the use of alternatives to the relational model, which backs
SQL. They also follow Basically Available, Soft state, and Eventual consistency
(BASE) properties, which imply that the DB has to be available most of the time
for read and write operations. It also indicates that data may be inconsistent
during some time, but will become accurate in a future moment [16].

In DBs with BASE properties, consistency refers to transactions performing
reads on up-to-date and committed data. Correctness of data is not a concern
of consistency, but rather a concern of data integrity. Thus, data integrity can
be defined as the maintenance and assurance of the data correctness during all
its life cycle [14]. It is a major concern of many systems, especially those that
mange real world data, and can be achieved by the use of a set of rules that
specify all the allowed update over the data. In this scenario comes the concept
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of ICs, which can be described as a set of general rules that define a consistent
state of the DB, as well as allowed modifications [3]. These rules must be applied
on every inserted data to avoid inconsistency. If the integrity cannot be secured
by the DBMS, its assurance must be implemented at the application level.

In relational DBMSs, the constraints are linked to one of the following cate-
gories: entity integrity, referential integrity, and domain integrity [9]. The use of
ICs ensures that the information stored on the DB conforms to these rules and,
as a result, enforces integrity. However, most of the graph DBMSs available on
the market nowadays do not support ICs, or only allow elementary rules to be
defined, that are unable to provide the level of integrity required by most of the
applications that store and manipulate graph data.

3 Extending Support for Integrity Constraints in Graphs

This work proposes an extension of a graph DBMS to allow the specification
of complex ICs, which are useful for applications that need to store data in the
form of a graph database with a high level of integrity. The graph DBMS chosen
to receive this extension was OrientDB1. One of the features that motivated
its choice is the fact that OrientDB already provides support for the definition
of simple constraints. Besides that, it is ranked among the most popular graph
DBMSs, according to DBEngines2.

In OrientDB, every class, also known as node type, is associated to a set of
metadata. The proposed extension aims to store the constraint definitions into
these metadata. Each IC is defined by the OrientDB client application using
our extension of the OrientDB Data Definition Language (DDL). After an IC
is stored on the metadata, any modification to the set of instances of that class
will be validated against the IC before the corresponding transaction commits.

All ICs already supported by OrientDB are restricted to comparing values
between the data being inserted or updated against threshold values defined in
OrientDB metadata for a given node type. One approach to implement more
complex ICs not limited to node attributes is to dynamically compute node
attributes and compile definitions of such complex ICs into simpler ICs that
are limited to checking node attribute values. However, this strategy incurs a
large overhead in the form of such dynamic attributes and the potentially large
amount of metadata required to implement the ICs. To avoid such drawbacks,
the extension adds a new first-class component, the constraint manager, to the
internal architecture of OrientDB. This component provides its own constraint
validation mechanisms that are used by the new IC types, without relying on
the constraints already supported by OrientDB. The use of a dedicated con-
straint manager allows for ICs that also involve edges, in addition to nodes and
properties. Its existence also eases the introduction of new constraint types by
providing a single interception point for their validation. The extension proposed

1 https://orientdb.com/.
2 https://db-engines.com/en/ranking/graph+dbms.

https://orientdb.com/
https://db-engines.com/en/ranking/graph+dbms
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in this work introduces support for six new IC types: node condition, required
edge, in/out, edge cardinality, bidirectional edge and edge condition.

The constraint manager is initialized together with the OrientDB server and
uses an SB-Tree [8] to store and manage Constraint objects. When the user
defines an IC using the CREATE CONSTRAINT command, the parser extracts the
constraint type, its target and constraint-specific arguments. The result of the
parsing is fed into a constraint factory and the resulting Constraint object is
serialized into the SB-Tree. In addition to adding the constraint manager, the
OrientDB DDL grammar was extended to support the new constraint types.

Once the constraint is declared and stored on the SB-Tree, every write oper-
ation on the graph DB triggers the validation of the relevant Constraint objects.
After locating all relevant Constraint objects, the constraint manager collects
all relevant data for the write operation and invokes the validation procedure
of each Constraint object. If any Constraint validation fails, an exception is
thrown, leading to the abortion of the whole transaction.

The syntax of each new IC supported is presented in the remainder of this
section, together with a formal definition. All definitions use the property graph
defined by [2] and presented in Definition 1.

Some constraints allow for relational operators, which are denoted by α ∈
O, where O = {<,≤,=, �=,≥, >}. Node and edge types are denoted using the
notation Tβ , where β ∈ L is a label that identifies the type unambiguously.
Formally, types are defined by the sets of their instances: Tβ = {x | λN (x) =
β ∧ λE(x) = β}. Given that, labels for node and edges are disjoint, β ∈ LN ⇐⇒
Tβ ⊆ N and β ∈ LE ⇐⇒ Tβ ⊆ E.

Node Condition Constraint. The goal of this constraint is to compare prop-
erties of a node and to validate values assigned to them according to a previously
defined condition. Therefore, this IC is applied to the node class. It is formally
specified by Definition 2 and the general syntax is shown in Fig. 1.

Definition 2. Given a property graph G = (N,E, ρ, λN , λE , σ), a Node Con-
dition constraint is a tuple Cond = (To, p1 ∈ P, α1 ∈ O, k1 ∈ K, p2 ∈ P, α2 ∈
O, k2 ∈ K, p3 ∈ P, α3 ∈ O, k3 ∈ K), such that:

∀o ∈ To .

{
σ(o, p2) α2 k2, if k1 ∈ σ(o, p1)
σ(o, p3) α3 k3, otherwise

1 <CREATE> <CONSTRAINT> name <ON> class <(> attribute <)> <CONDITIONAL>

2 <(> <IF> property (>|<|>=|<=|=|!=) expression

3 <THEN> property (>|<|>=|<=|=|!=) expression

4 [ <ELSE> property (>|<|>=|<=|=|!=) expression ] <)>

Fig. 1. General syntax of the Node Condition constraint.

Required Edge Constraint. This IC defines that a node class has a mandatory
outgoing edge of a given type, that will point to an instance of a target node
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class. Therefore, if there is a node whose class appears as origin class in the
constraint, then there must be at least one edge leaving this node and arriving
at a node with the given target class. The constraint is associated with the
origin node class metadata. This IC is formally described by Definition 3 and
the general syntax is shown in Fig. 2.

Definition 3. Given a property graph G = (N,E, ρ, λN , λE , σ), a Required Edge
constraint is a tuple Req = (To, Te, Tt) such that: ∀o ∈ To : (∃e, t : e ∈ Te ∧ t ∈
Tt ∧ ρ(e) = (o, t)).

1 <CREATE> <CONSTRAINT> name <ON> origin_class

2 <REQUIRED_EDGE> [edge_type] <TO> target_class

Fig. 2. General syntax of the required edge constraint.

In/out Constraint. This constraint type restricts the classes of nodes that
are connected by an edge class. At the same time, this constraint is also useful
to enforce the direction of the represented relationship. For example, a person
authors a document, and not the other way around. Unlike the previous con-
straints, this one is associated to the edge class metadata instead of the node
class. This IC can be formally specified as shown by Definition 4 and the general
syntax is shown in Fig. 3.

Definition 4. Given a property graph G = (N,E, ρ, λN , λE , σ), an In/Out con-
straint is a tuple IO = (To, Te, Tt) such that: ∀e ∈ Te : o ∈ To ∧ t ∈ Tt, where
ρ(e) = (o, t).

1 <CREATE> <CONSTRAINT> name <ON> edge_type <IN_OUT_EDGE> (

2 <FROM> origin_class <TO> target_class | <FROM> origin_class

3 | <TO> target_class )

Fig. 3. General syntax of the in/out constraint.

Cardinality Constraint. The goal of this IC is to restrict the number of edges
of a given class that connect an origin node to target nodes. The cardinality
specification consists of two integer numbers, with N serving as a placeholder
for “unspecified”, i.e., any number is allowed. Unlike in/out constraints, car-
dinality constraints are associated with the origin node class and therefore do
not allow an unspecified origin node class. Another important difference between
both constraints is the form of validation. Since OrientDB associates node identi-
fication numbers with classes, in/out validation can be implemented performing
no reads on the DB. Figure 4 shows the general syntax of this constraint type.
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The constraint is always associated with the origin node class and to the edge
class. After specification of the cardinality, one may optionally specify the des-
tination node class. This constraint is formally specified by Definition 5.

Definition 5. Given a property graph G = (N,E, ρ, λN , λE , σ), a cardinality
constraint is a tuple Card = (To, Te, Tt, α ∈ O, ko ∈ K ∧ kt ∈ K) such that:
∀o ∈ To : ||{(e, t) | (e, t) ∈ (Te × Tt) ∧ ρ(e) = (o, t)}|| α ko ∧ ||{(e, o) | (e, o) ∈
(Te × To) ∧ ρ(e) = (t, o)}|| α kt.

1 <CREATE> <CONSTRAINT> name <ON> origin_class <CARDINALITY>

2 [edge_type] <(> <INT | N> <..> <INT | N> <)> [<TO> target_class ]

Fig. 4. General syntax of the cardinality constraint.

Bidirectional Edge Constraint. The purpose of this IC is to ensure bidirec-
tionality of the direction of a relationship. That is, given two nodes, if there is
an edge from A to B, there must be another edge of the same type linking B
to A. The constraint is associated with the edge metadata and its validation
verifies if the specified nodes are linked by an incoming and an outgoing edge of
the required type. This constraint is formally described by Definition 6 and its
general syntax is shown in Fig. 5.

Definition 6. Given a property graph G = (N,E, ρ, λN , λE , σ), a Bidirectional
Edge constraint is a tuple BiDir = (To, Te, Tt) such that the following two con-
ditions hold:

∀ e ∈ Te : ∃ e : ρ(e) = (o, t) =⇒ ρ(e) = (t, o) ∧ t ∈ Tt ∧ o ∈ To

∀ e ∈ Te : ∃ e : ρ(e) = (t, o) =⇒ ρ(e) = (o, t) ∧ o ∈ To ∧ t ∈ Tt

1 <CREATE> <CONSTRAINT> name <ON> edge_type <BIDIRECTIONAL_EDGE>

2 <BETWEEN> origin_class <AND> target_class

Fig. 5. General syntax of the bidirectional edge constraint.

Edge Condition Constraint. The goal of this IC is to enforce a condition over
attibutes in both ends of an edge. In other words, it compares property values
of the two nodes connected by one edge. It is associated with the edge metadata
and also enforces the direction of the relationship. It can be formally defined as
shown in Definition 7 and its syntax is presented in Fig. 6.
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Definition 7. Given a property graph G = (N,E, ρ, λN , λE , σ), an edge con-
dition constraint is a tuple ECond = (Te, po ∈ P, pt ∈ P, α ∈ O), such that:
∀e ∈ Te : ρe = (o, t) =⇒ σ(o, po) α σ(t, pt)

1 <CREATE> <CONSTRAINT> name <ON> edge_type <EDGE_CONDITION>

2 origin_class<.>property (>|<|>=|<=|=|!=) target_class<.>property

Fig. 6. General syntax of the edge condition constraint.

Since all constraints are built on top of the formalization in Definition 1,
which is aligned with several other graph DBMSs, the constraints are applica-
ble to those DBMSs as well. In general, applying the method to other DBMS
involves modifying the host DBMS for three tasks: parsing the constraints, stor-
ing them and validating them. Parsing involves extending the DDL or creating
one with the IC syntax presented in this work, so the DB recognizes the CREATE
CONSTRAINT commands. The presented implementation of the constraint man-
ager uses an SB-Tree to store and manage constraint objects because this is a
general use index algorithm already provided by OrientDB. In other DBMSs,
this structure could be replaced by similar indexing algorithms, such as B-Trees.
In addition, a trigger to the validation routines must be implemented after pro-
cedures that recognize the create, delete and update commands of the DBMS.

4 Evaluation

The support for ICs proposed in this paper was implemented on OrientDB 3.1.0.
To evaluate the impact of the modifications, the most relevant and quantifiable
factor is the execution time of operations in the DBMS. Therefore, this evaluation
focuses on the impact of IC validation on query execution time.

The strategy adopted assumes that ICs are originated from business mod-
eling and not only from implementation aspects. As a result, when a developer
selects a weakly consistent DBMS or one without support for enforcing ICs, con-
straint validation must be enforced by logic introduced in the application code.
That way, the experiments are built to allow the comparison of three variants
of the OrientDB. The first one is the Original OrientDB server, without any
modification. The Modified variant consists in a version of OrientDB modified
to incorporate the constraint manager and to accept the definition of the six
new ICs described in the previous section. Finally, the Application variant cor-
responds to performing IC validation within the client application and sending
the corresponding data manipulation commands to the original OrientDB server.

The source code for reproducing the experiments is available in a public
repository3. Countermeasures were adopted to avoid spurious interference on the
results provoked by the Java Virtual Machine (JVM). A new pair of JVMs is
created for every measurement: one JVM executes the OrientDB server while the
3 https://bitbucket.org/fmreina/orient-driver/src/master/.

https://bitbucket.org/fmreina/orient-driver/src/master/
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other executes the test client code (constraints-tests-client), which sends
the test transaction to the server and measures its execution time. Both JVMs are
created on the same host – an Intel i7-4510U dual-core at 2.0 GHz, with 16 GB
of RAM, running Ubuntu 18.04.3 LTS 64bit (kernel 5.0). A single measurement
consists of two phases, each executed on a new pair of client and server JVMs. In
the first phase, the client sets up the DB within OrientDB using administration
commands. This setup includes basic schema information, including ICs, and
population of the DB where applicable. On the second phase, that is executed
on a new pair of client/server JVMs, 100 analogous transactions are executed 3
times. The number of transactions aims to avoid unreliable measurement of fast
operations and the 3 executions aim to avoid interference from non-deterministic
background tasks, such as the GC (Garbage Collector), disk caching and JIT
(Just In Time) compilation. Between each of these 3 executions, disk caches are
flushed (using the sync() system call) and the GC is requested to run. Only the
third execution had its time recorded and was considered for analysis.

The first scenario evaluates the Node Condition constraint. In this experi-
ment, each transactions tries to modify the values of properties of one instance
of class Person, violating the constraint. The constraint imposed in this first
experiment is shown in Fig. 7.

The next three scenarios evaluate the Required Edge, In/out and Cardinality
constraints. Figure 8(a) presents the constraints created in these three scenarios.
The DB was populated with 100 replicas of the structure shown in Fig. 8(b); then,
100 transactions are executed sequentially, resulting in the structure shown in
Fig. 8(c). The Required Edge IC is created to enforce the existence of at least
one edge of type owns between nodes Person and Company. In the In/Out case,
the IC is created on the edge class owns to specify that edges of this type are

1 CREATE CONSTRAINT cond ON Person (attr1) CONDITIONAL

2 (IF attr2 < 3 THEN attr1 < 2 ELSE attr1 > 4);

Fig. 7. Node Condition constraint created in the first experiment.

Fig. 8. Constraints (a), models for DB population (b) and transactions (c).
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only valid if they have a node Person as source and a node Company as target.
Finally, the Cardinality IC is created on the node class Person to limit the
number of nodes of type Company the same person can own.

The transaction that tests the Required Edge scenario, due to the nature of
this IC, performs an edge removal rather than an insertion. In the Original and
Modified variants, a single command is sent to OrientDB per transaction. In
the Application variant, this is not possible. Therefore, the application performs
a SELECT operation for each node to validate the existing edge cardinality,
and then sends a command that creates the edges between the nodes. The same
approach is adopted for the Application variant in all scenarios, as it is necessary
to validate the IC before actually performing the intended operation.

The last experiments evaluate the other two ICs proposed in this paper:
bidirectional edge and edge condition. Figure 9(a) illustrates the transactions for
each scenario where new edges are created meeting the constraint requirements.
As with the first batch, this operations can be executed with a single command
in the variants Modified and Original. However, in the variant Application, it is
necessary to perform more operations to query the involved nodes and run the
validation routine before the command to create the edges is sent to the DB.

The results obtained with the three variants (i.e., Original, Modified and
Application) are illustrated in Fig. 10. In this figure, narrow boxes with white
background represent the central quartiles, totaling 50% of measurements and
are divided into the median. For the limits, from which outliers are found as
points, we used min(Maximum,Median ± 1.5IQR), where IQR is the Inter-
Quartile Range, to the height of the boxes. In addition to the classic elements
of a box diagram, the average, represented by triangles, and the 95% confidence
interval (CI), represented by wide filled rectangles, have been added to the illus-
tration. The labels on the bars show the increase of the runtime as a proportion
of the variation Original.

The first box diagram in Fig. 10 presents the results for the Node Condition
constraint. There is a performance cost for using the Modified OrientBD to
impose the constraint, but this cost is significantly lower than doing the required
validation at application level.

Fig. 9. Models for DB population and transactions (a), and ICs created (b).
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Fig. 10. Impact of constraint checking on the average time required to execute a batch
of 100 write transactions.

The second, third and fourth plots show the runtime of the Required Edge,
In/out and Cardinality scenarios using the three variants mentioned before. In
all scenarios it is also observed that IC validation using the modified OrientDB
is, on average, more efficient than validation at the application. Another impor-
tant conclusion is that there is a large intersection between the performance
observed with the Original OrientDB and the time with the Modified variant.
This wide intersection prevents the differences in performance from being con-
sidered statistically significant.

The last two plots in Fig. 10 present the execution time of transactions in sce-
narios with the Bidirectional Edge and Edge Condition constraints. In these two
scenarios, the same behavior of the previous ICs is also observed. The validation
in the modified version of OrientDB is equally more efficient than the Applica-
tion variant, since the CIs do not intersect. Comparing the other two variants,
Original and Modified, the latter presents a higher positive skew, however the
intersection between them is large as well.

Although the Application variant has, in all cases, shown worse results than
the Modified OrientDB, there are scenarios where this difference stands out. In
the Required Edge, Cardinality, Bidirectional Edge and Edge Condition scenar-
ios, additional database access is required for the application to retrieve the
information necessary to perform data validation. New tests with significantly
larger graphs and more complex constraints are planned as future work.

The experiments assume that the client application is capable of ensuring
adequate concurrency control in order to preserve IC consistency, which can
be difficult to achieve in practical scenarios. Two instances of the application
can concurrently validate an IC and then concurrently perform operations that
together violate the IC. In such situations, where there are applications modify-
ing the graph concurrently, distributed concurrency control techniques should be
applied. As a result, there will be greater complexity of implementation, causing
additional impacts on applications beyond those shown in Fig. 10.
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5 Related Work

Some of the characteristics of graph DBs, such as being schema-less and follow-
ing the BASE properties, make them more flexible and allow them to provide
better performance. On the other hand, the same aspects are responsible for the
lack of consistency that may be fundamental for some categories of application.
However, it is important to remember that a strong schema definition may dete-
riorate the performance of the DBMS. Thus, the challenge is to find a solution
for the lack of consistency without impairing flexibility and performance. Most of
the proposals found in the literature that address ICs are developed for relational
DBs. Among the few that discuss the graph model, many of them only compare
the available implementations, while others suggest supporting new constraints.

Pokorný [10] presents a general overview of graph DBs, covering storage,
query, scalability, transaction processing, categories of graph DBs and their lim-
itations. Among the limitations, Pokorný [10] lists features that are not entirely
supported by current graph DBMS, such as data partitioning capacity, support
for declarative queries, vector operations, and model restrictions that could make
possible the definition of data schema. Within the topic of model constraints,
ICs play a central role but are not well supported by graph DBMSs.

Barik et al. [4] employ graph DBs to analyze possible attack paths of net-
worked applications. Most of the discussion in this paper centers on the anal-
ysis of vulnerabilities and attacks employing graphs. In their analysis, the pre-
conditions necessary to perform an attack form a dependency graph. Therefore,
an attack is seen as a progression that satisfies the dependencies. The authors
argue that the use of ICs assists the process of generating an attack graph.
Thus, they propose an extension of Neo4j4 in order to create a constraint layer
that allows ICs of unique values, primary and foreign keys, value range, in/out
(known as edge model) and edge cardinality.

In a comparison between relational and graph databases, Pokorný [11] lists
characteristics of relational DBMSs that are not currently supported by graph
DBMSs. One of such features is the explicit schema definition, including the
specification of ICs. This absence makes verifying accuracy of graph DBs more
difficult. Pokorný [11] argues that graph DBs are based on a logical model that
has three components: i) a set of types and data structures; ii) a set of inference
operators; iii) a set of ICs. Actual graph DBMSs typically lack at least one of
these three components, with ICs usually being the missing component. Later,
in [12], the authors suggest the definition of ICs in the conceptual or the DB
level. For this, they considered property data types, property value ranges, class
disjunction (i.e., a node cannot belong to two classes simultaneously), mandatory
edges and unique values for a property composition. Support for these ICs is
added to Neo4j through the extension of its Cypher language.

Roy-Hubara et al. [13] discuss data modeling and a schema definition. The
authors present an approach based on the entity-relationship (ER) model of the
application domain and create a mapping from the ER model for a graph DB,

4 https://neo4j.com/.
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along with using a DDL. They argue that the approach could be applied to any
graph DB, but do not show nor refer to any implementation.

Lastly, Angles [2] attempts to find common theoretical grounds for the
plethora of graph models implemented by several graph DBMSs. The author
adopts property graphs as the starting point and provides a logical formalization,
including the notion of a schema. This basic notion of schema is extended with
ICs and the syntax and semantics of a unified query language are described. All
ICs are defined and discussed from a theoretical standpoint, without discussing
their support in existing graph DBMSs.

Table 1 shows which ICs are natively supported by Neo4j and which are
added to it by the extensions proposed in [4] and [12]. In the case of OrientDB,
the table only shows those natively supported by OrientDB and those added
by this work, since it has not received such extensions before. In the table,
empty circles represent ICs that are natively supported by the DBMS, while
filled circles denote the new ICs proposed by the work referenced on the table
header. Those that are natively supported but are also repeated with filled circles
were re-implemented or improved by the work referenced in the table header.

Some of the ICs that appear in Table 1 require further discussion. In an
relational DB, foreign keys are used to represent relationships between tuples
from distinct tables. In a graph DB, this can be considered an anti-pattern,
since instead of using a foreign key property, one should use edges to represent
relationships between nodes, which correspond to tuples in the relational model.
Using foreign keys with properties to maintain relationships will yield more com-
plex queries and lead to inefficient query processing, since graph DBMSs are not
designed to handle such kind of property joins. The primary key constraint, men-
tioned by some authors, can be replaced by the simultaneous definition of unique
and required ICs. If primary keys are used to maintain referential integrity, one
falls into the same anti-pattern of using foreign key constraints. Similarly, com-
posite primary keys can be obtained by combining composite unique constraints
with a required property constraint for each component property.

Class disjointness ICs disallow membership of a single node to two or more
classes. In the case of OrientDB, this IC is a design decision of the DBMS itself
and every node must belong to a single node class. Therefore, this IC does
not apply to OrientDB in its literal sense. In contrast, one may use a node
property to store the “category” or “class” of a node. If multiple classifications
are desired, one may model the classes as nodes and model membership as an
edge from the instance to the class. If a single extra classification is allowed, one
may use a single property and limit its value range using maximum/minimum
constraints or using RegEx ICs. A RegEx (short for Regular Expression) is a
string that compactly describes a whole set of allowed values. RegExes can be
used to describe also sets of allowed values, such as the expression adult|minor
which accepts only two possible values: “adult” and “minor”.
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Table 1. Comparison between native ICs and proposed extensions.

Constraint types Neo4J Barik et al. Pokorny et al. OrientDB This work

Bidirecional edge ●

Cardinality of Edges ● ●

Class Disjunction ● ● ❍ (1) ❍ (1)

Edge Condition ●

Node Condition ●

Foreign Keys ●

In/Out (EndPoint) ● ●

Primary Keys ❍ ❍ ❍ ❍ (2) ❍ (2)

Property Type ● ❍ ❍

Range of property ● ● ❍ ❍

RegEx ❍ ❍

Required Edge ❍ ❍ ● ●

Required Property ❍ ❍ ❍ ❍ ❍

Unique ❍ ● ❍ ❍ ❍

Unique - Composed ● ❍ ❍

(1): OrientDB enforces a single label (class) per node.
(2): The primary key constraint is equivalent to a composition of the required
property and unique property.

6 Conclusions

Due to the large volume of data produced continuously by computing systems,
that resulted in the phenomena called Big data, new solutions for managing and
storing data have been developed. The greatest motivation for such development
comes from the fact that traditional technologies for data storage and manage-
ment are unable to meet the performance and scalability requirements demanded
by most of the novel data-intensive applications that have emerged recently. New
data models have been adopted, allowing large volumes of data to be handled,
resulting in a fast adoption of these technologies in the software market. In this
context, graph DBs gained popularity due to their ability to easily represent
data used by several applications, for which the graph data model suits perfectly.
However, this category of DBMS still lacks effective mechanisms to enforce the
integrity of the stored data. Therefore, this work proposed extending a graph
DBMS, adding support for 6 new ICs: node condition, required edge, in/out,
edge cardinality, bidirectional edge and edge condition. As future work, we plan
to extend the number of supported constraints, including ICs that appear in the
related work and in [7], and also to evaluate their efficiency and relevance in
comparison with the constraints that are implemented by other works and in
the current DBMSs.

An evaluation study compared the original OrientDB version, a modified
version with added support for the new ICs and a third case in which data
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validation is done by the client application. Experiments demonstrated that the
modified OrientDB presented a small increase in the execution time of data
manipulation operations, having the original version as baseline. This increase,
though, is not big enough to be considered statistically significant for five of
the new ICs. Only in one case – the node condition constraint – there is a
noticeable, but still small, performance loss. However, the modified version of
OrientDB is significantly faster than performing validations at the application
level. In addition, the resulting implementation also simplifies the development
of client applications, which can skip data validation checks and leave them to
be done by the DBMS.

The same strategy could also be adopted to add support for new ICs to other
graph DBs. Furthermore, despite adding support for only six ICs, the proposed
solution allows the easy addition of other constraints, with the aim of further
extending the mechanisms that can guarantee the integrity of graph DBs.
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Abstract. Bounded evaluation using views is to compute the answers
Q(D) to a query Q in a dataset D by accessing only cached views and
a small fraction DQ of D such that the size |DQ| of DQ and the time
to identify DQ are independent of |D|, no matter how big D is. Though
proven effective for relational data, it has yet been investigated for graph
data. In light of this, we study the problem of bounded pattern matching
using views. We first introduce access schema C for graphs and propose
a notion of joint containment to characterize bounded pattern match-
ing using views. We show that a pattern query Q can be boundedly
evaluated using views V(G) and a fraction GQ of G if and only if the
query Q is jointly contained by V and C. Based on the characterization,
we develop an efficient algorithm as well as an optimization strategy to
compute matches by using V(G) and GQ. Using real-life and synthetic
data, we experimentally verify the performance of these algorithms, and
show that (a) our algorithm for joint containment determination is not
only effective but also efficient; and (b) our matching algorithm signifi-
cantly outperforms its counterpart, and the optimization technique can
further improve performance by eliminating unnecessary input..

1 Introduction

With the advent of massive scale data, it is very urgent to have effective methods
for query evaluation on large scale data. One typical solution is by means of scale
independence [8,9], whose idea is to compute the answers Q(D) to a query Q in
a dataset D by accessing a small fraction DQ of D with bounded size, no matter
how big the underlying D is. Following the idea, [13,14] show that nontrivial
queries can be scale independent under a set C of access constraints, that are
a form of cardinality constraints with associated indices; [13,14] also refer to a
query Q as boundedly evaluable if for all datasets D that satisfy C, Q(D) can
be evaluated from a fraction DQ of D, such that the time for identifying and
fetching DQ and the size |DQ| of DQ are independent of |D|. Still, many queries
are not boundedly evaluable, hence bounded evaluation with views was proposed
by [10], which is to select and materialize a set V of small views, and answer
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Fig. 1. Graph G, pattern Q, views V, V(G) and access constraint ϕ

Q on D by using cached views V(D) and an additional small fraction DQ of D.
Then, the queries that are not boundedly evaluable can be efficiently answered
with views and a small fraction of original data with bounded size.

Bounded evaluation with views have proven effective for querying relational
data [11], but the need for studying the problem is even more evident for graph
pattern matching (GPM), since (a) GPM has been widely used in social analy-
sis [28] which is becoming increasingly important nowadays; (b) it is a challenging
task to perform graph pattern matching on real-life graphs due to their sheer
size; and (c) view-based matching technique is often too restrictive. Fortunately,
bounded pattern matching using views fills this critical void. Indeed, cardinality
constraints are imposed by social graphs, e.g., on LinkedIn, a person can have
at most 30000 connections and most of people have friends less than 1000 [3];
on Facekbook, a person can have no more than 5000 friends [6], etc. Given the
constraints and a set of well-chosen views V along with their caches V(G) on
graphs G, GPM can be evaluated by using the views plus a small fraction GQ of
G of bounded size, no matter how large G is.

Example 1. A fraction of a recommendation network G is shown in Fig. 1(a),
where each node denotes a person with job title (e.g., project manager (PM),
business analyst (BA), database administrator (DBA), programmer (PRG), user
interface designer (UI) and software tester (ST)); and each edge indicates col-
laboration, e.g., (PM1,PRG1) indicates that PRG1 worked well with PM1 on a
project led by PM1.

To build a team for software development, one issues a pattern query Q
depicted in Fig. 1(b). The team members need to satisfy the following require-
ments: (1) with expertise: PM, BA, DBA, PRG, UI and ST; (2) meeting the fol-
lowing collaborative experience: (i) BA, PRG and DBA worked well under the
project manager PM; and (ii) DBA, ST and UI have been supervised by PRG, and
collaborated well with PRG. It is then a daunting task to perform graph pattern
matching since it takes O(|G|!|G|) time to identify all the isomorphic matches
of Q in G [12], where |G| = |V | + |E| indicates the size of G.

While one can do better by bounded pattern matching using views. Sup-
pose that (1) a set of views V = {V1,V2} is defined and cached (V(G) =
{V1(G),V2(G)}) as shown in Fig. 1(c), and (2) there exists an access constraint
ϕ = 〈Qϕ(QL → QR), N0〉 (Fig. 1(d)) that G satisfies. Here ϕ states that for
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each DBA that has been supervised by a PM, he can be supervised by at most
N0 distinct PRG. One may associate ϕ with an index Iϕ for fast access, then a
fraction GQ of G of bounded size can be efficiently constructed and Q(G) can
be answered by using V(G) and GQ (will be elaborated). Since (a) V(G) already
contains partial answers to Q in G, and (b) V(G), GQ are often much smaller
than G, thus the cost for computing Q(G) can be substantially reduced. �

This example suggests that we perform pattern matching by using views V,
V(G) and a fraction GD of original graph G of bounded size. In doing so, two
key issues have to be settled. (1) How to decide whether a pattern query Q is
boundedly evaluable with views? (2) How to efficiently compute Q(G) with V(G)
and GQ?

Contributions. This paper investigates the aforementioned questions. We focus
on graph pattern matching with subgraph isomorphism [12].

(1) We introduce access schema defined on graph data, and formalize the prob-
lem of bounded pattern matching using views (Sect. 2).

(2) We propose a notion of joint containment for determining whether a pattern
query is boundedly evaluable with views. Given a pattern query Q, a set of
views V and access schema C with indexes associated, we show that Q is
boundedly evaluable with views if and only if Q is jointly contained by V,
C and provide an algorithm, that works in O((||V|| + ||C||)|Q|!|Q|) time to
determine joint containment, where ||V|| and ||C|| refer to the cardinality
of V and C, respectively, and |Q| indicates the size of Q. As the cost of
the algorithm is dominated by ||V||, ||C|| and |Q|, which are often small in
practice, the algorithm hence performs very efficiently (Sect. 3).

(3) Based on joint containment, we develop an algorithm to evaluate graph
pattern matching by using V(G) and GQ (Sect. 4). Given a pattern query Q,
a set of views V and its extension V(G) on a graph G, and an access schema C
that G satisfies, the algorithm computes Q(G) in O((|V||Q||V(G)|)||V||(|Q||Q| ·
Nm)||C||) time, without accessing G at all, when Q is jointly contained in V
and C. It is far less costly than the algorithm [12] that takes O(|G|!|G|) time
to evaluate Q directly on G, since |Q|, |V|, ||V||, ||C|| are very small, and
|V(G)| is typically much smaller than |G| in practice. We also study the
minimum containment problem, which is to find a pair of subsets 〈V ′, C′〉 of
V and C such that Q is jointly contained by 〈V ′, C′〉 and moreover, the input
used by the matching algorithm can be dramatically reduced.

(4) Using real-life and synthetic graphs, we experimentally verify the perfor-
mances of our algorithms (Sect. 5). We find that (a) our algorithm for joint
containment checking is very efficient, e.g., taking only 145.5 ms to deter-
mine whether a pattern query is contained by a set of views; (b) our view-
based matching algorithm is efficient: it is 9.7 times faster than conventional
method on Youtube [5] with 1.6 million nodes and 4.5 million edges; (c) our
optimization technique is effective: it can reduce the size of input by 75%
and improve the efficiency by 143%, on average, over real-life graphs; and
(d) our matching algorithm scales well with the data size.
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In a summary of the scientific contributions, this work gives a full treatment
for bounded pattern matching using views, which fills one critical void for graph
pattern matching on big graphs, and yields a promising approach to querying
“big” social data. All the proofs, algorithms and complexity analyses can be
found in [2].

Related Work. We next categorize related work as follows.

Query Answering Using Views. Answering queries using views has been well
studied for relational data (see [7,18,22] for surveys), XML data [17,24,26],
and [16]. This work differs from them in the following aspects: (i) we adopt
subgraph isomorphism as the semantic of pattern matching, instead of graph
simulation [20] and bounded simulation [15], that are applied by [16]; (ii) we
study a more practical problem to answer graph pattern matching using avail-
able views and a small fraction of graph G with bounded size; and (iii) we also
investigate the problem of view selection, and provide effective technique for this
problem.

Scale Independence. The idea of scale independence, i.e., querying dataset D by
accessing only a bounded amount of data in D, is proposed by [8–10]. Extend-
ing the idea with access schema, [13,14] introduced bounded evaluation. To cope
with nontrivial queries, [10] proposed bounded evaluation with views, i.e., evalu-
ating queries that are not boundedly evaluable on a dataset D by accessing not
only cached views V(D) but also a small fraction of D with bounded size. Fur-
thermore, [11] explored fundamental problems of bounded evaluation with views.
This work differs from [10,11] in that the query semantics are different, and
we not only conduct static analysis for fundamental problems, but also provide
effective technique for matching evaluation.

2 Preliminaries

In this section, we first review data graphs, pattern queries and graph pattern
matching. We then introduce the problem of bounded pattern matching using
views.

2.1 Basic Definitions

We start with basic notations: data graphs, pattern queries and graph pattern
matching.

Data Graphs. A data graph is a node-labeled, directed graph G = (V,E,L),
where (1) V is a finite set of data nodes; (2) E ⊆ V ×V , where (v, v′) ∈ E denotes
a directed edge from node v to v′; and (3) L(·) is a function such that for each
node v in V , L(v) is a label from an alphabet Σ. Intuitively, L(·) specifies e.g.,
job titles, social roles, ratings, etc [21].

Pattern Queries. A pattern query (or shortened as pattern) is a directed graph
Q = (Vp, Ep, fv), where (1) Vp is the set of pattern nodes, (2) Ep is the set of
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pattern edges, and (3) fv(·) is a function defined on Vp such that for each node
u ∈ Vp, fv(u) is a label in Σ.

Subgraphs and Sub-patterns. A graph Gs = (Vs, Es, Ls) is a subgraph of
G = (V,E,L), denoted by Gs ⊆ G, if Vs ⊆ V , Es ⊆ E, and moreover, for each
v ∈ Vs, Ls(v) = L(v). Similarly, a pattern Qs = (Vps

, Eps
, fvs

) is subsumed by
another pattern Q = (Vp, Ep, fv), denoted by Qs ⊆ Q, if Qs is a subgraph of
Q, i.e., Vps

⊆ Vp, Eps
⊆ Ep and for each u ∈ Vp, fvs

(u) = fv(u). We say Qs a
sub-pattern of Q when Qs ⊆ Q.

Graph Pattern Matching [12]. A match of Q in G via subgraph isomorphism
is a subgraph Gs of G that is isomorphic to Q, i.e., there exists a bijective
function h from Vp to the node set Vs of Gs such that (1) for each node u ∈ Vp,
fv(u) = L(h(u)) (h(u) ∈ Vs); and (2) (u, u′) is an edge in Q if and only if
(h(u), h(u′)) is an edge in Gs.

We also use the following notations. (1) The match result of Q in G, denoted
as Q(G), is a set consisting of all the matches Gs of Q in G. (2) For a pattern
edge e = (u, u′), we derive a set S(e) from Q(G) by letting S(e) = {(v, v′)|v =
h(u), v′ = h(u′), h ∈ Q(G), (v, v′) ∈ E}, and denote S(e) as the match set of
pattern edge e. (3) We use Q ∼ Gs to denote that Gs is a match of Q. (4) We
denote |Vp| + |Ep| as the size |Q| of Q and |V | + |E| as the size |G| of G.

2.2 Problem Formulation

We next formulate the problem of bounded pattern matching using views. We
start from notions of views, followed by access schema and problem statement.

Views. A view (a.k.a. view definition) V is also a pattern query. Its match result
V(G) in a data graph G is denoted as view extension, or extension when it is
clear from the context [19]. As shown in Fig. 1(c), a set of views V = {V1,V2}
are defined, with extensions V(G) = {V1(G),V2(G)} on G cached.

Access Schema. Extended from [11], we define access schema on graphs as fol-
lows. An access schema C is defined as a set of access constraints ϕ = 〈Qϕ(QL →
QR), N〉, where Qϕ is a pattern query, QL and QR are sub-patterns of Qϕ such
that the union of edge sets of QL and QR equals to the edge set of Qϕ, and N
is a natural number.

Given a graph G, a pattern Qϕ and its sub-pattern QL, a match GL (resp.
GR) of QL (resp. QR) is denoted as a QL-value (resp. QR-value) of Qϕ in
G. Then, we denote by G[Qϕ:QR](QL ∼ GL) the set {GR|GR ⊆ Gs, GR ∈
QR(G), GL ⊆ Gs, Gs ∈ Qϕ(G)}, and write it as GQR

(QL ∼ GL), when Qϕ

is clear from the context.
A graph G satisfies the access constraint ϕ, if

◦ for any QL-value GL, |GQR
(QL ∼ GL)| ≤ N ; and

◦ there exists a function (referred to as an index) that given a QL-value GL,
returns {Gs|Gs ∈ Qϕ(G), GL ⊆ Gs} from G in O(N) time.
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Table 1. A summary of notations

Symbols Notations Symbols Notations

Gs ⊆ G (resp.
Qs ⊆ Q)

Gs (resp. Qs) is a subgraph
(resp. sub-pattern) of G (resp.
Q)

Q � V Q is contained
in V

Q(G) match result of Q in G Q �J [V, C] Q is jointly
contained in V
and C

S(e) match set of pattern edge e in G Qg a containing
rewriting of Q

V = {V1, . . . ,Vn} a set of view definitions Ēg “uncovered
edges” of Qg in
Q

V(G) =
{V1(G), . . . ,Vn(G)}

a set V(G) of view extensions
Vi(G)

|Q| (resp. |V|) size (total
number of
nodes and
edges) of a
pattern Q (resp.
view definition
V)

ϕ = 〈Qϕ(QL →
QR), N〉

access constraint |Q(G)| (resp.
|V(G)|)

total size of
matches of Q
(resp. V) in G

C = {ϕ1, · · · , ϕn} access schema |V| (resp. |Q|) total size of
view definitions
in V (resp.
pattern queries
in Q)

Nm maximum cardinality of access
constraints in C

||V|| (resp. ||C||,
||Q||)

total number of
V in V (resp. ϕ
in C, Q in Q)

HQ
V the shadow of a view V in Q |V(G)| total size of

matches in
V(G)

Intuitively, an access constraint ϕ is a combination of a cardinality constraint
and an index Iϕ on QL for QR. It tells us that given any QL-value, there exist
at most N distinct QR-values, and these QR-values can be efficiently fetched by
using Iϕ. By using indices, we can also construct a fraction GQ of G, whose size
is bounded by Σϕi∈CNi · |Qϕi

|. We refer to the maximum cardinality of access
constraints in an access schema C as Nm. A graph G satisfies access schema C,
denoted by G |= C, if G satisfies all the access constraints ϕ in C.

Example 2. An access constraint ϕ is shown in Fig. 1(d). By definition, pat-
tern Qϕ takes two edges that are from its sub-patterns QL and QR, respec-
tively. Assume that an index Iϕ is constructed on G (Fig. 1(a)), then given
a QL-value (PM2,DBA1), one can fetch from Iϕ a set of matches of Qϕ,
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i.e., {(PM2,DBA1,PRG1), (PM2,DBA1,PRG2)}. One may further verify that
|GQR

(QL ∼ GL)| = 2. �

Bounded Pattern Matching Using Views. Given a pattern query Q, a set
V of view definitions and an access schema C, bounded pattern matching using
views is to find another query A such that for any graph G that satisfies C,

◦ A is equivalent to Q, i.e., Q(G) = A(G); and
◦ A only refers to views V, their extensions V(G) in G and GQ only, without
accessing original graph G. Here GQ is a fraction of G and can only be
constructed with indexes Iϕ, that are associated with access constraints ϕ ∈
C, such that the time for generating GQ is in O(Σϕi∈CNi), and the size |GQ|
of GQ is bounded by O(Σϕi∈CNi · |Qϕi

|).
If such an algorithm A exists, we say that pattern Q is boundedly evaluable

with views, and can be evaluated using V(G) and a fraction GQ of G of bounded
size, no matter how big G is (Table 1).

3 Characterization for Bounded Pattern Matching Using
Views

We propose a characterization for bounded pattern matching using views, i.e.,
a sufficient and necessary condition for deciding whether a pattern query is
boundedly evaluable with views.

3.1 Joint Containment Problem

We first introduce the notion of joint containment.

Joint Containment. A pattern query Q with edge set Ep is jointly con-
tained by a set of views V = {V1, · · · ,Vn}, and a set of access constraints
C = {ϕ1, · · · , ϕk}, denoted by Q 
J [V, C], if for any graph G that satisfies
C, there exist a pair of mappings 〈λ, ρ〉, such that

◦ Ep is divided into two disjoint parts Ec and Eu;
◦ Ec is mapped via λ to powerset P(

⋃
i∈[1,n] EVi

), and S(e) ⊆ ⋃
e′∈λ(e) S(e′)

for any e ∈ Ec; and moreover,
◦ Eu is mapped via ρ to powerset P(

⋃
j∈[1,k] Eϕj

), and S(e) ⊆ ⋃
e′∈ρ(e) S(e′)

for any edge e ∈ Eu,

where EVi
refers to the edge set of the i-th view definition Vi in V and Eϕj

indicates the edge set of Qϕj
of the j-th access constraint ϕj in C.

Intuitively, Q 
J [V, C] indicates that Q can be divided into two disjoint
parts, that take edge sets Ec and Eu, respectively; and moreover, there exist
mappings λ and ρ, that map Ec to edges in V and Eu to edges in C, respectively,
such that match set S(e) can be derived from either V(G) or GQ, for any e in
Q, without accessing original graph G.
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Example 3. Recall Example 1. One may verify that Q 
J [V, C], since the
edge set of Q can be divided into two parts Ec =

{
(PM,BA), (PM,PRG),

(PRG, ST), (PRG,UI)
}

and Eu =
{
(PM,DBA), (PRG,DBA)

}
, that are mapped

via mappings λ and ρ to the sets of edges in V and C, respectively. For any
graph G and any edge e of Q, the match set S(e) must be a subset of the
union of the match sets of the edges in λ(e) or ρ(e), e.g., S(PM,DBA) in G is
{(PM1,DBA1), (PM2,DBA1), (PM3,DBA2)}, that is contained in the match set of
QL of Qϕ. �

Theorem 1. Given a set of views V and an access schema C, a pattern query
Q is boundedly evaluable with views if and only if Q 
J [V, C].

As introduced earlier, if a pattern Q is boundedly evaluable with views, Q can
be answered by using V(G) and a small fraction GQ of G with bounded size,
no matter how big G is. Theorem 1 indeed shows that joint containment char-
acterizes whether a pattern Q is boundedly evaluable with views. This motivates
us to study the joint containment (JPC) problem, which is to determine, given
a pattern Q, a view set V and an access schema C, whether Q 
J [V, C].

Remarks. (1) A special case of joint containment is the pattern contain-
ment [27]. Indeed, when access schema C is an empty set, joint containment
problem becomes pattern containment problem. Techniques in [27] is in place for
answering graph pattern matching using views only. (2) When Q is not contained
in V (denoted as Q �
 V), one may find another pattern query Qg = (Vg, Eg),
referred to as a containing rewriting of Q w.r.t. V, such that Qg ⊆ Q and Qg 
 V,
compute matches Qg(G) of Qg from V(G) and treat Qg(G) as “approximate
matches” [27]. While, we investigate more practical but nontrivial cases, i.e.,
Q �
 V, and advocate to integrate access schema into view-based pattern match-
ing such that exact matches can be identified by using a small portion of addi-
tional data of bounded size.

3.2 Determination of Joint Containment

To characterize joint containment, a notion of shadow, which is introduced in [27]
is required. To make the paper self-contained, we cite it as follows (rephrased).

Given a pattern query Q and a view definition V, one can compute V(Q) by
treating Q as data graph, and V as pattern query. Then the shadow from V to Q,
denoted by HQ

V , is defined to be the union of edge sets of matches of V in Q.
We denote by Ēg = Ep \ Eg as the “uncovered edges” of Qg (a containing

rewriting of Q) in Q, where Ep and Eg are the edge sets of Q and Qg, respectively.
The result below shows that shadow yields a characterization of joint con-

tainment (see [2] for the proof). Based on the characterization, we provide an
efficient algorithm for the determination of joint containment.

Proposition 1. For a pattern Q, a set of views V and an access schema C,
Q 
J [V, C] if and only if there exists a containing rewriting Qg of Q such that
Ēg ⊆ ⋃

ϕ∈C HQ
Qϕ

.
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Input: A pattern Q = (Vp, Ep), views V and access schema C.
Output:A boolean value ans that is true if and only if Q �J [V, C].
1. boolean ans := false; set Ec := ∅, Eu := ∅, C′ := ∅;
2. for each view definition Vi ∈ V do
3. compute HQ

Vi
; Ec := Ec

⋃
HQ

Vi
;

4. Eu := Ep \ Ec;
5. for each access constraint ϕ = 〈Qϕ(QL → QR), N〉 in C do
6. if HQ

Qϕ
∩ Eu 	= ∅ then

7. C′ := C′ ∪ {ϕ}; Eu := Eu \ HQ
Qϕ

;
8. if Eu = ∅ then
9. ans := true; break ;
10.return ans;

Fig. 2. Algorithm JCont

Theorem 2. It is in O((||V||+ ||C||)|Q|!|Q|) time to decide whether Q 
J [V, C],
and if so, to compute associated mappings from Q to V, C.

Proof. We show Theorem 2 by presenting an algorithm as a constructive proof
(Fig. 2).

Algorithm. The algorithm, denoted as JCont, takes Q, V and C as input, and
returns true if and only if Q 
J [V, C]. The algorithm works in three stages. In
the first stage, it initializes a boolean variable ans, and three empty sets Ec, Eu

and C′, to keep track of “covered edges”, “uncovered edges”, and selected access
constraints, respectively (line 1). In the second stage, it identifies an edge set Ec

such that the sub-pattern of Q induced with Ec is contained by V. Specifically,
it (1) computes shadow HQ

Vi
for each Vi in V, by invoking the revised subgraph

isomorphism algorithm, which finds all the matches of Vi in Q with algorithm
in [12], and then merges them together; (2) extends Ec with HQ

Vi
(lines 2–3).

After all the shadows are merged, JCont generates an edge set Eu = Ep \ Ec

(line 4). In the last stage, JCont verifies the condition for joint containment as
follows. It checks for each access constraint ϕ whether its Qϕ can cover a part
of Eu, i.e., HQ

Qϕ
∩Eu �= ∅ (line 6). If so, JCont enlarges C′ with ϕ and updates Eu

with Eu \ HQ
Qϕ

(line 7). When the condition Eu = ∅ is encountered, the variable
ans is changed to true, and the for loop (line 5) immediately terminates (line 9).
JCont finally returns ans as result (line 10).

Example 4. Consider Q, V = {V1,V2} and C = {ϕ} in Fig. 1. JCont first com-
putes shadows for each Vi ∈ V and obtains HQ

V1
= {(PM,BA), (PM,PRG)}

and HQ
V2

= {(PRG, ST), (PRG,UI)}. Then Eu includes {(PM,DBA), (PRG,DBA)}.
It next computes HQ

Qϕ
= {(PM,DBA), (PRG,DBA)}, which exactly covers Eu.

Finally, JCont returns true indicating that Q is boundedly evaluable with views.
�
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Fig. 3. Algorithm BMatch

Correctness and Complexity. The correctness is ensured by that when JCont
terminates, JCont correctly identifies a part Qc (with edge set Ec) of Q that
can be answered by using V; and in the meanwhile, the remaining part Qu (with
edge set Eu) of Q can also be covered by C. To see the complexity, observe
the following. The initialization of JCont is in constant time. For the second
stage, JCont iteratively computes shadow HQ

Vi
for each Vi ∈ V. As it takes

O(|Q|!|Q|) time to compute shadow from Vi to Q for a single iteration, and the
for loop repeats ||V|| times, thus, it is in O(||V|||Q|!|Q|) time for the second
stage. In the last stage, JCont computes shadow from Qϕ to Q for each access
constraint ϕ in C, which is in O(|Q|!|Q|) time for a single iteration as well. As the
iteration executes ||C|| times, it hence takes JCont O(||C|||Q|!|Q|) time. Putting
these together, JCont is in O((||V|| + ||C||)|Q|!|Q|) time. �

Remarks. Algorithm JCont can be easily adapted to return a pair of mappings
〈λ, ρ〉 that serve as input for the matching algorithm (shown in Sect. 4).

4 Matching Evaluation

We study how to evaluate pattern matching using views V(G) and a fraction GQ

of G.

4.1 A Matching Algorithm

Along the same line as pattern matching using views, on a graph G that satisfies
access schema C, a pattern Q can be answered with V(G) and GQ with below
technique: (1) determine whether Q 
J [V, C] and compute a pair of mappings
〈λ, ρ〉 with revised algorithm of JCont; and (2) compute Q(G) with a matching
algorithm that takes λ, ρ, V, V(G) and C as input, if Q 
J [V, C]. We next show
such an algorithm.
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Theorem 3. For any graph G that satisfies C, a pattern Q can be answered by
using V, V(G) and GQ in O((|V||Q||V(G)|)||V||(|Q||Q| · Nm)||C||) time, if Q 
J

[V, C].

Proof. We provide an algorithm with analyses as a constructive proof of
Theorem 3.

Algorithm. The algorithm BMatch is shown in Fig. 3. It takes a pattern Q, a
set of views V, V(G) and mappings λ and ρ, as input, and works in two stages:
“merging” views Vi(G) following λ; and “expanding” partial matches with GQ

under the guidance of ρ.
More specifically, BMatch starts with an empty pattern query Qo, an empty

set M to keep track of matches of Qo and another empty set M1 for maintaining
intermediate results (line 1). It then iteratively “merges” Vi(G) following map-
ping λ (lines 2–8). Specifically, for each view definition Vi that is mapped via λ
from edge set Ep (line 2) and each match Gs of Vi in Q (line 3), BMatch expands
Qo with Gs (line 4), and iteratively expands each match m1 of Qo with each
match m2 of Vi if they can be merged in the same way as the merging process
of Qo and Gs, and includes the new match m in M1 (lines 5–7). When a round
of merging process for matches of Qo and Vi finished, BMatch updates M and
M1 by letting M := M1 and M1 := ∅ (line 8). When the first stage finished, Qo

turns to a containing rewriting Qg of Q and M includes all the matches of Qg

in G. In the following stage, BMatch iteratively invokes Procedure Expand to
“expand” Qo and its matches under the guidance of mapping ρ (lines 9–10). It
finally returns M as matches of Q(G) (line 11).

Procedure Expand. Given mapping ρ, access constraint ϕ, pattern Qo and its
match set M, Expand (not shown) expands Qo and M as follows. It first initializes
an empty set M1. For each match Gs of Qϕ in Q, Expand first extends Qo with Gs;
it next expands a match m1 of Qo with a match GL of QL if m1 has common
nodes or edges with GL and further expands m1 with each QR-value GR of
GL, for each match m1 of Qo and each match GL of QL. The new matches
are maintained by the set M1. After all the Gs are processed, Expand returns
updated Qo and its match set M1 as final result.

Example 5. Consider Q, V, V(G) and ϕ shown in Fig. 1. BMatch first merges
“partial matches” in V(G) following the guidance of mapping λ. Specifically, it
first initializes Qo and M with V1 and V1(G) (as shown in Fig. 1(c)); it next
expands Qo with V2, and merges each match in M with each match in V2(G).
After “partial matches” are merged, Qo includes all the edges of V1 and V2, and
set M includes below matches: m1 =

{
PM1,BA1,PRG1, ST1,UI1

}
, m2 =

{
PM2,BA2,

PRG2, ST2,UI1
}
, m3 =

{
PM2,BA2,PRG2, ST2,UI2

}
, m4 =

{
PM2,BA2,PRG2, ST3,

UI1
}
, m5 =

{
PM2,BA2,PRG2, ST3,UI2

}
, and m6 =

{
PM3,BA2,PRG3, ST3,UI3

}
.

Guided by mapping ρ, BMatch expands Qo and its matches via Proce-
dure Expand. Expand first merges Qo with Qϕ. Then, it first expands m1 with
GL (with edge set {(PM1,DBA1)}), and then merges m1 with GR (with edge
set {(PRG1,DBA1)}). The above merge process repeats another 5 times for each
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mi (i ∈ [2, 6]). Finally, BMatch returns a set of 6 matches that are grown from
m1 − m6, respectively. �

Correctness and Complexity. The correctness is guaranteed by the following
three invariants: (1) BMatch correctly merges Qo (resp. M) with views Vi (resp.
Vi(G)); (2) procedure Expand correctly expands Qo and M using indexes asso-
ciated with access schema; and (3) when BMatch terminates, Qo (resp. M) is
equivalent to Q (resp. Q(G)). Interested readers may refer to [2] for more details.

We give a detailed complexity analysis as below.

(I) BMatch iteratively merges Qo and M with view Vi and Vi(G), respec-
tively. For a single iteration, it takes BMatch |λ−1(Vi)||M||Vi(G)| time
for the “merge” task. As in the worst case, (1) there may exist |VVi

||Qc|

matches of Vi in Qc, where VVi
denotes the node set of Vi and |Qc| is

bounded by |Q|, hence |λ−1(Vi)| is bounded by |VVi
||Q|; (2) |M| is bounded

by
∏

i∈[1,k−1] |VVi
||Q||Vi(G)| before the k-th iteration; and (3) the iter-

ation repeats at most ||V|| times, hence the first stage is bounded by∏
i∈[1,||V||] |VVi

||Q||Vi(G)|, which is in O((|V||Q||V(G)|)||V||) time.
(II) BMatch repeatedly invokes Procedure Expand to process expansion of
Qo and M with access constraint ϕ. For a single process, it takes Expand
|ρ−1(QR)||M||Iϕ(GL)| time. Note that (1) |ρ−1(QR)| is bounded by |VR||Qu|

(VR refers to the node set of QR), which is further bounded by |VR||Q|, as |Qu|
is bounded by |Q|; (2) |M| is bounded by (|V||Q||V(G)|)||V|| ·∏i∈[1,k−1] |VRi

||Q| ·
Ni, before the k-th iteration; and (3) |Iϕ(GL)| ≤ Nk at the k-th itera-
tion, thus, Expand is in O(|VR||Q| · (|V||Q||V(G)|)||V|| ∏

i∈[1,k](|VRi
||Q| · Ni))

time. As the iteration repeats at most ||C|| times, the second stage is hence
in O(|Q||Q|(|V||Q||V(G)|)||V||(|Q||Q| · Nm)||C||) time. Putting these together,
BMatch is in O((|V||Q||V(G)|)||V||(|Q||Q| · Nm)||C||) time, where Nm is the
maximum cardinality of access schema C. �

4.2 Optimization Strategy

As the cost of BMatch is partially determined by |V(G)| and |GQ|, it is beneficial
to reduce their sizes. This motivates us to study the minimum containment
problem.

Minimum Containment Problem. Given a pattern query Q, a set of view
definitions V with each Vi associated with weight |Vi(G)|, and an access schema
C, the problem, denoted as MCP, is to find a subset V ′ of V and a subset C′ of C,
such that (1) Q 
J [V ′, C′], and (2) for any subset V ′′ of V and any subset C′′ of
C, if Q 
J [V ′′, C′′], then |V ′(G)|+Σϕi∈C′Ni · |Qϕi

| ≤ |V ′′(G)|+Σϕj∈C′′Nj · |Qϕj
|.

As will be seen in Sect. 5, MCP is effective: it can eliminate redundant views
(as well as their corresponding extensions), and reduce the size of GQ thereby
improving the efficiently of BMatch. However, MCP is nontrivial, its decision
problem is np-hard. Despite of this, we develop an algorithm for MCP, which
is approximable within O(log |Q|). That’s, the algorithm can identify a subset
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V ′ of V and a subset C′ of C when Q 
J [V, C], such that Q 
 [V ′, C′] and
|V ′(G)|+Σϕi∈C′Ni ·|Qϕi

| is guaranteed to be no more than log(|Q|)·(|VOPT(G)|+
Σϕj∈COPT

Nj ·|Qϕj
|), where VOPT and COPT are the subsets of V and C, respectively,

and moreover, Q 
J [VOPT, COPT] and |VOPT(G)|+Σϕj∈COPT
Nj ·|Qϕj

| is minimum,
among all possible subset pairs of V and C.

Theorem 4. There exists an algorithm for MCP that finds a subset V ′ of V and
a subset C′ of C with Q 
J [V ′, C′] and |V ′(G)| + Σϕi∈C′Ni · |Qϕi

| ≤ log(|Q|) ·
(|VOPT(G)| + Σϕj∈COPT

Nj · |Qϕj
|) in O(||V|||Q|!|Q| + (||V|||Q|)3/2) time.

Proof. We next show Theorem 4 by providing an algorithm as a constructive
proof.

Algorithm. The algorithm, denoted as Minimum (not shown), takes a pattern
query Q, a set of view definitions V with each Vi in V taking a weight |Vi(G)|,
and an access schema C as input, identifies a pair 〈V ′, C′〉 of subsets of V and
C such that (1) Q 
J [V ′, C′] if Q 
J [V, C] and (2) |V ′(G)| + Σϕi∈C′(Ni ·
|Qϕi

|) ≤ log(|Q|) · (|VOPT(G)| + Σϕj∈COPT
(Nj · |Qϕj

|)), where (a) log(|Q|) is the
approximation ratio, and (b) VOPT, COPT are the subsets of V, C, respectively, and
moreover, Q 
J [VOPT, COPT] and |VOPT(G)| + Σϕj∈COPT

(Nj · |Qϕj
|) is minimum,

among all possible subset pairs of V and C.
In a nutshell, the algorithm applies a greedy strategy to find a views Vi in V

or an access constraint ϕj from C that is considered “best” during the iteration.
To measure the goodness of the views and access constraints, we define a metric
α(Vi) = |Vi(G)|

|HQ
Vi

\Qo| for a view Vi, and α(ϕj) =
Nj ·|Qϕj

|
|HQ

Qϕj
\Qo| for an access constraint

ϕj . Here, Qo takes edges from shadows whose corresponding views (resp. access
constraints) are chosen in V ′ (resp. C′). Intuitively, α(Vi) (resp. α(ϕj)) indicates
how costly it is to “cover” the remaining part Q\Qo of Q with HQ

Vi
(resp. HQ

Qϕj
),

hence a Vi or ϕj with the least α(·) is favored in each round iteration. The
algorithm works in two stages.

(I) It initializes three empty sets V ′, C′ and F , and computes the shadow
HQ

Vi
for each Vi ∈ V (resp. HQ

Qϕj
for each ϕj ∈ C) and maintains a pair 〈HQ

Vi
,

|Vi(G)|〉 (resp. 〈HQ
Qϕj

, Nj · |Qϕj
|〉) in F . Intuitively, |Vi(G)| (resp. Nj · |Qϕj

|)
can be viewed as the “weight” of its corresponding Vi (resp. ϕj).
(II) Minimum invokes procedure PtnFinder to compute a pair 〈V ′, C′〉 of sub-
sets of V and C. Specifically, it first initializes an empty pattern Qo and two
empty sets V ′, C′. It then iteratively selects an object obj, whose correspond-
ing α(·) is the least. Here, the chosen object obj is either a view definition Vi

or an access constraint ϕj . Once there does not exist any obj whose shadow
can expand Qo, i.e., (HQ

obj \ Qo) = ∅, PtnFinder breaks the loop. Otherwise, it
updates F by removing 〈HQ

Vi
, |Vi(G)|〉 (resp. 〈HQ

Qϕj
, Nj · |Qϕj

|〉), and expands

Qo with shadow HQ
obj. If obj is a view Vi, PtnFinder includes it in V ′, other-

wise, PtnFinder enriches C′ with ϕj . After while loop terminates, if Eo is not



298 X. Wang et al.

equivalent to Ep, PtnFinder returns an empty set, since Q �
j [V, C] and hence
no subset pair exists. Otherwise, PtnFinder returns 〈V ′, C′〉 as final result.

Correctness and Complexity. Observe that Minimum either finds a pair 〈V ′, C′〉 of
subsets of V and C such that Q 
J [V ′, C′] or an empty set indicating Q �
J [V, C].
This is ensured by joint containment checking of the algorithm, by following
Proposition 1. Moreover, PtnFinder identifies 〈V ′, C′〉 with a greedy strategy,
which is verified to guarantee log(|Q|) approximation ratio for weighted set cover
problem [25]. Algorithm Minimum computes “shadows” for each Vi in V and
each ϕj in C in O((||V|| + ||C||)|Q|!|Q|) time. The procedure PtnFinder is in
O(((||V||+ ||C||)|Q|)3/2) time, as the while loop is executed min{(||V||+ ||C||), |Q|}
times, which is bounded by O(((||V||+||C||)|Q|)1/2) time, and each iteration takes
O((||V|| + ||C||)|Q|) time to find a view with least α(·) [25]. Thus, Minimum is in
O((||V|| + ||C||)|Q|!|Q| + ((||V|| + ||C||)|Q|)3/2) time.

The analysis above completes the proof of Theorem 4. �

5 Experimental Evaluation

We conducted two sets of tests to evaluate performance of algorithms for (1)
joint containment checking and (2) bounded pattern matching using views.

Experimental Setting. We used the following data.

(1) Real-life graphs. We used three real-life graphs: (a) Amazon [4], a product
co-purchasing network with 548K nodes and 1.78M edges; (b) Citation [1], a
collaboration network with 1.4M nodes and 3M edges; (c) YouTube [5], a recom-
mendation network with 1.6M nodes and 4.5M edges.

(2) Synthetic graphs. We designed a generator to produce random graphs, con-
trolled by the number |V | of nodes, the number |E| of edges, and an alphabet
Σ for node labels. We enforced a set of access constraints during random gener-
ation.

(3) Pattern queries. We implemented a generator for pattern queries controlled
by: the number |Vp| (resp. |Ep|) of pattern nodes (resp. edges), and node label
fv from an alphabet Σ of labels drawn from corresponding real-life graphs. We
denote (|Vp|, |Ep|) as the size of pattern queries, and generated a set of 30 pattern
queries with size (|Vp|, |Ep|) ranging from (3, 2) to (8, 16), for each data graph.

(4) Views. We generated views for Amazon following [23], designed views to
search for papers and authors in computer science for Citation, and generated
views for Youtube following [16]. For each real-life graph, a set V of 50 view
definitions with different sizes e.g., (2, 1), (3, 2), (4, 3), (4, 4) and structures are
generated. For synthetic graphs, we randomly generated a set of 50 views whose
node labels are drawn from a set Σ of 10 labels and with size of (2, 1), (3, 2),
(4, 3) and (4, 4). For each view set V, we force that Q �
 V, for each Q used for
testing.
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Fig. 4. Typical access constraints on real-life graphs

(5) Access schema. We investigated real-life graphs, and extracted an access
schema C with a set of access constraints ϕ for each of them. A set of typical
access constraints are shown in Fig. 4. For each access constraint ϕ = 〈Qϕ(QL →
QR), N〉, we computed an index Iϕ for it. Since N is no more than 100 for each
chosen ϕ, hence the space cost of an index Iϕ ranges from a few megabytes
to dozens of megabytes, for each ϕ. In addition, the index Iϕ is built upon a
hashtable, with a distinct match GL of QL as the key, and a set of matches Gs

of Qϕ as values. Thus, the fetch time on Iϕ for any GL is very fast, and can
be viewed as a constant. On synthetic graphs, we manually generated a set of
access constraints and computed indexes for these access constraints, along the
same line as performed on real-life graphs. As index construction is a one-off
task and can be performed off-line, we do not report its computational time.

(6) Implementation. We implemented below algorithms, in Java: (1) JCont for
joint containment checking; (2) VF2 [12] for matching evaluation on G, BMatch
for matching with V(G) and GQ; and (3) Minimum for identifying a pair 〈V ′, C′〉
from V and C, and BMatchmin which revises BMatch by using 〈V ′, C′〉 identified
by Minimum.

All the tests were run on a machine with an Intel Core(TM)2 Duo 3.00 GHz
CPU and 4 GB memory, using Ubuntu. Each test was run 10 times and the
average is reported.

Experimental Results. We next present our findings.

Exp-1: Joint Containment Checking. We evaluate performance of JCont
vs. Minimum.

Performance of JCont vs. Minimum. We evaluate the efficiency of JCont
vs. Minimum. Fixing V and C for real-life graphs, we varied the pattern size from
(4, 4) to (8, 16), where each size corresponds to a set of pattern queries with dif-
ferent structures and node labels. We find the following. (1) JCont and Minimum
both are efficient, e.g., it takes JCont on average 145.5 ms to decide whether
a pattern with size (8, 16) is jointly contained in V and C. (2) Both two algo-
rithms spend more time over larger patterns, which are consistent with their
computational complexities. Due to space constraint, we do not report detailed
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Fig. 5. Performance evaluation

figures here. (3) We compute a ratio RT = TJCont

TMinimum
, where TJCont and TMinimum are

the time used by JCont and Minimum, respectively, to evaluate performance gap
between JCont and Minimum. As shown in Fig. 5(a), JCont accounts for about
75.7% of the time of Minimum, on average, since it takes Minimum more time to
pick a Vi from V (resp. ϕj from C).

To investigate the effectiveness of Minimum, we defined a ratio RS = Sa

Sb
,

where Sa = |V ′(G)| + Σϕj∈C′Nj · |Qϕj
|, Sb = |V(G)| + Σϕj∈CNj · |Qϕj

|, as the
ratio of the total size of view extensions V ′(G) and GQ identified by Minimum to
the total size of whole set of V(G) and indexes in C. Fixing V and C over real-life
graphs, we varied (|Vp|, |Ep|) from (4, 4) to (8, 16) and evaluated the ratio RS .
As shown in Fig. 5(b), Minimum is effective, it finds a pair 〈V ′, C′〉 with total
size Sa substantially smaller than Sb, i.e., taking only about 25.2% of Sb for all
real-life graphs, on average. As will be shown, using 〈V ′, C′〉 can substantially
improve efficiency of matching computation.

Exp-2: Bounded Pattern Matching Using Views. We study the effective-
ness, efficiency and scalability of BMatch, BMatchmin, compared to VF2.

Effectiveness. We define following three metrics and evaluate effectiveness of
bounded pattern matching using views with real-life graphs.
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(1) We defined a ratio RACC as accuracy, to measure the result quality when
access schema is absent, by following F -measure [29]. Here, RACC =
2·recall·precision
recall+precision , where recall = |S|

|St| , precision = |S|
|Sm| , St consists of matches in

Q(G), Sm is the set of matches in Qg(G), and S consists of “true” matches
that can be identified from Qg(G), where Qg refers to the maximally con-
taining rewriting of Q w.r.t. V.

(2) We used RC =
Σϕi∈C′ Ni·|Qϕi

|
|Q(G)| to show the propotion of |GQ| in |Q(G)|. Here,

GQ is constructed from C′, which is a subset of C and takes a set of access
constraints ϕi that are used by BMatch when matching evaluation, and
|Q(G)| is the total size of matches of Q in G.

(3) We used Re = |Ēg|
|Ep| to show how large a pattern query needs to be “covered”

by access constraints.

Figures 5(c)–5(e) report three ratios on real-life graphs, which tell us the
following. The ratio RACC is, on average, 77.3%, 73.6%, and 76.8% on Amazon,
Citation and Youtube, respectively. In the meanwhile, the average ratios of RC
and Re reach 10.4% and 18.8%, 14% and 20.6%, 11.7% and 19.4% on Amazon,
Citation and Youtube, respectively. These together show that access constraints
often cover a small but critical part of pattern queries, e.g., 16.11% of total edges
of Q on average, and provide limited but key information, e.g., 10.89% of the
size of match result to improve accuracy by more than 20%, on average.

Efficiency. Figures 5(f), 5(g) and 5(h) show the efficiency on Amazon, Citation
and YouTube, respectively. The x-axis represents pattern size (|Vp|, |Ep|). The
results tell us the following. (1) BMatch and BMatchmin substantially outperform
VF2, taking only 9.5% and 3.8% of its running time on average over all real-life
graphs. (2) All the algorithms spend more time on larger patterns. Nonetheless,
BMatch and BMatchmin are less sensitive to the increase of |Q| than VF2, as they
reuse earlier computation cached in view extensions and hence save computa-
tional cost. (3) BMatchmin is more efficient than BMatch, taking only 41.2% time
on average over real-life graphs, as it uses smaller V(G) and GQ.

Scalability. Using synthetic graphs, we evaluated the scalability of BMatch,
BMatchmin and VF2. Fixing |Q| = (4, 6), we varied the node number |V | of data
graphs from 0.3M to 1M , in 0.1M increments, and set |E| = 2|V |. As shown
in Fig. 5, BMatchmin scales best with |G| and is on average 1.4 and 22.1 times
faster than BMatch and VF2, which is consistent with the complexity analysis,
and the observations in Figs. 5(f), 5(g) and 5(h).

6 Conclusion

We have studied bounded pattern matching using views, for pattern queries
defined in terms of subgraph isomorphism, from theory to algorithms. We have
introduced access schema for graphs, proposed a notion of joint containment for
characterizing bounded pattern matching using views, and provided an efficient
algorithm for joint containment checking. Based on the characterization, we have
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developed an matching algorithm by using views and a size-bounded fraction,
and moreover, we have also provided optimization strategy to improve efficiency
of matching compuation. Our experimental results have verified the effective-
ness, efficiency and scalability of our algorithms, using real-life and synthetic
data. The study of bounded pattern matching using views is still in its infancy.
One issue is the selection of views and access schema. Another problem concerns
scale-inpendence for GPM.
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Abstract. The contents of RAM in an operating system (OS) are a
critical source of evidence for malware detection or system performance
profiling. Digital forensics focused on reconstructing OS RAM structures
to detect malware patterns at runtime. In an ongoing arms race, these
RAM reconstruction approaches must be designed for the attack they are
trying to detect. Even though database management systems (DBMS)
are collectively responsible for storing and processing most data in orga-
nizations, the equivalent problem of memory reconstruction has not been
considered for DBMS-managed RAM.

In this paper, we propose and evaluate a systematic approach to
reverse engineer data structures and access patterns in DBMS RAM.
Rather than develop a solution for specific scenarios, we describe an app-
roach to detect and track any RAM area in a DBMS. We evaluate our
approach with the four most common RAM areas in well-known DBM-
Ses; this paper describes the design of each area-specific query workload
and the process to capture and quantify that area at runtime. We further
evaluate our approach by observing the RAM data flow in presence of
built-in DBMS encryption. We present an overview of available DBMS
encryption mechanisms, their relative advantages and disadvantages, and
then illustrate the practical implications for the four memory areas.

1 Introduction

Database managements systems (DBMS) serve as the main data repositories
for applications ranging from personal use (e.g., text messaging, web browsers)
to enterprise data warehouses (e.g., airlines, merchants). In order to perform
“live” (i.e., runtime) forensic, security, or performance analysis in a DBMS, an
understanding of its RAM layout is necessary. There are currently no approaches
or tools that can reverse engineer RAM contents of a DBMS. Current work in
OS RAM analysis (see Sect. 2) seeks to detect specific malware patterns, offering
no generalized solution. Although OS RAM may be too general, DBMS memory
can be abstracted by identifying and quantifying each type of its memory area.
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In this paper, we describe our approach and validate its generality on four major
RAM areas across several representative DBMSes.

DBMSes allocate multiple RAM areas within their process memory to serve
a particular purpose. For example, I/O buffer area caches pages accessed from
disk (and some other operations); in Sect. 5 we describe four ubiquitous memory
areas and other special-purpose RAM areas. A memory area can be detected
and quantified by executing a customized synthetic workload and capturing the
resulting RAM snapshots. In Sect. 7, we illustrate how to capture any memory
area, describing our process and include the link to our query workloads.

A significant contribution of our approach to reverse engineering memory
is assigning context to data. We demonstrate this with DBMS encryption as a
use case (Sect. 9 outlines other use cases). While data can be encrypted out-
side of a DBMS, all major DBMSes (e.g., IBM DB2, Microsoft SQL Server,
Oracle, MySQL, SQLite) manage their own encryption. “Foreign” encryption
imposes trade-offs between protection guarantees and limiting DBMS function-
ality. Section 2 summarizes two encryption types: disk encryption and client-side
encryption. Disk encryption protects data at rest (i.e., in persistent storage)
with software between the I/O subsystem and DBMS. While this approach is
transparent to a DBMS and, thus, does not interfere with DBMS functionality,
it offers little control over encryption granularity; a malicious system adminis-
trator (or an attacker who gained similar privileges) can access DBMS files at
byte-level. Alternatively, data encrypted and decrypted by a client application
protects data both in-motion and at-rest. A major trade-off for this approach is
a loss of DBMS functionality. The built-in encryption DBMS mechanisms offer
a balanced solution between disk and client-side encryption. Section 8 demon-
strates how to assess encryption vulnerabilities based on the purpose of each
memory area. For example, a decrypted credit card number could appear in
memory as part of an INSERT or SELECT query, as an internal copy in buffer
cache, or an intermediate computation. The major contributions of the paper
are:

– A survey of encryption mechanisms supported by popular DBMSes (Sect. 4).
We review encryption options in IBM DB2, Microsoft SQL Server, Oracle,
MySQL, PostgreSQL, SQLite, Firebird, and Apache Derby.

– A taxonomy that abstracts four ubiquitous categories of DBMS memory
architecture: the I/O buffer, sort area, transaction buffer, and query buffer.

– A framework for isolating and identifying DBMS memory areas (Sect. 6).
– An evaluation of our framework (Sect. 7) demonstrating successful RAM anal-

ysis for three representative DBMSes: MySQL, Oracle, and PostgreSQL.
– A use-case study demonstrating how to assign context to encrypted data in

RAM (Sect. 8) using a MySQL DBMS instance.

2 Related Work

Assigning Context to Forensic Data. Foundational digital forensic analysis
applies file carving techniques, which reconstruct data without using file system
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metadata. The work in [7,20] presented some of the earliest research around file
carving performed as a “dead analysis” on disk images. As the field of digital
forensics matured, memory forensics “live analysis” has emerged [6]. An impor-
tant application for memory forensic investigation is inspecting runtime code to
detect malware (e.g., [5]). Such work requires not only carving but a complicated
analysis of application and kernel data structures.

Since DBMSes manage their own internal storage separately from the OS and
DBMS files are not standalone (unlike PDFs or JPEGs), file carving cannot be
applied to DBMS data. Carving DBMS storage was explored in [25,27]. However,
database carving has only been part of a “dead analysis.” Combining the work
in this paper with database carving would enable a “live analysis”, such as
detecting unusual DBMS access patterns similar to malware detection.

Query Processing for Encrypted Data. Client-side encryption (i.e., encrypt-
ing data before loading it into a database) prevents the DBMS from process-
ing data unless data properties are preserved. Deterministic encryption always
produces the same ciphertext for a given plaintext and thus supports equality
predicates (e.g., WHERE Name = 'Alice'), equality based joins, and DISTINCT oper-
ations. GROUP BY operations can be used, but beyond the columns in the GROUP BY

clause, deterministic encryption is essentially limited to the COUNT function (e.g.,
SELECT City, COUNT(*) FROM Customer GROUP BY City).

Order preserving encryption (OPE) produces ciphertext that preserves the
plaintext value ordering [1,4]. OPE supports sorting (i.e., ORDER BY), range
scans (e.g., WHERE Salary BETWEEN 50K AND 80K), and covering indexes. Homo-
morphic encryption (e.g., [12]) supports computations on ciphertext, returning
an encrypted result. Fully homomorphic encryption supports unbounded compu-
tations, but research identified major trade-offs [13,17]. Partially homomorphic
encryption offers a more balanced solution by supporting only bounded computa-
tions [10]. Support for the standard SQL string wildcard operators (i.e., % and )
on encrypted data was explored in [23]. However, it is only suitable for strings
with known patterns. There are no solutions that support query processing on
ciphertext with arbitrary wildcard expressions or regular expressions.

Systems such as CryptDB [19], Cipherbase [3], and Microsoft SQL Server’s
Always Encrypted [28] extend SQL and relational DBMSes to support query
processing on encrypted data. However, these systems still sacrifice important
functionality, such as nontrivial computations (e.g., multiplication and addition
in the same expression) and regular expressions. More importantly, the encryp-
tion schemes should be designed with knowledge of the query workload. For
example, homomorphic encryption does not support a workload that requires
sorting. These systems also remain vulnerable to inference attacks since the
ciphertext still preserves data properties [2,14]. Alternatively, the use case in
this paper considers encryption that is natively supported by DBMSes. These
mechanisms do not sacrifice DBMS functionality and provide access granularity.
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3 Background

Global vs. Local DBMS Memory. DBMSes divide memory into either a
global or local context. Global memory stores data and objects shared by all
users, sessions, or all DBMS processes. Local memory stores data for an indi-
vidual DBMS process, session, SQL statement, or an operation (e.g., sorting)
within a SQL statement. All components in global memory remain active once
the DBMS instance is started. Components in local memory may be allocated
when the process, session, SQL statement, or operation starts and de-allocated
when it ends. Data that is loaded into local DBMS memory is therefore likely
to leak into the OS RAM after it has been de-allocated.

Temporary Table. Temporary tables are used to simplify DBMS procedures
and improve performance of processing intermediate query results. Temporary
tables are only visible to their user session. They are automatically dropped
when the session ends; most DBMSes support the option to drop a temporary
table on COMMIT. Temporary tables are typically stored in local memory.

Table 1. Encryption features supported by major DBMSes.

DBMS Instance level Column level

Apache Derby ✓ ✗

DB2 TDE Pre-built functions, masking

Firebird ✓ ✗

MySQL TDE Pre-built functions, masking

Oracle TDE TDE, masking, pre-built functions

PostgreSQL ✗ Pre-built functions

SQLite ✓ ✗

SQL Server TDE Client-side TDE, masking, pre-built functions

4 Native DBMS Encryption

Table 1 summarizes the 8 popular DBMSes investigated in this paper their
encryption mechanisms. At a high-level we partition all native database encryp-
tion into two categories: instance-level and column-level.

Instance-Level Encryption. Instance-level encryption supports encrypting
DBMS storage at the granularity of individual files, or other storage structures
(e.g., tablespaces). We further categorize the instance-level encryption mecha-
nisms into the standard encryption and transparent data encryption (TDE).

Standard instance-level encryption encrypts all reads and writes to and from
DBMS storage; the encryption key is only provided when the DBMS is started
or during a new session login. This mechanism works by encrypting entire pages



308 J. Wagner and A. Rasin

(e.g., table data, binary large objects, and indexes) that make up the DBMS
files. Encrypted data typically includes not only user data in tables and indexes,
but also WAL files and temporary files created by the DBMS. Standard instance-
level encryption is supported by Apache Derby [26], Firebird (user-customized
crypt plug-ins [18]), and SQLite (SQLite Encryption Extension, SEE [24]).

TDE is a more advanced version of the standard instance-level encryption,
offered primarily by enterprise DBMSes. The major difference between TDE and
standard instance-level encryption is a two-tier encryption key architecture. To
implement TDE, a DBMS explicitly manages data encryption key(s) to encryp-
t/decrypt data. The data encryption key(s) themselves are stored in DBMS
storage and are further encrypted with a master key(s) created by the user.
The master key is stored in a key store that exists externally and independently
from the DBMS files. Two-tier key management creates a further diffusion of
privilege required to decrypt the data; the master key can remain hidden from
the database administrator. TDE is supported by DB2 (Native Encryption [9]),
MySQL Enterprise [16], Oracle [15], and SQL Server [11].

Column-Level Encryption. Column-level encryption refers to the DBMS abil-
ity to encrypt individual columns or values in a column. The most common form
of column-level encryption is pre-built functions in the DBMS engine (imple-
mented in DB2, MySQL, PostgreSQL, Oracle, and SQL Server). To encrypt
new data with pre-built encryption functions, the user must include both the
plaintext to encrypt and the encryption key with INSERT or UPDATE statements.
Similarly, to query encrypted data the user must provide the encryption algo-
rithm, the encrypted value, and the encryption key with SELECT, DELETE, or UPDATE
statements. The following query illustrates how these functions are used:

SELECT Decrypt(Name, key1) FROM Employee

WHERE SSN = Encrypt('123-45-6789', key2);

Another form of pre-built encryption functions offered by enterprise DBMSes
is masking (or redaction). Masking allows users to specify a function describing
which parts of a value must be hidden. Common examples of masking include
revealing only the last four digits of a social security number or the last digits of
a credit card number. Masking is supported by DB2, MySQL Enterprise, Oracle,
and SQL Server.

In addition to the instance-level TDE, Oracle also supports a TDE mech-
anism for columns-level encryption. Column-level TDE still uses the two-tier
encryption key architecture. SQL Server also supports a form of column-level
TDE with Always Encrypted. The main difference with Always Encrypted is
that the master key(s) is designed to be stored on the client-side application.

5 Abstracting DBMS Memory Structures

This section describes the abstraction of DBMS memory areas, based on the
type of runtime operations each area supports. Area categories can be identified
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Table 2. DBMS-specific names for major memory areas.

DBMS I/O buffer Sort area TXN buffer Query buffer

Apache Derby Page Cache JVM Sort Heap Write Cache Statement Cache

DB2 Buffer pool Sort heap Log buffer Query heap

Firebird Page cache TempCache Undo log buffer Metadata Cache

MySQL Buffer pool Sort buffer Redo log buffer Query Cache

Oracle Buffer cache SQL work areas Redo log buffer Result Cache

PostgreSQL Buffer pool Work mem WAL buffer Query plan Cache

SQLite Page cache Transient indexa Journal buffer Tokenizer

SQL Server Page cache Work tablea Log cache Procedure Cache
aStored in the I/O buffer

with the help of DBMS documentation and database textbooks; each type of
DBMS operation can be consistently mapped to an area. For example, regular
table access (e.g., table scan or index-based access) uses the I/O buffer in RAM
to cache pages; hash-join execution uses a memory-intensive operation area.

We chose four areas that best represent the power of area-based memory
abstraction: I/O buffer, the area for memory-intensive operations (or sort area),
transaction (TXN) buffer, and query cache. Each DBMS uses some variant of
these four areas – Table 2 lists their DBMS-specific names. An area may exhibit
DBMS-specific configuration properties (e.g., sort area is allocated at a different
granularity across DBMSes). DBMS can include other specialized memory areas,
which can similarly be abstracted through the process described in this paper.

I/O Buffer. The I/O buffer caches table, index, and materialized view pages
recently accessed from files on disk. While each DBMS uses a custom algorithm
to decide when to store or evict data from the I/O buffer, some variation of the
least recently used (LRU) policy is typically used. When at least one page record
is accessed by a query, the entire page is cached in RAM and possibly decrypted.
In most DBMSes, the I/O buffer contains a significant number of index pages,
including the intermediate nodes and leaf pages of B-Tree indexes.

Sort Area. DBMSes reserve a separate area(s) for memory-intensive operations,
which we refer to as the sort area. Sorting-like operations include the straight-
forward ORDER BY and DISTINCT clauses along with certain types of JOINs, such
as merge-join or hash-join. Nested loop join does not require as much memory
(for sorting or hashing) and is typically performed in the I/O buffer. Our exper-
iments illustrate the variations in sort area implementation. Oracle creates a
sort area per session (i.e., per user connection); MySQL allocates a sort area for
each query, even for the same session; PostgreSQL allocates a sort area for each
operation (potentially allocating multiple sort areas for a single query). Once the
operation associated with the sort area concludes, the sort area is de-allocated.

DBMSes almost always use temporary tables for sorting. This allows the
DBMS to process data-intensive operations in parts, while storing the rest of the
data in temporary files in persistent storage. The temporary tables are created
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in a dedicated sort area. Two DBMSes are an exception to that rule. SQL Server
also uses temporary tables for sorting (called Work Tables) but actually stores
them in the I/O buffer rather than in a dedicated local memory area. SQLite sorts
data using temporary indexes rather than temporary tables. This is a consistent
approach for SQLite since their tables are in the form of index organized tables.

Transaction Buffer. DBMSes use a TXN buffer to store write-ahead log (WAL)
entries, sometimes referred to as redo or journal log entries. These log entries
describe the transactional change history to data, including information needed
to rollback or recover from the changes made to the database through DML
operations (e.g., DELETE or UPDATE). DBMSes typically write to the TXN buffer
in a circular pattern while a background process writes the entries to the WAL
(or redo) log files on disk. The TXN buffer must be a part of global DBMS
memory to avoid conflicting modifications among different users.

Query Cache. The query cache corresponds to operations that store raw SQL
code in RAM as well as query execution plans. DBMS can subsequently reuse
cached query execution plans in optimizing similar queries. Query cache area
may also contain the DBMS-specific general programming code, e.g., PL/SQL
(Oracle), PL/pgSQL (PostgreSQL), or T-SQL (SQL Server). Prepared state-
ments and bind variable values are also stored in this area. Depending on the
DBMS, the query cache can be part of global memory or local memory.

Other Areas. DBMSes reserve memory areas for background or user-issued
maintenance operations. For example, the MySQL Change Buffer maintains
indexes in the background, and the PostgreSQL maintenance work mem is
reserved for the user-issued VACUUM and REINDEX operations. DBMSes often main-
tain custom resource scheduling information. Examples include the PostgreSQL
commit log which stores the current state of each transaction (i.e., in-progress,
committed, or aborted), the Firebird LockMem and Oracle Library Cache
acquire locks for database objects, and the DB2 locklist that maintains a list
of currently locked objects.

6 Experiment Overview

This section describes using our framework to isolate and identify the four mem-
ory areas from Sect. 5. Section 7 demonstrates the effectiveness of this framework
on MySQL, Oracle, and PostgreSQL (chosen as representative of different inter-
nal storage implementations in a DBMS). Section 8 further shows how to apply
this framework to assign context to decrypted data in memory for MySQL.

Table 3. SSBM Scale 4 table sizes used for experiments.

DWDate Supplier Customer Part Lineorder

Size 200KB 700KB 10 MB 50MB 2.3 GB

Records 2556 8000 120 K 600K 24M
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Our experimental analysis does not consider an exhaustive list of DBMSes
and possible configurations; rather, our framework is designed to be independent
of such variables. For example, Sect. 7 considers three representative DBMSes of
the eight DBMSes listed in Sect. 5, but the same process can be applied to any
relational DBMS. Similarly, Sect. 8 only considers MySQL, although the same
analysis could be performed for the other DBMSes. This framework focuses
on how DBMSes manage their internal process memory. Although we consider
default implementations, a researcher could further explore a specific environ-
ment (e.g., compare DBMS memory behavior for ptmalloc2 vs. tcmalloc).

6.1 Setup

Dataset. In our experiments we used the Star Schema Benchmark (SSBM)
Scale 4 (∼2.4 GB or ∼25M records). SSBM is widely used in database research
community to represent a data warehouse evaluation. It combines a realistic
distribution of data (maintaining data types and cross-column correlations) with
a synthetic data generator that can create datasets at different scale. Table 3
summarizes the sizes of the SSBM tables used throughout the experiments.

Table 4. DBMS memory area configurations used for experiments

DBMS I/O buffer Sort area TXN buffer Query buffer Proc Mem

MySQL 100MB 256 KB 1MB 10 MB 383MB

Oracle 1.6 GB 262 MB 7MB 200 MB 3.6 GB

PostgreSQL 128MB 4 MB 4MB 12 MB 248MB

DBMS Configuration. Table 4 lists the DBMSes we chose for an evaluation
as well as their memory area parameter settings. We chose the settings for mem-
ory size in consultation with each DBMS’ documentation and the established
best practices. For example, MySQL and PostgreSQL are relatively lightweight
engines, while Oracle requires significantly more memory. Furthermore, although
the memory area serves the same function across DBMSes, the setting depends
on DBMS engine implementation. For example, 4 MB for PostgreSQL vs 262 MB
for Oracle is not as different as it appears: PostgreSQL initializes a sort area per
operation (thereby creating multiple 4 MB buffers per query in many cases),
while Oracle uses a shared sort area.

Oracle 12c and MySQL 5.7 were deployed on a Windows 10 server. Post-
greSQL 9.6 was deployed on a CentOS 6.5 server. Based on our experimental
analysis, DBMS behavior remains similar between Windows and Linux servers.

6.2 Workload

We designed a SQL workload to populate each memory area with data. This
includes three specialized sets of queries: 1) for filling the I/O buffer, 2) for
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filling the sort area with data, and 3) for filling the TXN buffer. For evalua-
tion of the query cache area, we used the queries from the other three custom
workloads. We next discuss the workload design in the context of each mem-
ory area. The workloads and workload generators can be downloaded from our
research group website: http://dbgroup.cdm.depaul.edu/downloads/DB Mem
Workloads/Workloads.zip These queries are designed sepcifically to highlight
the different memory areas. While randomized queries would populate the same
memory areas, they do not contribute to the goal of identifying the different
memory areas, thus we do not include any.

I/O Buffer. We generated a total of 300,000 SELECT queries: 290,000 for Line-
order, 8,000 for Part, 1,500 for Customer, 400 for Supplier, and 100 for DWDate.
All queries included a predicate that accessed equality on a value from an indexed
column (to produce query execution with index-based access). An index-based
access caches and retains all accessed data pages. Alternatively, full table scan
may only cache a small portion of the table in memory and the DBMS is likely
to immediately free-list that data. Since the primary key column contains all
unique value and an index is automatically created on a primary key column,
random values were accessed based on the primary key column. The following
query template was used to generate this workload; ‘?’ is a placeholder that was
replaced by a (uniformly distributed) random value.

SELECT * FROM [Lineorder/Part/Supplier/Customer/DWDate]

WHERE [LO_Orderkey/P_Partkey/S_Suppkey/C_Custkey/D_Datekey] = ?;

Sort Area. We designed a memory-intensive query to perform a JOIN on all five
tables in SSBM. To force result sorting, the query used a four column composite
ORDER BY clause. The SELECT clause used 8 columns (as this is what is sorted in
memory); these columns were arranged to uniquely identify them as sorted result
among any records found in the SSBM tables and thus in the RAM snapshot.
We experimentally chose the number of columns to be sufficiently large to fill
each DBMS respective sort area.

SELECT S_Name,C_Name,P_Name,D_Day,S_City,S_Nation,S_Phone,C_Nation

FROM Lineorder JOIN Part JOIN Customer JOIN Supplier JOIN DWDate

ORDER BY S_Name, C_Name, P_Name, D_Dayofweek;

Transaction Buffer. We issued 10 UPDATE queries against the Part table. Each
query updated 150,000 different records. To definitively detect entries in trans-
action buffer area, every query updated the container column to a (string + a
unique ID) value not already used in the table. We used the following template
for our update queries. The first question mark was replaced by a unique ID, the
second question mark was replaced by a value from the P Container column.

UPDATE Part SET P_Container = 'DEXA'+ ? WHERE P_Container = ?;

http://dbgroup.cdm.depaul.edu/downloads/DB_Mem_Workloads/Workloads.zip
http://dbgroup.cdm.depaul.edu/downloads/DB_Mem_Workloads/Workloads.zip
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6.3 Experimental Procedure

We performed the experiments in the following sequence of steps for each DBMS:
1) Set up a new DBMS instance, 2) Load the SSBM tables into the DBMS,
3) Run the I/O cache query workload, 4) Run the transaction buffer query
workload, 5) Run the sort area query workload. The RAM snapshot was gener-
ated during step #5 while the sort area workload was still running. Since sort
area is part of local memory, it would become de-allocated after the sort area
workload was completed. Therefore, the memory had to be captured while this
local area was still allocated to the DBMS process. We verified that, if taken
after step #5, the sort area was no longer a part of the captured DBMS process
memory for all three evaluated DBMS. We used procdump v9.0 [21] to collected
DBMS process snapshot on the Windows server, and read the process snapshot
data under /proc/$pid/mem on the Linux server.

To evaluate the contents of the memory snapshots, used regular expressions
with Python 2.7 to locate matching data values and their offsets. We designed the
regular expression to search for known string values introducing enough slack for
metadata content (varies by DBMS). For example, we used the following regular
expression to detect customer records. Each string represents possible values
(e.g., ‘Customer#000000042’, ‘EUROPE’, ‘85-234-621-3704’) plus the additional
wildcards for numeric columns and metadata characters.

‘‘Customer#[0-9]{9}.{5,60}((EUROPE)|(AFRICA)|(AMERICA)|(MIDDLE EAST)|(ASI

↪→ A)).{1,10}[0-9]{2}-[0-9]{3}-[0-9]{3}-[0-9]{4}’’

7 Memory Experiments

For each experiment, we performed at least five evaluations and chose a repre-
sentative snapshot (snapshots were always consistent with minor variations).

7.1 RAM Spectroscopy Graphs

Figure 1 summarizes the memory contents; each DBMS is represented by a sep-
arate graph to describe and quantify contents of its process memory. The four
memory areas from Sect. 5 are annotated with the following legend: I/O cache
line is highlighted by square points, query cache line is denoted by diamonds, sort
area is identified by triangles, and the TXN buffer is marked by circles. We term
these graphs as RAM spectroscopy, which was inspired by infrared (IR) spec-
troscopy commonly used in analytical chemistry [22]. IR spectroscopy graphs
measure the amount of infrared light absorbed by a chemical sample at different
wavelengths. In an analogous manner, the purpose of our RAM spectroscopy
graphs is to visualize the amount of data found at different memory offsets. We
observed that each DBMS maintained a consistent shape throughout multiple
session connections and system restarts. RAM spectroscopy cannot be applied
to full OS RAM snapshots due to heavy fragmentation of the DBMS data.
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Fig. 1. Process memory representation for MySQL, Oracle, and PostgreSQL

For each RAM spectroscopy graph in Fig. 1, the x-axis represents the byte
offset within the DBMS process snapshot, normalized as a percentage. For exam-
ple, 50% represents 50 MB in a 100 MB process snapshot or 800 MB in a 1.6 GB
process snapshot. We summarized the data to 200 points (i.e., a point at every
0.5%) to normalize the snapshots for DBMSes across different RAM sizes. The
y-axis represents an estimated amount of memory storage filled at a given offset.
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To estimate the percent of the storage filled by our data values, we assumed an
additional 20% overhead to the data found. That is, for ‘Customer#000000042’
we accounted for (a total of 18 × 1.20) 21.6 bytes. This overhead is based on a
generally accepted estimate of metadata associated with a DBMS page. While
metadata varies between DBMSes, we chose a constant estimate to simplify our
measurements. We also note that not all memory areas use pages (e.g., I/O
buffer uses pages but sort area buffer does not). However, we only consider the
relative heights of the peaks and we do not compare across areas (e.g., we do
not compare I/O buffer peaks vs sort area buffer peaks).

7.2 Memory Observations

Memory Area Data. Figures 1 and 2 reflect only the SSBM table data dis-
tribution. Each area contains other data that we do not consider; we therefore
never expect to observe values close to 100%. It is likely that memory areas are
not densely packed or contain data from DBMS system tables (we did not load
other data tables, but all DBMSes use internal “system” tables). Moreover, the
memory areas typically contain auxiliary data or metadata in addition to raw
table data. For example, the I/O cache includes index pages, which we did not
measure in our report (I/O buffer regular expressions search for table rows and
not index entries). The indexes used integer columns, and integers have their
own DBMS-specific encodings that vary both in format and in size. Although
index access and caching behavior would share similarities across DBMSes, we
measured cached table rows (or SQL query result rows for query cache area) as
the most consistent and representative way to detect the relevant memory areas.

Identifying Memory Area Regions. For all DBMSes the size of each memory
area was consistent with sizes in the configuration files (see Table 4). When
repeating and verifying these results, we observed the memory areas maintained
the same order with slight shifts within the process memory snapshot. Therefore,
we concluded that when a process memory snapshot is taken, data found in
those offset regions belongs to the respective memory region. Each snapshot
is a chosen representative of at least five independent snapshots we recorded.
However, all of the snapshot were similar enough that any one of them could
have been chosen for the spectroscopy figure report. Figure 1 also indicates how
much of the overall DBMS memory process is occupied by the four memory
areas. PostgreSQL snapshot uses relatively little space outside of these areas,
while both Oracle and MySQL allocate a significant quantity of other RAM.

Local Memory. When the sort area query finished executing and the user
session was disconnected, the sort area was no longer present in the process
memory snapshot. This is consistent with the behavior of a local memory buffer,
which stores the sort area. After de-allocation, the sort area data values (the
output of the sort area SQL workload) could still be found in the full OS RAM
snapshot, outside of the DBMS process. However, the sort area contents were now
fragmented across OS RAM. Therefore, we concluded that when local DBMS
memory is deallocated, its contents are effectively leaked into global OS RAM.
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Memory Area Shapes. In Figure 1, MySQL I/O cache buffer fills by approx-
imately 50%, in contrast with Oracle (approximately 25%) and PostgreSQL
(approximately 20%). This is consistent with our expectations because MySQL
uses index-organized tables. As a result, query access does not fetch index pages
independently of the data pages (as there is no separate index structure). Specif-
ically, B-Tree leaf pages with value-pointer pairs do not exist because data is in
the leaf page of the B-Tree. Alternatively, both Oracle and PostgreSQL fetch
a significant number of index pages, filling the I/O buffer cache with non-table
pages. As a result, while the number of pages in the I/O buffer is similar, there
are fewer table pages in Oracle and PostgreSQL compared to MySQL.

Oracle sort area in Fig. 1 exhibits two distinct peaks for the single query
we executed. This is also consistent with our expectations because Oracle uses
hash-join which is a memory-intensive operation that targets the sort area buffer.
We therefore observed data originating from two different operations in Oracle’s
sort area: the results sorting and the hash-joins. PostgreSQL sort area in Fig. 1
exhibits only one peak. While PostgreSQL also uses a hash-join, it allocates
a separate sort area for each operation. Therefore, the PostgreSQL hash-join
operations use a different sort area that was de-allocated at the time the process
snapshot was taken. MySQL uses nested loop join which will execute in the I/O
buffer. Therefore, the MySQL sort area is dedicated to the result sorting.

8 Encryption Experiments

The purpose of this experiment is to demonstrate the importance of assigning
context to data. We extend the Sect. 7 experiments using a new MySQL 5.7
instance with encryption enabled. The same setup and procedure described in
Sect. 6 were used except TDE was enabled for all five SSBM tables. Since finding
decrypted data in memory is an expected result, we emphasize that assigning
context to this data can anticipate vulnerabilities.

Figure 2 displays the resulting RAM spectroscopy graph for the encrypted
MySQL instance combined with the MySQL instance data from Fig. 1. The
old unencrypted instance is represented with the gray line and the encrypted
instance is represented with a black line.

All memory area peaks were observed equivalent, confirming that all data
read into memory with TDE is decrypted and accessible in RAM. As a result,
TDE has no significant impact on protecting the data from RAM perspective.
However, it does not exhibit new vulnerabilities as does column-level encryption.
Figure 2 also illustrates the consistency of the peak detection by superimposing
results from two different snapshots. We note that the sort area buffer exhibited
the same de-allocation behavior; as a result the decrypted data was released
into global OS RAM. This data is particularly vulnerable because it could be
observed in RAM and potentially captured with malloc from another process.

The experiment in Fig. 2 measured the data cached by MySQL using
instance-level TDE. The column-level encryption that relies on pre-built func-
tions can manifest additional data vulnerabilities, depending on the memory
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Fig. 2. Process memory representation for encrypted MySQL instance superimposed
over the unencrypted MySQL instance from Fig. 1

area. The I/O buffer will expose less data with column-level encryption com-
pared TDE. While the column-level encryption pages are visible in the I/O
buffer, individual values in pages will remain encrypted in RAM. In contrast,
both the query cache area and transaction buffer area will expose the encryption
key in column-level encryption schemes. Pre-built encryption queries explicitly
specify the encryption key in SQL commands which are cached in query cache
and transaction buffer. The sort area will expose a similar amount of data for
both column-level and TDE encryption because both TDE page requests and
column-level encryption SELECT clause decrypts the queried values.

9 Future Work

The work in this paper supports future directions for third-party tools to assign
context to data in addition to carving raw content from DBMS memory and
providing detailed data flow tracking. Current DBMS APIs do not support data
flow tracking and offer few limited system analysis features. For example, Oracle
allows users to query the number of pages associated with table in the I/O buffer,
but not the information about specific pages or records. Most DBMSes do not
even offer the features provided by Oracle. We believe that data flow tracking
has two primary application: security monitoring and performance analysis.

Current work in memory forensics detects activity patterns indicative of mal-
ware. The equivalent for DBMSes is detecting unusual data access patterns in
RAM. Tools such as IBM Guardium [8] detect unusual patterns by observing
SQL queries. While useful, this approach is limited – an obfuscated SQL query
or a query that bypassed the monitoring proxy will escape detection. However,
the approaches discussed here would allow monitoring memory operations in the
event that an attacker circumvents current detection mechanisms.
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DBMSes use a complex set of configuration settings. Our experiments demon-
strated that these settings are not consistent across DBMSes; even for a corre-
sponding setting (e.g., sort area buffer) the actual implementation can lead to
a radically different behavior. For example, it is a known issue that increasing
PostgreSQL area buffer setting (seemingly a good idea!) leads to significant per-
formance deterioration as too many buffers are allocated in some workloads.
Database memory forensic tools would allow administrators and researchers to
more precisely identify performance bottlenecks and monitor memory utilization.

10 Conclusion

This paper presented a systematic approach to reverse engineering DBMS-
controlled memory. We evaluated our approach by creating a taxonomy defining
several common memory areas. Experiments demonstrated how to identify and
isolate DBMS memory areas through design and evaluation of custom query
workloads. We validated our approach on four memory areas using three rep-
resentative DBMSes (PostgreSQL, Oracle, and MySQL). Finally, experiments
showed the significance of assigning context to data in memory, an inherent
feature of our reverse engineering approach.
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Abstract. Decentralization allows users to regain freedom and
control over their digital life. As a global shared data space, the Linked
Data already supports decentralization. Data providers are free to pub-
lish their data on their web domains and users can execute decentral-
ized SPARQL queries over multiple data sources. However, decentral-
ization makes query processing challenging, raising well-known prob-
lems of source discovery, answer completeness and performance. Exist-
ing approaches for decentralized SPARQL query processing raise issues
related to autonomy and answer completeness. In this paper, we pro-
pose Qasino, an original approach for querying decentralized RDF data
that targets both answer completeness, and source autonomy. Qasino
is based on a decentralized random service that allows for discovering
all relevant data sources. To speed up query processing, sources execut-
ing similar queries cooperate by sharing their intermediate results. Our
experimental results demonstrate that collaborative query processing can
significantly speedup query processing in a decentralized setup.

Keywords: Decentralized data management · SPARQL query
processing · Sources discovery

1 Introduction

Decentralization is a common way to give users back control over their digital life.
As a global shared data space, the Linked Data already supports decentraliza-
tion. Data providers are free to publish their data on their web domains and users
can execute decentralized SPARQL queries over multiple data sources. However,
decentralization introduces challenging problems for query processing related to
well-known problems of source discovery, completeness and performance. Dis-
covering all relevant sources for a query remains an issue. Existing federated
query engines assume the existence of a catalog [3,27]. Link traversal [12] crawls
links from a seed URI during query execution but cannot ensure that all rele-
vant sources are reachable from the seed. Semantic P2P data management [5]
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rebuild overlay networks on top of sources to allow efficient discovery. However,
P2P data management raises issues on autonomy, i.e. participants must agree
to participate in common tasks such as routing, indexing, and replication.

In this paper, we propose Qasino, an original approach for querying decen-
tralized RDF data that targets both answer completeness and sources autonomy.
Qasino relies on a decentralized random service ables to return a random partic-
ipant. Thanks to the random service, Qasino crawls the set of participants while
running a query. Crawling allows to discover both sources and similar running
queries. Similar queries collaborate by sharing queries intermediate results and
random draws. Collaboration allows to speed up queries termination while pro-
ducing complete results. In this paper, we propose the following contributions:

– A new model for decentralized SPARQL query processing.
– A collaborative Monte-Carlo SPARQL query execution algorithm that allows

collaborative discovery of datasources. If several participants execute similar
queries, then they will eventually meet several times during query execution
and share their results. Collaboration allows to speed up query termination
and provides probabilistic guarantee on answers completeness.

– A simulator to run experimentations with thousands of participants, which
goes beyond traditional decentralized query experimentations.

The paper is organized as follows. Section 2 describes the related works.
Section 3 presents the Qasino approach. Section 4 presents Qasino algorithms.
Section 5 presents experimental results. Section 6 concludes contributions and
presents future works.

2 Related Works

Decentralization allows users to store their RDF data where they want on the
Web. However, executing a SPARQL query over decentralized data requires to
discover all relevant data sources. Solving the discovery problem at the scale of
the Web while preserving sources autonomy is still an open issue.

The Solid project [19] promotes the vision of a decentralized web for social
web applications. In Solid, users store their data in personal online datastores
(pods). However, Solid does not describe how to run a query over a large-scale
network of pods.

Link traversal [12] allows to execute SPARQL queries directly on the Linked
Data resources, relying on URI dereferencing. Link traversal starts the query
execution from a seed URI provided by users and considers every URI appearing
in mappings as a new data source. Therefore, it is up to the user to know at
least one seed, and the link traversal is able to discover new sources during query
processing. Therefore, sources discovery is partially in charge of data consumers,
moreover, query answer completeness is defined according to the reachability
semantics [13].
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Federated query engines [3,27] allow data consumers to execute queries
over a catalog of data sources. It is up to the data consumers to provide this
catalog. Building this catalog traditionally implies to collect the description of
all potential sources, which is again in charge of data consumers. The query
answer completeness is defined according to the set of sources contained in the
catalog.

Many systems rely on Distributed Hash Tables (DHT) such as P-Grid [1] or
GridVine [2] for sources discovery. However, DHT systems do not allow users
to choose where their data are stored, consistent hashing determine where data
should be stored. DHT can be used also just as a distributed catalog and data
remain located where users want as in the InterPlanetary File System (IPFS).
In this case, participants have to agree to participate to keybase routing and
store informations that do not belong to them.

Recently, unstructured P2P techniques have gained attention of Semantic
Web community as potential decentralized architectures for Linked Data man-
agement [4,10,11,20,26]. Existing approaches maintain a neighborhood for each
site. As a participant does not know where data are located, she floods the
network with her query [4]. However, this approach does not scale and hardly
delivers complete results. Flooding can be avoided with super-peer maintaining
routing indices as in [24]. Having super-peers in a network of nodes is possible but
they represent a point of failure which is a strong limitation to massive deploy-
ment of distributed applications in nodes. Flooding can also be reduced with
spanning trees as in sensor networks [6]. A spanning tree reduces the flooding to
the number of nodes in the network. However, spanning trees are costly to main-
tain on large networks with heavy churn. The network traffic can be significantly
reduced using adapted replication strategies and random walks [18]. Flooding
can also be limited by using multiple overlays as in Semantic Overlay Network
(SON) or routing indices [5,7]. Participants are clustered in communities accord-
ing to their common interests. Queries are routed to the right community to be
executed. SON restricts the number of sources for a query. This supposes that
participants agree to compute this routing and maintain information that are
not directly relevant for executing their queries.

In both structured or unstructured P2P networks, solving the discovery prob-
lem requires participants to loose autonomy. Participants have to route all mes-
sages, not only those they want and they cannot choose data to host or to
replicate. In Qasino, we explore an original P2P approach that requires only
that participants accept to be discovered.

3 Qasino Approach and Models

In Qasino, we consider a community of participants. We aim to preserve two
properties: (i) Completeness: we aim to execute queries and get complete results
over all data stored by the community. (ii) Autonomy: participants only host
data they want and there is no routing. In this context, solving the discovery
problem is to guarantee that each participant can discover all other participants.
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We consider a random abstract service able to return a random participant
among the community. Such random service is enough to enable discovery. This
service can be implemented in a decentralized fashion relying on random peer
sampling techniques [14]. Consequently, participants only collaborate to return
a random node in the set of nodes. To build a query engine according to this
model, we follow a bottom-up query evaluation strategy [16]; sources description
are not available and the query engine discovers new sources incrementally and
terminates when all sources or a priori -decided proportion of sources have been
processed. The Qasino approach allows not only to discover new sources during
queries evaluation but also to discover other participants running similar queries.
In this case, queries can collaborate to speed up query termination.

3.1 Qasino Nodes Data Structures

We consider a community of participants as a set of n nodes, n is unknown
to participants. A node has a local data structure and a shared one defined as
follows.

Definition 1 (Local Structure). A node Ni has access to:

– n̂, a statistical estimator of the number of nodes.
– rand, a function generating independent and uniformly distributed random

variables from the set of nodes, i.e. each time the node calls rand (), it gets
a random node.

– Di, a local RDF dataset.
– Qi, a SPARQL query. For each triple pattern tp of Qi, Qi[tp] stores the set

of mappings of the variables of tp.

A set of nodes {N1, . . . Nn} defines a virtual dataset D defined as D =
∪n
i=1Ni.Di, i.e. D is the union of local RDF datasets. For simplicity, in this

work we suppose that Di is immutable and a node executes only one SPARQL
query, this can be easily extended to a set of queries.

Definition 2 (Remote Interface). A node Ni exposes to other nodes:

– �·�, evaluation function as defined in [25], i.e. for a triple pattern tp, Ni.�tp�
returns the set of mappings for the variables of tp that match the dataset Di.

– E(tp), a boolean function that returns true if Ni accepts to collaborate on the
evaluation of tp, with tp ∈ Qi.

3.2 Qasino Query Processing Model

Each node maintains a local RDF data and can evaluate, at least, a triple pat-
tern query. Query processing follows a bottom-up query evaluation strategy [16].
This strategy does not assume source descriptions to be available before query
execution and computes results in a bottom-up fashion. A SPARQL query Qi

at a node Ni is processed in the following steps: (1) Built a left-tree query plan
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of Qi. To determine the order of the evaluation of triple patterns, the cardinal-
ity of each triple pattern tp in Q is estimated using variable counting [29]. The
most selective triple pattern is evaluated first. (2) Evaluate Q’s triple patterns
over Di, the local dataset of Ni (Qi[tp] ← Ni.�tp�). The evaluation relies on
the pushed-based symmetric hash join operator [16], i.e. results are produced as
soon as input tuples are available and input tuples can arrive on all inputs in
any order. (3) Discover a source randomly Nj , among the nodes. Nj evaluates
Q’s triple patterns, as detailed in the different algorithms in the next sections.
(4) Receive partial results from Nj (only if Nj has results), add partial results to
hash table of the corresponding triple pattern and produce results (if available).
In Qasino, source discovery is an integral part of the query processing. Sources
are discovered online, and query results are produced incrementally.

Problem Statement: Given a set of nodes {N1, . . . Nn}, our objective is to
define a query execution function execute that ensures query termination and
answer completeness. ∀Ni ∈ {N1, . . . Nn}, we expect:

(i) Termination Ni.execute eventually returns.
(ii) Completeness After a node Ni has terminated, Qi[tp] = �Qi�D, i.e. Qi

is evaluated over the virtual dataset D.
As nodes can only discover sources randomly, this makes the respect of both

properties impossible. Among existing strategies for randomized algorithms are
Las Vegas and Monte-Carlo algorithms. Las Vegas algorithms where the termi-
nation property is weakened to termination with probability 1, i.e. Ni.execute
returns with probability 1. Monte-Carlo algorithms ensure termination but com-
pleteness is replaced by the following guarantee: Ni.execute returns �Qi�D with
some probability ρ > 0 independent of n. Consequently, two termination con-
ditions are possible: (1) All nodes are discovered, (2) A proportion p of nodes
is discovered. Termination conditions impact the query completeness, i.e. eval-
uating the query over all nodes ensures answer completeness, this is not always
the case for the second condition. Moreover, termination conditions impact the
complexity of steps 3 and 4 of query processing.

4 Algorithms

In the following, we detail existing strategies for randomized algorithms and we
propose a new collaborative randomize algorithm for SPARQL query processing.
The proposed algorithm allows to speed up query termination while preserving
the proportion of discovered nodes.



Collaborative SPARQL Query Processing for Decentralized Semantic Data 325

4.1 Discover All Nodes: Las Vegas Algorithm

Algorithm 1: Las Vegas SPARQL engine
Data: Vi ← {Ni}: Set of visited nodes

1 Function Ni.execute():
2 while |Vi| < n̂ do
3 let Nj ← rand()
4 if Nj /∈ Vi then
5 foreach tp ∈ Qi do
6 Qi[tp] ← Qi[tp] ∪ Nj .�tp�

7 Vi ← Vi ∪ {Nj}

Algorithm 1 presents a Las Vegas algorithm for evaluating a SPARQL query
Qi. For simplicity, we make the hypothesis that each node executes only one
SPARQL query. Thanks to the random service, it may discover a new node at
each iteration. If the discovered node has relevant data for the query, the query
execution will produce new query results. Assuming the estimator n̂ returns the
exact number of nodes, consequently, it always produces correct and complete
results, but its running time complexity is non-deterministic and it only termi-
nates with probability 1. The main issue is to evaluate how many draws, in aver-
age, are necessary to get complete results. Such problem is similar to the coupon
collector problem [22]. The average complexity is:

∑n
i=1

n
i = n×(ln(n)+γ)+O(1)

iterations, where γ ≈ 0.577 is the Euler–Mascheroni constant.
To illustrate, consider n = 1000 nodes, a node executing a query Qi should

try around 7484 random call to rand () in order to discover all nodes.
This algorithm raises several issues: (i) It requires that the exact number of

nodes is known and immutable, which is not realistic in a decentralized setting.
If n is overestimated by n̂, then the algorithm does not terminate. Conversely, if
n is underestimated by n̂, then the results may be incomplete. (ii) As illustrated,
discovering all the nodes can be very costly, especially discovering the last missing
nodes.
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4.2 Discover a Proportion of Nodes: A Monte-Carlo Algorithm

Algorithm 2: Monte-Carlo SPARQL engine
Require: p < 1: Expected proportion of sources observed during a run
Data: Vi ← {Ni}: Set of visited nodes

1 Function Ni.execute(p):
2 for k from 1 to n̂ × ln

(
1

1−p

)
do

3 let Nj ← rand()
4 if Nj /∈ Vi then
5 foreach tp ∈ Qi do
6 Qi[tp] ← Qi[tp] ∪ Nj .�tp�

7 Vi ← Vi ∪ {Nj}

Instead of discovering all the nodes, a user can decide to stop the exploration after
a given number k of random draws, for example 2n draws, hoping to discover
as many sources as possible. Algorithm 2 describes a Monte-Carlo algorithm for
executing a query Qi, based on this strategy.

Ideally, the user would decide to explore a proportion p of the nodes, for
example only 99% of nodes to terminate. The main issue is to calibrate k such
that, in average, the algorithm will discover p × n sources. Surprisingly, for a
given p, the necessary number of draws is linear in n, as we will now detail.

Let us first compute the expected proportion un(k) of the sources that have
yet to be discovered after k draws, among n sources. Initially, no source has been
discovered, so un(0) = 1. During the kth draw, a new source is discovered with
probability 1

nun(k), so un(k + 1) = un(k) − 1
nun(k) = n−1

n un(k). The solution

to this geometric progression is un(k) =
(
n−1
n

)k.
The number kmax of random participants that must be drawn in average to

see a proportion p of the sources verifies the equation 1 − un(kmax) = p, that is

1− p =
(
n−1
n

)kmax . This equation can be rewritten as kmax = ln(1−p)

ln(n−1
n ) =

ln( 1
1−p )

ln( n
n−1 )

.

By the mean value theorem applied to function ln, there is an x ∈ [n−1;n] such
that ln

(
n

n−1

)
= 1

x . In other words, kmax = x ln
(

1
1−p

)
� n ln

(
1

1−p

)
, which

gives the number of iterations in Algorithm 2.
To illustrate, consider a set of n = 1000 nodes and p = 99%, then Algorithm 2

requires 1000∗(ln(1/1−0.99)) = 4605 random draws to terminate. Compared to
the Las Vegas algorithm, for a given p, the runtime complexity of Algorithm 2 is
linear in n, compared to O(n ln(n)) for Algorithm 1. Moreover, the Monte-Carlo
algorithm supports that n is approximated.

4.3 New Monte-Carlo Algorithm for Collaborative Query
Processing

The random service allows to discover not only data but also other nodes run-
ning similar queries. Therefore, it is possible for queries to collaborate by sharing
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intermediate results and random draws. This allows to speed up query termina-
tion while preserving the proportion of discovered nodes.

Algorithm 3: Collaborative Monte-Carlo SPARQL engine
Require: p < 1: Expected proportion of sources observed during a run
Data: Vi[tp] ← {Ni}: set of visited nodes by a node searching tp
ki[tp][j]: number of iterations by the node Nj searching tp.

1 Function Ni.execute(p):
2 while ∃tp ∈ Qi :

∑
l ki[tp][l] < n̂ × ln

(
1

1−p

)
do

3 let Nj ← rand()
4 foreach tp ∈ Qi do atomically
5 ki[tp][i]++
6 if Nj .E(tp) then
7 Ni.sync(tp, Nj .sync(tp, 〈Qi[tp],Vi[tp], ki[tp]〉))
8 else if Nj /∈ Vi[tp] then
9 Qi[tp] ← Qi[tp] ∪ Nj .�tp�

10 Vi[tp] ← Vi[tp] ∪ {Nj}

11 Function Nj .sync(tp, 〈Mi, Vi, ki〉):
12 Qj [tp] ← Qj [tp] ∪ Mi

13 Vj [tp] ← Vj [tp] ∪ Vi

14 kj [tp] ← max(kj [tp], ki)
15 return 〈Qj [tp],Vj [tp], kj [tp]〉

Algorithm 3 extends Algorithm 2 to handle collaborative query processing.
Compared to Algorithm 2, the local variables Qi[tp], Vi and ki are replaced
in Algorithm 3 by shared state-based Commutative Replicated Data Types
(CRDT) data structures [28], i.e. two grow-only sets Qi[tp], Vi[tp] and a counter
ki[tp] per triple pattern tp ∈ Qi. CRDT data structures allow shard data to even-
tually converge towards shared state without conflicts. In Algorithm 3, counters
eventually converge towards the global number of increments, and CRDT grow-
only sets eventually converge towards the union of sets. In order to collaborate
on the computation of a triple pattern tp, each node exposes an additional func-
tion sync(tp, 〈M, k, V 〉) that allows pairs of nodes to synchronize their mappings
and counters.

Shared Counters. For each triple pattern tp ∈ Qi, a node Ni maintains an
associative array ki[tp][]. ki[tp][j] represents the number of draws that Nj has
participated for the computation of the triple tp, as known by Ni. ki[tp][i] rep-
resents the number of draws that Ni has participated for the computation of tp.
Each time Ni draws a random source, it increments its own number of random
draws. For instance, k1[tp] = [1 �→ 3; 4 �→ 42] means that N1 has done 3 draws
from the computation of tp and it knows that N4 has participated to 42 draws
for the computation of tp. If a random node Nj accepts to collaborate with Ni

on the evaluation of tp, they merge their shared counter by taking the max value
for each cell. For example, if N2.k2[tp] = [1 �→ 1; 2 �→ 73], then k1[tp] and k2[tp]
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Fig. 1. Computing N1.Q1[?x P1 ?y] ∪ N2.Q2[?x P1 ?y] with IBLTs.

are updated with [1 �→ 3; 2 �→ 73; 4 �→ 42]. The sum of this vector, 3 + 73 + 42
is the number of random draws done by nodes N1, N2 and N4 to obtain the
triple pattern in Q1[tp]. More precisely, N1.Q1[tp] contains the results obtained
by N1 in 3 draws, N2 in 73 draws and N4 in 42 draw, i.e. N1 takes advantages
of visited nodes by N2 and N4. Consequently, the algorithm stops when this
sum reaches kmax. If we consider q nodes running the same query Q, then the
lower bound to terminate for one node is in average n. ln(1/(1 − p))/q. As we
can see, collaboration between q nodes can divide by q the number of random
draws required to terminate.

Synchronizing Sets of Mappings. Synchronizing Qi[tp] (line 7) between
nodes may become expansive when collaborative queries meet several times.
Suppose two nodes Ni and Nj running queries that contain the same triple
pattern tp. The sets of mappings of variables of tp Ni.Qi[tp] and Nj .Qj [tp]
could be large as the query progresses, with potentially many duplicated map-
pings. This large number of mappings increases drastically the communication
cost of sets synchronization. It is more efficient to exchange only missing map-
pings between nodes, especially, as nodes meet several time the set difference
between the two sets of mappings gets smaller. Ideally, the communication
between nodes should only depends on the size of the set difference rather
than on the size of sets. In other words, considering two sets of mappings Mi

and Mj where the set difference is d = |Mi \ Mj | + |Mj \ Mi|, computing
Mi ∪ Mj depends only on O(d) elements. For efficient computation of set dif-
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ference, we use a probabilistic data structure called Invertible Bloom Lookup
Tables (IBLTs) [8,9]. Figure 1 illustrates how the set difference is computed
using two IBLTs. Consider two nodes N1 and N2 running the same triple pat-
tern tp : ?x p1 ?y. The evaluation of tp is the set {μ1, μ2} on the node N1 with
{μ1 = {x → 7, y → 9}, μ2 = {x → 4, y → 5}} and {μ2, μ3} on the node N2 with
{μ2 = {x → 4, y → 5}, μ3 = {x → 1, y → 2}}. Let H1 and H2 be two different
hash functions. Figure 1a shows how N1 computes IBLT 1 designed to handle
4 differences (d = 4). μ1 (then μ2) is hashed with H1 and H2, then assigned
into two different cells. A cell is composed of three kinds of sum; keysum is the
XOR sum of the keys (μ1 ⊕ μ2), HashSum is the XOR sum of the hashed keys
(H1(μ1) ⊕ H2(μ2)), and count is the number of elements assigned to the cell.
When N1 meets N2, N1 sends IBLT 1 to N2. Then N2 computes the set differ-
ence IBLT 2\IBLT 1 resulting in two different sets of mappings: (1) D2−1 = {μ3}
which is the missing set of mappings for node N1 (2) and, D1−2 = {μ1} which is
the missing set of mappings for node N2. Then, N2 can send back the response
to N1 containing D2−1.

Sending only the difference reduces considerably the traffic between col-
laborative nodes. However, as IBLTs’ is a probabilistic structure, its accuracy
depends on the number of cells in the IBLT compared to the real number of dif-
ferences between the two sets. If the number of cells is too small, then the IBLT
cannot compute the missing mappings. Concretely, the decode operation will fail,
so the exchange of IBLTs is useless. In this case, the node sends its set of map-
pings. In our context, as for cooperative nodes the difference gets smaller while
the query progresses, IBLTs are eventually efficient as demonstrated empirically
in the experimental study.

5 Experimental Study

We want to empirically answer the following questions: (1) Does the random
service generate independent and uniformly distributed random variables? (2)
How does visiting only a proportion of the sources impact queries answer com-
pleteness? (3) What is the impact of the number of collaborating queries on the
number of iterations? (4) What is the impact of Invertible Bloom Lookup Tables
(IBLTs) on traffic?

We implemented different software to achieve the experimental study. The
code and experiments are available in the companion website1.

5.1 Implementations

Query Engines. The Qasino query engine is built on top of Apache Jena2. We
implemented a new customized symmetric hash join operator that integrates
IBLTs.

1 https://github.com/folkvir/qasino-simulation.
2 https://jena.apache.org.

https://github.com/folkvir/qasino-simulation
https://jena.apache.org
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Qasino Simulator. Decentralization raises the problem of running experiments
with thousands of nodes. Deploying thousands of endpoints connecting, them
with structured or unstructured network, measuring the traffic and the number
of calls is intractable with a traditional experimental setup in federated query
processing. To handle this issue, we deploy Qasino in PeerSim [21] to run experi-
ments. PeerSim is configured to run in “cycles”. In one cycle, each node executes
synchronously several iterations of its execute function as described in the algo-
rithms: Las Vegas, Monte-Carlo and Monte-Carlo collaborative. Therefore, we
measure how many cycles (iterations) are necessary to get complete answers for
queries and how many cycles are necessary to terminate, i.e. it is possible to get
a query complete answers before the termination of the algorithms.

Random Service. Different approaches exist for implementing a decentralized
random service [15] and for network size estimators [17]. We use Spray [23]
because Spray integrates a network size estimator and implements the random
service on an unstructured network. Each Spray node has a logarithmic subset
of the whole network as direct neighbors.

5.2 Experimental Setup

Machine. We run experiment on a HPCS computer Xeon(R) CPU E5-
2680v2@2.80 GHz with 160 cores and 130 GB RAM.

Queries and Dataset. As the size of the dataset does not impact the number
of cycles necessary for terminating a query, we use the dataset Diseasome3. We
generated 100 random queries from the dataset using PATH and STAR shaped
templates with two to eight triple patterns instantiated with random values from
the dataset. The triple patterns of these 100 queries selects 70417 triples over the
91182 triples of the whole Diseasome dataset. We distributed uniformly those
70417 triples over 1000 simulated nodes, each node stores 70 or 71 triples. We
extracted five different queries presented in Table 2. These queries are varying
in the number of triple patterns (from 2 to 7) and in the cardinality of triple
patterns, evaluated over the dataset. Columns NBIR and Results present the
number of intermediate results, and the number of final results, respectively.

Fig. 2. Five queries with the number of Triples, cardinalities and results per query

3 https://old.datahub.io/dataset/fu-berlin-diseasome.

https://old.datahub.io/dataset/fu-berlin-diseasome
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Fig. 3. Random evaluation

5.3 Experimental Results

Does the random service generating independent and uniformly distributed ran-
dom variables? To answer this question, we compare the theoretical complexity
(dashed line) with the empirical complexity (solid line). Figure 3a presents the
number of random calls for varying number of nodes for the Las Vegas Algo-
rithm. Compared to n(ln(n) + γ), as computed in Sect. 4.1, the experimental
values denote a slight deterioration of the complexity around 5%.

Figure 3b presents the proportion of visited nodes for different values of p
and n = 1000. As expected the proportion of visited nodes is close to p.

Consequently, the experimentation confirms that the implementation of
Qasino respects the theoretical model.

Fig. 4. The impact of the proportion of visited nodes p on queries answer completeness
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How does visiting only a proportion of the sources impact queries answer com-
pleteness? We run several experimentations with the five queries of Table 2 with
the Las Vegas algorithm. Only one node executes a query during an experimen-
tation. Figure 4 presents the average of 100 executions per query. The stop bar
chart represents the average number of iterations necessary to terminate the
query with standard deviation. The complete bar chart represents the average
number of iterations required to obtain complete result per query. As we can see,
the number of iterations to terminate is higher than the number of iterations
to get complete results. Moreover, for a proportion of visited sources equal to
p = 0.99, the Monte-Carlo algorithm terminates with complete results in less
than 4500 iterations.

Fig. 5. Collaborative Monte-Carlo algorithm, p = 0.97 for different number of collab-
orative queries

What is the impact of the number of collaborating queries on the number of
iterations? We run several experimentations with the five queries of Table 2 with
the collaborative Monte-Carlo algorithm in a network of 1000 nodes, p = 0.97
with a perfect n = 1000. We repeat the experiment for different number of
collaborative queries. All nodes run the same query. Figure 5 presents the average
results for the query Q73 and Q87 for 100 runs. The top bar chart represents
the average number of runs that terminate with complete results. The bottom
bar chart presents the number of random draws to terminate. As we can see,
the number of random draws to terminate decreases quickly as the number of
similar queries increases, while the completeness of queries remains stable. This
demonstrates the effectiveness of collaboration to speed up query execution.

What is the impact of Invertible Bloom Lookup Tables (IBLTs) on traffic? We
analyze the traffic during query processing in terms of the number of transferred
triples. We run the five queries 100 times with the collaborative Monte-Carlo
algorithm in a network of 1000 nodes, p = 097 with a perfect n = 1000. All
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Fig. 6. The impact of IBLTs on traffic with the size difference of IBLTs are calibrated
for d = 500 with 3 hash functions

node run the same query. We repeat the experiment for different number of
collaborative queries. the same query. The IBLTs are configured for a number
of differences < 500. Figure 6a shows the results for the query Q87. As the
number of results per triple pattern is low (<500), the IBLT ensures optimal
transfer, i.e. the number of transferred triples remains the same even if more
queries collaborate. Figure 6b shows the results for the query Q73. As the query
Q73 has much more intermediate results, IBLTs configured to handle only 500
differences can fail and trigger complete transfer between 2 collaborative queries.
As collaborative queries eventually converge, IBLTs are eventually efficient and
we can observe that the number of transferred triples remain stable after 50
collaboratives queries.

6 Conclusion

In this paper, we proposed Qasino, an original decentralized collaborative model
for discovering RDF datasources and executing SPARQL queries. In contraste to
traditional P2P models, Qasino respects the autonomy of participants. Qasino
is based on P2P model where the cost of discovery is not shared by default and
queries execution deliver complete results. Qasino approach allows to discover
relevant sources, similar running queries and share intermediate results. With
such collaborative query processing, participants only store data they want and
therefore, preserve their autonomy. This work opens several perspectives. First,
in the model, we relied on the network size estimator based on the random ser-
vice. The knowledge of visited nodes and the number of random draws should
allow to build a termination strategy that is independent of the size of the net-
work. Second, we applied a simple strategy with IBLTs to synchronize queries,
we can improve this strategy for better optimization of traffic. Finally, decentral-
ization raises issues on completeness, autonomy and performance. We conjecture
that only 2 of these 3 properties can be achieved in a system.
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Abstract. Information networks are pivotal to the operational utility of
key industries like medical, finance, governments, etc. However, applica-
tions in this area are not adequate in representing relationships between
nodes [34]. Trending graph learning methodologies [9,16] like Graph Con-
volutional Networks (GCNs) [6] lack both representational power and
accuracy to perform abstract computational tasks like prediction, classi-
fication, recommendation, etc. on real-time social networks. Furthermore,
most such approaches known to date rely on learning temporal adjacency
matrices to describe shallow attributes [9,16] like word co-occurance PMI
[3] changes [6] and are unable to capture complex evolving entity rela-
tionships in real life for applications like event prediction, link prediction,
topic tracking, etc. [34]. Importantly, such models ignore knowledge infor-
mation geometry [1,24,32] completely, and sacrifices fidelity to speed of
convergence. To address these challenges, a novel Relational Flux Tur-
bulence (RFT) model was developed in this study - to identify relational
turbulence in Online Social Networks (OSNs). Very good correlations
between relational turbulence and sentiments exchanged within social
transactions show promise in achieving these objectives.

Keywords: Relational turbulence · Social recognition · Deep learning

1 Introduction

Online Social Network (OSN) behavior has always been a topic of interest within
various fields of social applications in artificial intelligence. These include: link
detection, security threat identification, pattern recognition, recommendation,
topic modeling and event prediction tasks, etc. Key relational behavior arises
from manifolds of dynamic communication patterns which evolve over a temporal
space of constant inceptions. Recent research include the use of directional dyads
and signed reciprocity as a special representation of link “strength” [22].
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Challenges. Many relational approaches used in this study however, lack depth
and representative power [35]. The drawback of these techniques are that impor-
tant correlational attributes shared between actors are ignored, resulting in shal-
low representations of relational states [35]. Methods based on feature similar-
ities throughout studies in literature, have shown the lack of representational
efficacy to model real life social structures effectively [2,28]. Generally speak-
ing, there are several critical key questions in this field of study which remain
unanswered. In an unstructured social network within an evolving construct of
dynamic relationships [35]; how can we firstly, represent generalizations of evolu-
tionary behavior within these social transactions accurately? Secondly, how can
we recognize dynamic relational profiles which correlate to different social com-
munication patterns? Finally, how can we quantify the dynamic errors arising
from social disruptions (outliers) in our representations?

Data Models. We address these questions with the use of Fractal Neural Net-
works (FNNs). FNNs are used within the Relational Turbulence Model (RTM)
framework to describe structures of chaos [25]. FNNs leverage on the dynamic
structure of fractals as the lowest principle decompositions of never ending pat-
terns. They are driven by a recursive process, and are adaptable enough to
describe highly dynamic system representations [21]. In our approach, we define
Relational Turbulence as probabilistic measures of Relational Intensity P (γrl),
Relational Interference P (ϑrl) and Relational Uncertainty P (ϕrl) [30]. RTM
characterizes an artificial construct, which predicts communication behaviors.
These behaviors are observed during relationship transitions in an environment
of constant social disruptions [30]. We choose this model because alternative data
models compromise accuracy and performance for simplicity in representation.
Examples include node-based, neighbor-based, path-based, random walk-based,
measures etc. [11]. These representations capture relational structures from a
time static perspective and are not adaptable to real-life dynamic evolutions of
relational states [31]. In this work, we focus on discovering relational intelligence
through identifying relational profiles on three major social platforms: Twitter,
Google and Enron email datasets.

Technical Model. In this paper, we introduce RFT to tackle the problem of
misrepresentations as a time evolving flow of relational attributes. The model
evolves into a multi-stage Deep Neural Network (DNN) from atomic fractal
hybrid architectures [5]. The atom structure is morphed from standard con-
catenations of Restricted Boltzmann Machines (RBMs) and Recursive Neural
Nets (RNNs). RFT accepts as inputs, key relational feature states fi between
actors aj and global events Eε from past and present social transactions to deter-
mine the likelihood of relational turbulence τij within an identified social flux
Fε. Turbulence broadly corresponds to disruptive social communication patterns
within various topic and event contexts. For example, passive negative sentiments
transacted through discussions on major topics like trade wars, drive relational
breakdowns in many aspects like trust, influence, status, etc. We develop a novel
architecture from RTM to identify social disruptions by estimating relational tur-
bulence profiles, within a given social context describing the state of flux. Then,
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we evaluate and demonstrate that our methods outperform similarity based fea-
ture and flat structural approaches in detecting social flux and turbulence.

Contributions. Our scientific contributions are presented as follows:

1. Our method adaptively learns from real-time online streaming data to identify
key turbulent relationships within a given OSN.

2. An innovative RFT model was developed to capture key relational features
which were used to detect and profile social communication patterns of event-
ful states within a given OSN.

3. Experiment results show that RFT is able to offer a good modeling of rela-
tional ground truths, while FNN efficiently and accurately represents evolving
relational turbulence and flux profiles within a given OSN.

The remaining part of the paper is organized as follows: Sect. 2 presents a brief
overview of related works drawn from social theories and relational structures.
Section 3 introduces key concepts, theories and preliminaries of our proposed
model. Section 4 discusses the methods and models we have developed for profil-
ing relational turbulence in OSNs. Section 5 introduces our experimental design,
implementation, results and presents our discussion. Section 6 leads to a conclu-
sion and potential future directions.

2 Related Literature

Relational Turbulence. Relational Turbulence was first studied in [13]. It is
characterized as a resultant state of conflicting interests between two or more
actors. Conflict correlates to both a stimulus for communication and detrimental
event occurrences [13]. Therefore, relational altering events are important dis-
criminators to conflict detection and turbulence profiling. These events, if found
to be in huge negative violations of expectancies between relational reciprocates
of actors, can lead to instability in a relational flux [13]. The RTM [30] builds
upon the core principles of relational state shifts and conflict management in
an environment of continuous online social disruptions. The process of turbulent
relationship development can be described as a continuous and communicative
state of flux [30]. This state defines a consistent exchange of sentimental and
affective information between the actor/s involved. Each transition to another
state (e.g. professional colleagues to friendship) has the probability to cause
friction (conflict), which may lead to a polarization of sentiments and affec-
tive communication flux in OSNs [30]. Two key features of the RTM are actor
interferences and relational uncertainty [30]. They enable effective detection and
prediction of conflicting events in sentimental and affective computing.

Neural Network Architectures. In [18], the authors present a minimalist
neural network architecture for reliably and accurately estimating emotional
states based on EEG captured data. Their model however, suffers from a lack of
representation for more deeply complex emotional states (e.g. an in-betweenness



342 L. Tan et al.

in quantization across valance and arousal). Additionally, their reinforced gra-
dient coefficient augments the errors calculated between expected-weighted and
actual outputs which are then used to update the layered weights of their shallow
Artificial Neural Network (ANN) model. This approach alleviates diminishing
gradients at the expense of performance. In the same vein, [26] deals with social
role recognition through the use of a Conditional Random Field (CRF) layered
model architecture. However, for video image frames in which latent social role-
based semantics exist, CRF architectures are ill-adapted to handle the complex
representations of the depth to these roles in the identification process. This leads
to poor performance output measures of their full model method. Building on
the principles of Role Theory, the authors in [20] propose a deeper hierarchical
model for human activity recognition based on identified actor roles within an
eventful context. Their models performance suffer from scaling to larger event
frameworks due to problems of overfitting and error gradient saddle points.

3 Preliminaries

Our RFT model leverages on two very important key concepts. The logical aspect
is derived from the Relational Turbulence Model and the structural design is
evolved from the Fractal Neural Network (FNN). The core idea of RFT is to
iteratively adapt the structure of the neural network model to changing outputs
(relational turbulence) at the inputs of the design. This is done in reference to
the changing complexities of data at the inputs. A detailed architecture of the
FNN used in our design is given in Fig. 1a.

(a) The RFT architecture design (b) The RFT System Model Design

Fig. 1. The RFT logical architecture

Relational Turbulence. From the RTM approach [29], we define Relational
Intensity P (γrl), Relational Interference P (ϑrl) and Relational Uncertainty
P (ϕrl) to be three key probabilistic outputs of the RFT model which repre-
sent the relational turbulence P (τrl) of a given link in an OSN. The key element
types we have identified to be contributing features between the duration of the
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turning point and relationship development (as an unstable/turbulent process)
are the Confidence ρij , Salience ξij and Sentiment λij scores in an actor-actor
relationship of a social transaction in question.

Expectancy Violation. It is noteworthy of mention that the ground truth
reciprocities of these element types shared within a relational flux, violates
expectancies - E(ρij), E(ξij) and E(λij) respectively [29]. These violations,
are a contributing factor to temporal representations of relational turbulence -
γrl, ϑrl and ϕrl. Negative expectancy is defined has a polar mismatch between
expected reciprocates against actual reciprocates (e.g. Actor i expecting a some-
what positive reciprocation of an egress sentiment stream, but instead, received
a negative ingress sentiment stream from actor j). Positive expectancy is defined
as the strong cosine similar vector alignment between these reciprocates. Both
expectancy violation (EV) extremes, are characterized by sharp gradient changes
of their weighted feature scores. This is given mathematically as:

∂Erl

∂τrl
=

n∑

i,j=1

∏

η=ρ,ξ,λ

E(ηji)
∂ηji

× ∂ηij

∂τij
(1)

Where τij is also known as the relational turbulence between node i and its
surrounding neighbors j and ηij , ηji is the reciprocated sentiment from node i
to j and j to i respectively.

Relational change or transition - also known as a turning point, defines some
state-based critical threshold, beyond which relational turbulence and negative
communication is irrevocable [19]. This critical threshold is specific to actor-actor
relationships and learned through our model as a conflict escalation minimization
function [27]. Conflict escalation is defined as the gradual increase in negative
flux −∇Fε

∇t over time within a classified context area LFε
of interest [27]. The

critical threshold parameter is then driven mathematically as:

Tε = inft→∞

{
1

2m (−∇Fε

∇t × log2(
∇Fε

∇Lε
)) ∀|∂Erl

∂τrl
| > 1

log2(|1 − ∇Fε

∇Lε
|) ∀|∂Erl

∂τrl
| < 1

(2)

Where Tε is the threshold of interest and m is the total number of training data
over the time window t. The equation states simply that the relational transition
threshold decreases drastically for strong EVs and gradually for weak EVs.

Problem Formulation. The problem statement which our work addresses can
be summarised as follows: Given an OSN within an environment of constant
social shocks, we wish to minimize inaccuracies in the representations from time
evolving flow of relational attributes (time-realistic relationships) between actors.
Furthermore, although DNNs are very powerful tools designed for use in both
classification and recognition tasks, it is computationally abhorrent [14]. A draw-
back of a generative architectural approach involves the use of stochastic gradient
decent methods during training which do not scale well to high dimensionali-
ties [17,23]. Although still, generative DBNs offer many benefits like a supply of
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good initialization points, the efficient use of unlabeled data, etc.; thus, making
its use in deep network architectures indispensable [5].

The Model Solution. To tackle the problem of computational efficiency and
learning scalability to large data sets, we have adopted the DSN model framework
for our study. Central to the concept of such an architecture is the relational
use of stacking to learn complex distributions from simple core belief modules,
functions and classifiers. Our approach leverages on the temporal transitions of
stages in the relational evolution between nodes of an OSN [34]. It determines
profiles of relational turbulence and encodes knowledge dimensionality into a
highly volatile shallow fractal ANN architecture. This is used to either generate
or collapse depth complexity during active learning - in response to random
“anytime-sequenced” fluctuating data information.

4 Model and Methods

A high level system architecture of RFT is given in Fig. 1b. Specifically, in our
design, data is fed into our model from two distinct sources. The first is batch
processed from a repository of social data (Googles and Enron emails). The sec-
ond is actively learned from live streaming tweet data (Twitter) pulled from
multiple server sources using the twitter firehose API. It is then pushed through
the model in stages. During pre-processing, data is first broken down into key
relational features - Category confidence, Entity salience, Entity sentiment, Men-
tions sentiment and Context sentiment using the Googles NLP API. Then, in the
next stage, these features are accepted as inputs into our RFT model (Fig. 1b)
to estimate the output relational turbulence profiles. The input features of our
RFT model is concatenated with the truth values of relational turbulence cal-
culated from (6), (7) and (8) and synchronously fed back recursively into the
intermediate confabulations of our FNN architecture (Fig. 1a). Errors in output
expectations are backpropagated and corrected with inter-layer activity weight
adjustments until they fall within pre-defined tolerance levels.

4.1 The Hybrid RFT Fractal Architecture

We begin with the definition of a soft kernel used to discover a markovian struc-
ture which we then encode into confabulations of fractal sub-structures. For a
given set of data observables as inputs: χ ∈ X and outputs: � ∈ Ξ we wish to
loosely define a mapping such that the source space (X,α) maps onto a target
space (�, ω). The conditional P (χ ∨ ω) assigns a probability from each source
input χ to the final output space in ω. Each posterior state-space from in between
input to output is generated and sampled through a random walk process. An
indicator function which we have chosen to describe the state transition rule is:

Θt+1 = min

{
0

�n
c=1

δEc
t+1

δχc
t

(3)
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Where δEc
t+1 is the error change from one hidden feature activity state ht ∈ H

onto higher posterior confabulations. The objective function at each transition
seeks to minimize error gradients. For a general finite state space markovian
process, the markov kernel is thus defined as:

Kern(M) =

{
p : X × ω → [0, 1]
p(χ|ω) =

∮
ω

q(χ,�)ν(δ�)
(4)

Once a unique markovian neural network has been discovered, a Single Layer
Convolutional Perceptron (SLCP) is proposed as a baseline structure to learn the
fractal sub-network from pre-existing posterior confabulations. The SLCP base-
line structure changes as discovered knowledge is progressively encoded during
the learning process.

4.2 The Fractal Neural Network

The model design we have chosen, with which to address the dynamic profiling
of relational turbulence is the Fractal Neural Network (FNN) [21]. FNN adopts
a hybrid architecture which incorporates the use of both generative and dis-
criminative deep networks [5]. In our architecture, the generative DBN is used
to initialize the DNN weights. Fine-tuning from the backpropagation process is
then subsequently carried out sequentially layer by layer.

Generative Framework. In our learning model, the FNN generative frame-
work is developed from the Restricted Boltzmann Machine (RBM) [12] layer
stack. A Boltzmann Machine is architecturally defined as a stochastically cou-
pled pair of binary units. These units contain a visible layer given as: V ∈ 0, 1D

and a hidden layer vector: H ∈ 0, 1P . The coupling between visible and hidden
layers V ;H is driven by an energy state of layered interactivity; expressed as:

E(V,H, θ) = −1
2
V T LV − 1

2
HT JH − V T WH (5)

Where θ = W,J,L are Boltzmann Machine model weights between visible to
hidden, visible to visible and hidden to hidden layers respectively. The discrimi-
native architecture of the FNN model is built from the Tensorized Deep Stacking
Recursive Neural Network (TDSN-RNN) model framework [5].

Discriminative Framework. The discriminative architecture of our FNN
model is built from the Tensorized Deep Stacking Recursive Neural Network
(TDSN-RNN) model framework. All deep architectures (Contrastive Divergence
or per layer RBM to supervised backpropogation – perceptron golden architec-
ture) rely on a back and forth recursive process through three core stages of
their learning process. Stage 1 involves a forward pass which sequentially pro-
cesses stacked training layers from input to output. Stage 2 backpropogates this
layer-wise sequence from output to input using gradient descent. Stage 3 adjusts
weights between layers to minimize output errors. This process is repeated in
cycles until the final expectation is reached.
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4.3 The Relational Turbulence Model

In our model, the probabilistic Relational Turbulence P (τrl) of a given link in an
OSN is determined by key features of an established relationship in any instance.
They are the confidence ρij , salience ξij and sentiment λij scores in a dyadic
link. We define relational intensity as the continuous integration of sentimental
transactions Fε per context (event topic) LFε

area, the relational uncertainty
as the likelihood from opposing sentiment mentions and relational interference
as the probabilistic deviations in expectancies from predicted uncertainties and
flux intensities. Mathematically, these are given as:

For Relational Intensity:

γrl =
n∑

i,j=1

βij | − ∇Fεj

∇t |
LFε

+ χrl + θ̇rl (6)

Where βij is defined as the temporal derivative of the latent topic (context)
oscillation phase ε, χrl is the reciprocal bias and θ̇rl is the gradient of social
influence from one actor to another across a relational link.

For Relational Uncertainty:

ϕrl =

∑n
i,j=1 SiSj

√∑n
i=1 Si

√∑n
j=1 Sj

(7)

Where Si and Sj are sentiments transacted from nodes i to j and from nodes j
to i respectively.

For Relational Interference:

ϑrl =E(F (γrl,ϕrl :μγϕ,ω2
γϕ))

= 1
2 + 1√

2πω

∑n
γrl,ϕrl=0

1
2erf(γrl,ϕrl−μ√

2ω
)exp−(γrl,ϕrl−μ)2

2ω2
(8)

Where,

F (γrl, ϕrl : μγϕ, ω2
γϕ) =

1√
2πω

γrl,ϕrl∑

t=−∞
exp− (t−μ)2

2ω2 dt (9)

Here, F (γrl, ϕrl : μγϕ, ω2
γϕ) is the Cumulative Distribution Function (CDF), and

erf(x) is the error function of the predicted outcomes γrl and ϕrl.
Finally Relational Turbulence: was calculated from conditional posteriors

of γrl, ϑrl and ϕrl as the mathematical relation of:

P (τrl) =
n∑

i=1

P (γi|θi)P (ϑi|ϕi)P (ϕi|γi)
NiP (γi)P (ϑi)P (ϕi)

(10)

Here, Ni is the conditional scaling factor. The inputs were tested across the RFT
dynamically stacked Fractal Neural Network (FNN) and the chosen baseline
models.
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5 Experiments

5.1 Dataset

The experiments were conducted on three datasets using RFT and five differ-
ent baseline algorithms. The datasets are: Twitter, Google and Enron emails.
These three datasets were chosen because they are widely benchmarked through-
out the academic circle for studies in sentimental computing and can be easily
understood by the audience of this paper. They are detailed in Table 1.

Table 1. Statistics of datasets

Dataset #Entities #Dyads Size Avg. text len

Enron emaila 162 1.5 mil 500000 emails 1000

Googlesb 3566224 436994489 279 mil crawls 5000

TwitterAPIc,d 50 mil 1 bil 100 mil tweets 283
ahttps://archive.ics.uci.edu/ml/datasets/bag+of+words.
bhttp://commoncrawl.org/2014/07/april-2014-crawl-data-available/.
chttps://developer.twitter.com/en/docs.html.
dhttp://help.sentiment140.com/api.

5.2 Baselines

Several state-of-the-art methods were considered for comparison with the pro-
posed RFT model. Since the model is the first in line for this type of adaptive
online active learning approach, modified versions of similar methods were used
along with the baselines, developed earlier for comparison. Another notable point
is although many prediction models exist, not all methods have the same goal or
data features as this study. Therefore consideration is given only to the models
which use similar data for comparison. It should be mentioned that not all the
methods can both predict relational turbulence and profile communication pat-
terns together. Therefore we compare only the profiles of relational turbulence
outputs between each other. Descriptions of the competing methods are given in
Table 2. The key difference between DCN and RFT is that in DCN the number
of layers are fixed at 45 while in RFT, the layers are allowed to grow and collapse
as new feature complexity representations are learned over time.

Tuning Parameters. In the experiments, system model parameters were cho-
sen based on the combined effect of several factors - including errors in obser-
vational data, choices of calibration methods and Design Of Experiment (DOE)
criterias [10]. A hybrid of both global and local Sensitivity Analysis (SA)
approaches was used to determine and specify the best performing parameters
for experimentation based on a predefined behavior threshold for the model. The
experiments were conducted on the training model with a learning rate set to
1.1, a sliding window set to 3, an error tolerance set to 0.1 (10%), a data outlier

https://archive.ics.uci.edu/ml/datasets /bag+of+words
http://commoncrawl.org/2014/07/april-2014-crawl-data-available/
https://developer.twitter.com/en/docs.html
http://help.sentiment140.com/api
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Table 2. Baseline models

Baseline Class Data Modalities

SLFN [15] ANN Feature parameters Parametric inputs

DCN [14] DNN Feature parameters 45-layer DCN

IMPALA [7] RL Feature parameters Reinforcement Learning

MVVA [35] VAR Endogenous variables Vector Auto-Regression

EnsemDT [8] Ensemble Group learners SLP, DCN, IMPALA and MVVA

RTM (True Value) RTT Feature parameters (6)–(10)

threshold set to 1.0, with scaling set to 10, a vanishing gradient error threshold
at 0 and an exploding gradient error threshold set to 100. Finally, both trust
region radius parameter was set to 5 and the softmax temperature regularization
parameter was staged at 1.2.

5.3 Performance Measurements

Kendall Coefficient. The Kendall (tau-b coefficient) was used to measure the
strength of associations between predicted and expected outputs of the learning
models. It is given as:

τb =
Nc − Nd√

(N0 − Nx)(N0 − Ny)
(11)

Where Nc, Nd are the number of concordant and discordant pairs respectively,
ui is the number of tied values in the ith group of ties for the first quantity and
vj is the number of tied values in the jth group of ties for the second quantity.

Spearman Coefficient. The Spearman (rho coefficient) was used to measure
the monotonic relationship between the independent variables (Category confi-
dence Ci , Entity Sailence Ji , Entity sentiments - magnitude and scores (�i ,ℶi),
Mention sentiments -magnitude and scores (Li ,ℷi), Context sentiments - magni-
tude and scores ( Q i ,ℸi)) and the dependent variables (Relational Intensity γrl ,
Relational Interference ϑrl and Relational Uncertainty ϕrl). It is calculated as:

ΓS = 1 − 6
∑

D2
i

N(N2 − 1)
(12)

Where Di = rank(Xi)−rank(Yi) is the difference in ranks between the observed
independent variable Xi and dependent variable Yi and N is the number of
predictions to input data sets for all three sources.

K-Fold Validation. Finally, during the experimentation, the full datasets
obtained from the different sources (twitter, google and enron) were partitioned
into k-subsamples. K-fold validation [33] was performed over all deep learning
models across the Mean Absolute Percentage Error (MAPE) [4] measurement of
each run. Mathematically, MAPE can be expressed as:
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δMAPE =
1
N

N∑

i=1

|Ei(x) − Yi(t)
Ei(x)

| (13)

Where Ei(x) is the expectation at the output of data input set i and Yi(t) is
the corresponding prediction over N total subsamples. δMAPE is the average
measure of errors in expectations at the output.

5.4 Results

The tests were run across the baselines and our RFT model. For clarity and
simplicity of explainations, only every 10th running data from a chosen output
sample set is plotted on a graph and displayed for discussion purposes. The line
of best fit was used to graph the curve through the points. Additionally because
of space constraints, only the table on Kendall correlation experimented on the
chosen datasets is displayed. The results are shown in Table 3 and Fig. 2a–c.

(a) Graph of Enron Relational Turbulence
Profile.

(b) Graph of Googles Relational Turbulence
Profile.

(c) Graph of Twitter Relational Turbulence
Profile.

Fig. 2. Graph of relational turbulence across three datasets

5.5 Investigation

As can be seen from the graphs, SLP models consistently underperforms in rank-
ing where prediction accuracy is concerned, the Kendall (tau-b coefficient) test
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Table 3. Table of Spearman, Kendall and K-fold results

(a) Table of Kendall coefficient (b) Table of K-fold MAPE

(c) Table of Spearman coefficient for RFT (d) Table of Spearman coefficient for DCN

(e) Table of Spearman coefficient for IM-
PALA

(f) Table of Spearman coefficient for En-
semDT

(g) Table of Spearman coefficient for SLP
(h) Table of Spearman coefficient for
MVVA

shows a lower (positive) correlation between expected and predicted outputs
across the test data set for SLP models and much higher (positive) association
for other baselines and RFT. Furthermore, from the results of the Spearman (rho
coefficient) test done on the independent and dependent variables, it can be seen
from Tables 3c–h that the spearman coefficient indicates strongly positive mono-
tonic correlations between turbulence measures (γrl, ϑrl and ϕrl) and sentiment
scores [(�i,ℶi), (Li,ℷi), ( Q i,ℸi)] and moderately positive correlations between
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the same turbulence measures (γrl, ϑrl and ϕrl) to both category confidence and
entity salience (Ci,Ji).

Additionally, from Table 3a, it is observed that across all models, strength of
associations between predicted and expected outputs tend to be weaker in specif-
ically directed communications. This is observed in Enron’s email datasets as
opposed to Twitter and Google results. It is analysed that this is due to high
relational interference scores which tend to correlate fairly well to entity salience
scores. In this scenario, entity salience plays an important function in deter-
mining relational turbulence - as opposed to contexts over which the sentiments
were expressed. This means that an actor with a higher social status of influence
may more readily interfere with other relationships in directed communications.
Generally however, it can be observed from Table 3b that as the number of sub-
sample windows increases over the dataset, the MAPE over DCN, EnsemDT and
RFT decreases. Whereas MAPE for SLP, IMPALA and MVVA tend to fluctu-
ate about a fixed error. This behavior is attributed to overfitting and gradient
saddle points from poor initializations. RFT remains the clear winner across the
measured baselines in all k-fold validation experiments.

6 Conclusion

In conclusion, it has been shown that RFT is capable of predicting relational
turbulence profiles between actors within a given OSN acquired from anytime
data. The results show superior accuracies and performance of the FNN model
in comparison to well known baseline models. The feasibility of the learning
model has been demonstrated through the implementation on three large scale
networks: Twitter, Google Plus and Enron emails. The study uncovers three
pivotal long-term objectives from a relational perspective. Firstly, relational fea-
tures can be used to strengthen medical, cyber security and social applications
where the constant challenges between detection, recommendation, prediction,
data utility and privacy are being continually addressed. Secondly, in fintech
applications, relational predicates (e.g. turbulence) are determinants to mar-
ket movements - closely modeled after a system of constant shocks. Thirdly, in
artificial intelligence applications like computer cognition and robotics, learn-
ing relational features between social actors enables machines to recognize and
evolve.
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Abstract. Conventional dialogue generating methods focus on generat-
ing fluent sentences in context, but insufficient consideration of speaker
emotions. They often generate sentences with the same sentimental
polarity of the speakers. Such that sentences are hard to change the
mood or viewpoints of the speakers, i.e., from a negative mood to pos-
itive one, etc. In this paper, we propose a method to generate dialogue
sentences to provide different viewpoints. To this end, we propose two
novel concepts, polarity co-occurrence (P-Cooc) and modification co-
occurrence (M-Cooc). P-Cooc is used to find aspects providing different
and comfortable viewpoints, and M-Cooc is used to find proper modifi-
cation terms to such that aspects. The experimental results demonstrate
that our method could provide supplementary viewpoints to promote
critical thinking.

Keywords: Dialogue generation · Critical thinking · Polarity
co-occurrence · Modification co-occurrence

1 Introduction

Dialogue systems and agents (Siri, Alexa, Cortana, etc.) have become
widespread. Existing systems and methods aim to generate natural sentences
closed to that written by humans and in the context of dialogue. To the best of
our knowledge, there is few work considering the way to change the viewpoints
and mood of the speakers. For example, when a speaker is depressed, sentences
which can comfort him/her is useful and important. In other words, to provide
information from different viewpoints and promote critical thinking is a new
challenge in dialogue systems.

Critical thinking is reflective and reasonable thinking and skillfully analyzing
[1,2]. When we speak emotionally, the direction of the conversation may be
biased and narrow our vision. In these cases, providing information from different
aspects to change the viewpoints and mood (sentimental polarity) is important.
There are many studies on critical thinking in Pedagogy and media literacy
area [3,4]. To the best of our knowledge, there is few work considering critical
thinking or providing different viewpoints to enhance the dialogue in the area of
chat and dialogue generation systems.
c© Springer Nature Switzerland AG 2020
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In this paper, we propose a novel method to generate dialogue sentences,
which could provide different aspects and viewpoints on a certain topic to enrich
the dialogue and change the mood of the speaker. For example, in response
to “Room seemed clean but it smelled very musty.” we try to returns positive
sentences such as “I want to leave a positive review, because the room had a
neat look, and it was a nice quiet stay.” Please notice that our method could
be used as a dialogue support tool which providing candidate sentences to the
responder (a counselor, an advisor, etc.) who wants to comfort the speaker in a
negative mood.

In this work, we propose two concepts: polarity co-occurrence (P-Cooc) and
modification co-occurrence (M-Cooc). P-Cooc is used to discover aspects that
could provide different sentimental polarity, and M-Cooc is used to find the
modification terms for such that aspects. For a given sentence (by a speaker),
our method acts as the responder to generate a response sentence with different
polarities and providing different viewpoints.

The main contributions of this paper are as follows.

– We propose a dialogue generation method to encourage critical thinking. To
this end, we propose two novel concept, Polarity-Cooccurrence (P-Cooc) and
Modification-Cooccurrence (M-Cooc).

– We performed user evaluation experiments with 20 people and verified the
effectiveness of the proposed method.

2 Related Work

In recent years, the field of dialogue sentence generation has been developing
remarkably. OpenAI has released GPT-2 (Generate Pre-training 2) [5], which
is the state-of-art for dialogue sentence generation. When a certain sentence is
input, the subsequent sentence is predicted using a huge amount of learning
data. The generated text is very similar to that from a human. GPT-2 was
trained on 8 million web pages, which makes it possible to record near-maximum
accuracy without learning even for data-set with different domains. The sentence
generated by deep learning represented above is a very natural sentence if one
sentence is taken. However, sentences that are not natural in dialogue context
may be generated.

Research on dialogue systems [6–8] also aims to build systems that can talk
like a human. Takayama et al. propose a method to generate chats while pre-
serving the naturalness of responses by predicting characteristic vocabulary that
is likely to appear in responses. Words, whose frequency of occurrence is con-
siderably low, are removed from the output using pointwise mutual information
(PMI). As a result, it is possible to generate more contextually natural responses
sentences.

The Neural Conversation Model (NCM) [9] is a method in which Sequence
to Sequence (seq2seq) [10] used in machine translation is applied to response
generation in a dialogue system. In such a learning method, the loss does not
decrease unless the output word outputs the same word as the reference sentence
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as a response to the utterance. It outputs many frequently used general words.
One of the methods to solve this problem is MMI-bidi [11]. A response that
is more co-occurring with the utterance is generated. However, this approach
does not maximize mutual information during training. Therefore, the effect
cannot be expected if a word having high validity is not output. Takayama et
al. increased the effect of applying MMI-bidi by adding an objective function
during training to make it easier to generate words that strongly co-occur with
the utterance sentence [6].

With recent advancements in neural network research, end-to-end approaches
have shown promising results for non-goal oriented dialogue systems [9,12,13].
However, application of this approach towards incorporating emotion in the dia-
logue is still very lacking. Zhou et al. published their work addressing the emo-
tional factor in neural network response generation [14]. They examined the
effect of internal emotional states on the decoder, investigating 6 categories to
“emotionally” color the response. However, this study has not yet considered
user’s emotion in the response generation process. To bridge these gaps, Nurul
Lubis et al. exploit emotion appraisal to incorporate emotion into chat-based
dialogue systems [15]. They propose a neural chat-oriented dialogue system that
captures the user’s emotional state and considers it while generating a dialogue
response. Objective and subjective evaluations show that the proposed methods
result in dialogue responses that are more natural and elicit a more positive
emotional response.

To the best of our knowledge, this work is the first attempt to generate dia-
logue sentences that can promote critical thinking and being natural in context.

3 Proposed Method

3.1 Overview

Figure 1 shows the overview of our method. Two linguistic resources, P-Cooc
and M-Cooc, are constructed in advance. P-Cooc (Polarity Co-occurrence) is
a dictionary for efficiently searching for aspects that are often mentioned from
the opposite polarity. M-Cooc (Modification Co-occurrence) is a dictionary for
examining the co-occurrence relation between aspects and its modification terms.
Here, an aspect is the subject or object mentioned in a sentence, and its modifica-
tion term is the adjectives which denotes the sentimental polarity of that aspect.
Currently, we apply Standford Sentiment Treebank [16] to extract the aspect,
modification terms and the sentiment polarity. The details will be described in
Sect. 3.2.

As shown in Fig. 1, suppose the user said “This hotel is expensive.” Our
method will try to generates a sentence, such as “the food is delicious” to provide
different viewpoints as follows.
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– Extract the aspect term from the given sentence.
– Search for opposing aspects usually providing different sentiment polarity by

using P-Cooc.
– Search for modification terms to the opposing aspects by using M-Cooc.
– Search for candidate sentences from a corpus with the query consisting of the

opposing aspect and its modification term.
– Rank the candidate sentences by applying BERT’s Next Sentence Prediction

[17] to selected the most natural sentences as the output.

3.2 Construction of Co-occurrence Dictionary

P-Cooc. This section describes the way to construct P-Cooc. P-Cooc calculates
PMI (Pointwise Mutual Information) to estimate the dependency of two aspects
contained in sentences with different polarities within same dialogues. Currently,
we use a collection of reviews1 to construct P-Cooc, and regard one review as
one conversation.

Fig. 1. Overview

1 In this study, we use the hotel review data-set of Datafinity [18] as the corpus. There
are 147,236 sentences in the data-set.
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There is an example in Fig. 2 to illustrate the way to calculate P-Cooc score.
The P-Cooc of two aspects A and B is defined as follows.

P -Cooc(A,B) = log2
Cnt(A,B) × N

Cnt(A) × Cnt(B)
(1)

where Cnt(A,B) denotes the number of conversations (reviews) in such that a
dialogue the sentences containing A and B are with different sentimental polari-
ties. Cnt(A) and Cnt(B) are the number of reviews containing A and B, respec-
tively. N is the number of reviews.

One notable point is that we should eliminate rare aspect combinations. If
not, it is possible that rare aspect pairs will have a higher score of P-Cooc.

M-Cooc. As mentioned before, M-Cooc (Modification Co-occurrence) is a dic-
tionary for examining the co-occurrence relation between aspects and its modifi-
cation terms. As same as the construction of P-Cooc, we use a review collection
to construct M-Cooc.

Figure 3 shows an example of calculating M-Cooc score. To a given aspect A
and its modification term M , the degree of M −Cooc(A,M) is defined as follows
based on PMI.

M -Cooc(A,M) = log2
C(A,M)

C(A) × C(M)
(2)

where C(A,M) denotes the frequency of sentences containing both A and M .
C(A) and C(M) represent the number of sentences containing A and M , respec-
tively. N is the number of reviews.

3.3 Sentence Generation

In this section, we describe our sentence generation method in detail.

Aspect and Polarity Extraction. At first, we extract the aspect term from
the given sentence and estimate its polarity. In the example of “The hotel is
expensive”, its aspect and polarity are “hotel” and negative, respectively. The
modification term for “hotel” is “expensive”.

Opposing Aspect Search. Then, we search the dictionary P-Cooc for oppos-
ing aspects, which usually provide different sentiment polarity of “hotel”. In our
example, the opposing aspects are “staff”, “food” and “view”.
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Modification Term Search. After that, we search for modification terms of
these opposing aspects. For each aspect, we pick up modification terms with
high probabilities of co-occurrence by using M-Cooc.

In our example, we will have “delicious” or “cheap” for “food”, “helpful” or
“welcoming” for “staff”, “beautiful” or “amazing” for “view”.

Fig. 2. Example of P-Cooc calculation method

Candidate Sentence Search. Now, we can generate queries to search for
candidate sentences from the given corpus. Here, each query is formed as a pair
of (opposing aspect term, modification term), such as (food, delicious), (staff,
helpful), and so on.
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For each searched sentence, we estimate its polarity and remove those with
the same sentiment polarity of the input sentence. For example, “The staff was
not helpful” will be removed from the candidates because its polarity is negative
as same as that of the input sentence.

Fig. 3. Example of M-Cooc calculation method

Ranking. The final step is to rank the candidate sentences by applying BERT’s
Next Sentence Prediction [17] and selected the most natural sentences as the
output.

Intuitively, we use BERT to checks whether two sentences are consecutive,
and calculate the degree of continuous sentences. The sentence with the highest
value will be returned as the final output.

By using the next sentence prediction of BERT, it is possible to measure
which sentence comes after the input sentence. BERT is a language model that
has learned the tasks of Masked Language Model and Next Sentence Predic-
tion. This study mainly uses Next Sentence Prediction. This allows the language
model to learn the relationship between the two sentences. Learn by inputting
two consecutive sentences and two random sentences in the input half each.

By using Next Sentence Prediction, the output sentence guarantees its nat-
uralness and validity. The evaluation value takes a value from 0 to 1, and the
closer to 1, the more natural the sentence that comes next. Output the most
natural sentence through BERT.
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Table 1. Aspect and modification terms

# of Terms # of Terms with high frequency

Aspects 9063 2337

Modificaiton 6751 1830

4 Experimental Evaluation

To validate our proposed method, we have conducted two experimental evalu-
ation. One is to evaluate the P-Cooc and M-Cooc; the other is to evaluate the
sentences generated by our proposed method based on a user study.

4.1 Data-Set

We choose the hotel reviews from Datafiniti’s Business Database [18] as our
data-set. This data-set includes review of 1,000 hotels. As mentioned before,
we regard a review as one conversation. There are 35912 reviews and 147,236
sentences in our data-set.

To construct P-Cooc and M-Cooc, we have extracted 9063 aspects from
181483 noun terms. Similarly, 6751 modification terms were extracted from
162722 adjective terms. Since we calculate P-Cooc and M-Cooc based on PMI, it
is necessary to eliminate rare terms with low frequency. Currently, we removed
terms appearing less than five times. As a result, there are 2337 aspects and
1830 modification words. The statistics of aspects and modification terms are
summarized in Table 1.

4.2 Evaluation on Sentence Generation

We conduct a user study in a questionnaire manner to evaluate the proposed
dialogue sentence generation method. We have cooperated with 20 undergrad-
uate students belonging to the English Study Group. In the questionnaire, we
asked the subjects to estimate the generated sentences from three viewpoints as
follows.

– Fluent: Whether the conversation is fluent and the context is good.
– Naturalness: Whether the generated sentence is natural like given by a human.
– Critical Thinking: Whether the generated sentence is helpful to promote crit-

ical thinking.

We asked the subjects to evaluate the generated sentences with a seven points
grading mechanism, where 1 is the worst score and 7 denotes the best one.

In our experiment, we randomly select 7 positive sentences and 6 negative
sentences from our review data-set. These sentences are shown in Table 2. For
each sentence, we generate a response sentence to construct a conversation as
follows.
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Table 2. First sentences of conversations used in user study

Room was well outfitted and bed was very comfortable.
The resort was beautiful, well kept, and the room was luxurious without being opulent.
Good experience and very convenient to where I needed to be.
Beautiful hotel.
Staff was great and rooms were clean and very comfortable.
We only stayed one night but this is a good place to stay.
Room seemed clean but it smelled very musty.
Very loud rowdy customers staff would not do anything about the frat like partying.
Room was not clean.
Nice hotel , with very friendly staff and helpful - great choice for breakfast.
The king size bed was the most uncomfortable bed I had slept in for decades.
This hotel is way over rated, it’s nothing like the description or the reviews.
The breakfast was adequate and the housekeeping staff were friendly.

Table 3. Result

Method Fluent Naturalness Critical thinking

GPT-2 3.93 4.70 3.27

Proposed 4.07 4.32 3.91

– Mike: This hotel is way over rated, it’s nothing like the description or the
reviews.

– Jane: This is a good mid priced placed to stay.

In this example, the sentence spoken by Mike is selected from Table 2 and the
one by Jane is generated by our method or GPT-2 [5], which is the baseline in
our experiment.

Results. The results are shown in Table 3.
We also conduct a paired two-tailed t-test for significance testing. The null

hypothesis that there is no difference between the baseline method and the pro-
posed method. The significance level is α = 0.05 at the degree of freedom 192.
The results are shown in Table 4. The null hypothesis was rejected when the
p-value was less than 0.05, indicating that there was a significant difference
between the proposed method and the baseline method.

There is no significant difference between these two methods from the view-
point of fluent. The results of the t-test also showed significant differences in
naturalness and critical thinking. Our method is superior in critical thinking
but inferior in naturalness.

In addition, we investigate the results by distinguish the first sentence into
positive and negative ones. The results are shown in Table 5 and 6.

2 We have 20 subjects in our experiment.
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Table 4. t-test’s p-value

Fluent Naturalness Critical thinking

0.433 0.013 0.010

Table 5. Results of first sentence with different polarity

Method Polarity Fluent Naturalness Critical thinking

GPT-2 Positive 3.86 4.74 3.14

Proposal Positive 4.13 4.33 3.99

GPT-2 Negative 4.01 4.66 3.43

Proposal Negative 3.98 4.30 3.83

Table 6. p-value of first sentence with different polarity

Polarity Fluent Naturalness Critical thinking

Positive 0.225 0.043 0.008

Negative 0.561 0.119 0.346

There is a similar difference in the naturalness of sentences. However, about
critical thinking, sentences with positive inputs resulted in a large difference.
Significant differences were found for positive inputs by the t-test. On the other
hand, there was no significant difference for those with negative inputs. One of
the considerable reasons is that the first sentence may be erroneously determined
to be positive even though it is negative. As a result, the generated sentences
may not be considered helpful to critical thinking because the polarity did not
change.

Discussion. Although the hotel review data-set need further pre-processing to
be suitable for conversation generation, the experimental results reveal that the
response sentences generated by our proposed method is superior in promoting
critical thinking than that of GPT-2.

From the conversation viewpoint, the limitation of the current method is
that it just generate one sentence and change the sentimental polarity. In a real
conversation, if we want to persuade someone or comfort someone, at first we
may need accept their feeling and then try to provide other viewpoints. We will
discuss this issue in our future work.

Fluent. There was no significant difference in fluency. Actually, the candidate
sentences searched by the queries consisting of aspect and modification terms
were estimated high probabilities of being the second sentences. It reveals that
the pair of aspect and modification terms obtained by P-Cooc and M-Cooc is
helpful to search for response sentences in context.
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Naturalness. All the sentences used in the experiment are written by humans.
However, the naturalness of the sentences retrieved by GPT-2 achieved better
results in our user study. This may be caused by the characteristics of the review
data-set. Usually, sentences are standard sentences such as SVO (Subject, Verb,
Object) structure. However, reviews are in free style or in broken language. For
example, the sentence with the lowest score was “Hotel was great staff was happy
n positive energy everywhere.” We will study this issue by utilizing the state of
the art NLP tools.

Critical Thinking. The goal of this study was to produce dialogue that encour-
ages critical thinking, and it was better than GPT-2. The generated conversation
with the highest score in this experiment is as follows.

– Mike: Room seemed clean but it smelled very musty.
– Jane: I want to leave a positive review, because the room had a neat look,

the staff was friendly, and it was a nice quiet stay.

The first sentence is concise, while the sentimental contrast between the
sentences is clear. The response sentence provides several aspects with positive
polarity.

4.3 Evaluation on P-Cooc and M-Cooc

4.4 P-Cooc

As mentioned before, P -Cooc(A,B) measures the dependency of two aspects
with opposing polarities. Thus, we may have two patterns of the opposing aspect
pairs: Negative vs Positive and Positive vs Negative. We compare the results with
the two different patterns. The opposing aspects pairs with high scores of P-Cooc
are shown in Table 7 and 8. The scores of P-Cooc depend on the order of aspects’
polarities. We may need to construct two kinds of P-Cooc dictionaries with the
two different patterns. If we want to generate a positive sentence responding to a
negative sentence, P-Cooc based on pattern of (Negative, Positive) is preferred,
and vice versa.

In order to exclude terms with too low a frequency, term with a frequency
less than five were excluded. If we increase the threshold from five to ten and
twenty, the number of target terms becomes 1156 and 685, respectively. Table 9
shows the differences when we change the threshold.

As shown in Table 9, increasing the threshold tends to increase the P-Cooc
scores. However, the terms used for further processing will be limited. There-
fore, to have more aspects for further analysis, the threshold of the appearance
frequency was set to 5.
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Table 7. P-Cooc based on count of (Negative, Positive) pairs

Negative aspect, Positive aspect P-Cooc

room, inconveniences 0.6449663977057334

hotel, ports 1.0317250913592815

staff, sabrina 0.6833845190889121

breakfast, shores 1.0783373263749623

Table 8. P-Cooc based on count of (Positive, Negative) pairs

Positive aspect, Negative aspect P-Cooc

room, controls 0.9080008035395273

hotel, radios 1.7946858940584323

staff, omelet 1.2683470198100684

breakfast, adrenaline 2.6632998270961186

Table 9. P-Cooc with different thresholds of term frequency. B is the aspect having
the maximum P -Cooc(A,B) score with A.

Aspect A Threshold Aspect B P-Cooc (A,B) Frequency of B Frequency of (A,B)

room 5 inconveniences 0.64 15 3

room 10 art −0.09 10 3

room 20 recommendation −0.36 24 6

hotel 5 ports 1.03 40 22

hotel 10 ports 1.03 40 22

hotel 20 ports 1.03 40 22

staff 5 sabrina 0.68 5 2

staff 10 cake −0.11 13 3

staff 20 welcome −0.42 27 5

breakfast 5 shores 1.08 6 2

breakfast 10 innkeepers 0.93 10 3

breakfast 20 love −0.51 27 3

Table 10. Examples of M-Cooc scores

(Aspect, Modification) M-Cooc

(room, stunk) 0.6449663977057334

(hotel, weary) 1.0317250913592815

(staff, accommodating) 0.6833845190889121

(breakfast, worldwide) 1.0783373263749623
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4.5 M-Cooc

As mentioned before, M-Cooc scores denote dependencies of aspect and its mod-
ification terms. Table 9 shows some examples of M-Cooc scores of pairs of aspects
and modification terms, in which the aspects appear frequently in our data-set.

These pairs with high M-Cooc scores shown in Table 10 is a bit strange,
especially, the pairs of (room, stunk), (hotel, weary) and (breakfast, worldwide).
For further analysis, we investigated their frequencies as shown in Table 11. From
these tables, it is considerable that some strange modification terms will have
high M-Cooc scores due to their low appear frequencies. To confirm this, we
investigated the differences when we change the frequency thresholds. The results
are shown in Table 12.

Table 11. Frequency of aspect and modification terms

Aspect Modification Frequency of modification Frequency of (aspect, modification)

room stunk 5 5

hotel weary 30 22

staff accommodating 496 301

breakfast worldwide 6 6

Table 12. M-Cooc scores with different threshold.

Aspect A Threshold Modification B M-Cooc Frequency of B Frequency of (A,B)

room 5 stunk 3.32 15 3

room 10 non-smoking 2.92 133 101

room 20 non-smoking 2.92 133 101

hotel 5 weary 1.03 30 22

hotel 10 weary 1.03 30 22

hotel 20 weary 1.03 30 22

staff 5 accommodating 0.68 496 301

staff 10 accommodating 0.68 496 301

staff 20 accommodating 0.68 496 301

breakfast 5 worldwide 4.33 6 6

breakfast 10 fruit 4.23 15 14

breakfast 20 cereal 4.16 26 23

Similar to that of P-Cooc scores, by raising the frequency thresholds it is
possible to find more proper modification terms. We will discuss this issue to
improve M-Cooc construction method in near future.

We also noticed that some terms may be aspect and modification terms and
we need to distinguish their roles to improve the M-Cooc and P-Cooc construc-
tions. For example, “fruit” in Table 12, is a modification term. However, “Fruit”
is usually used as noun and in most cases it should be an aspect. This may be
caused by the data characteristics: reviews are writing in free style, and there
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are short sentences without sentence structure. For instance, in the sentence of
“Continental breakfast was nice and fresh, fruit and baked goods with.”, “fruit”
is treated as being parallel to “nice” and “fresh”, and has been treated as a
modification term. Actually, in our data-set, there are 119 “fruit” appearing as
aspects, and 15 are incorrectly extracted as modification terms. As a reasonable
solution, it is possible to decide the role of a term based on its role frequencies.
For example, as described above, “fruit” is often used as an aspect more than
modification terms, we may simply dropout the cases when “fruit” is extracted
as modification term. We will discuss these issues in our future work.

5 Conclusion

In this paper, we propose a method to generate dialogue sentences to provide
different viewpoints. We propose two novel concepts, polarity co-occurrence (P-
Cooc) and modification co-occurrence (M-Cooc) to search for candidate sen-
tences. The experimental results with a real hotel review data-set reveal that
our method could provide supplementary viewpoints to promote critical think-
ing.

In near future, to improve our method, we will conduct further experiments
with different data-set. Generate more complex and real conversation with more
than two sentences is also necessary. Another important future work is that,
we will introduce the insights from psychology to generate sentences Which are
useful to promote critical thinking and comfort people.
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Abstract. Table is an efficient way to represent a huge number of facts
in a compact manner. As practitioners in the vertical domain share lots
of common prior knowledge, they tend to represent facts more concisely
using matrix-style tables. However, such tables are originally intended for
human reading, but not machine-readable due to their complex struc-
tures including row header, column header, metadata, external context,
and even hierarchies in headers. In order to improve the efficiency of
practitioners in mining and utilizing these matrix-style tables, in this
study we introduce a challenging task to discover fact-overlapping rela-
tions between matrix-style tables. This relation focuses on fine-grained
local semantics instead of overall relatedness in conventional tasks. We
propose an attention-based model for this task. Experiments reveal that
our model is more capable of discovering the local relatedness, and out-
performs four baseline methods. We also conduct an ablation study and
case study to investigate our model in detail.

Keywords: Matrix-style tables · Semantic matching ·
Fact-overlapping relations · Richly formatted documents

1 Introduction

Tables, as a compact representation of data, are widely used on the Web and in
vertical domains. Mining the relationships between tables has its value in a range
of applications, such as table retrieval [22], knowledge base construction, entity
disambiguation, and intelligent reading [1,2,10,12]. Taking intelligent reading
[2,12] as an example, professional documents in vertical domains are usually
hundreds of pages long with dozens of tables. These tables are related to each
other so that they can provide coherent evidence to support the arguments
in the document. However, the related tables might scatter over hundreds of
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pages, and tracking these linked content requires flipping back and forth in the
current reading experiences. It is even more cumbersome for reading on a digital
device than using a physical document. Hence, relating tables and displaying
them dynamically based on the readers’ goal will greatly enhance the reading
efficiency.

Consolidated Balance Sheet as at 30 June 2018
5.1 Consolidated Financial Statements

5. Financial Statements

Unaudited(US$M) 2018 2017
EQUITY
Attributable to BHP shareholders
Share capital – BHP Billiton Limited 1,118 1,186
… … …
Total equity 60,670 62,726

Row Header Context

Age 35

Sex Male

Bob

Name Age Sex

Alice 21 Female

Bob 35 Male
Rela onal Table

En ty Table

Matrix Table

Column Header Metadata Data Cell

Fig. 1. Examples of entity, relational and matrix tables.

Distinguished by how the information in the table is organized, there are
entity tables, relational tables, and matrix-style tables1 (exemplified in Fig. 1).
Matrix tables have a more concise layout than other kinds of tables. Practitioners
in vertical domains usually put plenty of data and facts into matrix tables in
richly formatted documents [28]. For the public disclosure documents from the
financial area, the proportion of matrix tables is as high as 90% based on our
empirical study. Therefore, in this paper, we study the relationships over matrix
tables within a richly formatted document.

As shown in Fig. 1, a matrix table usually consists of five components: context,
metadata, column headers, row headers, and data cells (see the legend for each
component in Fig. 1). Here, the metadata, column headers, row headers and data
cells are the areas inside a table [9,23]. And the context is the outside-table
context, including all the text along the path from the root to this table leaf
node in the tree of logical document hierarchy [17]. Since there exist approaches
to identify the table components [16,20,23], in this study, we assume that all
these table components are extracted in some predecessor steps.

Additionally, each data cell in a matrix table refers to a fact whose complete
semantics is scattered in multiple table components. For example, in Fig. 2, the
fact expressed by the data cell in the dashed box is shown at the bottom. It is
a complex composition of several cells from context, metadata, column and row
headers. Thus, a matrix table T conveys a set of facts. Their values lie in data
cells, while their semantics are presented in the table context, metadata, row
and column headers succinctly.

1 matrix tables for short in the following of this paper.
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5.1.5  Changes in Equity for the year ended 30 June 2018
5.1  Consolidated Financial Statements

5. Financial Statements

US$M

A ributable to BHP shareholders

Non-
controlling

interests
Total 

equity

Share capital

…
Retained 
earnings

Total equity 
a ributable

to BHP 
shareholders

BHP 
Billiton 

Limited

BHP 
Billiton 

Plc
Balance as at 1 July 2017 1,186 1,057 … 52,618 57,258 5,468 62,726
Total comprehensive income - - - (87) 3,695 3,608 1,118
Transac ons with owners:

Purchase of shares by ESOP Trusts - - … - (171) - (171)
... … … … … … … …
Dividends 153 - … (5,221) (5,221) (1,499) (6,720)

Balance as at 30 June 2018 1,118 1,057 … 51,064 55,592 5,078 60,670

Implicit Hierarchy
in Row Headers

Explicit Hierarchy
in Column Headers

Fact expressed by this cell:
In share capital of BHP Billiton Limited attributable to BHP shareholders, the consolidated changes in dividends of 
transactions with owners during 1 July 2017 and 30 June 2018 is $ 153 million US dollars.

Fig. 2. A table is a set of facts. The fact of a data cell is shown at the bottom,
which involves many cells in multiple components, shown in different colors. The row
and column headers have hierarchical structures, shown in dotted lines. (Color figure
online)

In this paper, we study the semantic matching problem over matrix tables
within a document. Our goal is to determine whether two tables have fact-
overlapping relations. Specifically, if two tables have some facts in common, they
have fact-overlapping relations. For example, the two tables from document BHP
Annual Report 2018 are shown in Fig. 3, where the left one is the consolidated
balance sheet, and the right one is the consolidated statement of changes in equity.
They are semantically matched as the facts of data cells marked in boxes exist
in both tables.

Matching the two tables in Fig. 3 has its practical value. In financial area,
people read disclosure documents with different purposes. For investors, they
read documents to learn about the operation of the company. When looking at
the retained earnings in the left table, readers want to investigate how it changed
during the year, which is detailed in the right table. For financial practitioners,
they need to ensure the correctness and consistency of the disclosure of the
company’s financial position. Therefore, they have to cross-check the numbers
in the left table with the numbers in the right table. Both groups of people
want to link these two tables together to facilitate their reading process and to
avoid jumping back and forth to find relating tables in a document of hundreds
of pages. To this end, we propose to equip readers with a kind of table-linking
functionality. When clicking on a table, a list of tables having fact-overlapping
relations with that table is shown to the user as a sidebar on the right.

Simply linking two tables with at least one data cell with the same value
cannot solve this problem, since the same value might refer to different facts and
some mistaken data cells with different values might refer to the same fact [4].
Hence, we need to model the semantics of the facts inside matrix tables. The
challenges of this task are summarized in three aspects.
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Fig. 3. Two semantically matched tables. The overlapping facts are shown in the boxes.

First, the same fact can be expressed differently in terms of the table layout
and its surface form. For example, for the common fact with value “1,118” in
Fig. 3, the date of the fact is contained in its column header and context in the
left table, while it is contained in its row header in the right one.

Second, the fact-overlapping relations focus on the semantic similarity at the
fact level locally. For example, the two tables shown in Fig. 3 are very different
on the whole, but they have overlapping facts. In extreme cases, there could be
only one overlapping fact in two semantically matching tables. This requires to
retain the detailed local information when modeling the table. However, previous
studies in semantic matching usually consider global relatedness in the sense that
two objects have similar meanings on the whole, including matching between
sentences [15,18,26], documents [29], images [30] and tables [1,10,22].

Third, understanding the exact fact of each data cell is challenging since
matrix tables have complex structures so that the meaning of facts scatters
over multiple components as we mentioned before. Moreover, row and column
headers might have implicit and explicit hierarchies. Take Fig. 2 as an example.
The implicit hierarchy of row headers has three levels, conveyed by their visual
cures (e.g. font styles, indentation) and text semantics without a unified standard
[5]. Its explicit hierarchy of column headers also has three levels and is presented
by the internal table structure with merged cells. With such hierarchies, the
integrates of a fact might involve several cells in column and row headers. In
Fig. 2, the fact of the data cell in the dashed box involves four cells in the row
headers (in orange) and three cells in the column headers (in green).

To preserve the meanings of table facts while tolerating the diverse expres-
sions in tables, we propose an attention-based method for fact-overlapping
matching between matrix tables. It employs a deep neural network that consists
of two components: table embedding network, and symmetric matching network.
The input of this neural network is a pair of tables. First, the embedding network
calculates the embedding of each table by considering its 4 components, namely
context, metadata, (hierarchical) column headers, (hierarchical) row headers.
Then, a symmetric matching network entangles these two embeddings to dis-
cover all their local fact-level relatedness and predicts whether these two tables
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are semantically matched or not. Experiments reveal that our attention-based
method is more suitable for this task than four baseline methods with 0.75, 0.77,
0.67 and 0.29 absolute improvement on F1 respectively. Moreover, our attention-
based method has a certain ability to explain why and where two tables are
semantically matched, which is illustrated in Sect. 5.3. We also conduct an abla-
tion study to check the importance of each table component and some case
studies to investigate our model in detail.

2 Related Work

We introduce the work on semantic matching of two tables as follows. Sarma
et al. [22] proposed a table retrieval task that given a query table, retrieved the
most similar tables. They took each table as a set of attributes (i.e. column head-
ers in relational table) and linked the attributes of two tables to form a weighted
bipartite graph. Then, they used the max-weight matching as matching scores
of two tables. We consider this method as a baseline in our experiments. Fetahu
et al. [10] proposed a deep learning-based method to recognize two types of
table relations: equivalent and subPartOf. But they only focus on the relational
tables with column headers, and their method is not suitable for matrix tables.
Besides the matching of tables as a whole, some studies on schema matching
[3,19] concentrated on the correspondence of columns between two tables [11].
Zhang and Chakrabarti [32] computed semantic matching between columns of
web relational tables. If two tables describe different attributes of the same set
of entities, they can be used to augment the attributes of entities. The existing
studies on the relationships between tables mainly focus on entity and rela-
tional tables, since these two types of tables with simple structures are prevalent
on the Web (accounting for 98.3% of tables on Web according to Web Data
Commons [14]).

Other studies matched tables to other things like query or knowledge base
[7,24,33]. Zhang and Balog [33] represent text query and table as a set of vectors
of words respectively and compute their similarity. We adopt this method as
a baseline in the experiments. Additionally, matching between a table and a
knowledge base establishes the mapping between the entities described by them
in order to understand the table data [21,34].

There are also some related studies about table classification. Tables have
various layouts, and there are many standards to categorize them. For practi-
cal purposes, Ahmadov et al. [1] categorized tables to five classes: relational,
entity, matrix, layout, and others. In this paper, we adopt this taxonomy and
focus on matrix tables as it is prevalent in vertical domains. Also, Wang et al.
[27] proposed the taxonomy with three table classes: 1-dimensional tables, 2-
dimensional tables, and complex tables. Considering the layout and structure
of tables, Crestan and Pantel [6] proposed a more fine-grained classification,
which classifies tables into two broad categories: relational knowledge and lay-
out. Furthermore, based on structural characteristics, Lautert et al. [13] divided
relational knowledge tables into concise, nested, multi-valued, and split tables.
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3 Network Architecture

As we have discussed in Sect. 1, understanding the exact fact of each data cell
is challenging. Therefore, we model whole semantics of tables to determine fact-
overlapping relations end to end. Our Semantic Matching (SM) method employs
an attention-based deep neural network that consists of two components: table
embedding network and symmetric matching network. The input of this neural
network is a pair of tables. First, the embedding network calculates the embed-
ding of each table, which preserves its local semantic information. Then, these
two table embeddings are fed into the symmetric matching network that pre-
dicts whether these two tables are semantically matched or not. Our symmetric
matching network leverages an attention encoder to discover the local semantic
matching on the fine-grained level between tables, and leverages another atten-
tion encoder to aggregate the local matched semantics for classification. We
adopt supervised learning to train this deep neural network model with cross-
entropy as the loss function.

3.1 Table Embedding

Since the local semantics of tables are essential to the task of determining fact-
overlapping relations, we encode one table to a sequence of cell embeddings
instead of a fixed-length embedding. We encode four components of a table
to form its embedding sequence: row headers, column headers, metadata, and
context, as described in Sect. 1. Each component contains some cells (we call each
heading in a header cell and also each title in the table context as a “cell” for
convenience). We first encode each cell into a vector, add component embeddings,
and then serialize vectors of four components into a sequence of vectors as the
embedding of the table. Such embeddings preserve the local information in the
table.

The first step is cell embedding. For row headers or column headers with
explicit hierarchy (like the column headers in Fig. 2), we extend the text of a
leaf cell by joining the texts of cells on the path from root to leaf with a special
token “&”. For example, the extended text of the cell in the second column
header in Fig. 2 is

Attributable to BHP shareholders & Share capital & BHP Billiton Plc
As you can see, each joined text contains the complete local and hierarchical
information.

As each leaf node corresponds to a column or row in the table, and we have
extended its text to incorporate the hierarchy, we only use the leaf cells for table
embedding. A transformer [25] encodes the (extended) text of each leaf cell into
a text embedding et. Moreover, to distinguish cells among different components,
we introduce component embeddings es for each component (like the segment
embedding in [8]). Finally, cell embedding is

e = et + es ∈ R
dm ,

where dm is the dimension of embedding.
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The second step is table embedding. We do not compress the table into a
fixed-length embedding as it will lose the information of individual cells. Instead,
the table embedding is a sequence of cell embeddings. In each component, we
stack the leaf cells by order. Then, we stack these four components into an
embedding sequence

ET = [ec1 , ..., ecnc
, er1 , ..., ernr

, ex1 , ..., exnx
, em1 , ..., emnm

] ∈ R
n×dm ,

where eci is the embedding of the i-th cell in column headers (r for row headers,
x for context and m for metadata), n = nc +nr +nx +nm is the number of leaf
cells in the four components. Note that we only encode the four components in
a table and ignore data cells, since data cells, usually containing digits, are not
semantically expressive without the other four table components.

3.2 Symmetric Matching Network

The above table encoding preserves the local semantic information of the table
to the maximum extent so that we can explicitly carry out the local semantic
interaction between tables in the symmetric matching network. The symmetric
matching network takes as inputs two table embeddings, ET1 and ET2 , and
outputs the probability that they are matched. First, we entangle the embeddings
of these two tables, to get E′

T1
and E′

T2
, where each cell of T1 is informed of (by

attention on) every cell in T2 and vice versa. This allows the local semantic
matching between two tables. Then, we aggregate E′

T1
and E′

T2
respectively to

get two vectors eT1 and eT2 , which gathers the local matched semantics. Finally,
the prediction layer outputs the probabilities. Both entangling and prediction
layers are symmetric with regard to T1 and T2.

The building block of our network is an attention encoder. In brief, an atten-
tion encoder Q′ = Attention(Q,V ) uses Q,V as input and gets a new embed-
ding Q′, where Q and Q′ ∈ R

l×dm and V ∈ R
m×dm . This attention encoder

Attention(Q,V ) will be detailed in Sect. 3.3.
In entangling layer, taking ET1 and ET2 as Q and V respectively we get E′

T1
:

E′
T1

= Attention1(ET1 , ET2). (1)

The attention encoder allows each cell in table T1 to interact with every cell in
table T2. This is essential to discover the local semantic matching on the fine-
grained level between tables. We will show the effectiveness of this encoder in
the case study. Symmetrically, we get E′

T2
= Attention1(ET2 , ET1).

In the aggregation layer, a learnable special embedding vector e[TAB] is used
to aggregate the information of a table:

e∗
T1

= Attention2(e[TAB], E
′
T1

). (2)
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Here, e∗
T1

is an aggregated vector representing table T1 after attention on table
T2. Using the attention allows this aggregation to focus on the local matched
semantics flexibly instead of rough semantics such as mean or max. We also
show the effectiveness of this encoder for capturing local matched semantics in
the case study. Similarly, we get e∗

T2
= Attention2(e[TAB], E

′
T2

).
In the prediction layer, we concatenate e∗

T1
and e∗

T2
in both orders and com-

pute eO as follows:

eO = ElementwiseMax(FFN(concat(e∗
T1
, e∗

T2
)), FFN(concat(e∗

T2
, e∗

T1
))) (3)

where FFN is a feed-forward network, and the element-wise maximum of the
two vectors ensures that this matching network is symmetric. Finally, eo is used
for classification. The symmetric property of our model ensures that no matter
the input is (ET1 , ET2) or (ET2 , ET1), the result will be the same.

3.3 Attention Encoder

The attention encoder is the building block of the symmetric matching network.
It takes as input Q and V , and outputs Q′:

Q′ = Attention(Q,V ) (4)

where Q and Q′ ∈ R
l×dm , V ∈ R

m×dm . The attention encoder consists of b
Layers (Layer1, ..., Layerb) in sequence:

Qi = Layeri(Qi−1, V ) (i = 1, · · · , b) (5)

where Q0 = Q as the initial input and Q′ = Qb as the final output. Each
layer consists of Multi-head Attention Layer (MAL) and Feed-Forward Network
(FFN). There is Residual Connection (RC) and Layer Normalization (LN) fol-
lowing both MAL and FFN. The detailed structure of Layeri is as follows:

Zi,1 = MALi(Qi−1, V ) (6)
Zi,2 = LNi,1(Qi−1 + Zi,1) (7)
Zi,3 = FFNi(Zi,2) (8)
Qi = LNi,2(Zi,2 + Zi,3) (9)

MAL consists of multiple attention operations. It concatenates the results of
these operations to represent a richer attention. The definition of MALi is as
follows:

MALi(Qi−1, V ) = Concat(Hi,1, · · · ,Hi,h)WO
i (10)

Hi,j = Wi,j(VWV1
i,j ) (11)

Wi,j = Softmax

(
(Qi−1W

Q
i,j)(VWV2

i,j )T√
dv

)
(12)
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where Hi,j is the j-th head of the multi-head attention in the i-th layer, and h is
the number of heads. The projections are parameter matrices WQ

i,j ,W
V1
i,j ,W

V2
i,j ∈

R
dm×dv and WO

i ∈ R
(h·dv)×dm . And we let dv = dm/h.

The attention weights can reveal the relations among elements in two inputs,
thus give an interpretation of the prediction result. To analyze the effectiveness
of our methods in Sect. 5.3, we define the summary weights of the attention
encoder as:

SW =
∑

j=1,··· ,h
Wb,j (13)

where SW is a vector, and its k-th dimension SWk ∈ [0, h] indicates the impor-
tance of the k-th cell in V to Q. The greater the value of SWk, the more impor-
tant the k-th cell in V is to Q. Here, b is the index of the last layer, indicating
that we only display the weights of the last attention layer.

4 Experimental Setup

4.1 Dataset

We downloaded public annual reports from CNINFO2. They are all long docu-
ments with on average 71.12 pages and 100.8 tables per document. The average
numbers of cells in row header, column header, context and metadata per table
are 7.91, 4.22, 1.84 and 0.18 respectively. We annotated the matching relations
among tables in each document, which took three financial practitioners more
than a month to complete. In a document, for each table, annotators find out
all tables that match with this table, and other table pairs that do not match
are set to negative samples. They do not annotate which parts of table facts
are overlapping as it is laborious. There are 358,111 table pairs in total in these
documents. And the ratio of matching and not matching pairs is 1:66. All the
table pairs are randomly divided into a training and test dataset by 9:1.

4.2 Baselines

There are no previous studies that can be directly applied to our task. Thus, we
adapt some of them to build the following four baseline methods.

Term-Based Schema Matching (TSM). We represent each table by bag-of-
words of its four components3. The matching score of two tables is the Jaccard
index of their token sets. Two tables are matched if the matching score is greater
or equal than a threshold.

2 http://www.cninfo.com.cn. A financial information disclosure website.
3 We tokenize each cell using Jieba, a popular Chinese word segmentation toolkit.

http://www.cninfo.com.cn
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Embedding-Based Schema Matching (ESM). Using similar methods in
TSM, we represent each table as a set of tokens in its four table components.
Then, we build a bipartite graph where an edge links each pair of tokens from
the two sets. The edge weight is computed as the cosine similarity between the
embeddings of the two tokens. Finally, the max-weight matching score of the
bipartite is used as the similarity between the two tables [22]. We regard two
tables as a positive sample if their similarity is more than a threshold. In detail,
we use the method in [31] to train the token embeddings.

Learning-Based Schema Matching (LSM). We perform a learning-based
baseline. In this baseline, we convert each table to a binary vector B whose
length is equal to vocabulary size. If a word wi appears in the table and its
index in the vocabulary is i, we set Bi to 1, otherwise 0. For a pair of tables,
we concatenate the two table vectors as Bp = [B1;B2]. Then Bp is regarded as
the input feature, the relation between the two tables is regarded as the label,
which are put into a logistic regression classifier for training.

Semantic Matching Without Attention Encoder (SM−). The above three
methods use the bag-of-words model. In this baseline, we first use the table
embedding component (detailed in Sect. 3.1) to preserve both the term sequence
in each table cell and the hierarchies in row and column headers. Then, the
symmetric matching network is replaced with the following component [33]: four
similarity scores (Early, Late-max, Late-sum, Late-avg) between two sets of vec-
tors are computed, and used as the features for classification of matching or
not.

4.3 Experimental Settings

We use the Precision, Recall, and F1 to evaluate the above methods. Each feed-
forward network is a fully connected layer with two linear transformations (dm×
2dm and 2dm × dm) and ReLU in between. We apply Adam for optimization.
10% of the training data are reserved as the validation set to select the best
hyper-parameters. As a result, the number of blocks b in each cross encoder is
3 (over 1, 3, 5); the dimension of embeddings dm is 128 (over 128, 256, 512);
the number of heads h in each multi-head attention is 4 (over 4, 8); and the
dimension of each head dv is 32 (over 32, 64); and the learning rate is 10−4 (over
10−4, 10−3, 10−2).
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5 Experimental Results

5.1 Results of Different Methods

Table 1. Table matching results on the test set.

Model Pre. Rec. F1

TSM 0.1016 0.0841 0.0920

ESM [22] 0.0668 0.0682 0.0675

LSM 0.0944 0.7628 0.1680

SM− [33] 0.6920 0.4559 0.5496

SM 0.8685 0.8090 0.8376

Table 1 shows the results of table matching of each method on the test dataset.
The F1 score of TSM and ESM method peaks at threshold 0.5, 0.8099 in the
training set respectively. Their corresponding F1 on the test set are 9.2% and
6.75%. The learning-based method LSM also has only achieved 16.8% F1. The
poor performance of these three methods indicates that similarity on terms is
not adequate for this problem. SM− method has great improvement comparing
with TSM, ESM, and LSM methods. Because it takes into account both the term
sequence in each table cell and the hierarchies in row and column headers. This
proves the effectiveness of our table embedding network. However, as the SM−

method does not focus on the local semantics, its performance is still poor in this
task. SM performs best among these models. The absolute F1 improvement is
74.56%, 77.01%, 66.96% and 28.80% compared with TSM, ESM, LSM and SM−.
Compared with SM−, our SM model takes more attention on local semantics by
our symmetric matching network. Supported by the fact of a larger improve-
ment in recall than precision, we argue that SM is more capable of discovering
overlapping facts at the local level.

5.2 Ablation Study

To analyze the effectiveness of each component of tables for our model, we ablate
each component of tables in the SM method respectively. As shown in Table 2, we
list components by F1 score after ablation in descending order. When we ablate
column headers, F1 only decreases by 2%. By analyzing the dataset, we find most
of the column headers are about the time, like 2016, 2017. As one document
usually describes financial position within the same period of time, removing
column headers has less impact on semantic matching over tables. Metadata also
only has little impact on performance, since the metadata appears less frequently
in the dataset and usually describes the unit of data cells. However, as removing
column headers and metadata mainly deteriorates the precision, we think they
provide information to filter out false-positive samples, but less information for
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Table 2. Ablation study on components, layout and symmetric model design.

Ablation Pre. Rec. F1

SM 0.8685 0.8090 0.8376

– Column headers 0.8391 0.7971 0.8176

– Metadata 0.8273 0.8076 0.8173

– Context 0.6574 0.6548 0.6561

– Row headers 0.6540 0.5455 0.5948

– Headers 0.6553 0.7088 0.6810

– Hierarchy 0.8499 0.7984 0.8234

– Component embedding 0.8399 0.8090 0.8242

– Symmetric 0.8630 0.7721 0.8150

matching. When we ablate context, F1 decreases by 18.15%, this means that it
is important information for this task. Also, ablating row headers will decrease
F1 by 24.28% and severely hurt the recall (to 54.55%). So, row headers are very
important in discovering matching information.

The result of ablating both column and row headers are shown in the
“-Headers” row, which uses only metadata and context (MX). We denote the
model ablating only row headers (retaining column headers, metadata, and con-
text) as CMX. An interesting phenomenon is that although with more informa-
tion (column headers), CMX performs poorer than MX (59.48% vs. 68.10% on
F1). And the difference comes from recall (54.55% vs. 70.88%). We argue that
this is because the CMX model overfits the training set on the column informa-
tion. As discussed above, row headers contain vital information for matching.
Thus, both CMX and MX, without row headers, do not have enough information
for matching. As the column contains little information for matching, it might
become noise for the CMX model. To examine this, we report the result on the
training set: the recall of the CMX is higher than (86.11% and 80.56%). It means
that the CMX tries to use column headers to improve its recall which did not
generalize well. And that results in overfitting and worse results on the test set.

We also study our modeling on the table layout. The first is the hierarchy
of headers. For each cell on the tree, we directly use its text (not extended)
for text embedding. All cells including non-leaf nodes are used. The result is
shown in the “-Hierarchy” row. The F1 score drops by 1.42% after removing
hierarchical information. The second is the component type, which is shown in
the “-Component embedding” row. We observed that the recall of the model
did not decrease, but the precision drops by 2.86%. The lacking of hierarchi-
cal information and component type decreases the effectiveness of the model,
which indirectly proves that the table layout affects the fact-overlapping rela-
tions. Therefore, it is necessary to keep the layout information of the table in
table embedding.
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We also test the symmetric design in the model by replacing symmetric EO

with an asymmetric one using

eO = FFN(concat(e∗
T1
, e∗

T2
)) (14)

instead of Formula (3) in SM. Thus, changing the order of two tables may lead
to different results in this model. We select the one with the highest confidence
as the result of a table pair. The result is shown in the “-Symmetric” row. The
symmetric design outperforms the asymmetric model by 2.26% on F1.

5.3 Case Study

We show two cases in Fig. 4 to show that the SM can correctly attend on cells
related to their overlapping facts. The SM model correctly predicts that both
cases have fact-overlapping relations. We show the table pair A and B in each
case and visualize the summary weights defined in Formula (13). In table A, we
show the summary weight on each cell in Attention2 for e[TAB]. In table B, we
show the weight on each cell in Attention1 for a specific cell in table A. Cells
with darker shading have larger weights.

Table B

Table A

Table B

Table A

40

Case One Case Two

4 is the number of 
heads in our model

Fig. 4. The illustration of the interpretability of SM method by two cases. The selected
data cells have the same fact in each case.

In the first case, Table A is a detailed sheet about “Surplus reserve” with only
one row “Statutory surplus reserve”. Meanwhile, “Surplus reserve” is one of the
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row headers in Table B. Weights in Table A indicate that “(16) Surplus reserve”
and “Statutory surplus reserve” in Table A are important for classification. So, in
table B, we show the weight of each cell corresponding to “(16) Surplus reserve”.
It demonstrates that “December 31, 2017 balance sheet”, “Owner’s equity”,
“Surplus reserves” and “Undistributed profit” are important. That means our
model attends to the correct cells.

In the second case, Table B details the “Fixed assets” that contains the
changes in depreciation of fixed assets. Meanwhile, “Of which: depreciation of
fixed assets” is one of the row headers in Table A. Weights in Table A indi-
cate that “Of which: depreciation of fixed assets”, “Amortization of intangible
assets” and “Long-term deferred expenses amortization” in Table A is impor-
tant for classification. Then, in Table B, we show the importance of each cell
corresponding to “Of which: depreciation of fixed assets”. It demonstrates that
the existences of “Fixed assets” and “Accumulated depreciation” in Table B
cause the importance of “Of which: depreciation of fixed assets” in Table A for
classification.

6 Conclusion

Automatically mining the relations among tables can support multiple applica-
tions. To this end, we propose an attention-based method to solve the problem
of semantic matching over matrix tables. Our method consists of a table embed-
ding that preserves local semantic information of tables, and a symmetric match-
ing network that can discover the local semantic matching on the fine-grained
level between tables and aggregate the local matched semantics for classification.
Experiments reveal that the method works well in the local semantic similarity
task despite the diverse expressions of facts and complex layout of tables. Mean-
while, through case studies, we demonstrate its ability to explain why two tables
are semantically matched.
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Abstract. This paper presents an exhaustive and unified dataset based
on the European Court of Human Rights judgments since its creation.
The interest of such database is explained through the prism of the
researcher, the data scientist, the citizen and the legal practitioner. Con-
trarily to many datasets, the creation process, from the collection of
raw data to the feature transformation, is provided under the form of a
collection of fully automated and open-source scripts. It ensures repro-
ducibility and a high level of confidence in the processed data, which
is some of the most important issues in data governance nowadays. A
first experimental campaign is performed to study some predictability
properties and to establish baseline results on popular machine learning
algorithms. The results are consistently good across the binary datasets
with an accuracy comprised between 75.86% and 98.32% for a micro-
average accuracy of 96.44%.

Keywords: Legal text document integration · Text analytics · Text
document classification

1 Introduction

Machine learning (ML) algorithms are used in multiple domains (e.g., sales,
healthcare, production), as they build prediction models of acceptable quality
and yet explainable. However, the application of ML to the legal domain so far
has received little attention from research communities [4,17], but the need of ML
solutions to support judicial decision is slowly becoming recognized (e.g., study
programs combining artificial intelligence and law at Duke University (USA),
Swansea University (UK), Maastricht University (NL) [1]).

Applying ML algorithms in the law domain is challenging. First, the legal
domain is a messy concept [22] that intrinsically creates some of the most chal-
lenging problems for the ML research community including: gray areas of inter-
pretation, many exceptions, non-stationarity, presence of deductive and induc-
tive reasoning, non-classical logic, multiple and complex legal rules, as well as
semantic complexity of legal acts. Second, there are few large open repositories
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of legal cases, with clean, adequately structured data. As a consequence, it is
challenging to verify ML algorithms on legal data. From the set of ML algorithms
[12], classification is a primary technique for building prediction models in the
legal domain [15].

There exist few initiatives to provide open data repositories on judicial cases,
including the recent one in Australia (AI for Law Enforcement and Community
Safety that supports automated classification of online child exploitation mate-
rial) and Singapore (Intelligent Case Retrieval System that enables retrieval
of relevant precedent cases by means of artificial intelligence tools) [24]. From
the available judicial repositories, the most known ones include: the Supreme
Court of the United States1 and the European Court of Human Rights.2 Even
though these corpora of legal cases are available, multiple information are miss-
ing and an access interface to these repositories is limited (cf., Sect. 2). Moreover,
the content of these repositories has to be pre-processed before ML algorithms
are run on them, as incomplete and inadequately prepared data for ML algo-
rithms strongly impact a quality of built prediction models [8,9,18]. Recently,
we analyzed and experimentally showed that the way data are pre-processed for
classification algorithms impacts the quality of classificators [6,7].

The aforementioned observations motivated us to build and make available
an open, exhaustive, and unified data repository, called ECHR-DB, about legal
cases from the European Court of Human Rights. The repository is accompanied
by a comprehensive processing pipeline, neatly documented and supported by
rich metadata, to provide reusability, repeatability of experiments, and manage-
ability. In details, the paper contributes the following:

1. A benchmark suit for ML algorithms in the law domain, based on the
European Court of Human Rights. The benchmark is composed of: (1) the
ECHR-DB repository that stores almost all cases judged by the European
Court of Human Rights since its creation, cleaned and transformed to ease
the exploration by ML algorithms and (2) 13 standard ML algorithms that
can be immediately run on ECHR-DB.

2. The whole extract-transform-load (ETL) and data transformation
pipeline used to generate the benchmark suit, available as an open-source
project. As a consequence, the whole data ingestion, transformation, and
cleaning processes can be repeated, revised, and extended.

3. A comparison of 13 standard machine learning algorithms for classi-
fication with regards to several performance metrics. These results provide
a baseline for future studies and provide some insights about the interest of
some types of features to predict justice decisions.

The paper is organized as follows. Section 2 presents related work on analytics
in the legal domain. Section 3 outlines the ECHR-DB repository. The process of
creating the repository is discussed in Sect. 4. Section 5 reports the experiments
on the repository. Section 6 summarizes and concludes the paper.

1 http://scdb.wustl.edu/.
2 https://hudoc.echr.coe.int/eng.

http://scdb.wustl.edu/
https://hudoc.echr.coe.int/eng
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2 Related Work

Predicting the outcome of a justice case is challenging, even for the best legal
experts. As shown in [23], 67.4% and 58% accuracy was achieved, respectively for
the judges and the whole case decision, using cases from the Supreme Court of the
United States and a simple ideology estimation of judges and decisions (liberal
versus conservative). Using crowds, the Fantasy Scotus3 project reached 85.20%
and 84.85% correct predictions, respectively. In [15], the authors proposed to
apply an SVM-based classificator and they were able to correctly predict about
75% of the cases.

A success of research in ML for the legal domain depends on the availability
of large datasets of legal cases with judicial decisions. There are a few open
data repositories of judicial cases available. The most known ones include: the
SCOTUS repository4 of the Supreme Court of the United States and the HUDOC
database5 of the European Court of Human Rights. SCOTUS is composed of
structured data (in a tabular format) about every case since the creation of the
court but it lacks textual information about decisions. HUDOC contains all legal
cases with judgments. However, its interface has some flaws, e.g., it does not offer
any API to allow to access several documents at once and case documents are
not unified in the way that they could offer tabular and natural language data.
In other words, despite its public availability, the data are hard to retrieve and
to work with.

The prediction of the Supreme Court of the United States has been widely
studied, notably through the SCOTUS repository [10,11,14]. To the best of our
knowledge, the only predictive models that used the content of HUDOC were
reported in [2,15]. The data used in [2] are far from being exhaustive: only 3
articles considered (3, 6 and 8) with respectively 250, 80 and 254 cases per article.
Using SVM with linear kernel, the authors achieved 79% accuracy to predict the
decisions of the European Court of Human Rights. SVM is also used in [15]
to reach an overall of 75% accuracy on judgment documents up to September
2017. In [17], the author outlined some practical problems in the field of legal
analytics, notably the prediction and the justification problem.

New studies tend to suggest that there will always be a limit in reasoning
systems to handle new cases presenting novel situations [5], which emphasize
the interest for data-centric methods, hence the need for large and adequate sets
of legal data (mainly cases and their justifications) available to researchers and
practitioners. Such datasets should be equipped with: (1) a user-friendly inter-
face to access and analyze the data and (2) rich metadata to offer means for
browsing the content of a repository and to tune ML algorithms. Unfortunately,
the aforementioned databases do not fully meet these requirements. This obser-
vation motivated us to start the project on building an open European Court of
Human Rights repository (ECHR-DB).

3 https://fantasyscotus.lexpredict.com/.
4 http://scdb.wustl.edu/.
5 https://hudoc.echr.coe.int/eng.

https://fantasyscotus.lexpredict.com/
http://scdb.wustl.edu/
https://hudoc.echr.coe.int/eng
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3 ECHR-DB in Brief

The ECHR-DB repository aims at providing exhaustive and high-quality
database for diverse problems, based on the European Court of Human Rights
documents from HUDOC. The main objectives of this project are as follows: (1)
to draw the attention of researchers on this domain that has important conse-
quences on the society and (2) to provide a similar and more complete database
for the European Union as it already exists in the United States, notably because
the law systems are different in both sides of the Atlantic.

ECHR-DB is guided by three core values: reusability, quality and avail-
ability. To reach those objectives:

– each version of the datasets is carefully versioned and publicly available,
including the intermediate files,

– the integrality of the process and files produced are careful documented,
– the scripts to retrieve the raw documents and to build the datasets from

scratch are open-source and carefully versioned to maximize reproducibility
and trust,

– no data is manipulated by hand at any stage of the creation process to make
it fully automatic,

– ECHR-DB is augmented with rich metadata that allow to understand and
use its content more easily.

The database is available at https://echr-opendata.eu under the Open
Database Licence (ODbL). The creation scripts and website sources are pro-
vided under MIT Licence and they are available on GitHub [20].

We extracted, cleaned, and normalized data including descriptive and textual
features gathered from the HUDOC database and judgment files. The final data
provided are available either in a structured or unstructured format:

– The unstructured format is a JSON file containing a list of all the informa-
tion available about each case, including a tree-based representation of the
judgment document (cf., Sect. 4).

– Structured information files are provided to be directly readable by popular
data manipulation libraries, such as panda or numpy. Thus, they are easy to
use with machine learning libraries such as scikit-learn. These fields include
the description of cases in a flat JSON and the adjacency matrix for some
important variables.

4 Database Creation Process

In this section, we outline the process of populating the ECHR-DB repository.
The process of ingesting data is broken down into the following five tasks dis-
cussed in this section: (1) retrieving basic metadata and judgment documents,
(2) cleaning cases, (3) pre-processing documents, (4) normalizing documents,
and (5) generating the repository.

https://echr-opendata.eu
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4.1 Retrieving Basic Metadata and Judgment Documents

Using web scrapping, basic metadata about all entries are retrieved from
HUDOC and saved in JSON files. Common metadata include among others:
case name, the language used, the conclusion in natural language. When avail-
able, we also retrieved the judgments in Microsfot Word format.

4.2 Cleaning Cases

HUDOC includes cases in various languages, cases without judgments, cases
without or with vague conclusions. For this reason, its content needs to be
cleaned before making it available within our project. To clean the content of
HUDOC we applied a standard ETL process [3]. To ensure a high quality and
usability of the datasets, we cleaned and filtered out the cases. As a consequence,
ECHR-DB includes: (1) only cases in English, (2) only cases accompanied by a
judgment document, and (3) only cases with a clear conclusion, i.e., containing
at least one occurrence of violation or no violation.

As part of the ETL process, we also parsed and formatted some raw data:
parties are extracted from a case title and many raw strings are broken down into
lists. In particular, a string listing articles discussed in a case are transformed
into a list and a conclusion string is transformed into a slightly more complex
JSON object. For instance, string Violation of Art. 6-1; No violation of P1-1;
Pecuniary damage - claim dismissed; Non-pecuniary damage - financial award
becomes the following list of elements:
{"conclusion":

[
{ "article": "6",

"element": "Violation of Art. 6-1",
"type": "violation"

},
{ "article": "p1",

"element": "No violation of P1-1",
"type": "no-violation"

},
{ "element": "Pecuniary damage - claim dismissed",

"type": "other"
},
{ "element": "Non-pecuniary damage - financial award",

"type": "other"
}

]
}

In general, each item in the conclusion can have the following elements: (1)
article: a number of the concerned article if applicable, (2) details: a list of
additional information (paragraph or aspect of the article), (3) element : a part
of a raw string describing the item, (4) mentions: diverse mentions (quantifier,
e.g., ’moderate’, country. . .), (5) type: of value violation, no violation, or other.

4.3 Pre-processing Documents

The pre-processing step consists in parsing an MS Word document to extract
additional information and create a tree structure of a judgment file. During
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this process, we extend the set of features of a legal document with field deci-
sion body with the list of persons involved in a decision, including their roles.
The most important extension of a case description is the tree representation of
the whole judgment document, under the field content. The content is described
in an ordered list where each element has two fields: (1) content to describe
the element (paragraph text or title) and (2) elements that represents a list of
sub-elements. This tree representation eases the identification of some specific
sections or paragraphs (e.g., facts or conclusion) or explore judgments with a
lower granularity.

Each judgment has the same structure, which includes the following proper-
ties: (1) Procedure, (2) Facts, (3) Law, further composed of Circumstances of the
Case and Relevant Law, and (4) Operative Provision.

It has been shown in [2] and [15] that each section has a different predictive
power. The representation we propose allows to go further to identify each indi-
vidual paragraph. Each paragraph is an independent statement (e.g., one fact
for the Facts section, one legal argument for the Law section).

4.4 Normalizing Documents

In this task, judgment documents (without the conclusion) are normalized as fol-
lows: (1) tokenization, (2) stopwords removal, (3) part-of-speech tagging followed
by a lemmatization, and (4) n-gram generation for n ∈ {1, 2, 3, 4}.

To construct a dictionary of tokens, we use Gensim (an open-source library
for unsupervised topic modeling and natural language processing) [21]. The dic-
tionary includes the 5000 most common tokens, based on the normalized doc-
uments. The number of tokens to use in the dictionary is a parameter of the
script. The judgment documents are thus represented as a Bag-of-Words and
TD-IDF matrices on top of the tree representation.

To ease data exploration, notably the connections between cases, we gen-
erated adjacency matrices for the following variables: decision body, extracted
application, representatives and Strasbourg case law citations.

5 Experiments: Binary Classification

In this section, we perform a first campaign of experiments on ECHR-DB. Their
goals are twofold. First, to studying the predictability offered by the database.
Second, to provide a first baseline by testing the most popular machine learning
algorithms for classification. In particular, in this paper we have focused the
experiments on determining if a specific article has been violated or not,
which is an instance of the the binary classification problem.

Furthermore, in this experimental evaluation, we are interested in answering
the following four questions: (1) what is the predictive power of the data
in ECHR-DB, (2) are all the articles equal w.r.t. predictability, (3) are some
methods performing significantly better than others, and (4) are all data types
(textual or descriptive) equal w.r.t. predictability?
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All the experiments are implemented using Scikit-Learn [16]. All the exper-
iments and scripts to analyze the results as well as to generate the plots and
tables are open-source and are available on a separated GitHub repository [20]
for repeatability and reusability.

5.1 Data Preparation

From ECHR-DB we created 11 datasets for the binary classification problem
mentioned above. Each dataset comes in different flavors, based on: descriptive
features, bag-of-words representations. These different representations (listed
below) allow to study the respective importance of descriptive and textual fea-
tures in the predictive models build upon the datasets:

1. descriptive features: structured features retrieved from HUDOC or deduced
from the judgment document,

2. bag-of-words (BoW) representation: based on the top 5000 tokens (normalized
n-grams for n ∈ {1, 2, 3, 4}),

3. descriptive features + bag-of-words: combination of both sets of features.

Each of the 11 datasets corresponds to a specific article. We kept only the
articles such that there are at least 100 cases with a clear output, without consid-
eration on the prevalence. Notice that the same case can appear in two datasets
if it has in its conclusion two elements about a different article. A label corre-
sponds to a violation or no violation of a specific article. The final datasets have
been hot-one encoded. A basic description of these datasets is given in Table 1.

Table 1. Datasets description for binary classification.

# cases min #features max #features avg #features prevalence

Article 1 951 131 2834 1183.47 0.93

Article 2 1124 44 3501 2103.45 0.90

Article 3 2573 160 3871 1490.75 0.89

Article 5 2292 200 3656 1479.60 0.91

Article 6 6891 46 3168 1117.66 0.89

Article 8 1289 179 3685 1466.52 0.73

Article 10 560 49 3440 1657.22 0.75

Article 11 213 293 3758 1607.96 0.85

Article 13 1090 44 2908 1309.33 0.91

Article 34 136 490 3168 1726.78 0.64

Article p1 1301 266 2692 1187.96 0.86

Columns min, max, and avg #features indicate the minimal, maximal, and average
number of features, respectively, in the dataset cases for the representation descrip-
tive features + bag-of-words.
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The Bag-of-Words is a rather naive representation that loses a tremendous
amount of information. However, we justify this choice by two reasons. First, so
far, the studies on predicting the violation of articles for the ECHR cases use
only a BoW representation. To be able to compare the interest of the proposed
data with the previous studies, we need to use the same semantic representation.
Second, from a scientific point of view, it is important to provide baseline results
using the most common and established methods in order to be able to quantify
the gain of more advanced techniques. This said, future work will consist in
investigating advanced embedding techniques that are context aware such as
LSTM or BERT-like networks. In particular, we hope not only to improve the
prediction accuracy by a richer semantic, but also being able to justify a decision
in natural language.

5.2 Protocol

We compared 13 standard classification methods: AdaBoost with Decision Tree,
Bagging with Decision Tree, Naive Bayes (Bernoulli and Multinomial), Decision
Tree, Ensemble Extra Tree, Extra Tree, Gradient Boosting, K-Neighbors, SVM
(Linear SVC, RBF SVC), Neural Network (Multilayer Perceptron), and Random
Forest.

For each article, we used three following flavors: (1) descriptive features only,
(2) bag-of-words only, and (3) descriptive features combined with bag-of-words.
For each method, each article, and each flavor, we performed a tenfold cross-
validation with stratified sample, for a total of 429 validation procedures. Due
to this important amount of experimental settings, we discarded the TF-IDF
representation. For the same reason, we did not perform any hyperparameter
tuning at this stage.

To evaluate the performances, we reported some standard performance indi-
cators: accuracy, F1-score and Matthews correlation coefficient (MCC). Addi-
tionally, we report the learning curves to study the limit of the model space.
The learning curves are obtained by plotting the accuracy depending on the
training set size, for both the training and the test sets. The learning curves
help to understand if a model underfits or overfits and thus, shape future axis
of improvements to build better classifiers.

To find out what type of features are the most important w.r.t. predictability,
we used a Wilcoxon signed-rank test at 5% to compare the accuracy obtained on
bag-of-words representation to the one obtained on the bag-of-words combined
with the descriptive features. Wilcoxon signed-rank test is a non-parametric
paired difference test. Given two paired sampled, the null hypothesis assumes
the difference between the pairs follows a symmetric distribution around zero.
The test is used to determine if the changes in the accuracy is significant when
the descriptive features are added to the textual features.
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5.3 Results

Table 2 shows the best accuracy obtained for each article as well as the method
and the flavor of the dataset. The detailed results per article are available at
[19]. For all articles, the best accuracy obtained is higher than the prevalence.
Linear SVC offers the best results on 4, out of 11 articles. Gradient Boosting
accounts for 3, out 11 articles and Ensemble Extra Tree accounts for 2 articles.

Table 2. The best accuracy obtained for each article.

Article Accuracy Method Flavor

Article 1 0.9832 (0.01) Linear SVC Descriptive features and Bag-of-Words

Article 2 0.9760 (0.02) Linear SVC Descriptive features and Bag-of-Words

Article 3 0.9588 (0.01) BaggingClassifier Descriptive features and Bag-of-Words

Article 5 0.9651 (0.01) Gradient Boosting Descriptive features and Bag-of-Words

Article 6 0.9721 (0.01) Linear SVC Descriptive features and Bag-of-Words

Article 8 0.9542 (0.03) Gradient Boosting Descriptive features and Bag-of-Words

Article 10 0.9392 (0.04) Ensemble Extra Tree Bag-of-Words only

Article 11 0.9671 (0.03) Ensemble Extra Tree Descriptive features and Bag-of-Words

Article 13 0.9450 (0.02) Linear SVC Descriptive features only

Article 34 0.7586 (0.09) AdaBoost Descriptive features only

Article p1 0.9685 (0.02) Gradient Boosting Descriptive features and Bag-of-Words

Average 0.9443

Micro average 0.9644

The standard deviation is rather low and ranges from 1% up to 4%, at the
exception of article 34, for which it is equal to 9%. This indicates a low variance
for the best models. The accuracy ranges from 75.86% to 98.32%, with the
average of 94.43%. The micro-average that ponders each result by the dataset
size is 96.44%. In general, the datasets with higher accuracy are larger and more
imbalanced. For the datasets being highly imbalanced, with a prevalence from
0.64 to 0.93, other metrics may be more suitable to appreciate the quality of the
results. In particular, the micro-average could simply be higher due to the class
imbalance rather than the availability of data.

Regarding the flavor, 8 out 10 best results are obtained on descriptive features
combined to bag-of-words. Bag-of-words only is the best flavor for article 10,
whereas descriptive features - only for article 13 and article 34. This seems to
indicate that combining information from different sources improves the overall
results.

Figure 1 displays the normalized confusion matrix for the best methods on
article 1 and 13. Similar results are observed for all the other articles. The
normalization is done per line and allows to quickly figure out how the true
predictions are balanced for both classes. As expected due to the prevalence,
true negatives are extremely high, ranging from 0.82 to 1.00, with an average
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of 97.18. On the contrary, the true positive rate is lower, ranging from 0.47 to
0.91. For most articles, the true positive rate is higher than 80% and it is lower
than 50% only for article 34. This indicates that the algorithms are capable of
producing models that are fairly balanced despite the fact that the
classes are highly imbalanced.

Fig. 1. Normalized confusion matrices for the best methods from Table 2.

Additionally, we provide the Matthew Correlation Coefficient (MCC) in
Table 3. The MCC is generally superior to the accuracy because it takes into
account the class prevalence. Therefore, it is a much better metric to estimate
the model quality. In particular, contrarily to other studies, we decided to not
rebalance the dataset because, as shown below, the model underfits. Therefore,
the accuracy metric would not allow us to properly compare our approach to the
previous studies since we could have a high accuracy but not significantly higher
than the prevalence. The MCC ranges from 0.4918 - on article 34 to 0.8829 - on
article 10. The best score is not obtained by the same article as for the accuracy
(article 10 achieved 93% accuracy, below the average). Interestingly, the MCC
reveals that the performances on article 34 are rather poor in comparison to the
other articles and close to the performance on article 13. Surprisingly, the best
method is not Linear SVC anymore (best on 3 articles) but Gradient Boosting
(best on 4 articles). While the descriptive features were returning the best results
for two articles, according the MCC, it reaches the best score only for article 34.

Once again, the micro-average is higher than the macro-average. As the MCC
takes into account class imbalance, it supports the idea that adding more cases
to the training set could still improve the result of these classifiers. This will be
confirmed by looking at the learning curves.

Table 4 ranks the methods according to the average accuracy performed on
all articles. For each article and method, we kept only the best accuracy among
the three dataset flavors.

Surprisingly, neither Linear SVC nor Gradient Boosting are the best methods
with a respective rank of 2 and 5, but the best one is Ensemble Extra Tree.
Random Forest and Bagging with Decision Tree are the second and third ones,



On Integrating and Classifying Legal Text Documents 395

Table 3. Best Matthews Correlation Coefficient obtained for each article. The flavor
and method achieving the best score for both metrics are similar for every article.

Article MCC Method Flavor

Article 1 0.8654 Linear SVC Descriptive features and Bag-of-Words

Article 2 0.8609 Linear SVC Descriptive features and Bag-of-Words

Article 3 0.7714 BaggingClassifier Descriptive features and Bag-of-Words

Article 5 0.7824 Gradient Boosting Descriptive features and Bag-of-Words

Article 6 0.8488 Linear SVC Descriptive features and Bag-of-Words

Article 8 0.8829 Gradient Boosting Descriptive features and Bag-of-Words

Article 10 0.8411 Gradient Boosting Bag-of-Words only

Article 11 0.8801 Ensemble Extra Tree Descriptive features and Bag-of-Words

Article 13 0.5770 Ensemble Extra Tree Bag-of-Words only

Article 34 0.4918 AdaBoost Descriptive features only

Article p1 0.8656 Gradient Boosting Descriptive features and Bag-of-Words

Average 0.7879

Micro average 0.8163

Table 4. Overall ranking of methods according to the average accuracy obtained for
every article.

Method Accuracy Micro Accuracy Rank

Ensemble Extra Tree 0.9420 0.9627 1

Linear SVC 0.9390 0.9618 2

Random Forest 0.9376 0.9618 3

BaggingClassifier 0.9319 0.9599 4

Gradient Boosting 0.9309 0.9609 5

AdaBoost 0.9284 0.9488 6

Neural Net 0.9273 0.9535 7

Decision Tree 0.9181 0.9419 8

Extra Tree 0.8995 0.9275 9

Multinomial Naive Bayes 0.8743 0.8907 10

Bernoulli Naive Bayes 0.8734 0.8891 11

K-Neighbors 0.8670 0.8997 12

RBF SVC 0.8419 0.8778 13

Average 0.9086 0.9335

respectively, and they never achieved the best result on any article. It simply
indicates that these methods are more consistent across the datasets than Linear
SVC and Gradient Boosting.

Figure 2 displays the learning curves obtained for the best methods on arti-
cles 10 and 11. The training error becomes (near) zero on every instance after
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only few cases, except for article 13 and 34. The test error converges rather fast
and remains relatively far from the training error, synonym of high bias. Those
two elements indicate underfitting. Similar results are observed for all methods.
Usually, more training examples would help, but since the datasets are exhaus-
tive w.r.t. the European Court of Human Rights cases, this is not possible. As
a consequence, we recommend using a more complex model space and hyperpa-
rameter tuning. In particular, as mentioned above, the usage of more advanced
embedding techniques is an obvious way to explore. Finally, an exploratory anal-
ysis of the datasets may also help in removing some noise and finding the best
predictors.

If we assume that the process of deciding if there is a violation or not is the
same, independently of the article, a solution might be a transfer learning, to
leverage what is learnable from the other articles. We let this research axis for
future work.

Fig. 2. Learning curves for the best methods as described by Table 2.

Finally, we used a Wilcoxon signed-rank test at 5% to compare the accuracy
obtained on the bag-of-words representation to the one obtained on the bag-
of-Words combined with the descriptive features. The difference between the
samples has been found to be significant only for article 6 and article 8. The
best result obtained on bag-of-Words is improved by adding descriptive features
for every article. However, statistically, for a given method, adding descriptive
features does not improve the result. This could be explained by the fact that
descriptive features are rather poor predictors such that adding them to the Bag-
of-Words can be considered as some noise that does not help to build a better
model. Additionally, we performed the test per method. The result is significant
for any method.

In conclusion, the datasets demonstrated a strong predictability power. Apart
from article 13 and 34, each article seems to provide similar results, indepen-
dently of the relatively different prevalence. If the accuracy is rather high, a
more informative metric, such as MCC, shows that there are still margins of
improvements. Hyperparameter tuning [18] is an obvious way to go, and this
preliminary work has shown that good candidates for fine tuning are Ensemble
Extra Tree, Linear SVC, and Gradient Boosting.
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5.4 Discussion

To sum up, we achieved an average accuracy of 94% which is respectively 15pp
and 19pp higher than [2] and [15]. The size of the dataset does matter since we
showed that the model underfits. Also, we showed that SVM is far from being
the best method for all articles. However, such a huge gap cannot be explained
only by those two factors.

In our opinion, the main problem with the previous studies is that the authors
rebalanced their datasets. As those datasets were highly imbalanced, they used
undersampling, which resulted in a very small training dataset. Most likely, the
training dataset was not representative enough of the feature space which leads to
underfitting (even more than in our experiments). They justified that rebalancing
was necessary to ensure that the classifier was not biased towards a certain class.
For this reason, we argue that they modified the label distribution. As some
classification methods rely on the label distribution to learn, they introduce
themselves a prior shift [13]. In general, rebalancing is necessary only when,
indeed, the estimator is badly biased. It is true that the accuracy is meaningless
on imbalanced datasets but we can still control the quality of the model using
a collection of more robust indicators, including among others: F1-score, MCC,
and normalized confusion matrices. In other words, our approach (discussed in
this paper) is more neutral in the sense we do not change the label distribution,
and it still offers a robust classifier.

This experimental campaign has demonstrated that the textual information
provides better results than descriptive features alone, but the addition of the
descriptive feature improved in general the result of the best method. We empha-
sise the best method (obtained among all methods) because for a given method
adding the descriptive feature are not significantly improving the results.

Another way of improving the results is to tune the different phases of the
dataset generations. In particular, our preliminary work reported in [18] has
shown that 5000 tokens and 4-grams might not be enough to take the best out of
the documents. It might seem surprising, but the justice language is codified and
standardized in a way that n-grams for large n might contain better predictors
for the outcome.

6 Conclusion

In this paper, we presented an open repository, called ECHR-DB, of legal cases
and judicial decision justifications. The main purposes of constructing the repos-
itory are as follows. First, to provide cleaned and transformed content from the
repository of the European Court of Human Rights, that is ready to use by
researchers and practitioners. Second, to augment original legal documents with
metadata, which will ease the process of analyzing these documents. Third, to
provide a benchmark with baseline results for classification models in the legal
domain, for other researchers.

Currently, ECHR-DB is the largest and most exhaustive repository of legal
documents from the European Court of Human Rights. It includes several types
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of data that can be easily used to reproduce various experiments that have been
done so far by other researchers. We argue that providing the final data is not
enough to ensure quality and trust. In addition, there are always some opinion-
ated choices in the representation, such as the number of tokens, the value of n
for the n-grams calculation or the weighting schema in the TF-IDF transforma-
tion. As a remedy, we provide the whole process of dataset construction from
scratch. The process is implemented by means of Python scripts and available
on GitHub.6

The experiments on ECHR-DB provide a baseline for future work on classi-
fication. The predictability power of each dataset has been tested for the most
popular machine learning methods. We achieved the average accuracy of 0.9443.
The learning curves have shown that the models are underfitting but, as the
datasets are exhaustive, it is not possible to provide more examples. We showed
that the textual features help in determining the outcome. Combining descriptive
and textual features always help for the best classifier, but overall, the results
are not better statistically. Descriptive features surprisingly hold reasonable pre-
dictive power.

The preliminary experiments provide several axes of improvements, e.g., bet-
ter embedding with state of the art encoders, hyperparameter tuning, multi-stage
classifier, and transfer learning. From the results, it seems clear that predicting
if an article has been violated or not can be handled with the current state of
the art in artificial intelligence. However, many interesting questions and prob-
lems arise from the proposed repository, e.g. can we provide legal justification in
natural language to a prediction?, which will be addressed in the future work.
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6. Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: Intelligent assistance for data
pre-processing. Comput. Stand. Interfaces 57, 101–109 (2018). https://doi.org/10.
1016/j.csi.2017.05.004
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Abstract. Failure rates of Hard Disk Drives (HDDs) are high and often
due to a variety of different conditions. Thus, there is increasing demand
for technologies dedicated to anticipating possible causes of failure, so to
allow for preventive maintenance operations. In this paper, we propose a
framework to predict HDD health status according to a long short-term
memory (LSTM) model. We also employ eXplainable Artificial Intelli-
gence (XAI) tools, to provide effective explanations of the model deci-
sions, thus making the final results more useful to human decision-making
processes. We extensively evaluate our approach on standard data-sets,
proving its feasibility for real world applications.

Keywords: HDD maintenance · LSTMs · Explainable AI

1 Introduction

IT infrastructures can be affected by data center’s equipment failures, whose
downtime costs have been growing significantly—ranging, for instance, from
5,600/min. in 2010 to 8,851/min. in 2016 [10]. As Hard Disk Drives (HDDs) have
become a primary type of storage in data centers, HDD failure-rate is now one
of the main factor for data center downtime, unavailability, and data loss—with
obvious effects on overall business costs [4,13]. Additionally, HDDs’ reliability
is affected by the complex interaction of a variety of factors (i.e., temperatures,
workloads), which are difficult to address directly.

Monitoring HDD’s internal status is thus fundamental to reduce overhead
costs due to downtime scheduling maintenance on the basis of self-monitoring,
analysis, and reporting technology (SMART, [1]) for improving its availabil-
ity and extending its life. While efficient planning of maintenance operations is
clearly valuable, more modern approaches have been focused on proactive analy-
sis: predictive strategies to identify HDDs’ status in terms of binary classification
(healthy or faulted).
c© Springer Nature Switzerland AG 2020
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Obviously, a plethora of approaches have been proposed with this aim, most
of them using SMART attributes to predict disk replacement ahead of failure
[4,9]. However, health assessment of HDDs based on SMART statistics is not a
trivial task, in particular if we are interested in estimating how much functioning
time a specific HDD has left (remaining Useful Life, RUL). In particular, the
historical data available about HDDs is highly imbalanced, with the majority
of information available only describing healthy hard drives. Thus, any efficient
solution to health status prediction will have to deal with this issue.

In this paper, we propose a framework that predicts HDD health status,
exploiting the peculiarities of LSTMS to take advantage of the variation is
SMART attribute values over time. In doing so, we address one of the biggest
challenges to the use of deep learning approaches in predicting HDD health sta-
tus: namely, the imbalanced nature of the available data-sets. Moreover, we show
how explainable artificial intelligence tools can we used to probe the results of
our model, and support practitioners in their decision-making.

The paper is organized as follows. Section 2 briefly summarises state-of-art
approaches for HDD health status prediction, and eXplainable Artificial Intelli-
gence (XAI). Section 3 provides details about our approach to the health predic-
tion issue. In Sect. 4, we provide an extensive empirical evaluation of our model,
compared so state-of-the-art solutions in the literature. We also show how our
model’s decisions are made interpretable by the use of XAI tools. Section 6 briefly
summarizes our results, and suggests areas for future work.

2 Related Work

The past decade has seen the rise of deep learning techniques applied to pre-
diction tasks in a variety of domains (for a recent review, see [14] a.o.). Gener-
ally, it is difficult to cover the entire process in which disk’s health deteriorates
and forecast when disk drives will fail in the future. Due to a common lack of
diagnostic information of disk failures, the majority of approaches relies on the
Self-Monitoring, Analysis and Reporting Technology (SMART) data and explore
statistical analysis techniques to identify the start of disk degradation. Botezatu
et al. [4] propose a disk replacement strategy that predict disk replacement ahead
of failure, by using a changepoint-based feature selection strategy, and a com-
pact representation of the time series data for the SMART indicators. Similarly,
it has been shown that dynamic tracking methods based on a Rao-Blackwellized
particle filter can been also provide online predictions [16]. The core idea being
the use a dynamic failure threshold which exploits the statistical property of
the tracking residuals. Importantly, the decision process that most of these tech-
niques use to arrive at a specific outcome is often be opaque to human users.
However, understanding why a certain prediction was made is essential in the
context of effective HDD maintenance, as human users have to trust these models
enough to use their outcomes to schedule costly preventive strategies. This is the
goal of eXplainable Artificial Intelligence (XAI) systems (see [6], a.o.), which can
be classified, according to the granularity of their analysis, into local and global
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categories. Local XAI methods aim to explain a deep learning model’s outcome
on the basis of local information around the prediction. For instance, Baehrens
et al. [2], measure local gradients to identify exactly in which ways changing
the input affects the prediction. Similarly, Robnik-Sikonja et al. [12] presents a
feature importance method which computes the differences between a prediction
and the obtained solution. Finally, the model-agnostic (LIME ) method in [11] is
based on an algorithm that faithfully explains the predictions of any classifier,
by approximating it locally with a fully interpretable model.

The techniques summarized above focus on local explanations to achieve an
overall explanation of a deep learning model. However, other techniques aim to
build global explanations explicitly. Two popular methods of this latter kind
rely on features importance to explain tree models: the Global Mean Decrease
in Impurity (MDI, [5]) method—which uses splits’ number of samples—and the
Mean Decrease in Accuracy (MDA, [7]) method—computing a model’s mean
increase error on the basis of random permutation of the features. Directly
related to the issues discussed in this paper, Xie et al. [18] present a XAI system
explicitly designed for disk failure prediction, which is able to infer the predic-
tion rules learned by a model, in order to make the failure prediction process
transparent. In what follows, we discuss an approach to estimate the HDD health
status based on the analysis of SMART attributes to analyze the Remaining Use-
ful Life (RUL). We also show how XAI tools can be used to probe the rationale
behind our model’s classification decisions.

Fig. 1. The proposed schema: Hard drive health degree definition; Sequences extrac-
tion; Health Status assessment through LSTM; XAI Explainer of HDD Health Status.

3 Methodology

Since hard drives often deteriorate gradually rather than abruptly, we argue
that temporal analysis methods are more appropriate than methods that do not
consider time when modeling the sequential nature of the dependencies within
SMART attributes. Thus, we suggest an approach to estimate and explain the
RUL of a HDD, by automatically identifying specific health conditions on the
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basis of SMART attributes values. This methodology is grounded in four main
steps (Fig. 1): i) Hard drive health degree definition; ii) Sequences extraction; iii)
Health Status assessment through LSTM ; iv) Explainer of HDD Health Status
via XAI tools.

3.1 Health Degree Definition

In this step we consider only the hard drives that are going to fail, introducing for
each of them an additional feature representing the time before failure. Denoting
with mj be the number of samples for the hard disk j, it is possible associate
each sample with an index i from 0 to mj−1, representing the number of samples
that follow it in the sequence describing hard disk failure. As a consequence, the
sample with index i = 0 is the last sample before failure. Time-to-failure is the
feature representing the time before failure for each hard drive whose meaning
depends on sampling period while f1, f2, . . . , fn are the SMART attributes.
Our idea is to build a Regression Tree (RT) for each SMART attribute fi with
i = 1, 2. . .n, having the feature representing the time before failure as predictor
and fi as the numeric target value. Among all the resulting trees (one for each
SMART attribute fi), the one with the highest performance is selected, showing
the attribute most temporally dependent. Since the selected Regression Tree
(RT) presents splits only on the feature Time-to-failure, the latter is used to
distinguish hard drive health levels according to time before failure. In Fig. 1
is reported an example of hard drive health levels identification by means of
the Regression Tree algorithm. Each internal node represents a split on the
feature Time-to-failure, resulting in the definition of four health degree levels.
The samples belonging to hard drives that will not fail are labelled as Good by
default.

3.2 Sequence Extraction

We extract feature sequences over specific time windows (TW), to explore the
temporal dependencies within the SMART features periodically collected for
each hard drive. Let w and at be the time window size and the set of SMART
features (f1, f2. . .fn) at time t, respectively. Our model aims to predict hard drive
health status at time t+1 (Hs(t+1)) considering the sequence (at−w+1. . . , at−1,
at). For each at, the health status Hs(t) is defined, and the feature sequence for
each hard drive at time t is extracted considering the w − 1 previous samples.
Each sequence results in a bi-dimensional array of size w× n, where n is the num-
ber of SMART features considered. For each hard drive, sequences are extracted
with a stride of one. It follows that mj −w + 1 sequences are extracted for each
hard drive, where mj is the number of samples for the disk j. For each sequence
(at−w+1. . . , at−1, at), the hard drive’s health level is defined by the health level
of the set of features at+1. The result of this step is a sequence-based data-set.
More specifically, the data-set consist of bi-dimensional arrays, each associated
to a health level representing the hard drive’s health condition between two
consecutive samples (i.e., at and at+1).
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3.3 Health Status Assessment Through LSTMs

This step consists of a multiclass classification task, where each feature sequence
is assigned to one of the classes (health levels) introduced in Sect. 3.1. Due to
the sequential, gradually changing nature of the SMART features, it is impor-
tant that our model is able to capture dependencies across features over time.
Long Short Term Memory networks (LSTMs) are extension to recurrent neural
networks, explicitly designed with the purpose of learning long-term dependen-
cies. They are widely used nowadays, as they work tremendously well on a large
variety of problems. In our framework, the input to each LSTM layer is a three-
dimensional data structure of size z × w × n, where: i) z, is the the total
number of sequences (or the batch size at each iteration); ii) w is the size of each
sequence—i.e., the size of a time window in terms of time steps; iii) n is the total
number of features describing each time step. The implemented network has two
stacked LSTM layers with 128 units, followed by a single dense layer.

3.4 Explainer of HDD Health Status Through SHAP

Finally, each extracted sequence is explained by means a model-agnostic XAI
tool: SHapley Additive exPlanations (SHAP, [8]) assigning to each feature of a
model, an importance value for a specific prediction. All testing sequences are
classified by the LSTM model, delivering a confusion matrix. Denoting by i and
j the row and column indexes—i = 1, 2, . . . , n and j = 1, 2, . . . , n with n the
number of classes—respectively, each element is identified as aij and represents
the number of instances of i class classified as j. Let Sij be the sequences of
the test set belonging to class i but classified as j, our aim is to explain this
misclassification, to understand each predicted class characteristic.

4 Evaluation

We test the prediction performance of the model on Backblaze SMART data-
set,1 and then compare its performances against three popular methods in the
existing literature: a Classification Tree (CT) model, a Random Forest (RF)
model, and a model based on Multiclass Neural Networks (MNN). In particular,
we used the Backblaze data-set that contains daily data collected from 50,984
hard disks. We focused on samples belonging to Seagate ST4000DM000, since
it is the most populated model in data-set (29, 878 disks in total; 29, 083 good
disks and 795 failed disks). Among all SMART attributes, the most influen-
tial attributes have been selected after a feature selection phase.2 Finally, the
values for every SMART attribute were scaled to the interval [−1, 1]. Data pre-
processing consisted of two main steps: Features Selection and Health degree com-
putation. In the first step, the features Reallocated Sectors Count and Current

1 https://www.backblaze.com/b2/hard-drive-test-data.html.
2 https://www.backblaze.com/blog/hard-drive-smart-stats/.

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/blog/hard-drive-smart-stats/
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Pending, Sector Count were removed in order to preserve their raw values—
that is the features Raw Value of Reallocated Sectors Count and Raw Value
of Current Pending Sector Count—since the latter seem more sensitive to the
health condition of hard drives. We also excluded the feature representing disk
capacity. Importantly, the attributes failure and Serial Number are necessary in
order to distinguish between failed and good hard drives and to create sequences
for each hard drive. However, they are not taken into account during sequence
classification. For good hard drives, each sample was associated to the health
degree level Good, while for failed hard drives, their remaining functioning time
depends on the number of samples collected for said device. In the Health degree
computation step, we focused on the last q samples of each failed hard drives,
where q is a prediction window that determines the period in which hard drive
health status should be assessed. Specifically, our approach is able to predict
hard drive health status q days before failure. We explored different values for
q, from 15 to 45 days. After choosing the value for q, hard drive health levels
are defined according to Sect. 3.1. Since the Backblaze data-set contains daily
samples for each hard drive, the feature Time-to-failure has been renamed Day
to failure. We then selected the regression tree built with the feature Raw value
of Current Pending Sector Count. We then introduced a different level for those
hard drives that will not fail. When q is set to 30 or 45, the result is the definition
of 4 levels, labelled Alert, Warning, Very Fair and Good. In turn, if q is set to
15, we define 3 levels, labelled Alert, Warning and Good. The levels Good and
Very Fair represent HDDs still in good health conditions. Therefore, we classify
a hard drive as being in a Good status, if its health level is characterized as Good
or Very Fair while a hard drive is classified as being in a Failed Status, if its
health level is in Warning or Alert.

4.1 Experimental Setup

We propose an automatic step for hard drive health levels definition, building a
Regression Tree (RT) for each SMART attribute fi, with the feature representing
the hours before failure as predictor. The selected tree consider the SMART
attribute Raw Value of Current Pending Sector Count as numerical target value.
The function measuring the quality of a split is the mean squared error (mse).
The minimum number of samples required for leaf node in the Regression Tree
is 1830, 1380, and 1200 with q = 45, q = 30 and q = 15 respectively. We evaluate
our model with respect to three of the sequence independent methods most used
in the literature: CT, a RF, and a MNN. These models are sequence independent
because they generalize over input samples rather than sequences, and thus
don’t take the temporal dependencies of the SMART attributes into account. We
implement the RT, CT and RF models using the Python scikit-learn package,
and we use Keras with Tensorflow as the backend for LSTM and Multiclass NN
models. As standard for this kind of techniques, the original SMART data-set
was divided into training, validation and test sets. More specifically, we take the
70% of the data as training set, the 15% as validation set and the remaining data
as test set. Downstream of the parameters optimization, the number of trees for
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RF is set to 210 and the minimum number of samples required for leaf node in
CT is 20. During the training phase of the LSTM and Multiclass Neural Network
models, the maximum number of epochs is set to 10, and the batch size to 500.
We use Adam as an optimizer, with learning rate set to 0.001.

The performance of our approach is first evaluated in terms of accuracy, pre-
cision, and recall. Since the distinction between good and failed hard drives is
preserved in the labelling of the data-set, we express the results in term of accu-
racy on good sequences (ACCG) and accuracy on failed sequences (ACCF )—
respectively, the fraction of sequences correctly classified as Good, and the frac-
tion of sequence classified as the health levels suggested by the regression trees.
We also measure the accuracy of classifying good and failed sequences for a
tolerance of misclassification up to one health level (ACCTOL

G and ACCTOL
F ).

Finally, we evaluate performance in terms of failure prediction, by assessing fail-
ure detection rate (FDR) and false alarm rate (FAR) for each model. This is
done by considering the levels Good, Very Fair as Hard drive good statuses; and
the levels Warning, Alert as Hard drive failed statuses. Intuitively, FDR is the
fraction of failed sequences that are correctly classified as failed, while FAR is
the fraction of good sequences that are incorrectly classified as failed.

5 Results

Table 1 shows results of our LSTM based approach. Performance is reported for
different sizes of the time window (TW) used in the sequence extraction step.
We explored time window sizes from 5 to 15 days.

Table 1. Performance values for the LSTM models obtained by varying prediction
window (q) and TW size on the Backblaze data-set.

q [day] TW

SIZE

[day]

Accuracy Precision Recall ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR

15 5 95.88% 96.90% 95.10% 97.28% 66.56% 97.89% 98.08% 75.53% 2.82%

15 7 95.81% 97.10% 96.00% 97.02% 70.27% 97.93% 98.45% 79.34% 2.70%

30 5 94.54% 96.50% 94.60% 96.38% 56.07% 97.68% 88.30% 76.03% 2.73%

30 7 93.93% 96.80% 94.40% 95.59% 59.15% 97.07% 89.37% 80.70% 3.29%

30 10 95.25% 97.40% 96.10% 96.84% 61.84% 97.59% 91.35% 85.48% 2.73%

45 5 94.45% 96.70% 94.93% 95.95% 66.16% 97.80% 90.67% 78.30% 2.50%

45 7 95.82% 97.00% 95.85% 97.28% 68.34% 98.12% 89.37% 77.75% 2.17%

45 10 96.56% 97.72% 96.82% 97.71% 75.08% 98.36% 93.30% 84.18% 1.83%

45 14 98.45% 98.33% 98.34% 99.21% 84.49% 99.40% 96.65% 91.48% 0.72%

For the latter time-interval, we considered a prediction window (q) varying
from 15 to 45 days. As expected given the ability of LSTMs to learn long-distance
dependencies, the best results are obtained with a time window spanning 15 days.
Table 2a reports results for a set of sequence independent models previously
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explored in the literature, taking hourly samples as input rather than sequences.
The best results in terms of accuracy on failed sequences are obtained with
MNN. Overall though, these results show that sequence dependent approaches
provide higher performance than a sequence independent methodologies.

Table 2. (a) Results of sequence independent models on the Backblaze data-set. (b)
Results of best model on the Backblaze data-set detailed by each class.

(a)

Model Accuracy ACCG ACCF ACC TOL
G ACC TOL

F FDR FAR

CT 83.80% 83.87% 56.31% 95.63% 88.46% 63.58% 4.69%
RF 85.77% 85.77% 71.75% 93.68% 93.82% 80.66% 6.49%
MNN 96.17% 99.15% 39.78% 99.88% 69.20% 85.75% 0.95%

(b)

Metric Good Very Fair Warning Alert

Accuracy 99.21% 87.80% 78.10% 84.42%
Precision 99.90% 69.40% 64.70% 73.10%
Recall 98.80% 87.80% 78.10% 84.40%

Finally, Table 2b reports the performance of our best models detailed by each
class.

Table 3. Comparison of our best model (LSTM - TW = 14 days and q = 45 days)
on the Backblaze data-set with previously proposed models on the hard drive health
status assessment and failure prediction tasks ((a) (b) respectively).

(a)

Author Methods Accuracy Precision Recall
Zhang et al.[19] LPAT+All 92.6% 89.3% 88.7%
Basak et al.[3] LSTM — 84.35 72.0%
Our Approach LSTM 98.45% 98.33% 98.34%

(b)

Author Methods FDR FAR

Shen et al.[15] RF 94.89% 0.44%
Xiao et al.[17] ORF 98.08% 0.66%
Our Approach LSTM 98.20% 0.20%

We also compared our methodology to other sequence dependent approaches,
which had been tested on the SMART data-set. Tables 3a and 3b compare our
best results with different approaches for hard drive health status assessment
and hard drive failure prediction tasks. In particular, Table 3a and 3b compare
our best result with some other state-of-the-art methods in the literature: Zhang
et al. [19], a method based on adversarial training and layerwise perturbation
(LPAT); Basak et al. [3], an LSTM-based prediction model for RUL estimation;
Shen et al. [15] and Xiao et al. [17], a prediction model based on part-voting
Random Forest and Online Random Forest. Our proposal outperforms all these
models in terms of accuracy on failed sequences, FDR, and FAR both for hard
drive health status assessment and hard drive failure prediction tasks. Impor-
tantly, experimental results demonstrate that our approach is feasible for HDD
health status assessment task due to the pre-processing phase and the defini-
tion of a specific model (LSTM) relying on temporal sequence. Finally, SHAP
tools are used to explain each extracted sequence. To minimize the number of
false negative alarms, we are interested in explaining why samples are not placed
in the damaged class—that is, Alert. We focused on the damaged class because
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HDDs are the main cause of downtime and unavailability for a data center. Since
the cost of their replacement has a significant impact on the business continuity
and financial resources of a company, we argue that an accurate analysis of these
cases is not only desirable, but necessary.

(a) (b)

(c)

Fig. 2. Summary plot of Good sequences classified as Good.

Figure 2a and Fig. 2b show summary plots combining feature importance with
feature impact on model output. Specifically, the y-axes shows features ordered
by importance, and and the x-axis shows the related SHAP values. Moreover,
each point is characterized by a color representing the feature values from low to
high. Temperature Celsius (TC), Seek Error Rate(SER), Power on Hours (PoH)
and Spin Up Time (SUT) are the most important features. As can be seen from
the plots above, the most important features for the sequences classified as part
of the Good class are: i) TC, which is almost always low; ii) PoH, with high
value; iii) SER, which often assumes low values; iv) SUT, with low values. On
the other hand, for the sequences classified as belonging to the Alert class the
most important features are: i) SER, which always assumes high values; ii) PoH
with low values; iii) TC, which often assumes high values; iv) SUT that takes
high values. Finally, Fig. 2c reports an example of a false negative sequence with
true class Alert, and classified with Good. This plot highlights the causes that
led to an incorrect classification: SER and Raw Read Error Rate contain some
outliers (low values) which have a greater impact on the output than the other
(high values); moreover, SUT often assumes low values. Overall, these results
show the advantages of employing XAI techniques in conjunction with deep
learning models. In the case of HDD failure detection, the insights gained from
XAI-based analysis helps identify false negatives cases. It should be possible to
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use this additional information to define better maintenance plans, this allowing
companies to optimize operating costs, and increase the reliability of the provided
services.

6 Conclusions and Future Works

This paper proposes a methodology to perform hard drive health status assess-
ment, by relying on an LSTM model to exploiting the temporal dependencies
of SMART attributes. Our approach is also effective in addressing the issue of
highly imbalanced data-sets. An extensive empirical evaluation on big data-sets
shows the feasibility of the proposed approach for real applications. Moreover,
our model outperforms a variety of existing state-of-the-art approaches. Finally,
we have argued how XAI tools can improve HDD preventive maintenance sys-
tems, by providing a transparent interpretation of the model’s prediction. In the
future, it will be interesting to further assess the contribution to XAI technolo-
gies to the design of accurate HDD health supervision strategies.
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Abstract. An improved software defects prediction algorithm based on com-
bination of Kohonen map and hierarchical clustering is presented in this paper.
The need for software reliability assessment and analysis growths rapidly due to
increasing dependence of our day-to-day life on software-controlled devices and
systems. Software reliability prediction is the only tool available at early stage of
software development lifecycle when the debugging cost risk of faulty operation
is minimal. Artificial intelligence and machine learning in particular are
promising techniques to solve this task. Various classification methods have
been used previously to build software defect prediction models, ranging from
simple, like logistic regression, to advanced methods, e.g. multivariate adaptive
regression splicing. However, the available literature still does not allow to make
unambiguous conclusion concerning the choice of the best classifier and trying
different dimensions to overcome potential bias is suggested. The purpose of the
paper is to analyze the software code metrics to find dependences be-tween
software module’s defect-proneness and its metrics. JM1 public NASA dataset
from PROMISE Software Engineering Repository was used in this study. To
increase the classification accuracy, we combine self-organizing maps with
hierarchical clustering and data preprocessing.
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1 Introduction

The rapid development of information technology and artificial intelligence (AI) has
led to the fact that we can hardly imagine the daily human activities without computer
systems, including embedded and mobile ones. Automated systems manage a variety
of technical devices performing safety-critical functions, ranging from nuclear power
plants to autonomous vehicles controlled by AI. An integral part of all these systems is
software that either performs a control function or implements artificial intelligence
algorithms. The failure cost for such software is very high, which can result in events of
different severity ranging from economic losses to harm to human life and health.
Hence, with increasing responsibility of computer systems functioning the require-
ments for their reliability, safety and dependability heavily increase. To meet these
requirements, there are two major challenges to be addressed: assessing the reliability
of complex technical systems and designing such systems with a given level of reli-
ability and safety. However, it is no longer enough to assess the reliability of only the
hardware component of such systems, as it was done previously for purely hardware
electronic systems. Software has become a crucial part of such devices and systems.
There is probably no other human-made material which is more omnipresent than
software in our modern society [1]. Therefore, the need for software reliability
assessment and analysis become nowadays increasingly relevant.

The cost of bug fixing is increasing rapidly in the later stages of the software life
cycle, which causes growing interest in software reliability prediction models having
high predictive power. One approach to building such models is to use artificial
intelligence technologies. Thus, this paper is devoted to finding patterns and predicting
software modules failures using machine learning techniques.

2 Related Works

Software reliability models can be divided into two broad classes – deterministic
(static) and probabilistic (dynamic) [2]. Probabilistic models represent failure occur-
rence and error correction as random events. Deterministic models use the results of the
program source code analysis as input, and do not include any random events or values.
The deterministic class includes Halstead Model [3], McCabe Cyclomatic Complexity
Model [4], and Complexity Metric Model [5]. In general, these models represent a
quantitative approach to measuring computer software. The Halstead Model is used to
estimate the number of program defects [2], whereas the McCabe Cyclomatic Com-
plexity Model is used to determine the upper limit of the program tests [6]. Note that
both models are static in nature, that is, consider processes in the software system
unchanged over time, and its reliability is solely a function of software metrics.
A substantially different approach to solve problems of the current stage of software
reliability theory is the theory of software systems dynamics [7]. The theory software
systems dynamics differs from the existing software reliability theory in that it is based
on the general theory of system dynamics, not probability theory, and considers the
software failures not as a random process but as a result of the influence of determined
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defect flows. Therefore, this theory also generates deterministic software reliability
models, which, however, are not static, unlike the Halstead and McCabe models.

The growth of empirical software engineering techniques has led to increased
interest in bug prediction algorithms [8]. These algorithms predict areas of software
projects that are likely to be bug-prone: areas where there tend to be a high incidence of
bugs appearing. The overall approach is statistical: bug prediction algorithms are based
on aspects of how the code was developed and various metrics that the code exhibits,
rather than traditional static or dynamic analysis approaches. One common strategy is
to use code metrics [9], while another has focused on extracting features from a source
file’s change history, relying on the intuition that bugs tend to cluster around difficult
pieces of code [10]. Another important factor that influences software reliability is the
design mechanism, which has a considerable impact on overall quality of the software.
A well-designed internal structure of software is a required for ensuring better reliable.
There are only few approaches described in literature, which address this question. One
of them [11] studies the influence of design metrics on one of the external quality
factors, reliability of the software using multivariate regression analysis.

Why are some software modules more defect-prone than others? Unfortunately,
now there is no universal answer for this question. However, a lot of research [8, 12]
including industry-based, has been devoted to capturing these project-specific prop-
erties [13]. The comprehensive benchmarking studies by Lessmann et al. used machine
learning classifiers to predict faulty software units [14, 15]. In [9], some project-specific
properties (invariants in their history) were discussed, and it was shown that the defect
likelihood of some module depends on its history. The machine learning approach in
software defect prediction has grown rapidly during the last decade. This approach uses
methods adapted from other research fields [16, 17]. However, deep learning models
are computationally expensive and hard to train than other classifiers. Hence, while
deep learning remains very promising technique to reveal software patterns, which
increase it defect-proneness, there is always a trade-off between using complex and
simple models. In addition, one should be aware on collecting large enough datasets for
deep learning models.

3 Methods and Results

3.1 Dataset

Public dataset from PROMISE Software Engineering Repository [18] was used in this
study. The JM1 dataset on software defect prediction was selected. The source of this
dataset is NASA and the NASA Metrics Data Program. JM1 is written in “C” and is a
real-time predictive ground system, data comes from McCabe and Halstead features
extractors of source code. The McCabe and Halstead measures are “module”-based
where a “module” is the smallest unit of functionality. The dataset contains 10,885
entries (modules) along with 21 code metrics, used as features and listed in the Table 1,
and a “TRUE/FALSE” field indicating either the module contains one or more reported
defects, used as a target. Among all modules listed in the dataset, 2,107 have reported
defects. Hence, we addressed the data imbalance problem by sampling, randomly
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choosing the subset containing 50/50 entries with and without reported defects. All
calculations were made using RStudio. The randomized 90% of the dataset were used
as a training set, and the rest 10% – as a validation set.

One of the obstacles while building software reliability model based on its code
metrics is the fact that a lot of metrics highly correlate. Thus, pairwise Pearson cor-
relation coefficient greater than 0.900 was obtained for 20 metrics pairs from the
Table 1.

At the current stage of the study, we have used all features contained in the dataset.
The further re-search will include the reduction of the features set to reveal only the
most relevant. Such a reduction should be performed considering the possible differ-
ences among the programming languages, development methodology and other soft-
ware engineering processes.

3.2 Research Methods: Classification

The aim is to build a model for software defects classification. The classification task
lies in assigning an object to one of the predefined classes based on its formalized

Table 1. Software metrics collected in the dataset

Metric Description

loc McCabe’s line count of code
v(g) McCabe’s cyclomatic complexity
ev(g) McCabe’s essential complexity
iv(g) McCabe’s design complexity
n Halstead’s total operators + operands
v Halstead’s volume
l Halstead’s program length
d Halstead’s difficulty
i Halstead’s intelligence
e Halstead’s effort
b Halstead’s delivered bugs
t Halstead’s time estimator
LOCode Halstead’s line count
LOComment Halstead’s count of lines of comments
LOBlank Halstead’s count of blank lines
LOCodeAnd Comment Halstead’s Count of lines of code that also contain a comment
Uniq_Op Halstead’s Unique operators
Uniq_Opnd Halstead’s Unique operands
Total_Op Halstead’s Total operators
Total_Opnd Halstead’s Total operands
BranchCount Number of branches in the flow graph
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features. Each of the classified objects is represented as an N-dimensional vector, each
dimension in which corresponds to one of the object’s features. The binary classifi-
cation model should evaluate the influents of each parameter or group of parameters on
the defect classification. The analysis process consists of two phases. At the first phase,
all parameters were considered. At the second phase, the influence of each parameter
was studied.

Phase 1. First, we tried used traditional classification methods, viz. kNN, decision tree,
logistic regression, SVM, and Naïve Bayes classifier. k-Nearest Neighbors is one of the
simplest non-parametric classification algorithms. To classify each of the objects in the
test set, the following operations are performed sequentially: calculate the distance to
each of the objects of the training sample; select k-objects of the training sample, the
distance to which is the smallest; classify the studied object to the most frequent class
among the k-nearest neighbors. The decision tree, in addition to the classification,
allows us to determine the weight of the parameters and their effect on the final
classification decision. Due to overlearning it usually does not show very good results.
Logistic regression also allows us to determine the weight of the parameters. An
important feature of the Naïve Bayes classifier is the independence of the parameters of
each other. The main task of SVM is to find a hyperplane that divides the data into two
classes, viz. “faulty” and “non-faulty”. The accuracy was calculated as:

ACC ¼ TP þ TNð Þ=N,

where TP states for true positive, TN – for true negative, and N is the total size of the
validation set.

The accuracy of the used at this phase classification methods varies from 77% for
kNN to 81% in case of logistic regression and SVM. As one can see, the classification
results are not very good for any of the methods used. Therefore, we try to reduce the
dimension of the task by finding the most important features.

Phase 2. To study the influence of each metric to classification model we calculated
the attribute weights. The obtained weights are listed in the Table 2.

The random forest consisted of 5 bootstrap-trees has the classification accuracy of
82%. Attribute weights obtained by logistic regression are summarized in the Table 3.

Table 2. Feature weights by decision tree

Feature (metric) Relative weight

McCabe’s line count of code 100.00
McCabe’s design complexity 66.46
McCabe’s cyclomatic complexity 65.63
Halstead’s line count 62.71
Halstead’s count of blank lines 42.87
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In this table, the “std. error” value is the standard deviation of the coefficient point
estimate. The “Pr(>|z|)” is the so called “p-value” of the test for whether the coefficient
point estimate is significantly different from 0. When building a model with only 5
attributes, accuracy increases by 0.3% for logistic regression and by 0.5% for SVM. At
the next step, we used backpropagation neural network (NN) to predict software
defects. The parameters of the NN were chosen based on the obtained importance of
the features. Thus, we constructed NN with two hidden layers, 7 inputs (McCabe’s line
count of code, McCabe’s design complexity, McCabe’s cyclomatic complexity, Hal-
stead’s line count, Halstead’s count of blank lines, Halstead’s intelligence, and Hal-
stead’s volume) and 1 output referring to target value. The prediction accuracy in this
case was 85%.

As one can see, we could not substantially increase the accuracy of prediction nor
for any method, neither for ensemble of the classification methods. That is why we
choose another strategy: to divide the dataset by different groups (clusters) and make
defect-proneness prediction separately for each group. For this task, different clustering
methods and their combination were used.

3.3 Research Methods: Clustering

First, we started with classical k-means method. Using gap statistics, the optimal
number of clusters was defined as 5. The total sum of square value is 45.2% (Fig. 1).

Table 3. Feature weights by logistic regression

Feature Estimation Std. error z-value Pr(>|z|)

loc 0.0029405 0.0002380 12.354 <2e−16
v(g) −0.0049244 0.0027161 −1.813 0.06987
ev(g) −0.0028223 0.0013343 −2.115 0.03445
n 0.0039700 0.0020583 1.929 0.05379
l −0.0863699 0.0311149 −2.776 0.00552
d −0.0025469 0.0007939 −3.208 0.00134
BranchCount 0.0041694 0.0015481 2.693 0.00709

Fig. 1. The results of the whole dataset clustering using k-means algorithm
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Next, the Principal component analysis (PCA) for Cluster2 have been made. We
used DBSCAN (density-based spatial clustering of applications with noise) for Clus-
ter2. The results show that the density is much higher around PC1 (Fig. 2). That is why
we choose examples with characteristics, closed to the centroid of Cluster2 (“loc” value
is about 33.5). The accuracy of classical classification methods in this case are varied
from 92% for decision tree to 96.8% in case of neural network with two hidden layers,
6 neurons in each, and logistic activation function.

Let us analyze the rest of clusters. We choose subset of examples with “loc” value
greater than 400. Directly defect-proneness does not significantly correlate with any
feature as it was expected based on available literature analysis (see related works
section of the paper). We tried to perform the clustering of the studied subset. The
subset was divided into 7 clusters (Fig. 3).

However, as it can be easily seen from the Fig. 3, the intersection of clusters 7, 5
and 3 appeared. That is why we suggest combining clustering and classification to
predict the software module defect-proneness classification with increased accuracy.

Fig. 2. The DBSCAN plot for the Cluster2

Fig. 3. The results of the subset with LOC > 400 clustering using k-means algorithm
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3.4 Research Methods: The Proposed Algorithm

We use an ensemble of models – the Kohonen map and hierarchical clustering. The
heat map shows the weight of the attributes and their grouping, as well as clusters the
data. The Kohonen map uses unsupervised learning and the training set consists only of
the values of input variables. Kohonen map is trained by sequential approximation.
Starting with a randomly selected initial location of the centers, the algorithm is
gradually improved to cluster the training data. Kohonen’s basic iterative algorithm
consistently passes through a number of epochs; one training example is processed for
each epoch. Input signals are presented sequentially to the network. The desired output
signals are not determined. After processing a sufficient number of input vectors, the
synaptic weights of the network are determined by the clusters. In addition, the scales
are organized so that the topologically close nodes are sensitive to similar input signals.

To implement the proposed algorithm, it is necessary to determine the degree of
neighborhood of neurons (the winner’s neuron). For this purpose, we used hierarchical
clustering. Some deviations were found, and the corresponding samples were excluded
from the further analysis. The proposed algorithm is presented in the Listing 1. In this
algorithm the distances dj from the input signal to each neuron j are determined as:

dj ¼ SUM xi tð Þ � wij tð Þ
� �2

;

here SUM is summa for all j; xi(t) is the i-th element of the input signal at time t,
wij(t) is the weight of communication from the i-th element of the input signal to j-th
neuron at time t. Adjusted weight values for the neuron j* and all neurons in its nearest
neighborhood are calculated as:

wij t þ 1ð Þ ¼ wij tð Þ þ r tð Þ xiðtÞ � wijðtÞ
� �

;

Where r(t) is learning rate, which decreases over time (positive, less than one).

Algorithm 1. An improved classification algorithm 
Input: Matrix of input signals 
Output: Heat map with clustering 
1: Initialize the network weights with small random values 
2: while (all samples not processed) do 
3:  Present new input signal (sample from dataset) 
4:  for j = 0…N, j++ do 
5:  Calculating the distances dj to all neurons 
6:  end for 
7:  Choose the neuron-winner //the neuron j*, for which the 
distance dj is the smallest one 
8:  Adjust the weights of the neuron j* and its neighbors 
9: end while 
10: return Heat map with clustering 
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The algorithm uses a gradually decreasing learning rate to fine-tune the new epoch.
As a result, the center is established in such a position that satisfactorily clusters the
examples for which the given neuron is the winner one. The property of topological
ordering is achieved in the algorithm by using the concept of neighborhood. The
neighborhood is a series of neurons surrounding the winner neuron. According to the
training speed, the size of the neighborhood gradually decreases, so that at first it be-
longs to a sufficiently large number of neurons (possibly the whole map), at the most
recent stages the it consists only of the winner-neuron. In the learning algorithm, the
correction is applied not only to the winner neuron, but also to all neutrons from its
current neighborhood.

The neighborhood results from agglomerative hierarchical clustering. The idea of
agglomerative hierarchical methods is as follows. Initially, each object is treated as a
separate cluster. Next, identify the two closest located clusters Qi and Qj and combine
them into one cluster Qi + j. The merge process continues until all objects form a
single cluster. During merging, the distance from the new cluster Qi + j to all other
clusters should be calculated. This distance is calculated using Lanes- Williams:

d Qs þ j; Qmð Þ ¼ ai � d Qi; Qmð Þ þ aj � d Qj; Qmð Þ þ b � d Qi; Qjð Þ
þ c � d Qi; Qmð Þ� d Qj; Qmð Þj j;

where d(•,•) is a distance measure; Qm (m 6¼ i, j) is current cluster (neighborhood for
SOM); ai, aj, b, c some numerical parameters.

As a result of this change in neighborhoods, the initial rather large sections of the
network migrate towards case studies. The network forms a rough structure of the
topological order in which similar examples activate groups of neutrons that are closely
on the topological map. With each new epoch, the speed of training and the size of the
neighborhoods decrease, thus, thinner differences are found inside the map sections,
which ultimately leads to a finer tuning of each neuron.

Table 4 presents the classification results obtained using the described algorithm.
As it can be seen from the table, the classification using the proposed in this paper
algorithm shows somewhat higher accuracy than any single classification method used.

Table 4. The accuracy (%) of the classification for examples near the centroid of Cluster2

Method Cluster2 The other clusters The whole dataset

kNN 82 93 77
Decision tree 80 92 75
Logistic regression 83 96 81
Naïve Bayes 81 95 80
SVM 83 96 81
Random forest 83 96 83
Neural network 84 97 85
The proposed algorithm 86 98 86
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4 Conclusions and Future Work

An improved software defects prediction algorithm based on combination of Kohonen
map and hierarchical clustering was developed in this paper. The algorithm uses a
gradually decreasing learning rate to fine-tune the new epoch. As a result, the center is
established in such a position that satisfactorily clusters the examples for which the
given neuron is the winner one. The property of topological ordering is achieved in the
algorithm by using the concept of neighborhood. The neighborhood results from
agglomerative hierarchical clustering. The proposed algorithm shows the higher
accuracy than other classification algorithm. The data preprocessing allows us to
increase the quality of analysis by dividing all data to two clusters.

The further research will include the reduction of the features set to reveal only the
most relevant. Such a reduction should be performed considering the possible differ-
ences among the programming languages, development method-ology and other
software engineering processes.
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Abstract. Discovering points of interest (POI) by analyzing social
media data (e.g., Flickr) has received a lot of attention in recent years
along with the rapid development of social network services. The small-
grained POIs started to draw attention from tour recommendation ser-
vices because more comprehensive information can be recommended
when tourists traveling to an unfamiliar destination. To further meet
tourists’ increasing demands, tour recommendation combining points
and areas is an important task, which requires a predefined POI database
with different granularities. However, existing POI discovery methods do
not well consider the granularity of POI and treat all POIs as the same.
To this end, we propose a city adaptive clustering framework for dis-
covering POIs with different granularities in this paper. Our proposed
framework takes advantage of two clustering algorithms and is adaptive
to different cities. The experiment results demonstrate the effectiveness
of our proposed framework.

Keywords: Sightseeing · Points of interest · Location-based social
network

1 Introduction

Nowadays, users would like to share their traveling experiences by uploading
their photos to social image services such as Flickr and Instagram. The rel-
evant information of these photos (e,g, location, time, and tags) makes these
users generated content valuable for various data mining tasks. For instance,
the increasing demand for the personalized tour for tourists travels in an urban
area motivates more attention on tour recommendation services. These services
or applications usually require a predefined POI database as the input data.
According to preceding studies on POI identification or discovery [1,2], the POI
database can be automatically constructed by applying clustering algorithms
over the geotagged photos.

However, the granularity of POI is not well considered in the existing studies.
All POIs, whatever a scenic park or a small sculpture, are treated as equal, while
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tourists may want a more detailed recommendation. For instance, Central Park,
New York City, is a famous POIs that cover large areas. It would be ambiguous
to mark it as single POI in the recommended tours because detailed inner routes
are preferred by the tourists. Recently, Wang et al. [4] propose a two-layer tour
recommendation framework to provide more detailed information about the rec-
ommended tour by introducing the concept of “Super-POIs”. Super-POI is a
large-scale POI that covers several small-scale POIs, which should be explicitly
indicated in the recommended tour rather than showing a unique POI.

Figure 1a shows an example of a recommended tour, and both locations 1
and 2 cover a large area. But tourists would like to know which places are more
attractive and take photos on several spots inside the location 1 and lead to
different photo quantity shown in Fig. 1b. An inner route to guide tourists with
detailed information is helpful when traveling to some places like these. However,
manually construct such a small-grained POI database is very time consuming,
a method that automatically discovers POIs with different granularities is defi-
nitely desired from those tour recommendation services.

An example of a recommended tour Photo quantity heat map inside

Fig. 1. Tour recommendation with large-grained POIs

To this end, we introduce the task of automatically detect POIs with different
granularities from geo-tagged photos for tour recommendation applications. We
consider two levels of granularities in this paper:

– Areas of interest (AOI): indicates the large-grained POI, such as a park
or temple, is an area that attracts tourists to visit. It can be represented as
a polygon or minimum bounding rectangle (MBR) on the map.

– Sightseeing spot: is the small-grained POI inside the AOI, such as a sculp-
ture inside a park, which is a specific coordinate that attracts tourists to take
photos. It can be represented as a point or coordinate on the map.

Generally speaking, the relationship between these two levels of granularities is
that the sightseeing spots are points inside the AOIs. The major contribution of
this paper can be summarized as follows:
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– We summarize the advantages and disadvantages of applying variant POI
discovery techniques to detect sightseeing spots.

– We propose a city adaptive clustering framework to discover POIs with differ-
ent granularities. The results reveal the effectiveness of our proposed method.

2 Techniques for POI Discovery

Discovering POIs from a collection of geotagged photos can be viewed as a
clustering problem on two-dimensional data (i.e., latitude and longitude). Here
we summarize the advantages and disadvantages when they are applied to the
sightseeing spot discovery task.

2.1 K -means

Kennedy and Naaman [5] use k -means algorithm to find landmarks from geo-
tagged photos. The basic idea behind k -means is to separate a collection of
locations into k clusters that make each coordinate belongs to the cluster with
the nearest mean. The result of the k -means algorithm will assign a label to each
location, and a mean coordinate is assigned to each cluster that can be treated
as the detected sightseeing spot. However, the k -means algorithm requires a
parameter k to determine the number of clusters, which is very hard to decide
the proper number in advance.

2.2 Mean Shift

To address the problem of the fix number of cluster k, mean shift algorithm [7]
is applied in [3] to find locations in metropolitan and landmark scales. Instead
of fixing the number of clusters, the mean shift requires a bandwidth parameter
to specify the density radius which can be viewed as the influential area of a
location. Same as k -means, the mean shift also is a mean-based clustering method
witch will assign a mean location for each cluster. To discover sightseeing spots,
one straightforward solution is to globally set a small bandwidth value for all
locations. However, it is very hard to precisely find a suitable value for different
cities, and the unified bandwidth value for all locations has also suffered the
problem of different scales of sightseeing spots.

2.3 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a very
common density-based clustering algorithm for spatial data [6]. The algorithm
adopts a range search strategy that requires two parameters. One is the search
range radius ε and another is minPts to determine the minimum number of
locations needed to form a cluster. The benefits of DBSCAN that compare to
the above clustering algorithms are the high robustness against outliers and there
is no constraint on the shape of clusters. However, since the algorithm cannot
provide the coordinates of the output clusters, further computation is needed
when using it on the sightseeing spot discovery task
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3 Sightseeing Spot Discovery Framework

According to the discussion in Sect. 2, we combine two clustering algorithms to
deal with POIs of different granularities.

3.1 AOI Discovery

We first detect AOIs according to the photo quantity density. We aim to elim-
inate low photo quantity density areas that may not worth visiting in the city.
This can be done by applying the DBSCAN algorithm which can detect clusters
of various sizes and shapes.

DBSCAN takes two parameters, ε and minPts, and it is difficult to determine
appropriate values since different cities have different parameter settings. To
automatically determine suitable parameters for various datasets, we propose a
self-tuning process for AOI discovery. To be adaptive to different cities, we can
use the location and size information of several typical AOIs in the city. We
use them as the density criterion by comparing the coverage degree of detected
clusters with typical AOIs’ area information.

We use the minimum bounding rectangle (MBR) to represents the area of
the typical AOI and Dice coefficient to estimate the cover area. The higher the
similarity between the cluster detected by DBSCAN clustering and the prede-
termined AOI rectangle, the higher accuracy of clustering is considered. In this
way, the parameter is tuned by the overlapping area of both areas and high
photo quantity density AOIs are detected.

Suppose MBRs s = {s1, s2, ...sm} are determined m typical AOIs in advance.
The area of the rectangle si is denoted by asi

. For each of the n clusters
c = {c1, c2, ..., cn} obtained by DBSCAN clustering, we can find the smallest
rectangle t = {t1, t2, ..., tn} covering c. The area of the rectangle tj is denoted by
atj . Let ri,j be the overlap rectangle between si and tj , and we define its area
as ari,j

. Therefore, the Dice coefficient of the two areas is defined as below:

d(si, tj) =
2ari,j

asi
+ atj

(1)

Since there are multiple rectangles having an overlapping area with one AOI, we
only use the highest one to represent the Dice coefficient of the typical AOI si

as follow:
D(si) = max{d(si, tj)},∀j = 1, 2, ..., n (2)

Finally, the accuracy score for parameter ε and minPts are defined as below:

DSC(ε,minPts) =
∑

1≤i≤m

D(si)
m

(3)

We choose the parameters with the highest accuracy score to discover AOIs. The
discovered AOIs can be represented by MBRs or polygons by using the points
in each cluster. The outline of the tuning process is also showed in Fig. 2.
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3.2 Sightseeing Spot Discovery

Mean shift clustering [7] is adopted to discover sightseeing spots from AOIs,
which are detected by DBSCAN clustering in the first step. There are two ben-
efits of using mean shift clustering. One is that photos are usually taken around
the spot, so we can use the Gaussian kernel for mean shift clustering. The other
is that a mean will assign to each cluster, which can be treated as the detected
sightseeing spot. We find sightseeing spots in each AOI instead of applying the
mean shift to all data points. The benefit of this is that low photo quantity
density areas are avoided. Also, the detected sightseeing spots are inside AOIs,
which are easier to construct the inner routes.

Accordingly, for data points in each AOI, we mark the clustering mean as
the sightseeing spot that is estimated by:

m(x) =

∑
xi∈N(x) K(xi − x)x

∑
xi∈N(x) K(xi − x)

, (4)

Fig. 2. There are points clustered by DBSCAN and typical AOIs defined in advance
(a). The rectangle areas si are determined in advance for each typical AOI and n
clusters cj are detected by DBSCAN (b). The smallest rectangle tj that completely
covers each cluster cj can be defined. Then, the overlap ri,j between si and tj can be
computed (c). For each overlapping of these rectangles, a Dice coefficient d(si, tj) is
calculated. Finally, we get the accuracy score DSC(ε, minPts) for the parameters of
DBSCAN clustering.
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where N(x) is the neighborhood of data point x and K(xi − x) is the kernel

function. We use Gaussian kernel (i.e., K(xi − x) = 1√
2πh2 e− ‖xi−x‖2

2h2 ) as the
kernel function that requires the neighborhood of x to satisfy ‖xi − x‖ ≤ h,
where h is the bandwidth parameter. The bandwidth parameter can be viewed
as the influential area of a sightseeing spot (i.e., clustering center).

However, it is not appropriate to take the same bandwidth for all AOIs since
the density of photos and the AOI area vary widely. We propose an area-adaptive
parameter setting method to automatically determine the bandwidth for each
AOI.

For simplicity, we consider two main factors that affect sightseeing spots
discovery in AOIs:

– 1. AOI area: The bandwidth should be proportional to the AOI area. For
instance, the bandwidth of a huge park should be larger than that of a small
museum. We use the smallest cover rectangle area atj defined in Sect. 3.1 to
represent the area of AOI cj .

– 2. Photo quantity: The bandwidth should be inversely proportional to
photo quantity in the AOI. For instance, the high photo dense area contains
much more sightseeing spots and set a smaller bandwidth could find more
spots. We use pcj to represent the number of photos in AOI cj .

Therefore, we define inverse photo quantity density to represent the relation of
the two factors above for each AOI cj as below:

ipdcj =
atj

pcj

(5)

Finally, we define the bandwidth parameter hcj for each AOI cj as below:

hcj = hm ∗ ipd
′
cj , (6)

where hm is used as the hyper parameter to make sure the range of the bandwidth
is less than hm; ipd

′
cj =

ipdcj

ipdmax
, which normalize the inverse photo quantity

density to the range of (0, 1].
We use the automatically determined bandwidth hcj to apply to mean shift

clustering for each AOI. Consequently, we mark the clustering center as the
sightseeing spot. Then, the relevant information for tour recommendation appli-
cations can be easily obtained. For example, the visit duration of the spot can
be obtained by calculating the average value of the time difference between the
last photo and the earliest photo taken by the tourists on the same day.

4 Experiments

We apply our proposed framework on several geo-tagged photo datasets. Quan-
titative evaluation and case study analysis are presented to demonstrate our
findings.
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4.1 Experiment Setting

We collect 231,245 geotagged photos taken in Kyoto, Japan and 271,081 photos
taken in Paris, France from Flickr API1 to discover sightseeing spots. We extract
20 MBRs from OpenStreetMap2, 10 MBRs are used for step one’s parameter
selection and the rest 10 are used as the validation set, which we manually mark
sightseeing spots inside the MBRs as the ground truth (104 spots in Kyoto and
72 spots in Paris). One location is marked as a sightseeing spot based on the
symbol on the map (e.g., viewpoint, shrine, etc.).

A grid search strategy is adopted to find the most suitable parameters with
the highest dice coefficient for the AOI discovery phase. We set hm = 50 m as
the range of the bandwidth hyperparameter for sightseeing spot discovery since
we want to find small-grained POIs.

4.2 Results

We compare our framework against the various baselines mentioned in Sect. 2
on two datasets using the following metrics:

– Number of Spots The total number of discovered sightseeing spots.
– Precision The proportion of discovered sightseeing spots inside the valida-

tion MBRs that also exist in the ground truth.
– Recall The proportion of sightseeing spots in the ground truth that also

exists in the discovered spots inside the validation MBRs.
– F-score The harmonic mean of the precision and recall mentioned above.

Considering that the photos may be taken around the spots, we regard the points
closest to the ground truth and not more than 10 meters away as the same.

Figure 3 and Fig. 4 report the results of all the baseline methods with different
parameter values, in terms of precision and recall on the Kyoto dataset.

The recall of the mean shift with fixed bandwidth parameter decreases as
the value of bandwidth increases, while the precision increases with increasing
bandwidth, as shown in Fig. 3a and Fig. 4a. The reason is that more spots can
be found when setting a smaller bandwidth value, so the recall is higher at first
and drops as the value of bandwidth increases.

We vary parameter k in k-means clustering and the result is reported in
Fig. 3b and Fig. 4b. It is hard to decide an appropriate value for the parameter
k, especially for this sightseeing spot discovery task, the number of spots usually
will be large. When k is large enough, the recall is getting better since more spots
are marked as sightseeing spots. But this also leads to more non-sightseeing spots
are included, which reduce the total quality of the discovered spots.

For DBSCAN, we set minPts = 2 for the Kyoto dataset and minPts = 5
for Paris dataset due to the difference of photo quantity, only change the search
range parameter epsilon. The spot is computed by the mean value of the cluster

1 http://www.flickr.com/services/api/.
2 http://www.openstreetmap.org/.

http://www.flickr.com/services/api/
http://www.openstreetmap.org/
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varying h, mean shift varying k, k-means varying ε, DBSCAN

Fig. 3. Comparison on Kyoto dataset in terms of precision

varying h, mean shift varying k, k-means varying ε, DBSCAN

Fig. 4. Comparison on Kyoto dataset in terms of recall

since it does not explicitly return cluster centers. Contrary to mean shift, when
the search range ε is small, DBSCAN only finds the densest areas, which leads
to a high recall at first, as shown in Fig. 3c and Fig. 4b. When the search range
gets bigger, the recall quickly drops.

According to the results in Table 1, the mean shift finds the most number of
spots since it is applied to all data points with a small influential area. It is hard
to choose a proper value of k for the k-means clustering, and the results vary
on different datasets. As shown in Fig. 3 and Fig. 4, the results of the baseline
methods are greatly affected by the value of parameters. Appropriate parameters
also vary depending on the datasets. Our methods rarely depend on parameters
and get stable results.

Note that we set a fixed bandwidth of h = 20 on the discovered AOIs, and get
a better results that compares to mean shift clustering that applied to all data
points. It indicates the effectiveness of our idea that apply DBSCAN to remove
noises and outliers. Overall, our proposed framework achieves better result in
terms of F-score on the average of two datasets, which verifies the effectiveness
of the city adaptive parameter tuning strategy in our framework.
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Table 1. Comparison in terms of the number of discovered spots and F-score. The
bold values indicate the best result for each metric.

Kyoto Paris Average

Methods # Spots F-score # Spots F-score # Spots F-score

Mean Shift (h = 20 m) 7,037 0.21 12,129 0.05 9583 0.13

K-means (k = 2000) 2,000 0.11 2,000 0.13 2000 0.12

K-means (k = 4500) 4,500 0.26 4,500 0.12 4500 0.19

DBSCAN (ε = 5 m) 3,720 0.17 1,175 0.26 2448 0.22

Ours (h = 20m) 1,411 0.25 975 0.29 1193 0.27

Ours 1,859 0.31 765 0.25 1312 0.28

5 Related Work

Landmarks are identified in [3,5] by applying clustering algorithms on geo-tagged
photos where the scale of the landmark is subjectively determined. Ying et al. [2]
compare variant clustering methods for the POI identification task and propose
a self-tuning spectral clustering method. A noise-resistant algorithm is proposed
in [1] to improve the quality of detected POIs. POI boundaries detection with
given POI relevant information is studied in [9,10]. The authors in [8] study
AOI discovery and recommendation by using geotagged photos. However, these
works focus on large-grained POIs or AOIs, POIs with different granularities are
not well considered.

A semantic location that contains a cluster of stay points with a centroid
coordinate and semantic descriptions are mined from GPS data [12]. AOIs and
photo shooting spots are detected from geo-tagged photos in [11]. Liu et al. [13]
discover AOIs from both social images and check-ins. Hight quality sightseeing
spots that are less well-known are discovered social images in [14]. These works
focus on detecting spots from social network data, which can be treated as
the small-grained POIs. But neither has been applied on tour recommendation
applications.

6 Conclusion

In this paper, we summarize various clustering techniques for the POI discovery
task and propose a city adaptive clustering framework to discover POIs with
different granularities for tour recommendation services. The proposed method
combines the advantages of two clustering algorithm and the parameters are
automatically determined according to different cities. We compare our pro-
posed framework against various baselines with careful parameter settings. The
experimental results on two famous travel destinations reveal the effectiveness
of our proposed framework.
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Abstract. Autism spectrum disorder (ASD) is a complex neurodevel-
opmental disorder characterized by deficiencies in social, communication
and repetitive behaviors. We propose imaging-based ASD biomarkers to
find the neural patterns related ASD as the primary goal of identifying
ASD. The secondary goal is to investigate the impact of imaging-patterns
for ASD. In this paper, we model and explore the identification of ASD
by learning a representation of the T1 MRI and fMRI by fusioning a
discriminative learning (DL) approach and deep convolutional neural
network. Specifically, a class-wise analysis dictionary to generate non-
negative low-rank encoding coefficients with the multi-model data, and
an orthogonal synthesis dictionary to reconstruct the data. Then, we
map the reconstructed data with the original multi-modal data as input
of the deep learning model. Finally, the learned priors from both model
are returned to the fusion framework to perform classification. The effec-
tiveness of the proposed approach was tested on a world-wide cross-site
(34) database of 1127 subjects, experiments show competitive results of
the proposed approach. Furthermore, we were able to capture the status
of brain neural patterns with the known input of the same modality.

1 Introduction

Autism spectrum disorder (ASD) is a structural and functional neurodevel-
opment disorder, it is also associated with weak communication skills, simple
repetitive behavioral pattern and lowered concentration. The common way of
diagnosis and treatment of ASD is based on symptoms, and thus, to identify a
reliable biomarker is the main challenge [7]. Most diagnosis of ASD is confirmed
at around 3 years old in the United States although, it is important to diagnose
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ASD in the early stage of life for better treatment. Magnetic resonance imag-
ing (MRI) based brain volumetric methods are commonly used to characterize
ASD [13]. To better understand the origin of ASD for precise diagnosis, signifi-
cant progress has been made using neural patterns of functional connectivity of
functional magnetic resonance imaging (fMRI) data to caracterize brain changes
related to ASD. Identification of Autism Spectrum Disorder from brain imaging
provides biomarkers for the mechanisms of the pathology.

In recent years, many representation learning techniques such as discrimina-
tive dictionary learning (DDL) [11] and deep neural networks [1] are powerful
algorithms to derive high-level latent features from high-dimensional [10] and
multi-modal data [4]. DDL has been widely used in resting-state functional con-
nectivity MRI analysis. Wang et al. [7] developed a low rank representation
approach for multi-center ASD. Zhao et al. [12] presented an effective 3D convo-
lutional neural network (CNN) based framework to derive discriminative overlap
patterns of a spatial brain network that can characterize and identify ASD from
healthy controls. However, considering the fact that ASD could be related to
subtle feature changes in the brain, it would be difficult to train an end-to-end
CNN directly without any pre-determined information, i.e., discriminative fea-
tures. Most learning based method with extracted dependent or independent
features (cortical thickness, cortical volume, connectome of fMRI) may result in
a sub-optimal solution.

One of the challenge of ASD identification is to either estimate the corre-
sponding cortical thickness of the subject under the same pre-processing pipeline
or to find the correlation of these features for a given cortical area. The trained-
rich matrix may be further processed to yield valuable informations that may be
more clinically useful by the generation of gray matter thickness with computer-
synthesized cortical volume, cortical surface area and thickness relationship.

In this study, we propose a novel multi-modal discriminative subspace learn-
ing approach named MMDL for identification of Autism Spectrum Disorder,
by fusion of multi-modal brain imaging data. Different from the conventional
modeling-based ASD identification methods, we use not only the priors learned
by CNN-based learning, but also the priors from discriminative subspace learn-
ing. The fusion is performed in two aspects. First, training the dictionary pair
learning (DPL) method. Then, the multi-modal features learned by DPL method
and the original data as the input of the CNN. The first step can fully utilize
the input data by improving the class-specific features of the original data. The
CNN can boost the training performance. Capitalizing on the knowledge, the
major contributions of this work are as follows:

– In this work, we propose a novel approach (MMDL), which fuses the classi-
fier of discriminative dictionary learning and CNN to identify ASD. In this
proposed MMDL method, instead of only using matrix factorization based
discriminative dictionary learning, we also apply the CNN based learning
to regularize the model. Specifically, during the CNN training, we initialize
the reconstructed features from discriminative dictionary learning and the
original data as the input of CNN, which boosts the input of CNN training.
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Moreover, the trained dictionary pairs are also returned to the classifier fusion
section to improve the identification of ASD performance.

– We demonstrate the classification performance of the proposed method on the
functional connectivity matrix and gray matter (cortical surface area, cortical
thickness and volume) of 1127 subjects from the challenging of predicting
autism1, the data is acquired from multiple sites with different protocols. The
proposed model is much more accurate compared to the state-of-the-art. With
one of the given features of gray matter, we can estimate the corresponding
others of it.

2 Proposed MMDL Approach

The proposed MMDL approach incorporates deep CNN based training into the
training framework, and guides the classify work with the learned priors. Figure 1
is an overview of the proposed framework. More details of each step are described
as follows.

Fig. 1. The Scheme of the proposed MMDL method. The input is tensor format data
with T1 MRI volume, surface area, thickness and fMRI connectome.

1 https://paris-saclay-cds.github.io/autism challenge/.

https://paris-saclay-cds.github.io/autism_challenge/
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2.1 Initialize with Discriminative Learning

The modeling of ASD identification is first treated as a 3D tensor based class-
wise discriminative dictionary learning problem, we set X = fold(X) and the
operation of fold is to fold up each column of the matrix in to the corresponding
subject of the tensor, then X = [X1, · · · ,Xk, · · · ,XK ] is the data samples and k
is the class number but in this case, it is the binary classification for identification
of Autism Spectrum Disorder.

Following [2,9], we introduced a linear feature selection dictionary Pk ∈
R

M×S and a reconstruction dictionary Dk ∈ R
S×M for the class k, where M

is the number of subject in class k and S is the dimension of the feature for
each subject, with P = [P1, · · · ,Pk, · · · ,PK ] and D = [D1, · · · ,Dk, · · · ,DK ],
performing data modeling in two layer fully connected neural network format
with low-rank constrain on the selected features of each group:

arg min
P,D

K∑

k=1

‖Xk − DkPkXk‖2F + λ1‖PkXk‖∗ + λ2‖PkXk‖2F , (1)

where k (k ∈ {k : |k−k| �= 0}), ‖·‖F is the Frobenius norm, λ1, λ2 > 0 control the
trade-off between the reconstruction accuracy and regularization terms, and Xk

is the data matrix not belonging to Xk. The regularization term ‖PkXk‖2F is used
for forcing PkXk towards zero, projecting the samples of non-class to a nearly
null space. In this model, Pk projects the samples Xk into an encoding coefficient
matrix Ak = PkXk, it can reconstruct Xk with the reconstruct dictionary Dk,
such as Fig. 2.

Fig. 2. The flowchart of two
layer fully connected neural
network based discriminative
learning.

Ideally, the dictionary D follows orthogonal-
ity constraint with D�

k Dk = I to avoid over-
fitting. Hence, Xk can be taken as a combina-
tion of these similar components by enforcing
the encoding coefficients Ak = PkXk to be
non-negative and low rank. To boost the dis-
crimination of D and A, we explore weighted
nuclear norm [3,8] on A, since the features of
subjects within the same class have low rank per-
formance. This leads to the following discrimina-
tive learning (DL) problem.

arg min
P,D

K∑

k=1

‖Xk − DkPkXk‖2F + λ1‖Ak‖w,∗ + λ2

∑

k∈{k:|k−k|>T}
‖PkXk‖2F

s.t. D�
k Dk = I, Ak = PkXk, Ak ≥ 0, k = 1, ...,K. (2)

where, the first term is reconstruction error, the second regularization makes
the representation low rank, since the components of Xk are similar and have
low-rank performance, PkXk ≥ 0 makes representation non-negative and thus,
creating sparsity in this way.
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To learn dictionary sets A, D and P, we applied an alternating direction
method of multipliers (ADMM) based algorithm as [9].

2.2 Learn the Classification Priors with CNN

Once the D and A is acquired, we can get more similar input data with labels
as the input of the deep CNN learning. In this sub-section, we will describe the
input-output and the architecture of the CNN.

Input-Output: Once the estimated features are achieved, we instead train the
CNN with all the multi-model features directly. We use both the estimated multi-
model features and the original features {DA} as an input of CNN. This has the
advantage of 1) having the estimated features similar to the original multi-model
features. 2) with more training data, it can help improve the training accuracy
by boosting the learning performance. The intermediate classifiers as the output
of CNN. 3) It can work rapidly since the CNN works on features instead of
images.

Architecture: We adopt a general CNN architecture. We can apply any CNN
models, however here we just adopted the architecture of the CNN has three
blocks, which are listed as followed:

– Conv + BN + ReLU + max pooling : For the first block, we use 8 filters with
size 3 × 3 × 8, the max pooling is done by applying a 2 × 2 max filter.

– Conv + BN + ReLU + max pooling : For the second block, 16 filters with size
3 × 3 × 16.

– Conv + BN + ReLU + max pooling : For the third block, 32 filters with size
3 × 3 × 32.

– AverPooling + FC + Softmax + Classification

In the CNN, batch normalization (BN) is to accelerate the training, rectified
linear units (ReLU) is the activation function, the max pooling layer performs
down-sampling and to compute the maximum of each region. The average pool-
ing layer(AverPooling) is for down-sampling and averaging the values of each
region. FC is Fully Connected Layer.

2.3 Classification

In the classification process, we input the multi-model testing data into the
well trained CNN and the learned P and D, which can be used to classify
samples by measuring the reconstruction error for each class as the approach.
Instead of using the classification results via CNN as the final result. It can be
as intermediate to further improve the classification performance. Thus the final
classification result can be obtained by fusing the results of two classifiers.

To get the intermediate classification results of the initial discriminative
learning. Here, we set xi ∈ R

Si be the features of type i for the subject to
classify. We define as eik = ‖xi − Di

kP
i
kx‖2 the error of reconstructing xi with
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the dictionaries of class k for feature type i. We then assign the sample to the
class whose dictionary gives the lowest error k̂i = arg mink eik.

To combine the information of the two classifiers to further improve the
classification result, the final classification result can be obtained by solving the
optimization problem as followed.

arg min
α

(
kreal −

∑

j

αj k̂j

)2

, s.t.
∑

j

αj = 1, αj ≥ 0,∀j. (3)

k̂j is the classification result of each classifier j (j = 2) and the final output
is class label kreal. Constraints on regression coefficients αi enforce the final
prediction to be a convex combination of classification results from the classifiers
of CNN and discriminative dictionary learning.

3 Experiments

In this section, experiments are conducted on the public set of IMPAC2 to eval-
uate the effectiveness of the proposed MMDL approach. We use 1127 subjects
with 590 subjects as control and 537 subjects with Autism Spectrum Disorder.
The model is evaluated with structural MRI using measures of cortical thickness,
surface area and volume and resting state fMRI with 17.01(±10) years old. The
structural MRI is preprocessed with FreeSurfer and FSL, then the features are
averaged following an adapted Desikan protocol, giving a total of 70 features per
type of measure for both brain hemispheres. Connectomes were derived from
fMRI using the correlation matrix of each subject, we use the singular values
vector of the connectomes of fMRI as the input features. Then, the input is a
tensor format data with a subject (subject with the label), volume, surface area,
thickness and singular values of fMRI connectome matrix of each subject. For
functional MRI in this study, we use the MSDL functional atlas [6], we recon-
structed connectivity matrices using 70 brain discriminative regions by applying
singular value decomposition (SVD) on these connectivity matrices, the singular
values are then rearranged as vectors of 70 features.

For these tasks, We split available 1127 examples into a training set and
validation set, the latter containing 10% of examples. The validation set was used
to tune the regularization parameters and the size M of synthesis dictionary D.
Afterward, the 8-fold cross-validation is applied on these experiments to measure
performance in terms of prediction accuracy (ACC), Specificity, Sensitivity, area
under the curve (AUC) and root mean square error (RMSE).

3.1 Prediction of Autism Spectrum Disorder

We first demonstrate the proposed framework’s performance by predicting the
autism spectrum disorder, based on cortical thickness, cortical surface area and

2 https://paris-saclay-cds.github.io/autism challenge/.

https://paris-saclay-cds.github.io/autism_challenge/
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Table 1. Classification results on the database of IMPAC on 8-fold cross-validation.

Method ACC Sens. Spec. AUC

SVM 0.621± 0.027 0.616± 0.071 0.629± 0.060 0.622± 0.028

SVM+CNN 0.664± 0.042 0.892± 0.030 0.476± 0.056 0.684± 0.039

RF 0.525± 0.034 0.391± 0.142 0.628± 0.147 0.509± 0.022

RF+CNN 0.661± 0.019 0.860± 0.062 0.481± 0.046 0.670± 0.030

DLIn 0.648± 0.040 0.742± 0.077 0.543± 0.045 0.643± 0.041

MMDL 0.690± 0.055 0.790± 0.049 0.689± 0.048 0.733± 0.051

cortical volumes of T1 structure MRI and functional connectivity. For functional
MRI in this study, we use the MSDL functional atlas [6].

The average ACC, Sensitivity (Sens.), Specificity(Spec.) and AUC of the pro-
posed methods with the comparisons are on 8-fold cross-validation (CV) reported
in Table 1, the proposed MMDL method outperforms the SVM and random for-
est (RF)[5] based methods, as shown in the Table 1, the proposed method has
the highest ACC, Specificity and AUC. By fusioning the result of SVM and RF
with CNN (i.e., ‘SVM+CNN’ and ‘RF+CNN’ in Table 1) separately, the results
have improved. Compared to the competed methods in Table 1, our approach
yields improvements of about 0.026 in ACC, 0.061 in Specificity (Spec.) and
0.049 in AUC.

In the proposed model, we show the features that are predicted with the
discriminative learning model of Eq. (2) in Fig. 3 is an example of with the
cortical volume and predicted one, they are quite similar and the RMSE between
them is 0.09.

a) Tested volume. b) predicted volume.

Fig. 3. The tested volume and the predicted one.
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4 Conclusion

In this paper, a MMDL method is proposed by fusion discriminative learning and
priors of deep CNN to regularize the classification problem. Specifically, in the
non-negative discriminative dictionary learning model, this approach learns dis-
criminative features by imposing both orthogonality on the synthesis dictionary,
non-negativity low-rank constraints on projective coefficients. We initialize more
multi-model data from dictionary learning model as the input of CNN, which
can improve the training accuracy. Then, both training priors are returned to
the fusion framework to improve the performance. Experiments on the tasks of
identifying the ASD showed the benefit of our approach compared to state-of-
the-art methods. The proposed method can be used for synthesizing the neural
patterns of cortical.
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Abstract. Real Estate Equity Crowdfunding (REECF) enables small invest-
ments on big real estate projects through the funding by an online crowd. As there
is only limited research on this novel type of financial instrument for the real
estate sector, this paper investigates risks and opportunities of REECF in order to
establish and improve the understanding of REECF, in particular to identify
potential risks and potential opportunities that come along with an engagement in
such projects. Based on traditional offline risks of capital investments, three
categories of both potential risks and opportunities have been identified: market
risks and opportunities, execution risks and opportunities, and agency risks and
opportunities. We adopt a holistic approach, as we identified, collected and
consolidated existing risks and opportunities in REECF. As a result, we introduce
an up-to-date framework on real estate equity crowdfunding.

Keywords: Real estate � Equity crowdfunding � User interface � Information
systems � Social web

1 Introduction

The finance industry has often been a driving force in introducing new technologies to
decrease risks in commercial transactions and developing new business opportunities.
The internet has emerged as an auxiliary platform to promote innovations in banking
activities [12]. Examples include online banking, crypto currencies, and internet-based
peer-to-peer lending [5]. Hence, it is not surprising that the 2007 housing crisis trig-
gered the implementation of a new internet-based method for financing real estate
properties [8]. The latest result of this development is Real Estate Equity Crowdfunding
(REECF), which enables real estate investments through the funding of an online
crowd. As this method of real estate financing is relatively new, there is only limited
research published on this topic. Therefore, this paper provides an in-depth analysis on
the risks and on the opportunities associated with REECF. The systematic approach is
three-fold as it elaborates on issues relates to market, execution, and agency. The
remainder of this paper is structured as follows. Section 2 provides an overview about
crowdfunding. Starting with a general summary of the current crowdfunding literature,
the focus is gradually moving towards the special type of crowdfunding – REECF.
Furthermore, the process of a REECF project is explained. Section 3 presents the
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research framework and the analytical methodology. Section 4 analyses the risks and
opportunities of REECF, based on the previously defined methodology. The paper
concludes by summarizing the findings of the analysis.

2 Background

2.1 Typology of Crowdfunding

The primary purpose of crowdfunding is to raise capital from the public, i.e. the crowd,
for the purpose of financing a specific project [7, 14]. The interaction between the
fundraiser(s) and the crowd occurs over crowdfunding platforms, where financial
pledges can both be made and collected [7]. There is a variety of crowdfunding models
that can be found on crowdfunding platforms, whereas four basic types have emerged:
donation-based, reward-based, loan-based and equity-based crowdfunding [3].

Donation-based crowdfunding facilitates individual people in donating money to a
specific charitable project in order to meet an overall funding goal. Donators do not
receive any financial or material return for their endeavors [7, 13, 14]. Reward-based
crowdfunding allows individuals to commit funds to a specific project, without
receiving a financial return for their donation. Instead, donators are incentivized by
obtaining a non-financial benefit, such as discounts, early delivery of products or
tickets to attend a performance [13]. Lending-based crowdfunding (also known as loan-
based crowdfunding, crowdlending, peer-to-peer or marketplace lending) refers to the
type of crowdfunding, which is available to both individuals and companies. It allows
crowdsourcers to borrow funds from individuals through an online lending marketplace
in terms of a loan agreement [7, 13]. Equity crowdfunding enables entrepreneurs to
allocate funds by issuing any type of securities (e.g. equity, equity-like shares, etc.) that
give the holders an ownership stake in the business, in exchange for financial contri-
butions [2, 13]. This type of crowdfunding is the most recent and is typically stipulated
as silent partnerships, debt participation rights or subordinate profit-participating loans.
In Austria and Germany, profit- participating loans are the most common form of
participation on equity platforms [3].

Equity crowdfunding represents a very different approach from other crowdfunding
types. There are four main aspects that distinguish this type of crowdfunding from
others, particularly from reward-based crowdfunding [13]. First, the key motivation for
an investor to engage in equity crowdfunding is generating profit. This motive differs,
for example, from the donation-based model, which is driven by philanthropic motives,
or from reward-based models that tend to pursue a broader objective which include
non-financial benefits [10, 13]. Second, the number of shares to be issued is restricted
in order to affect funding dynamics. On the opposite, in the case of reward-based
crowdfunding, crowdsourcers usually accept as many requests as possible [10]. Third,
the average amount of capital raised and the type of investors differ. Equity crowd-
funding projects mostly involve companies and large amounts of capital, whereas in
reward-based crowdfunding, individuals tend to invest small amounts [10]. Fourth,
equity crowdfunding varies in terms of its risk/reward profile. It usually takes five to
eight years for the investors to achieve liquidity; more than half of the investments lead
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to losses. Thus, the risk is much higher, compared to lending-based crowdfunding,
which usually operates on both specified interest rates and time horizons of only three
to 36 months [12, 13, 15].

2.2 Real Estate (Equity) Crowdfunding

Real Estate Crowdfunding (RECF) refers to a form of financing, whereby real estate
project developers raise and aggregate capital from a wide group of investors through
specialized, internet-based platforms [17, 18]. RECF platforms usually operate by
offering either debt or equity investments.

RECF emerged as a reaction to the 2007–2008 global financial crisis. The crisis
demonstrated that real estate investments were not entirely safe and that housing prices
do not always increase [8]. Consequently, investors moved from a high-risk aversion
regarding real estate projects towards a preference for low-risk secured lending [17].
Investors were looking for alternative methods of financing, opposite to the traditional
investments in the housing market. The concept of crowdfunding, as part of the sharing
economy, seemed to be the solution to this need. Thus, RECF has been created to fund
real estate developments from several individuals through the Internet [8].

The introduction of relevant laws in the USA, UK, Australia and New Zealand
promoted the rapid growth of RECF [17]. These laws permitted RECF as possibility for
financing the construction, renovation and ownership of real estate projects [17, 20]. In
the early stage, RECF was mainly conducted in the form of loans. Accredited indi-
viduals would fund a Limited Liability Company (LLC), which then made a loan to
another individual or a small real estate company. These loans were eventually used to
renovate and sell properties [19].

As RECF has become more accepted, the focus relocated from small scale lending
to raising equity for larger properties [19]. Hence, equity investment, also known as
Real Estate Equity Crowdfunding (REECF) has been created. This form usually
includes investors buying shares in a limited liability company (LLC) which then
invests in a limited partnership holding the actual property. The LLC’s daily business is
then implemented by a management team, making the investors passive [18].

2.3 Players, Processes and Roles in REECF

REECF involves three parties: the crowdsourcer (also known as project promotor,
entrepreneur or creator) [20], i.e. the person/entity, who wishes to purchase or renovate
a property; the crowdsourcees (also known as investors, funders, or crowd), who invest
capital in order to develop a project, and the platform intermediary, which posts the
crowdsourcer’s project and provides relevant information to crowdsourcees [8].

The process of a REECF projects involves several activities. In the beginning, a real
estate crowdsourcer creates a project on a REECF platform, in order to raise funds for
financing the acquisition of a real estate property. As soon as the investors provide the
funding objective on the platform, an ad hoc corporation is established, and the funders
receive shares in that corporation. The only purpose of this company is to acquire a
property, renovate it and to sell it when it seems most profitable. Consequently, the
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investors receive the returns realized from renting the building and the specified value
of the corporation once the property is being sold (cf. Fig. 1).

3 Research Framework and Methodology

The goal of this present research is to understand risks and opportunities regarding the
application of REECF. The literature review has shown that REECF is a relatively new
and specialized form of crowdfunding and is consequently examined only to a limited
extent. To the best knowledge of the authors no prior research has yet provided a
systematic overview of potential risks and opportunities of this kind of crowdfunding.

Fig. 1. Process of real estate equity crowdfunding [8]

Table 1. Risks and opportunities of real estate equity crowdfunding

Risks Opportunities

1. Market a. Uncertainty of success
b. Bankruptcy of the
platform/company
c. Lack of liquidity of shares
d. Governance of the company

a. Fundraising
b. Benefits of local investors/social
networks
c. Community participation
d. Self-directed tools

2. Execution a. Uncertainty of skills
b. Cost of capital
c. Investor Management

a. Lower fees/cost
b. Streamlined process
c. Intermediary effects
d. Enhanced user experience

3. Agency a. Information asymmetry
b. Fraud
c. Lack of regulation clarity

a. Greater transparency
b. Enhanced reporting and
accountability
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Our research approach follows the framework introduced by Mamonov and Malaga
(2019), which is based on traditional offline risks of capital investments. Mamonov and
Malaga (2019) identified three types of potential risks when investing in a new venture
on the success of equity crowdfunding: market risk, execution risk, and agency risk.
These three risks form the basis of a framework for identifying potential risks and
opportunities of REECF. Additionally, a thorough search on recent literature has been
performed to identify relevant papers on crowdfunding, equity crowdfunding and
RECF. The results were examined in order to reveal further risks regarding REECF.
These additional items were subsequently being consolidated and integrated into the
three existing dimensions, based on their compliance. This holistic approach is then
transferred to the opportunities of REECF. The three pre-defined categories of
investment risks for REECF are adapted to derive and constitute corresponding
opportunities, i.e. market opportunities, execution opportunities, and agency opportu-
nities. Table 1 summarizes the ascertained key risks and opportunities of REECF.

4 Risks and Opportunities of Real Estate Equity
Crowdfunding

4.1 Risks of REECF

Market Risks. Market risks are external to the business and capture the uncertainty
about the venture’s market success when introducing a new product or service. These
risks mainly comprise parameters that are not controllable by the management team,
such as market size, growth trend, accessibility, existing or unforeseen competition,
clients, etc. [4, 13].

Uncertainty of Success. REECF includes the risk of not being successful. Especially at
the beginning of a REECF project, the market success is highly uncertain. Market risks
such as growth trend and market size have been shown to be among the top reasons for
the rejection of an investment from professional angel investors [13]. Furthermore,
there are overall risks of failing to attract financial resources, which result in an
unsuccessful funding attempt. First, the crowdfunder’s project might not be accepted in
the first place, so the project is not even being posted on a crowdfunding platform.
Second, entrepreneurs might simply fail to raise the required capital from the crowd [3].
Third, investment decisions are often not based on solid financial data, but on emo-
tional and other carious decision biases. For example, herding or supporting local
projects leads to risks and uncertainty of funding [9]. Finally, REECF does not guar-
antee profits. Earnings rely on real estate fluctuations. If an acquired property cannot be
sold for a price higher than purchased, profit cannot be drawn [8].

Bankruptcy of the Platform/Company. Insolvency of the crowdfunding platform or the
company who posted a project are among the most dominant problems of REECF [8,
9]. In the former case, the bankruptcy of the platform has a negative impact on the
investors. This was the case with the US-platform iFunding in 2016, when investors
could not get information and revenues from the platform, due to the failure of
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contacting the platform. Of course, this problem also negatively affected developers, as
they could not reach out to nor attract potential investors [8].

In the case of the company’s bankruptcy, investors are negatively influenced in the
subject of the insolvency proceeding. For the most part, investors in REECF projects
are determined as having an “ordinary loan” or even a subordinate one. Thus, investors
do not have preference regarding the recovery of their contributions of REECF. This is
what happened with the German company Zinlands in 2017, where the investors are
still involved in protracted insolvency proceedings, aiming to recover the value of their
subordinate loans [8].

Lack of Liquidity of Shares. Another main risk of REECF constitutes the lack of
liquidity of shares, which is a typical risk in any type of crowdfunding. Investors
acquire shares of a business that develops a property. This business is a limited liability
company (LLC), which is not allowed to transfer its shares freely.

Subsequently, the company cannot recover its contributions prior to the agreed
date, not even for a justified reason [8].

Governance of the Company. Typically, in REECF, investors receive shares of an ad
hoc corporation, in exchange for their contributions. The company’s only purpose it to
acquire a property, to rent it for a specified amount of time (usually between one and
two years) and then to sell it when it is suitable. Consequently, investors formally
become the owner of the business, however, they do not have any kind of right to
actually use the acquired property [8].

Execution Risk. Execution risks are internal to the venture and reflect the challenge of
executing or implementing a product or service. Furthermore, it also relates to the
difficulties regarding the execution of the business model and strategy. Hence, this risk
dimension highlights the importance of the business’s human resources and factors
regarding the execution of the business activities [4, 13].

Uncertainty of Skills. One major factor that is related to the success of a REECF is the
equivalent expertise. On the one hand, angel investors and venture capitalists prefer
engaging with entrepreneurs with entrepreneurial and industry experience. What is
more, those investors also favour entrepreneurial teams over single entrepreneurs, as a
team has more potential to possess the set of required skills [3, 13]. On the other hand,
investors tend to overestimate their expertise. This phenomenon is based on the idea
that people engaging in crowdfunding websites have the knowledge to select good
investments. Moreover, they often claim to know specific properties in which to invest
with minimum risk [19]. At the same time, crowdfunders are frequently very optimistic
about the creator’s ability to deliver promises. However, creators often lack experience
in building a product or dealing with suppliers and logistics [1].

Cost of Capital. Although the fees and costs of REECF are often lower than traditional
financing methods, there are drawbacks regarding the costs of capital of REECF
platforms. First, platforms often charge additional fees for due diligence projects or
insurances diminishing risk and uncertainty for the funders [9]. Second, on REECF
platforms, the information regarding fees are often not provided when signing up for a
project. Finally, the amount of fees frequently depends on the type of project [8]. To
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sum up, costs and fees regarding REECF are frequently untransparent which consti-
tutes a risk for potential investors.

Investor Management. An overall challenge of crowdfunding is managing the investor
base [3]. In RECF, however, the average number of investors is relatively low, with an
average of seven investors per private real estate partnership. Nevertheless, the key to
successful REECF is choosing appropriate partners. As most sponsors do not know
their investors, the management of investors is challenging. Conflicts of interests are
almost inevitable [19].

Agency Risks. Agency risks occur through information asymmetry, which is a sce-
nario where entrepreneurs have a greater knowledge about the business than the
investor. The problem in this case is that managers might pursue their own interest, at
the investor’s expense [4, 13].

Information Asymmetry. Most of the time, entrepreneurs have more information about
the business prospects of their venture than crowdfunders [1, 13]. This issue is known
as information asymmetry and potentially leads to market failure, as transactions
between creators and funders are not conducted due to the lack of information.
Additionally, the imbalance of information is also based on the investor’s ex post
incapability to initiate effort regarding the entrepreneur [1].

Fraud. The disequilibrium between the two sides of the market might result in
opportunistic behaviour, which constitutes a moral hazard. The most extreme version
of this manner is outright fraud [1]. This attitude is more common among younger,
smaller firms and victimizes inexperienced, overly optimistic investors [1, 16].
Research has shown that it is quite simple to use false or misleading information to
fraud funders [1, 3]. As opposed to platforms such as eBay or Airbnb, sellers do not
have incentives to build a reputation, since interactions are not constantly repeated.
Thus, REECF poses an appealing target for fraudulent behaviour [1].

Lack of Regulation Clarity. In most countries worldwide, there is a lack of clarity on
rules and oversight. Commonly, laws regarding crowdfunding and REECF are nascent,
vague and complex. What is more, to date, no cross-jurisdictional harmonization in
terms of crowdfunding, and certainly not for REECF, has been introduced [17].

4.2 Opportunities of REECF

Market Opportunities. Market opportunities are defined as external to the venture
and reflect the advantage regarding the introduction of a new product or service in the
market. Thus, such features aim for reducing the uncertainty of the market success.

Broader Investor Base. Traditional real estate projects are mostly financed by investors
that are geographically closely located to the property. However, the use of the Web
2.0, allows to bridge these geographical barriers. Subsequently, REEC platforms
connect investors and funders from geographically diverse areas, widening the investor
base in real estate [1, 3, 17].
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Benefits of Local Investors and Social Networks. Despite widening one’s investor base
through the use of technology, it is nevertheless essential to have investors that are
local and/or personally known. Local investors in real estate projects can provide
creators with information about what is acceptable in their community. Furthermore,
they can appear at community meetings and act as an extra set of eyes to the property
[19]. Personal and/or business partners play an essential role during the entire
crowdfunding process. Drawing upon social networks is important for entrepreneurs in
order to meet their funding objective [17].

Community Participation. From the funder’s point of view, investing in a REECF is a
social activity. Often, their main motivation is to provide capital in return for recog-
nition form the entrepreneur or the community [1]. Real Estate Crowdfunders also
often participate in the development of the venture itself, providing feedback or sharing
critical thoughts, which reduces the REECF project’s risk of failure [3].

Self-directed Tools. REECF platforms provide efficiency gains as they equip entre-
preneurs and funders with self- directed tools that streamline the entire crowdfunding
process. In turn, these tools reduce or eliminate the need for professionals such as
brokers or advisors. Additionally, platforms allow investors to carry out analyses and
risk evaluations as well as building their own portfolios [11, 17].

Execution Opportunities. Execution opportunities are internal to the business and
emphasize the importance of the of the creator’s team and corporate environment in
executing a business strategy. Hence, opportunities regarding the execution deal with
the improvements of implementing a REECF project.

Lower Fees/Costs. Due to the structure and layout of online platforms, REECF plat-
forms entail remarkable cost savings [6]. First, REECF platforms remove middlemen of
traditional finance methods, who connect borrowers and lenders, resulting in lower
costs of capital for entrepreneurs and investors [17]. Second, entrepreneurs might be
able to cut costs of capital due to selling properties that are otherwise challenging to
sell. Third, the growth of information regarding project information might increase
investors’ willingness to pay, which in turn lowers the cost of capital [1]. Fourth,
REECF platforms in general charge substantially lower fees than traditional real estate
financing methods [17].

Streamlined Process. By leveraging modern technology, REECCF platforms enable
real estate projects to be significantly quicker, faster, more flexible and more efficient
than traditional financing approaches, such as using banks as intermediaries [3, 17].

Intermediary Effects. Prior research suggests that REECF platforms practice interme-
diary functions similar to banks [6, 17]. These platforms can act as intermediary
(broker) or as a principal in investments. Typical functions of REECF platforms
include pooling together capital as well as indirectly performing brokerage or appraisal
duties by implementing marketing and analyses of projects [6]. REECF platforms
providing a large number of services are prone to attract more higher-quality and
potentially prosperous projects [17].
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Enhanced User Experience. The use of modern technology generates a unique user
experience for engaging in real estate project. Features such as information and con-
venience, efficiency and scale constitute advantages and user friendliness that tradi-
tional real estate financing cannot offer [17].

Agency Opportunities. Agency opportunities highlight the potential enhancement
between the investor’s and the entrepreneur’s interests. In conjunction with information
transparency, these chances can undermine the investor’s ability to capture financial
rewards from his/her investment.

Greater Transparency. Arguably, the greatest benefit of REECF is the enhanced
transparency for both entrepreneurs and funders. Online technology allows information
to flow easily and quickly as well as reporting real time updates [6, 17, 20]. This
incomparable level of transparency also fosters crowdfunding success and crowd
participation [17].

Enhanced Reporting and Accountability. REECF platforms are mainly focused on
providing information, which allows them to present high-quality data in a punctually
and easy to understand manner to individuals. As the REECF sector becomes more
common, obtaining objective information about the funders and creators should
become more uniform and reliable. Analogically to the electronic marketplace website
eBay, REECF are likely to integrate accountability mechanisms such as rating and
reputation systems, enhancing reporting and accountability [19].

5 Conclusion

This paper aimed at an up-to-date framework on potential risks and potential oppor-
tunities in REECF, to support decision-making processes of crowdsourcers, crowd-
sourcees, and intermediaries engaged in such projects. Based on well-known traditional
offline risks of capital investments, three categories of both potential risks and potential
opportunities have been identified: market risks and opportunities, execution risks and
opportunities, and agency risks and opportunities. Adopting a holistic approach, we
identified, collected and consolidated existing risks and opportunities in REECF and
derived the envisaged REECF framework. Taking part in REECF poses several risks
for the investors and entrepreneur. Market risks are external to the business and include
the uncertainty of success, the bankruptcy of the platform or the company, the com-
pany’s interdiction to use the property or the lack of liquidity of shares. Execution risks
comprise the difficulty of the implementation of REECF, such as lacking skills in
engaging in a REECF process, dealing with fees and costs of capital and managing the
investor base. Agency risks cover potential misalignments between investor and
entrepreneur, leading to information asymmetry, fraud and the lack of clarity on rules
and oversight. On the other hand, REECF also entails several opportunities. Market
opportunities reflect external factors that reduce the uncertainty of the market success.
In REECF, funders can make use of a broader investor base, local investors and social
networks, the participation of the project’s community as well as self-directed tools that
allow investors to reduce the overall risk of REECF. Execution opportunities represent
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improvements in terms of the implementation of a REECF project. These benefits
mainly derive from the use of modern technology, which enables lower fees and costs,
a streamlined, a more efficient process, and an enhanced user experience for crowd-
funders as well as REECF platforms acting as intermediaries. Agency opportunities
highlight the potential improvements between the interests of the entrepreneurs and the
investors. Advantages entail a greater transparency of information and the potential to
enhance reporting and accountability, making REECF more successful and secure.

Future research may focus on the implementation of online tools that support
investment decisions of potential crowdsourcees and assist in evaluating risks and
opportinities. Such tools shall provide operationalized values for general risks and
opportunities in REECF, but should also have options to include local features or/and
personal preferences.
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