
Chapter 8
Architecture and Assembly
of the Bacterial Flagellar Motor Complex

Yusuke V. Morimoto and Tohru Minamino

Abstract One of the central systems responsible for bacterial motility is the flag-
ellum. The bacterial flagellum is a macromolecular protein complex that is more than
five times the cell length. Flagella-driven motility is coordinated via a chemosensory
signal transduction pathway, and so bacterial cells sense changes in the environment
and migrate towards more desirable locations. The flagellum of Salmonella enterica
serovar Typhimurium is composed of a bi-directional rotary motor, a universal joint
and a helical propeller. The flagellar motor, which structurally resembles an artificial
motor, is embedded within the cell envelop and spins at several hundred revolu-
tions per second. In contrast to an artificial motor, the energy utilized for high-speed
flagellar motor rotation is the inward-directed proton flow through a transmembrane
proton channel of the stator unit of the flagellar motor. The flagellar motor real-
izes efficient chemotaxis while performing high-speed movement by an ingenious
directional switching mechanism of the motor rotation. To build the universal joint
and helical propeller structures outside the cell body, the flagellar motor contains its
own protein transporter called a type III protein export apparatus. In this chapter we
summarize the structure and assembly of the Salmonella flagellar motor complex.
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Introduction

Thebacterial flagellum,which is a largefilamentous assembly, is one of the organelles
involved in motility in various environments such as liquids and solid surfaces.
Salmonella enterica serovar Typhimurium (Salmonella) has several flagella on the
cell body. Each flagellum is a supramolecular protein complex made of about 30
different proteins, and the copy number of each component protein varies from a few
to tens of thousands. More than 60 proteins are involved in flagellar construction,
force generation and chemotactic behavior in Salmonella (Table 8.1). The Salmonella
flagellum is made of five distinct structural and functional parts: a base body, a hook,
a junction, a filament and a filament cap (Fig. 8.1). The base body is embedded in the
cellular membranes and works as a bi-directional rotary motor energized by the elec-
trochemical potential difference of protons (H+) across the cytoplasmic membrane
(proton motive force, PMF). The hook, junction, filament and filament cap structures
are located outside the bacterial cell body. The filament acts as a helical propeller to
generate propulsion. The hook functions as a universal joint that smoothly transmits
rotational force produced by the bi-directional rotary motor to the helical propeller.
The junction connects the hook and filament. The filament cap supports the self-
assembly of the filament protein, flagellin, into the long helical filament structure
(Minamino and Imada 2015; Nakamura and Minamino 2019).

The Salmonella flagellar motor rotates in both counterclockwise (CCW) and
clockwise (CW) directions. When all the flagellar motors rotate in CCW direc-
tion, long helical flagellar filaments form a bundle structure behind a cell body,
due to bending flexibility of each hook structure. As a result, the flagellar bundle
produces thrust enough to allow Salmonella cells to go straight. When one or more
motors switch the rotational direction from CCW to CW, the bundle structure is
partially disrupted, and so the cells stop swimming and change the swimming direc-
tion (Fig. 8.2a) (Morimoto andMinamino 2014). Each flagellarmotor is placed under
a control of the sensory signaling network, which modulates the switching frequency
of flagellar motor rotation, and hence bacterial cells carry out chemotaxis by a biased
random walk toward various chemicals, pH and temperature to move toward more
suitable stimuli (Fig. 8.2b, c) (Berg 2003).

Methyl-accepting chemotaxis protein (MCP) is a transmembrane protein with a
large cytoplasmic domain and senses temporal changes in environmental stimuli.
The adapter protein CheW binds to the cytoplasmic domain of the MCP, allowing
the CheA kinase to efficiently associate with the MCP. The cytoplasmic domain of
MCP controls the autophosphorylation activity of the CheA kinase to generate the
chemotaxis signal. A phosphorylated form of the CheA kinase transfers its phosphate
group toCheY,which acts as the chemotaxis signaling protein. PhosphorylatedCheY
(CheY-P) binds to two cytoplasmic rotor component proteins, FliM and FliN, in
the flagellar motor. As a result, the motor switches the direction of rotation from
CCW to CW. The CheZ phosphatase accelerates the dephosphorylation of CheY-P
to induce the dissociation of CheY from the motor to allow the motor to rotate CCW
again. This chemotaxis signaling network adapts to changes in the concentration of
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Table 8.1 Bacterial flagellar proteins in Salmonella

Protein Function Size (kD)

FliF MS ring 61

FliG C ring, torque generation, directional switch 37

FliM C ring, directional switch 38

FliN C ring, directional switch 15

FlhA Type III export gate protein, energy transducer, protein export switch 75

FlhB Type III export gate protein, protein export switch 42

FliH Type III export apparatus, peripheral stalk 26

FliI Type III export apparatus, ATPase 49

FliJ Type III export apparatus, central stalk 17

FliO Scaffolding protein for the assembly of the FliP5FliR1 complex 13

FliP Type III export gate protein 27

FliQ Type III export gate protein 10

FliR Type III export gate protein 29

FlhE Plug for a proton channel in a type III export apparatus 14

FlgN Export chaperone specific for FlgK and FlgL 16

FliS Export chaperone specific for FliC 15

FliT Export chaperone specific for FliD 14

FliE Basal body protein connecting the MS ring and the proximal rod 11

FlgB Proximal rod 15

FlgC Proximal rod 14

FlgF Proximal rod 26

FlgG Distal rod 28

FlgJ Rod cap, Muramidase 34

FlgI P ring 38

FlgA Periplasmic chaperone for P ring assembly 24

FlgH L ring 25

FlgD Hook cap 24

FlgE Hook 42

FliK Hook-length control 42

FlgK Hook-filament junction 59

FlgL Hook-filament junction 34

FliD Filament cap 50

FliC Filament (H1 flagellin) 52

FljB Filament (H2 flagellin) 53

FljA Negative regulator of FliC expression 20

MotA Stator, transmembrane proton channel 32

(continued)
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Table 8.1 (continued)

Protein Function Size (kD)

MotB Stator, transmembrane proton channel 34

FliL Stator associated protein 17

FlhC Master regulator for flagellar genes 22

FlhD Master regulator for flagellar genes 13

FliA Sigma factor/Chaperone specific for FlgM 27

FliZ Positive regulator for flagellar gene expression 22

FlgM Anti-sigma factor 11

CheZ Chemotaxis protein 24

CheY Chemotaxis protein 14

CheB Chemotaxis protein 38

CheR Chemotaxis protein 33

CheW Chemotaxis protein 18

CheA Chemotaxis protein 73

Tsr Methyl-accepting chemotaxis protein 60

Tar Methyl-accepting chemotaxis protein 60

Aer Methyl-accepting chemotaxis protein 55

Fig. 8.1 Schematic diagram of the bacterial flagellar motor complex structure. The flagellum is
composed of a filament, a hook and a basal body. Each building block synthesized in the cytoplasm
is translocated via a type III protein export apparatus into the central channel of the growing axial
structure. OM—outer membrane, PG—peptidoglycan layer, CM—cytoplasmic membrane
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Fig. 8.2 a Swimming pattern of Salmonella cells. Salmonella cells undergoes continuous run-
and-stop pattern, thereby showing random walk motions in liquids. When the flagellar motor
rotates in counterclockwise (CCW) direction, Salmonella cells can go straight. In contrast, when
the motor switches its rotational direction from CCW to counterclockwise (CW), the cells stop
and change the swimming direction. b Biased random walk motion to attractants. Salmonella cells
sense gradients of chemical attractants in the environments to move towards more favorable stimuli.
c Schematic diagram of a sensory signaling transduction pathway responsible for chemotaxis. The
Salmonella phosphorelay signal transduction network is formed by methyl-accepting chemotaxis
protein (MCP), the CheWadopter protein, the CheA kinase, the CheY chemotaxis signaling protein,
the CheZ phosphatase, the CheB methylesterase and the CheR methyltransferase. CheY-P binds to
the switch complex of the flagellar motor to chnage the direction of flagellar motor rotation from
CCW to CW

chemical stimuli over a wide dynamic range. CheB and CheR are involved in the
adaption mechanism. CheR is the methyltransferase to induce the methylation of
the cytoplasmic domain of the MCP to modulate the autophosphorylation activity of
the CheA kinase. The CheA kinase also transfers the phosphate group to the CheB
methylesterase to promote the demethylation of the MCP to reduce the probability
of autophosphorylation of the CheA kinase (Fig. 8.2c) (Bi and Sourjik 2018).

The Salmonella flagellar motor consists of a rotor and about ten stator units
placed around the rotor. The rotor is a macromolecular ring complex made of four
flagellar proteins, FliF, FliG, FliM and FliN. The transmembrane MS ring is formed
by FliF. FliG, FliM and FliN assemble into the C ring on the cytoplasmic surface of
the MS ring in this order. The C ring also works as a directional switching device
to switch between CCW and CW states of the flagellar motor. Each stator unit is
composed of two integral membrane proteins, MotA andMotB, which form a proton
channel complex to convert the energy of the proton flow through the channel into
the rotational force (Minamino et al. 2018; Nakamura and Minamino 2019).
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To construct the axial structure of the flagellum such as the hook and filament
outside the cell body, the basal body has a type III protein export apparatus at its prox-
imal end (Macnab 2003). The type III protein export apparatus is also a macromolec-
ular protein complex consisting of a transmembrane export gate complex powered
by PMF across the cytoplasmic membrane and an associated cytoplasmic ATPase
ring complex and transports building blocks of the axial structure from the cytoplasm
to the distal end of the nascent structure where each building block self-assembles
into the axial structure. The export gate complex is located inside the central pore
of the MS ring whereas the cytoplasmic ATPase ring complex associates with the C
ring (Minamino 2014, 2018). In this chapter, we describe the structure and function
of the bacterial flagellar motor complex in Salmonella.

Axial Structure

The Salmonella flagellum is composed of several basal body rings and an axial
structure (Fig. 8.1). The axial structure is a helical, tubular structure consisting of six
distinct structural parts: the proximal rod (FlgB, FlgC, FlgF), the distal rod (FlgG),
the hook (FlgE), the junction (FlgK, FlgL), the filament (FliC, FljB), and the filament
cap (FliD). The N- and C-terminal regions of each building block are disordered in
solution but adopt a coiled coil in the inner core domain (D0) of the building block
when they assemble into the axial structure (Fig. 8.3a) (Furukawa et al. 2002; Saijo-
Hamano et al. 2004; Samatey et al. 2001). Hydrophobic interactions between the D0
domains of the building blocks are essential not only for the self-assembly of the
axial structure but also for structural and mechanical stability of the entire tubular
structure (Yonekura et al. 2003; Fujii et al. 2009; Maki-Yonekura et al. 2010; Saijo-
Hamano et al. 2019). Except for the cap structure, which has five-fold rotational
symmetry (Yonekura et al. 2000), the axial structure is a helical assembly composed
of 11 protofilaments (Fig. 8.3b) (Yonekura et al. 2003; Fujii et al. 2009, 2017; Maki-
Yonekura et al. 2010; Kato et al. 2019). The basic helical line that passes through
all the subunits is called a 1-start helix, and there are approximately 11 subunits per
two turns of the 1-start helix (Fig. 8.3b).

The rod is straight and rigid and acts as a drive shaft of the flagellar motor (Fujii
et al. 2017). The hook is supercoiled and highly flexible in bending and functions
as a universal joint (Samatey et al. 2004; Fujii et al. 2009; Kato et al. 2019). The
filament is also supercoiled but rigid against bending and so functions as a helical
propeller (Yonekura et al. 2003;Maki-Yonekura et al. 2010). TheSalmonellafilament
normally adopts a left-handed supercoil to form a flagellar bundle structure behind a
cell body for straight swimming and switches from the left-handed to right-handed
supercoils when the flagellar motor switches the direction of rotation from CCW
to CW (Calladine 1975, 1976; Maki-Yonekura et al. 2010). Since the rod and hook
structurally look similar to each other, the hook is directly connected with the rod
(Chevance et al. 2007; Fujii et al. 2017). In contrast, because there are structural and
mechanical differences between the hook and filament, the junction is a cushioning
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Fig. 8.3 Axial structure in the bacterial flagellar motor complex. a Schematic diagram of cross
section of the flagellar filament. Flagellar filament protein is composed of domains D0, D1, D2 and
D3. bArrangement of building blocks in the flagellar axial structure composed of 11 protofilaments.
Arrows show the helical lines. The 11-start helical line constitutes each protofilament. The numbers
of the subunit starting from the subunit 0 along the 1-start helical line are shown. c Representative
atomic structures of flagellar axial component proteins, FlgG (PDB ID, 6JZR), FlgE (PDB ID,
6KFK), FlgK (PDB ID, 2D4Y), FlgL (PDB ID, 2D4X), FliC (PDB ID, 1UCU) and FliD (PDB ID,
5H5T) derived from Salmonella. CM—cytoplasmic membrane, PG—peptidoglycan layer, OM—
outer membrane

structure to connect them (Homma and Iino 1985). The filament cap promotes the
self-assembly of flagellin subunits into the filament at the distal end (Ikeda et al.
1985, 1996; Yonekura et al. 2000).

Electron cryo-microscopy (cryo-EM) image analyses of the unusually elongated
rod structure, namely polyrod, which is caused by the G65V substitution in the distal
rod protein FlgG, have revealed that FlgG is composed of three domains, D0, Dc,
and D1 from the inside to outside of the polyrod structure (Fig. 8.3c) (Fujii et al.
2017; Saijo-Hamano et al. 2019). Intermolecular interactions between FlgG subunits
in the polyrod structure are very tight, and hence the rod is straight and rigid against
bending to act as a drive shaft. Because FliE is an axial component protein of the
basal body and interacts with the proximal rod protein FlgB, it is thought to form
the most proximal part of the rod structure that is directly connected with the MS
ring and/or the transmembrane export gate complex of the type III protein export
apparatus (Minamino and Macnab 2000b; Minamino et al. 2000).

The hook is a short, curved structure composed of about 120 copies of the hook
protein FlgE. FlgE consist of four domains, D0, Dc, D1 and D2, arranged from the
inside to the outside of the hook structure (Fig. 8.3c) (Samatey et al. 2004; Fujii
et al. 2009). Although the D0, Dc and D1 domains of FlgE are highly homologous
to those of FlgG, there are structural and functional differences in the Dc domain
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between FlgE and FlgG (Chevance et al. 2007; Fujii et al. 2017; Saijo-Hamano et al.
2019). TheDc domain of FlgG contains a FlgG-specific YQTIRQPGAQSSEQTTLP
sequence (GSS), whereas FlgE does not. Insertion of the GSS into a corresponding
region of the Dc domain of FlgEmakes the hook straight and rigid in a way similar to
the FlgG rod structure, suggesting that the GSS is important for the rigidity of the rod
structure (Hiraoka et al. 2017). Axial packing interactions between a triangular loop
of the D1 domain and the D2 domain in each protofilament of the hook structure are
responsible for hook supercoiling (Samatey et al. 2004; Kato et al. 2019). However,
a deletion of either a triangular loop of the D1 domain or domain D2 makes the hook
straight but retains its bending flexibility, allowing the filaments to form a flagellar
bundle behind a cell body (Sakai et al. 2018). Because there are gaps between FlgE
subunits in the entire hook structure, these gaps are likely to contribute to bending
flexibility of the hook (Fujii et al. 2009; Horvath et al. 2019; Kato et al. 2019; Shibata
et al. 2019).

The filament is composed of more than 30,000 flagellin subunits and is a major
target for antigens. Salmonella contains two flagellin genes fliC and fljB on the chro-
mosomal DNA and expresses either FliC or FljB to form the filament on the cell
surface. The alternate expression frequency of these two flagellin genes is about
10–3–10–5 per cell per generation (Stocker 1949; Gillen and Hughes 1991), and such
an autonomous switching changes themotility function aswell as antigen response of
Salmonella cells (Yamaguchi et al. 2020). The flagellin subunit is composed of four
domains D0, D1, D2, and D3, arranged from the inner core to the outer surface of the
filament (Fig. 8.3a, c) (Namba and Vonderviszt 1997). The D0 and D1 domains are
responsible for the formationof the supercoiled formof thefilament structure, and aβ-
hairpin in the D1 domain is thought to act as a structural switch that changes between
left-handed and right-handed helical forms of the filament structure (Samatey et al.
2001). Because the D3 domain, which occupies the outermost part of the filament, is
recognized as H antigens by host immune systems, the primary sequence of the D3
domain differs significantly between FliC and FljB. Interestingly, there are structural
differences in the D3 domain between the FliC and FljB filaments, and such differ-
ences cause a significant difference in the helical propeller function of the filament
under viscous conditions (Yamaguchi et al. 2020). The D3 domain of the flagellin
molecule is dispensable for filament formation but contributes to thermal stability of
the entire filament structure (Muskotal et al. 2010; Furukawa et al. 2016).

The filament growth occurs at the distal end of the growing filament structure
(Minamino 2014). Purified flagellin subunits can self-assemble into a long helical
filament in vitro (Asakura 1970). However, flagellin subunits require a filament cap
formed by FliD to polymerize into the filament structure in vivo (Homma et al. 1984).
If the FliD cap is missing, flagellin monomers cannot assemble into the filament and
hence are secreted into the culture media. This suggests that the FliD cap prevents
newly exported flagellin molecules from leaking into the culture media to ensure that
each flagellin molecule has sufficient time to be incorporated into the filament. Inter-
estingly, the stoichiometry of the filament cap structure is different among bacteria
species. The Salmonella FliD cap has five-fold rotational symmetry (Fig. 8.3c), the
Escherichia coli and Pseudomonas aeruginosa FliD caps have six-fold rotational
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symmetry, and the Serratia marcescens and Bdellovibrio bacteriovorus FliD caps
form a four-fold rotational symmetry structure (Yonekura et al. 2000;Maki-Yonekura
et al. 2003; Postel et al. 2016; Ko et al. 2017; Song et al. 2017; Cho et al. 2019). These
differences might be related to the structural diversity of the flagellin molecule.

Rotor

The Salmonella basal body has the C ring (FliG, FlM, FliN), the MS ring (FliF), the
P ring (FlgI) and the L ring (FlgH), which are located in the cytoplasm, the cyto-
plasmic membrane, the peptidoglycan (PG) layer and the outer membrane, respec-
tively (Fig. 8.4a). The MS ring and the C ring together form a rotor ring complex
of the flagellar motor. The most proximal part of the rod is thought to be directly
connected with the MS ring. The L and P rings together function as a bushing for the

Fig. 8.4 Flagellar motor complex structure. a Cartoon of basal body rings. The basal body contains
four ring structures named the C ring (FliG, FliM, FliN), the MS ring (FliF), the P ring (FlgI)
and the L ring (FlgH). The MS ring and the C ring form the rotor ring complex of the flagellar
motor. Crystal structures of Aquifex aeolicus FliG (PDB ID, 3HJL), Thermotoga maritima FliM
middle domain (FliMM) (PDB ID, 2HP7) and the Salmonella FliMC-FliN fusion protein (PDB ID,
4YXB). FliG consists of three compactly folded domains, FliGN, FliGM and FliGC that is able to be
divided into two FliGCN and FliGCC subdomains and two linker helices, HelixNM connecting FliGN
and FliGM and HelixMC connecting FliGM and FliGCN. Two highly conserved charged residues,
Arg284 (R) and Asp292 (D) in the torque helix of FliGCC are responsible for the interaction with
the stator protein MotA. b Structure of the stator unit of the flagellar motor. The stator unit consists
of four MotA and two MotB proteins and acts as a transmembrane proton channel to couple the
proton flow to torque generation. Highly conserved Pro173 of MotA (P173) and Asp33 of MotB
(D33) are directly involved in the proton translocation. The periplasmic domain of MotB (MotBC)
forms a homodimer and binds to the PG layer, allowing the MotA/MotB complex to act as a
stator unit in the motor. A crystal structure of the MotBC dimer (PDB ID, 2ZVY) is shown. A
linker region connecting MotB-TM and MotBC is dispensable for flagellar motor rotation but
coordinates the proton channel activity of the MotA/MotB complex to stator assembly into the
motor. The plug segment suppresses premature proton flow through the proton channel until the
MotA/MotB complex become an active stator unit in the motor. CM—cytoplasmic membrane,
PG—peptidoglycan layer, OM—outer membrane
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distal rod structure, and the inner surface of the LP ring complex is likely to be very
smooth for high-speed rotation of the rod as a drive shaft (Minamino et al. 2008).

FliFmoleculeswith two transmembrane (TM)helices assemble into theMS ring in
the cytoplasmicmembrane. Over-expression of FliF alone from a pET-based plasmid
vector results in the self-assembly of FliF subunits into theMS ring (Ueno et al. 1992).
However, when FliF is expressed from the chromosomal DNA, FliF requires FliG
for efficient formation of the MS ring in the cytoplasmic membrane (Morimoto et al.
2014). The N-terminal domain of FliG (FliGN) binds to the C-terminal cytoplasmic
domain of FliF (Kihara et al. 2000; Levenson et al. 2012). Intermolecular interactions
between FliGN domains and between the middle (FliGM) and C-terminal (FliGC)
domains of FliG are responsible for FliG ring formation on the cytoplasmic surface
of the MS ring (Baker et al. 2016; Kim et al. 2017). The FliM/FliN complexes with
a 1 FliM: 3 FliN stoichiometry bind to the FliG ring through an interaction between
FliGM and FliM to form the C ring wall with 34-fold rotational symmetry (Paul
et al. 2011; Vartanian et al. 2012; Lam et al. 2013). Because the torque helix in
the C-terminal portion of FliGC (FliGCC) is directly involved in the interaction with
the stator protein MotA to generate the rotational force, FliGCC is believed to be
located at the top of the C ring wall (Fig. 8.4a) (Zhou et al. 1998a). It has been
reported that there is a symmetry mismatch between the MS and C rings (Suzuki
et al. 2004), but recent high-resolution cryo-EM image analysis of the Salmonella
MS ring have shown that the MS ring also has about 34-fold rotational symmetry
(Johnson et al. 2020).

Many Salmonella mutants with altered motility have been isolated. Among
motility mutants, mutations in FliG, FliM, and FliN confer a CCW switch bias
phenotype or a CW switch bias phenotype even in the presence of the chemosen-
sory signal transduction pathway. This suggests that these three C ring proteins
are involved in directional switching of the flagellar motor (Yamaguchi et al. 1986).
Genetic and biochemical analyses have revealed that the chemotaxis signaling protein
CheY-P directly binds to the intrinsically disordered N-terminal region of FliM and
the C-terminal domain of FliN in the C ring and promotes a highly cooperative
conformational change in the FliG ring structure, allowing the motor to rotate in CW
direction (Dyer et al. 2009; Sarkar et al. 2010). A conservedMFXFmotif in a flexible
hinge connecting the N-terminal portion of FliGC (FliGCN) and FliGCC is thought to
induce a 180º rotation of the torque helix of FliGCC relative to FliGCN when themotor
switches the direction of rotation fromCCW to CW (Lam et al. 2012;Miyanoiri et al.
2017). An in-frame deletion of three residues (Pro169–Ala170–Ala171) near the N-
terminal portion of the linker helix connecting FliGM and FliGCN (HelixMC) causes
an extremely strong CW switch bias phenotype. The PAA deletion induces not only
a distinct orientation of HelixMC relative to FliGM but also the rotation of FliGCC

relative to FliGCN, suggesting that HelixMC is postulated to act as a gear to coordi-
nately switch the FliG ring structure between CCW and CW states (Minamino et al.
2011a; Kinoshita et al. 2018a, b). In addition to CheY-P, cyclic di-GMP (c-di-GMP),
which is a second messenger molecule to induce biofilm formation, binds to YcgR
to regulate chemotaxis through interactions of the c-di-GMP bound form of YcgR
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with FliG and FliM in the C ring as well as MotA (Boehm et al. 2010; Fang and
Gomelsky 2010; Paul et al. 2010).

The FliM1/FliN3 complex labeled with a fluorescent protein is visualized to
exchange rapidly between the basal body and its cytoplasmic pool by high-resolution
single molecule imaging techniques whereas neither FliF nor FliG does not, indi-
cating that the C ring wall has a highly dynamic nature whereas both MS and
FliG rings do not (Delalez et al. 2010; Fukuoka et al. 2010). The copy number
of FliM1/FliN3 complex is estimated to be about 1.3 times higher in the CCWmotor
than in the CW motor (Delalez et al. 2014). Because the rapid turnover of the C
ring wall depends on CheY-P, the directional switching of the flagellar motor seems
to induce the dissociation of weakly bound FliM1/FliN3 complexes from the C ring
wall (Lele et al. 2012; Branch et al. 2014; Delalez et al. 2014). The number of the
FliM1/FliN3 complexes in the C ring increases with a decrease in the cytoplasmic
concentration of CheY-P, suggesting that the motor adapts to changes in the steady-
state level of CheY-P by tuning the copy number of the FliM1/FliN3 complex asso-
ciated with the C ring wall (Lele et al. 2012; Branch et al. 2014; Delalez et al. 2014).
However, because both purified CCW and CW motors have the C ring with 34-fold
rotational symmetry (Sakai et al. 2019), it remains unknown how the FliG ring can
accommodate additional FliM1/FliN3 complexes to the C ring.

Stator

MotA and MotB form a transmembrane proton channel that acts as a stator unit of
the flagellar motor to couple the proton flow through the proton channel to torque
generation (Fig. 8.4a) (Larsen et al. 1974; Manson et al. 1977; Ravid and Eisenbach
1984). MotA andMotB form a heterohexamer with a 4MotA: 2MotB stoichiometry
and has two distinct proton channels (Fig. 8.4b) (Braun et al. 2004; Kojima and Blair
2004). MotA assembles into a homo-tetramer (Braun et al. 2004; Kim et al. 2008;
Takekawa et al. 2016), and the MotB homo-dimer binds to the central pore of the
MotA tetramer (Braun and Blair 2001). MotA has four TM helices (TM1–TM4),
two short periplasmic loops between TM1 and TM2 and between TM3 and TM4,
a relatively large cytoplasmic loop between TM2 and TM3 and a C-terminal cyto-
plasmic tail (Zhou et al. 1995). MotB has an N-terminal cytoplasmic tail, followed
by a single TM helix and finally a large C-terminal periplasmic domain containing
a peptidoglycan-binding (PGB) motif (MotBC) (Kojima et al. 2009). The MotB-
TM helix forms a proton channel with the TM3 and TM4 helices of MotA (Braun
and Blair 2001; Braun et al. 2004). Highly conserved Asp33 of MotB and Pro173
of MotA, which are located in the proton channel, are involved in the proton flow
through the channel (Zhou et al. 1998b; Braun et al. 1999; Kojima and Blair 2001;
Che et al. 2008). The cytoplasmic loop of MotA contains highly conserved Arg90
and Glu98 residues that are responsible for the interaction with the torque helix of
FliGCC (Zhou et al. 1998a). MotBC forms a dimer, and its dimerization is critical
for efficient targeting and stable anchoring of the stator units to the PG layer. As a
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result, the MotA4/MotB2 complex can become an active stator unit around a rotor
(Kojima et al. 2009, 2018). Interestingly, site-specific disulfide bridge experiments
have shown that MotBC is in relatively close proximity to the P ring of the basal
body (Fig. 8.4a) (Hizukuri et al. 2010).

A flexible linker region of MotB (residues 51–100) connecting MotB-TM and the
MotBC domain are dispensable for flagellarmotor rotation (Fig. 8.4b) (Muramoto and
Macnab 1998). Because an in-framedeletion of residues 53–66 ofMotB considerably
reduces cytoplasmic pH due to undesirable proton leakage through unassembled
MotA4/MotB2 proton channel complex, residues 53–66 of MotB are postulated to
form a plug segment to suppress the proton leakage through the proton channel
until the MotA4/MotB2 complex is incorporated into a motor (Hosking et al. 2006;
Morimoto et al. 2010a). Although the MotA4/MotB2 complex with a deletion of
residues 51–100 of MotB is still functional, such a large deletion does not induce
a considerable proton leakage through unassembled MotA4/MotB2 proton channel
complexes (Muramoto and Macnab 1998). The MotB (L119P) substitution in the
PGB domain of MotBC not only causes massive proton leakage though unassembled
MotA4/MotB (�51–100)2 complexes (Kojima et al. 2009; Morimoto et al. 2010a)
but also increase the binding affinity of the PGB domain for the PG layer (Kojima
et al. 2018). The MotB (L119P) substitution induces an order-to-disorder transition
of the N-terminal portion of the PGB domain (Kojima et al. 2018). Since a 5 nm
extension of the PGB domain of MotB from the MotB-TM helix is required for the
binding of the PGB domain to the PG layer (Kojima et al. 2008), such an order-to-
disordered transition of theN-terminal portion of the PGBdomain should occurwhen
the MotA4/MotB2 complex encounters a rotor to become an active stator unit in the
motor (Kojima et al. 2018). In agreement with this, the 5 nm extension process of the
PGB domain of MotS derived from Bacillus subtilis, which is a MotB homologue,
has been directly visualized using high-speed atomic force microscopy (Terahara
et al. 2017a). Therefore, these observations suggest that the flexible linker region of
MotB coordinates not only proper proton channel formation of the MotA4/MotB2

complex but also efficient and proper anchoring of the PGB domain to the PG layer.
Each stator complex binds to and dissociates from a rotor ring complex during

torque generation by the flagellar motor, suggesting that the stator complex has a
highly dynamic nature (Leake et al. 2006). The number of functionally active stators
in the motor varies in response to changes in the environment, such as external load
and external proton concentration (Fukuoka et al. 2009; Lele et al. 2013; Tipping
et al. 2013; Che et al. 2014; Terahara et al. 2017b; Suzuki et al. 2019). For example,
the maximum number of active stator units incorporated into the flagellar motor is
about ten when the motor operates at high loads (Reid et al. 2006; Pourjaberi et al.
2017). In contrast, the stator number decreases from ten to a few with a decrease
in external load (Yuan and Berg 2008; Nakamura et al. 2020). Thus, the flagellar
motor autonomously controls the number of active stator units around the rotor in
response to changes in external loads. It has been shown that an in-frame deletion of
residues 72–100 of MotB results in much steeper decrease in the stator number with
a decrease in the external load as compared to the wild-type motor (Castillo et al.
2013). This suggests that the linker region of MotB modulates the binding affinity of
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the PGB domain for the PG layer in a load-dependent manner. Interestingly, certain
point mutations in the cytoplasmic loop of MotA also change the load-sensitivity of
the MotA4/MotB2 complex (Pourjaberi et al. 2017). Because the cytoplasmic loop
ofMotA directly binds to FliG to generate torque (Zhou et al. 1998a; Morimoto et al.
2010b; Morimoto et al. 2013), this cytoplasmic loop seems to act as a load sensor
to coordinate the number of active stators incorporated into the motor in response to
changes in external load. Recently, it has been shown that the localization efficiency
of the MotA4/MotB2 complex is also increased by lowering extracellular pH, that is,
increasing proton concentration, and that such an external pH-dependent localization
pattern of the MotA4/MotB2 complex is not affected by the motB(D33N) mutation,
which inhibits the proton flow through the MotA4/MotB2 proton channel complex
(Suzuki et al. 2019). Since it has been reported that the PGB domain ofMotS induces
a disordered-to-order transition of the PGB domain in a Na+-dependent manner to
allow the MotP4/MotS2 complex to become an active stator unit in the B. subtilis
flagellar motor (Terahara et al. 2017a), it is possible that the folding efficiency of the
PGB domain of MotB depends on external pH values.

Type III Protein Export Apparatus

The assembly of the axial structure begins with the rod, followed by the hook, the
junction, the filament cap in this order and finally the filament (Macnab 2003). For the
self-assembly of each building block at the distal end of the growing structure, a type
III protein export apparatus unfolds the building blocks synthesized in the cytoplasm
and then transports them into the central channel of the growing structure (Minamino
2014; Minamino et al. 2020a). PMF across the cytoplasmic membrane and ATP are
utilized as the energy sources to drive flagellar protein export by the type III protein
export apparatus (Minamino and Namba 2008; Paul et al. 2008). The type III protein
export apparatus is composed of a PMF-driven export gate complex consisting of five
membrane proteins FlhA, FlhB, FliP, FliQ and FliR, and a cytoplasmic ATPase ring
complexmade of three cytoplasmic proteins, FliH, FliI and FliJ (Fig. 8.5) (Minamino
2014). These component proteins show sequence and functional similarities to those
of the injectisome of pathogenic bacteria such as Salmonella spp, Shigella spp and
Yersinia spp, which is involved in direct injection of effector proteins into eukaryotic
host cells for bacterial infection (Galán et al. 2014). Furthermore, the overall structure
of the cytoplasmicATPase ring complex is similar to F-type andV-type rotaryATPase
families, suggesting that the type III protein export apparatus of the flagellum and the
injectisome share a common evolutionary origin with these rotary ATPase families
(Imada et al. 2007, 2016; Ibuki et al. 2011). In addition, four cytoplasmic proteins,
FlgN, FliA, FliS and FliT, function as flagellum-specific export chaperones to support
the export of their cognate building blocks by the type III protein export apparatus
(Table 8.1).

FliP, FliQ, FliR form a helical assembly with a 5 FliP: 4 FliQ: 1 FliR stoichiom-
etry inside the central pore of the MS ring (Fig. 8.5) (Fabiani et al. 2017; Fukumura
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Fig. 8.5 Structures of the flagellar type III export apparatus component proteins. The type III
protein export apparatus is composed of five transmembrane proteins, FlhA, FlhB, FliP, FliQ and
FliR and three cytoplasmic protein FliH, FliI and FliJ. In addition, flagellar export chaperones
such as FlgN and FliT interact with the type III protein export apparatus proteins to promote the
export of their cognate building blocks. Crystal structures of the C-terminal cytoplasmic domain of
Salmonella FlhA (FlhAC) (PDB ID, 3A5I), the C-terminal cytoplasmic domain of Salmonella FlhB
(FlhBC) (PDB ID, 3B0Z), the Salmonella FliP/FliQ/FliR complex with a 5 FliP (green): 4 FliQ
(blue): 1 FliR (red) stoichiometry (PDB ID, 6R69), Salmonella FlhE (PDB ID, 4QXL), Salmonella
FliH2FliI complex with a 2 FliH: 1 FliI stoichiometry (PDB ID, 5B0O), Salmonella FliJ (PDB ID,
3AJW) and the Salmonella FlgN (PDB ID, 5B3D) and FliT (PDB ID, 3A7M) export chaperones
are shown. FlhAC consists of four compactly folded domains, D1, D2, D3 and D4 and a flexible
linker connecting FlhAC and the N-terminal transmembrane region of FlhA. Hinge loops of the
FlgN and FliT chaperones are responsible for helical rearrangements of these chaperone structure
to modulate the binding affinity for their binding partners. CM—cytoplasmic membrane

et al. 2017; Kuhlen et al. 2018; Butan et al. 2019). The FliP5/FliQ4/FliR1 complex
is thought to be connected with the most proximal part of the rod to form a contin-
uous protein channel inside the growing axial structure (Kuhlen et al. 2018). FlhA
forms a homo-nonamer through intermolecular interactions between its C-terminal
cytoplasmic domains (FlhAC) (Abrusci et al. 2013; Kawamoto et al. 2013;Morimoto
et al. 2014; Terahara et al. 2018) and acts as an energy transducer along with the cyto-
plasmic ATPase complex (Minamino et al. 2011b, 2016b; Erhardt et al. 2017). FlhA
associates not only with the FliP5/FliQ4/FliR1 helical structure but also with the MS
ring (Kihara et al. 2001; Fukumura et al. 2017). A single copy of FlhB associates with
FliP and FliR (Kuhlen et al. 2019). The assembly of the export gate complex begins
with the formation of the FliP5/FliR1 complex with the help of the transmembrane
protein FliO, followed by the assembly of FliQ and FlhB presumably in this order
and finally the assembly of FlhA (Morimoto et al. 2014; Fabiani et al. 2017; Fuku-
mura et al. 2017; Kuhlen et al. 2018). FlhAC and the C-terminal cytoplasmic domain
of FlhB (FlhBC) project into the central cavity of the C ring (Fig. 8.5) and form a
docking platform for the cytoplasmic ATPase complex, flagellar export chaperones
and building blocks (Bange et al. 2010; Minamino et al. 2010, 2012). These two
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FlhAC and FlhBC domains mediate well-organized protein targeting and transport
for efficient assembly of the axial structure with the help of the cytoplasmic ATPase
complex and the molecular ruler protein FliK (Table 8.1) (Minamino and Macnab
2000a; Fraser et al. 2003; Hirano et al. 2009; Kinoshita et al. 2013; Minamino et al.
2016a, 2020b; Inoue et al. 2018, 2019).

FliI is a member of the Walker-type ATPase family (Fan and Macnab 1996) and
forms a homo-hexamer to hydrolyze ATP at an interface between FliI subunits in a
way similar to the α3β3 hetero-hexameric ring complex of F1-ATPase (Claret et al.
2003; Imada et al. 2007; Minamino et al. 2006). FliJ binds to the center of the FliI
hexamer in a way similar to the γ subunit of the F1-ATPase (Ibuki et al. 2011). The
FliH dimer, which structurally looks similar to the peripheral stalk of the F1-ATPase
(Imada et al. 2016), binds to the N-terminal domain of each FliI subunit (Okabe
et al. 2009) and anchors the FliI6FliJ ring complex to the flagellar base through
interactions of the extreme N-terminal region of FliH with FliN and FlhA (Bai et al.
2014; Gonzalez-Pedrajo et al. 2006; Minamino et al. 2009; Hara et al. 2012). ATP
hydrolysis by the FliI ATPase activates the PFM-driven export gate complex through
an interaction between the FliJ stalk and FlhA, allowing the export gate complex to
transport building blocks from the cytoplasm to the distal end of the growing structure
in a PMF-dependent manner (Minamino et al. 2011b; Ibuki et al. 2013). The FliI
ATPase shows rapid exchanges between the basal body and the cytoplasmic pool,
suggesting that the cytoplasmic ATPase complex seems to be a dynamic structure
(Bai et al. 2014).

When the cytoplasmic ATPase complex is missing, the transmembrane export
gate complex utilizes sodium motive force across the cell membrane in addition to
PFM (Minamino et al. 2016b). FlhA acts as the transmembrane ion channel of the
export gate complex to conduct not only protons but also sodium ions (Minamino
et al. 2016b). The transmembrane export gate complex functions as a protein/cation
antiporter that couples the inward-directed cation flow through the FlhA channel to
the outward-directed protein transport (Minamino et al. 2011b). The flhE gene forms
an operon together with the flhB and flhA genes, and its gene product is secreted via
the Sec translocon into the periplasm (Minamino et al. 1994). FlhE is postulated
to act as a plug to prevent the FlhA ion channel from translocating large numbers
of protons along an electrochemical difference of protons across the cytoplasmic
membrane (Lee et al. 2015), but it remains unknown how it works. High-resolution
local pH measurements around the type III protein export apparatus have shown that
a loss of the ATPase ring complex increases the local pH inside the C ring, indicating
ATP hydrolysis by the ATPase ring complex facilitates the proton channel activity
of the FlhA channel coupled with flagellar protein export (Morimoto et al. 2016).

The FlgN, FliS and FliT chaperones not only suppresses premature aggregation
and/or proteolysis of their cognate building blocks in the cytoplasm (Auvray et al.
2001; Bennett et al. 2001; Aldridge et al. 2003) but also facilitate their docking to the
type III protein export apparatus (Thomas et al. 2004; Evans et al. 2006; Kinoshita
et al. 2013). TheFlgN, FliS andFliT chaperones adopt anα-helical structure (Fig. 8.5)
(Evdokimov et al. 2003; Imada et al. 2010; Kinoshita et al. 2016), and the binding
of their cognate building block to these chaperones induces helical rearrangements
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of the chaperones through flexible hinge loops, allowing the building blocks to be
efficiently transferred to the type III protein export apparatus, followed by efficient
unfolding and the subsequent translocation of the building blocks by the PMF-driven
export gate complex (Imada et al. 2010; Kinoshita et al. 2013, 2016; Furukawa et al.
2016).

Conclusions

Detailed domain structures of bacterial flagellar component proteins have been
revealed at an atomic resolution by X-ray crystallography. In addition, cryo-EM
image analyses of the bacterial flagellum have provided deep insights into the
mechanical functions of the rod, the hook and the filament. Cryo-electron tomo-
graphic techniques have revealed the in situ structures of the transmembrane part of
the basal body structure. However, while static structural knowledge is increasing,
there are still manymysterious points that do not connect to dynamic functions of the
bacterial flagellum. Biophysical and molecular genetic approaches combined with
structural studies are required tomore accurately investigate the dynamicmechanism
of the flagellar motor complex.
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