
PGC: Decentralized Confidential
Payment System with Auditability

Yu Chen1,2,3,4, Xuecheng Ma5,6, Cong Tang7, and Man Ho Au8(B)

1 School of Cyber Science and Technology,
Shandong University, Qingdao 266237, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Qingdao 266237, China

4 Shandong Institute of Blockchain, Jinan, China
yuchen@sdu.edu.cn

5 State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China
6 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China
maxuecheng@iie.ac.cn

7 Beijing Temi Co., Ltd., pgc.info, Beijing, China
congtang.cn@gmail.com

8 Department of Computer Science,
The University of Hong Kong, Pok Fu Lam, China

allenau@cs.hku.hk

Abstract. Many existing cryptocurrencies fail to provide transaction
anonymity and confidentiality. As the privacy concerns grow, a number
of works have sought to enhance privacy by leveraging cryptographic
tools. Though strong privacy is appealing, it might be abused in some
cases. In decentralized payment systems, anonymity poses great chal-
lenges to system’s auditability, which is a crucial property for scenarios
that require regulatory compliance and dispute arbitration guarantee.

Aiming for a middle ground between privacy and auditability, we
introduce the notion of decentralized confidential payment (DCP) system
with auditability. In addition to offering confidentiality, DCP supports
privacy-preserving audit in which an external party can specify a set
of transactions and then request the participant to prove their compli-
ance with a large class of policies. We present a generic construction of
auditable DCP system from integrated signature and encryption scheme
and non-interactive zero-knowledge proof systems. We then instantiate
our generic construction by carefully designing the underlying building
blocks, yielding a standalone cryptocurrency called PGC. In PGC, the
setup is transparent, transactions are less than 1.3 KB and take under
38ms to generate and 15 ms to verify.

At the core of PGC is an additively homomorphic public-key encryp-
tion scheme that we newly introduce, twisted ElGamal, which is not
only as secure as standard exponential ElGamal, but also friendly to

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12308, pp. 591–610, 2020.
https://doi.org/10.1007/978-3-030-58951-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58951-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-58951-6_29

592 Y. Chen et al.

Sigma protocols and Bulletproofs. This enables us to easily devise zero-
knowledge proofs for basic correctness of transactions as well as various
application-dependent policies in a modular fashion.

Keywords: Cryptocurrencies · Decentralized payment system ·
Confidential transactions · Auditable · Twisted ElGamal

1 Introduction

Cryptocurrencies such as Bitcoin [Nak08] and Ethereum [Woo14] realize decen-
tralized peer-to-peer payment by maintaining an append-only public ledger
known as blockchain, which is globally distributed and synchronized by consen-
sus protocols. In blockchain-based payment systems, correctness of each transac-
tion must be verified by the miners publicly before being packed into a block. To
enable efficient validation, major cryptocurrencies such as Bitcoin and Ethereum
simply expose all transaction details (sender, receiver and transfer amount) to
the public. Following the terminology in [BBB+18], privacy for transactions con-
sists of two aspects: (1) anonymity, hiding the identities of sender and receiver in
a transaction and (2) confidentiality, hiding the transfer amount. While Bitcoin-
like and Ethereum-like cryptocurrencies provide some weak anonymity through
unlinkability of account addresses to real world identities, they lack confidential-
ity, which is of paramount importance.

1.1 Motivation

Auditability is a crucial property in all financial systems. Informally, it means
that an auditor can not only check that if transactions satisfy some pre-fixed
policies before-the-fact, but also request participants to prove that his/her trans-
actions comply with some policies after-the-fact. In centralized payment system
where there exists a trusted center, such as bank, Paypal or Alipay, auditability
is a built-in property since the center knows details of all transactions and thus
be able to conduct audit. However, it is challenging to provide the same level of
auditability in decentralized payment systems with strong privacy guarantee.

In our point of view, strong privacy is a double-edged sword. While confi-
dentiality is arguably the primary concern of privacy for any payment system,
anonymity might be abused or even prohibitive for applications that require
auditability, because anonymity provides plausible deniability [FMMO19], which
allows participants to deny their involvements in given transactions. Particularly,
it seems that anonymity denies the feasibility of after-the-fact auditing, due to
an auditor is unable to determine who is involved in which transaction. We
exemplify this dilemma via the following three typical cases.

Case 1: To prevent criminals from money laundering in a decentralized payment
system, an auditor must be able to examine the details of suspicious transactions.
However, if the system is anonymous, locating the participants of suspicious

PGC: Decentralized Confidential Payment System with Auditability 593

transactions and then force them to reveal transaction details would be very
challenging.

Case 2: Consider an employer pay salaries to employees via a decentralized pay-
ment system with strong privacy. If the employee did not receive the correct
amount, how can he support his complaint? Likewise, how can the employer
protect himself by demonstrating that he has indeed completed payment with
the correct amount.

Case 3: Consider the employees also pay the income tax via the same payment
system. How can he convince the tax office that he has paid the tax according
to the correct tax rate.

Similar scenarios are ubiquitous in monetary systems that require after-the-
fact auditing and in e-commerce systems that require dispute arbitration mech-
anism.

1.2 Our Contributions

The above discussions suggest that it might be impossible to construct a decen-
tralized payment system offering the same level of auditability as centralized pay-
ment system while offering confidentiality and anonymity simultaneously with-
out introducing some degree of centralization or trust assumption. In this work,
we stick to confidentiality, but trade anonymity for auditability. We summarize
our contributions as follows.

Decentralized Confidential Payment System with Auditability. We
introduce the notion of decentralized confidential payment (DCP) system with
auditability, and formalize a security model. For the sake of simplicity, we take
an account-based approach and focus only on the transaction layer, and treat the
network/consensus-level protocols as black-box and ignore attacks against them.
Briefly, DCP should satisfy authenticity, confidentiality and soundness. The first
security notion stipulates that only the owner of an account can spend his coin.
The second security notion requires the account balance and transfer amount are
hidden. The last security notion captures that no one is able to make validation
nodes accept an incorrect transaction. In addition, we require the audit to be
privacy-preserving, namely, the participant is unable to fool the auditor and the
auditing results do not impact the confidentiality of other transactions.

We then present a generic construction of auditable DCP system from two
building blocks, namely, integrated signature and encryption (ISE) schemes and
non-interactive zero-knowledge (NIZK) proof systems. In our generic DCP con-
struction, ISE plays an important role. First, it guarantees that each account can
safely use a single keypair for both encryption and signing. This feature greatly
simplifies the overall design from both conceptual and practical aspects. Second,
the encryption component of ISE ensures that the resulting DCP system is com-
plete, meaning that as soon as a transaction is recorded on the blockchain, the
payment is finalized and takes effect immediately – receiver’s balance increases
with the same amount that sender’s balance decreases, and the receiver can spend

594 Y. Chen et al.

his coin on his will. This is in contrast to many commitment-based cryptocurren-
cies that require out-of-band transfer, which are thus not complete. NIZK not
only enables a sender to prove transactions satisfy the most basic correctness
policy, but also allows a user to prove that any set of confidential transactions
he participated satisfy a large class of application-dependent policies, such as
limit on total transfer amounts, paying tax rightly according the tax rate, and
transaction opens to some exact value. In summary, our generic DCP construc-
tion is complete, and supports flexible audit.

PGC: A Simple and Efficient Instantiation. While the generic DCP con-
struction is relatively simple and intuitive, an efficient instantiation is more tech-
nically involved. We realize our generic DCP construction by designing a new
ISE and carefully devising suitable NIZK proof system. We refer to the resulting
cryptocurrency as PGC (stands for Pretty Good Confidentiality). Notably, in
addition to the advantages inherited from the generic construction, PGC admits
transparent setup, and its security is based solely on the widely-used discrete
logarithm assumption. To demonstrate the efficiency and usability of PGC, we
implement it as a standalone cryptocurrency, and also deploy it as smart con-
tracts. We report the experimental results in Sect. 5.

1.3 Technical Overview

We discuss our design choice in the generic construction of DCP, followed by
techniques and tools towards a secure and efficient instantiation, namely, PGC.

1.3.1 Design Choice in Generic Construction of Auditable DCP

Pseudonymity vs. Anonymity. Early blockchain-based cryptocurrencies
offers pseudonymity, that is, addresses are assumed to be unlinkable to their real
world identities. However, a variety of de-anonymization attacks [RS13,BKP14]
falsified this assumption. On the other hand, a number of cryptocurrencies such
as Monero and Zcash sought to provide strong privacy guarantee, including
both anonymity and confidentiality. In this work, we aim for finding a sweet
balance between privacy and auditability. As indicated in [GGM16], identity is
crucial to any regulatory system. Therefore, we choose to offer privacy in terms
of confidentiality, and still stick to pseudonymous system. Interestingly, we view
pseudonymity as a feature rather than a weakness, assuming that an auditor is
able to link account addresses to real world identities. This opens the possibility
to conduct after-the-fact audit. We believe this is the most promising avenue for
real deployment of DCP that requires auditability.

PKE vs. Commitment. A common approach to achieve transaction confiden-
tiality is to commit the balance and transfer amount using a global homomor-
phic commitment scheme (e.g., the Pedersen commitment [Ped91]), then derive
a secret from blinding randomnesses to prove correctness of transaction and
authorize transfer. The seminal DCP systems [Max,Poe] follow this approach.

PGC: Decentralized Confidential Payment System with Auditability 595

Nevertheless, commitment-based approach suffers from several drawbacks.
First, the resulting DCP systems are not complete. Due to lack of decryption
capability, senders are required to honestly transmit the openings of outgoing
commitments (includes randomness and amount) to receivers in an out-of-band
manner. This issue makes the system much more complicated, as it must be
assured that the out-of-band transfer is correct and secure. Second, users must
be stateful since they have to keep track of the randomness and amount of each
incoming commitment. Otherwise, failure to open a single incoming commitment
will render an account totally unusable, due to either incapable of creating the
NIZK proofs (lack of witness), or generating the signature (lack of signing key).
This incurs extra security burden to the design of wallet (guarantee the openings
must be kept in a safe and reliable way).

Observe that homomorphic PKE can be viewed as a computationally hiding
and perfectly binding commitment, in which the secret key serves as a natural
trapdoor to recover message. With these factors in mind, our design equips each
user with a PKE keypair rather than making all users share a global commitment.

Integrated Signature and Encryption vs. SIG+PKE. Intuitively, to secure
a DCP system, we need a PKE scheme to provide confidentiality, and a signature
scheme to provide authenticity. If we follow the principle of key separation, i.e.,
use different keypairs for encryption and signing operations respectively, the
overall design would be complicated. In that case, each account will be associated
with two keypairs, and consequently deriving account address turns out to be
very tricky. If we derive the address from one public key, which one should
be chosen? If we derive the address from the two public keys, then additional
mechanism is needed to link the two public keys together.

A better solution is to adopt key reuse strategy, i.e., use the same keypair
for both encryption and signing. This will greatly simplify the design of overall
system. However, reusing keypairs may create new security problems. As pointed
out in [PSST11], the two uses may interact with one another badly, in such a
way as to undermine the security of one or both of the primitives, e.g., the
case of textbook RSA encryption and signature. In this work, we propose to use
integrated signature and encryption (ISE) scheme with joint security, wherein a
single keypair is used for both signature and encryption components in a secure
manner, to replace the naive combination of signature and encryption. To the
best of our knowledge, this is the first time that ISE is used in DCP system to
ensure provable security. We remark that the existing proposal Zether [BAZB20]
essentially adopts the key reuse strategy, employing a signature scheme and
an encryption scheme with same keypair. Nevertheless, they do not explicitly
identify key reuse strategy and formally address joint security.

1.3.2 Overview of Our Generic Auditable DCP

DCP from ISE and NIZK. We present a generic construction of DCP system
from ISE and NIZK. We choose the account-based model for simplicity and
usability. In our generic DCP construction, user creates an account by generating

596 Y. Chen et al.

a keypair of ISE, in which the public key is used as account address and secret
key is used to control the account. The state of an account consists of a serial
number (a counter that increments with every outgoing transaction) and an
encrypted balance (encryption of plaintext balance under account public key).
State changes are triggered by transactions from one account to another. A
blockchain tracks the state of every account.

Let C̃s and C̃r be the encrypted balances of two accounts controlled by
Alice and Bob respectively. Suppose Alice wishes to transfer v coins to Bob. She
constructs a confidential transaction via the following steps. First, she encrypts
v under her public key pks and Bob’s public key pkr respectively to obtain
Cs and Cr, and sets memo = (pks, pkr, Cs, Cr). Then, she produces a NIZK
proof πcorrect for the most basic correctness policy of transaction: (i) Cs and
Cr are two encryptions of the same transfer amount under pks and pkr; (ii)
the transfer amount lies in a right range; (iii) her remaining balance is still
positive. Finally, she signs serial number sn together with memo and πcorrect

under her secret key, obtaining a signature σ. The entire transaction is of the form
(sn,memo, πcorrect, σ). In this way, validity of a transaction is publicly verifiable
by checking the signature and NIZK proof. If the transaction is valid, it will be
recorded on the blockchain. Accordingly, Alice’s balance (resp. Bob’s balance)
will be updated as C̃s = C̃s − Cs (resp. C̃r = C̃r + Cr), and Alice’s serial
number increments. Such balance update operation implicitly requires that the
underlying PKE scheme satisfies additive homomorphism.

In summary, the signature component is used to provide authenticity (prov-
ing ownership of an account), the encryption component is used to hide the
balance and transfer amount, while zero-knowledge proofs are used to prove the
correctness of transactions in a privacy-preserving manner.

Auditing Policies. A trivial solution to achieve auditability is to make the
participants reveal their secret keys. However, this approach will expose all the
related transactions to the auditor, which is not privacy-preserving. Note that a
plaintext and its ciphertext can be expressed as an NP relation. Auditability can
thus be easily achieved by leveraging NIZK. Moreover, note that the structure
of memo is symmetric. This allows either the sender or the receiver can prove
transactions comply with a variety of application-dependent policies. We provide
examples of several useful policies as below:

– Anti-money laundering: the sum of a collection of outgoing/incoming trans-
actions from/to a particular account is limited.

– Tax payment: a user pays the tax according to the tax rate.
– Selectively disclosure: the transfer amount of some transaction is indeed some

value.

1.3.3 PGC: A Secure and Efficient Instantiation
A secure and efficient instantiation of the above DCP construction turns out
to be more technical involved. Before proceeding, it is instructive to list the
desirable features in mind:

PGC: Decentralized Confidential Payment System with Auditability 597

1. transparent setup – do not require a trusted setup. This property is of utmost
importance in the setting of cryptocurrencies.

2. efficient – only employ lightweight cryptographic schemes based on well-
studied assumptions.

3. modular – build the whole scheme from reusable gadgets.

The above desirable features suggest us to devise efficient NIZK that admits
transparent setup, rather than resorting to general-purpose zk-SNARKs, which
are either heavyweight or require trusted setup. Besides, the encryption compo-
nent of ISE should be zero-knowledge proofs friendly.

We begin with the instantiation of ISE. A common choice is to select Schnorr
signature [Sch91] as the signature component and exponential ElGamal [CGS97]
as the encryption component.1 This choice brings us at least three benefits: (i)
Schnorr signature and ElGamal PKE share the same discrete-logarithm (DL)
keypair (i.e., pk = gsk ∈ G, sk ∈ Zp), thus we can simply use the common public
key as account address. (ii) The signing operation of Schnorr’s signature is largely
independent to the decryption operation of ElGamal PKE, which indicates that
the resulting ISE scheme could be jointly secure. (iii) ElGamal PKE is addi-
tively homomorphic. Efficient Sigma protocols can thus be employed to prove
linear relations on algebraically encoded-values. For instance, proving plaintext
equality: Cs and Cr encrypt the same message under pks and pkr respectively.

It remains to design efficient NIZK proofs for the basic correctness policies
and various application-dependent policies.

Obstacle of Working with Bulletproof. Besides using Sigma protocols to
prove linear relations over encrypted values, we also need range proofs to prove
the encrypted values lie in the right interval. In more details, we need to prove
that the value v encrypted in Cs and the value encrypted in C̃s −Cs (the current
balance subtracts v) lies in the right range. State-of-the-art range proof is Bullet-
proof [BBB+18], which enjoys efficient proof generation/verification, logarithmic
proof size, and transparent setup. As per the desirable features of our instan-
tiation, Bulletproof is an obvious choice. Recall that Bulletproof only accepts
statements of the form of Pedersen commitment grhv. To guarantee soundness,
the DL relation between commitment key (g, h) must be unknown to the prover.
Note that an ElGamal ciphertext C of v under pk is of the form (gr, pkrgv), in
which the second part ciphertext can be viewed as a commitment of v under
commitment key (pk, g). To prove v lies in the right range, it seems that we can
simply run the Bulletproof on pkrgv. However, this usage is insecure since the
prover owns an obvious trapdoor, say sk, of such commitment key.

There are two approaches to circumvent this obstacle. The first approach is
to commit v with randomness r under commitment key (g, h), then prove (v, r)
in gvhr is consistent with that in the ciphertext (gr, pkrgv). Similar idea was
used in Quisquis [FMMO19]. The drawback of this approach is that it brings
extra overhead of proof size as well as proof generation/verification. The second

1 In the remainder of this paper, we simply refer to the exponential ElGamal PKE as
ElGamal PKE for ease of exposition.

598 Y. Chen et al.

approach is due to Bünz et al. [BAZB20] used in Zether. They extend Bulletproof
to Σ-Bullets, which enables the interoperability between Sigma protocols and
Bulletproof. Though Σ-Bullets is flexible, it requires custom design and analysis
from scratch for each new Sigma protocols.

Twisted ElGamal - Our Customized Solution. We are motivated to
directly use Bulletproof in a black-box manner, without introducing Pedersen
commitment as a bridge or dissecting Bulletproof. Our idea is to twist standard
ElGamal, yielding the twisted ElGamal. We sketch twisted ElGamal below. The
setup algorithm picks two random generators (g, h) of G as global parameters,
while the key generation algorithm is same as that of standard ElGamal. To
encrypt a message m ∈ Zp under pk, the encryption algorithm picks r

R←− Zp,
then computes ciphertext as C = (X = pkr, Y = grhm). The crucial difference
to standard ElGamal is that the roles of key encapsulation and session key are
switched and the message m is lifted on a new generator h.2 Twisted ElGamal
retains additive homomorphism, and is as efficient and secure as the standard
exponential ElGamal. More importantly, it is zero-knowledge friendly. Note that
the second part of twisted ElGamal ciphertext (even encrypted under different
public keys) can be viewed as Pedersen commitment under the same commit-
ment key (g, h), whose DL relation is unknown to all users. Such structure makes
twisted ElGamal compatible with all zero-knowledge proofs whose statement is
of the form Pedersen commitment. In particular, one can directly employ Bul-
letproof to generate range proofs for values encrypted by twisted ElGamal in a
black-box manner, and these proofs can be easily aggregated. Next, we abstract
two distinguished cases.

Prover Knows the Randomness. This case generalizes scenarios in which the
prover is the producer of ciphertexts. Concretely, consider a twisted ElGamal
ciphertext C = (X = pkr, Y = grhv), to prove m lies in the right range, the
prover first executes a Sigma protocol on C to prove the knowledge of (r, v),
then invokes a Bulletproof on Y to prove v lies in the right range.

Prover Knows the Secret Key. This case generalizes scenarios where the prover
is the recipient of ciphertexts. Due to lack of randomness as witness, the prover
cannot directly invoke Bulletproof. We solve this problem by developing cipher-
text refreshing approach. The prover first decrypts C̃s − Cs to v using sk, then
generates a new ciphertext C∗

s of v under fresh randomness r∗, and proves that
C̃s − Cs and C∗

s do encrypt the same message under his public key. Now, the
prover is able to prove that v encrypted by C∗

s lies in the right range by com-
posing a Sigma protocol and a Bulletproof, via the same way as the first case.

The above range proofs provide two specialized “proof gadgets” for proving
encrypted values lie in the right range. We refer to them as Gadget-1 and Gadget-
2 hereafter. As we will see, all the NIZK proofs used in this work can be built
from these two gadgets and simple Sigma protocols. Such modular design helps
2 As indicated in [CZ14], the essence of ElGamal is Fsk(gr) = pkr forms a publicly

evaluable pseudorandom functions over G. The key insight of switching is that Fsk

is in fact a permutation.

PGC: Decentralized Confidential Payment System with Auditability 599

to reduce the footprint of overall cryptographic code, and have the potential
to admit parallel proof generation/verification. We highlight the two “gadgets”
are interesting on their own right as privacy-preserving tools, which may find
applications in other domains as well, e.g., secure machine learning.

Enforcing more Auditing Policies. In the above, we have discussed how to
employ Sigma protocols and Bulletproof to enforce the basic correctness policy
for transactions. In fact, we are able to enforce a variety of polices that can
be expressed as linear constraints over transfer amounts. In Sect. 4.2, we show
how to enforce limit, rate and open policies using Sigma protocols and the two
gadgets we have developed.

1.4 Related Work

The seminal cryptocurrencies such as Bitcoin and Ethereum do not provide
sufficient level of privacy. In the past years privacy-enhancements have been
developed along several lines of research. We provide a brief overview below.

The first direction aims to provide confidentiality. Maxwell [Max] initiates the
study of confidential transaction. He proposes a DCP system by employing Ped-
ersen commitment to hide transfer amount and using range proofs to prove cor-
rectness of transaction. Mimblewimble/Grin [Poe,Gri] further improve Maxwell’s
construction by reducing the cost of signatures. The second direction aims to
enhance anonymity. A large body of works enhance anonymity via utilizing
mixing mechanisms. For instance, CoinShuffle [RMK14], Dash [Das], and Mix-
coin [BNM+14] for Bitcoin and Möbius [MM] for Ethereum. The third direction
aims to attain both confidentiality and anonymity. Monero [Noe15] achieves con-
fidentiality via similar techniques used in Maxwell’s DCP system, and provides
anonymity by employing linkable ring signature and stealth address. Zcash [ZCa]
achieves strong privacy by leveraging key-private PKE and zk-SNARK.

Despite great progress in privacy-enhancement, the aforementioned schemes
are not without their limitations. In terms of reliability, most of them require
out-of-band transfer and thus are not complete. In terms of efficiency, some of
them suffer from slow transaction generation due to the use of heavy advanced
cryptographic tools. In terms of security, some of them are not proven secure
based on well-studied assumption, or rely on trusted setup.

Another related work is zkLedger [NVV18], which offers strong privacy and
privacy-preserving auditing. To attain anonymity, zkLedger uses a novel table-
based ledger. Consequently, the size of transactions and audit efficiency are linear
in the total number of participants in the system, and the scale of participants
is fixed at the setup stage of system.

Concurrent and Independent Work. Fauzi et al. [FMMO19] put forward
a new design of cryptocurrency with strong privacy called Quisquis in the
UTXO model. They employ updatable public keys to achieve anonymity and
a slight variant of standard ElGamal encryption to achieve confidentiality. Bünz
et al. [BAZB20] propose a confidential payment system called Zether, which
is compatible with Ethereum-like smart contract platforms. They use standard

600 Y. Chen et al.

ElGamal to hide the balance and transfer amount, and use signature derived from
NIZK to authenticate transactions. They also sketch how to acquire anonymity
for Zether via a similar approach as zkLedger [NVV18]. Both Quisquis and
Zether design accompanying zero-knowledge proofs from Sigma protocols and
Bulletproof, but take different approaches to tackle the incompatibility between
ElGamal encryption and Bulletproof. Quisquis introduces ElGamal commitment
to bridge ElGamal encryption, and uses Sigma protocol to prove consistency of
bridging. Finally, Quisquis invokes Bulletproof on the second part of ElGamal
commitment, which is exactly a Pedersen commitment. Zether develops a cus-
tom ZKP called Σ-Bullets, which is a dedicated integration of Bulletproof and
Sigma protocol. Given an arithmetic circuit, a Σ-Bullets ensures that a public
linear combination of the circuit’s wires is equal to some witness of a Sigma pro-
tocol. This enhancement in turn enables proofs on algebraically-encoded values
such as ElGamal encryptions or Pedersen commitments in different groups or
using different commitment keys.

We highlight the following crucial differences of our work to Quisquis and
Zether: (i) We focus on confidentiality, and trade anonymity for auditability.
(ii) We use jointly secure ISE, rather than ad-hoc combination of signature
and encryption, to build DCP system in a provably secure way. (iii) As for
instantiation, PGC employs our newly introduced twisted ElGamal rather than
standard ElGamal to hide balance and transfer amount. The nice structure of
twisted ElGamal enables the sender to prove the transfer amount lies in the right
range by directly invoking Bulletproof in a black-box manner, without any extra
bridging cost as Quisquis. The final proof for correctness of transactions in PGC
is obtained by assembling small “proof gadgets” together in a simple and modular
fashion, which is flexible and reusable. This is opposed to Zether’s approach, in
which zero-knowledge proof is produced by a Σ-Bullets as a whole, while building
case-tailored Σ-Bullets requires to dissect Bulletproof and skillfully design its
interface to Sigma protocol.

Note. Due to space limit, we refer to the full version of this work [CMTA19] for
definitions of standard cryptographic primitives and all security proofs.

2 Definition of DCP System

We formalize the notion of decentralized confidential payment system in account
model, adapting the notion of decentralized anonymous payment system [ZCa].

2.1 Data Structures

We begin by describing the data structures used by a DCP system.

Blockchain. A DCP system operates on top of a blockchain B. The blockchain
is publicly accessible, i.e., at any given time t, all users have access to Bt, the
ledger at time t, which is a sequence of transactions. The blockchain is also
append-only, i.e., t < t′ implies that Bt is a prefix of Bt′ .

PGC: Decentralized Confidential Payment System with Auditability 601

Public Parameters. A trusted party generate public parameters pp at the
setup time of system, which is used by system’s algorithms. We assume that pp
always include an integer vmax, which specifies the maximum possible number
of coins that the system can handle. Any balance and transfer below must lie in
the integer interval V = [0, vmax].

Account. Each account is associated with a keypair (pk, sk), an encoded balance
C̃ (which encodes plaintext balance m̃), as well as an incremental serial number
sn (used to prevent replay attacks). Both sn, C̃, and pk are made public. The
public key pk serves as account address, which is used to receive transactions
from other accounts. The secret key sk is kept privately, which is used to direct
transactions to other accounts and decodes encoded balance.

Confidential Transaction. A confidential transaction ctx consists of three
parts, i.e., sn, memo and aux. Here, sn is the current serial number of sender
account pks, memo = (pks, pkr, C) records basic information of a transaction
from sender account pks to receiver account pkr, where C is the encoding of
transfer amount, and aux denotes application-dependent auxiliary information.

2.2 Decentralized Confidential Payment System with Auditability

An auditable DCP system consists of the following polynomial-time algorithms:

– Setup(λ): on input a security parameter λ, output public parameters pp. A
trusted party executes this algorithm once-for-all to setup the whole system.

– CreateAccount(m̃, sn): on input an initial balance m̃ and a serial number sn,
output a keypair (pk, sk) and an encoded balance C̃. A user runs this algo-
rithm to create an account.

– RevealBalance(sk, C̃): on input a secret key sk and an encoded balance C̃,
output the balance m̃. A user runs this algorithm to reveal the balance.

– CreateCTx(sks, pks, pkr, v): on input a keypair (sks, pks) of sender account, a
receiver account address pkr, and a transfer amount v, output a confidential
transaction ctx. A user runs this algorithm to transfer v coins from account
pks to account pkr.

– VerifyCTx(ctx): on input a confidential transaction ctx, output “0” denotes
valid and “1” denotes invalid. Miners run this algorithm to check the validity
of proposed confidential transaction ctx. If ctx is valid, it will be recorded on
the blockchain B. Otherwise, it is discarded.

– UpdateCTx(ctx): for each fresh ctx on the blockchain B, sender and receiver
update their encoded balances to reflect the change, i.e., the sender account
decreases with v coins while the receiver account increases with v coins.

– JustifyCTx(pk, sk, {ctx}, f): on input a user’s keypair (pk, sk), a set of con-
fidential transactions he participated and a policy f , output a proof π for
f(pk, {ctx}) = 1. A user runs this algorithm to generate a proof for auditing.

– AuditCTx(pk, {ctx}, f, π): on input a user’s public key, a set of confidential
transactions he participated, a policy f and a proof, output “0” denotes
accept and “1” denotes reject. An auditor runs this algorithm to check if
f(pk, {ctx}) = 1.

602 Y. Chen et al.

2.3 Correctness and Security Model

Correctness of basic DCP functionality requires that a valid ctx will always be
accepted and recorded on the blockchain, and the states of associated accounts
will be updated properly, i.e., the balance of sender account decreases the same
amount as the balance of receiver account increases. Correctness of auditing func-
tionality requires honestly generated auditing proofs for transactions complying
with policies will always be accept.

As to security, we focus solely on the transaction layer of a cryptocurrency,
and assume network-level or consensus-level attacks are out of scope.

Intuitively, a DCP system should provide authenticity, confidentiality and
soundness. Authenticity requires that the sender can only be the owner of an
account, nobody else (who does not know the secret key) is able to make a
transfer from this account. Confidentiality requires that other than the sender
and receiver (who does not know the secret keys of sender and receiver), no one
can learn the value hidden in a confidential transaction. While the former two
notions address security against outsider adversary, soundness addresses security
against insider adversary (e.g. the sender himself). See the full version [CMTA19]
for the details of security model.

3 A Generic Construction of Auditable DCP from ISE
and NIZK

We present a generic construction of auditable DCP from ISE and NIZK. In a
nutshell, we use homomorphic PKE to encode the balance and transfer amount,
use NIZK to enforce senders to build confidential transactions honestly and
make correctness publicly verifiable, and use digital signature to authenticate
transactions. Let ISE = (Setup,KeyGen,Sign,Verify,Enc,Dec) be an ISE scheme
whose PKE component is additively homomorphic on message space Zp. Let
NIZK = (Setup,CRSGen,Prove,Verify)3 be a NIZK proof system for Lcorrect

(which will be specified later). The construction is as below.

– Setup(1λ): runs ppise ← ISE.Setup(1λ), ppnizk ← NIZK.Setup(1λ), crs ←
NIZK.CRSGen(ppnizk), outputs pp = (ppise, ppnizk, crs).

– CreateAccount(m̃, sn): on input an initial balance m̃ ∈ Zp and a serial number
sn ∈ {0, 1}n (e.g., n = 256), runs ISE.KeyGen(ppise) to generate a keypair
(pk, sk), computes C̃ ← ISE.Enc(pk, m̃; r) as the initial encrypted balance,
sets sn as the initial serial number4, outputs public key pk and secret key sk.
Fix the public parameters, the KeyGen algorithm naturally induces an NP
relation Rkey = {(pk, sk) : ∃r s.t. (pk, sk) = KeyGen(r)}.

3 We describe our generic DCP construction using NIZK in the CRS model. The
construction and security proof carries out naturally if using NIZK in the random
oracle model instead.

4 By default, m̃ and sn should be zero, r should be a fixed and publicly known ran-
domness, say the zero string 0λ. This settlement guarantees that the initial account
state is publicly auditable. Here, we do not make it as an enforcement for flexibility.

PGC: Decentralized Confidential Payment System with Auditability 603

– RevealBalance(sk, C̃): on input secret key sk and encrypted balance C̃, out-
puts m̃ ← ISE.Dec(sk, C̃).

– CreateCTx(sks, pks, v, pkr): on input sender’s keypair (pks, sks), the transfer
amount v, and receiver’s public key pkr, the algorithm first checks if (m̃s−v) ∈
V and v ∈ V (here m̃s is the current balance of sender account pks). If not,
returns ⊥. Otherwise, it creates ctx via the following steps:
1. compute Cs ← ISE.Enc(pks, v; r1), Cr ← ISE.Enc(pkr, v; r2), set memo =

(pks, pkr, Cs, Cr), here (Cs, Cr) serve as the encoding of transfer amount;
2. run NIZK.Prove with witness (sks, r1, r2, v) to generate a proof πcorrect

for memo = (pks, pkr, Cs, Cr) ∈ Lcorrect, where Lcorrect is defined as:

{∃sks, r1, r2, v s.t. Cs = Enc(pks, v; r1) ∧ Cr = Enc(pkr, v; r2)

∧ v ∈ V ∧ (pks, sks) ∈ Rkey ∧ Dec(sks, C̃s − Cs) ∈ V}

Lcorrect can be decomposed as Lequal∧Lright∧Lsolvent, where Lequal proves
the consistency of two ciphertexts, Lright proves that the transfer amount
lies in the right range, and Lsolvent proves that the sender account is
solvent.

3. run σ ← ISE.Sign(sks, (sn,memo)), sn is the serial number of pks;
4. output ctx = (sn,memo, aux), where aux = (πcorrect, σ).

– VerifyCTx(ctx): parses ctx = (sn,memo, aux), memo = (pks, pkr, Cs, Cr),
aux = (πcorrect, σ), then checks its validity via the following steps:
1. check if sn is a fresh serial number of pks;
2. check if ISE.Verify(pks, (sn,memo), σ) = 1;
3. check if NIZK.Verify(crs,memo, πcorrect) = 1.

If all the above tests pass, outputs “1”, miners confirm that ctx is valid and
record it on the blockchain, sender updates his balance as C̃s = C̃s − Cs

and increments the serial number, and receiver updates his balance as C̃r =
C̃r + Cr. Else, outputs “0” and miners discard ctx.

We further describe how to enforce a variety of useful policies.

– JustifyCTx(pks, sks, {ctxi}n
i=1, flimit): on input pks, sks, {ctxi}n

i=1 and flimit,
parses ctxi = (sni,memoi = (pks, pkri

, Cs,i, Cri
), auxi), then runs NIZK.Prove

with witness sks to generate πlimit for (pks, {Cs,i}1≤i≤n, amax) ∈ Llimit:

{∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧ ∑n
i=1 vi ≤ amax}

A user runs this algorithm to prove compliance with limit policy, i.e., the sum
of vi sent from account pks is less than amax. The same algorithm can be used
to proving the sum of vi sent to the same account is less than amax.

– AuditCTx(pks, {ctxi}n
i=1, πlimit, flimit): on input pks, {ctxi}n

i=1, πlimit and
flimit, first parses ctxi = (sni,memoi = (pks, pkri

, Cs,i, Cri
), auxi), then out-

puts NIZK.Verify(crs, (pks, {Cs,i}1≤i≤n, amax), πlimit). The auditor runs this
algorithm to check compliance with limit policy.

604 Y. Chen et al.

– JustifyCTx(pku, sku, {ctx}2i=1, frate): on input pku, sku, {ctxi}2i=1 and frate,
the algorithm parses ctx1 = (sn1,memo1 = (pk1, pku, C1, Cu,1), aux1) and
ctx2 = (sn2,memo2 = (pku, pk2, Cu,2, C2), aux2), then runs NIZK.Prove with
witness sku to generate πrate for the statement (pku, Cu,1, Cu,2, ρ) ∈ Lrate:

{∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧ v1/v2 = ρ}

A user runs this algorithm to demonstrate compliance with tax rule, i.e.,
proving v1/v2 = ρ.

– AuditCTx(pku, {ctxi}2i=1, πrate, frate): on input pku, {ctxi}2i=1, πrate and frate,
parses ctx1 = (sn1,memo1 = (pk1, pku, C1, Cu,1), aux1), ctx2 = (sn2,memo2
= (pku, pk2, Cu,2, C2), aux2), outputs NIZK.Verify(crs, (pku, Cu,1, Cu,2, ρ),
πrate). An auditor runs this algorithm to check compliance with rate policy.

– JustifyCTx(sku, ctx, fopen): on input pku, sku, ctx and fopen, parses ctx =
(sn, pks, pkr, Cs, Cr, aux), then runs NIZK.Prove with witness sku (where the
subscript u could be either s or r) to generate πopen for (pku, Cu, v∗) ∈ Lopen:

{∃sk s.t. (pk, sk) ∈ Rkey ∧ v∗ = ISE.Dec(sk, C)}

A user runs this algorithm to demonstrate compliance with open policy.
– AuditCTx(pku, ctx, πopen, fopen): on input pku, ctx, πopen and fopen, parses

ctx = (sn, pks, pkr, Cs, Cr, aux), outputs NIZK.Verify(crs, (pku, Cu, v), πopen),
where the subscript u could be either s or r. An auditor runs this algorithm
to check compliance with open policy.

4 PGC: An Efficient Instantiation

We now present an efficient realization of our generic DCP construction. We first
instantiate ISE from our newly introduced twisted ElGamal PKE and Schnorr
signature, then devise NIZK proofs from Sigma protocols and Bulletproof.

4.1 Instantiating ISE

We instantiate ISE from our newly introduced twisted ElGamal PKE and the
classical Schnorr signature.

Twisted ElGamal. We propose twisted ElGamal encryption as the PKE com-
ponent. Formally, twisted ElGamal consists of four algorithms as below:

– Setup(1λ): run (G, g, p) ← GroupGen(1λ), pick h
R←− G

∗, set pp = (G, g, h, p)
as global public parameters. The randomness and message spaces are Zp.

– KeyGen(pp): on input pp, choose sk
R←− Zp, set pk = gsk.

– Enc(pk,m; r): compute X = pkr, Y = grhm, output C = (X,Y).
– Dec(sk, C): parse C = (X,Y), compute hm = Y/Xsk−1

, recover m from hm.

PGC: Decentralized Confidential Payment System with Auditability 605

Remark 1. As with the standard exponential ElGamal, decryption can only be
efficiently done when the message is small. However, it suffices to instantiate our
generic DCP framework with small message space (say, 32-bits). In this setting,
our implementation shows that decryption can be very efficient.

Correctness and additive homomorphism are obvious. The standard IND-
CPA security can be proved in standard model based on the DDH assumption.

Theorem 1. Twisted ElGamal is IND-CPA secure in the 1-plaintext/2-
recipient setting based on the DDH assumption.

ISE from Schnorr Signature and Twisted ElGamal Encryption. We
choose Schnorr signature [Sch91] as the signature component. By merging the
Setup and KeyGen algorithms of twisted ElGamal encryption and Schnorr signa-
ture, we obtain the ISE scheme, whose joint security is captured by the following
theorem.

Theorem 2. The obtained ISE scheme is jointly secure if the twisted ElGamal
is IND-CPA secure (1-plaintext/2-recipient) and the Schnorr signature is EUF-
CMA secure.

4.2 Instantiating NIZK

Now, we design efficient NIZK proof systems for basic correctness policy
(Lcorrect) and more extended policies (Llimit, Lrate, Lopen).

As stated in Sect. 3, Lcorrect can be decomposed as Lequal ∧ Lright ∧ Lsolvent.
Let Πequal, Πright, Πsolvent be NIZK for Lequal, Lright, Lsolvent respectively, and
let Πcorrect := Πequal ◦Πright ◦Πsolvent, where ◦ denotes sequential composition.5

By the property of NIZK for conjunctive statements [Gol06], Πcorrect is a NIZK
proof system for Lcorrect. Now, the task breaks down to design Πequal, Πright,
Πsolvent. We describe them one by one as below.

NIZK for Lequal. Recall that Lequal is defined as:

{(pk1,X1, Y1, pk2,X2, Y2) | ∃r1, r2, v s.t. Xi = pkri
i ∧ Yi = grihv for i = 1, 2}.

For twisted ElGamal, randomness can be safely reused in the 1-plaintext/2-
recipient setting. Lequal can thus be simplified to:

{(pk1, pk2,X1,X2, Y) | ∃r, v s.t. Y = grhv ∧ Xi = pkr
i for i = 1, 2}.

Sigma protocol for Lequal. To obtain a NIZK for Lequal, we first design a Sigma
protocol Σequal = (Setup, P, V) for Lequal. The Setup algorithm of Σequal is same
as that of the twisted ElGamal. On statement (pk1, pk2,X1,X2, Y), P and V
interact as below:
5 In the non-interactive setting, there is no distinction between sequential and parallel

composition.

606 Y. Chen et al.

1. P picks a, b
R←− Zp, sends A1 = pka

1 , A2 = pka
2 , B = gahb to V .

2. V picks e
R←− Zp and sends it to P as the challenge.

3. P computes z1 = a + er, z2 = b + ev using witness w = (r, v), then sends
(z1, z2) to V . V accepts iff the following three equations hold simultaneously:

pkz1
1 = A1X

e
1 ∧ pkz1

2 = A2X
e
2 ∧ gz1hz2 = BY e

Lemma 1. Σequal is a public-coin SHVZK proof of knowledge for Lequal.

Applying Fiat-Shamir transform to Σequal, we obtain Πequal, which is actually
a NIZKPoK for Lequal.

NIZK for Lright. Recall that Lright is defined as:

{(pk,X, Y) | ∃r, v s.t. X = pkr ∧ Y = grhv ∧ v ∈ V}.

For ease of analysis, we additionally define Lenc and Lrange as below:

Lenc = {(pk,X, Y) | ∃r, v s.t. X = pkr ∧ Y = grhv}
Lrange = {Y | ∃r, v s.t. Y = grhv ∧ v ∈ V}

It is straightforward to verify that Lright ⊂ Lenc ∧ Lrange. Observing that
each instance (pk,X, Y) ∈ Lright has a unique witness, while the last compo-
nent Y can be viewed as a Pedersen commitment of value v under commitment
key (g, h), whose discrete logarithm logg h is unknown to any users. To prove
(pk,X, Y) ∈ Lright, we first prove (pk,X, Y) ∈ Lenc with witness (r, v) via a
Sigma protocol Σenc = (Setup, P1, V1), then prove Y ∈ Lrange with witness (r, v)
via a Bulletproof Λbullet = (Setup, P2, V2).

Sigma protocol for Lenc. We begin with a Sigma protocol Σenc = (Setup, P, V)
for Lenc. The Setup algorithm is same as that of twisted ElGamal. On statement
x = (pk,X, Y), P and V interact as below:

1. P picks a, b
R←− Zp, sends A = pka and B = gahb to V .

2. V picks e
R←− Zp and sends it to P as the challenge.

3. P computes z1 = a + er, z2 = b + ev using witness w = (r, v), then sends
(z1, z2) to V . V accepts iff the following two equations hold simultaneously:

pkz1 = AXe ∧ gz1hz2 = BY e

Lemma 2. Σenc is a public-coin SHVZK proof of knowledge for Lenc.

Bulletproofs for Lrange. We employ the logarithmic size Bulletproof Λbullet =
(Setup, P, V) to prove Lrange. To avoid repetition, we refer to [BBB+18,
Section 4.2] for the details of the interaction between P and V .

Lemma 3 [BBB+18, Theorem 3]. Assuming the hardness of discrete logarithm
problem, Λbullet is a public-coin SHVZK argument of knowledge for Lrange.

PGC: Decentralized Confidential Payment System with Auditability 607

Sequential Composition. Let Γright = Σenc ◦ Λbullet be the sequential compo-
sition of Σenc and Λbullet. The Setup algorithm of Γright is a merge of that of Σenc

and Λbullet. For range V = [0, 2� − 1], it first generates a group G of prime order
p together with two random generators g and h, then picks independent gener-
ators g,h ∈ G

�. Let P1 = Σenc.P , V1 = Σenc.V , P2 = Λbullet.P , V2 = Λbullet.V .
We have Γright.P = (P1, P2), Γright.V = (V1, V2).

Lemma 4. Assuming the discrete logarithm assumption, Γright = (Setup, P, V)
is a public-coin SHVZK argument of knowledge for Lright.

Applying Fiat-Shamir transform to Γright, we obtain Πright, which is actually
a NIZKAoK for Lright.

NIZK for LSolvent. Recall that Lsolvent is defined as:

{(pk, C̃, C) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ ISE.Dec(sk, C̃ − C) ∈ V}.
In the above, C̃ = (X̃ = pkr̃, Ỹ = gr̃hm̃) is the encryption of current balance

m̃ of account pk under randomness r̃, C = (X = pkr, Y = grhv) encrypts the
transfer amount v under randomness r. Let C ′ = (X ′ = pkr′

, Y ′ = gr′
hm′

) =
C̃ − C, Lsolvent can be rewritten as:

{(pk,C ′) | ∃r′,m′ s.t. C ′ = ISE.Enc(pk,m′; r′) ∧ m′ ∈ V}.
We note that while the sender (playing the role of prover) learns m̃ (by

decrypting C̃ with sk), v and r, it generally does not know the randomness
r̃. This is because C̃ is the sum of all the incoming and outgoing transactions
of pk, whereas the randomness behind incoming transactions is unknown. The
consequence is that r′ (the first part of witness) is unknown, which renders prover
unable to directly invoke the Bulletproof on instance Y ′.

Our trick is encrypting m′ = (m̃ − v) under a fresh randomness r∗ to obtain
a new ciphertext C∗ = (X∗, Y ∗), where X∗ = pkr∗

, Y ∗ = gr∗
hm′

. C∗ could be
viewed as a refreshment of C ′. Thus, we can express Lsolvent as Lequal ∧ Lright,
i.e., (pk,C ′) ∈ Lsolvent ⇐⇒ (pk,C ′, C∗) ∈ Lequal ∧ (pk,C∗) ∈ Lright.

To prove C ′ and C∗ encrypting the same value under public key pk, we
cannot simply use a Sigma protocol like Protocol for Lequal, in which the prover
uses the message and randomness as witness, as the randomness r′ behind C ′ is
typically unknown. Luckily, we are able to prove this more efficiently by using
the secret key as witness. Generally, Lequal can be written as:

{(pk,C1, C2) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ ISE.Dec(sk, C1) = ISE.Dec(sk, C2)}
When instantiated with twisted ElGamal, C1 = (X1 = pkr1 , Y1 = gr1hm) and

C2 = (X2 = pkr2 , Y2 = gr2hm) are encrypted by the same public key pk, then
proving membership of Lequal is equivalent to proving logY1/Y2

X1/X2 equals
logg pk. This can be efficiently done by utilizing the Sigma protocol Σddh =
(Setup, P, V) for discrete logarithm equality due to Chaum and Pedersen [CP92].

Applying Fiat-Shamir transform to Σddh, we obtain a NIZKPoK Πddh for
Lddh. We then prove (pk,C∗ = (X∗, Y ∗)) ∈ Lright using the NIZKPoK Πright as

608 Y. Chen et al.

we described before. Let Πsolvent = Πddh ◦ Πright, we conclude that Πsolvent is a
NIZKPoK for Lsolvent by the properties of AND-proofs.

Putting all the sub-protocols described above, we obtain Πcorrect = Πequal ◦
Πright ◦ Πsolvent.

Theorem 3. Πcorrect is a NIZKAoK for Lcorrect = Lequal ∧ Lright ∧ Lsolvent.

We then show the designs of NIZK for typical auditing policies.

NIZK for Llimit. Recall that Llimit = {pk, {Ci}1≤i≤n, amax} is defined as:

{∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧
n∑

i=1

vi ≤ amax}

Let Ci = (Xi = pkri , Yi = grihvi). By additive homomorphism of twisted ElGa-
mal, the prover first computes C =

∑n
i=1 Ci = (X = pkr, Y = grhv), where

r =
∑n

i=1 ri, v =
∑n

i=1 vi. As aforementioned, in PGC users are not required
to maintain history state, which means that users may forget the random coins
when implementing after-the-fact auditing. Nevertheless, this is not a problem.
It is equivalent to prove (pk,C) ∈ Lsolvent, which can be done by using Gadget-2.

NIZK for Lrate. Recall that Lrate is defined as:

{(pk,C1, C2, ρ) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧ v1/v2 = ρ}
Without much loss of generality, we assume ρ = α/β, where α and β are
two positive integers that are much smaller than p. Let C1 = (pkr1 , gr1hv1),
C2 = (pkr2 , gr2hv2). By additive homomorphism of twisted ElGamal, we com-
pute C ′

1 = β · C1 = (X ′
1 = pkβr1 , Y ′

1 = gβr1hβv1), C ′
2 = α · C2 = (X ′

2 =
pkαr2 , Y ′

2 = gαr2hαv2). Note that v1/v2 = ρ = α/β if and only if hβv1 = hαv2 ,6

Lrate is equivalent to (Y ′
1/Y ′

2 ,X
′
1/X ′

2, g, pk) ∈ Lddh, which in turn can be effi-
ciently proved via Πddh for discrete logarithm equality using sk as witness, as
already described in Protocol for Lsolvent.

NIZK for Lopen. Recall that Lopen is defined as:

{(pk,C = (X,Y), v) | ∃sk s.t. X = (Y/hv)sk ∧ pk = gsk}
The above language is equivalent to (Y/hv,X, g, pk) ∈ Lddh, which in turn can
be efficiently proved via Πddh for discrete logarithm equality.

5 Performance

We first give a prototype implementation of PGC as a standalone cryptocurrency
in C++ based on OpenSSL, and collect the benchmarks on a MacBook Pro with
an Intel i7-4870HQ CPU (2.5 GHz) and 16 GB of RAM. The source code of PGC
is publicly available at Github [lib]. For demo purpose only, we only focus on
the transaction layer and do not explore any optimizations.7 The experimental
results are described in the table below.
6 Since both v1, v2, α, β are much smaller than p, no overflow will happen.
7 We expect at least 2× speedup after optimizations.

PGC: Decentralized Confidential Payment System with Auditability 609

Table 1. The computation and communication complexity of PGC.

PGC ctx size Transaction cost (ms)

big-O Bytes Generation Verify

Confidential transaction (2 log2(�) + 20)|G|+ 10|Zp| 1310 40 14

Auditing policies Proof size Auditing cost (ms)

big-O Bytes Generation Verify

Limit policy (2 log2(�) + 4)|G|+ 5|Zp| 622 21.5 7.5

Rate policy 2|G|+ 1|Zp| 98 0.55 0.69

Open policy 2|G|+ 1|Zp| 98 0.26 0.42

Here we set the maximum number of coins as vmax = 2� − 1, where � = 32. PGC
operates elliptic curve prime256v1, which has 128 bit security. The elliptic points
are expressed in their compressed form. Each G element is stored as 33 bytes, and
Zp element is stored as 32 bytes.

Acknowledgments. We thank Benny Pinkas and Jonathan Bootle for clarifications
on Sigma protocols and Bulletproofs in the early stages of this research. We particularly
thank Shuai Han for many enlightening discussions. Yu Chen is supported by National
Natural Science Foundation of China (Grant No. 61772522, No. 61932019). Man Ho Au
is supported by National Natural Science Foundation of China (Grant No. 61972332).

References

[BAZB20] Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy
in a smart contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 423–443. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51280-4 23

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy, SP 2018, pp. 315–334 (2018)

[BKP14] Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients
in bitcoin P2P network. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2014, pp. 15–29
(2014)

[BNM+14] Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.:
Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N.,
Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 31

[CGS97] Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally effi-
cient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 9

[CMTA19] Chen, Y., Ma, X., Tang, C., Au, M.H.: PGC: pretty good confidential
transaction system with auditability. Cryptology ePrint Archive, Report
2019/319 (2019). https://eprint.iacr.org/2019/319

[CP92] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 7

https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://eprint.iacr.org/2019/319
https://doi.org/10.1007/3-540-48071-4_7

610 Y. Chen et al.

[CZ14] Chen, Yu., Zhang, Z.: Publicly evaluable pseudorandom functions and their
applications. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol.
8642, pp. 115–134. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10879-7 8

[Das] Dash. https://www.dash.org
[FMMO19] Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design

for anonymous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 23

[GGM16] Garman, C., Green, M., Miers, I.: Accountable privacy for decentral-
ized anonymous payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 81–98. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 5

[Gol06] Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University
Press, New York (2006)

[Gri] Grin. https://grin-tech.org/
[lib] libPGC. https://github.com/yuchen1024/libPGC

[Max] Maxwell, G.: Confidential transactions (2016). https://people.xiph.org/
∼greg/confidential values.txt

[MM] Meiklejohn, S., Mercer, R.: Möbius: trustless tumbling for transaction pri-
vacy. PoPETs 2, 105–121 (2018)

[Nak08] Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008).
https://bitcoin.org/bitcoin.pdf

[Noe15] Noether, S.: Ring signature confidential transactions for monero (2015).
https://eprint.iacr.org/2015/1098

[NVV18] Narula, N., Vasquez, W., Virza, M.: zkLedger: privacy-preserving audit-
ing for distributed ledgers. In: 15th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2018, pp. 65–80 (2018)

[Ped91] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
46766-1 9

[Poe] Poelstra, A.: Mimblewimble. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf

[PSST11] Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint secu-
rity of encryption and signature, revisited. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 161–178. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25385-0 9

[RMK14] Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentral-
ized coin mixing for bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11212-1 20

[RS13] Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transac-
tion graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 2

[Sch91] Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

[Woo14] Wood, G.: Ethereum: a secure decentralized transaction ledger (2014).
http://gavwood.com/paper.pdf, https://www.ethereum.org/

[ZCa] Zcash: privacy-protecting digital currency. https://z.cash/

https://doi.org/10.1007/978-3-319-10879-7_8
https://doi.org/10.1007/978-3-319-10879-7_8
https://www.dash.org
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1007/978-3-662-54970-4_5
https://grin-tech.org/
https://github.com/yuchen1024/libPGC
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://doi.org/10.1007/978-3-642-25385-0_9
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-642-39884-1_2
https://doi.org/10.1007/BF00196725
http://gavwood.com/paper.pdf
https://www.ethereum.org/
https://z.cash/

	PGC: Decentralized Confidential Payment System with Auditability
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Related Work

	2 Definition of DCP System
	2.1 Data Structures
	2.2 Decentralized Confidential Payment System with Auditability
	2.3 Correctness and Security Model

	3 A Generic Construction of Auditable DCP from ISE and NIZK
	4 PGC: An Efficient Instantiation
	4.1 Instantiating ISE
	4.2 Instantiating NIZK

	5 Performance
	References

