
A Framework for Evaluating Client
Privacy Leakages in Federated Learning

Wenqi Wei(B), Ling Liu, Margaret Loper, Ka-Ho Chow,
Mehmet Emre Gursoy, Stacey Truex, and Yanzhao Wu

Georgia Institute of Technology, Atlanta, GA 30332, USA
{wenqiwei,khchow,memregursoy,staceytruex,yanzhaowu}@gatech.edu,

ling.liu@cc.gatech.edu, margaret.loper@gtri.gatech.edu

Abstract. Federated learning (FL) is an emerging distributed machine
learning framework for collaborative model training with a network of
clients (edge devices). FL offers default client privacy by allowing clients
to keep their sensitive data on local devices and to only share local train-
ing parameter updates with the federated server. However, recent stud-
ies have shown that even sharing local parameter updates from a client
to the federated server may be susceptible to gradient leakage attacks
and intrude the client privacy regarding its training data. In this paper,
we present a principled framework for evaluating and comparing differ-
ent forms of client privacy leakage attacks. We first provide formal and
experimental analysis to show how adversaries can reconstruct the pri-
vate local training data by simply analyzing the shared parameter update
from local training (e.g., local gradient or weight update vector). We then
analyze how different hyperparameter configurations in federated learn-
ing and different settings of the attack algorithm may impact on both
attack effectiveness and attack cost. Our framework also measures, eval-
uates, and analyzes the effectiveness of client privacy leakage attacks
under different gradient compression ratios when using communication
efficient FL protocols. Our experiments additionally include some pre-
liminary mitigation strategies to highlight the importance of providing a
systematic attack evaluation framework towards an in-depth understand-
ing of the various forms of client privacy leakage threats in federated
learning and developing theoretical foundations for attack mitigation.

Keywords: Privacy leakage attacks · Federated learning · Attack
evaluation framework

1 Introduction

Federated learning enables the training of a high-quality ML model in a decen-
tralized manner over a network of devices with unreliable and intermittent net-
work connections [5,14,20,26,29,33]. In contrast to the scenario of prediction on
edge devices, in which an ML model is first trained in a highly controlled Cloud
environment and then downloaded to mobile devices for performing predictions,
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12308, pp. 545–566, 2020.
https://doi.org/10.1007/978-3-030-58951-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58951-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-58951-6_27

546 W. Wei et al.

federated learning brings model training to the devices while supporting contin-
uous learning on device. A unique feature of federated learning is to decouple
the ability of conducting machine learning from the need of storing all training
data in a centralized location [13].

Although federated learning by design provides the default privacy of allow-
ing thousands of clients (e.g., mobile devices) to keep their original data on their
own devices, while jointly learn a model by sharing only local training parame-
ters with the server. Several recent research efforts have shown that the default
privacy in FL is insufficient for protecting the underlaying training data from pri-
vacy leakage attacks by gradient-based reconstruction [9,32,34]. By intercepting
the local gradient update shared by a client to the FL server before performing
federated averaging [13,19,22], the adversary can reconstruct the local training
data with high reconstruction accuracy, and hence intrudes the client privacy
and deceives the FL system by sneaking into client confidential training data
illegally and silently, making the FL system vulnerable to client privacy leakage
attacks (see Sect. 2.2 on Threat Model for detail).

In this paper, we present a principled framework for evaluating and compar-
ing different forms of client privacy leakage attacks. Through attack character-
ization, we present an in-depth understanding of different attack mechanisms
and attack surfaces that an adversary may leverage to reconstruct the private
local training data by simply analyzing the shared parameter updates (e.g., local
gradient or weight update vector). Through introducing multi-dimensional eval-
uation metrics and developing evaluation testbed, we provide a measurement
study and quantitative and qualitative analysis on how different configurations
of federated learning and different settings of the attack algorithm may impact
the success rate and the cost of the client privacy leakage attacks. Inspired by
the attack effect analysis, we present some mitigation strategies with prelimi-
nary results to highlight the importance of providing a systematic evaluation
framework for comprehensive analysis of the client privacy leakage threats and
effective mitigation methods in federated learning.

2 Problem Formulation

2.1 Federated Learning

In federated learning, the machine learning task is decoupled from the centralized
server to a set of N client nodes. Given the unstable client availability [21], for
each round of federated learning, only a small subset of Kt < clients out of all
N participants will be chosen to participate in the joint learning.

Local Training at a Client: Upon notification of being selected at round t,
a client will download the global state w(t) from the server, perform a local
training computation on its local dataset and the global state, i.e., wk(t + 1) =
wk(t) − η∇wk(t), where wk(t) is the local model parameter update at round t
and ∇w is the gradient of the trainable network parameters. Clients can decide
its training batch size Bt and the number of local iterations before sharing.

Federated Learning Privacy Leakage Evaluation Framework 547

Update Aggregation at FL Server: Upon receiving the local updates from all
Kt clients, the server incorporates these updates and update its global state, and
initiates the next round of federated learning. Given that local updates can be in
the form of either gradient or model weight update, thus two update aggregation
implementations are the most representative. In distributed SGD [17,18,29,30],
each client uploads the local gradients to the FL server at each round and
the server iteratively aggregates the local gradients from all Kt clients into the
global model: w(t + 1) = w(t) − η

∑Kt

k=1
nt

n ∇wk(t), where η is the global learn-
ing rate and nt

n is the weight of client k. nk is the number of data points at
client k and n indicates the amount of total data from all participating clients
at round t. In federated averaging [3,20], each client uploads the local train-
ing parameter update to the FL server and the server iteratively performs a
weighted average of the received weight parameters to update the global model:
w(t + 1) =

∑Kt

k=1
nt

n wk(t + 1), where Δwk(t) denote the difference between the
model parameter update before the iteration of training and the model param-
eter update after the training for client k.

2.2 Threat Model

In an FL system, clients are the most vulnerable attack surface for the client
privacy leakage (CPL) attack. To focus on client gradient leakage vulnerability
due to sharing its local gradient update, we assume that clients may be partially
compromised: (i) an adversary may intercept the local parameter update prior to
sending it via the client-to-server communication channel to the FL server and
(ii) an adversary may gain access to the saved local model executable (checkpoint
data) on the compromised client with no training data visible and launch white-
box gradient leakage attacks to steal the private training data. Note that local
data and model may not be compromised at the same time for many reasons,
e.g., separated storage of data and model, or dynamic training data.

We also assume that the federated server is honest and will truthfully perform
the aggregation of local parameter updates and manage the iteration rounds for
jointly learning. However, the FL server may be curious and may analyze the
periodic updates from certain clients to perform client privacy leakage attacks
and gain access to the private training data of the victim clients. Given that the
gradient-based aggregation and model weight-based aggregation are mathemat-
ically equivalent, one can obtain the local model parameter difference from the
local gradient and the local training learning rate. In this paper, gradient-based
aggregation is used without loss of generality.

2.3 The Client Privacy Leakage (CPL) Attack: An Overview

The client privacy leakage attack is a gradient-based feature reconstruction
attack, in which the attacker can design a gradient-based reconstruction learn-
ing algorithm that will take the gradient update at round t, say ∇wk(t), to be
shared by the client, to reconstruct the private data used in the local training

548 W. Wei et al.

computation. For federated learning on images or video clips, the reconstruc-
tion algorithm will start by using a dummy image of the same resolution as its
attack initialization seed, and run a test of this attack seed on the intermediate
local model, to compute a gradient loss using a vector distance loss function
between the gradient of this attack seed and the actual gradient from the client
local training. The goal of this reconstruction attack is to iteratively add crafted
small noises to the attack seed such that the generated gradient from this recon-
structed attack seed will approximate the actual gradient computed on the local
training data. The reconstruction attack terminates when the gradient of the
attack seed reconstructed from the dummy initial data converges to the gradi-
ent of the training data. When the gradient-based reconstruction loss function is
minimized, the reconstructed attack data will also converge to the training data
with high reconstruction confidence.

Algorithm 1. Gradient-based Reconstruction Attack
1: Inputs:

f(x; w(t)): Differentiable learning model, ∇wk(t): gradients produced by the local
training on private training data (x; y) at client k, w(t), w(t+1): model parameters
before and after the current local training on (x; y), ηk learning rate of local training
Attack configurations: INIT (x.type): attack initialization method, T: attack
termination condition, η′: attack optimization method, α: regularizer ratio.

2: Output: reconstructed training data (xrec; yrec)
3: Attack procedure
4: if wk(t + 1): then
5: Δwk(t) ← wk(t + 1) − w(t)

6: ∇wk(t) ← Δwk(t)
ηk

7: end if
8: x0

rec ← INIT(x.type)
9: yrec ← arg mini(∇iwk(t))

10: for τ in T do
11: ∇wτ

att(t) ← ∂loss(f(xτ
rec,w(t)),yrec)

∂w(t)

12: Dτ ← ||∇wτ
att(t) − ∇wk(t)||2 + α||f(xτ

rec, w(t)) − yrec||2
13: xτ+1

rec ← xτ
rec − η′ ∂Dτ

∂xτ
rec

14: end for

Algorithm 1 gives a sketch of the client privacy leakage attack method. Line 4–
6 convert the weight update to gradient when the weight update is shared
between the FL server and the client. The learning rate ηk for local training is
assumed to be identical across all clients in our prototype system. Line 8 invokes
the dummy attack seed initialization, which will be elaborated in Sect. 3.1. Line 9
is to get the label from the actual gradient shared from the local training. Since
the local training update towards the ground-truth label of the training input
data should be the most aggressive compared to other labels, the sign of gradi-
ent for the ground-truth label of the private training data will be different than
other classes, and its absolute value is usually the largest. Line 10–14 presents the

Federated Learning Privacy Leakage Evaluation Framework 549

iterative reconstruction process that produces the reconstructed private train-
ing data based on the client gradient update. If the reconstruction algorithm
converges, then the client privacy leakage attack is successful, or else the CPL
attack is failed. Line 12–13 show that when the L2 distance between the gradi-
ents of the attack reconstructed data and the actual gradient from the private
training data is minimized, the reconstructed attack data from the dummy seed
converges to the private local training data, leading to the client privacy leakage.
In Line 12, a label-based regularizer is utilized to improve the stability of the
attack optimization. An alternative way to reconstruct the label of the private
training data is to initialize a dummy label and feed it into the iterative approx-
imation algorithm for attack optimization [34], in a similar way as the content
reconstruction optimization.

Fig. 1. Example illustration of the Client Privacy Leakage attack

Figure 1 provides a visualization of four illustrative example attacks over
four datasets: MNIST [16], CIFAR10 [15], CIFAR100 [15], and LFW [12]. We
make two interesting observations from Algorithm 1. First, multiple factors in
the attack method could impact the attack success rate (ASR) of the client pri-
vacy leakage attack, such as the dummy attack seed data initialization method
(Line 8), the attack iteration termination condition (T), the selection of the
gradient loss (distance) function (Line 12), the attack optimization method
(Line 13). Second, the configuration of some hyperparameters in federated learn-
ing may also impact the effectiveness and cost of the CPL attack, including batch
size, training data resolution, choice of activation function, and whether the gra-
dient update is uploaded to the FL server using baseline communication protocol
or a communication efficient method. In the next section, we present the design
of our evaluation framework to further characterize the client privacy leakage
attack of different forms and introduce cost-effect metrics to measure and ana-
lyze the adverse effect and cost of CPL attacks. By utilizing this framework,
we provide a comprehensive study on how different attack parameter configu-
rations and federated learning hyperparameter configurations may impact the
effectiveness of the client privacy leakage attacks.

550 W. Wei et al.

3 Evaluation Framework

3.1 Attack Parameter Configuration

Attack Initialization: We first study how different methods for generating
the dummy attack seed data may influence the effectiveness of a CPL attack in
terms of reconstruction quality or confidence as well as reconstruction time and
convergence rate. A straightforward dummy data initialization method is to use
a random distribution in the shape of dummy data type and we call this baseline
the random initialization (CPL-random). Although random initialization is also
used in [9,32,34], our work is, to the best of our knowledge, the first study on
variations of attack initiation methods. To understand the role of random seed
in the CPL attack, it is important to understand the difference of the attack
reconstruction learning from the normal deep neural network (DNN) training.
In a DNN training, it takes as the training input both the fixed data-label pairs
and the initialization of the learnable model parameters, and iteratively learn
the model parameters until the training converges, which minimizes the loss
with respect to the ground truth labels. In contrast, the CPL attack performs
reconstruction attack by taking a dummy attack seed input data, a fixed set of
model parameters, such as the actual gradient updates of a client local training,
and the gradient derived label as the reconstructed label yrec, its attack algo-
rithm will iteratively reconstruct the local training data used to generate the
gradient, ∇wk(t), by updating the dummy synthesized seed data, following the
attack iteration termination condition T, denoted by {x0

rec, x
1
rec, ...xs

T} ∈ R
d,

such that the loss between the gradient of the reconstructed data xi
rec and the

actual gradient ∇wk(t) is minimized. Here x0
rec denotes the initial dummy seed.

Theorem 1 (CPL Attack Convergence Theorem). Let x∗
rec be the optimal

synthesized data for f(x) and attack iteration t ∈ {0, 1, 2, ...T}. Given the convex-
ity and Lipschitz-smoothness assumption, the convergence of the gradient-based
reconstruction attack is guaranteed with:

f(xT

rec) − f(x∗
rec) ≤ 2L||x0

rec − x∗
rec||2

T
. (1)

The above CPL Attack Convergence theorem is derived from the well-established
Convergence Theorem of Gradient Descent. Due to the limitation of space, the
formal proof of Theorem 1 is provided in the Appendix. Note that the convexity
assumption is generally true since the d-dimension trainable synthesized data
can be seen as a one-hidden-layer network with no activation function. The
fixed model parameters are considered as the input with optimization of the
least square estimation problem as stated in Line 12 of Algorithm 1.

According to Theorem 1, the convergence of the CPL attack is closely related
to the initialization of the dummy data x0

rec. This motivates us to investigate
different ways to generate dummy attack seed data. Concretely, we argue that
different random seeds may have different impacts on both reconstruction learn-
ing efficiency (confidence) and reconstruction learning convergence (time or the

Federated Learning Privacy Leakage Evaluation Framework 551

number of iteration steps). Furthermore, using geometrical initialization as those
introduced in [24] not only can speed up the convergence but also ensure attack
stability. Consider a single layer of the neural network: g(x) = σ(wx + b), a geo-
metrical initialization considers the form g(x) = σ(w∗(x− b∗) instead of directly
initialing w and b with random distribution. For example, according to [31], the
following partial derivative of the geometrical initialization.

∂g

∂w∗
= σ′(w∗(x − b∗))(x − b∗), (2)

is more independent of translation of the input space than ∂g
∂w = σ′(wx + b)x,

and is therefore more stable.

Fig. 2. Visualization of different initialization

Figure 2 provides a visualization of five different initialization methods and
their impact on the CPL attack in terms of reconstruction quality and conver-
gence (#iterations). In addition to CPL-random, CPL-patterned is a method
that uses patterned random initialization. We initialize a small portion of the
dummy data with a random seed and duplicate it to the entire feature space. An
example of the portion can be 1/4 of the feature space. CPL-dark/light is to use
a dark (or light) seed of the input type (size), whereas CPL-R.G.B. is to use red
or green or blue solid color seed of the input type (size). CPL-optimal refers to
the theoretical optimal initialization method, which uses an example from the
same class as the private training data that the CPL attack aims to reconstruct.
We observe from Fig. 2 that CPL-patterned, CPL-R.G.B., and CPL-dark/light
can outperform CPL-random with faster attack convergence and more effective
reconstruction confidence. We also include CPL-optimal to show that different
CPL initializations can effectively approximate the optimal way of initialization
in terms of reconstruction effectiveness.

552 W. Wei et al.

LFW CIFAR100

Fig. 3. Effect of different random seed

Figure 3 shows that the CPL attacks are highly sensitive to the choice of
random seeds. We conduct this set of experiments on LFW and CIFAR100, and
both confirm consistently our observations: different random seeds lead to diverse
convergence processes with different reconstruction quality and confidence. From
Fig. 3, we observe that even with the same random seed, attack with patterned
initialization is much more efficient and stable than the CPL-random. Moreover,
there are situations where the private label of the client training data is success-
fully reconstructed but the private content reconstruction fails (see the last row
for both LFW and CIFAR100).

Attack Termination Condition: The effectiveness of a CPL attack is also
sensitive to the setting of the attack termination condition. Recall Sect. 2.3 and
Algorithm 1, there are two decision factors for termination. One is the maximum
attack iteration [34] and the other is the L2-distance threshold of the gradient
loss [32], i.e., the difference between the gradient from the reconstructed data and
the actual gradient from the local training using the private local data. Other
gradient loss functions, e.g., cosine similarity, entropy, can be used to replace
the L2 function. Table 1 compares six different settings of attack iterations for
configuring termination condition. A small attack iteration cap may cause the
reconstruction attack to abort before it can succeed the attack, whereas a larger
attack iteration cap may increase the cost of attack. The result in Table 1 con-
firms that choosing the cap for attack iterations may have an impact on both
attack effectiveness and cost.

Table 1. Effect of termination condition

maximum attack iteration 10 20 30 50 100 300

LFW CPL-patterned 0 0.34 0.98 1 1 1

CPL-random 0 0 0 0.562 0.823 0.857

CIFAR10 CPL-patterned 0 0.47 0.93 0.973 0.973 0.973

CPL-random 0 0 0 0 0.356 0.754

CIFAR100 CPL-patterned 0 0 0.12 0.85 0.981 0.981

CPL-random 0 0 0 0 0.23 0.85
Fig. 4. Effect of attack optimization

Federated Learning Privacy Leakage Evaluation Framework 553

Attack Optimization: Optimization methods, such as Stochastic Gradient
descent, Adam, and Adagrad can be used to iteratively update the dummy
data during the reconstruction of a CPL attack. While the first-order optimiza-
tion techniques are easy to compute and less time consuming, the second-order
techniques are better in escaping the slow convergence paths around the sad-
dle points [4]. Figure 4 shows a comparison of L-BFGS [6] and Adam and their
effects on the CPL-patterned attack for LFW dataset. It takes fewer attack iter-
ations to get high reconstruction quality using the L-BFGS compared to using
Adam as the optimizer in the reconstruction attack, confirming that choosing
an appropriate optimizer may impact on attack effectiveness.

3.2 Hyperparameter Configurations in Federated Learning

Batch Size: Given that all forms of CPL attack methods are reconstruction
learning algorithms that iteratively learn to reconstruct the private training
data by inferencing over the actual gradient to perform iterative updates on
the dummy attack seed data, it is obvious that a CPL attack is most effective
when working with the gradient generated from the local training data of batch
size 1. Furthermore, when the input data examples in a batch of size B belongs
to only one class, which is often the case for mobile devices and the non-i.i.d
distribution of the training data [33], the CPL attacks can effectively reconstruct
the training data of the entire batch. This is especially true when the dataset
has low inter-class variation, e.g., face and digit recognition. Figure 5 shows the
visualization of performing a CPL-patterned attack on the LFW dataset with
four different batch sizes. With a large batch size, the detail of a single input is
being neutralized, making the attack reconstruction captures more of the shared
features of the entire batch rather than specific to a single image.

Fig. 5. Effect of batch size in CPL-patterned attacks on LFW

554 W. Wei et al.

Training Data Resolution: In contrast to the early work [34] that fails to
attack images of resolution higher than 64×64, we argue that the effectiveness of
the CPL attack is mainly attributed to the model overfitting to the training data.
In order to handle higher resolution training data, we double the number of filters
in all convolutional layers to build a more overfitted model. Figure 6 shows the
scaling results of CPL attack on the LFW dataset with input data size of 32×32,
64 × 64, and 128 × 128. CPL-random requires a much larger number of attack
iterations to succeed the attack with high reconstruction performance. CPL-
patterned is a significantly more effective attack for all three different resolutions
with 3 to 4× reduction in the attack iterations compared to CPL-random. We
also provide an example of attacking the 512 × 512 Indiana University Chest
X-Rays image of very high resolution in Fig. 7.

Fig. 6. Attack iteration of the
training data scaling using LFW
dataset

Fig. 7. Extreme scaling case of attacking
512 × 512 Chest X-ray image

Activation Function: The next hyperparameter of FL is the activation func-
tion used in model training. We show that the performance of the CPL attacks
is highly related to the choice of the activation function. Figure 8 compares the
attack iterations and attack success rate of CPL-patterned attack with three
different activation functions: Sigmoid, Tanh, and LeakReLU. Due to space con-
straint, the results on MNIST is omitted. We observe that ReLU naturally pre-
vents the full reconstruction of the training data using gradient because the
gradient of the negative part of ReLU will be 0, namely, that part of the train-
able parameters will stop responding to variations in error and will not get
adjusted during optimization. This dying ReLU problem takes out the gradient
information needed for CPL attacks. In comparison, both Sigmoid and Tanh
are differentiable bijective and can pass the gradient from layer to layer in an
almost lossless manner. LeakyReLU sets a slightly inclined line for the negative
part of ReLU to mitigate the issue of dying ReLU and thus is vulnerable to CPL
attacks.

Federated Learning Privacy Leakage Evaluation Framework 555

Fig. 8. Effect of activation function on the CPL attack.

Motivated by the impact of activation function, we argue that any model com-
ponents that discontinue the integrity and uniqueness of gradients can hamper
CPL attacks. We observe from our experiments that an added dropout structure
enables different gradient in every query, making ∇wτ

att(t) elusive and unable to
converge to the uploaded gradients. By contrast, pooling cannot prevent CPL
attacks since pooling layers do not have parameters.

Fig. 9. Illustration of the CPL attack under communication-efficient update

Baseline Protocol v.s. Communication-Efficient Protocol: In the base-
line communication protocol, the client sends a full vector of local training
parameter update to the FL server in each round. For federated training of
large models on complex data, this step is known to be the bottleneck of Fed-
erated Learning. Communication-efficient FL protocols were proposed [14,20]
to improve the communication efficiency of parameter update and sharing by
employing high precision vector compression mechanisms, such as structured
updates and sketched updates. As more FL systems utilize a communication-
efficient protocol to replace the baseline protocol, it is important to study
the impact of using a communication efficient protocol on the performance
of the CPL attacks, especially compared to the baseline client-to-server com-
munication protocol. In this set of experiments, we measure the performance

556 W. Wei et al.

of CPL attacks under varying gradient compression percentage θ, i.e., θ per-
centage of the gradient update will be discarded in this round of gradient
upload. We employ the compression method in [17] as it provides a good trade-
off between communication-efficiency and model training accuracy. It leverages
sparse updates and sends only the important gradients, i.e., the gradients whose
magnitude larger than a threshold, and further measures are taken to avoid los-
ing information. Locally, the client will accumulate small gradients and only send
them when the accumulation is large enough. Figure 9 shows the visualization
of the comparison on MNIST and CIFAR10. We observe that compared to the
baseline protocol with full gradient upload, using the communication efficient
protocol with θ up to 40%, the CPL attack remains to be effective for CIFAR10.
Section 4.2 provides a more detailed experimental study on CPL attacks under
communication-efficient FL protocol.

3.3 Attack Effect and Cost Metrics

Our framework evaluates the adverse effect and cost of CPL attacks using the
following metrics. For data-specific metrics, we average the evaluation results
over all successful reconstructions.

Attack Success Rate (ASR) is the percentage of successfully reconstructed
training data over the number of training data being attacked. We use ASRc
and ASRl to refer to the attack success rate on content and label respectively.

MSE uses the root mean square deviation to measure the similarity between
reconstructed input xrec and ground-truth input x: 1

M

∑M
i=1 (x(i) − xrec(i))2

when the reconstruction is successful. M denotes total number of features in the
input. MSE can be used on all data format, e.g. attributes and text. A smaller
MSE means the more similar reconstructed data to the private ground truth.

SSIM measures the structural similarity between two images based on a
perception-based model [28] that considers image degradation as perceived
change.

Attack Iteration measures the number of attack iterations required for recon-
struction learning to converge and thus succeed the attack, e.g., L2 distance of
the gradients between the reconstructed data and the local private training data
is smaller than a pre-set threshold.

4 Experiments and Results

4.1 Experiment Setup

We evaluate CPL attacks on four benchmark datasets: MNIST, LFW, CIFAR10,
CIFAR100. MNIST consists of 70000 grey-scale hand-written digits images of
size 28×28. The 60000:10000 split is used for training and testing data. Labeled
Faces in the Wild (LFW) people dataset has 13233 images from 5749 classes.

Federated Learning Privacy Leakage Evaluation Framework 557

The original image size is 250 × 250 and we slice it to 32 × 32 and extract the
‘interesting’ part. Our experiments only consider 106 classes, each with more
than 14 images. For a total number of 3735 eligible LFW data, a 3:1 train-test
ratio is applied. CIFAR10 and CIFAR100 both have 60000 color images of size
32 × 32 with 10 and 100 classes respectively. The 50000:10000 split is used for
training and testing. We perform CPL attacks with the following configurations
as the default unless otherwise stated. The initialization method is patterned, the
maximum attack iterations are 300, the optimization method is L-BFGS with
attack learning rate 1. The attack is performed with full gradient communica-
tion. For each dataset, the attack is performed on 100 images with 10 different
random seeds. For MNIST and LFW, we use a LeNet model with 0.9568 benign
accuracy on MNIST and 0.695 on LFW. For CIFAR10 and CIFAR100, we apply
a ResNet20 with benign accuracy of 0.863 on CIFAR10 and CIFAR100. We use
100 clients as the total client population and at each communication round, 10%
of clients will be selected randomly to participate in federated learning.

4.2 Gradient Leakage Attack Evaluation

Comparison with Other Gradient Leakage Attacks. We first conduct
a set of experiments to compare the CPL-patterned attack with two existing
gradient leakage attacks: the deep gradient attack [34], and the gradient inverting
attack [9], which replaces the L2 distance function with cosine similarity and
performs the optimization on the sign of the gradient. We measure the attack
results on the four benchmark image datasets in Table 2. For all four datasets,
the CPL attack is a much faster and more efficient attack with the highest attack
success rate (ASR) and the lowest attack iterations on both content and label
reconstruction. Meanwhile, the high SSIM and low MSE for CPL attack indicate
the quality of the reconstructed data is almost identical to the private training
data. We also observe that gradient inverting attack [9] can achieve a high ASR
compared to deep gradient attack [34] but at a great cost of attack iterations.
Note that the CPL attack offers slightly higher ASR compared to [9] but at
much lower attack cost in terms of the required attack iteration.

Table 2. Comparison of different gradient leakage attacks

CIFAR10 CIFAR100 LFW MNIST

CPL [34] [9] CPL [34] [9] CPL [34] [9] CPL [34] [9]

attack iter28.3 114.5 6725 61.8 125 6813 25 69.2 4527 11.5 18.4 3265

ASRc 0.973 0.754 0.958 0.981 0.85 0.978 1 0.857 0.974 1 0.686 0.784

ASRl 1 0.965 1 1 0.94 1 1 0.951 1 1 0.951 1

SSIM 0.9985 0.9982 0.9984 0.959 0.953 0.958 0.998 0.997 0.9978 0.99 0.985 0.989

MSE 2.2E-042.5E-042.2E-045.4E-046.5E-045.4E-042.2E-042.9E-042.3E-041.5E-051.7E-051.6E-05

558 W. Wei et al.

Table 3. Comparison of different geometrical initialization in CPL attacks

Variation Study: Geometrical Initialization. This set of experiments mea-
sure and compare the four types of geometrical initialization methods: patterned
random, dark/light, R.G.B., and optimal. For optimal initialization, we feed a
piece of data that is randomly picked from the training set. This assumption is
reasonable when different clients hold part of the information about one data
item. Table 3 shows the result. We observe that the performance of all four
geometrical initializations is always better than the random initialization (see
the bold highlight in Table 3). Note that the optimal initialization is used in
this experiment as a reference point as it assumes the background information
about the data distribution. Furthermore, the performance of geometrical initial-
izations is also dataset-dependent. CPL attack on CIFAR100 requires a longer
time and more iterations to succeed than CPL on CIFAR10 and LFW.

Variation Study: Batch Size and Iterations. Motivated by the batch size
visualization in Fig. 5, we study the impact of hyperparameters used in local
training, such as batch size and the number of local training iterations, on the
performance of CPL attack. Table 4a shows the results of the CPL attack on the
LFW dataset with five different batch sizes. We observe that the ASR of CPL
attack is decreased to 96%, 89%, 76%, and 13% as the batch size increases to 2,
4, 8, and 16. The CPL attacks at different batch sizes are successful at the attack
iterations around 25 to 26 as we measure attack iterations only on successfully
reconstructed instances. Table 4b shows the results of the CPL attack under
five different settings of local iterations before sharing the gradient updates. We
show that as more iterations are performed at local training before sharing the
gradient update, the ASR of the CPL attack is decreasing with 97%, 85%, and
39% for iterations of 5, 7, and 9 respectively. This result confirms our analysis
in Sect. 3.2 that a larger batch size for local training prior to sharing the local
gradient update may help mitigate the CPL attack because the shared gradient
data capture more shared features among the images in the batch instead of
more specific to an individual image.

Federated Learning Privacy Leakage Evaluation Framework 559

Table 4. Effect of local training hyperparameters on CPL attack (LFW)

Variation Study: Leakage in Communication Efficient Sharing. This
set of experiments measures and compares the gradient leakage in CPL under
baseline protocol (full gradient sharing) and communication-efficient protocol
(significant gradient sharing with low-rank filer). Table 5 shows the result. To
illustrate the comparison results, we provide the accuracy of the baseline protocol
and the communication-efficient protocol of varying compression percentages on
all four benchmark datasets in Table 5(a). We make two interesting observations.
(1) CPL attack can generate high confidence reconstructions (high ASR, high
SSIM, low MSE) for MNIST and CIFAR10 at compression rate 40%, and for

Table 5. Effect of CPL attack under communication-efficient FL protocols

560 W. Wei et al.

Table 6. Mitigation with Gaussian noise and Laplace noise

CIFAR100 and LFW at the compression rate of 90%. Second, as the compression
percentage increases, the number of attack iterations to succeed the CPL attack
decreases. This is because a larger portion of the gradients are low significance
and are set to 0 by compression. When the attack fails, it indicates that the
reconstruction cannot be done even with the infinite(∞) attack iterations, but we
measure SSIM and MSE of the failed attacks at the maximum attack iterations of
300. (2) CPL attacks are more severe with more training labels in the federated
learning task. A possible explanation is that informative gradients are more
concentrated when there are more classes.

4.3 Mitigation Strategies

Gradient Perturbation with Additive Noise. We consider Gaussian noise
and Laplace noise with zero means and different magnitude of variance in this set
of experiments. Table 6 provides the mitigation results on CIFAR100 and LFW.
In both cases, the client privacy leakage attack is largely mitigated at some cost
of accuracy if we add sufficient Gaussian noise (G-10e-2) or Laplace noise (L-
10e-2). Figure 10 illustrates the effect of the additive noise using four examples.
The large additive noise we use to obfuscate the gradient while performing the
reconstruction, the small SSIM and the large MSE indicate the more dissimilar
between the gradient of the reconstructed data and the gradient of the original
sensitive input, leading to poor quality of the CPL attack.

Gradient Squeezing with Controlled Local Training Iterations. Instead
of sharing the gradient from the local training computation at each round t,
we schedule and control the sharing of the gradient only after M iterations of
local training. Table 7 shows the results of varying M from 1 to 10 with step 1. It
shows that as M increases, the ASR of CPL attack starts to decrease, with 97.1%,
83.5%, 50% and 29.2% for M = 3, 5, 8 and 10 respectively for CIFAR10, and
with 100%, 97%, 78% and 7% for M = 3, 5, 8 and 10 respectively for LFW. An

Federated Learning Privacy Leakage Evaluation Framework 561

Fig. 10. Effect of additive noise Fig. 11. Effect of local training

example of gradient squeezing with controlled local training iterations is provided
in Fig. 11. This preliminary mitigation study shows that clients in federated
learning may adopt some attack resilient optimizations when configuring their
local training hyperparameters.

5 Related Work

Privacy in federated learning has been studied in two contexts: training-phase
privacy attacks and prediction-phase privacy attacks. Gradient leakage attacks,
formulated in CPL of different forms, or those in literature [9,32,34], are one type
of privacy exploits in the training phase. In addition, Aono et al [1,2] proposed a
privacy attack, which partially recovers private data based on the proportionality
between the training data and the gradient updates in multi-layer perceptron
models. However, their attack is not suitable for convolutional neural networks
because the size of the features is far larger than the size of convolution weights.
Hitaj et al [11] poisoned the shared model by introducing mislabeled samples
into the training. In comparison, gradient leakage attacks are more aggressive
since client privacy leakage attacks make no assumption on direct access to the
training data as those in training poisoning attacks and yet can compromise the
private training data by reconstruction attack based on only the local parameter
updates to be shared with the federated server.

Privacy exploits at the prediction phase include model inversion, member-
ship inference, and GAN-based reconstruction attack [10,11,27]. Fredrikson et
al. [7] proposed the model inversion attack to exploit confidence values revealed
along with predictions. Ganju et al. [8] inferred the global properties of the train-
ing data from a trained white-box fully connected neural network. Membership
attacks [23,25] exploited the statistical differences between the model prediction
on its training set and the prediction on unseen data to infer the membership of
training data.

562 W. Wei et al.

Table 7. Mitigation with controlled local training iterations

6 Conclusion

We have presented a principled framework for evaluating and comparing dif-
ferent forms of client privacy leakage attacks. This framework showed that an
effective mitigation method against client gradient leakage attacks should meet
the two important criteria: (1) the defense can mitigate the gradient leakage
attacks no matter how the attacker configures his reconstruction algorithm to
launch the attack; and (2) the defense can mitigate the attacks no matter how
the FL system is configured for joint training. Extensive experiments on four
benchmark datasets highlighted the importance of providing a systematic eval-
uation framework for an in-depth understanding of the various forms of client
privacy leakage threats in federated learning and for developing and evaluating
different mitigation strategies.

Acknowledgements. The authors acknowledge the partial support from NSF CISE
SaTC 1564097, NSF 2038029 and an IBM Faculty Award.

7 Appendices

7.1 Proof of Theorem 1

Assumption 1 (Convexity). we say f(x) is convex if

f(αx + (1 − α)x′) ≤ αf(x) + (1 − α)f(x′), (3)

where x, x′ are data point in R
d, and α ∈ [0, 1].

Federated Learning Privacy Leakage Evaluation Framework 563

Lemma 1. If a convex f(x) is differentiable, we have:

f(x′) − f(x) ≥ 〈∇f(x), x′ − x〉. (4)

Proof. Equation 3 can be rewritten as: f(x′+α(x−x′))−f(x′)
α ≤ f(x) − f(y). When

α → 0, we complete the proof.

Assumption 2 (Lipschitz Smoothness). With Lipschitz continuous on the
differentiable function f(x) and Lipschitz constant L, we have:

||∇f(x) − ∇f(x′) ≤ L||x − x′||, (5)

Lemma 2. If f(x) is Lipschitz-smooth, we have:

f(xt+1) − f(xt) ≤ − 1
2L

||∇f(xT)||22 (6)

Proof. Using the Taylor expansion of f(x) and the uniform bound over Hessian
matrix, we have

f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉 +
L

2
||x′ − x||22. (7)

By inserting x′ = x − 1
L∇f(x) into Eq. 5 and Eq. 7, we have:

f(x − 1

L
∇f(x)) − f(x) ≤ − 1

L
〈∇f(x), ∇f(x)〉 +

L

2
|| 1

L
∇f(x)||22 = − 1

2L
||∇f(x)||22

Lemma 3 (Co-coercivity). A convex and Lipschitz-smooth f(x) satisfies:

〈∇f(x′) − ∇f(x), x′ − x〉 ≥ 1
L

||∇f(x′) − ∇f(x)|| (8)

Proof. Due to Eq. 5,

〈∇f(x′) − ∇f(x), x′ − x〉 ≥ 〈∇f(x′) − ∇f(x),
1

L
(∇f(x′) − ∇f(x))〉 = 1

L
||∇f(x′) − ∇f(x)||

Then we can proof the attack convergence theorem: f(xT) − f(x∗) ≤
2L||x0−x∗||2

T .

Proof. Let f(x) be convex and Lipschitz-smooth. It follow that

||xt+1 − x∗||22 = ||xt − x∗ − 1
L

∇f(xt)||22
= ||xt − x∗||22 − 2

1
L

〈xt − x∗,∇f(xt)〉 +
1
L2

||∇f(xt)||22
≤ ||xt − x∗||22 − 1

L2
||∇f(xt)||22 (9)

564 W. Wei et al.

Equation 9 holds due to Eq. 8 in Lemma 3. Recall Eq. 6 in Lemma 2, we have:

f(xt+1) − f(x∗) ≤ f(xt) − f(x∗) − 1
2L

||∇f(xt)||22. (10)

By applying convexity,

f(xt) − f(x∗) ≤ 〈∇f(xt), xt − x∗〉
≤ ||∇f(xt)||2||xt − x∗||
≤ ||∇f(xt)||2||x1 − x∗||. (11)

Then we insert Eq. 11 into Eq. 10:

f(xt+1) − f(x∗) ≤ f(xt) − f(x∗) − 1
2L

1
||x1 − x∗||2 (f(xt) − f(x∗))2

⇒ 1
f(xt) − f(x∗)

≤ 1
f(xt+1) − f(x∗)

− β
f(xt) − f(x∗)

f(xt+1) − f(x∗)
(12)

⇒ 1
f(xt) − f(x∗)

≤ 1
f(xt+1) − f(x∗)

− β (13)

⇒ β ≤ 1
f(xt+1) − f(x∗)

− 1
f(xt) − f(x∗)

, (14)

where β = 1
2L

1
||x1−x∗||2 . Equation 12 is done by divide both side with (f(xt+1)−

f(x∗))(f(xt)−f(x∗)) and Eq. 13 utilizes f(xt+1)−f(x∗) ≤ f(xt)−f(x∗). Then,
following by induction over t = 0, 1, 2, ..T − 1 and telescopic cancellation, we
have

Tβ ≤ 1
f(xT) − f(x∗)

− 1
f(x0) − f(x∗)

≤ 1
f(xT) − f(x∗)

.

Tβ ≤ 1
f(xT) − f(x∗)

− 1
f(x0) − f(x∗)

≤ 1
f(xT) − f(x∗)

(15)

⇒ T

2L

1
||x1 − x∗||2 ≤ 1

f(xT) − f(x∗)
(16)

⇒ f(xT) − f(x∗) ≤ 2L||x0 − x∗||2
T

. (17)

Thus complete the proof.

References

1. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning: revisited and enhanced. In: Batten, L., Kim, D.S., Zhang, X., Li, G. (eds.)
ATIS 2017. CCIS, vol. 719, pp. 100–110. Springer, Singapore (2017). https://doi.
org/10.1007/978-981-10-5421-1 9

2. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5),
1333–1345 (2017)

https://doi.org/10.1007/978-981-10-5421-1_9
https://doi.org/10.1007/978-981-10-5421-1_9

Federated Learning Privacy Leakage Evaluation Framework 565

3. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor
federated learning. arXiv preprint arXiv:1807.00459 (2018)

4. Battiti, R.: First-and second-order methods for learning: between steepest descent
and Newton’s method. Neural Comput. 4(2), 141–166 (1992)

5. Bonawitz, K., et al.: Towards federated learning at scale: System design. In: Pro-
ceedings of the 2nd SysML Conference, pp. 619–633 (2018)

6. Fletcher, R.: Practical Methods of Optimization. Wiley, Hoboken (2013)
7. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-

fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 1322–1333
(2015)

8. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference
attacks on fully connected neural networks using permutation invariant represen-
tations. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 619–633 (2018)

9. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how easy
is it to break privacy in federated learning? arXiv preprint arXiv:2003.14053 (2020)

10. Hayes, J., Melis, L., Danezis, G., De Cristofaro, E.: Logan: evaluating privacy
leakage of generative models using generative adversarial networks. arXiv preprint
arXiv:1705.07663 (2017)

11. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 603–618 (2017)

12. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a
database for studying face recognition in unconstrained environments. In: Technical
report (2008)

13. Kamp, M., et al.: Efficient decentralized deep learning by dynamic model averag-
ing. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML
PKDD 2018. LNCS (LNAI), vol. 11051, pp. 393–409. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-10925-7 24

14. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated learning: strategies for improving communication efficiency. In: NIPS
Workshop on Private Multi-Party Machine Learning (2016)

15. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. In: Technical report (2009)

16. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits
(1998). http://yann.lecun.com/exdb/mnist10, 34 (1998)

17. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression:
reducing the communication bandwidth for distributed training. In: International
Conference on Learning Representations (2018)

18. Liu, W., Chen, L., Chen, Y., Zhang, W.: Accelerating federated learning via
momentum gradient descent. IEEE Trans. Parallel Distrib. Syst. (2020)

19. Ma, C., et al.: Adding vs. averaging in distributed primal-dual optimization. In:
Proceedings of the 32nd International Conference on Machine Learning, vol. 37,
pp. 1973–1982 (2015)

20. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelli-
gence and Statistics, pp. 1273–1282 (2017)

21. McMahan, B., Ramage, D.: Federated learning: Collaborative machine learning
without centralized training data. Google Res. Blog 3 (2017)

http://arxiv.org/abs/1807.00459
http://arxiv.org/abs/2003.14053
http://arxiv.org/abs/1705.07663
https://doi.org/10.1007/978-3-030-10925-7_24
http://yann.lecun.com/exdb/mnist10

566 W. Wei et al.

22. McMahan, H.B., Moore, E., Ramage, D., Arcas, B.A.: Federated learning of
deep networks using model averaging. corr abs/1602.05629 (2016). arXiv preprint
arXiv:1602.05629 (2016)

23. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended fea-
ture leakage in collaborative learning. In: 2019 IEEE Symposium on Security and
Privacy (SP), pp. 691–706. IEEE (2019)

24. Rossi, F., Gégout, C.: Geometrical initialization, parametrization and control of
multilayer perceptrons: application to function approximation. In: Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN 1994), vol. 1, pp.
546–550. IEEE (1994)

25. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP), pp. 3–18. IEEE (2017)

26. Vanhaesebrouck, P., Bellet, A., Tommasi, M.: Decentralized collaborative learn-
ing of personalized models over networks. In: Artificial Intelligence and Statistics
(2017)

27. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring
class representatives: user-level privacy leakage from federated learning. In: IEEE
INFOCOM 2019-IEEE Conference on Computer Communications, pp. 2512–2520.
IEEE (2019)

28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

29. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

30. Yao, X., Huang, T., Zhang, R.X., Li, R., Sun, L.: Federated learning with
unbiased gradient aggregation and controllable meta updating. arXiv preprint
arXiv:1910.08234 (2019)

31. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. Neural Netw. 3(6),
889–898 (1992)

32. Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610 (2020)

33. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

34. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural
Information Processing Systems, pp. 14747–14756 (2019)

http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1910.08234
http://arxiv.org/abs/2001.02610
http://arxiv.org/abs/1806.00582

	A Framework for Evaluating Client Privacy Leakages in Federated Learning
	1 Introduction
	2 Problem Formulation
	2.1 Federated Learning
	2.2 Threat Model
	2.3 The Client Privacy Leakage (CPL) Attack: An Overview

	3 Evaluation Framework
	3.1 Attack Parameter Configuration
	3.2 Hyperparameter Configurations in Federated Learning
	3.3 Attack Effect and Cost Metrics

	4 Experiments and Results
	4.1 Experiment Setup
	4.2 Gradient Leakage Attack Evaluation
	4.3 Mitigation Strategies

	5 Related Work
	6 Conclusion
	7 Appendices
	7.1 Proof of Theorem 1

	References

