
Reinforcement Learning for Variable
Selection in a Branch and Bound

Algorithm

Marc Etheve1,3(B) , Zacharie Alès2,3 , Côme Bissuel1 , Olivier Juan1 ,
and Safia Kedad-Sidhoum3

1 EDF R&D, Paris, France
{marc.etheve,come.bissuel,olivier.juan}@edf.fr

2 ENSTA Paris, Institut Polytechnique de Paris, Paris, France
zacharie.ales@ensta-paris.fr

3 CNAM Paris, CEDRIC, Paris, France
safia.kedad sidhoum@cnam.fr

Abstract. Mixed integer linear programs are commonly solved by
Branch and Bound algorithms. A key factor of the efficiency of the most
successful commercial solvers is their fine-tuned heuristics. In this paper,
we leverage patterns in real-world instances to learn from scratch a new
branching strategy optimised for a given problem and compare it with a
commercial solver. We propose FMSTS, a novel Reinforcement Learning
approach specifically designed for this task. The strength of our method
lies in the consistency between a local value function and a global met-
ric of interest. In addition, we provide insights for adapting known RL
techniques to the Branch and Bound setting, and present a new neural
network architecture inspired from the literature. To our knowledge, it is
the first time Reinforcement Learning has been used to fully optimise the
branching strategy. Computational experiments show that our method
is appropriate and able to generalise well to new instances.

Keywords: Reinforcement learning · Mixed integer linear
programming · Neural network · Branch and bound · Branching
strategy

1 Introduction

Mixed Integer Linear Programming (MILP) is an active field of research due to
its tremendous usefulness in real-world applications. The most common method
designed to solve MILP problems is the Branch and Bound (B&B) algorithm
(see [1] for an exhaustive introduction). B&B is a general purpose procedure
dedicated to solve any MILP instance, based on a divide and conquer strategy
and driven by generic heuristics and bounding procedures.

Recently, a lot of attention has been paid to the interactions between MILP
and machine learning. As pointed out in [2], learning methods may compensate
c© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 176–185, 2020.
https://doi.org/10.1007/978-3-030-58942-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_12&domain=pdf
http://orcid.org/0000-0003-4436-3391
http://orcid.org/0000-0003-4602-2638
http://orcid.org/0000-0002-5430-3168
http://orcid.org/0000-0003-3445-4847
http://orcid.org/0000-0002-2184-2261
https://doi.org/10.1007/978-3-030-58942-4_12

Reinforcement Learning for Variable Selection 177

for the lack of mathematical understanding of the B&B method and its vari-
ants [3,4]. The plethora of different approaches in this young field of research
gives evidence of the variety of ways in which learning can be leveraged. For
instance, a natural idea is to bypass the whole B&B procedure to directly learn
solutions of MILP instances [5]. If one wants to preserve the optimality guar-
antee provided by the B&B algorithm, a solution could be to rather learn the
output of a computationally expensive heuristic used in a B&B scheme [6–8].
Alternatively, [9] suggests learning to select the best cut among a set of available
cuts at each node of the B&B tree. Whether it is by Imitation Learning or by
Reinforcement Learning (RL), these solutions are often limited by their scope:
they seek to take decisions according to a local criterion.

In the present work, we propose FMSTS (Fitting for Minimising the SubTree
Size), a novel approach based on Reinforcement Learning aiming at optimising
a global criterion at the scale of the whole B&B tree. We learn a branching
strategy from scratch, independent of any heuristic.

The paper is structured as follows. First, we define the general setting of our
study. Using RL to minimise a global criterion, we then demonstrate that, under
certain assumptions, a specific kind of value functions enforces the optimality of
such criterion. Next, we propose to adapt known generic learning methods and
neural network architectures to the Branch and Bound setting. We illustrate our
proposed method on industrial problems and discuss it before concluding.

2 General Setting

In real-world applications, companies often optimise systems on a regular basis
given fluctuating data. This case has been studied in the literature for different
purposes, such as learning an approximate solution [5] or imitating heuristics [8].
However, to our knowledge, no concrete contribution has been made regarding
the use of Reinforcement Learning for variable selection (branching) in this set-
ting. The present work fills this gap.

Throughout this paper, we are interested in the following setting. For a given
problem P, the instances are perceived as randomly distributed according to an
unknown distribution D. This distribution, emanating from real-world systems,
governs the fluctuating data (A, b, c) across instances, written as

p ∈ P :

⎧
⎪⎪⎨

⎪⎪⎩

min
x∈Rn

c�x

s.t.
Ax ≤ b

xJ ∈ {0, 1}|J |, x−J ∈ Rn−|J |
(1)

with A ∈ Rm×n, b ∈ Rm and c ∈ Rn. In practice, as the instances come from a
single problem, they share the same structure. Especially, the set of null coeffi-
cients, the number of constraints m, of variables n and the set of binary variables
J are the same for every instance of a given problem.

178 M. Etheve et al.

In this setting, we seek to learn and optimise a branching strategy to solve
to optimality any instance of a given problem. As pointed out in [10], the prob-
lem of optimising the decisions along a B&B tree is naturally formulated as a
control problem on a sequential decision-making process. More specifically, it
is equivalent to solving a finite-horizon deterministic Markov Decision Process
(MDP) and may thus be tackled by Reinforcement Learning (see [11] for an
introduction).

3 Fitting for Minimising the SubTree Size (FMSTS)

In a finite-horizon setting, Reinforcement Learning aims at optimising an agent
to produce sequences of actions that achieve a global objective. The agent is
guided by local costs associated with the actions it takes. Starting from an
initial state in a possibly stochastic environment, it must learn to take the best
sequence of actions and thus transitioning from state to state to minimise the
overall costs. Exact Q-learning solves such problem by updating a table mapping
(Q-function) from state/action pairs to discounted future costs (Q-values).

In the following, we define the RL problem of interest and, as exact Q-learning
is not practicable, the approximate framework considered. Next, we propose a
specific informative Q-function allowing us to use this framework in practice.

3.1 Approximate Q-Learning with Observable Q-Values

Let us denote by S the set of every reachable state for a given problem P, a state
being defined as all the information available when taking a branching decision
in a B&B tree. Under perfect information, a state associated to a B&B node is
the whole B&B tree as it has been expanded at the time the branching decision is
taken. We write A the set of actions, i.e. the set of available branching decisions
on a specific problem (the set of binary variables A = J in our case) and π a
policy mapping any state to a branching decision:

π :

{
S → A
s �→ π(s) = a

.

The transitions between states are governed by the B&B solver, and the MDP
is regarded as deterministic: given an instance and a state, performing an action
will always lead to the same next state. In practice, such assumption is met as
soon as the solver’s decisions (apart from branching) are non stochastic.

We call agent any generator Π of branching sequences following policy π and
denote Π(p) the sequence of decisions that maps an instance p to a complete
B&B tree. Let μ (Π(p)) be any metric of interest on the tree generated by Π for
an instance p, and assume this metric is to be minimised. For instance, we can
think of μ as the size of the generated tree, the number of simplex iterations,
etc. In this setting, we are looking for the μ−optimal agent Π∗ such that

Π∗ ∈ arg min
Π

Ep∼D [μ (Π (p))] . (2)

Reinforcement Learning for Variable Selection 179

Note here that the expectation is only on the MILP instances, as the MDP is
deterministic.

Let us assume that one can define a Q-function Qπ which is consistent with
μ, in the sense that μ is minimised if π(s) = arg min

a∈A
Qπ (s, a). Even in this case,

exact Q-learning cannot be used to minimise μ. First, maintaining an exact table
for the Q-function is not tractable due to the size of S, including for small real-
world problems. Second, the transition from a state to the next is too complex
to be modeled since it partly results from a linear optimisation.

To bypass these problems, we approximate the Q-function (see [11] for an
introduction to Approximate Q-learning) by a neural network Q̂ parametrised
by θ and optimised by a dedicated gradient method as in the DQN (Deep Q-
Network) approach [12]. We define the policy πθ resulting from the Q-network
as πθ(s) = arg min

a∈A
Q̂(s, a; θ).

When facing a deterministic MDP, the exact Q-value Qπθ (s, a) of an action
a given a state s and a policy πθ is not stochastic and thus may be observable.
In that case, the classic Temporal Difference loss used in [12] for training the
Q-Network comes down to the simple expression

L(θ) = Es,a∼ρ(.)

[(
Qπθ (s, a) − Q̂(s, a; θ)

)2
]

(3)

where ρ is the behaviour distribution of our agent, as stated in [12]. Note that, in
Eq. (3), the observed Q-values are naturally influenced by parameter θ through
the policy. Such loss is actually intuitive: if Qπθ is consistent with μ, if each action
has non-zero probability to be taken in any encountered state and if L(θ) = 0,
then each B&B tree built by agent Πθ (following πθ) is optimal with respect to
μ with probability 1.

3.2 Using the Subtree Size as Value Function

As highlighted in [8], an important difficulty when applying Reinforcement
Learning to B&B algorithms is the credit assignment problem [13]: in order to
determine the actions that lead to a specific outcome, one may define non-sparse
informative local costs (negative rewards) consistent with the global objective.

This is not mandatory in a RL setting but may facilitate the learning task.
We choose the number of nodes in the generated tree as the global metric

μ. This metric is often used to compare B&B methods (see for instance [6–
8]), as it is a proxy for computational efficiency and independent of hardware
considerations.

One of the main contributions of this paper is to propose a local Q-function
Qπ which is consistent with the chosen global metric μ. We take advantage of
the deterministic aspect of the environment and define Qπ(s, a) as the size of the
subtree rooted in the B&B node corresponding to s generated by action a and
policy π. As stated in Proposition 1, this particular Q-function is not consistent
in general with our choice of global criterion μ. Nonetheless, Proposition 2 asserts
its optimality when using Depth First Search as node selection strategy.

180 M. Etheve et al.

Proposition 1. In general, minimising the size of the subtree under any node
in a B&B tree is not optimal with respect to the tree size.

The proof is omitted for the sake of conciseness, but one can prove that min-
imising the subtree size can be sub-optimal when using Breadth First Search as
the node selection strategy.

Proposition 2. When using Depth First Search (DFS) as the node selection
strategy, minimising the whole B&B tree size is achieved when any subtree is of
minimal size.

Proof. Let us call O the set of open nodes at a given iteration of the B&B process
for a specific instance. The set of closed nodes (either by pruning or branching)
is denoted C.

We write V π (s |ζ, η) the size of the subtree under s, entirely determined by
the policy π followed in this subtree, a set of primal bounds ζ found in other
subtrees and a node selection strategy η. When using DFS, the subtrees under
each open node are expanded and fully solved sequentially, thus we can assume
with no loss of generality that O is equal to {1, ..., k} and is sorted according to
the planned visiting order. In that case, the size V of the whole B&B tree can
be expressed as

V = |C| +
k∑

i=1

V πi

⎛

⎝si

∣
∣
∣
∣
∣
∣
{z0} ∪

⎛

⎝
⋃

j<i

ζj

⎞

⎠ , η = DFS

⎞

⎠

with ζi the set of all bounds to be found in the subtree rooted in si and z0 the
best bound obtained in C.

It remains to prove that π1 is optimal only if it leads to the minimal subtree
under s1. As two separate subtrees can only affect each other through their best
primal bound under DFS, we have

V = |C| + V π1 (s1 |{z0}, η = DFS) +
k∑

i=2

V πi (si |{zi−1}, η = DFS)

with zi−1 = min
{

{z0} ∪
(⋃

j<i ζj

)}
.

Since the B&B procedure (with a gap set to zero) guarantees that we find the
best primal bound of any expanded subtree, (zii=1)

k are completely independent
of the branching policies, which gives, for any πj , j ∈ {2, ..., k}:

arg min
π1∈Π1

V = arg min
π1∈Π1

V π1 (s1 |{z0}, η = DFS)

with Π1 the set of all valid branching policies under s1. Therefore, choosing any
other policy than π1 ∈ arg min

π1∈Π1

V π (s1 |{z0}, η = DFS) is sub-optimal with

respect to the tree size. ��

Reinforcement Learning for Variable Selection 181

In the remaining, we use DFS as the node selection strategy according to Propo-
sition 2. We now focus on optimising the branching strategy (variable selection)
to minimise at each node the size of the underlying subtree. If we write D

π(s)
0 (s)

and D
π(s)
1 (s) the child nodes of s following policy π, such value function sat-

isfies the Bellman Equation (4). The relationship between the value and the
Q-function is trivially defined by Qπ(s, a) = 1 + V π(Da

0(s)) + V π(Da
1(s)).

V π(s) = 1 + V π
(
D

π(s)
0 (s)

)
+ V π

(
D

π(s)
1 (s)

)
(4)

This value function has two advantages. First, it is observable as assumed earlier:
we only need to count the number of inheriting nodes once the B&B tree is fully
expanded. Second, it is a local objective which guarantees the optimality of
a global criterion, hence allowing us to perform RL without designing a sub-
optimal reward using any domain knowledge.

3.3 Algorithm

Using Approximate Q-learning and the subtree size as value function leads us
to propose the FMSTS algorithm (Algorithm 1). Using Experience Replay and
ε-greedy exploration as in [12], the algorithm essentially boils down to consec-
utively solving a MILP instance following the current policy or random choices
with probability ε, fitting the observed values sampled from an experience replay
buffer and iterating with the updated policy.

Algorithm 1. FMSTS
for t = 0,...,N-1 do

Draw randomly an instance p.
Solve p following πθt with ε-greedy exploration.

Collect experiences along the generated tree
(
si, ai, Q

πθt (s, a), Q̂(s, a; θt)
)

and

store them into an experience replay buffer B.
Update to θt+1 using loss (3) on experiences drawn from B.

end for

4 Adapting Learning to the Branch and Bound Setting

To ensure the success of the FMSTS method (Algorithm 1) with respect to the
objective (2), we need to adapt some components to the Branch and Bound
setting. First, we adapt the loss guiding the neural network’s training. Next,
we use Prioritized Experience Replay while normalising probabilities. Last, we
propose a new neural network architecture inspired from the literature.

182 M. Etheve et al.

4.1 Minimising an Expectation on the Instance Distribution

The loss defined by Eq. (3) does not seem to correspond to our objective (2).
Indeed, it naturally gives more importance to the biggest trees, which can be
heavily instance dependent. To neutralise this effect, we weight the loss by the
inverse of the size of the corresponding B&B tree generated by the agent:

L(θ) = Es,a∼ρ(.)

[
1

V πθ (r(s))

(
Qπθ (s, a) − Q̂(s, a; θ)

)2
]

(5)

with r(s) the root node of the tree containing s, such that V πθ (r(s)) corresponds
to the size of this tree. Then, any instance has equal weight in loss (5).

4.2 Performing Prioritized Experience Replay

Prioritized Experience Replay [14] biases the uniform replay sampling of
Experience Replay [12] towards experiences with high Temporal Difference
errors, i.e. when the predicted Q-values are far from their target. In FMSTS,
an experience is a 4-tuple

(
sj , aj , Q

πθj (sj , aj), Q̂(sj , aj ; θj)
)

and the target

Qπθj (sj , aj) is observed, which reduces the error to the simple expression
|Qπθj (sj , aj) − Q̂(sj , aj ; θj)|.

In the context of sampling experiences in a B&B tree, one should take into
account that the scale of the target Qπθj may vary exponentially both along the
tree and across instances. As the scale of the error may likely vary with that of
the target, we normalise this error by the target to get the sampling probability
in the experience replay buffer

pj ∝ |Qπθj (sj , aj) − Q̂(sj , aj ; θj)|
Qπθj (sj , aj)

. (6)

4.3 Designing a Regressor for the Q-Function

As in [6], we use both static and dynamic features to represent a state. Although
many features may be relevant for the states’ encoding, we opted to keep them
limited in the present work. For static information, we perform a dimension
reduction by PCA [15]: each instance is represented as the concatenation of its
data (A, b, c) and PCA is applied on the resulting vectors. Our representation
also includes the following dynamic features: the node’s depth, the distance of the
current primal solution to the bounds and the branching state. Concretely, the
branching state B is one-hot encoded in a 3|J | vector. Let us call B0 and B1 the
set of variables that have been respectively set to 0 and 1 in the ascendant nodes
of the current state. With no loss of generality, let us assume that J = {1, ..., J}.
Then we have Bj = 1xj∈B0 , Bj+J = 1xj∈B1 and Bj+2J = 1 − Bj − Bj+J for any
j ∈ J .

The chosen Q-function is essentially multiplicative, in the sense that the ratio
between the targets in two consecutive states may be of magnitude 2 due to the

Reinforcement Learning for Variable Selection 183

binary tree structure. In addition, the scale of these targets may strongly vary
between instances. A basic feedforward neural network, based on summations,
may struggle to handle such phenomena. To compensate for these effects and
adapt to the B&B setting, we take inspiration from the Dueling architecture
of [16] and propose the Multiplicative Dueling Architecture (MDA). As shown
in Fig. 1, MDA implements the product between the 1-D output of a block of
fully-connected layers fed with static features and the |J |-D output of a block
fed with both static and dynamic features. A linear activation on the 1-D output
allows our agent to capture the variability of the chosen Q-function.

Fig. 1. Dense and Multiplicative Dueling architectures for the Q-network. The rect-
angles represent consecutive dense layers, the lightblue block being fed with all the
features whereas the lightgreen one is only fed with static features (darkgreen). The
output of the MDA is the product between a single unit and a |J |-unit dense layer.
(Colour figure online)

5 Experiments and Discussion

We test our algorithms on two sets of instances provided by Electricité de France
(EDF), a french electric utility company. They are drawn from two different
problems, one is related to energy management in a microgrid (P1) whereas the
other one comes from a hydroelectric valley (P2). The problems have respectively
186 and 282 constraints, 120 and 207 variables, and 54 and 96 binary variables.

We compare our algorithms to the default branching strategy of CPLEX
(denoted CPLEX in the following) and full Strong Branching (denoted SB). We
use CPLEX 12.7.1 [17] under DFS while turning off all presolving and cutting.

To avoid any dependency of our results to the train or the test set, we present
cross-validated results. Algorithm 1 is run 100 times independently on randomly
partitioned train and test sets. Each time, 200 instances are used for training
while 500 unseen instances are used for testing. Figure 2 shows the averaged
number of nodes in the complete B&B trees on the test sets during the learning
process: test instances are solved using the strategy learned on train instances
at the current iteration of Algorithm1.

184 M. Etheve et al.

Fig. 2. Cross-validated performance on test instances (averaged number of nodes in
log scale) for P1 (left) and P2 (right) through iterations of Algorithm 1. Gaussian
confidence intervals are shown around the means.

As exhibited in Fig. 2, our method is able to learn an efficient strategy from
scratch. As expected, the MDA agent is more flexible than its additive coun-
terpart (Dueling) inspired from the Dueling architecture of [16] and the fully-
connected agent (Dense). It outperforms systematically the Strong Branching
policy, and finds comparable or better strategies than CPLEX, depending on
the problem. Results on training data are not displayed for the sake of concise-
ness, but it is worth mentioning that our agents do not overfit and are able to
generalise well. In addition, the computation time is negligible compared with
full Strong Branching as an action comes only at the price of a forward pass in
our neural network.

Despite these good performances, some limits have to be pointed out at this
stage. First, our framework requires DFS as the node selection strategy, which
can be far from optimal for certain problems. Note that using another strat-
egy may be complicated to handle due to more complex dependencies, but may
also turn out to be effective as targetting small subtrees makes sense in gen-
eral. Second, we only showed promising results on easy problems. With more
difficult problems, the training becomes computationally prohibitive as a ran-
domly initialised agent produces exponential trees. To tackle these limitations,
we encompass different solutions such as fine-tuning the features and network
architecture or using supervision to decrease the size of the generated trees dur-
ing the first episodes. To reduce the cost of exploration, one could apply the
same methodology with a set of branching heuristics as action set, similarly to
what is proposed in [18].

6 Conclusion

In this paper, we presented a novel Reinforcement Learning framework designed
to learn from scratch the branching strategy in a B&B algorithm. In addition
to the specific metrics used in our FMSTS method, we introduced a new neural
network architecture designed to tackle the multiplicative nature of the value
function. Besides, we adapted some known RL techniques to the B&B setting.

Reinforcement Learning for Variable Selection 185

We ran experiments on real-world problems to validate our method and showed
better or comparable performances with existing strategies.

It is worthwhile to highlight that our method is generic enough to be applied
to other metrics than the tree size, e.g. the number of simplex iterations or
even the computation time. If one is not interested in proving optimality, many
other value functions may be encompassed. Furthermore, it may be interesting to
enlarge the scope of the method, especially to include Branch and Cut algorithms
as they usually are more efficient.

References

1. Wolsey, L.A.: Integer programming. Wiley, Hoboken (1998)
2. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-

tion: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128 (2018)
3. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W., Vance, P.H.:

Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46(3), 316–329 (1998)

4. Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization prob-
lems. In: Handbook of Applied Optimization, vol. 1, pp. 65–77 (2002)

5. Rachelson, E., Abbes, A.B., Diemer, S.: Combining mixed integer programming
and supervised learning for fast re-planning. In: 2010 22nd IEEE International
Conference on Tools with Artificial Intelligence, vol. 2, pp. 63–70. IEEE (2010)

6. Khalil, E.B., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Thirtieth AAAI Conference on Artificial Intel-
ligence (2016)

7. Balcan, M.-F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. arXiv
preprint arXiv:1803.10150 (2018)

8. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combina-
torial optimization with graph convolutional neural networks. arXiv preprint
arXiv:1906.01629 (2019)

9. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming:
learning to cut. arXiv preprint arXiv:1906.04859 (2019)

10. He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound
algorithms. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27,
pp. 3293–3301. Curran Associates Inc., New York (2014)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

13. Minsky, M.: Steps toward artificial intelligence. Proc. IRE 49(1), 8–30 (1961)
14. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv

preprint arXiv:1511.05952 (2015)
15. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space.

London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
16. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.:

Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581 (2015)

17. Manual, C.U.: IBM ILOG CPLEX Optimization Studio (1987)
18. Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y.: Dash: dynamic approach for

switching heuristics. Eur. J. Oper. Res. 248(3), 943–953 (2016)

http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1803.10150
http://arxiv.org/abs/1906.01629
http://arxiv.org/abs/1906.04859
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.06581

	Reinforcement Learning for Variable Selection in a Branch and Bound Algorithm
	1 Introduction
	2 General Setting
	3 Fitting for Minimising the SubTree Size (FMSTS)
	3.1 Approximate Q-Learning with Observable Q-Values
	3.2 Using the Subtree Size as Value Function
	3.3 Algorithm

	4 Adapting Learning to the Branch and Bound Setting
	4.1 Minimising an Expectation on the Instance Distribution
	4.2 Performing Prioritized Experience Replay
	4.3 Designing a Regressor for the Q-Function

	5 Experiments and Discussion
	6 Conclusion
	References

