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Preface

This volume contains the papers that were presented at the 17th International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR 2020), exceptionally held online from Vienna, Austria,
September 21–24, 2020. The conference received a total of 92 submissions, including
72 regular paper and 20 extended abstract submissions. The regular papers reflect
original unpublished work, whereas the extended abstracts contain either original
unpublished work or a summary of work that was published elsewhere. Each regular
paper was reviewed by at least three Program Committee members. The reviewing
phase was followed by an author response period and a general discussion by the
Program Committee. The extended abstracts were reviewed for appropriateness for the
conference. At the end of the review period, 36 regular papers were accepted for
presentation during the conference and publication in this volume, and 12 abstracts
were accepted for short presentation at the conference. Among the 36 regular papers, 4
were published directly in the journal via a fast-track review process. The abstracts
of these papers can be found in this volume.

In addition to the regular papers and extended abstracts, four invited talks, whose
abstracts and/or articles can be found in this volume, were given:

– Margarida Carvalho (University of Montreal, Canada): “Algorithmic approaches
for integer programming games and a story on policy making”

– Georg Gottlob (University of Oxford, UK, and TU Wien, Austria): “Hypertree
Decompositions: Questions and Answers”

– Sebastian Pokutta (Technische Universität Berlin, Zuse Institute Berlin,
Germany): “Restarting Algorithms: Sometimes there is Free Lunch”

– Peter Stuckey (Monash University, Australia): “Combinatorial Optimisation for
Multi-Agent Path Finding”

The conference program included a Master Class on the topic “Recent Advances in
Optimisation Paradigms and Solving Technology”:

– Laurent Perron and Frédéric Didier (Google Paris, France) “Constraint
Programming”

– Armin Biere (Johannes Kepler University Linz, Austria): “Satisfiability (SAT)”
– Günther Raidl and Andrea Schaerf (TU Wien, Austria, and University of Udine,

Italy): “(Meta)Heuristics and Hybridisation”
– Inês Lynce (University of Lisbon, Portugal): “MaxSAT, Multi-Objective Optimi-

sation, and Parallelism”
– Timo Berthold (Fair Isaac Germany GmbH, Germany): “Mixed-Integer

Programming”
– Marie Pelleau (Université Nice Sophia-Antipolis, France): “Numerical Constraint

Programming”



The COVID-19 pandemic imposed significant hardship on the organization of this
conference, which was initially scheduled to May 26–29, but was eventually held
online during September 21–24. We want to express our deepest gratitude to the Local
Organizing Committee members (Juliane Auerböck, Tobias Geibinger, Lucas
Kletzander, Florian Mischek, Mihaela Rozman, and Felix Winter) and the Master Class
organizers (Emir Demirović, Andrea Rendl, and Mohamed Siala). We would also like
to thank the Program Committee members and external reviewers for their outstanding
work in reviewing and discussing – often in great details – every paper, and in par-
ticular for providing extra reviews on short notice when required. Of course, we also
thank the authors for upholding the high standards of the conference! Finally, we
would like to express our gratitude to our sponsors for their support: Vienna Center for
Logic and Algorithms (VCLA), Artificial Intelligence Journal (AIJ), FICO,
Österreichische Post AG, Springer, Vienna Convention Bureau, and TU Wien.

July 2020 Emmanuel Hebrard
Nysret Musliu
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Extended Abstracts

The following extended abstracts were accepted for presentation at the conference:

– Sina Aghaei, Andres Gomez, and Phebe Vayanos. “Learning Optimal Classification
Trees: Strong Max-Flow Formulations.”

– Hassan Anis and Roy Kwon. “Data-Driven Construction of Financial Factor
Models.”

– Harun Aydilek, Muberra Allahverdi, Asiye Aydilek, and Ali Allahverdi. “Algo-
rithms and Effective Dominance Relations for a No-Wait Flowshop Scheduling
with Random Setup Times.”

– Roland Braune. “Machine Learning-based Queuing Model Regression – Example
Selection, Feature Engineering and the Role of Traffic Intensity.”

– Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. “Justifying All
Differences Using Pseudo-Boolean Reasoning.”

– Nikolaus Frohner, Bernhard Neumann, and Günther Raidl. “A Beam Search
Approach to the Traveling Tournament Problem.”

– Patrick Gerhards. “Using CP and MIP techniques to tackle the Multi-mode
Resource Investment Problem.”

– Benjamin Hogstad, Jonas Falkner, and Lars Schmidt-Thieme. “A Search Heuristic
Guided Reinforcement Learning Approach to the Traveling Salesman Problem.”

– Matthias Horn, Marko Djukanovic, Christian Blum, and Günther R. Raidl. “On the
Use of Decision Diagrams for the Repetition-Free Longest Common Subsequence.”

– Thomas Jatschka, Tobias Rodemann, and Günther Raidl. “A Large Neighborhood
Search for Distributing Service Points in Mobility Applications with Capacities and
Limited Resources.”

– Luc Libralesso, Abdel-Malik Bouhassoun, Hadrien Cambazard, and Vincent Jost.
“Solving the Sequential Ordering Problem with anytime tree search.”

– Maximilian Moll and Leonhard Kunczik. “A Reinforcement Learning Approach to
the Labeled Maximum Matching Problem.”
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Algorithmic Approaches for Integer
Programming Games and a Story on Policy

Making

Margarida Carvalho

Université de Montréal
carvalho@iro.umontreal.ca

Abstract. Integer programming games (IPGs) are a class of problems that can
suitably model non-cooperative interactions between decision makers (players).
Under such formulations, each player goal in the game is described by a
parametric integer program where interactions between players are reflected in
their objective functions. This talk will begin with the description of IPGs, the
challenge they represent and an algorithmic framework to solve them that
integrates ideas of normal-form games [2]. The notion of solution to IPGs will
motivate the second part of this talk, where refinements will be discussed, in
particular, in the context of policy making for the kidney exchange game [1].
The latter will highlight an opportunity to integrate (patients) fairness which we
address as a constraint satisfaction problem.

Acknowledgments. The author wishs to thank the support of the Institut de valorisation
des données and Fonds de Recherche du Québec through the FRQ–IVADO Research
Chair in Data Science for Combinatorial Game Theory, and the Natural Sciences and
Engineering Research Council of Canada through the discovery grant 2019-04557.

This research was enabled in part by support provided by Calcul Québec (www.
calculquebec.ca) and Compute Canada (www.computecanada.ca).
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2. Carvalho, M., Lodi, A., Pedroso, J.P.: Computing Nash equilibria for integer programming
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The HyperTrac Project: Recent Progress
and Future Research Directions
on Hypergraph Decompositions

Georg Gottlob1 , Matthias Lanzinger2 , Davide Mario Longo2

Cem Okulmus2 , Reinhard Pichler2

1 University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk

2 TU Wien, Vienna, Austria
{mlanzing,dlongo,cokulmus,pichler}@dbai.tuwien.ac.at

Abstract. Constraint Satisfaction Problems (CSPs) play a central role in many
applications in Artificial Intelligence and Operations Research. In general,
solving CSPs is NP-complete. The structure of CSPs is best described by
hypergraphs. Therefore, various forms of hypergraph decompositions have been
proposed in the literature to identify tractable fragments of CSPs. However, also
the computation of a concrete hypergraph decomposition is a challenging task in
itself. In this paper, we report on recent progress in the study of hypergraph
decompositions and we outline several directions for future research.

This work was supported by the Austrian Science Fund (FWF): P30930-N35 in the context
of the project “HyperTrac”. Georg Gottlob is a Royal Society Research Professor and acknowledges
support by the Royal Society for the present work in the context of the project “RAISON DATA”
(Project reference: RP\R1\201074). Davide Mario Longo’s work was also supported by the FWF
project W1255-N23.
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http://orcid.org/0000-0002-7601-3727
http://orcid.org/0000-0003-4018-4994
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Restarting Algorithms:
Sometimes There Is Free Lunch

Sebastian Pokutta1,2

1 Technische Universit¨at Berlin, Berlin, Germany
pokutta@zib.de

2 Zuse Institute Berlin, Berlin, Germany

Abstract. In this overview article we will consider the deliberate restarting of
algorithms, a meta technique, in order to improve the algorithm’s performance,
e.g., convergence rates or approximation guarantees. One of the major advan-
tages is that restarts are relatively black box, not requiring any (significant)
changes to the base algorithm that is restarted or the underlying argument, while
leading to potentially significant improvements, e.g., from sublinear to linear
rates of convergence. Restarts are widely used in different fields and have
become a powerful tool to leverage additional information that has not been
directly incorporated in the base algorithm or argument. We will review restarts
in various settings from continuous optimization, discrete optimization, and
submodular function maximization where they have delivered impressive
results.

Keywords: Restarts � Convex optimization � Discrete optimization � Submod-
ular optimization



Combinatorial Optimisation for Multi-agent
Path Finding

Peter Stuckey

Monash University
peter.stuckey@monash.edu

Abstract. Multi-Agent Path Finding (MAPF) is a problem that requires one to
compute a set of collision-free paths for a team of moving agents. The problem
appears in variety of practical applications including warehouse logistics, traffic
management, aircraft towing and computer games. The general version of the
problem (minimizing makespan or sum of path costs, on graphs with parallel
actions and rotations) is known to be NP-hard. One of the leading methods for
solving MAPF optimally, employs a strategy known as Conflict-based Search
(CBS). The central idea is to plan paths for each agent independently and
resolve collisions by branching the current plan. Each branch is a new candidate
plan wherein one agent or the other is forced to find a new path that avoids the
selected collision. When we examine CBS from an optimisation perspective, it
is clearly a form of (Logic-based) Benders Decomposition. This begs the
question: can we use combinatorial optimisation techniques to tackle the MAPF
problem efficiently? In this talk I will show two approaches: the first uses
core-guided search together with a nogood learning Constraint Programming
solver [1]; the second uses Branch-and-Cut-and-Price together with a MIP
solver [2]. Both methods prove to be highly competitive to previous CBS
approaches.

References

1. Gange, G., Harabor, D., Stuckey, P.J.: Lazy {CBS}: Implicit conflict-based search using lazy
clause generation. In: Lipovetzky, N., Onaindia, E., Smith, D. (eds.) Proceedings of the 29th
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Power of Pre-processing: Production
Scheduling with Variable Energy Pricing

and Power-Saving States

Ondřej Benedikt1,2, István Módos1,2, and Zdeněk Hanzálek1

1 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical,
University in Prague, Czech Republic

2 Faculty of Electrical Engineering, Czech Technical University in Prague,
Czech Republic

{ondrej.benedikt,istvan.modos,zdenek.hanzalek}@cvut.cz

In recent years, the research interest in energy-efficient scheduling has been increasing
[3, 4]. Besides the traditional performance-oriented criteria, such as makespan, the
authors also consider energy optimization, in order to make the production
cost-efficient and environmentally friendly.

In this work, we study a single machine scheduling problem to minimize the total
energy cost (TEC) of the production, assuming the power-saving states of the machine
as well as time-of-use (TOU) energy pricing.

The integration of the power-saving states and the TOU pricing was initially
proposed by Shrouf et al. [5], who designed an integer linear programming (ILP) model
for the single machine problem with the fixed order of the jobs. Later, Aghelinejad
et al. [1] improved and generalized the existing ILP model to consider even an arbitrary
order of the jobs, in which case the problem is NP-hard [2]. However, in both [1] and
[5], only small instances of the problem have been solved optimally. One of the reasons
for the inefficiency of the models is that the proposed ILP models explicitly formulate
the transition behavior of the machine, and optimize it jointly with the scheduling of the
jobs. In consequence, the size of the ILP models is large, and only the medium
instances can be solved optimally.

We propose a novel pre-processing technique for the single machine scheduling
problem with TOU pricing and machine states. Our technique pre-computes the
optimal switching behavior of the machine states in time w.r.t. energy costs. Then, the
pre-computed costs of the optimal switchings allow us to design efficient exact ILP and
constraint programming models called and ILP-SPACES and CP-SPACES.

As shown by the experiments1, our approach outperforms the existing ILP model
ILP-REF [1], which is, to the best of our knowledge, the state-of-the-art among the

This work was supported by the Technology Agency of the Czech Republic under the National
Competence Center - Cybernetics and Artificial Intelligence TN01000024.
1 The source codes are publicly available at https://github.com/CTU-IIG/EnergyStatesAndCosts
Scheduling, while all the benchmark instances can be found at https://github.com/CTU-IIG/
EnergyStatesAndCostsSchedulingData.
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https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling
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exact methods for this problem. Our ILP model can solve all the benchmark instances
with up to 190 jobs and 1200 pricing intervals within the time-limit. On the other hand,
state-of-the-art ILP-REF model from the literature scales only up to instances with 60
jobs and 300 intervals. The results for MEDIUM instances are shown in Table 1.

References

1. Aghelinejad, M., Ouazene, Y., Yalaoui, A.: Production scheduling optimisation with machine
state and time-dependent energy costs. Int. J. Prod. Res. 56(16), 5558–5575 (2018). https://
doi.org/10.1080/00207543.2017.1414969

2. Aghelinejad, M., Ouazene, Y., Yalaoui, A.: Complexity analysis of energy-efficient single
machine scheduling problems. Oper. Res. Perspect. 6, 100105 (2019). https://doi.org/10.1016/
j.orp.2019.100105

3. Gahm, C., Denz, F., Dirr, M., Tuma, A.: Energy-efficient scheduling in manufacturing
companies: a review and research framework. Eur. J. Oper. Res. 248(3), 744–757 (2016).
https://doi.org/10.1016/j.ejor.2015.07.017

Table 1. Comparison of upper bound ub, lower bound lb and runtime t onMEDIUM dataset with
the transitions graph having two standby states. Numbers n and h denote the number of jobs and
pricing intervals, respectively. Time-limit is 600 s, and TLR stands for time-limit reached.

MEDIUM+TWOSBY

Instance ILP-REF [1] CP-SPACES ILP-SPACES
n h ub [-] lb [-] t [s] ub [-] lb [-] t [s] ub [-] lb [-] t [s]

30 106 3 815 3 815 29.4 3 815 1 240 TLR 3 815 3 815 1.4
30 129 3 804 3 804 30.7 3 815 1 220 TLR 3 804 3 804 2.3
30 152 3 804 3 804 42.0 3 815 1 210 TLR 3 804 3 804 7.0
30 175 3 804 3 804 61.4 3 815 1 210 TLR 3 804 3 804 9.5
60 254 10 863 10 863 588.1 10 863 4 190 TLR 10 863 10 863 2.0
60 311 10 289 10 087 TLR 10 401 3 860 TLR 10 248 10 248 43.3
60 368 9 917 9 696 TLR 10 104 3 470 TLR 9 917 9 917 82.1
60 426 20 346 9 133 TLR 9 954 3 340 TLR 9 874 9 874 233.9
90 370 17 179 14 818 TLR 15 401 5 900 TLR 15 379 15 379 140.2
90 454 22 808 12 951 TLR 14 973 5 680 TLR 14 923 14 923 138.6
90 538 25 992 11 868 TLR 14 729 5 500 TLR 14 548 14 548 403.8
90 621 29 558 11 406 TLR 14 900 4 620 TLR 14 392 14 392 225.8
Average time
[s]:

412.6 >600 107.5

Average
optimality
gap [%]:

16.02 0.84 0.00

xxii O. Benedikt et al.
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4. Gao, K., Huang, Y., Sadollah, A., Wang, L.: A review of energy-efficient scheduling in
intelligent production systems. Complex Intell. Syst. (2019). https://doi.org/10.1007/s40747-
019-00122-6

5. Shrouf, F., Ordieres-Meré J., García-Sánchez, A., Ortega-Mier, M.: Optimizing the produc-
tion scheduling of a single machine to minimize total energy consumption costs. J. Clean.
Prod.67, 197–207 (2014). https://doi.org/10.1016/j.jclepro.2013.12.024
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Learn to Relax: Integrating 0–1 Integer Linear
Programming with Pseudo-Boolean

Conflict-Driven Search

Jo Devriendt1,3 and Ambros Gleixner2, and Jakob Nordström3,1

1 Lund University, Lund, Sweden
jo.devriendt@cs.lth.se

2 Zuse Institute Berlin, Berlin, Germany
gleixner@zib.de

3 University of Copenhagen, Copenhagen, Denmark
jn@di.ku.dk

Conflict-driven pseudo-Boolean (PB) solvers optimize 0–1 integer linear programs by
generalizing the conflict-driven clause learning (CDCL) paradigm [3, 12, 14] from
SAT solving. Some PB solvers essentially encode the input back to CNF and run
CDCL [8, 13, 15], but another approach, which is our focus in this work, is to extend
the solvers from CNF to reason natively with linear constraints [5, 10, 11, 16]. Such
solvers have the potential to run exponentially faster than CDCL solvers, since the
cutting planes method [6] they use is exponentially stronger than the resolution method
underlying CDCL [4]. In practice, however, PB solvers can sometimes get hopelessly
stuck even in parts of the search space where the linear programming (LP) relaxation
of the residual problem is infeasible [9].

Inspired by mixed integer programming (MIP), we address this problem by
interleaving incremental LP solving with the conflict-driven pseudo-Boolean search.
Our integration is fully dynamic, with the PB and LP solvers communicating contin-
uously during execution. In order to balance resources and avoid that the LP solver
starves the PB solver, LP calls are made with a strict time budget and are terminated as
soon as this budget is exceeded. If the LP solver detects infeasibility, we use Farkas’
lemma to combine existing constraints into a new linear constraint that can serve as the
starting point of pseudo-Boolean conflict analysis. When the LP solver instead finds a
rational solution, we generate Gomory cuts that prune away this solution and tighten
the search space both on the PB and the LP side. The PB solver can also use infor-
mation from the rational solution to direct the search, e.g., by determining how to
assign variables, and we also explore passing constraints learned during conflict
analysis from the PB solver to the LP solver. To the best of our knowledge, this is the
first time techniques from MIP solving such as LP relaxations and cut generation have
been combined with full-blown pseudo-Boolean conflict analysis, which learns new
linear inequalities by operating directly on the linear constraints (rather than applying
resolution on clauses derived from such constraints, as has been done previously in
MIP and constraint programming solvers in, e.g., [1, 7]).



We report on extensive experiments with a combined solver integrating the LP
solver SoPlex [17] (part of the MIP solver SCIP [2]) with the pseudo-Boolean solver
RoundingSat [10]. Although we believe that there is ample room for further
improvements, this hybrid approach already exhibits significantly improved perfor-
mance on a wide range of benchmarks, approaching a “best of two worlds'” scenario
between SAT-style conflict-driven search and MIP-style branch-and-cut.
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As the challenge of scaling traditional transistor-based computing technology contin-
ues to increase, experimental physicists and high-tech companies have begun to
explore radically different computational technologies, such as gate-based quantum
computers, quantum annealers, neuromorphic computers, memristive circuits, and
coherent Ising machines. The goal of all of these technologies is to leverage the
dynamical evolution of a physical system to perform a computation that is challenging
to emulate using traditional computing technology, a notable motivating application
being the simulation of quantum physics. Despite their entirely disparate physical
implementations, optimization of quadratic functions over binary variables has
emerged as a challenging computational task that a wide variety of these hardware
platforms can address. As these technologies mature, it may be possible for this spe-
cialized hardware to rapidly solve challenging combinatorial problems, such as
Max-Cut or Max-Clique. However, at this time, understanding the computational
advantage that these hardware platforms can bring to established optimization algo-
rithms remains an open question. It is unclear if the primary benefit will be dramatically
reduced runtimes due to highly specialized hardware implementations or if the
behavior of the underlying analog computing model will bring intrinsic algorithmic
advantages.

Focusing on quantum annealing, this work provides new insights on the properties
of this computing model and identifies problem structures where it can provide a
computational benefit over a broad range of established solution methods. Through the
careful design of contrived optimization problems, called Corrupted Biased Ferro-
magnets, this work provides new insights into the computational properties of quantum
annealing and suggests that this model has an uncanny ability to avoid local minima
and quickly identify the structure of high-quality solutions. A meticulous comparison
to a variety of algorithms spanning both complete and local search suggest that
quantum annealing's performance on the proposed optimization tasks is unique. This
result provides new insights into the time scales and types of optimization problems
where quantum annealing has the potential to provide notable performance gains over
established optimization algorithms and suggests the development of hybrid algorithms
that combine the best features of quantum annealing and state-of-the-art classical
approaches.
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Abstract. The cyclic hoist scheduling problem (CHSP) is a well-studied opti-
misation problem due to its importance in industry [1]. In its simplest form, the
problem requires one to specify the operation of an industrial hoist which
operates along a linear track above a set of tanks. The hoist must move a fixed,
repeating sequence of items to be processed through the tanks.

When many items are simultaneously in process, the hoist or hoists have to
be available to complete all the moves between items. Moreover, each hoist
must itself travel from the end of the last move that it performed to the start
of the next move. Thus hoist availability is a complex resource constraint. The
challenge is to find a feasible schedule that minimises the cycle time, which is
termed its period. The central disjunctive constraint in the CHSP connects the
period with the temporal decisions about hoists [4].

Despite the wide range of solving techniques applied to the CHSP and its
variants, the models have remained complicated and inflexible, or have failed to
scale up with larger problem instances.

This paper re-examines modelling of the CHSP and proposes a new simple
and flexible constraint programming formulation [3]. We compare current
state-of-the-art solvers on this formulation, and show that modelling in a
high-level constraint language, MiniZinc [2], leads to both a simple, generic
model and to computational results that outperform the state-of-the-art previous
models. We benchmark on standard and new problem instances against results
reported in the literature, using integer programming, constraint programming
and lazy clause generation solvers.

We further demonstrate that combining integer programming and lazy clause
generation, using the multiple cores of modern processors, has potential to
improve over either solving approach alone.
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Abstract. Constraint Satisfaction Problems (CSPs) play a central role
in many applications in Artificial Intelligence and Operations Research.
In general, solving CSPs is NP-complete. The structure of CSPs is best
described by hypergraphs. Therefore, various forms of hypergraph decom-
positions have been proposed in the literature to identify tractable frag-
ments of CSPs. However, also the computation of a concrete hypergraph
decomposition is a challenging task in itself. In this paper, we report
on recent progress in the study of hypergraph decompositions and we
outline several directions for future research.

1 Introduction

Constraint Satisfaction Problems (CSPs) are arguably among the most impor-
tant problems in Artificial Intelligence with a wide range of applications
including diagnosis, planning, natural language processing, machine learning,
etc. [10,21,47,48,53,54]. CSPs provide convenient means to formulate combina-
torial problems and are, therefore, also used in many applications in Operations
Research spanning scheduling [22,39,45], vehicle routing [9,41,51], all kinds of
graph problems such as colouring, matching, and many other areas [12,15,48].

Formally, solving a CSP comes down to model-checking of a first-order for-
mula, where the formula only uses the connectives ∃,∧ but not ∀,∨,¬. In this
sense, solving CSPs is the equivalent problem to answering Conjunctive Queries
(CQs) – one of the most fundamental kinds of queries in the database world,
which essentially corresponds to (unnested) SELECT-FROM-WHERE queries
in the popular database query language SQL or Basic Graph Patterns (BGPs) in

This work was supported by the Austrian Science Fund (FWF): P30930-N35 in the
context of the project “HyperTrac”. Georg Gottlob is a Royal Society Research Professor
and acknowledges support by the Royal Society for the present work in the context
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Longo’s work was also supported by the FWF project W1255-N23.
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the Semantic Web query language SPARQL. The underlying structure of these
problems is best captured by a hypergraph. A hypergraph H = (V,E) consists
of a set V of vertices and a set E of edges with E ⊆ 2V . An FO-formula φ
representing a CSP or CQ gives rise to the hypergraph H = (V,E), where V
contains the set of variables of φ and E contains a set e of variables as an edge
if and only if there is an atom in φ whose variables are precisely the ones in e.

Solving CSPs and answering CQs are classical NP-complete problems [13].
Therefore, there is a long history of research on finding tractable fragments
of these problems. A natural approach to this task is to search for struc-
tural properties of the underlying hypergraph which ensure tractability of CSP
solving and CQ answering. A key result in this area is that CSP instances
whose underlying hypergraph is acyclic can be solved in polynomial time [55].
Several generalisations of acyclicity have been identified by defining various
forms of hypergraph decompositions, each associated with a specific notion of
width [14,27]. Intuitively, the width measures how far away a hypergraph is
from being acyclic, with a width of 1 describing the acyclic hypergraphs. The
most important forms of decompositions are hypertree decompositions (HDs)
[28], generalized hypertree decompositions (GHDs) [28], and fractional hypertree
decompositions (FHDs) [32]. These decomposition methods give rise to the fol-
lowing notions of width of a hypergraph H: the hypertree width hw(H), gen-
eralized hypertree width ghw(H), and fractional hypertree width fhw(H), where
fhw(H) ≤ ghw(H) ≤ hw(H) holds for every hypergraph H. For definitions, see
Sect. 2.

The use of decompositions can significantly speed up CSP solving and CQ
answering. In fact, in [1], a speed-up of up to a factor of 2,500 was reported for the
CQs studied there. Structural decompositions are therefore already being used
in commercial products and research prototypes, both in the CSP area as well
as in database systems [1,3,4,33,40]. However, deciding if a given hypergraph H
has width ≤ k for given k (for one of the width-notions mentioned above) is itself
a challenging task. Formally, for a given width-notion width and a desired value
k of the width, we are thus confronted with the following family of problems:

Check(width, k)
Instance: A hypergraph H.
Question: Is width(H) ≤ k?

We are also interested in the functional counterpart of these problems where, in
case of a “yes”-answer, a witnessing decomposition of width ≤ k should be output
as well. However, all decision procedures recalled in this paper also compute an
explicit witness and so there is little need to distinguish between the decision
variant and function variant of this family of problems.

The Check(hw , k) problem is decidable in polynomial time for any fixed k
[28]. In contrast, Check(ghw , k) and Check(fhw , k) are NP-hard already for
k = 2 [20,29]. Nevertheless, since ghw and fhw are in general smaller than hw ,
using GHDs and FHDs allows, in theory, for even more efficient algorithms for
solving CSPs and answering CQs than using HDs. This is due to the fact that
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CSP and CQ algorithms using decompositions have a runtime which is exponen-
tial in the width. Hence, a smaller width may ultimately pay off even if the search
for a GHD or FHD is harder than for an HD. In light of the hardness result,
the search for islands of tractability for Check(ghw , k) and Check(fhw , k) has,
therefore, evolved as an important research goal. In total, we see the following
three main research directions to further increase the applicability of decompo-
sition techniques to CSP solving in AI- and OR-applications:

– Complexity Analysis. We need to identify restrictions on hypergraphs that
guarantee the tractability of the Check(ghw , k) and Check(fhw , k) problems
for fixed k ≥ 1. Such restrictions should fulfill two main criteria: (i) they need
to be realistic in the sense that they apply to a large number of CSPs and/or
CQs in real-life applications, and (ii) they need to be non-trivial in the sense
that the restriction itself does not already imply bounded ghw or fhw . Trivial
restrictions would be, e.g., bounded treewidth or acyclicity.

– Algorithm Design. The main motivation for identifying tractable fragments is
to lay the foundation for algorithms which perform well on problem instances
that fall into these fragments. Consequently, there have been several differ-
ent approaches to the algorithm design for the Check problem, including
a top-down construction of the decomposition (as proposed in the original
paper on HDs [28]), a parallel approach to constructing a decomposition, and
reductions to other problems such as SMT. In addition, preprocessing in the
form of simplifications of a given hypergraph plays an important role.

– From Theory to Practice. To make sure that the decomposition algorithms
work well in practice, extensive empirical evaluation is necessary. Above all, a
good understanding of the hypergraphs occurring in real-world applications
is required. Of course, in the real world, we do not encounter hypegraphs
as such but CSPs and database queries with some underlying hypergraph
structure. Especially for database queries (to a lesser extent also for CSPs)
it has turned out that extracting these hypergraph structures is a non-trivial
task by itself, since the CQs are somehow “hidden” behind the syntax of real-
world SQL or SPARQL queries. In this paper, we report on the challenges
encountered when setting up a hypergraph benchmark, that has already been
used for several validation tasks and in competitions.

The paper is organized as follows: in Sect. 2, we recall some basic notions
and results. Sections 3–5 are then devoted to a report on recent developments
in the three main research areas mentioned above, i.e., “complexity analysis”,
“algorithm design”, and “from theory to practice”. In Sect. 6, we briefly summarize
the current state of affairs and outline promising directions for future research.

2 Preliminaries

We have already introduced in Sect. 1 hypergraphs as pairs (V,E) consisting
of a set V of vertices and a set E of edges. It is convenient to assume that V
contains no isolated vertices (i.e., vertices not contained in any edge). We can
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then identify a hypergraph H with its edge set E and implicitly assume V =
⋃

E.
A subhypergraph H ′ = (V ′, E′) of H is then simply obtained by taking a subset
E′ of E and setting V ′ =

⋃
E′. The primal graph G = (W,F ) of a hypergraph

H = (V,E) is obtained by setting W = V and defining F such that two vertices
form an edge in G if and only if they occur jointly in some edge in E.

We are interested in the following structural properties of hypergraphs: the
rank of H is the maximum cardinality of the edges of H; the degree of H refers
to the maximum number of edges containing a particular vertex. A class C of
hypergraphs is said to have bounded rank (or bounded degree) if there exists a
constant c such that every hypergraph in C has rank (or degree) ≤ c. In [26],
the notion of (c, d)-hypergraphs for integers c ≥ 1 and d ≥ 0 was introduced:
H = (V,E) is a (c, d)-hypergraph if the intersection of any c distinct edges in
E has at most d elements, i.e., for every subset E′ ⊆ E with |E′| = c, we
have |⋂ E′| ≤ d. A class C of hypergraphs is said to satisfy the bounded multi-
intersection property (BMIP) [20], if there exist c ≥ 1 and d ≥ 0, such that every
H in C is a (c, d)-hypergraph. As a special case studied in [19,20], a class C of
hypergraphs is said to satisfy the bounded intersection property (BIP), if there
exists d ≥ 0, such that every H in C is a (2, d)-hypergraph.

For the definition of hypergraph decompositions and their widths, we need
the following notions: edge weight functions are of the form γ : E → [0, 1]. We
define B(γ) = {v ∈ V | ∑

e∈E,v∈e γ(e) ≥ 1} as the set of all vertices covered by
γ and weight(γ) =

∑
e∈E γ(e) as the weight of γ. The set of edges with non-zero

weight is called the support of γ, i.e., supp(γ) = {e ∈ E | γ(e) > 0}. We call γ
a fractional edge cover of a set X ⊆ V by edges in E, if X ⊆ B(γ). For X ⊆ V ,
we write ρ∗

H(X) to denote the minimum weight over all fractional edge covers of
X. For integral edge covers, the edge weight functions are restricted to integral
values, i.e., γ : E → {0, 1}. We write ρH(X) to denote the minimum weight over
all integral edge covers of X. Clearly, ρ∗

H(X) ≤ ρH(X) holds for any H = (V,E)
and X ⊆ V . The ratio ρH(V )/ρ∗

H(V ) is referred to as the integrality gap.
A tuple (T, (Bu)u∈T ) is a tree decomposition (TD) of hypergraph H = (V,E),

if T is a tree, every Bu is a subset of V , and the following conditions are satisfied:

(1) For every edge e ∈ E, there is a node u in T , such that e ⊆ Bu, and
(2) for every vertex v ∈ V , {u ∈ T | v ∈ Bu} is connected in T .

The vertex sets Bu are usually referred to as the bags of the TD. Note that, by
slight abuse of notation, we write u ∈ T to express that u is a node in T .

A fractional hypertree decomposition (FHD) of a hypergraph H = (V,E) is
a tuple 〈T, (Bu)u∈T , (γu)u∈T 〉, such that 〈T, (Bu)u∈T 〉 is a TD of H and the
following condition holds:

(3) For each u ∈ T , Bu ⊆ B(γu) holds, i.e., γu is a fractional edge cover of Bu.

A generalized hypertree decomposition (GHD) is an FHD, where γu is an integral
edge weight function for every u ∈ T . Hence, by condition (3), γu is an integral
edge cover of Bu. A hypertree decomposition (HD) of H is a GHD with the
following additional condition (referred to as the “special condition” in [28]):
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(4) For each u ∈ T , V (Tu)∩ B(γu) ⊆ Bu, where V (Tu) denotes the union of all
bags in the subtree of T rooted at u.

Because of condition (4), it is important to consider T as a rooted tree in case
of HDs. For TDs, FHDs, and GHDs, the root of T can be arbitrarily chosen
or simply ignored. The width of an FHD, GHD, or HD is defined as the maxi-
mum weight of the functions γu over all nodes u ∈ T . The fractional hypertree
width, generalized hypertree width, and hypertree width of H (denoted fhw(H),
ghw(H), and hw(H)) is the minimum width over all FHDs, GHDs, and HDs of H.

We next recall some notions which are of great importance in most of the
current decomposition algorithms. Consider a hypergraph H = (V,E) and let
S ⊆ V . A set C of vertices with C ⊆ (V \ S) is [S]-connected if for any two
distinct vertices v, w ∈ C, there exists a sequence of vertices v = v0, . . . , vh = w
and a sequence of edges e0, . . . , eh−1 (h ≥ 0) such that {vi, vi+1} ⊆ (ei \ S), for
each i ∈ {0, . . . , h − 1}. A set C ⊆ V is an [S]-component , if C is maximal [S]-
connected. Such a vertex set S that is used to split a hypergraph into components
is referred to as a separator. Note that a separator S also gives rise to disjoint
subsets of E with EC := {e ∈ E | e ∩ C �= ∅}. The size of an [S]-component C
is defined as the number of edges in EC . We call S a balanced separator if all [S]-
components of H have size ≤ |E|

2 . We say that a TD (T, (Bu)u∈T ) (analogously
for FHD, GHD, or HD) is in normal form if every internal node u of T satisfies
the following condition: let u1, . . . , u� be the child nodes of u. Then, for each
i ∈ {1, . . . , �}, there is a [Bu]-component Ci of H with Ci = V (Tui

) \ Bu, where
V (Tui

) denotes the union of all bags in the subtree of T rooted at ui.

3 On the Complexity of Checking Widths

The search for tractable fragments of Check(ghw , k) and Check(fhw , k) has
seen significant progress in recent years. Where there were individual proofs
for various properties at first, we now have an overarching theoretical framework
and tractability results for highly general properties that unify the current theory
of tractable Check fragments. In this section we give a brief overview of this
uniform theory and the resulting tractable classes for Check. The presentation
here follows [26] which is the source of all stated results.

The BMIP will play an important role in our discussion. On the one hand,
the structure of edge intersections has been identified as an important factor in
the complexity of the problem. On the other hand, it can be argued that real-
world problems correspond to (c, d)-hypergraphs with low c and d. An empirical
study of these parameters in real-world instances is presented later in Sect. 5.

3.1 Decompositions from Candidate Bags

In hypertree decompositions, the special condition implies a kind of lower bound
on the bags of the decomposition in the sense that certain vertices need to be
included in certain bags. With the generalization to ghw and fhw the special
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condition is dropped and we lose the lower bound. This then leaves us with
exponentially many possible choices, even in trivial hypergraphs: e.g., every sub-
set of an edge is a possible bag. We will see soon that this exponential number
of possible bags is in fact the main challenge in the construction of polynomial
time algorithms for width checking.

To illustrate this point we consider the computational complexity of con-
structing a tree decomposition from a set of candidate bags which is given to the
procedure as an input. Through rather straightforward dynamic programming
this is indeed possible in polynomial time.

Theorem 1. Let H = (V,E) be a hypergraph and S ⊆ 2V . There exists an
algorithm that takes H and S as an input and decides in polynomial time whether
there exists a tree decomposition in normal form such that for every node u it
holds that Bu ∈ S.

Interestingly, the restriction to normal form decompositions is necessary here.
Without it the problem is in fact NP-complete [26].

We call such a tree decomposition where each bag is from S, a candidate
tree decomposition (w.r.t. S). Theorem 1 thus reduces the check problem to the
problem of computing a set of candidate bags S for hypergraph H such that
there exists a candidate tree decomposition w.r.t. S if and only if ghw(H) ≤ k.
The following example illustrates this idea.

Example 1. Let k and r be constant integers and let H = (V,E) be a hypergraph
with rank at most r. Let S ⊆ 2V be the set of all subsets of unions of k edges,
i.e.,

S =
⋃

E′∈Ek

2
⋃

E′

where Ek contains all k element subsets of E. Since there are
(|E|

k

) ≤ |E|k
combinations of k edges and each edge has rank at most r we see that S can be
computed in time O(|E|k2kr). Clearly, S contains all bags that can be covered
by k edges. It is then easy to see that there exists a candidate tree decomposition
w.r.t. S if and only if ghw(H) ≤ k.

Thus, computing S and then using Theorem 1 gives us a polynomial time
procedure for Check(ghw , k) for hypergraph classes with bounded rank.

Note that it is enough to consider only tree decompositions in Theorem 1.
In our setting it is always possible to find the respective covers of bags, if they
exist, in polynomial time (recall that k is considered constant).

3.2 Computing Candidate Bags

Example 1 illustrates the way we can use candidate bags for tractability results.
However, the problem becomes much more complex as soon as we abandon
bounded rank since we can no longer enumerate all (exponentially many) bags.
The problem thus shifts to constructing appropriate sets of candidate bags.
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This splitting of the problem into constructing candidate tree decompositions
and computing lists of candidate bags then becomes very convenient. It separates
the algorithmic considerations for constructing a decomposition from the com-
binatorial problem of limiting the number of bags. Proving both separately is
significantly simpler than doing both at the same time.

Hence, for a polynomial size list of candidate bags we need to consider a
more limited set of decompositions. In particular, we focus only on bag-maximal
GHDs in which every bag is made as large as possible. Bag-maximal GHDs have
two important properties: First, there always exists a bag-maximal GHD of H
with width ghw(H). Second, for every edge e and node u in the decomposition
we can characterize e ∩ Bu (assuming it is not empty) by some covers in the
decomposition in the following way

e ∩ Bu =
�⋂

j=1

e ∩ B(γuj
)

where (u1, . . . , u�) is the path from u to the node u� in which e is covered
completely, i.e., e ⊆ Bu�

.
However, the length of such paths cannot be bounded in terms of c, d and

k. Instead, we make use of the assumption that we are dealing with a (c, d)-
hypergraph for constant c and d. Intuitively, we distinguish between two cases
based on whether the intersection along the path intersects e with many (≥ c)
distinct edges. If so, the intersection is small (≤ d) and we can compute all
subsets of the intersection. One of them will be e ∩ Bu. In the other case we can
explicitly compute all the intersections of e with up to c edges, which will again
contain e ∩ Bu. A detailed argument can be found in Section 5 of [26].

Theorem 2. Fix constant k ≥ 1. For every hypergraph class C that enjoys the
BMIP the Check(ghw , k) problem is tractable.

We see that Check(ghw , k) is tractable in a wide range of cases. The BMIP
properly generalizes many important hypergraph properties. A hypergraph with
rank r is a (1, r)-hypergraph and a hypergraph with degree δ is a (δ + 1, 0)-
hypergraph. Hence, bounded rank and bounded degree (and bounded intersec-
tion) are all simply special cases of the BMIP.

3.3 One Step Further: Fractional Hypertree Width

The restriction to bounded rank is only one part of what made Example 1 simple.
The other part is that we considered only ghw . With the step to fhw it is no longer
clear of which sets we want to consider the subsets as more than k edges can be
necessary to cover a set of vertices with weight k. In general, the integrality gap
for edge cover in hypergraphs is Θ(log |V |) [44]. This means that we would need
the union of k log |V | edges to cover every set of vertices U with ρ∗(U) ≤ k. If
we follow the naive approach in Example 1, we would thus get a time bound of
O(|E|k log |V |2rk log |V |) which is no longer polynomial.
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We see that for Check(fhw , k) we have an additional challenge, bounding
the support of fractional edge covers with weight at most k. Indeed, in cases
where the support is boundable we can, in a sense, reduce the problem to the
ghw case. This reduction results in Theorem 3 below.

Definition 1. We say an FHD 〈T, (Bu)u∈T , (γu)u∈T 〉 is q-limited if for every
node u in T it holds that |support(γu)| ≤ q. Analogous to fhw(H) we define
fhwq(H) as the minimum width of all q-limited FHDs of H.

Theorem 3. Fix constants q and k. For every hypergraph class C that enjoys
the BMIP the Check(fhwq, k) problem is tractable.

Theorem 3 abstracts away the computation of the tree decomposition and the
computation of the candidate bags. We can show that fhw checking is tractable
for some class C if for each hypergraph H ∈ C there exists a constant q such that
fhwq(H) = fhw(H).

Fig. 1. (2,1)-hypergraphs Hn with large support

However, bounding the support of fractional edge covers is a difficult problem.
Consider the (2, 1)-hypergraphs given in Fig. 1. We have ρ∗(Hn) = 2− 1

n where
the optimal cover assigns weight 1

n to all the edges incident to v0 and 1 − 1
n to

the big edge. That is, the optimal cover has support of size n.
The example demonstrates that it is not possible to bound the support of

the optimal cover, even in (2, 1)-hypergraphs. However, if we were interested in
checking fhw ≤ 2 for such a Hn, we do not necessarily need to consider the
optimal covers but can instead consider slightly heavier covers (still with weight
≤ 2) for which we can bound the support. In this case it is easy as we can always
cover the whole hypergraph with 2 edges that are assigned weight 1.

While the problem is much more complex in general, the main idea stays
the same. One can show that for every cover γ of weight at most k, there exists
another weight assignment ν such that B(γ) ⊆ B(ν), weight(ν) ≤ k, for which
the support can be bounded in terms of k, c, and d if either c ≤ 2 or d = 0. In
consequence we arrive at the following theorem.

Theorem 4. Fix constants q and k. For every hypergraph class C that enjoys
either bounded degree or bounded intersection the Check(fhw , k) problem is
tractable.

Note that Theorem 4 holds also for classes of bounded rank because it is a
special case of bounded intersection.
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4 Hypergraph Decomposition Algorithms and Systems

In this section we give a brief overview on recent developments in the field of
hypergraph decomposition algorithms. We highlight some selected works which
implement decomposition algorithms, i.e., released systems which can produce
decompositions and are therefore advancing the practical ability to use decom-
positions within more complex systems, such as a database management system
or a CSP solver.

4.1 Hypergraph Preprocessing

Since simplifications of the input hypergraph are common across many of the
presented systems and algorithms, we present here an overview of the techniques
so far developed. The common idea is always to reduce the input in such a way
that no valid solutions are lost, thus reducing the effective search space.

Fichte et al. [18] use a number of simplifications, each reducing the size of the
SMT encoding: 1) the removal of edges contained in other edges, 2) splitting H
into its biconnected components, and working on each of them separately (for a
definition of biconnected components we refer to [25]), 3) the removal of vertices
of degree one and 4) the removal of simplicial vertices, defined as vertices whose
neighbourhood in H forms a clique in the primal graph. This is allowed for the
computation of fhw , since the fractional cover number of this clique then forms
a lower bound on the fhw of H. Additional simplifications from the literature
are: 5) the removal of all vertices (bar one) of the same type [30], where a type of
a vertex is the set of all its incident edges and 6) splitting H into its hinges [25].
This is a generalisation of simplification 2). A definition of hinge is found in [25].

4.2 Top-Down Construction

HD Computation. We will briefly recall the basic principles of the DetKDecomp
algorithm from [31], which improves significantly on the first implementation,
called OptKDecomp [43] of the original HD algorithm from [28]. For a fixed k ≥ 1,
DetKDecomp tries to construct an HD of a hypergraph H in a top-down fashion.
Its input is a subhypergraph H ′ (initially the same as H). It produces a new node
u (initially serving as the root), then computes the [Bu]-components C1, . . . , C�.
We define for each component a new hypergraph Hi = (Vi, Ei), where Ei =
{e | e ∩ Ci �= ∅} and Vi =

⋃
Ei. Then DetKDecomp recursively searches for an

HD of width ≤ k for each hypergraph Hi. If this succeeds for each Hi, then
DetKDecomp accepts. If there exists an Hi s.t. no HD of width ≤ k can be found,
then DetKDecomp backtracks and produces a new node u. If all choices for nodes
have been exhausted, it rejects.

Tractable GHD Computation. Novel algorithms for solving the aforemen-
tioned problem of Check(ghw , k) in polynomial time for (2, d)-hypergraphs with
low d are presented in [20]. Based on these results, implementations of these
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algorithms are developed in [19], built on the basis of DetKDecomp (with the
new system aptly named NewDetKDecomp). The source code is publicly available
under https://github.com/TUfischl/newdetkdecomp.

We proceed to sketch out the tractable ghw algorithm used in NewDetKDecomp.
As mentioned in Sect. 3, the main reason for the NP-completeness of the
Check(ghw , k) problem is the exponential number of candidate bags. Follow-
ing the construction from [20], NewDetKDecomp explicitly computes intersections
of up to k edges, and considers these subsets of edges (called subedges in the
sequel) as part of the input. From Theorem 2 it follows that this can be done in
polynomial time for hypergraph classes with the BIP (as it is a special case of
BMIP). Based on when exactly those subedges are added to the currently consid-
ered subhypergraph, two variants were defined, called GlobalBIP and LocalBIP.
We leave out details here and refer readers to [19].

4.3 Parallel Approaches

Balanced Separator Algorithm. Yet another ghw algorithm from [19],
BalSep builds on an observation from [2]: For any hypergraph H with ghw
≤ k, there exists a balanced separator S with ρH(S) ≤ k. This gives rise to an
algorithm which checks for the presence of such separators, and if they cannot be
found, can immediately reject. By definition, a balanced separator reduces the
size of hypergraphs to be considered by at least half. This means that BalSep
has logarithmically bounded recursion depth, compared with the linear recursion
depth of DetKDecomp. This property makes BalSep a promising candidate for a
parallel approach to computing ghw .

Parallel GHD Computation. On the basis of the Balanced Separator algo-
rithm, a parallel algorithm for computing GHDs is presented in [30], as well as
a series of generally applicable algorithmic improvements for computing GHDs.
This system, called BalancedGo, is able to decompose nearly twice as many real-
world CSP instances within a feasible time, when compared to NewDetKDecomp.
Written in the programming language Go [16], BalancedGo is available under
https://github.com/cem-okulmus/BalancedGo. We proceed to detail this paral-
lel approach below.

The following generally applicable improvements are presented in [30]: 1)
While existing algorithms, such as DetKDecomp make use of heuristics consisting
of ordering the edges in such a way as to try out promising separators first, none
of the existing methods proved fruitful for speeding up the search for balanced
separators. A number of heuristics are considered in [30], ultimately settling on
one, which balances out the speed-up of the search against the actual time to
compute the heuristic itself, and 2) the existing implementation of the Balanced
Separator algorithm from [19] proved to be inefficient w.r.t. considering all rele-
vant subsets of a given separator. Reorganising the way subedges are considered,
as well as more effective caching helps to provide significant speed-ups here.

The programming language Go has a model of parallelisation inspired by
Communicating Sequential Processes of Hoare [34]. It is based on light-weight

https://github.com/TUfischl/newdetkdecomp
https://github.com/cem-okulmus/BalancedGo
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threads, called goroutines, which communicate over channels. This model min-
imises, as far as possible, the need for explicit synchronisation. For BalancedGo,
there are two areas of parallelism: the search of balanced separators, and the
recursive calls. Each is implemented via goroutines, in such a manner as to reduce
the need for explicit synchronisation, to enable effective backtracking and utilise
existing CPU resources as best as possible. For details we refer to [30].

Finally, a hybrid algorithm is presented [30], which combines the above men-
tioned parallel Balanced Separator algorithm, with the existing NewDetKDecomp
algorithm (extended to compute ghw as mentioned above): for a constant num-
ber m of recursions, it uses the Balanced Separator algorithm. After recursion
depth m+1 has been reached, it proceeds to use NewDetKDecomp. The Balanced
Separator algorithm is effective at initially reducing the size of instances, but
gets slower as it needs to backtrack more and more often. The NewDetKDecomp
algorithm is very effective at quickly computing HDs for smaller instances, or
rejecting if no HD of sufficiently low width exists. The hybrid approach therefore
combines the best of both worlds.

4.4 Using Established Solvers and Other Approaches

HD and GHD Computation via SMT Encoding. A very different app-
roach to compute hypergraph decompositions is utilised by Fichte et al. [18].
Instead of implementing or designing algorithms to compute decompositions,
the aim is instead to encode the problem into SMT (SAT modulo Theory) with
Linear Arithmetic and then use the SMT solver Z3. From this result a provably
minimum width FHD can then be constructed. This system, called FraSMT, is
available under https://github.com/daajoe/frasmt.

The basis of the aforementioned encoding is an ordering-based characteri-
sation of fhw , similar to the well known elimination ordering for treewidth [7].
As the elimination ordering has already been used successfully for SAT encod-
ings of treewidth [49], it seems natural to investigate a similar approach for
fhw computation. To this end, Fichte et al. define, for a given ordering of the
vertices L = (v1, . . . , vn), an extension of the hypergraph Hi

L, which iteratively
constructs and adds a new edge ei, covering all such vertices vj , where i < j ≤ n
and there exists some edge e in Hi−1

L such that vi, vj ∈ e. The fhw of H w.r.t.
a linear ordering L is then defined as the largest fractional cover number of the
vertices ei ∪ vi, for any vi ∈ L, where only edges in H are considered for the
fractional cover. Fichte et al. then prove that the fhw of H is exactly the same
as the smallest fhw of H w.r.t. to any linear ordering.

The above defined ordering is then translated into a formula F (H,w), where
F (H,w) is true if and only if H has a linear ordering L such that the fhw of H
is ≤ w. For symmetry breaking, Fichte et al. consider the hyperclique (defined
as cliques in the primal graph), with the highest fractional cover number, and
require the vertices of this hyperclique to appear at the end of the ordering, thus
reducing the search space.

An extension of FraSMT, is presented by Schidler and Szeider [50], called
HtdSMT, available under https://github.com/ASchidler/htdsmt. They extend

https://github.com/daajoe/frasmt
https://github.com/ASchidler/htdsmt
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the above defined encoding to SMT in order to express the special condition of
HDs. They won first prize in the PACE 2019 Challenge [17], in the track for the
exact computation of hw of up to 100 instances in less than 30min, beating out
a version of NewDetKDecomp.

Approaches Based on the Enumeration of Potential Maximal Cliques.
Korhonen et al. [37] present a novel approach to compute ghw based on
the Bouchitté-Todinca (BT) algorithm [11], which enumerates so-called poten-
tial maximal cliques(PMC). It is available under https://github.com/Laakeri/
Triangulator. While PMC-based approaches were previously used to define a
number of algorithms for solving treewidth, minimum fill-in width and other
measures, Korhonen et al. are the first to present a practical implementation of
the BT algorithm which computes ghw . Based on their evaluation, it compares
quite favourably to DetKDecomp, despite computing ghw instead of hw .

5 From Theory to Practice

In this section we discuss the problem of evaluating the quality of decomposition
algorithms over real-world instances. Indeed, while the theory of hypergraph
decompositions is well understood and implementations show promising results,
very little was known about the typical instances that these should decompose.
To this end, we focus here on the challenges encountered during the development
of a benchmark that can be used to reduce the gap between theory and practice.

5.1 The Need for Benchmarks

Over the years, the performance evaluation of algorithms and systems tackling
variants of the Check problem has been conducted against provisional datasets.
When DetKDecomp [31] appeared, a collection of CSPs was used to show the
superiority of DetKDecomp w.r.t. OptKDecomp. However, since the dataset lacks
CQs, no assessment of DetKDecomp can be made for usage in databases.

Later on, Scarcello et al. proposed in [23,24] a system for the evaluation
of SQL queries using hypertree decompositions. Although their study showed
promising results, the dataset used to evaluate the system performance consisted
only of a limited set of queries coming from the same source. Thus, the conclusion
cannot be generalized to query answering in general.

These examples highlight the need for a comprehensive, easily extensible,
public benchmark. This could not only be used to evaluate concrete CSP-solving
and database systems, but also to empirically test theoretical properties. Indeed,
if a large part of the instances satisfies a certain property, then it is worth
developing specialized algorithms exploiting the property.

https://github.com/Laakeri/Triangulator
https://github.com/Laakeri/Triangulator
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5.2 HyperBench: Challenges and Results

The desire for collecting hypergraphs and comparing algorithm performances led
to the implementation of HyperBench [19], which is a comprehensive collection
of circa 3000 hypergraphs representing CSPs and CQs. The hypergraphs and the
experimental results are available at http://hyperbench.dbai.tuwien.ac.at.

Collecting Instances. HyperBench altogether contains 3070 hypergraphs
divided into three classes: Application-CSPs, Application-CQs, Random. Table 1
shows, for each class, the number of instances and the number of cyclic hyper-
graphs, i.e., the ones having hw ≥ 2. Out of the 1172 Application-CSPs, 1090
come from XCSP [5] and 82 were used in previous analyses [6,31]. The 535
Application-CQs have been fetched from a variety of sources. In particular, all
the 70 SPARQL queries having hw ≥ 2 from [8] and all the cyclic SQL queries
from SQLShare [35] have been included. The remaining CQs come from different
benchmarks such as the Join Order Benchmark (JOB) [42] and TPC-H [52]. The
Random class contains 863 random CSP instances from [5] and 500 random con-
junctive queries generated with the tool used for [46]. This class has the purpose
of comparing real application instances to synthetic ones.

Table 1. Overview of the classes of instances contained in HyperBench [19].

Class Num. instances hw ≥ 2

Application-CSPs 1172 1172
Application-CQs 535 81
Random 1363 1327
Total 3070 2580

Obtaining the Hypergraphs. Collecting CSPs and CQs is only a preliminary
step in building a benchmark. The very next task is the translation of instances
into a uniform hypergraph format. The details of this phase depend on the
language in which the instances are written, thus, here, we briefly go over the
translation of two specific sets of instances: the CSPs from [5] and the SQL
queries from [35]. While the translation of the first set did not pose any particular
challenge, the second one turned out to be rather difficult.

The CSPs fetched from XCSP are encoded in well-structured XML files in
which variables and constraints are defined explicitly. Moreover, an extensive
library for parsing the instances, in which most of the process is automatized, is
available. In this case, it is sufficient to redefine the behaviour of some callback
methods so that, whenever the program reads a variable, it adds a vertex to the
hypergraph, and, whenever it reads a constraint, it adds an edge containing the
vertices corresponding to the variables affected by the constraint.

http://hyperbench.dbai.tuwien.ac.at
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Given its multifaceted nature, the SQLShare dataset poses numerous chal-
lenges for the translation of the queries into hypergraphs. Since it is a collection
of databases and handwritten queries by different authors, the original format
is highly irregular and requires several refinement phases. Some of them follow:

1. Cleaning the queries from trivial errors that impede parsing.
2. Extracting table definitions from the databases.
3. Inferring the definition of undefined tables from the queries.
4. Resolving ambiguities in the queries semantics, e.g., choosing one definition

for the tables that appear with the same name in different databases.
5. Extracting conjunctive query cores from a complex SQL query, i.e., given a

single query, producing a collection of simpler conjunctive queries that can
be used to compute the result of the original query.

Particular attention has been devoted to views. Indeed, a query that uses
views must be expanded first and only afterwards should be translated. In this
way, the resulting hypergraph will accurately reflect the query structure.

Experiments. We report on some experiments carried out using HyperBench.
The results reveal a comprehensive picture of the hypergraph characteristics of
the collection. We present aggregate results for the classes in Table 1.

For sake of uniformity, we adapt the terminology of [19] to the one of Sect. 3. A
hypergraph H has degree bounded by δ if and only if H is a (δ+1, 0)-hypergraph.
We say H has c-multi-intersection size d if H is a (c, d)-hypergraph. In the special
case of c = 2, we talk of intersection size of H. If we do not have in mind any
particular c, we simply speak of multi-intersection size of H.

Table 2. Percentage of (c, d)-hypergraphs with degree ≤ 5 and c-multi-intersection
size ≤ 5, for c ∈ {2, 3, 4}. (6,0)-hypergraphs are the ones with degree at most 5 [19].

Class (6, 0)-hgs (%) (2, 5)-hgs (%) (3, 5)-hgs (%) (4, 5)-hgs (%)

Application-CSPs 53.67 99.91 100 100
Application-CQs 81.68 100 100 100
Random 10.12 76.82 90.17 93.62
Total 39.22 89.67 95.64 97.17

One of the goals of [19] was to find out whether low (multi-)intersection size is
a realistic and non-trivial property. For the purposes of the study, the value d = 5
has been identified as a threshold separating low values from high values. Table 2
shows the percentage of instances having low degree and low c-multi-intersection
size, for c ∈ {2, 3, 4}. It can be seen that for each class the amount of instances
with low (multi-)intersection is greater than the ones having low degree. Also,
the (multi-)intersection size tends to be (very) small for both CSPs and CQs
taken from applications, while it is still reasonably small for random instances.
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An additional correlation study between the hypergraph properties establishes
that there is no correlation between (multi-)intersection size and hw , thus low
(multi-)intersection size does not imply low hw .

After the analysis of structural properties, lower and upper bounds for hw
have been computed for the whole dataset. For these experiments a timeout of 1 h
was set. The results are summarized in Table 3. It has been determined that 694
of all 1172 Application-CSPs (59.22%) have hw ≤ 5 and, surprisingly, hw ≤ 3 for
all Application-CQs. In total, considering also random instances, 1849 (60.23%)
out of 3070 instances have hw ≤ 5. For 1778 of them, the bound on hw is tight,
while for the others the actual value of hw could be even less. To conclude, for
the vast majority of CSPs and CQs (in particular those from applications), hw
is small enough to allow for efficient CSP solving or CQ answering, respectively.

Table 3. Number and percentage of instances having hw ≤ 5 [19].

Class hw ≤ 5 Total %

Application-CSPs 694 1172 59.22
Application-CQs 535 535 100
Random 620 1363 45.49
Total 1849 3070 60.23

As computing ghw is more expensive, the algorithms ran on the hyper-
graphs with small width. Thus, for all the hypergraphs having hw ≤ k with
k ∈ {3, 4, 5, 6}, the check ghw ≤ k − 1 has been performed. If the algorithm
did not timeout and gave either a yes or no answer, we say the instance is
solved. Though it is known that, for each hypergraph H, hw(H) ≤ 3 ·ghw(H)+1
holds [2], surprisingly it turns out that 98% of the solved instances, which form
57% of all instances, have identical values of hw and ghw .

5.3 Further Uses of HyperBench

Since its publication, HyperBench has been used in several ways in the world
of decomposition techniques. As already discussed, the restrictions defining
tractable fragments of variants of the Check problem presented in Sect. 3 have
been already investigated in [19]. Moreover, it has been used to gain an under-
standing of the differences between hw and ghw in real-world CSPs and CQs.

In [36], the edge clique cover size of a graph is identified as a parameter
allowing fixed-parameter-tractable algorithms for enumerating potential maxi-
mal cliques. The latter can be used to compute exact ghw and fhw . An edge
clique cover of a graph is a set of cliques of the graph that covers all of its edges.
In case of a CSP with n variables and m constraints, the set of constraints is
an edge clique cover of the underlying (hyper)graph. Thus, this property can be
exploited for CSPs having n > m and HyperBench has been used to verify that
it happens in circa 23% of the instances.
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HyperBench has also been used in the PACE 2019 Challenge [17] to compare
the performance of several HD solvers. The challenge dedicated two tracks to
HDs: in the exact track, the participants had to compute hw(H) for as many
hypergraphs as possible, while in the heuristic track, the task was to compute a
decomposition with low hw in short time.

6 Conclusion and Future Work

In this paper, we have reported on recent progress in the research on hyper-
graph decompositions. This progress has several facets: we now have a fairly
good understanding of the complexity of constructing various kinds of decompo-
sitions. In particular, we have seen several structural restrictions on hypergraphs
which make the Check(ghw , k) and Check(fhw , k) problems tractable, such as
low rank, low degree, small intersection and, in case of ghw , also small multi-
intersection. On the algorithmic side, several different approaches have been
proposed for the computation of concrete hypergraph decompositions – either
for some desired upper bound k on the width or with minimum width. The
main categories of these decomposition algorithms are the “classical” top-down
construction of a decomposition (as suggested in [28]), a parallel approach, and
the reduction to other problems such as SMT. Finally, we have recalled the work
on the HyperBench benchmark, which has already been used for the empirical
evaluation of several implementations of decomposition algorithms and which
has also allowed us to get a realistic picture as to which structural properties
the hypergraphs underlying CSPs and CQs in practice typically have.

There are several promising directions of future research in this area. As
mentioned in Sect. 1, decomposition techniques have already been introduced
into research prototypes and first commercial products. Our aspiration is to
see decomposition techniques incorporated more widely also into mainstream
systems – both in the CSP world and in the database world. Another kind of
system where decomposition techniques may have a lot of potential are integer
programming solvers. Indeed, integer programs are readily modelled as hyper-
graphs whose vertices correspond to the variables in the integer program and
the non-zero entries in each row are represented by an edge. The application of
hypergraph decompositions, in particular, to sparse integer programs seems very
promising to us. The topic has been touched on in [38] but a deeper investiga-
tion is missing to date. Another important direction for future work is to study
the dynamics of decompositions when the corresponding CSP or CQ is slightly
modified. In such a case, does the entire decomposition have to be re-computed
from scratch or can it be obtained from the “old” one via suitable modifications?

References

1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: EmptyHeaded: a relational engine for
graph processing. In: Proceedings of SIGMOD 2016, pp. 431–446 (2016)



The HyperTrac Project on Hypergraph Decompositions 19

2. Adler, I., Gottlob, G., Grohe, M.: Hypertree width and related hypergraph invari-
ants. Eur. J. Comb. 28(8), 2167–2181 (2007)

3. Amroun, K., Habbas, Z., Aggoune-Mtalaa, W.: A compressed generalized hyper-
tree decomposition-based solving technique for non-binary constraint satisfaction
problems. AI Commun. 29(2), 371–392 (2016)

4. Aref, M., et al.: Design and implementation of the LogicBlox system. In: Proceed-
ings of SIGMOD 2015, pp. 1371–1382 (2015)

5. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an XML-based
format designed to represent combinatorial constrained problems (2016). http://
www.xcsp.org/

6. Berg, J., Lodha, N., Järvisalo, M., Szeider, S.: Maxsat benchmarks based on deter-
mining generalized hypertree-width. In: MaxSAT Evaluation 2017: Solver and
Benchmark Descriptions, vol. B-2017-2, p. 22 (2017)

7. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4_1

8. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. VLDB J. 29, 655–679 (2019). https://doi.org/10.1007/s00778-019-00558-9

9. Booth, K.E.C., Beck, J.C.: A constraint programming approach to electric vehicle
routing with time windows. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019.
LNCS, vol. 11494, pp. 129–145. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19212-9_9

10. Booth, K.E.C., Tran, T.T., Nejat, G., Beck, J.C.: Mixed-integer and constraint
programming techniques for mobile robot task planning. IEEE Robot. Autom. Lett.
1(1), 500–507 (2016)

11. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. Comput. 31(1), 212–232 (2001)

12. Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: algo-
rithms and applications. Eur. J. Oper. Res. 119(3), 557–581 (1999)

13. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proceedings of STOC 1977, pp. 77–90. ACM (1977)

14. Cohen, D.A., Jeavons, P., Gyssens, M.: A unified theory of structural tractability
for constraint satisfaction problems. J. Comput. Syst. Sci. 74(5), 721–743 (2008)

15. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2003)

16. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language. Addison-
Wesley Professional, Boston (2015)

17. Dzulfikar, M.A., Fichte, J.K., Hecher, M.: The PACE 2019 parameterized algo-
rithms and computational experiments challenge: the fourth iteration. In: Proceed-
ings of IPEC 2019, Leibniz International Proceedings in Informatics (LIPIcs), vol.
148, pp. 25:1–25:23. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019)

18. Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: An SMT approach to fractional
hypertree width. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 109–127.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_8

19. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: HyperBench: a benchmark and
tool for hypergraphs and empirical findings. In: Proceedings of PODS 2019, pp.
464–480. ACM (2019)

20. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decomposi-
tions: hard and easy cases. In: Proceedings of PODS 2018, pp. 17–32. ACM (2018)

http://www.xcsp.org/
http://www.xcsp.org/
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/978-3-030-19212-9_9
https://doi.org/10.1007/978-3-030-19212-9_9
https://doi.org/10.1007/978-3-319-98334-9_8


20 G. Gottlob et al.

21. Gange, G., Harabor, D., Stuckey, P.J.: Lazy CBS: implicit conflict-based search
using lazy clause generation. In: Proceedings of ICAPS 2019, pp. 155–162. AAAI
Press (2019)

22. Geibinger, T., Mischek, F., Musliu, N.: Investigating constraint programming for
real world industrial test laboratory scheduling. In: Rousseau, L.-M., Stergiou,
K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 304–319. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19212-9_20

23. Ghionna, L., Granata, L., Greco, G., Scarcello, F.: Hypertree decompositions for
query optimization. In: Proceedings of ICDE 2007, pp. 36–45. IEEE Computer
Society (2007)

24. Ghionna, L., Greco, G., Scarcello, F.: H-DB: a hybrid quantitative-structural SQL
optimizer. In: Proceedings of CIKM 2011, pp. 2573–2576. ACM (2011)

25. Gottlob, G., Hutle, M., Wotawa, F.: Combining hypertree, bicomp, and hinge
decomposition. In: Proceedings of ECAI 2002, pp. 161–165. IOS Press (2002)

26. Gottlob, G., Lanzinger, M., Pichler, R., Razgon, I.: Complexity analysis of gen-
eralized and fractional hypertree decompositions. CoRR abs/2002.05239 (2020).
https://arxiv.org/abs/2002.05239

27. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artif. Intell. 124(2), 243–282 (2000)

28. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

29. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-
hardness and tractable variants. J. ACM 56(6), 30:1–30:32 (2009)

30. Gottlob, G., Okulmus, C., Pichler, R.: Fast and parallel decomposition of con-
straints satisfaction problems. In: Proceedings of IJCAI 2020, pp. 1155–1162 (2020)

31. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposi-
tion. ACM J. Expe. Algorithmics 13 (2008)

32. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans.
Algorithms 11(1), 4:1–4:20 (2014)

33. Habbas, Z., Amroun, K., Singer, D.: A forward-checking algorithm based on a
generalised hypertree decomposition for solving non-binary constraint satisfaction
problems. J. Exp. Theor. Artif. Intell. 27(5), 649–671 (2015)

34. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

35. Jain, S., Moritz, D., Halperin, D., Howe, B., Lazowska, E.: SQLShare: results from
a multi-year SQL-as-a-service experiment. In: Proceedings of SIGMOD 2016, pp.
281–293. ACM (2016)

36. Korhonen, T.: Potential maximal cliques parameterized by edge clique cover. CoRR
abs/1912.10989 (2019). https://arxiv.org/abs/1912.10989

37. Korhonen, T., Berg, J., Järvisalo, M.: Solving graph problems via potential maxi-
mal cliques: an experimental evaluation of the Bouchitté-Todinca algorithm. ACM
J. Exp. Algorithmics 24(1), 1.9:1–1.9:19 (2019)

38. Korimort, T.: Heuristic hypertree decomposition. Ph.D. thesis, Vienna University
of Technology (2003)

39. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling
- 20+ years of scheduling with constraints at IBM/ILOG. Constraints Int. J. 23(2),
210–250 (2018)

40. Lalou, M., Habbas, Z., Amroun, K.: Solving hypertree structured CSP: sequential
and parallel approaches. In: Proceedings of RCRA@AI*IA 2009, CEUR Workshop
Proceedings, vol. 589 (2009). CEUR-WS.org

https://doi.org/10.1007/978-3-030-19212-9_20
https://arxiv.org/abs/2002.05239
https://arxiv.org/abs/1912.10989


The HyperTrac Project on Hypergraph Decompositions 21

41. Lam, E., Hentenryck, P.V., Kilby, P.: Joint vehicle and crew routing and scheduling.
Transp. Sci. 54(2), 488–511 (2020)

42. Leis, V., et al.: Query optimization through the looking glass, and what we found
running the join order benchmark. VLDB J. 27(5), 643–668 (2018)

43. Leone, N., Mazzitelli, A., Scarcello, F.: Cost-based query decompositions. In: Pro-
ceedings of SEBD 2002, pp. 390–403 (2002)

44. Lovász, L.: On the ratio of optimal integral and fractional covers. Discret. Math.
13(4), 383–390 (1975)

45. Musliu, N., Schutt, A., Stuckey, P.J.: Solver independent rotating workforce
scheduling. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 429–
445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_31

46. Pottinger, R., Halevy, A.Y.: Minicon: a scalable algorithm for answering
queries using views. VLDB J. 10(2–3), 182–198 (2001). https://doi.org/10.1007/
s007780100048

47. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and
machine learning. In: Proceedings of AAAI 2010. AAAI Press (2010)

48. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

49. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02777-2_6

50. Schidler, A., Szeider, S.: Computing optimal hypertree decompositions. In: Pro-
ceedings of ALENEX 2020, pp. 1–11. SIAM (2020)

51. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

52. Transaction Processing Performance Council (TPC): TPC-H decision support
benchmark (2014). http://www.tpc.org/tpch/default.asp

53. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press Limited, Cam-
bridge (1993)

54. Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., Schaus, P.: Learning opti-
mal decision trees using constraint programming. In: Proceedings of BNAIC 2019.
CEUR Workshop Proceedings, vol. 2491(2019). CEUR-WS.org

55. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proceedings of VLDB
1981, pp. 82–94 (1981)

https://doi.org/10.1007/978-3-319-93031-2_31
https://doi.org/10.1007/s007780100048
https://doi.org/10.1007/s007780100048
https://doi.org/10.1007/978-3-642-02777-2_6
https://doi.org/10.1007/978-3-642-02777-2_6
https://doi.org/10.1007/3-540-49481-2_30
http://www.tpc.org/tpch/default.asp


Restarting Algorithms: Sometimes There
Is Free Lunch

Sebastian Pokutta1,2(B)

1 Technische Universität Berlin, Berlin, Germany
pokutta@zib.de

2 Zuse Institute Berlin, Berlin, Germany

Abstract. In this overview article we will consider the deliberate
restarting of algorithms, a meta technique, in order to improve the algo-
rithm’s performance, e.g., convergence rates or approximation guaran-
tees. One of the major advantages is that restarts are relatively black
box, not requiring any (significant) changes to the base algorithm that is
restarted or the underlying argument, while leading to potentially signif-
icant improvements, e.g., from sublinear to linear rates of convergence.
Restarts are widely used in different fields and have become a powerful
tool to leverage additional information that has not been directly incor-
porated in the base algorithm or argument. We will review restarts in
various settings from continuous optimization, discrete optimization, and
submodular function maximization where they have delivered impressive
results.

Keywords: Restarts · Convex optimization · Discrete optimization ·

Submodular optimization

1 Introduction

Restarts are a powerful meta technique to improve the behavior of algorithms.
The basic idea is to deliberately restart some base algorithm, often with changed
input parameters, to speed-up convergence, improve approximation guarantees,
reduce number of calls to expensive subroutines and many more, often leading to
provably better guarantees as well as significantly improved real-world compu-
tational performance. In actuality this comes down to running a given algorithm
with a given set of inputs for some number of iterations, then changing the
input parameters usually as a function of the output, and finally restarting the
algorithm with new input parameters; rinse and repeat.

One appealing aspect of restarts is that they are relatively black-box, requir-
ing only little to no knowledge of the to-be-restarted base algorithm except for
the guarantee of the base algorithm that is then amplified by means of restarts.
The reason why restarts often work, i.e., improve the behavior of the base algo-
rithm is that some structural property of the problem under consideration is not
explicitly catered for in the base algorithm, e.g., the base algorithm might work
c© Springer Nature Switzerland AG 2020
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for general convex functions, however the function under consideration might be
strongly convex or sharp. Restarts cater to this additional problem structure and
are in particular useful when we want to incorporate data-dependent parame-
ters. In fact, for several cases of interest the only known way to incorporate
that additional structure is via restarts often pointing out a missing piece in our
understanding.

On the downside, restarts often explicitly depend on parameters arising from
the additional structure under consideration and obtained guarantees are off
by some constant factor or even log factor. The former can be often remedied
with adaptive or scheduled restarts (see e.g., [23,39]) albeit with some minor
cost. This way we can obtain fully adaptive algorithms that adapt to additional
structure without knowing the accompanying parameters explicitly. The latter
shortcoming is inherent to restart scheme as due to their black box nature addi-
tional structural information might not be incorporated perfectly.

Restarts have been widely used in many areas and fields and we will review
some of these applications below to provide context. We would like to stress that
references will be incomplete and biased; please refer also to the references cited
therein.

SAT Solving and Constraint Programming. Restarts are ubiquitous in SAT Solv-
ing and Constraint Programming to, e.g., explore different parts of the search
space. Also after new clauses have been learned, these clauses are often added
back to the formulation and then the solver is restarted. This can lead to dra-
matic overall performance improvements for practical solving; see e.g., [7,25] and
references contained therein.

Global Optimization. Another important area where restarts are used is global
optimization. Often applied to non-convex problems, the hope is that with ran-
domized restarts different local optima can be explored, ideally one of those
being a global one; see e.g., [24] and their references.

Integer Programming. Modern integer programming solvers use restarts in many
different ways, several of which have been inspired by SAT solving and Constraint
Programming. In fact, Integer Programming solvers can be quite competitive
for pseudo-Boolean problems [6]. A relatively recent approach [4] is clairvoy-
ant restarts based on online tree-size estimation that can significantly improve
solving behavior.

Most of the restart techniques mentioned above, while very important, come
without strong guarantees. In this article, we are more interested in cases, where
provably strong guarantees can be obtained that also translate into real-world
computational advantages. In the following, we will restrict the discussion to
three examples from convex optimization, discrete optimization, and submodular
function maximization. However, before we consider those, we would like to
mention a two related areas where restarts have had a great impact not just from
a computational point of view but also to establish new theoretical guarantees,
but that are unfortunately beyond the scope of this overview.
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Variance Reduction via Restarts. Usually when we consider stochastic convex
optimization problems where the function is given as a general expectation and
we would like to use first-order methods for solving the stochastic problem, we
cannot expect a convergence rate better than O(1/

√

t) under usual assumptions,
where t is the number of stochastic gradient evaluations. However, it turns out
that if we consider so-called finite sum problems, a problem class quite common
in machine learning, where the expectation is actually a finite sum and some
mild additional assumptions are satisfied, then we can obtain a linear rate of
convergence by means of variance reduction. This is an exponential improve-
ment in convergence rate. Variance reduction techniques replace the stochastic
gradient which is an unbiased estimator of the true gradient with a different,
lower variance, unbiased estimator that is formed with the help of a reference
point obtained from an earlier iterate. This reference point is then periodically
reset via a restart scheme. Important algorithms here are for example Stochastic
Variance Reduced Gradient Descent (SVRG) [26] and its numerous variants, such
as e.g., the Stochastic Variance Reduced Frank-Wolfe algorithm (SVRFW) [22].

Acceleration in Convex Optimization. Restarts have been heavily used in convex
optimization both for improving convergence behavior via restarts in real-world
computations (see e.g., [37]) but also as part of formal arguments to establish
accelerated convergence rates and design provably faster algorithms. As the lit-
erature is particularly deep, we will sample only a few of those works in the
context of first-order methods here that we are particularly familiar with; we
provide further references in the sections to come. For example restarts have
been used in [1] to provide an alternative explanation of Nesterov’s acceleration
as arising from the coupling mirror descent and gradient descent. In [39] it has
been shown how restarts can be leveraged to obtain improved rates as the sharp-
ness of the function (roughly speaking how fast the function curves around its
minima) increases and these restart schemes have been also successfully carried
over to the conditional gradients case in [27]. Restarts have been also used to
establish dimension-independent local acceleration for conditional gradients [16]
by means of coupling the Away-step Frank-Wolfe algorithm with an accelerated
method. As we will see later in the context of submodular maximization, restarts
can be also used to reduce the number of calls to expensive oracles. This have
been extensively used for lazification of otherwise expensive algorithms in [11,12]
leading to several orders of speed-up in actual computations while maintaining
worst-case guarantees identical to those of the original algorithms and in [28] a
so-called optimal method based on lazification has been derived. Very recently,
in [23] a new adaptive restart scheme has been presented that does not require
any knowledge of otherwise inaccessible parameters and its efficacy for saddle
point problems has been demonstrated.
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Outline

In Sect. 2 we consider restart examples from convex optimization and in Sect. 3
we consider examples from discrete optimization. Finally we consider submodu-
lar function maximization in Sect. 4. We keep technicalities to a bare minimum,
sometimes simplifying arguments for the sake of exposition. We provide refer-
ences though with the full argument, for the interested reader.

2 Smooth Convex Optimization

Our first examples come from smooth convex optimization. As often, the exam-
ples here are (arguably) the cleanest ones. We briefly recall some basic notions:

Definition 1 (Convexity). Let f : Rn
→ R be a differentiable function. Then

f is convex, if for all x, y it holds:

f (y) − f (x) ≥ 〈∇ f (x), y − x〉 .

In particular, all local mimima of f are global minima of f .

Definition 2 (Strong Convexity). Let f : Rn
→ R be a differentiable convex

function. Then f is μ-strongly convex (with μ > 0), if for all x, y it holds:

f (y) − f (x) ≥ 〈∇ f (x), y − x〉 +
μ

2
‖y − x‖2.

Definition 3 (Smoothness). Let f : Rn
→ R be a differentiable function.

Then f is L-smooth (with L > 0), if for all x, y it holds:

f (y) − f (x) ≤ 〈∇ f (x), y − x〉 +
L
2
‖y − x‖2.

In the following let x∗ ∈ X∗ = argmin f (x) denote an optimal solution from
the set of optimal solutions X∗. Choosing x = x∗ and applying the definition of
strong convexity (Definition 2) we immediately obtain:

f (y) − f (x∗) ≥ 〈∇ f (x∗), y − x∗〉 +
μ

2
‖y − x∗‖2 ≥

μ

2
‖y − x∗‖2, (1)

where the last inequality follows from 〈∇ f (x∗), y − x∗〉 ≥ 0 by first-order opti-
mality of x∗ for min f (x), i.e., the primal gap upper bounds the distance to the
optimal solution. This also implies that the optimal solution x∗ is unique.

Smooth Convex to Smooth Strongly Convex: The Basic Case. Let
f : Rn

→ R be an L-smooth convex function. Then using gradient descent,
updating iterates xt according to xt+1 ← xt − 1

L∇ f (xt ), yields the following stan-
dard guarantee, see e.g., [21,29,33,35].
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Proposition 1 (Convergence of gradient descent: smooth convex case).
Let f : Rn

→ R be a smooth convex function and x0 ∈ Rn and x∗ ∈ X∗. Then
gradient descent generates a sequence of iterates satisfying

f (xt ) − f (x∗) ≤
L‖x0 − x∗‖2

t
. (2)

Now suppose we additionally know that the function f is μ-strongly convex.
Usually, we would expect a linear rate of convergence in this case, i.e., to reach
an additive error of ε, we would need at most T ≤

L
μ log f (x0)− f (x

∗

)

ε iterations.
However, rather than reproving the convergence rate (which is quite straightfor-
ward in this case) we want to reuse the guarantee in Proposition 1 as a black
box and the μ-strong convexity of f . We will use the simple restart scheme given
in Algorithm 1: in restart phase � we run a given base algorithm A for a fixed
number of iterations T� on the iterate x�−1 output in the previous iteration:

Algorithm 1. Simple restart scheme
Input: Initial point x0 ∈ Rn, base algorithm A, iteration counts (T�).
Output: Iterates x1, . . . , xK ∈ Rn.
1: for � = 1 to K do
2: x� ← A( f , x�−1,T�) {run base algorithm for T� iterations}
3: end for

A priori, it is unclear whether the restart scheme in Algorithm 1 is doing any-
thing useful, in fact even convergence might not be immediate as we in principle
could undo work that we did in a preceding restart phase. Also note that when
restarting vanilla gradient descent with a fixed step size of 1

L as we do here the
final restarted algorithm is identical to vanilla gradient descent, i.e., the restarts
do not change the base algorithm. This might seem nonsensical and we will get
back to this soon; the reader can safely ignore this for now.

In order to analyze our restart scheme we first chain together Inequalities (2)
and (1) and obtain:

f (xt ) − f (x∗) ≤
L‖x0 − x∗‖2

t
≤

2L
μ

f (x0) − f (x∗)
t

. (3)

This chaining together of two error bounds is at the core of most restart
arguments and we will see several variants of this. Next we estimate how long
we need to run the base method, using Inequality (3) to halve the primal gap
from some given starting point x0 (this will be the point from which we are going
to restart the base method), i.e., we want to find t such that

f (xt ) − f (x∗) ≤
2L
μ

f (x0) − f (x∗)
t

≤

f (x0) − f (x∗)
2

,

which implies that it suffices to run gradient descent for T� �
⌈
4L
μ

⌉
steps for all

� = 1, . . . ,K to halve a given primal bound as there is no dependency on the
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state of the algorithm in this case. Now, in order to reach f (xT ) − f (x∗) ≤ ε, we
have to halve f (x0) − f (x∗) at most K �

⌈
log f (x0)− f (x

∗

)

ε

⌉
times and each of the

halving can be accomplished in at most
⌈
4L
μ

⌉
gradient descent steps. All in all

we obtain that after at most

T ≥

K∑
�=1

T� = K · T1 =

⌈
4L
μ

⌉ ⌈
log

f (x0) − f (x∗)
ε

⌉
(4)

gradient descent steps we have obtained a solution f (xT )− f (x∗) = f (xK )− f (x∗) ≤
ε. With this we have obtained the desired convergence rate. Note that the iterate
bound in Inequality (4) is optimal for vanilla gradient descent up to a constant
factor of 4; see e.g., [21,29,33].

In the particular case from above it is also important to observe that our
base algorithm gradient descent is essentially memoryless. In fact, the restarts
do not ‘reset’ anything in this particular case and so we have also indirectly
proven that gradient descent without restarts will converge with the rate from
Inequality (4). This is particular to this example though and will be different in
our next one. Also, note that a direct estimation would have yielded the same
rate up to the factor 4 discussed above.

Smooth Convex to Smooth Strongly Convex: The Accelerated Case.
While the rate from Inequality (4) is essentially optimal for vanilla gradient
descent it is known that (vanilla) gradient descent itself is not optimal for smooth
and strongly convex functions and also Proposition 1 is not optimal for smooth
and (non-strongly) convex functions. In fact Nesterov showed in [36] that for
smooth and (non-strongly) convex functions a quadratic improvement can be
obtained; a phenomenon commonly referred to as acceleration:

Proposition 2 (Convergence of accelerated gradient descent). Let f :
Rn

→ R be an L-smooth convex function and x0 ∈ Rn and x∗ ∈ X∗. Then
accelerated gradient descent generates a sequence of iterates satisfying

f (xt ) − f (x∗) ≤
cL‖x0 − x∗‖2

t2
,

for some constant c > 0.

Again, we could try to directly prove a better rate via acceleration for the
smooth and strongly case (which is non-trivial this time) or, as before, invoke
our restart scheme in Algorithm 1 in a black-box fashion, which is what we will
do here. As before we will use an analog of Inequality (3) to estimate how long
it takes to halve the primal gap, i.e., we want to find t such that

f (xt ) − f (x∗) ≤
2cL
μ

f (x0) − f (x∗)
t2

≤

f (x0) − f (x∗)
2

,
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which implies that it suffices to run accelerated gradient descent for T� �
⌈√

4cL
μ

⌉

steps for all � = 1, . . . ,K to halve a given primal gap. With the same reasoning
as above we need to halve the primal gap at most K �

⌈
log f (x0)− f (x

∗

)

ε

⌉
times to

reach an additive error of ε. Putting everything together we obtain that after at
most

T ≥

K∑
�=1

T� = K · T1 =

⌈√
4cL
μ

⌉ ⌈
log

f (x0) − f (x∗)
ε

⌉
(5)

accelerated gradient descent steps we have obtained a solution f (xT ) − f (x∗) =
f (xK ) − f (x∗) ≤ ε. Note that the iterate bound in Inequality (5) is optimal for
strongly convex and smooth functions (up to a constant factor). In contrast to
the unaccelerated case, this time the restart actually ‘resets’ the base algorithm
as accelerated gradient descent uses a specific step size strategy that is then
reset.

Remark 1. Sometimes it is also possible to go backwards. Here we recover the
optimal base algorithm for the smooth and (non-strongly) convex case from the
strongly convex one. The argument is due to [34] (we follow the variant in [42]).
Suppose we know an optimal algorithm for the strongly convex and smooth
case that ensures f (xT ) − f (x∗) ≤ ε after O

(√
L
μ log f (x0)− f (x

∗

)

ε

)
iterations. Now

consider a smooth and convex function f and an initial iterate x0 together with
some upper bound D on the distance to some optimal solution, i.e., ‖x0−x∗‖ ≤ D.
Given an accuracy ε > 0, we consider the auxiliary function

fε(x) � f (x) +
ε

2D2
‖x − x0‖

2,

which is
(
L + ε

2D2

)
-smooth and ε

2D2 -strongly convex. It can be easily seen that

f (x) − f (x∗) ≤ fε(x) − fε(x
∗

) +
ε

2
,

so that finding an ε/2-optimal solution to min fε provides an ε-optimal solution
to min f . We can now run the purported optimal method on the smooth and
strongly convex function fε to compute an ε/2-optimal solution to min fε, which
we obtain after:

O

(√
L + ε

2D2

ε
2D2

log 2
fε(x0) − fε(x∗)

ε

)
≤ O

(√
2LD2 + ε

ε
log

(L + ε)D2

ε

)
,

iterations, where we used fε(x0) − fε(x∗) ≤

(L+ε)D2

2 . Finally note, ignoring the

log factor,
√

2LD2+ε
ε ≤ T ⇔

2LD2+ε
T2 ≤ ε, which is the bound from Proposition 2.

The approach used in this section to obtain better rates of convergence under
stronger assumptions by means of the simple restart scheme in Algorithm1 works
in much broader settings in convex optimization (including the constrained case).
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For example it can be used to improve the O(1/
√

t)-rate for general non-smooth
convex functions via sub-gradient descent into the O(1/t)-rate for the non-smooth
strongly convex case. Here the base rate is f (xt )− f (x∗) ≤ G ‖x0−x

∗

‖

√

t
, where G is a

bound on the norm of the subgradients. We obtain the restart inequality chain
(analog to Inequality (3)):

f (xt ) − f (x∗) ≤
G‖x0 − x∗‖

√

t
≤

G
√

t

√
f (x0) − f (x∗)

μ
,

and halving the primal gap takes at most 4G2

μ( f (x0)− f (x∗))
iterations. Following the

argumentation from above, we then arrive that the total number of required
subgradient descent iterations using Algorithm1 to ensure f (xt )− f (x∗) ≤ ε is at
most t ≥ 8G2

εμ for the non-smooth but μ-strongly convex case, which is optimal
up to constant factors.

Related Approaches. In a similar way we can incorporate additional information
obtained e.g., from so-called Hölder(ian) Error Bounds or sharpness (see, e.g.,
[9,10] and references contained therein for an overview). The careful reader might
have observed that the restart scheme in Algorithm 1 requires knowledge of the
parameter μ. While this could be acceptable in the strongly convex case, for more
complex schemes to leverage, e.g., sharpness, this is unacceptable as the required
parameters are hard to estimate and generally inaccessible. This however, can
be remedied in the case of sharpness, at the cost of an extra O(log2)-factor in
the rates, via scheduled restarts as done in [39] that do not require sharpness
parameters as input or when an error bound (of similar convergence rate) is
available as in the case of conditional gradients [27]; see also [23] for a very
recent adaptive restart scheme using error bounds estimators.

3 Discrete Optimization

In this section we consider a prominent example from integer programming: opti-
mization via augmentation, i.e., optimizing by iteratively improving the current
solution.

We consider the problem:

max {cx | x ∈ P ∩ Zn
} , (6)

where P ⊆ Rn is a polytope and c ∈ Zn.
To simplify the exposition we assume that P ⊆ [0, 1]n and c ≥ 0 (the latter is

without loss of generality by flipping coordinates), however the arguments here
generalize to the general integer programming case. Suppose further that we can
compute improving solutions, i.e., given c and a solution x0, we can compute
a new solution x, so that c(x − x0) > 0 if x0 was not already optimal; such a
step (Line 3 in Algorithm 2) is called an augmentation step. Then a trivial and
inefficient strategy is Algorithm 2, where we continue improving the solution
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Algorithm 2. Augmentation
Input: Feasible solution x0 and objective c ∈ Zn

+

Output: Optimal solution of max {cx | x ∈ P ∩ {0, 1}n}
1: x̃ ← x0

2: repeat
3: compute x ∈ P integral with c(x − x̃) > 0 and set x̃ ← x {improve solution}
4: until no improving solution exists
5: return x̃ {return optimal solution}

until we have reached the optimum. It is not too hard to see that Algorithm2
can take up to 2n steps, essentially enumerating all feasible solutions to reach
the optimal solution; simply consider the cube P = [0, 1]n and an objective c
with powers of 2 as entries.

Bit Scaling. We will now show that we can do significantly better by restarting
Algorithm 2, so that we obtain a number of augmentation steps of O(n log‖c‖

∞

),
where ‖c‖

∞

� maxi∈[n] ci. This is an exponential improvement over base algo-
rithm and the restart scheme, called bit scaling, is due to [41] (see also [17,20]).
It crucially relies on the following insight: Suppose we decompose our objec-
tive c = 2c1 + c0 with c0 ∈ {0, 1}n (note this decomposition is unique) and
we have already obtained some solution x0 ∈ P ∩ {0, 1}n that is optimal for
max {c1x | x ∈ P ∩ Zn

}, then we have for all x ∈ P ∩ {0, 1}n:

c(x − x0) = 2 c1(x − x0)︸������︷︷������︸
≤0

+c0(x − x0) ≤ n, (7)

by the optimality of x0 for c1 and c0, x, x0 ∈ {0, 1}n. Hence starting from x0,
for objective c, there are at most n augmentation steps to be performed with
Algorithm 2 to reach an optimal solution for c. Equipped with Inequality (7)
the following strategy emerges: slice by the objective c according to its bit rep-
resentation and then successively optimize with respect to the starting point
from a previous slice. We first present the formal bit scaling restart scheme in
Algorithm 3, where A denotes Algorithm 2.

Next, we will show that restart scheme from Algorithm 3 requires at most
O(n log‖c‖

∞

) augmentation steps (Line 3 in Algorithm2) to solve Problem (6).
First observe, that by construction and the stopping criterion in Line 5 of Algo-
rithm3 it is clear that we call A in Line 3 at most �logC� times. Next, we bound
the number of augmentation steps in Line 3 executed within algorithm A. To
this end, let x̃ and μ denote the input to A. In the first iteration cμ ∈ {0, 1}n, so
that A can perform at most n augmentation steps. For later iterations observe
that x̃ was optimal for c2μ = �c/(2μ)�. Moreover, we have cμ = �c/μ� = 2c2μ + c0,
where c0 ∈ {0, 1}n as before. Via Inequality (7) we obtain for all feasible solutions
x ∈ P ∩ Zn:

cμ(x − x̃) = 2c2μ(x − x̃) + c0(x − x̃) ≤ n,
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Algorithm 3. Bit Scaling
Input: Feasible solution x0

Output: Optimal solution to max {cx | x ∈ P ∩ Zn
}

1: C ← ‖c‖
∞

+ 1, μ← 2 �logC � , x̃ ← x0, cμ ← �c/μ� {initialization}
2: repeat
3: Call x̃ ← A(x̃, cμ)
4: μ← μ/2, cμ ← �c/μ�
5: until μ < 1
6: return x̃ {return optimal solution}

which holds in particular for the optimal solution x∗ to Problem (6). As each
augmentation step reduces the primal gap cμ(x− x̃) by at least 1, we can perform
at most n augmentation steps. This completes the argument.

Geometric Scaling. The restart scheme in Algorithm 3 essentially restarted
via bit-scaling the objective function, hence the name. We will now present a
more versatile restart scheme that is due to [40] (see also [30] for a comparison
and worst-case examples), which essentially works by restarting a regularization
of our objective c. For comparability we also consider Problem (6) here, however
the approach is much more general, e.g., allowing for general integer program-
ming problems and with modifications even convex programming problems over
integers.

Again, we will modify the considered objective function c in each restart.
Given the original linear objective c, we will consider:

cμ(x, x̃) = c(x − x̃) − μ‖x − x̃‖1.

Note that cμ(x, x̃) is a linear function in x ∈ {0, 1}n for a given x̃ ∈ {0, 1}n.
In particular we can call Algorithm2 with objective cμ(·, ·) and starting point
x̃. The restart scheme works as follows: For a given μ we call Algorithm 2 with
objective cμ(·, ·) and starting point x̃. Then we halve μ and repeat.

As in the bit-scaling case, the key is to estimate the number of augmentation
steps performed in such a call. To this end let x0 be returned by Algorithm2 for
a given μ and starting point x̃. Then

cμ(x, x0) = c(x − x0) − μ‖x − x0‖1 ≤ 0,

holds for all x ∈ P ∩ Zn and in particular for the optimal solution x∗; this is
simply the negation of the improvement condition. Now let x′ be any iterate in
the following call to Algorithm 2 for which an augmentation step is performed
with objective cμ/2(·, ·) and starting point x0, i.e., there exists x+ so that

cμ/2(x+, x ′) = c(x+ − x ′) − μ/2‖x+ − x ′‖1 > 0.

We can now combine these two inequalities, substituting x ← x∗, to obtain

2
c(x+ − x ′)
‖x+ − x ′‖1

> μ ≥
c(x∗ − x0)
‖x∗ − x0‖1

,
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which implies

c(x+ − x ′) ≥
1
2
‖x+ − x ′‖1
‖x∗ − x0‖1

c(x∗ − x0) ≥
1
2n

c(x∗ − x0),

where ‖x+ − x ′‖1 ≥ 1 as the iterates are not identical and ‖x∗ − x0‖1 ≤ n as
x∗, x0 ∈ P ⊆ [0, 1]n. As such each augmentation step recovers at least a 1

2n -
fraction of the primal gap c(x∗ − x0) and therefore we can do at most 2n such
iterations before the condition in Line 3 has to be violated. With this we can
formulate the geometric scaling restart scheme in Algorithm 4. The analysis now
is basically identical to the one as for Algorithm3, however this time we have
O(log n‖c‖

∞

) restarts, leading to an overall number of augmentation steps of
O(n log n‖c‖

∞

), which can be further improved to O(n log‖c‖
∞

), matching that of
bit-scaling, with the simple observation in [30].

Algorithm 4. Geometric Scaling
Input: Feasible solution x0

Output: Optimal solution of max {cx | x ∈ P ∩ Zn
}

1: C ← ‖c‖
∞

+ 1, μ← nC, x̃ ← x0, cμ(x, y) � c(x − y) − μ‖x − y‖1. {initialization}
2: repeat
3: Call x̃ ← A(x̃, cμ)
4: μ← μ/2
5: until μ < 1
6: return x̃ {return optimal solution}

Related Approaches. Chvátal-Gomory cutting planes, introduced by Chvátal in
[13], are an important tool in integer programming to approximate the integral
hull conv(P ∩ Zn

) by means of successively strengthening an initial relaxation
P with conv(P ∩ Zn

) ⊆ P. This is done by adding new inequalities valid for
conv(P∩Zn

) cutting off chunks of P in each round. A key question is how many
rounds of such strengthenings are needed until we recover conv(P∩Zn

). In [14] it
was shown that in general the number of rounds can be arbitrarily large. It was
then shown in [8] via a restart argument that for the important case of polytopes
contained in [0, 1]n the number of rounds can be upper bounded by O(n3 log n).
The key here is to use basic bounds on the number of rounds, e.g., from [14],
first for inequalities with some maximum absolute entry c, then doubling up c
to 2c, and restarting the argument. This bound was further improved in [18]
to O(n2 log n) by interleaving two restart arguments, one multiplicative (e.g.,
doubling) over the maximum absolute entry c and one additive (e.g., adding a
constant) over the dimension, which matches the lower bound of Ω(n2) of [38]
up to a log factor; closing this gap remains an open problem. As mentioned in the
context of the scheduled restarts of [39], it might be possible that the additional
log factor is due to the restart schemes itself and removing it might require a
different proof altogether.
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Another important application is the approximate Carathéodory problem,
where we want to approximate x0 ∈ P, where P is a polytope, by means of a
sparse convex combination x of vertices of P, so that ‖x0− x‖ ≤ ε for some norm
‖·‖ and target accuracy ε. In general it is known that this can be done with a
convex combination of O(1/ε2) vertices. However, it turns out as shown in [31]
that whenever x0 lies deep inside the polytope P, i.e., we can fit a ball around
x0 with some radius r into P as well, then we can exponentially improve this
bound via restarts to O(

1
r2

log 1
ε ). This restart argument here is particularly nice.

We run the original O(1/ε2)-algorithm down to some fixed accuracy and obtain
some approximation x̃, then scale-up the feasible region by a factor of 2, and
restart the O(1/ε2)-algorithm on the residual x0− x̃ and repeat. The argument in
[31] relies on mirror descent as underlying optimization routine. More recently,
it was shown in [15] that the restarts can be removed and adaptive bounds
for more complex cases can be obtained by using conditional gradients as base
optimization algorithm, which automatically adapts to sharpness (and optima
in the interior) [27,43].

4 Submodular Function Maximization

We now turn our attention to submodular function maximization. Submodular-
ity captures the diminishing returns property and is widely used in optimization
and machine learning. In particular, we will consider the basic but important
setup of maximizing a monotone, non-negative, submodular function subject
to a single cardinality constraint. To this end we will briefly repeat necessary
notions. A set function g : 2V → R+ is submodular if and only if for any e ∈ V
and A ⊆ B ⊆ V\{e} we have gA(e) ≥ gB(e), where gA(e) � g(A+ e) − g(A) denotes
the marginal gain of e w.r.t. A and A + e � A ∪ {e}, slightly abusing notation.
The submodular function g is monotone if for all A ⊆ B ⊆ V it holds g(A) ≤ g(B)
and non-negative if g(A) ≥ 0 for all A ⊆ V .

Given a monotone, non-negative submodular function g over ground set V of
size n and a budget k, we consider the problem

max
S⊆V, |S | ≤k

g(S) (8)

It is well known that solving Problem (8) exactly is NP-hard under the
value oracle model, however the greedy algorithm (Algorithm 5) that in each
iteration adds the element that maximizes the marginal gain yields a (1 − 1/e)-
approximate solution S+ ⊆ V with |S+ | ≤ k, i.e., g(S+) ≥ (1 − 1/e) g(S∗), where
S∗ = argmaxS⊆V, |S | ≤kg(S) ⊆ V is an optimal solution to Problem (8) and e
denotes the Euler constant (see [19,32]).

The proof of the approximation guarantee of 1 − 1/e is based on the insight
that in each iteration it holds:

g(S∗) − g(S+) ≤ k · max
e∈V

gS+
(e). (9)
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Algorithm 5. Greedy Algorithm
Input: Ground set V of size n, budget k, and monotone, non-negative, submodular

function g : 2V → R+.
Output: feasible set S+ with |S+ | ≤ k.
1: S+ ← ∅

2: while |S+ | ≤ k do
3: e ← argmaxe∈V\S+ gS+ (e)
4: S+ ← S+ + e
5: end while

To see that Inequality (9) holds, let S∗ = {e1, . . . , ek}, then

g(S∗) ≤ g(S∗ ∪ S+) = g(S+) +
k∑
i=1

gS+
∪{e1,...,ei−1 }(ei)

≤ g(S+) +
k∑
i=1

gS+
(ei) ≤ g(S+) + k max

e∈V
gS+

(e),

where the first inequality follows from monotonicity, the equation follows from
the definition of gS(v), the second inequality from submodularity, and the last
inequality from taking the maximizer.

With Inequality (9) the proof of the (1 − 1/e)-approximation is immediate.
In each iteration the greedy element we add satisfies maxe∈V gS+

(e) ≥ 1
k (g(S

∗

) −

g(S+)), therefore after k iterations we have obtained a set S+ with |S+ | = k, with

g(S∗) − g(S+) ≤ (1 − 1/k)k(g(S∗) − g(∅)) ≤ (1 − 1/k)kg(S∗) ≤
1
e
g(S∗),

so that the desired guarantee (1 −

1
e )g(S

∗

) ≤ g(S+) follows.
Unfortunately, due to Line 3 in Algorithm5 computing such a (1 − 1/e)-

approximate solution can cost up to O(kn) evaluations of g in the value oracle
model, where we can only query function values of g. For realistic functions this
is often quite prohibitive. We will now see a different application of a restart
scheme to reduce the total number of function evaluations of g by allowing for
a small error ε > 0. We obtain a total number of evaluations of g of O(

n
ε log n

ε ),
quasi-linear and independent of k, to compute a (1−1/e−ε)-approximate solution.
The argument is due to [5] and similar in nature to the argument in Sect. 3 for
geometric scaling. We simplify the argument slightly for exposition; see [5] for
details.

The basic idea is rather than computing the actual maximum in Line 3 in
Algorithm 5, we collect all elements of marginal gains that are roughly maxi-
mal within a (1 − ε)-factor, then scale down the estimation of the maximum,
and then restart. We present the restart scheme, the so-called Threshold Greedy
Algorithm in Algorithm6. This time we present the scheme and the base algo-
rithm directly together. Note that the inner loop in Lines 3 to 7 in Algorithm6
adds all elements that have approximately maximal marginal gain. The restarts
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are happening whenever we go back to the beginning of the outer loop starting
in Line 2, with a reset value for Φ.

Algorithm 6. Threshold Greedy Algorithm
Input: Ground set V of size n, budget k, accuracy ε, and monotone, non-negative,

submodular function g : 2V → R+

Output: feasible set S+ with |S+ | ≤ k.
1: S+ ← ∅, Φ0 ← maxe∈V g(e), Φ← Φ0
2: while Φ ≥

ε
nΦ0 do

3: for e ∈ V do
4: if |S+ | < k and gS+ (e) ≥ Φ then
5: S+ ← S+ + e
6: end if
7: end for
8: Φ← Φ(1 − ε)

9: end while

We will first show that the gain from any new element e ∈ V added in Line 5
of Algorithm 6 is at least

gs+ (e) ≥
1 − ε

k

∑
x∈S∗

\S+

gS+
(x).

To this end suppose we have chosen element e ∈ V to be added. Then gs+ (e) ≥ Φ
by Line 4 and for all x ∈ S∗ \ (S+ + e) we have gS+

(x) ≤ Φ/(1 − ε); otherwise
we would have added x in an earlier restart with a higher value Φ already.
Combining the two inequalities we obtain

gs+ (e) ≥ (1 − ε)gS+
(x),

for all x ∈ S∗ \ (S+ + e) and averaging those inequalities leads to

gs+ (e) ≥
1 − ε

|S∗ \ S+ |

∑
x∈S∗

\S+

gS+
(x) ≥

1 − ε

k

∑
x∈S∗

\S+

gS+
(x), (10)

which is the desired inequality. From this we immediately recover the (approxi-
mate) analog of Inequality (9). We have via submodularity and non-negativity

∑
x∈S∗

\S+

gS+
(x) ≥ gS+

(S∗) ≥ g(S∗) − g(S+),

and together with Inequality (10)

gs+ (e) ≥
1 − ε

k
(g(S∗) − g(S+)).
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Therefore, as before, after k iterations we obtain a set S+ with |S+ | = k, with

g(S∗) − g(S+) ≤ (1 − (1 − ε)/k)k(g(S∗) − g(∅)) ≤ (1 − (1 − ε)/k)kg(S∗)

≤

1
e(1−ε)

g(S∗) ≤

(
1
e
+ ε

)
g(S∗),

leading to our guarantee g(S+) ≥

(
1 −

1
e − ε

)
g(S∗). If we do fewer than k iter-

ations, the total gain of all remaining elements is less than ε, establishing the
guarantee in that case.

Now for the number of evaluations of g, first consider the loop in Line 2 of
Algorithm 6. The loops stops after � iterations, whenever (1 − ε)� ≤

ε
n , which is

satisfied if 1/(1 − ε)� ≥ (1 + ε)� ≥

n
ε and hence � ≥ 1

ε log n
ε . For each such loop

iteration we have at most O(n) evaluations of g in Line 4, leading to the overall
bound of O(

n
ε log n

ε ) evaluations of g.

Related Approaches. The approach presented here for the basic case with a
single cardinality constraint can be applied more widely as already done in
[5] for matroid, knapsack, and p-system constraints. It can be also used to
reduce the number of evaluations in the context of robust submodular function
maximization [2,3].

A similar restart approach has been used to ‘lazify’ conditional gradient
algorithms in [11,12,28]. Here is the number of calls to the underlying linear
optimization oracle is dramatically reduced by reusing information from previ-
ous iterations by solving the linear optimization problem only approximately
as done in the case of the Threshold Greedy Algorithm. The algorithm, in a
similar vein, is then restarted, whenever the threshold for approximation of the
maximum is too large.

Acknowledgement. We would like to thank Gábor Braun and Marc Pfetsch for
helpful comments and feedback on an earlier version of this article.
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Abstract. We extend automatic instance generation methods to allow
cross-paradigm comparisons. We demonstrate that it is possible to com-
pletely automate the search for benchmark instances that help to dis-
criminate between solvers. Our system starts from a high level human-
provided problem specification, which is translated into a specification for
valid instances. We use the automated algorithm configuration tool irace
to search for instances, which are translated into inputs for both MIP and
CP solvers by means of the Conjure, Savile Row, and MiniZinc tools.
These instances are then solved by CPLEX and Chuffed, respectively.
We constrain our search for instances by requiring them to exhibit a sig-
nificant advantage for MIP over CP, or vice versa. Experimental results
on four optimisation problem classes demonstrate the effectiveness of our
method in identifying instances that highlight differences in performance
of the two solvers.

Keywords: Instance generation · MIP · Constraint Programming

1 Introduction

When developing a model of a combinatorial problem class, a set of representa-
tive instances drawn from the class is essential for evaluating the model’s perfor-
mance. Recently, Akgün et al. [1] demonstrated how to generate instances auto-
matically from the Essence1 specification of a problem class [10]. The instances
generated are graded : neither too difficult nor too easy relative to a given solver
and resource limits. Graded instances are particularly valuable for model eval-
uation, since they are less likely to be solved trivially with the model under
development or to remain unsolved at the expiry of a time budget. Either of
these outcomes would reveal little useful information about model performance.

1 Essence is an abstract constraint specification language that supports a formal
statement of a problem without committing to detailed modelling decisions.
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42 Ö. Akgün et al.

In this paper we consider a more complex situation: rather than focus on
modelling for a single solving paradigm, it is often the case that we might wish
to evaluate two or more solving paradigms for a problem of interest. In this
context, it is desirable to generate instances that are not only graded, but also
discriminating , i.e. which exhibit a pronounced difference in solving performance
among the solving paradigms under consideration. Discriminating instances are
valuable both for a manual inspection of the instance characteristics that favour
one paradigm over the others, and to provide coverage of the instance space when
training the selection process for an algorithm portfolio [28]. Our hypothesis is
that starting from a single high-level specification of a problem we can generate
discriminating instances automatically via synthesising an “instance generator
model” and using standard algorithm tuning tools.

We consider two paradigms: Constraint Programming (CP) and Mixed Inte-
ger Programming (MIP). Extending the approach of Akgün et al., we employ
the automated configuration tool irace [22] to search for graded discriminating
instances for the CP solver Chuffed [7] and the MIP solver CPLEX [17]. This
search is performed twice, with each solver in turn first considered the base
solver, and the other the favoured solver. irace is guided to search for discrimi-
nating instances where the favoured solver performs significantly better than the
base solver. The advantage of this approach is that, even when one of the two
solvers predominantly performs better, the search for discriminating instances is
pushed towards regions of the instance space where the generally weaker solver
has the advantage. This provides good coverage of the instance space and a clear
picture of relative solver performance, as our empirical results demonstrate.

2 Related Work

Benchmarks play an important role in combinatorial optimisation as they are
often the main device employed to verify the quality of solvers. For a long time
this involved bundling a collection of problem instances, with one or more prob-
lem classes, that are then solved and compared by practitioners. In many cases,
this has led to the reuse of the same set of instances for several decades causing
algorithms to become highly tailored to solve those specific sets and becoming
less generally applicable [13]. This is not an ideal practice, as it has been observed
that different algorithmic techniques have their own strengths and weaknesses
[6,19,30]. An alternative approach is making use of instance generators that
can produce a stream of new instances. The two main approaches to generate
instances in an automated manner are based on handcrafted programs [9,15,32],
where practitioners use their knowledge to specify desired characteristics, and
on meta-heuristic approaches where instances are created and selected accord-
ing to some objective functions [18,29]. In both cases these generators can pro-
duce instances only for specific problem classes and making them applicable to
new problem classes would require substantial modifications. Another criticism
raised [31] is that often only a small number of algorithms are tested on a small
set of instances to certify the superiority of one algorithm over another instead
of studying the strengths and weaknesses of both.
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Belov et al. [6] demonstrated automatic translation of CP specifications
expressed in the MiniZinc language to lower-level FlatZinc [24], using knowledge
of the target paradigm to guide the translation. Their experiments showed that
the MIP and CP solving paradigms have different sets of strengths and weak-
nesses, and found discriminating instances among the MiniZinc benchmarks.

Generation of discriminating instances is increasingly popular [4], for instance
to measure algorithm performance across instances [28] or to improve algorithm
selection tools [14,30]. Most studies in this area tackle one problem class at a
time. We here extend [1] to automatically produce instances for any problem
class. The goal is to automate finding instances that are particularly suited to
one algorithm but not another, and to study characteristics of these instances.

3 Background

CP and MIP solvers work by solving a problem instance model composed of
decision variables with associated domains, a set of constraints on the deci-
sion variables (and optionally an objective function for optimisation problems).
CP modelling languages typically offer a richer language in comparison to MIP
modelling languages thanks to having a richer set of constraint types. Modern
modelling languages for both formalisms allow models to be written for a prob-
lem class. A problem class model is instantiated by a modelling tool before it is
given to a solver to achieve a problem instance model.

Essence is a problem specification language for combinatorial decision and
optimisation problems [10]. Essence supports abstract decision variables, such
as multiset, relation and function, as well as nested types, such as multiset of
sets. In addition to language features for specifying decision variables, constraints
and the objective function (find, such that, min/maximising respectively) it
allows the specification of problem parameters which define problem instances
(given) and restrictions on values that parameters can take on valid instances
(where).

Problem specifications written in Essence are converted to class level con-
straint models by Conjure [2,3], which are then fed into Savile Row [26] to
instantiate the model and convert it into input suitable for a supported solver.
Savile Row also applies instance level model improvements automatically [26].

A problem specification can be automatically converted to an instance gen-
erator specification by Conjure [1]. First, the given statements that declare
parameters are converted into find statements that declare corresponding deci-
sion variables. Second, the where statements are converted to such that state-
ments. This process is explained in more detail in [1].

The main objective of [1] was to generate graded instances (neither too easy
nor too hard for a selected backend solver). This is achieved by using a general-
purpose automated algorithm tuning tool to search for generator configurations
covering the problem instance space, with solving time between the given bounds.
In [1], irace was used for this task. irace is an automated algorithm configura-
tion tool that supports tuning parameters of algorithms efficiently. The core idea
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behind irace is iterated racing, an iterative search procedure where at each itera-
tion, statistical tests are used to eliminate configurations with poor performance
early, so that the budget is saved for evaluating more promising configurations.

4 Experimental Method

4.1 Problem Classes

We demonstrate our method on the following four optimisation problem classes.
The first three are typically solved by Operations Research methods. We work
with existing Essence specifications from CSPlib [12], where available.

Transshipment (TP): Given costs of transporting goods from a warehouse to
a transshipment point and from a transshipment point to a customer, warehouse
stock levels, and customer demand, the objective is to minimise the total trans-
port cost while meeting customer demand. TP is known to have efficient linear
programming solutions [27] and we expected CPLEX to dominate Chuffed.

Progressive Party (PPP, CSPlib 013): The objective is to minimise the num-
ber of boats hosting a party at a yacht club, where some boats (with capacities)
are designated as hosts, and the crews of the remaining boats visit the host boats
for fixed time periods; two guest crews may meet at most once. PPP is a classic
CP problem and we expected Chuffed to dominate CPLEX.

Warehouse Location (WLP, CSPlib 034): A central warehouse will supply
depots, each with a maintenance cost and a capacity; each store will be supplied
from exactly one depot at some cost. The objective is to find a subset of depots
to open so as to minimise the sum of the maintenance and supply costs. We had
no prior opinion on whether CP would outperform MIP.

Capacitated Vehicle Routing (CVRP): The task is to find least cost routes
for identical vehicles with capacities, delivering goods from a central depot. Each
location is visited once by one vehicle. A route starts at the depot and finishes
there [8,20]. We had no prior opinion on whether MIP would outperform CP.

4.2 irace’s Scoring Function to Find Discriminating Instances

Each evaluation during the tuning involves a generator configuration and a ran-
dom seed, both sampled by irace. The CP solver minion [11] is used to solve the
configuration with the given random seed. A solution is returned as an instance
of the original problem. That instance is evaluated using the two solvers and a
score value (to be minimised) is calculated. The default setting of irace compares
configurations based on ranking. Therefore, the absolute difference between score
values is not important. Details of the scoring are as follows.

– If the generator configuration is unsatisfiable, then a special infinite score
value is returned. irace will discard the configuration immediately.

http://www.csplib.org/Problems/prob013/
http://www.csplib.org/Problems/prob034/
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– If the generator configuration is too large be to translated (Savile Row is out
of time or memory), or not solvable by minion, then the score is set to 2.

– If the generator configuration is satisfiable and an instance is found:
• if the instance is unsatisfiable or too large to be translated (Savile Row

is out of time or memory for either solver), then a score of 1 is returned,
• if the instance is too difficult for the favoured solver, or too easy for the

base solver, then a score of 0 is returned, or
• if the instance is solved within the given time and memory limits, then

the negation of the ratio between the solving time of the base and the
favoured solvers is returned.

4.3 Experimental Setup

The memory limit given to each evaluation is 7 GB. The time limit for Savile
Row and minion is 5 min each. The time limit for the favoured solver is 5 min,
while the base solver is allowed between 10 s and 25 min. Chuffed version 0.10.3
and CPLEX version 12.9 are used. Instances are translated to Chuffed directly
via Savile Row. CPLEX input is translated to MiniZinc format first using Savile
Row, and then to CPLEX input format using MiniZinc [6]. The compilation time
required by MiniZinc was never more than a few seconds, as the input MiniZinc
files have been pre-processed and optimised by Savile Row.

Solving time on an instance is calculated as the average value across three
runs. Each experiment is run on a cluster node with two 2.1 GHz Intel Xeon
E5-2695 processors. Since irace supports parallelism, 30 cores are used per exper-
iment. Each tuning is given a budget of 5000 evaluations and 48 h of wall-time,
and is stopped when either of the two budgets is exhausted.

5 Results

The discriminating instances found2 for each problem class are plotted in Fig. 1.
Table 1 details how many evaluations the tuning spent on each type of instance,
with numbers describing what the search space looks like during tuning.

For CVRP and PPP, we found discriminating instances for both CPLEX
and Chuffed. However, the number of instances found in the Chuffed-favoured
experiment is larger than in the CPLEX-favoured experiment (≈2000 vs. ≈50
instances for CVRP, and ≈1400 vs. ≈600 instances for PPP). Detailed results
on the search space during the tuning show that in the Chuffed-favoured exper-
iment, the majority of evaluations is spent on instances solved by Chuffed
within 300 s, while in the CPLEX-favoured experiment, the majority is spent
on instances where CPLEX timed out (both problem classes), or on instances
that are very easy for Chuffed (CVRP only). This indicates that in our current
setting, although instances where CPLEX is better than Chuffed on those two
problem classes exist (and are found by our tuning), overall Chuffed is better at
solving these problems than CPLEX.
2 Code and data are at: https://github.com/stacs-cp/CPAIOR2020-InstanceGen.

https://github.com/stacs-cp/CPAIOR2020-InstanceGen
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Fig. 1. Solving time of Chuffed and CPLEX on the discriminating instances found. We
run irace twice with each solver favoured in turn. The plotted time-outs are only for
the base solver.

For the two remaining problems, Transshipment and Warehouse Location, we
see a different picture. Many CPLEX-favoured instances are found, while there
are no Chuffed-favoured instances at all. For Transshipment, in the majority of
evaluations in both tuning experiments either Chuffed times out or the gener-
ator configuration was not solved in time. Figure 1 also shows that CPLEX’s
solving time on the discriminating instances of the same problem is quite small
(≤10 s). These observations suggest that CPLEX completely dominates Chuffed
on Transshipment, which is exactly what we expected. For Warehouse Location,
the story is a bit different. Instances in the CPLEX-favoured experiment are
mostly too easy for Chuffed. A more detailed look at those instances reveals
that Chuffed is comparable to CPLEX on the instances that are “too easy”.
Therefore, we conjecture that CPLEX may not completely dominate Chuffed
on Warehouse Location, but it does dominate Chuffed on the “more difficult”
instances which take at least 10 s to solve by Chuffed in our setup.
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6 Feature Analysis

To gain more insights into the discriminating instances found, we extract their
FlatZinc features using the fzn2feat tool (part of mzn2feat [5]). There are 95
features grouped into 6 categories (variables, constraints, domains, global con-
straints, objective, and solving features) [5]. For each of the two problem classes
where discriminating instances are found, CVRP and PPP, we use the Balanced
Random Forest classifier from the Python package imblearn [21] with 200 esti-
mators and 5-fold cross validation. To identify the most important features rep-
resenting the discriminating property between the two solvers, Mean Decrease
Impurity [23] of each feature is calculated across 20 runs. Random Forests have
been shown to be the overall best choice for modelling running time of CP and
SAT solvers [16]. The Mean Decrease Impurity (MDI) is a widely-used measure-
ment for feature importance analyses in Random Forest models. The MDI of a
feature in each tree is the weighted decrease in impurity (using Gini importance)
across all tree nodes where the feature is used in the splits. The overall MDI of
a feature is calculated by averaging the MDI values across all trees in the forest.

Table 1. Number of runs for each instance type during tuning. Experiment name
has the problem class and the favoured solver. Columns: gen failed (unsolved gen-
erator configurations), SR-timeout&unsat (Savile Row timed out or the instances are
unsatisfiable), base easy (solved by the base solver within 10 s), favoured timeout

(the favoured solver timed out), within the range (sat instances solved within 300 s
by the favoured solver and not solved within 10 s by the base solver). The four final
numbers for each experiment show how discriminating instances are; ratio is solving
time of the base to the favoured solver. If the base solver times out, 25 min is used.

gen
failed

SR-timeout
& unsat

base
easy

favoured
timeout

within the range
ratio≤1 ratio>1 ratio>2 ratio>10

PPP-chuffed 85 932 538 554 4 1474 1471 1419
PPP-cplex 67 1019 301 1290 14 670 665 597
CVRP-chuffed 457 178 1117 741 4 2225 2224 2080
CVRP-cplex 686 178 1768 1865 330 110 59 8
TP-chuffed 1762 30 323 2862 0 0 0 0
TP-cplex 2108 479 50 643 0 1096 1096 1038
WLP-chuffed 626 58 4277 34 0 0 0 0
WPL-cplex 819 298 1174 0 0 519 518 481

To avoid noise in the measurement of solving time, we only consider discrim-
inating instances where the ratio between the solving time of the bad solver and
the good solver is larger than 1.5. Each instance is labelled as either Chuffed-
favoured or CPLEX-favoured.
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Figure 2 show the importance values of the top 10 features for PPP and
CVRP. For PPP, the first feature, v cv domdeg vars, shows a much higher
importance value compared to the rest. This feature defines the Coefficient of
Variance of the ratios between domain size and degree (number of constraints
involved) of all variables. A more detailed look into the data indicates that
Chuffed-favoured instances tend to have similar ratios between domain size
over degree across different variables, while for CPLEX-favoured instances those
ratios differ more drastically between variables. For CVRP, there is no clearly dis-
tinguished single feature. Moreover, the list of the most important features varies
between the two different problem classes. This suggests that the favouring-
behaviours of the two solvers depend on the problem.

Fig. 2. Top 10 FlatZinc features for discriminating instances based on MDI

7 Conclusion and Future Work

In this work, we presented an automated instance generation system that can
produce discriminating instances between two solvers. We demonstrated our
method on four problem classes with the CP solver Chuffed and the MIP solver
CPLEX. This revealed the strengths and weaknesses of each solver. A further
analysis of the discriminating instances using FlatZinc features [5] suggests that
the discriminating behaviour is problem dependent.

In future work, we plan to extend our system for finding discriminating
instances for a portfolio of more than two solvers; the open question here is how
to define the discriminating property. We also plan more detailed feature analy-
sis investigating the relationship between solver performance and instance space.
This can involve defining new instance features based on the high-level types sup-
ported by Essence, which may provide more high-level structural information
about the instances. Finally, we currently rely on irace’s built-in exploration
of the generator configuration space to ensure the diversity of the generated
instances. This can be improved by investigating more advanced approaches for
controlling instance diversity more directly, including incorporating a diversity
measurement such as multi-objective indicators [25] into the scoring values of the
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tuning, or forcing each generator configuration to generate instances far away
from the current instance set by adding constraints into the generator model.
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Abstract. This study explores the design of an On-Demand Multimodal
Transit System (ODMTS) that includes segmented mode switching mod-
els that decide whether potential riders adopt the new ODMTS or stay
with their personal vehicles. It is motivated by the desire of transit agen-
cies to design their network by taking into account both existing and
latent demand, as quality of service improves. The paper presents a
bilevel optimization where the leader problem designs the network and
each rider has a follower problem to decide her best route through the
ODMTS. The bilevel model is solved by a decomposition algorithm that
combines traditional Benders cuts with combinatorial cuts to ensure the
consistency of mode choices by the leader and follower problems. The
approach is evaluated on a case study using historical data from Ann
Arbor, Michigan, and a user choice model based on the income levels of
the potential transit riders.

Keywords: On-demand transit system · Mode choice · Bilevel
optimization · Benders decomposition · Combinatorial cuts

1 Introduction

On-Demand Multimodal Transit Systems (ODMTS) [13,15] combines on-
demand shuttles with a bus or rail network. The on-demand shuttles serve
local demand and act as feeders to and from the bus/rail network, while the
bus/rail network provides high-frequency transportation between hubs. By using
on-demand shuttles to pick up riders at their origins and drop them off at their
destinations, ODMTS addresses the first/last mile problem that plagues most
of the transit systems. Moreover, ODMTS addresses congestion and economy
of scale by providing high-frequency along congested corridors. They have been
shown to bring substantial convenience and cost benefits in simulation and pilot
studies in the city of Canberra, Australia and the city of Ann Arbor, Michigan.

The design of an ODMTS is a variant of the hub-arc location problem [4,5]:
It uses an optimization model that decides which bus/rail lines to open in order
to maximize convenience (e.g., minimize transit time) and minimize costs [13].
This optimization model uses, as input, the current demand, i.e., the set of
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origin-destination pairs over time in the existing transit system. Transit agen-
cies however are worried about latent demand: As the convenience of the transit
system improves, more riders may decide to switch modes and adopt the ODMTS
instead of traveling with their personal vehicles. By ignoring the latent demand,
the ODMTS may be designed suboptimally, providing a lower convenience or
higher costs. This concern was raised in [3] who articulated the potential of
leveraging data analytics within the planning process and proposing transit sys-
tems that encourage riders to switch transportation modes.

This paper aims at remedying this limitation and explores the design of
ODMTS with both existing and latent demands. It considers a pool of potential
riders, each of whom is associated with a personalized mode choice model that
decides whether a rider will switch mode for a given ODMTS. Such a choice
model can be obtained through stated and revealed preferences, using surveys
and/or machine learning [17]. The main innovation of this paper is to show how
to integrate such mode choice models into the design of ODMTS, capturing
the latent demand and human behavior inside the optimization model. More
precisely, the contributions of the paper can be summarized as follows:

1. The paper proposes a novel bilevel optimization approach to model the
ODMTS problem with latent demand in order to obtain the most cost-efficient
and convenient route for each trip.

2. The bilevel optimization model includes a personalized mode choice for each
rider to determine mode switching or latent demand.

3. The bilevel optimization model is solved through a decomposition algorithm
that combines both traditional and combinatorial Benders cuts.

4. The paper demonstrates the benefits and practicability of the approach on a
case study using historical data over Ann Arbor, Michigan.

The remainder of the paper is organized as follows. Section 2 reviews the
relevant literature. Section 3 specifies the ODMTS design problem. Section 4
proposes a bilevel optimization approach for the design of ODMTS with latent
demand, and Sect. 5 develops the novel decomposition methodology. The case
study is presented in Sect. 6 and Sect. 7 concludes the paper with final remarks.

2 Related Literature

Hub location problems are an important area of research in transit network
design (see [7] for a recent review). More specifically, the transit network design
problem considering hubs can be considered as a variant of the hub-arc location
problem [4,5], which focuses on determining the set of arcs to open between hubs,
and optimizing the flow with minimum cost. Mahéo, Kilby, and Van Hentenryck
[13] extended this problem to the ODMTS setting by introducing on-demand
shuttles and removing the restriction that each route needs to contain an arc
involving a hub. Furthermore, instead of the restriction of hubs being intercon-
nected in the network design, they consider a weak connectivity within system
by ensuring the sum of incoming and outgoing arcs to be equal to each other for
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each hub. Although these studies provide efficient solutions for a given demand,
they neglect the effect of the latent demand which can change the design of the
transit systems.

Bilevel optimization is an important area of mathematical programming,
which mainly considers a leader problem, and a follower problem that optimizes
its decisions under the leader problem’s output. Due to this hierarchical deci-
sion making structure, this area attracted attention in different urban transit
network design applications [8,11] such as discrete network design problems [9]
by improving a network via adding lines or increasing their capacities, and bus
lane design problems [16] under traffic equilibrium. Another line of research
focuses on the pricing aspects of these problems for toll optimization by consid-
ering a multi-commodity network flow problem [1], and [2] extends this setting
by jointly designing the underlying network. Studies [6,14] provide an overview
of various solution methodologies to address these problems including refor-
mulations based on Karush–Kuhn–Tucker (KKT) conditions, descent methods
and heuristics. User preferences and the corresponding latent demand constitute
important factors impacting the network design. Because of the computational
complexity involved with solving bilevel problems, it is preferred to model rider
preferences within a single level optimization problem [10]. To this end, our app-
roach provides a novel bilevel optimization framework for solving the ODMTS
by integrating user choices, and developing an exact decomposition algorithm as
its solution procedure.

3 Problem Statement

This section defines the problem statement and stays as close as possible to the
original setting of the ODMTS design [13]. In particular, the input consists of
a set of (potentially virtual) bus stops N , a set of potential hubs H ⊆ N , and
a set of trips T . Each trip r ∈ T is associated with an origin stop orr ∈ N , a
destination stop der ∈ N , and a number of passengers taking that trip pr ∈ Z+.
This paper often abuses terminology and uses trips and riders interchangeably,
although a trip may contain several riders. The distance and time between each
node pair i, j ∈ N is given by parameters dij and tij , respectively. These parame-
ters can be asymmetric and are assumed to satisfy the triangular inequality. The
network design optimizes a convex combination of convenience (mostly travel
time) and cost, using parameter θ ∈ [0, 1]: In other words, convenience is multi-
plied by θ and cost by 1 − θ. The investment cost of opening a leg between the
hubs h, l ∈ H is given by as βhl = (1 − θ) b n dhl, where b is the cost of using a
bus per mile and n is the number of buses during the planning period. For each
trip r ∈ T , the weighted cost and convenience of using a bus between the hubs
h, l ∈ H is given by τ r

hl = θ(thl + S), where S is the average waiting time of a
bus (the bus cost is covered by the investment).

This paper adopts a pricing model where the ODMTS subsidizes part, but
not all, of the shuttle costs. More precisely, for simplicity in the notations, the



Bilevel Optimization for On-Demand Multimodal Transit Systems 55

paper assumes that the transit price is half of the shuttle cost of a trip.1 With
this pricing model, the weighted cost and convenience for an on-demand shuttle
between i and j for the ODMTS and riders is given by (1−θ) g

2 dij +θtij , where
g is the cost of using a shuttle per mile. Moreover, the shuttles act as feeders to
bus system or serve the local demand. As a result, their operations are restricted
to serve requests in a certain distance. This is captured by a threshold value of
Δ miles that characterizes the trips that shuttles can serve. As a result, it is
suitable to define the weighted cost and convenience of an on-demand shuttle
between the stops i, j ∈ N as follows:

γr
ij :=

{
(1 − θ) g2dij + θtij if dij ≤ Δ

M if dij > Δ.

where M is a big-M parameter.
To capture latent ridership, this paper assumes that a subset of trips T ′ ⊆ T

currently travel with their personal vehicles, while the trips in T \ T ′ already
use the transit system. The goal of the paper is to capture, in the design of
the ODMTS, the fact that some riders may switch mode and use the ODMTS
instead of their own cars as the transit system has a better cost/convenience
trade-off. Each rider r ∈ T ′ has a choice model Cr that determines, given the
cost/convenience of the novel ODMTS, whether r will switch to the transit
system. For instance, the cost model could be

Cr(dr) ≡ 1(dr ≤ αr drcar)

where drcar represents the weighted cost and convenience of using a car for rider
r, dr represents the weighted cost and convenience of using the ODMTS in some
configuration, and αr ∈ R+. In other words, rider r would switch to transit if
its convenience and cost is not more than αr times the cost and convenience of
traveling with her personal vehicle. The choice model could of course be more
complex and include the number of transfers and other features. It can be learned
using multimodal logic models or machine learning [17].

4 Model Formulation

This section proposes an optimization model for the design of an ODMTS follow-
ing the specification from Sect. 3. In the model, binary variable zhl is 1 if there is
a bus connection from hub h to l. Furthermore, for each trip r, binary variables
xr
hl and yr

ij represent whether rider r uses a bus leg between hubs h, l ∈ H and
a shuttle leg between stops i and j respectively. Binary variable δr for r ∈ T ′

is 1 if rider r switches to the ODMTS. The bilevel optimization model for the

1 The results in this paper generalize to other subsidies and pricing models, and they
will be discussed in the extended version of the paper.
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ODMTS design can then be specified as follows:

min
∑

h,l∈H

βhlzhl +
∑

r∈T\T ′
prdr +

∑
r∈T ′

prδrdr (1a)

s.t.
∑
l∈H

zhl =
∑
l∈H

zlh ∀h ∈ H (1b)

δr = Cr(dr) ∀r ∈ T ′ (1c)
zhl ∈ {0, 1} ∀h, l ∈ H (1d)
δr ∈ {0, 1} ∀r ∈ T ′ (1e)

where dr is the cost and convenience of trip r, i.e.,

dr = min
∑

h,l∈H

τ r
hlx

r
hl +

∑
i,j∈N

γr
ijy

r
ij (2a)

s.t.
∑
h∈H
if i∈H

(xr
ih − xr

hi) +
∑
i,j∈N

(yr
ij − yr

ji) =

⎧⎪⎨
⎪⎩

1 , if i = orr

−1 , if i = der

0 , otherwise
∀i ∈ N

(2b)

xr
hl ≤ zhl ∀h, l ∈ H (2c)

xr
hl ∈ {0, 1} ∀h, l ∈ H, yr

ij ∈ {0, 1} ∀i, j ∈ N. (2d)

The resulting formulation is a bilevel optimization where the leader problem
(Eqs. (1a)–(1e)) selects the network design and the follower problem (Eqs. (2a)–
(2d)) computes the weighted cost and convenience for each rider r ∈ T in the
proposed ODMTS.

The objective of the leader problem (1a) minimizes the investment cost of
opening legs between hubs and the weighted cost and convenience of the routes in
the ODMTS for those riders. Constraint (1b) ensures weak connectivity between
the hubs and constraint (1c) represents the rider choice, i.e., whether rider r ∈ T ′

switches to the ODMTS.
The follower problem of a given trip minimizes the cost and convenience of

its route between its origin and destination, under a given transit network design
between the hubs (objective function (2a)). Constraint (2b) ensures flow conser-
vation for the bus and shuttle legs. Constraint (2c) guarantees that only open
legs are considered by each trip. The follower problem has a totally unimodu-
lar constraint matrix, once the leader problem determines the transit network
design decisions z. In this case, integrality restrictions (2d) can be relaxed, and
the problem can be solved as a linear program.

As specified, the follower problem takes into account all of the arcs between
each node pair i, j ∈ N for possible rides with on-demand shuttles. However,
due to the triangular inequality, it is sufficient to consider a subset of the arcs
for the on-demand shuttles of each trip. More precisely, the optimization only
needs to consider arcs i) from origin to hubs, ii) from hubs to destination, and
iii) from origin to destination. This subset of necessary arcs for trip r is denoted
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by Ar. Consequently, the model only needs the following decision variables for
describing the on-demand shuttles used in trip r:

yr
orrh, yr

hder ∈ {0, 1} ∀h ∈ H

yr
orrder ∈ {0, 1}.

This preprocessing step significantly reduces the size of the follower problem and
provides a significant computational benefit.

5 Solution Methodology

This section presents a decomposition approach to solve the bilevel problem (1).
The decomposition combines traditional Benders optimality cuts with combina-
torial Benders cuts to capture the rider choices. The Benders master problem
is associated with the leader problem and considers the complicating variables
(zhl, δr, dr) and the subproblems are associated with the follower problems. The
master problem relaxes the user choice constraint (1c). The duals of the sub-
problems generate Benders optimality cuts for the master problem. Moreover,
combinatorial Benders cuts are used to ensure that the rider mode choices in
the master problem are correctly captured by the master problem. The overall
decomposition approach iterates between solving the master problem and guess-
ing (z̄hl, δ̄r, d̄r) and solving the subproblems to obtain the correct value dr from
which the switching decision Cr(dr) can be derived. The overall process termi-
nates when the lower bound obtained in the master problem and upper bound
computed through the feasible solutions converge.

Section 5.1 presents the master problem and Sect. 5.2 discusses the subprob-
lem along with some preprocessing steps. Section 5.3 introduces the cut gener-
ation procedure and proposes stronger cuts under some natural monotonicity
assumptions. Section 5.4 specifies the proposed decomposition algorithm and
proves its finite convergence. Finally, Sect. 5.5 improves the decomposition app-
roach with Pareto-optimal cuts.

5.1 Relaxed Master Problem

The initial master problem (3) is a relaxation of the bilevel problem (1), i.e.,

min
∑

h,l∈H

βhlzhl +
∑

r∈T\T ′
prdr +

∑
r∈T ′

prδrdr

s.t. (1b), (1d), (1e). (3a)

Each iteration first solves the relaxed master problem (3), before identifying
combinatorial and Benders cuts to add to the master problem. These cuts depend
on the proposed transit network design and rider choices as discussed in Sects.
5.2 and 5.3. The objective function (3a) involves nonlinear terms and needs to be
linearized. Since the mode choice is binary, the nonlinear terms can be linearized
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easily by defining νr = δrdr and adding the following constraints to the master
problem for each trip r ∈ T ′:

νr ≤ M̄rδr (4a)
νr ≤ dr (4b)
νr ≥ dr − M̄r(1 − δr) (4c)
νr ≥ 0, (4d)

where the constant M̄r is an upper bound value on the objective function value
of the lower level problem of trip r.

5.2 Subproblem for Each Trip

The subproblems for the decomposition algorithm are the duals of the follower
problems (2). Since the follower problems have a totally unimodular constraint
matrix for a given binary z̄ vector, the integrality condition for variable xr

ij can
be relaxed into by xr

ij ≥ 0 and the bounds xr
ij ≤ 1 can be discarded since it

is redundant due to constraint (2c). Then, the dual of the subproblem for each
route r ∈ T can then be specified by introducing the dual variables ur

i and vr
hl:

max (ur
orr − ur

der ) −
∑

h,l∈H

z̄hlv
r
hl (5a)

s.t. ur
h − ur

l − vr
hl ≤ τ r

hl ∀h, l ∈ H (5b)
ur
i − ur

j ≤ γr
ij ∀i, j ∈ Ar (5c)

ur
i ≥ 0 ∀i ∈ N, vr

hl ≥ 0 ∀h, l ∈ H. (5d)

Problem (2) is trivially feasible by using the direct trip between origin and des-
tination (which may have a high cost) and hence the dual problem (5) bounded.
The optimal objective value of subproblem (2) under solution {z̄hl}h,l∈H is
denoted by SP r(z̄). In the following section, this value is utilized to evaluate
the rider’s mode choice and possibly to generate combinatorial cuts.

5.3 The Cut Generation Procedure

The cut generation procedure receives a feasible solution ({z̄hl}h,l∈H , {δ̄r}r∈T ′ ,
{d̄r}r∈T ) to the relaxed master problem. It solves the dual subproblem (5) for
each trip r ∈ T under the network design z̄. For any trip r ∈ T ′, the cut genera-
tion procedure then analyzes the feasibility and optimality of the solution of the
relaxed master problem, depending on the value of SP r(z̄). The cut generation
first needs to enforce the consistency of the choice model.

Definition 1 (Choice Consistency). For a given trip r, the solution values
{z̄hl}h,l∈H and δ̄r are consistent with SP r(z̄) if

δ̄r = Cr(SP r(z̄)).
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As a result, it is useful to distinguish the following cases in the cut generation
process:

1. Solution values {z̄hl}h,l∈H and δ̄r are inconsistent with SP r(z̄)
(a) δ̄r = 1 and Cr(SP r(z̄)) = 0;
(b) δ̄r = 0 and Cr(SP r(z̄)) = 1.

2. Solution values {z̄hl}h,l∈H and δ̄r are consistent with SP r(z̄).

The first inconsistency (case 1(a)) can be removed by using the cut∑
(h,l):z̄hl=0

zhl +
∑

(h,l):z̄hl=1

(1 − zhl) ≥ δr (6)

Proposition 1. Constraint (6) removes inconsistency 1(a).

The second inconsistency (case 1(b)) can be removed by using the cut∑
(h,l):z̄hl=0

zhl +
∑

(h,l):z̄hl=1

(1 − zhl) + δr ≥ 1 (7)

Proposition 2. Constraint (7) removes inconsistency 1(b).

Combinatorial cuts (6) and (7) ensure the consistency between the rider choice
model and the transit network design z̄. These cuts can be strenghtened under
a monotonicity property.

Definition 2 (Anti-Monotone Mode Choice). A choice function C is anti-
monotone if d1 ≤ d2 ⇒ C(d1) ≥ C(d2).

Proposition 3. Let r ∈ T . If z̄1 ≤ z̄2, then SP r(z̄1) ≥ SP r(z̄2).

Proof. If z̄1 ≤ z̄2, more arcs are available in the network defined by z̄2 than in
the network defined by z̄1. Therefore, the length of the optimum shortest path
for trip r under z̄1 is greater than or equal to that of z̄2. 	

The following proposition follows directly from Proposition 3.

Proposition 4. Let r ∈ T and Cr be an anti-monotone choice function. If z̄1 ≤
z̄2, then Cr(SP r(z̄1)) ≤ Cr(SP r(z̄2)).

When the choice function is anti-monotone, stronger cuts can be derived.

Proposition 5. Consider an anti-monotone choice function. Then constraint
(6) for case 1(a) can be strengthened into constraint∑

(h,l):z̄hl=0

zhl ≥ δr (8)



60 B. Basciftci and P. Van Hentenryck

Proof. Consider case 1(a) and network design z̄. Let z̃ be a network design
obtained by removing some arcs from z̄. By Proposition 3, SP r(z̃) ≥ SP r(z̄) for
any trip r. Hence, by Proposition 4, Cr(SP r(z̃)) ≤ Cr(SP r(z̄)). Therefore, the
right term of cut (6) does not remove the inconsistency and the result follows. 	

Proposition 6. Consider an anti-monotone choice function. Then constraint
(7) for case 1(b) can be strengthened into constraint∑

(h,l):z̄hl=1

(1 − zhl) + δr ≥ 1 (9)

Proof. Consider case 1(b) and network design z̄. Let z̃ be a network design
obtained by adding some arcs to z̄. By Proposition 3, SP r(z̃) ≤ SP r(z̄) for any
trip r. Hence, by Proposition 4, Cr(SP r(z̃)) ≥ Cr(SP r(z̄)). Thus, the left term
of cut (7) does not remove the inconsistency and the result follows. 	

Since the dual subproblem (5) is bounded, it is also possible to add an optimality
cut to the master problem in both cases of 1 and 2 using the weighted cost and
convenience of each obtained route. This cut is the standard Benders optimality
cut and it uses the vertex (ūr, v̄r) obtained when solving the dual subproblem
as follows:

dr ≥ (ūr
orr − ūr

der ) −
∑

h,l∈H

zhlv̄
r
hl. (10)

It is also possible to obtain an upper bound from the solutions to the subprob-
lems. Indeed, the rider choices can be derived from the solutions of the sub-
problems and used instead of the corresponding master variables for the mode
choices.

The experimental results use the choice function Cr(dr) ≡ 1(dr ≤ αr drcar): A
rider r chooses the ODMTS if her weighted cost and convenience is not greater
than αr times the weighted cost and convenience drcar of using her personal car.
This choice function is anti-monotone.

Proposition 7. The choice function Cr(dr) ≡ 1(dr ≤ αr drcar) is anti-
monotone.

Proof. By definition, dr decreases when adding arcs to a network and dr1 ≤ dr2
implies Cr(dr1) ≥ Cr(dr2). 	


5.4 Decomposition Algorithm

The decomposition is summarized in Algorithm 1. It uses a lower and an upper
bound to the bilevel problem (1) to derive a stopping condition. The master
problem provides a lower bound and, as mentioned earlier, an upper bound can
be derived for each network design by solving the subproblems and obtaining
the mode choices for the trips.

Proposition 8. Algorithm 1 converges in finitely many iterations.
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Algorithm 1. Decomposition Algorithm
1: Set LB = −∞, UB = ∞, z∗ = ∅.
2: while UB > LB + ε do
3: Solve the relaxed master problem (3) and obtain the solution ({z̄hl}h,l∈H ,

{δ̄r}r∈T ′ , {d̄r}r∈T ).
4: Update LB.
5: for all r ∈ T do
6: Solve the subproblem (5) under z̄, and obtain SP r(z̄).
7: Add optimality cut in the form (10) to the relaxed master problem (3).
8: for all r ∈ T ′ do
9: if {z̄hl}h,l∈H and δ̄r are inconsistent with SP r(z̄) then

10: Add cuts in the form (8) or (9) to the relaxed master problem.
11: if Cr(SP r(z̄)) is 1 then
12: Set δ̂r = 1.
13: else
14: Set δ̂r = 0.
15: ̂UB =

∑

h,l∈H βhlz̄hl +
∑

r∈T\T ′ prSP r(z̄) +
∑

r∈T ′ pr δ̂rSP r(z̄).

16: if ̂UB < UB then
17: Update UB as ̂UB, z∗ = z̄.

Proof. The algorithm generates traditional Benders optimality cuts and, in addi-
tion, the consistency cuts of the form (8) or (9). When all the consistency cuts are
generated, the algorithm reduces to a standard Benders decomposition. There
are only finitely many consistency cuts, because the decision variables z and δr

are binary. Since each iteration adds at least one new consistency or Benders
cut, the algorithm is guaranteed to converge in finitely many iterations. 	


5.5 Pareto-Optimal Cuts

The decomposition algorithm can be further enhanced by utilizing Pareto-
optimal cuts [12] through alternative optimal solutions of the subproblems. To
this end, the algorithm first solves the follower problem (2) under a given network
design, obtains the optimal objective value for the corresponding trip, and then
solve the Pareto subproblem, i.e., a restricted version of the dual subproblem (5)
under this optimal value.

Observe that, once the transit network design z̄ is given, the follower prob-
lem of each trip r is equivalent to solving a shortest path problem considering
the union of the arcs defined by z̄ and the arcs in the set Ar. Consequently,
this shortest path information can be obtained by solving a linear program and
obtaining the objective value σr for trip r. Using this information, the Pareto
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subproblem for trip r is defined as follows:

max (ur
orr − ur

der ) −
∑

h,l∈H

z0hlv
r
hl (11a)

s.t. ur
h − ur

l − vr
hl ≤ τ r

hl ∀h, l ∈ H (11b)
ur
i − ur

j ≤ γr
ij ∀i, j ∈ Ar (11c)

(ur
orr − ur

der ) −
∑

h,l∈H

z̄hlv
r
hl = σr (11d)

ur
i ≥ 0 ∀i ∈ N, vr

hl ≥ 0 ∀h, l ∈ H, (11e)

where z0 is a core point that satisfies the weak connectivity constraint (1b). To
obtain an initial core point, it suffices to select a value η ∈ (0, 1), and set zhl = η
for all h, l ∈ H.

6 Computational Results

The computational study considers a data set from Ann Arbor, Michigan with 10
hubs located around high density corridors and 1267 bus stops. The experiments
examine a set of trips from 6 pm to 10 pm on a specific day. The studied data set
involves 1503 trips with a total of 2896 users, where the origin and destination
of each trip are associated with bus stops. The costs and times between the bus
stops are asymmetric in the studied data set. The study included a preprocessing
step to ensure the triangular inequality with respect to the cost and convenience
parameters of the on-demand shuttles between the stops.

To model rider preferences in the formulation, the computational study used
an income-based classification. This approach assumes that, as the income level
of a rider increases, she becomes more sensitive to the quality of the ODMTS
route (convenience). In particular, the study considers three classes of riders: i)
low-income, ii) middle-income and iii) high-income, where a certain percentage of
riders from each class is assumed to use the ODMTS. The trips are then classified
with respect to their destination locations, which can be associated with the
residences of the corresponding riders. In particular, in the base scenario, 100%
of low-income riders, 75% of middle-income riders, and 50% of high-income users
utilize the transit system, whereas the remaining riders have the option to select
the ODMTS or use their personal vehicles by comparing the obtained route with
their current mode of travel.

The convenience parameter θ is set to 0.01 for weighting cost and convenience.
The cost of an on-demand shuttle per mile is taken as g = $2.86 and the cost
of a bus per mile is b = $7.24. The buses between hubs have a frequency of
15 min, resulting in 16 buses during the planning horizon with length of 4 h. As
mentioned earlier, the price of a ride in the ODMTS is half the cost of the shuttle
legs. The base case of the case study sets αr to 1.25 and 1 for middle-income
and high-income riders respectively. The distance threshold for the on-demand
shuttles, Δ, is set to 2 or 5 mi.
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6.1 Transit Design and Mode Switching

Figure 1 depicts the transit network design between hubs under the proposed
approach. The bus stops associated with the lowest income level are red dots,
those of the middle-income level are grey boxes, and those of the high-income
level are green plus symbols. In the resulting network design, almost every hub
is connected to at least another hub ensuring weak connectivity of the network.

Fig. 1. Network design for the ODMTS with 10 Hubs with Δ = 2.

Table 1. Adoption rates, average route time and average ride cost for the ODMTS.

Income
level

#trips %adoption #riders %adoption Avg
route
time (s)

Avg
route
cost ($)

Low 476 1.00 877 1.00 901.45 2.41

Middle 784 0.96 1615 0.97 553.43 2.43

High 149 0.72 285 0.79 583.10 2.78

Table 1 shows the rider preferences, and the average time and cost of the
obtained routes. In particular, columns ‘#trips’ and ‘#riders’ represent the num-
ber of trips and riders of the ODMTS. The “%adoption” columns correspond to
the adoption rate, i.e., the percentage of trips or riders utilizing the ODMTS.
When computing the adoption rate, these numbers include the initial set of
riders, i.e., 100% of low-income riders, 75% of middle-income riders and 50%
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of high-income riders. The cost and convenience of the ODMTS is sufficiently
attractive to exhibit significant mode switching, even for the high-income pop-
ulation. Columns for the average route time and cost represent the averages for
the obtained routes regardless of the fact that whether riders adopts the tran-
sit system or not. The results highlight the high adoption rates. The average
route time is the longest for the low-income riders given their long commuting
trips. Similar results are observed for the number of transfers, which include the
transfers between on-demand shuttles and buses, and between the buses in the
hubs. Specifically, from the set of riders choosing the transit system, 22% of low-
income riders, 8% of medium-income riders, and 3% of high-income riders have
at least 3 transfers. Moreover, the number of transfers decreases with increases
in income level.

Table 2. Comparing the average cost and time of the ODMTS trips and those using
personal vehicles (Cars).

ODMTS trips Car trips

Time Cost Time Cost

Income level ODMTS Cars ODMTS Cars ODMTS Cars ODMTS Cars

Low 901.45 405.96 2.41 10.72 NA NA

Medium 528.94 296.95 2.38 7.14 1489.80 585.03 5.17 14.55

High 529.84 326.53 2.30 7.06 93.77 31.51 0.21 0.88

Table 2 presents a cost and convenience analysis for the ODMTS trips and
those using personal vehicles (cars). The columns corresponding to “ODMTS
Trips” represent users who chose the transit system, whereas columns corre-
sponding to “Car Trips” are for those using their personal vehicles, once they
observe the transit network design. It also provides the cost and convenience of
the other mode, i.e., the convenience and cost of using a personal vehicle for those
using the ODMTS and vice-versa. As can be seen, the cost of using the ODMTS
is significantly lower, although personal vehicles would decrease the commute
time significantly for low-income riders. Note however that the ODMTS has also
achieved low commuting times. Riders using personal vehicles do so because the
transit times are simply too large for their trips.

The next results examine the effect of the threshold value Δ on the rides with
on-demand shuttles. Figure 2 presents the network design with Δ = 5 mile. This
allows for longer shuttle rides from origin to destination of each trip compared to
the Δ = 2 case in Fig. 1. As a result, the network design has fewer connections
between hubs. Although the investment cost for the network design is lower
in this case, the average trip cost increases and the average time of the trips
decreases through the adoption of more on-demand shuttles. This highlights the
trade-off between the high-frequency buses and on-demand shuttles.
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Fig. 2. Network design for the ODMTS with 10 Hubs with Δ = 5.

6.2 The Benefits of the Formulation

This section compares the novel bilevel formulation with latent demand (L) with
the original formulation that ignores the latent demand (O). In other words, the
original formulation designs the network with T \T ′ trips but is evaluated on the
complete set T of trips. The two network designs are then compared in terms of
cost and convenience. To obtain a realistic setting, the share of public transit is
assumed to be 10% for each income level. The results are presented in Table 3.

Table 3. Comparison of the proposed (L) and original (O) models with Δ = 5.

Model Income Adoption Investment ($) ODMTS trips ($) Conv. (s) Cost &
Conv.

L Low 1.00 2482.38 17530.24 1269263.87 32505.13

Middle 1.00

High 0.84

O Low 1.00 861.54 20685.56 1167457.12 33006.20

Middle 0.99

High 0.82

The results show that both models have similar results in terms of mode
switching. However, the new formulation has a higher investment cost and a
lower cost for the ODMTS trips compared to the original formulation. The dif-
ference between the models is highlighted in Fig. 3, which shows the network
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designs under the two approaches: The dashed legs represent the design under
the original model, and the other legs correspond to the design of the proposed
model. This result is intuitive: With more ridership, the ODMTS should open
more legs and further reduces congestion. It shows that the novel formulation
provides a more robust solution that should reassure transit agencies. As the orig-
inal formulation opens fewer legs between hubs, users utilize more on-demand
shuttles, resulting in trips with more convenience but at much higher costs. In
terms of the total investment and trips cost, the results show that the new and
original formulations have total costs of $20012.62 and $21547.10, respectively.
As this cost improvement corresponds to a planning horizon of 4 h, it scales up to
a gain of $1227585 over a yearly plan with 200 days over 16 h. This is signifi-
cant for this case study and highlights why transit agencies are worried about the
success of ODMTS when they are planned with the existing demand only: They
will under-invest in bus lines and sustain higher shuttle costs. The formulation
proposed in this paper remedies this limitation: By taking into account the per-
sonalized choice models of riders, the network design invests in high-frequency
buses, decreasing the overall cost while maintaining an attractive level of con-
venience. Note also that, the pricing model adopted in this paper keeps the
transit costs low but is also conducive to numerous mode switchings, since the
transit system subsidies half the cost. It is also important to report the compu-
tational performance of the proposed algorithms. The formulation with latent
demand requires 513 s to converge in 8 iterations, whereas the original formula-
tion requires 189 s in 8 iterations for the case study.

Fig. 3. Network designs of the proposed model (L) and the original model (O).
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7 Conclusion

This study presented a bilevel optimization approach for modeling the ODMTS
by integrating rider preferences and considering latent demand. The transit net-
work designer optimizes the network design between the hubs for connecting
them with high frequency buses, whereas each rider tries to find the most cost-
efficient and convenient route under a given design through buses and on-demand
shuttles. The paper considered a generic preference model to capture whether
riders switch to the ODMTS based on the obtained route and their current
mode of travel. To solve the resulting optimization problem, the paper proposed
a novel decomposition approach and developed combinatorial Benders cuts for
coupling the network design decisions with rider preferences. A cut strengthen-
ing was also proposed to exploit the structure of the follower problem and, in
particular, a monotonicity assumption of the choice model. The potential of the
approach was demonstrated on a case study using a data set from Ann Arbor,
Michigan. The results showed that ignoring latent demand can lead to significant
cost increase (about 7.5%) for transit agencies, confirming that these agencies
are correct in worrying about customer adoption. This is the case even for a
pricing model where the transit agency and riders share the shuttle costs. The
new formulation can also be solved in reasonable time.

Current work is devoted to examining the impact of various cost models
and different choice models for riders. Applications of the model to the city of
Atlanta is also contemplated and should reveal some interesting modeling and
computational challenges given the size of the city.

Acknowledgements. This research is partly supported by NSF Leap HI proposal
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13. Mahéo, A., Kilby, P., Van Hentenryck, P.: Benders decomposition for the design
of a hub and shuttle public transit system. Transp. Sci. 53(1), 77–88 (2019)

14. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to
evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–
295 (2018)

15. Van Hentenryck, P.: Social-aware on-demand mobility systems. ISE Mag. (Fall
2019)

16. Yu, B., Kong, L., Sun, Y., Yao, B., Gao, Z.: A bi-level programming for bus lane
network design. Transp. Res. Part C Emerg. Technol. 55, 310–327 (2015)

17. Zhao, X., Yan, X., Van Hentenryck, P.: Modeling heterogeneity in mode-switching
behavior under a mobility-on-demand transit system: an interpretable machine
learning approach. CoRR abs/1902.02904 (2019). http://arxiv.org/abs/1902.02904

http://arxiv.org/abs/1902.02904


Local Search and Constraint
Programming for a Real-World

Examination Timetabling Problem

Michele Battistutta1, Sara Ceschia2 , Fabio De Cesco1, Luca Di Gaspero2 ,
Andrea Schaerf2(B) , and Elena Topan1

1 EasyStaff srl, Via Adriatica, 278, 33030 Campoformido, UD, Italy
{michele,fabio,elena}@easystaff.it

2 DPIA, University of Udine, Via delle scienze 206, 33100 Udine, Italy
{sara.ceschia,luca.digaspero,andrea.schaerf}@uniud.it

Abstract. We investigate the examination timetabling problem in the
context of Italian universities. The outcome is the definition of a general
problem that can be applied to a large set of universities, but is quite
different in many aspects from the classical versions proposed in the lit-
erature.

We propose both a metaheuristic approach based on Simulated
Annealing and a Constraint Programming model in MiniZinc. We com-
pare the results of the metaheuristic approach (properly tuned) with
the available MiniZinc back-ends on a large set of diverse real-world
instances.

Keywords: Examination timetabling · Simulated annealing · MiniZinc

1 Introduction

Examination timetabling (ETT) is one of the classical problems that every uni-
versity has to deal with on a regular basis. Many formulations of the ETT
problem have been proposed in the literature, some of which have received con-
siderable attention [5,12].

We propose a novel formulation of ETT, which applies to Italian universities.
This formulation is quite different from the ones proposed in the literature [15,
16], as it involves many specific constraints and objectives. For example, some
exams are composed by separate written and oral part, which must be scheduled
at suitable distance and have different overlap acceptability levels in relation to
other exams. In addition, the same exam might be repeated more than once in
a session, with prescribed minimal distances among rounds. As another quite
distinctive feature, exams might require multiple rooms, typically in exclusive
use.

In this work, we propose a metaheuristic approach based on a tailored
neighborhood structure, a Simulated Annealing procedure, and a statistically-
principled parameter tuning. The main motivation for the choice of Simulated
c© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 69–81, 2020.
https://doi.org/10.1007/978-3-030-58942-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_5&domain=pdf
http://orcid.org/0000-0003-1191-1929
http://orcid.org/0000-0003-0299-6086
http://orcid.org/0000-0001-6965-0536
https://doi.org/10.1007/978-3-030-58942-4_5


70 M. Battistutta et al.

Annealing is that it already turned out to be capable of obtaining state-of-the-art
results in many educational timetabling problems (see, e.g., [1,2,6]).

We also developed a MiniZinc model that allows us to compare the results
of the metaheuristic, by testing many available back-ends on this challenging
problem.

The outcome is that Simulated Annealing is able to solve real-world instances
to a good quality. Conversely, most instances are currently beyond the reach of
exact Constraint Programming methods.

As a byproduct of this research, we are collecting many real-world instances,
which are made available to the community for future comparisons, and could
potentially become a new benchmark. Instances, solutions, and the MiniZinc
model are available at https://bitbucket.org/satt/ExamTimetablingUniudData.
The repository includes also a Python validator that checks the cost of a solution,
so as to provide against possible misunderstanding about the constraints and the
objectives.

2 Problem Formulation

Our problem consists of scheduling an examination session at the end of a
semester for a university campus. The problem is based on the following entities:

Courses, Exams, & Events: For each course, we have to schedule one or
more exams within the session. Each exam might be a single event (either
written or oral) or composed by two events, identified as the written part
(first) and the oral part (second), to be handed out in this strict order.

Rooms & Roomsets: Some events require one or more rooms, others do not,
as they take place in teacher’s office or in external rooms. Rooms are classi-
fied as small, medium, or large, and for each written event we set the number
and the type of rooms requested (mixed requests are not considered). Due to
logistic issues, not all combinations of homogeneous rooms can be assigned
to a single event. The available ones, called roomsets, are explicitly listed in
the input data. Oral events might require at most one room (of any size).

Days, Timeslots, & Periods: The session is divided in days and each day in
divided in timeslots, with the same number of timeslots for each day. Each
pair day/timeslot represents a period of the session.

Curricula: A curriculum is a set of courses that have students in common,
which might enroll in the corresponding exams. The set of courses of a cur-
riculum is split into primary courses, that are the ones taught in the current
semester, and the secondary ones, that have been taught in the previous
semester, but such that some students might still have to undertake them.
The level of conflict between primary and secondary exams of a curriculum
varies, as detailed below.

The problem consists in assigning a period and a location (a room, a roomset,
or nothing) to each event, satisfying the hard and soft constraints explained in
the following paragraphs.

https://bitbucket.org/satt/ExamTimetablingUniudData
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Fig. 1. A toy instance.

All the data representing a toy instance is shown in Fig. 1. The table Courses
shows the structure of the courses, with teacher, number of exams, distance
between exams, exam type (W for written, O for oral), and location requested.
The other tables show the respective features, including the available roomsets.
Preferences and constraints are not shown for the sake of brevity.

We propose a possible solution in Fig. 2. We can see that the 5 courses are
“exploded” into 13 events. Each single event has its own conflict and distance
constraints, as discussed in the following paragraphs.

The hard constraints are the following:

H1. RoomRequest: for each written event, type and number of the rooms
assigned must be correct; for oral exams, a single room, of any type, must
be assigned, if requested.

H2. RoomOccupation: in one period, a room can be used by at most one event.
H3. HardConflicts: Two events in hard conflict cannot be scheduled in the

same period. Two events are in hard conflict in the following cases:
– They are part of courses that are both primary courses of one curriculum.
– They have the same teacher.
– There is an explicit constraint stating that the overlap of the two events

is forbidden.
H4. Precedences: When two events have a precedence constraint, the first

must be scheduled strictly before the second. Two events have a precedence
constraint in the following cases:
– They are part of two exams of the same course.
– They are part of the same exam (written and oral).

H5. Unavailabilities: An event might be explicitly stated as unavailable in a
specific period, so that it cannot be assigned to that period. Similarly, a
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Fig. 2. A solution for the toy instance.

room might be unavailable for a specific period, so that no event can use it
in that period.

The objectives (soft constraints) are they following:

S1. SoftConflicts: Two events in soft conflict should not be scheduled in the
same period. Two events are in soft conflict in the following cases:
– They belong to courses that are in the same curriculum, either as primary

and secondary or both as secondary.
– There is an explicit constraint stating that their overlap is undesirable.

S2. Preferences: Like Unavailabilities, preferences between events and periods
and between periods and rooms stating the undesirability of an assignment
can be expressed explicitly. For periods, it is also possible to state a positive
preference for a specific event, so that in presence of preferred periods for an
event, all indifferent ones are assumed undesired (and explicitly undesired
one are given a larger penalty).

S3. Distances: Among events there might be requested separations in term of
periods. Distances can be either directed, imposing that one event must pre-
cede the other, or undirected so that any order is acceptable. The situations
that require a distance are the following:
– Same exam (directed): different parts of the same exam have a minimum

and a maximum distance, stated specifically for each course (e.g., events
0 and 1 in the example).

– Same course (directed): different exams of the same course must be sep-
arated. The separation constraint is applied between the first (or single)
part of each of the two exams (e.g., events 0 and 2 in the example).

– Same curriculum (undirected): if two courses belong to the same cur-
riculum, there should be a separation between the exams (as above, for



Local Search and Constraint Programming for Examination Timetabling 73

two-part exams, we consider the first one). The amount of separation and
the weight for its violation depend on the type of the two (primary or
secondary) memberships.

– Additional requests can be added explicitly.

The weight of the violation of the various types of soft conflicts are set by
the end-user. Similarly, all distance limits and the corresponding weights are
configurable.

We can see that the solution of Fig. 2 has a few soft constraint violations. For
example, the distance between the two parts of Databases is 3 periods for both
exams, whereas the minimum is 4. Another violation is related to the curriculum
Ele. Eng. for which the written part of the first exam of Databases (at period 2)
is too close to the written part of the single exam of Algorithms (at period 0),
given that the minimum distance for primary/primary exams is assumed to be
6.

3 Related Work

The literature on the examination timetabling problem is rather vast. We refer
to Qu et al. [15] for a relatively up-to-date survey.

Among the large set of proposed formulations, two have received considerable
attention in the literature. The first is the classical one from Carter et al. [5].
This is a very essential version of the problem, in which each exam is a single
event and rooms are not considered. Differently from our formulation, which is
curriculum-based, in the work of Carter et al. conflicts are based on student
enrollments, so that each student contributes to the penalty of a schedule when-
ever the exams (s)he takes are too close. Given also that rooms are not involved,
the only constraint is HardConflicts (H3) and the only objective is Distances (S3).
Distances are penalized in a fixed exponential patterns: the cost of scheduling
two exams with k common students at distance 1, 2, 3, 4, and 5 periods is 16k,
8k, 4k, 2k, and k, respectively.

This formulation comes with a challenging dataset of 13 real-world instances
form North American universities that are still not solved to proven optimality.
The dataset has been subsequently extended and generalized by other authors
(see, e.g.., [13]). Recent results on this formulation have been obtained by Leite
et al. [10].

The other popular formulation is the one coming from Track 1 of the 2nd
International Timetabling Competition [12]. This is a much richer formulation,
taken mainly from British universities, that includes rooms and many specific
constraints. Among others, periods and exams can have different length, so that
some periods might be unsuitable for certain exams. Rooms might be used either
exclusively or shares among exams (preferably of the same length). Exams might
have precedence constraints. The objective function components regard mainly
the spreading of exams for students and the assignment of large exams in the
initial periods.
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For this formulation 12 instances are available which are also quite challeng-
ing and not solved to optimality up to today. The contributions on this problem
include [1,4,11].

Another notable formulation is the one proposed by Müller [14], which rep-
resents a complex real-world problem. The formulation comes along with 9 chal-
lenging instances in XML format.

4 Local Search Solver

We now introduce our local search method. We first describe the search space,
the cost function, and the initial solution (Sect. 4.1), then we introduce the neigh-
borhood relations (Sect. 4.2), and finally we discuss our metaheuristic strategy
(Sect. 4.3).

4.1 Search Space, Cost Function, and Initial Solution

A state in the search space is represented by two vectors that store for each
event the period when it is scheduled and the location where it takes place. As
already mentioned, the location can be either a single room, a roomset, or the
dummy room (no room assigned). Any period can be assigned to an event unless
it is unavailable for the event. For the location assignment, instead, we consider
only locations of the correct type, according to the requirements.

This means that the constraints H1 and H5 are always satisfied. Conversely,
we let the search method visit also infeasible state, by violating constraints H2,
H3, and H4.

The cost function is thus the weighted sum of the penalties of the soft con-
straints S1–S3 and the violations of hard constraints H2–H4 multiplied by a
suitably high weight, such that a single hard constraint violation is never pre-
ferred to any combination of soft ones.

The initial solution is generated at random, but satisfying constraints H1
and H5. In particular, for the selection of the location, the choice is among
the compatible ones. For example, an event that does not require a room is
compatible only with the dummy room, so that this is the location that is always
selected.

4.2 Neighborhood Relations

The typical basic neighborhood relation in examination timetabling is the repo-
sition of a single event. We call this neighborhood MoveEvent:

MoveEvent (ME). Given an event e, a period p and a location l, the move
ME〈e, p, l〉 repositions e at p in l.
Preconditions: p is available for e and l is compatible with e.
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In our case, the presence of exams composed by two events suggests that
it might be useful to consider a neighborhood that could move the two paired
events jointly. However, we should consider the possibility of moving either the
single event or the complete exam. This leads us to the following neighborhood:

MoveEventOrExam (MEE). Given an event e, a period p, a location l, a Boolean
b, a period p′, and a location l′, the move MEE〈e, p, l, b, p′, l′〉 repositions e at
p in l. If b is true, it also repositions the event e′ associated with e at p′ in
l′. If b is false, then p′ and l′ are ignored.
Preconditions: p is available for e and l is compatible with e; if e is not part
of a composite exam then b is false; if b is true, p′ is available for e′ and l′ is
compatible with e′.

4.3 Simulated Annealing

As a metaheuristic to guide the local search we use Simulated Annealing (SA)
[9]. For an up-to-date exhaustive introduction to Simulated Annealing and its
variants we refer to the work of Franzin and Stützle [7].

Our SA procedure starts from an initial random state and at each iteration
draws a random move in the MEE neighborhood. For the MEE move selection, we
first select uniformly the event e, the period p, and the location l. If e is not part
of a composite exam, then b is set to false. If instead e is part of a composite
exam, we select b = true with probability pb and b = false with probability
1 − pb. If b is true, p′ and l′ are randomly selected, whereas if b is false p′ and l′

are ignored.
As customary for SA, calling Δ the difference of cost induced by the selected

move, this is accepted if Δ ≤ 0, whereas it is accepted based on time-decreasing
exponential distribution (called Metropolis) in case Δ > 0. Specifically, a wors-
ening move is accepted with probability e−Δ/T , where T is the temperature. The
temperature starts at the initial value T0, and decreases by being multiplied by
a value α (with 0 < α < 1), each time a fixed number of samples ns has been
drawn.

To the basic SA procedure, we add the cut-off mechanism that speeds up the
early stages. The idea is to decrease the temperature also when a given number
of moves has been accepted. That is, we add a new parameter na, that represents
the maximum number of accepted moves at each temperature. The temperature
is decreased when the first of the following two conditions occurs: (i) the number
of sampled moves reaches ns, (ii) the number of accepted moves reaches na.

We use the total number of iterations I as stop criterion. This guarantees that
the running time is the same for all configurations of the SA parameters. With
respect to a criterion based on a strict time limit, our criterion has the advantage
that it is deterministic (given the random seed) and it is not dependent on the
environment, so that each run can be reproduced precisely.

In order to keep total number of iterations I fixed, one of the parameters,
namely ns, is not left free, but is computed from I and from the others using
the formula:
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ns = I/

(
log(Tf/T0)

log α

)

where Tf is the expected final temperature. Notice that Tf is used to compute
ns, but the actual final temperature might fall below, as the potential iterations
saved in the early stages, due to the cut-off mechanism, are returned at the end
of the search.

Given that ns is not fixed, na is not fixed directly, but is set to be a fraction
ρ of the computed ns, where ρ is a new parameter (that replaces na).

The running time is equal for all configurations on the same instance, but
may be different from instance to instance, as the computation of the costs
depends on the size of the instance.

5 Constraint Programming Model

In order to use MiniZinc, the input format needs to be preprocessed in such a
way to flatten all the data (conflicts, distances, . . . ) at the level of each single
event, and write it in terms of a set of arrays.

The decision variables are two vectors of size equal to the number of events,
called EventPeriod and EventLocation, storing the assigned period and the
assigned location, respectively. As for the local search solver, the location
assigned can be either a single room, a roomset, or the dummy room.

The constraint stating that the same room cannot be used simultaneously by
two events is the following, where LocationOverlap is a binary input matrix,
stating of two locations overlap (1) or not (0).

constraint
forall(e1 in 1..Events-1, e2 in e1+1..Events)

(EventPeriod[e1] != EventPeriod[e2] \/
LocationOverlap[EventLocation[e1], EventLocation[e2]] = 0);

Obviously, two locations overlap if they have a room in common; the dummy
room does not overlap with any room, not even with itself, so that more than
one event can be placed in the dummy room at the same time.

This is the most critical constraint, as it involves a disjunction. The other
constraints are relatively straightforward, and are not shown here.

The objective function is obtained as the weighted sum of various compo-
nents. For example, the variable carrying the count of the soft conflict violations
is connected to the main variables by the following constraint.

constraint
ConflictCost = sum(e1 in 1..Events-1, e2 in e1+1..Events

where Conflicts[e1,e2] > 0)
((EventPeriod[e1] = EventPeriod[e2]) * Conflicts[e1,e2]);
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Table 1. Main features of the instances.

Dept. #inst Courses Events Periods Rooms Slots

min max min max min max min max min max

D1 7 239 281 239 281 26 52 64 65 2 2

D2 3 57 58 61 62 156 204 0 0 6 6

D3 9 76 89 78 177 48 188 14 15 4 4

D4 6 223 240 235 514 38 88 34 34 2 2

D5 5 125 156 132 426 24 136 17 20 2 2

D6 8 189 207 346 539 52 90 29 29 2 2

D7 2 60 63 136 150 155 330 22 22 5 10

The symmetric matrix Conflicts carries the value of the penalty of the
conflict between two events. It has the conventional value −1 in case of hard
conflict. The other components have similar structure and they are not shown
here.

Finally, for variable and value selections, we use the default strategy (i.e., no
search annotation is used).

6 Problem Instances

At present, we have collected 40 instances coming from 7 different departments
(of 6 different universities), which show a good variety of diverse practical sit-
uations. Table 1 summarizes, for each department, the values (minimum and
maximum) of the main features of the corresponding instances.

Notice that one department (D2) has 0 rooms, so that all events are assigned
to the dummy room. This means that the management has decided to leave
outside the system the assignment of the rooms. Notice also that the number of
rooms and courses is rather stable within the instances of the same department,
whereas the number of events might change considerably. This is due to the fact
that in different sessions during the year the exam of the same course might be
repeated a different number of times.

7 Experimental Analysis

The experiments have been run on an Ubuntu Linux 18.4 machine with 4 cores
Intel R© i7-7700 (3.60 60 GHz), with a single core dedicated to each experiment.

7.1 Tuning

The tuning phase of the local search solver has been performed using the tool
json2run [17], which samples the configurations using the Hammersley point
set [8] and implements the F-Race procedure [3] for comparing them.

The resulting best configuration is shown in Table 2, which shows also the
initial intervals selected based on preliminary experiments.
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Table 2. Parameter settings.

Name Description Value Range

T0 Start temperature 118.75 100—500

Tf Final temperature 0.28 0.1—1

α Cooling rate 0.99 0.8—0.999

ρ Accepted moves ratio 0.2 0.1—0.3

pb Move written/oral together rate 0.75 0.0—1.0

7.2 Comparative Results

For the MiniZinc model we have tested the back-ends available in the standard
distribution (v. 2.3.2), plus cplex (v. 12.9). For all of them we set a timeout of
1 h for each run.

The results obtained are shown in Table 3, along with the average and best
results out of 30 runs of the Simulated Annealing solver, with I = 108. The
outcome is that all instances have feasible solutions. In addition, some cases can
be easily solved to a perfect solution (0 cost), some others are more challenging
and result in relatively high costs. For the MiniZinc back-ends, the symbol ×
means that the solver exhausted the memory, and the symbol — that it has not
been able to produce any feasible solution within the time limit. Optimality has
been proved only for the 0 cost solutions.

The metaheuristic approach has been able to obtain satisfactory solutions,
and it proved to be quite robust, as the gap between the best costs and the
average ones is relatively low.

On the contrary, the straightforward CP model in MiniZinc turned out to be
unusable for most practical instances, leaving room for search strategies and/or
smarter encodings to be developed.

Only for the department D2, cplex has been able to provide better results
than SA in all three instances, and coin-bc in two of them. In particular, in those
two instances, both have found the perfect solution, whereas SA is consistently
stuck in a solution of cost 22.
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Table 3. Comparative results.

Instance SA MiniZinc

avg. best time chuffed gecode coin-bc cplex

D1-1-16 180.40 180 568.1 × — × ×
D1-1-17 134.00 134 499.2 × — × ×
D1-2-16 258.63 257 541.6 × — × ×
D1-2-17 352.00 351 698.9 × — × ×
D1-3-16 478.37 477 483.3 × — × ×
D1-3-17 354.57 354 493.1 × — × ×
D1-3-18 80.00 80 536.6 × — × ×
D2-1-18 427.77 426 94.7 — 8731 906 406

D2-2-18 22.00 22 88.7 1543 4022 0 0

D2-3-18 22.00 22 95.0 1873 3985 0 0

D3-1-16 0.00 0 61.9 — 75947 × —

D3-1-17 0.00 0 83.5 — 82948 × —

D3-1-18 0.00 0 83.9 — 82433 × —

D3-2-16 0.00 0 0.8 0 — — 0

D3-2-17 0.00 0 3.1 0 — — 0

D3-2-18 0.00 0 3.5 — — — 0

D3-3-16 0.00 0 1.0 0 — — 0

D3-3-17 0.00 0 2.3 0 — — 0

D3-3-18 0.00 0 2.2 0 — — 0

D4-1-17 132.43 18 312.0 × — × ×
D4-1-18 567.73 563 1401.4 × — × ×
D4-2-17 575.50 566 1307.3 × — × ×
D4-2-18 11609.33 9685 39.3 × — × ×
D4-3-17 137.03 137 462.6 — — × ×
D4-3-18 379.50 372 555.2 — — × ×
D5-1-17 7361.03 5870 2.9 — — × ×
D5-1-18 38.00 36 824.2 — — × ×
D5-2-17 60.20 60 930.0 — — × ×
D5-2-18 274.37 270 1237.8 × — × ×
D5-3-18 0.00 0 68.4 — — × —

D6-1-16 898.83 872 1429.1 × — × ×
D6-1-17 740.87 723 1385.5 × — × ×
D6-1-18 881.50 873 1420.1 × — × ×
D6-2-16 948.00 935 1551.3 × — × ×
D6-2-17 943.13 920 1428.5 × — × ×
D6-2-18 692.03 683 1650.4 × — × ×
D6-3-16 355.40 355 882.4 × — × ×
D6-3-17 381.57 381 969.0 × — × ×
D7-1-17 373.20 360 222.5 — 56891 × —

D7-2-17 766.50 758 219.3 — 114385 — —
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8 Conclusions and Future Work

We have modeled a complex real-world version of the examination timetabling
problem.

The metaheuristic solver has found good results on most instances, although
the presence of a few results far from the optimum is a clue that further improve-
ments are possible. To this aim, we plan to devise new neighborhood relations
and different metaheuristic strategies.

The results show that the problem, in its straightforward modeling, is beyond
the reach of MiniZinc back-ends. Smarter encodings are necessary in order to
try to improve the performances of all the back-ends.

The future work includes also the extension of the model to features that
appear in a few cases, which have been neglected in our current formulation. The
most important ones are: events that span over several periods, heterogeneous
roomsets, conflicts at the level of the day (not only of the single period), exams
to be given in the same day and in the same location, and uniform spreading of
the primary courses of a curriculum.
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10. Leite, N., Fernandes, C., Meĺıcio, F., Rosa, A.: A cellular memetic algorithm for
the examination timetabling problem. Comput. Oper. Res. 94, 118–138 (2018)



Local Search and Constraint Programming for Examination Timetabling 81
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Abstract. For two families of time-series constraints with the aggre-
gator Sum and features one and width, we provide parameterised sharp
lower and upper bounds on the sum of the time-series variables wrt these
families of constraints. This is important in many applications, as this
sum represents the cost, for example the energy used, or the manpower
effort expended. We use these bounds not only to gain a priori knowledge
of the overall cost of a problem, we can also use them on increasing pre-
fixes and suffixes of the variables to avoid infeasible partial assignments
under a given cost budget. Experiments show that the bounds drastically
reduce the effort to find cost limited solutions.

1 Introduction

Time series is an increasingly important format of data in many applications,
from financial to scientific. Time series are sequences of values taken at suc-
cessive equally spaced points in time. Two traditional topics are time series
forecasting [16] and time series pattern recognition [15,19]. A more recent topic
is the generation of time series satisfying a given set of constraints. Indeed, in an
industrial or commercial setting, time series are constrained by physical laws or
organisational regulations. In this case, when time series correspond to a resource
produced or consumed, the question of maximising or minimising the sum of the
elements of a time series becomes important. This article focuses on this issue.

Context and Motivation. From a constraint perspective work on time-series con-
straints was introduced in [13] to formalise the notions of exact and approximate
similarity between time-series patterns and data. More recently, some authors
have proposed quantitative regular expressions [1,2] as a way to (i) formalise
and identify common types of time-series patterns [9,18], and to (ii) express

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant number 12/RC/2289-P2 which is co-funded
under the European Regional Development Fund as well as from the Gaspard-Monge
program.

c© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 82–98, 2020.
https://doi.org/10.1007/978-3-030-58942-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_6


Parameterised Bounds on the Sum of Variables in Time-Series Constraints 83

time-series constraints, which are then used to generate constrained time series.
To improve propagation, implied constraints and cuts were derived in [3,6,7].

These ideas have been used to solve real-life problems including the analysis
of the output of electric power stations over multiple days [11], the solution of a
staff scheduling problem in a service company [5], power management for large-
scale distributed systems [10] and the generation of typical energy consumption
profiles of a data centre [12,14]. Most of these problems require the incorporation
of an objective function which is represented by the sum of the decision variables.
Hence, computing bounds on such sum is an important issue.

Time-Series Constraints. A time-series constraint γ(X,R) is a constraint which
restricts an integer result variable R to be the result of some computations over
a sequence of n integer variables X. The components of a time-series constraint
we reuse from [9] are a pattern σ, a feature f , and an aggregator g. A pattern
is described by a regular expression over the alphabet Σ = {‘ < ’, ‘ = ’, ‘ > ’}
whose language Lσ does not contain the empty word. For instance, in [4] the
Plateau pattern is characterised by the expression ‘ <=∗> ’. A feature and an
aggregator are functions over integer sequences.

– A time-series constraint with the aggregator Sum and the feature one restricts
R to be the number of occurrences of pattern σ in X.

– A constraint with the aggregator Sum and the feature width restricts R to
be the sum of the widths of the maximal occurrences of pattern σ in the
integer sequence. The width of an occurrence of σ is the number of time-series
variables included in σ minus a constant corresponding to the sum of two
integer trimming values. For instance, consider a time series X = 〈0, 3, 3, 0〉
with one occurrence of σ = Plateau = ‘ <=∗> ’; the width of the occurrence
of σ is equal to 2, as the two integer trimming values of σ are equal to 1.

Motivating Example. Assume we have to generate a time series of size n = 14
with R = 5 increasing terraces, i.e. σ = ‘ <=+< ’, while maximising the sum
of the 14 variables, each restricted to be in [�, u] = [2, 6]. Ignoring the 5 terraces
leads to an upper bound of 84, while, as shown in Part (D) of Fig. 1, considering
the 5 terraces gives a sharp upper bound n ·u−p ·(2 ·t+s+1)−r ·(2 ·s+3) = 59.
The procedure for deriving the formulas p = min(R, �n−2·R

2 �), s = � R
max(1,p)�,

t = s·(s+1)
2 , r = R mod max(1, p), is presented in Sect. 3. Our goal is to find a

method to derive such formula for different patterns.

Focus and Contributions of This Paper. We focus on the g f σ(X,R) families of
time-series constraints with g being Sum, with f being either one or width, and
with σ being a pattern described by a regular expression over the alphabet Σ =
{‘ < ’, ‘ = ’, ‘ > ’}. Our contributions consist of parameterised sharp upper and
lower bounds on the sum of the time-series variables for the sum one σ(X,R)
(also denoted as nb σ(X,R)) and the sum width σ(X,R) families provided all
X variables are in the interval [�, u]. The parameters in the bounds correspond
to the sequence length, the values � and u, and the regular expression σ. The
limits � and u are typically given by physical limitations of the system, which
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are time independent, and therefore apply to all variables. The parameterised
bounds are valid provided some condition on the regular expression σ holds,
which in practice is true for 80% of the 22 regular expressions of [4]. Note that
an approach encoding the full problem with an automaton would lead to a
pseudo-polynomial algorithm since such automaton would have O(n2u3) states:
assuming � = 0, each state would record the values of R (from 0 to n), of Xi−1

(from 0 to n), of the partial sum X1 + · · · + Xi (from 0 to u × n), and would
have up to u outgoing transitions.

Outline of the Paper. Section 2 presents a background on time-series constraints.
Section 3 introduces our contribution, a unique per family expression that defines
upper and lower bounds on the sum of the time-series variables wrt the time-series
constraints. Section 4 evaluates the impact of the bounds. Section 5 concludes.

2 Background

We present the background to define bounds on the sum of the time-series vari-
ables wrt the time-series constraints with aggregator Sum and features one and
width. A time-series constraint imposed on a sequence of n integer variables
X = 〈X1, ...,Xn〉 and a result variable R is described by a feature f , an aggrega-
tor g, and a pattern σ as mentioned in the introduction. Let S = 〈S1, ..., Sn−1〉
be the signature of a time series X, which is defined by: (Xi < Xi+1 ⇔ Si = ‘ <
’) ∧ (Xi = Xi+1 ⇔ Si = ‘ = ’) ∧ (Xi > Xi+1 ⇔ Si = ‘ > ’) for all i ∈ [1, n − 1]. If
a sub-signature 〈Si, ..., Sj〉 is a maximal word matching σ in the signature of X,
then the subsequence 〈Xi+bσ

, ...,Xj+1−aσ
〉 is called a σ-pattern, and the subse-

quence 〈Xi, ...,Xj+1〉 is called an extended σ-pattern. The constants bσ and aσ

respectively trim the left and right borders of an extended σ-pattern to obtain
a σ-pattern from which a feature value is computed. They are useful when there
is the need to perform computations from only a part of the occurrence of σ, as
shown in Ex. 1. As in [9], we assume σ-patterns not to overlap.

Example 1. Consider the σ = IncreasingTerrace = ‘ <=+< ’ regular expres-
sion with aσ = bσ = 1 and the time series X shown in the figure in the
right over the interval [2, 5] and with signature S = 〈<,=, <,>,<,=,=, <〉.
A σ-pattern called increasing terrace within X is a subset whose signature is a
maximal occurrence of σ in the sig-
nature of X. Time series X contains
two increasing terraces, labelled ① and
②, namely 〈3, 4, 4, 5〉 and 〈2, 3, 3, 3, 5〉
with widths 2 and 3, respectively.
Hence, the aggregation of the num-
ber of occurrences using the aggrega-
tor Sum is 2 and the aggregation of
their widths using Sum is 5. The cor-
responding time-series constraints are
nb σ(X,R) and sum width σ(X,R), respectively. �
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Regular-expression characteristics were introduced as a way to parameterise the
bounds on the result value of time-series constraints [8] and to derive among
implied constraints [6] in a systematic way. We now present a brief definition of
the characteristics we reuse in this paper and illustrate them with one example.

– The size of σ, denoted by ωσ, is the length of a shortest word in the language
Lσ of the regular expression σ.

– The height of σ, denoted by ησ, is the smallest difference between the domain
upper and lower limits, i.e. u − �, such that there is a ground time series (all
Xi are fixed) over [�, u] whose signature has at least one occurrence of σ.

– The range of σ wrt n, denoted by φ
〈n〉
σ , is the minimum difference between

the maximum and the minimum values in an extended σ-pattern of width n.
– The set of inducing words of σ, denoted by Θσ, is a subset of Lσ such that for

every word v in Lσ, there exists a word w = w1w2...wk in Θσ such that every
wi is non-empty and every v in Lσ can be represented as v1w1v2w2...vkwkvk+1

with every vi being a word in {‘ < ’, ‘ = ’, ‘ > ’}∗.
– The overlap of σ wrt 〈�, u〉, denoted by o

〈�,u〉
σ , is the maximum number of

time-series variables that belong simultaneously to two consecutive extended
σ-patterns of a time series among all time series over [�, u]. If such maximum
is not bounded, then o

〈�,u〉
σ is undefined.

– The smallest variation of maxima of σ wrt 〈�, u〉, denoted by δ
〈�,u〉
σ , corre-

sponds to the smallest difference between the maximum values of two consec-
utive extended σ-patterns that have at least one common time-series variable.

– The set of supporting time series of a word v in Lσ wrt 〈�, u〉, denoted by
Ω

〈�,u〉
σ (v), is a set of time series where each element of Ω

〈�,u〉
σ (v) is a time

series over [�, u] whose signature is v.

Example 2. Consider the σ = IncreasingTerrace = ‘ <=+< ’ regular expres-
sion and the sequence X = 〈3, 4, 4, 5, 5, 6〉. The figure on the right illustrates
regular-expression characteristics asso-
ciated with X. The common time-
series variables of the two consecutive
extended σ-patterns are coloured in
grey. The first (resp. second) extended
σ-pattern is shown in blue (resp. red).
Points L1 and L2 correspond to the
overlap o

〈�,u〉
σ . The difference between

the y-coordinates of points L2 and L3

corresponds to the value of δ
〈�,u〉
σ . �

We reuse in Sect. 3 the notions of interval without restart and superposition
of two words from [8] that we now recall. An interval without restart consists
of a subsequence such that every two consecutive extended σ-patterns within
this subsequence have o

〈�,u〉
σ > 0 common time-series variables. The intervals
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without restart are always disjoint. Consequently, two consecutive extended σ-
patterns belonging to distinct intervals without restart do not share any time-
series variables. The superposition of two words v and w in Lσ wrt 〈�, u〉 is the
signature q of some ground time series over [�, u] that contains at least two σ-
patterns. For instance, the word z = ‘ <=<=< ’ is the superposition of the two
increasing terraces in the figure from Example 2.

3 Bounds on the Sum of the Time-Series Variables

Consider a regular expression σ, an integer interval [�, u], and a time series X =
〈X1, . . . , Xn〉, with every Xi ranging over [�, u]. We present a method to derive
upper bounds on the sum of the Xi for nb σ(X,R) and sum width σ(X,R).
Wlog lower bounds are obtained in a similar way.

3.1 New Regular-Expression Characteristics

We present in this section two new regular-expression characteristics that will
be used to maximise the sum of the time-series variables, while at the same time
(i) constructing a fixed number of pattern occurrences, or (ii) building a number
of pattern occurrences achieving a given total width. We first motivate and give
the intuition of such characteristics in the context of the IncreasingTerrace =
‘ <=+< ’ pattern before providing their formal definitions.

– The first characteristic corresponds to the maximum weight of the inducing
word of a regular expression σ. For example, given ‘ <=+< ’ and the domain
value u, the maximum weight is the maximum value which can be achieved
by a supporting time series of the inducing word ‘ <=< ’, i.e. (u − 2) + (u −
1) + (u − 1) + u = 4 · u − 4.

– The second characteristic corresponds to the weight of the overlap of the
inducing word of a regular expression σ with itself. We need to know this
quantity to evaluate the maximum weight that can be achieved by a sup-
porting time series of a stretch of overlapping inducing words. For example,
given ‘ <=+< ’ and the domain value u, the maximum weight of the overlap
highlighted in grey in ’<=<=<’ of two consecutive inducing words ‘ <=< ’
is equal to (u − 2) + (u − 1) = 2 · u − 3.

Definition 1 (Maximum weight of σ). Consider a regular expression σ with
exactly one word v ∈ Θσ with length ωσ, and an integer interval domain [�, u].
The maximum weight of σ wrt 〈u〉, denoted by λ

〈u〉
σ , is a function that maps an

element of RΣ × Z to Z. It is defined by λ
〈u〉
σ = u · (ωσ + 1) − νσ, where νσ is

the weight variation of σ. The function νσ maps an element of RΣ to Z,

νσ = min
t∈Ω

〈�,u〉
σ (v)

[
(ωσ + 1) · max

Xi∈t
Xi −

∑
Xi∈t

Xi

]
,

where t is a supporting time series of v ∈ Θσ wrt 〈�, u〉 denoted by Ω
〈�,u〉
σ (v),

and RΣ denotes the set of regular expressions over the alphabet Σ.
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Definition 2 (Total weight of the overlap of σ). Consider a regular expres-
sion σ with exactly one word v in Θσ, and an integer interval domain [�, u].
The total weight of the overlap of σ wrt 〈u〉, denoted by α

〈u〉
σ , is a function that

maps an element of RΣ × Z to Z. It is defined by α
〈u〉
σ = u · o

〈�,u〉
σ − ξσ, where

ξσ is the weight variation of the overlap of σ, defined by

ξσ =

⎧⎪⎨
⎪⎩

min
t∈Ω

〈�,u〉
σ (v,v)

[
o

〈�,u〉
σ · maxXi∈t Xi −

∑
Xi∈to

Xi

]
, if Γ

〈�,u〉
σ (v, v) 	= ∅

0, otherwise.

where Γ
〈�,u〉
σ (v, w) is the shortest superposition of words v and v in Θσ,

Ω
〈�,u〉
σ (v, v) is the supporting time series set for the shortest superposition between

v and v wrt 〈�, u〉, and to is a subsequence of t corresponding to the overlap of
two consecutive extended σ-patterns from Γ

〈�,u〉
σ (v, v).

Example 3. Consider σ1 = StrictlyDecreasingSequence, σ2 = Peak = ‘ < (<
| =)∗(> | =)∗ > ’, and σ3 = IncreasingTerrace = ‘ <=+< ’, and the interval
[0, 3]. Table 1 presents the values for the weight variation and the total weight
regular-expression characteristics of the inducing words and the overlap of σ1, σ2

and σ3. �

3.2 Time-Series Constraints with Feature ONE

We show how to derive bounds on the sum of the time-series variables for the
nb σ(X,R) constraint family, provided all variables are in an interval [�, u].

Table 1. Regular-expression characteristics for StrictlyDecreasingSequence, Peak,
IncreasingTerrace; column “length” gives the number of variables in the time series
of interest, i.e. the number of filled dots in the column “illustration”.
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– First, Example 4 provides the basis for understanding the intuition of the
method.

– Second, we list the properties required by a regular expression to use the
intuitions we just described for deriving an upper bound.

– Finally, based on these properties, we give a greedy method to construct a
time series that maximises the sum of its variables wrt the nb σ(X,R) family
of time-series constraints.

From an Intuition to a Methodology

Example 4. (Intuition for constructing a time series reaching the upper bound).

Figure 1 gives three examples of how to build a time series that max-
imises the sum of its variables, while reaching a given number of pattern
occurrences. Part (A) gives three constraints of the form nb σi with σ1 =
StrictlyDecreasingSequence = ‘ >+ ’, σ2 = Peak = ‘ < (< | =)∗(> | =)∗ > ’,
and σ3 = IncreasingTerrace = ‘ <=+< ’, respectively enforcing 3 occurrences
of σ1, 3 occurrences of σ2, and 5 occurrences of σ3.

– Since strictly decreasing sequences cannot overlap, Part (B) shows a time
series with three intervals without restart where each interval corresponds to
a strictly decreasing minimum size sequence positioned at its highest level,
the remaining variables X7, X8 being set at their maximum value.

– Even if consecutive peaks may overlap, their maximal values may remain at
the same level, Part (C) shows a time series with a single interval without
restart containing three minimum size peaks positioned at their highest level,
the remaining variables Y8, Y9 being set at their maximum value.

– As two consecutive intersecting increasing terraces are necessarily offset in
height, Part (D) shows a time series containing the maximum number of
possible intervals without restart, given that 5 increasing terraces have to be
positioned in a sequence of size 14. The 5 terraces ①, ②, . . . , ⑤ are distributed
in two intervals without restart in the most balanced way, i.e. 3 and 2 terraces,
by placing them at the highest possible level. �

To build a time series whose sum of variables is maximum, while having R
maximal occurrences of the pattern σ, we proceed as follows.

– [maximising the number of variables set to u] We minimise the overall
size taken by all R maximal occurrences of σ in order to set all remaining
variables to their maximum value u.

– [positioning pattern occurrences as close as possible to u] We try
to position the R maximal occurrences of σ at their maximum height wrt to u.
Unfortunately, as shown in Example 4 for the IncreasingTerrace pattern,
this is not always possible: in Part (D) of Fig. 1, only the terraces labelled
with ① and ② are placed at their highest possible level. This can occur for
patterns such that o

〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ 	= 0, when R is too large wrt the size

of the time series. In this case, the R pattern occurrences are distributed in
a balanced way over as many intervals without restart as possible.
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Fig. 1. (A) Three constraints and their corresponding time series that maximise the
sum of the time-series variables respectively containing (B) three strictly decreasing
sequences, (C) three peaks, and (D) five increasing terraces

– [selecting each pattern occurrence] Finally, each maximal occurrence
of σ corresponds to a supporting time series X1,X2, . . . , Xωσ+1 of a word v
of Lσ verifying simultaneously all the following conditions:

i v is a word whose size is as short as possible; hence its size is ωσ + 1.
ii X1, . . . , Xωσ+1 minimises the variation wrt the maximum value of its

variables, i.e. (ωσ + 1) · maxi∈[1,ωσ+1] Xi −
∑

i∈[1,ωσ+1] Xi.

Required Properties of Regular Expressions. As shown before, building
in a greedy way a time series t that maximises the upper bound on the sum of
the time-series variables wrt a time-series constraint with aggregator Sum and
feature one, requires finding R maximal words of Lσ, such that the superposition
of these R words wrt an integer interval domain [�, u] simultaneously optimises
several regular-expression characteristics. To define these properties, we use two
regular-expression characteristics presented in Sect. 2 and Sect. 3.1: the set of
inducing words and the weight variation of word v, denoted by Θσ and νσ(v).

Prop. 1. The language of σ does not include the word ‘ =+ ’, i.e., ‘ =+ ’ /∈ Lσ.
Prop. 2. Regular expression σ has only one inducing word, i.e., | Θσ |= 1.
Prop. 3. The weight variation wrt the maximum domain value u of the only

inducing word of σ, denoted by v, is lower than or equal to the weight
variation of any other word in the language of σ, i.e., νσ(v) ≤ νσ(w),
for each w ∈ Lσ : w 	= v.

Prop. 1 guarantees that when the number of time-series variables included in
the R maximal occurrences of σ is lower than the sequence length n, the time
series t can be completed by setting all its reminder variables in the maximal
domain value u. Prop. 2 guarantees that the smallest possible number of time-
series variables is used to include R maximal occurrences of pattern σ in time
series t. Prop. 3 ensures that the weight variation of a σ occurrence is minimised.
Hence, the upper bound on the sum of the time-series variables associated with
the R occurrences of σ in t is maximal. We show in Lemma 2 that these three
properties give a sufficient condition for getting a sharp upper bound on the sum
of time-series variables wrt a nb σ(X,R) constraint.



90 N. Beldiceanu et al.

Structure of a Time Series Achieving the Upper Bound on the Sum
of the Time-Series Variables. Following the description of the methodology
presented in Example 4, Lemma 2 defines the structure of a time series achieving
the upper bound on the sum of time-series variables wrt a nb σ(X,R) time-series
constraint. For regular expressions with o

〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ 	= 0 (e.g., Part (D) of

Fig. 1), we present an intermediary lemma (Lemma 1) which defines the maximal
number of intervals without restart containing R maximal occurrences of σ in a
time series X achieving the upper bound on the sum of its variables.

Lemma 1. Consider a regular expression σ, a time series X = 〈X1, . . . , Xn〉
with every Xi ranging over the same integer interval domain [�, u], a nb σ(X,R)
constraint with R ≥ 0. When o

〈�,u〉
σ 	= 0, δ

〈�,u〉
σ 	= 0 and Prop. 2 holds, the

maximal number of intervals without restart, denoted by p, is defined by

p = min
(

R,

⌊
n − R · (ωσ + 1 − o

〈�,u〉
σ )

o
〈�,u〉
σ

⌋)
. (1)

Proof. When o
〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ 	= 0 the R σ-patterns might be contained

in one or more intervals without restart. Since each interval without restart
contains at least one σ-pattern, p cannot exceed R. Wlog assume that we have
only one σ-pattern in the first p − 1 intervals without restart and R − p + 1
in the last one; we remark that moving one σ-pattern from an interval without
restart containing more than one σ-pattern to another interval without restart,
does not change the overall number of time-series variables belonging to the R
σ-pattern occurrences. By Prop. 2 we use the only inducing word of σ, hence:

– In the first p − 1 intervals without restart the total number of time-series
variables used is (p − 1) · (ωσ + 1).

– In the last interval without restart the total number of time-series variables
used is (R − p + 1) · (ωσ + 1) − (R − p) · o

〈�,u〉
σ .

Since the total number of time-series variables used by the R σ-patterns must
be lower than or equal to n we have:

(p − 1) · (ωσ + 1) + (R − p + 1) · (ωσ + 1) − (R − p) · o
〈�,u〉
σ ≤ n.

By isolating p, and since p is an integer, we obtain p ≤
⌊

n−R·(ωσ+1−o〈�,u〉
σ )

o
〈�,u〉
σ

⌋
,

which is thus the second term inside the min term in Eq. (1). �

Lemma 2. Consider a regular expression σ that has Prop. 1, Prop. 2 and
Prop. 3. Then for any integer number n ≥ 2 and given number of occurrences
of σ R ≥ 0, there exists a word z with an associated ground time series t of
length n over [�, u] achieving the upper bound on the sum of the Xi time-series
variables.

Proof. We first construct a word z composed by the concatenation of two words,
a prefix, denoted by z, containing R maximal occurrences of σ, and a suffix,
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denoted by z, containing zero occurrences of σ. Second, we prove that there
exists a supporting time series wrt [�, u] with signature z that maximises the
sum of the time-series variables.

Part A: Construction of the Word z. When building word z, if o
〈�,u〉
σ = 0,

each pair of consecutive σ-patterns does not share any time-series variables.
Hence, each extended σ-pattern belongs to a different interval without restart
and p = R. If o

〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ = 0, all pairs of consecutive extended σ-

patterns share o
〈�,u〉
σ time-series variables. Hence, time series t has a single inter-

val without restart that contains all σ-patterns and p = 1. By Lemma 1, if
o

〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ 	= 0, all σ-pattern occurrences of time series t are contained

in p ≥ 1 intervals without restart. There exists R words of Lσ, a prefix word z
including the R words, and a concatenation of z with a suffix word z such that
all the conditions of Prop. 1, Prop. 2 and Prop. 3 are satisfied. We construct
the signature of the time series, denoted by z, by first building the signature zk

(with k ∈ [1, p]) of every interval without restart of t by imposing the following
conditions:

• [Structure of each interval without restart] Each word zk (with k ∈
[1, p]) has ck occurrences of σ and is defined by⎧⎪⎪⎨

⎪⎪⎩

zk = vck , ck = 1, if o
〈�,u〉
σ = 0

zk = vck , ck = R, if o
〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ = 0

zk = vwck−1,

{
ck = s + 1, if k ≤ p′

ck = s, otherwise otherwise
(2)

where v ∈ Θσ, vk denotes the concatenation of k occurrences of v, vw is the
superposition between v and v, s =

⌊
R

max(1,p)

⌋
, and p′ = R mod max(1, p).

• [Combining the intervals without restart: structure of z ] Word z is
defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wR−1v, if o
〈�,u〉
σ = 0

z1, if o
〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ = 0

z1‘ < ’...‘ < ’ zp, if o
〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ > 0

z1‘ > ’...‘ > ’ zp, if o
〈�,u〉
σ 	= 0 and δ

〈�,u〉
σ < 0

(3)

where v ∈ Θσ, and word w belonging to {‘v > ’, ‘v = ’, ‘v < ’} is not a proper
factor of any word in Lσ and its height is ησ.

• [Completing the set of intervals without restart: structure of z] Word
z with length m is defined by⎧⎪⎨

⎪⎩
ε, if m = 0
‘ <=∗ ’, if m > 0 and ‘ > (=|>)∗’ is a suffix of v

‘ =+ ’, otherwise
(4)



92 N. Beldiceanu et al.

Part B: Proving that There is a Ground Time Series t with Signature
z that Maximises the Sum of the Time-Series Variables. Since we assume
that regular expression σ has Prop. 1, time-series variables in z can be assigned
to the maximal domain value u without creating a new occurrence of pattern.
Hence, to prove the maximality on the sum of the Xi variables belonging to t, it
suffices to show that there exists a ground time series over [�, u] obtained with the
signature of word z achieving the upper bound on the sum of its variables. For
space reasons we only consider the case where δ

〈�,u〉
σ 	= 0. We define two ground

time series t∗ and t′ such that their signatures contain R σ-pattern occurrences
and p intervals without restart:

– t∗ corresponds to the ground time series with signature z satisfying Eq. (2)
and where the first σ-pattern occurrence of each interval without restart is
at level 0, i.e. the level closest to the maximal domain value u.

– t′ corresponds to any other ground time series where the number of σ-patterns
located at level 0 is strictly less than p.

To obtain the total weight of a ground time series, i.e. the upper bound on
the sum of the time-series variables, we first define the maximum weight of a
σ-pattern located at level e by λ〈u〉

σ︸︷︷︸
A

− (ωσ + 1)· | δ〈�,u〉
σ | · e︸ ︷︷ ︸

B

, and the weight of

the overlap between two consecutive σ-patterns located at levels e and e + 1
by α〈u〉

σ︸︷︷︸
C

− o〈�,u〉
σ · | δ〈�,u〉

σ | ·e︸ ︷︷ ︸
D

. Terms A and C, defined in Sect. 3.1, correspond

to the maximum weight of a σ-pattern and to the total weight of the overlap
between two consecutive σ-patterns, respectively. B and D are two correction
terms which respectively adjust the weight of a σ-pattern and the weight of the
overlap between two consecutive σ-patterns, caused by a change in the level of
a σ-pattern occurrence.

The total weight of a ground time series t, denoted by Wt, is the sum of the
weights of the R σ-patterns minus the sum of the weights of the R − p overlaps
between consecutive pairs of σ-patterns. Hence, Wt is defined by

Wt =
(
R ·λ〈u〉

σ −(ωσ +1)
p∑

k=1

jk∑
e=ik

Δe

︸ ︷︷ ︸
BT

)
−

(
(R−p) ·α〈u〉

σ −o
〈�,u〉
σ

p∑
k=1

jk−1∑
e=ik

Δe

︸ ︷︷ ︸
DT

)
, (5)

where Δe =| δ
〈�,u〉
σ | · e, and ik, jk are the highest and the lowest levels of the σ-

patterns in interval without restart k ∈ [1, p], respectively. Note that in Eq. (5),
the only terms that depend on the level of the σ-pattern occurrences are the
correction terms BT and DT . Let ik = 0 and jk = ck − 1 be the levels of the
highest and the lowest σ-pattern occurrence in interval k ∈ [1, p] for t∗. For t′

we assume that at least one ik > 0 with k ∈ [1, p]. Therefore, we compare the
terms BT and DT for t∗ and t′ in the following way:

p∑
k=1

jk∑
e=ik

Δe ≥ | δ
〈�,u〉
σ | +

p∑
k=1

ck−1∑
e=0

Δe (6)
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p∑
k=1

jk−1∑
e=ik

Δe ≥ | δ
〈�,u〉
σ | +

p∑
k=1

ck−2∑
e=0

Δe (7)

Our objective is to show that Wt∗ > Wt′ , i.e. the total weight of t∗ is strictly
greater than the total weight of t′. Hence, by using Eq. (5) to define Wt∗ and
Wt′ , by including Inequalities (6) and (7) in Wt′ and by factorising, we have

o
〈�,u〉
σ

p∑
k=1

ck−2∑
e=0

Δe − (ωσ + 1)
p∑

k=1

ck−1∑
e=0

Δe > (8)

o
〈�,u〉
σ

(
| δ

〈�,u〉
σ | +

p∑
k=1

ck−2∑
e=0

Δe

)
− (ωσ + 1)

(
| δ

〈�,u〉
σ | +

p∑
k=1

ck−1∑
e=0

Δe

)

By factorising Inequality (8), we have

ωσ + 1 > o〈�,u〉
σ (9)

Since the size of σ is always greater than or equal to the overlap of σ, i.e.
ωσ ≥ o

〈�,u〉
σ , Inequality (9) holds and Wt∗ > Wt′ . �

Upper Bound on the Sum of the Time-Series Variables. Consider a
nb σ(X,R) family of time-series constraints with every Xi ranging over the same
interval [�, u]. Theorem 1 provides an upper bound on the sum of the time-series
variables wrt the time-series constraint.

Theorem 1. Consider a regular expression σ satisfying the conditions of
Prop. 1, Prop. 2 and Prop. 3. The upper bound on the sum of the time-series
variables for the nb σ(X,R) family is defined by

p∑
k=1

ck−1∑
e=0

(λ〈�,u〉
σ − (ωσ + 1) · Δe) −

p∑
k=1

ck−2∑
e=0

(α〈�,u〉
σ − o〈�,u〉

σ · Δe) + m · u, (10)

where m is defined by: m = n −
[

p∑
k=1

ck−1∑
e=0

(ωσ + 1) −
p∑

k=1

ck−2∑
e=0

o
〈�,u〉
σ

]
.

Proof. It uses the construction of the proof of Lemma 2. �

This upper bound is valid for all 22 regular expressions of [4], except for
Inflexion, Zigzag, Steady and SteadySequence, since the first two regular
expressions do not satisfy the condition in Prop. 2 and the last two regular
expressions do not satisfy the condition in Prop. 1.

3.3 Time-Series Constraints with Feature WIDTH

For patterns σ satisfying Prop. 1 and Prop. 2 we sketch a method to derive
bounds on the sum of the time-series variables for the sum width σ(X,R) fam-
ily, provided all Xi (with i ∈ [1, n]) variables are in an interval [�, u]. To build a
time series t whose sum of variables is maximum, while having R as the sum of
the widths of the occurrences of the pattern σ, we use a two-step procedure.
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– [step 1: normalising the pattern occurrences] For each σ pattern,
we define a transformation Tσ whose repeated application from any initial
signature Sinitial leads to a target signature Starget . Sinitial and Starget have
the same value for R, and no matter the value of Sinitial , this signature will
converge to a signature Starget with the same number of σ-pattern occur-
rences. A single application of Tσ from a signature S to a signature S′ has
the following properties:

i S and S′ share the same sum of the widths for their σ patterns.
ii The largest sum of the Xi variables compatible with S is less than or

equal to the largest sum of the Xi variables compatible with S′.
To find the time series with the largest sum of the Xi variables compatible
with signature S we first perform generalised arc consistent (GAC) in the
induced constraint satisfaction problem. Second, we fix all Xi variables to
their respective maximal value. Note that for a binary constraint of the type
<, = or >, we can always set its two variables to their respective maximal
values, while satisfying the constraint in question.

– [step 2: normalisation outside the pattern occurrences] We modify
Starget to Sfinal so that all Xi variables that do not belong to an extended
σ-pattern of Sfinal can be set to their maximum value u.

We define two transformations, denoted by T 1
σ and T 2

σ . For space reasons, we
sketch the two transformations but we only illustrate T 1

σ in Example 5.

– T 1
σ transforms Sinitial into a sequence Starget containing the smallest possi-

ble words in Lσ, i.e. inducing words whose widths are equal to πσ = ωσ +
1 − aσ − bσ. T 1

σ works for σ = DecreasingSequence, IncreasingSequence,
StrictlyIncreasingSequence, and StrictlyDecreasingSequence, and for
Gorge and Summit when n ≥ p

〈R〉
σ · (ωσ + 1) − (p〈R〉

σ − 1) · o
〈�,u〉
σ , i.e. there is

enough space to create p
〈R〉
σ = � R

πσ
� inducing words of σ. The upper bound

on the sum of Xi variables when T 1
σ is used is

p〈R〉
σ · λ〈�,u〉

σ − (p〈R〉
σ − 1) · α〈�,u〉

σ︸ ︷︷ ︸
I

+ (R mod πσ) · (u − (ησ + 1))︸ ︷︷ ︸
II

+m · u︸ ︷︷ ︸
III

,

where m = n − (p〈R〉
σ · (ωσ + 1) − (p〈R〉

σ − 1) · o
〈�,u〉
σ + R mod πσ). Term I

corresponds to the maximum weight of the concatenation of p
〈R〉
σ occurrences

of the only inducing word of σ. Term II is related to a correction term which
is used when it is not possible to obtain a sum of the widths equal to R

with p
〈R〉
σ inducing words. Term III corresponds to the maximum weight of

the variables that do not belong to any σ-pattern occurrence. In Part (C) of
Fig. 2 points , and respectively contribute to terms I, II and III.

– T 2
σ transforms Sinitial into a sequence Starget containing one occurrence of σ.

T 2
σ works for 10 other σ-pattern including IncreasingTerrace and Peak. The

upper bound on the sum of Xi variables when T 2
σ is used is λ

〈R,u〉
σ + m · u,

where m = n−(R+aσ +bσ), and λ
〈R,u〉
σ is the maximum weight of the regular

expression σ where words in Lσ have a fixed length of R + aσ + bσ − 1.
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Fig. 2. Transforming an initial time series to a final time series that maximises the
sum of the Xi variables, where both time series share the same value, i.e. R = 5, for
the sum of the widths of the strictly decreasing sequences

Example 5. Figure 2 gives an example of how to build a time series that max-
imises the sum of its variables while reaching a given sum of the widths of
the pattern occurrences. The constraint used is sum width σ(〈X1, . . . , X8〉, 5)
with σ = ‘ >+ ’, aσ = bσ = 0, and Xi ∈ [0, 4]. Part (A) shows an initial
time series with the largest sum of the Xi variables compatible with signature
Sinitial = 〈=, >,>,>,>,=,=〉. Part (B) presents a time series with the largest
sum of the Xi variables compatible with Starget = 〈=, >,>,<, >,=,=〉. Starget

is obtained after applying T 1
σ to Sinitial by changing the fourth signature vari-

able from ‘>’ to ‘<’. Note that Sinitial and Starget share the same value for
R and that the largest sum of the Xi variables compatible with Sinitial is less
than the largest sum of the Xi variables compatible with Starget . Part (C) shows
a final time series with the largest sum of the Xi variables compatible with
Sfinal = 〈=, >,>,<,>,<,=〉, which is obtained by applying step 2 to Starget ,
i.e. by changing the sixth signature variable from ‘=’ to ‘<’. This allows one to
obtain a larger value for the sum of the Xi, i.e. 28 instead of 26. �

4 Evaluation

As a test for our procedure, we run all time-series constraints from the nb σ
and the sum width σ families for synthetic time series with length between 5
and 60, and for all possible result values (in all 45,835 runs), and find a sin-
gle optimal solution minimising the sum of the time-series variables. The indi-
vidual constraints use a state-of-the-art implementation, combining optimised
automata [5], bounds on the result variables [8], glue-matrix constraints linking
all prefixes and suffixes [5], and selected redundant linear constraints based on
Farkas lemma [17]. For the variable assignment, we compare four search methods
shown below, while using the bounds obtained for cost variables.
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Fig. 3. Comparing baseline solutions with
different search strategies

Search This is the default search in SICStus,

the variables are assigned in natural order, enu-

merating the values from the smallest to the

largest.

Custom This implements a custom search rou-

tine based on assigning the signature variables

first. The same method is used for all test cases.

Search Impose This uses the default search

in SICStus, but first assigns the cost variable

to its smallest value. As the bounds are sharp,

the first solution found is optimal.

Custom Impose We use the custom search

method, but also initially impose the lower

bound of our method for each constraint.

Since the conjunction of arithmetic constraints encoding bounds can propa-
gate poorly, which results in some poor performance in the context of optimisa-
tion, we do not propagate the bounds directly; we rather use a table constraint to
link the cost and result variables with a pre-computed table of all possible pairs.
We compare against three baseline solutions. The first one (Only Satisfy) finds
a single feasible solution, the second one (Search Only) solves the optimisation
problem without bounds on the cost and with the default search routine, the
third one (Custom Only) uses the custom search, again without the bounds on
the cost variable. All experiments were run with SICStus Prolog 4.3.5 on a single
core of a Windows 10 laptop with an Intel Core i7 CPU running at 2.9 GHz and
with 64 Gb of memory. We stop the search if, for a given size, the time to run
all its instances exceeds 600 s, or if we reach size 60.

As we observed that both families nb σ and sum width σ behave similarly
in our benchmarks, the results are shown in Fig. 3, using a log scale for the y
axis. We see that without the new bounds on the cost even a custom search
routine does not find solutions for all cases if the size exceeds 18. Adding the
bounds significantly increases the size of the problem one can handle. The custom
search outperforms the default search for larger sizes, and further improvements
are possible if we impose the lower bound before starting the search on the time-
series variables. The best search combines imposing the lower bound with the
default search, which seems to impose only a very limited overhead compared to
the Only Satisfy base line, which only finds feasible solutions.

5 Conclusion

On the one hand, the theoretical contribution of this paper consists of parame-
terised sharp bounds on the sum of the time-series variables for two families of
time-series constraints. Future work may look how to extend this work to any
linear cost function, e.g. linear functions where all coefficients are not set to one.
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On the other hand, the practical insight of this paper is related to the impor-
tance of encoding all arithmetic constraints representing a bound as a table con-
straint in order to get all the benefits from the bounds. An interesting avenue
for future research is related to the derivation of bounds for the conjunction of
time-series constraints.
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Abstract. We propose a novel approach using supervised learning to
obtain near-optimal primal solutions for two-stage stochastic integer
programming (2SIP) problems with constraints in the first and second
stages. The goal of the algorithm is to predict a representative scenario
(RS) for the problem such that, deterministically solving the 2SIP with
the random realization equal to the RS, gives a near-optimal solution
to the original 2SIP. Predicting an RS, instead of directly predicting a
solution ensures first-stage feasibility of the solution. If the problem is
known to have complete recourse, second-stage feasibility is also guaran-
teed. For computational testing, we learn to find an RS for a two-stage
stochastic facility location problem with integer variables and linear con-
straints in both stages and consistently provide near-optimal solutions.
Our computing times are very competitive with those of general-purpose
integer programming solvers to achieve a similar solution quality.

Keywords: Stochastic integer programming · Machine learning ·
Heuristics

1 Introduction

Two-stage stochastic integer programming (2SIP) is a standard framework to
model decision making under uncertainty. In this framework, first the so-called
first-stage decisions are made. Then, the values of some uncertain parameters in
the problem are determined, as if sampled from a known distribution. Finally,
the second set of decisions are made depending upon the realized value of the
uncertain parameters, the so-called second-stage or recourse of the problem. The
decision maker, in this setting, minimizes the sum of (i) a linear function of
the first-stage decision variables and (ii) the expected value of the second-stage
optimization problem.
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2SIP is studied extensively in the literature [5,8,12,14–16,18–21,25] owing to
its applicability in various decision making situations with uncertainty, like the
stochastic unit-commitment problems for electricity generation [19,20], stochas-
tic facility location problems [15], stochastic supply chain network design [22],
among others. With the overwhelming importance of 2SIP a wide range of solu-
tion algorithms have been proposed, for example, [2,3,7,16,23,24].

In this paper we are interested in using machine learning (ML) to obtain good
primal solutions to 2SIP. Along this line, Nair et al. [17] proposed a reinforcement
learning-based heuristic solver to quickly find solutions to 2SIP. Given that the
agent can be trained offline, the algorithm provided solutions much faster for
some classes of problems compared to an open-source general-purpose mixed-
integer programming (MIP) solver, in their case, SCIP [10,11]. However, their
method is based on the following restrictive assumptions:

a. All first-stage variables are required to be binary. General integer variables
or continuous variables in the first stage cannot be handled.

b. Any assignment of the binary variables is required to be feasible for the first
stage of the problem, i.e., no constraints are allowed in the first stage.

Assumption a above is intrinsic to the method in [17], as both the initialization
policy and the local move policy of the method involves flipping the bits of the
first-stage decision vector. Hence, one cannot easily have general integer vari-
ables or continuous variables. Assumption b is again crucial to the algorithm in
[17], as flipping a bit in the first stage could potentially make the new decision
infeasible and it might require a more complicated feedback mechanism to check
and discard infeasible solutions. In fact, if there are constraints, it is NP -hard
to decide if there exists a flip that keeps the decision feasible. Alternatively, one
could empirically penalize the infeasible solutions, but tuning the penalty might
be a hard problem in itself.

In contrast, our method does not require either of these two restrictive
assumptions. We allow binary, general integer as well as continuous variables
in both first and second stage of the problem. We also allow constraints in both
stages of the problem. Furthermore, we have a simple and direct approach to
handle the first-stage constraints, without requiring any empirical penalties.

We make the following common assumption to exclude pathological cases,
where an uncertain realization can turn a feasible first-stage decision infeasible.

Assumption 1. The 2SIP has complete recourse, i.e., if a first-stage decision
is feasible given the first-stage constraints, then it is feasible for all the second
stage problems as well.

We make another assumption of uncertainty with finite support, so we can
have a proper benchmark to compare our solution against. However, this assump-
tion can be readily removed, without affecting the proposed algorithm.

Assumption 2. The uncertainty distribution in the 2SIP has a finite support.
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2 Problem Definition

We formally define a 2SIP as follows:

min
x∈Rn1

cᵀx + Eξ [Q(x, ξ)] (1a)

subject to Ax ≤ b (1b)
xi ∈ Z, ∀ i ∈ I1 (1c)

where,

Q(x, ξ) = min
y∈Rn2

{
qᵀ
ξ yξ : Wyξ ≤ hξ − Tξx, yξ ≥ 0; yi ∈ Z ∀ i ∈ I2

}

where x ∈ R
n1 and y ∈ R

n2 are the first and second-stage decisions respectively,
c ∈ R

n1 , A ∈ R
m1×n1 , b ∈ R

m1 , yξ ∈ R
n2 , qξ ∈ R

n2 , W ∈ R
m2×n2 , Tξ ∈ R

m2×n1 ,
hξ ∈ R

m2 , I1 ⊆ {1, . . . , n1}, I2 ⊆ {1, . . . , n2}, ξ ∈ Ξ and where (Ξ,FΞ , p)
defines a probability space.

When Assumption 2 holds, the 2SIP described above can also be expressed
as a single deterministic MIP as follows:

min
x,y

cᵀx +
∑

∀ξ∈Ξ

pξq
ᵀ
ξ yξ (2a)

subject to Ax ≤ b (2b)
Wyξ ≤ hξ − Tξx ∀ξ ∈ Ξ (2c)
xi ∈ Z, ∀ i ∈ I1 (2d)
yξi ∈ Z, ∀ξ ∈ Ξ,∀ i ∈ I2. (2e)

where, Ξ is the set of random scenarios and pξ is the probability of a random
scenario ξ ∈ Ξ.

When Assumption 2 does not hold, the formulation (2) could be a finite-
sample approximation of (1), which is extensively studied in the stochastic pro-
gramming literature. Imitating [17], we compare our algorithm against solving
(2) with a general-purpose MIP solver.

3 Methodology

In this section, we discuss the algorithmic contribution of the paper.

3.1 Surrogate Formulation

We first define the objective value function (OVF) Φ : R
n1 → R, mapping

x �→ cᵀx + Eξ [Q(x, ξ)] - the function we are trying to optimize over the mixed-
integer set defined in (1).
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Given (2), we define the surrogate problem associated with ξ̄ = (q̄, h̄, T̄ ), as
follows:

min
x,y

cᵀx + q̄ᵀy (3a)

subject to Ax ≤ b (3b)
Wy ≤ h̄ − T̄ x (3c)
xi, yj ∈ Z, ∀ i ∈ I1; j ∈ I2 (3d)

In other words, should the value that the uncertain parameters are going
to take is deterministically known to be ξ̄, then the decision maker can solve
the surrogate problem associated with ξ̄. Now, the idea behind the algorithm
proposed in this paper is captured by Conjecture 1.

Conjecture 1. Let (2) (and hence (1)) have an optimal objective value of f∗.
There exists q�, h�, T � in R

n2 , Rm2 and R
m2×n1 such that if (x†, y†) solves the

(much smaller) surrogate problem defined by (q�, h�, T �), then, f∗ = Φ(x†).

Observe that by construction, x† is feasible to the original problem in (1).
Also, Conjecture 1 asserts that, there exists a realization of the uncertainty
(ξ� = (q�, h�, T �)) such that if one deterministically optimizes for that realization
ξ�, then its solutions are optimal for the original 2SIP. Each such ξ� is called a
representative scenario (RS) for the given 2SIP.

Now, given adequate computing resources, one can solve the following bilevel
program to obtain an RS.

min
U,v,w
x,y

cᵀx +
∑

∀ξ∈Ξ

pξq
ᵀ
ξ yξ (4a)

subject to (x,w) ∈ arg min
x,w

⎧
⎪⎪⎨
⎪⎪⎩

cᵀx + vᵀw :

Ax ≤ b;
Ww ≤ v − Ux;

xi ∈ Z ∀ i ∈ I1

wi ∈ Z ∀ i ∈ I2

⎫
⎪⎪⎬
⎪⎪⎭

(4b)

Wyξ ≤ hξ − Tξx ∀ξ ∈ Ξ (4c)
yξi ∈ Z, ∀ξ ∈ Ξ,∀ i ∈ I2 (4d)

If the optimal value of this problem matches the optimal value of the original
2SIP, then the corresponding values for (U, v, w) form the RS. Note that if Tξ

is the same for all ξ ∈ Ξ, then (4) is a mixed-integer bilevel linear program
(MIBLP) and can hopefully be solved faster than the general case.

3.2 Learning Algorithm

The goal of ML algorithms is to predict an optimal (U, v, w) to (4), given the
data for the 2SIP. On the one hand, we are expecting the ML algorithms to
predict the solutions of a seemingly much harder optimization problem than
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the original 2SIP. On the other hand, this is easier for ML since there are no
constraints on the predicted variables – U, v, w. Supervised learning is a natural
tool to achieve this goal.

Supervised learning can be used if there is a training dataset of problem
instances and their corresponding RS. The task of predicting RS can be formu-
lated as a regression task as RS is real valued. The algorithm tries to minimize
the mean squared error (MSE) between the true and predicted RS. The predic-
tion can also be evaluated on the merits of optimization metrics, comparing the
solution and objective value of true and predicted RS.

4 Computational Study

This section discusses the computation study performed to support Conjecture 1.

4.1 Problem Definition

In this work, we consider a version of two-stage stochastic capacitated facility
location (S-CFLP) for computational analysis. The problem is enhanced such
that both the first and the second stage of the problem have integer as well as
continuous variables. More precisely, the first stage consists of deciding (i) the
locations where a facility has to be opened (binary decisions), and (ii) if a facil-
ity is open, then the maximum demand that the facility can serve (continuous
decisions). There are also constraints which dictate bounds on the total number
of facilities that can be opened. The uncertainty in the problem pertains to the
demand values at various locations in the second stage of the problem, which
are sampled from a finite distribution. Once the demand is realized, the second
stage consists in deciding (i) if a given open facility should serve the demand in a
location (binary decisions) (ii) if a facility serves the demand in a location, then
what quantity of demand is to be served (continuous decisions). These decisions
have to ensure that the demand and supply constraints are met. The problem
formulation is presented formally in Appendix A.1.

4.2 Data Generation

Generate Instances. We generate 50K instances of S-CFLP, with 10 facilities, 10
clients and 50 scenarios. We provide details on how the data for these instances
are generated in Appendix A.2. The generated instances are solved using Gurobi,
running 2 threads, to at most 2% gap or 10 min time limit.

Next, we compute an RS for each of the 50K instances. As stated earlier, one
could solve mixed-integer bilevel programs (4) to obtain the RSs. However, due
to the computational burden, we use heuristics that work using the knowledge of
the (nearly) optimal solutions to the 2SIP already obtained from Gurobi. These
heuristics are detailed in Appendix A.3. Out of 50K instances, they find an RS
for 49,290 instances. We believe that a more thorough search will enable us to
find the RS for all the problems.
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4.3 Learning Algorithm

We formulate the task of predicting the RS as a regression task. The size of the
dataset, which comprises of instances and their corresponding RS, is 49,290. The
dataset is split into training and test sets of size 45K and 4,290, respectively.
Further, a validation set of 5K is carved out from the training set. We use
linear regression (LR) and artificial neural network (ANN) to minimize the MSE
between the true and predicted RS.

Feature Engineering. It is well known that features describing the connection
between variables, constraints and other interaction help ML to perform well
rather than just providing plain data matrices [4,6,9,13]. In this spirit, along
with the fixed and variable costs to open facilities at different locations, we
also provide aggregated features on the set of scenarios. These features give
information about each of the potential locations for facilities in S-CFLP as well
as the way different locations interact through the demands in adjacent nodes.
A detailed set of the features is given in Appendix A.4.

4.4 Comparison

In order to evaluate the ML-based prediction of ξ�, which we refer to as ξ̂�, we
compare the solution obtained by solving the surrogate problem associated with
ξ̂� against solutions obtained by various algorithms.

We use LR and ANN to predict ξ�. We compare these predictions against (i)
Solution obtained using Gurobi by solving (2) (GRB) (ii) a solution obtained by
solving the surrogate associated with the average scenario, namely

∑N
i=1 Ξi/N

(AVG) (iii) a solution obtained by solving the surrogate associated with a ran-
domly chosen scenario from the N choices (RND) (iv) a solution obtained by
solving the surrogate associated with a randomly chosen scenario from the distri-
bution of the scenario predicted by LR (DIST). Note that GRB produces better
solutions (in most cases) than the ML methods, however, taking a significantly
longer time. We therefore assess the time it takes GRB to get a solution of
comparable quality to LR and ANN. We refer to these as GRB-L and GRB-A,
respectively.

5 Results

Table 1 reports the objective value difference ratio defined as ((Obj val by a
method−GRB obj val)/GRB obj val) for each method and Table 2 statistics
on computing times. Before analyzing the results in more detail, we note a key
finding that emerges. Namely, LR and ANN perform almost as good as GRB
(in terms of quality of the objective value) in a fraction of the time taken by
GRB. Figure 1 captures the trade off between the quality of solutions obtained
by different methods as well as the time taken to obtain these solutions.

We observe from Table 1 that LR and ANN produce decisions that are as good
as GRB ones on an average (and by the median value), and in some cases the
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Fig. 1. Objective value difference ratio vs. avg time in seconds

ML-based methods even beat GRB, i.e., produce solutions whose objective value
is better than that of GRB. This is possible because GRB does not necessarily
solve the problem to optimality, but only up to a gap of 2%. Further, even in
the worst of the 4,290 test cases, LR is at most 2.64% away from GRB. To show
that this is not easily achieved, we also compare GRB against AVG, RND and
DIST. We observe that these methods perform much poorer than GRB, unlike
LR and ANN.

Table 1. Objective value difference ratio, GRB vs. the five other methods (in %)

GRB vs. AVG RND DIST LR ANN

Min 3.36 −0.33 −0.17 −0.62 −0.45

Max 14.23 94.42 49.87 2.64 7.85

Avg. 8.10 12.10 5.41 0.64 1.02

Median 8.08 8.24 3.54 0.60 0.90

Std. dev. 1.59 12.11 5.39 0.41 0.70

Analyzing the time improvement in using LR and ANN, we observe from
Table 2 that these methods solve the S-CFLP orders of magnitude faster than
GRB. Indeed, GRB takes over 8 s on an average to solve these problems, while
the maximum time is 0.046 s using LR and ANN. We emphasize that the time
taken to solve using the ML methods includes the time elapsed in computing the
values of the features used in ML and the time elapsed in solving the surrogate
associated with the corresponding ξ̂�. Recall that GRB-L and GRB-A denote
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Table 2. Statistics on computing times of the different methods

Method GRB AVG RND DIST GRB-L GRB-A LR ANN

Min 0.4354 0.0041 0.0041 0.0040 0.4049 0.4268 0.0194 0.0197

Max 559.32 0.0077 0.0081 0.0065 140.43 140.43 0.0454 0.0457

Avg. 8.7713 0.0043 0.0045 0.0043 4.2650 3.0398 0.0206 0.0209

Median 2.2621 0.0043 0.0044 0.0042 1.4613 1.2898 0.0200 0.0204

Std. dev. 17.919 0.0001 0.0003 0.0001 8.5576 6.8362 0.0019 0.0019

the time it takes GRB to produce a solution of comparable quality to LR and
ANN. The results show that GRB cannot produce a solution of the same quality
as LR and ANN in a comparable time. In fact, LR and ANN are still orders of
magnitude faster than GRB.

6 Discussion

In this paper, we present an algorithm to solve 2SIP using ML-based methods.
The method hinges on the existence of the RS conjectured in Sect. 3.1. Compu-
tationally, we see that the methods proposed in this paper consistently provide
good quality solutions to S-CFLP orders of magnitude faster.

An important observation we had while training the models is that we were
never able to get the training loss close to zero. Naturally, the predicted RS in
the test dataset were quite different from the RS estimated using our heuris-
tics. The differences in the predicted values of the components of RS and those
obtained using the heuristics are documented by Fig. 2 in the Appendix. Despite
this, the solution value to the 2SIP as determined by our algorithm were near
optimal as shown in the results and significantly better than those obtained with
other methods. The mismatch between the ML metrics and those characterizing
discrete optimization problems is a known issue [4] requiring extensive research
and, in our context, we believe that exploring this avenue might produce better
solutions.

Another interesting observation is that LR beats ANN in this task. We sus-
pect that this is partly caused by the parsimony offered by LR. However, this
is also encouraging news that the sample complexity of the learning task might
be relatively small in general. We believe that a natural extension to this work
is to provide these analyses more formally.

Further, we believe that computational tests assessing the performance of the
algorithms in different datasets of 2SIP is crucial to show how much and where
our method generalizes. This might involve learning solutions to other forms of
2SIP like the stochastic unit-commitment problem, the stochastic supply chain-
network design problem etc. These are cases where we believe that Conjecture
1 still holds, but we do not have computational validation.

Finally, we would also be interested in extending the theory side when Con-
jecture 1 is not expected to hold at all or holds only with weaker guarantees;
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for example, in the case where both the stages are mixed-integer nonlinear pro-
gramming (MINLP) problems. In such cases, it will be useful to understand the
reach of ML-based solution techniques as opposed to traditional MINLP solvers.

A Computational Test Details

A.1 Problem Formulation

We provide below the problem considered in this work for computational study.

min
b∈{0,1}n,v∈R

n
+

n∑
i=1

(
cf
i bi + cv

i vi

)
+ Eξ(Q(x, ξ)) (5a)

n

10
≤

n∑
i=1

bi ≤ 3n

4
(5b)

vi ≤ Mbi (5c)
where Q(x, ξ) is

min
u∈{0,1}n×n,y∈R

n×n
+

n∑
i=1

n∑
j=1

ctv
ij yij +

n∑
i=1

n∑
j=1

ctf
ij uij (5d)

n∑
j=1

yij ≤ vi (5e)

n∑
i=1

yij = dj(ξ) (5f)

yij ≤ uijM (5g)

In this problem, we minimize the fixed and variable costs of opening a facility
along with the fixed and variable costs of transportation between the facilities
and the demand nodes. There are n potential locations where a facility could
be opened. A fixed cost of cf

i is incurred, if a facility is opened in location i,
and a variable cost of cv

i is incurred per-unit capacity of the facility opened in
location i. The binary variable, bi tracks if a facility is opened in location i and
the continuous variable vi indicates the size of the facility at location i. The
constraint in (5c), along with the binary constraint on b ensures that the costs
are incurred in the right way. Finally, (5b) is a complicating constraint, which
says that at least a tenth of the locations must have a facility open and not more
than three-quarters of the locations must have a facility open.

In the second stage, ctf
ij is the fixed cost incurred in transporting from location

i to j; ctv
ij is the per-unit variable cost incurred in transporting from i to j. The

binary variable uij denotes if any transportation happens from i to j and the
continuous variable yij denotes the actual quantity transported from i to j.
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Algorithm 1: GenerateXiHat

Data: 2SIP P with first-stage solution xe and objective value oe, max iterations
iter, a constant c > 0

Result: ξ� or NULL
1 ξ̄ ← 1

|Ξ|
∑|Ξ|

i=1 ξi;

2 while iter do

3 Formulate surrogate problem P ′
associated with ξ̄;

4 Solve P ′
and extract first-stage solution xξ̄ with objective oξ̄;

5 if oξ̄

oe ≤ c then
6 return ξ̄;

7 else

8 Perturb ξ̄ using heuristics based on xe and xξ̄

9 return NULL

The second-stage objective in (5d) minimizes the transportation cost incurred
under a random demand scenario parameterized by ξ. Then, (5e) ensures that
the total quantity transported out of a facility is not greater than the capacity
of the facility, while (5f) ensure that the total quantity supplied to a location j
equals the (random) demand at j. Finally, constraints (5g) link u and y variables
appropriately.

A.2 Data Generation

Instance Generation. We generate 50K instances of S-CFLP, with 10 facilities,
10 clients and 50 scenarios. The random parameters cf , cv and Ξ = [ξ1, . . . , ξ50]
vary across instances, where as ctf and ctv are fixed across all instances. More-
over, cf and cv are sampled from a discrete uniform distribution [15, 20) and
[5, 10), respectively. The demand matrix Ξ is generated by first evaluating
λ =

⌊
(cf + 10cv)/

√
n
⌋
. The ith demand scenario (1 ≤ i ≤ 50) is generated

by sampling from a Poisson distribution with the mean equal to λ.
The generated instances are solved using Gurobi, running 2 threads, to opti-

mality (less than 2% gap) or 10 min time limit. We store the objective value, gap
closed and master solution x∗ = (b∗, v∗). We were able to solve all the instances
up to the specified gap, within the specified time limit.

We follow Algorithm 1 for generating ξ�. Then, |Ξ| refers to the cardinality
of Ξ and c = 1.01 in step 6. The heuristics for updating the RS, based on xe

and xξ̄, are described in Appendix A.3.

A.3 Heuristics

Let x∗ = (b∗, v∗) and xξ̄ = (bξ̄, vξ̄) be the first-stage optimal and surrogate solu-
tion associated with the scenario ξ̄, respectively. There are three heuristics that
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we use in tandem to generate ξ�. The first heuristic is based on the compari-
son of facilities being open or close in the optimal and surrogate solution. The
demand in the ξ̄ is zeroed out at clients for which the b∗ is close and bξ̄ is open,
as suggested by

b∗
i = 0 ∧ bξ̄

i = 1 =⇒ ξ̄i = 0 i = 1, . . . , n. (6)

The remaining two heuristics are based on the comparison of capacities installed
in facilities in the optimal and the surrogate solution. First, the client with max-
imum absolute difference between capacities installed in optimal and surrogate
solution is identified i.e., argmaxi |v∗

i − vξ̄
i |. The demand at this client in the ξ̄

is updated either by a fixed percentage p of the current demand

ξ̄i = ξ̄i +
v∗

i − vξ̄
i

|v∗
i − vξ̄

i |
× pξ̄i, (7)

or by a fraction f of the difference between the capacities installed in optimal
and surrogate solutions

ξ̄i = ξ̄i + (v∗
i − vξ̄

i )f ξ̄i. (8)

Fig. 2. Demand histogram for different methods.

A.4 Feature Engineering

The inputs of the models are cf , cv and Ξ. We do not provide ctf and ctv in
the input as they are fixed across all instances. We do feature engineering on
Ξ, instead of providing it as a raw input, to extract information which can be
useful in predicting ξ�. Let Ξ be an m × n matrix, where m is the number
of scenarios and n is the number of clients. We calculate minimum, maximum,
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average, standard deviation, median, 75th quantile, and 25th quantile of Ξ[:,i]

(ith column of Ξ) for i = 1, . . . , n.
We also find the percentage of scenarios in which some fraction of demand

for a client is greater than and less than the demand on all the other nodes

c ∗ Ξ[:,i] ≥ Ξ[:, �=i]

m
and

c ∗ Ξ[:,i] ≤ Ξ[:, �=i]

m
.

We set c to different values (0.9, 1, 1.1, 1.2 and 1.5) and we thus end up with an
input vector of size 190, combining cf , cv and features extracted from Ξ. The
feature extraction performs an aggregation over the number of scenarios.

A.5 ML Model Details

For the LR model, we use the vanilla LR implementation provided by Scikit-
Learn without regularization.

For the ANN based regression, we consider a fully connected feed-forward
neural network with two hidden layers. The configuration of the network was an
input of 190 dimensions, two hidden layers with 128 neurons each and an output
of 10 dimensions. We used ReLU activation in the hidden layers and trained
the ANN using Stochastic Gradient Descent with momentum 0.9. The ANN was
implemented using PyTorch. An implementation of the algorithm to solve capac-
itated facility location problem is available at https://github.com/ds4dm/nectar
[1].
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1 Introduction

Quantum annealing processors have been developed to perform the quantum
annealing algorithm, which searches for the minimum of a quadratic uncon-
strained binary optimization (QUBO) problem equivalent to finding the min-
imum energy state of an Ising spin system [18]. The most successful implemen-
tation of quantum annealers use superconducting quantum bits (qubits), where
the interactions between qubits are controlled in order to perform an adiabatic
evolution to a state whose energy function represents the objective function to be
optimized. This is the case of the quantum annealers manufactured by D-Wave,
which is the current largest quantum annealing hardware producer.

The hardware configuration of D-Wave quantum annealers follows a Chimera
graph topology (Fig. 1). The Chimera graph, CL,M,N , is a grid of M ×N cells of
KL,L biclique graphs connected in a nearest-neighbor fashion by means of non-
planar edges [22]. This architecture is selected due to the advantages it provides,
both in terms of the physical implementation (e.g., the ability to incorporate on-
chip control circuitry, 2D chip integration, and minimization of noise-to-signal
ratio), the chip topology characteristics (e.g., non-planarity, ability to embed
complete graphs [3]). Figure 1 presents photographs of the D-Wave Two processor
chip, and how this physical topology corresponds to a Chimera C4,8,8 graph.

Fig. 1. Chimera graph with one cell magnified. Each cell contains 8 qubits, whose
internal connections can be described by a K4,4 graph. Qubits are laid in thin loops
(red), and connected with each other in the Chimera cell by couplers (blue cells), and
outside of it to neighbor cells (blue circles, in this case only to cells located south and
east). Images adapted from Supplementary material of [18] and [30,31]. (Color figure
online)

Given the connectivity restrictions of the graph defining the processor’s archi-
tecture, representing an arbitrary QUBO requires the use of graph minor the-
ory (GMT). GMT, the central theme of this work, is prominent across many
fields. Mapping a dense source graph to a sparse target graph can be achieved
by constructing connected subgraphs of the target graph from the high degree
logical vertices in the source graph. The resulting mapping is called a minor-
embedding of the source graph inside the target graph. In quantum computing,
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GMT is employed to extend the scope of problems that can be represented on
current quantum annealing hardware [5,19]. An example of minor-embedding is
presented in Fig. 2, where an example source graph is embedded in C4,1,2.

Fig. 2. Source graph of illustrative example [9], a valid embedding and its minimal
size embedding in C4,1,2. Grey nodes and edges represent unused nodes and edges in
embedding, but present at the target graph. Bold edges represent edges in chains.

Numerous heuristics for finding minor-embeddings have been proposed [1,
4,32], with some work focused on finding embeddings within Chimera graphs
specifically [14,23,29,32]. While these approaches are generally fast, they do
not provide guarantees on the quality of the produced minor-embeddings (e.g.,
minimal size of the embedding), nor can they prove the nonexistence of a minor-
embedding for infeasible problems. An approach that attempts to address these
shortcomings was recently introduced by Dridi et al. [9] and uses tools from
algebraic geometry to produce an equational formulation, as opposed to a purely
combinatorial approach, to the minor-embedding problem.

In this paper, starting from the equational formulation presented by Dridi
et al. [9], we propose integer programming (IP) techniques for tackling the embed-
ding problem. Our proposed approaches differ from the computationally demand-
ing Groebner bases computation used previously and are aimed at more effi-
ciently computing embeddings while retaining interesting properties that arise
from the equational formulation of the problem. Our first approach, detailed in
Sect. 3, directly translates the previous equational formulation to IP, while our
second approach decomposes the problem into an assignment master problem
and fiber condition checking subproblems, as described in Sect. 4. The proposed
methods are able to detect instance infeasibility and provide bounds on solu-
tion quality for a specific objective function, capabilities not offered by currently
employed heuristic methods. While recent work uses an approach with IP to
address the embedding problem based on templates specific to D-Wave quan-
tum annealers [28], the techniques we present in this paper are target graph
agnostic.

We conduct an extensive empirical analysis involving a benchmark consist-
ing of three different families of random graphs in Sect. 5. There we present
our results in an illustrative and challenging case for heuristics, which moti-
vates the use of IP over computational algebraic geometry (CAG) methods in
random structured and unstructured graphs as well as in applications for quan-
tum annealing. The results of the experiments indicate that, while the IP-based
methods are slower than currently employed heuristics whenever the heuristics
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are able to find an embedding, the IP methods provide infeasibility proofs and
quality guarantees which the heuristics are unable to provide. Furthermore, our
experiments suggest that the decomposition method outperforms the monolithic
IP in finding compact embeddings. However, the decomposition approach does
not always perform as efficiently as the monolithic IP approach in providing
optimality or infeasibility guarantees, especially seen in the illustrative example
and small structured graphs. We provide concluding remarks in Sect. 6.

Notations. All graphs considered in this paper are simple and undirected. We use
V(X) and E(X) to denote the vertex and edge sets of a graph X, respectively.
We also define n = |V(X)|, and m = |V(Y )|. Finally, given a vector v, v denotes
the concatenation v = (v1, . . . , v|v|).

2 Problem Definition

Let X and Y be a fixed target and source graph, respectively. The problem we
consider is finding a minor-embedding of the graph Y inside X. As the target
graph (often) cannot directly represent all the edges in the source graph, a vertex
in the source graph will typically be represented by one or more vertices in the
target graph that form a connected subgraph. We call the collection of vertices
in the target graph that represent a vertex, y ∈ V(Y ), in the source graph the
vertex model of y, denoted φ(y). An embedding, then, is defined as the union
of all vertex models of y ∈ V(Y ). The vertex models are constructed such that,
for each edge {y1, y2} ∈ E(Y ), there exists at least one edge in E(X) connecting
the two vertex models φ(y1) and φ(y2). For the sake of a simplicity, we use
the term embedding instead of minor-embedding throughout the remainder of
the paper. Suppose we have an embedding of the graph Y inside the graph X.
The embedding is given by subgraph of X that satisfies φ(Y ) := ∪y∈V(Y )φ(y),
which in GMT is known as a Y minor. In the context of quantum annealers,
this embedding represents the quantum processor’s representation of the source
graph, since it does not distinguish between qubits representing different nodes
of the source graph or qubits representing the same node in the source graph.
The vertices of X belonging to the same vertex model are known as chains
in the quantum annealing community and as fibers using CAG terminology. In
practice, quantum annealers use a strong ferromagnetic coefficient to enforce
these replicated values to be equal (i.e., acting as a single qubit).

In the equational approach, embedding the source graph Y inside the target
graph X is represented by a map π : X → Y such that: π−1(y) = φ(y), y ∈ V(Y ).
The map π is required to be surjective to guarantee that all logical qubits are
embedded. The goal, then, is finding an embedding, which is equivalent to finding
the mapping π given graphs X and Y .

Although finding a valid embedding is sufficient for a problem represented
by graph X to be implemented in a quantum annealer described by graph Y , as
in Fig. 2, it is often desirable to find an embedding which optimizes an objective
function. In particular, given the limitations on the number of qubits in available
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quantum hardware, a desired property of an embedding is to have a small qubit
footprint [7], as shown in Fig. 2(c).

3 Problem Formulation

We tackle the problem of determining the mapping π using integer programming
(IP). IP is a mathematical optimization technique used for problems modeled as
a set of decision variables taking on integer values, constrained by linear con-
straints and with a linear objective function. The standard solution approach to
IP models is branch-and-bound tree search. Indeed, due to their many practical
applications, the computational capabilities of modern IP solvers have increased
tremendously in recent years [2]. These IP solvers are capable of proving instance
infeasibility and providing certificates of optimality and bounds on solution
quality.

In our first approach, the previously proposed polynomial equations [9] are
reformulated such that they represent the original logic and are representable
in the IP formalism (i.e., linear constraints involving integer variables). Defining
the mapping π explained above as:

π(xi) =
∑

j:yj∈V(Y )

αijyj , ∀xi ∈ V(X) (1)

where αij are binary coefficients. For this map to be well-defined we impose:
∑

j:yj∈V(Y )

αij ≤ 1 ∀xi ∈ V(X), (2)

that is, at most one αij is non-zero for each vertex in the graph X. The unique
non zero αij (if any) represents whether the physical qubit xi embeds yj , i.e.,
φ(yj) = xi. When all the coefficients αij are zero, we get π(xi) = 0 indicating
that the physical qubit is not used. In other words, while the domain of definition
of π is V(X), its support is only a subset of V(X). The other conditions included
in the definition of the embedding φ(Y ) (e.g., the connectivity of the fibers) can
similarly be written in equational form.

3.1 Constraints

Here, we present the IP formulation of the polynomial conditions, from Dridi
et al. [9], that the coefficients αij ∈ {0, 1},∀xi ∈ V(X),∀yj ∈ V(Y ) need to
satisfy for π to be a valid embedding. This constitutes the first contribution of
the paper. Note that, with a slight abuse of notation, our IP approaches redefine
αij as a binary decision variable equal to 1 if xi belongs to the vertex model of
yj , and 0 otherwise.

1. Minimum and maximum size. These constraints ensure that the total number
of qubits is bounded within the number of variables in the original problem and
the total number of qubits n.



Integer Programming Techniques 117

m ≤
∑

i:xi∈V(X)

∑

j:yj∈V(Y )

αij ≤ n. (3)

2. Well-definition of the map π. This is captured by Eq. (2).
3. Fiber size constraint. This constraint on the size of the vertex models |φ(yj)|,
known as fiber size, is given by:

1 ≤
∑

i:xi∈V(X)

αij ≤ k ∀yj ∈ V(Y ). (4)

where k is the desired maximum size of each fiber π−1(yj). The lower bound
ensures that all the logical variables are embedded i.e., the map π is a surjection
on the set V(X). We also include the following constraint:

1 ≥ αi1j + αi2j ∀xi1 , xi2 ∈ V(X),min d(xi1 , xi2) > k,∀yj ∈ V(Y ). (5)

This additional refinement excludes pairs (xi1 , xi2) from being in the
fiber π−1(yj) whenever their distance, d(xi1 , xi2), is larger than k, the desired
maximum size of the fiber.
4. Fiber condition. We require that each fiber to be a connected subtree of X:

∀xi1 , xi2 ∈ π−1(yj) : αi1j + αi2j +

⎛

⎝
∑

ck(xi1 ,xi2 )∈Ck(xi1 ,xi2 )

(γck,j) − 1

⎞

⎠ ≤ 2. (6)

The binary variable γck,j takes a value of 1 if a fiber ck(xi1 , xi2) is used in the
vertex model of yj , and 0 otherwise. Here ck(xi1 , xi2) is a fiber of size ≤ k con-
necting the two physical qubits xi1 and xi2 , and Ik,i1,i2 = int(ck(xi1 , xi2)) =
ck(xi1 , xi2)\{xi1 , xi2}. We also write Ck(xi1 , xi2) to denote the set of all fibers of
size ≤ k connecting xi1 and xi2 . This condition implies the existence of a unique
fiber connecting the pair and completely contained in π−1(yj). This automati-
cally implies that π−1(yj) is connected. The binary γck,j is defined using the fol-
lowing IP representable constraints: ∀ck(xi1 , xi2) ∈ Ck(xi1 , xi2) and ∀yj ∈ V(Y ):

γck,j =
∏

�:x�∈Ik,i1,i2

α�j ⇔
{

γck,j ≤ α�j ∀x� ∈ Ik,i1,i2

γck,j ≥ 1 − (k − 1) +
∑

�:x�∈Ik,i1,i2
α�j

(7)

The constraint in Eq. (6) does not exclude the cases where 2 variables in
the source graph (yj1 , yj2) ∈ E(Y ) are mapped to 4 different qubits in a
fiber {xi1 , . . . , xi4}, where the vertex models are intercalated, i.e. φ(yj1) =
{xi1 , xi3}, φ(yj2) = {xi2 , xi4}. The following constraint ensures that if two nodes
in the target graph are in the vertex model of the same logical variable, and are
not neighbors in the target graph, then one of the fibers joining them has to be
active.

αi1j + αi2j −
∑

ck(xi1 ,xi2 )∈Ck(xi1 ,xi2 )

(γck,j) ≤ 1 ∀yj ∈ V(Y )

∀(xi1 , xi2) ∈ V(X), (xi1 , xi2) 	∈ E(X),min d(xi1 , xi2) ≤ k

(8)
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5. Pullback condition. We require that for each edge (yj1 , yi2) in E(Y ), there
exists at least one edge in E(X) connecting the fibers π−1(yj1) and π−1(yi2).
The way we guarantee this is by requiring that the quadratic form of the source
graph y vanishes modulo the (pullback along π of the) quadratic form of the
graph X. The details of this are in [9]. The resulting constraint can be written
as

1 ≤
∑

i1,i2:(xi1 ,xi2 )∈E(X)

(
δ

‖
i1i2j1j2

+ δ⊥
i1i2j1j2

)
∀(yj1 , yj2) ∈ E(Y ), (9)

where we have introduced the binaries δ
‖
i1i2j1j2

and δ⊥
i1i2j1j2

defined ∀(xi1 , xi2) ∈
E(X) and ∀(yj1 , yj2) ∈ E(Y ): The binary variable δ

‖
i1i2j1j2

is one if xi1 and xi2

are edges of the vertex-models φ(yj1), φ(yj2) respectively, and the binary variable
δ⊥
i1i2j1j2

is one if xi2 and xi1 are edges of the vertex-models φ(yj1), φ(yj2) respec-
tively. This conditions are equivalent to δ

‖
i1i2j1j2

= αi1j1αi2j2 and δ⊥
i1i2j1j2

=
αi1j2αi2j1 . We can then represent these new variables using linear inequalities as
follows: ∀(xi1 , xi2) ∈ E(X),∀(yj1 , yj2) ∈ E(Y ):

δ
‖
i1i2j1j2

= αi1j1αi2j2 ⇔

⎧
⎪⎨

⎪⎩

δ
‖
i1i2j1j2

≤ αi1j1

δ
‖
i1i2j1j2

≤ αi2j2

δ
‖
i1i2j1j2

≥ αi1j1 + αi2j2 − 1

and equivalently for δ⊥
i1i2j1j2

. Both variables cannot be one for a single combina-
tion of (i1i2j1j2) simultaneously. This leads to the following constraint.

δ
‖
i1i2j1j2

+ δ⊥
i1i2j1j2 ≤ 1 ∀(xi1 , xi2) ∈ E(X),∀(yj1 , yj2) ∈ E(Y ). (10)

3.2 Complete IP Model

The feasible region of the IP formulation is defined by:

F =
{
(α,γ, δ‖, δ⊥)|(α,γ, δ‖, δ⊥) ∈ ((2) ∩ · · · ∩ (10))

}
. (11)

A constant objective function can be set for this problem such that any solution
that lies within the feasible region defined in Eq. (11) optimizes it.

Embedding Size. The objective function that minimizes the embedding size is

min
∑

i:xi∈V(X)

∑

yj∈V(Y )

αij s.t. (α,γ, δ‖, δ⊥) ∈ F. (12)

Other objective functions such as fiber size minimization, minimal fiber size
dispersion, and available edges in the embedding, among others are also IP
representable and can be implemented within this framework.
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4 Decomposition Approach

Implementing all the constraints at once in the IP formulation leads to a model
which is often intractable in practice. The fiber conditions require many con-
straints to be enforced, and only a small fraction of these are active in optimal
solutions. We investigate the application of a decomposition approach which iter-
ates between a qubit assignment master problem and fiber condition checking
subproblems. The strategy adds strengthened ‘no-good’ constraints (i.e., cuts)
to the master problem when they are found to be violated. Such an approach
bears resemblance to decomposition techniques used for scheduling and routing
problems, such as classical and logic-based Benders decomposition and branch-
and-check [13,17,27].

4.1 Master Problem

In the master problem, we relax the fiber conditions, permitting a node in
the source graph to be mapped in multiple parts of the target graph without
being connected. For our master problem, we introduce a new binary decision
variable, zexey

∀ex ∈ E(X),∀ey ∈ E(Y ), to track the embedding of prob-
lem edges in the target graph edges. The variable takes on a value of 1 if
edge ex = (xi1 , xi2) : ex ∈ E(X) is mapped through the embedding in edge
ey = (yj1 , yj2) : ey ∈ E(Y ), and 0 otherwise. For modeling purposes, we also
denote ex,1 = xi1 , ex,2 = xi2 , ey,1 = yj1 , and ey,2 = yj2 . This master problem
formulation includes previously expressed mapping constraints, Eq. (2), and size
constraints in Eq. (4), in addition to constraints (13) through (15) as follows:

Assignment of Edges. Each edge in the source graph has to be assigned to an
edge in the target graph.

∑

ex∈E(X)

zexey
= 1 ∀ey ∈ E(Y ). (13)

Linking Constraints. To link the assigned qubit values to the zexey
variables, we

use the following set of constraints ∀ex ∈ E(X),∀ey ∈ E(Y ):

zexey
≤ αex,1ex,2 zexey

≤ αey,1ey,2 . (14)

Together, these constraints ensure that a problem edge can only be assigned to
an edge in the target graph if the pair of nodes involved in that edge take on
the required values, which are aggregated in the following constraint

2 · zexey
≤ αex,1ex,2 + αey,1ey,2 ∀ex ∈ E(X),∀ey ∈ E(Y ). (15)

Subproblem Relaxation. Although the constraints above already represent the
assignment problem to be modeled in the master problem, we can include a
relaxation of the subproblem to help guide to master problem towards feasible
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solutions. This requires the addition of another set of binary variables, wj that
track whether vertex model φ(yj) has a size greater than one. Then, ∀yj ∈ V(Y ):

∑

i:xi∈V(X)

αij − n · wj ≤ 1, (16a)

n(1 − αij) +
∑

�:(xi,x�)∈E(X)

α�j +
∑

�:(x�,xi)∈E(X)

α�j ≥ wj ∀xi ∈ V(X). (16b)

This constraints ensure that the variable wj is one if the node yj is mapped to
more than one node xi. Equations (13)–(16), together with the cuts generated
by the subproblems, define the master problem.

4.2 Subproblems

The subproblem validates if there exist vertices in the embedding belonging to
the same vertex model φ(yj) which are not connected in the target graph. If this
is the case, it returns a constraint that either: i) encourages connectivity in future
iterations, or ii) removes occurrences of the disconnected vertex models from the
graph. For each vertex model with more than one vertex on the embedding, it
checks at each vertex on the target graph that belongs to that vertex model. If
that vertex does not contain an edge that connects it to another vertex of that
vertex model, then the checking procedure returns disconnected.

4.3 Cuts

If a particular vertex model is found to be disconnected in the solution, we
add a constraint to remove the current solution and prevent future solutions
from having the same disconnectivity. Let the set of disconnected vertices in
the source graph be denoted as ĵ : yĵ ∈ Ŷ . Let the set of vertices in the target
graph that belong to this vertex model, yĵ , in the current incumbent solution,
be represented as the vertex model φ(yĵ) ⊆ X. Let the set of vertices that are
adjacent to any vertex in φ(yĵ), but are not assigned value yĵ , be denoted φ′(yĵ).
The constraint generated in the current iteration for disconnected qubit yĵ is
then given by:

|φ(yĵ)| −
∑

i:xi∈φ(yĵ)

αiĵ +
∑

i:xi∈φ′(yĵ)

αiĵ ≥ 1. (17)

This removes the current infeasible solution from the search space and requires
the master problem to: i) include at least one fewer vertex with this vertex model
(bracketed term), or ii) include at least one more vertex with this vertex model,
among the set of vertices that could improve connectivity (non-bracketed term).

Notice that we reformulated the pullback condition from the Eq. (9) in terms
of δ‖ and δ⊥ into the variables zexey

and its corresponding constraints, while
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the fiber condition is relaxed with the subproblem and cut generation proce-
dure. Following the intuition in [4], where the heuristic method tries to obtain
embeddings with a small qubit footprint, the default objective function imple-
mented in the master problem is to minimize size, as in Eq. (12). This objective
leads the master problem to return compact assignments of variables. In the case
that the feasibility objective is considered within this approach, the optimization
procedure is stopped when the first feasible solution is found.

5 Results

The model in Sect. 3 was implemented using the Python package Pyomo
[16], which interfaces with several open-source and commercial solvers.
The decomposition approach presented in Sect. 4 is implemented in C++
and uses the CPLEX 12.9 solver [6]. Our approaches are compared with
the D-Wave default heuristic minorminer, introduced in [4] (available
at github.com/dwavesystems/minorminer). Unless otherwise stated, the mono-
lithic IP method assumes a value of maximum fiber size k = 3, which is jus-
tified for the structured random graphs given their construction. This provides
the monolithic method an advantage with respect to the decomposition method
given that the infeasibility proofs are contingent on k. All experimental results
were obtained using a laptop running Ubuntu 18.04 with an Intel Core i7-6820HQ
CMU @ 2.7GHz with 8 threads and 16 GB of RAM.

5.1 Illustrative Example

Our illustrative example is taken from [9], where a K4,4 bipartite graph is con-
nected through a single edge to a structured graph with 4 nodes and is embedded
in a C4,1,2 Chimera graph, as seen in Fig. 2. This embedding is challenging for
heuristic methods that search vertex models outside of the blocks [9]. The embed-
ding with the minimal size is given when one of the nodes in the 4-node block
is embedded in a chain of length 2, resulting in an embedding of length 13. The
heuristic implemented in minorminer fails roughly 50% of the 1000 runs (i.e., it
is not able to find a valid embedding in half of the experiments). We consider
solving this problem using the CAG approach proposed in [9], by computing the
Groebner basis of the polynomial ideal. When using the software Maple 2017 [20],
which includes Faugère’s algorithm [10,11], the Groebner basis computation is
unable to find a solution after 5 h of computation, before running out of mem-
ory. We apply our IP approach with the open-source solvers GLPK 4.61 [24] and
CBC 2.9.6 [12], as well as the commercial solvers Gurobi 8.1 [15] and CPLEX
12.9 [6]. We use a time limit of one minute per experiment.

The open-source solvers fail to provide feasible solutions within the time
limit when there is a constant objective function. The CBC solver, however, can
find a solution when minimizing embedding size, illustrating that including an
objective function can be beneficial. In this case, although it finds the optimal
solution, the CBC solver is unable to prove it is optimal (with a gap at the
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end of the runtime of 8.3%). The commercial solvers, on the other hand, can
provide both feasible and optimal solutions in under a minute of computation.
In particular, Gurobi takes 1.3 s to find an initial feasible solution and 31.2 s
to find and prove the optimal solution, while CPLEX takes 3.5 s and 9.4 s for
the same tasks, respectively. As expected, the time required to provide a feasible
solution is less than that taken to give optimality guarantees.

Finally, the decomposition approach provides feasible solutions more effi-
ciently, and with higher quality, than the other approaches. Specifically, it took
0.4 s for the decomposition approach to provide a feasible solution which was
nearly optimal, with a 7% optimality gap. Finding a provably optimal solution
required 46.5 s. These results suggest that the usage of commercial solvers is
required for solving these challenging IP problems. The performance difference
between commercial and open-source solvers for a given mathematical formu-
lation is driven by a large number of factors; recent solver benchmarks have
identified that commercial IP solvers, overall, significantly outperform their open-
source counterparts [21]. For the problem presented here, the open-source solvers
evaluate the root node relaxation less efficiently than the commercial approaches.
Furthermore, the commercial solvers appear to have much more effective branch-
ing heuristics resulting in fewer nodes explored, overall. Our initial experimen-
tation indicated that, out of the commercial solvers, CPLEX had superior per-
formance to Gurobi, and so we only report CPLEX results for the remainder of
the manuscript.

5.2 Random Graphs

1. Random Structured Graphs. Here we generalize the example above. We con-
sider the bipartite graph K4,4(pinter) parameterized by pinter, which is the prob-
ability of the existence of edges between the two partitions. We randomly choose
ζ edges, which we contract into nodes (each edge into a single node). This graph
is then connected to a complete K4,4 bipartite graph by 4 edges chosen with a
probability pintra. By construction, the resulting graph is a subgraph of C4,1,2,
and its size is m + ζ. It is the smallest minor of the corresponding graph with-
out contraction. The example of Sect. 5.1 is obtained with ζ = 1 (and m = 12).
Fixing pinter = pintra = 0.5, for each value of contracted edges ζ ∈ {0, . . . , 3},
we generate 10 random graphs. These random graphs were embedded in a C4,1,2

graph with a time limit of 300 s. Figure 3a gives the runtimes for the mono-
lithic IP and the decomposition methods solved using CPLEX. This figure also
shows the boxplots for the 1000 runs of minorminer. For this case, given the
way the random structured graphs are constructed, we see that the longest fiber
will be at most of size 3, which we encode for the monolithic IP approach using
the parameter k = 3. Notice that this observation biases the results in favor
of the monolithic IP approach with respect to the decomposition approach. For
finding a feasible solution, the decomposition approach is more efficient than
the monolithic IP approach. When ζ = 0, where finding a feasible embedding
is practically finding the minimally sized embedding, there is no difference in
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time performance between the cases of embedding size minimization and find-
ing a feasible solution. For ζ > 0, the embedding size minimization becomes
more expensive, in particular for the decomposition approach. The monolithic
IP and the decomposition approaches were able to find smaller or equally sized
embeddings for 33 and 30 cases out of the 40 experiments, respectively. When
the objective function is the size minimization, this number increased for all
instances in all cases and is strictly better in 22 cases for the monolithic IP and
21 cases for the decomposition approach. We note that the monolithic IP app-
roach was able to find an embedding for one instance which was smaller than
any of the 1000 runs of the heuristic method.

Larger instances of random structured graphs can be generated by combining
two graphs like the ones described above, and including the edges appearing in a
C4,2,2 graph between the cells with probability pintra. As before, we generated 10
random instances with values of ζ ranging from 0 to 3. The time performance of
the different methods is shown in Fig. 3a. Out of the 40 instances, the monolithic
IP and the decomposition method are still able to find embeddings as compact
as the median heuristic behavior in 17 and 23 instances when trying to find a
feasible solution, and in 20 and 17 instances when trying to minimize the size
of the embedding, respectively. Similar to the previous case, the monolithic IP
approach is able to find smaller embeddings than any of the 1000 runs of the
heuristic method for two problem instances.

Figure 3b shows a comparison of the embedding median sizes obtained by
the heuristic method versus the ones obtained for the IP methods. The size of
the markers represents the heuristic failure rate fraction, computed from the
1000 runs of the heuristic method for each instance. Both the monolithic and
the decomposition approaches (different colors) and the feasibility and size min-
imization objectives (different marker shapes) are represented in this figure. In
total, out of the 80 structured instances, the heuristic failed more than 50% for
47 instances, more than 80% for 12 instances, and more than 90% for 3 instances.
These instances appear on the right side of Fig. 3b. For those instances, the IP
approaches were able to find a feasible solution in less than 20 s, and only for 19,
7, and 2 instances, respectively, the optimal solution could not be guaranteed
within the time limit. For high failure rate problems (>50% failure rate) for the
heuristic, our methods find a feasible solution in under 20 s and prove optimal-
ity in more than half of the instances in less than 5min. Notice that most of
the runs corresponding to finding a feasible embedding (circles) are above the
diagonal line, indicating a larger embedding size for the IP methods compared
to the heuristic, while size minimization runs (triangles) lie on the diagonal or
below it.
2. Erdös-Rényi Graphs. These graphs are parametrized by the number of nodes
ν and the probability of an edge existing between each pair of nodes p. We
consider a set of 10 random instances for each combination of ν ∈ {5, 6, . . . , 16}
and p ∈ {0.3, 0.5, 0.7}. Each of these graphs is embedded in different sizes of
Chimera, C4,1,1, C4,2,1, C4,3,1, and C4,2,2 . We set the time limit to 60 s. In this
experiment, we considered 2160 instances. In 1100 of them, the heuristic method
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Fig. 3. Embedding time and size comparison for different embedding methods for struc-
tured random graphs in C4,1,2 and C4,2,2 with respect to median behavior of minorminer.
Values beyond the red lines represent embeddings where the heuristic median perfor-
mance (right) or the IP methods (top) failed to return an embedding. (Color figure
online)

could not find any feasible embedding after 1000 runs. In 94% of these cases,
at least one of the monolithic IP methods does not time out, meaning that
the methods could prove the infeasibility of the embedding or find a feasible
embedding. This proves that the methods proposed in this work are valid for
providing guarantees of the embeddability of graph minors in cases where the
current heuristics are unable to answer this satisfiability question. In the trivially
infeasible case where ν > n our methods could almost immediately identify the
infeasibility, contrary to the minorminer heuristic. The conclusion is that the
runtime for the monolithic IP methods increases with the size of the target and
source graphs, the density of the source graph given by p, and when the objective
function is to minimize the embedding sizes.

We complete our benchmark of random graphs by embedding larger prob-
lems. In this case we, consider 5 random instances for each combination of
ν ∈ {10, 15, . . . , 35} and p ∈ {0.1, 0.3, 0.5, 0.7} embedded into C4,4,4, where the
longest fiber size was increased to k = 5. We observe that, for these instances,
the only IP solver that does not run out time is CPLEX implementing either the
monolithic IP or the decomposition approach with the feasible solution objective.

Figure 4 presents the embedding size and time comparison for the small ran-
dom graph experiments. For this test case, in 60% of the instances the decom-
position approach yielded embeddings with sizes equal to, or smaller than, the
median of the ones returned by the heuristic, when looking for a feasible solu-
tion, and in 90% of the instances when minimizing the embedding size. The
monolithic IP approach was more efficient to declare infeasibility in non-trivial
cases (ν ≤ n) than the decomposition approach, Figs. 4a and 4b, as the values
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Fig. 4. Embedding size and time comparison for Erdös-Rényi graphs (ν ∈ {5, 6, . . . , 16},
p ∈ {0.3, 0.5, 0.7}) given different objectives. Values beyond the red lines represent
embedding where the decomposition (right) or the monolithic IP methods (top) failed
to return an embedding or went over the time limit.

are below the diagonal with large heuristic failure fractions and longer runtimes.
When compared to the minimal size found after the 1000 runs of the heuristic
method, the monolithic IP methods are still able to find smaller embeddings for
around 5% of the cases. The comparison in Fig. 4 highlights that the sizes of the
embeddings found by the decomposition approach are in most cases as small or
smaller than the monolithic IP approach. In terms of the computational time,
we observe that those instances that were challenging for the heuristic (large
markers) are more easily solved by the decomposition approach, especially when
minimizing the size of the embedding. The remaining instances appear to be
solved more efficiently using the monolithic IP approach. The larger and more
challenging instances lead to different results. Out of the 120 instances solved,
the decomposition approach outperforms the monolithic IP approaches, obtain-
ing equally good or better embeddings than the median heuristic behavior in
30% of the cases, compared to around 10% for the monolithic IP approaches.
The solution requires larger fibers, which affected directly the formulation size
of the monolithic case making it more challenging to solve. Only for one instance,
a smaller embedding than any of the observed heuristic solutions is obtained, in
this case by the decomposition approach.

5.3 Applications

1. Gadgets. It has been shown previously [8] that all of the cubic gadgets can be
embedded in a single Chimera cell, but three of the quartic gadgets require more
than a single Chimera cell. The three gadgets were K6 − e, Double K4, and K6.

We find more efficient embeddings for several of the gadgets, namely K5

(with 2 and 1 auxiliary variables), K6, and K6 − e compared to [8]. The embed-
dings found can be guaranteed to be the minimal size within a few seconds of
computation. For the case of the quartic gadgets, all but one (double K4) could
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be embedded in a single Chimera cell, in which case our method could provide
infeasibility guarantees in less than 10 s.
2. Spanning Tree. An example of an application is the communication of vehi-
cles/agents with a central control station that can be disrupted in a particular
area and can be routed through Δ agents/vehicles. Finding the communica-
tion routing of the vehicles that minimizes the distance, is equivalent to finding
the minimum spanning tree with bounded degree Δ. Rieffel et al. [26] propose
three different formulations of this problem that can be embedded in a quantum
annealer. Given the graph defined by the agents/vehicles, the distances among
them might change but not the graph itself. At the same time, the degree of
the spanning tree Δ is fixed by the communication equipment. We generate 80
instances with graphs of 4 vertices and between 3 and 5 edges. When reformu-
lating the problems as a QUBO, we obtain instances where the target graph
ranges in size between 19 and 29 nodes and with 35 to 70 edges. The resulting
QUBOs were embedded using the decomposition approach and compared to the
heuristic in minorminer. We obtain smaller (or equally sized) embeddings than
the median length of the heuristic in 12.5% (15%) of the instances in 5min of
computational time (compared to 1000 runs of the heuristic).
3. Protein Folding. Perdomo-Ortiz et al. [25] encode the different configuration of
the amino acids in a protein in terms of a QUBO representing the overall energy
of the system. Minimizing this QUBO with respect to the different number of
bonds between amino-acids would yield the protein’s least-energy configuration.
[25] not only encodes the problem as a QUBO, but also provides a custom algo-
rithm to embed it in the D-Wave One chip, which has hardware described by
a faulty C4,4,4 graph. The largest instance solved in this paper involved embed-
ding a QUBO of 19 variables in a target graph of 127 qubits. The resulting
embedding involved 81 qubits with the largest vertex model of length 5, being
at the time the largest problem embedded and solved with D-Wave’s quantum
annealers. We highlight two qualities of our approach: 1) we are not making any
assumption about the source or target graphs, allowing us to work with faulty
Chimera graphs as targets; and 2) we can exploit the fact of having an existing
embedding to initialize our procedures, allowing us to solve our IP problems
more efficiently. Initializing with the embedding provided by Perdomo-Ortiz et
al. [25] while restricting the k = 5 in the monolithic IP approach, we find an
embedding of length 77 (4.9% qubit footprint reduction) within an hour of com-
putation. Allowing longer fibers, we find an embedding of size 74 (8.6% qubit
footprint reduction) with a fiber of size 6. These embeddings are not guaranteed
to be optimal, but in both cases improve those previously found.

6 Conclusions

Integer programming (IP) approaches are proposed to solve the graph minor-
embedding problem. Specifically, we develop a monolithic IP derived from the
polynomial equations presented in Dridi et al. [9], and a decomposition app-
roach, both of which are capable of identifying infeasible instances and provid-
ing bounds on solution quality. These approaches are also agnostic to the source
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and target graphs. Both approaches were implemented and tested using a range
of different source graphs with various sizes, densities, and structures. The tar-
get graphs used follow the architecture of the chips in D-Wave’s current and
future quantum annealers. Although slower overall than the currently-employed
heuristic method [4], the proposed methods prove to be a viable solution app-
roach for highly structured source graphs, where the heuristic fails with a higher
probability.

The results presented highlight more general approaches to minor-embedding
using IP. The proposed formulations and results are a baseline for future meth-
ods that can work at larger scales. Applications to gadget embeddings, spanning
tree problems, and protein folding demonstrate the advantages of our approaches.
Promising future directions include using symmetries and the invariant formula-
tion as suggested in [9], or the design of chip-specific cuts/techniques. Another
direction is to reduce the search space by imposing certain limitations on the
embedding, e.g., by allowing only certain topologies for the vertex models or
by fixing certain embedding characteristics, such as maximum fiber size. Ini-
tial attempts to include these approximations show a promising decrease in the
computation time with an acceptable trade-off in quality.
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Abstract. The recent emergence of novel hardware platforms, such as
quantum computers and Digital/CMOS annealers, capable of solving
combinatorial optimization problems has spurred interest in formulating
key problems as Ising models, a mathematical abstraction shared by a
number of these platforms. In this work, we focus on constrained cluster-
ing, a semi-supervised learning task that involves using limited amounts
of labelled data, formulated as constraints, to improve clustering accu-
racy. We present an Ising modeling framework that is flexible enough
to support various types of constraints and we instantiate the frame-
work with two common types of constraints: pairwise instance-level and
partition-level. We study the proposed framework, both theoretically and
empirically, and demonstrate how constrained clustering problems can be
solved on a specialized CMOS annealer. Empirical evaluation across eight
benchmark sets shows that our framework outperforms the state-of-the-
art heuristic algorithms and that, unlike those algorithms, it can solve
problems that involve combinations of constraint types. We also show
that our framework provides high quality solutions orders of magnitudes
more quickly than a recent constraint programming approach, making it
suitable for mainstream data mining tasks.

1 Introduction

Recent years have seen the emergence of novel computational platforms, includ-
ing adiabatic and gate-based quantum computers, Digital/CMOS annealers, and
neuromorphic computers (for a review see [8]). These machines represent a chal-
lenge and opportunity to AI and OR researchers: how can specialized models
of computation as embodied by the new hardware be harnessed to better solve
AI/OR problems. Several new hardware platforms have adopted Ising models
[19] as their mathematical formulation and, consequently, a number of exist-
ing problems have been formulated as Ising models, including clustering [22],
community detection [34], and partitioning, covering, and satisfiability [26].

Constrained clustering is a semi-supervised learning task that exploits small
amounts of labelled data, provided in the form of constraints, to improve cluster-
ing performance [35]. In the past two decades, this topic has received significant
c© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 130–147, 2020.
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attention and algorithms that support different types of constraints have been
proposed [6,24,29]. As finding an optimal solution to the (semi-supervised) clus-
tering problem is an NP-hard problem [27], the commonly used algorithms rely
on heuristic methods that quickly converge to a local optimum.

In a recent work, Kumar et al. [22] presented an Ising model for unsuper-
vised clustering and observed mixed results using a quantum annealer. However,
formulating constrained clustering problems as Ising models and solving them
in hardware has not been studied. In this work, we introduce and analyze a
novel Ising modeling framework for semi-supervised clustering that supports the
combination of different types of constraints and we instantiate it with pairwise
instance-level and partition-level constraints. We demonstrate the performance
on the Fujitsu Digital Annealer [28,33], and discuss several hardware-related
considerations when embedding our framework on this hardware.

Our main contributions are summarized as follows:

– We introduce an Ising framework for constrained clustering with pairwise and
partition-level constraints that can be solved on a variety of novel hardware
platforms.

– We demonstrate the performance of our framework on a specialized CMOS
annealer and show that it outperforms the state-of-the-art heuristic methods
for constrained clustering and produces approximately equal or better solu-
tions compared to a constraint programming model in a small fraction of the
runtime (i.e., a two orders of magnitude speed-up).

– We show that the framework can seamlessly solve semi-supervised clustering
problems with both pairwise and partition constraints, problems that cannot
be solved by the existing heuristic techniques.

– We discuss some of the challenges in embedding Ising models onto quantum
and quantum-inspired hardware.

2 Background

Let X = {xi}ni=1 be the set of n data points with xi being a finite-sized feature
vector and K be the number of clusters (K<n). Combinatorial clustering algo-
rithms attempt to find a partition of X into K disjoint subsets, S = S1∪· · ·∪SK ,
that minimizes a chosen objective function, typically the total within-cluster
scatter [32] based on pairwise dissimilarities, d(xi, xj). When the dissimilarity is
represented by the squared Euclidean distance the objective is:

min
K∑

k=1

∑

i<j:
xi,xj∈Sk

d(xi, xj) =
K∑

k=1

∑

i<j:
xi,xj∈Sk

‖xi − xj‖2. (1)

In the Euclidean case, another commonly used objective function is the sum
of squared errors [18],

min
K∑

k=1

∑

xi∈Sk

‖xi − μk‖2, (2)

where μk is the mean vector of the points in cluster k.
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2.1 Constrained Clustering

In a semi-supervised setting, we assume some amount of labelled data in the form
of constraints. Constrained clustering is the problem of finding a partition that
satisfies the provided constraints [35]. First, we consider two pairwise constraints:
must-link (ML) and cannot-link (CL) [4]. ML constraints are defined by a set,
M, of pairs of points that must be assigned to the same cluster, (xi, xj) ∈
M ⇒ s(xi) = s(xj), where s(xi) denotes the cluster that xi is assigned to,
s(xi) = k ⇐⇒ xi ∈ Sk. CL constraints are defined by a set, C, of pairs of points
that must be assigned to different clusters, (xi, xj) ∈ C ⇒ s(xi) �= s(xj).

Bilenko et al. [6] proposed the Pairwise Constrained K-Means (PCK-Means)
problem that incorporates the constraints in the objective function:

min
K∑

k=1

∑

xi∈Sk

‖xi − μj‖2 +
∑

(xi,xj)∈M
wi,j1[s(xi) �= s(xj)]

+
∑

(xi,xj)∈C
wi,j1[s(xi) = s(xj)] (3)

where 1[true] = 1 and 1[false] = 0. PCK-Means is solved using a greedy iter-
ative algorithm, adapted from the K-Means algorithm [25]. Note that Eq. (3)
allows violation of ML and CL constraints depending on the weights wi,j and
wi,j that correspond to the confidence in the external information [23]. Metric
PCK-Means (MPCK-Means) [6] is a combination of PCK-Means with distance-
metric learning [36] that outperforms PCK-Means [9].

Other well-known approaches include Constrained Vector Quantization Error
(CVQE) [13] that augments the clustering objective to account for constraint
violations, but uses the distances between the centroids to compute the viola-
tion costs, and linear-time CVQE (LCVQE) [29] that computes the violation
costs based on the distances between objects and centroids. LCVQE was found
to be competitive in terms of accuracy with CVQE while violating fewer con-
straints [9].

We also consider partition-level (PL) constraints, where some points have
predefined cluster labels. Formally, assuming an arbitrary labeling of clusters
k, Xk ⊆ X denotes the set of points that must be assigned to cluster k. For
example, in clustering of patients into two cancer risk categories, X1 (X2) is the
set of patients known to have low (high) risk of having cancer.

To handle PL constraints, Liu et al. [24] proposed the Partition-Level Con-
strained Clustering (PLCC) problem that uses the following objective:

min
K∑

k=1

∑

xi∈Sk

‖d
(1)
i − m

(1)
k ‖2 + Λ1[di ∈ P ]‖d

(2)
i − m

(2)
k ‖2 (4)

where the first term is the squared distance from centroid and the second term
is the constraint violation weighted by Λ. PLCC is solved using a K-Means-like
algorithm.
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Several works have applied model-based exact techniques to constrained clus-
tering, including constraint programming [10–12] and integer linear program-
ming [2]. In a recent work, Dao et al. [12] proposed a constraint programming
(CP) approach for constrained clustering that minimizes within-cluster pairwise
dissimilarity (Eq. (1)) using a dedicated global constraint. In an earlier work,
they showed that a similar CP approach for minimizing sum of squared errors
outperforms integer programming [11]. Although exact techniques are able to
find and prove optimal solutions, they are often several orders of magnitude
slower than heuristic techniques and for large problems can be intractable. Fur-
thermore, they do not return a solution in case of contradictory constraints.

2.2 Ising Models

Ising models are graphical models that comprise a set of nodes N representing
spin variables, σi ∈ {−1, 1}, i ∈ N and a set of edges E representing interactions
between spin variables, (i, j) ∈ E . The problem is parameterized by the biases
hi and the couplers Ji,j . The objective is to minimize the energy of the model
given by the Hamiltonian:

E(σ) =
∑

(i,j)∈E
Ji,jσiσj +

∑

i∈N
hiσi. (5)

Quadratic unconstrained binary optimization (QUBO) models are equivalent
representations used to model problems with binary decision variables. Specif-
ically, a QUBO model has n decision variables, qi ∈ {0, 1}, i ∈ [1..n], with
corresponding biases, ci, and couplers, ci,j . The objective of the QUBO is to
minimize the following quadratic function:

E(q) =
n∑

i=1

ciqi +
∑

i<j

ci,jqiqj . (6)

QUBO models can be converted to Ising models by setting σi = 2qi − 1 [5]
and thus we refer to them as Ising models.

2.3 Unsupervised Clustering with Ising Models

Kumar et al. [22] presented a QUBO model for unsupervised clustering,

E(q) =
∑

i<j

ci,j

K∑

k=1

qikq
j
k +

n∑

i=1

λiφi. (7)

The first term in the objective is the within-cluster all-pairs dissimilarity. The
cluster assignment for each data point is represented using one-hot encoding,
i.e., K binary variables qik such that qik=1 ⇐⇒ xi∈Sk. Since each point is
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assigned to exactly one cluster, the QUBO model includes a quadratic penalty
term to ensure the one-hot encoding holds:

φi =

(
K∑

k=1

qik − 1

)2

. (8)

If xi is assigned to exactly one cluster φi = 0, otherwise φi ≥ 1 and the objective
is penalized by λiφi.

Kumar et al. [22] could only fit very small instances on a quantum annealer
(up to 40 points) and used classical solver for larger instances. Their results were,
at best, competitive with the K-Means heuristic in terms of solution quality.

3 A Framework for Constrained Clustering

We start by formulating the semi-supervised constrained clustering problem as
a constrained optimization problem (COP). Given a problem instance defined
by 〈X,K,M, C, {Xk}K1 〉, we wish to find a partition, S = S1 ∪ · · · ∪ SK , that
minimizes the objective in Eq. (1) while satisfying the constraints:

min
S

K∑

k=1

∑

i<j:
xi,xj∈Sk

‖xi − xj‖2

s.t. s(xi) = s(xj), ∀(xi, xj) ∈ M
s(xi) �= s(xj), ∀(xi, xj) ∈ C
s(xi) = k, ∀k ∈ K,∀xi ∈ Xk.

(9)

3.1 A QUBO Model for Constrained Clustering

We modify the unsupervised clustering model (Eq. (7)) to include clustering
constraints. Specifically, we introduce the pairwise and partition-level constraints
as quadratic penalty terms in the energy function:

E(q) =
∑

i<j

ci,j

K∑

k=1

qikq
j
k +

n∑

i=1

λiφi

∑

i<j:
(xi,xj)∈M

wM
i,jψ

M
(i,j)

+
∑

i<j:(xi,xj)∈C
wC

i,jψ
C
(i,j) +

K∑

k=1

∑

i:xi∈Xk

wP
i,kψ

P
(i,k).

(10)

The cost function is ci,j = ‖xi − xj‖2 and the terms λiφi enforce the one-
hot encoding (Eq. (8)). The terms wM

i,jψ
M
(i,j) enforce must-link constraints by

penalizing the energy function if xi and xj are assigned to different clusters,

ψM
(i,j) =

K∑

k=1

(qik − qjk)
2, (11)
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with (qik−qjk)
2 being quadratic terms equal to one if qik �= qjk and zero if qik = qjk.

1

The terms wC
i,jψ

C
(i,j) enforce the cannot-link constraints by penalizing the

energy function if xi and xj are in the same cluster, i.e., there exists k such that
qik = 1 and qjk = 1,

ψC
(i,j) =

K∑

k=1

qikq
j
k. (12)

The terms wP
i,kψ

P
(i,k) enforce the partition-level constraints by penalizing the

energy function for assigning a data point xi ∈ Xk in a cluster m �= k,

ψP
(i,k) =

K∑

m=1,
m �=k

qim. (13)

Once we obtain a solution to the QUBO in Eq. (10), each point xi is repre-
sented by K bits qik, k∈[1..K] where qik = 1 if and only if xi is in cluster k. We
can extract the cluster for each point using the following function:

zi(q) = arg max
k∈[1..K]

qik. (14)

If the one-hot encoding constraint is satisfied, zi is bijective and therefore the
partition can be obtained as follows:

xi ∈ Sk ⇐⇒ zi(q) = k. (15)

3.2 Choosing the Weights

Given Eq. (10), we must choose weights for the penalty terms to control the
constraint violation. In most practical cases, the one-hot encoding is a hard
constraint that we do not want violated. However, depending on the confidence
we have in each of the constraints, we may be willing to violate some of these
constraints in favor of satisfying others.

We consider the case in which our constraints come from a trusted source
and we wish to find a partition that satisfies all constraints. Setting the weights
for all penalty terms to be nd̃, where d̃ = max ci,j , guarantees that the optimal
solution to the QUBO model in Eq. (10) is an optimal solution for the COP in
Eq. (9).

Theorem 1 Consider a constrained clustering problem defined by 〈X,K,M, C,
{Xk}K1 〉, such that the COP in Eq. (9) is satisfiable. Let E(q) be the energy func-
tion in our QUBO model (Eq. (10)), with the following weights for the penalty
terms λi = wM

i,j = wC
i,j = wP

i,k = nd̃. Let q̄ be an optimal solution to our QUBO
model. Then the corresponding partition S̄, xi ∈ S̄k ⇐⇒ zi(q) = k, is an
optimal solution to the COP in Eq. (9).2

1 If the one-hot encoding constraint is satisfied, violating a must-link constraint will
apply two penalty terms, one for each of the two clusters of the data points.

2 All proofs appear in tidel.mie.utoronto.ca/pubs/constrained-clustering-proofs.pdf.
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3.3 An Efficient Encoding for K = 2

In the special case of K = 2, we can use an encoding that only requires n
variables, rather than Kn variables:3

EB(p) =
∑

i<j

ci,j(pi+pj−1)2 +
∑

i<j:(xi,xj)∈M
ŵM

i,jσ
M
(i,j)

+
∑

i<j:(xi,xj)∈C
ŵC

i,jσ
C
(i,j) +

K∑

k=1

∑

i:xi∈Xk

ŵP
i,kσ

P
(i,k).

(16)

The variables pi represent the partition: xi is in the first cluster if pi = 0 and in
the second cluster otherwise. The terms σM

(i,j) = (pi − pj)2 enforce the must-link
constraints, the terms σC

(i,j) = (pi + pj − 1)2 enforce the cannot-link constraints,
and the terms σP

(i,k) = [pi − (k − 1)]2 enforce the partition-level constraints.
Theorem 2 shows that the equivalence between the efficient encoding and the

general model for K = 2. The bound in Theorem1 is therefore applicable for
this model.

Theorem 2 Consider a constrained clustering problem defined by 〈X,K,M,
C, {Xk}K1 〉 such that K = 2. Let qik be an assignment of variable for the K-
clustering model in Eq. (10). We set ŵM

i,j = 2wM
i,j, ŵC

i,j = wC
i,j and ŵP

i,j = wP
i,j.

If the one-hot encoding constraint is satisfied (i.e., φi = 0 in Eq. (10)), then
E(q) = EB(p) where pi is equal to zero if qi1 = 1 and equal to one if qi2 = 1.

4 Constrained Clustering on the Fujitsu Digital Annealer

The Fujitsu Digital Annealer (DA) is recent CMOS hardware designed for Ising
optimization problems formulated as a QUBO [28,33]. We use the first generation
of the DA that is capable of representing problems with up to 1024 variables
with 16-bit precision for the couplers and 26-bit precision for the biases.

The DA algorithm is based on simulated annealing [21], however it takes
advantage of the massive parallelization provided by the custom CMOS hardware
[1]. Furthermore, it has several key differences compared to simulated annealing:

– It starts every run from the same arbitrary state to reduce computational
effort.

– It uses a parallel-trial scheme in which each Monte Carlo step considers all
possible one-bit flips, in parallel. If more than one flip is accepted, one of
accepted flips is chosen uniformly at random.

– It uses dynamic offset to increase the energy of a state in order to escape
local minima.

3 Kumar et al. [22] presented a model for unsupervised clustering with n variables
for K = 2. Their model uses spin-glass variables and does not optimize the energy
function in Eq. (10).
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4.1 Embedding Problems on the DA

When solving constrained clustering problems on the DA we have to make some
practical representation and configuration choices. Due to the precision limit, we
need to embed the couplers and biases on a scale with limited granularity. We
therefore make the following implementation choices:

1. The distances d(xi, xj) are normalized in the discrete range of [0, 150].
2. The chosen weights cannot be arbitrarily high and the bound in Theorem1

cannot be met. Instead we use the highest supported value for λ, the weight
that enforces the one-hot encoding.

3. The bound in Theorem1 guarantees that all constraints are satisfied if the
problem is solved to optimality. In practice, the DA does not necessarily solve
problems to optimality and instead terminates after a specified time limit. To
avoid cases where the DA violates a one-hot encoding constraint in favor
of satisfying a clustering constraint, we empirically find that it is better to
use a lower weight for the penalty terms of the clustering constraints. In our
experiments, we used a ratio of 1:4, wM = wC = wP = 1

4λ.

The optimization parameters that represent the temperature schedule are
tuned once per data set based solely on the obtained objective value (we do not
use the true labels).

Unlike K-Means-based algorithms that run until convergence, our method
runs for a given time limit and returns the best solution encountered. We there-
fore need to define a time limit to use in the evaluation of our approach. Con-
sidering the run time of heuristic techniques can vary significantly (for example,
Liu and Fu [23] found LCVQE average run time varies between 0.01 to 76.73 s
across different data sets) and the needs of practical applications, we arbitrarily
choose 5 s as a time limit for each execution of our model (see Sect. 5.6 for further
discussion).

5 Empirical Evaluation

We perform an empirical evaluation of our method across eight benchmark data
sets. As the commonly used methods only support one type of constraint (pair-
wise or partition-level), we first compare performance on problems with one con-
straint type. Then, we evaluate our method on problems that involve both pair-
wise and partition-level constraints. To demonstrate the advantages of using spe-
cial purpose hardware for combinatorial optimization, we compare our method
to constraint programming [12] and two CPU solvers for Ising models.

5.1 Data Sets

We run experiments on eight data sets: Breast Cancer, Ionosphere, Pima, Sonar,
Seeds, Optdigits, Letters [15], and Protein [36]. Optdigits-389 is a randomly
sampled subset of the UCI handwritten digits data set containing only the digits
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Table 1. Description of data sets

Data set Instances Features Classes CV

Breast cancer 683 9 2 0.424

Ionosphere 351 34 2 0.399

Pima† 768 8 2 0.427

Sonar 208 60 2 0.095

Seeds 210 7 3 0.000

Protein 116 20 6 0.330

Optdigits-389 283 64 3 0.032

Letters-IJLT 250 16 4 0.168
†Data is normalized using the standard deviation.

{3, 8, 9}, generated by sampling each instance with a probability of 0.15. Letters-
IJLT is a randomly sampled subset of 250 instances from the letter recognition
data set containing only the letters {I, J, L, T}.

Table 1 reports the number of instances, features, and classes. The coefficient
of variation (CV) [14] describes the degree of class imbalance: zero indicates
perfectly balanced classes, while higher values indicate higher class imbalance.

5.2 Algorithms

For problems with pairwise constraints, we compare our model to MPCK-Means4

and LCVQE.5 For problems with partition-level constraints, we compare our
model to PLCC.6 For MPCK-Means and PLCC we used the weights proposed
in the original papers. Increasing the weights did not lead to a significant change
in results.

If K = 2, we use the efficient QUBO encoding (Eq. (16)). Otherwise, we use
the general QUBO model (Eq. (10)).

5.3 Evaluation Measures

Since labels are available for the data sets, we use the following measures to
evaluate and compare the different methods.

Adjusted Rand Index (ARI). Rand Index [30] measures agreement between
two partitions of the same data, P1 and P2. Each partition represents

(
n
2

)
deci-

sions over all pairs, assigning them to the same or different clusters. Let a be

4 Obtained from www.cs.utexas.edu/users/ml/risc/code.
5 Obtained from github.com/danyaljj/constrained clustering.
6 As the code is not available, we implemented PLCC in Python.

www.cs.utexas.edu/users/ml/risc/code
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the number of pairs assigned to the same cluster in both P1 and P2. Let b be the
number of pairs assigned to different clusters. Rand Index is defined as follows:

RI(P1, P2) =
a + b(

n
2

) ,

while the Adjusted Rand Index (ARI) [17] is a correction for RI, based on its
expected value:

ARI =
RI − E(RI)

Max(RI) − E(RI)
.

An ARI of zero indicates the partition is not better than a random assignment,
while one indicates a perfect match.

Normalized Mutual Information (NMI). Mutual information quanti-
fies the statistical information shared between two distributions [31]. We use
MI(P1, P2) to denote the mutual information between partitions P1 and P2,
and H(Pi) to denote the entropy of partition Pi. Normalized mutual information
(NMI) [31] is normalized using a generalized mean (e.g., arithmetic or geometric)
of H(P1) and H(P2):

NMI(P1, P2) =
MI(P1, P2)

Mean(H(P1),H(P2))

Values close to zero indicate independent partitions, while values close to
one indicate a significant agreement between P1 and P2. We use NMI based on
arithmetic mean.

Fraction of Violated Constraints. We compute the mean fraction of con-
straints that were violated in the partition.

5.4 Empirical Results

Instance-Level Pairwise Constraints. We compare our framework with
MPCK-Means and LCVQE, on clustering with different numbers of randomly
generated pairwise constraints. Following Covões et al. [9], each constraint is gen-
erated by randomly selecting two different instances in the data set and adding
an ML constraint if they are in the same cluster and a CL constraint otherwise.

Figure 1 shows the performance for a varying number of pairwise constraints,
measured by ARI. Each point in the plot is the average of 50 runs with different,
randomly generated, sets of constraints. The bands represent the 95% confi-
dence interval obtained using bootstrapping with 1000 replications. Note that
the graphs do not share the same y-axis to increase readability (each graph
presents data for a different data set and we do not compare across data sets).
Results for NMI exhibited similar patterns and are omitted due to space.
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Fig. 1. Comparison of ARI scores for clustering with pairwise constraints.

In all cases but one, our framework outperforms the other methods. In Breast
Cancer, Ionosphere, Sonar, Pima, Optdigits-389, Seeds, Letters-IJLT our frame-
work is at least as good, and usually significantly better, across all numbers of
constraints. In Protein there is no dominating algorithm and our framework is
the best performing one for problems with large number of constraints (approxi-
mately 300 or more) while LCVQE is the best performing algorithm for problems
with smaller number of constraints (less than 300).

Interestingly, there is no clear winner between LCVQE and MPCK-Means.
In three data sets LCVQE outperforms MPCK-Means, in two data sets MPCK-
Means outperforms LCVQE, and in the rest they are comparable. In contrast,
our framework clearly outperforms the other methods.

Figure 2 shows the average fraction of violated must-link constraints and the
95% confidence interval for four data sets. In all data sets but Breast Cancer,
we find that our method violates fewer constraints than the other methods,
and in most cases does not violate any of the constraints. On Breast Cancer,
our method and LCVQE outperform MPCK-Means, but do not dominate each
other. Analysis of violated CL constraints is omitted due to space. As with ML
constraints, our method is as good or better than the other methods in all cases
except for Breast Cancer.

Fig. 2. Average fraction of violated must-link constraints.

Partition-Level Constraints. We compare our framework with PLCC on
clustering with different numbers of randomly generated partition-level con-
straints, taken from the true labels. To be consistent with previous work [23,24],
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we present the number of constraints as the fraction of the labeled data points.
Figure 3 shows the performance of PLCC and our algorithm, measured by ARI.
Results for NMI exhibit similar patterns and are omitted due to space.

Our method is consistently at least as good as PLCC, and in most cases
better. Interestingly, for PL constraints, the improvement observed for general
clustering problems is larger than the one observed for problems with K = 2.

Next, we analyze the fraction of violated partition-level constraints. When
K = 2, we found that both algorithms satisfy approximately 100% of the con-
straints, with no significant differences. For the data sets with K > 2, PLCC
violates a significant portion of the partition-level constraints while our method
continues to satisfy all of them (see Fig. 4). This may account for the larger
difference in performance between the two algorithms for data sets with K > 2.

Fig. 3. ARI scores for clustering with partition-level constraints.

Fig. 4. Average fraction of violated partition-level constraints for K > 2.

Mixed Constraint Types. One of the advantages of our method, based on a
mathematical model solved using a general optimization technique, is the ability
to easily combine different types of constraints without the need to create a
specialized algorithm.

To demonstrate this ability, we present results for problems that involve
both pairwise and partition-level constraints. As far as we are aware, such prob-
lems cannot be solved by any existing heuristic techniques. Figure 5 reports
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Fig. 5. ARI for mixed constraints.

the ARI for Ionosphere and Letters-IJLT for different combinations of pairwise
and partition-level constraints. We can see that fusing different types of side-
information can improve the clustering performance. Results for the other data
sets exhibit similar patterns and are omitted due to space.

5.5 Comparison to Exact Methods

Despite the differences, it may be of interest to compare our approach to exact
techniques. In this section, we compare our Ising framework to the CP approach
with similar objective function [12] based on both the objective value and the
accuracy of obtained solutions. We use the original code that is implemented in
the Gecode solver [16]7 and compare the solutions obtained by the DA after 5 s
to the solutions found by Gecode with a time limit of 500 s. Note that objective
value is only comparable in case both methods satisfy the same set of constraints.
For CP, solutions that satisfy all pairwise constraints were found for all instances.
For DA, solutions that satisfy all pairwise constraints were found for 595 out
of the 600 instances. In each of the other five instances only a single pairwise
constraint was not satisfied, however we remove these instances when comparing
the objective values.

Table 2 shows the average objective value (lower is better) and ARI (higher
is better) obtained by each of the approaches on four data sets with differ-
ent characteristics and a varying number of pairwise constraints. We also list
the percentage of instances for which CP was able to prove optimality and the
average per-instance objective ratio between the two methods (DA/CP). In the
majority of cases Gecode was not able to prove optimality within the time limit.
Furthermore, solutions found by the DA within 5 s are approximately equal or
better for all configurations. In terms of clustering accuracy (measured by ARI),
our approach outperforms CP for Ionosphere and Protein while in Sonar and
Optdigits the methods are comparable.

5.6 Comparison to CPU Baselines

Our interest in Ising models is motivated by their ability to be efficiently solved
by a variety of specialized hardware platforms. To demonstrate the benefit of
7 Obtained from cp4clustering.github.io.
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Table 2. Comparison between our Ising approach and Constraint Programming.

Data set Num. constr. Ising-DA (5 s) CP (500 s limit) DA/CP

Obj. ARI Obj. ARI % Opt Obj.

Sonar (K = 2) 50 31764.7 0.02 32992.2 0.04 0% 0.9632

150 35501.9 0.43 35760.6 0.41 0% 0.9927

350 36588.7 0.94 36588.5 0.94 100% 1.0000

Ionosphere (K = 2) 50 433763.2 0.20 464745.6 0.13 0% 0.9344

150 478007.9 0.34 500041.8 0.30 0% 0.9566

350 514919.0 0.84 514922.3 0.84 94% 1.0000

Optdigits (K = 3) 50 18790486.7 0.73 18840370.7 0.73 0% 0.9974

150 18862921.9 0.85 18947962.6 0.87 0% 0.9955

350 18955340.4 0.94 18957524.6 0.94 0% 0.9999

Protein (K = 6) 50 226791.6 0.31 260764.2 0.23 0% 0.8701

150 245273.6 0.35 270906.9 0.29 0% 0.9070

350 259862.0 0.62 269950.0 0.56 6% 0.9643

specialized hardware, we compare the results of the DA, a CMOS annealer, to
two CPU baselines for Ising models: neal, a simulated annealer for Ising models,
and qbsolv, a decomposing solver that splits QUBO problems into sub-problems
solved by a tabu search (both are part of D-Wave’s Ocean software package).8

We compare the quality of solutions obtained by these tools after 10 s and
after 30 s to the solutions obtained by the DA after one and 5 s. Table 3 reports
the mean ARI for four selected data sets for different numbers of pairwise con-
straints. Solutions that violate the one-hot encoding are considered to have an
ARI of zero. As solutions obtained by the CPU solvers often do not satisfy all
constraints, we do not compare the methods based on objective value.

We can see that the DA achieves better performance compared to the CPU
baseline, even when we allow the CPU baselines longer time limits. In all but
one configuration, DA with 5 s outperforms neal and qbsolv with 30 s. Inter-
estingly, even when given only one second the DA performs well and in most
configurations obtain solutions that are equal or better than those found by the
CPU baselines in 30 s.

8 Both tools obtained from github.com/dwavesystems.
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Table 3. Mean ARI for DA vs. CPU solvers.

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .02 .02 .02 .02 .02 .02
150 .41 .43 .38 .40 .39 .40
350 .94 .94 .94 .94 .94 .94

(a) Sonar (K=2)

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .19 .20 .18 .19 .16 .16
150 .33 .34 .26 .31 .32 .33
350 .84 .84 .82 .83 .80 .82

(b) Ionosphere (K=2)

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .71 .73 .35 .48 .27 .29
150 .85 .85 .57 .72 .32 0.35
350 .94 .94 .89 .91 .82 0.83

(c) Optdigits (K=3)

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .29 .31 .02 .02 .26 .27
150 .30 .35 .06 .05 .28 .31
350 .59 .62 .32 .37 .61 .63

(d) Protein (K=6)

6 Discussion and Limitations

Our empirical evaluation shows that our method, based on an Ising model
and specialized hardware, outperforms state-of-the-art K-Means-like methods.
In unsupervised clustering, Kumar et al. [22] found that using Ising models for
clustering achieves, at best, equal performance to K-means. Our results suggest
that in the semi-supervised setting, where the problems include a set of con-
straints, using specialized hardware is a promising direction. The comparison
to CP and CPU baselines shows that our approach can provide high quality
solutions fast, making it an attractive solution for modern data mining tasks.

Our framework can be extended to other scenarios: representing new types
of constraints (e.g., cluster-size constraints [7]), tuning the weights of the con-
straints if they are not fully-trusted, and evaluating our model with constraints
arising from active learning [3] are all potential extensions of our work. While our
models can incorporate any constraint that can be represented as a quadratic
equality or inequality over the binary variables, some constraints may require
additional auxiliary or slack variables. Investigating ways to efficiently encode
other types of constraints is also an interesting direction for future work.

Our method is sensitive to hardware-related limitations. For example, the
number of data points is limited by the number of variables supported by the
hardware and our ability to represent the objective is limited by the precision.
However, new hardware allows for larger problems and increased precision (e.g.,
[1,37]) and improved optimization schemes can reduce the need to tune the
temperature schedule and potentially yield superior performance [20].

Our model can be solved on any platform that supports Ising models. As a
large number of novel computational platforms (including quantum computers)
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have chosen Ising as their main abstraction [8], experimenting with new and
different hardware platforms is an important direction of future work.

7 Conclusion

We address the problem of semi-supervised clustering on specialized hardware
and present an Ising formulation that can be solved on a variety of novel hard-
ware platforms. Our empirical analysis shows that our method outperforms
the state-of-the-art heuristic methods for semi-supervised clustering and, unlike
those algorithms, can support combinations of constraint types. The use of a
mathematical model means that our framework is easily extended to support
other types of constraints and hardware platforms.
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Abstract. Optimization Modulo Theories (OMT) is an extension of SMT that
allows for finding models that optimize objective functions. In this paper we
aim at bridging the gap between Constraint Programming (CP) and OMT, in
both directions. First, we have extended the OMT solver OPTIMATHSAT with
a FLATZINC interface – which can also be used as FLATZINC-to-OMT encoder
for other OMT solvers. This allows OMT tools to be used in combination with
MZN2FZN on the large amount of CP problems coming from the MINIZINC com-
munity. Second, we have introduced a tool for translating SMT and OMT prob-
lems on the linear arithmetic and bit-vector theories into MINIZINC. This allows
MINIZINC solvers to be used on a large amount of SMT/OMT problems.

We have discussed the main issues we had to cope with in either directions.
We have performed an extensive empirical evaluation comparing three state-of-
the-art OMT-based tools with many state-of-the-art CP tools on (i) CP problems
coming from the MINIZINC challenge, and (ii) OMT problems coming mostly
from formal verification. This analysis also allowed us to identify some criticali-
ties, in terms of efficiency and correctness, one has to cope with when addressing
CP problems with OMT tools, and vice versa.

1 Introduction

The last two decades have witnessed the rise of Satisfiability Modulo Theories (SMT)
[12] as efficient tool for dealing with several applications of industrial interest, in par-
ticular in the contexts of Formal Verification (FV). SMT is the problem of finding value
assignments satisfying some formula in first-order logic wrt. some background theory.
Optimization Modulo Theories (OMT) [15,33,34,36,39,42,53,56] is a more-recent
extension of SMT searching for the optimal value assignment(s) w.r.t. some objective
function(s), by means of a combination of SMT and optimization procedures. (Since
OMT extends SMT, hereafter we often simply say “OMT” for both SMT and OMT.)

Several distinctive traits of OMT solvers –like, e.g., the efficient combination of
Boolean and arithmetical reasoning, incrementality, the availability of decision proce-
dures for infinite-precision arithmetic and the ability to produce conflict explanations–
are a direct consequence of their tight relationship with the FV domain and its practical
needs. On the whole, it appears that OMT can be a potentially interesting and efficient
technology for dealing with Constraint Programming (CP) problems as well. At the
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https://doi.org/10.1007/978-3-030-58942-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_10


From MINIZINC to Optimization Modulo Theories, and Back 149

same time, modeling CP problems for OMT solvers requires a higher-level of exper-
tise, because the same CP instance can have many possible alternative formulations, s.t.
the performance of SMT solvers on each encoding are hardly predictable [26,28,29].

On the other hand, the availability, efficiency and expressiveness of CP tools makes
them of potential interest as backend engines also for FV applications (e.g., [22,23,31]),
in particular with SW verification, where currently SMT is the dominating backend
technology, s.t. a large amount of SMT-encoded FV problems are available [11].

In this paper we aim at bridging the gap between CP and OMT, in both directions.
In the CP-to-OMT direction, we have extended the state-of-the-art OMT solver

OPTIMATHSAT [58] with a FLATZINC interface (namely “FZN2OMT”). In combi-
nation with the standard MZN2FZN encoder [38], this new interface can be used to
either (i) solve CP models with OPTIMATHSAT directly or (ii) generate OMT formu-
las encoded in the SMT-LIB [25] format with optimization extensions, to be fed to
other OMT solvers, such as BCLT [16] and Z3 [15]. This allows state-of-the-art OMT
technology to be used on MINIZINC problems coming from the CP community.

In the OMT-to-CP direction, we have introduced a tool for translating SMT and
OMT problems on the theories of linear arithmetic over the integers and rational
(LIRA) and bit-vector (BV) into MINIZINC models (hereafter “OMT2MZN”). This
allows MINIZINC solvers to be used on OMT problems, giving them access to a large
amount of OMT problems, mostly coming from formal verification.

With both directions, we first present and discuss the challenges we encountered and
the solutions we adopted to address the differences between the two formalisms. Then
we present an extensive empirical evaluation comparing three OMT tools with many
state-of-the-art CP tools on (i) CP problems coming from the MINIZINC challenge,
and (ii) OMT problems coming mostly from formal verification. This analysis allowed
us to identify some criticalities, in terms of efficiency and correctness, one has to cope
with when addressing CP problems with OMT tools, and vice versa.

Overall, our new compilers FZN2OMT and OMT2MZN in combination with the stan-
dard compiler MZN2FZN [38] provide a framework for translating problems encoded in
the SMT-LIB or the MINIZINC format in either direction. This framework enables also
for a comparison between OMT solvers and CP tools on problems that do not belong
to their original application domain. To the best of our knowledge, this is the first time
that such a framework has been proposed, and that the OMT and CP technologies have
been extensively compared on problems coming from both fields.

Related Work. The tight connection between SMT and Constraint Programming (CP)
has been known for a relatively long period of time [43] and it has previously been
subject to investigation. Some works considered a direct encoding of CP [28,29] and
weighted CP [8] into SMT and MAXSMT, or an automatic framework for translat-
ing MINIZINC –a standard CP modeling language [40]– into SMT-LIB –the standard
SMT format– [17,18]. Other works explored the integration of typical SAT and SMT
techniques within CP solvers [27,45]. Nowadays, several MINIZINC solvers –like, e.g.,
HAIFACSP [61] and PICAT [62]– are at least partially based on SAT technology.

To this extent, our first contribution FZN2OMT also obviates the loss, due to obsoles-
cence, of the FZN2SMT compiler proposed by Bofill et al. in [17,18]. FZN2SMT is not
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compatible with the changes that have been introduced to the MINIZINC and FLATZ-
INC standards starting from version 2.0 of the MINIZINC distribution. Since some of
these changes are not backward compatible, it is also not possible to use FZN2SMT in
conjunction with an older version of the MZN2FZN compiler when dealing with recent
MINIZINC models. Furthermore, FZN2SMT translates satisfaction problems into the
Version 1 of the SMT-LIB standard and produces no SMT-LIB output in the case of
optimization problems, that are solved directly. However, the optimization interface of
modern OMT solvers is based on the Version 2 of the SMT-LIB standard. This makes
it difficult to use it together with OMT solvers. Unfortunately, the FZN2SMT compiler is
closed source, with only the binaries being freely distributed, and seemingly no longer
maintained. This made it necessary to provide a new alternative solution to FZN2SMT.
To this extent, our new FLATZINC interface of OPTIMATHSAT, FZN2OMT, translates
both satisfaction and optimization problems in the Version 2 of the SMT-LIB standard
enriched with the optimization extensions for OMT described in [58].

Content. The rest of the paper is organized as follows. In Sect. 2 we provide some
background on OMT, MINIZINC and FLATZINC. In Sect. 3 we describe the process
from MINIZINC to OMT. In Sect. 4 we describe the process from OMT to MINIZINC.
In Sect. 5 we describe an empirical evaluation comparing a OMT-based tool with many
state-of-the-art CP tools. Finally, in Sect. 6 we conclude and point out some further
research directions.

A longer and more detailed version of this paper is publicly available as [24].

2 Background

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a first-order formula ϕ with respect to a combination of decidable first-order theories.
Typical theories of SMT interest are (the theory of) linear arithmetic over the ratio-
nals (LRA), the integers (LIA) or their combination (LIRA), non-linear arithmetic
over the rationals (NLRA) or the integers (NLIA), arrays (AR), bit-vectors (BV),
floating-point arithmetic (FP), and their combinations thereof. (See [12,44,52] for an
overview.). The last two decades have witnessed the development of very efficient SMT
solvers based on the so-called lazy-SMT schema [12,52]. This has brought previously-
intractable problems to the reach of state-of-the-art SMT solvers.

OptimizationModulo Theories (OMT), [15,34,36,39,42,53,56,60], is an extension
to SMT that allows for finding a model of a first-order formula ϕ that is optimal with
respect to some objective function expressed in some background theory, by means
of a combination of SMT and optimization procedures. State-of-the art OMT tools
allow optimization in a variety of theories, including linear arithmetic over the rationals
(OMT(LRA)) [53] and the integers (OMT(LIA)) [15,56], bit-vectors (OMT(BV))
[39] and floating-point numbers (OMT(FP)) [60].

A relevant strict subcase of OMT(LRA) is OMT with Pseudo-Boolean objective
functions (OMT(PB)) in the form

∑
i wiAi s.t. wi are rational values and Ai are

Boolean variables whose values are interpreted as {0, 1}. Notice that OMT(PB) is also
equivalent to (partial weighted) MAXSMT, the SMT extension of MAXSAT, and that
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OMT(PB) and MAXSMT can be encoded into OMT(LRA) but not vice versa [54].
Encoding OMT(PB)/MAXSMT into OMT(LRA), however, is not the most efficient
way to solve them, so that modern OMT solvers such as BCLT [16], OPTIMATHSAT
[58] and Z3 [15] implement specialized OMT(PB)/MAXSMT procedures which are
much more efficient than general-purpose OMT(LRA) ones [15,57,58].

We stress the fact that —unlike with purely-combinatorial problems, which are
encoded into SAT or MAXSAT and are thus solved by purely-Boolean search– typi-
cally OMT problems involve the interleaving of both Boolean and arithmetical search:
search not only for the best truth-value assignment to the atomic subformulae, but also
for the best values to the numerical variables compatible with such truth-value assign-
ment [54].

To this date, few OMT solvers exist, namely BCLT [16], CEGIO [9], HAZEL [39],
OPTIMATHSAT [58], PULI [33], SYMBA [36] and Z3 [15]. To this aim, we observe
that (i) some of these solvers are quite recent, (ii) most of these solvers focus on dif-
ferent, partially overlapping, niche subsets of Optimization Modulo Theories, and (iii)
the lack of an official Input/Output interface for OMT makes it hard to compare some
of these tools with one another. OMT finds applications in the context of static analysis
[19,32], formal verification and model checking [37,48], scheduling and planning with
resources [33,35,46,50], software security and requirements engineering [41], work-
flow analysis [13], machine learning [59], and quantum computing [14].

A distinctive trait of SMT (and OMT) solvers is the trade-off of speed against the
ability to certify the correctness of the result of any computation, which is particularly
important in the contexts of Formal Verification (FV) andModel Checking (MC). When
dealing with linear arithmetic in particular, SMT solvers employ infinite-precision arith-
metic software libraries to avoid numerical errors and overflows.

SMT-LIB [25] is the standard input format by SMT solvers, it provides a stan-
dardized definition of the most prominent theories supported by SMT solvers and the
corresponding language primitives to use these features. At present, there is no standard
input format for modeling optimization problems targeting OMT solvers, although there
exist only minor syntactical differences between the major OMT solvers. The tools pre-
sented in this paper conform to the extended SMT-LIB format for OMT presented in
[58], that includes language primitives for modeling objectives.

OPTIMATHSAT [53–58] is a state-of-the-art OMT solver based on the MATHSAT5
SMT solver [3,21]. OPTIMATHSAT features both single- and multi-objective opti-
mization over arbitrary sets of LRA, LIA, LIRA, BV , FP , Pseudo-Boolean (PB)
and MAXSMT cost functions. Multiple objective functions can be combined with one
another into a Lexicographic or a Pareto optimization problem, or independently solved
in a single run (for the best efficiency).

MINIZINC [38,40] is a widely adopted high-level declarative language for mod-
eling Constraint Satisfaction Problems (CSP) and Constraint Optimization Problems
(COP). The MINIZINC format defines three scalar types (bool, int and float) and two
compound types (sets and fixed-size arrays of some scalar type). The standard provides
an extensive list of predefined global constraints, a class of high-level language primi-
tives that allows one to encode complex constraints in a compact way.
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Fig. 1. Circular translation schema from MINIZINC to SMT-LIB and back, resulting from the
composition of MZN2FZN, OPTIMATHSAT and OMT2MZN. In this picture, OPTIMATHSAT acts
both as a FLATZINC/OMT solver, and also as a FLATZINC to SMT-LIB compiler.

FLATZINC is a lower-level language whose purpose is to bridge the gap between the
high-level modeling in MINIZINC and the need for a fixed, and easy-to-parse, format
that can simplify the implementation of the input interface of MINIZINC solvers. A
MINIZINC model is typically flattened into a FLATZINC instance using the MZN2FZN
compiler [38], and then solved with some MINIZINC tool.

3 From MINIZINC to OMT

We consider the problem of translating MINIZINC models into OMT problems first.
Similarly to other MINIZINC solvers, we assume that the MINIZINC model is first
translated into FLATZINC using the MZN2FZN standard compiler, as depicted in Fig. 1.
We describe the main aspects of FZN2OMT, focusing on the challenges we have encoun-
tered and on the solutions we have adopted.

FLATZINC data-types. The first challenge is to find a suitable representation of the
data-types supported by FLATZINC in SMT-LIB.

One possible choice for modeling the three basic scalar types of FLATZINC –namely
bool, int and float– with SMT-LIB are the Boolean, bit-vector and floating-point
theories respectively. However, the decision procedures for the bit-vector and floating-
point numbers theories can be significantly more resource demanding than the decision
procedure for the linear arithmetic theory (LIRA), in particular when dealing with
a substantial amount of arithmetic computations. For this reason, we have opted to
model FLATZINC int and float data-types with the SMT-LIB integer and rational
types respectively, by default. For the case in which no substantial linear arithmetic
computation is performed, we also optionally allow for encoding the FLATZINC int
data-type as a SMT-LIB bit-vector.

For what concerns the two compound types of FLATZINC, that is the set and
array data-types, we have chosen to proceed as follows. Given that OPTIMATHSAT
lacks a decision procedure for the theory of finite sets [7], we model a set using the
Boolean and integer theories, similarly to what has been done in [17]. The basic idea
is to introduce a fresh Boolean variable for each element in the domain of a set, and
use such variable as a placeholder for the membership of an integer element to the set
instance. Differently from [17], we make an extensive use of cardinality networks [10]
to encode constraints over the sets because they are handled more efficiently, for their
nice arc-consistency properties. No action is required to encode a FLATZINC array
into SMT-LIB, because it is used only as a container for other variables.
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Floating-Point Precision. A consequence of encoding the FLATZINC int and float
data-types with the linear arithmetic theory is that all of our computation is performed
with infinite-precision arithmetic. This can result in a performance disadvantage wrt.
other MINIZINC solvers using finite-precision arithmetic, due to the increased cost of
each operation, but it has the benefit of guaranteeing the correctness of the final result
of the computation.

Currently, the MINIZINC language does not allow one to express a certain quantity
as an infinite-precision fraction between two constant numbers. Instead, the MZN2FZN
compiler computes on-the-fly the result of any division operation between two constant
integers or floating-point numbers applying the rules corresponding to the type of the
operands. However, there are some instances in which we really need to be able to both
express quantities and perform computation with infinite-precision arithmetic. One of
such situations is to double-check the correctness of the MINIZINC models generated
by the OMT2MZN compiler described in Sect. 4 (we have done this for the experimental
evaluations in Sect. 5.2). In order to get around this limitation we developed a simple
wrapper around the MZN2FZN compiler, called EMZN2FZN [5], that replaces any frac-
tion among two constant floats with a fresh variable and, after the basic MZN2FZN
compiler generated the FLATZINC model, the EMZN2FZN wrapper restores the original
fractional values using the FLATZINC constraint float div().

FLATZINC Constraints. The SMT-LIB encoding of the majority of FLATZINC con-
straints in OPTIMATHSAT follows their definition in the FLATZINC Standard, with the
exception of Pseudo-Boolean constraints, which we examine in detail later on. Several
global constraints are also supported in the same way, because the OMT-solver cur-
rently lacks ad hoc and efficient decision procedures for dealing with them. Constant
values and alias variables (e.g. those arising from the definition of some arrays) are
propagated through the formula, so as to keep the set of problem variables as compact
as possible. Those constraints requiring non-linear arithmetic –like, e.g., trigonometric,
logarithmic and exponential functions– are currently not supported; this situation may
change soon due to the recent extension of MATHSAT5 with a procedure for it [20].

Pseudo-Boolean Constraints. When dealing with Pseudo-Boolean sums of the form∑i=N
i=1 Ai · wi, where Ai is a Boolean variable and wi is a numerical weight, the

MZN2FZN compiler associates a fresh 0/1 integer variable xi to each Ai, and encodes
the sum as

∑i=N
i=1 xi · wi. Notice that the original Ais may not be eliminated from

the FLATZINC model, because they typically occur elsewhere in the problem, i.e. as
part of a Boolean formula. From our own experience, this situation arises frequently,
because Pseudo-Boolean sums are typically used to express cardinality constraints that
have a variety of uses. As described in [57], one limitation of this naive approach is that
SMTand OMTsolvers do not typically handle this encoding efficiently. The main reason
is that the pruning power of the conflict clause resulting from a conflicting assignment
is typically limited to one specific Boolean assignment at a time, meaning that a large
number of conflict clauses (possibly exponential) has to be generated along the search.
As shown in [57], SMTand OMTsolvers can benefit from encoding Pseudo-Boolean
constraints with cardinality networks.



154 F. Contaldo et al.

FZN2OMT goes through some effort in order to recognize Pseudo-Boolean sums
over the integers, and replace the naive encoding with one based on cardinality net-
works. We note that using this technique generally results in a trade-off between solving
time and the overhead of generating cardinality networks prior to starting the search,
especially when dealing with a large number of variables.

Multi-objective Optimization. FZN2OMT allows for multiple optimization goals, of
heterogeneous type, being defined within the same FLATZINC model. This is a non-
standard extension to the FLATZINC format. Multiple objectives can be solved inde-
pendently from one another, or combined into a Lexicographic or Pareto optimization
goal. We refer the reader to [58] for details on the input encoding and the solver config-
uration.

Functionality. Given a satisfiability or optimization problem encoded in the FLATZINC

format, OPTIMATHSAT can be used in the following ways (Fig. 1):

– to directly solve the problem, optionally enumerating any sub-optimal solution
found during the search or all possible solutions with the same optimal value;

– to produce an OMTproblem encoded with the extended SMT-LIB format described
in [58]. This problem can be directly solved with OPTIMATHSAT or, with minor
transformations1, fed as input to other OMT solvers such as BCLT and Z3.

4 From OMT to MINIZINC

In this section, we consider the problem of translating OMT formulas, encoded in the
optimization-extended SMT-LIB format of [58], into MINIZINC models. Hereafter, we
describe the main challenges we have faced and the solutions we have adopted. Further
details about this conversion are available in [4].

General Translation Approach. The main challenge is to design an encoding fromOMT
to MINIZINC that is correct (i.e., it preserves in full the semantics of the input OMT
problems), effective (i.e., it produces as output MINIZINC models which are as compact
and easy-to-solve as possible), and efficient (i.e. it does it with the least consumption of
time and memory). To this extent, one critical design choice is the way in which the
internal representation of the input OMT formula is organized and converted in terms of
MINIZINC primitives. After a preliminar experimental evaluation we determined that
the sweet-spot, in terms of compactness and easiness to solve of the resulting MINIZINC

model, is to adopt what we call “≥2-father DAG-ification”: a Directed-Acyclic-Graph
(DAG) internal representation of the formula where a fresh label is associated to all and
only DAG nodes with at least two fathers, inlining all other nodes (see [24] for details).

1 To make this step as easy as possible, we collected our scripts into a public repository [1].
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Theories Restriction. The SMT-LIB standard describes a wide number of SMTtheo-
ries, most of which have no direct counterpart in MINIZINC due to the few data-types
supported (see Sect. 2)). Hence, of linear rational and integer arithmetic, and their com-
bination. On this regard, we note that even though OMT2MZN can also handle the theory
of bit-vectors, we do not cover it here because it is not used in the experimental evalua-
tion in Sect. 5 (We cover it in the long version of this paper [24]). We leave the handling
of other SMT theories to future work.

Linear Arithmetic Theory. On the surface, encoding linear arithmetic constraints com-
ing from OMT in MINIZINC, using the int and float data-types, looks like a trivial task.
In reality, this poses several challenges and it is subject to several limitations, due to a
couple of facts.

First, in SMT-LIB the linear arithmetic theory requires the capability to per-
form infinite-precision computations. Unfortunately, to the best of our knowledge, no
MINIZINC solver provides infinite-precision arithmetic reasoning, and the MZN2FZN
compiler itself prevents representing arbitrarily-large and arbitrarily-precise quantities
(e.g. the fine-grained decimal weights of the machine learning application in [59]).

Second, in OMT linear arithmetic variables are not required to be bounded and have
quite often no explicit domain (i.e. they lack a lower-bound, an upper-bound or both),
because it is not necessary for the problem at hand or it is implied by other constraints.
This is in contrast with MINIZINC, whereby linear arithmetic variables are expected to
have a finite domain and, when they lack one, their domain appears to be capped with
some solver-dependent pair of values.

These restrictions are currently part of the MINIZINC language and the target appli-
cation domain, and we do not see any obvious work-around solving them. We note
that although there exist methods for bounding all variables in a given LP problem
(e.g. [47]), these have been deemed too impractical at this stage of our investigation.
Nonetheless, we have chosen to translate SMT-LIB linear arithmetic constraints with a
corresponding MINIZINC encoding based on the int and float data-types. Although the
encoding is not always applicable, it does still allow one to correctly translate a number
of interesting OMT problems into MINIZINC, as witnessed by our experimental eval-
uation in Sect. 5.2. More in detail, the translation is done as follows. We declare each
integer variable as unbounded, and then extend the MINIZINC model with the appro-
priate constraints bounding its domain when the input OMT formula contains any such
information. Our empirical observation is that MINIZINC models generated in this way
are correctly handed by all MINIZINC solvers which we have tried, with the exception
of GUROBI, which returns an “unsupported” message. Floating-Point variables, instead,
are always declared with a user-defined domain. This is because all of the MINIZINC

solvers we have tried, among those that can handle floating-point constraints, require
such information.

OtherOMT Functionalities. Several problems of OMT interest require the capability of
dealing with soft-constraints (i.e. Weighted MAXSMT) and also with multiple objec-
tives, that are either considered independent goals or combined in a Lexicographic or
Pareto-like fashion. To the best of our knowledge, the MINIZINC standard does not
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allow for an explicit encoding of soft-constraints, nor to deal with more than one objec-
tive function at a time.

We encode (weighted) MAXSMT problems using a standard Pseudo-Boolean
encoding, such as the one used in [53]. When dealing with OMT problems that contain
N goals obj1, ..., objN , for N > 1, we use the following approach. If these objectives
are independent targets, we generate N MINIZINC models, each with a different goal
obji, and separately solve each model. If instead the multiple objectives belong to a
Lexicographic OMT problem, then we generate a unique MINIZINC model that lever-
ages the lexicographic-optimization functionality provided by MINISEARCH [49]. (In
all other cases, MINISEARCH is not used). We do not have any encoding for dealing
with Pareto-optimization, yet.

5 Experimental Evaluations

In this section we present an extensive empirical evaluation comparing OMT tools with
many state-of-the-art CP tools on CP problems coming from the MINIZINC challenge
(Sect. 5.1), and on OMT problems coming mostly from formal verification (Sect. 5.2).

The OMT solvers under evaluation are BCLT, OPTIMATHSAT (v. 1.6.0) and Z3
(v. 4.8.5). These are compared with some of the top-scoring solvers that participated at
recent editions of the MINIZINC challenge, including CHOCO (v. 4.0.4), CHUFFED,
G12(FD) (v. 1.6.0), GECODE (v. 6.0.1), GUROBI (v. 8.0.1), HAIFACSP (v. 1.3.0),
JACOP (v. 4.5.0), IZPLUS (v. 3.5.0), OR-TOOLS (v. 6.7.4981) and PICAT (v. 2.4).

Remark 1. We could not include FZN2SMT [17,18] in our experimental evaluation
because it is not compatible with the features of MINIZINC that have been added since
version 2.0.

We run all these experimental evaluations on two identical 8-core 2.20 Ghz Xeon
machines with 64GB of RAM and running Ubuntu Linux. All the benchmark-sets, the
tools and the scripts used to run these experiments, and some of the plots for the results
in Tables 1, 2 and 3 which could not fit into this paper, can be downloaded from [2].

We stress the fact that the goal of these experiments is not to establish a winner
among OMT and MINIZINC tools; rather, it is to assess the correctness, effectiveness
and efficiency of our OMT-to-CP and CP-to-OMT encoders and, more generally, to
investigate the feasibility of solving MINIZINC problems with OMT tools and vice
versa, and to identify the criticalities in terms of efficiency and correctness in these
processes.

5.1 Evaluation on MINIZINC Benchmark Sets

We consider the benchmark-sets used at the MINIZINC Challenge of 2016 (MC16) and
2019 (MC19), each comprised by 100 instances. For compatibility reasons, the version
of MZN2FZN used to convert the problems to the FLATZINC format differs between the
two benchmark-sets. We use version 2.2.1 and 2.3.2 (with patches) for the problems
in MC16 and MC19 respectively. Due to recent changes in the FLATZINC format that
affect the benchmarks in MC19, the version of some MINIZINC tools differs from what
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described in Sect. 5 (see Table 1). In some cases, we had to download and compile the
latest source available for the tool, i.e. the “nightly” version.

We run each MINIZINC solver with the corresponding directory of global con-
straints, and we run each MINIZINC and OMT tool with the default options. We con-
sider two OMT encodings of the original FLATZINC problems, LA and BV. The first
encodes the FLATZINC int type with the theory of linear integer arithmetic, whereas
the second is based on the theory of bit-vectors. We evaluate each OMT solver on both
SMT-LIB encodings, except for BCLT that has no support for bit-vector optimization.
For uniformity reasons with the other OMT solvers, we evaluate OPTIMATHSAT using
its SMT-LIB interface only, using thus its FZN2OMT interface as an external tool, like
with the other OMTsolvers. We note that the solving time for all OMT solvers includes
the time required for translating the formula from the FLATZINC to the SMT-LIB
format. Each solver, either OMT or MINIZINC, is given up to 1200s. to solve each
problem, not including the time taken by MZN2FZN to flatten it.

We verify the correctness of the results by automatically checking that all terminat-
ing solvers agree on the (possibly optimal) solution and, when this is not the case, we
manually investigate the inconsistency.

Experiment Results. The results of this experiment are shown in Table 1, with sepa-
rate numbers for satisfiability (s) and optimization (o) instances in each benchmark-
set. Using the experimental data, we separately computed the virtual best configura-
tion among all MINIZINC solvers (i.e. VIRTUAL BEST(MINIZINC)), all OMT solvers
(i.e. VIRTUAL BEST(OMT)), and also the virtual best among all tools considered in the
experiment (i.e. VIRTUAL BEST(ALL)). The last two columns in the table list the num-
ber of problems solved by the given configuration in the same amount of time as the
VIRTUAL BEST() of each group (col. BT1) and as the VIRTUAL BEST(all) (col. BT2).

We start by looking at the MINIZINC solvers in Table 1. The performance lad-
der is dominated by OR-TOOLS(SAT) and PICAT(SAT), closely followed by GUROBI,
HAIFACSP and CHUFFED (in MC19). By looking at column BT1, we observe that
the top-performing MINIZINC solvers tend to dominate over all the others. Looking
at the results of the MC19 experiment, we notice a significant increase in the number
of errors with respect to the benchmark-set of the MC16 edition, as well as a handful
of problems solved incorrectly. In the case of GUROBI and PICAT(SAT), the MZN2FZN
compiler encountered an error over a few instances. As a consequence, the total number
of problems is smaller than 100 for both tools. After taking a closer look, we ascribe
this phenomenon to the recent changes in the MINIZINC/FLATZINC format, that has
created some minor issues with some tools that have not been adequately updated.

Looking at the OMT tools only, we observe that Z3 has leading performance over
the other solvers. When compared to the MINIZINC solvers, the OMT solvers place
themselves in the middle of the rank on both benchmark-sets. Given the fact that none
of the OMT solvers has specialized procedures or encodings for dealing with global
constraints, we consider this an interesting result.

5.2 Evaluation on OMT Benchmark Sets

In this experimental evaluation we use OMT formulas taken from well-known, publicly
available, repositories. We characterize these benchmark-sets as follows:
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Table 1.MINIZINC Challenge formulas. The columns list the total number of instances (inst.), of
timeouts (timeout), of run-time errors (error), of unsupported problems (unsup.), of incorrectly
solved instances (incor.), of correctly solved instances (correct), the total solving time for all
solved instances (time), the number of instances solved in the shortest time within the same
category (BT1) and those solved in the shortest time considering all tools (BT2).

terminated
inst. timeout error unsup. incor. correct time (s.) BT1 BT2

tool, configuration & encoding s | o s | o s | o s | o s | o s | o s | o s | o s | o
MINIZINC Challenge 2016

PICAT(CP) 15 | 85 9 | 70 0 | 0 0 | 0 0 | 0 6 | 15 2281 | 6043 0 | 0 0 | 0
G12(FD) 15 | 85 4 | 71 1 | 3 0 | 0 0 | 0 10 | 11 4436 | 4220 0 | 0 0 | 0
CHOCO() 15 | 85 3 | 50 0 | 0 0 | 0 0 | 0 12 | 35 4256 | 11423 1 | 0 1 | 0
IZPLUS() 15 | 85 6 | 44 0 | 0 0 | 0 0 | 0 9 | 41 999 | 5492 3 | 4 3 | 4
CHUFFED() 15 | 85 2 | 40 0 | 0 5 | 0 0 | 0 8 | 45 635 | 4187 0 | 5 0 | 5
JACOP() 15 | 85 3 | 39 0 | 0 0 | 0 0 | 0 12 | 46 3411 | 12825 0 | 0 0 | 0
GUROBI() 15 | 85 6 | 22 0 | 0 0 | 0 0 | 0 9 | 63 2346 | 3037 0 | 15 0 | 15
HAIFACSP() 15 | 85 4 | 23 0 | 0 0 | 0 0 | 0 11 | 62 591 | 4444 0 | 11 0 | 11
PICAT(SAT) 15 | 85 1 | 26 0 | 0 0 | 0 0 | 0 14 | 59 151 | 7293 10 | 1 10 | 1
OR-TOOLS(SAT) 15 | 85 1 | 15 0 | 0 0 | 0 0 | 0 14 | 70 555 | 1338 1 | 45 1 | 45
VIRTUAL BEST(MINIZINC) 15 | 85 0 | 7 0 | 0 0 | 0 0 | 0 15 | 78 146 | 3514 - | - - | -
OPTIMATHSAT(INT) 15 | 85 10 | 38 0 | 0 0 | 0 0 | 0 5 | 47 604 | 4856 1 | 20 0 | 0
OPTIMATHSAT(BV) 15 | 85 2 | 42 0 | 0 0 | 0 0 | 0 13 | 43 3664 | 8561 11 | 2 0 | 0
BCLT(INT) 15 | 85 10 | 33 0 | 0 0 | 0 0 | 0 5 | 52 1117 | 5998 0 | 15 0 | 2
Z3(INT) 15 | 85 10 | 32 0 | 0 0 | 0 0 | 0 5 | 53 676 | 10424 0 | 11 0 | 0
Z3(BV) 15 | 85 5 | 28 0 | 0 0 | 0 0 | 0 10 | 57 2938 | 11113 2 | 19 0 | 0
VIRTUAL BEST(OMT) 15 | 85 1 | 21 0 | 0 0 | 0 0 | 0 14 | 64 3842 | 6432 - | - - | -
VIRTUAL BEST(ALL) 15 | 85 0 | 7 0 | 0 0 | 0 0 | 0 15 | 78 146 | 3514 - | - - | -

MINIZINC Challenge 2019
PICAT(CP) [2.7B12] 10 | 90 8 | 67 0 | 11 0 | 5 0 | 0 2 | 7 54 | 1440 1 | 0 1 | 0
IZPLUS() 10 | 90 5 | 71 0 | 4 0 | 0 0 | 0 5 | 15 14 | 3077 1 | 3 1 | 3
G12(FD) 10 | 90 5 | 64 0 | 10 0 | 0 0 | 0 5 | 16 323 | 4010 0 | 0 0 | 0
CHOCO(STD) 10 | 90 4 | 63 0 | 5 0 | 0 0 | 0 6 | 22 415 | 4312 0 | 0 0 | 0
GECODE() [6.2.0] 10 | 90 4 | 63 0 | 0 0 | 0 0 | 0 6 | 27 420 | 5094 0 | 6 0 | 6
JACOP() [4.8] 10 | 90 4 | 55 0 | 6 0 | 0 0 | 0 6 | 29 260 | 5467 0 | 1 0 | 1
HAIFACSP() 10 | 90 0 | 47 0 | 10 0 | 0 2 | 2 8 | 31 2 | 6408 4 | 7 4 | 4
CHUFFED() [NIGHTLY] 10 | 90 0 | 43 0 | 0 5 | 10 0 | 0 5 | 37 1 | 4886 3 | 19 3 | 19
GUROBI() [8.1.1] 10 | 80 0 | 48 0 | 0 0 | 0 0 | 0 10 | 32 705 | 2895 2 | 6 2 | 4
PICAT(SAT) [2.7B12] 10 | 90 0 | 45 0 | 5 0 | 0 0 | 1 10 | 39 275 | 9894 0 | 7 0 | 5
OR-TOOLS(SAT) [NIGHTLY] 10 | 90 5 | 42 0 | 3 0 | 0 0 | 0 5 | 45 8 | 7239 0 | 13 0 | 11
VIRTUAL BEST(MINIZINC) 10 | 90 0 | 29 0 | 0 0 | 0 0 | 0 10 | 61 9 | 5247 - | - - | -
OPTIMATHSAT(INT) [1.6.4.1] 10 | 90 5 | 62 0 | 0 0 | 0 0 | 0 5 | 28 4 | 3650 2 | 10 0 | 0
OPTIMATHSAT(BV) [1.6.4.1] 10 | 90 4 | 59 0 | 5 0 | 0 0 | 0 6 | 26 484 | 7271 0 | 1 0 | 0
BCLT(INT) 10 | 90 5 | 60 0 | 0 0 | 0 0 | 0 5 | 30 6 | 3369 0 | 6 0 | 5
Z3(INT) 10 | 90 5 | 64 0 | 0 0 | 0 0 | 0 5 | 26 4 | 5358 3 | 6 0 | 1
Z3(BV) 10 | 90 0 | 55 0 | 2 0 | 0 0 | 0 10 | 33 1629 | 7550 5 | 17 0 | 3
VIRTUAL BEST(OMT) 10 | 90 0 | 48 0 | 2 0 | 0 0 | 0 10 | 40 1624 | 5179 - | - - | -
VIRTUAL BEST(ALL) 10 | 90 0 | 29 0 | 0 0 | 0 0 | 0 10 | 61 9 | 4919 - | - - | -

– SAL [integers]: 66 SMT-based Bounded Model Checking and K-Induction paramet-
ric problems created with the SAL model checker [6];

– SAL [rationals]: as above, with problems on the rationals;
– Symba [rationals]: 2632 bounded2 software verification instances derived from a set

of C programs used in the Software Verification Competition of 2013 [36];
– Jobshop and Strip Packing [rationals]: 190 problems taken from [51,53];
– Machine Learning [rationals]: 510 OMTinstances generated with the PYLMT tool

based on Machine Learning Modulo Theories [59].

2 We discarded any unbounded instance in the original benchmark-set in [36].
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The first benchmark-set is on the integers, whereas the other four are on the rationals.
We stress the fact that all formulas contained in all benchmark-sets are satisfiable.

Remark 2. Although there exists a repository of multi-objective OMT formulas (e.g.
[36,56]), we have chosen to not include these in our experimental evaluation. The
reason for this is twofold. First, such comparison would likely be unfair wrt. CP
tools because that the workaround for dealing with multi-independent OMT formulas
described in Sect. 4 is not competitive with the integrated optimization schema pro-
vided by OMT solvers [36,56]. In fact, the experimental evidence in [36,56] collected
on a group of OMT solvers indicates that the latter approach can be an order of magni-
tude faster than the former one. Second, the workaround for dealing with lexicographic-
optimization is limited by the fact that MINISEARCH is not fully compatible with recent
versions of MINIZINC, and it only works with a restricted set of tools.

We have used the OMT2MZN tool described in Sect. 4 to translate each OMT for-
mula to the MINIZINC format. OMT2MZN is written in Python and it is built on top
of PYSMT [30], a general-purpose Python library for solving SMT problems, and it is
available at [4]. During this step, it has been necessary to impose a finite domain to any
unconstrained SMT-LIB rational variable, because otherwise none of the MINIZINC

solvers would have been able to deal with them. We have experimented with two dif-
ferent domains: the largest feasible domain for floating-point variables of 32 bits (i.e.
±3.402823e+38) for the first two benchmark-sets, and the largest feasible domain for
integer variables (i.e. ±231) for the last two.

We consider two OPTIMATHSAT configurations: OPTIMATHSAT(SMT), solv-
ing the original OMTformulas, and OPTIMATHSAT(FZN), executed on the generated
MINIZINC instances. The benefits of this choice is two-fold. First, we can double-check
the correctness of such encoding, by comparing the optimum models generated in the
two cases. Second, we can verify whether there is any performance loss caused by the
encoding of the formula.

Only four of the MINIZINC solvers listed in Sect. 5 support floating-point reasoning.
This limited the number of tools that could be used with some OMT benchmark-sets.
The running-time of each MINIZINC solver reported in these experiments (including
OPTIMATHSAT(FZN)) is comprehensive of the time taken by the MZN2FZN compiler,
because the latter can sometime solve the input formulas on its own. The overall timeout
is set to 600 s.

Notice that the optimal solutions found by OPTIMATHSAT(SMT) have been previ-
ously independently verified with a third-party SMT tool as reported in previous publi-
cations [55–57].3 Therefore, we verify the correctness of the results found by any other
configuration by comparing them with those found by OPTIMATHSAT(SMT), and oth-
erwise mark the result as “unverified”.

Experimental Results over the Integers. In this experiment, we evaluate the SAL (over
integers) benchmark-set. The results are collected in Table 2.

3 For every OMT problem 〈ϕ, obj〉 s.t. OPTIMATHSAT(SMT) returns a minimum value min
for obj on the formula ϕ, we say min is correct iff ϕ ∧ (obj = min) is satisfiable and
ϕ ∧ (obj < min) is unsatisfiable. (Dual for maximization.).
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Table 2. SAL over integers. A SAT result is marked as correct when the objective value matches
the reference solution provided by OPTIMATHSAT(SMT) (when run without a timeout), as incor-
rect otherwise.

terminated
tool & configuration inst. timeout tool-er. unsupp. incor. correct tot. time (s.) avg. time (s.) med. time (s.)
GUROBI() 66 0 0 66 0 0 0 0.00 0.00
G12(FD) 66 0 66 0 0 0 0 0.00 0.00
IZPLUS() 66 0 66 0 0 0 0 0.00 0.00
JACOP() 66 0 66 0 0 0 0 0.00 0.00
CHUFFED() 66 19 47 0 0 0 0 0.00 0.00
OR-TOOLS(SAT) 66 57 9 0 0 0 0 0.00 0.00
CHOCO() 66 66 0 0 0 0 0 0.00 0.00
HAIFACSP() 66 66 0 0 0 0 0 0.00 0.00
PICAT(CP) 66 66 0 0 0 0 0 0.00 0.00
GECODE() 66 66 0 0 0 0 0 0.00 0.00
GUROBI(L) 66 63 0 0 0 3 166 55.49 52.44
PICAT(SAT) 66 62 0 0 0 4 1667 416.85 467.09
VIRTUAL BEST(MINIZINC) 66 62 0 0 0 4 718 179.51 78.54
OPTIMATHSAT(FZN) 66 18 0 0 0 48 7113 148.20 70.52
VIRTUAL BEST(FZN) 66 18 0 0 0 48 7113 148.20 70.52
OPTIMATHSAT(SMT) 66 22 0 0 0 44 2657 60.41 18.72
VIRTUAL BEST(ALL) 66 16 0 0 0 50 5037 100.75 25.13

Table 3. OMT Problems defined over the rationals. A SAT result is marked as correct when
the objective value matches the reference solution provided by OPTIMATHSAT(SMT) with an
absolute error Δ < 10−6. A result is marked as unverified when we have no reference solution
and incorrect if neither of the previous two conditions apply.
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SAL, Symba, Jobshop and Strippacking
GECODE() 2888 2733 0 0 155 0 10800 69.68 18.63 0 0 0 0 0 0
G12(MIP) 2888 10 0 2855 0 23 317 13.79 11.21 2765 90 90 86 39 0
GUROBI() 2888 48 0 2728 104 8 3961 35.37 2.14 2684 44 32 32 1 0
VIRTUAL BEST(MINIZINC) 2888 0 0 2628 237 23 13801 53.08 6.97 - - - - - -
OPTIMATHSAT(FZN) 2888 31 0 0 2854 3 22320 7.81 0.40 0 0 0 0 0 0
VIRTUAL BEST(FZN) 2888 0 0 11 2854 23 20674 7.19 0.40 - - - - - -
OPTIMATHSAT(SMT) 2888 23 0 0 2865 0 15676 5.47 0.08 0 - - - - -
VIRTUAL BEST(ALL) 2888 0 0 0 2865 23 15183 5.26 0.08 - - - - - -

Machine Learning
GECODE() 510 322 0 164 24 0 11 0.44 0.43 147 17 17 2 0 0
G12(MIP) 510 108 0 400 2 0 225 112.47 112.47 400 0 0 0 0 0
GUROBI() 510 9 0 472 28 1 201 6.92 3.17 468 4 4 2 0 0
VIRTUAL BEST(MINIZINC) 510 9 0 464 36 1 383 10.34 0.46 - - - - - -
OPTIMATHSAT(FZN) 510 7 0 237 263 3 2797 10.52 2.21 177 60 59 0 0 0
OPTIMATHSAT(FZN+E) 510 92 0 0 415 3 1197 2.86 2.03 0 0 0 0 0 0
VIRTUAL BEST(FZN) 510 7 0 83 417 3 1366 3.25 2.03 - - - - - -
OPTIMATHSAT(SMT) 510 10 0 0 500 0 5766 11.53 12.15 0 - - - - -
VIRTUAL BEST(ALL) 510 7 0 0 500 3 2290 4.55 2.05 - - - - - -

We notice first that OPTIMATHSAT(FZN) always produces correct results and it
shows comparable performances in terms on number of problems solved wrt. the base-
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line OPTIMATHSAT(SMT), solving even 4 problems more. (We conjecture that the
latter fact should be attributed to the limited, but effective, deduction capabilities of the
MZN2FZN compiler, that may have helped OPTIMATHSAT in solving the input formu-
las.) This suggests that, at least on problems on the integers, OMT2MZN is efficient and
effective and does not affect correctness.

In general, MINIZINC solvers do not seem to deal efficiently with this benchmark-
set. Some tools have experienced some internal error (e.g. dumped-core, segmenta-
tion fault), some others have been killed to a high memory consumption (over 32GB),
whereas the majority of the remaining tools had a timeout.

We explain this behavior with the fact that the given benchmark set is character-
ized by the presence of a heavy Boolean structure combined with arithmetical con-
straints, which requires the efficient combination of strong Boolean-reasoning capabil-
ities (e.g., efficiently handling chains of unit propagations) with strong arithmetical-
solving&optimization capabilities, which is a typical feature of OMT solvers.

None of the input formulas was initially supported by GUROBI. After restrict-
ing the bound of every integer variable to ±106, GUROBI(L) was able to solve 3
instances within the timeout. Among the MINIZINC solvers, the best result is obtained
by PICAT(SAT), that solved 4 problems out of 66.

Experimental Results Over the Rationals. We consider first the first three benchmark-
sets over the rationals: SAL over rationals, Symba, JobShop&Strip-Packing. (Separate
tables for the four benchmarks are reported in the extended version of this paper [24].)
Of all MINIZINC solvers we have tried, only three are able to deal with floating-point
constraints. The results are shown in Table 3. Since each of the input formulas is satisfi-
able, we consider a result incorrect either when it is equal to UNSAT, or when the relative
error Δ exceeds 10−6, s.t.: Δ

def= |osmt−ofzn|
|osmt| , osmt and ofzn being the optimal value

found by OPTIMATHSAT(SMT) and the optimal value found by the MINIZINC solver
under test respectively. (Recall that the former was previously checked to be correct.)

Similarly to the previous experiment on the integers, OPTIMATHSAT(FZN) always
produces correct results, and display comparable performance wrt. OPTIMATH-
SAT(OMT) in terms of number of instances being solved, solving somewhat fewer
problems. This is not the case of the other three MINIZINC solvers. Among these,
GECODE experienced a timeout on the majority of the formulas being considered,
G12(MIP) returned mostly incorrect answers, whereas GUROBI seems to have the best
performance, in particular on the third benchmark-set.

We attribute the large number of incorrect results returned by all three MINIZINC

solvers to the fact that these tools use finite-precision floating-point arithmetic inter-
nally. The incorrect behavior of some of these solvers (e.g. GUROBI) can also be par-
tially explained with the large domain of floating-point variables in these problems.
However, given the nature of these input instances, it was not possible for us to assign
a smaller domain to each variable in the problem a priori.

We analyze separately the results for the last benchmark-set reported in Table 3. The
peculiar aspect of theMachine Learning benchmark-set [59] is that it is characterized by
Pseudo-Boolean sums over rational weights, and by very fine-grained rational values4.

4 For example, 1799972218749879
2251799813685248

is a sample weight value from problems in [59].
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Unfortunately, these fine-grained rational values are rounded by the standard MZN2FZN
compiler, which causes the incorrect results even of OPTIMATHSAT(FZN) in Table 3,
despite the fact that OPTIMATHSAT uses infinite-precision arithmetic.

In order to overcome this issue, we leverage the EMZN2FZN compiler described
in Sect. 3 so that the original fractional values are preserved in the resulting FLATZ-
INCmodel, and show that with this approach OPTIMATHSAT does not produce incor-
rect results any longer (configuration OPTIMATHSAT(FZN+E) in Table 3), solving cor-
rectly 152 problems more than OPTIMATHSAT(FZN).

Overall, since there are at least 237 formulas affected by the above issue with the
MZN2FZN compiler, we avoid an in-depth discussion of the results obtained by the other
MINIZINC solvers. However, at a first glance the situation does not seem to differ from
the other benchmark-sets over the rationals.

5.3 Discussion

On the whole, from our experiments, OMT tools appear to be still at some disadvantage
when dealing with MINIZINC problems wrt. specific tools, and vice versa.

On the one hand, OMT solvers seem to be penalized by their lack of efficient ad hoc
decision procedures for dealing with global constraints. Moreover, the approach taken
by the MZN2FZN compiler, that creates lots of alias Boolean, integer and floating-point
variables for dealing with Pseudo-Boolean constraints, is particularly challenging to
deal with efficiently by an OMTsolver.

On the other hand, MINIZINC solvers seem to suffer with problems needing
an arithmetic-reasoning component combined with heavy Boolean-reasoning compo-
nent. Even more importantly, the lack of infinite-precision linear arithmetic procedures
causes a number of incorrect results when dealing with OMT problems over the ratio-
nals. Both of these points need to be addressed in order to deal with the vast number of
Formal Verification and Model Checking applications in the SMT/OMT domain.

6 Conclusions and Future Work

In this paper we have taken a first step forward towards bridging the MINIZINC and the
OMT communities. The ultimate goal is to obtain a correct, effective and efficient fully-
automated system for translating problems from one community to the other, so as to
extend the application domain of both communities. With our experimental evaluation,
we have identified some criticalities that need to be addressed by each community in
order to solidify this union.

We plan to push this investigation forward as follows. In the short term, we plan
to address the inefficient handling of Pseudo-Boolean constraints over the rationals
revealed by the experimental evaluation in Sect. 5.2. In order to deal with those FLATZ-
INC constraints that require non-linear arithmetic, we envisage an opportunity to either
extend OPTIMATHSAT with proper handling of the non-linear arithmetic theory [20] or
to experiment with an encoding based on the floating-point theory [60]. This objective
goes hand in hand with the extension of OMT2MZN to deal with other SMT theories. In
the long term, OMT solving may also benefit from adopting efficient ad hoc decision
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procedures for frequently used global constraints. Finally, we plan to broaden the scope
of our investigation and include other OMT solvers in our study.
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9. Araújo, R., Bessa, I., Cordeiro, L.C., Filho, J.E.C.: SMT-based verification applied to non-
convex optimization problems. In: 2016 VI Brazilian Symposium on Computing Systems
Engineering (SBESC), November 2016

10. Ası́n, R., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: Cardinality networks: a
theoretical and empirical study. Constraints 16(2), 195–221 (2011). https://doi.org/10.1007/
s10601-010-9105-0

11. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2010). http://www.smtlib.org

12. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories, vol. 185,
chap. 26, pp. 825–885. IOS Press, February 2009

13. Bertolissi, C., dos Santos, D.R., Ranise, S.: Solving multi-objective workflow satisfiability
problems with optimization modulo theories techniques. In: SACMAT. ACM (2018)

14. Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving SAT and
MaxSAT with a quantum annealer: foundations and a preliminary report. In: Dixon, C., Fin-
ger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 153–171. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66167-4 9

15. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 14

16. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: The barcel-
ogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 294–298.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 27

17. Bofill, M., Palahı́, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with
SAT modulo theories. Constraints 17(3), 273–303 (2012). https://doi.org/10.1007/s10601-
012-9123-1

18. Bofill, M., Suy, J., Villaret, M.: A system for solving constraint satisfaction problems with
SMT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 300–305.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7 25

19. Candeago, L., Larraz, D., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: Speeding up the
constraint-based method in difference logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016.
LNCS, vol. 9710, pp. 284–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 18

20. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization
for satisfiability and verification modulo nonlinear arithmetic and transcendental functions.
ACM Trans. Comput. Logic 19(3), 1–52 (2018)

https://github.com/PatrickTrentin88/fzn2omt
http://disi.unitn.it/trentin/resources/cpaior2020.tar.xz
http://mathsat.fbk.eu/
https://github.com/cespio/omt2mzn
https://github.com/PatrickTrentin88/emzn2fzn
http://sal.csl.sri.com
https://www.cprover.org/SMT-LIB-LSM/
https://doi.org/10.1007/s10601-012-9131-1
https://doi.org/10.1007/s10601-010-9105-0
https://doi.org/10.1007/s10601-010-9105-0
http://www.smtlib.org
https://doi.org/10.1007/978-3-319-66167-4_9
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/s10601-012-9123-1
https://doi.org/10.1007/s10601-012-9123-1
https://doi.org/10.1007/978-3-642-14186-7_25
https://doi.org/10.1007/978-3-319-40970-2_18
https://doi.org/10.1007/978-3-319-40970-2_18


164 F. Contaldo et al.

21. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

22. Collavizza, H., Rueher, M.: Exploration of the capabilities of constraint programming for
software verification. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 182–196. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 12

23. Collavizza, H., Rueher, M., Van Hentenryck, P.: CPBPV: a constraint-programming frame-
work for bounded program verification. Constraints 15(2), 238–264 (2010). https://doi.org/
10.1007/s10601-009-9089-9

24. Contaldo, F., Trentin, P., Sebastiani, R.: From minizinc to optimization modulo theories, and
back (extended version) (2019). https://arxiv.org/abs/1912.01476

25. SMTURL: SmtLibav2. www.smtlib.cs.uiowa.edu/
26. Elgabou, H.A., Frisch, A.M.: Encoding the lexicographic ordering constraint in SAT modulo

theories. In: Proceedings of Thirteenth International Workshop on Constraint Modelling and
Reformulation, September 2014

27. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04244-7 29

28. Frisch, A.M., Giannaros, P.A.: SAT Encodings of the At-Most-k Constraint Some Old, Some
New, Some Fast, Some Slow (2010)

29. Frisch, A.M., Palahı́, M.: Anomalies in SMT solving: difficulties in modelling combinatorial
problems. In: Proceedings of Thirteenth International Workshop on Constraint Modelling
and Reformulation, September 2014

30. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of SMT-based
algorithms. In: SMT Workshop 2015, 13th International Workshop on Satisfiability Modulo
Theories (2015)

31. Grinchtein, O., Carlsson, M., Pearson, J.: A constraint optimisation model for analysis
of telecommunication protocol logs. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015.
LNCS, vol. 9154, pp. 137–154. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21215-9 9

32. Karpenkov, G.E.: Finding inductive invariants using satisfiability modulo theories and con-
vex optimization. Theses, Université Grenoble Alpes (2017)
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Abstract. This paper considers a generalization of the network design
problem for On-Demand Multimodal Transit Systems (ODMTS). An
ODMTS consists of a selection of hubs served by high frequency buses,
and passengers are connected to the hubs by on-demand shuttles which
serve the first and last miles. This paper generalizes prior work by includ-
ing three additional elements that are critical in practice. First, differ-
ent frequencies are allowed throughout the network. Second, additional
modes of transit (e.g., rail) are included. Third, a limit on the number
of transfers per passenger is introduced. Adding a constraint to limit the
number of transfers has a significant negative impact on existing Benders
decomposition approaches as it introduces non-convexity in the subprob-
lem. Instead, this paper enforces the limit through transfer-expanded
graphs, i.e., layered graphs in which each layer corresponds to a certain
number of transfers. A real-world case study is presented for which the
generalized ODMTS design problem is solved for the city of Atlanta. The
results demonstrate that exploiting the problem structure with transfer-
expanded graphs results in significant computational improvements.

Keywords: Combinatorial optimization · Multimodal transportation ·
Benders decomposition · Transfer-expanded graphs

1 Introduction

This paper is motivated by the design and implementation of an On-Demand
Multimodal Transit System (ODMTS) for the city of Atlanta. The share of
public transit in Atlanta (about 2–3%) is very low compared to other American
cities (e.g., about 15% in Boston) and Atlanta is also the 8th most congested
city in the world. There is thus a strong need for a modern transit systems that
leverages the train and bus infrastructure of the city and complements it with
innovative mobility concepts.

This paper considers the design of an ODMTS for Atlanta that combines a
network of trains and buses with on-demand multimodal shuttles that act as
feeders to/from the bus/rail network and serve local demand. ODMTS address
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the first/last mile problem that plagues transit systems, while mitigating con-
gestion on high-density corridors and leveraging economy of scale. ODMTS and
their design challenge was introduced in [11], which also presents an overview of
related work. The main contribution of this paper is to generalize prior work by
including three additional elements that are critical for ODMTS in large cities
such as Atlanta. First, different frequencies are allowed throughout the network.
Second, additional modes of transit (e.g., rail) are included. Third, a limit on
the number of transfers per passenger is introduced. Adding a constraint to limit
the number of transfers has a significant negative impact on existing Benders
decomposition approaches as it introduces non-convexity in the subproblem.
Instead, this paper enforces the limit through transfer-expanded graphs, i.e.,
layered graphs in which each layer corresponds to a certain number of transfers.
A real-world case study is presented for which the generalized ODMTS design
problem is solved for the city of Atlanta, which has the 8th largest transit sys-
tem in the US by ridership. The results demonstrate that exploiting the problem
structure through transfer-expanded graphs results in significant computational
improvements.

2 The Generalized ODMTS Design Problem

This section presents the generalized ODMTS design problem that enhances the
model from [11] along several dimensions: The choice of bus frequencies, addi-
tional transportation modes and, most importantly, a constraint on the num-
ber of transfers. The Benders decomposition approach in [11] exploits a natural
decomposition of the ODMTS design problem. The network design is determined
by the master problem, while the routing of the passengers for a given design is
determined by the subproblem. A major benefit of this decomposition is that the
subproblem can be solved for each trip independently. The same decomposition
is used in this paper.

2.1 The Master Problem for Network Design

Consider a directed multigraph G = (V,A), with vertices V = {1, . . . , n} and arc
set A. Let F be the set of possible frequencies, i.e., the total number of vehicles
during the time horizon, let M be the set of possible transportation modes, which
may include shuttles, and let K be the total number of arcs that each passenger
may travel. By definition, K is equal to the maximum number of transfers plus
one. In the multigraph G, each arc a ∈ A is uniquely defined by the quadruple
a = (i, j,m, f) ∈ V × V × M × F , i �= j. Using arc a means traveling from i to
j with mode m, which departs with frequency f . For a given arc a ∈ A, these
elements are referred to as i(a), j(a), m(a), and f(a), respectively.

Designing a generalized ODMTS amounts to deciding which arcs a ∈ A are
made available to passengers. Let the binary variable za ∈ B be equal to one if
arc a is made available, and zero otherwise. The cost of enabling arc a is given
by the parameter βa. It is assumed that βa ≥ 0 for all a ∈ A.
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For a given design, a cost is incurred due to passengers traveling trough the
network. This cost Φ(z) is a function of the values of the z-variables that define
the design. The value of Φ(z) can be found by solving the subproblem, which is
discussed in Sect. 2.2. If the subproblem is not feasible, then Φ(z) = ∞.

A formulation for the master problem is presented in Fig. 1. For convenience,
δ+(i) is defined as the set of all arcs going out of i ∈ V . Similarly, the set δ+(i,m)
is defined as the set of all arcs with mode m ∈ M going out of i ∈ V . The sets
δ−(i) and δ−(i,m) are defined analogously for the incoming arcs.

min
∑
a∈A

βaza + Φ(z), (1a)

s.t.
∑

a∈δ+(i,m)

f(a)za −
∑

a∈δ−(i,m)

f(a)za = 0 ∀i ∈ V, m ∈ M, (1b)

∑
f∈F |(i,j,m,f)∈A

z(i,j,m,f) ≤ 1 ∀i ∈ V, j ∈ V, m ∈ M, (1c)

za ∈ B ∀a ∈ A. (1d)

Fig. 1. Formulation for the generalized ODMTS design problem.

Objective (1a) minimizes the cost of the design plus the cost of routing the
passengers through the network. Constraints (1b) ensure that the frequencies
for each mode are balanced at each vertex. For example, if three buses arrive
during the time horizon, then three buses should also depart. Constraints (1c)
enforce that only one frequency can be selected for a given connection and a
given mode. Equations (1d) state the integrality requirements.

2.2 The Subproblem: Routing Passengers Through the Network

For a given design, the passenger trips are routed through the network at min-
imum cost. Let T be the set of all passenger trips, and let each trip r ∈ T be
defined by an origin o(r), a destination d(r), and a number of passengers p(r). If
trip r ∈ T is routed through arc a ∈ A, then a cost of γr

a is incurred. The total
cost of routing all passenger trips, Φ(z), is the sum over the costs per trip. It is
assumed that γr

a > 0 for every arc a ∈ A and trip r ∈ T , such that the optimal
route is a simple path from o(r) to d(r).

Solving the subproblem amounts to solving a shortest path problem from o(r)
to d(r) for each trip r ∈ T , with the additional restriction that the number of arcs
in the path is at most K. This problem is known as the cardinality-constrained
shortest path problem (CSP) [6]. Note that the cardinality constraint follows
from the limit on the number of transfers. Without this limit, the subproblem
is an (unconstrained) shortest path problem (SP), as is the case in [11].

It is well-known that SP possesses total unimodularity and can be solved by
linear programming (LP). Adding an additional constraint, however, typically
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destroys this structure [1]. This is indeed the case when a cardinality constraint
is added to the subproblem formulation in [11]. As a result, the cost function
Φ(z) would change from convex to non-convex, which negatively impacts Benders
decomposition approaches (see Sect. 3).

To remedy this limitation, this paper presents a new formulation for the
subproblem that enforces the transfer limit without destroying total unimodu-
larity. This formulation uses transfer-expanded graphs, i.e., layered graphs for
which each layer corresponds to a number of transfers. Transfer-expanded graphs
encode the transit constraints directly, making it possible to use shortest-path
algorithms.

2.3 Transfer-Expanded Graphs

Transfer-expanded graphs share some similarities with time-expanded networks,
where each vertex has multiple copies for different periods of time. This is the
case, for example, for modern algorithms for evacuation planning and scheduling
[9,13,14]. Reference [12] also uses a layered network to solve the dynamic gener-
alized assignment problem. As a result, some of the side-constraints do not need
to be handled explicitly. See [3] for a recent literature review on time-expanded
graphs. Reference [8] discusses more general layered graph approaches.

Let Ḡr = (V̄ r, Ār) be the transfer-expanded graph for a given trip r ∈ T .
This graph contains multiple copies of the original arcs and vertices, organized
in K +1 layers. It is assumed that K ≥ 2, as the subproblem is trivial for K = 1.
A vertex v̄ = (i, k) ∈ V̄ r in the transfer-expanded graph is defined by a vertex
i ∈ V in the original graph and by a layer k ∈ {1, . . . , K + 1}. Similarly, the
definition of an arc is extended to ā = (a, k, l), in which a ∈ A is the original
arc, k ∈ {1, . . . ,K} is the layer of the starting vertex of ā and l ∈ {2, . . . , K +1}
is the layer of the ending vertex.

The transfer-expanded graph is constructed as follows. For convenience, Fig. 2
provides an example for K = 3. First, the vertex set V̄ r is defined. For the origin
and the destination of the trip, introduce the vertices (o(r), 1) and (d(r),K +1).
For the other vertices i ∈ V \{o(r), d(r)} of the original graph, add the copies
(i, k) for k ∈ {2, . . . , K} to the transfer-expanded graph. The arc set Ār is
constructed based on the arcs of the original graph, as follows:

1. For each arc starting in the origin, i.e., a ∈ δ+(o(r)), add the arc (a, 1, 2) if
j(a) �= d(r), or the arc (a, 1,K + 1) if j(a) = d(r).

2. For each arc not adjacent to the origin or the destination, i.e., a ∈ A and
i(a), j(a) /∈ {o(r), d(r)}, add the arcs (a, k, k + 1) for all k ∈ {2, . . . , K − 1}.

3. For each arc ending in the destination that does not start in the origin, i.e.,
a ∈ δ−(d(r)), i(a) �= o(r), add the arcs (a, k,K + 1) for all k ∈ {2, . . . , K}.

By construction, it follows that solving CSP on the original graph is equivalent to
solving SP on the transfer-expanded graph. Figure 3 formulates the subproblem
as a collection of SPs on transfer-expanded graphs. Let yr

ā ∈ B be the flow on
arc ā ∈ Ār of trip r ∈ T . For convenience, define δ̄+r (v̄) to be the set of all arcs
in Ār coming out of v̄ ∈ V̄ r. Similarly, let δ̄−

r (v̄) be the set of incoming arcs.
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Fig. 2. A transfer-expanded graph for K = 3, |M | = 1, |F | = 1, for a complete graph
as the original graph. The dotted arcs can potentially be removed (discussed below).

Φ(z) = min
∑
r∈T

∑
ā=(a,k,l)∈Ār

γr
ayr

ā, (2a)

s.t. yr
ā ≤ za ∀r ∈ T, ā = (a, k, l) ∈ Ār, (2b)

∑

ā∈δ̄+r (v̄)

yr
ā −

∑

ā∈δ̄−r (v̄)

yr
ā=

⎧⎪⎨
⎪⎩

1 if v̄ = (o(r), 1)
−1 if v̄ = (d(r), K + 1)
0 else

∀r ∈ T, v̄ ∈ V̄ r, (2c)

yr
ā ≥ 0 ∀r ∈ T, ā ∈ Ār. (2d)

Fig. 3. Formulation for the subproblem on transfer-expanded graphs.

Objective (2a) minimizes the cost of all trips. Constraints (2b) state that
passengers can only use arcs available in the design. Constraints (2c) enforce flow
conservation, and Equations (2d) define the variables. Due to total unimodularity
of the SPs, no integrality conditions are required.

The main advantage of using tranfer-expanded graphs is that the limit on
the number of transfers can be enforced without destroying total unimodularity.
A potential downside is that the number of variables and constraints in the
subproblem increases linearly with K. In public transit, however, the number
of transfers that passengers are willing to take, and therefore the value of K, is
typically very low. Furthermore, a larger subproblem does not necessarily mean
that the subproblem is more difficult to solve, as algorithms may benefit from
the fact that the transfer-expanded graph is acyclic. When the z-variables are
integers, for example, the acyclic subproblem for each trip can be solved in linear
time through topological sorting [5].

Finally, it is worth pointing out that if o(r) and d(r) are only served by
shuttles, and shuttles satisfy the triangle inequality, and a direct shuttle trip
is possible, then some arcs may be removed from the transfer-expanded graph
without sacrificing optimality. Specifically, using a shuttle on the path (o(r), 1) →
(i, 2) → (d(r),K + 1) for i ∈ V is always dominated by using a direct shuttle
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from (o(r), 1) to (d(r),K + 1). It follows that the shuttle arcs between (i, 2)
and (d(r),K + 1) may be removed for all i ∈ V , as also indicated in Fig. 2. For
K ≤ 3, it then follows that the transfer-expanded graph does not require more
edges than the original graph.

3 Benders Decomposition

Following [11], a Benders decomposition approach is presented for the generalized
ODMTS design problem. The goal is to solve the master problem (1), which
is complicated by the fact that Φ(z) is defined implicitly. To apply Benders
decomposition, replace Φ(z) in Objective (1a) by a new variable θ ∈ R, and add
the constraint θ ≥ Φ(z). Note that this does not change the problem, as θ = Φ(z)
in any optimal solution. In Benders decomposition, the constraint θ ≥ Φ(z) is
enforced through Benders cuts. For subproblem (2), these cuts are

θ ≥ Φ(z̄) +
∑

r∈T

∑

a∈A

K∑

k=1

λrk
a (z̄)(za − z̄a), (3)

with λrk
a (z) the dual values of Constraints (2b) and z̄ any feasible solution to

the LP relaxation of the master problem [2]. For the case study in this paper,
the subproblem is always feasible. If this assumption is not satisfied, Benders
feasibility cuts, which are similar to (3), may also be included [2].

The Benders decomposition approach is implemented in C++ and Gurobi
8.1.1. The master problem is the main model, and the Benders cuts (3) are sepa-
rated in both the MIP solution callback (in case the z-variables are integer) and
in the MIP node callback (in case the z-variables are fractional). The subproblem
for each trip is also solved with Gurobi, and dual simplex is used to ensure that
the basis remains feasible when the subproblem is solved for different values of z.
To prevent excessive calls to the subproblem, feasibility heuristics are disabled.
The number of cut separation rounds in the root node is set to the maximum
value to get the best possible bound. Finally, the 2ε-trick is used to stabilize the
master problem [7]. This stabilization uses ε = 0.00001 and the trivial core point
obtained by assigning za = 1

4 to every bus arc.
Without transfer-expanded graphs, the subproblem is not totally unimodular

and Φ(z) is not convex (see Sect. 2.2). In that case, Benders decomposition cannot
be applied directly. Instead, θ ≥ Φ(z) may be enforced by adding combinatorial
Benders cuts in the MIP solution callback and Benders cuts for the LP relaxation
of the subproblem in both callbacks [4,10]. It follows from these references that
combinatorial Benders cuts for the ODMTS design problem are given by θ ≥
Φ(z̄)

(
1 − ∑

r∈T

∑
a∈A (z̄a(1 − za) + (1 − z̄a)za)

)
.

4 Atlanta as a Case Study

The generalized ODMTS design problem was solved for the city of Atlanta. In
Atlanta, the Metropolitan Atlanta Rapid Transit Authority (MARTA) operates
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two modes: bus and rail. The case study adds on-demand shuttles and the bus
system is redesigned accordingly. More precisely, define the three modes M =
{S,B,R} for shuttle, bus, and rail respectively. Shuttle arcs are introduced to
connect from origins to hubs and from hubs to destinations, as well as to serve
the local demand. The corresponding za variables are fixed to one, as shuttles are
always available. Following [11], the cost of using a shuttle is a weighted sum of
cost and convenience, controlled by the parameter α ∈ [0, 1]. Let da and ta be the
travel distance and the travel time of arc a ∈ A, respectively. The parameter cS is
the cost of using a shuttle per person per unit of distance. The cost of traversing
arc a ∈ A for trip r ∈ T is then defined as γr

a = p(r)
(
(1 − α)cSda + αta

)
. Note

that the frequency does not affect the cost, and can be set to an arbitrary value.
Bus arcs are defined between the potential hub locations and between each

hub and the three nearest rail stations. The cost of enabling bus arc a ∈ A is
given by βa = (1 − a)cBf(a)da. That is, the distance is multiplied by the cost
per unit distance and the number of buses over the time horizon. The cost of
traversing a bus arc is given by γr

a = α
(
ta + L + H

2f(a)

)
. Here L is the fixed time

required for a transfer, H is the time horizon, and H
2f(a) is the expected waiting

time before the next bus arrives, which depends on the frequency. Rail arcs are
defined between all rail stations that are connected by the same rail line. The
costs of traversing an arc is defined in the same way as for the buses. For each
rail arc a ∈ A, the variable za is fixed to one, which makes the cost of enabling
an arc irrelevant.

The case study is based on passenger trip data provided by MARTA for
March 16, 2018, between 6am and 10am. Connecting trips have been chained
together to obtain origin and destination pairs. This resulted in 2588 unique
trips, with 7167 passengers in total. There are 5563 bus stops and rail stations
in total, and their locations were also provided by MARTA. Eleven hubs were
selected manually on the map. The data shows that demand is very stable and
predictable over time, with about 90% of the trips being recurrent.

For the distances da, great-circle distances are used. To estimate travel times
ta, the distances are divided by a constant speed of 30 mph. The cost parameters
are set to cS = 5 and cB = 1. The fixed transfer time is chosen to be five minutes,
i.e., L = 5 min, and the time horizon is set to four hours, i.e., H = 240 min. To
balance cost and convenience, α = 0.5 is used. The rail frequency is assumed
to be fixed to six per hour, i.e., f(a) = 6 × 4 = 24, and bus frequencies are
determined by the model to be either three per hour or six per hour. At most
two transfers are allowed, i.e., K = 3. This is feasible, as shuttles can always be
used to decrease the number of transfers (at a cost).

Figure 4a presents the result of solving the generalized ODMTS problem
using transfer-expanded graphs. In total, it took 122 s to obtain the optimal solu-
tion and prove optimality, with a objective value of 131,905. Without transfer-
expanded graphs, i.e., when adding combinatorial Benders cuts, it was not pos-
sible to obtain an optimal solution in reasonable time. Instead, the evaluation
considered a relaxation in which the combinatorial Benders cuts are ignored:
Only the Benders cuts for the LP relaxation of the subproblem were added.
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Fig. 4. Network designs for Atlanta showing rail (lines), low frequency buses
(orange/light), and high frequency buses (purple/dark). (Color figure online)

Solving this relaxation to optimality took 3.8 h. Keep in mind that this relax-
ation explores routes that may require many transfers. To evaluate the quality
of the design obtained by the relaxation, the passengers were routed through the
transfer-expanded formulation with the z-variables fixed to their values found
in the relaxation. The result is presented in Fig. 4b and has an objective value
of 131,965. The higher cost is due to the fact that the transfer limit was not
enforced when designing the network, i.e., passenger willingness to transfer was
overestimated, which results in a network with less public transit.

In summary, the main benefit of the transfer-expanded formulation is the
significant computational benefits it provides in capturing the transfer limit.
Without transfer-expanded paths, it can be optimal to fractionally select long
paths that do not adhere to this constraints. These longer fractional paths likely
play a role in the difference of computational performance.

5 Conclusion

This paper presented a generalization of the ODMTS design problem that intro-
duces three elements that are critical in practice: different frequencies, additional
transit modes, and a limit on the number of transfers. Transfer-expanded graphs
are introduced to handle the transfer limit without negatively impacting existing
Benders decomposition approaches. The Atlanta case study demonstrates that
this approach is very effective, as transfer-expanded graphs significantly improve
computational performance. As the case study involves a real world instance and
a significant transit network (the 8th largest in the US by ridership), this is a
good indication that the same approach may be effective for other real-world
instances. Exploiting the problem structure through transfer-expanded graphs
opens the door to designing increasingly realistic networks in the future. One
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possible extension is to incorporate the capacity of the on-demand shuttles. As
capacity of these shuttles is typically small, expanded networks could also be
used to model capacity efficiently.
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Abstract. Mixed integer linear programs are commonly solved by
Branch and Bound algorithms. A key factor of the efficiency of the most
successful commercial solvers is their fine-tuned heuristics. In this paper,
we leverage patterns in real-world instances to learn from scratch a new
branching strategy optimised for a given problem and compare it with a
commercial solver. We propose FMSTS, a novel Reinforcement Learning
approach specifically designed for this task. The strength of our method
lies in the consistency between a local value function and a global met-
ric of interest. In addition, we provide insights for adapting known RL
techniques to the Branch and Bound setting, and present a new neural
network architecture inspired from the literature. To our knowledge, it is
the first time Reinforcement Learning has been used to fully optimise the
branching strategy. Computational experiments show that our method
is appropriate and able to generalise well to new instances.

Keywords: Reinforcement learning · Mixed integer linear
programming · Neural network · Branch and bound · Branching
strategy

1 Introduction

Mixed Integer Linear Programming (MILP) is an active field of research due to
its tremendous usefulness in real-world applications. The most common method
designed to solve MILP problems is the Branch and Bound (B&B) algorithm
(see [1] for an exhaustive introduction). B&B is a general purpose procedure
dedicated to solve any MILP instance, based on a divide and conquer strategy
and driven by generic heuristics and bounding procedures.

Recently, a lot of attention has been paid to the interactions between MILP
and machine learning. As pointed out in [2], learning methods may compensate
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for the lack of mathematical understanding of the B&B method and its vari-
ants [3,4]. The plethora of different approaches in this young field of research
gives evidence of the variety of ways in which learning can be leveraged. For
instance, a natural idea is to bypass the whole B&B procedure to directly learn
solutions of MILP instances [5]. If one wants to preserve the optimality guar-
antee provided by the B&B algorithm, a solution could be to rather learn the
output of a computationally expensive heuristic used in a B&B scheme [6–8].
Alternatively, [9] suggests learning to select the best cut among a set of available
cuts at each node of the B&B tree. Whether it is by Imitation Learning or by
Reinforcement Learning (RL), these solutions are often limited by their scope:
they seek to take decisions according to a local criterion.

In the present work, we propose FMSTS (Fitting for Minimising the SubTree
Size), a novel approach based on Reinforcement Learning aiming at optimising
a global criterion at the scale of the whole B&B tree. We learn a branching
strategy from scratch, independent of any heuristic.

The paper is structured as follows. First, we define the general setting of our
study. Using RL to minimise a global criterion, we then demonstrate that, under
certain assumptions, a specific kind of value functions enforces the optimality of
such criterion. Next, we propose to adapt known generic learning methods and
neural network architectures to the Branch and Bound setting. We illustrate our
proposed method on industrial problems and discuss it before concluding.

2 General Setting

In real-world applications, companies often optimise systems on a regular basis
given fluctuating data. This case has been studied in the literature for different
purposes, such as learning an approximate solution [5] or imitating heuristics [8].
However, to our knowledge, no concrete contribution has been made regarding
the use of Reinforcement Learning for variable selection (branching) in this set-
ting. The present work fills this gap.

Throughout this paper, we are interested in the following setting. For a given
problem P, the instances are perceived as randomly distributed according to an
unknown distribution D. This distribution, emanating from real-world systems,
governs the fluctuating data (A, b, c) across instances, written as

p ∈ P :

⎧
⎪⎪⎨

⎪⎪⎩

min
x∈Rn

c�x

s.t.
Ax ≤ b

xJ ∈ {0, 1}|J |, x−J ∈ Rn−|J |
(1)

with A ∈ Rm×n, b ∈ Rm and c ∈ Rn. In practice, as the instances come from a
single problem, they share the same structure. Especially, the set of null coeffi-
cients, the number of constraints m, of variables n and the set of binary variables
J are the same for every instance of a given problem.
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In this setting, we seek to learn and optimise a branching strategy to solve
to optimality any instance of a given problem. As pointed out in [10], the prob-
lem of optimising the decisions along a B&B tree is naturally formulated as a
control problem on a sequential decision-making process. More specifically, it
is equivalent to solving a finite-horizon deterministic Markov Decision Process
(MDP) and may thus be tackled by Reinforcement Learning (see [11] for an
introduction).

3 Fitting for Minimising the SubTree Size (FMSTS)

In a finite-horizon setting, Reinforcement Learning aims at optimising an agent
to produce sequences of actions that achieve a global objective. The agent is
guided by local costs associated with the actions it takes. Starting from an
initial state in a possibly stochastic environment, it must learn to take the best
sequence of actions and thus transitioning from state to state to minimise the
overall costs. Exact Q-learning solves such problem by updating a table mapping
(Q-function) from state/action pairs to discounted future costs (Q-values).

In the following, we define the RL problem of interest and, as exact Q-learning
is not practicable, the approximate framework considered. Next, we propose a
specific informative Q-function allowing us to use this framework in practice.

3.1 Approximate Q-Learning with Observable Q-Values

Let us denote by S the set of every reachable state for a given problem P, a state
being defined as all the information available when taking a branching decision
in a B&B tree. Under perfect information, a state associated to a B&B node is
the whole B&B tree as it has been expanded at the time the branching decision is
taken. We write A the set of actions, i.e. the set of available branching decisions
on a specific problem (the set of binary variables A = J in our case) and π a
policy mapping any state to a branching decision:

π :

{
S → A
s �→ π(s) = a

.

The transitions between states are governed by the B&B solver, and the MDP
is regarded as deterministic: given an instance and a state, performing an action
will always lead to the same next state. In practice, such assumption is met as
soon as the solver’s decisions (apart from branching) are non stochastic.

We call agent any generator Π of branching sequences following policy π and
denote Π(p) the sequence of decisions that maps an instance p to a complete
B&B tree. Let μ (Π(p)) be any metric of interest on the tree generated by Π for
an instance p, and assume this metric is to be minimised. For instance, we can
think of μ as the size of the generated tree, the number of simplex iterations,
etc. In this setting, we are looking for the μ−optimal agent Π∗ such that

Π∗ ∈ arg min
Π

Ep∼D [μ (Π (p))] . (2)
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Note here that the expectation is only on the MILP instances, as the MDP is
deterministic.

Let us assume that one can define a Q-function Qπ which is consistent with
μ, in the sense that μ is minimised if π(s) = arg min

a∈A
Qπ (s, a). Even in this case,

exact Q-learning cannot be used to minimise μ. First, maintaining an exact table
for the Q-function is not tractable due to the size of S, including for small real-
world problems. Second, the transition from a state to the next is too complex
to be modeled since it partly results from a linear optimisation.

To bypass these problems, we approximate the Q-function (see [11] for an
introduction to Approximate Q-learning) by a neural network Q̂ parametrised
by θ and optimised by a dedicated gradient method as in the DQN (Deep Q-
Network) approach [12]. We define the policy πθ resulting from the Q-network
as πθ(s) = arg min

a∈A
Q̂(s, a; θ).

When facing a deterministic MDP, the exact Q-value Qπθ (s, a) of an action
a given a state s and a policy πθ is not stochastic and thus may be observable.
In that case, the classic Temporal Difference loss used in [12] for training the
Q-Network comes down to the simple expression

L(θ) = Es,a∼ρ(.)

[(
Qπθ (s, a) − Q̂(s, a; θ)

)2
]

(3)

where ρ is the behaviour distribution of our agent, as stated in [12]. Note that, in
Eq. (3), the observed Q-values are naturally influenced by parameter θ through
the policy. Such loss is actually intuitive: if Qπθ is consistent with μ, if each action
has non-zero probability to be taken in any encountered state and if L(θ) = 0,
then each B&B tree built by agent Πθ (following πθ) is optimal with respect to
μ with probability 1.

3.2 Using the Subtree Size as Value Function

As highlighted in [8], an important difficulty when applying Reinforcement
Learning to B&B algorithms is the credit assignment problem [13]: in order to
determine the actions that lead to a specific outcome, one may define non-sparse
informative local costs (negative rewards) consistent with the global objective.

This is not mandatory in a RL setting but may facilitate the learning task.
We choose the number of nodes in the generated tree as the global metric

μ. This metric is often used to compare B&B methods (see for instance [6–
8]), as it is a proxy for computational efficiency and independent of hardware
considerations.

One of the main contributions of this paper is to propose a local Q-function
Qπ which is consistent with the chosen global metric μ. We take advantage of
the deterministic aspect of the environment and define Qπ(s, a) as the size of the
subtree rooted in the B&B node corresponding to s generated by action a and
policy π. As stated in Proposition 1, this particular Q-function is not consistent
in general with our choice of global criterion μ. Nonetheless, Proposition 2 asserts
its optimality when using Depth First Search as node selection strategy.
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Proposition 1. In general, minimising the size of the subtree under any node
in a B&B tree is not optimal with respect to the tree size.

The proof is omitted for the sake of conciseness, but one can prove that min-
imising the subtree size can be sub-optimal when using Breadth First Search as
the node selection strategy.

Proposition 2. When using Depth First Search (DFS) as the node selection
strategy, minimising the whole B&B tree size is achieved when any subtree is of
minimal size.

Proof. Let us call O the set of open nodes at a given iteration of the B&B process
for a specific instance. The set of closed nodes (either by pruning or branching)
is denoted C.

We write V π (s |ζ, η ) the size of the subtree under s, entirely determined by
the policy π followed in this subtree, a set of primal bounds ζ found in other
subtrees and a node selection strategy η. When using DFS, the subtrees under
each open node are expanded and fully solved sequentially, thus we can assume
with no loss of generality that O is equal to {1, ..., k} and is sorted according to
the planned visiting order. In that case, the size V of the whole B&B tree can
be expressed as

V = |C| +
k∑

i=1

V πi

⎛

⎝si

∣
∣
∣
∣
∣
∣
{z0} ∪

⎛

⎝
⋃

j<i

ζj

⎞

⎠ , η = DFS

⎞

⎠

with ζi the set of all bounds to be found in the subtree rooted in si and z0 the
best bound obtained in C.

It remains to prove that π1 is optimal only if it leads to the minimal subtree
under s1. As two separate subtrees can only affect each other through their best
primal bound under DFS, we have

V = |C| + V π1 (s1 |{z0}, η = DFS ) +
k∑

i=2

V πi (si |{zi−1}, η = DFS )

with zi−1 = min
{

{z0} ∪
(⋃

j<i ζj

)}
.

Since the B&B procedure (with a gap set to zero) guarantees that we find the
best primal bound of any expanded subtree, (zii=1)

k are completely independent
of the branching policies, which gives, for any πj , j ∈ {2, ..., k}:

arg min
π1∈Π1

V = arg min
π1∈Π1

V π1 (s1 |{z0}, η = DFS )

with Π1 the set of all valid branching policies under s1. Therefore, choosing any
other policy than π1 ∈ arg min

π1∈Π1

V π (s1 |{z0}, η = DFS ) is sub-optimal with

respect to the tree size. ��
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In the remaining, we use DFS as the node selection strategy according to Propo-
sition 2. We now focus on optimising the branching strategy (variable selection)
to minimise at each node the size of the underlying subtree. If we write D

π(s)
0 (s)

and D
π(s)
1 (s) the child nodes of s following policy π, such value function sat-

isfies the Bellman Equation (4). The relationship between the value and the
Q-function is trivially defined by Qπ(s, a) = 1 + V π(Da

0(s)) + V π(Da
1(s)).

V π(s) = 1 + V π
(
D

π(s)
0 (s)

)
+ V π

(
D

π(s)
1 (s)

)
(4)

This value function has two advantages. First, it is observable as assumed earlier:
we only need to count the number of inheriting nodes once the B&B tree is fully
expanded. Second, it is a local objective which guarantees the optimality of
a global criterion, hence allowing us to perform RL without designing a sub-
optimal reward using any domain knowledge.

3.3 Algorithm

Using Approximate Q-learning and the subtree size as value function leads us
to propose the FMSTS algorithm (Algorithm 1). Using Experience Replay and
ε-greedy exploration as in [12], the algorithm essentially boils down to consec-
utively solving a MILP instance following the current policy or random choices
with probability ε, fitting the observed values sampled from an experience replay
buffer and iterating with the updated policy.

Algorithm 1. FMSTS
for t = 0,...,N-1 do

Draw randomly an instance p.
Solve p following πθt with ε-greedy exploration.

Collect experiences along the generated tree
(
si, ai, Q

πθt (s, a), Q̂(s, a; θt)
)

and

store them into an experience replay buffer B.
Update to θt+1 using loss (3) on experiences drawn from B.

end for

4 Adapting Learning to the Branch and Bound Setting

To ensure the success of the FMSTS method (Algorithm 1) with respect to the
objective (2), we need to adapt some components to the Branch and Bound
setting. First, we adapt the loss guiding the neural network’s training. Next,
we use Prioritized Experience Replay while normalising probabilities. Last, we
propose a new neural network architecture inspired from the literature.
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4.1 Minimising an Expectation on the Instance Distribution

The loss defined by Eq. (3) does not seem to correspond to our objective (2).
Indeed, it naturally gives more importance to the biggest trees, which can be
heavily instance dependent. To neutralise this effect, we weight the loss by the
inverse of the size of the corresponding B&B tree generated by the agent:

L(θ) = Es,a∼ρ(.)

[
1

V πθ (r(s))

(
Qπθ (s, a) − Q̂(s, a; θ)

)2
]

(5)

with r(s) the root node of the tree containing s, such that V πθ (r(s)) corresponds
to the size of this tree. Then, any instance has equal weight in loss (5).

4.2 Performing Prioritized Experience Replay

Prioritized Experience Replay [14] biases the uniform replay sampling of
Experience Replay [12] towards experiences with high Temporal Difference
errors, i.e. when the predicted Q-values are far from their target. In FMSTS,
an experience is a 4-tuple

(
sj , aj , Q

πθj (sj , aj), Q̂(sj , aj ; θj)
)

and the target

Qπθj (sj , aj) is observed, which reduces the error to the simple expression
|Qπθj (sj , aj) − Q̂(sj , aj ; θj)|.

In the context of sampling experiences in a B&B tree, one should take into
account that the scale of the target Qπθj may vary exponentially both along the
tree and across instances. As the scale of the error may likely vary with that of
the target, we normalise this error by the target to get the sampling probability
in the experience replay buffer

pj ∝ |Qπθj (sj , aj) − Q̂(sj , aj ; θj)|
Qπθj (sj , aj)

. (6)

4.3 Designing a Regressor for the Q-Function

As in [6], we use both static and dynamic features to represent a state. Although
many features may be relevant for the states’ encoding, we opted to keep them
limited in the present work. For static information, we perform a dimension
reduction by PCA [15]: each instance is represented as the concatenation of its
data (A, b, c) and PCA is applied on the resulting vectors. Our representation
also includes the following dynamic features: the node’s depth, the distance of the
current primal solution to the bounds and the branching state. Concretely, the
branching state B is one-hot encoded in a 3|J | vector. Let us call B0 and B1 the
set of variables that have been respectively set to 0 and 1 in the ascendant nodes
of the current state. With no loss of generality, let us assume that J = {1, ..., J}.
Then we have Bj = 1xj∈B0 , Bj+J = 1xj∈B1 and Bj+2J = 1 − Bj − Bj+J for any
j ∈ J .

The chosen Q-function is essentially multiplicative, in the sense that the ratio
between the targets in two consecutive states may be of magnitude 2 due to the
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binary tree structure. In addition, the scale of these targets may strongly vary
between instances. A basic feedforward neural network, based on summations,
may struggle to handle such phenomena. To compensate for these effects and
adapt to the B&B setting, we take inspiration from the Dueling architecture
of [16] and propose the Multiplicative Dueling Architecture (MDA). As shown
in Fig. 1, MDA implements the product between the 1-D output of a block of
fully-connected layers fed with static features and the |J |-D output of a block
fed with both static and dynamic features. A linear activation on the 1-D output
allows our agent to capture the variability of the chosen Q-function.

Fig. 1. Dense and Multiplicative Dueling architectures for the Q-network. The rect-
angles represent consecutive dense layers, the lightblue block being fed with all the
features whereas the lightgreen one is only fed with static features (darkgreen). The
output of the MDA is the product between a single unit and a |J |-unit dense layer.
(Colour figure online)

5 Experiments and Discussion

We test our algorithms on two sets of instances provided by Electricité de France
(EDF), a french electric utility company. They are drawn from two different
problems, one is related to energy management in a microgrid (P1) whereas the
other one comes from a hydroelectric valley (P2). The problems have respectively
186 and 282 constraints, 120 and 207 variables, and 54 and 96 binary variables.

We compare our algorithms to the default branching strategy of CPLEX
(denoted CPLEX in the following) and full Strong Branching (denoted SB). We
use CPLEX 12.7.1 [17] under DFS while turning off all presolving and cutting.

To avoid any dependency of our results to the train or the test set, we present
cross-validated results. Algorithm 1 is run 100 times independently on randomly
partitioned train and test sets. Each time, 200 instances are used for training
while 500 unseen instances are used for testing. Figure 2 shows the averaged
number of nodes in the complete B&B trees on the test sets during the learning
process: test instances are solved using the strategy learned on train instances
at the current iteration of Algorithm1.
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Fig. 2. Cross-validated performance on test instances (averaged number of nodes in
log scale) for P1 (left) and P2 (right) through iterations of Algorithm 1. Gaussian
confidence intervals are shown around the means.

As exhibited in Fig. 2, our method is able to learn an efficient strategy from
scratch. As expected, the MDA agent is more flexible than its additive coun-
terpart (Dueling) inspired from the Dueling architecture of [16] and the fully-
connected agent (Dense). It outperforms systematically the Strong Branching
policy, and finds comparable or better strategies than CPLEX, depending on
the problem. Results on training data are not displayed for the sake of concise-
ness, but it is worth mentioning that our agents do not overfit and are able to
generalise well. In addition, the computation time is negligible compared with
full Strong Branching as an action comes only at the price of a forward pass in
our neural network.

Despite these good performances, some limits have to be pointed out at this
stage. First, our framework requires DFS as the node selection strategy, which
can be far from optimal for certain problems. Note that using another strat-
egy may be complicated to handle due to more complex dependencies, but may
also turn out to be effective as targetting small subtrees makes sense in gen-
eral. Second, we only showed promising results on easy problems. With more
difficult problems, the training becomes computationally prohibitive as a ran-
domly initialised agent produces exponential trees. To tackle these limitations,
we encompass different solutions such as fine-tuning the features and network
architecture or using supervision to decrease the size of the generated trees dur-
ing the first episodes. To reduce the cost of exploration, one could apply the
same methodology with a set of branching heuristics as action set, similarly to
what is proposed in [18].

6 Conclusion

In this paper, we presented a novel Reinforcement Learning framework designed
to learn from scratch the branching strategy in a B&B algorithm. In addition
to the specific metrics used in our FMSTS method, we introduced a new neural
network architecture designed to tackle the multiplicative nature of the value
function. Besides, we adapted some known RL techniques to the B&B setting.
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We ran experiments on real-world problems to validate our method and showed
better or comparable performances with existing strategies.

It is worthwhile to highlight that our method is generic enough to be applied
to other metrics than the tree size, e.g. the number of simplex iterations or
even the computation time. If one is not interested in proving optimality, many
other value functions may be encompassed. Furthermore, it may be interesting to
enlarge the scope of the method, especially to include Branch and Cut algorithms
as they usually are more efficient.
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Abstract. Decision and optimization problems can be tackled with dif-
ferent techniques, such as Mixed Integer Programming, Constraint Pro-
gramming or SAT solving. An important ingredient in the success of each
of these approaches is the exploitation of common constraint structures
with specialized (re-)formulations, encodings or other techniques. In this
paper we present a new linear SAT encoding using binary decision dia-
grams over multiple variable orders as intermediate representation of a
special form of constraints denoted as staircase at-most-one-constraints.
The use of these constraints is motivated by recent work on the antiband-
width problem, where an iterative solution procedure using feasibility-
mixed integer programs based on such constraints was most effective. In
a computational study we compare the effectiveness of our new encoding
against traditional SAT-encodings for staircase at-most-one-constraints.
Additionally we compare against previous exact solution methods for the
antibandwidth problem, such as a constraint programming approach and
the one based on feasibility-mixed integer programs.

1 Introduction

An important ingredient in the success of computational approaches, such as
Mixed Integer Programming (MIP), Constraint Programming (CP) or proposi-
tional satisfiability solving (SAT), for solving optimization and decision problems
is the exploitation of common constraint structures with specialized encodings,
(re-)formulations or other techniques (see e.g. [1–3]).

In this paper we present a new and specialized SAT encoding of problems
where an at-most-one constraint slides over a sequence of Boolean variables.
We denote this special case of sliding sequence constraints [4–7] as staircase at-
most-one constraint (SCAMO) and illustrate the reason for this name with the
following example.
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Example 1. Given a sequence of variables X = 〈x1 x2 · · · x10〉, the staircase at-
most-one constraint set of width 4 is the following formula:

x1 + x2 + x3 + x4

x2 + x3 + x4 + x5

x3 + x4 + x5 + x6

x4 + x5 + x6 + x7

x5 + x6 + x7 + x8

x6 + x7 + x8 + x9

x7 + x8 + x9 + x10 ≤ 1.

≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧

This research is motivated by recent work [8] of the second author on the
antibandwidth problem (ABP). The ABP is a graph labeling problem (see e.g. [9]
for more on such problems) where the goal is to maximize the smallest differ-
ence between labels of neighbouring nodes. It has various applications, such as
scheduling [10], obnoxious facility location [11], radio frequency assignment [12]
and map-coloring [13]. It has been studied from a theoretical point of view (see
e.g. [14–19]), and several heuristics and metaheuristics (e.g. [20–23]) have been
designed for it. In [21], aside from a metaheuristic, also a MIP approach was
presented to solve the ABP exactly.

In [8] new MIP formulations were presented, and based on one of them,
an iterative solution procedure, which repeatedly solved feasibility-MIPs, was
designed. For a given number k, these MIPs encode the question whether there
exists a solution with antibandwidth greater than k. This iterative procedure
actually proved to be the most effective one in the computational study of [8].

Our proposed encoding can be used for more difficult problem structures than
the one given in Example 1. In the ABP, for example, the difference of labels
of neighbouring nodes is restricted by combining two SCAMO constraints on
two sequences of variables. Aside from the ABP (and other labeling problems),
the SCAMO constraints can potentially be used in many further application
contexts, such as scheduling problems (see e.g. [24–26]) or in staff rostering [27,
28] and car sequencing problems [29,30], when at most one variable is allowed
to take a given value in every sequence of variables.

As at-most-one constraints are ubiquitous in applications of SAT they are
featured prominently in the literature, see e.g. [31–36]. They are forming a special
case of cardinality constraints [37–39], which in turn are instances of Pseudo-
Boolean constraints [40–43] and thus 0/1 integer linear programs. Encoding con-
straints (for an overview see [36]) instead of handling them natively (as in [38])
allows to make full use of the power of SAT solving. For some applications mixed
strategies [44] are better though. In practice, size is the most important criteria
to evaluate such encodings, while at least in theory also propagation strength is
considered. See [45] for a discussion of these trade-offs. In particular, the path
based encoding of binary decision diagrams introduced in [45] has the goal to
improve propagation. However, as the authors point out, it can not be used for
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encoding shared constraints, which is the main reason of the efficiency in our
encoding. Thus we also provide a new set of benchmarks for which such sharing
occurs naturally.

2 Preliminaries

A propositional formula in conjunctive normal form (CNF) consists of a set of
clauses, where each clause C is a disjunction of literals, which are Boolean (also
called 0/1) variables (e.g. x) or their negation (¬x or 1−x). A truth assignment
T maps truth values (0/1 values) to Boolean variables and can be represented
by a set of consistent literals; it satisfies a literal � (i.e. assigns value 1 to �) if
� ∈ T , and falsifies it (assigns value 0 to �) if ¬� ∈ T , where ¬� = ¬x if � = x and
¬� = x if � = ¬x. The satisfiability problem (SAT) for a formula in CNF asks
whether there is a truth assignment such that all clauses contain at least one
satisfied literal. A truth assignment satisfying a formula is also called a model.

An at-most-one (AMO) constraint is an expression of the form
∑n

i=1 xi ≤ 1,
where x1, x2, . . . , xn are Boolean variables. Similarly, we can formulate at-most-
zero (AMZ) constraints (as

∑n
i=1 xi ≤ 0), which actually states that each vari-

able must be false (i.e. assigned value 0). Further, an exactly-one (EO) constraint
is an expression of the form

∑n
i=1 xi = 1. Notice that we define and use these

constraints over Boolean variables, but they are trivially extensible to literals.
A binary decision diagram (BDD, see e.g. [46,47]) is a rooted, directed, acyclic

graph with at most two leafs, labeled with ⊥ (false or 0) and � (true or 1). Every
non-leaf (also called nonterminal) node of a BDD is labeled with a Boolean
variable and has exactly two outgoing edges (called low and high in [46]). In
this paper we use BDDs to represent AMO and AMZ constraints. Figure 1a
depicts an example BDD of an AMO constraint over variables x1, x2 and x3.
Each path from the root of the BDD that ends in the true leaf (�) is a model
of x1 + x2 + x3 ≤ 1. Whenever the low or high child (marked with dashed
resp. solid line in Fig. 1) of a node labeled with variable x is taken, it means that
x is assigned to be false (true respectively) on that path. Since all our BDDs
represent AMO or AMZ constraints, we will depict them rather in an expanded
form where each node contains the whole Boolean expression represented by the
sub-graph starting from it, as it can be seen on Fig. 1b. To emphasize the decision
variables of the nodes, we mark them explicitly on the edges. Further, beyond
the non-terminal (i.e. non-leaf) nodes we distinguish non-unit nodes that are
representing a constraint over more than one variable. For example, the BDD of
Fig. 1b contains two leaf nodes (� and ⊥), two unit nodes (over x3) and three
non-unit non-leaf nodes. The ordering of the variables appearing in BDDs is
fixed (e.g. x1 < x2 < x3 in Fig. 1), i.e. we use ordered BDDs (OBDD in short).
Even though we merge isomorphic subtrees in our BDDs, they are not reduced
because nodes with identical children are kept (see e.g. x3 in Fig. 1). Thus we
use partially reduced ordered BDDs (ROBDD) over multiple variable orders.

Given a graph G = (V,E), a feasible solution to the antibandwidth problem
consists of assigning each node v ∈ V a unique label from the range 1, . . . , |V |.



Duplex Encoding of Staircase At-Most-One Constraints 189

Fig. 1. Different BDD representations of AMO constraint (x1 + x2 + x3 ≤ 1).

Given such a labeling f , the antibandwidth ABf (v) of a node v is defined as
min{|f(v) − f(v′)| : {v, v′} ∈ E}, and the antibandwidth ABf (G) is defined as
min{ABf (v) : v ∈ V }. The goal of the ABP is to find a labeling f∗, such that
f∗ = arg maxf∈F(G) ABf (G), where F(G) denotes the set of all labelings of G.

We briefly discuss previous work [8] on which our new SAT solution is based.
Let binary variables x�

i = 1 if and only if vertex i is assigned label � (i.e. fi = �).
For a given k, the question, whether there exists a solution with AB(G) ≥ k +1,
can be formulated as MIP as follows. We will denote this formulation as Fe(k).

max 0

∑

i ∈ V

x�
i = 1 ∀� ∈ {1, . . . , |V |} (Labels)

∑

� ∈{1,...,|V |}
x�

i = 1 ∀i ∈ V (Vertices)

∑

λ ≤ � ≤ λ+k

(x�
i + x�

i′) ≤ 1 ∀{i, i′} ∈ E, 1 ≤ λ ≤ |V | − k (Objk)

x�
i ∈ {0, 1} ∀i ∈ V, ∀� ∈ {1, . . . , |V |}

Constraints (Labels) make sure that each label is used only once and con-
straints (Vertices) ensure that each node i ∈ V gets assigned one label. Thus,
the solution encoded by these constraints corresponds to a labeling. Constraints
(Objk) describe that for each edge {i, i′}, the labels fi, fi′ are not allowed to
be within a range of k. Thus, any solution of the above constraints corresponds
to a labeling with antibandwidth at least k + 1. The iterative algorithm of [8]
starts with a value of k obtained by a heuristic, which constructs a feasible label-
ing, and then iteratively solves Fe(k) and increases k by one, until either Fe(k)
becomes infeasible (proving optimality of k) or a time limit is reached.

3 Staircase At-Most-One Constraint Sets

As a first step we define and illustrate the main concept of our paper, the so-called
staircase AMO constraint set (SCAMO). Following that, in the next section we
demonstrate step-by-step our proposed SAT encoding of these constraints.
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Definition 1. Given a sequence of Boolean variables X = 〈x1 x2 · · · xn〉 and a
width w s.t. 1 < w ≤ n, a staircase constraint set is formulated as follows:

SCAMO(X,w) =
(n−w)∧

i=0

⎛

⎝
(i+w)∑

j=i+1

xj ≤ 1

⎞

⎠ where n = |X|.

Notice that this constraint is a special sub-case of SEQUENCE constraints (see
e.g. [4–7]) and so could be formulated as SEQUENCE(0, 1, w,X, {1}).

In Example 1 we saw, that there is an ordering of the constraints in that
problem such that each constraint differs only slightly from the previous one.
For instance, in Example 1 the 1st and 2nd constraints both include the sum
of x2, x3 and x4 while the 2nd and 3rd both contain the sub-expression x3 +
x4 + x5. Since addition is associative, the sum of the variables can be calculated
regardless of the grouping of the variables. However, if we would like to reuse
previous calculations, it is more beneficial to evaluate the first AMO constraint
for example as x1 + (x2 + x3 + x4) instead of considering any other variable
grouping (e.g. (x1 + x2) + (x3 + x4)). Doing so, the second constraint can just
simply consider the result of (x2 + x3 + x4) together with x5. Continuing the
evaluation with the next constraint, we could reuse (x3+x4) from (x2+x3+x4),
in case we calculated it as x2 + (x3 + x4), to decide x3 + x4 + x5 + x6 ≤ 1 by
combining it with (x5 + x6). In general, each constraint shares a sub-sum over
w−1 variables with the previous and at the same time with the next constraint.

Evaluating the very first constraint in this example in a right associative way
allows us to reuse (at least once) all its sub-expression in the following three
(i.e. w−1) constraints. However, in order to reuse these sub-expressions we need
a left associative grouping of variables in the constraint x5 + x6 + x7 + x8 ≤ 1,
since in the second constraint we need x5, then (x5 +x6) and then (x5 +x6 +x7)
to complement the reused sub-sums of x1 + x2 + x3 + x4.

All in all, considering only the first w constraints, we see that we need a
right associative evaluation of the first constraint and a left associative group-
ing of the (w + 1)’th constraint. Figure 2 depicts how these variable groupings
can be “bonded” together to reconstruct the original constraints of Example 1.
Extending this pattern to the whole set of constraints, we can see that each w
consecutive constraints need to be considered once left associative to combine
with the previous w constraints’ sub-expressions and once right associative, to
combine with the next w constraints. Thus, in Fig. 2 the sum over variables
x5, x6, x7 and x8 is actually considered twice, once with a left and once with a
right associative variable ordering. This duplicate view of constraints is the main
concept behind our proposed duplex encoding.

4 Duplex Encoding of Staircase Constraint Sets

Our goal is to exploit sharing of sub-expressions between constraints to obtain
a compact encoding. Again, the main idea of our approach can be seen in Fig. 2
where we identified common sub-sums. In our concrete encoding we have to
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Fig. 2. Decomposition of the staircase AMO constraint set of Example 1.

go one step further though and actually have to share sub-constraints. This is
achieved by decomposing longer AMO constraints into two smaller ones using
the following proposition. While the original longer constraints may be used only
once, smaller constraints potentially can be shared and reused multiple times.

Proposition 1. A constraint x1 + · · · + xn ≤ 1 holds iff for all 1 ≤ i < n

(x1+ . . .+xi ≤ 1)∧(xi+1+ . . .+xn ≤ 1)∧(x1+ . . .+xi ≤ 0∨xi+1+ . . .+xn ≤ 0).

4.1 Sub-constraint Construction

As a first step, given a sequence of variables X = 〈x1 · · · xn〉 and width w, we
partition the variables into M = � n

w  consecutive windows ω1, ω2, . . . , ωM , where
ω1 contains variables x1, . . . , xw, ω2 contains xw+1, . . . , x2w etc. Note that unless
(n mod w) = 0, the very last window contains fewer than w variables.

Example 2. Continuing the previous example, our width w = 4 splits X into
three windows: ω1 = {x1, x2, x3, x4}, ω2 = {x5, x6, x7, x8} and ω3 = {x9, x10}.

To encode a SCAMO set of constraints as compositions of smaller constraints,
we build two BDDs for each window with two different variable orderings (hence
the name “duplex”). Notice that any SAT encoding technique of AMO con-
straints could be employed instead of BDDs (as long as we do duplex encoding
by considering both directions). However, beyond the smaller AMO constraints,
we further need AMZ constraints in order to connect the parts together (see
the binary clause in Proposition 1). One benefit of BDDs is that we get these
constraints automatically already by encoding the AMO constraints. Thus in
this paper we will focus only on this BDD based approach.

Given window ωi over variables Xi = {xi1 , . . . xiw}, we construct two two-
rooted BDDs, both representing the same two constraints xi1 + · · ·+xiw ≤ 1 and
xi1 + · · · + xiw ≤ 0. The first BDD, which we call forward BDD, considers the
AMO and AMZ constraints with a right associative variable grouping (i.e. with
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variable ordering xi1 < xi2 < . . . < xiw). The other BDD, called backward BDD,
represents the same constraints but with a left associative variable grouping
(i.e. with variable ordering xiw < xiw−1 < . . . < xi1).

Ab́ıo et al. in [42] proposed a generalized arc-consistent, polynomial size
ROBDD-based encoding for Pseudo-Boolean constraints. In our setting the con-
straints are all AMO or AMZ constraints without coefficients, and thus apply-
ing their approach leads to small and simple BDDs. The recursive algorithms
in Fig. 3 present the main steps of this building process. In these procedures
〈xi · · · xj〉 means an ordered sequence of consecutive variables and function
if-then-else builds a BDD node with the given decision variable and high
and low BDD nodes. Building the forward BDDs of a window ωi simply means
to call BDD-AMO and BDD-AMZ with 〈xi1 · · · xiw〉 as parameter. To build the back-
ward BDDs, we need to call the methods with 〈xiw · · · xi1〉 as argument. The
result in both cases (see Example 3) will be a two-rooted BDD with height of at
most (w + 1).

Fig. 3. Algorithms BDD-AMO and BDD-AMZ to construct binary decision diagrams for
constraints over a given sequence of consecutive Boolean variables.

Consider the following layers of these constructed BDDs. A non-leaf layer lj
(where 1 ≤ j ≤ w ) of a forward BDD (backward BDD) consists of two nodes,
one capturing the AMO and another node representing the AMZ constraint over
variables 〈xij · · · xiw〉 (respectively 〈xiw−(j−1) · · · xi1〉 for the backward BDD).

Example 3. The upper part of Fig. 4 shows what the forward BDD of ω1 in
Example 2 looks like. The BDD is the result of calling BDD-AMO(〈x1 x2 x3 x4〉)
and BDD-AMZ(〈x1 x2 x3 x4〉). Notice that due to the search for already existing
BDDs at the beginning of each method (Search-AMO and Search-AMZ), the two
calls result in a single shared structure (i.e. we have a partially reduced ordered
BDD). Further notice that though node x4 ≤ 1 could be reduced simply to �,
we kept this node in the representation. In this BDD we can distinguish four
layers (l1 − l4) that refer to four sub-constraints of the root expressions.
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The lower part of the figure depicts the backward BDD of ω2 in Example 2,
resulting from calls BDD-AMO(〈x8 x7 x6 x5〉) and BDD-AMZ(〈x8 x7 x6 x5〉). The vari-
able ordering here is x8 < x7 < x6 < x5. Notice that the structure of the two
BDDs are identical, they just talk about different variables in different orders.

Fig. 4. Forward BDD of ω1 with variable ordering x1 < x2 < x3 < x4 and backward
BDD of ω2 with ordering x8 < x7 < x6 < x5. Two-rooted partially reduced OBDDs
to represent constraints x1 + x2 + x3 + x4 ≤ K with right and x5 + x6 + x7 + x8 ≤ K
with left associative variable groupings, where K ∈ {0, 1}.

4.2 CNF Encoding of BDDs

During BDD construction (e.g. after Line 5 in both algorithms of Fig. 3), or later
in an independent traversal, we can assign new Boolean variables to each non-
unit non-leaf node. Notice that top nodes of the forward and backward BDDs
over the same variables can use the same Boolean variable.

Now, given a node with auxiliary Boolean variable b, that decides on variable
xi and has a true child node with variable t and a false child node with variable f ,
we introduce clauses to encode xi → (b ↔ t) and ¬xi → (b ↔ f). However, there
are several simplification possibilities due to the structure of our BDDs and our
problem. For instance, all AMZ nodes have ⊥ as a true child (see Fig. 4) and all
AMO nodes are assumed as unit clauses (due to using them with Proposition 1).
Nodes of a constraint xi ≤ 1 are simply encoded as �, while nodes of constraints
xi ≤ 0 are encoded as ¬xi in the clausal representation of the parent nodes.
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Example 4. On Fig. 4 the introduced new Boolean variables are represented
together with their nodes. For example, variable b6 belongs to the node of con-
straint x3 + x4 ≤ 1. The introduced clause regarding this node is (¬x3 ∨ ¬x4).

4.3 Bonding Stairs

An AMO constraint of a SCAMO set is either a root node of one of our BDDs
or can be described by combining two layers of two BDDs via Proposition 1.
As last step of encoding a whole SCAMO set of constraints, we traverse the
forward BDD of each window (denoted as ωf

i -BDD with i ∈ {1, . . . , M − 1})
and combine its nodes with those of the backward BDD of the next window
(ωb

i+1-BDD). Thus, we combine layer lj of ωf
i with layer l(w−j)+2 of ωb

i+1 for
each j = 2, . . . , w. At the end, the bonding of two consecutive BDDs yields the
following formula:

BOND(ωf
i , ωb

i+1) = ωf
i -l1-AMO ∧

w∧

j=2

(ωf
i -lj-AMO ∧ ωb

i+1-l(w−j)+2-AMO ∧ (ωf
i -lj-AMZ ∨ ωb

i+1-l(w−j)+2-AMZ)).

Example 5. We continue the running example. At this point we have seen how
to construct a BDD for each small stair structure in Fig. 2. Next we combine
them using Proposition 1 to capture all AMO constraints. Figure 5 depicts how
the layers of the constructed BDDs are meant to be paired with each other.
Applying Proposition 1 on layers of ωf

1 -BDD and ωb
2-BDD yields the following

formula:

(x1 + x2 + x3 + x4 ≤ 1) ∧
(x2 + x3 + x4 ≤ 1) ∧ (x5 ≤ 1) ∧ (x2 + x3 + x4 ≤ 0 ∨ x5 ≤ 0) ∧

(x3 + x4 ≤ 1) ∧ (x5 + x6 ≤ 1) ∧ ((x3 + x4 ≤ 0) ∨ (x5 + x6 ≤ 0)) ∧
(x4 ≤ 1) ∧ (x5 + x6 + x7 ≤ 1) ∧ ((x4 ≤ 0) ∨ (x5 + x6 + x7 ≤ 0)),

that translates to the clauses b4 ∧ b5 ∧ � ∧ (b2 ∨ ¬x5) ∧ b6 ∧ b12 ∧ (b3 ∨ b9) ∧
�∧ b11 ∧ (¬x4 ∨ b8). Notice that with this set of clauses, together with the BDD
clauses, we encoded the first four AMO constraints of our SCAMO problem.

4.4 Arc Consistency of Duplex Encoding

Notice that AMO, AMZ and SCAMO constraints are all monotonic decreasing
Boolean functions, i.e. setting any of the variables to false does not restrict
any other variables. Thus setting a variable to true affects only those variables
that share at least one AMO constraint with it. Note that decomposing each
AMO constraint of a SCAMO set based on Proposition 1 results in an equivalent
problem. Although our constructed BDDs for this decomposition share most of
their nodes with each other (due to the chosen variable orders), our method is
still a BDD-based translation of each AMO and AMZ constraint into clauses.
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Fig. 5. Combining forward and backward BDDs to encode SCAMO constraints.

Thus, applying an arc consistent encoding [48,49] on each BDD node (e.g. the
one in Minisat+ [41]) makes our encoding arc consistent as well.

In fact, notice that our bonding clauses contain a unit clause for each AMO
constraint in order to enforce the output of the corresponding (sub-)BDD to be
true. Beyond that, it is not hard to see that setting an input variable to true
falsifies the output variable of each AMZ-BDD containing it. Thus the binary
clauses of the bonding clauses enforce the root-node of each respective AMZ
constraint to be true, and in turn unit propagation, the main inference rule of
SAT solvers, falsifies all the variables in them.

5 Comparing Encodings of Staircase Constraints

In this section we discuss commonly used existing SAT encodings of AMO con-
straints and possible SEQUENCE encodings of SCAMO constraints. We com-
pare them to our proposed duplex encoding in the context of SCAMOs.

Let N = (n−w)+1 be the number of AMO constraints in a staircase problem
set over n variables and width w. A naive (also called pair-wise or binomial)
encoding of a w-long AMO constraint is

∧(w−1)
i=1

∧(w)
j=i+1 (¬xi ∨ ¬xj). Although

this approach does not require any additional Boolean variable, the number
of clauses constructed with that encoding over N w-long AMO constraints is
N · ((w − 1) + (w − 2) + . . . + (w − (w − 1)) = N · (w−1)·w

2 .
Using the naive encoding on the SCAMO constraint set would produce more

than once many of the binary clauses. Eliminating duplicated clauses yields the
reduced naive encoding with (w−1)·w

2 + (N − 1) · (w − 1) unique clauses.
Sinz introduced in [37] a sequential counter encoding for Boolean cardinality

constraints. Applying it to an AMO constraint over w variables produces 3·w−5
binary clauses and introduces w−2 auxiliary variables. With N AMO constraints
this gives N · (3 · w − 5) clauses and N · (w − 2) new variables.

The BDD-based encoding for Pseudo-Boolean constraints [41,42] applied to
AMO constraints is comparable to the sequential counter encoding. However,
for a fixed variable order, the BDD built for each w-long AMO constraint of a
SCAMO set, will always either contain a variable that does not occur in any
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other constraint or will miss a variable needed in other constraints. Thus for
this approach using a fixed single variable order the amount of sharing of BDD
nodes among constraints is rather restricted. On the other hand the approach
does not require bonding clauses. With a simplified clausal representation of the
BDD nodes, the naive BDD encoding uses at most N ·(3 ·(w−2)+2 ·(w−1)−1)
clauses and introduces N · (2 · w − 3) new variables to encode a SCAMO set.

The so-called 2-product encoding [32] relies on the same decomposition rule
as Proposition 1. This approach breaks an AMO constraint over w variables into
a product of two AMO constraints over p and q variables, where p∗q ≥ w. To sim-
plify the calculation we use p = �√w and q = �w/p as recommended in [32] and
assume recursive 2-product encoding of the resulting smaller constraints. Even
though this approach can efficiently encode a single AMO constraint, making
use of shared sub-expressions is not straightforward. Thus, based on the esti-
mations given in [32], the number of clauses is N · (2 · w + 4 · √

w + O( 4
√

w)).
Further, the number of newly introduced variables is N · (2 ·√w+O( 4

√
w)) again

following [32].
Instead of focusing on specialized AMO encodings, it is also possible to encode

a complete SCAMO set with more generic approaches, like the ones in [6]. For
example, encoding SCAMO as a REGULAR constraint yields similar results as
a naive BDD-based approach with a single variable order (i.e. O(n · w) size).

Another encoding (also from [6]) based on cumulative sums or difference
constraints requires an internal representation which is at least quadratic size
in the worst case. Similarly, partial sums (again see [6]) would consider every
possible sub-sums which also yields O(n · w2) constraints.

The size-wise most competitive sequence encoding from [6] is the log-based
approach where a SCAMO set could be represented as O(n · log w) constraints.

5.1 Duplex Encoding

For a given constraint set over n variables of width w we construct two BDDs of
the same size (each having 2 · (w + 1) nodes) for M = � n

w  windows. To simplify
the calculation, we will assume that each BDD has the same size (even though
the last window is most of the time way smaller) and that we encode the first
and last windows in both directions. Thus, we provide here just an upper bound
on the actual values. With these assumptions we have 2 · M BDDs. For each
BDD we construct three clauses for the non-unit non-leaf AMZ nodes and at
most two clauses for the non-unit non-leaf AMO nodes. Beyond these clauses,
we need to bond together each layer of the neighbouring forward and backward
BDDs, resulting in M − 1 bond-clause sets, each consisting of two unit and a
binary clause. All in all, the final number of clauses in the encoding is as follows:

#BDD-clauses ≤ 2 · M · (3 · (w − 1) + 2 · (w − 1) − 1) = 10 · M · w − 12 · M

#BOND-clauses ≤ (M − 1) · (3 · (w − 1) + 1) = 3 · M · w − 2 · M − 3 · w + 2
#BDD + #BOND-clauses ≤ 13 · M · w − 14 · M − 3 · w + 2

The number of new variables at the very end of the encoding is at most 4 · M ·
(w − 1) introducing one for each non-leaf non-unit node of our BDDs.
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5.2 Comparison Summary

Table 1 summarizes the sizes of different SAT encodings expressed as functions
over the number n of all variables in a SCAMO constraint set and the width
w of the individual AMO constraints, combined into N = (n − w) + 1 (the
number of AMO constraints) and M = � n

w  (the number of windows in duplex
encoding). The columns capture the number of auxiliary variables and number
of clauses of the encodings. Notice that M is significantly smaller than N . The
last column gives the worst case of each approach, assuming w = n/2, where N
is approximately n/2 too. In this scenario existing encodings are quadratic or
even cubic. However, in our duplex encoding we have M = 2 in that case and
thus it remains linear.

Figure 6 visualizes the difference between SAT encodings for the fixed number
of variables n = 500. The horizontal axis ranges over all possible widths w. Note
that the naive encoding is only partially shown here, and further, that in our
application n/2 is an upper bound on the width w, and thus only the left part
of Fig. 6 is interesting up to the middle w = n/2 = 250.

The asymptotic behavior of the last column of Table 1 can be observed in
Fig. 6 too. Again, the largest difference between the encodings occurs for w =
n/2. According to Fig. 6 the reduced naive encoding turns out to be the best
SAT-based alternative to our approach in terms of number of clauses. Though
Fig. 6 focuses only on SAT encodings, note that the smallest sequence-based
alternative (in [6]) would have size O(n · log n) when w = n/2, that is smaller
than most SAT encodings but larger than our proposed linear encoding.

Table 1. Comparison of size of SAT encodings of w-long SCAMO sets over n variables.
Columns #NewVars and #Clauses show the number of additional variables and
clauses of each approach, where N = (n − w) + 1 and M = � n

w
�.

Encoding #NewVars #Clauses WorstCase

Naive 0 N · (w−1)·w
2

O(n3)

Reduced 0
(w−1)·w

2
+ (N − 1) · (w − 1) O(n2)

Sequential N · (w − 2) N · (3 · (w − 2) + 1) O(n2)

BDD N · (2 · w − 3) N · (3 · (w − 2) + 2 · (w − 1) − 1) O(n2)

2-Product N · (2 · √
w +O( 4√w)) N · (2 · w + 4 · √

w +O( 4√w)) O(n2)

Duplex 4 · M · (w − 1) 13 · M · w − 14 · M − 3 · w + 2 O(n)
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Fig. 6. Comparison of number of clauses for different encodings of a single SCAMO
constraint set on n = 500 variables and width w between 2 and 500.

6 Experimental Evaluation

Formulating the antibandwidth problem iteratively, as it was proposed in [8] (see
Sect. 2), asks whether there exists a labelling for a graph G = (V,E) s.t. AB(G) ≥
k + 1. The question has 2 · |V | pieces of |V |-long exactly-one constraints (as
(Labels) and (Vertices)) and for each edge of the graph (i.e. |E| times) a
(|V | − k) big set of AMO constraints, each over 2 · k variables (as (Objk)).

An off-the-shelf SAT solution could encode each of the AMO and exactly-
one constraints one-by-one (e.g. as in Sect. 5). However, for a given edge between
nodes i, i′ (i.e. {i, i′} ∈ E) constraint (Objk) can be reformulated as

(|V |−k)∧

λ=1

⎛

⎝
(λ+k)∑

�=λ

x�
i + x�

i′ ≤ 1

⎞

⎠
Prop. 1≡

(|V |−k)∧

λ=1

⎛

⎝
(λ+k)∑

�=λ

x�
i ≤ 1 ∧

(λ+k)∑

�=λ

x�
i′ ≤ 1 ∧

⎛

⎝
(λ+k)∑

�=λ

x�
i ≤ 0 ∨

(λ+k)∑

�=λ

x�
i′ ≤ 0

⎞

⎠

⎞

⎠ .

In that form we have exactly two SCAMO sets of width k + 1, one over the
variables of node i and another over variables of i′. The third component of the
decomposition takes the disjunction of AMZ constraints that can be constructed
easily by combining our smaller AMZ nodes corresponding to the SCAMO sets.

The staircase structure in (Objk) allows to apply our new duplex encoding
by simply encoding a SCAMO set of width k + 1 for each node of the graph
(i.e. |V | times) and combining the corresponding AMZ constraints (with less than
4·(|V |−k) binary clauses for each edge). This encodes all AMO constraints of the
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problem. Also note that we can reuse the Boolean variables representing the root
nodes of the constructed AMO BDDs to encode the (Vertices) constraints.

Experimental Results
We implemented a framework to compare off-the-shelf SAT encodings in practice
to our proposed SCAMO based duplex encoding on the antibandwidth problem
(as formulated in Sect. 2). Beyond SAT encodings, we also compared our app-
roach against alternative exact methods to solve the problem, like Constraint
Programming or the iterative method presented in [8] based on feasibility-MIPs.

The experiments considered 24 matrices of the Harwell-Boeing Sparse Matrix
Collection [50], containing 12 relatively small and 12 rather large graphs (as
in [8]). For each graph lower bounds (by a construction heuristic) and theo-
retical upper bounds of the antibandwidth were provided in [8]. These values
were reused in our experiment as starting and ending points for the iterative
methods and as lower bounds in the CP approaches. All reported results were
experimented on our cluster with Intel Xeon E5-2620 v4 @ 2.10 GHz CPUs.

Table 2 summarizes our results.1 For each graph it shows the number of
nodes and edges, the starting width or lower bound and last width to check
of the solving methods (columns |V |, |E| and LB, UB). Then for each solving
technique we report the best found solution together with the time (in seconds)
and memory consumption (in MB). Each approach was limited to 1800 s and
120 GB memory. This rather high main memory limit is due to trying to solve
the alternative SAT encodings with a large number of clauses as well, while the
other methods never exceeded 4 GB.

We compare the 2-product [32] and reduced naive AMO encodings to our
proposed duplex SCAMO encoding as the first three techniques in Table 2. All
three techniques are implemented in the same framework and follow the same
method: encode (considering LB as width of SCAMO or as k of the AMO con-
straints) and solve the SAT representation of the problem with a SAT solver (we
used CaDiCaL 1.2.1 [51]). If it is satisfiable, increase the width and start again
to encode and solve the new problem. If it is unsatisfiable or the width is UB,
it means that the optimal solution of ABP was found and the process ends. At
the moment when the 1800 s or 120 GB is exceeded, the method stops (with TO
or MO respectively). The reported solutions are the highest widths with what
the formula was still successfully constructed and solved. In case even the first
formula was too hard to solve, it is marked with “–”.

While the 2-product encoding of the largest instance had a memory out
during solving the first formula (after a successful encoding), the reduced naive
approach required less memory and even solved a few of the larger problems with
more than one width in 1800 s. The duplex encoding required significantly less
memory and was faster in encoding and solving the problems compared to the
other SAT approaches. It performed well also compared to further techniques.

The next two approaches, Fe(k) and CP-CPLEX, are taken from [8] as is,
and were executed on our cluster for comparison. Note that while CP-CPLEX

1 Source code, data and benchmarks are available at http://fmv.jku.at/duplex/.

http://fmv.jku.at/duplex/
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knows LB, Fe(k) constructs it internally. The last reported approach is based on
Chuffed [44,52] via the MiniZinc language [53]. This hybrid solver employs lazy
clause generation and combines the strengths of SAT and finite domain solving
techniques. Note that both CP approaches encode the ABP naively as a labeling
problem to maximize smallest neighbour-distances, using state-of-the-art solvers
off-the-shelf. All in all we can see that the SCAMO based duplex encoding of
the ABP is comparable and most of the time even better than other approaches.

7 Conclusion and Outlook

In this paper we have proposed a new SAT encoding for at-most-one constraints
with a staircase structure, i.e. where consecutive constraints share sequences of
sub-expressions in a structured way. This structure is exploited in an encoding
which relies on binary decision diagrams using two variable orderings. Compared
to alternative encodings for the ABP, our encoding outperforms the existing ones.

In the future we plan to integrate and interleave the MIP based approach
of [8] and the SAT approach proposed here. Further, we want to apply the pro-
posed method to other problems featuring at-most-one constraints with a stair-
case structure. Another intriguing direction for future work is to explore how
symbolic optimization techniques using decision diagrams [54] can take advan-
tage of multiple variable orders simultaneously, which is essential to keep our
encoding compact.
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Abstract. Core-guided search has proven to be the state-of-the-art in
finding optimal solutions for maximum Boolean satisfiability and these
techniques have recently been successfully imported in constraint pro-
gramming. While effective on a wide range of problems, the methods are
direct translations of their propositional logic counterparts. We propose
two reformulation techniques that take advantage of the rich formalism
offered by constraint programming rather than relying on propositional
logic strategies, and generalise two existing techniques to improve core-
extraction and the overall performance. Our experiments demonstrate
the effectiveness of our approaches over the conventional (core-guided)
CP methods, both in terms of proving optimality and quickly computing
high-quality solutions.

1 Introduction

Discrete optimisation problems are ubiquitous: they include scheduling, roster-
ing, production planning, and many other important questions. Optimal or good
solutions to these problems result in more efficient use of scarce resources, saving
time, money and the environment. Because of their importance, there are many
paradigms to solve optimisation problems, including Mixed Integer Program-
ming (MIP), Constraint Programming (CP), Maximum Satisfiability (MaxSAT)
and local search. In this work, we focus on constraint programming, and in par-
ticular on improving core-guided search for CP.

There are two main approaches to optimization in constraint programming:
1) branch-and-bound, that iteratively improves a best known solution during
search, and 2) core-guided search, where the algorithm assumes all constraints
can be satisfied, and upon detecting infeasibility, relaxes the assumptions and
reiterates. Branch-and-bound and core-guided search can be seen as upper and
lower bounding methods, respectively. Branch and bound is by far the most used
approach in CP.

Core-guided search originates from the MaxSAT community, where problems
are specified as propositional logic formulae. It is one of the central approaches
c© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 205–221, 2020.
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to complete MaxSAT solving, as a large portion complete solvers in the annual
MaxSAT Evaluation use the core-guiding methodology. In contrast, in CP, core-
guided approaches have only recently been developed. In particular, the solver
LCG-Glucose-UC, based on core-guiding, achieved the third highest score in the
MiniZinc Challenge 2016, and OR-tools has introduced core-guided search in 2018
as part of their parallel solver. While these techniques have seen success in CP, they
do not, in fact, use the expressivity offered by the constraint programming frame-
work. Indeed, the methods are direct translations of the MaxSAT approaches,
which were originally developed for the low-level language of propositional logic.

In this work, we advance the state-of-the-art for core-guided search in CP by
exploiting the high-level language constructs offered by constraint programming.
We provide two novel reformulation techniques for CP which are unique to con-
straint programming. Moreover, we generalise two existing techniques for CP,
namely assumption probing to improve core-extraction and core-boosting [7] to
increase the overall performance. We also discuss an issue with using explana-
tion lifting with the conventional CP core-guided approach and note a number
of techniques adapted from the MaxSAT community which play an important
role in obtain high quality results. Our experiments on benchmarks from the
MiniZinc Challenge show improvements over the conventional (core-guided) CP
approaches, both in terms of the number of instances solved to optimality and
the ability to quickly produce high-quality solutions.

The rest of the paper is organised as follows. In the next section, we introduce
basic notations; constraint programming solvers with explanations, and core-
guided MaxSAT methods along with their conventional translation for CP. Our
main contributions are given in Sect. 3, together with additonal techniques that
improve empirical performance. A report on the experimental evaluation is given
in Sect. 4. We conclude in Sect. 5.

2 Preliminaries

Notation: A Boolean variable can take values true (1) or false (0). A literal is a
Boolean variable b or its negation ¬b. A clause is a disjunction (set of) of literals.
The set var(F) and lit(F) contain all variables (resp. literals) of the formula
F . The binary variable 〈x �� k〉 is an indicator for the condition x �� k being true,
e.g., 〈x > k〉 is true if the integer variable x is assigned a value greater than k.
For two formulas R and L, R ⇒ L denotes logical entailment, i.e., all models
R are also models of L. We use the notation unsat(L) to indicate that formula
L is unsatisfiable (i.e. has no models). We will use to denote the function
returning the excess of x above l, up to u. That is, .
For convenience, we write .

CP solvers typically (implicitly) reason about an integer variables x taking
values in [l...u] by using the atomic constraints: x � d, x � d, x = d, x �= d and
false for d ∈ [l..u]. Given a set of constraints F , the current domain D, seen
as a formula containing conjunction of atomic constraints, represents all possi-
ble values that each variable x ∈ var(F) can take. We denote the upper and
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lower bound (in the current domain) of an integer variable x by ub(x) and lb(x),
respectively. A propagator fc for a constraint c ∈ F takes the current domain D
and returns a set fc(D) of atomic constraints such that each r ∈ fc(D) is entailed
by D ∧ c but not D alone, i.e. D �⇒ r and D ∧ c ⇒ r. If false ∈ fc(D), the prop-
agator has detected unsatisfiability, i.e. that the current domain is inconsistent
with the constraint c. For example, if c is a clause, then fc(D) = {false} if the
current domain sets all literals in c to 0. If instead, D sets all but one literal
l ∈ c to false, then fc(D) = {l = 1}.

We consider the problem of minimising a linear objective function
∑

i wixi,
subject to a set of constraints F . Here each xi is an integer variable taking values
in some domain [l..u] assigned a weight wi. Whenever all variables are binary
and all constraints in F are clauses, we talk about a (weighted partial) MaxSAT
problem. We say that a literal bi ∈ lit(F) for which wi > 0 is an objective
variable and denote the set of all objective variables by S(F). A model τ of F is
a solution and has cost COST(F , τ) =

∑
bi∈S(F) wiτ(bi). A solution τ is optimal

if COST(F , τ) � COST(F , τ ′) holds for all solutions τ ′ to F . Note that the
traditional description of MaxSAT is somewhat different to the above, but this
is closer to the mathematical view of optimisation problems, and more closely
reflects how MaxSAT solvers (including core-guided solvers) work internally [9].

An important concept in this work is that of an (unsatisfiable) core. Given a
set F of constraints and conjunction of assumption atomic constraints A, a core
κ is a set κ of atomic constraints s.t. F ⇒ κ and κ ⇒ ¬A. In other words, a core
is a nogood made up of negated assumptions. A key observation for core-guided
search methods is that the existence of a core κ that only contains objective
variables implies a lower bound wκ = min{wi | bi ∈ κ} on the objective function∑n

i=1 wibi. Core-guided search methods make use of this fact by reformulating
the instance during search. More specifically, given a lower bound lb(xi) on
each (integer) objective variable xi, the objective function can be rewritten as

where
Clb is constant. We also note that, for an integer variable x, the following holds:

, and . For an integer variable x with
initial domain [l..u] then .

Lifting Explanations in CP Solving: Similarly to how core-guided MaxSAT
solvers make extensive use of conflict driven clause learning (CDCL) SAT solv-
ing under assumptions [13], core-guided CP solvers make extensive use of lazy
clause generation solving (LCG) under assumptions [23]. Given a set F of prop-
agators (representing a set of constraints), a current domain Dorig and a set A of
assumptions (in the form of atomic constraints) over integer variables, an LCG
solver LCG(F , D, A) determines if there exists an assignment θ to the variables
that entails: (i) all constraints, (ii) all assumptions and (iii) the original domain
Dorig. If so, the solver returns SAT(θ). Otherwise the solver returns UNSAT(κ)
where κ a core of the instance.

As we use LCG solvers in a black-box manner, we will not go into detail on
how such solvers operate (see e.g. [14] for more details). A central concept for
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applying LCG solvers in core-guided CP is that of explanations for propagations.
Each propagator fc in a LCG solver must be able to explain its propagation
of an atomic constraint r in the form of a clause, i.e., compute an explanation
clause expl(c,D, r) ≡ (E → r) where E is a conjunction of atomic constraints and
D ⇒ E, as well as c ⇒ E → r. During conflict analysis, a learnt clause is derived
by starting from the conflict C, and repeatedly replacing some atom r ∈ C with
its reason, i.e. E. Analogously to how learned clauses over assumptions represent
cores in core guided MaxSAT, the explanations for failure over assumptions
represent cores in core-guided CP. We note that for a single propagation there can
be (and often are) are many different explanations. Instead any explanation that
is correct in the current domain suffices. The following examples demonstrate
that some of the explanations are better for core guided CP than others.

Example 1. Consider the propagation of the linear inequality 2x + 3y + 4z � 27
with the current domain x ∈ [5..7], y ∈ [4..9], z ∈ [5..8]. The propagator detects
unsatisfiability, a simple explanation is: 〈x � 5〉 ∧ 〈y � 4〉 ∧ 〈z � 5〉 → false i.e.
the clause C1 = (〈x < 5〉 ∨ 〈y < 4〉 ∨ 〈z < 5〉). This is not however, the only
explanation. By relaxing bounds we obtain the lifted explanation 〈x � −2〉 ∧
〈y � 4〉 ∧ 〈z � 5〉 → false i.e. the clause C2 = (〈x < −2〉 ∨ 〈y < 4〉 ∨ 〈z < 5〉),
for the same propagation. Observe that the lifted explanation is stronger than
the simple one as C2 ⇒ C1. Some lifted explanations can be particularly attrac-
tive, for example if the original domain sets x � 0, then the lifted explanation is
equivalent to 〈y � 4〉 ∧ 〈z � 5〉 → false, containing one less literal. ��
One way of obtaining stronger explanations is through lifting, informally speak-
ing a lifted explanation can be computed by making use of the original propa-
gator in order to compute an explanation for an atom in the (partial) learned
clause, instead of the explanation graph. The reason computed by the propa-
gator will frequently be weaker than the atom that was originally inferred, and
allow the construction of a more general explanation.

Example 2. Consider a propagator fc for the linear inequality c = 7y + 4t � 34,
and a current domain y ∈ [0..10] and t ∈ [0..2]. The propagator can prop-
agate 〈y � 4〉 with explanation 〈t � 2〉 → 〈y � 4〉. Now suppose a partial
learned clause of form ¬ 〈y � 1〉 ∨ Q, is encountered during conflict analy-
sis. Since 〈y � 4〉 ⇒ 〈y � 1〉 the original explanation can be used to obtain
C1 = ¬ 〈t � 2〉 ∨ Q. However, the propagator fc can return the lifted explanation
〈t � 8〉 → 〈y � 1〉 which allows deriving the learned clause C2 = ¬ 〈t � 8〉 ∨ Q.
We observe that C2 ⇒ C1, i.e. the learned clause obtained with the lifted expla-
nation is stronger than the original one. ��

Objective Probing: Branch-and-bound (B&B) CP solvers iteratively search
for better solutions by constraining that the objective value must be better than
in the previous found solution. A common issue that arises is slow convergence:
after finding a solution, B&B solvers typically generate many incrementally bet-
ter solutions before reaching the true optimal solution. One strategy for improv-
ing convergence rate is optimistic partitioning [19]: after finding a solution with
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objective value ẑ given lower bound zlb, optimistic partitioning speculatively
posts a constraint

〈
z < ẑ+zlb

2

〉
(instead of 〈z < ẑ〉). If this succeeds, we have a

much better solution; otherwise, the lower bound is greatly increased.

Core-Guided MaxSAT: that originated with the Fu-Malik algorithm [15] is
today one of three central approaches to complete industrial MaxSAT solving,
together with the implicit hitting set approach [10,24] and the model improv-
ing (corresponding to branch-and-bound in CP) approach [12,18,20,22]. Core-
Guided search is a lower bounding approach based on first assuming that all
objective literals can be set to false and relaxing the assumption whenever new
cores (i.e. sources of unsatisfiability) are detected.

In more detail, when minimising an objective
∑

i wixi subject to a set F of
clauses, modern core-guided MaxSAT solvers maintain a working instance Fw,
initialised to F . During each iteration, a SAT solver is used to determine if there
exists a solution of cost 0 to Fw by querying it on the clauses of Fw while
assuming A = {¬x|x ∈ S(Fw)}, that is that all objective variables are false. If
the result is satisfiable, a solution satisfying Fw and A will be an optimal solution
to F . Otherwise, the solver returns a set of variables κ ⊂ S(Fw) that represents
a core of Fw. Next Fw is relaxed (reformulated) based on κ. First, the weight of
each objective variable in κ is lowered by wκ = min{w(x) | x ∈ κ} (this is known
as weight-splitting). Second, new objective variables and clauses reform(κ) that
rule out κ as a source of unsatisfiability are added to Fw.

Most core-guided solvers differ mainly in the instantiation of reform(κ).
We detail the OLL algorithm [1,21] as it been shown to be the most effective
in the MaxSAT evaluations and can be naturally extended to CP. Assuming
|κ| = n OLL adds new objective variables 〈oκ > 1〉 , ..., 〈oκ > n − 1〉, each of
weight wκ and clauses corresponding to AS-CNF(

∑
l∈κ(l) > k → 〈oκ > k〉) for

each k ∈ [1..n − 1] (the CNF encoding of the constraint). Assuming one of the
commonly used encodings [4,6], the clauses enforce that setting k > 1 literals
of κ to true propagates the literals 〈oκ > 1〉 , ..., 〈oκ > k − 1〉 to true, incurring
(k−1)wκ additional cost. Informally, the new clauses allow setting one objective
variable in κ to true for free while incurring more cost for any additional ones.

Example 3. Consider the following problem:

min z = 3x1 + 2x2 + 2x3 + 4x4

s.t. max(x1, x2) � 2, max(x2, x3) � 2, max(x3, x4) � 2.

where each xi is an integer variable with domain [0..3]. To solve this problem
with the MaxSAT OLL algorithm, we consider the equivalent problem:

min z =
3∑

k=1

3 〈x1 � k〉 +
3∑

k=1

2 〈x2 � k〉 +
3∑

k=1

2 〈x3 � k〉 +
3∑

k=1

4 〈x4 � k〉

s.t 〈xi � k〉 → 〈xi � k − 1〉 for i ∈ [1..4], k ∈ [2..3]
〈x1 � 2〉 ∨ 〈x2 � 2〉 , 〈x2 � 2〉 ∨ 〈x3 � 2〉 , 〈x3 � 2〉 ∨ 〈x4 � 2〉 .
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We sketch an execution of the MaxSAT OLL algorithm. The initial solver
call is made assuming 〈xi � k〉 to false for all i ∈ [1..4], and k ∈ [1..3]. Let
κ1 = {〈x2 � 2〉 , 〈x3 � 2〉} be the first core extracted. First the weights of both
variables in the core are lowered by min{w(〈x2 � 2〉), w(〈x3 � 2〉)} = 2. Then
a new variable 〈o1 > 1〉 (with weight 2) defined with clauses corresponding to(¬ 〈o1 > 1〉 → ∑

l∈κ1
(l) � 1

)
is introduced to the instance before the solver reit-

erates. In the next iteration, the objective variables of the instance are 〈o1 > 1〉,
〈xi � k〉 for k ∈ [1..3] and i ∈ {1, 4} as well as 〈xj � 1〉, 〈xj � 3〉 for j ∈ {2, 3}.
Let κ2 = {〈x1 � 2〉 , 〈o1 > 1〉 , 〈x4 � 2〉} be the next core. As in the first itera-
tion, the weight of each objective variable in the core is lowered by 2 and new
objective variables 〈o2 > 1〉 and 〈o2 > 2〉 (weight 2) are introduced and defined
with constraints AS-CNF

(¬ 〈o2 > k〉 → ∑
l∈κ2

(l) � k
)
.

Next the algorithm extracts two unit cores arising due to the order-encoding
of integers before terminating with the satisfying assignment that sets 〈x2 � 1〉,
〈x3 � 1〉, 〈x2 � 2〉, 〈x3 � 2〉 and 〈o1 > 1〉 to true and all other variables to false.
This assignment has cost 8 and corresponds to x1 = x4 = 0 and x2 = x3 = 2,
an optimal assignment to the original problem. ��

Core-Boosting is a recently proposed [7] search strategy for MaxSAT that
combines core-guided search with an anytime approach (originally a B&B type
search for MaxSAT). The intuition underlying core-boosting is that core-guided
search is mostly an “all-or-nothing” strategy. In its most basic form, core-guided
search only finds one feasible solution during search, an optimal one. Further-
more, core-guided search tends to be somewhat bimodal [7], either proving opti-
mality fairly quickly or not terminating within a reasonable time. Core-boosted
search is designed to take advantage of the fact that core-guided search may rule
out a significant number of cores from the instance that would cause trouble for
approaches like B&B.

More specifically, given a total resource budget, core-boosting spends a small
fraction of its budget running in a core-guided mode. If this budget is exhausted
and optimality has not yet been proven it rebuilds the objective based on the
cores found so far, and then spends its remaining time optimizing the reformu-
lated objective in a branch-and-bound mode.

3 Advancing Core-Guided Search for CP

In this section, we overview core-guided search for CP and discuss our contri-
butions toward advancing its performance. We begin with what we call slice-
based reformulation, i.e. the conventional translation of the OLL algorithm for
MaxSAT to CP. We also discuss potential issues when applying explanation lift-
ing to the slice based formulation. Motivated by these we then detail our main
contributions: coefficient elimination and variable-based reformulation, two novel
core-guided reformulations specific for CP. Finally, we also discuss improvements
and generalisations of existing search heuristics from MaxSAT and CP; assump-
tion probing and core-boosting.
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3.1 Slice-Based Reformulation

The following restatement of Example 3 for CP provides intuition for the slice
based reformulation.

Example 4. In contrast to MaxSAT, the OLL algorithm with slice based refor-
mulation works directly on the original problem of Example 3. For each vari-
able xi, we track a threshold : initially lb(xi), the threshold is the amount of
xi which is already accounted for elsewhere in the objective. Initially, the LGC
solver is called while assuming all variables to their initial threshold, i.e. 〈xi � 0〉
for i ∈ [1..4]. Let κ1 = {¬ 〈x2 � 0〉 ,¬ 〈x3 � 0〉}, i.e. {〈x2 � 1〉 , 〈x3 � 1〉} be
the first core obtained. The algorithm now introduces a new integer vari-
able o1 � 〈x2 � 1〉 + 〈x3 � 1〉 with an initial domain o1 = {1, 2} (notice that
o1 �= 0 as at least one of the literals in the core has to be false). For an
alternative view, o1 could be seen as the variable o1 = 〈x2 � 1〉 + 〈x3 � 1〉 that
has its upper bounds enforced by assumptions. Next the objective is reformu-
lated using o1 to . For some
intuition, notice for example that the term corresponds to the term
2
∑3

k=2 〈x2 � k〉 in the MaxSAT objective and that the term can
be seen as 2 〈x2 � 1〉 + 2 〈x3 � 1〉 plus the lower bound implied by κ1.

In the next iteration, all variables are again assumed to their current thresh-
old i.e. 〈x1 � 0〉, 〈x2 � 1〉, 〈x3 � 1〉, 〈x4 � 0〉, and 〈o1 � 1〉. Notice how the
threshold for x2 and x3 is 1, conceptually, the (potential) weight for x2 =
x3 = 0 is accounted for by the variable o1. Assume the next core obtained
is κ2 = {〈x2 � 2〉 , 〈x3 � 2〉}. Similarly to before, a new variable o2 and con-
straint o2 � 〈x2 � 2〉 + 〈x3 � 2〉 is introduced, and the objective reformulated
to .

In the next iteration, the thresholds for the variables are 〈x1 � 0〉, 〈x2 �
2〉, 〈x3 � 2〉, 〈x4 � 0〉, 〈o1 � 1〉, and 〈o2 � 1〉. Assume that the next core
extracted is κ3 = {〈x1 � 1〉 , 〈o2 � 2〉 , 〈x4 � 1〉} after which the constraint o3 �
〈x1 � 1〉 + 〈o2 � 2〉 + 〈x4 � 1〉 is introduced and the objective reformulated to

.
Finally, the solver still extracts the core κ4 = {〈o1 � 2〉} and reformulates

the instance one last time before terminating with the solution x1 = x4 = 0,
x2 = x3 = 2 and o1 = o2 = 2, o3 = o4 = 1. ��

Example 4 gives some intuition for the term slice based reformulation. In
each iteration the algorithm slices off the current threshold value of all variables
appearing in a core κ, packaging the removed values into a new penalty term oκ.

Algorithms 1 and 2 detail OLL with slice based reformulation for CP. Given
a set F of constraints and an objective z to minimize, the algorithm initially
checks the feasibility of the problem by calling the LCG solver on the constraints
without assumptions. If the problem has feasible solutions, the algorithm enters
its main search loop. On each iteration, the LCG solver is invoked on the instance
while assuming all objective terms to their current thresholds. These thresholds
are maintained in a mapping E that maps each variable xi to a tuple (ti, ui, wi)
containing its threshold (ti), its residual weight ui and its full weight wi. If the
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Algorithm 1: OLL for constraint programming using slice-based reformu-
lation
Data: Constraints F , an original domain Do and objective

z = w1x1 + . . . + wmxm.
Result: Optimal solution θ∗.
zlb ← ∑n

i=1 wilb(xi)
switch LCG(F ,Do,∅) do

case UNSAT(∅)
return UNSAT

case SAT(θ)
E ← {xi �→ (lb(xi), wi, wi) | i ∈ 1 . . . n}
while true do

switch LCG(F ,Do,{〈xi � ti〉 | E[xi] = (ti, ui, wi)}) do
case SAT(D)

return D, zlb

case UNSAT(κ)
F , zlb, E ← reformulate-slice(F , zlb, E, κ)

Algorithm 2: reformulate-slice(F , zlb, E, κ)
wκ ← min{ui | 〈xi � ki〉 ∈ κ, E[xi] = (ti, ui, wi)}
oκ ← new-var(F , [1, |κ|])
R ← 0
for 〈xi � ki〉 ∈ κ do

(ti, ui, wi) ← E[xi]
R ← R + 〈xi � ti + 1〉
if ui = wκ then

E[xi] ← (ti + 1, wi, wi)

else
E[xi] ← (ti, ui − wκ, wi)

E[oκ] ← (1, wκ, wκ)
F ← F ∧ (oκ ≥ R)
return F , zlb + wκ, E

solver returns SAT(D) the obtained domain will be an optimal solution to the
problem so the algorithm terminates. Otherwise, the solver returns a core κ.
The algorithm then reformulates the instance using Algorithm 2. Analoguously
to MaxSAT, slice based reformulation of the instance means: (i) computing wκ,
the minimum residual weight of all literals in the core, (ii) lowering the (residual)
weight of each literal in the core by wκ and (iii) introducing a new variable oκ

with lower bound (and threshold) 1 and full weight wκ as well as new constraints
oκ �

∑
l∈κ(l). Any variable whose residual weight gets lowered to 0 during step

(ii) gets its threshold by one and residual weight reset to its full weight
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Example 5. Consider core κ3 = {〈x1 � 1〉 , 〈o2 � 2〉 , 〈x4 � 1〉} from Example 4.
The current state of the objective is E[o1] = (1, 2, 2), E[o2] = (1, 2, 2), E[x1] =
(0, 3, 3), E[x2] = (2, 2, 2), E[x3] = (2, 2, 2), E[x4] = (0, 4, 4), with zlb = 4. We
determine wκ = 2 as the minimum of the ui coefficients of {x1, o2, x4}. We create
new variable o3 and collect the expression R = 〈x1 � 1〉 + 〈o2 � 2〉 + 〈x4 � 1〉,
updating the E entries to E[x1] = (0, 1, 3), E[o2] = (3, 2, 2), E[x4] = (0, 2, 4)
We set E[o3] = (1, 2, 2) and add the constraint o3 � R. We return zlb = 6. The
resulting objective is exactly as shown in Example 4.

The following example demonstrates a potential weakness of slice-based refor-
mulation, motivating the novel reformulation strategies we propose in the next
section.

Example 6. Consider the problem defined in Example 3 and the initial LCG call
made by OLL for CP with the assumptions 〈xi � 0〉 for i ∈ [1..4]. Assume now
that we obtain the lifted core κ′

1 = {〈x2 � 2〉 , 〈x3 � 2〉} and introduce a single
new variable
If the solver later derives 〈x2 ≥ 1〉 and 〈x3 ≥ 1〉, the lower bound on oκ is set to
2. However, with the reformulations performed in Example 4 the algorithm has
already derived 〈x2 � 2〉 ∨ 〈x3 � 2〉, implying a lower bound of 3 on oκ. ��
In other words, slice based reformulation makes using lifted cores difficult. Hence,
instead of the approach presented in Example 6 we instead perform reformulation
similarly to Example 4 instead. We do however add the lifted core to the model,
thus allowing the algorithm to extract it later without search.

3.2 Novel Core-Guided Reformulations for CP

Next we detail the main contribution of this work, two novel reformulation strate-
gies for the CP OLL algorithm: 1) Coefficient Elimination and 2) Variable-based
reformulation. Coefficient elimination seeks to increase the number of variables
whose lower bounds are increased during reformulation steps., thus increasing
the rate at which the lower bounds of the variables increase. Variable-based
reformulation attempts to make better use of the information provided by lifted
cores in order to increase the lower bound on the objective faster.

Coefficient Elimination. Let κ be a set of literals corresponding to a core
obtained during an iteration of OLL for CP and wκ the smallest (residual)
weight of the literals in the core. Consider now the weighted sum of the literals
in the core, i.e the variable oκ =

∑
xi∈κ wi 〈xi � ti + 1〉. Since κ corresponds to a

core, the lower bound of oκ is wκ and the objective could be reformulated using
. Notice how, in contrast to

the strategy described in Sect. 3.1 and Example 4, coefficient elimination in this
form results in the lower bound of all variables in κ being increased by one. The
drawback is instead the (potential) increase in complexity of the subsequent
LCG solver calls.
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Example 7. Consider the following problem:

minimize 1000p +
n∑

i=1

xi + yi s.t. ¬p → xi + yi ≥ 1, ∀i ∈ 1 . . . n

With weight splitting, the OLL algorithm for CP generates max(n, 1000) cores
of form {〈p � 1〉 , 〈xi � 1〉 , 〈yi � 1〉} i ∈ [1..], each time decreasing the coefficient
of p by 1. Since p is never removed from the objective, we expect extracting each
core to require approximately similar amounts of computational effort (see also
independent core extraction detailed later in this section).

With coefficient elimination, the algorithm instead introduces the vari-
able oκ = 1000p + x1 + y1 with a lower bound of 1 when reformulat-
ing κ = {〈p � 1〉 , 〈x1 � 1〉 〈y1 � 1〉}. In the next iteration, the variable p is
no longer directly in the objective. Instead the next core extracted will be
{〈oκ � 2〉 , 〈x2 � 1〉 , 〈y2 � 1〉} instead. Informally speaking, all of the subsequent
cores will depend on the reformulation variables introduced in previous itera-
tions thus making extracting cores require increasing amounts of computational
effort. [5] ��

The version of coefficient elimination that we consider is a hybrid strategy
designed to balance the number of variables whose lower bounds can be increased
during each reformulation with the potential of extracting independent cores
during subsequent iterations. More specifically, when reformulating on a set κ
of literals having minimum weight wκ, we fully reformulate all literals in κ that
have weight less than Bwκ where B is a boundary parameter, and slice the
rest. More formally, coefficient elimination introduces a variable oκ =

∑
xi∈κ cixi

where ci = max(wi, Bwκ) and reformulates the objective using
.

Variable-Based Reformulation attempts to overcome the difficulties that
slice based reformulation has with exploiting the full potential of lifted cores,
i.e. that slice-based reformulation can only ever increase the lb of variables by 1
and thus the objective by the minimum (residual) weight of the variables in the
core.

Recall for example the lifted core {〈x2 � 2〉 , 〈x3 � 2〉} discussed in
Example 6. When reformulating with variable-based reformulation, the OLL
algorithm for CP introduces the variable oκ � x2 + x3 with an initial domain
of [2 . . .). In more general terms, variable based reformulation merges all integer
variables appearing in a core into a single new variable, and assigns the new
variable an initial lower bound equal to the sum of lb(xi) plus the smallest gap
between the some lb(xi) and the corresponding value in the core (we do not
maintain a separate threshold). Notice that the potential benefits of variable
based elimination are directly related to the size of the domains of the involved
variables. In this particular case, the approach lifts the lower bound by 2 but it
is easy to create examples where the increase is higher, which we observed to
also occur frequently in practice.
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In addition to more effectively exploiting information in lifted cores, we often
observed that variable based reformulation resulted in unit cores being extracted
in subsequent iterations. Unit cores are particularly attractive for the OLL algo-
rithm for CP as no new variables nor constraints need to be introduced. Instead
it suffices to increase the lower bound of the variable in the core.

3.3 Generalisations of Existing Techniques

Before reporting on an experimental evaluation of the new reformulation strate-
gies, we briefly describe new generalisations and improvements to existing heuris-
tics in both CP and MaxSAT solving that we make use of in this work.

Core-Boosting for CP. We extended core-boosted search from MaxSAT to
CP. A key difference when applying core boosting in CP compared to MaxSAT
is the need to explicitly encode the objective function (which is only implicitly
defined during the core-guided phase) before switching to branch-and-bound
search.

Explicitly encoding the objective function when using variable based reformu-
lation is fairly straightforward. During each reformulation step, a set x1, . . . , xk

of variables in the objective are replaced with a variable o representing their
sum. When switching to B&B search, the same procedure is used to remove
all remaining terms and merging them into a single new variable. In contrast,
combining core-boosted search with slice-based reformulation is more intricate.
Consider a possible (implicit) objective:

obtained after several iterations of core-guided search with sliced based refor-
mulation. A simple approach to making z explicit is to introduce fresh vari-
ables for each sub-term, i.e. let x′

i = max(0, xi − di), x′′
i = 〈xi ≥ di〉 and

z = zlb +
∑m

i=1 cix
′
i +

∑m
i=1 bix

′′
i .

A more efficient method makes use of the monotonicity of which in
turn implies that any atomic constraint can be expressed as an
equivalent atom 〈xi ≥ c′〉:

Hence we can use a form of variable view [25] to encode the expressions
and , thus avoiding the need to introduce new variables.
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Progressive Probing. Recall that when given an incumbent solution with
cost ẑ and a lower bound zlb on the objective, objective (optimistic) probing
attempts to improve the solution and find a solution of cost (ẑ + zlb)/2. In prac-
tice, we observed that objective probing is a risky strategy since the jump from
ẑ to (ẑ + zlb)/2 is quite aggressive, and thus can result in difficult unsatisfi-
able subproblems. Instead we consider a more conservative strategy that we call
progressive probing, an idea resembling to the use of progression in MaxSAT
solving [16]. For geometrically increasing values of δ (more precisely, in itera-
tion i δi = 2istepsize where stepsize is a parameter) the solver is queried for a
solution of cost ẑ − δi. The procedure reiterates until the solver either returns
UNSAT or runs out of the resources allocated for probing.

In addition to B&B search, we also make use of probing during core-guided
search, inspired by techniques from the MaxSAT community [3,17]. Anytime a
singleton core 〈u > k〉 is extracted, the bound k is probed by repeated invoca-
tions of LCG(F , D, {〈u � k + δi〉}) for the geometrically increasing values of δi

defined above. Core-probing like this is particularly effective in combination with
variable-based reformulation: if lb(x)+ lb(y) is much smaller than the true lower
bound of u = x + y, core probing will quickly push up the bound of z, skipping
many of the intermediate steps. Recall also that variable based reformulation
often results in unit cores being extracted in subsequent iterations.

3.4 Additional Techniques

Finally, we also considered a number of fairly direct translations of MaxSAT
techniques to CP.

Independent core extraction [8] is a strategy for obtaining simpler cores.
Given some core κ of instance, the reformulation (i.e. introduction of new vari-
ables and constraints) is delayed and instead only the assumptions in the core
are relaxed (i.e. their weight is lowered by wκ or Twκ in the case of variable
based reformulations). Since at least one of the weights will be lowered to zero,
the solver can be invoked to extract another core without needing to reformu-
late. Note that reformulating the instance makes it more complicated, and thus
delaying is beneficial. The process continues until no more cores can be found,
at which point all found cores are reformulated.

Stratification [2] starts by posting assumptions using only literals with high
weights, and throughout the search introduces the remaining literals. This allows
high-weighted core to be extracted early in the search. As a side effect, feasible
solutions can be generated in the process.

Hardening [2] can be used to enforce satisfaction for certain literals. Given
an upper zub and lower bound zlb on the optimal cost, hardening will set false
any Booleans with weight w > zub − zlb. The same rule can be generalised to
integer variables xi by setting ub(xi) = ti + � zub−zlb

ci
� where ci is the coefficient

and ti the threshold of xi.
Solution-guided search [11,12] is a value-selection heuristic that assigns a

branching-variable the value it takes in the current best solution if possible, and
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otherwise resorts to the default value-selection strategy. This focuses the search
around the best solution, quickly finding local improvements.

4 Experiments

In order to experimentally evaluate the improvements to core-guided search we
integrated the described core-guided optimisation methods into geas (https://
bitbucket.org/gkgange/geas), a lazy-clause generation solver. The core engine of
geas is written in C++, with a FlatZinc frontend written in OCaml. The core-
guided optimisation techniques are entirely implemented in the OCaml frontend,
using the engine’s assumption interface to handle the cores and reformulation.
Propagators in geas implement lazy explanation with lifting, so it can extract
lifted cores.

As benchmarks, we took the set of models and instances from the MiniZinc
Challenge [26] for years 2015–2018, and selected all optimization models with
a linear objective. This resulted in 48 models, and 249 instances. We then ran
geas on this data-set, comparing its branch-and-bound configuration (bb), with
all combinations of the following core-based configurations:

– core-guided (core), or core-boosted (boost), using a 10% of time limit (i.e. 60
s) core-guided phase before switching to branch and bound search

– slice-based (slice), or variable-based (var) reformulations.
– weight splitting (split) or coefficient elimination with boundary B = 2 (elim).

All core-based methods were run with stratification, independent core extraction
and hardening. All methods were run using free search (alternating programmed-
and activity-driven search) and a geometric restart sequence. Each instance was
run with a 600 s time-limit, reporting the time to prove optimality as well as the
best objective value found.

Figure 1 compares the overall performance of each set of parameters across
the dataset. We observe that branch and bound performs slightly better than
“the basic version” of core guided search, i.e. core-slice-split and core-slice-elim.
Variable based reformulation improves over slice based reformulation, obtain-
ing performance superior to B&B. The best overall performance is obtained by
boost-var-split making use of core-boosted search, variable based reformulation
and weight splitting, although the difference between coefficient elimination and
weight splitting is minor.

Figure 2 gives a per-instance breakdown of the results, comparing core-guided
search with branch-and-bound as well as the reformulation strategies. We observe
that B&B and core-guide search are fairly orthogonal in the sense that there are
many instances on which B&B search finished quickly while core-guided search
times out and vice versa. This observation provides a possible explanation for
the good overall performance of core-boosted search, notice that most of the
instances where core-guided outperforms branch-and-bound are clustered in the
bottom-right of the figure. The other side of the figure also clearly demonstrates
the superior performance of variable based reformulation compared to slice based
reformulation.

https://bitbucket.org/gkgange/geas
https://bitbucket.org/gkgange/geas
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Fig. 1. Time to prove optimality for all methods.

Fig. 2. Comparing time-to-optimality. Left: branch-and-bound versus core guided using
a variable-based reformulation. Right: slice-based versus variable-based reformulation.

In addition to proving optimality we investigate the anytime behaviour of
the methods i.e. how good are the solutions obtained when optimality is not
proven? Tables 1 and 2 compare the quality of solutions found by each method
across all (Table 1) and a representative (Table 2) set of benchmarks. The tables
again demonstrates the orthogonality of the methods we consider, no individual
method dominates all others. However, pure core-guided methods were much
less competitive as anytime methods supporting the intuition that core-guided
methods typically either prove optimality quickly, or fail to produce solutions
of reasonable quality. And for anytime search, using variable elimination rather
than splitting is worthwhile: variable elimination paired with core-boosting most
reliably produced the best feasible solution.
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Table 1. How many times did each method (row) report a strictly better objective
value than each other method (column) and the best objective value found overall
(column best).

bb boost core

var slice var slice

elim split elim split elim split elim split best

bb 0 25 22 33 38 100 93 89 87 196

boost var elim 39 0 27 36 36 102 95 93 91 211

split 39 23 0 33 36 103 93 94 91 205

slice elim 37 18 20 0 25 101 92 91 88 196

split 33 22 20 28 0 101 93 92 87 197

core var elim 20 4 4 10 8 0 22 39 34 144

split 19 4 5 9 8 24 0 37 31 152

slice elim 22 8 8 8 8 50 47 0 13 151

split 22 7 8 9 8 57 54 25 0 154

Table 2. Quality scores for selected models. Quality of a solution with objective value
z is defined as zvbs−zlb+1

z−zlb+1
, where zlb is the initial lower bound, and zvbs the best solution

found by any solver.

model bb boost core

var slice var slice

elim split elim split elim split elim split

cargo coarsePiles 0.99 1.00 0.98 0.90 0.89 0.81 0.81 0.79 0.79

celar 0.59 0.97 0.98 0.99 0.99 0.68 0.68 0.94 0.91

oc-roster 0.93 1.00 0.97 1.00 0.96 0.66 0.51 0.55 0.52

seat-moving 0.84 0.95 0.95 0.95 0.95 1.00 1.00 1.00 1.00

vrplc service 1.00 0.99 0.99 0.99 1.00 0.80 0.80 0.74 0.74

5 Conclusion

In this paper, we revisit the use of unsatisfiable core approaches for CP – both
standalone, and as part of a hybrid (core-boosted) strategy. We exploit the extra
expressiveness of lazy clause generation solvers to build more compact OLL-style
reformulations, and to opportunistically tighten lower and upper bounds. We
experimentally evaluated the new methods and draw the following conclusions 1)
Core-boosting is generally worthwhile, both for anytime performance and prov-
ing optimality. 2) Variable-based reformulations are typically better for proving
optimality, but this is model-dependent. 3) If using core-boosting, variable-based
reformulations also produce better solutions. 4) Surprisingly, slice-based refor-
mulations yield better solutions for core-guided; but still not as good as those
for core-boosted. 5) Coefficient elimination finds the best solution slightly more
frequently in combination with variable-based core-boosting (but is slightly
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worse at proving optimality). In other configurations, it is worse than weight
splitting.
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2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 9
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Abstract. Aircraft turnaround scheduling and airport ground services
team/equipment planning directly concern both the airport operator
and service providers. We first ensure airport-wide global optimality
by solving a resource-constrained project scheduling problem (RCPSP)
for minimal overall delays. We then support decentralized allocation of
teams/vehicles to flights, independently by each service provider. Either
a multiple traveling salesman problem with time-windows (mTSPTW),
or a vehicle routing problem with time-windows (VRPTW) are solved for
this purpose, by taking advantage of both constraint programming (CP)
and mixed integer programming (MIP) solvers. We also exploit these
models in a matheuristic approach based on large neighborhood search
used to reach good solutions in reasonable time for real-world instances.
Unlike the classical VRP objective of minimizing traveling time, we max-
imize the total slack time between team visits, and show that doing this
fosters robustness of the generated plans. We assess the robustness of
solutions through a discrete-event simulation model, and conclude by
validating our approach with data provided by a major ground handling
company for a day of operations at Barcelona El Prat Airport.

Keywords: Optimization · Scheduling · Routing · Aviation · Airport
operations

1 Introduction

Effective planning and scheduling is crucial in many areas of airport opera-
tions, where decisions are interconnected with each other and the potential for
flight delays due to knock-on effects is rather high. Careful planning for the
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Fig. 1. An example of aircraft turnaround operations and precedence relationships
between them within a timeline

day of operations is essential. With many factors out of the control of any air-
port decision maker—weather conditions, aircraft technical faults, delays, late
passengers on boarding, etc.—, plans that are in some form robust should be
sought. This is particularly true for aircraft turnaround and airport ground ser-
vices. When an aircraft lands, it proceeds to a parking stand. Here, it undergoes a
sequence of operations to get ready for the following take-off. A mix of operations
may be needed: passenger disembarking/boarding, baggage unloading/loading,
refueling, cabin cleaning, catering, toilet and potable water servicing, and air-
craft push-back. Precedence relations do apply—e.g. refueling often cannot start
before passengers have disembarked due to safety regulations. Figure 1 shows an
example of a single aircraft turnaround. Conjunctive arcs represent the prece-
dence relations. There exist specific time windows through which each activity
should be performed. Each time window shortens/stretches out depending on
what happens to other related operations. The turnaround should ideally start
as soon as an aircraft arrives at its stand, ideally at the time for which it was
scheduled to arrive there—or start of in-block time (SIBT )—and should be com-
pleted by the time it was scheduled to be pushed-back into the taxiway on its
way to the runway—also called its start of off-block time (SOBT ).

Turnaround operations are often handled by different service providers (SPs).
A great deal of coordination is required to make sure they do not delay any
aircraft, and for delays not to propagate to other aircraft. Cross-turnaround
delay propagation may happen if teams from SPs are scheduled back-to-back
between subsequent aircraft: team A finishing late on aircraft turnaround X will



224 Y. S. Gök et al.

surely start late on turnaround Y if it was immediately assigned to it. Team A
will also be occupying the stand for longer, with turnaround Z of the aircraft
next assigned to the same stand likely to start late, and operations of team B
(possibly of a different SP), that was assigned to Z also impacted. Propagation
of delays across the airport parking lot—apron for short—is a certainty.

Organizations in aviation have long been aware of such issues and have
devised an approach named Airport Collaborative Decision Making (A-CDM)
([5]), which is currently in place in just a minority of airports in Europe—albeit
some of the biggest ones in terms of passenger numbers per year. According to
A-CDM, most of the actors involved in aircraft operations must share certain
pieces of information with one another to keep tighter levels of coordination. A
central piece of information is the Target Off-Blocks Time (TOBT), which is
calculated on the day of operations and used as a reference for all other ground
service operations. A-CDM focuses on the coordination of aircraft movements,
seen, probably correctly, as the center-piece of airport operations. But coordina-
tion of the movements of ground service staff and related equipment across busy
aprons is equally critical, as it contributes to delays, but also because certain
pieces of costly equipment are shared by multiple turnaround teams working
for separate SPs. While A-CDM is an appealing concept, to work as expected,
a certain degree of information sharing among the airport and the various SPs
need to be in place, which happens typically only if enforced. Busier hub airports
represent the typical example where the enabling conditions are met. In non-A-
CDM airports, though, coordination is also needed, but without data sharing
mechanisms it is virtually impossible to achieve. The remainder of this paper
proposes a feasible and robust way to support this more general scenario.

2 Related Literature

The Operations Research (OR) community has, in the past three decades,
worked on the modeling and solution of problems related to coordinating the
movements, usage, and sharing of turnaround teams and equipment, but only
partially.

The body of work by Norin and colleagues [18,19] shares quite a few elements
with our study. As we, and others do (e.g., [1] and [21]), the problem is mod-
eled as a form of Vehicle Routing Problem with Time Windows (VRPTW) [22].
Similarly to us, they work in an A-CDM setting, albeit with a different objec-
tive function: they minimize the weighted sum of flight delays and traveling
distance. Due to the computational complexity of the underlying problem, they
also focus on finding reasonable solutions in short times adopting a form of
Greedy Randomized Adaptive Search Procedure (GRASP). They also make use
of simulation to test the robustness of their heuristic plans under a range of
uncertain conditions. Differently from us, the authors focus on one turnaround
operation only: de-icing, with one type of vehicle/related staff to operate them.
Stockholm Arlanda provides for their data set and motivating example.

In another closely related study [12], the authors did not see an option to
adopt a fully centralized solution process, as the ground service providers are
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effectively separate legal entities making independent decisions. They also did
not see the point of adopting a complex negotiation mechanism between dif-
ferent service providers, essentially ruling out in their assumptions any form of
information sharing. This is a very relevant paper based on the same problem
as ours, but examined through a substantially different perspective.

Padron et al. [21] probably represents the closest work to our study. They
also consider scheduling all the ground handling vehicles at an airport, and they
combine CP with heuristic search techniques such as Large Neighborhood Search
(LNS) and Variable Neighborhood Descent (VND). Unlike us, their turnarounds
have a fixed sequence of tasks. In a subsequent paper [20], as we do here, they
integrate simulation at the bottom-end of their methodology to investigate the
robustness of the generated heuristic solutions.

Among the remaining studies, less related to ours, [7] represents a more recent
example of VRPTW formulation, but focuses on individual workers and their
synchronization with vehicles, and has no view on collaborative mechanisms.
Works such as [1,10], and [23] provide different heuristic approaches to solve the
vehicle routing problems implied by aircraft turnaround operations at airports.
Finally, many older studies had approached apron resource allocation problems
from a multi-agent distributed planning perspective. Among these, [11,14,16]
and [13] modeled their problems—as we also do in one of our steps—after the
Resource-Constrained Project Scheduling Problem (RCPSP) [2], while [6] mod-
eled the problem as a form of job shop scheduling.

3 Planning Process and Related Models

There are two levels to the turnaround planning problem studied in this paper—
long-term and short-term (Fig. 2). All decisions are of tactical nature, as they
take place ahead of the day of operation. Real-time management of apron oper-
ations and related resources is out of scope for the present paper.

In the longer term, flight schedules for the next few months are known to
both the airport operator (AO) and the SPs. The AO needs this information to
coordinate the scheduling of all the turnaround operations for each of the days
in the planning horizon, aiming at minimum delays. The main decision maker in
the longer-term is the AO, wanting to fix time windows for all operations whilst
keeping overall resource requirements for the airport reasonably contained. After
these decisions are made centrally, each SP can start thinking about their own
resource requirements for each day of operation, and run their own staff rostering
processes.

In the shorter term, approximately a week before the day of operations, the
updated flight schedule is shared with all SPs and the same tactical reasoning
can be rerun, with time windows revisited by the AO and rosters updated by
the SPs.

In the even shorter term, closer to the start of the day of operations, time
windows remain fixed and turnaround teams are known to SPs with a high
degree of certainty. Then, each SP makes sure they can optimally route their
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Fig. 2. Proposed turnaround planning process

staff through all turnaround tasks, by keeping some slack time to compensate
for unforeseeable delays. At this stage, the objectives and constraints can differ
by SP, but all SPs still have to stick to the time windows set by the AO.

Although our approach would ultimately help to plan for all kinds of resources
in apron operations, we focus on planning for ‘teams’ of handling agents of each
SP, i.e. we focus on human resources. Each of the turnaround operations is
normally executed by small teams of employees, of size known to each SP, and
planning for the sequence of turnarounds to be visited and serviced by each
team during the day of operation is of utmost importance. In the following, we
assume that all needed equipment is either carried over by the teams as they
move from one turnaround to the next, or sourced across the apron area as they
move through their jobs for the day, and as such is not modeled directly.

From an OR perspective, two classes of problems are involved in the descrip-
tion given above: project scheduling provides a convenient framework to the AO’s
problem of fixing time windows and keeping resource requirements under con-
trol, while vehicle routing comes to the rescue of SPs for optimal routing of their
turnaround teams.

We consider (Subsect. 3.1) both versions of project scheduling problems
(PSPs), with and without constraints in the number of resources (e.g., teams for
unloading/loading baggage, cleaning, catering service, refueling, etc.), the latter
class of problems taking the name of resource-constrained project scheduling
problems (RCPSP). The first objective we seek is to minimize the overall tar-
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diness for the airport. After achieving a minimal-delay ideal schedule, the total
resource requirement for the airport is minimized by enforcing any optimal solu-
tion found at this stage to maintain at least the same level of tardiness coming
from the PSP.

Moving to optimal routing of teams for each SP (Subsect. 3.2), the frame-
works of reference are two: multi-traveling salesmen problem with time windows
(mTSPTW) [4] and vehicle routing problem with time windows (VRPTW). The
choice depends on whether the vehicles that are operated by teams are capaci-
tated or not. Most resources/teams use a vehicle with limited capacity in order to
service an aircraft, such as catering trucks, where the catering team is responsible
for loading a certain number of galley trolleys into the aircraft. Other resources
are uncapacitated and have no limitations on the number of aircraft that can
be serviced before returning to the depot (e.g., push-back vehicles). Unlike the
typical objective of both mTSPTW and VRPTW, which is minimizing the trav-
eling distance, we first maximize the slack between tasks, in order to give enough
time to absorb any small disruptions. This is meant to enforce a certain degree
of robustness to the plan. After that, we try and maximize the workload balance
among teams of the same SP, as much as possible, to foster fairness of the plan.
Finally, we maximize the total slack time, when the minimum slack time cannot
be improved further, with the effect of increasing all slack times between tasks
except the minimum among all.

Details of our models are provided in the next two sub-sections. Many pow-
erful global constraints from the Constraint Programming (CP) community are
available for PSP/RCPSP and mTSPTW/VRPTW, hence our CP formulations.
By employing such global constraints and taking advantage of the strength of dif-
ferent solvers, one would expect better computational performance with respect
to, say, Mixed-Integer Programming (MIP) formulations and solvers. All models
were developed in MiniZinc [17], a solver-independent modeling framework that
allows the model to be run on many different solvers. This feature was crucial
to enable our solution approach (Sect. 4).

3.1 Project Scheduling Models

For a given day of operations, we set the start time starti ∈ [0, tmax] of all
tasks i ∈ I = {1 . . . φ} that cover all aircraft turnarounds expected at the given
airport (tmax is the length of the day of operation). We do so in two steps.
In the first (PSP, Eqs. (1a) and (2)–(6)), we aim at minimum costs resulting
from tardy turnarounds, assuming unlimited resources. In the second (RCPSP,
Eqs. (1b), (2)–(6), (7b) and (8b)), we aim for minimal resource needs whilst
maintaining tardiness performance established in the first step.

Each task has an expected processing time durationi. Based on the known
flight timetables, both the Scheduled Time of Arrival (STA) and Scheduled Time
of Departure (STD) of each aircraft are known. As a result of this and of the
precedence relations among all tasks (Fig. 1), earliest start times stai and earliest
end times stdi of all tasks are also known in advance. The set of all tasks j ∈ I
which can only start after a given task i ∈ I is completed is denoted as Si. This
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set will be empty for push-back tasks, which represent the natural conclusion
of the related turnarounds. In between any two tasks, a fixed setup time setupi

will ensure resources can effectively be gathered and moved from one location
to another across the apron. This parameter can be estimated as a function of
the maximum distance among all stands.

Each task represents a specific activity A = {1 . . . α}, e.g. baggage loading.
By ATa we denote the set of all tasks of type a ∈ A. Sets SO and SI represent,
respectively, activities that are only allowed to start a certain time before STD,
or after STA (mostly due to process specifications).

Certain pairs of tasks cannot be performed simultaneously, e.g. potable water
and toilet servicing of the same turnaround. P = {1 . . . N} is the set of such
forbidden pairings, and Dp is the set of (two) tasks for each p ∈ P .

Each task requires, uninterruptedly from start to end, a given amount rrik of
a given type of resource k ∈ K = {1 . . . κ}. Resource types effectively represent
teams of handling agents providing services of different nature. Resource capacity
per resource type rck also needs to be decided.

In the joint CP formulation of the PSP/RCPSP steps that follows, we also
denote (Objective Z1, see (1a)) the cost of tardy turnarounds per unit of time as
costtardy, while parameter sobta—see constraint (4)—states that certain activi-
ties need to be completed within given bounds from the planned departure time.
Finally, we employ two global constraints: global constraint (6) ensures non per-
mitted task pairs are scheduled separately, while global constraint (8b) ensures
resource levels are not exceeded at any time.

CP Formulation

Z∗
1 = min Z1 = min

∑

i∈I
where
Si={}

costtardy × max{0, starti + durationi − stdi}

(1a)

Z∗
2 = min Z2 = min

∑

k∈K

rck

(1b)

subject to

starti ≥ stai ∀i ∈ I (2)
startj ≥ starti + durationi ∀i ∈ I,∀j ∈ Si (3)

starti + durationi ≥ stdi − sobta ∀a ∈ SO, ∀i ∈ ATa (4)
starti = stai ∀a ∈ SI, ∀i ∈ ATa (5)

disjunctive([starti|i ∈ Dp], [durationi|i ∈ Dp]) ∀p ∈ P (6)

Z1 = Z∗
1 (7b)
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cumulative([starti | i ∈ I], [durationi + setupi | i ∈ I], [rrk,i | i ∈ I], rck)

∀k ∈ K where rck <
∑

i∈I

rrk,i (8b)

3.2 Routing Models

After solving the above project scheduling problems, both the AO and all SPs
know all time windows in which tasks should be executed on the given day of
operation, as well as the number of teams of all types that are likely required to
do the job. Each SP then takes this information to optimally schedule for their
own teams to cover all turnaround tasks they are contracted to service. In the
following we will see how this single-SP decision can be supported.

As in Subsect. 3.1, we provide a joint formulation following a lexicographic
approach, with three objectives/sub-problems in this case. The sequence of three
is then repeatedly solved as many times as the resource types managed by the
given SP. For some resource types (teams), the vehicles used, e.g. re-fueling
trucks, have finite capacity, hence they may need to be replenished before visiting
the next turnaround. For these resource types, capacity constraints (20)–(22) will
need to be included in the three models. The sub-problems take then the form of
a VRPTW, irrespective of the objective/step in the sequence. For other resource
types (teams), e.g. push-back trucks, capacity is not an issue, constraints (20)–
(22) are excluded, and the sub-problems take the form of an mTSPTW.

The objective of utmost importance, and the one to pursue first (Eqs. (9)
and (12)–(23)), is to maximize the minimum slack time between any two tasks,
in an attempt to absorb short delays and prevent minor knock-on effects. The
second step in the sequence (Eqs. (10), (12)–(23) and (24b)) looks at maximizing
the workload balance among teams, to enforce some form of fairness in the
plan, something which would be required in highly-unionized settings. Workload
equity and its calculation is a subject of interest in the literature [15] on routing
problems. The general suggestion points at minimizing the maximum distance
in order to achieve a balanced workload while still ensuring the minimization
of traveling distances. However, we are not as concerned with traveling times in
between tasks as we are with the much higher processing times for each task.
The last step (Eqs. (11), (12)–(23), (24b) and (24c)) then seeks to maximize the
total slack time in the plan, in a way to increase its robustness.

On the given day of operation, we focus on a given working shift S =
[startshift , endshift ] for which a staff roster of the given SP is available. Within
that, we know the number of teams t ∈ TSP,k = {1 . . . tSP,k} of resource type k,
who need to cover, overall, a known number of tasks i ∈ ISP,k = {1 . . . φSP,k} ⊂
I, by moving across a given number of parking stands h ∈ H = {1 . . . η}, where
tasks are performed. The SP wants to set, for each task i:

– the start time of the task, or stimei ∈ S;
– the team rti ∈ TSP,k assigned to i;
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– the task si immediately following i;
– whether replenishment is needed prior to moving to si.

For each available team, a specific route needs to be set up for the given shift
(hence the letters ‘rt’ in rti), where the first task is a dummy task the label of
which is a function of the label/index of the team in question, while all other
tasks are ‘genuine’ tasks from set ISP,k. Task labels then, whether genuine or
dummy, take on value in set N = ISP,k ∪ {φSP,k + 1, . . . , φSP,k + tSP,k}. As
a result, any task that is not the first task in each route is a task si ∈ ISP,k.
Constraint (14) ensures all the dummy nodes represent the start of individual
routes. Constraint (15) makes sure both i and si belong to the same route.

CP Formulation

z∗
1 = max z1 = max min

i∈ISP,k

slacki (9)

z∗
2 = max z2 = max ( min

t∈TSP,k

workloadt − max
t∈TSP,k

workloadt)

(10)

z∗
3 = max z3 = max

∑

i∈ISP,k

slacki (11)

subject to

circuit ([si | i ∈ N ]) (12)
alldifferent ([si | i ∈ N ]) (13)

rtφ+t = t ∀t ∈ TSP,k (14)
rtsi

= rti ∀i ∈ ISP,k (15)
stimei = starti ∀i ∈ ISP,k (16)

busyi =

⎧
⎪⎨

⎪⎩

stimei + durationi+
traveltimehi,hj

+ xi × replenish, ∀i ∈ ISP,k

endshift, otherwise

| si ∈ ISP,k (17)

stimesi
≥ busyi ∀i ∈ ISP,k (18)

slacki = stimesi
− busyi ∀i ∈ ISP,k (19)
qi = cap ∀i ∈ N \ ISP,k(20)

qsi
= qi − demandsi

∀i ∈ N \ ISP,k(21)

qsi
=

{
cap − demandsi

, if xi = 1
qi − demandsi

, otherwise
∀i ∈ ISP,k (22)

workloadt =
∑

i∈ISP,k

where rti=t

durationi ∀t ∈ TSP,k (23)
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z1 = z∗
1 (24b)

z2 ≥ z∗
2 (24c)

Tasks should start at a time stimei that is no earlier than the starti that
was assigned at the PSP/RCPSP stage. Later starts could be advisable/needed,
e.g. because of resource limitations. Hence, although potentially contributing to
causes of delays, at this routing stage decisions on task start times could be
reconsidered, in principle at least. In our approach we simplify this aspect by
fixing starti exactly as in constraint (16), as this is more akin to maximizing the
form of slack in the system that we have in two out of three objectives.

Tasks should also not start until their immediate predecessor has been com-
pleted, as in constraints (18) and (17). Any time available in between tasks i and
si is defined as slack—see constraint (19). The replenishment decision is enacted
through binary decision variable xi, which takes on value 1 if replenishment needs
to happen between task i and task si, 0 otherwise. Each replenishment takes
replenish time. Moving between two consecutive tasks requires traveltimehi,hj

,
with hi, hj ∈ H, hi �= hj . Task duration is again denoted as durationi. The sum
of the duration of all tasks assigned to a given team contribute to defining the
total workload workloadt for the team, as in constraint (23).

For capacity constrained turnaround services, initial capacity qi for the team
and related vehicle is set to cap—constraint (20); capacity then depletes as
required by the demand from each subsequent task si but is topped-up any
time a replenishment decision is made—see constraints (21) and (22).

Global constraint (12) builds a single overall sequence for all tasks of all
routes, with dummy tasks signposting the start of each team’s own route. Global
constraint (13) is redundant and added to help propagation.

4 Solution Approach

From the above discussion, we know that our overall approach develops as in
Fig. 2, with perspectives from both the AO and all the SPs supported by the
models presented, respectively, in Subsects. 3.1 and 3.2.

Table 1 shows further details around solvers and search strategies we used,
as well as additional parameters around any time limits adopted as stopping
criterion, or whether we made use of a warm-start. Numbers in the first column
to the left correspond to component steps of Steps 1 and 2 from Fig. 2. Variable
names in the table refer to the formulations from Sect. 3.

All models were implemented in MiniZinc, which enabled us to test the per-
formance of different solvers for each model, and ultimately select the most
suitable for use in each case. In the case of steps 1.1 and 1.2, Chuffed [3] clearly
outperformed all other available solvers and we were able to prove optimality for
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Table 1. Solution steps

Step Model Obj. Additional
input

Solver Search strategy* Time
limit(s)

Warm
start

1.1 PSP Z1 – Chuffed smallest,
indomain min

– –

1.2 RCPSP Z2 Z∗
1 Chuffed smallest,

indomain min
– –

2.1.1 mTSPTW/
VRPTW

z1 tSP,k, start Gecode first fail/smallest,
indo-
main max/min

10 –

2.1.2 mTSPTW/
VRPTW

z1 tSP,k, start,
s, rt

Gurobi – – Yes

2.2 mTSPTW/
VRPTW

z2 tSP,k, start,
z∗
1

Gecode first fail/smallest,
indo-
main max/min

20 –

2.3 mTSPTW/
VRPTW

z3 tSP,k, start,
z∗
1 , z∗

2

Gecode first fail/smallest,
indo-
main max/min

90 –

all instances. The first sub-problem of Step 2 though, that is the maximization of
minimum slack time, proved slightly different, and had to be broken down into
two further component steps. We first used CP with a specialized search strat-
egy (step 2.1.1) which allowed us to reach the maximum as quickly as possible
with Gecode [8]. However, it took very long for CP to prove optimality in almost
all cases. Thus, by taking advantage of the warm-start possibility, we used the
same model and the solution provided by Gecode as a warm start for a MIP
solver (Gurobi [9]) (2.1.2), thanks to which we managed to prove optimality for
all instances in a very short time.

Choosing the right search strategy also proved decisive in terms of solv-
ing times wherever we adopted a CP approach. In steps 1.1 and 1.2, we chose
the starti variables to lead the search. The variable selection strategy smallest
means a variable is chosen with the smallest value in its domain, and the assign-
ment of the value to that variable is done using indomain min, meaning that
it will get assigned the minimum value in its domain. On the other hand, for
the mTSPTW/VRPTW component, we noticed the model was unable to solve
quickly without specifying any search strategies. We then noticed that the two
forms of the problem claim for different choices of search strategy. We observed
that first fail, where the variable with the smallest domain is chosen, outper-
forms other strategies for all mTSPTWs, while smallest performed better for
all VRPTWs. On the variable assignment for mTSPTW, indomain max ruled
out the rest, meaning the assignment was made with the maximum value in its
domain. For VRPTW, on the other hand, indomain min performed better.
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Algorithm 1: Large Neighborhood Search
Input: rt, s, z3 from CP model (step 2.3 )
rtb ← rt
sb ← s
zb
3 ← z3
while iter < maxIter do

k1 ← a random number from {1 . . . tSP,k}
k2 ← a random number from {1 . . . tSP,k} \ {k1}
for i ← 1 to φ do

while rti ∈ [k1,k2] do
Destroy rti and si

end

end
Repair rt, s, z3 with CP model(step 2.3)
rtt ← rt
st ← s
zt
3 ← z3
if zt

3 < zb
3 then

z3 ← zt
3

rt ← rtt

s ← st

else

zb
3 ← zt

3

rtb ← rtt

sb ← st

end

end

The very last step of our approach involves adopting a Large Neighborhood
Search (LNS) schema (Algorithm 1) to further improve the solutions obtained
from each of the routing sub-problems composing step 2.2. In our implementa-
tion of LNS, we take the solution from maximizing z3 as a starting point, then
‘destroy’ two routes, chosen at random from the given solution, and finally use
again the same model from step 2.3 to ‘repair’ it. If the new solution is better
than the incumbent, we update the record of the best solution, and repeat the
process for up to 200 iterations.

5 Experiments

In this study we used real data coming from Europe’s 6th busiest commercial
airport, Barcelona - El Prat (BCN). Our data relate to one given day of operation
and include seven resource types, with each type handled by a different SP, and
ten different turnaround activity types, for a total of 914 tasks to be scheduled at
the PSP/RCPSP stage. At the mTSPTW/VRPTW stage, we considered the two
shifts per day as currently adopted at the given airport, irrespective of resource
type/SP. There are approximately 50 turnarounds in each shift, amounting to
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approximately the same number of tasks to be assigned per resource type and
shift. In some cases from out data set, two teams are required to perform a task—
e.g., baggage loading/unloading for wide-body aircraft. In these cases, the tasks
are duplicated to ensure two teams, not one, perform the same task.

We ran all models on a personal laptop (1.6 GHz Intel Core i5) running mac-
OS High Sierra. The overall integration was achieved in Python 3.7 using MiniZ-
inc Python (MiniZinc version 2.3.2), which allowed us to solve the models in an
incremental way, whilst providing a platform for easy integration of our LNS
implementation. Computation times are not of primary concern when dealing
with our problem, as clear from Fig. 2, hence the average 45 min taken to run the
whole solution approach end to end does not represent a problem, to start with.
In reality though, the AO will only run the PSP/RCPSP stage, which will take
only approximately 7 min. Each SP will instead run the mTSPTW/VRPTW
separately, on its own, for two shifts, which will take up to around 6 min for
each SP, LNS step included. The RCPSP is proven to be optimal for minimizing
tardiness, as well as for minimizing total resources/teams per SP. Moreover, in
the second stage, we prove optimality for the maximum minimum slack time for
the given tardiness and resource levels. Work balance is between 0 and 66 min,
and 15 min on average, within the allowed time limit. Ensuring optimal work-
load balance proved too challenging, hence we limited the time available for this
stage.

The most time-consuming part of the whole approach was to find the optimal
solution for total slack time for each VRPTW. This is due to the workload
balance objective and constraints. When we relaxed this and maximized it for
z1 and z3, we could get an optimal solution using Gurobi for almost all resource
types and shifts, with only a few instances not proven in 5 hours of solving
time. We compared the results of the objective bounds with our lexicographic
approach (excluding workload balance objective and constraint). The average
gap was 0.68% for 14 instances of a mix of mTSPTW and VRPTW (each for
one shift). The maximum gap was 2.72%. The average solution time for our
approach was 1.78 min, while it required 60 min for Gurobi to prove optimality,
if reached.

Padron and Guimarans [20] tackled an extremely similar ground-handling
problem on the exact same data set. Compared to them, our approach was able
to reduce the number of resources used per resource type when tested in the
same instance for BCN. This was largely because in the RCPSP stage we give
flexibility to the ordering of tasks for an individual turnaround, rather than using
a preset plan for each turnaround as they do.

To test our optimization results under the uncertainty that normally per-
meates real airport settings, we developed, validated and used a discrete event
simulator. Uncertain factors in our problem include: aircraft arrival time, task
duration, traveling time between stands, and replenishment time. A bounded
exponential probability distribution was used for the traveling time, and trian-
gular distributions for the rest.
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In addition to the real case from BCN, we generated several instances with
different mix of aircraft and frequencies of arrivals and departures. Instances are
presented as ta[θ] t[tmax], where θ is the number of turnarounds and tmax is
the planning horizon in minutes. We study these scenarios, together with the one
from Barcelona Airport, by setting different levels of variability (normal and high
variability). We use this experimental setting to evaluate our approach using two
different objectives: maximizing slack time and minimizing traveling time, as in
typical VRPTWs. Ten independent replications were produced for each scenario.
Table 2 provides a summary of relevant indicators. Σ is the total delay time,
N is the number of delays, N% is the percentage of delays and Σ>15 shows the
sum of delays that are in excess of 15 min. Superscripts s and t refer to the two
approaches: maximizing slack and minimizing traveling distance, respectively.
Computation time, including solving the RCPSP plus the average solving time
(in seconds) of all VRPs and excluding simulation for a deterministic bound, are
indicated by τs and τ t for the respective approaches. Times for the simulated
instances with normal and high variability are not provided in the table since
the deterministic instances’ computation times ( det) are the main indicators of
the solution approach and simulation is not part of the solution but only used
as a tool for evaluation.

Table 2. Simulation Key Performance Indicators (KPIs) for slack time maximization
and travel time minimization approaches

Instance Ns
% Nt

% Σs Σt Σs
>15 Σt

>15 ΔΣ>15 τs τt

ta24 t120 normal 62.50 67.50 87.67 106.89 4.61 6.58 1.97 – –

ta48 t240 normal 66.04 76.25 262.98 362.66 15.67 36.18 20.51 – –

ta72 t360 normal 60.28 69.44 376.97 512.09 21.65 55.86 34.21 – –

ta96 t480 normal 69.69 78.23 570.39 792.53 25.79 88.98 63.19 – –

bcn normal 46.67 51.51 200.36 242.1 0.08 0.82 0.74 – –

ta24 t120 high 86.67 92.50 290.36 279.45 77.69 48.21 −29.48 – –

ta48 t240 high 83.54 89.38 462.05 670.61 71.76 165.66 93.90 – –

ta72 t360 high 84.17 91.67 708.97 1128.36 131.77 337.09 205.32 – –

ta96 t480 high 85.52 92.81 1015.62 1620.01 154.56 509.48 354.92 – –

bcn high 61.72 69.35 423.13 541.47 9.65 21.67 12.02 – –

ta24 t120 det 25.00 25.00 32.00 32.00 1.00 1.00 0.00 21 33

ta48 t240 det 41.67 41.67 164.00 164.00 2.00 2.00 0.00 558 120

ta72 t360 det 40.28 40.28 252.00 252.00 2.00 2.00 0.00 961 415

ta96 t480 det 53.13 53.13 370.00 370.00 3.00 3.00 0.00 1171 322

bcn det 22.58 22.58 71.00 72.00 0.00 0.00 0.00 327 270

In the deterministic case, the KPIs are the same since there are enough
teams to perform the given tasks on time, no matter what the objective is. In
the normal and high variability cases, except one, we observe that our approach
maximizing slack outperforms the typical minimization of traveling time. In
the real case of BCN, we only have partial information provided by a ground
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handling company, and the instance does not correspond to the whole operation
at the airport—i.e., it only includes the flights corresponding to the airlines
currently having a contract with the ground handler. This implies a lower arrival
frequency in the instance, causing long idle times between the majority of tasks.
In these cases, our approach is not significantly better than simply minimizing
traveling time, as long as variability remains low. However, as aircraft arrival
frequency and variability increase, we observe a significant difference between
the two objectives. Figure 3 shows how our approach is able to outperform
travel time minimization, reducing the total delay across all turnarounds. This
figure also shows that our approach provides more predictable delays, with a
more contained spread across simulations for all instances.

Fig. 3. Total delay per instance among 10 simulation replications

Table 2 also includes other important key performance indicators (KPIs),
such as percentage of delayed turnarounds and total minutes of delay exceeding
the on time threshold of 15 min. The latter is a big concern for SPs, since failing
to meet this target carries penalties and potential further delays due to air traffic
management. Our approach clearly reduces the total delay over 15 min, for up to
70% over the day of operation, except for one instance under high variability.
Considering each minute of delay incurs a cost, deploying our approach in real-
life scenarios could potentially result in significant cost savings.

6 Conclusion

In this work, we proposed a novel two-step solution approach to the airport
ground service scheduling and team planning problem. With respect to earlier
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approaches, the RCPSP step allows service providers to operate their busy sched-
ules with potentially fewer human resources. Our focus on maximizing minimum
slack in the second step ensures they can do so efficiently. Our simulation proves
the robustness of our approach. Still, tighter links between simulation and the
optimization components could help, in the future, to enhance the performance
of our LNS-based approach, e.g., by generating cuts from the simulation results
for the benefit of the heuristic search component or using simulation within the
CP search strategy.
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Abstract. This paper presents primal heuristics for the computation
of Wasserstein Barycenters of a given set of discrete probability mea-
sures. The computation of a Wasserstein Barycenter is formulated as an
optimization problem over the space of discrete probability measures.
In practice, the barycenter is a discrete probability measure which mini-
mizes the sum of the pairwise Wasserstein distances between the barycen-
ter itself and each input measure. While this problem can be formulated
using Linear Programming techniques, it remains a challenging problem
due to the size of real-life instances. In this paper, we propose simple
but efficient primal heuristics, which exploit the properties of the opti-
mal plan obtained while computing the Wasserstein Distance between a
pair of probability measures. In order to evaluate the proposed primal
heuristics, we have performed extensive computational tests using ran-
dom Gaussian distributions, the MNIST handwritten digit dataset, and
the Fashion MNIST dataset introduced by Zalando. We also used Trans-
lated MNIST, a modification of MNIST which contains original images,
rescaled randomly and translated into a larger image. We compare the
barycenters computed by our heuristics with the exact solutions obtained
with a commercial Linear Programming solver, and with a state-of-the-
art algorithm based on Gaussian convolutions. Our results show that the
proposed heuristics yield in very short run time and an average optimal-
ity gap significantly smaller than 1%.

Keywords: Wasserstein Barycenter · Kantorovich-Wasserstein
distance · Linear programming · Constrained optimization
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Fig. 1. Two Gaussian probability distributions and their Wasserstein Barycenter.

distributions by using the Kantorovich-Wasserstein distance [18,21,28,31,32].
The Wasserstein distance is also known as the Earth Mover Distance [27],
because it can be seen as an analogy of the transportation cost of a given “mass
of earth” distributed among the first distribution to the “required quantities
of earth” distributed among the second distribution. Since the late nineties,
the Wasserstein distance is used by the Computer Vision community as a tool
to compare feature histograms of images [19,23], to implement adaptive color
transfer [26], or to perform point set registration [8]. The same distance, but
re-branded as Word Mover Distance, has proved to be extremely efficient for
text classification, outperforming previous state-of-the-art algorithms [16]. The
Wasserstein distance is used also in deep learning for solving optimization prob-
lems in the framework of Generative Adversarial Network (GAN) [4]. In general,
the main idea for using Wasserstein distances consists of interpreting the prob-
lem data as (discrete) probability measures, and then, to compare such measures
by solving an optimal transport problem. For further application domains, we
refer the reader to [24].

In a more recent trend, the theory of Optimal Transport has been used to
perform statistical inference on the space of probability distributions [1,22]. The
main interest, in this case, is the possibility to take as input a given number of
probability distributions, and then to compute a single distribution that repre-
sents them all. Essentially, the idea is to extend the notion of Fréchet mean to
the space of probability functions using the Wasserstein distance [1]. We recall
that the Fréchet mean generalizes the notion of centroid: for a given number
of points in a metric space, it looks for a single point that minimizes the sum
of distances to all other points given in input. For instance, on the field of the
real numbers endowed with the Euclidean distance, the Fréchet mean gives the
arithmetic means; on the field of the real numbers endowed with the hyperbolic
distance, the Fréchet mean yields the geometric mean.

If we consider the space of (discrete) probability distributions endowed with
a Wasserstein distance, and we look for their Fréchet mean, we get what is a
called a Wasserstein Barycenter. For instance, Fig. 1(a) shows two Gaussian
probability density functions defined on R

2, while Fig. 1(b) shows their corre-
sponding Wasserstein Barycenter. When we deal with discrete probability mea-
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sures, that are probability measures whose support points are defined on a finite
and discrete set of support points, we can compute their Discrete Wasserstein
Barycenter, which is the main subject of this paper. Fig. 2 shows two translated
digits 9 (interpreted as discrete measures) along with their Euclidean mean, a
Convolutional Wasserstein Barycenter (heuristic), and the optimal Wasserstein
Barycenter.

Fig. 2. Comparison among the Euclidean mean, the Convolutional Wasserstein
Barycenters [29], and the optimal Wasserstein Barycenter.

Related Works. The Wasserstein Barycenter problem is introduced in [1], where
the authors give the conditions of existence of a unique barycenter, and pro-
pose a fixed point iterative algorithm to compute the barycenter of a given set
of Gaussian distributions. In the discrete setting, a fast algorithm to compute
Wasserstein Barycenters, based on the Sinkhorn’s algorithm [10], is proposed
in [11]. When the discrete measures are supported on a regular grid (e.g., 2D
images), the Wasserstein Barycenter can be computed by using Gaussian con-
volutions [29]. Other algorithms are reported in [12,20,25,30]. Using a Linear
Programming perspective, most of these algorithms can be interpreted as dual
algorithms, which search for a barycenter without guarantying primal feasibility
(i.e., one or more problem constraints might be violated).

Main Contribution. The main contribution of this paper is to propose primal
heuristics to compute efficiently feasible approximations of discrete Wasserstein
Barycenters of order 2. Our primal heuristics first decompose the problem into
smaller subproblems, and then iteratively interpolates the Wasserstein Barycen-
ter between pairs of discrete measures. The quality of the primal solutions is
evaluated by measuring the optimality gap, using as a baseline the optimal
solutions obtained by solving the Wasserstein Barycenter problem with a com-
mercial Linear Programming solver. Extensive computational tests with differ-
ent datasets confirms that the proposed primal heuristics achieves a very good
tradeoff between average optimality gap and run time.

Outline. This paper is organized as follows. Section 2 reviews the main concepts
of the theory of Optimal Transport used in this paper. The definition of the
Wasserstein Barycenter problem is given in Sect. 3. Section 4 presents our novel
primal heuristics, that are the main contribution of this paper. Section 5 reports
our extensive computational tests.
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2 Background on Optimal Transport

In this section, we review the main notions of the theory of optimal transport
used in this paper, with a specific focus on discrete probability measures. For an
introduction on the theory of optimal transport, we refer the interested reader
to the textbooks [24,28,32].

Definition 1 (Discrete Finite Probability Measure (Chap. 2.1 in [24])).
A discrete measure μ with weights μ1, . . . , μn defined on a finite set of n points
x1, . . . , xn ∈ X is defined as

μ =
n∑

i=1

μiδxi
,

where δx is the Dirac at position x, intuitively a unit of mass concentrated at
location x. If the weights are non-negative and

∑n
i=1 μi = 1, that is, the vector

of weights μi belongs to the simplex Sn, then μ is a discrete finite probability
measure.

Definition 2 (Kantorovich-Rubinstein functional). Given two discrete
finite probability measures μ =

∑n
i=1 μiδxi

and ν =
∑n

j=1 νjδyj
with xi, yj ∈ X,

a cost function c defined on X × X, the Kantorovich-Rubinstein functional is
equivalent to the following Linear Programming problem:

Wc(μ, ν) := min
n∑

i=1

n∑

j=1

c(xi, yj)π(xi, yj) (1)

s.t.
n∑

j=1

π(xi, yj) = μi i = 1, . . . , n (2)

n∑

i=1

π(xi, yj) = νj , j = 1, . . . , n (3)

π(xi, yj) ≥ 0 i = 1, . . . , n, j = 1, . . . , n. (4)

The optimal values of the variables π(xi, yj) yields an optimal transportation
plan, herein denoted by π∗

ij.

Note that (1)–(4) is a standard Koopmans-Hitchcock transportation prob-
lem [15], where the decision variables π(xi, yj) indicates the amount of mass
moving from the support point xi to yj . The problem can be formulated and
solved with Linear Programming, or it can be formulated as an uncapacitated
minimum cost flow problem on a bipartite graph, as in [2,5,7,14].

Definition 3 (Wasserstein distance of order p). When the cost in the
Kantorovich-Rubinstein functional is the pth power of a distance defined over
X, that is, c(xi, yj) = d(xi, yj)p, the Wasserstein distance of order p is defined
as

Wp(μ, ν) := Wdp(μ, ν)min{1, 1
p}. (5)
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The Wasserstein distance Wp is a distance function defined on probability
functions over a space X, that is, it can be shown that Wp satisfies the axioms
of a distance: (i) non-negativity, (ii) symmetry, and (iii) the triangle inequality
(for details, see, e.g., [32]). As a consequence, the Wasserstein distance Wp is
commonly used to compare probability distribution functions.

In the remaining of this paper, we focus on the Wasserstein distance of order
2 and we restrict to the Euclidean distance dp(xi, yj) = ||xi − yj ||22.

Fig. 3. Weighted Wasserstein Barycenter of two measures with (λ1, λ2) = (1 − t, t).

3 Wasserstein Barycenters

Suppose that we are interested in computing the average ρ̂ between two Dirac δ-
measures μ = δx, ν = δy. A possibility is to average over the two weight vectors,
obtaining a new measure supported in x and y, a sum of two δ-measures with
weights equal to 1

2 :

ρ̂ =
1
2
δx +

1
2
δy.

However, since we are averaging over probability distributions defined on a space
X ⊆ R

k, we can, alternatively, define the “average” as a new δ-measure having
a single support point located at the mean location of the two points x and y.
That is, we get a new measure

ρ = δ x+y
2

.

Moreover, if we want to compute a weighted average, with weights λ1, λ2 ≥ 0
satisfying λ1+λ2 = 1, we can compute the measure ρ = δ(λ1 x+λ2 y). If we extend
this basic example to two discrete probability measures defined on a larger set
of support points, as in Fig. 3, we can use the following lemma.

Lemma 1 (Interpolation between two measures (Chap. 7, in [24])).
Given (i) two weights (λ1, λ2) ∈ R+ satisfying λ1 + λ2 = 1, (ii) two discrete
measures μ and ν defined on X:

μ =
n∑

i=1

μiδxi
and ν =

n∑

j=1

νjδyj
,

and (iii) an optimal transportation plan π∗ minimizing the functional W2(μ, ν),
that is, an optimal solution of Problem (1)–(4) with c(xi, yj) = ||xi − yj ||22, the
interpolated average measure ρ between μ and ν is

ρ = f(μ, ν, λ1, λ2) :=
n∑

i=1

n∑

j=1

π∗
ijδ(λ1xi+λ2yj). (6)
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While interpolating between two discrete probability measures defined over
a discrete set (e.g. X is a regular grid), it might happen that one (or more)
interpolated support points do not belong to X, that is, (λ1 xi + λ2 yj) /∈ X. In
this case, in post processing, we have to select a point z ∈ X that minimizes the
discretization error ε = ||(λ1 xi + λ2 yj) − z||2.

The concept of Wasserstein Barycenter is introduced when dealing with a
set of m discrete finite probability measures μ1, . . . , μm, with m ≥ 2, assumed
(without loss of generality) to be defined over the same finite set X.

Definition 4 (Wasserstein Barycenter (Chap. 5 in [28])). The Weighted
Wasserstein Barycenter of m measures μ = (μ1, . . . , μm), with given weights
λ = (λ1, . . . , λm), such that λi ≥ 0 and

∑m
i=1 λi = 1, is defined as

ρ∗ (μ,λ) := arg min
ρ∈Sn

m∑

k=1

λk(W2 (μk, ρ))2. (7)

If μk are discrete probability measures and μik is the i-th element of the measure
μk, if we use the cost c(xi, yj) = ||xi − yj ||22 in the objective function, and if we
fix a set of possible locations yj for the support points of the barycenter ρ, then
problem (7) is equivalent to the following Linear Program [3]:

B(μ,λ) = min
m∑

k=1

λk

⎛

⎝
n∑

i=1

n∑

j=1

||xi − yj ||22 πijk

⎞

⎠ (8)

s.t.
n∑

j=1

πijk = μik i = 1, . . . , n, k = 1, . . . , m (9)

n∑

i=1

πijk = ρj j = 1, . . . , n, k = 1, . . . , m (10)

n∑

j=1

ρj = 1 (11)

πijk ≥ 0, ρj ≥ 0, i, j = 1, . . . , n, k = 1, . . . , m (12)

Constraints (9) and (10) replicates the constraints of Problem (1)–(4) for com-
puting the distance between the barycenter measure ρ and each input measure
μk. The constraint (11) and the non-negative constraints in (12) force ρ to belong
to the simplex Sn. Whenever the support points of the measures ρ and μk are
fixed, we can solve Problem (8)–(12) with any Linear Programming solver.

Herein, we denote by ρ∗ the values of the optimal decision variables ρj which
corresponds to an optimal solution of Problem (8)–(12). We remark that by
solving Problem (6) and by discretizing in post-processing the support points
of ρ, we can recover a nearly optimal solution of Problem (8)–(12) with m = 2
(it is only “nearly optimal” because of possible discretization errors). Indeed, by
solving (6) we obtain the Wasserstein Barycenter between two discrete measures
on a continuous space.
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The LP model (8)–(12) is valid also when the distance W2 (μk, ρ) in (7) is
replaced by the Wasserstein distance of order 1 W1 (μk, ρ). In the latter case,
we get a different variant of the Wasserstein Barycenter which corresponds to a
Fréchet median, instead of a Fréchet mean. Efficient LP models for the Fréchet
median, based on a network flow formulations of the problem, are studied in [6].

4 Primal Heuristics

In this section, we present two types of heuristics to compute primal solutions for
Problem (7). The only constraint that a feasible solution ρ̄ of (7) must satisfies
is to belong to the simplex Sn. The simplest method to obtain a feasible solution
for (7) is to compute the Euclidean mean of the input measures. If we denote by
z1, . . . , zn the union of all the support points of the input measures μ1, . . . , μm,
then we can define the Euclidean mean as a discrete measure as follows:

ξ =
n∑

i=1

ξiδzi
=

n∑

i=1

(
1
n

m∑

k=1

μ̃ik

)
δzi

, (13)

where μ̃ik = μik if zi is a support point of the measure μk, and, μ̃ik = 0 otherwise.
Figure 2 shows that ξ is far from the optimal Wasserstein Barycenter.

4.1 Sequential Heuristics

The Iterative Heuristic (IH). The first heuristic we propose approximates ρ∗ by
a discrete probability measure ρ̄ obtained by iteratively computing the barycen-
ters between pairs of measures. At each iteration, the barycenter between two
measures is computed using the interpolating function (6).

Given the input measures with a fixed order μ1, . . . , μm, our heuristic com-
putes ρ̄IH by solving the following recursion:

θ(k) =
{

μ1 if k = 1,
f

(
μk, θ(k−1), 1

k , k−1
k

)
if k > 1,

(14)

ρ̄IH = θ(m). (15)

We call this heuristic the Iterative Heuristic. When k = 2, it computes the
barycenter θ(2) of the first two input measures μ1 and μ2, using the same weights
λ1 = λ2 = 1

2 . When k = 3, the barycenter θ(3) is computed using the third
measure μ3 with weight λ1 = 1

3 , and the barycenter θ(2) with weight λ2 = 2
3 . At

the very last iteration, the heuristic computes the barycenter between μm with
weight 1

m , and the accumulated barycenter θ(m−1) with weight m−1
m .

Since the order of the input measures has an impact on the final measure
ρ̄IH in the iterative heuristic, we have investigated different criteria for sorting
the input sequence. Let us denote by J1 = {1, . . . , m} and by Jk = Jk−1 \{ik−1}
where the sequence (ik) is a permutation of {1, . . . , m} representing the sorted
sequence of inputs.
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The Iterative Closest Heuristic (CH). The first idea is, when k = 1, to begin
with the measure that is the closest to the Euclidean barycenter ξ. Then, for
every k > 1, we select, among the measures indexed by Jk, the measure μik that
is the closest to θ(k−1). Here, “closest” have to be understood in the sense of
the two measures which minimises a function d defined over two finite discrete
probability measures over X (which is not necessarily a distance). The iterative
heuristic is:

θ(1) = μi1 , where i1 ∈ arg min
j∈J1

d(μj , ξ), (16)

θ(k) = f

(
μik , θ(k−1),

1
k

,
k − 1

k

)
, where ik ∈ arg min

j∈Jk

d(μj , θ
(k−1)), (17)

ρ̄CH = θ(m). (18)

This recursion differs from (14)–(15) because the sequence μ1, . . . , μm is dynam-
ically reordered into μi1 , . . . , μim , by selecting at each iteration k the “closest”
measure to θ(k−1), while ignoring the measures that were already selected at
the previous iterations. Regarding the function d appearing in (16) and (17), we
could use the Wasserstein distance W2. However, since we have to trade solution
accuracy for run time, and since computing the Wasserstein distance is a com-
putationally demanding task with complexity O(n3 log(n)), we decided to use
in our tests the Euclidean distance computed on the weight vectors of the two
discrete distributions, that is, d(μ, ν) =

√∑n
i=1(μi − νi)2.

The Iterative Farthest Heuristic (FH). If we replace in Eqs. (16) and (17) the
arg min operator with an arg max, we get our third heuristic, which is called
the Iterative Farthest Heuristic. The farthest heuristic is defined as:

θ(1) = μi1 , where i1 ∈ arg max
j∈J1

d(μj , ξ), (19)

θ(k) = f

(
μik , θ(k−1),

1
k

,
k − 1

k

)
, where ik ∈ arg max

j∈Jk

d(μj , θ
(k−1)), (20)

ρ̄FH = θ(m). (21)

Remarks. There exists an ordering of the input sequence μ1, . . . , μm such that
the iterative heuristic will generate ρ̄CH (or ρ̄FH). However, the worst-case com-
plexity of the closest and farthest heuristic is higher than the iterative heuristic,
since at each iteration we have to perform a linear scan over O(m) elements.

4.2 Pairwise Heuristic

We present in this section another class of heuristics that can solve in parallel
the computation of pairwise barycenters. Let us first suppose that the number of
input measures μ1, . . . , μm is a power of two, that is, m = 2h. Later, we discuss
in detail the case when 2h < m < 2h+1.
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The Pairwise Heuristic. The main idea of this heuristic is to iteratively divide
the size of the input sequence by two, while computing pairwise barycenters of
consecutive measures. After h iterations, we will get a single discrete probability
measure which is used to approximate the barycenter. We begin with a vector
Θ(0) that is equal to the input sequence of measures. Then, at each iteration
k, we compute the barycenter of every consecutive pair of measures Θ

(k−1)
2i−1 and

Θ
(k−1)
2i with weights equal to 1

2 , and we get a new vector Θ(k) of size qk = m
2k

.
More formally, the pairwise heuristic is defined by the following procedure:

Θ(0) = {μ1, . . . , μm} ,λ(0) = {1, . . . , 1} (22)

Θ(k) =

{
f

(
Θ

(k−1)
2i−1 , Θ

(k−1)
2i ,

λ
(k−1)
2i−1

λ
(k−1)
2i−1 + λ

(k−1)
2i

,
λ
(k−1)
2i

λ
(k−1)
2i−1 + λ

(k−1)
2i

)}
,

i = 1, . . . , qk (23)

λ(k) = {λ
(k−1)
2i−1 + λ

(k−1)
2i }, i = 1, . . . , qk (24)

ρ̄PR = Θ(h) (25)

In (23), each element of the vector Θ(k) can be computed in parallel, since the
barycenter for each consecutive pair is independent from the others.

Dealing with a number of measures 2h < m < 2h+1. When the number of
measures m is not a power of 2, we have to distinguish two cases: either qk is odd
or qk is even, where qk is the number of elements left in in Θ(k). If qk is even,
we can compute the barycenters between consecutive measures, while dividing
the number of elements in Θ(k) by 2. If qk is odd, the last measure is unpaired,
and we have to leave it out. Hence, in order to avoid to underweight the last
measures, at the begging of each iteration k, the heuristic randomly shuffles the
order of the measures stored in Θ(k). For this reason, we call the heuristic (22)–
(25) with the addition of the shuffling effect, the Pairwise Random Heuristic
(PR). The number of iterations to obtain the primal solution ρ̄PR is O(log2 m).

The Pairwise Farthest Heuristic (PF). The pairwise heuristic (22)–(25) relies on
the initial order of the input sequence. Similarly to the closest and the farthest
iterative heuristic, we can change the order of the sequence Θ(k) at run time. We
describe next the idea for the farthest heuristic. Given the vector Θ

(k)
1 , . . . , Θ

(k)
q ,

we want to reorder it into Θ
(k)
i1

, . . . , Θ
(k)
iq

in such a way that (Θ(k)
i1

, Θ
(k)
i2

) is the

farthest pair of measures, (Θ(k)
i3

, Θ
(k)
i4

) is the pair of farthest measures among the
set Θ(k) \{Θ

(k)
i1

, Θ
(k)
i2

} of remaining measures, and so on. More formally, defining
Jk
0 = {1, . . . , qk}, the sequence i1, . . . , iqk is constructed in the following way:

for j = 1, . . . , qk :

⎧
⎪⎪⎨

⎪⎪⎩

(h∗, �∗) ∈ arg max
(h,�)∈(Jk

0 \Jk
j−1)

2,h�=�

d
(
Θ

(k)
h , Θ

(k)
�

)
,

(i2j−1, i2j) = (h∗, �∗),
Jk

j = Jk
j−1 \ {h∗, �∗}.

(26)

Note that we are reordering the input sequence at each iteration by iteratively
computing the pairwise farthest measures. When j = 1, we are taking the two
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farthest measures; when j = 2, we are taking the second pair of pairwise farthest
measures among the remaining, and so on. Indeed, this heuristic has a higher
computational cost per iteration, since we have to sort the measures in Θ(k).
However, the number of iterations k remains in O(log2 m).

4.3 Improved LP Model for Regular Grids

The objective of our computational tests is to measure the gap between the
optimal solution ρ∗ of (7), and the solution obtained with any of the previous
primal heuristics. Unfortunately, if we try to solve directly the LP (8)–(12) for
standard benchmark, we run out of memory already for small values of m. Hence,
we have extended the tripartite model introduced in [5] for computing Wasser-
stein distance of order 2 on regular grids, to the computation of a Wasserstein
Barycenter defined as in (7). Although the improved LP model is not a major
contribution of this paper, it was essential in order to measure the quality of our
primal heuristics in terms of optimality percentage gap with the larger instances.

5 Computational Results

We run extensive computational tests to evaluate the tradeoff between the solu-
tion quality and the run time of the primal heuristics presented in the previous
section, which are herein denoted by Iterative (IH), Farthest (FH), PairRnd
(PR), and PairFar (PF).

The primary objective of our tests is to evaluate the quality of the heuristic
solutions with respect to the optimal Wasserstein Barycenter ρ∗ obtained via
the LP model (8)–(12). As a measure of quality, we use the percentage gap
computed as ρ̄−ρ∗

ρ∗ %, where ρ̄ is the obtained with any of our primal heuristics.
The secondary objective of our test is to measure how the run time scales as a
function of the number of input measures m. Finally, we visualize the barycenters
obtained with the methods, in order to show a qualitative measure of accuracy. In
addition, we compare our primal heuristics with a state-of-the-art algorithm for
computing the Wasserstein Barycenter of 2D images (discrete measures), namely,
the Convolutional Wasserstein Barycenter presented in [29], and implemented in
the Python Optimal Transport (POT) library [13].

Table 1. Solution values of the Wasserstein Barycenter problem for m random Gaus-
sian distributions, with m = 2 and m = 10.

m ρ∗ (μ, λ) �ρ∗ (μ, λ)� B(μ, λ) ρ̄PR

2 52.2 43.3 43.3 43.3

10 801.2 654.0 653.7 656.7
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Datasets. We use four different benchmarks. First, we randomly generate a num-
ber of Gaussian probability distributions in R

2. For this type of measures, we can
compute the optimal barycenters, and, hence, we can estimate the discretization
error. Second, we used the MNIST handwritten digit dataset [17], and the Fash-
ion MNIST dataset [33]. These two datasets are composed of a large number of
grey scale images of resolution 28 × 28 pixels, divided into 10 classes. Finally,
we use a rescaled and translated set of images from the MNIST dataset, for the
sake of comparison with the method proposed in [29].

Implementation Details. We have implemented all our algorithms in Python 3.7.
In order to compute the optimal transport plan between a pair of measures, we
use the emd algorithm of the POT library [13], which implements the network
simplex algorithm proposed in [9]. The LP models are solved using the commer-
cial solver Gurobi v8.1. All the tests are run using a single thread on a Linux
CentOS workstation equipped with an Intel Xeon Gold 6130 CPU, working with
a base frequency of 2.1 Ghz.

5.1 Barycenter of Gaussian Distributions

First, we evaluate the pairwise farthest heuristic using the barycenter of Gaussian
distributions. The Wasserstein Barycenter of Gaussian probability distributions
can be computed with a fix-point iterative algorithm (see Chap. 9 in [24]), and
hence, we can evaluate the impact of discretization of continuous distributions.

Table 1 reports the objective function values of the Wasserstein Barycenter
problems for m random Gaussian distributions. We consider two main cases: first,
the Gaussian distributions are considered as continuous probability distributions,
and, second, the Gaussian are discretized and converted into discrete probability
measures with support points located on a regular grid of dimension 28 × 28.
Table 1 gives for each m, (i) the optimal solution value ρ∗ (μ,λ) of problem
(7) when the Gaussians and the barycenter are continuous distributions; (ii) the
optimal value �ρ∗ (μ,λ)� when the Gaussians are discretized and the support
points of ρ∗ are selected among the grid points; (iii) the optimal solution value
B(μ,λ) of problem (8)–(12) for the discretized Gaussian distributions; and (iv)
the objective function value of the pairwise farthest heuristic attained by ρ̄PF .

The results of Table 1 shows that the discretization of the input measures and
the restrictions for the support points has a strong effect on the overall solution
value. Even though our primal heuristics are sub-optimal, their optimality gaps
are noticeably lower than the error introduced by the discretization.

5.2 MNIST and Fashion MNIST

The MNIST dataset [17] is an entry level dataset for classification and clustering
algorithms, and, recently, it was used as a benchmark for measuring the scalabil-
ity of algorithms that compute Wasserstein Barycenters. The dataset contains
60 000 grey scale images of resolution 28 × 28 pixels, with approximately 6 000
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images representing a given “class” (a digit). The digits are rescaled and cen-
tred in such a way that the center of mass is in the middle of the square grid.
Indeed, we consider every single image as a discrete probability function, by (i)
normalizing each pixel intensity so that the overall sum of pixel intensities is
equal to one, and (ii) by considering that the support points are located on a
square regular grid in R

2 of dimension 28×28. The Fashion-MNIST dataset [33]
is an harder variant of MNIST. It is also constituted of 28 × 28 pixels grey scale
images. Figure 4 shows some of the data in each dataset. In the following tests,
the algorithms are run on a given number of inputs images belonging to the
same class.

Fig. 4. MNIST and Fashion MNIST dataset.

Fig. 5. Comparison of runtime versus average percentage gap. For each method, there
is a marker for each value of m ∈ {10, 20, 50, 100, 200, 500, 1 000, 1 500, 2 000}.

Runtime vs. Gap. Figure 5 shows the aggregate results for the MNIST and
the Fashion MNIST datasets. The plot reports, for each method, on the x-axis
the average run time (averaged over each classes), and on the y-axis the average
percentage gap for computing the barycenter. Each dot in the plot represents the
pair (runtime, gap) averaged over the 10 classes, for a fixed number m of input
measures, with m ∈ {10, 20, 50, 100, 200, 500, 1 000, 1 500, 2 000}. The runtime
for computing the Wasserstein Barycenter for 2 000 inputs reaches the two hours
(last dot of the red line), while the Pairwise Farthest heuristic achieves a solution
with a gap smaller than 1% (last circle marker) in a few hundreds seconds. The
Pairwise Random heuristic (cross marker), is three orders of magnitude faster,
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Fig. 6. Average percentage gaps for the MNIST and Fashion MNIST datasets.

while achieving a percentage gap smaller than 2%. The Euclidean mean ξ is as
fast as inaccurate.

Gap vs. Image Class. Figure 6 shows the percentage gap as a function of image
class, for the two datasets. Clearly, the computation of the barycenter is harder
for digits 1, 4, and 9, and for the class of products 1, 5, and 9, which correspond
respectively to Trousers, Sandals, and Ankle boots. While the Fashion MNIST
dataset was designed to be more difficult than the MNIST dataset, for the com-
putation of the barycenter, and with respect to the average percentage gap, the
Fashion MNIST looks easier than the MNIST, since for most of the methods
(Euclidean mean included) the average gaps are smaller.

Visual Qualitative Impact. Figure 7 shows the Wasserstein Barycenters of each
classes computed by the different methods. Indeed, the Euclidean mean gives a
fuzzy mean of all the images, while the optimal solutions obtained with Gurobi
are the sharpest. The Euclidean means are fuzzy images because the input digits
does not share the exact same support points, and hence the resulting measure
spread the overall mass on the union of all the support points of the input
measures (e.g., digit 1). Some barycenters in the Fashion MNIST dataset are not
relevant (e.g., the dresses), in the sense that it does not represent the cloth. This
shows that when the image classes are highly dissimilar, then their barycenter
is not very representative. However, even though the barycenter is not visually
relevant, it remains the optimal solution of the LP problem (7). Moreover, for
all of our primal heuristics, the approximated barycenter is very similar to the
optimal solution.

5.3 Rescaled and Translated MNIST Images

A modified MNIST dataset, herein called the Translated MNIST, is used in
the literature for stress testing algorithms that compute Wasserstein Barycen-
ters [11]. In this dataset, the input images are randomly rescaled and translated
into a larger grid of dimension h×w = 56×56 pixels [11]. Figure 8 shows a small
sample of translated and rescaled images of the digits 9. We used the Translated
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Fig. 7. Wasserstein Barycenters of 2000 inputs per class for MNIST and Fashion
MNIST. The sharpest images are consistent with the lowest average optimality gaps.

Fig. 8. Random sample of images from Translated MNIST.

MNIST benchmark in order to compare our algorithm with the Convolutional
Wasserstein Barycenters computed using the approach introduced in [29], and
implemented in the POT library [13]. This algorithm depends on a regulariza-
tion term γ which has to be tuned. In our preliminary test, we tried several
different values of this parameter, but unfortunately the method proved to be
numerically unstable. In the following, we report the results obtained by fixing
the value of the parameter to γ(m) = 2m h

28
w
2810−3, since this formula recovers

closely the best values of γ we obtained for a given m, on all datasets. All other
parameters of the convolutional algorithm are left at their default values.

Figures 9 and 10 show that the Translated MNIST dataset is challenging.
The Convolutional Wasserstein Barycenter algorithm is faster than the LP solver
that computes the optimal solution, but it is not competitive with our best
primal heuristics. Notably, the high sensitivity to the regularisation parameter
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Fig. 9. Translated MNIST: comparison of runtime versus average percentage gap. For
each method, there is a marker for each value of m ∈ {10, 15, 20, 50, 75, 100, 150, 200}.

γ, made it to fail on high number of inputs. On the contrary, the Iterative
Heuristic performs very well both in terms of average percentage gap and run
time, since it runs in less than 60 s for the large instance, while achieving an
average percentage gap smaller than 0.7%.

Fig. 10. Translated MNIST: Wasserstein barycenters of 50 inputs per class.

6 Conclusions

In this paper, we have introduced two type of primal heuristics to compute the
Wasserstein barycenter of a given number of probability measures: the itera-
tive heuristics and the pairwise heuristics. Although simple in spirit, our primal
heuristics reach near-optimal solutions in very short time, and generate better
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solutions in terms of average percentage gap than those obtained with the state-
of-the-art Convolutional Wasserstein barycenter algorithm [29]. In particular,
our results show that the pairwise farthest heuristic is the best option for the
MNIST and Fashion MNIST dataset, while the iterative heuristic is the best
option for the Translated MNIST dataset.

As future work, it would be interesting to study the existence of an opti-
mal ordering of the input sequence of measures. However, the question about
the existence of an optimal ordering, and, if one exists, of its characterization,
remains open.
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Abstract. Clustering consists in finding hidden groups from unlabeled
data which are as homogeneous and well-separated as possible. Some con-
texts impose constraints on the clustering solutions such as restrictions
on the size of each cluster, known as cardinality-constrained clustering.
In this work we present an exact approach to solve the Cardinality-
Constrained Euclidean Minimum Sum-of-Squares Clustering Problem.
We take advantage of the structure of the problem to improve several
aspects of previous constraint programming approaches: lower bounds,
domain filtering, and branching. Computational experiments on bench-
mark instances taken from the literature confirm that our approach
improves our solving capability over previously-proposed exact methods
for this problem.

1 Introduction

Data analysis has become an important field of study in an age dominated by
substantial and indiscriminate data collection. One of the most direct ways to
extract information from a set of data observations takes the form of a cluster-
ing procedure wherein data is grouped in homogeneous and/or well separated
bundles based on some measure of similarity/dissimilarity. The partitioned data
offers a more tractable presentation of the unlabeled observations. Depending
on the criterion on which the partitioning is based, different clusters may be
achieved.

Definition 1. Let O = {o1, o2, ..., on} be a set of n data observations in some
space and d : O2 �→ R

+ a dissimilarity measure (not necessarily a distance). A
k-partition (k < n) Δ ∈ A of O into a set of classes C = {Cc}1≤c≤k (with A the
set of all possible k-partitions) is such that :

Cc �= ∅ ∀ 1 ≤ c ≤ k, ∪1≤c≤kCc = O, Cc ∩ Cc′ = ∅ ∀ 1 ≤ c < c′ ≤ k

Let γd : A �→ R
+ be a partitioning criterion based on d. Δ∗ is an optimal

partition if Δ∗ = argminΔ∈A γd(Δ).
c© Springer Nature Switzerland AG 2020
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One popular partitioning criterion is the Euclidean Minimum Sum-of-Squares
Clustering (MSSC) which is widely used to produce high quality, homogeneous,
and well-separated clusters [2]. At its core, it minimizes intra-cluster variance.

Definition 2. Consider observations in R
s. MSSC aims to find the cluster cen-

ters cj ∈ R
s, as well as cluster assignments wij that solve the following pro-

gram [2]

minimize
n∑

i=1

k∑

j=1

wij‖oi − cj‖2

s.t.
k∑

j=1

wij = 1 ∀1 ≤ i ≤ n

wij ∈ {0, 1} ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ k,

where wij = 1 represents the assignment of observation oi to cluster Cj.

MSSC is NP-hard in general dimension [1].
Often, prior information is known about the data and can be introduced to

the clustering process in order to increase performance as well as solution quality.
This is possible through expression of custom constraints on the observations or
the resulting clusters [6,26]. In this paper we propose an exact approach to solve
a specific variant of constrained MSSC: one that involves cardinality constraints
on the resulting clusters (ccMSSC). Strict cardinality constraints in clustering
can be encountered in various fields such as image segmentation [17], distributed
clustering [4], category management in business [5], document clustering [5], and
workgroup composition [15]. Cardinality constraints can also be used to reinforce
the clustering procedure against the presence of outliers as well as groups that
are either too large or too small [23,25]. The ccMSSC is already NP-hard in one
dimension for k ≥ 2 [9]. In principle, existing Constraint Programming (CP)
approaches for MSSC [13,14,16] may be extended in order to handle such a
variant by adding a global cardinality constraint. Our contribution shows that we
can achieve better performance with specialized global constraints with targeted
filtering algorithms as well as an adapted search heuristic, both designed to take
advantage of the special structure of the problem in order to quickly reduce the
search space. Furthermore, in using CP we ensure easy extension of this work to
include independent user-defined constraints.

In the rest of the paper, Sect. 2 defines the CP model used to solve MSSC, to
which constraints can be added for the special case of ccMSSC, among others.
Section 3 is devoted to a review of the literature surrounding MSSC as well
as constrained MSSC. Sections 4 and 5 present our contributions: two filtering
algorithms dedicated to ccMSSC resolution as well as an updated and more
robust version of an existing search heuristic for MSSC. Section 6 summarizes
experimental results as well as comparisons to existing methods. Finally, Sect. 7
provides a brief summary of our work and discusses future research avenues.
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2 Basic CP Model

The problem stated in Definition 2 was modeled in CP by Dao et al [14]:

Variables. Each observation oi is represented as an integer variable xi,D(xi) =
{1, . . . , k} representing the index of the class to which the corresponding obser-
vation belongs. A variable nc,D(nc) = {0, 1, ..., n} is introduced for each cluster
to represent its cardinality.

Objective. Recall MSSC involves finding an optimal set of cluster centers that
minimize the intra-cluster variance, per Definition 2. However there is an equiv-
alent formulation [13] of the objective which circumvents these centers, enabling
us to solve the problem without making them explicit:

minimize
k∑

c=1

1
2

1
|Cc|

∑

o,o′∈Cc

‖o − o′‖2. (1)

Using reified constraints, the objective can be further simplified and rewritten
as follows:

minimize
k∑

c=1

1
nc

n−1∑

i=1

n∑

j=i+1

(xi = c ∧ xj = c) · ‖oi − oj‖2 (2)

The objective expression in Eq. 2 can be constrained to be equal to a real
variable Z,D(Z) = [0,∞[ known as the Within Cluster Sum of Squares (WCSS),
from which the new objective is:

minimize Z (3)

Constraints. A Global Cardinality Constraint (GCC) [21] constrains variables
nc to take on the cardinality of their corresponding cluster:

GCC
(
{nc}1≤c≤k , {1, 2, . . . , k} , {xi}1≤i≤n

)
(4)

This model contains a value symmetry which can hinder performance (cluster
indices are interchangeable). One way to overcome this is to maintain pairwise
integer value precedence on the branching variables as follows [27]:

intValPrecedence
(
{xi}1≤i≤n , c − 1, c

)
∀ 1 < c ≤ k (5)

In essence, each instance of the above constraint ensures that if xi = c then
∃ j < i such that xj = c − 1. A higher level of propagation can theoretically be
achieved by considering each possible pair (as opposed to only adjacent pairs)
of values. However, this comes at a price for virtually no benefit to domain
reductions in practice [20].
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3 Related Work

MSSC is a very well-studied problem and one that is often tackled through
heuristics due to its extremely hard nature. K-means is perhaps the most impor-
tant and widely-used algorithm to solve the unconstrained MSSC problem [28].
It performs a local search to find a partition with minimal within-cluster vari-
ance, iteratively relocating cluster centers and stopping at a local optimum.
Among exact methods, CP Clustering (CPC) presented in [13] is a first suc-
cessful attempt at using CP for MSSC. Improving on the model presented in
Sect. 2, the authors suggest a simple search heuristic as well as a global con-
straint to efficiently navigate the search space looking for a globally optimal
solution to the problem. The authors leverage calculation of lower bounds to fil-
ter the objective variable as well as perform cost-based filtering on the branching
variables. CP Repetitive Branch and Bound (CP RBBA) presented in [16] is a
second attempt at leveraging CP to solve MSSC. Its operation is inspired from
Repetitive Branch and Bound (RBBA) in [10] where MSSC is divided into sub-
problems, each treated as an independent CP model in CP RBBA. This enables
the use of a range of user constraints (which RBBA doesn’t support) as well as
the computation of tighter bounds, leading to substantially better performance
for many instances.

Turning now to constrained variants of MSSC, the K-means heuristic app-
roach has been extended to support various constraints [8,26]. A special case
of ccMSSC, the balanced MSSC, is approached in [12] using a simple Variable
Neighborhood Search. Through constant-time reevaluations of the objective after
each reassignment as well as carefully selected local search neighborhoods, the
authors are able to find the best known values of several large instances. More
relevant to us, the authors of [23] suggest a method for solving the ccMSSC
using convex relaxations of the problem, whose solutions can be “rounded” to
a valid one for the main problem. Their approach distinguishes itself from the
others by providing a posteriori guarantees on the sub-optimality of the solu-
tions obtained. In fact, based on these guarantees, the authors are able to declare
several of the solutions they found as being globally optimal. An exact Column
Generation framework for solving constrained MSSC was proposed in [3], sup-
porting anti-monotone constraints which can be used to restrict the maximum
cardinality of the clusters. Of course the CP methods previously described for
MSSC, CPC and CP RBBA, can solve the ccMSSC by simply adding a GCC
but a contribution of our work is to show that, for such a constraint, a more
integrated approach is much more productive.

4 Filtering Based on Cardinality-Constrained Clustering

In this section we present two filtering algorithms for a global constraint [13]
aimed at accelerating resolution of the model in Sect. 2 for the case of ccMSSC.
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4.1 Basic Filtering Derived from CPC

This first filtering algorithm represents a specialization of CPC for the ccMSSC.
We both accelerate and tighten its bound computation by exploiting the fact
that cluster sizes {nc}1≤c≤k are fixed.

The global constraint in CPC evaluates, at each search tree node, the mini-
mum contribution Z(Cc,m) to the objective Z for each cluster Cc whenever any
m free observations are assigned to it:

Z(Cc,m) =
Z(Cc) · |Cc| +

∑m
i=1 Ri(c)

|Cc| + m
(6)

where Z(Cc) represents the WCSS of the partially filled Cc and (Ri(c))
q
i=1 is a

non-decreasing sequence where each term represents the lowest individual con-
tribution of the i-th free observation to Cc (among q which are unassigned at
the current node) such that:

Ri(c) = r2(i, c) +
m∑

j=1

r3,j(i) (7)

where r2(i, c) is the contribution of the i-th free observation due to the observa-
tions already in Cc and (r3,j(i))

q
j=1 is a non-decreasing sequence where each term

represents half the distance between that same i-th free observation and a nearby
element in U , the set of free observations (itself included, i.e. r3,1(i) = 0∀i). Refer
to Fig. 1 for an illustration.

The authors of CPC make use of dynamic programming in conjunction with
Eq. 6 to compute lower bounds for the general MSSC problem as well as to
perform the necessary filtering on variables [13].

Global Lower Bound for ccMSSC. We observe that at each node of the ccMSSC
resolution, one knows exactly how many observations are to be assigned to each
cluster Cc to complete it to its target cardinality nc. As such, given a partial
assignment, a lower bound on the cost of a full solution can be more simply
computed as follows without resorting to dynamic programming to compute
terms for different values of m:

Z(C) =
k∑

c=1

Z(Cc, nc − |Cc|) =
k∑

c=1

Z(Cc,mc) =
k∑

c=1

Z0(Cc) (8)

where we denote as Z0(Cc) the minimum individual contribution of Cc when it
is completed to its target cardinality nc, using mc observations (mc := nc−|Cc|).
Equation 8 filters the objective Z by tightening its lower bound. It also prunes
branches that cannot result in a solution better than the incumbent.

Cost-based Filtering on Cluster Assignment Variables. It is possible to recycle
computations in order to reevaluate a global lower bound to the problem for
each value-variable assignment in order to enable effective cost-based filtering.
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Fig. 1. Illustration of the computation of Z(Cc, m)

Consider assigning the �-th free observation o′ (w.r.t. the order of the
sequence (Ri(c))

q
i=1) to cluster Cc. Let C′ = {C1, . . . , C

′
c, . . . , Ck} denote the

set of partially filled clusters identical to C except for C ′
c which also contains o′

(C ′
c = Cc ∪ {o′}). It is then possible to write the following:

Z(C′) = Z(C) − Z0(Cc) + Z0(C
′
c) (9)

All the terms in Eq. 9 are available except the last one. Therefore we devise
a simple way to get a lower bound on it:

Z0(C
′
c) =

Z(Cc,mc − 1) · (|Cc| + mc − 1) + �-th observation’s contribution
|Cc| + mc

≥ Z(Cc) · |Cc| +
∑mc−1

i=1 Ri(c) +
∑mc−1

i=1 r3,mc
(i) + r2,c(�) +

∑mc

j=1 r3,j(�)
|Cc| + mc

=
Z(Cc) · |Cc| +

∑mc−1
i=1

[
r2(i, c) +

∑mc

j=1 r3,j(i)
]

+ r2,c(�) +
∑mc

j=1 r3,j(�)

|Cc| + mc

=
(|Cc| + mc − 1) · Z1(Cc) + r2,c(�) +

∑mc

j=1 r3,j(�)
|Cc| + mc

(10)
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The �-th observation’s contribution represents the sum of the following quan-
tities:

– the sum of dissimilarities between it and Cc’s components: r2,c(�);
– half dissimilarities between it and mc − 1 other free observations, which is

greater than or equal to
∑mc

j=1 r3,j(�);
– the other half dissimilarities between it and mc − 1 other free observations,

which is greater than or equal to
∑mc−1

i=1 r3,mc
(i).

with

Z1(Cc) =
Z(Cc) · |Cc| +

∑mc−1
i=1 Ri(c)

|Cc| + mc − 1
where Ri(c) = r2(i, c) +

mc∑

j=1

r3,j(i)

(11)
which is similar to Z0(Cc) with the difference being we only select mc−1 terms of
(Ri(c))

q
i=1 in Z1(Cc) instead of mc. This enables the sequential computation of

both values with the same complexity. Comparing Eq. 9 against the upper bound
of Z for each assignment considered enables filtering of values that cannot result
in a solution better than the incumbent.

Summary. Propagation algorithms are called whenever the domain of some vari-
able xi changes or bounds on Z are tightened. Algorithm 4.1 summarizes the
results of this section.

Algorithm 4.1. propagate method: basic filtering
(Computation of r2 and r3 not shown for brevity and are identical to [13])

1: for c ← 1 .. k do
2: for v ← 0 .. 1 do
3: for i ← 1 .. n where |D(xi)| > 1 do � there are q unassigned observations
4: if mc − v > 0 then
5: R[i] ← r2[c, i] + r3[i, mc − 1]� r3 represents the sum in Eq. 7 directly

6: sort (R[i ∈ 1..n : |D(xi)| > 1]) � sort the contribs of the q free observations

7: Zv(Cc) ← Z(Cc)·|Cc|+
∑mc−v

i=1 R[i]

mc+|Cc|−v
� Z0(Cc) and Z1(Cc)

8: LB(Z) ← ∑k
c=1 Z0(Cc) � filter objective, Eq. 8

9: for c ← 1 .. k do � cost-based filtering
10: LBE ← LB(Z) − Z0(Cc)
11: for � ← 1 .. n where |D(x�)| > 1 do
12: if c ∈ D(x�) then

13: LBP ← (|Cc|+mc−1)·Z1(Cc)+r2[c,�]+r3[�,mc−1]

|Cc|+mc
� Eq. 10

14: if (LBE + LBP ≥ UB(Z)) then
15: D(x�) ← D(x�) \ {c} � filter if incumbent cost exceeded

The modified CPC filtering algorithm specialized for ccMSSC has a time
complexity in O(qn + q2 log q + kq log q + k + kq) = O(qn + q2 log q) (down
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from O(qn + kq2 log q) [13]) and a space complexity in O(n2). The reduction in
asymptotic complexity is less important than the tighter bounds produced which
enable more aggressive domain reduction for the case of ccMSSC compared to the
original version of the constraint. Computing individual r2 and r3 contributions
incrementally has a detrimental effect in practice due to the overhead involved
in pinpointing the changes that have occurred since the last node.

However, this filtering algorithm is limited by each cluster’s individual min-
imum contribution being computed at a local level, regardless of that of other
clusters. This means that it is possible for a given observation to be considered
for the minimum contribution of two distinct clusters, hindering lower bound
quality. We propose a way to correct this in the next section.

4.2 Improved Filtering

A Tighter Global Lower Bound for ccMSSC. In computing the smallest cost of
the solution extended from a partial assignment (i.e., the global lower bound at
a certain node of the search tree), it helps to consider all clusters as a whole
rather than each of them separately while distributing free observations between
them. This eliminates the issue identified with the basic filtering discussed above
and can be achieved by solving a minimum-cost flow (MCF) problem. At each
node of the search tree, where |U | = q observations are unassigned, a network
can be built as follows:

1. start from a bipartite assignment graph where the first set of vertices repre-
sents the q free observations and the second set of vertices represents the k′

(k′ ≤ k) incomplete clusters;
2. supply each of the vertices representing the observations with one unit of flow

using a common source;
3. connect each of the vertices representing the partially filled clusters with arcs

of capacity mc to a common sink;
4. all other arcs have a capacity equal to 1;
5. only arcs connecting observations to clusters bear a cost, equal to Ri(c)/nc.

Such arcs only exist if the assignment is possible.

The MCF solution is integral because the constraints matrix for the cor-
responding linear program is Totally Unimodular and all other coefficients are
integers. Arcs selected by the MCF represent the optimal division of the free
observations between the incomplete clusters. The corresponding cost incurred
by this completion, based on the minimum individual contributions of each free
observation, necessarily leads to a lower bound on the cost of the solution derived
from the current partial assignment:

Z(C) =
k∑

c=1

Z(Cc) · |Cc|
nc

+ MCF∗
cost (12)

This lower bound is greater or equal to the one given by Eq. 8.
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On the surface, the method being discussed here resembles a GCC with
costs [22]. However it is inapplicable here due to changing costs at each node
of the search tree. Indeed, the cost incurred by the assignment of an individual
observation is not known a priori as it changes every time a cluster is modified
(which happens repeatedly in the search tree). Moreover, this continuously vary-
ing nature of the problem prevents us from taking advantage of most incremental
computations involved in maintaining arc consistency in GCC with costs.

A new MCF instance must be solved each time an impactful change occurs
in the search tree. We define such a change as one where an assignment variable
has been fixed or one where a value has been filtered from the domain of an
assignment variable such that it eliminates a flow-carrying arc in the current
MCF solution. Otherwise the latter solution is still valid. If a new MCF solution
must be computed, we use Network Simplex due to its speed and the fact that
implementations of it are readily available.

A More Thorough Cost-Based Filtering. The same way adopting a global view of
the problem facilitates generation of tighter bounds on Z, it is possible to leverage
the flow formulation discussed above to perform a more powerful filtering of the
decision variables. This is done through forcing flow on an arc using augmenting
constraints in the current MCF problem to mandate a particular assignment. If
a bound calculated using an augmenting constraint is higher than the cost of the
incumbent solution, the value corresponding to the assumption made is filtered.

For the sake of efficiency, instead of recomputing a solution to the MCF prob-
lem for every possible augmenting constraint, we start by modifying the one that
has been computed for the global lower bound. Such a modification will result
in an infeasible solution (Fig. 2, left) because one cluster will be overfilled by one
unit (red arc in violation) while another will be missing one unit (transparent
bold arc). The task shifts to reestablishing a feasible and optimal solution from
the situation depicted.

Fig. 2. MCF solution update for cost-based filtering
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One way to fix this is to proceed, in an alternating fashion, to the removal and
the addition of flow in arcs of the network designed to send the excess unit of flow
from the vertex corresponding to the overfilled cluster to the one correspond-
ing to the underfilled cluster. For the solution to be optimal, this alternating
sequence of removals and additions should result in the lowest possible added
cost.

A more straightforward way to look at this operation is through a residual
graph derived from the optimal MCF solution (Fig. 2, right). A flow-carrying arc
in the current solution is flipped in the residual graph and given the opposite cost.
Restoring the optimal solution becomes a shortest path problem between the
vertices in violation. This again is reminiscent of GCC with costs [22]. However
our case is a more targeted one where the resulting residual graph is a simple
bipartite digraph. We use the Bellman-Ford algorithm [7] (due to presence of
negative-cost arcs) to solve the shortest path problem for each assumption. If a
path cannot be found, then the augmented MCF problem is inconsistent and the
value corresponding to the assumption made must be filtered. The cost increase
of the MCF solution after introduction of the augmenting constraint is equal
to the variation due to relocating the free observation between clusters plus the
weight of the shortest path.

Summary. Below is an algorithmic summary of the advanced filtering propaga-
tion. Changes with respect to the basic filtering algorithm are shown in green.

Algorithm 4.2. propagate method: advanced filtering
(Computation of R, r2, and r3 not shown for brevity; identical to [13] and Alg. 4.1)

1: if impactfulChangeHasOccurred() then
2: makeMCFModel()

3: solution ← solveMCFModel() � Network Simplex
4: LB(Z) ← partial WCSS + solution.cost() � filter objective, Eq. 12

5: for c ← 1 .. k do � cost-based filtering
6: for � ← 1 .. n where |D(x�)| > 1 do
7: � Only consider non-redundant assumptions, hence the test below
8: if c ∈ D(x�) ∧ ¬solution.hasFlow(x�, c) then
9: δ ← shortestDistUpdate(solution, x�, c)

10: if δ = ∞ ∨ LB(Z) + δ ≥ UB(Z) then
11: D(x�) ← D(x�) \ {c} � filtrer if bound exceeded or pb inconsistent

The time and space complexities of Algorithm 4.2 are dominated by Network
Simplex when called. Depending on the implementation [19], these vary and can
be linked to arc costs. In practice, complexity analysis around Network Simplex
rarely represents a faithful depiction of real world performance. The function
impactfulChangeHasOccurred() runs in O(n) time. Solving the shortest path
problem using the Bellman-Ford algorithm is done in time O(qk(k+q)) due to the
graph comprising O(qk) arcs and O(q + k) vertices [7]. Overall time complexity
for the cost-based filtering of assignment variables is thus O(q2k2(k + q)).
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5 Search Strategy

The search heuristic discussed in this section is inspired from the one proposed
for CPC [13] with two key improvements.

5.1 Bootstrapping from a Heuristic Solution

To solve MSSC, CPC starts from a feasible, heuristically generated solution
whose cost is used for the first domain reductions (recall that CPC makes use
of a cost-based filtering mechanism). A superior left branch in our search tree,
leading to an initial solution, helps to reduce its size by acting on two separate
aspects of the problem: it provides a tighter initial upper bound and it moves
potentially unsuccessful alternate, future branches near the top of the search
tree to avoid revisiting them repeatedly.

Initial Solution Generation. Instead of starting from a greedy assignment whose
results depend on the order of the observations in O [13] and which produces poor
results when user constraints are present, suppose a feasible good-enough initial
solution τ0 is known in advance (which may or may not be globally optimal). We
can use τ0 as a guide for the first n branching assignments of the CP search to
ensure the first solution found is equal to τ0, thus also ensuring the initial upper
bound is equal to the cost of τ0. Generating this solution can be done using
any number of existing heuristic methods (some of which have been discussed in
Sect. 3) to solve a constrained MSSC.

The cost of τ0 is only part of what helps the CP resolution. The order in
which individual assignments appear has its importance.

Order of Initial Assignments. Authors of [11] demonstrate the substantial
impact of initial data sequencing on branch and bound searches. They show
that solution times can spread over several orders of magnitude for randomly
sampled sequences. It is possible to prune off large sub-trees by ordering the
data of a heuristically generated solution in an careful manner.

Based on this, given an initial solution τ0 with initial cluster centers, we
suggest two variable orderings in the left branch of the search tree which showed
competitive results in our empirical testing:

– Decreasing distances to own cluster’s center : this method orders assignments
in τ0 from the one whose corresponding observation is farthest from the center
of its cluster to the one that is closest. It tries to place potentially disruptive,
hard to assign observations near the root of the search tree, where we have
greater flexibility to recover from a poor choice.

– Decreasing minimal distances to other clusters’ centers: this method is similar
to the previous one with the difference being that the ordering is based on
the minimum distance between each observation and centers of clusters which
are not its own. Therefore, it maximizes the likelihood alternate branches will
fail the closer they are to the top, eliminating bigger sub-trees.
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5.2 Dynamic Tie-Breaking

Once the left branch has been generated, another branching strategy takes over.
The heuristic in CPC is adequate but displays a major weakness. For each unas-
signed xi and c ∈ D(xi), CPC computes ti,c, the WCSS increase on Z if xi = c.
It then branches on the variable given by argmaxi : |D(xi)|>1 minc∈D(xi) ti,c [13].
However, ties may occur whenever a cluster becomes empty upon backtracking:
if every unassigned variable has this cluster in its domain, the minimum will be
zero for all. In that case, the heuristic essentially falls back to a lexicographical
one. To correct this, we design a dynamic tie-breaking strategy.

When presented with a tie as a result of a cluster becoming empty, we branch
in a way that assigns to the empty cluster the observation whose sum-of-squares
between it and other unassigned observations is the highest:

o� = argmax
o∈U

∑

o′∈U

‖o − o′‖2 (13)

Since bound computations in CPC directly involve the sum of squared dis-
tances between observations of each cluster, the choice depicted in Eq. 13 is akin
to a fail-first strategy: we initiate a cluster with the observation which is most
likely to produce worse solutions through elevation of its cluster’s contribution.

6 Experiments

We compare our CP-centered approach to solving ccMSSC to the works discussed
in Sect. 3. In it, we cited CPC in [13] and CP RBBA in [16] as CP frameworks for
solving MSSC. These two approaches can easily be extended to solve ccMSSC
through the introduction of adequate cardinality constraints to their CP models.
We also cited a numerical method for solving ccMSSC with guarantees on the
sub-optimality of the solutions [23] as well as a column generation framework to
solve constrained MSSC [3]. However the latter’s current implementation does
not support solving ccMSSC and would require a significant amount of work to
add the necessary constraints.1

To carry out our experiments we select 19 instances, summarized in Table 1.
All of them are available in the UCI Machine Learning Repository2 except for
HA [18] and RU [24]. Instances from exact methods presented in Sect. 3 all appear
in Table 1 and have been completed with randomly sampled datasets from the
UCI repository with 200 data points or less and with numerical attributes.
Table 1 legend: (1) Instance with balanced classes; (2) Number of classes and/or
target cardinalities decided randomly by us; (3) Multiple versions available, ver-
sion Small used here; (4) Multiple versions available, version with 215 observa-
tions used here.

1 Personal communication from one of the authors.
2 https://archive.ics.uci.edu.

https://archive.ics.uci.edu
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Table 1. Description of selected instances

New algorithms3 were implemented in C++ using IBM ILOG CPLEX Opti-
mization Studio 12.9.0. CPC was reimplemented using this same software frame-
work. CP RBBA’s C++ GECODE implementation is publicly available4 and was
used with slight alterations (to introduce the necessary constraints for ccMSSC).

All algorithms were compiled using Intel C++ Compiler 19.0.3.199 and run
on stock Intel Xeon Gold 6148 processors. Each process was allocated 1 GB of
memory and one core. Maximum runtime was set to 86400 seconds (i.e., 1 day).

6.1 Impact of Dynamic Tie-Breaking

We present in Table 2 the impact of our dynamic tie-breaking strategy on the
performance of CPC. To isolate the effect of the tie-breaking, we do not introduce
any cardinality constraints to the model for this specific test. Dashes represent a
run that has timed out. Due to space constraints, we show results for 6 instances
that faithfully convey the general trend.

Table 2. Impact of dynamic tie-breaking on the performance of CPC

Table 2 shows a clear and generalized improvement brought on by the tie-
breaking strategy, both with respect to search space size as well as run time.
3 Source-code can be retrieved from: https://github.com/mnhaouas/card-const-

MSSC.
4 https://cp4clustering.github.io/.

https://github.com/mnhaouas/card-const-MSSC
https://github.com/mnhaouas/card-const-MSSC
https://cp4clustering.github.io/
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Notably, Breast Tissue can only be solved by applying the dynamic tie-breaking
to the search process.

6.2 Resolution of ccMSSC

We suggest in Sect. 5.1 starting the CP search from known good solutions to the
problem and arranging them in the search tree to improve performance. To this
end, we make use of two heuristic approaches to start ccMSSC resolution: LIMA-
VNS [12] (discussed in Sect. 3) for the balanced instances and Constrained K-
Means Clustering [8] for the others. We use a third-party public implementation5

for the latter and an executable supplied by the authors for the former.
Both heuristic algorithms are seeded using /dev/random and run 10 times

for each instance. The median of the 10 runs is picked as a starting point for the
CP search.

Each instance is solved 8 times: twice through CP RBBA using two distinct
observation orderings recommended by its authors (FF for Farthest First and NN
for Nearest Neighbor) and twice through each of CPC, the basic approach in

Table 3. ccMSSC resolution statistics for all algorithms

5 https://github.com/Behrouz-Babaki/MinSizeKmeans.

https://github.com/Behrouz-Babaki/MinSizeKmeans
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Sect. 4.1, and the advanced approach in Sect. 4.2. For each, we make use of the
two observation orderings suggested in Sect. 5.1 (OC for Decreasing distances to
own cluster’s center and RC for Decreasing minimal distances to remote clusters’
centers). We also make use of our tie-breaking strategy to accelerate all methods
except CP RBBA due to its fundamentally different nature.

Table 3 shows a clear advantage for both variants of the filtering algorithms
proposed and particularly for the advanced, flow-based approach. Eight of the
19 instances could not be solved to optimality. However, on the flip side, the
advanced approach is capable of solving two instances none of the other methods
could solve in the allotted time. The basic approach, while fast, produces lower
quality bounds and loses its advantage to substantially bigger search trees.

Overall, ordering RC yields the best results. However, it is not superior for all
instances shown. For example, OC is best for the non balanced version of Wine
as well as Breast Tissue.

CPC is also able to take advantage of our improved search strategy to show
competitive results compared to CP RBBA, tighter bounds computed by the
latter notwithstanding. Without our improved search, CPC with GCC is only
able to solve HA, RU and SY in 12398, 15462 and 6006 s respectively. This confirms
the important role of a reinforced search strategy for ccMSSC.

6.3 Comparison with IBM CP Optimizer Default Search

In order to frame the performance of our search strategy in a recognizable refer-
ence, we compared it to the default strategy shipped with IBM CP Optimizer.
Solving the 6 instances in Table 2 as ccMSSC problems using the advanced filter-
ing method yielded, on average, search trees 27 times bigger for CP Optimizer
search and run times were increased by a factor of 20.

6.4 Comparison with the Conic Optimization Approach

The semidefinite programming lower bound and the rounding heuristic of [23]
were able to prove the optimality of FI3, SE, PR, and PA in 584, 3823, 2637, and
2000 s, respectively, thus surpassing our best advanced filtering approach except
for FI3 where we show vastly improved results. They are also able to guarantee
a solution to CB and UL with gaps of 0.001% and 3% respectively while our
approach’s best gaps are equal to 17% and 30% respectively for these instances.

However this numerical method does not allow easy expression of user con-
straints (ours can leverage the flexibility of CP to quickly and easily introduce
any extra constraints). Besides, our CP method is designed as a global optimiza-
tion method which ends its execution only when all possibilities in the search
space have been exhausted. The method of [23] is not conceived towards obtain-
ing the global optimum of the problem shall the upper bound produced by the
rounding method not coincide with the lower bound obtained via the semidefinite
programming relaxation.
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7 Conclusion

We presented in this paper a CP approach for exact resolution of the cardinality-
constrained MSSC problem. We suggest both a bolstered search strategy as well
as a global constraint with two distinct filtering schemes: a basic one and a
more advanced one. Experiments on widely used data sets confirm our approach
outperforms previously available exact methods for solving ccMSSC.

Our work can be improved upon by identifying ways that can extend our
global constraint developed for ccMSSC to support soft cardinality constraints
where deviations from target cardinalities could be allowed if it meant obtain-
ing a lower cost solution. Moreover, as seen previously, performance is heavily
dependent on bound quality. Therefore, looking for more innovative ways to fully
exploit the structure of ccMSSC for even tighter bounds could be another avenue
for future research.

Acknowledgements. Financial support from a Natural Sciences and Engineering
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Abstract. In this article we introduce a Minimum Cycle Partition
Problem with Length Requirements (CPLR). This generalization of the
Travelling Salesman Problem (TSP) originates from routing Unmanned
Aerial Vehicles (UAVs). Apart from nonnegative edge weights, CPLR
has an individual critical weight value associated with each vertex. A
cycle partition, i.e., a vertex disjoint cycle cover, is regarded as a feasible
solution if the length of each cycle, which is the sum of the weights of
its edges, is not greater than the critical weight of each of its vertices.
The goal is to find a feasible partition, which minimizes the number of
cycles. In this article, a heuristic algorithm is presented together with a
Mixed Integer Programming (MIP) formulation of CPLR. We further-
more introduce a conflict graph, whose cliques yield valid constraints
for the MIP model. Finally, we report on computational experiments
conducted on TSPLIB-based test instances.

Keywords: Travelling salesman problem · Combinatorial
optimization · Mixed integer linear programming · Conflict graph ·
Unmanned Aerial Vehicles

1 Motivation

UAVs are widely used to execute surveillance tasks, since they can gather infor-
mation about areas from long distance and high altitude. In particular, they
are able to visit areas that are not accessible in any other way. Applications
include monitoring critical infrastructure such as gas pipelines [11], fighting
forest-fires [15], and analyzing widespread animal populations [4]. The Minimum
Cycle Partition Problem with Length Requirements (CPLR) originates from a
routing problem regarding these UAVs.

Given a set of areas V = {v1, . . . , vn}, the goal is to determine the minimum
number of UAVs necessary to visit all areas, while their individual flying routes
have to fulfill three conditions. First, the UAVs must fly tours, which means that
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a UAV starts and ends its tour at the same area and visits all other areas assigned
to it exactly once. We assume that a UAV continues on the same tour after
finishing it without any delay. Second, each area is visited by exactly one UAV
and therefore contained in exactly one tour. This is because possible interferences
resulting from the intersection of tours shall be avoided. Third, each area vi ∈ V
is associated with a critical weight Ti ∈ R≥0, which is an upper bound on the
duration for which it can be left unattended, and a scanning time Si ∈ R≥0,
which is the amount of time a UAV needs to scan it. Thus, after scanning vi for
Si time units, the UAV has to return and rescan it within Ti time units.

2 Problem Formulation

For CPLR we are given a complete graph G = (V,E), where V = {v1, . . . , vn}
denotes the set of vertices and E = {{vi, vj} ∈ V × V | 1 ≤ i < j ≤ n} the set
of edges. For each vertex vi ∈ V we are given a critical weight Ti ∈ R≥0 and a
scanning time Si ∈ R≥0 with Si ≤ Ti. The weight of edge eij := {vi, vj} ∈ E

is given by L̂ij ∈ R≥0 and the edge weights respect the triangle inequality, i.e.,
L̂ij ≤ L̂ik + L̂kj holds for all vi, vj , vk ∈ V .

In the following, we call a nonempty cycle Ck proper if |Ck| ≥ 2 and singleton
if |Ck| = 1. Further, Ck is called feasible if τk ≤ Ti holds for each vi ∈ Ck, where

τk :=
∑

eij∈Ck

L̂ij +
∑

vi∈Ck

Si

denotes the length of Ck. In other words, the length of the cycle is not allowed to
be greater than the critical weight of each of its vertices. A solution for CPLR is
a cycle partition C = {C1, . . . , Cm} of V , i.e., a set of cycles such that each vertex
is contained in exactly one of them. It is feasible if each of its cycles is feasible.
The goal of CPLR is to determine a feasible cycle partition C of minimum size
w.r.t. the cardinality |C|.

In the following, we assume w.l.o.g. that Si = 0 for all vi ∈ V , since the
scanning times can be included in the edge weights: Let Lij := L̂ij +

Si+Sj

2 for
each eij ∈ E and consider some cycle Ck. If it is proper, all vertices have degree
two and we have

τk =
∑

eij∈Ck

L̂ij +
∑

vi∈Ck

Si =
∑

eij∈Ck

(L̂ij +
Si + Sj

2
) =

∑

eij∈Ck

Lij .

Note that the new edge weights still respect the triangle inequality. Thus, in
the following we denote an instance of CPLR as a four-tuple (V,E, T, L) with
T ∈ R

|V |
≥0 and L ∈ R

|E|
≥0 .

Lemma 1. CPLR is NP-hard.

Proof. Consider an instance (V,E,L) of the Travelling Salesman Problem (TSP)
and some B ≥ 0. Setting Ti := B as critical weight for each vi ∈ V induces an
instance of CPLR. An optimal solution for the CPLR instance consists of exactly
one tour if and only if there exists a Hamiltonian cycle with length not greater
than B. Thus, since the decision variant of the TSP is known to be NP-complete
[9], it follows that CPLR is NP-hard.
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3 Related Work

Optimization problems in which the vertices of a graph have to be visited under
various timing or length constraints are a field of active research. However, to
the best of our knowledge there exists no previous work regarding CPLR.

Drucker et al. [6] consider the Cyclic Routing of UAVs (CR-UAV) problem,
which is a generalization of CPLR. Here, cyclic routes have to be determined,
which have to start and end at the same vertex and can visit vertices multiple
times. Additionally, waiting is possible and the routes are allowed to intersect.
The goal is to determine the minimum number of UAVs that is necessary to
jointly satisfy the critical weight requirements of all vertices. Ho and Ouak-
nine [12] showed that the corresponding decision problem is PSPACE-complete
even in the case of a single UAV. A solution approach based on solving satis-
fiability problems is presented in [8]. However, the proposed method does not
guarantee an optimal solution. In [7] on the other hand, a reduction to model-
checking is suggested and an algorithm, which runs in parallel a bounded model
checker to detect feasible solutions and an explicit-state search attempting to
prove their absence, is presented. Further, Asghar et al. [2] introduce a factor
O(log ρ) approximation algorithm, where ρ is the ratio of maximum and min-
imum critical weight. It is based on solving Minimum Cycle Cover Problems
(MCCPs) on a partition of the vertices.

Given a graph G = (V,E) and λ ∈ R≥0, MCCP is to determine the minimum
number of cycles covering the vertex set, such that the length of each cycle is
not greater than λ. In contrast to CPLR, the cycles do not have to be disjoint.
Yu et al. [20] present a 32

7 -approximation algorithm for MCCP.
Besides TSP, there are several other well-known combinatorial optimization

problems, which are closely related to CPLR. One is the Vehicle Routing Problem
with Time Windows (VRPTW), see Solomon and Desrosiers [18] or Desrochers
et al. [5] for surveys on the problem. The goal is to determine a collection of
routes for a fleet of homogeneous vehicles. The routes have to start and end at a
common depot v0 and to jointly visit a given set of customers {v1, . . . , vn}. Each
customer vi ∈ V has some service requirement qi which has to be satisfied within
a time window [li, ui] by exactly one of the vehicles. The goal is to minimize
the number of necessary vehicles while the accumulated requirements of the
customers are not allowed to exceed the capacity of their assigned vehicle.

4 Conflict Graph for CPLR

In this section, we determine vertex pairs, that cannot be contained in a common
feasible cycle. Therefore, we introduce the notion of a conflict graph for CPLR
and show that its cliques give rise to a set of valid constraints. Conflict graphs
are used in many research areas including for example the conflict analysis in
MIP, which has its origin in solving satisfiability problems [1,13,19,21].

Definition 1. Let (V,E, T, L) be an instance of CPLR with underlying graph
G = (V,E). Its conflict graph Gc = (V,Ec) consists of the vertex set V and the
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edge set Ec, where there is an edge ec
ij ∈ Ec between vi ∈ V and vj ∈ V if no

feasible cycle containing both vertices exists.

Due to the triangle inequality, the edge set of the conflict graph is equal to the
set of edges in G, that cannot be contained in any feasible cycle.

Lemma 2. Let (V,E, T, L) be an instance of CPLR and let eij ∈ E. There
exists a feasible cycle containing eij if and only if 2 · Lij ≤ min{Ti, Tj}.
Proof. Let Ck be a feasible cycle containing eij ∈ E. This implies that Ck

contains vi ∈ V and vj ∈ V , too. Further, Ck can be split into eij and a simple
path pij between these two vertices. Thus, since Ck is feasible and because the
edges respect the triangle inequality, we have

2 · Lij ≤ �(pij) + Lij =
∑

eij∈Ck

Lij = τk ≤ min
vk∈Ck

Tk ≤ min{Ti, Tj}.

Conversely, if 2 ·Lij ≤ min{Ti, Tj} the cycle induced by vi, vj and eij is feasible.

Corollary 1. Let (V,E, T, L) be an instance of CPLR. The edge set of the con-
flict graph is given by Ec = {ec

ij ∈ V × V | 2 · Lij > min{Ti, Tj}}.
Using Gc, we can derive a lower bound on the size of feasible cycle partitions.

Lemma 3. Let (V,E, T, L) be a CPLR instance and let U ⊆ V be a clique of
size |U | = m in Gc. For each feasible cycle partition C we have |C| ≥ m.

Proof. Let C be a cycle partition with |C| < m. By the pigeonhole principle there
exists a cycle containing at least two vertices from U . Thus, this cycle cannot
be feasible and therefore C is not feasible.

Corollary 2. Let (V,E, T, L) be a CPLR instance and let U ⊆ V be a maximum
clique in Gc. Then |U | is a lower bound on the optimal solution value of CPLR.

5 Cheapest Insertion Heuristic for CPLR

Next, we present a Cheapest Insertion Heuristic for CPLR, which is inspired by
the corresponding heuristic for TSP [17].

In each iteration k a feasible cycle Ck is determined. First, some vertex vx =
argminvi∈V Ti with minimum critical weight is selected. If vx is the only vertex
left in G or the length of a shortest proper cycle containing it, which consists
of vx and a vertex vy being closest to it w.r.t. the edge weights, exceeds Tx, vx

is removed as singleton Ck from G and we continue with the construction of
the next cycle. Otherwise, we proceed with a shortest feasible cycle as described
above. Next, we determine two vertices va and vb, which are adjacent in Ck, and
a vertex vc ∈ V \ Ck such that the insertion of vc between va and vb yields a
minimum increase in the cycle length. If the augmented cycle length does not
exceed Tx, we insert vc into Ck and search for more suitable triples of vertices.
Otherwise, we remove Ck from G and continue with the construction of the next
cycle. The algorithm terminates when all vertices have been inserted into a cycle.
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Lemma 4. Cheapest Insertion for CPLR has no constant approximation ratio.

Proof. Consider the CPLR instance based on the complete graph G = (V,E)
with |V | = n = 2k2 vertices. For each vi ∈ {v1, . . . , vk} =: V1 let Ti = 2k and
for each vi ∈ V \ V1 =: V2 let Ti = 2k2 − k. Additionally, let Lij = 2 for each
edge in eij ∈ V1 × V1 and let Lij = 1 otherwise. An optimal solution consists of
two cycles: One cycle containing all nodes in V1 and the other cycle containing
all nodes in V2. However, the heuristic produces a solution with k cycles, each
featuring one node from V1 and 2k−1 nodes from V2. Hence, Cheapest Insertion
for CPLR does not admit a constant approximation ratio.

In contrast, the corresponding TSP heuristic has an approximation factor of 2.

6 A Mixed Integer Programming Model for CPLR

In this section we present a mixed integer programming (MIP) model for CPLR.
In the following, we consider the induced directed graph G = (V,A), whose arc
set features two directed arcs aij , aji ∈ A for each edge eij ∈ E. Further, both
arcs are assigned Lij as their weights.

For each potential proper feasible cycle Ck with k ∈ {1, . . . , �n
2 �} := K we

introduce a binary variable uk indicating whether it contains any vertices or not
and a nonnegative continuous variable τk representing its length. Additionally,
for each vertex vi ∈ V we introduce a binary variable yi indicating whether
the vertex forms a singleton or not. Further, for each vertex vi ∈ V and each
potential proper cycle Ck we introduce a binary variable zk

i indicating whether
vi ∈ Ck or not and analogously for each arc aij ∈ A a binary variable xk

ij

indicating whether aij ∈ Ck or not. The model states as

min
∑

vi∈V

yi +
∑

k∈K
uk (1)

s.t. yi +
∑

k∈K
zk
i = 1 ∀vi ∈ V (2)

zk
i ≤ uk ∀vi ∈ V,∀k ∈ K (3)

∑

aij∈δ+(vi)

xk
ij = zk

i ∀vi ∈ V,∀k ∈ K (4)

∑

aji∈δ−(vi)

xk
ji = zk

i ∀vi ∈ V,∀k ∈ K (5)

∑

aij∈A

Lijx
k
ij = τk ∀k ∈ K (6)

Ti + (Mk − Ti)(1 − zk
i ) ≥ τk ∀vi ∈ V,∀k ∈ K (7)

uk, yi, z
k
i , xk

ij ∈ {0, 1}
τk ∈ R≥0
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The objective function (1) aims at minimizing the number of cycles. Constraints
(2) ensure that each vertex either forms a singleton or is assigned to a proper
cycle. If vertex vi is assigned to the proper cycle Ck, then (3) indicates that it is
nonempty and vi has to have an outgoing and an ingoing arc due to constraints
(4) and (5), respectively. Next, constraints (6) keep track of the cycle lengths,
while (7) ensures that the critical weights of the vertices are respected. Here,
Mk denotes the k-th biggest critical weight among all vertices.

The formulation ensures that each vertex is contained in exactly one cycle and
that all critical weight requirements are satisfied. However, it can happen that
the vertices assigned to some proper cycle Ck form subtours. Hence, we extend
the model adapting the idea of Miller, Tucker and Zemlin [14] (MTZ) to prohibit
subtours. Here, each vertex is assigned a positive weight while the starting vertex
has value zero. For each pair of consecutive vertices in a tour the weights must
increase except for the last and the starting vertex. A straightforward use for
CPLR is not possible, since we cannot fix starting vertices for the proper cycles
in advance. Thus, for each k ∈ K and each vertex vi ∈ V we introduce additional
binary variables sk

i ∈ {0, 1} indicating whether vi is the starting vertex of cycle
Ck or not. Weight variables wk

i ∈ Z≥0 together with constraints
∑

vj∈V

sk
j = uk ∀k ∈ K (8)

sk
i ≤ zk

i ∀vi ∈ V,∀k ∈ K (9)
∑

vj∈V

zk
j − uk ≥ wk

i ∀vi ∈ V,∀k ∈ K (10)

wk
i − wk

j + |V | · (xk
ij − sk

j ) ≤ |V | − 1 ∀aij ∈ A,∀k ∈ K
sk

i ∈ {0, 1} ∀vi ∈ V,∀k ∈ K
wk

i ∈ Z≥0 ∀vi ∈ V,∀k ∈ K. (11)

model the MTZ idea for CPLR. Constraints (8) determine a starting vertex
for each cycle, which has to be part of it due to constraint (9). Furthermore,
the weights necessary for each proper cycle are bounded by (10). Eventually,
constraints (11) are the Miller-Tucker-Zemlin constraints as explained above.
Thus, the MIP formulation consisting of (1)–(7) and (8)–(11) models CPLR.

6.1 Symmetry Breaking Constraints

The solution space of the MIP model can be highly symmetric. Given a feasible
solution, all permutations of the proper cycle indices respecting constraints (7)
are feasible. Assume w.l.o.g. that the vertices are ordered non-increasingly by
their critical weights. Then constraints

zk
i ≤

i−1∑

j=1

zk−1
j ∀vi ∈ V,∀k ∈ K \ {1} (12)

ensure that only the permutation with the proper cycles sorted by the minimum
index of their vertices is feasible.
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6.2 Conflict Graph Clique Constraints

Let (V,E, T, L) be a CPLR instance and let Gc = (V,Ec) be the corresponding
conflict graph. Further, let U denote the set of all cliques in Gc and let U ∈ U .
From the proof of Lemma 3 we derive that no two vertices from U can be
contained in a common feasible cycle. Hence,

∑

vi∈U

zk
i ≤ 1 ∀U ∈ U ,∀k ∈ K (13)

are valid constraints for CPLR. In addition, by Corollary 2 the cardinality of a
maximum clique is a lower bound on the number of singletons and proper cycles
contained in an optimal solution. Hence, another valid constraint is

∑

vi∈V

yi +
∑

k∈K
uk ≥ max

U∈U
|U |. (14)

7 Computational Experiments

For our computational experiments, we generated two sets of test instances based
on the graphs of the 28 instances from the TSPLIB [16], which have 100 or less
vertices. Let τ∗ denote the length of an optimal tour for the corresponding TSP
instance. For the CPLR instances, we assigned each vertex a random integer
from the interval [ τ

∗
6 , τ∗

2 ] and from the interval [ τ
∗
8 , τ∗

4 ] as critical weight in the
first and second test set, respectively. All instances can be downloaded from
https://cloud.zib.de/s/CPLR data/download.

In our MIP formulations, we excluded all edges, which cannot be contained
in feasible cycles by Lemma 2. Beside the symmetry breaking constraints (12),
we computed all maximal cliques of the conflict graph using the algorithm of
Cazals and Karande [3] and added the corresponding constraints (13) as well
as the lower bound (14). Additionally, we used the solution computed by the
Cheapest Insertion Heuristic as initial incumbent and derived a tighter bound
on the necessary size of K in all cases. All mentioned calculations were done in
less than 0.1 seconds for each instance.

We ran our experiments on a cluster of machines composed of two Intel
Xeon Gold 5122 running at 3.60GHz, which provide 8 cores and 96GB of RAM
in total. All algorithms were implemented in Python and we used the corre-
sponding interface of Gurobi v9.0 [10] to solve our MIP models with a time limit
of 24 h.

The computational results can be found in Table 1. Here, the number of
removed edges for each instance is given. Furthermore, the value of the solution
found by the Cheapest Insertion Heuristic is shown as UB (heur) and the lower
bound from the size of a maximum clique in the conflict graph is LB (max-
c). Finally, the upper and the lower bound at the end of the solving process,
which was either reached when the problem was solved or due to the time limit
(indicated by TL), are shown.

https://cloud.zib.de/s/CPLR_data/download
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Table 1. Computational results for the instances of the two test sets.

Instance Critical weights from: [ τ∗
6 , τ∗

2 ] Critical weights from: [ τ∗
8 , τ∗

4 ]

Removed

edges

UB

(heur)

LB

(max-c)

UB LB Time

(sec)

Removed

edges

UB

(heur)

LB

(max-c)

UB LB Time

(sec)

burma14 40 5 4 5 5 3 67 8 6 6 6 1

ulysses16 39 5 4 4 4 1 65 6 5 6 6 1

gr17 61 5 4 5 5 1 96 8 7 8 8 1

gr21 86 6 3 5 5 9 141 9 6 8 8 11

ulysses22 66 5 4 5 5 5 127 7 6 7 7 9

gr24 53 6 4 5 5 89 172 8 7 7 7 1

fri26 105 6 5 6 6 291 188 8 6 8 8 21

bayg29 103 6 4 5 5 5758 238 10 7 8 8 178

bays29 111 7 5 6 6 2661 235 10 6 8 8 206

dantzig42 243 7 4 7 5 TL 478 11 7 9 8 TL

swiss42 160 8 4 7 5 TL 451 10 7 9 8 TL

att48 299 8 5 6 5 TL 605 10 6 9 7 TL

gr48 197 8 4 7 5 TL 536 10 5 10 7 TL

hk48 282 7 4 7 5 TL 548 10 6 10 7 TL

eil51 127 7 3 7 5 TL 521 9 5 9 7 TL

berlin52 264 8 4 8 5 TL 515 12 6 10 8 TL

brazil58 227 6 3 6 4 TL 649 10 5 8 7 TL

st70 217 7 3 7 4 TL 1073 10 5 10 6 TL

eil76 184 7 3 7 5 TL 775 12 5 12 6 TL

pr76 208 8 3 8 4 TL 925 11 6 10 6 TL

gr96 406 8 3 8 4 TL 1587 10 5 10 6 TL

rat99 586 8 3 8 5 TL 1673 11 5 11 6 TL

kroA100 803 8 3 8 4 TL 2141 11 5 11 6 TL

kroB100 643 8 3 8 4 TL 1979 10 5 10 6 TL

kroC100 856 7 3 7 4 TL 2183 12 6 11 7 TL

kroD100 635 8 3 8 5 TL 1962 11 6 11 6 TL

kroE100 678 8 3 8 4 TL 2092 12 5 12 6 TL

rd100 445 8 4 8 4 TL 1817 11 5 11 6 TL

The results show that each of the 18 instances with up to 29 vertices was
solved in at most 96min. All other instances with 42 and more nodes could not
be solved within 24 h. Furthermore, the Cheapest Insertion Heuristic produced
solutions with at most two extra cycles w.r.t. the upper bounds in UB. Addi-
tionally, the first test set seems to be harder than the second one considering
the solved instances. One reason may be that due to the larger critical weights
there are more degrees of freedom for determining feasible cycles.

8 Conclusion and Outlook

In this article we introduced CPLR, developed a heuristic, and formulated a
MIP model, which features clique constraints derived from a conflict graph. We
were able to solve test instances of small and medium size.

There are several directions of future research that seem worth to be inves-
tigated. From a theoretical point of view, it remains an open question whether
CPLR is contained in APX or not. Additionally, we are currently developing a
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MIP model based on a variant of subtour elimination constraints. Furthermore,
extending the conflict graph concept to hypergraphs seems promising. Finally, it
appears natural to study the generalization of CPLR where the triangle inequal-
ity condition on the edge weights is dropped.
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Abstract. School timetabling is a complex problem in combinatorial
optimization, requiring the best possible assignment of course sections
to teachers, timeslots, and classrooms. There exist standard techniques
for generating a school timetable, especially in cohort-based programs
where students take the same set of required courses, along with several
electives. However, in small interdisciplinary institutions where there are
only one or two sections of each course, and there is much diversity in
course preferences among individual students, it is very difficult to create
an optimal timetable that enables each student to take their desired set
of courses while satisfying all of the required constraints.

In this paper, we present a two-part school timetabling algorithm that
was applied to generate the optimal Master Timetable for a Canadian
all-girls high school, enrolling students in 100% of their core courses and
94% of their most desired electives. We conclude the paper by explaining
how this algorithm, combining graph coloring with integer linear pro-
gramming, can benefit other institutions that need to consider student
course preferences in their timetabling.

Keywords: School timetabling · Post Enrollment Course Timetabling
Problem · Integer Programming · Graph coloring · Optimization

1 Introduction

Every educational institution needs to produce a Master Timetable, listing the
complete set of offered courses, along with the timeslot and classroom for each
section of that course. This timetable allows teachers to know what courses they
are teaching, and enables students to enroll in a subset of these courses.

As many school administrators know, creating a timetable is incredibly diffi-
cult, requiring the careful balance of numerous requirements (hard constraints)
and preferences (soft constraints). When timetables are constructed by hand,
the process is often 10% mathematics and 90% politics [4], leading to errors,
inefficiencies, and resentment among teachers and students.

To address these concerns, scholars in Operations Research have analyzed the
School Timetabling Problem (STP) ever since the 1960s [10]. Various heuristics
have been applied to create timetables for schools in Argentina, Brazil, Denmark,
Germany, Greece, Italy, Netherlands, South Africa, and Vietnam [23].
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In the most basic version of the STP, the objective is to assign courses
to teachers, timeslots, and classrooms, subject to the following constraints: a
teacher cannot teach two courses in the same timeslot, no classroom can be used
by two courses simultaneously, and each teacher has a set of unavailable teaching
timeslots. This problem is NP-complete [7].

Real-life timetabling problems involve additional constraints that must be
satisfied [24], further increasing the complexity of the STP. These variations
include event constraints (e.g. Course X must be scheduled before Course Y), and
resource constraints (e.g. scheduling only one lab-based course in any timeslot).
At large universities, there are additional constraints that must be considered,
such as taking into account the time students need to walk from one end of the
campus to the other.

Over the past five decades, numerous algorithms have been applied to gener-
ate optimal (or nearly-optimal) timetables for STP benchmark instances. These
techniques include constraint programming [6], evolutionary algorithms [26], sim-
ulated annealing [18], and tabu search [20]. The complete list of methods appears
in a comprehensive survey paper published earlier this decade [23].

Given how hard the STP is, a common practice is to focus only on teacher
requirements and preferences, ignoring the wishes of the students (i.e., the indi-
viduals most affected by the timetable). This assumption is made because many
school programs are cohort-based [15], where students are divided into fixed
groups and take the same sequence of courses to complete their education. At
many high schools and universities, the timetabling is done via homogeneous
sectioning [4], where students are grouped according to their interests or majors:
for example, students in the Arts stream versus students in the Sciences stream.

There are obvious deficiencies to this practice, most notably in small interdis-
ciplinary institutions where cohorts do not exist, and each student takes a unique
set of courses from all departments. Many such institutions are private schools,
where their revenue comes exclusively from student tuition. If students cannot
enroll in their desired courses, they (or their parents) will go to a different school
that will accommodate their preferences. Thus, these schools are under tremen-
dous pressure to create a timetable that satisfies teachers and students. This is
the motivation for the Post-Enrollment Course Timetabling Problem (PECTP),
an active area of research in the field of automated timetabling.

This paper proceeds as follows. In Sect. 2 and 3, we define the PECTP and
provide a brief literature review on related work that incorporates student course
preferences in timetabling. In Sect. 4 and 5, we describe our solution to the
PECTP, which is a two-part algorithm that generates an optimal coloring of a
weighted conflict graph for single-section courses, after which an integer linear
program is solved to generate the final timetable. In Sect. 6, we generate the
optimal Master Timetable for an interdisciplinary all-girls high school in Canada,
and demonstrate the speed and quality of our two-part algorithm. And in Sects. 7
and 8, we explore the strengths and limitations of our timetabling algorithm to
large universities, and conclude the paper with some ideas and directions for
future research.
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2 Problem Definition

The standard School Timetabling Problem (STP) is an example of a constraint
satisfaction problem, which asks whether there exists a feasible assignment of
course sections to teachers and timeslots. To avoid confusion, we will rename
timeslots as blocks, so that T will denote the set of teachers and B will denote
the set of blocks during which the courses will take place.

The more general version of the STP is a combinatorial optimization problem,
which asks for the best assignment satisfying all of the hard constraints while
maximizing the preferences of the teachers being assigned their desired courses
in specific blocks.

Both versions of the STP can be set up as a 0–1 integer linear program (ILP),
in which each unknown variable Xt,c,b represents whether teacher t is assigned
to a section of course c in block b. The total number of variables is n = |T ||C||B|,
where |T | is the number of teachers, |C| is the number of offered courses, and
|B| is the number of blocks.

Let Dt,c,b be the desirability of teacher t assigned to course c in block b. This
coefficient will be a function of teacher t’s ability and willingness to teach course
c, combined with their preference for teaching that course in block b.

Then, subject to all of the hard constraints, we want to maximize
∑

t∈T

∑

c∈C

∑

b∈B

Dt,c,b · Xt,c,b.

The Post-Enrollment Course Timetabling Problem (PECTP) was introduced
just over a decade ago [17], as part of the second International Timetabling
Competition. In the PECTP, points are awarded for enrolling students in any
section of a desired course. For example, if there are ten different sections of
Calculus 101, a student wishing to take Calculus 101 needs to be assigned to
exactly one of these ten sections.

In addition to all of the constraints in the STP (e.g. no teacher can be
assigned to two courses in overlapping blocks), the PECTP involves additional
student-related hard constraints, such as ensuring that no student is enrolled in
multiple sections of the same course.

Let Ys,c,b be the binary decision variable representing whether student s is
assigned to a section of course c in block b, and let Ps,c,b be the preference of
student s being enrolled in course c in block b.

Then, subject to all of the hard constraints, we want to maximize
∑

t∈T

∑

c∈C

∑

b∈B

Dt,c,b · Xt,c,b +
∑

s∈S

∑

c∈C

∑

b∈B

Ps,c,b · Ys,c,b.

This is the most basic formulation of the STP and PECTP. There are exten-
sions that we will not consider in this paper, such as adding a penalty function
whenever student s has a class in the last block of the day or has a class in
three consecutive blocks. For a full discussion and treatment of these PECTP
extensions, we refer the reader to [19].
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3 Related Work

The PECTP was introduced in 2007 as one of the tracks of the International
Timetabling Competition (ITC). Over the past twelve years, different teams of
Operations Research scholars have developed algorithms to tackle hard instances
of the PECTP. The majority of these approaches rely on multi-stage heuristics.

Fonseca et al. [8] propose a three-stage hybrid solver involving graph algo-
rithms, metaheuristics, and “matheuristics”. Nothegger et al. [22] present an
iterative three-step ant colony optimization algorithm. One of the finalists [5]
for ITC 2007 employs a multiphased heuristic solver based on a stochastic local
search, whereas the winning team [3] applies a two-stage local search approach
combining tabu search and simulated annealing.

Heuristics are advantageous for they easily compute within the strict time
limit imposed by the ITC, yet they cannot guarantee the optimality of the output
solution. The latter is a particular weakness of local search approaches, which
lack the flexibility of moving in the space of feasible solutions and get stuck in
local minima despite the large size of the search neighborhood [3].

Recent papers have made much progress. Cambazard et al. [3] find provably-
optimal solutions to three of the PECTP benchmark instances, by augment-
ing simulated annealing with a large neighborhood search. Kristiansen et al.
[15] embed exact repair methods within an adaptive large neighborhood search
(ALNS) to find a feasible solution first, which they optimize by solving a mixed
integer program (MIP). Their ALNS finds timetables within 1% of the optimal
solution, outperforming Gurobi, a state-of-the-art MIP solver, on large instances.

Parallel to the noteworthy progress in heuristic approaches, the last decade
was marked by a significant advance in general-purpose MIP solvers. An obvious
advantage of Integer Programming is its ability to issue certificates of optimal-
ity [14]. Since it is NP-complete to solve a 0–1 Integer Program [13], it has
become common practice to decompose IP models into smaller sub-problems
[27]. Van Den Broek et al. [29] use the lexicographical optimization of four ILP
sub-problems to solve a real-world instance of PECTP at a Dutch university, and
Kristiansen et al. [14] devise a two-step MIP algorithm for Danish high schools.

The problem considered in this paper is most similar to the formulation
of the generalized PECTP presented by Mendez-Diaz et al. [19] and Carter
[4], which were inspired by university timetabling problems in Argentina and
Canada, respectively. In these two papers, the researchers first assign course
sections to blocks, and then assign students to course sections. On the next
page, we present our mathematical model that explains how we can perform
both assignments simultaneously.

We make two contributions in this paper. First, we present a complete algo-
rithm that guarantees fast optimal PECTP solutions for small educational insti-
tutions. Secondly, we provide a graph-theoretic framework to demonstrate how
courses can be “bundled” together and treated as a single super-course, which
significantly reduces the time required to generate a nearly-optimal timetable.
This makes our algorithm scalable for larger schools and universities.
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4 Mathematical Model

Let T be the set of teachers, S be the set of students, C be the set of courses,
and B be the set of blocks.

For each t ∈ T, c ∈ C, b ∈ B, let Xt,c,b be the binary variable that equals 1
if teacher t is assigned to course c in block b, and is 0 otherwise. Similarly, for
each s ∈ S, c ∈ C, b ∈ B, let Ys,c,b be the binary variable that equals 1 if student
s is enrolled in course c in block b, and is 0 otherwise.

Earlier we defined the desirability coefficient Dt,c,b and the preference coeffi-
cient Ps,c,b. Our Integer Linear Program (ILP) has the following objective func-
tion: ∑

t∈T

∑

c∈C

∑

b∈B

Dt,c,b · Xt,c,b +
∑

s∈S

∑

c∈C

∑

b∈B

Ps,c,b · Ys,c,b.

We now present our hard constraints.
No teacher can be assigned to two different classes in the same block, and at

most one section of any course is offered in any given block.
∑

c∈C

Xt,c,b ≤ 1 ∀ t ∈ T, b ∈ B (1)

∑

t∈T

Xt,c,b ≤ 1 ∀ c ∈ C, b ∈ B (2)

Define Oc to be the number of offered sections of course c.
∑

b∈B

∑

t∈T

Xt,c,b = Oc ∀ c ∈ C (3)

No student can be enrolled in more than one course in the same block, nor
can any student be enrolled in two sections of the same course.

∑

c∈C

Ys,c,b ≤ 1 ∀ s ∈ S, b ∈ B (4)

∑

b∈B

Ys,c,b ≤ 1 ∀ s ∈ S, c ∈ C (5)

No student can be enrolled in a course during a block in which that course
is not offered by any teacher.

Ys,c,b ≤
∑

t∈T

Xt,c,b ∀ s ∈ S, c ∈ C, b ∈ B (6)

Let R be the number of available rooms in the school.
∑

t∈T

∑

c∈C

Xt,c,b ≤ R ∀ b ∈ B (7)
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Let M be the maximum size of a class.
∑

s∈S

Ys,c,b ≤ M ∀ c ∈ C, b ∈ B (8)

Our ILP maximizes the objective function subject to these eight constraints.
This model has a total of (|T | + |S|) · |C||B| binary decision variables. In

practice, the large majority of these variables Xt,c,b and Ys,c,b will be pre-set
to 0, since teachers are qualified to only teach a small subset of the offered
courses, and likewise, students will only want to be enrolled in a small subset
of these courses. By fixing these zero variables, we can solve the PECTP using
the above ILP, guaranteeing an optimal timetable whenever |T |, |S|, and |C|
are of reasonable size. But when these values are large, like at most universities,
simplifications are required to ensure tractability.

There are two natural ways to simplify the problem: assume there are cliques
of teachers or assume there are cohorts of students. In the former, the Master
Timetable is generated one clique at a time: first assign course sections to the
math teachers and fix those assignments, then do the same with the science
teachers, and so on. In the latter, the students are pre-divided into fixed groups,
and each group is assigned to the same set of course sections.

Unfortunately, these two approaches fail when there are many teachers who
teach different subjects (e.g. Ms. X teaches Grade 12 Math and Grade 7 French),
and when cohorts do not exist and students wish to take a unique combination of
courses from two different faculties (e.g. an undergraduate attempting a double-
major in Chemistry and Sociology).

Our approach is not to bundle teachers or bundle students, but rather to
bundle courses. We now present a graph-theoretic approach that efficiently par-
titions one-section courses into discrete bundles that enable us to significantly
reduce the running time of the ILP.

5 Bundling One-Section Courses

C is the set of courses. Some of these courses will be sought by many students,
and so multiple sections of the course must be offered in the timetable. The rest
are specialized courses that will attract only a small number of students, and
so only a single section is required. Let C = CM ∪ CO, where CM is the set of
multiple-section courses and CO is the set of one-section courses.

While there is much flexibility to timetabling courses in CM , courses in CO

can only be assigned to a single block, and so we must ensure that the courses
in CO avoid any type of scheduling conflict: by teacher, by room, or by student.

Define G to be the weighted conflict graph, where CO is the set of vertices.
For each pair x, y ∈ CO, we calculate the edge weight w(x, y) as follows:

(a) Add a weight of wt if the same teacher is required to teach both x and y.
(b) Add a weight of wr if the same room must be used for both x and y.
(c) Add a weight of ws for each student who wishes to take both x and y.
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The weights wt, wr, ws can vary, though in practice it is most logical to set
high values of wt and wr and low values for ws (e.g. wt = 100, wr = 100, ws = 1).

For each integer i ≥ 0, define Gi to be the graph with vertex set CO whose
edge set only consists of edges with weight greater than i. By definition, there
exists a sufficiently large integer i for which Gi is an empty graph with no edges.

For each Gi, the chromatic number χ(Gi) is the fewest number of colors
needed to color the vertices of Gi so that no two vertices joined by an edge share
the same color.

If χ(G0) is at most |B|, the number of blocks in the timetable, then all of the
one-section courses assigned the same color can be “bundled” together in the
same block. This guarantees that every student will be able to take all of their
desired one-section courses, since no pair will be offered at the same time. These
bundles can be thought of as the “supernodes” of the conflict graph [2].

If χ(G0) > |B|, then by definition, it is impossible to create a timetable that
enables every student to get into all of their desired courses. In this case, we find
the smallest index t for which χ(Gt) ≤ |B|, and once again, the color classes
correspond to our bundles for the one-section courses.

Although it is NP-complete to determine the chromatic number of a general
graph [13], for many large graphs we can compute χ(G) using state-of-the-art
algorithms based on local search [12]. We can also compute χ(G) by solving the
corresponding 0–1 ILP, and adding the constraint that no color class can contain
more than R courses, where R is the number of rooms available for teaching.

This motivates our solution to the PECTP, where we use graph coloring to
reduce the number of variables in our ILP.

(i) Construct the weighted conflict graph G, where the vertex set is CO.
(ii) Starting with i = 0, calculate χ(Gi). If χ(Gi) ≤ |B|, then stop. Otherwise

increment i by 1 until we find some index i = t for which χ(Gi) ≤ |B|.
(iii) Find a |B|-coloring of χ(Gi) where the number of one-section courses in

each color class is at most the number of available rooms. Let Xj be the set
of courses in CO assigned to color j.

(iv) Redefine C to equal CM ∪X1∪X2∪ . . .∪X|B|, where there are |CM | courses
that have multiple sections, and |B| bundles, each of which is a one-section
“super-course” with multiple teachers that can be assigned to any number
of students. We then solve the previously-defined ILP, using this new set C.

For example, suppose that there are |C| = 120 courses to be timetabled into
|B| = 10 blocks, where |CM | = 20 and |CO| = 100. The above algorithm bundles
the 100 one-section courses into |B| = 10 bundles. Thus, instead of considering
|C| = 120 courses in our ILP, we now only need to consider |CM | + |B| = 30
courses. By reducing the number of variables by a factor of four, we create
a massive reduction in the total running time while only sacrificing a small
percentage in quality, as measured by the value of our objective function.

Our approach is particularly useful in small interdisciplinary institutions that
offer numerous one-section courses desired by different sets of students. We now
provide an example of such an educational institution, and apply our algorithm
to create the optimal Master Timetable for this all-girls independent school.
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6 Application

St. Margaret’s School (SMS) is located in Victoria, the capital city of the Cana-
dian province of British Columbia. Since 1908, educators at SMS have dedi-
cated themselves to inspiring girls who want to change the world and helping
them become women who do change the world. The school has an enrollment of
approximately 375 students, starting from Junior Kindergarten (age 3 and 4).

As mentioned in their online handbook [28], SMS prides itself on their small-
scale learning environment, which provides teachers with the flexibility to per-
sonalize learning for each student and challenge each girl to realize her own
potential. In order to achieve this goal, the school spends several months each
year constructing the Master Timetable, by hand, with several dozen iterations.

The biggest challenge is timetabling the courses for the Grade 11 and 12
students, i.e., the juniors and seniors at the high school. Unlike students in the
lower grades who take mostly required (core) courses, there are numerous elective
courses in the final two years, and each student wants to enroll in a different
combination of courses from the eighty offerings that are available, including
Advanced Placement Calculus, Law Studies, Studio Art, and Creative Writing.

The |S| = 58 students going into Grade 11 and 12 completed a survey indi-
cating their course choices for the following year. The administrators used these
responses to decide to offer |C| = 39 of the 80 possible courses. To ensure a
maximum class size of 18, the administrators assigned two sections to |CM | = 9
courses requested by more than 18 students, and one section for the remaining
|CO| = 30 courses that were requested by at most 18 students.

There are five periods in each day, and a total of |B| = 9 blocks. The nine
blocks are fixed in the schedule, as follows:

Monday Tuesday Wednesday Thursday Friday

Block 1 Block 2 Assembly Block 1 Block 2

Block 7 Block 8 Block 8 Block 9 Block 3

Block 4 Block 3 Block 6 Block 5 Block 7

Block 5 Block 9 Block 4 Block 6 Block 8

Block 6 Block 7 Block 5 Block 4 Block 9

Of the |C| = 39 courses, 18 are “short” courses offered in blocks 1/2/3 with
two weekly classes, and the other 21 are “long” courses in blocks 4/5/6/7/8/9
with three weekly classes. Each student is required to take a set of core courses,
with the rest being freely-chosen electives. Most (but not all) of the core courses
are long, and most (but not all) of the elective courses are short.

Each student s updated their survey with their most desired courses for
2019–2020, listing up to 3 short courses and up to 6 long courses. This selection
included the core courses of English and Career/Leadership, as well as an addi-
tional English Language Learner course for non-native English speakers. Finally,
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Grade 11 students were required to take a Physical Education course. Thus, all
Grade 11s had at most 4 core courses, while Grade 12s students had at most 3.

The |S| = 58 students requested a total of 447 courses, which is fewer than the
maximum total of |S|×|B| = 58×9 = 522. This occurred because some students
had no preference for certain electives (e.g. they viewed every Social Science
course as interchangeable), and also because many of the students qualified to
take eight courses with their ninth one being a “self-study period”.

For each block b, we set the preference coefficient Ps,c,b as follows:

(i) 10 points if c is a core course
(ii) 3 points if c is an elective course and s is a Grade 12 student
(iii) 1 point if c is an elective course and s is a Grade 11 student

The SMS leadership team pre-assigned each of the 9 + 9 + 30 = 48 course
sections to one of the |T | = 19 teachers in the Senior School, based on exten-
sive consultations with each teacher. With teacher preferences pre-assigned, this
reduces our ILP’s objective function to maximizing student preferences. Mathe-
matically this is equivalent to setting the desirability coefficient Dt,c,b to equal 0
if teacher t could be assigned to course c in some block b, and −1000 otherwise.

In addition to the eight constraints we mentioned previously, we also included
extra constraints requested by the school. For example, some of the teachers
work part-time, and are only available to teach on Mondays, Wednesdays, and
Thursdays. This forced all of their teaching blocks to be 1, 4, 5, or 6. Two courses
are “two-block combination courses” (e.g. Pre-Calculus 11 and Pre-Calculus 12),
and these double courses must be offered in Block 1 and Block 8.

Our optimization program, written in Python, requires two Excel sheets as
input: one called “Student Data” and one called “Course Data”. These two
documents encapsulate all of the information described above. For the actual
optimization, we use COIN-OR Branch and Cut (CBC), an open-source MIP
solver, with the Google OR-Tools linear solver wrapper [9]. The final model has
a total of (|T | + |S|) · |C||B| = 77 × 39 × 9 = 27027 binary decision variables.

Our ILP generates the optimal timetable in 201.6 s on a stand-alone laptop,
specifically a 8 GB Lenovo running Windows 10 with a 2.1 GHz processor. The
student author has created a repository containing all of the Python code used in
this paper, as well as the input files of the student course choices. The repository
can be found at https://github.com/ifabrisarabellapark/Timetabling.

Here are the summary statistics.

Grade 12 Grade 11

Total students 25 33
Requested core courses 64 103
Enrolled core courses 64 103

Requested elective courses 129 151
Enrolled elective courses 122 141

Every teacher is assigned to their desired set of courses, with at most 18
students in any class. Our timetable enrolls students in 167 out of 167 core

https://github.com/ifabrisarabellapark/Timetabling
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courses (100%) and 263 out of 280 elective courses (94%), corresponding to an
objective value of 167 × 10 + 122 × 3 + 141 × 1 = 2177.

Of the |S| = 58 students, 41 receive all of their desired courses, while the
remaining 17 receive all courses except for one elective. This provably-optimal
Master Timetable, presented below, was accepted by St. Margaret’s School for
the 2019–2020 academic year.

Optimal timetable for St. Margaret’s School

Block 1 Block 2 Block 3

Culinary Arts 11A (DR) Culinary Arts 11B (DR) Comp. Prog. 11 (WF)
Core French Intro 11 (AS) Life Education 11A (DH) Life Education 11B (DH)
Philosophy 12 (JP) Entrepreneurship 11 (CJ) Spoken Language 11 (MC)
Economics 12 (SW) Drama 11/12 (NC) Japanese Intro 11 (MH)
Life Connections 12A (KD) Life Connections 12B (KD) Composition 12 (NP)
EarthSci 11/12 Combo (CJ) Law Studies 12 (SW) Spanish 12 (BP)
Pre-Calc 11/12 Combo (CT) Social Justice 12 (JP) Comp. Cultures 12 (SW)

Block 4 Block 5 Block 6

Chemistry 11A (SB) Art Studio 11 (LH) Physics 11 (CT)
Active Living 11 (JS) Fitness 11 (JS) Life Sciences 11 (DR)
AP Studio Art 12 (LH) Japanese 12 (MH) Pre-Calculus 11A (WF)
English Studies 12A (NP) Pre-Calculus 12A (CT) English Studies 12B (NP)
AP Calculus 12 (CT) Chemistry 12A (SB)

Block 7 Block 8 Block 9

Media 11 (NP) Pre-Calculus 11B (WF) Chemistry 11B (SB)
Creative Writing 11A (CN) Creative Writing 11B (NP) Core French 12 (AS)
Anatomy/Physio 12 (SB) Chemistry 12B (SB) Human Geog 12 (LZ)
Pre-Calculus 12B (CT) EarthSci 11/12 Combo (CJ) Univ/Grad Prep 12 (KD)
Physics 12 (WF) Pre-Calc 11/12 Combo (CT)

In the above timetable, the teacher’s initials appear in parentheses, and
multiple-section courses are indicated - e.g. Chemistry 11A and Chemistry 11B.

Our optimal Master Timetable allocates seven Grade 11 and 12 courses in
blocks 1/2/3, and four or five Grade 11 and 12 courses in blocks 4/5/6/7/8/9,
resulting in a symmetric well-balanced schedule. Once these course assignments
were confirmed, it was easy to manually schedule the Grade 9 and 10 courses
since these students take the same set of required courses, taught by the same
set of teachers.

The final Senior School timetable was delivered in May 2019, months before
the start of the 2019–2020 academic year. The early deliverable enabled the
school guidance counsellor to have one-on-one meetings with each of the stu-
dents before they left for the summer. The seventeen Grade 11 and 12 students
who were not given one of their most-desired elective courses worked with the
guidance counsellor to select an alternative course in the same subject area.

Given that our ILP solved to optimality in just over three minutes, there was
no need to apply the time-reducing “course-bundling algorithm” we developed
prior to receiving the final data sets from the school. However, we now provide
this information to illustrate the effectiveness of this approach, especially when
we have more than |T | = 19 teachers, |S| = 58 students, and |C| = 39 courses.



Optimizing Student Course Preferences in School Timetabling 293

We create our conflict graph G on our |CO| = 30 one-section courses. For
each pair of courses c1 and c2, we assign a weight of 100 if these two courses
must be taught by the same teacher or if they must take place in the same
classroom. For each student s desiring both c1 and c2, we assign a weight of
min(Ps,c1,b, Ps,c2,b). This conflict graph G has 30 vertices and 94 edges.

G is a two-component graph, since the set of “short” courses that must be
scheduled in blocks 1/2/3 is disjoint from the set of “long” courses that must be
scheduled in blocks 4/5/6/7/8/9. We determine that χ(G) = 5 + 7 = 12 using
GrinPy, an open source program that quickly calculates graph invariants [11].

Let G1 be the same graph as G, except we only include edges with weight
more than 1. Then G1 becomes a graph with 30 vertices and 69 edges, with
χ(G1) = 3 + 6 = 9. Following the algorithm described in Sect. 5, we find a
3-coloring of the short courses and a 6-coloring of the long courses.

We then take each pair of one-section courses in the same bundle (e.g. c1 and
c2), determine the assigned teachers for those two courses (e.g. t1 and t2) and
add the following constraint to our ILP:

Xt1,c1,b = Xt2,c2,b ∀ b ∈ B (9)

This constraint ensures that courses c1 and c2 are assigned to the same block,
i.e., bundled together. Our modified ILP has only |CM | + 3 + 6 = 18 courses
instead of 39, since have cleverly combined one-section courses to virtually elim-
inate student conflicts.

This ILP is rapidly solved, requiring only 5.3 s of computation time. The
generated timetable enrolls students in 167 out of 167 core courses (100%) and
246 out of 280 elective courses (88%), corresponding to an objective value of
167 × 10 + 118 × 3 + 128 × 1 = 2152.

Of course, the quality of the final timetable is dependent on the initial 3-
coloring of the short courses and 6-coloring of the long courses. Thus, we run a
simulation of 1000 trials, using the NetworkX package for graph coloring [21]. We
use the built-in greedy color method to randomly order the vertices and assign
the first available color to each vertex. (If the greedy coloring of G1 requires more
than χ(G1) colors, then we re-run the method until a valid coloring is attained.)

The average objective value of our 1000 trials is 2155.03, with a minimum
of 2141 and a maximum of 2170. The average running time is 4.17 s, with a
minimum of 1.4 s and a maximum of 8.9 s. Thus, for this data set, our graph-
theoretic bundling algorithm reduces the total running time by 98% (from 201.6 s
to an average of 4.17 s) while reducing the solution quality by just 1% (from an
objective value of 2177 to an average of 2155.03).

In all 1000 trials, the generated timetable enrolls students in 167 out of 167
core courses (100%), and on average, in 249 out of 280 elective courses (89%).
The latter result is lower than our rate of 94% in our optimal ILP, yet it is only
moderately lower given the substantial time improvement.

Our bundling technique reduced the total running time by 98% at virtually no
cost to the objective function. However, as we will see in the following section, our
graph-theoretic bundling technique does not guarantee nearly-optimal solutions
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in all cases. We now explore the general applicability of our approach, and discuss
the strengths and limitations of our methods for much more complex instances
of School Timetabling.

7 Strengths and Limitations

At many large university campuses, each faculty is its own distinct entity, with
their own buildings, classrooms, courses, professors, and registered students.
Because there is little to no overlap between faculties (e.g. between the Business
School and the Medical School), we can think of the university-wide timetabling
process as solving hundreds of discrete timetabling problems, and combining
these non-overlapping solutions to produce a single Master Timetable.

For example, the largest university in our province has over 50,000 under-
graduate students, with nearly 20% in the Faculty of Science. Within the Faculty
of Science are twelve different Departments, including botany, mathematics, and
zoology. Each department chair is responsible for their own timetabling, and no
effort is made to coordinate timetabling to serve the small minority of students
who have multiple specializations, e.g. a mathematics and zoology double major.

This is why our two-step timetabling approach holds much promise, even for
large institutions. Each department chair is responsible for timetabling a number
of third-year and fourth-year courses, many of which will be single-section courses
appealing only to the students pursuing a major offered by that department.
If the department has thousands of registered students, generating an optimal
timetable might be computationally intractable, but a nearly-optimal timetable
could be generated using our graph-theoretic course bundling approach.

At St. Margaret’s School, most of the teachers have their own dedicated
classroom, which meant that we could ignore constraints such as “there are
only 3 science labs available, and so we cannot schedule 4 lab-based courses
in the same block”. Fortunately, there exist ways we can ensure feasible room
assignments in situations like this, by analyzing a specific partial transversal
polytope [16], to complement our two-step timetabling algorithm.

We can also consider the effect of relaxing or eliminating the pre-allocation
of teachers to courses. If each teacher has a ranked preference list of courses
they wish to teach, and each teacher is qualified to teach dozens of courses, then
this will significantly increase the running time of our algorithm. For St. Mar-
garet’s School, all courses were pre-assigned to a teacher. For a high school whose
timetable we are creating now, only student preferences are to be considered in
the optimization. Thus, all teacher assignments are made after the courses are
assigned to blocks, and we will optimally assign teachers to courses to ensure
everyone has a feasible schedule maximizing the total “preference score”.

Despite the promising results we have found thus far, there are limitations of
course bundling. As an extreme example, consider the following scenario where
we wish to schedule 5 one-section courses {a, b, c, d, e} and 2 two-section courses
{x, y} into a 3-block timetable. Suppose that the students wish to take the
following set of courses, in any order:
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Student Course 1 Course 2 Course 3

S1 a b e

S2 c d e

S3 a b x

S4 c d x

S5 a b y

S6 c d y

S7 a y e

S8 d y e

S9 b x e

S10 c x e

It is straightforward to show there is only one optimal timetable that enables
all ten students to enroll in a desired course in each of the three blocks.

Block 1 = {a, d, x}
Block 2 = {b, c, y}
Block 3 = {x, y, e}

For example, student S10 can register for c, x, e in Blocks 2, 1, 3, respectively.
Let CO = {a, b, c, d, e} be our single-section courses. We construct the conflict

graph G by adding a weight of 1 to each pair of courses desired by a student.
Below is the graph G with all edges of non-zero weight (Fig. 1).

Clearly, χ(G) = 3, and there are two possible colorings up to isomorphism:
the color classes are either [{a, d}, {b, c}, {e}] or [{a, c}, {b, d}, {e}]. In the former,
we bundle a and d into Block 1 and bundle b and c into Block 2. This immediately
generates the optimal solution shown on the previous page.

In the latter, we bundle a and c into Block 1 and bundle b and d into Block
2. In this case, it is impossible to create a 3-block timetable that allows every
student to get into all of their desired courses. The best timetable, shown below,
necessitates a conflict for students S8 and S10.

Block 1 = {a, c, x}
Block 2 = {b, d, y}
Block 3 = {x, y, e}

Fig. 1. The conflict graph of the single-section courses
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Thus, our course bundling algorithm has a 50% chance of creating a timetable
that reduces by 20% the number of students getting into all of their desired
courses. While this is an extreme example, this result highlights the importance
of not relying on a single coloring, since an unlucky assignment of colors to
one-section courses may generate a sub-optimal Master Timetable.

However, if we run our course bundling algorithm n times on this instance,
and accept the best result of all n iterations, then we have a probability of 1− 1

2n

of generating the optimal timetable.
In general, if there are |B| blocks in the timetable, at least one |B|-coloring

of the conflict graph must be identical to the optimal solution. By running our
course bundling algorithm many times and selecting the best result, we increase
the probability of producing the best possible timetable.

For St. Margaret’s School, course bundling reduced the computation time by
an average of 98% while having a minimal reduction on the quality of the gen-
erated timetable. We are optimistic that this technique can be applied to larger
timetabling instances, to produce solutions to previously-intractable timetabling
instances that are close to optimal.

8 Conclusion

In this paper, we presented an ILP-based model to optimally solve a real-
life instance of the Post-Enrollment Course Timetabling Problem. Our Master
Timetable for St. Margaret’s School (SMS) enrolled Grade 11 and 12 students
into 100% of their core courses and 94% of their most desired elective courses.

We also developed a “pre-processing phase” that partitioned one-section
courses into discrete bundles using graph coloring. On the SMS data set, this
approach decreased the total running time by 98%, with only a 1% reduction in
the value of our objective function.

The collaboration with St. Margaret’s School was a tremendous success, and
our Master Timetable has been well-received by the school leadership, and more
importantly, from their teachers and students.

During the past month, we have been approached by three different inde-
pendent high schools in British Columbia, who have learned about the new
“happiness-maximizing timetable” at St. Margaret’s School and have requested
our services to design their 2020–2021 Master Timetable. We are looking for-
ward to these collaborations and learning ways to further improve the speed and
quality of our timetabling algorithm on larger data sets.

There are many directions for future research. One natural direction is to test
the performance of our two-step timetabling algorithm on benchmark instances
maintained by scholars in Operations Research. Specifically, we propose testing
our algorithm on XHSTT-2011, a High School Timetabling Archive containing 21
real-life instances from eight countries [25]. This archive includes an evaluator
that checks syntax consistency and returns a cost value proportional to the
number of violated constraints. Thus, the online evaluator allows us to compare
the quality of our solution against multiple published algorithms.
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To generate the best possible results, we will need to apply more sophis-
ticated ways to color the nodes of the conflict graph beyond our approach of
randomly ordering the vertices and assigning the first available color to each
vertex. There exist systematic and deterministic approaches on how to color
the nodes, including ordering the vertices by decreasing degree. The Python
NetworkX package contains various algorithms, including one based on “degree
saturation” [1], where the vertex order is determined dynamically, based on the
number of colors that cannot be used because of conflicts with previously colored
vertices.

Another direction is to commercialize a cloud-based application to allow
school administrators to run our timetabling algorithm on their own machines.
The current product requires the client to email us two Excel documents from
which our Python program generates the optimal Master Timetable in the form
of another Excel document. We are excited by the prospect of developing a
cloud-based solution that can be deployed by the administration of high schools
and universities from around the world, especially those institutions who wish
to create timetables that optimize for student course preferences.
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Abstract. M. Sellmann showed that CP-based Lagrangian relaxation
gave good results but the interactions between the filtering algorithms
and the Lagrangian multipliers were quite difficult to understand. In
other words, it is difficult to determine when filtering algorithms should
be triggered. There are two main reasons for this: the best multipliers do
not lead to the best filtering and each filtering disrupts the solving of the
Lagrangian multiplier problem. In this paper, we study these interactions
for the Traveling Salesman Problem (TSP) because the resolution of the
TSP in CP is mainly based on a Lagrangian relaxation. We propose to
match the calls to the filtering algorithms with the strong variations of
the objective value. In addition, we try to avoid oscillations of the objec-
tive function. We introduce Scope Sizing Subgradient algorithm, denoted
by SSSA, which is an adaptive algorithm, that implements this idea. We
experimentally show the advantage of this approach by considering dif-
ferent search strategies or additional constraints. A gain of a factor of
two in time is observed compared to the state of the art.

1 Introduction

The Traveling Salesman Problem (TSP) consists in finding a circuit of minimum
total weight that visits all vertices of a graph. It is a very common problem in the
industry, directly as in routing problems or indirectly as in scheduling problems
where cities correspond to tasks that should be performed and arcs to transition
times between tasks. It is often found associated with other constraints such as
time windows that specify the time period during which a node can be visited,
or precedence constraints between nodes. When side constraints are involved
the famous TSP solver Concorde [1] can no longer be applied and constraint
programming (CP) becomes a competitive approach [11,17].

The TSP is expressed in CP by the weighted circuit constraint which ensures
that a given graph contains a set of arcs that form a circuit and whose sum
of weights (i.e. the weight of the circuit) is less than a given value. The per-
formance of the filtering algorithms associated with this constraint is therefore
very important because they will immediately have an impact on the solving of
many industrial problems.

Several filtering algorithms (FAs) can be applied to the weighted circuit con-
straint [6,10,21]. However, according to recent papers [8,9], the best filtering is
c© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 300–316, 2020.
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the one proposed by Benchimol et al. [3]. It is based on the 1-tree relaxation of
Held and Karp, which is a common Lagrangian Relaxation of the TSP.

Lagrangian relaxation (LR) is a relaxation method which approximates P ,
a difficult problem of constrained optimization, by a simpler problem [2]. It
consists in removing difficult constraints by integrating them into the objective
function. It is therefore appropriate for solving problems where the constraints
can be partitioned into two parts: a set of constraints that can be easily solved
and a set that contains the other constraints. The constraints of the second
group are moved to the objective, so only constraints that are easy to solve
remain. The satisfaction of difficult constraints is achieved by penalizing them
in the objective by introducing a cost for each constraint that measures the
distance to satisfaction and by multiplying this cost by a multiplier. For each
set of multipliers the optimal solution of the LR of P is a lower bound of the
optimal solution of P . These lower bounds are often used in conjunction with
a branch-and-bound algorithm to accelerate the search for an optimal solution
of P .

The LR of the TSP [14] can be defined as follows. The TSP can be seen as
the search for a 1-tree (i.e. a node associated with two arcs joining a spanning
tree) of minimum weight such that each node of the 1-tree has a degree two. The
search for a minimum weight 1-tree is equivalent to the search for a minimum
spanning tree, and so can be solved in polynomial time. However, we do not
know how to deal at the same time with the constraint on degrees, since the
decision version of the TSP is NP-Complete. The Lagrangian relaxation transfers
these degree constraints into the objective. Thus for each node v, the expression
μi(degree(v) − 2) with μ ≥ 0 is added to the objective, where the degree of v is
expressed as the number of the arcs in the 1-tree with v as an endpoint.

Since for any set of multipliers μ the optimal value of the LR of P is a
lower bound of the optimal value of P , it can be used to remove some values
of the variables. Consider UB, an upper bound of the optimal solution of P
(for example any solution of P , therefore not necessarily optimal), and x = a an
assignment, if for x = a the optimal value of the LR of P is greater than UB then
we can remove a from D(x) since we know that x = a does not belong to the
optimal solution. From this idea, the CP-based Lagrangian relaxation has been
introduced [25] and successfully used to solve many problems [4,5,7,12,16,19]. It
consists in modeling the problem so that one or more cost based FAs can be used
on the easy part of the problem. Difficult constraints are moved to the objective
function and the cost based FAs are used when looking for good multipliers.

Sellmann made two important observations about the relationship between
the LR and FAs [24]:

– Suboptimal multipliers can be more efficient for filtering than the optimal
multipliers for the original problems.

– It is not clear whether FAs should actually take place during the optimiza-
tion of the Lagrangian multipliers, because the standard approach for the
optimization of the multipliers are not guaranteed to be robust enough to
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enable a change (i.e. the removal of a value) of the underlying subproblem
during the optimization.

These observations show the complexity of the interactions between FAs and
multipliers, which have important consequences, such as losing the monotony so
dear to CP1.

In addition, it is important to note that the CP-based LR is usually associ-
ated with a branch-and-bound algorithm. We therefore have no reason to seek
to converge the LR towards the optimum. The lower bounds it provides are suf-
ficient for our purpose (i.e. having the most effective FAs) and we will obtain
the optimal solution thanks to the search algorithm.

From these considerations, we can formulate the problem of the interaction
between LR and FAs by the following question: for which set of multipliers should
FAs be called and how do we get them?

Most of the articles in the literature using CP-based LR do not address this
issue and it is by reading the source code of the programs that we discover
precisely when FAs are called. Some authors (L-M Rousseau and X. Lorca)
have confirmed that the call conditions were determined experimentally after
numerous tests.

In this article, we study some of the interactions between FAs and LR and
propose a method to determine when FAs should be called.

First of all, we propose to use a subgradient optimization algorithm, because
it gives us access to suboptimal multipliers that can be quickly computed. The
problem of the slow convergence of this type of algorithm does not arise in our
case since we also use a search procedure.

By doing so, the problem that needs to be solved becomes: when are the FAs
called in the subgradient algorithm?

The subgradient algorithms used in CP-based LR are most often variants of
Beasley’s [2]. Conceptually, they proceed by successive iterations for different
calculation accuracies, called agility. At each iteration the agility is divided by a
power of 2. For a given agility value, the subgradient algorithm iteratively adjust
the Lagrangian multipliers to find values that improve the lower bound. For a
given agility value, the number of internal iterations, which we call scope, is the
unknown we are looking for.

Thus, the problem becomes: for which scope values FAs should be called?
To answer this question, we propose to study the variation in the value of

the LR objective as a function of the scope. We have observed that this value
often stagnates or oscillates and we have experimentally measured that these
variations do not bring anything in terms of filtering. Thus, we recommend to
detect stagnations and oscillations and immediately stop iterations when they
occur, then call the FAs after these iterations. Stopping multiplier computations
is not a problem, because convergence towards optimality is done using a search
procedure and not only with the LR. However, it is important to note that

1 Normally, in CP, when F2, a FA, is added to F1, another FA, all values eliminated
by F1 are also eliminated by the combination of F1 and F2.
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stopping multiplier computations prematurely can lead to a weaker bound that
leads to a larger search tree. Thus, we need to find a good trade-off. The Scope
sizing subgradient algorithm (SSSA), which implements this approach is detailed
in this paper. The experimental results show an improvement in the resolution
of the state-of-the-art instances of the TSP about a factor of two.

The article is organized as follows. We recall some definitions. Then we study
the behavior of the optimal value of the LR for some multipliers corresponding
to scope values and introduce SSSA, a scope sizing subgradient algorithm imple-
menting the scope determination we propose. Before concluding, we give some
experimental results.

2 Preliminaries

Lagrangian Relaxation. The Lagrangian relaxation procedure uses the idea of
relaxing some difficult constraints by bringing them into the objective function
with associated Lagrangian multipliers μ ≥ 0. The application of LR to a mixed
integer program can be defined as follows.

Z = min c· x ZLR(μ) = min c· x + μ(A1· x − b1)

s.t.

⎧
⎨

⎩

A1· x ≤ b1
A2· x ≤ b2
x ∈ X

−→ s.t.

{
A2· x ≤ b2
x ∈ X

We will denote by LR(P ) the Lagrangian relaxation of the problem P and
by LR(P, μ) the LR of P associated with the multiplier set μ.

Assume that the constraint A1·x ≤ b1 is difficult to solve whereas constraint
A2·x ≤ b2 is easy. LR moves the first one into the objective. If A1·x ≤ b1 is
violated then A1·x > b1 and so d = A1·x − b1 > 0. This value d measures the
distance to the satisfaction of this constraint. Intuitively, the larger d is, the more
the constraint should be penalized and the smaller d is, the less the constraint
should be penalized. This result is obtained by adding the value (A1x − b1) in
the objective. Lagrangian relaxation proposes to use a non-negative multiplier
μ for each constraint introduced in the objective. The interest of the multipliers
is shown by the following property:

Property 1. For any vector μ, the value of ZLR(μ) is a lower bound of Z.

The Lagrangian multiplier problem consists of searching for the best multi-
pliers. The two most popular types of methods for solving it are the subgradient
and the bundle methods [13]. This second type of method converges faster than
the first one. Since we only need to use suboptimal multipliers to filter we will
focus our attention on the first type.

Subgradient Algorithm. Subgradient algorithms work in steps and reoptimize
locally the multipliers according to a certain precision, called agility. Beasley’s
algorithm [2] is one of the most widely used. Its structure is depicted in Algo-
rithm1. It calls Function solveLR which computes the optimal value of the LR



304 N. Isoart and J.-C. Régin

for a given set of multipliers and define new multipliers. The number of agility
values is defined by #agility, which is close to 6 most of the time. Usually, and
as mentioned in Algorithm 1, the agility starts at 2 and is divided by 2 at each
iteration. For a given agility value, #scope is the maximal number of internal
iterations of the LR, called scope. For each value of scope, the optimal value of
the LR is computed and multipliers are updated accordingly. We have also intro-
duced Function stopCondition(...), which takes some parameters and tests if
some stopping conditions of the current loop are met. For instance, the program
can be stopped when there is no more progression of the objective function value
according to the current UB.

The subgradient algorithm (FLR) used by Fages et al. [9] in their experiments
corresponds to the values of the parameters #agility = 5 and #scope = 30 of
Algorithm 1 and makes the agility slightly differently since it uses the following
update formula: π ← π/β; β ← β/2 with β = 1/2 at initialization. It should also
be noted that Fages et al. repeat the call to the algorithm as long as the lower
bound of the 1-tree is increased.

Algorithm 1: subgradientSolve algorithm of Beasley
subgradientBeasley(P ,Zub,μ): returns (μk+1, xk)

π ← 2 // Subgradient agility ;
k ← 0 ;
μ0 ← μ // We start with the current values of multipliers ;
for each iterAgility = 1..#agility do

scope ← 0 ;
while scope < #scope do

(μk+1, xk, Zk) ← solveLR(P ,Zub, π, μk, k) ;

if Zk = Zub then return (μk+1, xk) // optimal sol. ;
k ← k + 1 ;
scope ← scope + 1 ;
if stopCondition(...) then break ;

π ← π/2 ;

return (μk+1, xk) ;

solveLR(P ,Zub, π, μk, k): returns (μk+1, xk, Zk)

xk ← solve LR(P, μk) to optimality ;
// the optimal value of LR(P ) is computed ;
R ← |μ| // Number of relaxed constraints ;

Zk ← obj(xk) +
∑

1≤r≤R μk
r objr(x

k) ;

Δk ← π(Zub−Zk)
∑

1≤r≤R(objr(xk))2
// step ;

// Multipliers are updated ;

∀1 ≤ r ≤ R : μk+1
r ← max(0, μk

r + Δkobjr(x
k)) ;

return (μk+1, xk, Zk) ;

CP-Based Lagrangian Relaxation. According to Sellmann [24], CP-based
LR consists in the following procedure: Assuming we are given a linear optimiza-
tion problem that consists in the conjunction of two constraint families A and B
for which an efficient filtering algorithm prop(B) is known, we try to optimize
Lagrangian multipliers for A and use prop(B) for filtering in each Lagrangian
subproblem LR(P, μ).
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It is not necessary for constraints A or B to be linear (something that is
not imposed in CP). We need to ensure that the relaxation we calculate for any
multiplier set is a relaxation of P . So, we just need to make sure that prop(B)
remains valid when the objective becomes that of the LR.

Sellmann defined a particular consistency based on the continuous relaxation
of P , but it does not matter in this paper. He also defined the following property:

Property 2. Suboptimal multipliers can be more efficient for filtering than the
optimal multipliers for the original problems.

This property is explained by the fact that a value x = a can be removed
when the optimal value of P ∧ (x = a) is greater than UB, a given upper bound.
By considering the Lagrangian relaxation we consider the problem LR(P ) and
not LR(P ∧ (x = a)) and there is no reason why the best multipliers for LR(P )
should also be the best for LR(P ∧ (x = a)).

In CP, it is also possible to express the violation of the constraint in different
ways, we can also decide not to measure the distance to the violation [12]. Since
we will relax only equality constraints we will not detail it here.

TSP Model. The TSP consists in searching for an Hamiltonian cycle whose
sum of the cost of its edges is minimum. We model it with the weighted circuit
constraint (WCC) [3], which is based on the Held and Karp LR of the TSP [14]:

A 1-tree of a graph G is formed by a node x, two edges having x as an
extremity and a spanning tree of G − x (the graph G in which x has been
removed). Held and Karp proposed to represent the TSP as the search for a
1-tree where each vertex has a degree two and whose sum of the costs of the
edges it contains is minimum. Searching for a minimum 1-tree is an easy task
because it is related to the search for a minimum spanning tree. However, the
constraints on the degree modify the complexity of the problem. Held and Karp
proposed to use the Lagrangian relaxation on these constraints (the degree of a
node x is expressed as the number of arcs taken with x as an endpoint).

Different CP models have been tested [8] and the conclusion is that the WCC
give the best results for the TSP. Recently, the resolution of TSP has been
improved by using the k-cutset [15] constraint in conjunction with the WCC.
This constraint is mainly based on the structure of the graphs, more precisely
the edge cuts of G. Different search strategies have also been tested [9] for the
CP models and the conclusion is that three search strategies associated with the
LCFirst policy (i.e. keep one of the endpoints of the last branching edge and
selects the edges from the neighborhood of the kept node) give similar results that
are better than the others: maxCost (i.e. selects the edge with the maximum
cost), minReplacementCost (i.e. selects the edge whose removal involves the
smallest increase in the relaxation value), minDeltaDegree (i.e. selects the edge
for which the sum of the endpoint degrees in the upper bound minus the sum of
the endpoint degrees in the set variable lower bound is minimal). Thus, it can
be considered that the WCC and k-cutset used in conjunction with one of the
previous search strategies is the state of the art of TSP modeling in CP.
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3 Scope Sizing Subgradient Algorithm

As mentioned previously, our problem can be summarized by the question: for
which scope values FAs should be called?

In order to answer this question, we propose to observe the LR optimal
values computed by Beasley’s algorithm according to some scope values. We set
#agility = 6.

Fig. 1. Evolution of the LR optimal value (on the y-axis) according to the scope (on
the x-axis). (top graph) Beasley’s algorithm with #scope = 30. A segment between
green and dark corresponds to one agility value. Computations after red crosses are
identified as useless. (bottom graph) Scope sizing subgradient algorithm. Computations
are stopped at red crosses of the top graph. (Color figure online)

Figure 1 (top) is quite representative of what is frequently observed, namely:

– a strong variation followed by oscillations (this is the case for the two first
agility values)

– a weak variation followed by oscillations (third agility value)
– almost no variation (the last three agility values)
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We have also observed weak or strong variations without oscillations.
For FAs to be effective, successive FAs must be called with relatively large

variations, otherwise it is unlikely that successive filtering will remove more
values than the previous. The orientation of the variations should not play a
role since we are mainly looking for various multipliers. It is therefore certainly
interesting to trigger the FAs after a strong variation in the objective value.

What about oscillations? They do not really provide any information. The
multipliers are changed but very slightly between two oscillations. Nor do they
provide much in terms of boundaries. We therefore propose to avoid them as
much as possible.

There is still the case of the absence of variations or very small variations
(i.e. stagnations). It is in our interest to stop the calculations as soon as possible
because the multipliers change very little.

We therefore propose to proceed as follows:

Rule 1. As soon as we no longer measure any variation in the objective value,
we stop changing the scope value and trigger the FAs.

Figure 1 represents our choice using red crosses. Indeed, the red crosses mark
the end of the search for new multipliers. If we implement our proposal then we
get the results of the bottom graphic of Fig. 1 that we made coincide with the
top graphic to show the difference. We can see that there is little difference in
the calculated objective values in the end. There is a slight decrease for many
of the avoided calculations. This can be due to the stop of the computations as
well as the call of the FAs that modify the problem to be solved and therefore
impacts the LR.

One could objectively ask whether it is appropriate to trigger the FAs when
almost no variation is measured. According to our tests, it doesn’t change much
to trigger the FAs in this case, for the sake of simplicity of the algorithm we
decided to trigger the FAs when the multipliers are no longer searched. Note
that FAs are called only once per agility value.

The scope sizing subgradient algorithm (see Algorithm2) is a possible imple-
mentation of our approach. It is a direct adaptation of Beasley’s algorithm. Note
that the number of agility values that are considered is 6. We tested different
values but we did not observe enough changes to justify the introduction of an
additional parameter. The maximum value of scope is 12 because we almost
always observe oscillations or stagnation for larger values. The stop conditions
are not tested for all scope values but only one time out of two (internal loop
of the q variable). This allows us to detect a large part of the oscillations. We
measure for two iterations the variations and if the sum of these two variations
does not deviate enough from the value at the beginning of the two iterations
then we no longer change the scope value. In this case, either an absence of
variations or two variations of the same amplitude in opposite directions (i.e.
an oscillation) will be detected. We define the minimum deviation as 1% of the
difference between the current upper bound and the current objective value.
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Algorithm 2: SSSA: Scope Sizing Subgradient Algorithm
SSSA(P ,Zub,μ): returns (μk+1, xk) ;

π ← 2 // subgradient agility ;
k ← 0 ;
μ0 ← μ // We start with the current values of multipliers ;
for each iterAgility = 1..6 do

scope ← 0 ;
while scope < 12 do

mean ← 0 ;
d ← Zub − Zk // distance to UB ;
for each q = 1..2 do

prevBound ← Zk ;
(μk+1, xk, Zk) ← solveLR(P ,Zub, π, μk, k) ;

if Zk = Zub then return (μk+1, xk) // optimal sol. ;

mean ← mean + Zk − prevBound ;
k ← k + 1 ;
scope ← scope + 1 ;

if |mean/2| ≤ 0.01d then break ;

// trigger the filtering algorithms ;

runPropagation(P, xk−1, Zub, μk) ;
if solver failed then return nil ;
π ← π/2 ;

return (μk+1, xk) ;

4 Experiments

The algorithms have been implemented in Java 11 in a locally developed CP
solver. The experiments were performed on a Windows 10 machine using an Intel
Core i7-3930K CPU @ 3.20 GHz and 64 GB of RAM. The reference instances are
from the TSPLib [23], a library of reference graphs for the TSP and the set of
instances is the same as in [9] that can be seen as state-of-the-art instances.
All instances considered are symmetrical graphs. The name of each instance is
suffixed by its number of nodes. The TSP is modeled by the WCC using CP-
based LR in conjunction with the k-cutset constraint [15].

4.1 Scope Impacts

The best scope for an instance is the scope value that gives the smallest solving
time for the given instance. It should be noted that a predefined scope is always
the same for all agility values. For a set of instances, we define the best global
scope as the scope value that obtains the best geometric average of the solving
times of the instances.

First of all, we observe the impact of different global scope values for the
three best search strategies. The results (See Table 1) show that it is necessary
to find a trade-off in the mean time and number of backtracks. Filtering with
refined boundaries (i.e. with the largest scope) reduces the number of backtracks
but this reduction is not worthwhile. It is also important to note that there is
no monotony: for example, a scope equal to 8 for LCFirstMinRepCost has less
backtracks than 4 and 10.
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Table 1. Comparison of solving times (in s) and backtracks (in 1000 s) between pre-
defined scope values for Algorithm 1.

scope LCFirstMaxCost LCFirstMinRepCost LCFirstMinDeltaDeg

mean geo mean mean geo mean mean geo mean

time #bk time #bk time #bk time #bk time #bk time #bk

2 221.4 132.5 13.3 9.1 81.4 50.4 6.9 4.2 106.9 39.0 8.6 3.6

4 185.3 101.0 10.0 5.9 41.8 20.9 5.0 2.5 66.3 22.3 6.2 2.1

6 168.7 86.9 10.5 5.8 33.5 15.5 4.4 2.0 33.9 10.0 4.8 1.5

8 157.6 71.2 10.2 5.1 39.3 16.9 4.4 1.7 71.8 19.6 5.4 1.6

10 164.1 73.7 10.8 4.9 36.2 14.1 4.6 1.8 53.1 13.0 6.0 1.8

12 163.1 59.8 10.1 4.2 37.8 13.3 4.4 1.5 71.4 16.5 4.9 1.2

Table 2. Comparison of solving times (in s) between best and worst predefined scope
values for Algorithm 1 with LCFirstMinDeltaDeg strategy.

Instance LCFirstMinDeltaDeg

Best time Worst time ratio scope = 6

scope time scope time w/b time

a280 12 12.1 4 35.7 3.0 13.6

bier127 10 0.2 10 0.4 1.9 0.3

brg180 10 0.3 2 22.9 72.6 0.4

ch130 8 1.9 12 4.6 2.4 2.7

ch150 12 1.8 4 4.3 2.4 2.4

d198 12 16.6 2 23.1 1.4 17.8

gr120 8 0.6 10 0.9 1.5 0.7

gr137 12 2.6 2 4.1 1.6 3.0

gr202 6 2.2 2 3.1 1.4 2.2

gr96 8 0.5 4 1.6 3.4 0.8

kroA100 4 1.6 2 2.8 1.7 2.1

kroA150 10 4.6 2 13.3 2.9 8.2

kroB100 4 1.5 8 5.9 3.9 3.5

kroB150 12 291.4 2 1163.2 4.0 358.6

kroB200 10 186.3 2 475.6 2.6 230.0

kroC100 2 0.9 6 1.7 2.0 1.7

kroD100 12 0.3 4 0.6 1.7 0.4

kroE100 4 2.4 2 4.6 1.9 2.9

lin318 4 27.4 2 64.3 2.3 47.6

pr124 10 3.4 12 6.7 2.0 3.5

pr136 8 32.9 2 50.2 1.5 36.7

pr144 6 1.5 2 3.7 2.5 1.5

pr226 8 1.5 2 2.5 1.6 2.0

pr264 12 5.3 2 10.1 1.9 6.0

rat195 10 48.1 2 65.0 1.4 51.3

rat99 8 0.1 2 0.2 1.7 0.2

tsp225 6 135.7 2 328.2 2.4 135.7

u159 12 0.8 2 1.2 1.5 1.0
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The difference between the best global scope and the best scope for each
instance is shown by Table 2. Only the LCFirstMinDeltaDeg strategy is con-
sidered (for reasons of space). Similar results are obtained for any other search
strategy. We observe that the best scope per instance changes quite often, as
well as rather important differences between instances. The best overall scope is
also clearly dependent on the set of instances considered. For all instances, the
best scope is 6, but it is easy to build an instance set whose best overall scope
value is not 6. The instances bier127, kroA150, kroB200, pr124 form such a set
since scope = 10 is the best scope for each of them. This table also shows that
selecting the best scope for each instance significantly improves the average res-
olution time (the last column gives the time obtained with the best global scope
(scope = 6)). Unfortunately, this information is not available without solving
the same problem several times. For each instance, we observe very different
resolution times between the selected scope values. The w/b column indicates
the time ratio between the worst and best scope. We are very often beyond the
factor 2. All these observations show that it is not easy to determine a priori a
good scope value and that an error can have a strong impact on solving times.

4.2 Best Searches

Table 3 compares our approach with the three best search strategies. The “best”
scope column indicates that the best scope is considered for each instance, oth-
erwise the best mean scope is used. It is very clear that SSSA is competitive
with the best scope per instance. We remind you that it is impossible to know
a priori the best scope value per instance and that we can only speculate on the
best scope value for a given search strategy after having done tests. We observe
almost systematically a gain against the best global scope value When SSSA
does not improve the best global scope, which is rare, the loss is low compared
to the worst possible scope choice. We are almost certain of a gain and this
should lead to the adoption of SSSA in the future.

4.3 Other Search

We also tested SSSA’s behaviour with other search strategies that do not use
the LCFirst policy. Table 4 presents the results obtained for the MinRepCost
strategy, which are quite representative of the other tests we have conducted
for other search strategies. The gain is higher (1.68) than with search strategies
using the LCFirst policy. This policy seems to better manage the structure of
the graph and in particular allows to strongly reduce the number of backtracks,
also it seems to reduce a little the impact of SSSA for problems that can be
solved quickly. In the given results, SSSA never loses significantly.
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Table 3. Comparison of solving times (in s) between predefined scope values for Algo-
rithm 1 and SSSA for the recommended searches. The best scope is defined for each
instance and not globally.

Instance LCFirstMaxCost LCFirstMinRepCost LCFirstMinDeltaDeg

scope scope scope

8 best SSSA 6 best SSSA 6 best SSSA

a280 66.6 44.4 19.3 13.6 12.1 18.6 38.2 35.1 34.3

bier127 0.3 0.3 0.3 0.3 0.2 0.4 2.6 0.7 0.5

brg180 6.7 5.9 7.0 0.4 0.3 0.4 0.4 0.3 0.4

ch130 6.7 4.0 4.4 2.7 1.9 2.2 1.6 1.6 1.6

ch150 4.8 2.7 5.2 2.4 1.8 2.6 2.0 2.0 1.2

d198 107.9 87.1 65.6 17.8 16.6 12.4 60.9 41.4 30.8

gr120 1.3 0.9 0.7 0.7 0.6 0.6 0.8 0.8 0.7

gr137 5.8 5.8 4.6 3.0 2.6 1.6 3.0 2.4 2.8

gr202 4.0 3.5 2.8 2.2 2.2 2.2 2.3 2.1 3.9

gr96 1.9 1.5 1.5 0.8 0.5 0.6 1.0 0.5 0.7

kroA100 5.7 5.1 5.2 2.1 1.6 1.9 2.5 2.5 1.3

kroA150 77.2 62.0 51.4 8.2 4.6 6.5 5.6 5.6 8.4

kroB100 10.7 8.9 11.5 3.5 1.5 3.6 2.1 1.5 1.2

kroB150 531.0 531.0 525.3 358.6 291.4 238.3 189.1 189.1 441.1

kroB200 855.6 855.6 752.0 230.0 186.3 197.1 144.0 87.9 88.4

kroC100 2.0 1.7 3.0 1.7 0.9 1.3 0.6 0.6 0.4

kroD100 0.6 0.5 0.5 0.4 0.3 0.7 0.4 0.2 0.2

kroE100 6.0 3.6 3.3 2.9 2.4 2.2 6.4 3.0 2.5

lin318 43.9 42.7 57.9 47.6 27.4 22.4 32.7 31.3 14.6

pr124 1.3 1.1 1.0 3.5 3.4 2.7 1.6 1.1 1.0

pr136 250.7 213.2 175.0 36.7 32.9 28.4 58.1 53.4 33.0

pr144 1.1 1.0 1.0 1.5 1.5 1.6 1.6 0.8 0.6

pr226 5.3 2.7 2.0 2.0 1.5 1.3 3.6 1.5 2.2

pr264 9.9 8.6 6.9 6.0 5.3 4.3 7.8 7.1 5.1

rat195 605.6 562.4 485.0 51.3 48.1 45.9 76.8 76.8 96.9

rat99 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1

tsp225 1800.0 1800.0 1800.0 135.7 135.7 214.2 303.0 303.0 479.8

u159 0.3 0.3 0.3 1.0 0.8 0.9 0.6 0.3 0.8

mean 157.6 152.0 142.6 33.5 28.0 29.1 33.9 30.4 44.8

geo mean 10.2 8.3 7.9 4.4 3.4 3.8 4.8 3.5 3.5
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Table 4. Comparison of solving times (in s) between predefined scope values for Algo-
rithm 1 and SSSA for the MinRepCost Strategy.

MinRepCost

scope

10 best SSSA

a280 1800.0 1800.0 1800.0

bier127 2.7 2.1 1.5

brg180 0.3 0.3 0.4

ch130 2.0 1.5 1.4

ch150 3.8 3.1 2.9

d198 1161.9 814.2 1057.6

gr120 1.1 0.9 0.8

gr137 1.7 1.7 1.5

gr202 4.5 2.6 1.4

gr96 1.0 0.8 1.4

kroA100 2.4 2.1 1.6

kroA150 18.5 12.3 8.6

kroB100 1.2 1.2 1.3

kroB150 736.9 668.3 840.3

kroB200 272.0 149.3 79.3

kroC100 0.7 0.5 0.4

kroD100 0.5 0.2 0.3

kroE100 5.3 5.3 4.5

lin318 41.8 27.7 15.8

pr124 1.1 0.8 0.8

pr136 110.7 88.4 55.9

pr144 0.8 0.8 0.6

pr226 57.1 11.2 7.0

pr264 7.2 6.3 4.5

rat195 212.3 127.1 103.7

rat99 0.1 0.1 0.1

tsp225 1557.3 1333.0 437.3

u159 1.0 0.5 0.8

mean 214.5 180.8 158.3

geo mean 8.7 6.2 5.4

4.4 Overall Improvement

We can now present the comparison between our approach and the FLR app-
roach [9] which is the best method known to date. Table 5 shows that SSSA saves
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Table 5. Comparison of solving times (in s) between FLR and SSSA for the three
recommended searches.

LCFirst LCFirst LCFirst

MaxCost MinRepCost MinDeltaDeg

FLR SSSA ratio FLR SSSA ratio FLR SSSA ratio

a280 175.0 19.3 9.1 15.6 18.6 0.8 111.4 34.3 3.3

bier127 0.5 0.3 1.4 0.3 0.4 0.8 3.4 0.5 6.9

brg180 46.9 7.0 6.7 0.1 0.4 0.4 0.5 0.4 1.3

ch130 8.9 4.4 2.0 3.8 2.2 1.7 1.8 1.6 1.1

ch150 10.7 5.2 2.1 3.2 2.6 1.2 7.9 1.2 6.5

d198 157.4 65.6 2.4 28.9 12.4 2.3 45.7 30.8 1.5

gr120 1.9 0.7 2.9 0.6 0.6 1.1 1.0 0.7 1.4

gr137 9.3 4.6 2.0 5.4 1.6 3.3 3.6 2.8 1.3

gr202 8.4 2.8 3.0 4.1 2.2 1.9 3.7 3.9 1.0

gr96 4.3 1.5 2.8 1.0 0.6 1.7 2.4 0.7 3.2

kroA100 14.3 5.2 2.8 4.8 1.9 2.5 7.7 1.3 6.1

kroA150 109.9 51.4 2.1 25.8 6.5 4.0 19.7 8.4 2.4

kroB100 33.5 11.5 2.9 8.5 3.6 2.3 5.9 1.2 4.9

kroB150 1503.1 525.3 2.9 789.1 238.3 3.3 695.1 441.1 1.6

kroB200 1800.0 752.0 2.4 307.5 197.1 1.6 219.0 88.4 2.5

kroC100 4.5 3.0 1.5 1.9 1.3 1.4 0.5 0.4 1.3

kroD100 0.8 0.5 1.5 0.5 0.7 0.7 0.3 0.2 1.6

kroE100 9.4 3.3 2.9 5.9 2.2 2.7 5.8 2.5 2.3

lin318 109.0 57.9 1.9 87.9 22.4 3.9 41.3 14.6 2.8

pr124 3.4 1.0 3.5 6.2 2.7 2.3 2.7 1.0 2.6

pr136 253.8 175.0 1.5 59.3 28.4 2.1 92.4 33.0 2.8

pr144 2.1 1.0 2.1 4.2 1.6 2.6 1.2 0.6 1.9

pr226 4.0 2.0 2.0 1.6 1.3 1.3 3.4 2.2 1.5

pr264 3.6 6.9 0.5 3.0 4.3 0.7 2.3 5.1 0.5

rat195 815.6 485.0 1.7 121.7 45.9 2.6 207.3 96.9 2.1

rat99 0.2 0.1 2.4 0.2 0.2 1.3 0.2 0.1 2.1

tsp225 1800.0 1800.0 1.0 250.8 214.2 1.2 771.9 479.8 1.6

u159 0.5 0.3 1.5 1.5 0.9 1.6 1.4 0.8 1.7

mean 246.1 142.6 62.3 29.1 80.7 44.8

geo mean 17.5 7.9 2.2 6.3 3.8 1.7 7.4 3.5 2.1

about a factor of 2 in time for each search strategy. There are greater gains for
all difficult problems. These results clearly show the improvement achieved by
our method.
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5 Related Work

The best scope value of the subgradient algorithm could also be determined
with a sampling method similar to Parallel Search Strategy [20] which aims to
determine a priori the best search strategy. This method decomposes the initial
problem into a large number of subproblems consistent with the propagation, as
does the Embarrassingly Parallel Search (EPS) method [18,22]. Then, it proceeds
by sampling and solving: it randomly draws a set of subproblems and solves
them in parallel by setting a timeout corresponding to twice the time of the best
method in order to limit the time spent with “bad” search strategies. A Wilcoxon
test is finally applied to eliminate the statistically worse search strategies. All
remaining search strategies being equivalent, one is chosen that will be used to
solve the other subproblems.

This approach is difficult to implement in our case because of the large num-
ber of subproblems it requires. Consider we have k methods to compare and we
set a factor of 2 as timeout. With a confidence level of 95% and sample size equal
to 30, which is not a good value in general but could be fine for our purpose, and
if you accept to spend t % of the solving time in the selection of the best method
then it means that the minimum number of elements in the population should
be: pop = 2×30×k

t . For t = 3% and k = 36 (6 values of scope for each agility)
we have pop = 72, 000. Unfortunately, it requires a lot of time to decompose
some TSP instances into 72,000 subproblems. For instance, the decomposition
of kroB150 in more than 30,000 subproblems requires more than 100s, whereas
the solving time is around 150 s. This prevent us from using this method in prac-
tice for a lot of instances or a new way to decompose the instances should be
found.

6 Conclusion

We have shown that the relationship between filtering algorithms and Lagrangian
relaxation can be seen as the determination of the trigger time of these algo-
rithms when calculating Lagrangian multipliers by a subgradient algorithm. We
have introduced SSSA, a scope sizing subgradient algorithm, which proposes to
stop local multiplier optimization when the objective value no longer varies or
oscillates, and to call, at that time, the filtering algorithms. The experimental
results we presented show the interest of our approach. The performance of the
best CP model known so far for solving TSP is improved almost systematically
by a factor of 2. The tests show permanent improvements in all the considered
scenarios.

We believe that SSSA is taking a first step towards a better understanding
of the interactions between FAs and LRs and that others will follow.

We hope that it will also allow similar results to be obtained for problems
other than TSP that may lead to a general improvement of the CP-based LR.
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3. Benchimol, P., van Hoeve, W.J., Régin, J., Rousseau, L., Rueher, M.: Improved fil-
tering for weighted circuit constraints. Constraints 17(3), 205–233 (2012). https://
doi.org/10.1007/s10601-012-9119-x

4. Bergman, D., Cire, A.A., van Hoeve, W.-J.: Improved constraint propagation via
Lagrangian decomposition. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp.
30–38. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 3

5. Cambazard, H., Fages, J.-G.: New filtering for AtMostNValue and its weighted
variant: a Lagrangian approach. Constraints 20(3), 362–380 (2015). https://doi.
org/10.1007/s10601-015-9191-0

6. Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: ICLP, vol. 97,
p. 104 (1997)

7. Demassey, S.: Compositions and hybridizations for applied combinatorial optimiza-
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15. Isoart, N., Régin, J.C.: Integration of structural constraints into TSP models. In:
Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, pp. 284–299. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7 17

16. Khemmoudj, M.O.I., Bennaceur, H., Nagih, A.: Combining arc-consistency and
dual Lagrangean relaxation for filtering CSPs. In: Barták, R., Milano, M. (eds.)
CPAIOR 2005. LNCS, vol. 3524, pp. 258–272. Springer, Heidelberg (2005). https://
doi.org/10.1007/11493853 20

17. Kilby, P., Shaw, P.: Vehicle routing. In: Foundations of Artificial Intelligence, vol.
2, pp. 801–836. Elsevier (2006)
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Abstract. Every new academic year, scheduling new timetables due to
disruptions is a major problem for universities. However, computing a
new timetable from scratch may be unnecessarily expensive. Further-
more, this process may produce a significantly different timetable which
in many cases is undesirable for all parties involved. For this reason, we
aim to find a new feasible timetable while minimizing the number of
perturbations relative to the original disrupted timetable.

The contribution of this paper is a maximum satisfiability (MaxSAT)
encoding to solve large and complex university timetabling problem
instances which can be subject to disruptions. To validate the MaxSAT
encoding, we evaluate university timetabling real-world instances from
the International Timetabling Competition (ITC) 2019. We consider the
originally found solutions as a starting point, to evaluate the capacity
of the proposed MaxSAT encoding to find a new solution with minimal
perturbation. Overall, our model is able to efficiently solve the disrupted
instances.

Keywords: MaxSAT · University Course Timetabling · Minimal
perturbation

1 Introduction

Many real-life problems can be encoded as constraint optimization problems,
being university timetabling problems a concrete example. Solving optimization
problems is by itself a hard and complex computational task. When solving
these problems, unexpected disruptions may cause the original solution to be
no longer feasible. Therefore, one needs to solve the problem again subject to
these unexpected disruptions. Universities, and in particular their timetables,
are dynamical systems. Hence, it is natural that one often needs to solve new
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timetables subject to disruptions. These types of real-world scenarios are still a
significant research line [1,2].

The contribution of this paper is a MaxSAT encoding to solve university
course timetabling problems which can be subject to different disruptions. We
showcase the application of the MaxSAT encoding with the large data sets from
the ITC-2019 benchmark [3]. Furthermore, these instances are subject to the
most common disruptions in the literature.

This paper is organized as follows. Section 2 provides a concise background
on university timetabling and minimal perturbation problems. Section 3 formally
describes the problem of minimal perturbation in university timetabling and the
MaxSAT encoding. Section 4 discusses the main computational results. Finally,
Sect. 5 concludes the paper and discusses possible future directions.

2 Background

In this section, we provide an overview of university timetabling, followed by the
background on the minimum perturbation problem and the MaxSAT problem.

2.1 University Timetabling

University timetabling problems [1,2] can be categorized as follows: examination
timetabling [4], course timetabling [5] and student sectioning [6]. These problems
are known to be NP-complete [7].

Examination timetabling is the problem of assigning exams to rooms subject
to a set of constraints. Course timetabling can be informally defined as the
problem of finding a feasible assignment for all the classes of all courses to a
time slot and a room, subject to a set of constraints. Student sectioning is the
problem of sectioning students, subject to capacity and schedule constraints, to
all the classes required by the courses they are enrolled in. In the context of this
paper, we only consider course timetabling and student sectioning problems. A
formal and detailed description of both problems is given in Sect. 3.

In recent years, a significant improvement in solving university timetabling
problems has been achieved [1,2]. In the literature, one can find distinct
approaches to solve university timetabling problems, most notably: Constraint
Programming (CP) [8,9], Answer Set Programming (ASP) [10], Boolean Sat-
isfiability (SAT) [11], Maximum Satisfiability (MaxSAT) [12], Integer Linear
Programming (ILP) [13–15] and local search [13,16].

The availability of benchmark data sets from previous competitions [5], based
on data from Udine University, motivated the development of the above men-
tioned methods. However, a gap between theory and practice [1,3] still persists,
given that the benchmark does not express the whole complexity and size of the
worldwide university timetabling problem. Recently, to further reduce this gap,
a new benchmark was made available as part of ITC-2019 [3].
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2.2 Minimal Perturbation Problem

Consider a given problem, subject to a set of constraints, for which s is a feasible
solution. A set of disruptions may imply a change in the set of constraints and/or
a change in the set of variables of the problem. The disruptions cause the solution
s to be no longer feasible.

This optimization problem can be described as a Minimal Perturbation Prob-
lem (MPP) [8,10,14,15,17] where the goal is to minimize the number of pertur-
bations caused to s in order to find a new feasible solution. In this paper, we
consider the MPP as a multi-objective optimization problem where we use the
Hamming distance (HD) and the overall quality as the optimization criterion.
This makes MPP cardinality minimal and so more restricted than subset min-
imal. The problem of finding similar/diverse solutions [18] has similarities to
MPP. However, the task of finding similar/diverse solutions usually does not
consider an infeasible solution as a starting point.

Example 1. Let us consider a course timetabling problem instance with two
classes (ci and cj) that can be assigned to five different time slots denoted as
t1 . . . t5. Time slots t3 . . . t5 have a penalty associated with both classes. Classes
c1 and c2 have a no overlap constraint, to ensure that they are assigned to dif-
ferent time slots. Also, let us assume that the original solution s is optimal and
consists in the assignment of ci to the time slot t1 and cj to t2. Now, if a disrup-
tion causes t1 to be unavailable to class ci, then solution s becomes infeasible,
and needs to be modified. If one solves the problem instance from scratch, the
optimal solution is the assignment of ci to time slot t2 and cj to t1, corresponding
to a different solution. The solution with the smallest number of perturbations
only implies changing ci to time slot t2 despite the fact that it causes a loss in
the overall quality of the timetable.

The application of MPP to course timetabling has been studied in the liter-
ature [8,10,14,15]. The most common approach to measure the perturbations is
to apply the HD [19].

Müller et al. [8] proposed the iterative forward search algorithm, a local
search method that does not ensure completeness. Phillips et al. [15] proposed a
neighborhood based integer programming algorithm to solve MPP in instances
from the University of Auckland. In the worst case, the neighborhood will include
the whole search space.

Recently, two different tools have been proposed to compute the Pareto front
using ASP [10] and ILP [14]. The Pareto front is computed based on two objec-
tives: (i) the minimization of the cost of unsatisfied soft constraints; and (ii) the
minimization of the number of perturbations.

Another approach is to create a robust solution in order to resist predictable
disruptions [16]. However, this approach will not be discussed in this paper.

2.3 MaxSAT

A literal l, is either a Boolean variable x (positive literal) or its negation ¬x
(negative literal). A clause is a disjunction of literals. A propositional formula
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in Conjunctive Normal Form (CNF) is a conjunction of clauses. SAT is the
problem of deciding whether a given formula has an assignment that satisfies all
the clauses in the formula.

The MaxSAT problem is a generalization of SAT, where the objective is to
find an assignment that maximizes the number of satisfied clauses. A weighted
partial MaxSAT formula (ϕ = ϕh ∪ϕs) consists of hard clauses (ϕh), soft clauses
(ϕs), and a function wϕ : ϕs → N associating an integer cost to each soft clause.
The goal in weighted partial MaxSAT is to find an assignment such that all
hard clauses in ϕh are satisfied, while maximizing the weight of the satisfied soft
clauses in ϕs.

In this paper, we will assume that all propositional formulas are in CNF.
However, to simplify the writing of some constraints, we will use the defini-
tion of pseudo-Boolean (PB) constraints. PB constraints are commonly applied
in pseudo-Boolean optimization [20], a related problem to weighted partial
MaxSAT. PB constraints are linear constraints over Boolean variables, and can
be generally written as follows:

∑
qixi op K, where K and all qi are integer

constants, all xi are Boolean variables, and op ∈ {<,≤,=,≥, >}. This type of
constraints can be translated into SAT [21].

3 MaxSAT Encoding

In this section, we formally describe the university course timetabling problem [3]
and its MaxSAT encoding. Consider a set of consecutive time slots of five minutes
T ∈ {1, ..., 288} corresponding to all possible time slots of a day and a set of
sets of weekdays D ∈ {0000000, . . . , 1111111}. Each subset of days Days ∈ D
has |Days| = 7. Daysd corresponds to a particular weekday with 0 < d ≤ |Days|
(Days1 corresponds to Monday, Days2 to Tuesday, and so on). A set of sets of
weeks of a semester is represented by W. Each subset of weeks Weeks ∈ W has
|Weeks| = 16. Weeksw corresponds to week w with 0 < w ≤ |Weeks|. A time
period p is represented with a 4-tuple (Wp,Dp, hp, lenp): a set of weeks (Wp ⊆
W); a set of days (Dp ⊆ D); an hour (hp ∈ T ); and its duration (lenp > 1).

Consider a set of courses Co. A course (co ∈ Co) is composed by a set of
classes Cco. These classes are characterized by configurations (Configco) and
organized in parts (Partsconfig). A student must attend the classes from a single
configuration. A student enrolled in the course co and attending the configuration
config ∈ Configco must attend exactly-one class from each part Partsconfig . The
set of classes belonging to part ∈ Partsconfig is represented by Cpart .

The university has a set R of rooms where the classes of a course can be
scheduled. The travel time, in slots, between two rooms r1 ∈ R and r2 ∈ R is
represented as travelr1

r2
. Each room r ∈ R has a set of unavailable periods Pr.

All university classes C (from different courses) must have a schedule assigned
to them. Each class c ∈ C has a set of possible periods (Pc) to be scheduled in.
Each possible period p ∈ Pc has an associated penalty. Furthermore, a class
may need to be assigned to a room. A class has a hard limit on the number
of students that can attend it (limc). A class may have a set of possible rooms
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(Rc). Each room r ∈ Rc has capacity ≥ limc and an associated penalty. Each
class may also have parent-child relation with another class. The parent of class
c is represented by parentc.

The university has a set of students S. Each student s ∈ S is enrolled in a set
of courses Cos . To reduce the number of similar variables and constraints, we
create groups of students sharing the same curricular plan [22]. Furthermore, we
limit the size of the group to the value of the greatest common divisor between
the total number of students enrolled in a course and the smallest capacity limit
of the classes of that course [23]. This process ensures that it is possible to find a
feasible solution to a problem instance, since it is possible to combine all groups
of students into classes. However, we may remove the optimal solution by not
allowing the assignment of a single student to a given class. For this reason, we
define Cluster as a set of clusters of students. The number of students merged
in the id ∈ Cluster is represented by |id |.

There are four optimization criteria: (i) the cost of assigning a class to a
room; (ii) the cost of assigning a class to a time slot; (iii) the number of student
conflicts and (iv) a set of soft constraints. Each criterion has its weights. We
solve university course timetabling in two sequential MaxSAT runs. First, we
solve the course timetabling problem and then we solve the student sectioning
problem. The sequential runs may result in the loss of the global optimum (i.e.
it may remove the optimal solution in terms of student conflicts). Nevertheless,
it produces a solution within the Pareto front if given enough time and memory
resources. Moreover, it reduces the size of the global problem. Furthermore,
allows us to tackle the MPP using only the first MaxSAT model.

3.1 Course Timetabling

Our course timetabling encoding has four types of Boolean decision variables:

– wWeekp
c represents the assignment of class c to the set of weeks Weekp ,

with c ∈ C, Weekp ∈ W and p ∈ Pc;
– d

Dayp
c represents the assignment of class c to the set of days Dayp,

with c ∈ C, Dayp ∈ D and p ∈ Pc;
– h

hourp
c represents the assignment of class c to the hour hourp,

with c ∈ C and p ∈ Pc;
– rroom

c represents the assignment of class c to the room room,
with c ∈ C and room ∈ Rc.

The scheduling possibilities of a class are usually just a small part of the
complete set of possible combinations of weeks, days and hours. Consequently,
we only define these variables for acceptable values of the class domain reducing
the size of the problem. Furthermore, using four variables instead of one provides
a more flexible approach when writing the associated constraints, reducing the
size of the encoding. For example, one can write the constraints using only related
variables (e.g. SameDay constraint uses only variable d).
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To simplify the writing of the exactly-one constraints (
∑ · = 1) we define

the auxiliary variable t, where tslot
c represents the assignment of class c to the

allocation slot slot ∈ [0, . . . , |Pc|].
Our encoding has the following constraints. If a class c takes place in the hour

hour then all allocation slots including hour are assigned. If we consider that n
allocation slots have the same hour, then the following equivalence is needed:

hhour
c ⇐⇒

∧

n

tslotn
c . (1)

This equivalence can be easily converted to SAT. Similarly, the same type of
equivalence has to be written between the week/day variables and the t variables.

A class can only be taught in exactly one allocation slot. For each class c ∈ C:
∑

slot∈[0,...,|Pc|]
tslot
c = 1. (2)

A class with Rc 
= ∅ can only be taught in exactly one room. For each c ∈ C:
∑

room∈Rc

rroom
c = 1. (3)

We define the auxiliary variable sdci
cj to represent two classes taught in the

same day (i.e. with at least one day overlap). For each two classes ci, cj with
i 
= j, where Day0 to Dayn belong to the domain of class ci, Dayn+1 to Daym

belong to the domain of class cj , with 0 < n < m, and they overlap we add:

sdci
cj ⇐⇒ (dDay0

ci ∨ . . . ∨ dDayn
ci ) ∧ (dDayn+1

cj ∨ . . . ∨ dDaym
cj ). (4)

Similarly, one can define an auxiliary variable swci
cj to represent two classes

overlapping in at least one week.
A class c with Rc 
= ∅ must be taught in a room not assigned to another

class in the specific time slot. For each two classes ci, cj , where room ∈ Rci ,
room ∈ Rcj , hourpi

+ lenpi
> hourpj

and hourpj
+ lenpj

> hourpi
with pi ∈ Pci

and pj ∈ Pcj , we add clause:

¬sdci
cj ∨ ¬swci

cj ∨ ¬h
hourpi
ci ∨ ¬h

hourpj
cj ∨ ¬rroom

ci ∨ ¬rroom
cj . (5)

The clause above could have a smaller number of literals if we used the
auxiliary variable t. However, it would require to generate more constraints.
This trade-off was tested and fewer constraints proved to be more efficient.

The rooms may have unavailability time slots, where no class can be taught.
To enforce this constraint we add the following clause for each class c, room r
and unavailable period p:

¬rr
c ∨ ¬tpc . (6)

The next set of constraints can be hard or soft. These constraints involve
always a pair of classes. In case of being soft, the penalty associated with each
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constraint incurs for every pair of classes. Consider two classes ci and cj with
i 
= j and two time slots pi ∈ Pci and pj ∈ Pcj .

SameStart : The classes have to start at the same time. For each pair hourpi
,

hourpj
where hourpi


= hourpj
we add a clause:

¬h
hourpi
ci ∨ ¬h

hourpj
cj . (7)

DifferentTime (SameTime): The classes must be taught at a (the) different
(same) hour. For each pair hourpi

, hourpj
with (no) overlap in time, we add (7).

WorkDay(V): There must not be more than V time slots between the start time
of the first class and the end time of the last class on any day. For each pair
hourpi

, hourpj
where hourpi

+ lenpi
− hourpj

≥ V, we add clause (7).

DifferentDays (SameDays): The classes must be taught in different days (the
same subset of days). For each pair Daypi

, Daypj
where Daypi

∧ Daypj
= ∅

(Daypi
⊆ Daypj

), we add a clause:

¬d
Daypi
ci ∨ ¬d

Daypj
cj . (8)

DifferentWeeks (SameWeeks): The classes must be taught in different weeks (the
same subset of weeks). For each pair Weekpi

, Weekpj
where Weekpi

∧ Weekpj
= ∅

(Weekpi
⊆ Weekpj

), we add a clause:

¬wWeekpi
ci ∨ ¬w

Weekpj
cj . (9)

DifferentRoom (SameRoom): The classes must be taught in different rooms (the
same room). For each pair roomi ∈ Rci , roomj ∈ Rcj where roomi = roomj

(roomi 
= roomj), we add a clause:

¬rroomi
ci ∨ ¬rroomj

cj . (10)

SameAttendees : The classes cannot overlap in time, days and weeks. Further-
more, the attendees must have sufficient time to travel between the rooms corre-
sponding to consecutive classes. For each pair of hours hourpi

, hourpj
and rooms

roomi, roomj where and hourpi
+ lenpi

+ travelroomi
roomj

> hourpj
, we add:

¬sdci
cj ∨ ¬swci

cj ∨ ¬h
hourpi
ci ∨ ¬h

hourpj
cj ∨ ¬rroomi

ci ∨ ¬rroomj
cj . (11)

Overlap (NotOverlap): The classes must (not) overlap in time, day and week.
For each pair pi, pj with (no) overlaps in time, we add a clause:

¬tpi
ci ∨ ¬tpj

cj . (12)

Precedence: The first meeting of a class in a week must be before the first meeting
of another class. For each pair pi, pj where pj proceeds pi, we add (12).
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MinGap(V): The classes that are taught on the same day and on the same set
of weeks must be at least V slots apart. For each pair pi, pj that is taught in
the same week, day and hourpi

+ lenpi
+ V ≥ hourpj

, we add (12).
The next set of constraints involve a set of classes. In these cases, the penalty

depends on the distance between the solution and the unsatisfied constraint.

MaxDays(V): The classes cannot be taught in more than V different days. When
the constraint is soft, the penalty is multiplied by the number of days that
exceed V. For this reason, we define an auxiliary variable dayofweekconst

d , where
const is the identifier of the constraint MaxDays and d ∈ {1 , . . . , |Days|}. This
variable corresponds to having at least one class, of this constraint, assigned to
weekday d. Consider Dayp1 , . . . , Daypn

, Daypn+1 , . . . , Daypm
where p1, . . . , pn ∈

Pci , pn+1, . . . , pm ∈ Pcj and Dayd
1 = 1, . . . , Dayd

m = 1 we add:

dayofweekconst
d ⇐⇒ dDayp1

ci ∨ . . . ∨ dDaypn
ci ∨ d

Daypn+1
cj ∨ . . . ∨ dDaypm

cj . (13)

Now, we only need to ensure that:
∑

c∈C

∑

p∈Pc

∑

d∈[1,...,|Dayp|]
dayofweekconst

d ≤ V . (14)

MaxDayLoad(V): The classes must (should, if the constraint is soft) be spread
over the days in a way that there is no more than a given number of occupied
V time slots on each day. When the constraint is soft, the penalty is multiplied
by the division of the sum of the number of slots that exceed V for each day by
the number of weeks. Hence, we only need to ensure that:

7∑

d=1

∑

c∈C

∑

p∈Pc,

Dayd
p=1

dDayp
c × lenp ≤ V. (15)

MaxBreaks(V1,V2): There are at most V1 breaks throughout a day between a
set of classes in this constraint. A break between two classes is a gap larger
than V2 time slots. When the constraint is soft, the penalty is multiplied by the
number of new breaks. For every class c1 to cn assigned to a period (p1 ∈ Pc1

to pn ∈ Pcn) in such a way that it forms a block of classes that breaks this
constraint, we add the clause:

¬tp1
c1 ∨ . . . ∨ ¬tpn

cn . (16)

MaxBlock(V1,V2): There are at most V1 consecutive slots throughout a day
between a set of classes in this constraint. Two classes are considered to be con-
secutive if the gap between them is less than V2 time slots. When the constraint
is soft, the penalty is multiplied by the number of new blocks of classes. For
every class c1 to cn assigned to a period (p1 ∈ Pc1 to pn ∈ Pcn) in such a way
that it forms a block of classes that breaks this constraint, we add (16).
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3.2 Student Sectioning

To solve student sectioning our encoding is extended with one decision variable
sc

id, where c ∈ C and id ∈ [1, . . . , |Cluster|]. To ensure a student can only be
sectioned to a single course configuration, we define an auxiliary variable for
each pair configuration-cluster of students. The variable is denoted as conf configid ,
where id ∈ [1, . . . , |Cluster|], config ∈ Configco and co ∈ Co.

Each cluster of students id must be enrolled in exactly-one configuration of
each course, co ∈ Cos , and thus we add the clause:

∑

config∈Configco

conf configid = 1 . (17)

To ensure that the class capacity is not exceed, we add for each class c:
∑

id∈[1,...,|Cluster|]
|id| × sc

id ≤ limc. (18)

A cluster of students id enrolled in a class c must be enrolled in class parentc:

¬sc
id ∨ sparentc

id . (19)

Finally, we need to ensure that a cluster of students id is enrolled in exactly-
one class of each part of a single configuration of the course co. Therefore, for
each cluster of student id and for each pair of two classes ci, cj in the same
ci , cj ∈ Cpart where part ∈ Partsconfig , we add:

¬conf configid ∨ ¬sciid ∨ ¬scjid . (20)

For each cluster of students and for each part ∈ Partsconfig we add:

¬conf configid ∨ sciid ∨ . . . ∨ s
c|Cpart |
id . (21)

The conflicting schedule of classes attended by the same cluster of students
is represented by a set of weighted soft clauses. For each cluster of students id
enrolled in two classes ci, cj with overlapping time:

¬sci
id ∨ ¬s

cj
id ∨ ¬swci

cj ∨ ¬sdci
cj ∨ ¬h

hourci
ci ∨ ¬h

hourcj
cj . (22)

3.3 Disruptions

In this work we consider the following disruptions: invalid time and invalid room.
These disruptions reduce the domain of a specific class c in terms of available
time slots or rooms. Disruptions in the students enrollments would only cause
changes in the student sectioning part. The problem definition has the underlin-
ing assumption that all the rooms in the domain of class have enough capacity
for the students attending. As our original solutions are sub-optimal we do not
consider disruptions in the enrollments.
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Course
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new timetable

Disruptions
GenerationPre-processing

problem
instance

original
timetable

Fig. 1. Algorithm schema to solve university timetabling problems subject to
disruptions.

Invalid Time: The time slot t is no longer available for class c:

¬ttc. (23)

Invalid Room: The room r is no longer available for class c:

¬rr
c . (24)

When recovering from disruptions we apply lexicographic optimization with
two criteria: (i) the HD and (ii) the overall quality of the solution (computed
based on the four criteria defined above). This way we can take advantage of the
disruption to improve the quality of the solution.

4 Experimental Evaluation

In this section, we discuss the main computational results obtained. First, we
describe the setup used to validate our approach. Next, we discuss our results
for both university timetabling problems and MPP.

4.1 Experimental Setup

The evaluation was performed using the runsolver tool [24] with a time out
of 6,000 s. Runsolver was run on a computer with Fedora 14, with 32 CPUs
2.6 GHz and 126 Gb of RAM. To validate our approach, we used the benchmark
obtained from ITC-2019 [3], which is divided into three groups (early, middle,
late). The goal of the competition was to find the best solution for these instances
with no time or memory limits. The organizers provided an validation tool1,
which we used to validate the correctness of our approach.

The proposed solution was implemented in C++, using the TT-Open-
WBO-Inc [25,26]2 MaxSAT solver. The solver was configured to use lin-
ear search with the clusters algorithm [27]. Moreover, a lexicographic opti-
mization criterion [28] was used. Exactly-one constraints were encoded into
CNF through the ladder encoding [29]. PB constraints were encoded to
CNF using the adder encoding [30]. Our implementation is available at
github.com/ADDALemos/MPPTimetables3.
1 https://www.itc2019.org/validator.
2 TT-Open-WBO-Inc won the Weighted Incomplete category at MaxSAT Evaluation
2019. The results are available at https://maxsat-evaluations.github.io/2019.

3 We use the RAPIDXML parser which is available at rapidxml.sourceforge.net/.

https://github.com/ADDALemos/MPPTimetables
https://www.itc2019.org/validator
https://maxsat-evaluations.github.io/2019
http://rapidxml.sourceforge.net/
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Table 1. Data sets per university (instances sorted by # of variables).

|C| Avg.
|Rc|

Avg.
|Pc|

|S| (k) #MaxBreak #MaxBlock # Var. (k)

yach-fal17 417 4 43 1 0 0 19

nbi-spr18 782 4 38 2 0 0 35

tg* Avg. 693 11 24 0 0 0 42

Median 693 11 24 0 0 0 42

mun-f* Avg. 743 4 44 1 0 3 45

Med. 700 4 30 1 0 2.5 38

mary* Avg. 916 14 12 4 0 0 47

Med. 916 14 12 4 0 0 47

lums* Avg. 494 26 43 0 0 0 82

Med. 494 26 43 0 0 0 82

bet* Avg. 1,033 25 23 3 24 19 140

Med. 1,033 25 23 3 24 19 140

pu* Avg. 3,418 12 33 28 16 0 196

Med. 1,929 12 30 31 17 0 125

muni-pdf* Avg. 2,586 15 53 4 0 13 374

Med. 2,526 17 56 3 0 10 373

agh* Avg. 1,955 34 89 3 15 0 380

Med. 1,239 10 75 2 14 0 340

iku* Avg. 2,711 25 34 0 0 0 1,050

Med. 2,711 25 34 0 0 0 1,050

Table 1 shows the different characteristics of the instances. One can see that
the instances are distinct from each other. Instances from iku* are the largest
in terms of classes. However, they do not have students or MaxBlock/MaxBreak.
They have one order of magnitude more variables than the next largest instance
(despite not having students). The muni-f* instances have a particular small
search space in terms of possible rooms per class (only 4).

Figure 1 illustrates the process of solving the university timetabling prob-
lem subject to disruptions. The process starts with a problem instance and
a timetable, and ends when a new feasible timetable is found. Each problem
instance is pre-processed before generating the encoding. Our approach relies on
two pre-processing methods: (i) identification of independent sub-sets in terms
of courses; and (ii) merging students with exactly the same course enrollment
plan. Method (i) divides the problem into self-contained sub-problems, while
not removing any solution. Method (ii) was already discussed before (Section 3)
and it may remove the optimal solution by not allowing the assignment of an
individual student to a given class.
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Fig. 2. (a) A comparison of the number of hard constraints versus CPU time, in sec-
onds (log scale), for each instance. The dotted line represents the time limit. (b) A
comparison of the CPU time per disruption scenario and university.

For each instance, we generated 50 different disruption instances. As our
space is limited, we only show the results for the disruptions that are more likely
to occur [14,15]. The disruptions were randomly generated following a uniform
distribution with a probability of 21% and 25% for invalid time and invalid room,
respectively. These percentages represent the probability of an assignment being
invalid. These values were obtained by the academic office of our university, and
applied to the ITC-2019 benchmark instances.

4.2 Computational Results

First, we discuss the results for the university course timetabling without sub-
jecting it to disruptions. Next, we discuss the results for the MPP.

University Course Timetabling. The success of our approach is attested
by having been ranked among the five finalists of the ITC-2019 competition.
The creation of clusters has a significant impact on the number of variables. On
average, one can reduce the number of variables relating to students up to 15%.

We are able to find a solution within limit in 20 out of 30 instances. However,
the solver was not able to prove optimality within the time limit, on any of the
instances considered in this paper. Note that, for most instances, the solver
requires only a short amount of time to produce the best solution.

Figure 2(a) compares the number of hard constraints generated by the CNF
encoding and the CPU time needed to find the best solution for each instance.
One can see that most of these instances have a larger number of hard con-
straints. Most of them actually exceed in two orders of magnitude more con-
straints than the others (top right corner of Fig. 2(a)). Most of these constraints
result from the MaxBlock and MaxBreak constraints.

A large contributing factor for these results is the size of |Pc| and |Rc| (see
Table 1). In most cases, a larger size of these sets causes the instance to be harder
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to solve. In these cases, more options do not always mean more solutions. The
lums* instances are an exception.

Minimal Perturbation in University Timetabling. Our MaxSAT approach
was compared with a modified integer programming approach based on [14]. The
results showed that the integer programming approach is able to find the optimal
solution for the MPP but only to a subset of instances compared to those solved
by the MaxSAT approach. Furthermore, the MaxSAT approach is much faster.

Our approach is able to find feasible solutions to all disruptions tested. More-
over, the solver is able to find an optimal solution for all disrupted instances.
Despite the fact that the disruptions only add new constraints, one can occa-
sionally improve the cost of the solution. This can be explained by the fact that
our original solutions are sub-optimal. Otherwise, the new solution could only,
in the best case scenario, be as good as the original one.

The results for the disrupted instances with invalid room and invalid time are
shown in Tables 2 and 3, respectively. The tables show the average and median
required CPU time to find an optimal solution, as well as the distance between
the two solutions (δHD) and the change in the global cost (δcost). It is important
to take into consideration that the value of δHD is directly linked to the size of
the instance due to the process of generating disrupted instances.

Figure 2(b) shows the CPU time, per university, for the instances with and
without disruptions. In most cases, less time is needed to solve a problem instance
subject to small disruptions than to solve the original problem instance. If the
disruptions cause no perturbations in the original solution, then almost no time
is needed (only parsing time). However, our disrupted instances were subject
to significant disruptions. In most cases, the solver is able to find the optimal
solution taking around the same time it took to find the best solution without
disruptions. The time spent to find a solution increases with the number of
perturbations required.
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Table 2. Results for the Invalid Room disruption. δHD measures the number of per-
turbations and δcost measures the change in the global quality of the solution.

Invalid Room

Avg. Time (s) Med. Time (s) Avg. δHD Med. δHD Avg. δcost Med. δcost

Early agh-fis-spr17 1,460.4 1,612.7 22 29 42 39

agh-ggis-spr17 2,321.2 2,210.8 11 8 0 1

mary-spr17 231.5 253 25 29 54 55

muni-fi-spr16 2,133.2 2,317.9 15 18 4 6

muni-fsps-spr17 812 999.1 13 18 0 0

muni-pdf-spr16c 4,114.8 4,101.2 42 38 26 21

pu-llr-spr17 142.5 143 35 36 6 6

tg-fal17 1,208.8 1,247 100 112 18 19

Middle agh-ggos-spr17 3,212.6 3,212.9 40 40 640 639

agh-h-spr17 679.9 699.9 19 20 57 60

lums-spr18 913.9 921.8 18 18 0 0

muni-fi-spr17 80.8 99 9 13 36 37

muni-fsps-spr17c 888.4 977.3 39 44 20 20

muni-pdf-spr16 1,354.5 1,444.1 89 94 1,335 1,336

nbi-spr18 3,701.7 3,781 14 13 33 35

yach-fal17 415.56 420 56 66 84 86

Late lums-fal17 999.9 1,000.2 20 20 0 0

mary-fal18 788.9 812.1 20 24 40 42

tg-spr18 813.8 888 5 8 100 100

muni-fi-fal17 248.9 250.1 9 10 36 30

As one can see in Fig. 2(b), the invalid room disruptions are, in most cases,
easier to sort out than invalid time disruptions. The CPU time is smaller since
fewer perturbations are needed. The reduction in time can be also explained by
the fact that a smaller number of hard constraints are, in fact, related to rooms.
The solutions found are, usually, closer to the original one. This can be explained
by the fact that most instances have fewer rooms than time slots available.

The muni-f* instances are, in most cases, the most difficult instances to solve
after invalid room disruptions. This can be explained by the fact that these
instances are very tight in terms of room space. On average, these instances only
have 4 possible rooms by class versus an average of 14 in the other instances.

To evaluate the quality of the fittings the following metrics were defined.
Root mean square error (RMSE) has a range from 0 to ∞, where the best fit
model has a value closer to zero. Coefficient of determination (CD) has a range
between 0 and 1, where the best fit model has a value closer to 1. To perform
the fitting, we used the Microsoft Excel Solver [31].

Figure 3(a) shows the relation between the room domain size on δHD. The
RMSE of the fit function is 0.04. The CD is 0.95. Note that, for fairness we
normalized the value of δHD. The normalization simply takes into account the
number of disruptions generated to the instance (δNHD).
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Table 3. Results for the Invalid Time disruption. δHD measures the number of per-
turbations and δcost measures the change in the global quality of the solution.

Invalid Time

Avg. Time (s) Med. Time (s) Avg. δHD Med. δHD Avg. δcost Med. δcost

Early agh-fis-spr17 1596.22 1711.1 5001 5003 4 6

agh-ggis-spr17 2358.2 2100.4 4 3 0 3

mary-spr17 381.2 380.1 0 4 0 6

muni-fi-spr16 1784.2 1794.2 16 18 0 0

muni-fsps-spr17 212.4 218.4 45 46 0 0

muni-pdf-spr16c 2992.1 3001.2 6 6 4 4

pu-llr-spr17 342.6 356 122 126 10 10

tg-fal17 1408.7 1484 2021 2070 25 25

Middle agh-ggos-spr17 5465.8 5466.1 92 93 276 139

agh-h-spr17 919.1 920.9 97 98 290 289

lums-spr18 961 978.8 6446 6436 0 0

muni-fi-spr17 40.12 39 144 140 433 423

muni-fsps-spr17c 500.3 498.8 137 136 0 0

muni-pdf-spr16 1035.3 1030 636 630 6363 6364

nbi-spr18 3803.8 3991.1 164 186 3284 3289

yach-fal17 112.56 111 100 100 0 4

Late lums-fal17 1085.58 1100.1 6777 6787 0 0

mary-fal18 800.12 812.1 269 270 807 900

tg-spr18 933.2 934 568 559 1704 1705

muni-fi-fal17 149.2 140.2 101 108 50 51

The lums* instances are the ones that have the largest δHD when tested
subject to invalid time disruptions (see Table 3). This fact can be explained by
the large number of constraints forcing the classes to be in the same allocation
slot (SameWeek, SameTime, SameDay and SameStart). These constraints force
a chain of perturbations for a single disruption. Figure 3(b) shows the relation
between of the number of classes involved in constraints of type Same on the
δHD. The RMSE of the fit function is 131.8. The CD is 0.11.

5 Conclusion and Future Work

This paper discusses the real-world problem of solving university course
timetabling problems which can be subject to disruptions. We propose a
MaxSAT encoding to solve course timetabling and student sectioning problems.
To validate our approach, we used the ITC-2019 benchmark. The approach is
able to solve two thirds of the benchmark instances within the time limit of
6,000 s. Moreover, the proposed solution is able to efficiently solve them after
the occurrence of the most common disruptions reported in the literature.

As future work, we recommend extending this work to explore the incremen-
tal nature of MPP. The application of an incremental algorithm would, in theory,
reduce CPU time bypassing the repetition of decisions during the search for a
feasible solution. Furthermore, one can study the performance of this implemen-
tation using different SAT solvers.
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Abstract. Despite the significant progress made in scheduling in the
past years, industrial problems with several hundred tasks remain
intractable for some variants of the scheduling problems. We present
techniques that can be used to leverage the power of constraint pro-
gramming to solve an industrial problem with 800 non-preemptive tasks,
90 resources, and sequence-dependent setup times. Our method involves
solving the traveling salesperson problem (TSP) as a simplification of
the scheduling problem and using the simplified solution to guide the
branching heuristics. We also explore large neighborhood search. Exper-
iments conducted on a dataset provided by our partner from the textile
industry show that we obtain non-optimal but satisfactory solutions.

Keywords: Multi-resource · Scheduling · Constraint programming ·
Traveling salesman problem

1 Introduction

Nowadays, most textiles are mass-produced using automated looms. In the con-
text of the fourth industrial revolution [7,8], the textile industry seeks to expand
the automation to planning and scheduling tasks. While recent progress made
in constraint programming allows tackling many NP-Hard scheduling problems,
the size of the scheduling instances that can be solved for some variants of the
problem remain small compared to what the industry needs. It is common to
observe industrial instances with 800 tasks and limited resources. In this context,
constraint programming can still be used to obtain good, but not optimal, sched-
ules. However, extra work on branching heuristics and the use of local search is
often required to obtain satisfactory results.

We present a study case of a scheduling problem encountered by our indus-
trial partner, a textile company. More than 800 tasks need to be scheduled over
90 automated looms. A team of technicians needs to set up the looms before
starting new tasks. The duration of each setup depends on the tasks that pre-
cede and succeed the setup and no more setups than technicians should be
simultaneously scheduled.

We explain how we succeed in obtaining good, but possibly non-optimal,
solutions for large instances. We achieve this goal by solving a simplification of
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the problem and using the simplification solution to find better solutions to the
non-simplified problem. We also use a large neighborhood search to improve the
solution. Note that similar problems were studied in the literature [4], but the
approach to solve the problem relies on different optimization techniques such
as Mixed Integer Programs.

The paper is divided as follows. Section 2 presents the preliminary con-
cepts about constraint scheduling, the connection between scheduling with setup
times and the traveling salesman problem (TSP), and the large neighborhood
search. Section 3 formally introduces the industrial scheduling problem. Section 4
presents the mathematical models. Section 5 shows how to solve the models.
Section 6 presents the experimental results. Finally, Sect. 7 concludes this work.

2 Background

2.1 Constraint Scheduling

We present the main components of common scheduling problems. The actual
industrial scheduling problem we will solve is formally defined in Sect. 3.

A scheduling problem is composed of a set of tasks I (or activities) that need
to be positioned on a time line. A task i ∈ I has for parameters its earliest
starting time esti, its latest completion time lcti, a processing time pi, a due
date di, and a resource consumption rate hi also called height. We consider non-
preemptive tasks, i.e. that when a task starts, it executes for exactly pi units of
time without interruption. A task must start no earlier than its earliest starting
time and complete no later than its latest completion time. A task that completes
after its due date incurs a penalty that depends on the objective function.

A cumulative resource r has capacity Cr. Multiple tasks can execute on a
cumulative resource r as long as the sum of their heights is no greater than Cr.
By fixing Cr = hi for all tasks i, we obtain a disjunctive resource that can only
execute one task at a time. On such a resource, it could happen that a setup
needs to be performed between the execution of two tasks. The setup time ti,j
is a minimum lapse of time that must occur between the completion of task i
and the starting time of task j, should task i executes before task j. The setup
times satisfy the triangle inequality ti,j + tj,k ≥ ti,k.

Constraint programming can be used to solve scheduling problems. One can
define a starting time variable Si with domain dom(Si) = [esti, lcti −pi]. The
constraints Cumulative([S1, . . . , Sn], [p1, . . . , pn], [h1, . . . , hn], Cr) or
Disjunctive([S1, . . . , Sn], [p1, . . . , pn]) ensures that the cumulative or disjunc-
tive resource is not overloaded. Extra constraints can easily be added to the
model such as a precedence constraint Si + pi + ti,j ≤ Sj that forces a task i to
complete before a task j can start.

Combining the concepts presented above results in a large variety of schedul-
ing problems. For instance, the Resource-Constrained Project Scheduling Prob-
lem (RCPSP) contains cumulative resources and non-preemptive tasks subject to
precedence constraints. Constraint solvers can find optimal solutions to instances
of the RCPSP with 120 tasks [15]. However, with setup times, constraint solvers
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can only solve instances up to 120 tasks but never to optimality [1]. In order
to improve the performances, search strategies and branching heuristics can be
provided to the solver. It is also possible to use the constraint solver within a
large neighborhood as explained in Sect. 2.2.

2.2 Local Search

A local search is a heuristic method that starts from a suboptimal and possibly
unfeasible solution and tries to improve its feasibility and its objective value. At
each iteration, an operator is applied, and the solution is modified. If the modified
solution becomes more feasible or more optimal, it becomes the current solution.
The operator modifies the values of a subset of the variables in the problem.
When a large number of variables are modified, we say that the heuristic method
is a large neighborhood search.

A constraint solver can be used as a large neighborhood search operator.
One takes the current solution and forces a subset of variables to take the same
values as the current solution. The remaining variables are let free. The result
is a constraint satisfaction problem (CSP) with fewer variables to assign that
is generally easier to solve. The solution of this CSP becomes the new current
solution that can be further improved by selecting a different subset of variables.

There exists various strategies to select which variables to reassign in a
scheduling problem. One could randomly select a fixed percentage of the tasks
to reschedule [9]. It is also possible to select a time window from which all tasks
whose execution is contained in this window are rescheduled [14]. Another option
is to fix some precedences observed in the current solution between a subset of
pairs of tasks and let the remaining pairs of tasks free from any precedence [13].
When minimizing the makespan in scheduling problems of 300 tasks, these tech-
niques can significantly improve the objective function [5].

2.3 The Traveling Salesperson Problem

The traveling salesperson problem (TSP) is a classic optimization problem. In
its directed variant, we have n cities and a distance matrix D such that Di,j is
the distance to travel from i to j. The matrix satisfies the triangle inequality
Di,j +Dj,k ≥ Di,k. The salesperson plans on finding the shortest circuit visiting
each city exactly once.

There is a strong connection between the TSP and the scheduling problem
with setup times. For a scheduling problem with n tasks I and setup times
ti,j , one creates an instance of the TSP with n + 1 cities and a distance matrix
Di,j = ti,j for i, j ∈ I and Di,j = 0 otherwise. The extra city marks the begin-
ning (and the end) of the schedule. The salesperson visits the cities (tasks) in
order to minimize the sum of the distances (setup times). Figure 1 illustrates the
reduction.

The solver Concorde [3] represents the state-of-the-art for solving the TSP.
It can find and prove optimal solutions to instances with 85,000 cities. As it was
designed solely for this type of problem, it cannot handle additional constraints.
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Fig. 1. Example of a scheduling problem with setup times reduced to a TSP problem.
The node 0 is the dummy node. Dotted lines have null costs. The blue lines represent
the optimal schedule: C, A, B, D. (Colour figure online)

For example, if the tasks have earliest starting times and latest completion times,
the scheduling problem reduces to a TSP with time windows [11]. The solver
Concorde cannot solve such problems.

Solving the TSP can help solving scheduling problems. For instance, Tran
and Beck [17] use the TSP as the slave problem in a Benders decomposition to
solve a problem with resource allocation and setup times.

3 Problem Description

We describe the industrial problem specified by our industrial partner. The
parameters introduced in this section are summarized in Table 1. A task con-
sists of weaving a textile on a loom. We therefore have a set of tasks I and a set
of looms L. Each task i ∈ I is pre-assigned to a loom li and has for processing
time pi. A loom l ∈ L becomes available at time al. Prior to this time, the loom
is busy terminating a task not in I that can neither be interrupted nor resched-
uled. Each task i ∈ I has a style zi, a due date di, and a priority ri. We wish to
minimize the total tardiness weighted by priority, i.e.

∑
i∈I ri ·max(0, Si+pi−di)

where Si is the starting time of the task. The scheduling horizon spans from time
0 to time H. In practice, we have a horizon of 240 h with a time step of 15 min
resulting in H = 240 × 60

15 = 960.

Major Setups: Each loom l ∈ L has an initial configuration cinitl and a final
configuration cfinall . If cinitl �= cfinall then there is a major setup of duration pmajor

l

to change the configuration of the loom l. Only one major setup is possible
during the scheduling horizon. A specialized worker is selected from a pool W to
achieve this major setup. A task i ∈ I needs to be executed on a loom li when
it has configuration ci ∈ {cinitli

, cfinalli
}. If ci = cinitli

, the task needs to be executed
prior to the major setup and after the major setup if ci = cfinalli

.

Minor Setups: A minor setup needs to be performed between two consecutive
tasks i, j ∈ I on a loom. While a major setup entails a configuration change, a
minor setup only gets the loom ready for its next job. This setup is decomposed
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Fig. 2. Example of scheduling on two looms with one of each resource.

into several steps, each executed by a person of a different profession in P which
is disjoint from the set of workers W . The professions are sorted in order of
execution and labeled with integers from 1 to |P |, i.e. that the first step of a
minor setup is executed by profession 1, the second step is executed by profession
2, and so on. The order of execution is the same for all minor setups. The person
of the profession p ∈ P needs ti,j,p time to execute his/her part of the minor
setup between task i ∈ I and j ∈ I. There are qp people of the profession p.
Consequently, no more than qp minor setup steps can be simultaneously executed
by the people from the profession p.

Figure 2 shows a schedule on two looms with a worker of each category. We
see conflicts delaying minor setups on the second loom.

Table 1. Parameters of the problem

I: Set of tasks

L: Set of looms

P : Set of professions for minor setups

W : Set of specialized workers for major setups

ri: Priority of task i

di: Due date of task i

zi: Style of task i

li: Loom assigned to task i

cinitl : Initial configuration of loom l

cfinall : Final configuration of loom l

ci: Required configuration for task i

pi: Processing time of task i

pmajor
l : Major setup time of loom l

ti,j,p: Minor setup time between tasks i and j for the profession p

al: Earliest available time of loom l

qp: Number of workers of the profession p available for the minor setups
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Table 2. Variables and their domains

Variable Domain Description

Smajor
l [al, H) Start of the major setup on loom i

Si [ali , H) Start of task i

Sminor
i,p [ali , H) Start of the minor setup for profession p

between task i and its successor

Ni {j ∈ I | lj = li} ∪ {σli} Next task after task i

Fl {i ∈ I | li = l} First task on loom l

T [0, ∞) Total tardiness weighted by priority

4 Models

We present an optimization model that is later submitted to a constraint solver.
The variables and domains are summarized in Table 2. Constraints are stated
from (1) to (11).

There are three types of events to schedule: tasks, major setups, and minor
setups between a task and its successor. Let Si ∈ [al,H), Smajor

l ∈ [ali ,H), and
Sminor

i,p ∈ [ali ,H) be their starting time variables for tasks i ∈ I, loom l ∈ L, and
profession p ∈ P . Their domains prevent the events from starting before their
respective loom l becomes available.

The variable Fl encodes the first task to execute on loom l. The variable Ni

encodes the task that succeeds task i on the loom. If i is the last task, its value is
set to a sentinel. There is one sentinel per loom: σ = {σ1, . . . , σ|L|}. The variable
Ni is also defined when i ∈ σ is a sentinel. The next task of a sentinel is the first
task on the next loom. Consequently, the vector N is a permutation of I ∪ σ
with a single cycle.

The model contains the constraints (1) to (11). The objective function (1)
minimizes the tardiness of the tasks, weighted by priority. Constraints (2) and (3)
ensure that a task requiring its loom’s initial configuration executes before the
major setup or else waits after the major setup to execute. Constraint (4) ensures
that the first step of the minor setup following task i starts once task i is com-
pleted. Constraint (5) is a precedence constraint over the different steps of a
minor setup. Constraint (6) makes the task Ni start immediately after the minor
setup is completed. Indeed, once the loom is ready, there is no need to postpone
the task. Constraints (7) and (8) ensure that the last task of a sentinel on a
loom is the first task on the next loom. The loom that succeeds the last loom
is the first loom. That creates a circuit visiting each task exactly once. This
idea of a circuit is inspired from Focacci et al. [6] and led to the addition of
constraint (9) to the model. This constraint [10] offers a strong filtering on the
next variables N .

The model contains global constraints specialized for scheduling problems.
We use the notation [f(x) | x ∈ X] to represent the vector [f(x1), . . . , f(xn)] for
X = {x1, . . . , xn}. The constraint (10) limits to qp the number of simultaneous
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minor setups accomplished by a person of the profession p. The constraint (11)
limits to |W | the number of simultaneous major setups. The constraint (12)
breaks a symmetry by forcing tasks producing the same product style on the
same loom to execute in order of due dates.

Minimize T subject to:

Minimize
∑

i∈I
ri · max(0,Si + pi − di) (1)

ci = cinitli =⇒ Si + pi ≤ Smajor
Ai

∀i ∈ I (2)

ci �= cinitli =⇒ Smajor
Ai

+ pmajor
l ≤ Si ∀i ∈ I (3)

Si + pi ≤ Sminor
i,1 ∀i ∈ I (4)

Sminor
i,p+1 ≥ Sminor

i,p + ti,Ni,p ∀i ∈ I,∀p ∈ P \ {|P |} (5)

SNi
= Sminor

i,|P | + ti,Ni,|P | ∀i ∈ I (6)

Nσl
= Fl+1 ∀l ∈ [1, |L| − 1] (7)

Nσ|L| = F1 (8)

Circuit(N) (9)

Cumulative([Sminor
i,p | i ∈ I], [ti,Ni,p | i ∈ I], 1, qp) ∀p ∈ P (10)

Cumulative([Smajor
l | l ∈ L], [pmajor

l | l ∈ L], 1, |W |) (11)
Sa ≤ Sb ∀a, b ∈ I, za = zb ∧ la = lb ∧ da ≤ db (12)

5 Resolution

We present four methods to solve the model from the previous section. Some are
pure heuristics or are rules of thumb used in the industry. These methods are
either used as a point of comparison or are integrated as a branching heuristics
in the constraint solver.

5.1 The Greedy Method Based on Due Dates

The first method, denoted Greedy, consists of executing the tasks on a loom
in non-decreasing order of due dates. Ties are arbitrarily broken. If a resource
is unavailable to either execute the minor or major setup that precedes a task,
it delays the execution of the task until the resource becomes available and has
time to complete the setup.

While this method might return a sub-optimal solution, it is nevertheless a
rule of thumb used by people in the industry to generate an initial schedule that
can be improved later. It is also a point of comparison for other methods.
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5.2 The Circuit Method

The next approach denoted Circuit focuses on the Circuit constraint. We
want to find the circuit that minimizes the sum of the setup times. While this
objective function is not the weighted tardiness, it is correlated. Indeed, shorter
setups lead to shorter idle times and therefore earlier completion times.

We solve the TSP instance induced by the Circuit constraint using the
solver Concorde [3]. Concorde is quick to solve TSP instances, especially for
instances with fewer than 1000 cities. We sort the looms in non-decreasing
amount of time available to execute the minor setups, i.e. for each loom l ∈ L,
we compute H − al − ∑

i|li=l pi − pmajor
l . Loom by loom in the sorted order, we

assign their tasks in the same order found by Concorde. We delay the minor and
major setups until the resource is available. The resulting schedule minimizes
the amount of time spent by the workers on the setups without considering
tardiness.

5.3 The CP Method

The next approach denoted CP consists in coding the model with the MiniZ-
inc [12] language and submitting the model to the constraint solver Chuffed [2].

As a branching heuristics, we generate a template solution before the search
with either the method Greedy or Circuit. During the search, we choose a
next variable Ni that can be assigned to the same value as in the template
solution. That was implemented by declaring a vector B of Boolean variables
connected to the model with the constraints Bi = 1 ⇐⇒ Ni = N t

i where N t
i

is the successor of task i in the template solution. The heuristics branches on
the vector B by setting the variables to the value 1. This has for effect to set
Ni = N t

i . In case the value 0 is selected for Bi (for instance, after a backtrack),
that imposes the constraint Ni! = N t

i but this does not fix the variable Ni. Once
the variables in B are assigned, the solver chooses the starting variables of a
task, a minor setup, or a major set up with the smallest value in its domain
and assigns this variable to this smallest value. This has for effect to set all next
variables that were not already assigned to a value.

5.4 The LNS Method

The large neighborhood search, denoted LNS, starts with an initial solution
that could be, for instance, the solution obtained from the methods Greedy
and Circuit. It iteratively improves this solution by randomly selecting looms.
The CP method is then called to reschedule the tasks on these looms while
leaving the tasks on unselected looms untouched.

A note about our implementation. For each iteration, we generate a MiniZinc
data file that contains the execution time of the unselected tasks. The model has
unary constraints of the form Si = v to fix the variables to a value. A constraint
states that the objective value must improve over the best solution found so far.
We solve for satisfaction, i.e. we stop the search once we found an improving
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solution. An iteration of the LNS is given a timeout (we use 5 minutes) after
which, if no solution is found, we pass to the next iteration without changing the
current solution but by reseting 10% fewer looms. Whenever the solver returns
unsatisfiable, we reset 10% more looms until a solution is found or infeasibility
is proven (which implies that the current solution is optimal).

Since the time for compiling the MiniZinc code is significant and could be
avoided if the local search was directly implemented in C++ calling the Chuffed
solver, we do not count the MiniZinc compilation time in the solving time. The
search stops when the computation time, that excludes MiniZinc compilation
time, reaches a timeout.

In a context of a local search, we do not use the branching heuristics described
in Sect. 5.3 since this heuristics aims at finding a solution similar to a template
solution. In a local search, one rather wants to find a solution that is different
from the current one. We simply randomly assign the next variables N .

6 Experiments

6.1 Instances

Our industrial partner shared 4 instances with 571, 592, 756, and 841 tasks.
From each instance, we create a dataset of 10 instances by randomly selecting
10%, 20%, . . . , 100% of the tasks from the original instance. Once the tasks
are selected, this selection is used for all the tests and all the solving methods.
This allows to see how our algorithms scale with the number of tasks. The
number of looms |L| = 90, the number of professions |P | = 3 with quantities
[q1, q2, q3] = [5, 3, 2], and the number of workers |W | = 1 for the major setups
remains constant for all instances of all datasets.

6.2 Experimental Setup

The CP model1 was written in the MiniZinc language [12]. We use the solver
Chuffed [2] with the free search parameter [16]. The LNS method is implemented
in Python. We ran the experiments on a computer with the following configu-
ration: Ubuntu 19.10, 16 GB ram, Processor Intel(R) Core(TM) i7-6700K CPU
@ 4.00GHz, 4008 Mhz, 4 Cores, 8 Logical Processors.

6.3 Methodology

We solved all instances using the Greedy and Circuit method. For the CP
method, we tried three different branching heuristics: CP+Greedy assigns the
next variables according to the solution of Greedy, CP+Circuit uses the
solution from Circuit, and CP+Random randomly assigns the next variable
and uses restarts with a Luby sequence with a scale of 250.
1 The MiniZinc files are freely available on Claude-Guy Quimper’s web site or directly

at http://www2.ift.ulaval.ca/∼quimper/publications/CPAIOR2020Submission.zip.

http://www2.ift.ulaval.ca/{~}quimper/publications/CPAIOR2020Submission.zip
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For the methods based on CP, we tried the three configurations with LNS
and without LNS. At each iteration, 50% of the looms are rescheduled. A specific
iteration is given a timeout of 5 min to improve the solution.

All methods are given a timeout of 15 min. As the search goes, the CP
methods (with or without LNS) keeps improving their best solution. We keep
track of the objective value and time of the solutions as we find them during the
search.

6.4 Results

Figure 3 shows the performances of the methods Greedy and Circuit. Each
point represents a solution obtained for an instance: on the x-axis is the number
of tasks in the instance and on the y-axis is the objective value of the solution
returned by the method. The color indicates after how much time (in seconds)
the solution was found.

As expected, instances with a larger number of tasks get a larger weighted
tardiness. Indeed, since the resources and the due dates remain the constant
among all instances, it gets harder to deliver products on time if we increase the
number of orders without increasing the resources or delaying the due dates.

Both the methods Greedy and Circuit solve every instance in less than a
second. The quality of the solution is not competitive with any method using
CP. However, we will see that Greedy and Circuit are nevertheless useful to
guide the branching heuristics of the CP solver.
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Fig. 3. Comparison between Circuit, Greedy, and one of the methods based on CP
(Color figure online)



344 A. Mercier-Aubin et al.

CP+Greedy CP+Random CP+Circuit

W
ith

o
u
tL

N
S

W
ith

L
N

S

Number of Tasks

8
0

1
4
0

2
0
0

2
6
0

3
2
0

3
8
0

4
4
0

5
0
0

5
6
0

W
e
ig

th
e
d
 T

a
rd

in
e
ss

0

1500000

3000000

4500000

6000000

0

1500000

3000000

4500000

6000000
8
0

1
4
0

2
0
0

2
6
0

3
2
0

3
8
0

4
4
0

5
0
0

5
6
0

8
0

1
4
0

2
0
0

2
6
0

3
2
0

3
8
0

4
4
0

5
0
0

5
6
0

0

100

200

300

400

500

600

700

800

900

Time(s)

Fig. 4. Comparison of methods based on CP

Figure 4 presents a comparison of the six methods based on CP. The left,
middle, and right graphs make the branching heuristics vary. It is either based
on the Circuit, Greedy, or the random heuristics. The graphs on the top use
the standard CP search while the graphs at the bottom use the LNS. For the
LNS, the initial solutions are also based on Circuit, Greedy, and Random.
For CP+Circuit+LNS and CP+Greedy+LNS, the next variables Ni are set
in the initial solution according to the precedences in the solutions generated
by Circuit and Greedy. For CP+Random+LNS, the initial solution is com-
pletely random.

The first thing to analyze on Fig. 4 is how the methods behave on instances
with more than 500 tasks. The methods CP+Random CP+Random+LNS
are unable to solve all instances while other methods do. The CP+Greedy
method is more stable than CP+Random while CP+Random obtains bet-
ter solutions. CP+Circuit and CP+Circuit+LNS outperform CP+Random
and CP+Random+LNS in both stability and objective value.

Globally, CP+Circuit and CP+Circuit+LNS offer the solutions with the
smallest weighted tardiness. This might look surprising at first sight because
Circuit aims at minimizing the amount of setups while Greedy directly mini-
mizes tardiness. However, the solution that Circuit generates is optimal accord-
ing to the amount of setup while the Greedy algorithm only returns an approx-
imation for the weighted tardiness. Guiding the search towards a solution that is
optimal, even according to a different but correlated criteria, provides the best
solution.

The third observation is that CP+Circuit+LNS generally outputs better
solutions than CP+Circuit. The same goes for CP+Greedy+LNS compared
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to CP+Greedy. While other methods perform better with our homemade LNS,
the random heuristic offers poor results.

Finally, we observe that using LNS is beneficial. The poor results of the LNS
on the random heuristic is most likely due to a bad initial solution.

7 Conclusion

We presented a model to solve an industrial instance presented by our partner.
We showed how a solution from a simplification (the TSP) can guide the search
to obtain better solutions. Our model is now able to find solutions to the expected
range of tasks. The integration of our program to the operations planning team
is in progress.
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Abstract. We propose a polyhedral cutting plane procedure for com-
puting a lower bound on the optimal solution to multi-agent path finding
(MAPF) problems. We obtain our cuts by projecting the polytope rep-
resenting the solutions to MAPF to lower dimensions. A novel feature
of our approach is that the projection polytopes we used to derive the
cuts can be viewed as ‘templates’. By translating these templates spatio-
temporally, we obtain different projections, and so the cut generation
scheme is reminiscent of the template matching technique from image
processing. We use decision diagrams to compactly represent the tem-
plates and to perform the cut generation. To obtain the lower bound, we
embed our cut generation procedure into a Lagrangian Relax-and-Cut
scheme. We incorporate our lower bounds as a node evaluation func-
tion in a conflict-based search procedure, and experimentally evaluate
its effectiveness.

Keywords: MAPF · Projection cuts · Template polytopes · Decision
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1 Introduction

Multi-agent path finding (MAPF) is the problem of finding paths for individual
robots (agents), given a start and end vertex for each robot on some layout
(graph), such that the paths are spatio-temporally conflict-free and an objective
resembling travel costs is minimized. MAPF has found many applications in
warehouse logistic systems [19] and robotics. MAPF is known to be NP-Hard to
solve optimally on general graphs [21], nonetheless many techniques have been
proposed and they come in different flavors.

Current approaches for MAPF can be broadly classified into search based
methods [15,17], and solution methods that rely on polyhedral techniques such
as the integer programming formulation of [20], and the branch-cut-price method
of [12]. A significant challenge for either of these approaches is in developing
strong lower bounding techniques. Such techniques are needed to prune search
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regions that do not lead to an optimal solution. From the point of view of search
based methods, this translates into developing strong admissible heuristics. For
polyhedral techniques, strong lower bounds are typically obtained by developing
cutting planes that tighten the linear description of the solution space.

In this paper, we propose a cut generation scheme that can be incorporated
into search based methods for MAPF as well as polyhedral approaches. Incor-
porating cuts into techniques that use polyhedral approaches is common, but
incorporating cuts into search based methods is rare and the focus of this paper.

Contributions. Main contributions of this work are 1) a new polyhedral app-
roach for MAPF based on lower-dimensional ‘templates’ that can be translated
spatio-temporally over the input graph, 2) the development of a cut generation
scheme from these templates, which utilizes a decision diagram representation,
3) a Lagrangian Relax-and-Cut procedure to compute the lower bound, and
4) incorporating the resulting lower bound as a node evaluation function in a
conflict-based search (CBS) procedure. Experimental evaluation shows that our
lower bounds can be very effective when the MAPF problem is more constrained.

2 MAPF Problem Description

We consider the makespan-constrained version of the MAPF problem in this
paper. We are given an undirected graph G = (V,E), a set of N robots R =
{r1, ..., rN}, and a makespan upper bound T ∈ Z+, where Z+ represents the set
of positive integers. Corresponding to each robot ri ∈ R, we are given a start
vertex si ∈ V , and goal vertex gi ∈ V . The task is to find a path for each robot,
such that the robot paths do not conflict while minimizing the cumulative sum
of path costs. A path p can be viewed as a function p : {0, 1, ...,T} → V , where
p(t) returns a vertex in V corresponding to time t. If P = {p1, ..., pN} is a set of
robot paths with 1 path for each robot, P is feasible to the MAPF problem iff:

1. pi(0) = si and pi(T) = gi, ∀i ∈ {1, 2, ...,N}.
2. For each robot ri ∈ R and for all t ∈ {0, 1, ...,T − 1}, we require pi(t) =

pi(t + 1), or (pi(t), pi(t + 1)) ∈ E. The robot either stays in its current vertex
or moves to a neighbor.

3. To prevent vertex collisions, we require that pi(t) �= pj(t), for all pairwise
distinct i, j ∈ {1, ...,N} and time t ∈ {0, 1, ...,T}.

4. To prevent edge collisions, there should not exist a pair of robots ri, rj and
time t ∈ {0, 1, ...,T − 1} such that, pi(t) = pj(t + 1) and pi(t + 1) = pj(t).

We refer to any path pi satisfying 1 and 2 as a start-end path for robot ri. The
cost of start-end path pi is given by ci(pi) =

∑T−1
t=0 ci(pi(t), pi(t + 1)), where

ci(pi(t), pi(t + 1)) =

{
0, if pi(t) = pi(t + 1) = gi

1, otherwise
(1)

Equation (1) assigns a cost of 0 if the robot is waiting at its goal vertex, else
assigns a cost of 1. The goal of MAPF is to find a set of conflict-free robot paths
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p1, ..., pN that minimizes the objective
∑N

i=1 ci(pi). The cost function in (1)
slightly differs from the sum of completion times used in [9,13], where completion
time is the earliest time the robot reaches its goal and remains stationary until
time T at the goal vertex. We adopt the cost function shown in (1) to simplify
the presentation of template construction presented in a later section.

3 Integer Programming Model for MAPF

We next provide a multi-commodity flow based Integer Programming (IP) model
for the MAPF problem, similar to [20]. The IP model will be useful in deriving
valid inequalities for the lower bounding procedure we propose in later sections.
Below, for any n ∈ Z+ we will use the notation [n] to denote the set {1, 2, ..., n}.

The IP model will make use of the so-called “time expanded graph”. The time
expanded graph is an arc-weighted directed acyclic graph defined for each robot,
where the nodes can be partitioned into T + 1 layers, and arcs into T layers.
We shall denote the time expanded graph for robot ri by Fi(Ni, Ai). Denote the
nodes in layer t ∈ Z+ ∪ {0} by Ni(t). Corresponding to each vertex v ∈ V , there
exists a node in Ni(t) if the shortest path from si to v in G(V,E) passes through
at most t edges, and the shortest path from v to gi passes through at most T− t
edges. With a slight abuse of notation, we shall denote the node corresponding
to vertex v ∈ V in Ni(t) by vt

i . Throughout this paper, if a node from any of the
graphs in the set {Fi}i∈[N] is specified, we will assume that the vertex, time and
robot associated with that node can be deduced from our notation. Arcs in Ai

connect nodes between adjacent layers, with the tail of the arc emanating from
the node belonging to the lower indexed layer. Denote the arcs in level t by Ai(t).
If ut

i ∈ Ni(t) and vt+1
i ∈ Ni(t + 1), then there exists an arc (ut

i, v
t+1
i ) ∈ Ai(t) iff

u = v, or (u, v) ∈ E. We let ci(ut
i, v

t+1
i ) denote the weight of arc (ut

i, v
t+1
i ), where

ci(ut
i, v

t+1
i ) = 0 if u = v = gi, and 1 otherwise. There is a 1:1 correspondence

between start-end paths for robot ri and s0i − gTi paths in Fi(Ni, Ai).
In describing our IP model, we use the following notation. For any node

vt
i ∈ Ni(t), we denote δ+Fi

(vt
i) as the set of arcs in Ai whose tail is the node vt

i ,
and δ−

Fi
(vt

i) as the set of arcs in Ai whose head is the node vt
i . For any vertex

u ∈ V , we introduce the set V
t
(u) = {i ∈ [N]|ut

i ∈ Ni(t)} for representing vertex
collision constraints (CCs). For representing edge CCs, we define, for (u,w) ∈ E:

E
t
(u,w) = {(i, j) ∈ [N] × [N]|(ut

i, w
t+1
i ) ∈ Ai(t), (wt

j , u
t+1
j ) ∈ Aj(t), i �= j}

For each robot ri ∈ R, and each arc a ∈ Ai, we introduce a binary variable
x(a) ∈ {0, 1} to indicate whether robot ri traverses arc a in a feasible solution
to the MAPF problem. Let |A| =

∑
i∈[N]|Ai|, where |Ai| denotes cardinality of

set Ai. The 0–1 IP formulation for the MAPF problem is:
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minimize
x∈{0,1}|A|

N∑

i=1

∑

a∈Ai

ci(a)x(a) (2)

s.t.
∑

a∈δ+
Fi

(s0
i )

x(a) = 1, ∀i ∈ [N] (3)

∑

a∈δ−
Fi

(ut
i)

x(a) =
∑

a∈δ+
Fi

(ut
i)

x(a), ∀i ∈ [N], ∀t ∈ [T − 1],∀ut
i ∈ Ni(t) (4)

∑

i∈V
t
(u)

∑

a∈δ−1
Fi

(ut
i)

x(a) ≤ 1, ∀u ∈ V,∀t ∈ [T] (5)

x(ut
i, w

t+1
i ) + x(wt

j , u
t+1
j ) ≤ 1, ∀(u, w) ∈ E, ∀t ∈ {0, 1, ...,T − 1}, ∀(i, j) ∈ E

t
(u, w)

(6)

Equations (3) and (4) (a.k.a flow balance constraints) ensure that a start-end
path is chosen for every robot, while Eqs. (5) and (6) prevent vertex and edge
collisions respectively.

4 Lower Bounds from Cut Generation

We provide lower bounds to the MAPF problem using a Lagrangian relax and cut
(LRC) scheme [8] that makes use of a cut generation procedure. In this section
we describe our cut generating procedure, which will later be incorporated into
the Lagrangian relax and cut (LRC) scheme described in Sect. 5.

Let P denote the MAPF polytope as shown below:

P = conv(x ∈ {0, 1}|A||x satisfies (3) − (6)) (7)

where conv denotes convex hull. Given a x̄ ∈ {0, 1}|A| that violates some con-
straint in (5)–(6), we develop a cut generating procedure that outputs a cut
aTx ≤ b that strictly separates x̄ from P i.e. max

x∈P
aTx ≤ b < aTx̄.

The cuts generated by our procedure are a form of projection cuts. The idea
is to select a subset of arcs S ⊂ A, where assume |S| = n. We will construct
a polytope P (S) ⊂ R

n such that Projx(S)(P) ⊆ P (S), where x(S) denotes
the variables corresponding to the arcs in S, and Projx(S)(P) is the orthogonal
projection of P onto the space spanned by the variables in x(S):

Projx(S)(P) = {y ∈ R
n : ∃w ∈ R

|A|−n, s.t. (y, w) ∈ P} (8)

In order to generate a cut that separates x̄ from P we will output a face of P (S),
which separates Projx(S)(x̄) and P (S). Clearly, if P (S) is a tight relaxation for
Projx(S)(P), then the cut obtained will also be deep.
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Different choices for S give rise to different P (S), so different cuts separating
x̄ and P can be derived by varying S. From the perspective of projection cuts,
the collision avoidance constraints in Eqs. (5), (6) contain variables belonging to
a small spatio-temporal neighbourhood. For instance, if x̄ violates Eq. (6), then
Eqs. (6) can be viewed as a cut which separates Projx(S)(P) and Projx(S)(x̄),
where S = {(ut

i, w
t+1
i ), (wt

j , u
t+1
j )}. In this work, we will typically choose larger

spatio-temporal neighbourhoods for selecting the arcs in S. Consequently, the
cuts that are generated by our approach tend to be deeper.

On Selecting S for an Infeasible x̄: The choice of S for a given infeasible x̄ will
not be made arbitrarily. An arbitrary choice for S can lead to poor cuts, and
computing a good approximation to Projx(S)(P) is challenging. To specify S,
we first parameterize S by the sets R(S), T (S), L(S). R(S) ⊆ [N] is a set of
indices of robots, T (S) = {l, l + 1, ...,u} is a discrete interval where l,u ∈ Z+

and u < T. For each i ∈ R(S) and each time t ∈ T (S), let Lt
i(S) denote a set of

nodes in Ni(t). Denote L(S) = ∪
i∈R(S),t∈T (S)

Lt
i(S), S is defined as the set of all

incoming and outgoing arcs associated with nodes in L(S)

S = ∪
i∈R(S),t∈T (S)

∪
vt
i∈Lt

i(S)

(
δ+Fi

(vt
i) ∪ δ−

Fi
(vt

i)
)

(9)

W.l.o.g let x̄ contain a conflict between robots r1, r2 at time tc, and let us
denote the set of nodes from N1, N2 involved in the conflict by Zcf . Note that
if the conflict is a vertex conflict, then Zcf contains 2 nodes, while for an edge
conflict Zcf contains 4 nodes. We say that S is an appropriate selection for x̄
iff 1, 2 ∈ R(S), tc ∈ T (S) and Zcf ⊆ L(S) i.e. loosely speaking S contains arcs
relevant to the conflict present in x̄. We provide an example for S below.

Consider the set of robot paths for r1 and r2 shown in Fig. 1. Robot r1 moves
from location (3, 3) at time 4 to (4, 3) at time 5, while r2 moves from (4, 3) at
time 4 to (3, 3) at time 5, so we have an edge collision at time 4.

Fig. 1. One possible choice of S for the edge conflict between r1 and r2 is: R(S) =
{1, 2}, and T (S) = {3, 4, 5}. For all i ∈ [1, 2] and ∀t ∈ T (S), Lt

i(S) is set to nodes in
Ni(t) corresponding to all locations in the 3 × 3 grid centered at (3, 3) (highlighted in
yellow). S for our example can be obtained from the parameters specified by applying
Eq. (9). Clearly the arcs in the edge conflict are present in S. (Color figure online)
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Defining P (S): We retain as many relevant inequalities from the IP formulation
in Sect. 3 for defining P (S), thereby providing a tight relaxation for Projx(S)(P).

P (S) = conv (x(S) ∈ {0, 1}n|x satisfies (11) − (14)) (10)
∑

a∈δ−
Fi

(vt
i)

x(a) =
∑

a∈δ+
Fi

(vt
i)

x(a), ∀i ∈ R(S), ∀t ∈ T (S), ∀vt
i ∈ Lt

i(S) (11)

∑

j∈V
t
(v)∩R(S)

∑

a∈δ−1
Fj

(vt
j)

x(a) ≤ 1, ∀t ∈ T (S), ∀i ∈ R(S), ∀vt
i ∈ Lt

i(S) (12)

x(ut
i, w

t+1
i ) + x(wt

j , u
t+1
j ) ≤ 1,

∀t∈{l−1}∪T (S),∀(i,j)∈{(k,l)∈R(S)×R(S)|k �=l},

∀(u,w)∈{(p,q)∈E|(pt
i,qt+1

i ),(qt
j ,pt+1

j )∈S} (13)
∑

a∈S∩Ai(t)

x(a) ≤ 1, ∀i ∈ R(S), ∀t ∈ {l − 1} ∪ T (S) (14)

Equation (11) ensures flow balance for all nodes in L(S). Equation (12) prohibits
vertex collisions on nodes in L(S). Equation (13) prohibits edge collisions over
arcs in S. Equation (14) ensures no two arcs present in S and belonging to the
same arc layer in the time expanded graph of a robot are both simultaneously
selected. Clearly Eqs. (12) and (14) are implied from the MAPF IP formula-
tion, while Eqs. (11) and (13) are present in the MAPF IP formulation, hence
Projx(S)(P) ⊆ P (S).

Separating x̄ and P (S): Recall, we assumed that x̄ violates some constraint
from the set of Eqs. (5)–(6). Assuming we have selected an S that is appropriate
for x̄, then we know that some constraint in the set of Eqs. (12)–(13) must be
violated by x̄. So by the strict hyper-plane separation theorem, we know that
∃w ∈ R

n such that wTz < wTProjx(S)(x̄), ∀z ∈ P (S). We can obtain such a w
by solving the optimization problem CGLP in Eq. (15). V ert(P (S)) shown in
Eq. (16) refers to the vertices of polytope P (S).

CGLP : max
‖w‖2≤1

H(w), where H(w) = wT(Projx(S)(x̄)) − h(w), and (15)

h(w) = max
y∈P (S)

{wTy} ⇐⇒ max
v∈V ert(P (S))

{wTv} (16)

The objective in CGLP is a piece-wise concave function, so CGLP can
be solved using the well known projected sub-gradient ascent (PSGA) method,
shown in Algorithm1. For performing the maximization in line 3 of Algorithm1,
we require the vertices of P (S). Drawing inspiration from the works of [2,7,16],
in Sect. 7 we propose a compact representation for the vertices of P (S) in terms
of a decision diagram. The compact representation will enable us to perform
maximization in a reasonable amount of time, at least when |R(S)|, |L(S)| are
not too large. We provide details on how cuts are utilized for obtaining lower
bounds to the MAPF problem in Sect. 5, and how the bound is integrated with
CBS in Sect. 6.
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Algorithm 1. PSGA for CGLP
1: Initialize: k ← 1, w(k) ← 0, Δ ← 0, z ← Projx(S)(x̄).
2: while Stopping criterion is not met do
3: v(k) ← arg max

v∈V ert(P (S))
vTw(k)

4: w(k+1) ← Proj‖w‖2≤1

(
w(k) + ρ(k)(z − v(k))

)
, where ρ(k) is set to 1

k

5: if H(w(k+1)) > max(0, Δ) then
6: Δ ← H(w(k+1)), w∗ ← w(k+1)

7: k ← k + 1
8: if Δ > 0 then
9: return w∗

5 Lagrangian Relax-and-Cut

We will now describe a Non-Delayed Lagrangian Relax-and-Cut (LRC) proce-
dure [14] to generate lower bounds to the MAPF problem. Consider the optimiza-
tion problem shown in Eq. (17) obtained by omitting all CCs from the MAPF
IP formulation shown in Sect. 3.

min
x∈{0,1}|A|

{cTx|x satisfies Eqns (3) − (4)} (17)

Notice, that the optimal solution to Eq. (17) (call it x̄) consists of robot
start-end paths, which potentially may contain vertex and edge conflicts. We
can use our cut generation technique from the previous section, and generate
cuts (denote the set of inequalities generated by Cx ≤ d) that separate x̄ from
P. LRC incorporates the cuts generated by solving the Lagrangian dual problem:

max
λ≥0

min
x∈{0,1}|A|

{cTx + λT(Cx − d)|x satisfies Eqns (3) − (4)} (18)

Equation (18) is solved using the iterative PSGA procedure, where at each
iteration λ is updated by using the solution to the inner minimization problem,
which is a min-cost flow problem. Denote the optimal solution to the min-cost
flow problem at iteration k of PSGA by x̄k. Note that x̄k represent start-end
paths for robots, and potentially contains conflicts. The key innovation of LRC
is that, if x̄k contains conflicts, cuts are generated to separate x̄k and P. Denote
the cuts generated by Ekx ≤ fk. Ekx ≤ fk is incorporated into the optimization
problem by dualizing them with appropriate Lagrangian multipliers. In other
words, we can think of this operation as expanding Cx ≤ d at each iteration
by including Ekx ≤ fk. Adding cuts perturbs the current dual solution, and so
our approach is an attempt to dynamically strengthen the dual bound. An alter-
native motivation for adding cuts is through an interpretation of the procedure
from the primal side. By duality, the optimal objective values of Eq. (18) and
Eq. (19) are the same, see [10] for a proof. The feasible region in Eq. (19) is a
relaxation of P, since all constraints in Eq. (19) are valid for P. By introducing
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an inequality that is violated by x̄k at iteration k, we are dynamically strength-
ening this relaxation. As the objective in Eq. (19) is just the MAPF objective,
the hope is that a tighter relaxation can lead to a better lower bound for the
MAPF problem. If the cuts generated by our procedure are strong (deep), then
we can expect to obtain a tighter relaxation. After a few iterations, no more cuts
are added, at which point LRC becomes a standard dual ascent scheme.

min
x

{cTx|conv(x satisfies Eqns (3) − (4), x ∈ {0, 1}|A|), Cx ≤ d} (19)

A schematic overview of the LRC scheme described above is shown in Algo-
rithm2. Algorithm 2 takes as input a positive integer MAX CUT ITER, to
decide when to stop adding cuts. In line 6, the λ vector is updated with step size
ρ. In our implementation, ρk was set to O( 1

k ) up-to MAX CUT ITER iterations,
after which the step size was set according to the scheme in [1], to accelerate
convergence. At iteration k, if x̄k contains conflicts, we apply a primal repair
procedure to try and convert x̄k into a conflict free solution, for generating an
upper bound.

Our primal repair procedure identifies a maximal independent set (MIS) of
non conflicting robots from the paths provided in x̄k, and fixes the path of the
robots in the MIS to as they are in x̄k. The paths for the remaining robots are
computed sequentially, where the path assigned to a robot is the shortest start-
end path that does not collide with any path fixed previously to other robots. The
order in which the robots are chosen for their path to be computed is determined
dynamically using the rule in [18]. If the procedure fails to compute a path for
robot r, then the primal repair procedure is unsuccessful for the current iteration.

Algorithm 2. Lagrangian relax and cut algorithm
1: Given: MAX CUT ITER, c
2: Output: Inequalities Cx ≤ d, optimal Lagrangian multipliers λ∗, and upper

bound(UB).
3: Initialize: k ← 0, C ← ∅, d ← ∅, λ ← ∅, UB ← ∞
4: repeat
5: x̄k ← arg min

x∈{0,1}|A|
{cTx + λT (Cx − d) |x satisfies Eqns (3) − (4)}

6: λ ← (λ + ρk (Cx̄k − d))+
7: if x̄k contains conflicts then
8: if k < MAX CUT ITER then
9: Generate cuts Ekx ≤ fk separating x̄k from P

10: Append Ekx ≤ fk to Cx ≤ d. Introduce Lagrangian multipliers for Ekx ≤
fk initialized all to 1, and append it to the vector λ.

11: Repair x̄k to generate non-conflicting paths. If repair is successful and cost of
repaired solution is less than UB, update UB.

12: else
13: if Cost(x̄k) < UB then
14: UB ← Cost(x̄k)
15: k ← k + 1
16: until Termination criterion is met
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6 An LRC-Based Search Node Evaluation Function

In this section we will describe a new evaluation function for Conflict Based
Search (CBS) that uses the output of the LRC procedure. We briefly describe
only the relevant portions of CBS to our work. CBS performs a best first search
on a search tree, where the most promising node among the previously unex-
plored nodes of the search tree is selected for exploration by applying an evalua-
tion function. Each node in the search tree is characterized by a set of arcs that
the robots are prohibited from using. An evaluation function takes as input any
search tree node, and outputs a cost that does not overestimate the cost of the
optimal solution to the MAPF problem with the added constraint that robots do
not use any arcs prohibited in the search node. The node with the least evalua-
tion cost is then selected. If the cost outputted by the evaluation function closely
matches the true lower bound at every search tree node, then we should expect
good search performance. Our goal is to improve existing evaluation functions.

Given a search node sn, let us denote the set of arcs that are prohibited
in the node by Āsn ⊂ ∪i∈[N]Ai. We provide an evaluation function f̂1(·) based
on Lagrangians. Before the search tree is created we apply Algorithm2, and let
Ĉx ≤ d̂, λ̂, and UB denote the outputs. f̂1(sn) is computed as:

f̂1(sn) = min
x∈{0,1}|A|

x(a)=0,∀a∈Āsn

{cTx + λ̂T(Ĉx − d̂)|x satisfies Eqns (3) − (4)} (20)

The validity of f̂1(sn) as an evaluation function follows from the fact that f̂1(sn)
is a Lagrangian dual function where, λ̂ ≥ 0 and the set of inequalities Ĉx ≤ d̂
is valid for the feasible region of sn. Note that f̂1(sn) can be computed using
any shortest path algorithm on the time expanded graphs, but with arc costs
reflecting the objective shown in Eq. (20). Our evaluation function is similar to
obtaining Lagrangian lower bounds in Constraint Programming [3,4,11].

We can combine our proposed evaluation function with any other evaluation
function f previously proposed for the MAPF problem (see [9,13]), by taking the
maximum i.e. max(f(sn), f̂1(sn)) to yield a stronger evaluation function than
either just f or f̂1. If max(f(sn), f̂1(sn)) ≥ UB, we can omit descendants of sn
in the remainder of the search procedure i.e. we can prune the node sn.

We designed another evaluation function f̂2(·) inspired directly from the min-
imum vertex cover (MVC) heuristic of [9] and WDG heuristic of [13]. Observe
that the minimization in Eq. (20) can be performed independently for the robots.
Let us re-write Eq. (20) as f̂1(sn) = −d̂Tλ̂+

∑
i∈[N] f̂1(sn, i). Similar to the app-

roach in WDG heuristic, for each pair of robots we can solve a 2-Agent MAPF
problem to obtain lower bounds on the sum of pairwise costs. In this work, we use
Lagrangian arc costs to obtain the pairwise bounds. The arc costs are modified
to the Lagrangian objective shown in Eq. (20). Say for robots ri, rj , the optimal
cost to the 2 agent MAPF problem with Lagrangian arc costs (i.e., the cost of
each arc is set to the arc’s co-efficient in cTx + λ̂TĈx) is denoted by lij(λ̂, sn),
we propose a node evaluation function f̂2(sn) as:
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f̂2(sn) = min
y∈RN

− d̂Tλ̂ +
∑

i∈[N]

yi

s.t. yi + yj ≥ lij(λ̂, sn),∀i, j ∈ [N] × [N] and i < j

yi ≥ f̂1(sn, i),∀i ∈ [N] (21)

7 Decision Diagram Representation of P (S)

We now address the problem of performing the maximization in line 3 of Algo-
rithm1 with the help of decision diagrams. We begin by first describing the
decision diagram (DD) representation of P (S). Borrowing notation from [7],
we denote the DD for P (S) by D(S) = (U ,A, f), where U represents a set of
nodes, A represents arcs in a top-down multi-graph, f labels each an arc in
A to some subset of arcs in S. U can be decomposed into |T (S)| + 2 layers
U0,U1, ...,U|T (S)|+1, and A into |T (S)|+1 layers A0,A1, ...,A|T (S)|. U0 contains
a single node sr called source and U|T (S)|+1 contains a single node sk called sink.
The tail of any arc in layer j is connected to a node in Uj and its head to a node
in Uj+1.

To construct D(S) we will use the concept of a state transition diagram.
The idea is to interpret each node in U as a state, a practice widely used for
optimization using Decision Diagrams [5]. A state maps each i ∈ R(S) to a robot
state. For i ∈ R(S), if robot ri occupies location v ∈ V at time t ∈ T (S), then
the state of robot ri is defined as:

{
vt

i , if vt
i ∈ Lt

i(S)
o, otherwise

We motivate introducing o as a state for a robot with an example. Say robot
r1 traverses from location a at time 1 to location b at time 2 i.e r1 traverses

Fig. 2. A portion of the DD for the choice of S in Fig. 1 is shown above, where→
A=

(
(2, 2)31, (2, 1)41

)
,

→
B=

(
(2, 3)32, (2, 3)42

)
,

→
C=

(
(2, 2)31, (1, 2)41

)
,

→
D=

(
(2, 2)31, (3, 2)41

)
,

→
E=

(
(2, 3)32, (2, 4)42

)
,

→
F=

(
(2, 3)32, (1, 3)42

)
,

→
G=

(
(3, 1)31, (3, 2)41

)
.
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the arc (a1
1, b

2
1) ∈ A1(1) (refer Ai(t) notation from Sect. 3), and then traverses

the arc (c21, d
3
1) ∈ A1(2), then first observe that such a path for r1 is infeasible

to the MAPF problem. However, when b21, c
2
1 �∈ L2

1(S) recall that P (S) does not
enforce flow balance at the nodes b21, c

2
1, and so P (S) may contain a vertex corre-

sponding to the infeasible MAPF path, since after-all P (S) is only a relaxation
to Projx(S)(P). As we chose to adopt a state space representation for building
D(S), introducing o allows us to interpret our example as: r1 traverses state a1

1

to state o using arc (a1
1, b

2
1), and then transitions from o to d31 using arc (c21, d

3
1).

Observe that since P (S) is parameterized with arc variables and any vertex
of P (S) corresponds to a series of arc traversals for the robots in R(S), we
can interpret each vertex as a series of state transitions much the same way
as we did earlier for the single robot. In constructing D(S), the overall aim
is to ensure that there is a 1:1 correspondence between vertices in P (S) and
state transition paths in D(S). We next construct the nodes in D(S). Let us
assume that T (S) = {l, l + 1, ...,u}. At time t ∈ T (S), observe there are at
most

∏

i∈R(S)

(|Lt
i(S)| + 1) states for the robots. For each of those states at time

t ∈ T (S), we introduce a node in layer t − l + 1 of D(S) i.e. Ut−l+1. For any
node u ∈ U , we shall use the notation u[i] to denote the state of robot ri in
u. The node sr in layer U0 and node sk in layer UT (S)+1, both correspond to a
state where sr[i] = sk[i] = o, ∀i ∈ R(S). Some of the nodes (states) populated
in U , may contain vertex collisions. A node u ∈ U is said to contain a vertex
collision iff ∃i, j ∈ R(S) such that both u[i] and u[j] are different from o, and
u[i], u[j] correspond to the same vertex in V . We remove all nodes that contain
vertex collisions from U , as such states can never be attained from any vertex of
P (S). Vertex collision checking with o was skipped because Eq. (12) has vertex
CCs only for nodes in L(S). The states for sr, sk was defined that way because
Eq. (12) is unconcerned with vertex collisions at times l − 1,u + 1.

Before describing how to populate arcs in D(S), we take a brief detour. For
the choice of parameters of S in Fig. 1, we show a portion of its corresponding
DD in Fig. 2. Only a few states in layers U1,U2, and arcs in A1 with their labels
are shown. For robot r1 to transition from location (2, 2) at time 3 (denoted by
state (2, 2)31) to (3, 2) at time 4, r1 needs to transition with arc

→
D (refer Fig. 2

for definition). Likewise, for r2 to transition from state (2, 3)32 to (2, 4)42, r2 needs
to transition with arc

→
E. Since the transition between those states for r1 and r2

does not lead to a collision, we connect states S0, S2 with an arc in A1 and label
the arc with the set {→

D,
→
E}, see Fig. 2. From the definition of L4

1(S) provided in
the example in Fig. 1, the reader can easily verify that r1 can transition to state
o at time 4 from (2, 2)31 using either

→
A or

→
C. Consequently, note that r1, r2 can

transition from S0 to S1 in 2 different ways as shown in Fig. 2.
Moving on from the example, we now provide a formal procedure to populate

the arcs in D(S). Consider any node v ∈ Uk and any node w ∈ Uk+1.To decide
whether we should connect arcs from v to w, reduces to first determining whether
w is a feasible state transition of v, and if yes, then determining all different ways
in which the robots may transition from v to w. By repeating this process for
all pairs of nodes in U occurring between consecutive layers, we can populate A.
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To establish whether a state transition from v to w is feasible, for each i ∈ R(S)
we will establish all the different ways in which robot ri can transition from
v[i] to w[i] by traversing some arc in S, and store this information in the set
h(v, w, i) ⊂ S. One of the cases below will be applicable for populating h(v, w, i):

1. If k = 0 and w[i] ∈ Ll
i(S), then first observe that v[i] = o since v is the sr

node. Robot ri can use any one of the arcs from the set δ−
Fi

(w[i]) to transition
to w[i], and so h(v, w, i) = δ−

Fi
(w[i]).

2. If 1 ≤ k < |T (S)| , we consider separately the following 3 cases:
– If v[i] ∈ Lk+l−1

i (S), w[i] ∈ Lk+l
i (S) and (v[i], w[i]) ∈ δ+Fi

(v[i]), then
clearly: h(v, w, i) = {(v[i], w[i])}.

– If v[i] = o and w[i] ∈ Lk+l
i (S), then :

h(v, w, i) = {(pk+l−1
i , w[i]) ∈ δ−

Fi
(w[i])|pk+l−1

i �∈ Lk+l−1
i (S)}

– If v[i] ∈ Lk+l−1
i (S) and w[i] = o, then:

h(v, w, i) = {(v[i], pk+l
i ) ∈ δ+Fi

(v[i])|pk+l
i �∈ Lk+l

i (S)}

3. If k = |T (S)| and v[i] ∈ Lk
i (S), then h(v, w, i) = δ+Fi

(v[i]). Also note that w
is sk node, and so w[i] = o.

4. If v[i] = w[i] = o, then h(v, w, i) = ∅ since there are no arcs in S that
the robot can use to traverse between such a pair of states. However a state
transition for the robot is still be feasible without using any arcs from S. For
example, if at all times t ∈ T (S) robot ri does not use any arc in S in some
start-end path which is feasible to the MAPF problem, then ri is in state o
at all t ∈ T (S).

If for some i ∈ R(S), v[i], w[i] are not both o, and no arc could be found for
h(v, w, i) by analyzing 1, 2 and 3, then robot ri cannot transition from v[i] to
w[i]. In such a case, we can safely conclude that the transition from v to w is not
feasible, and so we do not need to insert any arc from v to w in A. Assuming that
this is not the case for v, w, we then proceed to check whether arcs can be added
from v to w. As the function h(v, w, i) corresponds to the different ways in which
the robot ri transitions from state v[i] to w[i], it is only natural that the elements
of the set H(v, w) =

∏

i∈R(S)

h(v, w, i) correspond to all the different ways in which

robots can transition from v to w. Note that H(v, w) is a set product, and so
each element of H(v, w) is itself a subset of S (includes the empty set). For any
i ∈ R(S), note that each element of H(v, w) contains at most one arc from Ai.
Some elements of H(v, w) may contain arcs from S, wherein robots transitioning
using those arcs will result in an edge collision. We remove all those elements
from H(v, w) which will result in edge collisions. Corresponding to each element
remaining in H(v, w) after the previous edge collision filtration step, we add an
arc a from v to w in Ak and label (cf. f function in definition of D(S)) a by the
arcs from S present in the element of H(v, w).

There is a 1:1 correspondence between source-sink (sr−sk) paths in D(S) and
vertices of P (S), i.e. if xv is a vertex of P (S) and let Q = {a ∈ S|xv(a) = 1}, then
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there is a sr−sk path in D(S) such that the labels occurring on the path coincide
exactly with Q. Conversely for any sr−sk path, if S̄ ⊂ S are labels occurring on
the path, then there is a vertex xv in P (S) such that xv(S̄) = 1, xv(S\S̄) = 0.

Computing Line 3 in Algorithm 1 Using D(S): To perform the maximization
in line 3, we can make use of the correspondence between vertices of P (S) and
sr − sk paths in D(S). We assign a cost to each arc in A depending on the labels
on the arc. For instance, if arc a ∈ A is labelled with b1, b2, where b1, b2 ∈ S,
then we simply assign a cost of w(k)(b1) + w(k)(b2) to a, where w(k)(bi) is the
value corresponding to bi in vector w(k). If a is not labeled with any arc from
S, then we assign a cost of 0. After setting costs to all arcs in A in the manner
just described, obtaining the arg max vertex in line 3 is equivalent to obtaining
any longest sr − sk path in D(S). The computational effort needed to obtain
the longest path is O (|A|), since D(S) is a directed acyclic graph.

8 Templates for Grids

As conflict locations and robots involved in conflicts vary, a different set of
parameters for S may need to be chosen in order to generate a cut for each
conflict. Consequently, a different projection polytope (P (S)) needs to be built
for each conflict, which is computationally expensive. When G is a 4 or 8-
connectivity grid, the neighborhood relative to any location on the grid is same
across all locations on the grid, a property that allows us to build Templates.

Let us denote the polytope P (S) described in Fig. 1 by P1. Now consider
the vertex conflict for robots r3 and r4 at time 14 shown in Fig. 1. For this
conflict, we can create a polytope P (S2) with parameters: R(S2) = {3, 4}, and
T (S2) = {13, 14, 15}. For all i ∈ [3, 4] and ∀t ∈ T (S2), Lt

i(S2) is set to nodes in
Ni(t) corresponding to all locations in the 3 × 3 grid centered at (6, 5). Clearly
P (S2) can also output a cut for the conflict between r3, r4. While polytopes
P1, P (S2) lie in different dimensions, the facial structure of both polytopes are
identical. If we substitute r1 for r3, r2 for r4, advance the interval T (S2) by 10
time units, and translate all locations in L·

·(S2) by 3 units along the negative X-
axis and by 2 units along the negative Y-axis, we get back all the parameters for
S described in Fig. 1. Hence, we claim that both P1 and P (S2) are manifestations
of the same base template polytope.

While working with structured graphs such as grids, we can precompute a
library of different templates, and use those templates to generate all cuts. By
spatio-temporally shifting the parameters of the template about the conflict,
multiple cuts can be generated using the same base template. While generating
cuts with templates, some locations may be physically blocked on the grid, and
so certain states in the DD representation of the template cannot be attained
by the robots. In that case, we adjust the longest sr − sk path computation
procedure to avoid paths that pass through infeasible states.
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Fig. 3. On Y-axis, we plot the difference in lower bounds outputted by LR-DG* and
DG* with time for 5 instances. For each problem scenario, the table reports the differ-
ence in bounds averaged over 10 instances after 30 mins of simulation per instance.

9 Experimental Evaluation

The primary goals of our experiments are to understand the additional value that
our approach can bring to existing search methods, and how its performance is
influenced by the characteristics of the problem.

Experimental Setup. As baseline search method, we implemented a state-of-
the-art variant of conflict-based search, called DG [13], however our implemen-
tation does not include the run time reduction techniques and MDD merging
technique proposed in [13]. When determining whether a pair of robots should
share an edge in the conflict graph constructed in DG, we applied a two-agent
MAPF solver to check this condition. As branching rule, we implement the rule
proposed for ICBS [6], i.e., prioritizing cardinal over semi-cardinal over non-
cardinal conflicts. We will refer to our implementation of DG as DG*. Our LRC
approach implements DG with f̂2(·) as node evaluation function. We selected
f̂2(·) over f̂1(·), because Eq. (21) implies f̂2(sn) ≥ f̂1(sn). We denote the com-
bination of DG* with f̂2(·) by LR-DG*.

All experiments in this paper were carried out on an Intel 4 core i7-4790
processor running at 3.6 GHz with 16 GB RAM, and the program was written
in C++. All our experiments were conducted on 30 × 30 4-connectivity grids,
where some % of the locations on the grid are randomly chosen and blocked. The
start and end locations for the robots on the grid are also randomly assigned.
The makespan constraint T was set to 3 more than the shortest time it took for
all robots to reach their goal from start when CCs are omitted.

In all our experiments for comparing DG* with LR-DG*, we allocated a time
limit of 30 min for both algorithms. The 30 min allocated to LR-DG* is further
split as follows. A time limit of 10 min was allocated beyond which cuts are not
added in Algorithm2 and MAX CUT ITER was set to 1000. Optimizing the
Lagrangian multipliers using the accelerated step size update rule, in practice
takes ≈2–4 min for the 100 robot instances. The remaining time was spent in
performing conflict based search with f̂2 as evaluation function.
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As all experiments were conducted on a 4-connectivity grid, we could pre-
compute a template library. Our template library consisted of 64 templates with
each template parameterized by at most 3 robots, time horizon (cf. T (S)) of at
most 5 time units, and |Lt

i(S)| varied between 6–9 nodes. This translates roughly
to 0.2 million arcs in the size of the DD per template.

Experimental Results. To study the impact of problem characteristics on our
algorithm performance, we considered problem scenarios with different blocked
locations (%) and number of robots. For each such scenario, we record the
progress of our solution method’s lower bound with time. In Fig. 3, we graphi-
cally show the difference between LR-DG* and DG* lower bounds with time for
different scenarios, and the results after 30 min are summarized in the table.

We first explain why the difference in bounds between the 2 methods looks
like a step size function. Initially, the LR-DG* bound lags behind the DG*
bound as it performs the cut addition phase of Algorithm2. In the cut addition
phase, the LR-DG* lower bound is not improving much. On the other hand the
MVC heuristic in DG* is able to quickly identify pairs of robots that are in
some sense constraining one another, and by branching on their conflicts it is
able to make rapid progress initially. Once LR-DG* enters into the Lagrangian
multipliers optimization phase with accelerated step size update rule, we see a
marked improvement in the LR-DG* bound.

From the table shown in Fig. 3, one can observe the following trends in the gap
between the lower bounds of the two methods. For a fixed number of robots, we
see that as the block % increases, LR-DG* dominates over the DG* bound. Also,
for a fixed block %, we observe that the gap between the 2 methods increases
as the number of robots increases. The lower bound to the MAPF problem
computed just after Lagrangian Relax and Cut phase i.e after Algorithm2 in
many cases dominates the bound obtained from DG* after 30 min. For 100 robot
problems and 20% blocked cells, on average (over 10 instances) we observed this
gap to be 4.89, and for 30% blocked cells the gap was 11.7. These results clearly
indicate that the cuts generated in the LRC phase are strong, and capable of
generating strong lower bounds for the given objective.

We explain the results observed. It is clear that when not many collisions
are expected between robots, then it is unlikely that the robots have to wait for
another robot or take a longer route. Trying to raise the lower bound with cuts
is unlikely to result in an improvement of the lower bound, which is why we see
that when the number of robots is few and/or blocked cells are also few, LR-DG*
is unable to do any better than DG*. However, when the expected number of
collisions is large, we see that LR-DG* generates strong bounds which reflects
the strength of the cuts generated during the LRC phase. We explain this perfor-
mance using an analogy. In environments which contain a lot of spatio-temporal
bottleneck regions, i.e., local regions in time where many robots need to pass
through to reach their goal, then by simply analyzing paths of robots within the
bottleneck region, we may be able to infer facts such as, at least one robot must
wait or take a longer route in order to pass through the bottleneck region with-
out colliding. The strength of the inference improves as more robots are included
in the analysis. Through the use of templates, our approach essentially focuses
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on a localized spatio-temporal neighbourhood. Our cut generating templates are
able analyze all feasible paths through the neighbourhood at once for the robots
parameterizing the template, thereby able to output strong cuts.

Despite LR-DG* producing stronger lower bounds than DG*, in general we
observed that LR-DG* was unable to prove optimality for any problem that
DG* also could not. The results indicates a need for stronger lower bounds and a
better primal heuristic than the one used in this work for proving optimality. For
problems that were solved to optimality by both DG* and LR-DG*, we compared
the number of search tree nodes expanded. For 30 robot problems, LR-DG* on
average expanded 37% fewer nodes, however the % reduction in nodes across
instances displayed high variance. On many problems, the fact that LR-DG*
proved optimality during LRC phase itself has skewed the results. In general
however, observe that since the cuts in the procedure have been generated at
the root node, their utility diminishes as the depth of the search node increases.

10 Conclusions

We proposed a new polyhedral approach for MAPF based on lower-dimensional
polytopes called ‘templates’, which allows us to simultaneously analyze the paths
of a number of robots within a spatio-temporal neighbourhood. We used decision
diagrams to represent these templates and developed a cut generation scheme.
The templates are translated spatio-temporally over the input graph to generate
cuts for paths with conflicts. To obtain a lower bound, we embedded the cut
generation into a Lagrangian Relax-and-Cut procedure. We incorporated the
lower bound as a node evaluation function in a conflict-based search procedure.
Our experimental results demonstrated that our lower bounds are particularly
effective when the MAPF problem is very constrained due to large number of
agents and\ or fewer traversable paths on the input graph.
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Abstract. There is an increased interest in solving complex constrained
problems where part of the input is not given as facts, but received as
raw sensor data such as images or speech. We will use ‘visual sudoku’
as a prototype problem, where the given cell digits are handwritten and
provided as an image thereof. In this case, one first has to train and use
a classifier to label the images, so that the labels can be used for solving
the problem. In this paper, we explore the hybridisation of classifying
the images with the reasoning of a constraint solver. We show that pure
constraint reasoning on predictions does not give satisfactory results.
Instead, we explore the possibilities of a tighter integration, by exposing
the probabilistic estimates of the classifier to the constraint solver. This
allows joint inference on these probabilistic estimates, where we use the
solver to find the maximum likelihood solution. We explore the trade-off
between the power of the classifier and the power of the constraint rea-
soning, as well as further integration through the additional use of struc-
tural knowledge. Furthermore, we investigate the effect of calibration
of the probabilistic estimates on the reasoning. Our results show that
such hybrid approaches vastly outperform a separate approach, which
encourages a further integration of prediction (probabilities) and con-
straint solving.

Keywords: Constraint reasoning · Visual sudoku · Joint inference ·
Prediction and optimisation

1 Introduction

Artificial intelligence (AI) is defined as “systems that display intelligent
behaviour by analysing their environment and taking actions - with some degree
of autonomy - to achieve specific goals.” [28]. In that regard, recent advancements
in deep neural network (DNN) architectures have achieved highly accurate per-
formance in object and speech recognition and classification. However, many real
life problems are relational, where inference on one instance is related to another
through various constraints and logical reasoning. Attaining good performance
in tasks which require reasoning over constraints and relations still remains elu-
sive. The DNN architectures rely heavily on learning latent representation from
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the training datasets [18]. The main reason deep architectures struggle in con-
straint reasoning is that the nuances of the relationship between entities are
often lost in the latent representation. For instance, when solving a sudoku, a
DNN model would take the partially filled sudoku as an input and would then
be expected to produce the solved sudoku as output. In this process, the model
fails to comprehend the interactions among different cells.

Moreover, the high quality performance of DNNs at complex tasks comes at
a cost. As DNN models fail to comprehend the logical reasoning, they have to
adjust to gradual feedback of the error signals. As a consequence, to be proficient
in any simple task, a DNN needs an enormous amount of data. As an example, to
be an efficient video-gamer, a DNN model has to play a game for more than 900 h
[9]. Motivated by such deficiencies, integrating logical and relational reasoning
into DNN architecture has increasingly gained more attention.

In trying to bridge deep learning and logical reasoning, Wang et al. [30]
propose SATNet, a differentiable satisfiability solver that can be used to learn
both constraints and image classification through backpropagation. Internally,
it uses a quadratic SDP relaxation of a MaxSAT model, and hence learns a
relaxed representation of the constraints. We argue that in many cases, there is
no need to learn everything end-to-end. Indeed, in a visual sudoku setting, while
the constraints are easy to specify in a formal language, the image classification
task is difficult for a machine to capture. Hence, we seek to bridge deep learning
and logical reasoning by directly plugging the (probabilistic) output of the deep
learning into a constraint solver that reasons over the relevant hard constraints.

In this work, we present a framework where we perform joint inference [24–26]
over the different predictions, by integrating machine learning inference with first
and second order logic. Specifically, instead of solving a constraint programming
(CP) problem over a set of independently predicted values, we use CP to do joint
inference over a set of probability vectors. The training of the DNN happens on
individual image instances, as is typically done. Effectively, our framework can
be considered as a forward-only layer on top of the predictions of a pre-trained
network.

Specifically, we consider the “visual sudoku” problem where images of digits
of some cells in the sudoku grid are fed as input. We first predict the digits
using a DNN model and then use a CP solver to solve the sudoku puzzle. A
conventional approach would use the predictions of the DNN as inputs to the
CP. As the DNN model is not aware of the constraints of the sudoku problem, it
misses the opportunity to improve its prediction by taking the constraints into
account. When the predictions of the DNN are directly fed into the CP solver,
in case of any error, the CP model is bound to fail. Note that in this case, even
one prediction error will result in the failure of the whole problem.

We improve the process by considering the predicted class probabilities
instead of directly using the arg max prediction. The advantage of our app-
roach is that by avoiding hard assignments prior to the CP solver, we enable the
CP solver to correct the errors of the DNN model. In this way, we use CP to do
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joint inference, which ensures that the predictions will respect the constraints of
the problem.

The contributions of the paper are as follows:

– We explore hybridisation of classification and constraint reasoning on the
visual sudoku problem;

– We show that constraint reasoning over the probabilistic predictions outper-
forms a pure reasoning approach, and that we can further improve by taking
higher-order relations into account;

– We investigate the increased computational cost of reasoning over the prob-
abilities, and the trade-offs possible when limiting the reasoning to the top-k
probabilities.

– We experimentally explore the interaction of predictive power with the power
of discrete reasoning, showing correction factors of 10% and more, as well as
the effect of using calibrated probabilistic classifiers.

2 Related Work

Predict-and-Optimize. Our work is closely related to the growing body of
research at the intersection of machine learning (ML) and combinatorial opti-
mization [7,8,17] where the predictions of an ML model is fed into a downstream
optimization oracle. In most applications, feeding machine learning predictions
directly into a combinatorial optimization problem may not be the most suit-
able approach. Bengio [2] compared two ML approaches for optimizing stock
returns—one uses a neural network model for predicting financial prices, and
the second model makes use of a task-based loss function. Experimental results
show that the second model delivers better optimized return. The results also
suggest a closer integration of ML and optimization.

In this regard, Wilder et al. [32] propose a framework which trains the weight
of the ML model directly from the task-loss of the downstream combinatorial
problem from its continuous relaxation. The end-to-end model of [30] learns
the constraints of a satisfiability problem by considering a differentiable SDP
relaxation of the problem. A similar work [14] trains an ML model by considering
a convex surrogate of the task-loss.

Our work differs from these as we do not focus on end-to-end learning. Rather,
we enhance the predictions of an ML model by using CP to do joint inference over
the raw probability vectors. In this way, we are taking the constraint interaction
of the combinatorial problem into account.

Joint Inference. Our work is also aligned with the research in joint inference.
For example, Poon and Domingos [24] have shown its advantage for information
extraction in the context of citation matching. Recent work in linguistic semantic
analysis of Wang et al. [31] forms a factor graph from the DNN output by
encoding it into logical predicates and performs a joint inference over the factor
graph. Several other works [3,11,12] focus on leveraging joint inference in DNN
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architecture for relation extraction from natural language. Our work differs from
these, as we perform probabilistic inference on combinatorial constraint solving
problem where one inference is linked with another by hard constraints.

Training with Constraints. Various works have introduced methods to
enforce constraints on the outputs of an NN. One of the earlier work [23] does
this by optimizing the Lagrangian coefficients of the constraints at every param-
eter update of the network. But this would not be feasible in the context of deep
neural network as very large dimension matrices must be numerically solved
for each parameter update [16]. Pathak et al. [20] introduce CCNN for image
segmentation with size constraints where they introduce latent probability distri-
butions over the labels and impose constraints on the latent distribution enabling
efficient Lagrangian dual optimization. However, one drawback is, this involves
solving an optimization problem at each iteration. Márquez-Neila et al. [16] use
a Lagrangian based Krylov subspace approach to enforce linear equality con-
straints on the output of an NN. But this approach is not found to be scalable
to large problem instances. The proposed framework of [13] quantifies inconsis-
tencies of the NN output with respect to the logic constraints and is able to
significantly reduce inconsistent constraint violating outcomes by training the
model to minimize inconsistency loss.

The closest work to ours is [25], where Punyakanok et al. train a multiclass
classifier to identify the label of an argument in the context of semantic role
labeling and then feed the prediction scores of each argument to an Integer
Linear Programming solver so that the final inferences abide by some predefined
linguistic constraints.

3 Preliminaries

CSP and COP. The concept of a constraint satisfaction problem (CSP) is
fundamental in constraint programming [27]. A CSP is formulated as a triplet
(V,D,C), where V is a set of decision variables, each of which has its possible
values in a domain contained in the set D, and C is a set of constraints that need
to be satisfied over the variables in V . In most cases, we are not only interested
in knowing whether a constrained problem is solvable, but we want the best
possible solution according to an objective.

A Constraint Optimization Problem COP (V,D,C, o) finds a feasible solu-
tion of optimum value with respect to an objective function o over the vari-
ables. In case of a minimisation problem, we have: S ∈ COP (V,D,C, o) iff
S ∈ CSP (V,D,C) and �T ∈ CSP (V,D,C) with o(T ) < o(S).

Sudoku. In our work we consider a prototype CSP, namely the sudoku. Sudoku
is a number puzzle, played on a partially filled 9 × 9 grid. The goal is to find
the unique solution by filling in the empty grid cells with numbers from 1 to 9
in such a way that each row, each column and each of the nine 3 × 3 subgrids
contain all the numbers from 1 to 9 once and only once.
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Formally, the sudoku is a CSP (V,D,C) where V is the set of variables vij

(i, j ∈ {1, ..., 9}) for every cell in the grid, and D(vij) = {1, ..., 9} for each vij ∈ V .
We separate the sudoku constraints into two parts: the set of constraints Cgiven

defining the assignment of numbers in the filled cells (hereinafter referred to as
the givens) of the grid and the set of constraints Crules defined by the rules of
sudoku.

Formally, Crules consists of the following constraints:

∀i ∈ {1, ..., 9} alldifferent{vi1, ..., vi9}
∀j ∈ {1, ..., 9} alldifferent{v1j , ..., v9j}

∀i, j ∈ {1, 4, 7} alldifferent{vij , ..., v(i+2)j , vi(j+1), ..., v(i+2)(j+1),

vi(j+2), ..., v(i+2)(j+2)}
∀i, j ∈ {1, ..., 9} vij ∈ {1, ..., 9}

(1)

For the given cells, Cgiven is simply an assignment: D(vij) = yij , ∀vij ∈{vij}given

⊂ V where the {yij}given are known. Because V and D are obvious from the
constraints, we will write CSP (Crules ∧ Cgiven) or alternatively CSP (Crules,
{yij}given) to represent a solution of a sudoku specification.

Sudoku has one additional property, namely that for a set of givens, the
solution is unique: S ∈ CSP (Crules ∧Cgiven), �T ∈ CSP (Crules ∧Cgiven), with
T �= S.

ML Classifier. We will consider the visual sudoku problem, where the given
cells are not provided as facts, but each given cell will be an image of a hand-
written digit. We will hence first use Machine Learning (ML) to classify what
digit each of the images represents.

Given a dataset of size n, {(Xi, yi)}n
i=1 with Xi ∈ Rd (denoting that each

element is a feature vector of d real numbers) and yi the corresponding class label,
the goal of an ML classifier is to learn a function approximator fθ(Xi) (with θ
the trainable parameters of the learning function), such that fθ(Xi) ≈ yi for
all (Xi, yi) pairs. In case of a probabilistic classifier, the predicted class label
is ŷi = fθ(Xi) = arg maxkPθ(yi = k|Xi) with Pθ(yi = k|Xi) the predicted
probability that Xi belongs to class k [4].

Formally, the goal of training is to compute arg minθL(fθ(Xi), yi), where
L(., .) is a loss function measuring how well the function approximates the target.
An example of a loss function for probabilistic classifiers with C possible classes
is the cross-entropy loss, defined as:

L = − 1
n

n∑

i=1

C∑

k=1

1[yi = k] log Pθ(yi = k|Xi), (2)

where 1[yi = k] is the indicator function having the value 1 only when yi has
value k, i.e., belongs to class k.
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4 Visual Sudoku and Solution Methods

We first introduce the visual sudoku problem as an example of an image-based
constraint solving problem, and then propose three different approaches to solv-
ing it by combining classification and reasoning.

Visual Sudoku. In visual sudoku, the given cells of the sudoku are provided
as unlabeled images of handwritten digits. We are also given a large dataset
of labeled handwritten digits (the MNIST dataset [10]). It is inspired by an
experiment in [30], although we consider the case where the constraints are
known and can be used for reasoning.

Formally, VizSudoku(Crules, {Xij}given) consists of the rules of sudoku
(Eq. 1), and a set of given images {Xij}given each one consisting of a pixel
representation of the handwritten digit. The goal is to use a classifier fθ

on {Xij}given such that the predicted labels {ŷij}given = {fθ(Xij)|Xij ∈
{Xij}given} lead to the solution of the sudoku, that is: CSP (Crules, {ŷij}given) =
CSP (Crules, {yij}given) with yij the true labels of the given images if known.

4.1 Separate Classification and Reasoning

The most straightforward approach to solving the visual sudoku problem is to
consider the classification and reasoning problems separately. In this approach,
first, the most likely digit for each of the given cells are predicted, after which
the puzzle is solved using the resulting grid. This will be our baseline approach.

CP
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arg max
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Fig. 1. Architecture of separate classification and reasoning approach

The baseline approach, explained on Fig. 1, is composed of a separate con-
volutional neural network and a CP solver. The process begins with the training
of the DNN on the MNIST training set {(X, y)} to obtain a handwritten digit
classifier fθ. Then for each visual sudoku instance, we use the classifier to pre-
dict the value of each given cell’s image. This takes us from a visual to a purely
digital representation of the problem, which is then fed into the CP sudoku
solver. Note, that training is separate from the concept of sudoku, and done on
individual images as is standard in image recognition tasks.

Once the model is trained, we use it to solve VizSudoku(Crules, {Xij}given).
For that, we first predict the digit for each of the given images {Xij}given. For
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each Xij given, the trained DNN computes a class probability for each digit k
Pθ(yij = k|Xij) and predicts the value with the highest probability:

ŷij = fθ(Xij) = arg max
k∈{0,..,9}

Pθ(yij = k|Xij), (3)

Once all the given images are predicted, the CP component finds a solution
S ∈ CSP(Crules, {ŷij}given) as visualised in Fig. 1.

From an inference standpoint, the above approach commits to the indepen-
dent predictions made by the classifier and tries to use them as best as possible.

4.2 Hybrid1: Reasoning over Class Probabilities

In this approach, we will use the same DNN architecture for digit classification
as before. However, instead of using the hard labels from the DNN model, we will
make use of the class probabilities of each of the given cells. Hence the outputs
of the DNN, i.e., the inputs to the CP solver for each of the given cells, are
9 probabilities – one for each digit that can appear in a sudoku cell. The idea
is to completely solve a sudoku grid by solving a COP. See Fig. 2 for a visual
representation of the architecture.
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Fig. 2. Architecture of class-probability reasoning approach

Note that here, we make a joint inference over all the predictions, including
their effect and relation to the a-priori empty cells. In the resulting solution, the
digits of both given and non-given cells are obtained at once, while satisfying all
the sudoku constraints.

First, the DNN is trained on images of single handwritten digits as before.
After training, we store the DNN computed probabilities Pθ(yij = k|Xij) for
each of the given Xij . We wish to make the CP solver reason (do inference) over
these probabilities directly, hence the sudoku problem formulation of Eq. 1 needs
to be modified to accommodate the probabilities. Instead of only satisfying the
regular sudoku constraints of Eq. 1, we seek to find a solution which optimizes
the likelihood of the solution, given the probabilities obtained from the classifier.

More specifically, as each image is predicted on its own, we assume each to
be an observation of an independent random variable, and hence the most likely
solution is the one that maximizes the joint probability over the given images
max

∏
given(i,j)

∏
k∈{1,..,9}(Pθ(yij = k|Xij))1[sij=k] for a solution s. We would
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like to find the most likely solution that also satisfies all constraints. After a
log-transform, we can write the joint probability as a weighted sum objective
function as follows:

min
∑

(i,j)∈
given

∑

k∈
{1,..,9}

−log(Pθ(yij = k|Xij)) ∗ 1[sij = k] (4)

Treating −log(Pij) as a k-dimensional vector, one can see that the inner sum
could be formulated with a traditional element constraint in a CP solver. We
must emphasize that the log-likelihood is maximized only over the given cells
and not for the whole grid due to the fact that we have the classifier provided
probability vector only for these cells with given images.

Note that in this approach, the CP solver has to solve a more complex prob-
lem with larger domains for the given cells, and hence a larger search space.
Contrary to the approach in Sect. 4.1 where the problem was a CSP, here the
problem is a COP. The advantage of this approach is that it makes use of the
constraint relationships of the sudoku problem. Moreover, it improves the pre-
diction of the ML classifier by reasoning over these constraint relationships.

4.3 Hybrid2: Higher-Order Knowledge Exploitation

As mentioned before, a sudoku must have a unique solution for a set of givens.
For traditional sudoku puzzles this is the case by construction, as otherwise, a
human solver would be faced with having to choose among two or more options,
rather than reasoning up to a full solution.

In the approach of Sect. 4.2, we simply find one solution and treat that as the
solution, without verifying whether it is unique with respect to the set of givens.
When projecting the solution of the entire sudoku back to only the assignment
to the ‘given’ cells, e.g. those for which an image is given, then this assignment to
the givens should have one and only one unique solution. If not, this assignment
to the givens, and hence the entire sudoku solution, can not be the intended
solution.

Therefore, we can use the (non) existence of a unique solution as an additional
relational property that can steer the joint inference. The pseudo-code of this
approach is shown in Algorithm 1. We start with finding the most likely solution
sol as in the hybrid1 approach described in the previous section. We will write
{solij}given to represent the projected part of the solution, that is, only the part
of the assignment of the cells with an image given.

Instead of counting all solutions given {solij}given, it is sufficient (and com-
putationally cheaper) to only check whether any other solution exists. Hence, we
will search for any sudoku solution (line 3) that is different from the sol solution
that we already know exists (line 2).

If there does not exist such other solution, i.e. the assignment is an empty
set (line 4), then the solution is unique and there is nothing more we can infer. If
there is another solution, we reject {solij}given for not being unique. That is, we
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Algorithm 1: Higher-order COP of VizSudoku(Crules, {Xij}given) using
a trained DNN fθ(X)
1 sol ← VizSudoku(Crules, {Xij}given) // as in hybrid1
2 C′

rules ← Crules ∧ ¬(V = sol)) // temporarily forbid this solution

3 sol′ ← CSP(C′
rules, {solij}given) // check for other solutions having these

givens
4 while sol′ �= ∅ do
5 Crules ← Crules ∧ ¬(V given = solgiven) // add nogood on givens

6 sol ← VizSudoku(Crules, {Xij}given) // as in hybrid1
7 C′

rules ← Crules ∧ ¬(V = sol)) // temporarily forbid this solution

8 sol′ ← CSP(C′
rules, {solij}given)

9 end
10 return sol

add a nogood ensuring that no completion of {solij}given will be found anymore
(line 5), and repeat the procedure.

This use of a nogood, or a blocking clause, is common in solving such second-
order logic problems. It can be seen as an instantiation of solution dominance [5].

5 Class Probability Calibration

In a machine learning context, calibration is the process of modifying the pre-
dicted probabilities so that they match the expected distribution of proba-
bilities for each class [6]. We will investigate the effect of calibration on our
joint inference approach. Our method reasons over all 9 probability estimates
{(Pθ(y = 1|X), . . . , Pθ(y = p|X)}, pos} and actively trades-off the probability
of a prediction of one image to the prediction of another image in its objective
function. Hence, it is not just a method of getting the top-predicted value right,
but rather of getting all predicted probabilities correctly. Our reasoning app-
roach hence assumes real (calibrated) probabilities and could be hampered by
over- or under-confident class probability estimations.

In a multi-class setting, for a given handwritten digit a neural probabilistic
classifier computes a vector z containing raw scores for each class (i. e. a digit
value), zk being the score assigned to class k. The SoftMax function is then
applied to convert these raw scores into probabilities:

σSoftMax (zk,z) =
exp (zk)∑
i exp (zi)

.

such that Pθ(y = k|X) = σSoftMax (zk,z) is the output of the neural network.
While this output is normalized across classes to sum up to 1, the values

are not real probabilities. More specifically, it has been shown that especially
neural networks tend to overestimate the probability that an item belongs to its
maximum likelihood class [6].
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Post-processing methods such as Platt scaling [22] aim at calibrating the
probabilistic output of a pre-trained classifier. Guo et al. [6] describe three vari-
ants of Platt scaling in the multi-class setting. In matrix scaling, a weight matrix
W and a bias vector b apply a linear transform to the input vector of the softmax
layer zi such that the calibrated probabilities become:

P̃θ(yi = k|Xi) = σSoftMax (Wkzk + bk ,Wz + b) (5)

where W and b are parameters, learned by minimizing the Negative Log Likeli-
hood loss on a validation set. Vector scaling applies the same linear transform,
except that W is a diagonal matrix, that is, only the diagonal is non-zero.
Finally, Temperature scaling considers a single scalar value T to calibrate the
probability such that:

P̃θ(yi = k|Xi) = σSoftMax

(zk

T
,
z

T

)
(6)

To calibrate the predictions, we train a model fθ,W ,b(X) where {(P̃θ(y =
1|X), . . . , P̃θ(y = p|X)}} is calibrated on a validation set {Xi, yi}validation. More
specifically, we will do calibration on top of a pre-trained neural network, so θ
is pre-trained and the calibration learns the best W , b.

We will evaluate whether better calibrated probabilities lead to better joint
inference reasoning in the experiments.

6 Experiments

Numerical experiments were done on a subset of the Visual Sudoku Dataset
used in [30]. The subset contains 3000 sudoku boards whose givens are repre-
sented by MNIST digits. The average number of givens per sudoku grid is 36.2.
Unless stated otherwise, the MNIST train data was split into 80%–20% train
and validation set.

The DNN architecture for the digit classification task is the LeNet architec-
ture [10] which uses two convolutional layers followed by two fully connected
layers. The network is trained for 10 epochs to minimize cross-entropy loss, and
is optimized via Adam with a learning rate of 10−5. Once trained on the MNIST
train data, we use the same model for both separate and hybrid approaches. The
neural network and CP model were implemented using PyTorch 1.3.0 [19] and
OR-tools 7.4.7247 [21], respectively. All experiments were run on a laptop with
8 × Intel R© CoreTM i7-8565U CPU @ 1.80GHz and 16 Gb of RAM.

To test the performance of our proposed frameworks, we define the following
evaluation measures:

img accuracy = percentage of givens correctly labeled by the classifier
cell accuracy = percentage of cells matching the true solution
grid accuracy = percentage of correctly solved sudokus. A sudoku is correctly
solved if its true solution was found. That is, if

s1 ∈ VizSudoku(Crules, {Xij}given)
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s2 ∈ CSP(Crules, {yij}given) =⇒ s1 ≡ s2

failure rate grid = percentage of sudokus without a solution. A sudoku
has no solution if VizSudoku(Crules, {Xij}given) = ∅

In the subsequent experiments, we denote as baseline the separated classifica-
tion and reasoning approach, whereas we refer to our proposed approaches as
hybrid1 and hybrid2.

Table 1. Comparison of hybrid solving approaches

Accuracy Failure rate Time

img cell grid grid average (s)

baseline 94.75% 15.51% 14.67% 84.43% 0.01

hybrid1 99.69% 99.38% 92.33% 0% 0.79

hybrid2 99.72% 99.44% 92.93% 0% 0.83

6.1 Separate vs Hybrid Approaches

First we compare the result of the three approaches described in Sect. 4. As
displayed on Table 1, the ability of the baseline approach to handle the image
classification task with an accuracy of 94.75% translates to a meagre success rate
of only 14.67% at the level of sudoku grids correctly solved. This is because the
constraints relationships are not translated to the DNN model. As a consequence
there is no way to ensure that the predictions would respect the constraints.
Even a single mistake in predictions out of all the given images may result in
an unsolvable puzzle. As an example, if one prediction error makes the same
number appear twice in a row then the whole puzzle will be unsolvable even if
the rest of the predictions are accurate.

On the other hand the hybrid approaches do not consider the model predic-
tions as final and by using the constraints relationships, hybrid2, for instance,
brings the classifier to correctly label 5361 additional images. As a result we
observed an increase in overall accuracy of the predictions. The advantage of
our frameworks is more prominent from the grid perspective, where we can
see that more than 92% of the sudokus are now correctly solved. This is a huge
improvement from the baseline approach which solves only 14.67% of the grids.

In terms of final performance hybrid2 is more accurate as it exploits one
more sudoku property; namely that sudoku must have a unique solution. By
this mechanism we are able to further rectify more predictions and 18 additional
puzzles are solved accurately.

However, from a computational standpoint, our hybrid approaches solve a
COP instead of a CSP in the pure reasoning case. Hence they are almost a
100 times more time consuming (only the average per sudoku is shown). The
average computation time is slightly higher for hybrid2 as we need to prove
that predicted givens only have a unique solution, or optimize again with a
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forbidden assignments if that is not the case; this situation happens 18 times in
our experiments.

6.2 Reasoning over Top-k Probable Digits

We are curious to know how the hybrid approaches outperform the separate
approach. So we investigate when a digit is chosen by the hybrid approaches,
how, on average, it is ranked by the ML classifier when ranking by probability.

Fig. 3. Strength of hybrid with less accurate predictions

Table 2 reveals, among the instances where we find the correct solution, that
the top-ranked value is chosen in most cases, with a quick decline in how often
the other values are chosen. Remarkably, in 42 cases (i.e. 0.02% of predictions)
hybrid2 actually uses a digit which is ranked 8 or lower by the classifier.

From a combinatorial optimisation perspective, one can also consider that
this allows to trade-off the size of the search space with the accuracy of the
resulting solutions by only taking the k highest probable digits into account and
removing the others from the domains. In this regard the experiment in the
previous section considered two extremes: the baseline uses only the maximum
probable digit, and the hybrid approaches use all 9 digits.

Therefore, we investigate the effect of considering the top-k probability
ranked digits on computational time and accuracy. Table 3 shows the effect
of using only reasoning over the top-k predicted values of the classifier:

When considering top-1 to top-4 values, we see that the image accuracy
steadily goes up as does the grid correctness, and grid failure reaches 0 for top-4.
As we consider 4 or more digits, both grid and image values slowly increase, with
the best results obtained using all possible values; which makes the difference
for 8 sudoku instances when using hybrid2.

This shows that there is indeed a trade-off between computational time of
the joint inference and accuracy of the result, with runtime performance gains
possible at low accuracy cost if needed.
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6.3 Classifier Strength Versus Reasoning Strength

So far, we have used a fairly accurate model. We have also seen that joint infer-
ence by constraint solving could indeed correct many of the wrong predictions.
In this experiment, we investigate the limits of this ‘correcting’ power of the
reasoning. That is, for increasingly worse predictive models, we compare the
accuracy of the baseline with our hybrid approaches.

Table 2. Rank distribution for cell values in correctly solved sudokus

rank-0 rank-1 rank-2 rank-3 rank-4 rank-5 rank-6 rank-7 rank-8

hybrid1 94.85% 3.68% 0.93% 0.32% 0.12% 0.07% 0.02% 0.01% 0.01%

hybrid2 94.84% 3.68% 0.92% 0.33% 0.12% 0.06% 0.02% 0.01% 0.01%

Results in Fig. 3 show that even after 2 epochs, with an accuracy of approxi-
mately 88%, the reasoning is able to correct this to 98%, i.e., a correction factor
of 10%. Hence, with weaker predictive models, the reasoning has even more
potential for correcting.

Results on Table 4 show that this trend remains true even with a stronger
classifier, obtained by considering a learning rate of 2 × 10−3. In the stronger
classifier case, hybrid2 correctly classifies 654 more images than the baseline.

Also noteworthy is that the average runtime goes up by a significant factor,
e.g., it is 10 times slower as the predictions become less accurate. Further inves-
tigation shows that the predicted values are less skewed at lower accuracy levels,
e.g., the softmax probabilities are more similar and hence the branch-and-bound
search takes more time in finding and proving optimality.

6.4 Effect of Calibration

As the joint inference reasons over the probabilities, we will investigate the effect
of calibration on the reasoning. The first step towards that goal is to compare
the different calibration methods we presented in Sect. 5, namely Matrix scaling,
Vector scaling, and Temperature scaling. As described earlier, for each of these
methods, calibration parameters are learned by minimizing the Negative Log
Likelihood loss on the validation set (while remaining parameters of the network
are fixed). Table 5 shows the validation NLL and the test accuracy before and
after calibrating of the network. This table suggests that Matrix scaling produces
the most calibrated classifier. Figure 4 shows how the classifier, although already
quite well calibrated, is brought closer to a perfectly calibrated model.



Hybrid Classification and Reasoning for Image-Based Constraint Solving 377

Fig. 4. Calibration curve, mean of probabilities over 15 equally-sized intervals

Table 3. Rank experiment using hybrid2 for joint inference

top-k Accuracy Failure rate Time

img cell grid grid average (s)

top-1 94.75% 15.36% 14.67% 84.60% 0.03

top-2 96.15% 63.63% 55.43% 34.20% 0.03

top-3 96.63% 94.73% 77.17% 0.20% 0.06

top-4 98.78% 98.04% 86.33% 0% 0.12

top-5 99.35% 98.86% 89.67% 0% 0.26

top-6 99.57% 99.21% 91.60% 0% 0.38

top-7 99.67% 99.36% 92.33% 0% 0.55

top-8 99.69% 99.40% 92.63% 0% 0.66

top-9 99.71% 99.43% 92.90% 0% 0.80

Table 4. Comparison of separate and hybrid approach with a stronger classifier

Accuracy Failure rate

img cell grid grid

baseline 99.384% 80.380% 80.100% 19.6%

hybrid1 99.984% 99.966% 99.500% 0%

hybrid2 99.986% 99.972% 99.600% 0%

Table 5. NLL loss on validation set and test accuracy for Platt scaling variants

Uncalibrated Temp. scaling Vector scaling Matrix scaling

NLL 12.07 11.61 11.38 10.12

Test acc. 96.75% 96.75% 96.70% 96.93%
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Figure 5 displays the effect of using a more calibrated model by running the
top-k experiment with the hybrid2 framework, with calibrated and uncalibrated
classifiers. It shows that calibration improves the accuracy of our framework. This
is true when considering not only less accurate, but also more accurate, neural
networks, as reasoning over all 9 probabilities leads a calibrated classifier used
within the hybrid2 framework to an img rate of 99.80%, an accuracy cell rate
of 99.62% and 94.30% of correctly solved grids.

Fig. 5. Performance measures for joint inference from calibrated classifier and compar-
ison with uncalibrated counterpart

7 Conclusions

In this paper we study a prototype application of hybrid prediction and con-
straint optimisation, namely the visual sudoku. Although deep neural networks
have achieved unprecedented success in classification and reinforcement learn-
ing, they still fail at directly predicting the result of a combinatorial optimisation
problem, due to the hard constraints and combinatorial optimisation aspect.

We propose a framework for solving challenging combinatorial problems like
this, by adding a constraint programming layer on top of a neural network,
which does joint inference over a set of predictions. We argue that reasoning
over the actual predictions is limited as it ignores the probabilistic nature of
the classification task, as confirmed by the experimental results. Instead, we can
optimize the most likely joint solution over the classification probabilities which
respects the hard constraints. Higher-order relations, such as that a solution
must be unique, can also be taken into account to further improve the results.

Our proposed approach always finds a solution that satisfies the constraints,
and corrects the underlying neural network output up to 10% in accuracy, for
example transforming the output of a 94.8% accurate classifier into a 99.7%
accurate joint inference classifier.

More broadly, we believe that this work is a notable path to incorporate
domain-specific expertise in ML models. Practitioners often feel that they can
help to make a ML model better by infusing their expertise into the model.
However, incorporating such structured knowledge is often not feasible in a DNN
setting. Our work proposes one way to impart human knowledge, namely on top
of the neural network architecture and independent of the learning.



Hybrid Classification and Reasoning for Image-Based Constraint Solving 379

An interesting direction for future work is to look at differential classifica-
tion+optimisation techniques, such as OptNet [1], and investigate whether it
is possible to train better models end-to-end for this kind of hard constrained
problems. In this respect, there is also a link with probabilistic programming
techniques, which often use knowledge compilation to embed (typically sim-
pler) constraints in a satisfaction setting [15]. Finally, we are keen to apply this
technique on applications involving classification tasks, such as manhole main-
tenance [29] and more.
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Abstract. We consider the synthesis problem of a multi-speed gearbox,
a mechanical system that receives an input speed and transmits it to an
outlet through a series of connected gears, decreasing or increasing the
speed according to predetermined transmission ratios. Here we formulate
this as a bi-level optimization problem, where the inner problem involves
non-convex optimization over continuous parameters of the components,
and the outer task explores different configurations of the system. The
outer problem is decomposed into sub-tasks and optimized by a variety
of global search methods, namely simulated annealing, best-first search
and estimation of distribution algorithm. Our experiments show that a
three-stage decomposition coupled with a best-first search performs well
on small-size problems, and it outmatches other techniques on larger
problems when coupled with an estimation of distribution algorithm.

Keywords: Global search · Best-first search · Stochastic search ·
Evolutionary algorithms · Non-convex optimization.

1 Introduction

As demonstrated by the rich literature available [7,13,23,25,33,40], the abil-
ity to generate optimal designs is of crucial importance in various engineering
applications, since it can lead to significant cost reduction or increased quality of
the designed product. In this paper, we focus on the configuration optimization
of a specific type of multi-component mechanical system, namely a multi-speed
gearbox, which is particularly challenging due to its discrete and bi-level nature.

A gearbox is a mechanical system that transmits and converts an input speed
to one or multiple output speeds by means of a series of rotating elements such
as shafts and gears. Depending on the arrangements of the gears, we have two
different models: the planetary gearbox, used to achieve automatic transmission,
and the gear-pairs model, used in manual transmission. Here we only consider
the manual transmission, often used in heavy-duty systems due to its higher

c© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 381–398, 2020.
https://doi.org/10.1007/978-3-030-58942-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_25&domain=pdf
http://orcid.org/0000-0003-1747-9516
https://doi.org/10.1007/978-3-030-58942-4_25


382 C. Piacentini et al.

durability. A power source rotates the input shaft with an input velocity, which
in turn rotates the next connected shaft, propagating the speed throughout the
gearbox and towards the output. Pairs of shafts are connected through gear-pairs
with different radii. The size of the gears’ radii determines the speed change
between the connected shafts. Typically, a gearbox is designed to convert the
input speed into multiple output speeds according to several transmission ratios.
This is achieved by having multiple shafts and multiple gear-pairs connecting
those shafts. When a desired transmission ratio is selected, the associated gear-
pairs are activated via clutches. Objectives considered for gearbox design can
be the deviation of the transmission ratios from the nominal values, the power
capacity, and the volume or the mass of the gearbox. The gearbox synthesis
involves choosing the optimal configuration of shafts and gear-pairs, as well as
their parameters such as gears’ radii, with respect to the objectives.

The current work formalizes the gearbox synthesis as a bi-level optimiza-
tion problem. The inner problem (or parameter optimization) takes a gearbox
configuration as input and finds the position and size of the gears and shafts
within given boundaries. This problem can be cast onto a non-convex contin-
uous optimization problem and solved using state-of-the-art solvers. The outer
optimization generates different configurations and we can solve it as a single step
or as a decomposed set of sub-tasks. For both these approaches, we implement
a variety of algorithms: simulated annealing (SA) and best-first search (BFS),
which exploit a formulation of the configuration problem as a state transition
system, and an estimation of distribution algorithm (EDA), from the evolution-
ary algorithms family. While in literature the gearbox synthesis is often modelled
as a state transition system, in this paper we explore novel models and adapt
them to better suit the search algorithms used. In summary, the contributions
of this paper are:
1. formalization of multi-speed gearbox synthesis as a bi-level optimization prob-

lem;
2. presentation of two different decomposition approaches of the problem;
3. modelling of different sub-problems as state transition models;
4. application of BFS for multi-speed gearbox synthesis considering both lower

and upper bounds;
5. development of an EDA for multi-speed gearbox synthesis.

The paper is organized as follows. Section 2 provides a literature review on
gearbox synthesis, while Sect. 3 presents the notation and the problem definition.
In Sect. 4 we describe two ways in which we can decompose the problem and we
summarize each sub-problems. In Sect. 5 we formulate the sub-problems as state
transmission models. Global search algorithms used in this work are described in
Sect. 6. The experimental evaluation of our approach is shown in Sect. 7. Section 8
concludes our paper.

2 Literature Review

Gearbox design has been extensively studied in the mechanical engineering litera-
ture and different variations of the problem have been considered. A large body
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of work deals with the parameter optimization problem, with the assumption
that a fixed configuration is given as input. The problem can be formulated as a
constraint satisfaction problem [26], and many works attempt to solve it using
heuristic and meta-heuristic methods, such as local search [29,44], simulated
annealing [17], genetic algorithms [4,11,30,43] and particle swarm optimization
[31]. Multi-objective versions of the problem can also be found [10,15,27,41].

Gearbox configurations are often represented using graphs [42] and configu-
ration synthesis is typically performed using formal grammars, i.e. a sets of rules
that combine a finite set of elements to obtain a potentially infinite set of entities
[9,24]. In the context of design synthesis, grammar rules offer a way to define
how a design can be modified [6] and they have been widely used for gearbox
generation [20,21,32,34,36]. Tsai et al. consider the configuration optimization
of a planetary gearbox, where configurations are generated manually and dupli-
cates are detected using graph isomorphism [36]. Schmidt & Chase developed
a set of grammar rules that can be applied to generate several configurations
of a planetary gearbox [32], while Li et al. propose a software that generates
sketches of planetary gearboxes by modifying an initial design [20]. The set of
rules developed by Lin et al. act on a graph representing the configuration of a
manual transmission gearbox [21]. The graph is labelled to capture the relative
position of gears and SA is used to generate candidate configurations and to fix
some of the components’ parameters. When a candidate is generated, collisions
between elements are checked according to a set of constraints. The constraints
identified by the authors, however, do not guarantee to avoid all possible colli-
sions. Swantner & Campbell use an exhaustive tree search algorithm to generate
a gearbox that can have a single transmission ratio, resulting in a fairly small
system. The parameter optimization problem includes bending and stress con-
straints [34]. In the context of computational design synthesis, a complete search
is used to study the quality of grammar rules [18]. Departing from this approach,
Pomrehn & Papalambros consider the optimization of a gear train that outputs a
single velocity as a mixed-integer non-linear programming model [28]. Berx et al.
study a manual multi-speed gearbox and generate different configurations using
constraint programming. A clustering procedure identifies promising candidate
configurations, for which feasibility and objective value are calculated [2].

3 Problem Description

We consider the generation of manual multi-speed gearboxes and impose geo-
metric constraints on gears and shafts, as proposed by Berx et al. [2].

3.1 Notation

Consider a gearbox consisting of a set of shafts S and a set of gear-pairs, i.e.
gears connected with each other, P. Each pair p ∈ P is comprised of an input
gear gi

p and an output gear go
p. We call G the union of all the input and output

gears and we denote with sg the shaft in which a gear g is situated, and si
p
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and so
p the input and the output shafts of a gear-pair p, respectively. We call C

the union of all the shafts and gears. We assume that all the shafts and gears
are cylinders aligned along the z-axis. Each component c ∈ C is defined by the
coordinates of the center of the bottom face of the cylinder (xc, yc, zc), a radius
ρc and a length (or thickness) lc. We have set of transmission ratios Ω, where
a transmission ratio ω is a real number indicating the desired ratio of the input
and output speed.

A gearbox layout can be represented as an s-t multi-graph G = 〈S,P〉 where
the nodes S are the shafts and edges P are the gear-pairs. A source node s is
identified as the input shaft, while a sink t is the output shaft of the system.

The graph is required to contain at least k = |Ω| simple paths from s to t.
Each simple path π is a sequence of edges π = (p1, ..., pn), with pi ∈ P and all
the vertices are distinct, producing a transmission ratio:

ωπ =
n∏

j=1

ρgi
pj

ρgo
pj

(1)

where ρgi
pj

and ρgo
pj

are the radii of the input and output gears for gear-pair pj .

Given the set of transmission ratios Ω, we call assignment ΠΩ the set of
2-tuples, containing a transmission ratio and a path ΠΩ = {(ω, π), ∀ω ∈ Ω}.
We call configuration C = (G,ΠΩ) of a gearbox the 2-tuple consisting of the
gearbox layout G and an assignment ΠΩ .

Figure 1 shows an example of a gearbox with an input shaft si, an output
shaft so and an intermediate shaft s. Two gear-pairs are connected between si

and s (p1 and p2) and two between s and so (p3 and p4). There are four possible
paths between si and so: π1 = (p1, p3), π2 = (p1, p4), π3 = (p2, p3), and π4 =
(p2, p4), corresponding to four different transmission ratios Ω = {ω1, ω2, ω3, ω4}.
An example of assignment can be ΠΩ = {(ωi, πi),∀i = 1, ..., 4}.

Fig. 1. Graph representation of the gearbox
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3.2 Parameter Optimization

Let C = (G,ΠΩ) be a given configuration, where shafts, gear-pairs and their
input and the output are known. We want to find the components’ parame-
ters (xc, yc, zc, ρc, lc) that minimize the total mass of the gears and produce
the desired transmission ratios. If we assume that all the gears have a constant
thickness (lg) and are made of same material, the objective function is:

JC(ρ) =
∑

g∈G

ρ2g (2)

The system must satisfy several constraints based on design requirements and
physical feasibility. For each pair in the assignment (ω, π) ∈ ΠΩ the transmission
ratio produced by π = (p1, ..., pn) is within a given ε to the desired value ω:

∣∣∣∣∣∣

n∏

j=1

ρgi
pj

ρgo
pj

− ω

∣∣∣∣∣∣
≤ ε ∀(ω, π) ∈ ΠΩ , (3)

Every component c ∈ C must be contained inside a parallelepiped with maxi-
mum sizes (xmax, ymax, zmax) and its radius has ρmin,c, ρmax,c as limits:

ρc ≤ xc ≤ xmax − ρc ∀c ∈ C (4)
ρc ≤ yc ≤ ymax − ρc ∀c ∈ C (5)
0 ≤ zc ≤ zmax − lc ∀c ∈ C (6)
ρmin,c ≤ ρc ≤ ρmax,c ∀c ∈ C (7)

A gear g must be placed on its connected shaft sg:

xg = xsg
∀g ∈ G (8)

yg = ysg
∀g ∈ G (9)

zg ≤ zsg
∀g ∈ G (10)

zg + lg ≤ zsg
+ lsg

∀g ∈ G (11)

In addition, we impose that the gears of each gear-pair must touch:

zgi
p

= zgo
p

∀p ∈ P (12)

ρgi
p

+ ρgo
p

=
√

(xsi
g

− xso
g
)2 + (ysi

g
− yso

g
)2 ∀p ∈ P (13)

Finally, we require that two elements cannot occupy the same position in space.
For two components c, d ∈ C that are not a gear and the shaft in which the gear
is placed on, there exist two parameters λc,d and αc,d, such that:

λc,d(zc − zd − ld) + (αc,d − λc,d)(zd − zc − lc)+

(1 − αc,d)[(xc − xd)2 + (yc − yd)2 − (ρc + ρd)2] > 0 (14)
0 ≤ λc,d ≤ αc,d ≤ 1 (15)
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This is the continuous formulation of the non-overlapping constraint obtained
from the Lagrange duality applied to the distance determination problem [2,3].

Given a configuration C, we define the parametric optimization problem as:

min
ρ

JC(ρ) (I(C))

s.t. Constraints (3)–(15)

3.3 Configuration Optimization

When designing a gearbox configuration, we can impose a maximum limit on
the number of shafts and the number of gears connecting any two shafts, NS

and NP, respectively. The configuration optimization problem is then:

min
C

I(C) (O)

s.t.|S| ≤ NS (16)
∣∣Psi,sj

∣∣ ≤ NP ∀si, sj ∈ S (17)

where Psi,sj
is the set of gear-pairs connecting shafts si and sj . Similarly, we

define Ps as the set of gear-pairs connected to s.

4 Problem Decomposition

This section shows two decomposition approaches. In the two-stage decom-
position approach, the problem is divided into two sub-tasks:

A1. Transmission ratio path assignment: given a complete multi-graph
GNs,Np = (S,P) with Ns shafts and Np gear-pairs between every two shafts,
and a set of transmission ratios Ω, generate an assignment ΠΩ using the
s-t simple paths in GNs,Np . The layout G is the union of paths in the ΠΩ ;

A2. Parameter optimization: given the layout G and the assignment ΠΩ ,
solve I(G,ΠΩ).

Since working with the complete multi-graph GNS,NP may result in a pro-
hibitive large number of possible assignments, we consider an alternative three-
stage decomposition approach, where we first select a sub-graph of GNs,Np

with at least k distinct s-t simple paths:

B1. Graph generation: generate a s-t multi-graph G = (S,P) with at least k
distinct simple paths from the input and output shafts;

B2. Transmission ratio path assignment: given a graph G, find an assign-
ment ΠΩ using the s-t simple paths in G;

B3. Parameter optimization: given a graph G and an assignment ΠΩ , solve
problem I(G,ΠΩ).
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4.1 Graph Generation

Graph generation entails finding a sub-graph G of G̃ with at least k s-t simple
paths. Given an edge-weighted graph G̃ = (V,E), a source node s ∈ V , a sink
node t ∈ V and a positive number k, we call min-k-simple paths (mkSP) the
problem of finding the minimum weighted edges E′ ⊆ E, such that there exists
k distinct simple paths πi from s to t, whose edges belong to E′: πi ⊆ E′ for
i = 1, . . . , k. In the gearbox synthesis, the input is a complete multi-graph with
GNS,NP and the solution can provide a lower bound on the number of gears
necessary to add to the system.

The problem can be seen as a particular type of coverage problem, namely
min-k-union (mkU) [38]: given a set U , a collection S of subsets of U , and
an integer number k, select k subsets of S to minimize the number of covered
elements in U . Min-k-union is the minimization version of the classical maximum
coverage problem. While for maximum coverage, a greedy solution has a (1−1/e)
approximation guarantee, mkU is harder to approximate [8].

The reduction of mkSP to mkU is trivial: the set of all the edges E in mkSP
is U in mkU and the set of all paths corresponds to S. This, however, requires
the identification of all the s-t simple paths in G, which is a #p-complete task
in the general case [37].

When generating graphs, we can leverage graph isomorphism to avoid the
repeated evaluation of equivalent graphs. While it is not known if the detection
of isomorphic graphs can be solved in polynomial time or if it is a np-complete
problem, efficient solvers are available [22].

4.2 Transmission Ratio Path Assignment

Given a graph G with n s-t simple paths and a set of transmission ratios Ω,
the task requires to find an assignment Πω. If we have k transmission ratios,
with k ≤ n, we have n!

(n−k)! assignments. To reduce the number of assignments
that we need to check, we can identify those that lead to the same parameter
optimization problem.

Consider the example in Fig. 2 with three transmission ratios ω1, ω2, ω3. The
configuration contains three simple paths: π1 = (p1, p4), π2 = (p2, p4), π1 =
(p3) and six assignments can be made: {(ω1, π1), (ω2, π2), (ω3, π3)}, {(ω1, π1),

Fig. 2. Example of transmission ratio path assignments and their labeling
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(ω2, π3), (ω3, π2)}, {(ω1, π2), (ω2, π1), (ω3, π3)}, {(ω1, π2), (ω2, π3), (ω3, π1)},
{(ω1, π3), (ω2, π2), (ω3, π1)}, and {(ω1, π3), (ω2, π1), (ω3, π2)}. If we have only
a single transmission ratio, paths with the same lengths will lead to the same
parameters. In our particular example, this allows us to check only three assign-
ments: {(ω1, π1), (ω2, π2), (ω3, π3)}, {(ω1, π1), (ω2, π3), (ω3, π2)}, and {(ω1, π3),
(ω2, π2), (ω3, π1)}.

Formally, given a gearbox problem, a layout G and two assignments ΠΩ and
Π ′Ω over a set of s-t simple paths in G, we say that the two assignments are
equivalent ΠΩ ≡ Π ′Ω if problems I((G,ΠΩ)) and I((G,Π ′Ω)) produce the same
optimal solution. To detect equivalent assignments, we fix an arbitrary order of
the transmission ratios and label the edges of the associated paths in their order
of appearance. Thus, two assignments with the same labeling are equivalent.

4.3 Parameter Optimization

The parameter optimization I(C) is a non-convex optimization problem. We
solve it using the solver Ipopt [39]. Ipopt is a software specialized in large
scale continuous non-linear optimization problems, based on primal-dual interior
point method. For non-convex problems, it does not guarantee that the solution
found is globally optimal nor that the problem is globally infeasible. As shown
in previous work [2], Constraints (14)–(15) are hard to enforce and can cause the
solver to get stuck in a region of local infeasibility. To alleviate this problem, we
first consider a relaxation of the problem containing only Constraint (3). If the
relaxation is infeasible, we also consider the original problem to be infeasible.
Otherwise, we use its solution to initialize the values of the radii of the gears.
If the solver finds that I(C) is infeasible, we restart the solver with a different
random initialization of the parameters, up to a fixed maximum number of times,
or until a feasible solution is found.

5 State Transmission Models

In this section, we present different transition systems that can be used to solve
the sub-tasks of our problem. Similar to grammar rules [18,21], a transition
system can be used to describe how an algorithm moves from one partial solution
(a state) to another, using applicable actions.

More formally, a state transition system is defined by a set of states S, a set
of possible actions A and a transition function T : S × A → S. An action can
be applied to a state if the state satisfies some preconditions. Each transition
is characterized by a cost function QT : S × A → R. Given an initial state
σi ∈ S and a set of goal states Sg ⊆ S, we want to find a sequence of applicable
actions π = (α1, ..., αn), such that after applying the actions from σi, we obtain
a goal state σg = T (T (T (σi, α1), ...), αn) ∈ Sg, using a sequence of actions with
minimal cost. In all the sub-tasks considered, the cost does not depend on the
transition, but only on the state.
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5.1 Graph Generation

A state is an s-t multi-graph G = (S,P) with nodes S and edges P. The source
of the graph is the input shaft si ∈ S while the sink is the output shaft so ∈ S. A
goal state is defined as a graph containing k = |Ω| simple paths from si to so. We
assign cost 0 to non-goal states, while the cost of a goal state is determined by
the solution of the nested problem. We report here the primitive actions for this
task. However, depending on the algorithm, we use a subset of such actions, or
we define new actions as a sequence of these primitive actions. In the following,
every action is identified by a name, where the subscript indicates the involved
objects (gears, shafts, paths), its preconditions Φ, and the transition function T
from a state G = (S,P):

– ap,sj ,sk
: add a gear-pair p between shafts sj , sk ∈ S. Φ : |Psj ,sk

| < Np,
T : (S,P ∪ {p})

– as: add a new shaft s. Φ : |S| < Ns. T : (S ∪ {s},P)
– dp: delete edge p ∈ P. Φ : p ∈ P. T : (S,P/{p})
– ds: delete shaft s ∈ S. Φ : s ∈ S, s �= si, s �= so, T : (S/{s},P/Ps)

5.2 Transmission Ratio Path Assignment

We consider two distinct models for the transmission ratio path assignment task.
The first model, called paths generation model, incrementally builds paths
adding edges, while the second, assignment model, finds all the s-t simple
paths in a graph and tries to assign each transmission ratio to one of them.

Paths Generation Model. In path generation, a state is defined as a tuple
(π1, ..., πk), where πi = (p1, ..., pni

) is the sequence of gear-pairs associated with
the transmission ratio ωi, starting with shaft si. The sequence requires the gear-
pairs to be connected: i.e. si

pj
= so

pj−1
, ∀j = 2, ..., ni. A sequence may be empty.

We say that a sequence is a complete path if it terminates with shaft so. A
goal state is a state where all the sequences of gear-pairs are complete, distinct
paths. A goal state uniquely identifies a transmission ratio path assignment. For
this task, we only add or delete gear-pairs from a state (π1, ..., πk) (shafts are
automatically added if they are the input or the output of the gear-pair added):

– ap,πi
: add gear-pair p at the end of πi. Φ : si

p = so
pni

, |Psi
p,so

p
| < Np, |S| < Ns,

πi ∪ p is a simple path. T : (π1, ..., πi ∪ p, ..., πk),
– dπi

: delete the last element of πi. Φ : πi is not empty. T : (π1, ..., πi/pni
, ..., πk)

The cost of a non-goal state is determined by the solution of the relaxed version
of the parameter optimization problem, which considers only the transmission
ratios associated with complete paths. The cost of goal states is the cost of the
full parameter optimization problem.
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Assignment Model. For this model, given a graph G containing n simple
paths from si to so, a state is a partial assignment Π̃Ω , i.e. a subset of ΠΩ .
Actions assign a simple path to a transmission ratio, i.e. add an element (ω, π)
to the partial assignment. A goal state is defined as a state where all the trans-
mission ratios are assigned. The cost of a non-goal state is determined by the
solution of the relaxed version of the parameter optimization problem over the
partial assignment, while for goal states, the cost is the objective value of the
full parameter optimization problem.

6 Global Search

This section describes three search algorithms used to solve the gearbox synthesis
problem. For each search, both the two-stage and three-stage decomposition
approaches are considered (see Fig. 3). Each sub-task is solved using transition
systems described in the previous section and its solution is the input of the
next sub-task. The first algorithm presented, our baseline, is SA [16]. Next, we
consider a BFS [12] that keeps track of both the upper bound and lower bound
of solutions, similarly to branch-and-bound [19]. Finally, an EDA, a population-
based meta-heuristics approach is used.

A1. Transmission Ratio Path 
Assignment B1. Graph Generation

A2. Parameter Optimization B2. Transmission Ratio Path 
Assignment

B3. Parameter Optimization

ΠΩ

Two-stage decomposition Three-stage decomposition

cost

cost

ΠΩ

GNS,NP

G

GNS,NP

Fig. 3. Flowchart of the decomposition approaches

6.1 Simulated Annealing

In SA, states are feasible solutions and their cost corresponds to the cost of
a solution. A new state is generated by randomly selecting one transition of
the transition model and solving the subsequent sub-tasks. If this results in a
non-feasible solution, the state is automatically rejected.
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Two-Stage Decomposition. The search is initialized with randomly gen-
erated paths and the neighborhood is defined by the paths generation model
in Sect. 5.2. We consider the following actions, obtained by concatenating the
actions in Sect. 5.2:

– delete gear-pair p at position i in π: dp,i,π = dpn,π, dpn−1,π, ..., dpi−1,π,
a(si

pi−1
,si

pi+1
),π, api+2,π, ..., apn,π

– add gear-pair p at position i in π: ap,i,π = dpn,π, dpn−1,π, ..., dpi−1,π,
a(si

pi−1
,si

p),π
, ap,π, a(so

p,so
pi

),π, api,π, ..., apn,π

– replace gear-pair pj with pk in π: rpj ,pk,i,π = dpj ,i,π, apk,i,π

Three-Stage Decomposition. For this approach, we first generate a graph
using the graph generation model in Sect. 5.1 with the actions devised by
Konigseder et al. [18], which are a combination of actions in Sect. 5.1:

– create a new gear-pair between two existing shafts: ap,sj ,sk

– delete an existing gear-pair p: dp

– create a new shaft and connect to two existing ones: as, api,si
pj

,s, apj ,s,so
pj

– delete a shaft: ds

– replace a gear-pair: dp, as, apj ,si
p,s, apk,s,so

p

Starting from a randomly generated graph, the SA randomly selects one of the
actions and finds a new graph. The transmission ratio-path assignment problem
is solved heuristically by selecting a limited number of assignments, which are
then used to solve the parameter optimization problem. The cost of the graph
is the best objective value found among the sub-problems considered.

6.2 Best-First Search

In BFS, starting from the initial state, the algorithm selects a node for expan-
sion based on an evaluation function f , which represents an estimation of the
cost of the best solution. During expansion all the possible successor states are
generated, evaluated and inserted into a priority queue. The process is repeated,
selecting each time the state in the queue with the lowest f , until a goal state
is retrieved from the queue. We consider here a tweaked version of BFS that
also keeps track of an upper bound [5], which is simply the cost of the best
incumbent solution found during the evaluation stage of the algorithm. This
allows us to return the such feasible solution when we limit the running time
of the algorithm. Our evaluation function f is defined as a lower bound of the
cheapest configuration that can be achieved from a state σ and it is set to 0
at initialization. The optimality of the algorithm cannot be guaranteed because
our parameter optimization problem is not solved to (global) optimality.
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Two-Stage Decomposition. Similarly to SA, we solve the transmission ratio
path assignment problem using the path generation model in Sect. 5.2. We start a
search with a state with empty paths and incrementally add all possible edges to
create the first path. When the path is complete, we solve the inner optimization
problem to determine the cost of the state and we can start adding edges to
create the next path. Notice that the only action that we need is the addition of
a gear-pair. The evaluation function is calculated by running the relaxed solver
on paths that are completed. In addition, we add a lower bound related to the
number of gear-pairs that we need to add to the graph to have k paths. This is
calculated by building the graph representing the gearbox layout as the union
of the paths and estimating the number of edges necessary to have k s-t simple
paths: if the graph has k s-t simple paths, this is the number of edges in the
graph, otherwise, we take the number of edges plus one. We calculate the lower
bound on the cost by multiplying such number by two (every edge is a pair of
gears) and the square of the minimum radius of the gears.

Three-Stage Decomposition. We set the initial state to be a graph containing
only the input si and the output so shafts and consider the actions in Sect. 5.1:

– create a new gear-pair between two existing shafts: ap,sj ,sk

– create a new gear-pair p between an existing and a new shafts s: as, ap,sj ,s

Since we insert all the states explored in the queue and we start with an empty
graph, we do not need actions that delete gear-pairs or shafts. We use graph iso-
morphism to detect duplicated states. When a goal state (a graph with k simple
paths from si to so) is generated, we calculate the minimal cost of the graph.
This cost is calculated by solving the transmission ratio path assignment prob-
lem. The evaluation function is calculated by estimating the minimum number
of edges that we need to have a graph with at least k simple paths, similarly to
the 2-stage decomposition approach. Since the cost of a graph is defined by I,
which is a non-convex problem, adding a gear-pair does not necessarily increase
the cost of a configuration. For this reason, the evaluation function of a goal
state is not the cost of the configuration but is the lower bound defined above.
Our algorithm does not terminate when a goal state is found, but when the gap
between lower and upper bound is 0 or all the states have been explored.

To solve the transmission ratio path assignment problem, we run another BFS
using the assignment model in Sect. 5.2, where we start from a state where none
of the transmission ratios is assigned and actions correspond to the assignment
of a simple path to a transmission ratio.

6.3 Estimation of Distribution Algorithm

The last type of global search method is EDA, a class of meta-heuristic
approaches based on the evolution of populations [14]. While typical evolutionary
algorithms, such as genetic algorithms, use variation operators such as cross-over
and mutation, EDAs use an explicit probability model to generate new solutions,
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showing advantages in terms of performance, theoretical convergence, and cap-
turing the structure of the problem space [14]. The probabilities are computed
by directly using the frequency statistics of the selected top individuals from a
population and indicate the likelihood of a particular solution being included in
a set of top quality solutions based on prior observations. EDA has also been suc-
cessfully applied to the configuration design of vehicle suspension systems [7]. As
with the other algorithms, both two and three-stage decomposition approaches
are implemented and EDA is used to solve the top-level task. The overall frame-
work for the both approaches is the same except for the details in each of the
steps, as detailed below.

i) Generation of Initial Population: As a first step, an initial population of
individuals P is randomly generated.

In the two-stage decomposition approach, an individual is a tuple of k simple
paths, each corresponding to a transmission ratio path assignment. Each path
is constructed by randomly choosing an edge at a given node from a uniform
distribution defined over all possible outgoing edges of the node, starting from
the input shaft node si and ending at the output shaft node so.

In the three-stage decomposition approach, an individual is a graph G. An
individual is generated by randomly selecting an edge from a uniform distribution
defined over all possible edges, and incrementally adding the selected edge to a
null graph until the number of simple paths n is such that k ≤ n ≤ nmax.
We impose an upper bound on the number of paths to limit the number of
transmission ratio path assignments. If the last edge added results in n > nmax,
we backtrack one step and add another edge until k ≤ n ≤ nmax.

ii) Evaluation and Selection: Each individual in the population is evaluated
by solving the parameter optimization problem. For the three-stage decomposi-
tion approach, several transmission ratio path assignments are created exhaus-
tively before parameter optimization. A subset of the population, P ′ ⊆ P, rep-
resenting top t individuals, is selected. |P ′|/|P| is called truncation rate.

iii) Estimation of Probability Distribution: From P ′, the probability dis-
tributions of the edges in the individuals are estimated.

The probability model used for the two-stage decomposition approach is:

Ppath,πj
(P) =

∏

p∈P

Ppath,πj
(p|si

p) ∀j = 1, ..., k (18)

Here, a conditional probability distribution is assumed and the probability of a
gear-pair p is dependent on its input shaft, si

p.
The probability model used for the three-stage decomposition approach is:

Pgraph(P) =
∏

p∈P

Pgraph(p) (19)
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In other words, a univariate probability distribution is assumed and the proba-
bility of an edge p is determined independently from other edges.

iv) New Population Generation: A new population of individuals is gen-
erated using the same techniques as in Step i) with probability distributions
estimated in Step iii). That is, instead of randomly selecting edges from uniform
distributions to construct a graph or a path, the edges are sampled from the
probability distributions in Eq. (19) or Eq. (18), depending on the approach.

v) Iterate Steps ii)–iv): Steps ii) to iv) are repeated with the newly generated
population until an allocated number of iterations is reached.

7 Experimental Evaluation

Experiments are run on a single desktop computer with two Intel Xeon CPUs
E5-2650 v2 2.60 GHz and 32G of RAM.

7.1 Experimental Setup

Datasets. We generate a first dataset with 45 synthetic problem instances
(synthetic dataset). Instances have 4, 7 and 10 transmission ratios. We fix the
minimum transmission ratio to 1, and the maximum to 2, 6 and 10, respectively.
The values of the transmission ratios are generated randomly between the min-
imum and the maximum. The second dataset (tremec dataset) contains nine
realistic problems, five with five transmission ratios and four with ten transmis-
sion ratios. The transmission ratios and the size of the gearbox are taken from
the specifications found on the TREMEC website [35].

Implementation Details. The inner problem I(C) is solved with Ipopt [39],
using the modeling language CasADi [1]. Isomorphic graphs are detected using
the nauty library [22]. For EDAs, evaluations are run in parallel across 32 CPU
threads available in the computer used. For the two-stage decomposition app-
roach, we use population sizes of 192 for the five-ratio problems and 384 for
the ten-ratio problems in the tremec dataset. For the three-stage decomposition
approach, we use population size of 64, while using different time limits for eval-
uating each individual: three minutes for the five-ratio problems and six minutes
for the ten-ratio problems. For all EDAs, the truncation rate and the number
of iterations are set to 0.2 and 10, respectively. Both SA and BFS are run on a
single thread. The temperature parameter in SA is set to 2000 and decremented
every 1000 evaluations with a step size of 5. Time limits vary depending on the
size of the problem and are reported in the next section. They are assumed to
be tolerable waiting times from a design process perspective.
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Table 1. Results on the synthetic dataset. We report the average and the standard
deviation of objective value for problems that are solved by all algorithms (excluding
those that cannot solve any problem). We report also the number of problems solved
by each algorithm.

k 4 7 10
maxω 2 6 10 2 6 10 2 6 10

μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

SA2 obj 1349 92 2868 336 3377 105 6821 581 13389 2083 22805 1449 - - - - - -
# 5 - 5 - 5 - 5 - 5 - 5 - 0 - 0 - 0 -

BFS2 obj 1168 99 2015 97 2596 121 1715 45 - - - - - - - - - -
# 5 - 5 - 5 - 5 - 0 - 0 - 0 - 0 - 0 -

SA3 obj 1168 100 2033 120 2644 145 1764 116 3456 268 4427 285 3161 608 5337 - 6787 -
# 5 - 5 - 5 - 5 - 5 - 5 - 5 - 4 - 5 -

BFS3 obj 1168 99 2015 97 2597 121 1640 22 3858 307 6018 499 2258 364 7565 - 24206 -
# 5 - 5 - 5 - 5 - 5 - 5 - 5 - 1 - 1 -

Table 2. Results on the tremec dataset. We report the average and the standard
deviation of the objective value of each problem. The value marked with ∗ is the
objective value of the only solution found in all runs of the algorithm.

5-transmission ratios 10-transmission ratios
problem id es42-5a es52-5a es60-5a es60-5c tr-3550 tr-t-10d tr-t-10v tr-to-10s tr-to-10v

μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

EDA2 23281 1307 23733 957 24294 1522 24468 1538 12670 761 - - - - - - -
SA2 28523 2102 28114 2363 27468 4187 28863 3966 14501 1797 - - - - - - 466813∗ 0
BFS2 - - - - 23797 265 24651 696 10952 200 - - - - - - - -
EDA3 21644 473 22014 414 21199 0 22674 155 11067 69 22891 1247 25936 1343 21844 711 22698 631
SA3 25866 1957 26401 1773 25401 1993 24232 2618 11976 800 44105 10130 46084 20198 33093 9432 40640 10993
BFS3 31022 573 31370 552 30799 438 30792 538 10995 162 55458 1049 69725 1571 47989 1291 51338 1127

7.2 Results

We use the synthetic dataset to test the behaviour of the algorithms running on
a single thread: BFS and SA. In Table 1 we report the average solution qualities
and the number of problems solved for different groups of problems, using a
time-limit of 1 h. The name of the algorithm is followed by 2 or 3, indicating the
two-stage or three-stage decomposition approach, respectively. Every algorithm
is run 3 times to account for the randomization in the algorithms. Both SA and
BFS perform better when using the three-stage decomposition approach. The
two-stage approach fails to find feasible solutions to medium-size problems. In
terms of solution quality, BFS outperforms SA for small size problems, while SA
generally performs better on problems with more transmission ratios.

All algorithms are tested on the tremec dataset and results are in Table 2.
The time limit is 1 and 2 h for problems with 5 and 10 transmission ratios,
respectively. Each algorithm is run 10 times for each problem. Results on this
dataset confirms that the three-stage decomposition generally outperforms the
two-stage. Among the algorithms, EDA is the best performing, mainly attributed
to the larger number of solutions that can be evaluated in parallel.
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8 Conclusion

In this paper, we consider the multi-speed gearbox synthesis problem formulated
as a bi-level optimization problem. The inner task, or parameter optimization,
is a non-convex continuous optimization problem, solved with a state-of-the-art
solver. For the outer problem, we used two approaches to search over gearbox
configurations: the two-stage decomposition approach searches over transmis-
sion ratio path assignments, while the three-stage decomposition approach first
selects a sub-graph, and then performs the transmission ratio path assignment.
We found that the latter consistently outperforms the first in all test problems
and search algorithms. We investigated a variety of global search algorithms for
solving the sub-tasks of the outer problem. While best-first-search usually per-
forms well on small-size problems, the estimation of distribution algorithm pro-
duces better quality solutions for realistic instances. This work demonstrates the
value of integrating methods from both the artificial intelligence and optimiza-
tion fields applied to configuration design problems in mechanical engineering.
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Abstract. We can compactly represent large sets of solutions for prob-
lems with discrete decision variables by using decision diagrams. With
them, we can efficiently identify optimal solutions for different objective
functions. In fact, a decision diagram naturally arises from the branch-
and-bound tree that we could use to enumerate these solutions if we
merge nodes from which the same solutions are obtained on the remain-
ing variables. However, we would like to avoid the repetitive work of find-
ing the same solutions from branching on different nodes at the same level
of that tree. Instead, we would like to explore just one of these equiva-
lent nodes and then infer that the same solutions would have been found
if we explored other nodes. In this work, we show how to identify such
equivalences—and thus directly construct a reduced decision diagram—
in integer programs where the left-hand sides of all constraints consist of
additively separable functions. First, we extend an existing result regard-
ing problems with a single linear constraint and integer coefficients. Sec-
ond, we show necessary conditions with which we can isolate a single
explored node as the only candidate to be equivalent to each unexplored
node in problems with multiple constraints. Third, we present a suffi-
cient condition that confirms if such a pair of nodes is indeed equivalent,
and we demonstrate how to induce that condition through preprocessing.
Finally, we report computational results on integer linear programming
problems from the MIPLIB benchmark. Our approach often constructs
smaller decision diagrams faster and with less branching.

Keywords: Branch-and-Bound · Decision Diagrams · Depth-First
Search · Integer Programming · Solution Enumeration

1 Introduction

The enumeration of near-optimal solutions is a feature that is present in commer-
cial MILP solvers such as CPLEX [33] and Gurobi [26] as well as algebraic mod-
elling environments such as GAMS [25]. This feature is important because some
users need to qualitatively compare the solutions of a mathematical model. How-
ever, those solutions are often a small set collected along the way towards solving
for the optimal solution. While the option for complete enumeration exists in
some solvers, it comes with observations like the following in CPLEX [33]:
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Beware, however, that, even for small models, the number of possible solu-
tions is likely to be huge. Consequently, enumerating all of them will take
time and consume a large quantity of memory.

In fact, the problem of enumerating integer solutions is #P-complete [49,50].
In practice, the enumeration of solutions has been an extension of the same

methods used for optimization. When searching for an optimal solution of a
problem with linear constraints and integer variables, the first step is often to
solve a relaxation of this problem: a linear program in which we ignore that the
variables should have integer values [18]. If the resulting solution has fractional
values for some of the variables, then we may resort to branching : exploring two
or more subproblems in which we fix or restrict the domain of these variables to
exclude their corresponding fractional values. We can ignore some of the resulting
subproblems if they are provably suboptimal, for which reason this process is
known as branch-and-bound [36]. However, if we are interested in enumerating
some or all the solutions, then we may need to keep branching even if no value
is fractional. In such a case, we continue while the domains of the variables have
multiple values, the relaxation remains feasible, and the objective function value
is within a desired optimality gap. That is the case of the one-tree approach [19],
which has been used to populate the solution pool of the CPLEX solver [32].

The branch-and-bound process is often represented by a directed tree, the
branch-and-bound tree, in which a root node r corresponds to the problem of
interest and the children of each node are the subproblems defined by branching.
If we branch by assigning the value of one decision variable at a time to each
possible value, then a path from the root to a leaf defining a feasible subproblem
corresponds to a set of assignments leading to a unique solution. Such explicit
representation of the solution set emerging from branch-and-bound, which may
reach an exponential number of nodes with respect to the number of variables,
could be naturally transformed into a decision diagram by merging the leaves of
the tree as a single terminal node t [44]. Likewise, we can merge any other nodes
from which the same solutions are obtained on the remaining variables while
preserving a correspondence between solutions of the problem and r–t paths in
the diagram. That results in a representation that is substantially more compact
and, in some cases, can have less nodes than the number of solutions represented.
If every path assigns a value to every variable, then we can find optimal solutions
for varied linear objective functions by assigning the corresponding weights to
the arcs and computing a minimum weight r–t path, which is usually faster than
resolving the problem with different objective functions [44].

Figure 1 illustrates these different graphic representations for the solutions of
inequality 2x1 − 2x2 − 3x3 ≤ −1 on a vector of binary variables x ∈ {0, 1}3: (a)
is a tree in which every path from the root to a different leaf assigns a distinct
set of values to the variables; (b) is the decision diagram produced by merging
the leaves of the tree; and (c) is a decision diagram in which we merge the three
nodes in (b) from which the only arc towards t corresponds to x3 = 1. We use
thin arcs for assignments of value 0 and bold arcs for assignments of value 1. In
the example, we always assign a value to variable x1 first, then to variable x2,
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Fig. 1. (a) Tree representing the solutions of {x ∈ {0, 1}3 : 2x1 − 2x2 − 3x3 ≤ −1}.
(b) Decision diagram from merging the leaf nodes. (c) Reduced decision diagram with
interval of equivalent right-hand side values for the inequality on each node.

and finally to variable x3. When the same order of variables is used in every r–t
path, then nodes at the same arc-distance from r define a layer with the same
selector variable for the next assignment, and we say that we have an ordered
decision diagram. In fact, Fig. 1(c) has the smallest ordered decision diagram for
that sequence of variable selectors, and we call it a reduced decision diagram.

In this paper, we discuss how to compare the formulation of subproblems
involving one or more inequalities to determine the equivalence of branch-and-
bound nodes, and hence directly construct reduced decision diagrams.

1.1 Contribution

We generalize prior work on identifying equivalent subproblems with a single
inequality [1,2,6] and introduce a variant for the case of multiple inequalities.
First, we show how to compute the interval of equivalent Right-Hand Side (RHS)
values for any inequality on finite domains with additively separable Left-Hand
Side (LHS) and fractional RHS. Second, we discuss why the same idea cannot be
directly applied to problems with multiple inequalities. In that case, we show how
to eliminate candidates for equivalence among the explored nodes in such a way
that we are left with at most one potentially equivalent node. Finally, we present
a sufficient condition achievable by bottom-up preprocessing to determine if such
a remaining node is indeed equivalent.

2 Decision Diagrams

A decision diagram is a directed acyclic graph with root node r. Arcs leaving
each node denote assignments to a variable, which we denote its selector variable.
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If the variables can only take two possible values, the diagram is binary. If the
variables can take more values, the diagram is multi-valued. When representing
only feasible solutions, there is one terminal node t and each solution is mapped
to an r–t path. Otherwise, there are two terminal nodes T and F , with feasible
solutions corresponding to r–T paths and infeasible solutions to r–F paths. We
say that nodes at the same distance (in arcs) from the root node r are in the
same layer of the diagram. The sets of paths from a given node u toward t (or
T ) define the solution set of that node. Nodes have the same state if those sets
coincide. A diagram is reduced if no two nodes have the same state. A diagram
is ordered if all nodes in each layer have the same selector variable.

Bryant [14] has shown that we can efficiently reduce a decision diagram
through a single bottom-up pass by identifying and merging nodes with equiva-
lent sets of assignments on the remaining variables.

Two factors may help us obtain smaller decision diagrams. First, equiva-
lences are intuitively more frequent in ordered decision diagrams. In such a
case, all nodes in each layer have solution sets defined on the same set of vari-
ables, which is a necessary condition to merge such nodes. Second, it is easier
to identify equivalences if the problem is defined by inequalities in which the
Left-Hand Side (LHS) is an additively separable function. A function f(x) on
an n-dimensional vector of variables x is additively separable if we can decom-
pose it as f(x) =

∑n
i=1 fi(xi), i.e., a sum of univariate functions on each of

those variables. In such a case, all the nodes in a given layer define subprob-
lems with inequalities having the same LHS. For example, if we have a problem
{x :

∑n
i=1 fi(xi) ≤ ρ}, then each node obtained by assigning a distinct value x̄1

to variable x1 defines a subproblem {x :
∑n

i=2 fi(xi) ≤ ρ − f1(x̄1)} on the same
n − 1 variables and with the same LHS for the inequality.

Following those conditions, we can anticipate that two nodes have the same
solutions if their subproblems have inequalities with the same Right-Hand Side
(RHS) values. In such a case, we can save time if we just branch on one of those
nodes to enumerate its solutions and then merge it with the second node. For
example, in the problem of Fig. 1 we obtain the same subproblem {x3 ∈ {0, 1} :
−3x3 ≤ −1} with assignments x1 = 0 and x2 = 0 or x1 = 1 and x2 = 1.

More generally, we say that two subproblems have equivalent formulations if
they have the same solutions, even if the formulations are different. For exam-
ple, in Fig. 1 we obtain subproblem {x3 ∈ {0, 1} : −3x3 ≤ −3} by assigning
x1 = 1 and x2 = 0, which has the same solution set as the previously men-
tioned assignments leading to {x3 ∈ {0, 1} : −3x3 ≤ −1}. A method to compute
such equivalent RHS values for nodes in the same layer of ordered decision dia-
grams representing a linear inequality with integer coefficients has been indepen-
dently proposed twice on binary domains [1,6] and later extended to multi-valued
domains [2]. This method is based on search for all the solutions for some nodes
and then inferring if a new node would have the same solutions as one of those
nodes. We will use the following definition for those previous nodes.

Definition 1 (Explored node). A node is said to be explored if all the solu-
tions for the subproblem rooted at that node are known.
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Once a node has been explored, we can compute the minimum RHS value
that would produce the same solutions and the minimum RHS value, if any,
that would produce more solutions. In Fig. 1(c), the interval of equivalent integer
values for the RHS of the inequalities on the remaining variables is shown next
to each node. For example, in the penultimate layer we have the intervals of RHS
values for −3x3 as LHS, which includes [−3,−1] for the node that is reached by
the three assignments to x1 and x2 that we discussed previously.

However, we cannot directly apply the same method to problems with mul-
tiple inequalities and expect to find all the nodes that are equivalent. For
example, in Fig. 2 we have three equivalent formulations for the solution set
{(0, 0), (0, 1), (1, 0)}. The inequality with LHS 5x1 + 4x2 has equivalent RHS
values in [5, 8]. The inequality with LHS 6x1 + 10x2 has equivalent RHS values
in [10, 15]. But there are equivalent RHS values beyond [5, 8] × [10, 15]: if the
RHS of only one inequality is made larger, such as in the first two examples
of Fig. 2, the other inequality prevents the inclusion of solution (1, 1). In other
words, not every inequality needs to separate every infeasible solution.

Fig. 2. Equivalent formulations in which the inequalities have the same functions in
the Left-Hand Side (LHS) but different values in the Right-Hand Side (RHS).

3 Related Work

Put in context, our work may also improve exhaustive search. Even in cases
where the goal is not to construct a decision diagram for the set of solutions, the
characterization of a state for the nodes of the corresponding decision diagram
based on their solution sets can be exploited to avoid redundant work during
the branch-and-bound process.

Beyond the case in which all RHS values are the same, prior work on identi-
fying equivalent branch-and-bound nodes has focused on detecting inequalities
that are always satisfied. One example is the detection of unrestricted subtrees,
in which any assignment to the remaining variables is feasible [3]. The same prin-
ciple was later used to ignore all unrestricted inequalities and only compare the
RHS values of inequalities that separate at least one solution [44]. That can be
particularly helpful with set covering constraints, in which it suffices to have one
variable assigned to 1. This line of work relies on computing the minimum RHS
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value after which each inequality does not separate any solution, and therefore
any RHS value larger than that is deemed equivalent. For example, in Fig. 1(c)
the first node in the penultimate layer allows both possible values to x3, which
for the LHS −3x3 implies a RHS of 0 or more. In constrast to [44], the present
paper aims to identify all nodes that can be merged during the top-down con-
struction of a decision diagram corresponding to an ILP formulation. Hence, we
also compare different RHS values that exclude at least one solution.

While the search effort may decrease, it can still be substantial and depend on
other factors. First, the size of a reduced decision diagram for a single constraint
can be exponential on the number of variables for any order of variable selec-
tors [30]. Second, finding a better order of variable selectors for binary decision
diagrams is NP-complete [13], hence implying that it is NP-hard to find an order
of variable selections that minimizes the size of the decision diagram [6,22]. Nev-
ertheless, some ordering heuristics have been found to work well in practice [6,7],
while strong bounds for the size of the decision diagrams according to the order-
ing of variable selectors have been shown for certain classes of problems [28]. In
other cases, a convenient order may be deduced from the context of the prob-
lem. For example, by identifying a temporal relationship among the decision
variables, such as in sequencing and scheduling problems [17,42].

A related approach consists of analyzing dominance relations among branch-
and-bound nodes [31,35]. When exploring a node u, we may wonder if there is
another node v that can be reached by fixing the same variables with different
values such that (i) the assignments leading to v are preferable according to
the objective function; and (ii) v defines a relaxation of the subproblem defined
by u, in which case all solutions that can be found by exploring u can also be
found by exploring v [16,23,24]. If such a node v exists and we only want to
find an optimal solution, then we can safely prune the subtree rooted at u and
only explore the subtree rooted at v. However, such an approach is not fully
compatible with enumerating solutions because the subproblems on u and v
may not have the same set of solutions. Furthermore, a change in the objective
function could make the discarded node u preferable to node v in applications of
reoptimization. Finally, finding such a node v may entail solving an optimization
problem on the variables that are fixed to reach node u, and thus it only pays
off closer to the root node because not many variables have been assigned yet.

In contrast, our approach pays off closer to the bottom of the decision diagram
representation. For a node at distance k from r, there are at most 2k states if
all variables have binary domains, which are the distinct assignments to the first
k variables. For a node at distance k from t, there are at most 22

k − 1 states,
which are the non-empty sets of solutions for the last k variables. Hence, we
should generally expect that equivalences occur more often when the number of
top-down states exceeds the number of bottom-up states.

In the context of integer linear programming, a small set of solutions is
often obtained through the application of inequalities separating previous solu-
tions [5,15]. Recent work has also focused on the generation of a diverse set
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of solutions [20,41,48], and there are also methods to obtain exact upper
bounds [34] and probabilistic lower bounds [46] on the size of the solution set.

Decision diagrams and some extensions have also been widely used to solve
combinatorial optimization problems [4,8,9,29,38,40,43,47,51–53], and more
recently stochastic [27,37,45] and nonlinear optimization problems [10,21].

4 Prior Result

We begin our analysis with a prior result about the direct construction of reduced
decision diagrams, which concerns the decision diagram rooted at a node v
and defined by an inequality of the form a1x1 + . . . + anxn ≤ a0 with inte-
ger coefficients and each decision variable xi having a discrete domain of the
form {0, 1, . . . , di}. For such a node v and each of the other nodes in the decision
diagram, we want to compute a corresponding interval [β, γ] or [β,∞), where β
is the smallest integer RHS value that could replace a0 and still yield the same
solutions. Similarly, γ is the largest integer RHS value that would still yield the
same solutions, and γ only exists if at least one solution is infeasible. We recur-
sively compute such intervals after exploring a node and all of its descendants.

Theorem 1 (Ab́ıo & Stuckey1 [2]). Let M be the multi-valued decision dia-
gram of a linear integer constraint a1x1 + . . . + anxn ≤ a0. Then, the following
holds:

– The interval of the true node T is [0,∞).
– The interval of the false node F is (−∞,−1].
– Let v be a node with selector variable xi and children {v0, v1, . . . , vdi

}. Let
[βj , γj ] be the interval of vj. Then, the interval of v is [β, γ], with β =
max

{
βs + sai | s ∈ {0, . . . , di}

}
, γ = min

{
γs + sai | s ∈ {0, . . . , di}

}
.

The interval of the explored nodes can then be compared with the RHS of the
inequalities defining each of the unexplored nodes in the same layer to identify
equivalences. In order to fully avoid redundant work, the branch-and-bound
algorithm should perform a depth-first search (DFS), where the unexplored node
with fewer unfixed variables is explored next. In such a case, we do not risk
branching on two nodes that would later be found to have the same state.

In this paper, we consider decision diagrams with a single terminal node t,
hence disregarding infeasible solutions and nodes in which roughly β = −∞.

5 The Case of One Inequality

In this section, we discuss how Theorem 1 can be further generalized when
applied to a single inequality. Our contribution is evidencing that the sequence
of work culminating in the result by Ab́ıo and Stuckey [2] can be extended to

1 Following the recommendation of one of the anonymous reviewers, there is small
correction in comparison to [2]: we use s ∈ {0, . . . , di} instead of 0 ≤ s ≤ di.
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account for the case of linear inequalities with fractional coefficients, and to the
slightly more general case of inequalities involving additively separable functions.

We begin with an intuitive argument for generalizing that result for the
case of fractional RHS values. In the interval [β, γ] used in Theorem 1, both
β and γ are integer values corresponding to the smallest and largest integer
RHS values defining the same solutions for the inequality. If the LHS coefficients
and the decision variables are integer, then it follows that any right-hand side
value larger than γ but smaller than γ + 1 would also define the same solutions.
Hence, [β, γ+1) is the maximal interval of equivalent right-hand side values if we
allow a fractional right-hand side. Now the upper end value γ +1 is the smallest
RHS value yielding a proper superset of solutions. Furthermore, with such half-
closed intervals, both ends may also become fractional if the LHS coefficients are
fractional and assigning a variable changes the RHS by a fractional amount.

In addition, the only reason to represent infeasible solutions is to compute
those upper ends of the RHS intervals. But for each node that has missing arcs
for some values of its selector variable, which if represented would only reach
the terminal F , the corresponding upper end is the sum of the impact of that
assignment with the smallest RHS associated with a solution on the remaining
variables. But as we will see next, that value can be calculated by inspection.

In summary, we can ignore infeasible solutions by using a single terminal
node t, lift the integrality of all coefficients, and consequently allow the LHS to
be additively separable. That leads us to the following result:

Theorem 2. Let D be a decision diagram with variable ordering x1, x2, . . . , xn

of f(x) = f1(x1) + . . . + fn(xn) ≤ ρ on finite domains D1 to Dn. Then, the
following holds:

– The interval of the terminal node t is [0,∞).
– Let v be a node with selector variable xi and non-empty multi-set2 of descen-

dants {vj | j ∈ Dv}, Dv ⊆ Di, where vj is reached by an arc denoting xi = j.
Let [βj , γj) be the interval of vj. The interval of v is [β, γ), with

β = max{βj + fi(j) | j ∈ Dv}

and

γ = min
{

min{γj + fi(j) | j ∈ Dv}, min{ξi + fi(j) | j ∈ Di \ Dv}
}

,

where

ξi =
n∑

l=i+1

min{fl(d) | d ∈ Dl}.

Since we can prove a stronger result regarding the lower end β, which also
applies to the case of multiple inequalities that will be discussed in Sect. 6, we
split the proof of Theorem2 into two lemmas.
2 We use a multi-set because two nodes might be connected through multiple arcs for

different variable assignments.
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Lemma 1. Let D be a decision diagram with variable ordering x1, x2, . . . , xn of
{(x1, x2, . . . , xn) ∈ D1 × D2 × . . . Dn|fk(x) = fk

1 (x1) + . . . + fk
n(xn) ≤ ρk ∀k =

1, . . . ,m}. Then, computing βk for each inequality fk(x) ≤ ρk as in Theorem2
yields the smallest RHS not affecting the set of solutions satisfying all inequalities
on each node.

Proof. We proceed by induction on the layers, starting from the bottom. The
base case holds since 0 ≤ ρk is only valid if ρk ≥ βk = 0 for each inequality
k at the terminal node t. Now suppose, for contradiction, that Lemma1 holds
for the n − i bottom layers of D and not for the one above. Hence, there would
be a node v with selector variable xi such that v has the same solutions if we
replace the RHS of the k-th inequality with some δ < βk ≤ ρk, thereby obtaining∑n

l=i f
k
l (xl) ≤ δ. Let j ∈ arg max{βk

j + fk
i (j) | j ∈ Dv}, i.e., vj would be one

of the children maximizing the expression with which we calculate βk in the
statement of Lemma 1 and βk

j is the smallest RHS value not affecting the set of
solutions of vj with respect to the k-th inequality. Consequently, node vj would
have the same solutions if the k-th inequality for vj becomes

∑n
l=i+1 fk

l (xl) ≤
δ−fi(j). However, βk

j = βk−fk
i (j) > δ−fk

i (j), and we have a contradiction since
by induction hypothesis any value smaller than βk

j would yield proper subset of
the solution set of vj . �

Lemma 2. Computing γ for one inequality as in Theorem2 yields the smallest
RHS value that would yield a proper superset of the solutions of node v.

Proof. We proceed by induction on the layers, starting from the bottom. The
base case holds since the terminal node t has a set with one empty solution and
we denote γ = +∞.

By induction hypothesis, we assume that Lemma 2 holds for the n − i lower
layers of D, and we show next that it consequently holds for the i-th layer of D.

For any node v in the i-th layer with interval [β, γ) for a finite γ such that
∑n

l=i fl(xl) ≤ γ, let j ∈ arg min
{

min{γj + fi(j) | j ∈ Dv},min{ξi + fi(j) | j ∈

Di \ Dv}
}

. If (I) j ∈ arg min{γj + fi(j) | j ∈ Dv}, then there is a child node
vj that minimizes the expression with which we calculate γ in the statement
of Lemma 2. By induction hypothesis, that implies that there is a solution that
is not feasible for node vj and such that

∑n
l=i+1 fl(x̄j) = γj . Consequently,

solution (x̄i = j, x̄i+1, . . . , x̄n) is not feasible for node v and
∑n

l=i fl(x̄j) = γ. If
(II) j ∈ arg min{ξi+fi(j) | j ∈ Di \Dv}, then γ = fi(j)+ξi and node v does not
have any solution in which xi = j. Consequently, there is an infeasible solution
(x̄i = j, x̄i+1, . . . , x̄n) such that

∑n
l=i+1 fl(x̄j) = ξi and

∑n
l=i+1 fl(x̄j) = γ. In

either case, a RHS of γ yields a proper superset of the solutions of v. Furthermore,
a smaller RHS value yielding a proper superset of the solutions of v would either
contradict the choice of j in (I) if there is at least one solution of v such that
xi = j or in (II) if there is no solution of v such that xi = j. �

We are now able to prove the main result of this section.
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Proof (Theorem 2). Lemma 1 implies that β is the smallest RHS value yielding
the same solution set as v and Lemma 2 implies that γ is the smallest RHS value
yielding at least one more solution than node v. Since there is a single inequality,
then a RHS of γ yields a proper superset of the solutions of v. �

6 The Case of Multiple Inequalities

For variables x1 to xn with finite domains D1 to Dn, we now consider construct-
ing a decision diagram for a problem defined by m inequalities in the following
form:

f i(x) = f i
1(x1) + . . . + f i

n(xn) ≤ ρi ∀i = 1, . . . , m

We will exploit the fact that we still can apply Lemma 1 to a problem with
multiple inequalities. Theorem 2 is not as helpful because the equivalent upper
ends for one inequality may depend on the RHS values of other inequalities. That
prevents us from immediately identifying if two nodes are equivalent by com-
paring the intervals of the explored node with the RHS values of the unexplored
node. Nevertheless, we can characterize and distinguish nodes having different
solution sets by their lower ends as in Lemma 1. We show that such comparison
is enough to exclude all but one of the explored nodes as potentially equivalent,
to which we describe a sufficient condition to guarantee equivalence.

6.1 Necessary Conditions

With multiple inequalities, we cannot simply use the intervals of RHS val-
ues associated with each of the inequalities independently. We have previ-
ously observed that with the example in Fig. 2, which we now revisit with
half-closed intervals. For the inequality with LHS 5x1 + 4x2, the solution
set {(0, 0), (0, 1), (1, 0)} corresponds to RHS values in [5,9). For the inequal-
ity with LHS 6x1 + 10x2, that same solution set corresponds to RHS val-
ues in [10,16). Hence, [5, 9) × [10, 16) defines a valid combination of RHS val-
ues yielding the same solutions. However, we can relax one inequality if the
other still separates the remaining infeasible solution (1, 1). Consequently, the
solution set is actually characterized by following combination of RHS values:
[5, 9) × [10,+∞) ∪ [5,+∞) × [10, 16).

Note that the lower ends in β are nevertheless the same. In fact, Lemma 1
implies that we can characterize node states by the smallest RHS value of each
inequality that would yield the same solutions. The key difference is that pushing
any RHS lower than β restricts the solution set, whereas increasing some RHS
to γ or above may not enlarge the solution set if another inequality separates
the solutions that would otherwise be included. Hence, we ignore the upper ends
in what follows and focus on the consequences of Lemma 1.

In what follows, let v be an unexplored node with RHS values ρ1 to ρm

and let v̄ and ¯̄v be explored nodes with lower ends β̄1 to β̄m and ¯̄β1 to ¯̄βm,
respectively.
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Corollary 1 (Main necessary condition). Node v is equivalent to node v̄
only if ρk ≥ β̄k for k = 1, . . . ,m.

Proof. Lemma 1 implies that ρk < β̄k for any inequality k would make a solution
of v̄ infeasible for v. Conversely, if ρk ≥ β̄k for k = 1, . . . , m, then v has at least
the same solutions as v̄, a necessary condition for equivalence. �

Corollary 2 (Dominance elimination). Node v is equivalent to an explored
node v̄ only if no other explored node ¯̄v for which v satisfies the necessary con-
dition has a strictly larger lower end for any of the inequalities, i.e., there is no
such ¯̄v for which ¯̄

βk > β̄k for any k = 1, . . . ,m.

Proof. If two nodes v̄ and ¯̄v have different lower ends for inequality k and they
are such that ¯̄βk > β̄k, then ¯̄v has a solution requiring a larger RHS value on
inequality k to be feasible. Thus, v̄ does not have such a solution. However, if
both v̄ and ¯̄v have a subset of the solutions of node v, then v also has that
solution and thus cannot be equivalent to v̄. �

Corollary 3 (One or none). Node v has at most one explored node satisfying
both the necessary condition and the dominance elimination in a reduced decision
diagram.

Proof. Since the lower ends characterize the state of a node and no two nodes
have the same state in a reduced decision diagram, then any pair of explored
nodes will differ in at least one lower end value. Consequently, no more than one
explored node can satisfy both conditions for node v. �

When multiple nodes meet the necessary condition of having at least as many
solutions as node v, we can eliminate some by dominance. If they differ in the
lower end of some inequality, that implies that node v and one of them have a
solution that the other does not have, hence allowing us to discard the latter. In
fact, explored nodes can eliminate one another in different inequalities. Since no
two nodes have all lower ends matching in a reduced decision diagram, no more
than one node is left as candidate, but possibly none is.

6.2 A Sufficient Condition

From Corollary 3, we are left with at most one explored node v̄ that could be
equivalent to a given unexplored node v. If there is no such node, then the
solution set of v is distinct from all the solution sets of explored nodes in the
layer. Otherwise, the solution set of such node v̄ is different from that of v only
if the solutions of node v are a proper superset of the solutions of v̄. If the layer
has explored nodes corresponding to every possible solution set, then nodes v
and v̄ would be equivalent. However, having all such nodes would be prohibitive.

Alternatively, we can individually consider each of the solutions that could be
missing from v̄. If a given layer has explored nodes containing each one of them,
then node v̄ is always equivalent. We use the following definition for sufficiency:
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Definition 2 (Populated layer). A layer is said to be populated if it has
explored nodes corresponding to the minimal solution set containing each of the
solutions on the remaining variables.

For a solution x in a populated layer, there is a node vx with lower ends β(x)
corresponding to the tightest RHS values for which x is feasible. In other words,
all the inequalities are active for x when the RHS is replaced with β(x). Node vx
may also have any other solution y such that β(y) ≤ β(x), in which case solution
x is only feasible when y is. Note that we only need O(2k) nodes with distinct
states to populate a layer instead of O(22

k

) to cover all possible states. Figure 3
shows the tightest RHS values associated with each solution for the inequalities
of the problem illustrated in Fig. 2. The next result formalizes the condition.

Fig. 3. Smallest (right-hand side) RHS values for which each solution in {0, 1}2 is
feasible for the inequalities with left-hand side (LHS) 5x1 + 4x2 and 6x1 + 10x2.

Theorem 3. Let v belong to a populated layer. If there is a node v̄ satisfying the
necessary condition and the dominance elimination, then node v̄ is equivalent to
v. If no node satisfies the necessary condition, then v has no solution.

Proof. Let us suppose, for contradiction, that there is an explored node v̄ that
satisfies both conditions but is not equivalent to v. In such a case, node v has a
solution x that v̄ does not have. However, a populated layer containing node v
would also contain a node vx corresponding to the lower ends in β(x). Node vx
satisfies the necessary condition since v contains x and hence any solution that
is always feasible when x is feasible. Therefore, either vx is the node left after
both conditions or else v̄ contains all solutions of vx, thereby contradicting that
v has a solution that v̄ does not have.

Now let us suppose, for contradiction, that node v has a solution x but no
explored node satisfies the necessary condition. That would imply that the layer
does not contain a node vx corresponding to β(x), a contradiction. �

One way to guarantee that a layer is populated is through bottom-up gener-
ation of nodes corresponding to the smallest RHS values yielding each solution.
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7 Computational Experiments

We evaluated the impact of identifying equivalent search nodes when construct-
ing reduced decision diagrams for integer linear programming problems. The
construction of these diagrams mimics the branch-and-bound tree that emerges
from a mathematical optimization solver as it enumerates the solutions of a
problem, which we captured through callback functions when a solution is found
or a branching decision is about to be made. We use pure 0–1 problems that
are small enough to have a reasonable runtime, since enumerating all solutions
takes much longer than solving the problem to optimality [19].

For each problem, we defined a gap with respect to the optimal value to limit
the enumeration. The gap was chosen as large as possible to either enumerate all
solutions or to avoid a considerable solver slowdown, for example from storing
search nodes in disk. Nevertheless, we tried to push the gap to the largest possible
value since more equivalences can be identified as the solution set gets denser.
All problems are either directly obtained or adapted from MIPLIB [11,12,44].
When enumerating near-optimal solutions, we add an inequality to limit the
objective function value. The order of the selector variables follows the indexing
of the decision variables for the corresponding problem. We did not consider the
possibility of changing the order of the selector variables, since any such change
could have an unrelated effect on the number of branches and runtime.

For each problem, we constructed decision diagrams with preprocessing in
the bottom k layers above the terminal node, where k ∈ {3, 6, 9}. We use k = 0 as
the baseline, which is the case in which we cannot always determine if two nodes
are equivalent by inspecting the RHS. For k > 0, we generated the smallest RHS
values for each feasible solution on the remaining k variables. We created marked
nodes corresponding to each of such RHS vectors, which are explored when first
matched with an unexplored node. Finally, we kept track of the solutions found
before fixing all variables to avoid recounting them at the bottom of the diagram.

However, the number of equivalences that can be identified decays signifi-
cantly as we move further away from the bottom of the decision diagram. Since
the number of possible states for the last k levels is O(22

k

), it is rather expected
that these equivalences will only be identified closer to the bottom—even in
the cases that we can significantly reduce the size of the decision diagram. In
practice, we did not observe significant gains with a value of k larger than 10.

In our experiments, the code is written in C++ (gcc 4.8.4) using CPLEX
Studio 12.8 as a solver and ran in Ubuntu 14.04.4 on a machine with 40 Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz processors and 132 GB of RAM.

Table 1 reports the number of branches, runtime, and solutions found for
each problem. We do not report results for stein9 with k = 9 because that
problem has exactly 9 variables. Hence, we exclude the results for stein9 from
the geometric mean in all cases, although we note that the number of branches
and the runtime for stein9 reduced as k increased up to 6. For the rest of the
problems, we found a reduction of over 27.7% in number of branches and 7.7% in
runtimes when comparing the geometric mean of the baseline with the geometric
mean for k = 9. We observed a consistent reduction in the number of branches
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for most cases, which is often not offset by the number of corresponding bottom-
up states generated: 15 for k = 3, 127 for k = 6, and 1,023 for k = 9. While
generating these additional nodes in advance is cheaper than branching, the
extra time to check equivalence might explain the lesser impact on runtime.

8 Conclusion

This paper discussed the connection between redundant work in branch-and-
bound and the direct construction of reduced decision diagrams. In both cases,
such redundancy may manifest as nodes defining equivalent subproblems that
are repetitively explored. That connection is particularly stronger if we want to
generate a pool of feasible or near-optimal solutions of a discrete optimization
problem, which requires substantially more branching than finding an optimal
solution. The enumeration of solutions is a relatively unexplored topic, especially
in integer linear programming. Nevertheless, alternate solutions are important in
practice and generating them in smaller problems is now technically feasible due
to the continuous advances in hardware and algorithms. Furthermore, decision
diagrams provide a compact representation of solution sets, with which we can
more efficiently manipulate to solve the same problem with different objectives.

Our first contribution is a simple but useful extension of prior work on iden-
tifying equivalent problems with a single inequality [1,2,6], which can be mainly
useful for integer linear programs with fractional coefficients.

Our second contribution, which we believe is the most important, is the
theoretical distinction between the case of equivalence involving one inequality
and multiple inequalities. For problems defined by inequalities with additively
separable LHS, we have seen that explored nodes can be uniquely identified
by the smallest RHS values yielding the same solutions. When the nodes are
explored in depth-first search, we showed that it is possible to isolate a single
explored node as potentially equivalent to each unexplored node. This fact alone
simplifies considerably the identification of potentially equivalent search nodes.

Our third contribution is a first sufficient condition to confirm the equiva-
lence among such pairs of nodes, which consists of a bottom-up preprocessing
technique based on fixing k among the n variables to branch last. Note that we
can reasonably expect that equivalences will be more frequent if there are fewer
variables left. For k 	 n, this would only marginally affect the search behavior
and, in fact, our experiments showed a positive impact with small values of k.

For large solution sets, we found some instances in which our approach
reduced branching and runtime. If the solution set of the decision diagram is
not sufficiently dense, the effectiveness of our method would depend on identify-
ing hidden structure in the problems. One potential example are problems with
variables that produce the same effect when assigned, which has been previously
exploited with orbital branching [39]: if we leave such variables for last in the
decision diagram, we can anticipate that many nodes will have equivalent states.

We believe that there is further room to improve on runtime based on the
reduction on the number of branches. Another topic for future work would be
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identifying simpler sufficient conditions for equivalence, which would allow us to
directly construct decision diagrams for much larger problems.
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Abstract. Deep neural networks have been successful in many predic-
tive modeling tasks, such as image and language recognition, where large
neural networks are often used to obtain good accuracy. Consequently,
it is challenging to deploy these networks under limited computational
resources, such as in mobile devices. In this work, we introduce an algo-
rithm that removes units and layers of a neural network while not chang-
ing the output that is produced, which thus implies a lossless compres-
sion. This algorithm, which we denote as LEO (Lossless Expressiveness
Optimization), relies on Mixed-Integer Linear Programming (MILP) to
identify Rectified Linear Units (ReLUs) with linear behavior over the
input domain. By using �1 regularization to induce such behavior, we
can benefit from training over a larger architecture than we would later
use in the environment where the trained neural network is deployed.

Keywords: Deep learning · Mixed-Integer Linear Programming ·
Neural network pruning · Neuron stability · Rectified Linear Unit

1 Introduction

Deep Neural Networks (DNNs) have achieved unprecedented success in many
domains of predictive modeling, such as computer vision [17,36,43,60,91], nat-
ural language processing [90], and speech [45]. While complex architectures are
usually behind such feats, it is not fully known if these results depend on such
DNNs being as wide or as deep as they currently are for some applications.

In this paper, we are interested in the compression of DNNs, especially to
reduce their size and depth. More generally, that relates to the following question
of wide interest about neural networks: given a neural network N1, can we find
an equivalent neural network N2 with a different architecture? Since a trained
DNN corresponds to a function mapping its inputs to outputs, we can formalize
the equivalence among neural networks as follows [78]:

Definition 1 (Equivalence). Two deep neural networks N1 and N2 with asso-
ciated functions f1 : Rn0 → R

m and f2 : Rn0 → R
m, respectively, are equivalent

if f1(x) = f2(x) ∀ x ∈ R
n0 .
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In other words, our goal is to start from a trained neural network and identify
neural networks with fewer layers or smaller layer widths that would produce the
exact same outputs. Since the typical input for certain applications is bounded
along each dimension, such as x ∈ [0, 1]n0 for the MNIST dataset [63], we can
consider a broader family of neural networks that would be regarded as equiva-
lent in practice. We formalize that idea with the concept of local equivalence:

Definition 2 (Local Equivalence). Two deep neural networks N1 and
N2 with associated functions f1 : Rn0 → R

m and f2 : Rn0 → R
m, respectively,

are local equivalent with respect to a domain D ⊆ R
n0 if f1(x) = f2(x) ∀ x ∈ D.

For a given application, local equivalence with respect to the domain of pos-
sible inputs suffices to guarantee that two networks have the same accuracy in
any test. Hence, finding a smaller network that is local equivalent to the original
network implies a compression in which there is no loss. In this paper, we show
that simple operations such as removing or merging units and folding layers of a
DNN can yield such lossless compression under certain conditions. We denote as
folding the removal of a layer by directly connecting the adjacent layers, which
is accompanied by adjusting the weights and biases of those layers accordingly.

2 Background

We study feedforward DNNs with Rectified Linear Unit (ReLU) activations [38],
which are comparatively simpler than other types of activations. Nevertheless,
ReLUs are currently the type of unit that is most commonly used [64], which is
in part due to landmark results showing their competitive performance [35,77].

Every network has input x = [x1 x2 . . . xn0 ]
T from a bounded domain X

and corresponding output y = [y1 y2 . . . ym]T , and each hidden layer l ∈ L =
{1, 2, . . . , L} has output hl = [hl

1 hl
2 . . . hl

nl
]T from ReLUs indexed by i ∈ Nl =

{1, 2, . . . , nl}. Let W l be the nl × nl−1 matrix where each row corresponds to
the weights of a neuron of layer l, and let bl be vector of biases associated with
the units in layer l. With h0 for x and hL+1 for y, the output of each unit i
in layer l consists of an affine function gli = W l

ih
l−1 + bli followed by the ReLU

activation hl
i = max{0, gli}. The unit i in layer l is denoted active when hl

i > 0
and inactive otherwise. DNNs consisting solely of ReLUs are denoted rectifier
networks, and their associated functions are always piecewise linear [7].

2.1 Mixed-Integer Linear Programming

Our work is primarily based on the fast growing literature on applications of
Mixed-Integer Linear Programming (MILP) to deep learning. MILP can be used
to map inputs to outputs of each ReLU and consequently of rectifier networks.
Such formulations have been used to produce the image [27,71] and estimate
the number of pieces [86,87] of the piecewise linear function associated with the



Lossless Compression of Deep Neural Networks 419

network, generate adversarial perturbations to test the network robustness [6,
16,31,89,96,106], and implement controllers based on DNN models [85,109].

For each unit i in layer l, we can map hl−1 to gli and hl
i with a formulation that

also includes a binary variable zi denoting if the unit is active or not, a variable
h̄l
i denoting the output of a complementary fictitious unit h̄l

i = max
{
0,−gli

}
,

and constants H l
i and H̄ l

i that are positive and as large as hl
i and h̄l

i can be:

W l
ih

l−1 + bli = gli, gli = hl
i − h̄l

i (1)

hl
i ≤ H l

iz
l
i, h̄l

i ≤ H̄ l
i(1 − zli) (2)

hl
i ≥ 0, h̄l

i ≥ 0, zli ∈ {0, 1} (3)

This formulation can be strengthened by using the smallest possible values for
H l

i and H̄ l
i [31,96] and valid inequalities to avoid fractional values of zli [6,86].

The largest possible value of gli, which we denote Gl
i , can be obtained as

Gl′
i = max W l′

i hl′−1 + bl
′
i (4)

s.t. (1)–(3) ∀l ∈ {1, . . . , l′ − 1}, i ∈ Nl (5)
x ∈ X (6)

If Gl
i > 0, then Gl

i is also the largest value of hl
i and it can be used for constant

H l
i . Otherwise, hl

i = 0 for any input x ∈ X. We can also minimize W l
ih

l−1 + bli
to obtain Gl

i, the smallest possible value of gli, and use −Gl

i for constant H̄ l
i if

Gl

i < 0; whereas Gl

i > 0 implies that hl
i > 0 for any input x ∈ X. By solving

these formulations from the first to the last layer, we have the tightest values
for H l

i and H̄ l
i for l ∈ {1, . . . l′ − 1} when we reach layer l′. Units with only

zero or positive outputs were first identified using MILP in [96], where they are
denoted as stably inactive and stably active, and their incidence was induced
with �1 regularization. That was later exploited to accelerate the verification of
robustness by making the corresponding MILP formulation easier to solve [106].

In this paper, we use the stability of units to either remove or merge them
while preserving the outputs produced by the DNN. The same idea could be
extended to other architectures with MILP mappings, such as Binarized Neural
Networks (BNNs) [18,78]. MILP has been used in BNNs for adversarial test-
ing [56] and along with Constraint Programming (CP) for training [52]. BNNs
have characteristics that also make them suitable under limited resources [78].

2.2 Related Work

Our work relates to the literature on neural network compression, and more
specifically to methods that simplify a trained DNN. Such literature includes low-
rank decomposition [22,26,53,81,101,112], quantization [18,83,97,105], archi-
tecture design [48,49,51,91,94], non-structured pruning [66], structured pruning
[1,39,40,65,72,74,110], sparse learning [4,68,102,114], automatic discarding of
layers in ResNets [44,98,111], variational methods [113], and the recent Lot-
tery Ticket Hypothesis [32] by which training only certain subnetworks in the
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DNN—the lottery tickets—might be good enough. However, network compres-
sion is often achieved with side effects to the function associated with the DNN.

In contrast to many lossy pruning methods that typically focus on remov-
ing unimportant neurons and connections, our approach focuses on developing
lossless transformations that exactly preserve the expressiveness during the com-
pression. A necessary criterion for equivalent transformation is that the resulting
network is as expressive as the original one. Methods to study neural network
expressiveness include universal approximation theory [19], VC dimension [9],
trajectory length [82], and linear regions [7,41,42,75,76,79,82,86,87].

We can also consider our approach as a form of reparameterization, or equiv-
alent transformation, in graphical models [59,100,103]. If two parameter vectors
θ and θ′ define the same energy function (i.e., E(x|θ)) = E(x|θ′),∀ x), then θ′ is
called a reparameterization of θ. Reparameterization has played a key role in sev-
eral inference problems such as belief propagation [100], tree-weighted message
passing [99], and graph cuts [57]. The idea is also associated with characterizing
the functions that can be represented by DNNs [7,19,46,62,67,73,95].

Finally, our work complements the vast literature at the intersection of math-
ematical optimization and Machine Learning (ML). General-purpose methods
have been applied to train ML models to optimality [12,13,52,84]. Conversely,
ML models have been extensively applied in optimization [11,34]. To mention a
few lines of work, ML has been used to find feasible solutions [24,33] and pre-
dict good solutions [21,25]; determine how to branch on [3,8,47,55,69] or add
cuts [93], when to linearize [14], or when to decompose [61] an optimization prob-
lem; how to adapt algorithms for each problem [10,20,23,50,54,58,88]; obtain
better optimization bounds [15]; embed the structure of the problem as a layer
of a neural network [2,5,29,108]; and predict the resolution by a time-limit [30],
the feasibility of the problem [107], and the problem itself [28,70,92].

3 LEO: Lossless Expressiveness Optimization

Algorithm 1, which we denote LEO (Lossless Expressiveness Optimization), loops
over the layers to remove units with constant outputs regardless of the input,
some of the stable units, and any layers with constant output due to those two
types of units. These modifications of the network architecture are followed by
changes to the weights and biases of the remaining units in the network to
preserve the outputs produced. The term expressiveness is commonly used to
refer to the ability of a network architecture to represent complex functions [86].

First, LEO checks the weights and stability of each unit and decides whether
to immediately remove them. A unit with constant output, which is either stably
inactive or has zero input weights, is removed as long as there are other units left
in the layer. A stably active unit with varying output is removed if the column
of weights of that unit is linearly dependent on the column of weights of stably
active units with varying outputs that have been previously inspected in that
layer. We consider the removal of such stably active units as a merging operation
since the output weights of other stable units need to be adjusted as well.
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Second, LEO checks if layers can be removed in case the units left in the
layer are all stable or have constant output. If they are all stably active with
varying output, then the layer is removed by directly joining the layers before
and after it, which we denote as a folding operation. In the particular case that
only one unit is left with constant output, be it stably inactive or not, then all
hidden layers are removed because the network has an associated function that is
constant in D. We denote the latter operation as collapsing the neural network.

Figure 1 shows examples of units being removed and merged on the left as well
as of a layer being folded on the right. Although possible, folding or collapsing
a trained neural network is not something that we would expect to achieve in
practice unless we are compressing with respect to a very small domain D ⊂ X.

Fig. 1. Examples of output-preserving neural network compression obtained with LEO.
On the left, two units in white are stably inactive and three units indexed by set S in
darker blue are stably active, where rank(W 2

S )=2. In such a case, we can remove the
stably inactive units and merge the stably active units to produce the same input to the
next layer using only two units. On the right, an entire layer is stably active. In such a
case, we can fold the layer by directly connecting the layers before and after it. In both
cases, the red arcs correspond to coefficients that need to be adjusted accordingly.

Theorem 1. For a neural network N1, Algorithm 1 produces a neural network
N2 such that N1 and N2 are local equivalent with respect to an input domain D.

Proof. If Gl
i < 0, then hl

i = 0 for any input in D and unit i in layer l can be
regarded as stably inactive. Otherwise, if W l

i = 0, then the output of the unit
is positive but constant. Those two types of units are analyzed by the block
starting at line 5. If there are other units left in the layer, which are either not
stable or stably active but not removed, then removing unit a stably inactive
unit i does not affect the output of subsequent units since the output of the unit
is always 0 in D. Likewise, in the case that W l

i = 0 and bli > 0, then the output
of the network remains the same after removing that unit if such removal of hl

i

from each unit j in layer l + 1 is followed by adding wl+1
ji bli to bl+1

j .
If Ḡl

i > 0, then hl
i = W l

i h
l−1 + bli for any input in D and unit i in layer l

can be regarded as stably active. Those units are analyzed by the block starting
at line 14. If the rank of the submatrix W l

S consisting of the weights of stably
active units in set S is the same as that of W l

S∪{i} and given that W l
i 	= 0 for

every i ∈ S, then S 	= ∅ and hl
i =

∑

k∈S

αkw
l
kh

l−1+bli =
∑

k∈S

αk(hl
k −blk)+bli. Since
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Algorithm 1. LEO produces a smaller equivalent neural network with respect
to a domain D by removing units and layers while adjusting weights and biases
1: for l ← 1, . . . , L do
2: S ← {} � Set of stable units left in layer l
3: Unstable ← False � If there are unstable units in layer l
4: for i ← 1, . . . , nl do
5: if Gl

i < 0 for x ∈ D or W l
i =0 then � Unit i has constant output

6: if i < nl or |S| > 0 or Unstable then � Layer l still has other units
7: if W l

i = 0 and bli > 0 then
8: for j ← 1, . . . , nl+1 do � Adjust activations in layer l + 1
9: bl+1

j ← bl+1
j + wl+1

ji bli
10: end for
11: end if
12: Remove unit i from layer l � Unit i is not necessary
13: end if
14: else if Ḡl

i > 0 for x ∈ D then � Unit i is stably active
15: if rank

(
W l

S∪{i}
)

> |S| then � wl
i is linearly independent

16: S ← S ∪ {i} � Keep unit in the network
17: else � Output of unit i is linearly dependent
18: Find {αk}k∈S such that wl

i =
∑

k∈S αkwl
k

19: for j ← 1, . . . , nl+1 do � Adjust activations in layer l + 1
20: wl+1

jk ← wl+1
jk +

∑
k∈S αkwl+1

ji

21: bl+1
j ← bl+1

j + wl+1
ji (bli +

∑
k∈S αkblk)

22: end for
23: Remove unit i from layer l � Unit i is no longer necessary
24: end if
25: else
26: Unstable ← True � At least one unit is not stable
27: end if
28: end for
29: if not Unstable then � All units left in layer l are stable
30: if |S| > 0 then � The units left have varying outputs
31: Create matrix W̄ ∈ R

nl−1×nl+1 and vector b̄ ∈ R
nl+1

32: for i ← 1, . . . , nl+1 do � Directly connect layers l − 1 and l + 1
33: b̄i ← bl+1

i +
∑

k∈S wl+1
ik blk

34: for j ← 1, . . . , nl−1 do
35: w̄ij ← ∑

k∈S wl
kjw

l+1
ik

36: end for
37: end for
38: Remove layer l; replace parameters in next layer with W̄ and b̄
39: else � Only unit left in layer l has constant output
40: Compute output Υ for any input χ ∈ D � Function is constant
41: (W L+1, bL+1) ← (0, Υ) � Set constant values in output layer
42: Remove layers 1 to L and break � Remove all hidden layers and leave
43: end if
44: end if
45: end for
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there would be other units left in the layer, the output of the network remains
the same after removing the unit if such removal of hl

i from each unit j in layer

l + 1 is followed by adding αkw
l+1
ji to wl+1

jk and wl+1
ji

(
bli − ∑

k∈A

αkb
l
k

)
to bl+1

j .

If all units left in layer l are stably active and |S| > 0, then layer l is equivalent
to an affine transformation and it is possible to directly connect layers l − 1 and
l + 1, as in the block starting at line 30. Since hl

k = W l
jh

l−1 + blk for each stably

active unit k in layer l, then hl+1
i = W l+1

i hl+bl+1
i = W l+1

i

(
nl∑

k=1

W l
kh

l−1 + blk

)
+

bl+1
i =

∑

j∈nl−1

(
∑

k∈S

wl
kjw

l+1
ik

)
hl−1
j + bl+1

i +
(

∑

k∈S

wl+1
ik blk

)
.

If the only unit i left in layer l is stably inactive or stably active but has
zero weights, then any input in D results in hl

i = max{0, bli}, and consequently
the neural network is associated with a constant function f : x → Υ in D.
Therefore, it is possible to remove all hidden layers and replace the output layer
with a constant function mapping to Υ as in the block starting at line 39. �

Implementation. We do not need to solve (4)–(6) to optimality to determine if
Gl
i < 0: it suffices to find a negative upper bound to guarantee that, or a solution

with positive value to refute that. A similar reasoning applies to Ḡl
i > 0.

4 Experiments

We conducted experiments to evaluate the potential for network compression
using LEO. In these experiments, we trained rectifier networks on the MNIST
dataset [63] with input size 784, two hidden layers of same width, and 10 outputs.
The widths of the hidden layers are 25, 50, and 100. For each width, we identified
in preliminary experiments a weight for �1 regularization on layer weights that
improved the network accuracy in comparison with no regularization: 0.0002,
0.0002, and 0.0001, respectively. We trained 31 networks with that regularization
weight, with 5 times the same weight to induce more stability, and with zero
weight as a benchmark. We use the negative log-likelihood as the loss function
after taking a softmax operation on the output layer, a batch size of 64 and SGD
with a learning rate of 0.01, and momentum of 0.9 for training the model to 120
epochs. The learning rate is decayed by a factor of 0.1 after every 50 epochs. The
weights of the network were initialized with the Kaiming initialization [43] and
the biases were initialized to zero. The models were trained using Pytorch [80] on
a machine with 40 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz processors and
132 GB of RAM. The MILPs were solved using Gurobi 8.1.1 [37] on a machine
with Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz and 16 GB of RAM. We
used callbacks to check bounds and solutions and then interrupt the solver after
determining unit stability and bounds for each MILP.

Tables 1 and 2 summarize our experiments with mean and standard error. We
note that the compression grows with the size of the network and the weight of �1
regularization, which induces the weights of each unit to be orders of magnitude
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Table 1. Compression of 2-hidden-layer rectifier networks trained on MNIST. Each line
summarizes tests on 31 networks. Depending on how the network is trained, the higher
incidence of stable units allows for more compression while preserving the trained net-
work accuracy. For example, training with �1 regularization induces such stability and
then inactive units can be removed. Interestingly, the small amount of regularization
that improves accuracy during training also helps compressing the network later.

Layer width �1 weight Accuracy (%) Units removed Network
compression (%)

1st layer 2nd layer

25 0.001 95.76 ± 0.05 5.7 ± 0.3 5.1 ± 0.3 22 ± 1

25 0.0002 97.24 ± 0.02 1.2 ± 0.1 3.0 ± 0.4 8.3 ± 0.7

25 0 96.68 ± 0.03 0 ± 0 0 ± 0 0 ± 0

50 0.001 96.05 ± 0.04 16.9 ± 0.6 12.5 ± 0.6 29.4 ± 0.7

50 0.0002 97.81 ± 0.02 7.6 ± 0.4 7.5 ± 0.5 15.1 ± 0.6

50 0 97.62 ± 0.02 0 ± 0 0 ± 0 0 ± 0

100 0.0005 97.14 ± 0.02 36.7 ± 0.7 24.9 ± 0.6 30.8 ± 0.5

100 0.0001 98.14 ± 0.01 18.6 ± 0.5 11.1 ± 0.7 14.9 ± 0.4

100 0 98.00 ± 0.01 0 ± 0 0 ± 0 0 ± 0

Table 2. Additional details about the experiments for each type of network, including
runtime per test, incidence of stably active units, and overall network stability.

Stably active units Network

Layer width �1 weight Runtime (s) 1st layer 2nd layer Stability (%)

25 0.001 27.9 ± 0.3 2.5 ± 0.3 7.4 ± 0.4 41.3 ± 0.6

25 0.0002 29 ± 1 0 ± 0 1.0 ± 0.2 10.4 ± 0.7

25 0 28.4 ± 0.3 0 ± 0 0 ± 0 0 ± 0

50 0.001 103 ± 2 15 ± 0.5 24.9 ± 0.6 69.3 ± 0.4

50 0.0002 106 ± 3 2.7 ± 0.3 8.8 ± 0.5 26.6 ± 0.6

50 0 112 ± 3 0 ± 0 0 ± 0 0 ± 0

100 0.0005 421 ± 4 35.7 ± 0.6 57.7 ± 0.7 77.5 ± 0.2

100 0.0001 456 ± 8 11.1 ± 0.5 18 ± 0.7 29.4 ± 0.5

100 0 385 ± 2 0 ± 0 0 ± 0 0 ± 0

smaller than its bias. The compression identified is all due to removing stably
inactive units. Most of the runtime is due to solving MILPs for the second hidden
layer. Given the incidence of stably active units, we conjecture that inducing rank
deficiency in the weights or negative values in the biases could also be beneficial.
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5 Conclusion

We introduced a lossless neural network compression algorithm, LEO, which relies
on MILP to identify parts of the neural network that can be safely removed
after reparameterization. We found that networks trained with �1 regularization
are particularly amenable to such compression. In a sense, we could interpret �1
regularization as inducing a subnetwork to represent the function associated with
the DNN. Future work may explore the connection between these subnetworks
identified by LEO and lottery tickets, bounding techniques such as in [104] to
help efficiently identifying stable units, and other forms of inducing posterior
compressibility while training. Concomitantly, we have shown another form in
which discrete optimization can play a key role in deep learning applications.
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Abstract. Batch scheduling is a common problem faced in industrial
scheduling when groups of related jobs must be processed consecutively
or simultaneously on the same resource. Motivated by the composites
manufacturing industry, we present a complex batch scheduling prob-
lem combining two-stage bin packing with hybrid flowshop schedul-
ing. We propose five solution approaches: a constraint programming
model, a three-phase logic-based Benders decomposition model, an earli-
est due date heuristic, and two hybrid heuristic/constraint programming
approaches. We then computationally test these approaches on gener-
ated problem instances modelled on real-world instances. Numeric results
show that the heuristic approaches perform as well as or better than the
exact models, especially on large instances. The relative success of a sim-
ple heuristic suggests that such problems pose an interesting challenge
for further research in mathematical and constraint programming.

1 Introduction

Batch scheduling arises when it is desirable that a set of jobs that share common
characteristics are processed together either consecutively or simultaneously on
the same resource. Many motivating examples for batch scheduling come from
semiconductor manufacturing, where batching can be modelled as a one-stage
bin packing problem [12]. In contrast, we study a two-stage batching and schedul-
ing problem motivated by composites manufacturing.

In the first stage, called layup, multiple parts are created by layering alternat-
ing sheets of raw materials and epoxy resin in a mould tool. The mould tool with
its sheets of materials is then cured in the second stage by a high-temperature
and pressure autoclave oven. The extreme conditions of the autoclave compress
and heat the material sheets to create parts made of a new composite material.
The parts are then delivered to downstream machines for further processing.
Because of the high expense incurred by the autoclave stage, it is desirable to
group multiple tools and cure them together as an autoclave batch. This hierar-
chical two-stage process requires parts, hereby referred to as jobs, to be batched
onto mould tools and then the tools themselves to be batched in the autoclave.

The one-stage bin packing and scheduling problem, as appears in semicon-
ductor production, is well-studied for both exact [3,10] and heuristic [11,14]
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Fig. 1. Overview of the flow through the 2BPHFSP.

methods. Existing literature on scheduling for composites manufacturing [1,7]
does not consider batching jobs onto tools, and hence is also one-stage. The pres-
ence of tool batches changes the batching aspect into a Two-Stage Bin Packing
Problem [5]. In addition, the two-stage scheduling aspect of this problem is a
Two-Stage Hybrid Flow Shop Scheduling Problem [6]. The actual composites
manufacturing process is complex and multi-layered; in this paper, we study an
abstraction that captures its core complexities. We denote this abstracted prob-
lem as the Two-Stage Bin Packing and Hybrid Flow Shop Scheduling Problem
(2BPHFSP), and formally define it in the next section.

While our motivation comes from an industrial problem, and we will use
the terms of composite manufacturing in our problem description, the problem
we study abstracts away the application-specific details. Our goal is to investi-
gate the core complexities of the hybridization of hierarchical bin packing with
scheduling. Figure 1 provides an overview of the 2BPHFSP.

2 Problem Definition

In the layup stage, jobs are grouped onto mould tools. Each tool has a one-
dimensional capacity that cannot be exceeded. We will refer to these groups of
jobs on tools as tool batches. Each job has a layup processing time; as the jobs
are laid up sequentially, the processing time to assemble a tool batch is the sum
of its job processing times. The layup stage is thus an example of the Family
Batch Scheduling model [13]. There are multiple unary capacity machines at
stage 1; the process to form a tool batch requires one such machine.

After a tool batch is created in stage 1, it is cured in an autoclave in stage 2.
Autoclaves are capable of curing more than one tool at a time, so multiple tool
batches can be aggregated into an autoclave batch. Autoclaves are constant-
capacity and identical, therefore, all autoclave batches have the same capac-
ity and the sum of tool volumes within each autoclave batch cannot exceed
that capacity. Similar to stage 1, there are multiple parallel identical autoclave
machines; each machine is capable of processing one autoclave batch at a time.
However, each autoclave batch is processed for the same length of time regard-
less of the contained tool batches. Therefore, autoclave batches fall under the
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Batching Machines model [13]. Lastly, there is an upper limit on the time a
laid-up tool batch can wait before entering an autoclave due to the epoxy that
is layered between the material sheets. We will refer to this time limit as the
restricted waiting time.

Now, let us formally present the parameters that define the 2BPHFSP. We are
given a set of jobs J , a set of empty tool batches B1, and a set of empty autoclave
batches B2. There exists three sets of resources: an unlimited set of tools T , a set
of unary-capacity stage 1 machines M1, and a set of single-batch-capacity stage
2 machines M2. Each job j ∈ J is associated with a one-dimensional volume
parameter sj , a due date dj , and a layup processing time pj , and each tool t ∈ T
is associated with a one-dimensional volume parameter vt. The volume of a tool
batch k ∈ B1 is therefore the volume of its assigned tool. Each job j ∈ J needs
to be assigned to a tool batch k ∈ B1, and each tool batch k ∈ B1 needs to be
assigned to an autoclave batch i ∈ B2. Each tool batch k ∈ B1 is scheduled on
one machine from M1 for a length of time equal to

∑
j∈k pj , and each autoclave

batch is scheduled on one machine from M2 for a length of time equal to P 2.
There are precedence constraints and a restricted waiting time between the end
of tool batches and the start of their assigned autoclave batches.

The upper bound on the number of tool batches and autoclave batches is the
number of jobs (i.e. each job assigned to its own tool batch and each tool batch
assigned to its own autoclave batch). Thus, we create |J | empty batches in B1

and B2. However, we almost always find solutions that use fewer batches, so we
denote any non-empty batch as open.

The objective of the 2BPHFSP is to minimize a weighted sum of the number
of open autoclave batches and job tardiness. We minimize the number of open
autoclave batches to decrease autoclave operational costs and we minimize job
tardiness to ensure parts are delivered to downstream machines on time.

3 Mathematical Programming Approaches

We developed two mathematical programming approaches to solve the
2BPHFSP, a monolithic constraint programming (CP) and a hybrid CP/mixed
integer programming (MIP) logic-based Benders decomposition (LBBD).1

3.1 Constraint Programming

This formulation uses two sets of interval decision variables for bin packing
and two sets of interval decision variables for scheduling. The variables and
parameters are shown in Table 1.

The first set of bin packing variables are optional two-indexed interval vari-
ables, xj,k. We assign job j to a tool batch k by enforcing one variable from

1 We also developed a monolithic MIP model, which we do not report on here as it was
unable to solve even the smallest instances in our experiments. The main bottleneck
was the model size as time-indexed variables were used to handle the scheduling
decisions.
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Table 1. CP model variables and parameters.

Variable Description

xj,k Interval variable for job j in tool batch k
yk,i Interval variable for tool batch k in autoclave batch i
γk Interval variable for tool batch k
σi Interval variable for autoclave batch i
tk Tool assigned to tool batch k
τk Volume of tool assigned to tool batch k
lj Tardiness of job j

Parameter Description Parameter Description

j ∈ J Set of jobs k ∈ B1 Set of tool batches
i ∈ B2 Set of autoclave batches t ∈ T Set of tools

sj Volume of job j pj Processing time of job j
dj Due date of job j vt Volume of tool t
V 1 Max tool batch capacity V 2 Autoclave batch capacity
P 2 Autoclave processing time C1 Number of stage 1 machines
C2 Number of stage 2 machines W Restricted waiting time

αj
Weighting for tardiness of job j in

the objective function
β

Weighting for an open autoclave
batch in the objective function

{xj,k; k ∈ B1} to be present for each job j. The same concept is applied to the
second set of bin packing variables, yk,i, where each present variable indicates
tool batch k is assigned to autoclave batch i. We use two sets of single-index
interval variables for scheduling batches on the horizon H, γk for tool batches
and σi for autoclave batches. We also defined a set of variables tk that assigns
tool batch k to a specific tool so we can calculate the volume of k, τk.

We present this model in two sections, focusing on bin packing and schedul-
ing, respectively.

min β
∑

i∈B2

presenceOf(σi) +
∑

j∈J
αj lj (1)

s.t.
∑

k∈B1

presenceOf(xj,k) = 1 ∀j ∈ J (2)

∑

i∈B2

presenceOf(yk,i) = presenceOf(γk) ∀k ∈ B1 (3)

presenceOf(γk) ≥ presenceOf(γk+1) ∀k ∈ {0, ..., |B1| − 1} (4)

presenceOf(σi) ≥ presenceOf(σi+1) ∀i ∈ {0, ..., |B2| − 1} (5)

τk = element({vt; t ∈ T }, tk) ∀k ∈ B1 (6)
∑

j∈J
sj × presenceOf(xj,k) ≤ τk ∀k ∈ B1 (7)

∑

k∈B1

τk × presenceOf(yk,i) ≤ V 2 ∀i ∈ B2 (8)

tk ∈ {0, ...T }; τk ∈ {0, ...V 1}
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Constraint (2) assigns each job to one tool batch. Constraint (3) assigns each
open tool batch to one autoclave batch. Constraints (4) and (5) enforce that
batches are opened in order of index, to reduce symmetry. Constraint (6) is an
element constraint that assigns the tool capacity associated with tool tk ∈ T to
τk.2 Constraint (7) makes sure the sum of job volumes in each tool batch is less
than its tool volume and constraint (8) makes sure the sum of tool volumes in
each autoclave batch is less than the autoclave capacity.

The standard global pack constraint does not allow the size of an item to
be variable, and therefore cannot be used for two-stage bin packing. Thus, we
choose to use interval variables for the packing stage to easily connect them with
the corresponding scheduling variables via existing global constraints.

Next, we present the scheduling constraints.

sizeOf(xj,k) = pj ∀j ∈ J ∀k ∈ B1 (9)

span (γk, {xj,k; j ∈ J }〉) ∀k ∈ B1 (10)

sizeOf(γk) =
∑

j∈J
pj × presenceOf(xj,k) ∀k ∈ B1 (11)

sizeOf(yk,i) = P 2 ∀k ∈ B1 ∀i ∈ B2 (12)

synchronize(σi, {yk,i; i ∈ B2}) ∀i ∈ B2 (13)

alwaysIn

(
∑

k∈B1

pulse(γk, 1), 0, |H|, 0, C1

)

(14)

alwaysIn

(
∑

i∈B2

pulse(σi, 1), 0, |H|, 0, C2

)

(15)

endBeforeStart(γk, yk,i) ∀k ∈ B1 ∀i ∈ B2 (16)

startBeforeEnd(yk,i, γk,−W ) ∀k ∈ B1 ∀i ∈ B2 (17)
lj ≥ endOf(σi) − dj ∀j ∈ J | j assigned to i (18)
lj ∈ {0, ...|H|}

Constraint (9) sets the processing time of each job. Constraints (10) and (11)
make sure jobs in a tool batch are processed sequentially without overlapping.
The actual sequence of jobs in a tool batch does not matter because their pro-
cessing times are not sequence-dependent and jobs cannot leave the first stage
until the entire tool batch is processed. Thus, a span constraint is sufficient. Con-
straint (12) sets the processing time of each tool batch. Constraint (13) makes
sure all tool batches in the same autoclave batch are processed simultaneously.
Constraints (14) and (15) enforce that the total number of tool batches or auto-
clave batches processed at one time is at most the respective stage’s capacity.
Constraint (16) says that each tool batch must finish processing before its associ-
ated autoclave batch can begin processing. Constraint (17) restricts the waiting

2 An alternative approach is to create tool batches with predefined tools. However,
this approach expands the number of possible tool batches from |J | to |J | × |T |.
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Fig. 2. Decomposition flow between problems, each iteration of loop 2 finds a feasible
solution to the entire problem.

time between tool batches and their associated autoclave batches. Constraint
(18) defines job tardiness.

3.2 Logic-Based Benders Decomposition

As the 2BPHFSP is clearly composed of packing and scheduling problems, we
are motivated to investigate a decomposition approach. Thus, in this section,
we present a three-stage decomposition, shown in Fig. 2, that separates the
2BPHFSP into a one-stage bin packing problem, a pattern bin packing problem,
and a two-stage hybrid flow shop scheduling problem, denoted as the m-master
problem, the m-subproblem, and the subproblem, respectively. Each of these prob-
lems is much smaller and simpler to solve than the 2BPHFSP in its entirety, so
a decomposition approach may scale better than a monolithic approach.

The two loops shown in Fig. 2 show the order in which the problems are
solved. The m-master problem is a one-stage bin packing problem which packs
jobs into capacity-constrained autoclave batches, while minimizing the number of
open autoclave batches. Autoclave batches have a constant capacity, so the sum
of job volumes in each batch must be less than the capacity. We chose to assign
jobs to autoclave batches directly because part of the objective is to minimize
the number of open autoclave batches and the job-to-autoclave batching is a
relaxation of the two-stage batching requirement.

A feasible packing of jobs in an autoclave batch may not be feasibly partition-
able into tool batches as jobs may not fit perfectly on tools. The m-subproblem
attempts to find such a feasible partitioning for each autoclave batch. We denote
this constrained partitioning problem as the Pattern Bin Packing Problem. If we
find a feasible packing for all autoclave batches, we schedule the tool and auto-
clave batches in the subproblem. If no feasible packing exists for an autoclave
batch, a cut is added to the m-master problem.
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Table 2. M-Master problem variables.

Variable Description

xj Autoclave batch containing job j

θi Volume of jobs in autoclave batch i

q Number of open autoclave batches

Table 3. M-subproblem variables.

Variable Description

y
j,j

′ Binary variable, 1 if job j is in tool batch defined by job j
′
, 0 otherwise

z
j

′
,t

Binary variable, 1 if tool batch defined by job j
′
is on tool t, 0 otherwise

τ
j

′ Volume of tool for the tool batch defined by job j
′

ρ
j

′ Processing time of tool batch define by job j
′

M-Master Problem. The m-master problem was modelled using CP. The objec-
tive is to minimize the number of open autoclave batches. The variables in the
m-master problem are shown in Table 2; see Table 1 for parameter descriptions.

min q (19)

s.t. pack
(
{θi; i ∈ B2}, {xj ; j ∈ J }, {sj ; j ∈ J }

)
(20)

q = max ({xj ; j ∈ J }) (21)

xj ∈ {0, ...|B2|}; θi ∈ {0, ...V 2}; q ∈ {0, ...|B2|}

Constraint (20) is a global constraint which packs jobs in set J into autoclave
batches in set B2 while keeping the sum of job volumes in each autoclave batch
below the autoclave capacity. Constraint (21) defines the number of open bins.

M-Subproblem. Inspired by approaches to related problems [4,9], we modelled
the m-subproblem using MIP with two sets of binary decision variables. The first
set creates tool batches from jobs and the second set assigns each tool batch to
a tool. The objective function minimizes the total sum of tool volumes.

Consider a tool batch k that contains the set of jobs J ∗, let j
′

be the job
with the lowest index in J ∗. We denote job j

′
as the representative job of tool

batch k and create decision variables yj,j′ that assign jobs to representative
jobs instead of directly to tool batches. If job j is assigned to the tool batch
with representative job j

′
, then yj,j′ = 1, otherwise, yj,j′ = 0. Therefore, each

yj′ ,j′ = 1 indicates an open tool batch. Only jobs in the same autoclave batch
can be assigned to the same tool batch, so we define a |J | × |J | matrix, where
entry Aj,j′ is equal to 1 if job j and job j

′
are in the same autoclave batch in the

m-master problem solution, and equal to 0 otherwise. The variables in the m-
master problem are presented in Table 3; see Table 1 for parameter descriptions.
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min
∑

j′ ∈J

τj′ (22)

s.t.
∑

j′ ∈J

yj,j′ = 1 ∀j ∈ J (23)

yj,j′ ≤ Aj,j′ ∀j, j
′ ∈ J (24)

yj,j′ = 0 ∀j, j
′ ∈ J : j < j

′
(25)

yj,j′ ≤ yj′ ,j′ ∀j, j
′ ∈ J (26)

∑

t∈T
zj′ ,t = yj′ ,j′ ∀j

′ ∈ J (27)

τj′ =
∑

t∈T
vtzj′ ,t ∀j

′ ∈ J (28)

τj′ ≥
∑

j∈J
sjyj,j′ −

∑

j∈J
sj(1 − yj′ ,j′ ) ∀j

′ ∈ J (29)

ρj′ =
∑

j∈J
pjyj,j′ ∀j

′ ∈ J (30)

yj,j′ ∈ {0, 1}; zj′ ,t ∈ {0, 1}; τj′ ∈ {0, ...V 1}; ρj′ ∈ {0, ...,
∑

j∈J pj}

Constraint (23) makes sure each job is assigned to one tool batch. Constraints
(24) and (25) enforce assignment restrictions. If job j

′
defines a tool batch, it

is forced by constraint (25) to be the lowest indexed job in that tool batch, so
constraint (26) tightens the linear relaxation. Each open tool batch is associated
with a job j

′
, and only jobs with a higher index than j

′
can be assigned to the

tool batch associated with j
′
. Constraint (27) makes sure each open tool batch is

assigned to a specific tool. Constraints (28) and (29) define and enforce the tool
volume for each tool batch to be larger than the sum of job volumes. Constraint
(30) defines the processing time for each tool batch.

Feasibility Cuts. Once the m-subproblem is solved to optimality, if the sum of
tool volumes for autoclave batch i∗ is larger than the autoclave capacity then
i∗ is an infeasible batch. Cuts are added to prevent the subset of jobs in each
infeasible autoclave batch from being packed together again. Let B̂2 be the set
of infeasible autoclave batches from the incumbent m-master problem solution,
and let J i∗ be the set of jobs assigned to batch i∗ ∈ B̂2.

These cuts are written as a global cardinality constraint (GCC)
for each infeasible autoclave batch. The standard GCC format is
gcc ({cards}, {vals}, {vars}), where sets {cards} and {vals} are the same size.
Over the set of variables in {vars}, each value val[i] should only be taken cards[i]
times; cards[i] can be a single value or a range of values. Using GCC cuts
also removes symmetrical solutions arising from batch indexing. Constraint (31)
forms the feasibility cut.

gcc
(
{[0, ..., |J i∗ | − 1], ...}, {1, ..., |B2|}, {xj ; j ∈ J i∗}

)
∀i∗ ∈ B̂2 (31)
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Table 4. Subproblem variables and parameters.

Variable Description

γk Interval variable for tool batch k
σi Interval variable for autoclave batch i
lj Tardiness of job j

Parameter Description

k ∈ B1∗
Set of open tool batches

i ∈ B2∗
Set of open autoclave batches

(k, i) ∈ E∗ Associated tool and autoclave batches
(j, i) ∈ F∗ Associated jobs and autoclave batches

ρ∗
k Processing time of tool batch k

Subproblem. The subproblem is modelled using CP and has two sets of interval
decision variables, one to schedule tool batches and one to schedule autoclave
batches. The objective is to minimize the sum of job tardiness. The subproblem
variables and model-specific parameters are presented in Table 4; see Table 1 for
other parameter descriptions.

min
∑

j∈J
αj lj (32)

s.t. sizeOf(γk) = ρ∗
k ∀k ∈ B1∗

(33)

sizeOf(σi) = P 2 ∀i ∈ B2∗
(34)

endBeforeStart (γk, σi) ∀(k, i) ∈ E∗ (35)
startBeforeEnd (σi, γk,−W ) ∀(k, i) ∈ E∗ (36)

alwaysIn

(
∑

k∈B1

pulse(γk, 1), 0, |H|, 0, C1

)

(37)

alwaysIn

(
∑

i∈B2

pulse(σi, 1), 0, |H|, 0, C2

)

(38)

lj = endOf(σi) − dj ∀(j, i) ∈ F∗ (39)
lj ∈ {0, ...|H|}

Constraints (33) and (34) define the interval variable lengths for tool and auto-
clave batches, respectively. Constraint (35) makes sure any autoclave batch starts
after all its associated tool batches have finished processing. Constraint (36)
restricts the waiting time between stages. Constraints (37) and (38) enforce
resource capacities for each stage. Constraint (39) defines job tardiness.

Optimality Cuts. Once the subproblem is solved after a loop 2 cycle, a feasible
solution to the entire problem has been found. Thus, to start the cycle again,
the incumbent solution must be removed from the search space. Due to the fact
that only one autoclave batch needs to be changed to cut off the incumbent
solution, we need to add a disjunction to require at least one autoclave batch to
be different. GCC constraints cannot be disjoined in the solver we are using [8].
Thus, we introduce a new set of binary variables, ωi∗ ∈ {0, 1}, where i∗ ∈ B2∗

is the set of open autoclave batches.
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The binary variable ωi∗ is set to be equal to 1 if autoclave batch i∗ is required
to be different in subsequent solutions, and equal to 0 otherwise. If autoclave
batch i∗ is forced to be different, then constraints must be added such that only
a strict subset of jobs in that batch can be assigned to the same autoclave batch.
We add a set of counting constraints that limit how many times each autoclave
batch index can be assigned in the set of decision variables belonging to jobs in
that batch. Then, a final constraint needs to be added to enforce that at least one
binary variable out of the set {ωi∗ ; i∗ ∈ B2∗} is equal to 1, forcing the incumbent
solution to change. Constraints (40) and (41) form the optimality cuts.

(ωi∗ == 1) →
(
count({xj ; j ∈ J i∗}, i) ≤ |J i∗ | − 1

)
i ∈ B2 i∗ ∈ B2∗

(40)
∑

i∗∈B2∗
ωi∗ ≥ 1 (41)

Theoretical Results. The proof of the validity of the m-subproblem cut is straight-
forward and, following Chu and Xia [2], can be sketched as follows. Given a
solution with an infeasible autoclave batch i∗:

1. Cut (31) removes i∗ from the search space. Suppose we have an infeasible
autoclave batch i∗ containing the set of jobs J i∗ . The decision variables asso-
ciated with jobs in i∗, {xj ; j ∈ J i∗} take on values ranging from {1, ..., |B2|},
where |B2| is the total number of autoclave batches available. If {xj ; j ∈ J i∗}
are assigned to the same autoclave batch, then in any solution where these
jobs are grouped into an autoclave batch one of the values from {1, ..., |B2|}
appears |J i∗ | times. Cut (31) explicitly removes all such solutions.

2. Cut (31) does not remove any globally optimally solutions from the search
space. Suppose we have a globally optimal solution S to the 2BPHFSP con-
taining autoclave batch i

′
, which contains the same jobs as infeasible auto-

clave batch i∗. As i∗ is infeasible, the minimum sum of tool volumes that
can contain all the jobs in i∗ is larger than the autoclave machine capacity.
The m-subproblem finds the set of tools with minimal volume that can hold
all jobs within each autoclave batch. Since i

′
contains the same jobs as i∗,

it holds that i
′

is also infeasible. Therefore, S is infeasible and cannot be a
globally optimal solutions.

Similarly, the proof of the validity of the subproblem cut is sketched as fol-
lows. Given a feasible solution, cuts (40) to (41) are sufficient to remove the
incumbent solution and all symmetrical solutions from the search space. Suppose
the incumbent solution has |B2∗ | open autoclave batches, where each autoclave
batch i ∈ {1, ..., |B2∗ |} is associated with binary variable ωi. If ωi∗ = 1, autoclave
batch i∗ cannot appear in any subsequent solutions. Let the sum of ωi over all
i ∈ B2∗

be equal to π. If π = 0, then all ωi = 0 and no autoclave batch is enforced
to be different, which would lead to the algorithm finding the same solution as
the incumbent. Note that it is possible that exactly one autoclave batch from
the incumbent solution can be changed to form a new distinct solution. There-
fore, we forbid at least one autoclave batch from appearing again to remove the
incumbent solution from the search space.
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4 Heuristic Approaches

In addition to the CP and MIP models, we developed a greedy heuristic based
on earliest due date (EDD) and hybridizations of the heuristic with CP.

4.1 Earliest Due Date Heuristic

The pseudocode for the heuristic is shown in Algorithm1. See Table 1 for param-
eter descriptions.

This heuristic algorithm flows through three distinct sections. The first
section orders jobs by due date then greedily assigns them one by one to the
first available tool batch. If no tool batch is available, then a new tool batch is
opened and randomly assigned to a tool. Next, all open tool batches are sorted
by due date and the algorithm greedily assigns them one by one to the first avail-
able autoclave batch. If no autoclave batch is available, a new batch is opened.
Lastly, the autoclave batches are sorted by due date. For each autoclave batch,
the algorithm assigns each of its associated tool batches to start as soon as pos-
sible on the first available stage 1 machine. Then, the autoclave batch itself is
assigned to start, after all its associated tool batches have ended, on the first
available stage 2 machine.3

We also incorporated a simple randomization technique where each time an
item is picked from a sorted list, i.e. picking the next job or tool batch to be
batched or picking the next autoclave batch to schedule, a random item from the
first L items in the list is selected. This method allows us to apply the algorithm
on an instance multiple times and use the best solution found.

4.2 Hybrid Heuristic Approaches

Once EDD finds a feasible solution to the 2BPHFSP, we can try to improve
the solution using CP. Thus, we formulated two hybrid heuristic-CP approaches.
First, the heuristic solution can be used to warm-start the monolithic CP model,
and second, packing decisions from the heuristic solution can be fixed and
scheduling decisions can be improved using the subproblem from LBBD. These
two approaches will be referred to as WCP and EDD-CP, respectively.

5 Numerical Results

Our five approaches were tested on 11 sets of 30 randomly generated problem
instances, ranging from 5 jobs to 100 jobs per instance. All CP and MIP models
were implemented in Java using CPLEX Optimization Studio 12.9. Each app-
roach was given a sixty minute total time limit to solve each instance. For the
LBBD model, each component was given a ten minute time limit to prevent the
model from timing out globally within a single component.
3 Note that EDD is not guaranteed to find a feasible solution even if one exists. For
example, if the restricted waiting time constraints are too tight some search may be
required to find a solution.
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Algorithm 1: EDD heuristic
for each iteration do

sort J by increasing due date; // pack in tool batches
while J not empty do

j ← randomly selected job from first L items of J ;

if B1 empty or j does not fit in any open batch then
create new tool batch k and add to B1, assign j to k;
select a t from T with larger volume than j and assign to k;

else
assign j to first k ∈ B1 with enough space;

end

end

sort B1 by increasing due date; // pack in autoclave batches

while B1 not empty do
k ← randomly selected tool batch from first L items of B1;

if B2 empty or k does not fit in any open batch then
create new autoclave batch i and add to B2, assign k to i;

else
assign k to first i ∈ B2 with enough space;

end

end

sort B2 by increasing due date;

while B2 not empty do
i ← randomly selected autoclave batch from first L items of B2;
sort tool batches in i by decreasing processing time; // schedule batches
for k ∈ sorted tool batches of i do

m1 ← GetNextFreeMachine(M1);
schedule k next on m1;

end

m2 ← GetNextFreeMachine(M2);
schedule i next on m2 after end of all k in i;

end
add solution to solution list;

end
pick best solution from solution list;

Overall Performance. Figure 3 shows the number of instances for which each
approach was able to find feasible solution(s) and the average time to find the
best solution within one hour. The monolithic CP model is clearly the worst
performing model: it was not able to solve any instances with more than 25
jobs. The LBBD model starts to show signs of degraded performance at 50 jobs
per instance, and can only solve around 50% of instances with 100 jobs. These
two results imply that we will not be able to use these non-heuristic methods to
solve real-world instances, which contain at least 1000 jobs. EDD, EDD-CP, and
WCP were able to find feasible solutions for all instances. Both CP and WCP
are very unlikely to scale, but LBBD’s mediocre performance still warrants some
exploration with the full problem. EDD and EDD-CP show strong potential, but
Fig. 3b indicates that EDD-CP does not use much more time than EDD, meaning
we can solely pursue EDD-CP.

Solution Quality. We compared solution qualities of each approach by calculating
optimality gaps using equation (42), where z(n) is the objective value found for
instance n and z(RSP(n)) is a lower bound for instance n. The CP and LBBD
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Fig. 3. Performance of all solution techniques.

models did not find feasible solutions for some instances; the optimality gap for
any unsolved instance n is not included in the associated averages in Fig. 4.

Optimality Gap of Approach n =
z(n) − z(RSP(n))

z(RSP(n))
(42)

The lower bound is obtained by solving the Relaxed Scheduling Problem (RSP).
The RSP is a version of the LBBD subproblem with all batching removed: each
job is processed once in the first stage and once in the second stage. We model
the first stage as a multi-capacity machine and each job occupies one unit of
capacity during processing. The second stage is also a multi-capacity machine,
but each job occupies sj units of space during processing and the second stage
machine has a constant capacity of C2 × V 2. There are precedence constraints
between the stages of each job. The RSP is a relaxation of the 2BPHFSP, so
the optimal objective of the RSP is a lower bound on the 2BPHFSP. There is
a small subset of instances where the RSP is unable to prove optimality within
one hour. These instances are not included in the averages shown in Fig. 4. This
lower bound is very weak and does not serve any purpose beside providing a
comparison basis for solution qualities across the different approaches.

Figure 4 shows that, other than CP, the techniques do not show a large
range of solution qualities when they are all able to find feasible solutions. From
15 to 60 jobs per instance, EDD and EDD-CP find consistently worse solutions
than LBBD and WCP, both of which can change packing decisions to find better
schedules. However, the four techniques start to converge at 80 jobs per instance.
Given the censoring of the data for instances which LBBD could not find a
feasible solution, the true performance of the heuristic techniques is likely better
than LBBD for the 100-job instances. We can conclude that heuristic techniques
have comparable or better performance than the sophisticated mathematical
models for large problem instances.

Hybrid Heuristic Approaches. We can calculate how much improvement CP was
able to give to a heuristic solution in the two hybrid heuristic approaches by
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Fig. 4. Comparing the optimality gaps of all solution techniques tested.

Fig. 5. Relative decrease in objective value after using CP to improve the heuristic
solution; average decrease is shown by the dotted line. The blue data points show
results from larger instances that WCP was not able to solve. (Color figure online)

using equation (43), where z(EDD) is the heuristically found solution objective
value and z(CP) is the improved objective value.

Relative Decrease =
z(EDD) − z(CP)

z(EDD)
(43)

Figure 5 allows us to see the convergence trend shown by Fig. 4 more clearly.
WCP can make large improvements to the EDD solution up to 60 jobs per
instance, where its performance starts to degrade, whereas EDD-CP shows grad-
ually improving performance from 5 to 100 jobs per instance. We generated
larger problem instances of size 110, 120, and 130 to further test WCP and
EDD-CP. Figure 5b shows that EDD-CP’s performance plateaus after 100 jobs
per instance. WCP was not able to solve any problems larger than 100 jobs per
instance due to high memory usage. We can see that EDD-CP is clearly the
most robust and promising approach to solving the full problem.

6 Conclusions and Next Steps

We introduced the 2BPHFSP and developed three primary solution approaches,
constraint programming (CP), logic-based Benders decomposition (LBBD), and
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an earliest due date heuristic (EDD). Each approach was tested on 11 sets of 30
instances, with each set containing 5 to 100 jobs per instance. CP was able to
solve small instances, but scaled poorly. LBBD scaled better than CP but did
not find feasible solutions for some instances with 50 or more jobs. EDD was able
to find a feasible solution within seconds for every instance and had comparable
quality to LBBD solutions for larger instances.

Two hybrid heuristic-CP approaches were tested on the same sets of problem
instances. First, the EDD solution was used to warm-start the CP model (WCP),
and second, the packing from the EDD solution was fixed and the scheduling
subproblem from LBBD was used to improve the EDD solution schedule (EDD-
CP). Both methods were able to find feasible solutions for every instance. WCP
performed better within the range of problem instances tested, but showed signs
of decreasing performance at around 50 to 60 jobs per instance. EDD-CP has
consistent performance up to 100 jobs per instance, implying scalability.

Overall, the most interesting conclusion is the strong performance of heuristic
techniques compared to the mathematical formulations. The complexity of the
problem lends itself to CP, but scaling is an issue for complete approaches. Future
work includes considering some complexities of the original problem that were
abstracted away, and increasing instance sizes to match the real world. The pos-
itive heuristic results point us towards focusing future work on developing meta-
heuristic, constraint-based local search, and hybrid heuristic-CP approaches.
Ultimately, the success shown by EDD and the hybrid heuristic-CP approaches
suggests that complex problems, such as two-stage hierarchical batching and
scheduling, pose a challenge for the development of robust and efficient exact
methods.
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Abstract. The degree-constrained minimum spanning tree problem,
which involves finding a minimum spanning tree of a given graph with
upper bounds on the vertex degrees, has found multiple applications in
several domains. In this paper, we propose a novel CP approach to tackle
this problem where we extend a recent branch-and-bound approach with
an adaptation of the LKH local search heuristic to deal with trees instead
of tours. Every time a solution is found, it is locally optimised by our
new heuristic, thus yielding a tightened cut. Our experimental evaluation
shows that this significantly speeds up the branch-and-bound search and
hence closes the performance gap to the state-of-the-art bottom-up CP
approach.

Keywords: Degree-constrained minimum spanning tree ·
Branch-and-bound · Local search · LKH

1 Introduction

The degree constrained minimum spanning tree problem (DCMSTP) involves
finding a minimum spanning tree (MST) of a given graph where the degree of
every vertex is bounded. Minimum spanning trees are commonly used in the
design of protocols for wireless sensor networks [30]. Having upper bounds on
the degree of the vertices of a tree is a very common constraint in the design of
such protocols due to many factors (e.g., bounded number of radios per vertex,
limited capacity to store routing tables, etc.) [14].

The data collection process (convergecasting) in wireless sensor networks is
commonly accomplished by using a routing tree between the sensors [1,5,20],
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mostly due to time and energy efficiency reasons. The authors of [5] showed
that the network topology is one of the main efficiency bottlenecks and sig-
nificantly improved the practical performance by enforcing degree constraints
on the vertices of the routing tree. Additionally, degree constraints are crucial
in situations with battery-driven sensors in inaccessible terrains [20]. Similarly,
these constraints can play an important role in the diversion of the flow to avoid
interdicted links that result from cyber attacks in cyber-physical networks [25].

Another area of application is Software Defined Networks (SDNs). An SDN
attempts to centralise network intelligence in one network component by disasso-
ciating the forwarding process of network packets (data plane) from the routing
process (control plane). The control plane consists of one or more controllers
which are considered as the brain of the SDN where the whole intelligence is
incorporated [8]. The OpenFlow protocol is an open standard and is the main
and most widespread enabling technology of the SDN architecture. An Open-
Flow switch is equipped with a Forwarding Information Base (FIB) table, storing
matching rules for the incoming packets, one or more actions (e.g., forward to a
port, drop the packet, or modify its header) and counters. If an incoming packet
matches a rule in the FIB, the corresponding action is taken and the counters
are updated [26]. Reducing the energy impact of SDNs is an important challenge
nowadays. Researchers have proposed protocols based on MST to address this
challenge [23,26]. The limited space for storing FIB tables seems to motivate the
degree constraint on the vertices naturally.

DCMSTP subsumes the path version of the Traveling Salesman Problem
(TSP), where one is interested in finding a Hamiltonian path of minimum cost.
If we set the degree bound to 2 for each vertex, the Hamiltonian path prob-
lem reduces to the DCMSTP, and thus it is NP-hard [13]. While several CP
approaches have managed to push the state-of-the-art of the TSP by primarily
taking advantage of relaxations of the problem [2,10–12,17], we are only aware
of one CP approach that has managed to do the same for DCMSTP [6].

A common feature in the applications we have mentioned is that the user is
not necessarily interested in finding an optimal solution. In reality, the user is
much more concerned about the time spent in the computation of the solution
and is usually satisfied with a solution that is close to the optimal one. For
instance, consider the case where a wireless network has to be restored after
a link failure to a, possibly non-optimal, acceptable working state as fast as
possible and only afterwards make further adjustments to save costs. This is
certainly an issue with the recent bottom-up approach proposed in [6] since it
only produces a satisfiable solution (the optimal one) at the end of the search
process, besides the typically bad initial one. Branch-and-bound approaches do
not have this drawback but suffer from poor performance due to the lack of good
upper bounds.

In this paper, we propose a novel CP approach to tackle the DCMSTP where
we extend a branch-and-bound approach with a local search heuristic inspired by
LKH [16], which is the most widely used heuristic method for TSP, to combine
the benefits of a branch-and-bound approach with an acceptable runtime. We
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apply the heuristic to every found solution to improve its cut value, which not
only skips a lot of intermediate solutions, but also strengthens the filtering of all
used propagators. Our experiments show that our approach is competitive with
respect to the state-of-the-art when it comes to CP [6] and is preferable when it
comes to finding close-to-optimal solutions.

2 Background

Let G = (V,E) be an undirected graph with integer edge costs c : E → Z and
a degree upper bound for each vertex, given by the mapping d : V → N. For
all vertices v ∈ V let δ(v) denote the set of incident edges of v. We want to
find a spanning tree, satisfying the degree constraints for all vertices v ∈ V :
|δ(v)| ≤ d(v), of minimum total cost, which is the sum of all edge costs in the
tree.

A typical CP formulation is:

Minimize: Z (1)
s.t. WST(G,Z, c) (2)

|δ(v)| = Dv ≤ d(v) ∀v ∈ V (3)

It consists of a graph variable G, an integer variable Z representing an upper
bound on the total cost, and integer degree variables D. A graph variable is an
abstraction over the edge set of the graph, where the lower bound forms the set
of already fixed (mandatory) edges and the upper bound is a superset of the
lower bound. The difference between the upper bound and the lower bound is
the set of optional edges [4]. The weighted spanning tree constraint WST(G,Z,w)
(2) forces G to contain a spanning tree of cost at most Z [28]. Additionally, we
have the degree upper bound constraints (3). Due to the minimization Z will
become the total cost of a spanning tree eventually.

The current state-of-the-art CP approach [6] combines (2) and (3) into the
powerful DCWST(G,Z,w,D) constraint. It is a direct generalization of the WST
constraint and uses an adapted sub-gradient method of [15] to provide a lower
bound on the total cost, typically much tighter than a normal minimum spanning
tree would yield. On top of this model, the authors of [6] additionally adapted the
Last-Conflict search strategy [18] to graph variables, which significantly improves
the performance.

As a search procedure, they suggest to first greedily find any feasible solution,
which is needed for the DCWST constraint, and continue with a simple bottom-
up approach. They fix the total cost variable Z to a lower bound obtained via
the pruning performed by the DCWST constraint and then branch on the graph
variable. If a feasible solution is found it is guaranteed to be optimal. Otherwise,
the lower bound is increased by one and the process is repeated.

Due to the lack of a good upper bounding heuristic on the cost, a basic
branch-and-bound search is typically much slower than the bottom-up approach,
as can be seen in our experiments.
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Therefore, we suggest an improved branch-and-bound approach, which tack-
les this problem. Our ideas are inspired by the local search technique k-Opt [21]
for the TSP and especially its popular generalization the Lin-Kernighan algo-
rithm [22]. k-Opt has recently been applied to the DCMSTP [19], but using an
incomplete local search approach, and without using LKH. At each step, they
test all possible k-Opt swaps, including those which would change the vertex
degree. In contrast, our approach is complete, and motivated by LKH, we check
only a subset of possible moves.

The idea of k-Opt is to iteratively perform improving k-Opt swaps, which
consist of swapping k edges of the current spanning tree (or tour in the TSP
case) with k new ones to reduce the total cost of the graph until no more swaps
can be found. As the original k-Opt swaps for tours, we consider only moves
that do not change the vertex degrees. The case k = 2 is particularly simple
because for any spanning tree there is only one correct way to reconnect two
removed edges without violating the connectivity of the tree and changing the
vertex degrees (see Fig. 1):

Proposition 1. Two non-incident edges {v, w} and {x, y} of a tree can be
exchanged with the edges {v, y} and {w, x} without violating the tree property
of the graph and changing the vertex degrees if and only if the (unique) connect-
ing path between v and x is not using w or y.

Fig. 1. If we remove two edges {v, w} and {x, y} from a tree, either (a) {v, y}, {w, x} or
(b) {v, x}, {w, y} can be used to reconnect the tree without changing the vertex degrees.
Depending on whether x or y is closer to v in the tree without using w determines the
valid swap. The dashed parts represent the rest of the tree.

Indeed the tree property is maintained as no cycle is introduced with the
addition of edges {v, y} and {w, x} since these edges are connecting the discon-
nected components that were created by the removal of the edges {v, w} and
{x, y}. Similarly, the degrees are unmodified as the only vertices affected by the
change are v, y, w and x, which trivially maintain their original degrees.

The quality of this local optimisation is strongly influenced by k. Typically,
k = 2 is not enough and therefore k ≥ 3 is used to produce satisfactory results.
However, this is also the main drawback of the k-Opt approach, since to perform
one single edge swap the algorithm has to check all possible edge sets of size k,
resulting in a runtime of O(|V |k), which is too slow for typical real-world graphs
and an appropriate k.
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This problem motivates the Lin-Kernighan algorithm [22] for the TSP uni-
fying k-Opt swaps by dynamically choosing k during runtime. The main idea is
to start with 2-Opt swaps and only consider larger ones if needed. The currently
available implementation of the Lin-Kernighan algorithm [16], called LKH, is
one of the best-performing methods to heuristically solve the TSP in practice
(see e.g. [24,29] for recent developments).

One of the main difference to k-Opt is that LKH focuses on a certain subset
of possible moves called sequential k-Opt swaps, being a k-Opt swap, which can
be decomposed into k − 1 many 2-Opt swaps, applied one after another each
sharing an edge with the previous one. Additionally, the set of potential edge
candidates is typically restricted to heuristically promising ones, for example
only edges connecting nearest neighbours (see [16] for more details).

Motivated by the impressive results for the TSP, we propose to adapt LKH
to spanning trees and use it on all found solutions of a branch-and-bound CP
approach, in the sense of [9], to tighten the cuts, while still keeping the search
complete.

3 Improving Solutions with LKH

As it is not possible to apply the state-of-the-art LKH implementation [16] to our
problem due to its inherent design for tours, we decided to re-implement a bare-
bones version of it using the mentioned sequential k-Opt swaps and the nearest-
neighbour heuristic to use it directly in our CP setting. To further simplify the
implementation we set an upper bound on the largest allowed k.

Since sequential k-Opt swaps can be decomposed into 2-Opt swaps (see [16])
we have to only find an efficient way to perform 2-Opt swaps. The main challenge
here is to decide which one of the two possible swapping moves (see Fig. 1) has to
be performed to keep connectivity and the vertex degrees. Using Proposition 1
the problem simplifies to checking the vertex distances in the tree. Given a first
fixed edge {v, w} of an edge pair candidate {v, w} and {x, y}, the question is
whether x or y is closer to v (see Fig. 2).

Fig. 2. Fixing the edge {v, w} as the first part of an edge pair determines the correct
way of swapping it together with any non-incident second edge. For all the (dashed)
edges, which are reachable from v without using w, the correct way of swapping is
to connect w with the vertex x reached first and v to the vertex y after it. For all
the (dotted) edges reachable from w without using v, the opposite swap has to be
performed using {w, y′} and {v, x′}, connecting v to the vertex x′ reached first.
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To efficiently perform this check, we can use any graph traversal algorithm
(like BFS or DFS) starting from v without visiting w. By Proposition 1 every
traversed edge {x, y}, where x is reached before y, can be swapped using {v, y}
and {w, x}. The same procedure for w is reversed, resulting in the opposite swap
{v, x} and {w, y}. In total, this yields a linear runtime to identify all valid swaps
for a fixed edge.

As mentioned above, instead of trying all these edge pairs we only perform
promising ones using the following nearest-neighbour heuristic. We first sort the
neighbours of each vertex by increasing distance, which can be performed once
at the beginning of the branch-and-bound approach. Then we only apply an
edge swap, if one of the new edges, say {v, x}, connects two close vertices v and
x, where close means being one of the nearest neighbours, typically restricted to
3–5 neighbours. To prevent checking an edge pair twice, we can enforce v < x
with some fixed order on the vertices as a condition for any edge pair candidate.
We want to emphasize that this local optimisation does not change the vertex
degrees.

To sum up, our proposed approach is the following. Exactly as [6] we start
with an initial greedy solution, but then apply a branch-and-bound search. Every
time a solution is found, including the greedy one, it is locally optimised with
LKH to reduce its total cost, hence yielding a better cut.

This significantly speeds up the branch-and-bound search, as can be seen
in the experiments, since on the one hand, we can skip a lot of intermediate
solutions and on the other hand, the improved cuts strengthen the filtering of
the used propagators.

4 Experiments

In the following section, we compare our new approach with the state-of-the-art
bottom-up CP approach from [6] and to a branch-and-bound search without our
additional local optimisation on two benchmark datasets DE and ANDINST [3].
We implemented our approach in Java 8 on top of the CP library Choco 4.0.6
[27] with Choco-graph 4.2.4 [7] and made it publicly available1. All experiments
are run on a Debian Linux 9 workstation with an Intel R© Xeon R© X5675 CPU
and 128 GB of total RAM. A time limit of 3 h is used.

In our approach, we set the highest k for any k-Opt swap, as well as the
number of nearest neighbours to 3. These parameters are a tradeoff between
runtime and efficiency of the local optimisation. We determined these empirically,
as they seemed to be the most appropriate for our test datasets. Due to space
limitations, we omit a discussion about the parameter selection.

Motivated by our applications we also record the time to reach a solution of
cost 1% close to the optimum, i.e. smaller than or equal to 1.01 times the optimal
value. For the bottom-up approach, this almost always coincides with the overall
runtime, because the bottom-up approach does not generate any intermediate
solutions, besides the typically bad initial one.
1 https://github.com/mthiessen/CP-LKH-DCMST.

https://github.com/mthiessen/CP-LKH-DCMST
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Fig. 3. Runtimes on DE instances

In Fig. 3 we depict the runtimes on the DE instances. The striped parts of
the branch-and-bound approaches indicate the time to reach a solution value 1%
close to optimal. Our adapted approach is much faster than the basic branch-and-
bound. We also observe that the time to reach 1% optimality almost coincides
with the overall runtime for the basic branch-and-bound, while drops signifi-
cantly for our adapted approach.

On most of the instances, the runtime of the bottom-up approach is compa-
rable to our approach. In three instances the bottom-up approach is significantly
better, but on the other hand on three other instances, our approach performs
better. If we look at the runtime to reach 1% the situation improves. On all
but two instances our approach finds such solutions faster than the bottom-up
approach. This indicates that our approach is preferable over the bottom-up
approach in a dynamic environment, such as in our mentioned applications.

Fig. 4. Runtimes on ANDINST instances

On the ANDINST dataset (see Fig. 4), our approach is better than the basic
branch-and-bound on most instances. Unfortunately, our approach is slower than
the basic branch-and-bound on some larger instances. We are convinced that a
more sophisticated implementation of LKH on trees would resolve this issue.
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If we compare our approach directly to the bottom-up approach, the latter
is always faster than ours in finding an optimum solution. This is because the
lower bound used in the bottom-up approach is very close to the optimum for
the ANDINST dataset and so only a few bottom-up steps, typically 1–2, have to
be performed.

Again the situation is a lot better if we compare the runtimes to reach 1%.
Here our approach on all but the last instance beats the bottom-up, often with
a large margin.

Overall the empirical results suggest preferring our adapted branch-and-
bound approach over the basic one. The situation is much more diverse in the
comparison of the bottom-up approach to ours, where most of the time the
results are either similar or in favour of the bottom-up approach. Nevertheless,
taking the time to reach 1% into account shows the benefits of using our adapted
approach.

5 Conclusion

We have extended a CP based branch-and-bound approach to the degree con-
strained minimum spanning tree problem with an adaptation of the LKH local
search heuristic. In this adaptation, the heuristic deals with trees instead of
tours. The branch-and-bound search is significantly enhanced by this adapta-
tion as shown in the experiments, which makes our approach competitive with
the state-of-the-art bottom-up CP approach on some well-known benchmarks.
We have discussed and shown empirically that our branch-and-bound approach
is preferable in a dynamic environment, where close to optimal solutions are of
interest.

This study is a proof-of-concept and indicates the high potential of an
adapted branch-and-bound approach since there is a lot to improve. Especially,
apart from improving the implementation of the adapted LKH, we plan to focus
on Euclidean instances and build propagators especially for these cases. We also
plan to generate nogoods and adapt our approach to deal with dynamic envi-
ronments where edges are frequently changing. Lastly, generalising the idea of
improving intermediate solutions by heuristics to related problems, such as the
TSP, seems to be a promising research direction.

Acknowledgement. The authors thank Keld Helsgaun from the Roskilde University,
Denmark for helpful discussions.
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Abstract. The Dial a Ride family of Problems (DARP) consists in
routing a fleet of vehicles to satisfy transportation requests with time-
windows. This problem is at the frontier between routing and scheduling.
The most successful approaches in dealing with DARP are often tailored
to specific variants. A generic state-of-the-art constraint programming
model consists in using a sequence variable to represent the ordering of
visits in a route. We introduce a possible representation for the domain
called Insertion Sequence Variable that naturally extends the standard
subset bound for set variables with an additional insertion operator after
any element already sequenced. We describe the important constraints
on the sequence variable and their filtering algorithms required to model
the classical DARP and one of its variants called the Patient Trans-
portation Problem (PTP). Our experimental results on a large variety of
instances show that the proposed approach is competitive with existing
sequence based approaches.

1 Introduction

Door-to-door transportation services and on demand public transport are
increasingly important due to the flexibility it offers to the customers. Two such
problems are the Dial a Ride Problem (DARP) [7] and the Patient Transporta-
tion Problem (PTP) [3] which consist in transporting a maximum of patients to
and from medical appointments. These problems often involve large number of
requests and thus require efficient algorithmic solutions. Many approaches have
been proposed and applied successfully to different variants of the DARP [11].
However, these solutions are often tailored towards specific use-cases and are
difficult to adapt to other variants of the problem. It is thus crucial to develop
approaches to model and solve efficiently such problems while remaining generic
and easily adaptable.

We describe an Insertion Sequence Variable (ISV) for modeling and solving
DARPs. Our domain representation includes the subset bound domain [9] for set
variables. This allows to represent optional elements in the domain and prevents
a repetition of the same element at different positions in the sequence. The set
domain is extended with an internal sequence that can be grown with arbitrary
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insertions available from a set of possible insertions. By letting the constraints
remove impossible insertions, the search space is pruned by restricting the set of
possible sequences. We describe two important global constraints on the Insertion
Sequence Variable for modeling the DARP and PTP: 1) The TransitionTimes
constraint links a sequence variable with time interval variables to take into
account a transition time matrix between consecutive elements in the sequence.
2) The Cumulative constraint ensures that the load profile does not exceed a
fixed capacity when pairs of elements in the sequence represent the load and
discharge on a vehicle. We experimentally test the performances of the Insertion
Sequence Variable on the two problems and show that it is competitive with the
state-of-the-art CP approaches.

2 Related Work

In [14], the authors propose a constraint-based approach called LNS-FFPA to
solve DARPs with a cost objective and show that it outperforms other state-of-
the-art approaches. While highly efficient, the LNS-FFPA algorithm is difficult
to adapt to other variants of the DARP such as the PTP. Indeed, the approach is
not declarative since some constraints are enforced with the search. Furthermore,
the model is not able to deal with optional visits that occur in the PTP and
similar problems.

Two recent approaches for solving the PTP are [3] and [20]. The approach
proposed in [3] consists in representing the problem with a scheduling model
where trips are represented by activities. The approach of [20] is based on IBM
ILOG CP Optimizer solver [19]. It makes use of the sequence variables from CP
Optimizer to decide the order of visits in each vehicle.

The high level functionalities and constraints related to sequence variables of
CP Optimizer have been briefly described in [17,18]. Unfortunately, no details
are given on the implementation of such variables and the filtering algorithms
of the constraints in the literature. According to the API and documentation
available at [12,13], the sequence variable of CP Optimizer is based on a Head-
Tail Sequence Graph structure. It consists of maintaining separate growing head
and tail sub-sequences. Interval variables not yet sequenced can be added either
at the end of the head or at the beginning of the tail. When no more interval
variable can be added and all members of the head and tail are decided, both
sub-sequences are joined to form the final sequence. Google OR-Tools [22] also
propose sequence variables [23] with the same approach as CP Optimizer. The
approach proposed in this paper differs from the one of CP Optimizer in the
following ways: 1) the insertion sequence variable is generic and usable in a large
variety of problems. In particular, the variable is independent of the notion of
time intervals; 2) insertions are allowed at any point in the sequence which allows
flexible modeling and search; 3) the variable proposed keeps track of the possible
insertions for each element inside its domain which allows advanced propagation
techniques.
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In [10], the authors discuss the usage of a path variable in the context of
Segment Routing Problems. Their implementation is based on a growing prefix
to which candidates elements can be appended.

3 Preliminary

Let X = {0, ..., n} be a finite set and P(X) the set of subsets (power set) of
X. The inclusion ⊆ relation defines a partial order over P(X) and the structure
(P(X),⊆) is a lattice generally used to represent the domain of a finite set
variable. To avoid explicit exhaustive enumeration of set domain, three disjoint
subsets of X are used to represent the current state of the set domain (see [9]).
The domain is defined as 〈P,R,E〉 ≡ {S′ | S′ ⊆ X ∧ R ⊆ S′ ⊆ R ∪ P} where
P , R, and E denote respectively the set of Possible, Required and Excluded
elements of X. At any time we have that P,R and E form a partition of X.
The variable S with domain 〈P,R,E〉 is bound if P is empty. Table 1 contains
the supported operations on a set variable S of domain 〈P,R,E〉 with their
complexity.

Table 1. Operations supported by set variables

Operation Description Complexity

requires(S, e) move e to R, fails if e ∈ E Θ(1)

excludes(S, e) move e to E, fails if e ∈ R Θ(1)

isBound(S) return true iff S is bound Θ(1)

is{Possible/Required/Excluded}(S, e) return true iff e ∈ {P/R/E} Θ(1)

all{Possible/Required/Excluded}(S) enumerate {P/R/E} Θ(|{P/R/E}|)

We denote by −→
S a sequence without duplicates over X (S ⊆ X). The sequence−→

S defines an order over the elements of S. Each element of X is unique and can
appear only once in S. The set of all sequences of X is denoted by −→P (X). Let

a and b be two elements of S. The relation a precedes b in −→
S is noted a

−→
S≺ b or

a ≺ b when it is clear from the context that the relation applies in regards to

S. The relation a directly precedes b in −→
S is noted a

−→
S−→ b or a → b when clear

from the context. In this case, b is called the successor of a and a is called the
predecessor of b in −→

S . A sequence −→
S ′ is a super-sequence of −→

S if S ⊆ S′ and

∀a, b ∈ S, a
−→
S≺ b =⇒ a

−→
S′
≺ b. This relationship is noted −→

S ⊆ −→
S ′. Conversely, −→

S is
a sub-sequence of −→

S ′.
The insertion operation insert(−→S , e, p) consists in inserting the element e in

the sequence −→
S after the element p where e ∈ X \ S and p ∈ S. Performing this

operation results in a super-sequence −→
S ′ of −→

S such that S′ = S∪{e} and p
−→
S′−→ e.

The operation is also noted −→
S =⇒

(e,p)

−→
S ′.
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The insertion of an element e at the beginning of a sequence or in an empty
sequence is defined as insert(−→S , e,⊥). An insertion in a sequence −→

S is thus
characterized by a tuple (e, p) where e /∈ S and p ∈ S ∨ p = ⊥.

Given I, a set of tuples, each corresponding to a potential insertion in −→
S , the

one-step derivation −→
S =⇒

I

−→
S ′ between a sequence −→

S and its super-sequence S′

is defined as −→
S =⇒

I

−→
S ′ ⇐⇒ ∃i = (e, p) ∈ I | −→

S =⇒
i=(e,p)

−→
S ′. In other words,

the sequence S is transformed into S′ by applying one possible insertion from
I. More generally zero or more steps derivation is defined as −→

S
∗=⇒
I

−→
S ′ ≡ −→

S =

−→
S ′ ∨

(
∃i ∈ I | −→

S =⇒
i

−→
S ′′ ∧ −→

S ′′ ∗=⇒
I\{i}

−→
S ′

)
. Note that I may contain tuples that

do not correspond to a possible insertion in −→
S but instead to a possible insertion

in a super-sequence of −→
S . Also note that several sequences of insertions in I may

lead to a same super-sequence.

Example 1. Let us consider the sequence −→
S = (1, 2, 3) and the set of insertions

I = {(4, 2), (5, 2), (5, 4)}. We have that −→
S

∗=⇒
I

−→
S ′ = (1, 2, 4, 5, 3) since it can be

obtained with consecutive derivations over I: (1, 2, 3) =⇒
(4,2)

(1, 2, 4, 3) =⇒
(5,4)

(1, 2, 4, 5, 3).

4 Insertion Sequence Variable

Definition 1. An insertion sequence variable Sq on a set X is a variable whose
domain is represented by a tuple 〈−→S , I, P,R,E〉 where 〈P,R,E〉 is the domain of
a set variable on X, −→

S is a sequence ∈ −→P (R) and I is a set of tuples (e, p), each
corresponding to a possible insertion. The domain of Sq, also noted D(Sq), is
defined as

〈−→S , I, P,R,E〉 ≡
{−→

S ′ ∈ −→P (P ∪ R) | R ⊆ S′ ∧ −→
S

∗=⇒
I

−→
S ′

}
(1)

Sq is bound if P is empty and |S| = |R|. Initially, all elements of the domain are
optional (∈ P ). During the search, elements can be set as mandatory or excluded
(moved to R or E) and possible insertions can be removed from I.

Lemma 1. Checking the consistency of the domain 〈−→S , I, P,R,E〉 is NP-
complete.

Proof. It requires verifying the following properties: ∃−→
S ′ | −→

S
∗=⇒
I

−→
S ′ ∧ R ⊆ S′

and ∀e ∈ P,∃S′ | −→
S

∗=⇒
I

−→
S ′ ∧ R ∪ {e} ⊆ S′. The Hamiltonian path problem for

a directed graph G = (V, E) can be reduced to checking the consistency of the
domain D(Sq) = 〈−→S = (), I = Ereverse ∪ {(v,⊥) | ∀v ∈ V}, P = ∅, R = V, E =
∅〉 where Ereverse is the result of applying the reverse operation on each edge
(i, j) ∈ E defined as (i, j)reverse = (j, i). ��
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Consequently, instead of checking the full domain consistency at each change
in the domain, the following invariant is maintained internally by the sequence
variable:

P ∪ R ∪ E = X ∧ P ∩ R = R ∩ E = P ∩ E = φ (2)
S ⊆ R (3)
∀(e, p) ∈ I, e /∈ S ∧ e /∈ E ∧ p /∈ E (4)
∀p ∈ S, �(e, p) ∈ I =⇒ e ∈ E (5)

At any moment: P ∪ R ∪ E form a partition of X (2); any member of −→
S is

required (3); any member of −→
S cannot be inserted in −→

S ; any excluded element
cannot be inserted in −→

S and is not a valid predecessor (4); any element that
cannot be inserted at any position in −→

S is excluded (5).

Example 2. Let us consider X = {a, b, c, d, e, f}, the variable Sq of domain
〈−→S = (f, b), I = {(c,⊥), (c, e), (c, f), (e, c), (e, f)}, P = {c}, R = {b, e, f}, E =
{a, d}〉 corresponds to the sequences {(f, e, b), (c, f, e, b), (f, c, e, b), (f, e, c, b)}.
The sequences {(f, b), (c, f, b), (f, c, b)} are not valid as they do not contain e
which is required.

The insertion sequence variable inherits all the operations defined on the
set variable (see Table 1) and supports the additional operations summarized in
Table 2.

Table 2. Operations supported by insertion sequence variables

Operation Description Complexity

isBound(Sq) return true iff Sq is bound Θ(1)

isMember(Sq, e) return true iff e is present in
−→
S Θ(1)

allMembers(Sq) enumerate
−→
S Θ(|S|)

allCurrentInserts(Sq) enumerate {(e, p) ∈ I | p ∈ S} O(min(|I|, |S|))
nextMember(Sq, e) return the successor of e in

−→
S Θ(1)

insert(Sq, e, p) insert e in
−→
S after p, update P ,

R and I, fail if e ∈ E ∨ p /∈ S
Θ(1)

canInsert(Sq, e, p) return true iff (e, p) ∈ I Θ(1)

allInserts(Sq) enumerate I Θ(|I|)
remInsert(Sq, e, p) remove (e, p) from I Θ(1)

4.1 Implementation

The implementation of the internal set variable 〈P,R,E〉 uses array-based sparse
sets as in [24] to ensure efficient update and reversibility during a backtracking
depth-first-search. It consists of an array of length |X| called elems and two
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reversible integers: r and p. The position of the elements of X in elems indicates
in which subset the element is. Elements before the position r are part of R while
elements starting from position p are part of E. Elements in between are part of
P . An array called elemPos maps each element of X with its position in elems,
allowing access in Θ(1).

The internal partial sequence −→
S is implemented using a reversible chained

structure. An array of reversible integers called succ indicates for each element
its successor in the partial sequence. An element which is not part of the partial
sequence points towards itself. An additional dummy element ⊥ marks the start
and end of the partial sequence. It can be specified as predecessor in the insertion
operation to insert an element at the beginning of the sequence or in an empty
sequence. Inserting an element e in the partial sequence after p consists in mod-
ifying the successor of e to point to the previous successor of p and modifying
the successor of p to point to e.

The set of possible insertions I is implemented using an array of sparse sets
called posPreds. For each element, the corresponding sparse set contains all the
possible predecessors after which the element can be inserted. If the element is
a member of the sequence −→

S or excluded, its set is empty. The sparse sets are
initialized with the following domain: R ∪ P ∪ {⊥}. Constraints may remove
possible insertions during their propagation. If doing so results in an empty set,
the corresponding element is excluded according to the invariant (5).

An illustration of the domain representation for the variable Sq with a domain
of 〈−→S = (f, b), I = {(c,⊥), (c, e), (c, f), (e, c), (e, f)}, P = {c}, R = {b, e, f}, E =
{a, d}〉 is given in Fig. 1.

Fig. 1. The insertion sequence variable domain 〈〈−→S = (f, b), I = {(c, ⊥), (c, f), (c, e),
(e, c), (e, f)}, P = {c}, R = {b, e, f}, E = {a, d}〉 (left and middle) and the correspond-
ing lattice (with valid sequences underlined) and graphical representation (right)
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5 Global Constraints on Insertion Sequence Variables

5.1 Transition Times Constraint

In a scheduling context, the elements to sequence correspond to activities per-
formed over time, each associated with a time window and requiring a minimum
transition time to move to the next that depends on the pair of consecutive
activities. The Transition Times constraint links the sequenced elements with
their time window to make sure that transition time constraints are satisfied
between any two consecutive elements of the sequence. More formally, each ele-
ment i ∈ X is associated with an activity defined by a start starti and a duration
variable duri. A matrix transi,j , satisfying the triangle inequality, specifies tran-
sition times associated to each couple of activities (i, j). The TransitionTimes
constraint is then defined as

TransitionTimes(Sq, [start], [dur], [[trans]]) ≡{
−→
S ′ ∈ D(Sq) | ∀a, b ∈ S′, a

−→
S′
≺ b =⇒ startb ≥ starta + dura + transa,b

}
(6)

Filtering. The filtering algorithm is triggered whenever an element is either
inserted in −→

S ′ or required or if one of the bounds of a time window changes. The
algorithm is split into three parts: time windows update, insertion update and
feasible path checking and filtering.

Time Window Update. This filtering algorithm is used to adjust the start and
duration of the activities already present in −→

S . This update is done in linear time
by iterating over the elements of the sequence and updating their time windows
depending on the time needed to transition from the previous element and to
the next element. If the time window of an element is shrunk outside its domain,
this leads to a failure.

Insertion Update. This filtering algorithm is used to filter out the invalid inser-
tions in I based on the current state of −→

S and the transition times of the activ-
ities. The algorithm is linear and consists in iterating over I. For each possible
insertion, if the transition times between the inserted activity and its predecessor
and successor lead to a violation of a time window, the insertion is removed.

Feasible Path Checking and Filtering. The problem of verifying that there exists
at least one transition time feasible extension of the current sequence composed
of the required activities not yet inserted is NP-Complete [8] by a reduction
from the TSP. Algorithm 1 is a recursive depth first search used to check that
there exists at least one feasible extension of the current sequence composed of
the required activities not yet inserted (i.e. in the set R \ S). Given the cur-
rent sequence −→

S , the recursive call feasiblePath(�, p,Ω, t, d) checks that it is
possible to build a sequence starting from � at time t that contains at least d
elements of Ω and is a super-sequence of the sub-sequence of −→

S starting in p.
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The parameter � indicates the last element visited at time t whereas the parame-
ter p indicates the last element of S that has been visited (possibly several steps
before �). The initial call feasiblePath(� = ⊥, p = ⊥, Ω = R \ S, t = 0, d) thus
checks that there exists a super-sequence of −→

S containing d elements of R \ S.

At each node, the algorithm either explores the insertion of a new element
after � which corresponds to branching over an element of Ω (line 16) or fol-
lows the current sequence −→

S which consists in branching over the successor of
p in −→

S (line 20). A pruning is done at lines 2 and 9 if one realizes that at least
one activity cannot be reached. By the triangle inequality assumption of the
transition times, if either the successor of p or at least one activity of Ω cannot
be reached directly after �, then it can surely not be reached later in time if
some activities were visited in between. Therefore false is returned in such case
which corresponds to the infeasibility pruning. The possible extensions consid-
ered recursively at line 16 are based on the current state of I and the value of
p. The maximum depth is controlled by the parameter d to avoid prohibitive
computation. The algorithm can thus return a false positive result by returning
true at line 14 if this limit is reached.
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The time complexity of Algorithm 1 is O(|S| · |Ω|d) in worse case as it corre-
sponds to an iteration over −→

S with a depth-first search of depth d and branching
factor |Ω| at each step. In practice, as the branching is based on I, the search
tree will often be smaller. In order to reduce the time complexity of the suc-
cessive calls to feasiblePath, a cache is used to avoid exploring several times
a partial extension that can be proven infeasible or feasible based on previous
executions. A global map called cache is assumed to contain keys composed of
the arguments of the function, that is a tuple with (Ω, �, p). At each key, the
map associates a couple of integer values (tf , ti) where tf is the latest known
time at which it is possible to depart from � and find a feasible path among the
sub-sequence starting after p and the activities of Ω and ti is the earliest known
time at which the departure from � is too late and there exists no feasible path.
Line 6 is called to find if a corresponding entry exists in the map. If it is the
case, the departure time t is compared to the couple (tf , ti) of the map. If t ≤ tf ,
the value true is immediately returned. If t ≥ ti, false is returned. If tf < t < ti,
the algorithm continues its exploration. The cache is updated at lines 11, 18 and
21 depending on the result found. Usage of the cache is highlighted in gray in
Algorithm 1.

This checking algorithm can be used in a shaving-like fashion into
Algorithm 2. A value is filtered out from the possible set if its require-
ment made the sequencing infeasible according to the transition times. This
TransitionTimesFiltering algorithm executes in O(|P | · (|S| · |R \ S|)d).
Notice that the cache is shared and reused along the calls in order to avoid many
subtree explorations. Due to the extensive nature of the algorithm, a parameter
ρ defines a threshold for the size of P above which the feasiblePath algorithm
is not executed for each element of P (line 4).

Example 3. Let us consider the following example where X = {a, b, c, d} is the
set of activities. The transition times between activities are given in Table
(a) of Fig. 2 and the initial time windows (column start) in Table (b) of
Fig. 2. We consider the sequence variable Sq of domain 〈−→S = (a, d), I =
{(b, a), (b, d), (c,⊥), (c, d)}, P = {c}, R = {a, b, d}, E = ∅〉. The duration of each
activity is fixed at 2. Let us apply the propagation of TransitionTimes on this
example:

1. Time window update is applied. The time windows of a and d are reduced.
The updated time windows are displayed in Table (b) (column start’).
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2. Insertion update is applied. The insertion (b, a) is removed from I as b cannot
be inserted after a without violation (b would end at the earliest at 9 which
implies that d would start at the earliest at 16, outside its time window).

3. Transition Time Filtering (Algorithm 2) is applied. The search trees for the
checker (c) and the filter (d) are displayed in Fig. 2. Failures are denoted
with × and successes with

√
. The initial value of the parameter d is 3. The

domain of Sq after propagation is 〈(a, d), {(b, d)}, ∅, {a, b, d}, {c}〉 as the filter
excludes c.

Fig. 2. Propagation on Sq = 〈(a, d), {(b, a), (b, d), (c, ⊥), (c, d)}, {c}, {a, b, d}, ∅〉

5.2 Cumulative Constraint

In both the DARP and PTP, one has to satisfy requests that correspond to
embarking and disembarking a person in a vehicle. The activities of transport
are modeled as pairs of elements in an insertion sequence variable that must
occur in this specific order: embarking before disembarking. Also this pair of
elements must both be present or absent from the sequence. During the trip, the
person occupies some load in the vehicle. By analogy to scheduling problems, a
request is called an activity Ai and is composed of the two elements (starti,endi)
corresponding to the embarking and disembarking. This activity will consume a
load loadi while it is on the board of the vehicle. The set of activities is denoted
A. Also by analogy to scheduling [1], we call Cumulative the constraint that
ensures that the capacity C of the resource is respected at any point in the
ordering defined by the sequence Sq over X where ∀i ∈ A, starti, endi ∈ X.
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More formally

Cumulative(Sq, [start], [end], [load], C) ≡⎧⎨
⎩

−→
S ′ ∈ D(Sq) | ∀e ∈ S′,

∑
i∈A|starti�e�endi

loadi ≤ C

⎫⎬
⎭ . (7)

Filtering. The propagation is triggered when new elements are inserted in −→
S .

It consists in filtering insertions in the current sequence −→
S by checking if they

are supported. An insertion for the element corresponding to one extremity of
an activity is supported if there exists at least one possible insertion for the
other extremity of the activity such that the activity load does not overloads the
capacity between both insertion positions.

The first step of the propagation algorithm is to build a minimum load profile
that maps each element e of the sequence to the minimal load at this point in
the sequence based on the activities that are part of −→

S . These can be either
fully inserted (both the start and end of the activity ∈ −→

S ) or partially inserted
(only the start or end ∈ −→

S ). For partially inserted activities, the position for
the element not yet inserted is chosen among the possible insertions in I as the
closest one to the inserted element. Note that a violation of the capacity at this
point would trigger a failure.

Once the cumulative profile is built, possible insertions for activities that are
partially inserted are filtered. The algorithm used consists in iterating over −→

S

starting from the inserted element. Possible insertions for the missing element
are considered and allowed as long as the load of the activity can be added
to the minimal load profile without overloading the capacity. If the capacity is
overloaded at some point, the current insertion as well as the insertions not yet
reached are removed.

Finally, Algorithm 3 is used to check activities for which neither element
is inserted. The loop at line 5 iterates over −→

S starting from the dummy ele-
ment ⊥. When a potential start predecessor is encountered, it is added to the
activeStarts set which maintains potential valid predecessors for the start ele-
ment that have been encountered so far (line 7). The boolean canClose indicates
if there exists at least one possible insertion position for the start of the activity
that would be valid if the end is inserted at this point. It is set to true whenever
a start predecessor is added to activeStarts. If adding the activity to the load
profile for the current element violates the capacity, canClose is set to false and
activeStarts is emptied as the potential start predecessors will not be matched
to a valid insertion for the end element. When a valid predecessor for the end
element is encountered, the end predecessor and all the start predecessors in
activeStarts are validated (lines 13 and 14). The possible predecessors that
have not been validated at the end of the loop are removed at line 18.
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The complexity to build the minimum load profile is linear. The complexity to
check all the activities ∈ A is O(|A| · |S|).
Example 4. Let us consider four activities: A0 = [a, e], A1 = [b, f ], A2 = [c, g]
and A3 = [d, h]. Each activity Ai has a load of 1. The capacity is C = 3.
The current partial sequence is −→

S = (a, b, c, e, f). Before propagation, the cur-
rent possible insertions in I are: {(d,⊥), (d, a), (d, b), (d, g), (g, d), (g, e), (g, f),
(g, h), (h, a), (h, c), (h, e), (h, d), (h, g)}. Note that the possible insertions that are
not in the current sequence ((d, g), (g, d), (g, h), (h, d), (h, g)) will be ignored by
the filtering algorithm. Let us propagate the Cumulative constraint:

1. The minimal load profile is built based on A0 = [a, e] and A1 = [b, f ] which
are both fully inserted and A2 = [c, g] which is partially inserted (only c is
member in −→

S ). The possible insertion for the end of A2 (g) that is the closest
to its start (c) is (g, e). Thus, A2 is considered ending after e to compute the
minimum load profile which is {⊥ : 0, a : 1, b : 2, c : 3, e : 2, f : 0}.

2. The possible insertions for the partially inserted activity A2 are filtered. The
sequence is iterated over starting from c. As (g, e) is part of the minimal
load profile, it is validated. The remaining possible insertion (g, f) is reached
without overloading the capacity and thus validated.

3. The possible insertions for non-inserted activity A3 = [d, h] are filtered. To
do so, Algorithm 3 iterates over the elements in −→

S , starting from ⊥. Both
⊥ and a are added to activeStart and canClose is set to true. When con-
sidering a as possible predecessor for h, as canClose is true, the insertions
(h, a), (d,⊥) and (d, a) are validated. Afterwards b is added to activeStart.
When considering c, adding the activity A3 at this point would overload the
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capacity C. Thus, canClose is set to false and activeStart is emptied. c
and d are not validated as possible predecessors, as canClose is false when
they are considered.

At the end of the propagation, the validated insertions are (g, e), (g, f), (d,⊥),
(d, a) and (h, a). The possible insertions (d, b), (h, c) and (h, e) are removed
from I.

6 Applications of the Insertion Sequence Variable

This section presents the application of the insertion sequence variable on two
variants of the Dial a Ride Problem.

6.1 Dial a Ride Problem

The Dial a Ride Problem (DARP) consists at routing a fleet of vehicles in order
to transport clients from one place to another. The variant experimented in this
paper was proposed by Cordeau and Laporte [5]. The objective is to minimize
the total routing cost of the vehicles (defined as the total distance traveled by
the vehicles) under various constraints such a maximum trip duration and time-
windows. This problem is modeled with one insertion sequence variable for each
route. Each request is modeled by two stops (its pickup and drop) that must be
part of the same sequence. A Cumulative constraint ensures the capacity of the
vehicle is satisfied. The time-window and time constraints are enforced with the
help of the TransitionTimes constraints.

Search. A Large Neighborhood Search (LNS) [25] is used. The relaxation pro-
cedure randomly selects a subset of requests that must be reinserted into the
sequences. If the search tree is completely explored during a given number of
consecutive iterations given by a stagnation threshold s, the relaxation size is
increased. Two different search heuristics are considered: 1) A generic First
Fail search. Similarly as in [14], at each step of the search, it selects the ele-
ment (the stop) not yet decided with the minimal number of possible insertions
in all compatible sequences. Then, it branches in a random order over the pos-
sible insertions for the element. 2) A problem specific heuristic called Cost
Driven search. It uses a similar approach to the first fail heuristic to select a stop
with a minimal number of possible insertions. The cost metric used in [14] for
their LNS-FFPA algorithm is used to improve the heuristic. The minimum cost
between all possible insertions for a stop is used as a tie breaker for the selection
of the next stop to insert. Additionally, the branching decisions, each correspond-
ing to a possible insertion for the stop selected, are explored by increasing order
of cost.



470 C. Thomas et al.

6.2 Patient Transportation Problem (PTP)

The Patient Transportation Problem (PTP) [3] is a variation of the classical
DARP where clients are patients that must be transported to medical appoint-
ments and possibly brought back to a specified location after their care. This
implies that some pairs of requests are dependent from each other. The objective
consists in maximizing the number of requests served instead of minimizing the
total distance. Additionally, the problem introduces additional constraints such
as categories of patients that can only be taken in charge by specific vehicles.
The fleet of vehicles is heterogeneous, each has its own capacity, can only serve
some types of patients and departure from different points. Also each vehicle is
available in a given time window only.

Search. Such as for the DARP, LNS is used and Two search heuristics are
considered: 1) The same generic First Fail heuristic as the one described in
Sect. 6.1; 2) A problem specific heuristic called Slack Driven search. It is
similar to the Cost Driven heuristic described in Sect. 6.1. The cost metric is
replaced by a slack difference metric which is defined as the total size difference
of the time windows of the predecessor and successor of the stop to insert before
and after insertion. The intuition is to minimize this difference in order to keep
the sequences as flexible as possible and maximizing potential future insertions.

7 Experimental Results

This section reports the comparison of the models presented in Sect. 6 with state-
of-the-art CP approaches for the DARP and PTP. The models based on insertion
sequences variables are referred as the Insertion Sequence (ISEQ) approaches.
The generic First Fail heuristic is referred as FF. The Cost Driven and Slack
Driven heuristics are referred as CDS and SDS respectively.

For the DARP, the insertion sequence approach was compared with 1) the
LNS with First Feasible Probabilistic Acceptance(LNS-FFPA) model and heuristic
proposed in [14]; 2) an implementation of our model with the sequence variables
and interval variables of CP Optimizer is referred as DARP CPO. The approaches
were run on 68 DARP instances from [4,6] and are available at [2].

For the PTP, The insertion sequence model was compared with 1) the
model proposed in [3], referred as Scheduling with Maximum Selection Search
(SCHED+MSS); 2) the model proposed in [20], referred as Liu CP Optimizer model
(LIU CPO). A greedy approach referred as (GREEDY) was used to compute the
initial PTP solutions given to the compared models in the LNS setting. Tests
were performed on the benchmark of instances used in [3]. It contains both real
exploitation instances and randomly generated instances which are available at
[26].

For the TransitionTimes constraint, the maximum depth was fixed to 3
and the filtering threshold to 10. The LNS used an initial relaxation of 20% of
the requests, a failure limit of 500, a stagnation threshold of 50 and an increase
factor of 20%.
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Each approach was run 10 times on each instance, with a time limit of 600 s.
The system used for the experiments is a PowerEdge R630 server (128GB, 2 proc.
Intel E5264 6c/12t) running on Linux. The approaches using CP Optimizer were
implemented using the Java API of CPLEX Optimization Studio V12.8 [19]. The
other models were implemented on OscaR [21] running on Scala 2.12.4.

In order to compare the anytime behavior of the approaches, we define the
relative distance of an approach at a time t as the current distance from the best
known objective (BKO) divided by the distance to the worse initial objective
(WSO): (objective(t) − BKO)/(WSO − BKO). If an approach has not found
an initial solution, the worse initial objective (WSO) is used as objective value.
A relative distance of 1 thus indicates that the approach has not found an initial
solution or is stuck at the initial solution while a relative distance of 0 indicates
that the best known solution has been reached.

Results. Figure 3 shows the evolution of the average relative distance during the
search. The DARP results are shown on the left. For the PTP, the approaches
are compared in two different settings: 1) in the same experimental setting as
in [3] (with a LNS search starting from an initial solution given by a greedy
approach) (middle); 2) in a DFS starting without an initial solution (right).
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Fig. 3. Average relative distance in function of time

These results suggest that, on the DARP, the sequence based approaches are
not able to compete with the dedicated LNS-FFPA algorithm. However, they
are able to successfully outperform the dedicated SCHED+MSS approach on the
PTP. As can be observed, the approaches using the insertion sequence variable
obtain slightly better result than the approach using the state-of-the-art CP
Optimizer. Note that the comparison with CP Optimizer is not straightforward
as it is mostly black box and its interface does not offer much control over
its behavior. However, despite the adaptive LNS search [16] and the advanced
techniques (failure directed search [28], objective landscapes [15]) used by CP
Optimizer, our approach is competitive in a LNS setting. The experiment in a
DFS setting where the advanced search of CP Optimizer is not used suggests
that the difference is mainly due to the modeling and propagation as even our
generic search outperforms CP Optimizer in this setting.
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Constraint Parameters. Several values were tested for the parameters of
the TransitionTimes constraint by using the methodology proposed in [27].
It consists in storing the search tree obtained with the weakest filtering and
replaying it with the constraints and parameters to test. The impact of the
Cumulative constraint was also tested by comparing it to a simple checker.

Table 3 presents the results of this experiment on 3 medium sized PTP
instances in a DFS setting. The instances are expressed in terms of the number
of hospitals (h), number of available vehicles (v) and number of patients (p).
The values are displayed in terms of percentage compared to the base case (the
parameter value for the first column). The first row corresponds to the percent-
age of size (in terms of the number of nodes) of the new search tree compared to
the base case. The second row consists in the percentage of time taken to explore
the new search tree. For example, on the Hard instance, for a depth d of 2, the
search tree is 76.26% smaller which results in an exploration 63.67% faster. Each
parameter was tested independently with the others set to their default values.

Table 3. Number of nodes explored (top) and time taken (bottom) with various param-
eter values

Instance ρ d cache Cumul.

Set h v p 0 10 20 ∞ 1 2 3 6 ∞ × √ × √

Easy 24 9 96 100 100 100 100 100 100 100 100 100 100 100 100 100

100 96.27 92.27 101 100 102.53 96.68 93.87 91.73 100 95.39 100 126.61

Medium 48 5 96 100 100 100 100 100 0.01 0.01 0.01 0.01 100 100 100 0.01

100 80.79 55.67 53.07 100 0.05 0.06 0.05 0.06 100 77.24 100 0.01

Hard 96 5 96 100 100 100 55.35 100 76.26 70.31 64.48 59.86 100 100 100 0.01

100 85.06 56.47 22.74 100 63.67 53.8 38.8 51.93 100 91.44 100 0.03

As can be observed, the constraints have an important impact on both the
size of the search tree and the search time for the medium and difficult instances.
The easy instance search tree was not affected by the constraints. Note that an
increase in depth may result in a faster search despite having the same search
tree size (such as for the Easy instance). This is most likely due to the cache that
is filled faster in the first calls to Algorithm 1 and thus allows smaller searches in
the subsequent calls which results in a gain of time over the whole propagation.

8 Conclusion

In this paper, we propose a new variable called Insertion Sequence Variable
(ISV) to provide a flexible and efficient model for the DARP and its variant the
PTP. The ISV domain extends the set domain variable with the possibility to
insert an element after any sequenced element. Experimental results show that
the proposed approach is competitive with existing sequence based approaches,
outperforms dedicated approaches for the PTP and confirm the effectiveness of
the new filtering algorithms proposed.
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While used only in the context of the Dial-a-Ride problem in this paper,
sequence variables could be used to model a large variety of Routing and Schedul-
ing problems. As future work, it would be interesting to study the usage of the
ISV on other problems as well as developing new global constraints and filtering
algorithms.
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Abstract. Exact solvers for optimization problems on graphical models,
such as Cost Function Networks and Markov Random Fields, typically
use branch-and-bound. The efficiency of the search relies mainly on two
factors: the quality of the bound computed at each node of the branch-
and-bound tree and the branching heuristics. In this respect, there is a
trade-off between quality of the bound and computational cost. In par-
ticular, the Virtual Arc Consistency (VAC) algorithm computes high
quality bounds but at a significant cost, so it is mostly used in prepro-
cessing, rather than in every node of the search tree.

In this work, we identify a weakness in the use of VAC in branch-
and-bound solvers, namely that they ignore the information that VAC
produces on the linear relaxation of the problem, except for the dual
bound. In particular, the branching heuristic may make decisions that
are clearly ineffective in light of this information. By eliminating these
ineffective decisions, we significantly reduce the size of the branch-and-
bound tree. Moreover, we can optimistically assume that the relaxation is
mostly correct in the assignments it makes, which helps find high quality
solutions quickly. The combination of these methods shows great perfor-
mance in some families of instances, outperforming the previous state of
the art.

Keywords: Graphical model · Cost Function Network · Weighted
Constraint Satisfaction Problem · Virtual Arc Consistency ·
Branch-and-bound · Linear relaxation · Local polytope · Variable
ordering heuristic

1 Introduction

Undirected graphical models like Cost Function Networks, aka Weighted Con-
straint Satisfaction Problems (WCSP), and Markov Random Fields (MRF) can
be used to give a factorized representation of a function, in which vertices of a
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graph represent variables of the function and (hyper)edges represent factors. The
factors can be, for example, cost functions, in which case the graphical model
represents a factorization of a cost function, or local probability tables, in which
case the model represents a non-normalized joint probability distribution [17].

The two models, WCSP and MRF, are equivalent under a − log transfor-
mation, hence the NP-complete cost minimization query in WCSP is equivalent
to the maximum a posteriori (MAP) assignment query in MRF. This optimiza-
tion problem has applications in many areas, such as image analysis, speech
recognition, bioinformatics, and ecology.

Exact solution methods for this problem are mostly based on branch-and-
bound. For example, one can express WCSP optimization as an integer linear
program (ILP) and use a solver for that problem. However, ILP solvers need
to solve the linear relaxation of the instance exactly to obtain a bound at each
node of the branch-and-bound tree, an operation that is too expensive for the
scale of problems encountered in many applications. Instead, the most success-
ful dedicated solvers use algorithms that in effect solve the linear relaxation
approximately and therefore potentially suboptimally. Specifically, algorithms
like EDAC [9], VAC [6], TRWS [18] and others, produce feasible solutions to the
dual of the linear relaxation of the WCSP, which can be used as lower bounds.
For the loss of precision that they give up, these algorithms gain significantly
in computational efficiency. In stark contrast to integer programming, not only
is exact LP solving not used, but the preferred method for branch-and-bound,
EDAC, is by far the weakest, while VAC or TRWS are most often used only in
preprocessing.

There are a few exceptions to the norm of using branch-and-bound for this
problem: core-guided MaxSAT solvers [21], logic-based Benders decomposition
[8], cut generation [24], to name a few. Here, we are interested in the CombiLP
method [13], which solves the linear relaxation and decomposes the problem into
two parts: the “easy” part which corresponds to the set of integral variables in the
linear relaxation and a combinatorial part which contains the variables assigned
fractional values. They then proceed to solve the combinatorial subset exactly
and if that solution can be combined with the easy part without incurring extra
cost, it reports optimality. Otherwise, it moves some variables from the easy part
to the combinatorial part and iterates. Crucially, they identify integral variables
by identifying a condition called Strict Arc Consistency (Strict AC) on the dual
solution produced, and can therefore be used with approximate dual LP solvers,
like VAC and TRWS, which may produce a suboptimal dual LP solution for
which no corresponding primal solution exists.

We make several contributions here. First, we relax Strict AC, the condition
that CombiLP uses to detect integrality. We show in Sect. 3 that the relaxed
condition admits larger sets of integral variables. Second, we show that a class
of fixpoints of an LP solver like VAC implies a specific set of integral variables
regardless of the dual solution it finds, even when those variables do not satisfy
the Strict AC condition in this solution. This avoids the need to bias the LP
solver towards solutions that contain Strict AC variables. On the practical side,
we introduce two simple techniques that exploit this property within a branch-
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and-bound solver. The first, given in Sect. 5 modifies the branching heuristic to
avoid branching on Strict AC variables, as that is unlikely to be informative. The
second, given in Sect. 6, is a variant of the well-known RINS heuristic in integer
programming [7], which optimistically assumes that the set of Strict AC variables
assigned their integral values actually appear in the optimal solution and solves a
restricted sub-problem to help quickly identify high quality solutions. In Sect. 7,
we show that integrating these techniques in the toulbar2 solver [6] improves
performance significantly over the state of the art in some families of instances.

2 Preliminaries

Definition 1. A Constraint Satisfaction Problem (CSP) [6] is a triple 〈X,D,C〉.
X is a set of n variables X = {1, . . . , n}. Each variable i ∈ X has a domain of
values Di ∈ D and can be assigned any value a ∈ Di, also noted (i, a). C is
a set of constraints. Each constraint cS ∈ C is defined over a set of variables
S ⊆ X (called the scope of the constraint) by a subset of the Cartesian product∏

i∈S Di which defines all consistent tuples of values.

We assume, without loss of generality, that at most one constraint is defined
over a given set of variables. The unary constraint on variable i will be denoted
ci, and binary constraints cij . The cardinality |S| is the arity of cS . For J ⊆ X,
�(J) denotes the set of all possible tuples for J , i.e., �(J) =

∏
i∈J Di. Let S ⊆ X,

and t ∈ �(S), the projection of t onto V ⊆ S is denoted by t[V ]. A tuple t satisfies
a constraint cS if t[S] ∈ cS . A tuple t ∈ �(X) is a solution iff it satisfies all the
constraints in C. Finding a solution is NP-complete.

Definition 2. A Weighted Constraint Satisfaction Problem (WCSP) [6] is a
quadruple 〈X,D,C, k〉 where X is a set of n variables X = {1, . . . , n}, each
variable i ∈ X has a domain of possible values Di ∈ D, as in CSP. C is a set of
cost functions, and k is a positive integer or infinity serving as the upper bound.
Each cost function 〈S, cS〉 ∈ C is defined over a set of variables S ⊆ X (its scope)
and cS maps each assignment to the variables in S to non-negative integer costs.

WCSPs generalize CSPs as they can represent the same set of feasible solu-
tions with infinite cost cS(t) = k for forbidden tuples t, but additionally define a
cost for feasible assignments. We assume all WCSPs contain a unary cost func-
tion for each variable and a cost function c∅, which represents a constant in the
objective function. Since all costs are non-negative, c∅ is a lower bound on the
cost of feasible solutions of the WCSP.

If the largest arity of any cost function in a WCSP is 2, then we say this
is a binary WCSP. We focus on binary WCSPs here, both for simplicity and
because of technical limitations of the implementation. However, all definitions
and properties we present can easily be generalized to higher arities.
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A binary WCSP can be graphically represented as shown in Fig. 1a. Each
variable i ∈ X corresponds to a cell. Each value a ∈ Di corresponds to a dot in
the cell. A unary cost ci(a) is written next to the dot only if it is non-zero. If
there is a non-zero binary cost between (i, a) and (j, b), then an edge is drawn
between the dots corresponding to these assignments.

The problem is to find a solution t ∈ �(X) which minimizes the sum of all
cost functions, denoted as cP (t) = c∅ +

∑
i∈X ci(t[i]) +

∑
cij∈C cij(t[i], t[j]), and

such that cP (t) < k. This is denoted opt(P ). This problem is NP-hard.
Given two WCSPs P , P ′ with the same set of variables and scopes, we say

they have the same structure. If cP (t) = cP ′(t) for all t ∈ l(X) then P and P ′

are equivalent and they are reparameterizations of each other. It has been shown
[6] that the optimal reparameterization, which maximizes the constant factor in
the objective, is given by the dual of the following linear program (LP), called
the local polytope of the WCSP:

min c∅ +
∑

i∈X,a∈Di

ci(a)xia +
∑

cij∈C,a∈Di,b∈Dj

cij(a, b)yiajb

s.t.
∑

a∈Di

xia = 1 ∀i ∈ X

xia =
∑

b∈Dj

yiajb ∀i ∈ X, a ∈ Di, cij ∈ C

0 ≤ xia ≤ 1 ∀i ∈ X, a ∈ Di

0 ≤ yiajb ≤ 1 ∀cij ∈ C, a ∈ Di, b ∈ Dj

(1)

From the optimal solution of the above LP, the reparameterization is
extracted from the reduced costs r(xia) and r(yiajb) of each variable and binary
cost function, respectively, by setting ci(a) to r(xia) and cij(a, b) to r(yiajb) and
setting c∅ to the optimum of the LP (1). Because of the correspondence between
reparameterizations and solutions of this LP, we use the two interchangeably.

In this paper, we work with algorithms that do not solve this LP exactly
but compute a feasible solution of its dual. In particular, the VAC algorithm
computes a reformulation which is virtual arc consistent (VAC), as defined below.

Definition 3. A CSP P is arc consistent (AC) if for all cij ∈ C, ∀a ∈ Di,
∃b ∈ Dj with {(i, a), (j, b)} ∈ cij , and ∀b ∈ Dj , ∃a ∈ Di with {(i, a), (j, b)} ∈ cij .
The arc consistent closure AC(P ) is the unique CSP which results from removing
values from domains that violate the arc consistency property.

The CSP AC(P ) is equivalent to P , i.e., it has exactly the same set of solu-
tions. In particular, if AC(P ) is empty (has empty domains), P is unsatisfiable.

Definition 4 ([6]). Let P = 〈X,D,C, k〉 be a WCSP. Then Bool(P ) =
〈X,D,C〉 (Boolθ(P ) = 〈X,Dθ, Cθ〉) is the CSP where, for all i ∈ X, a ∈ Di

(resp. Dθi) if and only if ci(a) = 0 (resp. ci(a) < θ) and for all i, j ∈ X2,
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Fig. 1. Stratified VAC and RASPS examples for two different thresholds. Blue vari-
ables are VAC-integral. (a) A WCSP instance P with 5 variables {M,X, Y, Z,N}.
(b) Bool1(P ) = Bool(P ) (c) AC(Bool1(P )). (d) WCSP instance P1 constructed
by RASPS from AC(Bool1(P )). Optimal solution is {a, a, b, a, a} with cost 2. (e)
Bool2(P ) = AC(Bool2(P )). (f) WCSP instance P2 constructed by RASPS from
AC(Bool2(P )). Optimal solution is {a, a, b, c, a} with cost 1, optimum of P . (Color
figure online)

〈{i, j}, Rij〉 ∈ C (resp. Cθ) iff ∃cij ∈ C, where Rij is the relation ∀a ∈ Di

(resp. Dθi), ∀b ∈ Dj (resp. Dθj), {(i, a), (j, b)} ∈ Rij ⇔ cij(a, b) = 0 (resp.
cij(a, b) < θ).

By construction, Bool(P ) admits exactly the solutions of P with cost c∅, since
all assignments that have non-zero cost in any cost function of P are mapped
to forbidden tuples in Bool(P ). Thus, if Bool(P ) is unsatisfiable, c∅ < opt(P ).
There is no such clear result for Boolθ(P ), but it is useful in practice. Examples
of Boolθ(P ) are shown in Fig. 1b, 1e where edges correspond to forbidden tuples.

Definition 5. A WCSP P is virtual arc consistent (VAC) if the arc consistency
closure of the CSP Bool(P ) is non-empty [6].
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If AC(Bool(P )) is empty, then Bool(P ) is unsatisfiable and hence c∅ <
Opt(P ). The VAC algorithm iteratively computes whether AC(Bool(P )) is
empty and if so extracts a reparameterization which provably improves the
lower bound c∅. It terminates when AC(Bool(P )) is non-empty. It converges
to a non-unique fixpoint which may not match the LP optimum. Conversely, the
reparameterization given by the dual optimal solution is VAC.

In the following, we assume mint∈�(S) cS(t) = 0 for all scopes S. Otherwise,
the instance can be trivially reparameterized to increase the lower bound.

3 Strict Arc Consistency and VAC-integrality

Savchynskyy et al. introduced Strict Arc Consistency ([23]) as a way to partition
a WCSP into an “easy” part, which can be solved exactly by an LP solver and
a “hard” combinatorial part.

Definition 6 (Strict Arc Consistency [23]). A variable i ∈ X is Strictly Arc
Consistent if there exists a unique value a ∈ Di such that ci(a) = 0 and a unique
tuple {(i, a), (j, b)} which satisfies cij(a, b) = 0 ∀cij ∈ C. The value a is called
the Strict AC value of i.

Given a WCSP P and a subset S of its variables such that all variables in
S are Strict AC, we can solve P restricted to S exactly by assigning the Strict
AC value to each variable. This property gives a natural partition of a WCSP
into the set of Strict AC variables and the rest. This partition was used by
Savchynskyy et al. [23] and in a refined algorithm introduced later [13]. These
algorithms exploit the solvability of the Strict AC subset of variables and only
need to solve the smaller non-Strict-AC subset using a combinatorial solver.

Our first contribution here is to note that the Strict AC property is stronger
than necessary1. In particular, we can weaken the second condition as follows:

Definition 7 (VAC-integrality). A variable i ∈ X is VAC-integral if there
exists a unique value a ∈ Di such that ci(a) = 0 and at least one tuple
{(i, a), (j, b)} which satisfies cij(a, b) + cj(b) = 0 ∀cij ∈ C. The value a is
the VAC-integral value of x.

The difference between VAC-integrality and Strict AC is that in
VAC-integrality, the second condition requires that the witness value appears
in at least one rather than exactly one 0-cost tuple in each incident constraint.
The VAC-integral subset of a WCSP maintains the main property of Strict AC,
namely that it is exactly solvable by inspection and its optimal solution has cost
0. The optimal solution, as in Strict AC, simply assigns to each VAC-integral
variable its VAC-integral value. By definition, this has cost 0.

Since VAC-integrality is a relaxation of Strict AC, every Strict AC set of
variables is also VAC-integral. The inverse does not hold (see Supplementary
Fig. 1). However, this only holds for instances that are at a VAC fixpoint.
1 We also change the name of the property from “consistency”, which implies an

algorithm that achieves said consistency, to “integrality”. Adding the VAC term will
become clear after Proposition 3.
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Proposition 1. If a WCSP instance P is VAC and a variable i is strict AC
then it is also VAC-integral.

As with Strict AC, VAC-integrality implies integrality of the corresponding
primal solution by complementary slackness.

Proposition 2. The VAC-integral variables in an optimal dual solution of (1)
correspond to the variables i for which there exists a unique a with xia = 1 and
xib = 0 for b 	= a in the corresponding optimal primal solution.

Proof (Sketch). Given an optimal dual solution of the local polytope LP, for each
VAC-integral variable i with VAC-integral value a, the primal solution must have
xib = 0 for all b 	= a by complementary slackness and hence xia = 1. 
�

Note that in the case of approximate dual LP solvers like VAC and TRWS,
this observation does not hold: if the dual solution is not optimal, there is no
primal solution with the same cost. Rather, we use Strict AC and VAC-integrality
as proxies for conditions which would lead to integrality in optimal solutions,
while maintaining the property that they admit zero cost solutions.

One complication with both Strict AC and VAC-integrality is that any lower
bound given by a dual solution can in fact be produced by several dual solutions,
but they do not all give the same VAC-integrality subset. One way to deal with
this is to bias the LP solver towards solutions that maximize the VAC-integral
subset [13]. Here we propose another method, given by the following observation.

Proposition 3. Given a WCSP instance P which is VAC and a variable i, if
in AC(Bool(P )) it holds that Di = {a} then i is VAC-integral with value a.

Proof (Sketch). Since AC(Bool(P )) is arc consistent, if a value remains in the
domain of i in Bool(P ), it has unary cost 0 in P and is supported by tuples and
values of cost 0 in all incident constraints. Conversely, if a value is removed in
Bool(P ), either it has non-zero unary cost in P or some non-zero amount of cost
can be moved onto it [6]. 
�

The effect of Proposition 3 is that the class of dual feasible solutions which
have the same AC(Bool(P )) produce the same set of VAC-integral variables,
even though most of these solutions do not satisfy Definition 7. This is shown in
in the WCSP of Fig. 1a which is VAC but only variable N is VAC-integral.
However, by applying Proposition 3, we get from AC(Bool(P )) that M is
also VAC-integral. Therefore, this observation allows us to construct a larger
VAC-integral subset than that given by collecting the variables that satisfy the
VAC-integrality property given a dual solution. This has the advantage that we
do not need to modify the LP solver to be biased towards specific dual solu-
tions and is easy to use with VAC, which explicitly maintains Bool(P ). We can
apply the same reasoning to find Strict AC sets of variables, using the following
condition.

Proposition 4. If a WCSP instance P is VAC, then a VAC-integral variable i
is strict AC if and only if all its neighbors are VAC-integral.
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Complexity. It is natural to ask whether the presence of a large VAC-integral
subset makes the problem easier to solve, in the sense of fixed parame-
ter tractability [11]. Unfortunately, this turns out not to be the case. Let
Almost-Integral-WCSP be the class of WCSPs which are VAC with n − 1
VAC-integral variables. We show that it is NP-complete, which implies that
WCSP is para-NP-complete for the parameter of number of non-VAC-integral
variables.

Theorem 1. Almost-Integral-WCSP is NP-Complete.

Proof. Membership in NP is obvious since this is a subclass of WCSP. For hard-
ness, we reduce from binary WCSP. Let P = 〈X,D,C, k〉 be an arbitrary WCSP
instance and assume that it is VAC. We construct P ′ = 〈X ∪X ′ ∪{q},D,C ′, k+
|C|〉, where X ′ is a copy of the variables in X, including the unary cost func-
tions and q has domain {a, b} with cq(a) = cq(b) = 0. For each cost function with
scope {i, j} in C, P ′ has two cost functions with scopes {i, j, q} and {i′, j′, q}.

Each variable in P has at least one value with unary cost 0, since it is VAC.
Let this value be a for all variables. We define the ternary cost functions to be
cijq(a, a, a) = 0, cijq(u, v, a) = k when u 	= a or v 	= a, cijq(u, v, b) = cij(u, v)+1
for all u, v. Similarly, ci′j′q(a, a, b) = 0, ci′j′q(u, v, b) = k when u 	= a or v 	= a,
ci′j′q(u, v, a) = cij(u, v) + 1 for all u, v.

P ′ is an instance of Almost-Integral-WCSP with q the non-VAC-integral
variable. Indeed, ci(a) = 0 for all variables i ∈ X ∪X ′ and it is supported by the
zero cost tuple (a, a, a) in each ternary constraint. All other values appear only
in ternary tuples with non-zero cost hence will be pruned in AC(Bool(P ′)).

P has optimum solution of cost c if and only if P ′ has optimum of cost c+|C|.
Indeed, when we assign q to a or b, the problem is decomposed into independent
binary WCSPs on X and X ′. One of these admits the all-a, 0-cost assignment
and the other is identical to P with an extra cost of 1 per cost function. 
�

Although this construction uses ternary cost functions, we can convert them
to binary using the hidden encoding [4]. This preserves arc consistency, hence it
also preserves VAC, so the result holds also for binary WCSPs.

4 Stratified VAC

The foundation of all the heuristics we present in this paper is the implemen-
tation of VAC in toulbar2 [6], which is restricted to binary WCSPs. In this
implementation, the non-zero binary costs cij(a, b) are stratified. Specifically,
they are sorted in decreasing order and placed in a fixed number l of buckets.
The minimum cost θi of each bucket i ∈ {1, . . . , l} defines a sequence of thresh-
olds (θ1, . . . , θl). At each θi for i from 1 to l, it constructs the Boolθi

(P ) and
iterates on it until no domain wipe-out occurs. After θl, it follows a geometric
schedule θi+1 = θi

2 until θi = 1. The reader is referred to [6] for more details.
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For a smaller θi, Boolθi
(P ) is more restricted, i.e. the domain sizes are

reduced. The overall, informal observation is that the set of VAC-integral vari-
ables expands as θi gets smaller, and saturates at some point, which is usu-
ally before θi = 1. However, even after this saturation, the domain sizes of
non-VAC-integral variables do not necessarily cease shrinking. For the heuristic
we present in Sect. 6, we aim to choose a threshold θ where we have a good
compromise between the number of VAC-integral variables and the domain
sizes of non-VAC-integral variables. This way, we increase the size of the easy
(VAC-integral) part and decrease the complexity of the difficult part, while hope-
fully keeping most (may-be all) values belonging to the optimal solution (see
Fig. 1d and 1f). In an informal sense, we consider those VAC-integral variables
that were present with a higher θ to be more informative, and more likely to
appear in an optimal solution. For example, if we assign against the VAC-integral
value for a high value θi, the cost of the best possible solution is at least c∅ + θi,
whereas for θi′ = 1, the cost of the best possible solution that disagrees with
the VAC-integral value can only be shown to be c∅ + 1. Thus, the higher the θ
for which a variable is VAC-integral, the less tight the relaxation needs to be for
the corresponding VAC-integral value to appear in an optimal solution.

5 Branching Heuristics Based on VAC-integrality

For a branch-and-bound algorithm, the order in which variables are assigned
has a crucial impact on the performance. In general, a branching decision should
help the solver quickly prune sub-trees which contain no improving solutions, by
creating sub-problems with increased dual bound in all branches [1].

Based on this observation and the connection of VAC-integrality to integrality
explained in Sect. 3, we observe that branching on a VAC-integral variable x will
create a branch which must contain the VAC-integral value a of x. Since a
is the only value in the domain of x in Bool(P ) and its unary cost does not
change by branching, Bool(P |x=a) is identical to Bool(P ), so the dual bound
is not improved in this branch. Therefore, it makes sense to avoid branching on
VAC-integral variables2.

To implement this, we find the set of VAC-integral variables implied by
Proposition 3, i.e., those that have singleton domain in Bool(P ) and only allow
branching on the rest. The choice among the rest of the variables is made using
whatever branching heuristic the solver uses normally. In the case of toulbar2,
which we use in our implementation, that is Dom+Wdeg [5] together with the
last conflict heuristic [19].

When only VAC-integral variables remain, we assign them all at the same
time and check that the lower bound did not increase (see premature termination
of VAC in [6]). If so, we update the upper bound if a better solution was found,
unassign VAC-integral variables, and keep branching with the default heuristic.

For efficiency reasons, during search, EDAC [9] is established before enforcing
VAC in toulbar2. If the VAC property (Definition 5) cannot be enforced at a
2 Although, as a heuristic we cannot expect this to always be the best choice.
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given search node due to premature termination of VAC, then VAC-integrality is
unavailable for that node and again we rely on the default branching heuristic3.

5.1 Exploiting Larger Zero-Cost Partial Assignments

Definition 7 requires there is a unique VAC-integral value a ∈ Di for each
VAC-integral variable. The partial assignment of unique values to their corre-
sponding variables implies a zero-cost lower-bound increase as said before. Thus,
our branching heuristic will avoid branching on these variables. We could search
for other potentially-larger assignments with the same zero-cost property. A sim-
ple way to do that is to test a particular value assignment and keep the variables
not in conflict with it, i.e., with no cost violations related to them or with their
neighbors. We choose first to test the assignment based on EAC values, which
are maintained by EDAC [14]. An EAC value is defined like a VAC-integral
value but it is not required to be unique in the domain. If a variable is kept,

Fig. 2. Comparison with toulbar2 using VAC during search. CELAR: ✴, CPD: ●,
ProteinDesign: ▲, ProteinFolding: ▼, Warehouse: ◆, Worms: ■. (Color figure online)

3 We also tried to exploit the last valid VAC-integrality information collected along
the current search branch, but it did not improve the results.
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Fig. 3. Comparison with default toulbar2. CELAR: ✴, CPD: ●, ProteinDesign: ▲,
ProteinFolding: ▼, Warehouse: ◆, Worms: ■. (Color figure online)
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it means that its EAC value is fully compatible, i.e., has zero-cost, with all the
EAC values of its neighbors. We call it a Full EAC value. This approach can
be combined with VAC-integrality. By restricting the EAC values to belong to
the AC closure of Bool(P ) when the problem is made VAC, we ensure that any
VAC-integral value is also Full EAC. The opposite is not true (see Supp. Fig. 1).
Thus, the set of Full EAC values can be larger. We perform the Full EAC test in
an incremental way (using a variable’s revise queue based on EAC value changes)
at every node of the search tree, before choosing the next non Full EAC variable
to branch on.

In order to improve this approach further, as soon as a new solution is found
during search, EDAC will prefer to select the corresponding solution value as
its EAC value for each unassigned variable if this value belongs to the current
set of feasible EAC values. By doing so, we may exploit larger zero-cost partial
assignments found previously during search. Notice that our branching heuristic
is related to the min-conflicts repair algorithm [20] as it will only branch on
variables in conflict with respect to a given assignment. Exploiting the best
solution found so far for value heuristics has been shown to perform well on
several constraint optimization problems when combined with restarts [10]. We
use such a value ordering heuristic inside an hybrid best-first search algorithm [3]
in all our experiments.

6 Relaxation-Aware Sub-Problem Search (RASPS)

One problem that branch-and-bound faces, especially in depth-first order, is that
without a good upper bound it may explore large parts of the search tree that
contain only poor quality solutions.

Here, we propose to use integrality information to try to quickly generate
solutions that are close to the optimum. We describe a primal heuristic that we
call Relaxation-Aware Sub-Problem Search (RASPS), which runs in preprocess-
ing. We simply fix all VAC-integral variables to their values, prune values from
the rest of the variables that are pruned in AC(Bool(P )), and then solve using
the EDAC lower bound the resulting subproblem (see examples in Fig. 1d, 1f)
to optimality or until a resource bound is met4. In order to choose the set of
VAC-integral variables, we use the dual solutions constructed in iterations of
VAC before the last, hence examine Boolθ(P ) for an appropriate θ.

Although the idea of the heuristic is pretty straightforward, the key issue
is to choose the threshold value (the θ) (recall Sect. 4) to construct Boolθ(P ),
as it has an impact on the quality of the upper bound produced and the time
spent for this. To determine the threshold value for the RASPS, we observe the
curves of the threshold θi, the ratio of VAC-integral variables ri, and the value
αi = ri/θi, collected during VAC iterations. The idea is that, once the ratio of
VAC-integral variables saturates, θi continues to decrease. As a result, αi starts
increasing more quickly which is the desired cutoff point. To identify that point,
4 In our implementation, we set an upper bound of 1000 backtracks for solving the

subproblem.
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we track of the curve of αi over the VAC iterations and choose the threshold
value when the angle of the curve reaches 10◦ (see Supplementary Figure 2).

This idea is related to the CombILP method of Haller et al. [13], described
earlier. Compared to CombILP, RASPS solves a simpler combinatorial subprob-
lem because of the larger VAC-integral set and the remaining pruned domains.
Then, it only aims to produce a good initial upper bound and leaves proving
optimality to the branch-and-bound solver.

Even more closely related is the RINS heuristic of Danna et al. [7]. It also
searches for primal bounds by extending the integral part of the relaxation. In
contrast to RASPS, it permits values of the incumbent solution and may be
invoked in nodes other than the root. However, it has no way of distinguishing
among integral variables as RASPS does with its choice of θ > 1. We have
experimented with RASPS during search but have so far not found it worthwhile.

7 Experimental Results

We have implemented VAC-integrality and RASPS inside toulbar2, an open-
source exact branch-and-bound WCSP solver in C++5. All computations were
performed on a single core of Intel Xeon E5-2680 v3 2.50 GHz and 256 GB of
RAM with a 1-hour CPU time limit. No initial upper bounds were used, as is
the default of the solver.

7.1 Benchmark Description

We performed experiments on probabilistic and deterministic graphical mod-
els coming from different communities [15]. We considered a large set of 431
instances6 which are all binary. It includes 251 instances (170 Auction, 16
CELAR, 10 ProteinDesign, 55 Warehouse) from the Cost Function Library7,
129 instances (108 DBN, 21 ProteinFolding) from the Probabilistic Inference
Challenge (PIC 2011)8, 30 “Worms” instances [16] where CombiLP is state-of-
the-art [13], and 21 Computational Protein Design (CPD) large instances for
which toulbar2 is state-of-the-art [2,22]. We discarded Max-CSP, Max-SAT,
Constraint Programming (CP), and Computer Vision (CVPR) instances which
are either unweighted (all costs equal to 1), or non-binary, or being too easy
(small search tree) or unsolved by all the tested approaches including MRF and
ILP solvers [15].

7.2 Comparison with VAC

First, we compared our new heuristics with default VAC maintained during
search (option −A=999999 for all tested methods). We skipped Auction and
DBN as they do not have VAC-integral variables.
5 https://github.com/toulbar2/toulbar2, version 1.1.0.
6 http://genoweb.toulouse.inra.fr/∼degivry/evalgm/.
7 forgemia.inra.fr/thomas.schiex/cost-function-library.
8 www.cs.huji.ac.il/project/PASCAL.

https://github.com/toulbar2/toulbar2
http://genoweb.toulouse.inra.fr/~degivry/evalgm/
https://forgemia.inra.fr/thomas.schiex/cost-function-library
www.cs.huji.ac.il/project/PASCAL
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In Fig. 2a, we show a scatter plot comparing the number of backtracks
between VAC and VAC exploiting VAC-integral variable heuristic. The size of the
search tree is significantly reduced thanks to VAC-integrality for most instance
families. Notice the logarithmic axes. The improvement in terms of CPU time
(Fig. 2b) is less important but still significant for CPD, ProteinFolding, Worms,
and some CELAR instances. However, we found several Warehouse instances
where it was significantly slower using VAC-integrality. In this case, we found
the explanation was a larger number of VAC iterations per search node (8 times
more in average) corresponding to small lower bound improvements at small
threshold values (θ near 1) that did not reduce the search tree sufficiently (only
by a mean factor 2.2 on difficult Warehouse instances).

In order to avoid such pathological cases, we placed a bound on the minimum
threshold value θ for VAC iterations during search. We selected the same limit
as for RASPS (e.g., θ30 for Worms/cnd1threeL1 1228061). We found that using
this threshold mechanism alone speeds up Warehouse resolution and does not
significantly deteriorate the results in the other families (see Supp. Fig. 4). Fur-
thermore we obtained consistent results when combining with VAC-integrality,
reducing the number of backtracks and CPU time for several families while being
equivalent for the others (see Supp. Fig. 5).

Next, we analyzed the impact of applying the RASPS upper-bounding pro-
cedure in preprocessing. We limit RASPS to 1000 backtracks. Again, our new
heuristic RASPS significantly reduces the search effort in terms of backtracks and
time, except for Warehouse and some CELAR. For Warehouse, the upper bounds
found did not reduce the total number of backtracks. For CELAR scen06 r, it
reduces backtracks by 3.4 and solving time by 4.2. For Worms, it was more than
10 times faster for some instances (see Supp. Fig. 6).

Finally, we combine the two heuristics, VAC-integrality and RASPS, with
VAC threshold limit and show the results compared to VAC alone in Fig. 2c and
2d. We keep this best configuration in the rest of the paper.

7.3 Comparison with VAC-in-preprocessing and CombiLP

One might expect using VAC only in preprocessing to be the fastest option, as
it is the default for toulbar2 and significantly outperforms VAC during search
in most cases [15]. For certain instance families, we manage to outperform it.

When VAC is used only in the preprocessing, using RASPS in addition con-
siderably improves runtimes except for Warehouse and some CELAR (see Supp.
Fig. 8). If we add VAC-integrality and RASPS when using VAC during search,
we manage to outperform VAC in preprocessing for all families except CELAR
and Warehouse, where the overhead of VAC is too high (see Fig. 3a and 3b).

Moreover, if we compare methods using VAC in preprocessing only, then
exploiting our simpler Full EAC branching heuristic and RASPS performs even
better in most cases, being as good as default toulbar2 on Warehouse instances
(55 instances solved in average in 128 s) and comparable on CELAR (our app-
roach solved graph13 and scen06 one-order-of-magnitude faster, but could not
solve graph11 compared to default VAC in preprocessing, see Fig. 3c, 3d).
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Next, we compare toulbar2 and CombiLP (which uses the same toulbar2
as its internal ILP solver) with different lower bound techniques, showing the
advantages of exploiting VAC-integrality or Full EAC and RASPS extensions.

In Fig. 4a, we see a cactus plot9 for the Worms benchmark where there are
30 instances. We solved these instances with different combinations of solvers
and heuristics with a CPU time limit of 1 h. CombiLP was reported to solve
25 of these instances in [13] within 1 h CPU time. Here, we compare CombiLP
with parameters used in [13] (VAC in preprocessing and EDAC during search),
as well as our version of toulbar2 plugged in it. In addition to those, we
have standalone toulbar2 either with VAC in preprocessing and EDAC dur-
ing search, with or without Full EAC, or VAC-integrality-aware branching, and
RASPS options. toulbar2 alone can go up to 25 instances. However, by plug-
ging our version of toulbar2 in CombiLP, we manage to solve 26 of these
instances, which makes 1 more than [13]. Another important detail is that,
although it is costly to use VAC throughout the search tree, it becomes bet-
ter with VAC-integrality and RASPS. Still, it was slightly dominated by Full
EAC.

This simpler heuristic performed even better on the CPD benchmark
(Fig. 4b). Our Full EAC heuristic with RASPS got the best results, solving 13
instances, compared to VAC-integrality and RASPS which solves 9, and only 8
by default toulbar2. CombiLP using VAC during search with VAC-integrality
and RASPS solved 11 instances, instead of 10 without these options and VAC
in preprocessing.

8 Conclusions

We revisited the Strict Arc Consistency property which was recently used in
an iterative relaxation solver. We identified properties that make it easier to
use within a branch-and-bound solver and in particular in conjunction with
the VAC algorithm. This property allows us to integrate information about the
relaxation that VAC computes to be used in heuristics. We presented three
new heuristics that exploit this information, two for branching and the other
for finding good quality upper bounds. In an experimental evaluation, these
heuristics showed great performance in some families of instances, improving
on the previous state of the art. VAC-integrality identifies a single zero-cost
satisfiable partial assignment in a particular CSP Bool(P ) of the original problem
P . Other CSP techniques such as neighborhood substitutability [12] could be
used to detect larger tractable sub-problems. The integral subproblem can also
be viewed as a particularly easy tractable class, where each variable has a single
value. Therefore, another possible direction is to detect subproblems that are
tractable for more sophisticated reasons.

Acknowledgements. This work has been partly funded by the “Agence nationale de
la Recherche” (ANR-16-CE40-0028).

9 It shows on the x-axis the number of instances solved for a time limit given in y-axis.
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Abstract. The trend towards a precise, numerical, and data-intensive
agriculture brings forward the need to design and combine optimization
techniques to obtain decision support methodologies that are efficient,
interactive, robust and adaptable. In this paper, we consider the Differen-
tial Harvest Problem (DHP) in precision viticulture. To tackle this prob-
lem, we dedicated a specific column generation approach with enumer-
ation techniques and a constraint programming model. Therefore, a set
of simulated instances (which differ in field shape, zone shape, and size)
was created to perform a parametric study on our different approaches.
The specific column generation approach presented in this paper is pre-
liminary work in the development path of more sophisticated resolution
methods such as robust optimization and column generation/constraint
programming hybridization.

Keywords: Column generation · Enumeration technique · Constraints
programming · Exact method · Precision agriculture

1 Problem Description

The Differential Harvest Problem, introduced by [6], consists of optimizing har-
vests of different grape qualities in vineyards so that we obtain a certain quantity,
denoted by Rmin, of good quality grapes. In the problem, there are only two
types of grape quality: A-grapes and B-grapes (let us assume that A-grapes are
of better quality than B-grapes).

Thanks to agronomic information obtained a priori, it is possible to map (see
Fig. 1) a vineyard by distinguishing areas according to the quality of the grapes.
Meanwhile, geolocated harvesting machines equipped with two hoppers (harvest
tanks with a maximum load of CapaMax) can use such a map. When one of
the two hoppers is full, both must be emptied into a bin located at the edge of
the plot. These machines have two harvesting modes, that can be changed only
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Fig. 1. Illustration of the agronomic map with different zones of grapes quality (real
data from the Gruissan vineyard).

Fig. 2. Illustration of the different harvesting modes.

when they are emptying the hoppers at the bin, the selective mode, and the non-
selective mode. The selective mode corresponds to sorting good grapes quality in
one hopper and other grapes in the second hopper. When the Rmin quantity of
A-grapes is harvested in the selective mode the machine can change to the non-
selective mode where the loading capacity is perfectly balanced between both
hoppers (cf. Fig. 2).

There is a technical issue with the harvesting machine which is related to
the longitudinal size of its picking head of the harvester. This size is almost the
length of the wheelbase, approximately 5 m. The problem occurs during zone
changes and more particularly during the change from a zone with B-grapes to
a zone with A-grapes. Let us note this change BA (AB for the change from zone
A to B).

When a BA transition occurs, three cases can be isolated (see Fig. 3):

– case a), the machine head has just entered zone A. The harvesting hopper
(which is hopper B) cannot be changed to hopper A because it is still har-
vesting B-grapes and therefore hopper A would be corrupted with B-grapes.

– In case b), the grape picker is overlapping both zones. The reasoning is the
same as in case a) because it is still harvesting B-grapes.

– In case c), the harvester is completely in zone A, we no longer harvest B-
grapes. The harvesting hopper can, therefore, be changed from hopper B to
hopper A to harvest the A-grapes in hopper A.
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Fig. 3. Latency illustration.

When changing from AB, the harvesting hopper is changed from hopper A
to hopper B as soon as the area transition has occurred, avoiding the corruption
of A-grapes with B-grapes.

Any row r is composed with a succession of BA and AB transitions, this
leads to these four following row representations (consecutive A or B can be
merged):

– r = (AB)∗ and its symmetric r = (BA)∗. One can observe that in this
row composition the difference between the number of BA transition when
harvesting in the different directions is exactly one.

– r = (AB)∗A and its symmetric r = (BA)∗B. In this configuration, the num-
ber of BA transitions is the same in either direction.

Depending on the row configuration and the row direction the latency causes an
asymmetry in the harvested quantities, therefore in the optimization part, we
will need to determine the direction of each row to obtain the Rmin quantity.
For the sake of simplicity, the vineyard rows extremities are oriented upper to
bottom, the upper extremity can be chosen arbitrarily.

The article is organized as follows: the Sect. 1 gives the context of this work
and provides the problem definition. The Sect. 2 refers to the previous and related
works on the problem. In Sect. 3 we introduce a new graph model and provide
models for two exact methods; first a column generation approach (see Sub-
sect. 3.1) then a constraint programming model (see Subsect. 3.2). In the Sect. 4
we outline the results obtained with our different approaches.

2 Related Works

Precision agriculture is a principle of agricultural parcel management that aims
to optimize yields and investments, by seeking to take better account of the vari-
ability of environments. In [19], the authors asserted that precision farming was
the future of crop nutrition offering benefits in crop quality, sustainability, food
safety, etc. A few years later, [13] reviewed some precision agriculture advances
and proposed new directions of research. [17] analyzed the adoption of precision
agriculture technologies for several actors in the agricultural industry.

In the last decades, a lot of works has been done in digital and precision agri-
culture using operation research techniques involved in the resolution of vehicle
routing problems, scheduling problems or stochastic problems.
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The surveys [2] and [3] assert that most of the agricultural applications
involve the motion of machines hence they first classify the agricultural field
operations which can be modeled as a vehicle routing problem. They present
an approach to represent the planning and scheduling of moving machines as a
vehicle routing problem with time windows where the machine has to process
deterministic, stochastic or dynamic requests.

VRP-specific optimization methods are addressed in [20] to solve their fleet
routing problem, they have reduced the operating time by at most 17.3% using
their approach rather than a human-made solution.

One can find some works on-field coverage problem [7,14], where the goal is
to cover a field under technical constraints. The purpose of the work presented in
[14] is to reduce the soil compaction. Smaller vehicles are used to cover the fields
but those vehicles have smaller storage capacity. Thus the full field coverage in a
single run is no longer possible and a path planning strategy is used to partially
cover the field under compacted area minimization constraints. In comparison,
the article [7] focuses both on finding minimal operating costs and balancing the
vehicle’s workload.

The paper [18] explores the consequence of groundwater resource use under
climate change scenarios. The problem is modeled as a dynamic stochastic prob-
lem with several temporal decision stages with multiple sources of risk that
should impact farmer decisions.

Investment behavior under different policy and price scenarios was studied
in [22]. They employ a dynamic multi-objective farm-household integer pro-
gramming model on a northern Italy case study application highlighting the
potentialities and the limits of the methodology applied.

A column generation approach is used to solve a crop rotation scheduling
problem to produce a pre-determined demand for crops while respecting some
ecological production constraints, this problem is called the sustainable vegetable
crop demand-supply problem [10].

In few available literatures, the DHP has been solved with methods based on
Constraint Programming (CP), first, a step model was proposed in [5] where they
were able to optimally solve a 16 rows instance in 6 days, then a precedence model
was introduced [6] which gives better results yet instances with 14 rows reach
the 2 h time limit, and Cost-Optimal Reachability Analysis [24] (CORA, which
is a model-checking techniques branch) finding optimal solutions in vineyards
with up to 12 rows in a few minutes.

3 Models

We propose a new graph model of the problem that we call the “flatten”
representation of the vineyard (extremities are merged to consider only the
rows) in opposition with the “physical” representation of the vineyard (rows
are split into two extremities) used by [6] and [24]. Let n be the number of
rows, CapaMax be the hopper’s capacity, Rmin the minimum A-grapes quality
needed to be harvested, b be the bin/depot, an undirected weighted complete
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Fig. 4. The flattened graph (right) and the “physical” graph (left) representation of
the vineyard. Solid edges correspond to direction 0 and dashed edges refer to direction
1. Dotted edges bear no direction.

graph G = (V,E)with labeled edges,V = {0, . . . , n}∪{b} and E = {(i, j, k)|i, j ∈
V 2, k ∈ {0, 1}} (k refers to the row harvest direction see Fig. 4). Taking the edge
(i, j, k) means that the vehicle moves from row i to row j harvesting row i with
direction k, if k = 0 the row is harvested from top to bottom, otherwise the row
is harvested from bottom to top. Let say D is the weight of G computed from
a distance matrix. It must be noted that because the vehicle has an important
turning radius, the distance between rows is not exactly euclidean. qA/qB are
the two harvesting functions: (i, k) �→ N, i ∈ V, k ∈ {0, 1}.

The goal is to find a set of disjoint routes (except for the bin b), respecting
the CapaMax capacity, covering V and minimizing the harvesting time (here
the distance) while harvesting at least Rmin quantity of A-grapes.

This problem can be seen as a Heterogeneous Vehicle Routing Problem [21]
with two resource constraints (the grapes quality, A and B) and two vehicle types
(one selective and the other non-selective) with different capacities. If the vehicle
is selective the harvested grapes are sorted according to their quality, thus the
vehicle has two hoppers each with a capacity equal to CapaMax, otherwise, both
grapes quality are mixed in both hoppers, therefore, the vehicle hoppers can be
merged into only one hopper with a capacity 2 ∗ CapaMax. Let us consider γ
the number of selective vehicles and λ the total number of vehicles, Qtot refers
to the total amount of grapes present in the vineyard. The following bounds are
easy to verify:

⌈
Rmin

CapaMax

⌉
≤ γ ≤ n and

⌈
Qtot

2 ∗ CapaMax

⌉
≤ λ ≤ n

Previous works on the problem tackled it with constraint programming and
model checking. We would like to investigate integer linear programming and
more precisely column generation to observe the effectiveness of these techniques
on the DHP. As early preliminary work, we tried to solve this problem with inte-
ger linear programming models and out-of-the-box solving methods. Because this
was unsuccessful, and as our problem is a VRP variant, we concluded that col-
umn generation techniques may be appropriate here. The following Subsect. 3.1
explains the use of these techniques on the DHP. We identified that the prin-
cipal weakness of the constraint programming approach used previously was to
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introduce a new global constraint that specifically fits the DHP. To avoid this,
we decided to focus on designing constraint programming models and decision
strategies that suit the most to our problem while using state-of-the-art generic
constraints. We dedicate the Subsect. 3.2 to highlight our constraint program-
ming approaches.

3.1 The Column Generation Approach

We use Dantzig-Wolfe decomposition [9] on the DHP to obtain a set partitioning
master problem with a side constraint which is the Rmin constraint and an
elementary shortest path with resource constraints pricing problem.

Let us denote Ω the set of all feasible routes. The master problem selects
routes in Ω to obtain at least the Rmin quantity. For the sake of memory
usage, only solving the master problem, restricted to a subset R of Ω, is worth
considering because the number of routes in Ω grows exponentially with the
number of rows. Let’s consider K = {s, s} as the set of vehicle types. Assume
R ⊂ Ω is the set of feasible routes R = (Rs ∪ Rs), with Rs be the set of non-
selective routes and Rs be the set of selective routes. Selective routes must be
generated independently of the non-selective routes, they use vehicle types with
different capacities and resources consumption, therefore two pricing problems
will be needed, one to generate selective routes and the other to generate non-
selective routes.

Despite the classical branch-and-price scheme to VRP, we decided to opt
for an enumeration technique [1]. There are several works on enumeration (see
[1,8,15,23] for more details). The enumeration technique operates as follows.
First, the relaxation of the restricted master problem is solved, like if we were
solving the root node with branch-and-price, to obtain the linear relaxation
optimal value z∗

MP . With the last solved master problem special dual costs are
obtained, denoted by CR∗. Then any integer solution gives an upper bound
zIP . These bounds and the dual costs are provided to a specific pricing problem
which will generate all columns with a reduced cost of 0 < zIP − z∗

MP = ε. If we
solve the new restricted master problem, this time without the linear relaxation,
the solution obtained is optimal for the restricted master problem and thus
for the master problem. The principal drawback of this technique is that too
many columns may be generated if the linear relaxation of the restricted master
problem is of poor quality, the gap with any integer solution would be too large.

Let us define the restricted master problem decision variables:

yk
r =

{
1 if route r is used by vehicle of type k
0 otherwise , ∀k ∈ K, ∀r ∈ Rk

Note air = 1 if row i is harvested in the route r, 0 otherwise. Let qtr be
the quantity of t-grapes collected in the route r and cr the cost of the route r
(total traveled distance computed from the weight matrix D). The route cost is
the total traveled distance on the route. A non-selective route does not harvest
A-grapes, all grapes are mixed in B-grapes.
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Model M1: Restricted Master Problem

Min
∑
k∈K

∑
r∈Rk

yk
r cr (1)

∑
k∈K

∑
r∈Rk

yk
rair = 1 ∀i ∈ V [πi] (2)

∑
r∈Rs

qAr ys
r ≥ Rmin [θ] (3)

yk
r ∈ {0, 1} ∀k ∈ K, ∀r ∈ Rk (4)

The aim is to minimize the cost of each route (1) while the entire field is
harvested (2). The constraint (3) verifies that at least the Rmin quantity of
good quality grapes is harvested. And finally, the constraints (4) ensures the
integrality of the y variables.

Pricing Sub-problem. The pricing problem generates improving routes for
the master problem based on the value of the dual variables associated with the
constraints of the restricted master problem.

We solve the pricing problem, the shortest path problems with resource con-
straints, with dynamic programming using a labeling algorithm, introduced first
by [12], enhanced by [11]. We adjusted this algorithm to our two pricing prob-
lems. Because extension and dominance rules are straightforward from the orig-
inal, we decided not to reintroduce them in this paper. The only originality in
our label algorithm is that two labels lists are used. One list, L0, for labels with
direction 0 and the other, L1, for labels with direction 1. Therefore as the direc-
tion changes for every row in a route, the label obtained from the extension of
the label L0 in the labels list with direction 0 is added to the labels list with
direction 1.

For each constraint (2), we obtain a dual cost πi and each constraint (3) gives
the θ dual cost. Using these dual costs we compute a reduced cost ĉsr for any route
r in Rs and ĉsr for any route r in Rs in the master problem. It also important
when generating new selective routes to take the θ dual cost into account at each
label extension to avoid interesting routes from being dominated:

ĉsr = cr −
∑
i∈r

airπi − qArθ = cr −
∑
i∈r

air(πi + qAiθ)

ĉsr = cr −
∑
i∈r

airπi
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Fig. 5. Illustration of the optimal solution obtained with constraint programming for
an instance with 8 rows. Plain arcs (resp. dotted and dashed arcs) representing vehicle
one (resp. two and three), for the sake of clarity only the used vehicles are represented.

In the column generation part, routes with positive reduced cost can be dis-
carded because they cannot belong to any optimal solution. Nevertheless, in the
enumeration procedure, a new pricing problem is solved which brings out the
routes with a reduced cost strictly less than ε.

3.2 Constraint Programming

We introduce in this section our constraint programming approach (CP). First,
we describe a classical precedence model mainly used in VRP (partially used by
[6], fully explained in [4]) enhanced by specific bin packing capacity constraints.
Finally, a constructive search strategy is detailed.

Let V be the set of at most n vehicles(|V | = n). For each vehicle, two dummy
depots are created: an initial depot and a final depot. Note V d (resp. V f ) the
set of initial (resp. final) depots. The set of nodes N in the graph, such that
|N | = n + 2 ∗ |V | (one node per row and two nodes per vehicle), is ordered as
follows:

N = {
rows︷ ︸︸ ︷

1, . . . , n,

V d︷ ︸︸ ︷
n + 1, . . . , n + |V |,

V f︷ ︸︸ ︷
n + |V | + 1, . . . , n + 2 ∗ |V |}

Let us define the decision variables (see Fig. 5 and Table 1, the distance
matrix are displayed in the Fig. 11 and Fig. 12):

– ∀i ∈ N, successori ∈ N (resp. predecessori ∈ N) variables giving the succes-
sor (resp. predecessor) of the row i in the route.

– ∀i ∈ N, positioni ∈ N, variables providing the position of the row i in the
route, initial depots are in position 0.

– ∀i ∈ N, assignmenti ∈ V variables indicating the vehicle assignment of the
row i.

– ∀i ∈ N, directioni ∈ {0, 1}, variables showing the direction of row i.
– ∀v ∈ V, selectivev ∈ {0, 1}, variables indicating whether a vehicle is selective.
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– ∀i ∈ N, ∀u ∈ {A,B}, CapaSumqui ∈ [0, CapaMax], variables measuring the
cumulative sum of the harvested u-grapes quantity before harvesting row i.

– Obj is the objective variable which computes the total traveled distance.

Model M2: Constraint Programming

∀fi ∈ V f successorfi = n + i (5)

∀di ∈ V d assignmentdi
= i (6)

∀fi ∈ V f assignmentfi = i (7)

∀i ∈ V d positioni = 0 (8)
AllDifferent(successor1, . . . , successor|N |) (9)

∀i ∈ N directionsuccessori = 1 − directioni (10)
∀i ∈ N positionsuccessori = 1 + positioni (11)
∀i ∈ N assignmentsuccessori = assignmenti (12)∑

i∈[1,n]

(qAi ∗ selectiveassignmenti) ≥ Rmin (13)

∀i ∈ N CapaSumqAsuccessori = CapaSumqAi + QA
i (14)

∀i ∈ N CapaSumqBsuccessori = CapaSumqBi + QB
i (15)

∀di ∈ V d sdi
< sdi+1 (16)

∀i ∈ N predecessork = i ⇔ successori = k (17)

∀u ∈ {A,B} diffN(assignment, CapaSumqu, (1, . . . , 1)T , Qu) (18)

Obj =
∑
i∈N

Di,successori,directioni
(19)

min Obj (20)

Constraints (5), (6), (7) and (8) assign the successor of a final depot to the
corresponding initial depot, the same vehicle is affected to initial and final depot
and initial depots are in position 0. The AllDifferent constraint (9) ensures that
routes are disjointed and that they cover all the rows, every successor is distinct
implies that a row is taken exactly once (there are n values for n variables). The
direction, position and assignment variables are updated depending on their
successors (10), (11) and (12). Constraint (13) ensures that the Rmin A-grapes
quantity is collected. The cumulative amount of already harvested A-grapes
(resp. B-grapes) is computed with (14) (resp. (15)), these constraints ensure
that no vehicle exceeds its hoppers loading due to the maximum value of the
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Table 1. Variables affectation for an eight rows instance, CapaMax is set to 200 and
Rmin to 174, illustrated in Fig. 5. The harvesting quantity qA/qB is displayed for the
direction 1, but for the opposite direction, the harvesting quantity is computed by
adding 5 (the latency) to qB and to subtract 5 to qA.

Node 1 2 3 4 5 6 7 8 d1 d2 d3 f1 f2 f3

qA 87 75 62 50 37 25 12 0 0 0 0 0 0 0

qB 13 25 38 50 63 75 88 100 0 0 0 0 0 0

successor f2 4 1 f1 7 f3 8 6 2 3 5 d1 d2 d3

position 2 1 1 2 1 4 2 3 0 0 0 3 3 5

assignment 2 1 2 1 3 3 3 3 1 2 3 1 2 3

direction 0 1 1 0 1 0 0 1 0 0 0 1 1 1

selective 1 1 1 1 0 0 0 0 1 1 0 1 1 0

CapaSumqA 57 0 0 70 0 150 50 100 0 0 0 120 144 200

CapaSumqB 43 0 0 30 0 150 50 100 0 0 0 80 56 200

CapaSum domain. The constraints (19) and (20) minimize the total traveled
distance.

We added redundant constraints to improve the performance of this model:
first, symmetry breaking constraints (16) between vehicles are used then a
channeling constraint (17) between successor and predecessor variables. The
diffN constraints (18) are global constraints which are used to ensure that each
task Ti (the harvesting of row i), represented as a rectangle with coordinates
(assignementi, CapaSumqui ) and with width of 1 and height of QA

i , do not
overlap each other [16]. These constraints are also redundant and handle the
vehicle capacity taking account of the vehicle filling and the object positioning
in the vehicle, this positioning depends on both the X and Y axis (see Fig. 6).
We create two tasks/rectangles per row: one indicating the A-grape quantity
harvested in the rows and the other indicating the B-grapes quantity harvested.
Tasks are affected by vehicle assignment (X axis) and ordered depending on
their position in the route with the CapaSumqu variables ∀u ∈ {A,B} (Y axis)
which link row with its direct successor. The height of a task, Qu

i ∀u ∈ {A,B} ,
depends on the type of the node i ∈ N : qui,selectivei,directioni

for rows, 0 for initial
depots and CapaMax − CapaSumu

vf
for final depots. The height of the final

depots thereby defined is used to make the diffN constraint even more compact,
all vehicles will have their maximum capacity reached due to the height of the
final depots which fill the remaining space (see Fig. 6).

The Snake Constructive Search Strategy. One of the advantages of con-
straint programming is the possibility to choose the search strategy in the deci-
sion tree. The strategy is based on two axes: variable choice and value choice.
The variable choice is a determining factor in a good strategy. Indeed, if the first
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Fig. 6. Representation of the diffN constraint for the A-grapes for the instance shown
in the Fig. 5.

variables used have a large domain or are weakly constrained then the decision
tree is larger.

With this in mind, we wanted to create a strategy that mimics a greedy
method, which we call: the Snake. The Snake strategy builds a route and then
constructs entirely the next one and so on. The purpose is to find a good solution
in a few decision nodes. Other strategies (as DomOverWDeg) generally build
route fragments, and, at the bottom of the decision tree, try to assemble these
fragments to obtain a feasible route. This assembly is very combinatorial due to
the many possible arrangements of the fragments, see Fig. 7.

The Snake strategy behaves as the nearest neighbor heuristic: the first vari-
able is the first available initial depot. The choice of the new variable is deter-
mined by the choice of the value of the previously instantiated variable. The
first available value for the variable is selected, the values are increasingly sorted
(we want to minimize the total distance). Once a final depot is instantiated, the
next variable selected is the next initial depot. The variables that calculate the
distance to the successor are used. Besides, these variables are sorted so that
optimization begins with selective routes.

4 Experimental Results

In this section, we present the experimental results, first, we introduce the data
sets used for the experimental study, then we outline the results obtained with
our models. For the parametric study, we were focusing on exact methods and
thus on finding optimal solutions.

4.1 Description of Data Sets

We have tested our models on different instances, some were artificially generated
based on real data observed in a vineyard, at INRA Pech-Rouge (Gruissan),
located in the southern France (cf. Fig. 1).

As [6,24] we decompose this instance to create a set of smaller instances,
denoted by G-instances. We create instances with 10 consecutive rows and up to
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Fig. 7. The Snake strategy vs the DomOverWDeg strategy illustration.

Fig. 8. Vineyard shape representation of the square instances (left side) and the triangle
instances (right side).

24 rows (the original instances), with a hopper capacity of 900 and 1800 and
the Rmin value takes value in {0, 0.25, 0.5, 0.7, 0.9, 1} of the total available A-
grapes that can be effectively be harvested in the vineyard taking into account
minimum loses due to the latency effect.

Artificial instances were generated based on two vineyard shapes, the square
instances (S-instances) and the triangle instances (T -instances) see Fig. 8, that
seems to be theoretically interesting. The study of these shapes is sufficient
because the vineyard shape is hidden in the harvested A-grapes and B-grapes in
each row and the difference between the number of latency in each row depending
on the direction is at most one. We assume that the triangle instances must be
the worst-case instances because everything is symmetric. The square instances
were determined to see the influence of the increase of the Rmin value on the
objective function.

The same construction as the original instance is used to construct artificial
instances. The Table 2 summarizes the parameters variation of each instance
type.
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Table 2. Parameters variation for each data set.

#rows CapaMax Rmin Total

G-instances {10, 11, . . . , 24} {900, 1800} {0, 0.25, 0.5, 0.7, 0.9, 1} 1140

T -instances {10, 11, . . . , 24} {100, 200, . . . , 500} {0, 0.25, 0.5, 0.7, 0.9, 1} 540

S-instances {10, 11, . . . , 24} {100, 200, . . . , 500} {0, 0.25, 0.5, 0.7, 0.9, 1} 540

4.2 Results

In this section, we will detail the results obtained for our approaches. The results
were performed on an Optiplex 5055 computer with an AMD RYZEN 7 Pro
1700 (8 cores/4 Mo/16 Threads/3 GHz) processor. For the column generation
approach, we use CPLEX 12.8.0.0 and for the constraint programming, we use
Choco 4.10.1.

Results for the Column Generation Methods. The time limit for all the
instances was fixed to 10 min, except for the original instance with 24 rows where
the time limit was 1 h, due to the number of instances that has to be solved.
The integer solution is found using a MIP solver on the RMP.

To the best of our knowledge, we are the first who were able to solve the
real instance with 24 rows, see Fig. 1, in 2210 s and almost all the computation
time is used to generated routes and to find an integer solution, the enumeration
technique took less than a few minutes and generates only 18 columns.

In the Table 5, a comparison is made between the results obtained with the
variation of the CapaMax parameter for the S and T instances and the same
results for the G instances are shown in the Table 3. The results displayed are the
average computation time and the average integrality gap of the Rmin values
for every row’s number and CapaMax value. When the CapaMax parameter
increases there is a huge increase in the computation time since the pricing
problem is more difficult to solve (the number of non-dominated routes generated
is larger). For the G instances, the gap is really small (less than 0.002 %) however
almost all the large instances reach the time limit.

The Fig. 9 and Fig. 10 indicate the results obtained for the G instances accord-
ing to the Rmin parameter variation and each point represents the average value
of the CapaMax values. One can see that the objective value and the computa-
tion time appear not to increase from 0% to 90% Rmin but when demanding to
harvest all the A-grapes the objective value grows due to the latency, all the rows
have to be harvested in the direction that maximizes the A-grapes harvested,
yet the computation time is low even for the biggest instances.
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Table 3. Results for the G instances with the variation of the CapaMax parameter.

CapaMax

900 1800

#rows CPU(s) gap(%) CPU(s) gap(%)

10 1.87 ∼ 0 10.71 ∼ 0

11 5.98 ∼ 0 38.43 0.016

12 6.35 ∼ 0 81.78 ∼ 0

13 118.84 ∼ 0 344.90 0.01

14 6.46 ∼ 0 217.08 0

15 85.04 ∼ 0 462.85 0.02

16 11.15 ∼ 0 429.40 ∼ 0

17 227.66 ∼ 0 538.73 0.02

18 19.27 ∼ 0 536.99 0.0003

19 313.19 ∼ 0 535.27 ∼ 0

20 97.11 ∼ 0 534.45 ∼ 0

21 331.28 ∼ 0 528.05 0.03

22 165.95 ∼ 0 539.18 0.04

23 545.24 ∼ 0 530.19 0.08

Results for the Constraint Programming Approaches. Precedent works
using constraint programming to solve the DHP were able to solve optimally a
16 rows instances in 6 days, then optimally solve 10 and 12 rows instances with
a 2 h time limit. We propose to compare our approach to its ability to obtain a
good feasible solution in a short time.

With this in mind, we only show the results for a few instances (one with
10 rows, 13 rows, and 16 rows), with a 10 min time limit. The results for the
constraint programming approach are summarized in the Table 4, we are looking
for statistics for the first, the best solution (whether the optimal solution is found
according to the column generation solution) and for optimality proof. For the
10 rows instance, with the DomOverWDeg strategy a poor quality first solution
has been found. Moreover, the last solution is not improving so much the first
solution (4379 to 4358). Meanwhile, the Snake strategy gives a good first solution
in a few decision nodes (27 nodes). This solution is improved to optimality in
under 2 min. The diffN constraint adds some reasoning to the model because
the nodes number decreases but the total time to compute an optimal solution
is higher. For the instance with 13 rows, the analysis is even worse for the
DomOverWDeg strategy cannot find any solution within the 10 min time limit
even with the diffN constraint. Nevertheless, with the Snake strategy a solution
is found in less than 1 s but at the end of the time limit, no optimal solution has
been proved. For the 16 rows instance, the Snake strategy also finds a solution
in less than 1 s but is not able to improve it to optimality in less than 10 min.
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These results are interesting for a hybridization approach because the feasible
solution found by the constraint programming in less than a few minutes can be
used in the enumeration part for the column generation approach.

Table 4. Constraint programming results for the instance with 10, 13 and 16 rows
with a 600 s time limit.

10 rows 13 rows 16 rows
V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

DOWDeg
diffN
Snake

First Sol
obj 4379 4370 4222 4222 ∅ ∅ 5241 5241 ∅ ∅ 6603 6603

Nodes 1669 1306 27 27 \ \ 31 31 \ \ 39 39
CPU(s) 3 2 0 0 \ \ 0 0 \ \ 0 0

Best Sol

obj ∅ ∅ 4066 4066 ∅ ∅ 5234 5234 ∅ ∅ ∅ ∅
Nodes \ \ 91k 81k \ \ 466k 452k \ \ \ \
CPU(s) \ \ 26 36 \ \ 159 231 \ \ \ \
#sol \ \ 10 10 \ \ 6 6 \ \ \ \

Proof
obj 4358 4 206 4066 4066 ∅ ∅ 5234 5234 ∅ ∅ 6447 6447

Nodes 547k 525k 398k 339k 492k 433k 1767k 1171k 399k 308k 2033k 1281k
CPU(s) 600 600 115 148 600 600 600 600 600 600 600 600

5 Conclusion

In this paper, we have proposed both a column generation, with enumeration
technique, approach based on a new graph representation of the DHP and a
constraint programming model using global constraints. We have performed a
parametric study on various instance sets, some based on real data and other
purposely generated. The main difficulty is that computing the improving routes
in the pricing problem may be awful with the growth of the CapaMax parameter.
The small integrality gap obtained gives us good hope to solve larger instances
with a bigger time limit, and validate the efficiency of the column generation
approach to tackle the DHP, the real instance with 24 rows was optimally solved.
The constraint programming results are promising for a hybridization approach,
computing all the ε-improving routes with the constraint programming integer
solution (found in a few minutes) for the enumeration part.

Acknowledgements. This work was supported by the French National Research
Agency under the Investments for the Future Program, referred to as ANR-16-CONV-
0004.
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Appendix

Fig. 9. The evolution of the objective function value when the Rmin parameters
increase for the G instances.

Fig. 10. The evolution of the computation time when the Rmin parameters increase
for the G instances.
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Table 5. Results for T and S instance type with the variation of the CapaMax param-
eter.

T S T S
#rows CapaMax CPU(s) gap(%) CPU(s) gap(%) #rows CapaMax CPU(s) gap(%) CPU(s) gap(%)

10

100 0.29 4.25 0.2 3.37 100 0.82 0.13 47.66 3.70
200 0.49 0.11 0.94 0.41 200 16.52 4.55 216.75 5.25
300 2.36 0.04 2.64 0.64 17 300 529.01 5.12 603.39 5.72
400 6.52 0.41 9.05 0.87 400 521.21 1.77 525.95 2.48
500 9.40 1.10 16.40 1.67 500 542.55 1.80 624.74 4.15

11

100 1.32 4.95 0.15 2.26 100 0.71 0.99 2.78 3.94
200 14.96 7.03 0.91 8.16 200 6.55 0.22 7.11 0.54
300 48.99 7.28 79.15 8.45 18 300 441.58 0.52 512.01 1.04
400 87.25 7.30 52.64 8.24 400 518.07 1.59 549.86 0.27
500 59.52 7.53 98.07 8.35 500 559.98 2.15 620.04 3.87

12

100 0.23 1.22 0.24 2.56 100 0.55 1.67 0.08 0.64
200 0.90 0.58 0.93 0.50 200 310.40 3.79 311.51 4.63
300 8.96 0.38 10.50 0.27 19 300 521.54 4.20 522.08 4.93
400 15.42 0.68 20.34 0.58 400 517.21 4.35 626.03 7.15
500 42.56 0.50 26.88 1.12 500 512.78 2.23 613.55 3.85

13

100 1.35 3.46 2.34 3.32 100 0.047 0 106.80 1.91
200 20.37 6.07 159.77 7.017 200 10.36 0.26 16.08 0.31
300 318.57 5.95 419.87 7.16 20 300 500.71 0.53 513.86 0.73
400 523.88 6.56 518.98 7.51 400 504.41 0.76 620.26 2.10
500 455.87 6.83 267.43 7.39 500 512.33 2.53 607.29 3.03

14

100 0.52 1.93 0.33 2.73 100 0.14 1.67 0.08 0.53
200 2.87 0.82 3.09 0.48 200 415.4 3.71 515.31 4.24
300 21.14 1.07 25.82 0.75 21 300 520.53 3.83 623.61 4.34
400 125.38 0.44 92.45 0.60 400 506.63 3.95 608.38 4.78
500 249.35 0.65 245.66 0.39 500 519.92 2.30 607.89 3.07

15

100 1.97 2.19 0.591 2.04 100 1.08 2.04 0.18 1.09
200 307.76 4.83 454.34 5.88 200 48.26 0.87 38.33 0.58
300 428.17 5.32 524.62 6.29 22 300 515.78 2.96 522.21 1.34
400 526.90 5.54 545.35 6.36 400 519.62 0.70 626.18 2.26
500 515.87 3.29 530.25 6.18 500 549.81 2.48 640.07 2.57

16

100 0.36 1.10 0.21 0.36 100 0.22 0.98 0.10 1.34
200 3.65 1.34 7.00 0.77 200 418.62 3.47 418.97 3.78
300 156.90 0.24 136.39 1.07 23 300 515.7 2.51 542.45 4.02
400 526.57 0.44 513.76 0.26 400 524.80 2.57 621.25 4.65
500 517.73 0.99 550.97 2.74 500 521.29 2.32 621.82 2.63

Fig. 11. Distance matrix between rows and the depot with direction 0, for the example
instance Fig. 5.
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Fig. 12. Distance matrix between rows and the depot with direction 1, for the example
instance Fig. 5.
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Abstract. The profitability of any assembly robot installation depends
on the production throughput, and to an even greater extent on incurred
costs. Most of the cost comes from manually designing the layout and pro-
gramming the robot as well as production downtime. With ever smaller
production series, fewer products share this cost. In this work, we present
the dual arm assembly program as an integrated routing and scheduling
problem with complex arm-to-arm collision avoidance. We also present a
set of high-level layout decisions, and we propose a unified CP model to
solve the joint problem. The model is evaluated on realistic instances
and real data. The model finds high-quality solutions in short time,
and proves optimality for all evaluated problem instances, which demon-
strates the potential of the approach.

Keywords: Assembly manufacturing · Constraint programming ·
Robot planning and scheduling

1 Introduction

Consumer products are being manufactured in ever smaller series, often using
assembly manufacturing. This means that complex sub-parts, such as cameras
and circuit boards, are put together, akin to a 3D puzzle. These products are
mainly manufactured by hand, in countries with competitive labor cost.

At the same time, lightweight industrial robots have been introduced, such
as YuMi by ABB [1] and Sawyer by Rethink Robotics [17]. Many of these robots
are designed to take over repetitive and tedious tasks from humans, occupying
similar floor area and have dual arms with similar arm reach. Some even target
small parts assembly manufacturing [1].

However, robot based assembly manufacturing is at a price point out of
reach for many products. It is important to obtain good enough throughput of
the robots, as it determines how much value the robots create. However, cost
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has the greatest impact on net value of the robot installation, and the cost is
largely determined by the time it takes to deploying the robot, as it often costs
significantly more than the robot itself, plus the cost of production downtime.
The inspiration for this work comes from a real world installation of a YuMi,
where a highly skilled programmer and researcher from ABB spent six weeks to
design the layout and program the robot. At deployment, unforeseen obstacles
were present in the workspace, and the layout design and program had to be
changed, which took another week. This work builds on [4] and [10].

Deploying industrial robots is a time-consuming, iterative process, and
requires trained developers. The process entails A) layout design of the robot
workspace, and robot programming. Layout design means deciding where to put
locations of interest, such as pick-locations, as well as deciding what apparatus to
use when multiple are available, based on their locations. These decisions greatly
affect the throughput of the robots. The robot programming can be subdivided
into B) task allocation and C) task sequencing, D) (inter-arm) scheduling, all
while efficiently utilizing the multiple tools of each robot hand. It is slow and
error-prone, this is especially true for multiple arms, where the programmer must
coordinate the arms such that they do not collide during E) execution. This coor-
dination greatly adds to the complexity of the problem. The two-dimensional
case is NP-hard [19], and is an active field of research, with CP solutions at the
forefront [11]. All sub-problems A)–E) are tightly interconnected.

Each task, such as pick or press, is in itself a small robot program. However,
for the level of abstraction of this and related work, each task can be abstracted as
a constraint on the duration of said task. Similarly, travel between task locations
is a small program, which, in this and most of the related work, is abstracted as
a constraint on the travel time between task pairs.

The AI community has a long history of addressing model-based robot pro-
gramming, both Automated Ground Vehicles (AGV:s) using planning [6] and
first-order logic [3] to achieve C). AI for robotics is a long-standing topic [16],
and robotics is an active part of the AI community [15]. Task planning, including
temporal planning, is a field of active research [8], and there is a sub-field called
integrated task and motion planning [5,7,9,12–14,18] addressing C) while also
generating the travel motion between tasks. These works address single arms,
while one recent CP approach includes a second arm [2], thus addressing B),
D), E). For that work, however, C) was given.

To our knowledge, no published work dealing with A) in this context exists,
and no work approaching B), C), D) E) in unison. Some prior works include
motion generation in their problem formulation, however due to our approach
to arm coordination, these motions can be generated separately, under weak
assumptions, and still result in collision-free robot programs. Thus, this work
takes a larger scope on the robot deployment process and addresses all aspects
A)–E). We present the following contributions:

1. The first optimization-based model integrating A) layout optimization, B)
task allocation, C) task sequencing, D) scheduling and E) collision avoidance
for a dual-arm robot, to the best of our knowledge. The model has features
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from vehicle routing and flexible job-shop, with variable locations and travel
time that depends on location and performing agent.

2. An evaluation showing that the model is efficient, quickly delivering good
solutions as well as reaching optimality for all problem instances.

3. An efficient way of handling arm-to-arm collisions while generating robot
programs, based on dividing the workspace into two sides, and the preliminary
observation that this does not affect the makespan.

2 The Assembly - Application, Cell and Robot Program

Assembly manufacturing is a type of production, where several components are
combined into an assembly. Components could be of any kind such as electronic
boards, motors, and sensors. Finished assemblies are forwarded to further pro-
cessing steps. The assembly process is then repeated. In industrial robotics, a
robot workspace is the space used by one or more robots and the equipment
relating to the application, if the robot is included it is called a robot cell, and if
it is used for assembly manufacturing it is called a assembly cell. Figure 1 shows
the assembly cell used in this paper.

Fig. 1. An assembly cell with an ABB YuMi,
two fixtures, five tray locations and a camera
facing each tray location

Cell and Application: In our
example, there are five tray locations
for holding component trays. Each
component tray holds multiple com-
ponents of one particular component
type. At most one component tray
can be put at any of the tray loca-
tions. Each component tray is paired
with a camera facing the tray, to
keep track of available components.
However, the focal point of the cam-
eras is located between the camera
and the tray. The reason for this is
explained later.

In the assembly cell there are two
fixtures. These are constructions in
front of the robot, and are designed to hold one specific component each. When
that component is placed, the next component is mounted on top of the first
one, and so on, until we finish that fixture’s sub-assembly. Subsequently, one sub-
assembly is picked up from its fixture, and merged with the other sub-assembly,
to form the final assembly, using each component type once. The final assembly
is then picked up from its fixture and put on a output tray for further processing,
and the assembly process starts over. The output tray is placed at the right side
of the robot, not shown in Fig. 1.

One should note that it is possible to use one fixture to finish the entire
assembly, and this is probably how humans would do it. However, since the
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robot arms work in parallel, and only one robot hand can work at each fixture
at a time, a second fixture is often used to shorten the makespan. So, in this study
we use two fixtures. It is also worth noting that there could be scenarios where
the component mounting orders are not fixed, however this study is restricted
to cases where the ordering is fixed.

The YuMi Robot: Our particular assembly cell contains a YuMi [1], a robot
from ABB with two arms having one hand each. Each hand, shown in Fig. 2, fea-
tures one gripper tool and two suction cup tools. These tools are designed to pick,
move and then place objects. An object being a component, or a (sub-)assembly.
The (empty) gripper tool is also used to press components after placing, to ensure
good fit. A gripper tool picks objects with its two parallel “fingers”. A suction
cup tool picks objects by adhering to a flat surface. The object, the application
and the robot programmer determine what tool to use for each object. When
holding an object with the gripper, the position and orientation, or pose, are
sufficiently well known to place it. This is not true for the suction cup tool, how-
ever the object pose can be determined by processing an image of the object in
the tool. Thus, when using suction cup tool, a camera task must be performed
at any of the five camera focal point, introduced previously.

Note that one tool can hold one object, independently of the other tools.
This means that one robot hand can hold up to three objects simultaneously.
This fact is often used by experienced programmers to improve the makespan.

Fig. 2. A robot hand
with one gripper tool
and two suction cup
tools

Robot Programming. The software controlling the
robot and cameras is called the robot program. It consists
of two sequences of tasks, one per arm. Each arm program
alternates between performing a task and moving to the
next task. The tasks mentioned thus far are pick, camera,
place, press. Each task is itself a program, provided by the
robot programmer. However, for the abstraction level of
this work, a task is a constraint on the duration of said
task. Similarly, travel between task locations is abstracted
as a constraint on the travel time between said locations.

In summary, the robot program must obey task orders
at the fixtures. The program must be realizable. That is,
no more than one component per tool, and perform pick-
(camera)-place with the same arm, in that order. Finally,
the program must avoid arm-to-arm collisions. A robot
programmer often spends considerable effort to keep arms apart.

To allow the arms to work independently of each other, the optimization
model of this work relies on the following assumptions on tasks and travel. (1)
Parallel work: the model assumes that any task at one fixture, performed by
one arm, does not interfere with any task at the other fixture, performed by the
other arm. (2) Elbows out: if the left robot hand is located to the left of the
right robot hand, then no part of the arms are colliding. (3) No zig-zag: travel
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between fixtures and other locations does not pass through volumes to the left
(right) of that location when using the right (left) arm.

There is a small (implicit) volume around each fixture, dedicated to the arm
working at the fixture. When a task is done, the robot arm leaves this volume,
as a part of the task implementation (and task duration). This makes sure no
collisions occur when tasks are executed by different arms at the same fixture.

3 Modeling

Our CP model captures the dual robot arm program for manufacturing one
assembly. It captures variable task locations, thus optimizing tray layout and
which camera to use while avoiding arm collisions. It is a scheduling model that
borrows from vehicle routing models, augmented with variable locations.

The model features a set T = {0, .., T − 1} of tasks, a set L = {0, .., L − 1}
of locations, a set W = {0, ..,W − 1} of time slots, and a set H =
{Gripper, SuctionCup} of robot hand tools.

For task t, we have decision variables armt ∈ {0, 1}, the arm performing t;
succt ∈ T, the successor task of t; locationt ∈ L, the location of t; loadτ

t ∈ N, the
load of tool τ when arriving at t; travel costt ∈ W, the travel time from t to its
successor; durationt ∈ W, the duration of processing t; arrivalt ∈ W, the time
at which the arm is ready to perform t; startt ∈ W, the time at which t starts
processing; and endt ∈ W, the time at which t finishes processing. For many
tasks, the location is fixed up front. There can be a waiting period between the
arrival time and the start time.

We use successor variables to capture task order, i.e., succi = j means that
task j is the successor of task i. The model includes T − 4 actual tasks and four
dummy tasks, with the convention that T −4 and T −2 are the dummy start and
end tasks of arm 0, T −3 and T −1 are the dummy start and end tasks of arm 1,
the start task of arm 1 is the successor of the task of arm 0, and vice versa. The
total set of tasks thus form a Hamiltonian circuit. Let Tstart = {T − 4, T − 3}
and Tend = {T − 2, T − 1} denote the start and end tasks, respectively. Let
TTrayPick ⊂ T denote the set of tasks that occur at a tray location.

The application requires both robot arms to return to the original position
to be ready for the next assembly, so we must account for the travel time from
the last actual task back to the original position. To achieve this, we constrain
the locations of the end task, the start task, and the first actual task to coincide.

The objective is to minimize the makespan, i.e., the maximal completion
time of the two arms. Instance data are encoded in part by a set of functions:
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WL(a, s, g) ∈ Z = travel time from source location s to target location g

using arm a, or -1 if infeasible
WD(a, t) ∈ N = duration of task t for arm a

PL(l) ∈ Z = relative position of location l in robot workspace, left to right,
≥ 0 indicating relative positions, -1 indicating shared space

O(t, t′) =

⎧
⎨

⎩

2, if task t must precede task t′ using the same arm,
1, if task t must precede task t′, but t, t′ may use different arms,
0, otherwise

Δ(t, τ) =

⎧
⎨

⎩

1, if task t uses tool τ to pick a component or (sub)-assembly,
−1, if task t uses tool τ to place it,
0, otherwise

Cap(t, τ) ∈ N = the max possible load for tool τ when arriving to task t

The model’s constraints are grouped as follows:

Successors. Recall that the tasks should form a Hamiltonian circuit, which can
be seen as arm 0’s task sequence followed by arm 1’s task sequence, linked via
the dummy tasks. Of course, the same arm must be used within the given task
sequence. Finally, the robot arms must return to their original position. This all
is encoded by the following constraints:

Circuit([succt | t ∈ T]),
armt = armsucct ∀t ∈ T \ Tend,

succT−2 = T − 3, succT−1 = T − 4,

armT−4 = armT−2 = 0, armT−3 = armT−1 = 1,

locationsuccT−4 = locationT−4 = locationT−2,

locationsuccT−3 = locationT−3 = locationT−1

(1)

Time Constraints. Travel costs depend on locations and arm, and durations
depend on task and arm:

travel costt = WL(armt, locationt, locationsucct) ∀t ∈ T \ Tstart \ Tend,

durationt = WD(armt, t) ∀t ∈ T \ Tstart \ Tend

(2)

The following relates each actual and dummy task’s time variables. Note
that this forms the link between the routing and scheduling parts of the model.
Together with the routing constraints, this prevents tasks, including the arms’
travel time, from overlapping:
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arrivalt ≤ startt ∀t ∈ T,

startt + durationt = endt ∀t ∈ T,

endt + travel costt = arrivalsucct ∀t ∈ T,

durationt = travel costt = 0 ∀t ∈ Tstart ∪ Tend,

arrivalt = startt = endt = arrivalsucct ∀t ∈ Tstart ∪ Tend,

arrivalt = 0 ∀t ∈ Tstart

(3)

Precedence Constraints. Precedences at fixtures are imposed by constraints
on the time intervals of tasks. Precedences among pick-(camera)-(other)-place
tasks are handled similarly. Note that the same arm is required for each such
task, and so the inequation can be stricter and include all time spent on a task:

endt ≤ startt′ ∀t, t′ ∈ T where O(t, t′) = 1,
arrivalsucct ≤ arrivalt′ ∧ armt = armt′ ∀t, t′ ∈ T where O(t, t′) = 2

(4)

Capacity Constraints. The loadτ
t variables are related via the Δ(t, τ) values:

loadτ
t = 0 ∀τ ∈ H ∀t ∈ Tstart ∪ Tend,

loadτ
succt = loadτ

t + Δ(t, τ) ∀t ∈ T ∀τ ∈ H
(5)

Tools cannot exceed their physical capacity, and for some tasks, they must
not be occupied:

loadτ
t ≤ Cap(t, τ) ∀t ∈ T ∀τ ∈ H (6)

Location Constraints. Each locationt is initialized with a given subset of L.
For this model, all task locations are fixed, except tray locations and camera
locations. There is only room for one tray at each tray location:

AllDifferent([locationt | t ∈ TTrayPick]) (7)

Finally, to prevent the arms from colliding, we split the robot workspace
into non-shareable zones and shareable zones. For every pair of tasks that use
different arms and placed in non-shareable zones, we require the left arm (arm 0)
to be left of the right arm (arm 1):

armp = 0 ∧ armq = 1 =⇒
PL(locationp) = −1 ∨ PL(locationq) = −1 ∨

PL(locationp) < PL(locationq) ∀p, q ∈ T

(8)
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4 Evaluation

We evaluate dual arm, multi tool, assembly programs using real world data. The
real world data consists of the possible locations of all task types, the travel
times of manually generated paths between all locations, for a workspace of a
real case, as well as task durations for each arm. The problem instances are
solved by the model presented in Sect. 3. All instances are solved using single
thread Gecode 6.2.0 on Intel Core i7-6850 3.6 GHz CPU. The primary decisions
of our search are load balanced task assignment to arms, using a mix of static
and dynamic variable order, and a mix of static and random value selection.

The number of tasks of a problem instance is mainly dependent on a) number
of components, and b) whether a component is picked using suction cup or
gripper. We evaluated instances of 3, 4 and 5 components, using suction cup vs.
gripper for different components, and equipping the robot with 1 or 2 suction
cup tools per arm. This results in 11 problem instances of 17 to 26 tasks.

For each problem instance we generated 8 variants with nominal travel times
randomly perturbed by ±25%, each variant solved 10 times by using different
randomization seeds for value selection in the search. The problem instances are
named e.g. 5C4S-2 meaning 5 components, out of which 4 are handled by suction
cup with 2 suction cups per arm.

We present the runtime distribution solving each instance to optimal-
ity as a box plot extending from the first and third quartile (Q1,Q3), with
a line indicating the median. The whiskers extends to at most the range
[Q3 + 1.5 · (Q3 − Q1), Q1 − 1.5 · (Q3 − Q1)]. Data outside this range are shown
as outliers.

As a complementary perspective on the optimization progress, we report
runtime distributions to reach optimality gaps 0.05 and 0.10 as well, i.e., the
time at which the makespan is 5% and 10% away from the optimal value. This
information can be used for selecting timeouts in a real-world scenario.

Most runs finish within seconds to a few minutes, with the notable exception
of the case this work was inspired by, and also the largest case: 5C4S-2. Having
two suction cup tools per arm gives more flexibility and opens up for better
throughput, however, inspecting instances *−1 vs *−2 in Fig. 3 it is clear that
this incurs an increased optimization time.

We also repeated all the experiments relaxing constraint (8), thus ignoring
arm-to-arm collisions. Very much against the working hypothesis, for every prob-
lem instance the optimal makespan was unaffected by whether or not constraint
(8) was active. Note that, if some or all locations become fixed, this is definitely
not the case.
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Fig. 3. Optimization time and time to reach optimality gap 0.05 and 0.10.

5 Conclusions and Future Work

The contributions of this work include: a first optimization-based model that
integrates all aspects of the problem, an evaluation that shows that the model
delivers good solutions quickly and is able to solve all evaluated instances to
optimality, and an approach, based on spatial separation, to handling arm-to-
arm collisions without any observed degradation of solution quality.

Current results are promising. Future work includes more than two robot
arms, and explore how this affects arm-to-arm collision avoidance. It would be
interesting to involve other characteristics, scale up to larger problem instances
and optimize over the number of fixtures used.
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Autonomous Systems and Software Program (WASP).
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12. Lozano-Pérez, T., Kaelbling, L.P.: A constraint-based method for solving sequential
manipulation planning problems. In: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (2014). https://doi.org/10.1109/IROS.2014.6943079
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Abstract. Conflict learning plays an important role in solving mixed
integer programs (MIPs) and is implemented in most major MIP solvers.
A major step for MIP conflict learning is to aggregate the LP relaxation
of an infeasible subproblem to a single globally valid constraint, the dual
proof, that proves infeasibility within the local bounds. Among others,
one way of learning is to add these constraints to the problem formulation
for the remainder of the search.

We suggest to not restrict this procedure to infeasible subproblems,
but to also use global proof constraints from subproblems that are not
(yet) infeasible, but can be expected to be pruned soon. As a special
case, we also consider learning from integer feasible LP solutions. First
experiments of this conflict-free learning strategy show promising results
on the MIPLIB2017 benchmark set.

1 Introduction

In this paper, we consider mixed integer programs (MIPs) of the form

min{cTx |Ax ≥ b, � ≤ x ≤ u, xj ∈ Z ∀j ∈ I}, (1)

with objective coefficient vector c ∈ R
n, constraint coefficient matrix A ∈ R

m×n,
constraint right-hand side b ∈ R

m, and variable bounds �, u ∈ R
n
, where R :=

R ∪ {±∞}. Furthermore, let N = {1, . . . , n} be the index set of all variables
and let I ⊆ N be the set of variables that need to be integral in every feasible
solution. Moreover, we allow that the constraint set might change during the
course of the search. More specifically, we allow that the right-hand side b can
be tightened at any point in time to b̃ ∈ R

m with b ≥ b̃ ≥ b and b ∈ R
m

. As a
consequence, the set of feasible solutions to both, the MIP and its LP relaxation
might only be further restricted and parts of the search space that have been
discarded due to infeasibility will still be infeasible. Note, we say that b̃ is greater
or equal to b, if b̃i ≥ bi for all i = 1, . . . ,m.

An important special case of this general setting is the tightening of the so-
called cutoff bound c during the MIP search. The cutoff bound is either defined by
the objective value of current incumbent, i.e., the currently best known, solution
c© Springer Nature Switzerland AG 2020
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x or +∞ if no solution has been found yet. It gives rise to the objective cutoff
constraint

−cTx ≥ −c. (2)

The objective cutoff constraint (2) models an upper bound on all MIP solu-
tions found in the remainder of the search. In the following, we assume that the
objective cutoff constraint (2) is explicitly contained in Ax ≥ b. The computa-
tional experiments of this paper will focus on the case that the objective cutoff
constraint is the only constraint being tightened during the search, the theoretic
background, however, will be given for the general case b ≥ b̃ ≥ b. A lower bound
on the MIP solution is given by the linear programming (LP) relaxation which
omits the integrality conditions of (1). The optimal objective value of the LP
relaxation provides a lower bound on the optimal solution value of the MIP (1).

In LP-based branch-and-bound [7,16], the most commonly used method
to solve MIPs, the LP relaxation is used for bounding. Branch-and-bound is
a divide-and-conquer method which splits the search space sequentially into
smaller subproblems that are expected to be easier to solve. During this proce-
dure, we may encounter infeasible subproblems. Infeasibility can be detected by
contradicting implications, e.g., derived by domain propagation, by an infeasi-
ble LP relaxation, or an LP relaxation that exceeds the objective value of the
current incumbent solution. Following our assumption that the objective cutoff
constraint is part of the constraint matrix, the latter is just a special case of an
infeasible LP relaxation.

1.1 Conflict Analysis in MIP

Modern MIP solvers try to ‘learn’ from infeasible subproblems, e.g., by applying
conflict graph analysis or dual proof analysis. Conflict graph analysis for MIP
has its origin in solving satisfiability problems (SAT) and goes back to [20].
Similar ideas are used in constraint programming, e.g., see [10,14,24]. First inte-
gration of these techniques into MIP were independently suggested by [2,8,23].
Dual proof analysis and its combination with conflict graph analysis has been
recently studied for both MIPs [21,25] and mixed integer nonlinear programs
(MINLPs) [18,27]. While conflict graph analysis is based on combinatorial argu-
ments, dual proof analysis is a purely LP-based approach. We will briefly describe
both concepts in the remainder of this section.

Assume we are given an infeasible node of the branch-and-bound tree defined
by the subproblem

min{cTx |Ax ≥ b, �′ ≤ x ≤ u′, xj ∈ Z ∀j ∈ I} (3)

with local bounds � ≤ �′ ≤ u′ ≤ u. In LP-based branch-and-bound, the infeasi-
bility of a node/subproblem is either detected by an infeasible LP relaxation or
by contradicting implications in domain propagation.

In the latter case, a conflict graph gets constructed which represents the logic
of how the set of branching decisions led to the detection of infeasibility. More
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precisely, the conflict graph is a directed acyclic graph in which the vertices
represent bound changes of variables and the arcs (v, w) correspond to bound
changes implied by propagation, i.e., the bound change corresponding to w is
based (besides others) on the bound change represented by v. In addition to these
inner vertices which represent the bound changes from domain propagation, the
graph features source vertices for the bound changes that correspond to branch-
ing decisions and an artificial sink vertex representing the infeasibility. Then,
each cut that separates the branching decisions from the artificial infeasibility
vertex gives rise to a valid conflict constraint. A conflict constraint consists of a
set of variables with associated bounds, requiring that in each feasible solution
at least one of the variables has to take a value outside these bounds. This cor-
responds to no-good learning in CP. A variant of this procedure is implemented
in SCIP, the solver in which we will conduct our computational experiments.

1.2 Deriving Dual Proofs for Infeasible LP Relaxations

If infeasibility is proven by the LP relaxation, however, the proof of infeasibility
is given by a ray in the dual space. Consider a node of the branch-and-bound tree
and the corresponding subproblem of type (3) with local bounds � ≤ �′ ≤ u′ ≤ u.
The dual LP of the corresponding LP relaxation of (3) is given by

max{yTb + rT{�′, u′} | yTA + rT = cT, y ∈ R
m
+ , r ∈ R

n}, (4)

rT{�′, u′} :=
∑

j∈N : r�
j>0

r�
j�

′
j −

∑

j∈N : −ru
j <0

ru
j u′

j (5)

with r�, ru ∈ R
n
+ representing the dual variables on the finite bound constraints,

see, e.g. [6]. Note, variable xj can only be tight in at most one bound constraint,
thus, r�

j and ru
j cannot be non-zero at the same time and it holds that r = r�−ru.

For every variable xj it holds that rj = cj − yTA·j , where A·j denotes the j-
th column of A. By LP theory, each ray (y, r) ∈ R

m+n in the dual space that
satisfies

yTA + rT = 0
yTb + rT{�′, u′} > 0 (6)

proves infeasibility of (the LP relaxation of) (3), which is a direct consequence
of the Farkas Lemma [9]. Hence, there exists a solution (y, r) of (6) with

Δmax(yTA, �′, u′) < yTb,

where Δmax(yTA, �′, u′) :=
∑

yTA<0(y
TA)�′+

∑
yTA>0(y

TA)u′ is called the maxi-
mal activity of yTA w.r.t. the local bounds �′ and u′. Consequently, the inequality

yTAx ≥ yTb (7)

has to be fulfilled by every feasible solution of the MIP. In the following, this
type of constraint will be called dual proof constraint. If locally valid constraints
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are present in subproblem (3), e.g., due to the separation of local cutting planes,
the corresponding dual multipliers are assumed to be zero, thereby leaving those
constraints out of aggregation (7). Otherwise, the resulting dual proof constraint
might not be globally valid anymore. For an approach how to deal with local
cutting planes we refer to [27].

Observation 1. Let b ∈ R
m be the right-hand side vector and yTAx ≥ yTb be

a dual proof constraint that was derived from an infeasible subproblem. After
tightening the (global) right-hand side to b̃ ∈ R

m, with b ≥ b̃ ≥ b, the following
holds.

(i) yTAx ≥ yTb is still globally valid.
(ii) The dual proof can be strengthened to yTAx ≥ yTb̃, while preserving global

validity.

The contribution of the paper is twofold. Firstly, it describes LP-based solu-
tion learning, and approach to generate feasible, conflict-like constraints from
feasible primal MIP solutions. Secondly, it describes conflict-free learning, a tech-
nique to generate conflict-like constraints from feasible dual LP solutions. Both
approaches are evaluated in a computational study.

2 LP-Based Solution Learning

Conflict-driven learning or no-good learning [22,28], is a fundamental concept
in SAT and CP. Besides learning from infeasibility, the methodology of solution-
driven learning or good-learning [5,11], i.e., learning from feasibility, has been
applied in SAT and CP. Recently, good learning has been successfully applied to
nested constraint programming [4]. Generally, algorithms for infeasibility learn-
ing can be extended to solution learning by pretending that the corresponding
cutoff constraint with the updated incumbent was already present for the current
subproblem and would prove it to be infeasible (after the incumbent update).

To the best of our knowledge, solution learning has not yet been studied for
MIP. Every LP that yields an optimal solution that is MIP-feasible, i.e., feasible
for (1), can be used to apply LP-based solution learning.

Consider a subproblem (3) with local bounds �′ and u′. Moreover, let x�
LP be

an optimal solution of its LP relaxation that is feasible for MIP (1). If x�
LP is

an improving solution, i.e., cTx�
LP < c, x�

LP defines the new incumbent solution.
Consequently, the cutoff bound can be updated to

c = cTx�
LP − ε

with ε > 0. Note that MIP solvers using floating point arithmetic typically sub-
tract a small epsilon in the order or magnitude of the used tolerances, e.g., SCIP
uses ε = 10−6, to enforce strict improvement during the search. If all variables
with a non-zero coefficient in the objective function are integral, the minimal
improvement in the objective value can be computed by a GCD-like algorithm
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and used as an epsilon. For example, the objective value always improves by a
multiple of 1 if cj ∈ {−1, 0, 1} with j ∈ I and cj = 0 with j ∈ N \I. Thus, ε = 1
could be used in this case.

Since the objective cutoff constraint (2) is part of the constraint matrix A,
the right-hand side vector b changes when updating the cutoff bound. Assume
that row index m represents the matrix row associated to the objective cutoff
constraint, i.e., Am·x ≥ b with −cT = Am· and bm = −c. After an incumbent
update, the right-hand side vector changes to b̃ with b̃m = bm + c − cTx�

LP and
b̃i = bi for all i = 1, . . . , m − 1. Thus, the feasible LP relaxation defined by the
local bounds �′ and u′ turns infeasible after the update. Henceforth, we can apply
both conflict graph analysis and dual proof analysis to learn from LP relaxations
that yield integer feasible solutions.

2.1 Implementation

In our implementation, LP-based solution learning is applied whenever the LP
relaxation yields a feasible solution, i.e., all integrality conditions are satisfied,
that improved the incumbent solution. Note, in principle LP-based solution
learning could also be applied for all improving solutions, e.g., found within
a heuristic, with an objective value equal to the objective value of the LP relax-
ation. However, in this publication we only apply solution whenever LP infor-
mation are immediately available, e.g., during diving heuristics.

Solution learning can immediately apply both conflict graph analysis and
dual proof analysis [26] when the feasible LP relaxation turns into a bound
exceeding LP without introducing much computational overhead.

3 Conflict-Free Dual Proofs

State-of-the-art MIP solvers like SCIP and FICO Xpress do not actively steer
the tree search towards the exploration of infeasible subproblems. Thus, learning
from infeasibility information can be considered to be a “byproduct”.

Here, we will discuss how the concept of conflict analysis can be extended
to learn from subproblems that are not (yet) infeasible. Therefore, we consider
dual proofs of form (7) that are conflict-free.

Definition 2 (Conflict-Free Dual Proof). Let � ≤ �′ ≤ u′ ≤ u be a set
of local bounds and yTAx ≥ yTb be an aggregation of globally valid constraint
weighted by y ∈ R

m
+ . The inequality yTAx ≥ yTb is called conflict-free dual proof

with respect to �′ and u′ if

i) Δmax(yTA, �′, u′) ≥ yTb and
ii) ∃ b̃ ∈ R with b ≥ b̃ ≥ b such that Δmax(yTA, �′, u′) < yTb̃.

Within a black-box MIP solver (e.g., SCIP, FICO Xpress, Gurobi, and CPLEX)
that considers the cutoff bound for pruning subproblems, the concept of conflict-
free dual proofs simplifies as follows. W.l.o.g. let Am·x ≥ bm be the row assigned
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to the cutoff bound. Moreover, let Â ∈ R
n×(m−1) be the coefficient matrix with-

out the row assigned to the objective cutoff constraint (2) and b̂ ∈ R
m−1 the

corresponding constraint right-hand side, i.e.,

A :=
[

Â
−c

]
and b :=

[
b̂

−c

]
.

Let (3) be feasible with respect to the local bounds �′, u′, and the current solution
x. Moreover, let (y, r) be a dual feasible solution for (4). By complementary
slackness, it follows that ym = 0. Thus, it holds that

cTx ≥ yTb + rT{�′, u′}
⇔ c ≥ yTb + (c − yTA){�′, u′}
⇔ c ≥ ŷTb̂ + ymc + (c − (ŷTÂ + ymc)){�′, u′}
⇔ c ≥ ŷTb̂ + (c − ŷTÂ){�′, u′}
⇔ (ŷTÂ − c){�′, u′} ≥ ŷTb̂ − c

⇔ yTA{�′, u′} ≥ yTb with ym = 1.

Consequently, from every dual feasible solution (y, r) ∈ R
m+n a globally valid

constraint

yTAx ≥ yTb (8)

can be derived. This constraint is generally not violated with respect to �, u and
will not be violated with respect to �′ and u′ either, when the local LP relaxation
is feasible. Moreover, let c ∈ R be the current dual bound, i.e., the global lower
bound on the MIP solution value. If there exists a c̃ ∈ R with c < c̃ < c such
that

(ŷTÂ − c){�′, u′} < ŷTb̂ − c̃,

then (8) is a conflict-free dual proof. The new global right-hand side is defined
by b̃ :=

[
b −c̃

]T.

3.1 Implementation

In our implementation, we maintain a storage of conflict-free dual proofs which
is restricted to at most 200 entries. For every conflict-free dual proof we calculate
the primal target bound c̃ := c+(Δmax(yTA, �′, u′)− ŷTb). The decision whether
a conflict-free dual proof is added to the storage for later considerations only
depends on the primal target bound. If the storage maintains less than 200
entries, a conflict-free dual proof is accepted if its primal target bound is at least
the current global dual bound. In case of a completely filled storage, the newly
derived conflict-free dual proof is immediately rejected if its primal target bound
is smaller (i.e., worse) than the smallest target bound among all maintained
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conflict-free dual proofs. Otherwise, the conflict-free dual proof is accepted if it
has a larger (i.e., better) target bound or less nonzero coefficients. With this
strategy we aim to prefer short conflict-free dual proofs that tend to propagate
earlier with respect to the cutoff bound, i.e., the improvements on the primal
side. Whenever a new conflict-free dual proof is derived, all maintained conflict-
free dual proofs whose primal target bound become worse than the global dual
bound are immediately removed from the storage.

If a new incumbent solution x is found, we add at most 10 conflict-free dual
proofs for which c̃ ≥ cTx holds to the actual solving process, i.e., these (conflict-
free) dual proofs become “active” and are considered during the remainder of the
search for, e.g., variable bound propagation. Moreover, we allow for slight relaxed
primal target bounds. Thus, every conflict-free dual proof for which c̃ ≥ (1 +
α)cTx, with α ≥ 0, holds is considered to become active. In our computational
experiments we used α = 0.1.

4 Computational Experiments

This section presents a first computational study of solution learning and
conflict-free learning for MIP. Our preliminary implementation covers the main
features, but is still missing some fine-tuning, as we will see in the following.

We implemented the techniques presented in this paper within the academic
MIP solver SCIP 6.0.2, using SoPlex 4.0.2 as LP solver [12]. In the following,
we will refer to SCIP with default settings as default and to SCIP with enabled
LP-based solution learning and enabled conflict-free learning as sollearning
and conffree, respectively. To SCIP using both techniques simultaneously, we
will refer to as combined. Our experiments were run on a cluster of identical
machines equipped with Intel Xeon E5-2690 CPUs with 2.6GHz and 128GB of
RAM. A time limit of 7200 s was set.

As test set we used the benchmark set of Miplib 2017 [13] which consists of
240 MIP problems. To account for the effect of performance variability [15,17]
all experiments were performed with three different global random seeds [19].
Every pair of MIP problem and seed is treated as an individual observation,
effectively resulting in a test set of 720 instances. Instances where at least one
setting finished with numerical violations are not considered in the following.

Aggregated results on Miplib 2017 comparing all three configurations to
SCIP with default settings as baseline are shown in Table 1. For every set of
instances the group of affected and hard instances is shown. We denote an
instance to be hard, when at least one setting takes more than 100 s and as
affected, if it could be solved by at least one setting and the number of nodes
differs among settings. The columns of Table 1 show the number of instances
in every groups (#) and the number of solved instances (S). For the base-
line (default) the shifted geometric mean [2] of solving times in seconds (T,
shift = 1) and explored search tree nodes (N, shift = 100) is shown. For
conffree, sollearning, and combined relative solving times (TQ) and nodes
(NQ) compared to default are shown. Relative numbers less than 1 indicate
improvements.
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Table 1. Aggregated computational results on Miplib 2017 benchmark over three
random seeds. Improvements by at least 5% are highlighted in bold and blue.

default conffree sollearning combined
# S T N S TQ NQ S TQ NQ S TQ NQ

Miplib 2017
All 716 369 1124 6069 370 1.001 0.976 368 0.995 0.991 368 1.000 0.973
Affected 127 122 567 30265 123 0.993 0.927 121 0.975 0.952 121 0.987 0.902

≥100 s 107 102 969 45972 103 0.987 0.919 101 0.970 0.944 101 0.979 0.887

Mixed binary
All 523 272 1153 5639 273 1.000 0.976 272 0.991 0.983 273 0.996 0.967
Affected 83 81 517 26406 82 0.983 0.913 81 0.943 0.901 82 0.958 0.857

≥100 s 72 70 817 42289 71 0.973 0.899 70 0.934 0.886 71 0.942 0.834

Our computational experiments indicate that both individual techniques and
the combination of them are superior compared to default on affected instances.
There, we observe an overall speed-up of up to 2.5% (sollearning). At the same
time, the tree size reduced by up to 10% (combined). Regarding solving time
and tree size, sollearning alone is superior to conffree. combined is superior
to both individual settings regarding nodes and almost identical to sollearning
regarding solving time. For the set of all instances, the number of nodes reduces
for all settings, while the impact on running time is almost neutral.

A reason why conffree seems to be less powerful than sollearning might
be the fact that dual proof constraints are known to work better in the neighbor-
hood of the subproblem where they were derived from, which is usually controlled
by maintaining a small pool of around 100 dual proof constraints [3,25,26]. In
our implementation, the origin of conflict-free dual proofs is not yet consid-
ered; this is a direction of future research. Also, conflict-free learning is applied
much more frequently than solution learning (every feasible LP relaxation versus
every integral LP relaxation), leading to a larger overhead. While sollearning
only increases the time SCIP spends during conflict analysis by marginal 2.4%,
conffree learning increases it by a factor of 3.4. This shows the need to better
choose at which nodes to run conflict-free learning in future implementations.

In our computational study we observed that both techniques perform
poorly on instances with general integer variables. One reason for the deteri-
oration might be that for such instances, conflict graph analysis will generate
bound disjunction constraints [1] which are generally weaker than conflict con-
straints on binary variables. Table 1 also presents results when applying the tech-
niques only to (mixed) binary problems. In this case, improvements of over 5%
(sollearning) with respect to running time and 14% (combined) with respect
to the number of nodes can be observed on affected individual.

5 Conclusion and Outlook

In this paper, we discussed how conflict analysis techniques can be applied to
learn from subproblems that are not (yet) proven to be infeasible. For our com-
putational study, we implemented two conflict-free learning techniques, namely
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conflict-free dual proofs and LP-based solution learning, within the academic
MIP solver SCIP. The results of our study indicate promising results on the
benchmark set of Miplib 2017 when applying conflict-free learning techniques
within SCIP. In particular, our experiments indicate that solution learning seems
to work best on mixed binary instances.

For future research, we plan to consider the locality of derived proofs to
increase the efficiency and we plan to predict, e.g., by ML techniques, from which
subproblems conflict-free dual proofs should be derived to reduce the overhead.

Acknowledgments. The work for this article has been conducted within the Research
Campus Modal funded by the German Federal Ministry of Education and Research
(fund number 05M14ZAM).
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