LNCS 12296

Emmanuel Hebrard
Nysret Musliu (Eds.)

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research

17th International Conference, CPAIOR 2020
Vienna, Austria, September 21-24, 2020
Proceedings

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12296

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Emmanuel Hebrard - Nysret Musliu (Eds.)

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research

17th International Conference, CPAIOR 2020
Vienna, Austria, September 21-24, 2020
Proceedings

@ Springer

Editors

Emmanuel Hebrard Nysret Musliu

LAAS - CNRS TU Wien

Toulouse, France Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-030-58941-7 ISBN 978-3-030-58942-4 (eBook)

https://doi.org/10.1007/978-3-030-58942-4
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3131-0709
https://orcid.org/0000-0002-3992-8637
https://doi.org/10.1007/978-3-030-58942-4

Preface

This volume contains the papers that were presented at the 17th International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR 2020), exceptionally held online from Vienna, Austria,
September 21-24, 2020. The conference received a total of 92 submissions, including
72 regular paper and 20 extended abstract submissions. The regular papers reflect
original unpublished work, whereas the extended abstracts contain either original
unpublished work or a summary of work that was published elsewhere. Each regular
paper was reviewed by at least three Program Committee members. The reviewing
phase was followed by an author response period and a general discussion by the
Program Committee. The extended abstracts were reviewed for appropriateness for the
conference. At the end of the review period, 36 regular papers were accepted for
presentation during the conference and publication in this volume, and 12 abstracts
were accepted for short presentation at the conference. Among the 36 regular papers, 4
were published directly in the journal via a fast-track review process. The abstracts
of these papers can be found in this volume.

In addition to the regular papers and extended abstracts, four invited talks, whose
abstracts and/or articles can be found in this volume, were given:

— Margarida Carvalho (University of Montreal, Canada): “Algorithmic approaches
for integer programming games and a story on policy making”

— Georg Gottlob (University of Oxford, UK, and TU Wien, Austria): “Hypertree
Decompositions: Questions and Answers”

— Sebastian Pokutta (Technische Universitit Berlin, Zuse Institute Berlin,
Germany): “Restarting Algorithms: Sometimes there is Free Lunch”

— Peter Stuckey (Monash University, Australia): “Combinatorial Optimisation for
Multi-Agent Path Finding”

The conference program included a Master Class on the topic “Recent Advances in
Optimisation Paradigms and Solving Technology’:

— Laurent Perron and Frédéric Didier (Google Paris, France) “Constraint
Programming”

— Armin Biere (Johannes Kepler University Linz, Austria): “Satisfiability (SAT)”

— Giinther Raidl and Andrea Schaerf (TU Wien, Austria, and University of Udine,
Italy): “(Meta)Heuristics and Hybridisation”

— Inés Lynce (University of Lisbon, Portugal): “MaxSAT, Multi-Objective Optimi-
sation, and Parallelism”

— Timo Berthold (Fair Isaac Germany GmbH, Germany): “Mixed-Integer
Programming”

— Marie Pelleau (Université Nice Sophia-Antipolis, France): “Numerical Constraint
Programming”

vi Preface

The COVID-19 pandemic imposed significant hardship on the organization of this
conference, which was initially scheduled to May 26-29, but was eventually held
online during September 21-24. We want to express our deepest gratitude to the Local
Organizing Committee members (Juliane Auerbock, Tobias Geibinger, Lucas
Kletzander, Florian Mischek, Mihaela Rozman, and Felix Winter) and the Master Class
organizers (Emir Demirovi¢, Andrea Rendl, and Mohamed Siala). We would also like
to thank the Program Committee members and external reviewers for their outstanding
work in reviewing and discussing — often in great details — every paper, and in par-
ticular for providing extra reviews on short notice when required. Of course, we also
thank the authors for upholding the high standards of the conference! Finally, we
would like to express our gratitude to our sponsors for their support: Vienna Center for
Logic and Algorithms (VCLA), Artificial Intelligence Journal (Al)), FICO,
Osterreichische Post AG, Springer, Vienna Convention Bureau, and TU Wien.

July 2020 Emmanuel Hebrard
Nysret Musliu

Program Chairs

Emmanuel Hebrard
Nysret Musliu

Conference Chair

Nysret Musliu

Master Class Chairs

Emir Demirovi¢
Andrea Rendl
Mohamed Siala

Program Committee

Tobias Achterberg
Christian Artigues
Chris Beck

Nicolas Beldiceanu
David Bergman
Timo Berthold
Hadrien Cambazard

Andre Augusto Cire
Mathijs de Weerdt
Sophie Demassey
Emir Demirovi¢
Luca Di Gaspero
Pierre Flener
Graeme Gange
Martin Josef Geiger
Bernard Gendron
Tias Guns

John Hooker

Matti Jarvisalo
Serdar Kadioglu
George Katsirelos
Philip Kilby

Organization

LAAS-CNRS, Université de Toulouse, France
TU Wien, Austria

TU Wien, Austria

The University of Melbourne, Australia
Satalia, Austria
INSA, LAAS-CNRS, Université de Toulouse, France

Gurobi, Germany

LAAS-CNRS, Université de Toulouse, France

University of Toronto, Canada

IMT Atlantique (LS2N), France

University of Connecticut, USA

Fair Isaac Germany GmbH, Germany

G-SCOP, Grenoble INP, CNRS, Joseph Fourier
University, France

University of Toronto, Canada

Delft University of Technology, The Netherlands

CMA, MINES ParisTech, France

Delft University of Technology, The Netherlands

DPIA, University of Udine, Italy

Uppsala University, Sweden

Monash University, Australia

Helmut Schmidt University, Germany

University of Montreal, Canada

Vrije Universiteit Brussel (VUB), Belgium

Carnegie Mellon University, USA

University of Helsinki, Finland

Brown University, USA

MIA Paris, INRAE, AgroParisTech, France

Data61 and The Australian National University,
Australia

viii Organization

Joris Kinable
Lars Kotthoff
Philippe Laborie
Andrea Lodi
Michele Lombardi
Marco Liibbecke
Laurent Michel
Michela Milano
Ioannis Mourtos
Nina Narodytska
Margaux Nattaf

Alexandre Papadopoulos
Sophie N. Parragh
Laurent Perron

Gilles Pesant
Claude-Guy Quimper
Giinther Raidl
Jean-Charles Regin
Andrea Rendl
Louis-Martin Rousseau
Elina Ronnberg
Domenico Salvagnin
Scott Sanner

Andrea Schaerf

Pierre Schaus

Andreas Schutt

Paul Shaw

Stefan Szeider

Johan Thapper
Michael Trick
Charlotte Truchet
Tommaso Urli

Pascal Van Hentenryck
Willem-Jan Van Hoeve
Petr Vilim

Mark Wallace

Tomas Werner

Eindhoven University of Technology, The Netherlands

University of Wyoming, USA

IBM, France

Ecole Polytechnique de Montréal, Canada

DISI, University of Bologna, Italy

RWTH Aachen University, Germany

University of Connecticut, USA

University of Bologna, Italy

Athens University of Economics and Business, Greece

VMware Research, USA

Univerité¢ Grenoble Alpes, CNRS, Grenoble INP*,
G-SCOP, France

Spotity, France

Johannes Kepler University Linz, Austria

Google Pairs, France

Ecole Polytechnique de Montréal, Canada

Université Laval, Canada

TU Wien, Austria

University Nice-Sophia Antipolis, I3S, CNRS, France

Satalia, Austria

Ecole Polytechnique de Montréal, Canada

Link6ping University, Sweden

University of Padova, Italy

University of Toronto, Canada

University of Udine, Italy

UCLouvain, Belgium

CSIRO and The University of Melbourne, Australia

IBM, France

TU Wien, Austria

Université Gustave Eiffel, France

Carnegie Mellon University, Qatar

LS2N UMR 6004, Université de Nantes, France

Satalia, Austria

Georgia Institute of Technology, USA

Carnegie Mellon University, USA

IBM, Czech Republic

Monash University, Australia

CTU Prague, Czech Republic

Additional Reviewers

Bjordal, Gustav
Buchheim, Christoph
Cappart, Quentin
Castro, Margarita
Curry, Timothy
Derval, Guillaume
Gottwald, Leona
Hoppmann, Kai
Houndji, Vinasétan Ratheil
Isoart, Nicolas
Kapoor, Reena

Lam, Edward

Le Bodic, Pierre

Organization

Lhomme, Olivier
Libralesso, Luc
Lo Bianco, Giovanni
Lozano, Leonardo
Luce, Robert
Refalo, Philippe
Senderovich, Arik
Stelmach, Fabian
Talbot, Pierre
Tesch, Alexander
Zarpellon, Giulia
Zitoun, Heytem

ix

Extended Abstracts

The following extended abstracts were accepted for presentation at the conference:

— Sina Aghaei, Andres Gomez, and Phebe Vayanos. “Learning Optimal Classification
Trees: Strong Max-Flow Formulations.”
— Hassan Anis and Roy Kwon. “Data-Driven Construction of Financial Factor
Models.”
— Harun Aydilek, Muberra Allahverdi, Asiye Aydilek, and Ali Allahverdi. “Algo-
rithms and Effective Dominance Relations for a No-Wait Flowshop Scheduling
with Random Setup Times.”
— Roland Braune. “Machine Learning-based Queuing Model Regression — Example
Selection, Feature Engineering and the Role of Traffic Intensity.”
— Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordstrom. “Justifying All
Differences Using Pseudo-Boolean Reasoning.”
— Nikolaus Frohner, Bernhard Neumann, and Giinther Raidl. “A Beam Search
Approach to the Traveling Tournament Problem.”
— Patrick Gerhards. “Using CP and MIP techniques to tackle the Multi-mode
Resource Investment Problem.”
— Benjamin Hogstad, Jonas Falkner, and Lars Schmidt-Thieme. “A Search Heuristic
Guided Reinforcement Learning Approach to the Traveling Salesman Problem.”
— Matthias Horn, Marko Djukanovic, Christian Blum, and Giinther R. Raidl. “On the
Use of Decision Diagrams for the Repetition-Free Longest Common Subsequence.”
— Thomas Jatschka, Tobias Rodemann, and Giinther Raidl. “A Large Neighborhood
Search for Distributing Service Points in Mobility Applications with Capacities and
Limited Resources.”
— Luc Libralesso, Abdel-Malik Bouhassoun, Hadrien Cambazard, and Vincent Jost.
“Solving the Sequential Ordering Problem with anytime tree search.”
— Maximilian Moll and Leonhard Kunczik. “A Reinforcement Learning Approach to
the Labeled Maximum Matching Problem.”

Abstracts of Invited Talks

Algorithmic Approaches for Integer
Programming Games and a Story on Policy
Making

Margarida Carvalho

Université de Montréal
carvalho@iro.umontreal.ca

Abstract. Integer programming games (IPGs) are a class of problems that can
suitably model non-cooperative interactions between decision makers (players).
Under such formulations, each player goal in the game is described by a
parametric integer program where interactions between players are reflected in
their objective functions. This talk will begin with the description of IPGs, the
challenge they represent and an algorithmic framework to solve them that
integrates ideas of normal-form games [2]. The notion of solution to IPGs will
motivate the second part of this talk, where refinements will be discussed, in
particular, in the context of policy making for the kidney exchange game [1].
The latter will highlight an opportunity to integrate (patients) fairness which we
address as a constraint satisfaction problem.

Acknowledgments. The author wishs to thank the support of the Institut de valorisation
des données and Fonds de Recherche du Québec through the FRQ-IVADO Research
Chair in Data Science for Combinatorial Game Theory, and the Natural Sciences and
Engineering Research Council of Canada through the discovery grant 2019-04557.

This research was enabled in part by support provided by Calcul Québec (www.
calculquebec.ca) and Compute Canada (www.computecanada.ca).

References

1. Carvalho, M., Lodi, A.: Game theoretical analysis of kidney exchange programs (2020).
arXiv:1911.09207

2. Carvalho, M., Lodi, A., Pedroso, J.P.: Computing Nash equilibria for integer programming
games (2018). Technical report: DS4DM-2018-006

http://orcid.org/0000-0002-2344-0960
http://www.calculquebec.ca
http://www.calculquebec.ca
http://www.computecanada.ca
http://arxiv.org/abs/arXiv:1911.09207
https://cerc-datascience.polymtl.ca/wp-content/uploads/2018/10/Technical-Report_DS4DM-2018-006.pdf

The HyperTrac Project: Recent Progress
and Future Research Directions
on Hypergraph Decompositions

Georg Gottlob' @, Matthias Lanzinger’® , Davide Mario Longo?
Cem Okulmus’@® , Reinhard Pichler?

! University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk
2TU Wien, Vienna, Austria
{mlanzing,dlongo, cokulmus,pichler}@dbai.tuwien.ac.at

Abstract. Constraint Satisfaction Problems (CSPs) play a central role in many
applications in Artificial Intelligence and Operations Research. In general,
solving CSPs is NP-complete. The structure of CSPs is best described by
hypergraphs. Therefore, various forms of hypergraph decompositions have been
proposed in the literature to identify tractable fragments of CSPs. However, also
the computation of a concrete hypergraph decomposition is a challenging task in
itself. In this paper, we report on recent progress in the study of hypergraph
decompositions and we outline several directions for future research.

This work was supported by the Austrian Science Fund (FWF): P30930-N35 in the context
of the project “HyperTrac”. Georg Gottlob is a Royal Society Research Professor and acknowledges
support by the Royal Society for the present work in the context of the project “RAISON DATA”
(Project reference: RP\AR1\201074). Davide Mario Longo’s work was also supported by the FWF
project W1255-N23.

http://orcid.org/0000-0002-2353-5230
http://orcid.org/0000-0002-7601-3727
http://orcid.org/0000-0003-4018-4994
http://orcid.org/0000-0002-7742-0439
http://orcid.org/0000-0002-1760-122X

Restarting Algorithms:
Sometimes There Is Free Lunch

Sebastian Pokutta'

! Technische Universit at Berlin, Berlin, Germany

pokutta@zib.de
2 Zuse Institute Berlin, Berlin, Germany

Abstract. In this overview article we will consider the deliberate restarting of
algorithms, a meta technique, in order to improve the algorithm’s performance,
e.g., convergence rates or approximation guarantees. One of the major advan-
tages is that restarts are relatively black box, not requiring any (significant)
changes to the base algorithm that is restarted or the underlying argument, while
leading to potentially significant improvements, e.g., from sublinear to linear
rates of convergence. Restarts are widely used in different fields and have
become a powerful tool to leverage additional information that has not been
directly incorporated in the base algorithm or argument. We will review restarts
in various settings from continuous optimization, discrete optimization, and
submodular function maximization where they have delivered impressive
results.

Keywords: Restarts - Convex optimization - Discrete optimization - Submod-
ular optimization

Combinatorial Optimisation for Multi-agent
Path Finding

Peter Stuckey

Monash University
peter.stuckey@monash.edu

Abstract. Multi-Agent Path Finding (MAPF) is a problem that requires one to
compute a set of collision-free paths for a team of moving agents. The problem
appears in variety of practical applications including warehouse logistics, traffic
management, aircraft towing and computer games. The general version of the
problem (minimizing makespan or sum of path costs, on graphs with parallel
actions and rotations) is known to be NP-hard. One of the leading methods for
solving MAPF optimally, employs a strategy known as Conflict-based Search
(CBS). The central idea is to plan paths for each agent independently and
resolve collisions by branching the current plan. Each branch is a new candidate
plan wherein one agent or the other is forced to find a new path that avoids the
selected collision. When we examine CBS from an optimisation perspective, it
is clearly a form of (Logic-based) Benders Decomposition. This begs the
question: can we use combinatorial optimisation techniques to tackle the MAPF
problem efficiently? In this talk I will show two approaches: the first uses
core-guided search together with a nogood learning Constraint Programming
solver [1]; the second uses Branch-and-Cut-and-Price together with a MIP
solver [2]. Both methods prove to be highly competitive to previous CBS
approaches.

References

1. Gange, G., Harabor, D., Stuckey, P.J.: Lazy {CBS}: Implicit conflict-based search using lazy
clause generation. In: Lipovetzky, N., Onaindia, E., Smith, D. (eds.) Proceedings of the 29th
International Conference on Automated Planning and Scheduling. pp. 155-162. AAAI Press
(2019). https://www.aaai.org/ojs/index.php/ICAPS/article/view/3471

2. Harabor, D., Lam, E., Le Bodic, P., Stuckey, P.J.: Branch-and-cut-and-price for multi-agent
pathfinding. In: Kraus, S. (ed.) Proceedings of the 28th International Joint Conference on
Artificial Intelligence. pp. 1289-1296. IJCAI Press (2019). https://doi.org/10.24963/ijcai.
2019/179

http://orcid.org/0000-0003-2186-0459
https://www.aaai.org/ojs/index.php/ICAPS/article/view/3471
https://doi.org/10.24963/ijcai.2019/179
https://doi.org/10.24963/ijcai.2019/179

Abstracts of Fast-Track
Journal Papers

Power of Pre-processing: Production
Scheduling with Variable Energy Pricing
and Power-Saving States

Ondiej Benedikt'~, Istvan Médos'2, and Zdengk Hanzalek'

! Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical,
University in Prague, Czech Republic
2 Faculty of Electrical Engineering, Czech Technical University in Prague,
Czech Republic
{ondrej.benedikt, istvan.modos, zdenek.hanzalek}@cvut.cz

In recent years, the research interest in energy-efficient scheduling has been increasing
[3, 4]. Besides the traditional performance-oriented criteria, such as makespan, the
authors also consider energy optimization, in order to make the production
cost-efficient and environmentally friendly.

In this work, we study a single machine scheduling problem to minimize the total
energy cost (TEC) of the production, assuming the power-saving states of the machine
as well as time-of-use (TOU) energy pricing.

The integration of the power-saving states and the TOU pricing was initially
proposed by Shrouf et al. [5], who designed an integer linear programming (ILP) model
for the single machine problem with the fixed order of the jobs. Later, Aghelinejad
et al. [1] improved and generalized the existing ILP model to consider even an arbitrary
order of the jobs, in which case the problem is NP-hard [2]. However, in both [1] and
[5], only small instances of the problem have been solved optimally. One of the reasons
for the inefficiency of the models is that the proposed ILP models explicitly formulate
the transition behavior of the machine, and optimize it jointly with the scheduling of the
jobs. In consequence, the size of the ILP models is large, and only the medium
instances can be solved optimally.

We propose a novel pre-processing technique for the single machine scheduling
problem with TOU pricing and machine states. Our technique pre-computes the
optimal switching behavior of the machine states in time w.r.t. energy costs. Then, the
pre-computed costs of the optimal switchings allow us to design efficient exact ILP and
constraint programming models called and ILP-SPACES and CP-SPACES.

As shown by the experiments', our approach outperforms the existing ILP model
ILP-REF [1], which is, to the best of our knowledge, the state-of-the-art among the

This work was supported by the Technology Agency of the Czech Republic under the National
Competence Center - Cybernetics and Artificial Intelligence TN01000024.

' The source codes are publicly available at https:/github.com/CTU-IIG/EnergyStatesAndCosts
Scheduling, while all the benchmark instances can be found at https:/github.com/CTU-IIG/
EnergyStatesAndCostsSchedulingData.

https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling
https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling
https://github.com/CTU-IIG/EnergyStatesAndCostsSchedulingData
https://github.com/CTU-IIG/EnergyStatesAndCostsSchedulingData

XXil O. Benedikt et al.

Table 1. Comparison of upper bound ub, lower bound /b and runtime on MEDIUM dataset with
the transitions graph having two standby states. Numbers n and / denote the number of jobs and
pricing intervals, respectively. Time-limit is 600 s, and TLR stands for time-limit reached.

MEDIUM+TWOSBY

Instance ILP-REF [1] CP-SPACES ILP-SPACES
n h |ub[-] |Ib[-] |t[s] |ub[-] [Ib[-] |t[s] |ub[-] |Ib[-] |tls]
30 106 3815 3815|294 | 3815|1240 TLR | 3815| 3815| 14
30 129| 3804 3804(30.7 | 3815|1220 TLR | 3804 3804 23
30 152| 3804 3804(42.0 3815|1210 TLR | 3804| 3804 7.0
30 175| 3804 3804614 | 3815|1210 TLR | 3804 3804 O5
60 254110 863 | 10 863 | 588.1 | 10 863 |4 190 | TLR |10 863 10863 | 2.0
60 31110289 |10 087 | TLR |10 401 |3 860 | TLR |10 248 | 10 248 | 43.3
60 368 9917| 9696 | TLR |10 104 |3 470| TLR | 9917 | 9917 | 82.1
60 42620346 9133 | TLR | 9954|3340 TLR | 9874 | 9874|2339
90 37017 179 |14 818 | TLR |15 401 |5 900 | TLR |15 379 |15 379 | 140.2
90 454122 80812 951 | TLR |14 973 |5 680 | TLR |14 923 | 14 923 | 138.6
90 538125992 |11 868 | TLR |14 729 |5 500 | TLR |14 548 | 14 548 | 403.8
90 62129 558 |11 406 | TLR |14 900 |4 620 | TLR |14 392 | 14 392 |225.8
Average time 412.6 >600 107.5

[s]:
Average 16.02 0.84 0.00

optimality

gap [%]:

exact methods for this problem. Our ILP model can solve all the benchmark instances
with up to 190 jobs and 1200 pricing intervals within the time-limit. On the other hand,
state-of-the-art ILP-REF model from the literature scales only up to instances with 60
jobs and 300 intervals. The results for MEDIUM instances are shown in Table 1.

References

1. Aghelinejad, M., Ouazene, Y., Yalaoui, A.: Production scheduling optimisation with machine
state and time-dependent energy costs. Int. J. Prod. Res. 56(16), 5558-5575 (2018). https://
doi.org/10.1080/00207543.2017.1414969

2. Aghelinejad, M., Ouazene, Y., Yalaoui, A.: Complexity analysis of energy-efficient single
machine scheduling problems. Oper. Res. Perspect. 6, 100105 (2019). https://doi.org/10.1016/
j.orp.2019.100105

3. Gahm, C., Denz, F., Dirr, M., Tuma, A.: Energy-efficient scheduling in manufacturing
companies: a review and research framework. Eur. J. Oper. Res. 248(3), 744-757 (2016).
https://doi.org/10.1016/j.ejor.2015.07.017

https://doi.org/10.1080/00207543.2017.1414969
https://doi.org/10.1080/00207543.2017.1414969
https://doi.org/10.1016/j.orp.2019.100105
https://doi.org/10.1016/j.orp.2019.100105
https://doi.org/10.1016/j.ejor.2015.07.017

Power of Pre-processing xxiil

4. Gao, K., Huang, Y., Sadollah, A., Wang, L.: A review of energy-efficient scheduling in
intelligent production systems. Complex Intell. Syst. (2019). https://doi.org/10.1007/s40747-
019-00122-6

5. Shrouf, F., Ordieres-Mer¢ J., Garcia-Sanchez, A., Ortega-Mier, M.: Optimizing the produc-
tion scheduling of a single machine to minimize total energy consumption costs. J. Clean.
Prod.67, 197-207 (2014). https://doi.org/10.1016/j.jclepro.2013.12.024

https://doi.org/10.1007/s40747-019-00122-6
https://doi.org/10.1007/s40747-019-00122-6
https://doi.org/10.1016/j.jclepro.2013.12.024

Learn to Relax: Integrating 0-1 Integer Linear
Programming with Pseudo-Boolean
Conlflict-Driven Search

Jo Devriendt'® and Ambros Gleixnerz, and Jakob Nordstrom™!

! Lund University, Lund, Sweden
jo.devriendt@cs.lth.se
2 Zuse Institute Berlin, Berlin, Germany
gleixner@zib.de
3 University of Copenhagen, Copenhagen, Denmark
jn@di.ku.dk

Conflict-driven pseudo-Boolean (PB) solvers optimize 0-1 integer linear programs by
generalizing the conflict-driven clause learning (CDCL) paradigm [3, 12, 14] from
SAT solving. Some PB solvers essentially encode the input back to CNF and run
CDCL [8, 13, 15], but another approach, which is our focus in this work, is to extend
the solvers from CNF to reason natively with linear constraints [5, 10, 11, 16]. Such
solvers have the potential to run exponentially faster than CDCL solvers, since the
cutting planes method [6] they use is exponentially stronger than the resolution method
underlying CDCL [4]. In practice, however, PB solvers can sometimes get hopelessly
stuck even in parts of the search space where the linear programming (LP) relaxation
of the residual problem is infeasible [9].

Inspired by mixed integer programming (MIP), we address this problem by
interleaving incremental LP solving with the conflict-driven pseudo-Boolean search.
Our integration is fully dynamic, with the PB and LP solvers communicating contin-
uously during execution. In order to balance resources and avoid that the LP solver
starves the PB solver, LP calls are made with a strict time budget and are terminated as
soon as this budget is exceeded. If the LP solver detects infeasibility, we use Farkas’
lemma to combine existing constraints into a new linear constraint that can serve as the
starting point of pseudo-Boolean conflict analysis. When the LP solver instead finds a
rational solution, we generate Gomory cuts that prune away this solution and tighten
the search space both on the PB and the LP side. The PB solver can also use infor-
mation from the rational solution to direct the search, e.g., by determining how to
assign variables, and we also explore passing constraints learned during conflict
analysis from the PB solver to the LP solver. To the best of our knowledge, this is the
first time techniques from MIP solving such as LP relaxations and cut generation have
been combined with full-blown pseudo-Boolean conflict analysis, which learns new
linear inequalities by operating directly on the linear constraints (rather than applying
resolution on clauses derived from such constraints, as has been done previously in
MIP and constraint programming solvers in, e.g., [1, 7]).

Learn to Relax XXV

We report on extensive experiments with a combined solver integrating the LP

solver SoPlex [17] (part of the MIP solver SCIP [2]) with the pseudo-Boolean solver
RoundingSat [10]. Although we believe that there is ample room for further
improvements, this hybrid approach already exhibits significantly improved perfor-

mance on a wide range of benchmarks, approaching a “best of two worlds

99

scenario

between SAT-style conflict-driven search and MIP-style branch-and-cut.

References

10.

11.

12.

13.

14.

. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4-20

(2007)

. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new

approach to integrate CP and MIP. In: Proceedings of the 5th International Conference on the
Integration of Al and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems (CPAIOR 2008), pp. 6-20 (2008)

. Bayardo Jr., RJ., Schrag, R.: Using CSP look-back techniques to solve real-world SAT

instances. In: Proceedings 14th National Conference on Artificial Intelligence (AAAI 1997),
pp- 203-208 (1997)

. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of

clause learning. J. Artif. Intell. Res. 22, 319-351 (2004)

. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Trans. Comput.

Aided Des. Integr. Circ. Syst. 24(3), 305-317 (2005)

. Cook, W., Coullard, C.R., Turdn, G.: On the complexity of cutting-plane proofs. Discrete

Appl. Math. 18(1), 25-38 (1987)

. Downing, N.R.: Scheduling and Rostering with Learning Constraint Solvers. Ph.D. thesis,

University of Melbourne (2016)

. Eén, N., Sorensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf. Boolean

Model. Comput. 2(1-4), 1-26 (2006)

. Elffers, J., Girdldez-Cru, J., Nordstrém, J., Vinyals, M.: Using combinatorial benchmarks to

probe the reasoning power of pseudo-Boolean solvers. In: Proceedings of the 21st Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2018), pp. 75—
93 (2018)

Elffers, J., Nordstrom, J.: Divide and conquer: Towards faster pseudo-Boolean solving. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI
2018), pp. 1291-1299 (2018)

Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean Model. Comput. 7,
59-64 (2010)

Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfia-
bility. IEEE Trans. Comput. 48(5), 506-521 (1999)

Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,. In: Sinz,
C., Egly, U., (eds) SAT 2014. LNCS, vol. 8561, pp. 438-445. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3_33

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC
2001), pp. 530-535 (2001)

https://doi.org/10.1007/978-3-319-09284-3_33

XXVi J. Devriendt et al.

15. Sakai, M., Nabeshima, H.: Construction of an ROBDD for a PB-constraint in band form and
related techniques for PB-solvers. IEICE Trans. Inf. Syst. 98-D(6), 1121-1127 (2015)

16. Sheini, H.M., Sakallah, K.A.: Pueblo: a hybrid pseudo-Boolean SAT solver. J. Satisf.
Boolean Model. Comput. 2(1-4), 165-189 (2006)

17. SoPlex—the Sequential object oriented simPlex. https://soplex.zib.de

https://soplex.zib.de

The Potential of Quantum Annealing for Rapid
Solution Structure Identification

Yuchen Pangl, Carleton Coffrin2, Andrey Y. Lokhovz,
and Marc Vuffray?

! University of Illinois at Urbana-Champaign, Champaign IL 61801, USA
yuchenp2@illinois.edu
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA
{cjc, lokhov,vuffray}@lanl.gov

As the challenge of scaling traditional transistor-based computing technology contin-
ues to increase, experimental physicists and high-tech companies have begun to
explore radically different computational technologies, such as gate-based quantum
computers, quantum annealers, neuromorphic computers, memristive circuits, and
coherent Ising machines. The goal of all of these technologies is to leverage the
dynamical evolution of a physical system to perform a computation that is challenging
to emulate using traditional computing technology, a notable motivating application
being the simulation of quantum physics. Despite their entirely disparate physical
implementations, optimization of quadratic functions over binary variables has
emerged as a challenging computational task that a wide variety of these hardware
platforms can address. As these technologies mature, it may be possible for this spe-
cialized hardware to rapidly solve challenging combinatorial problems, such as
Max-Cut or Max-Clique. However, at this time, understanding the computational
advantage that these hardware platforms can bring to established optimization algo-
rithms remains an open question. It is unclear if the primary benefit will be dramatically
reduced runtimes due to highly specialized hardware implementations or if the
behavior of the underlying analog computing model will bring intrinsic algorithmic
advantages.

Focusing on quantum annealing, this work provides new insights on the properties
of this computing model and identifies problem structures where it can provide a
computational benefit over a broad range of established solution methods. Through the
careful design of contrived optimization problems, called Corrupted Biased Ferro-
magnets, this work provides new insights into the computational properties of quantum
annealing and suggests that this model has an uncanny ability to avoid local minima
and quickly identify the structure of high-quality solutions. A meticulous comparison
to a variety of algorithms spanning both complete and local search suggest that
quantum annealing's performance on the proposed optimization tasks is unique. This
result provides new insights into the time scales and types of optimization problems
where quantum annealing has the potential to provide notable performance gains over
established optimization algorithms and suggests the development of hybrid algorithms
that combine the best features of quantum annealing and state-of-the-art classical
approaches.

A New Constraint Programming Model
and Solving for the Cyclic Hoist Scheduling
Problem

Mark Wallace! @ and Neil Yorke-Smith?

! Monash University, Australia
mark.wallace@monash.edu
2 Delft University of Technology, The Netherlands
n.yorke-smith@tudelft.nl

Abstract. The cyclic hoist scheduling problem (CHSP) is a well-studied opti-
misation problem due to its importance in industry [1]. In its simplest form, the
problem requires one to specify the operation of an industrial hoist which
operates along a linear track above a set of tanks. The hoist must move a fixed,
repeating sequence of items to be processed through the tanks.

When many items are simultaneously in process, the hoist or hoists have to
be available to complete all the moves between items. Moreover, each hoist
must itself travel from the end of the last move that it performed to the start
of the next move. Thus hoist availability is a complex resource constraint. The
challenge is to find a feasible schedule that minimises the cycle time, which is
termed its period. The central disjunctive constraint in the CHSP connects the
period with the temporal decisions about hoists [4].

Despite the wide range of solving techniques applied to the CHSP and its
variants, the models have remained complicated and inflexible, or have failed to
scale up with larger problem instances.

This paper re-examines modelling of the CHSP and proposes a new simple
and flexible constraint programming formulation [3]. We compare current
state-of-the-art solvers on this formulation, and show that modelling in a
high-level constraint language, MiniZinc [2], leads to both a simple, generic
model and to computational results that outperform the state-of-the-art previous
models. We benchmark on standard and new problem instances against results
reported in the literature, using integer programming, constraint programming
and lazy clause generation solvers.

We further demonstrate that combining integer programming and lazy clause
generation, using the multiple cores of modern processors, has potential to
improve over either solving approach alone.

Acknowledgements. We thank the CPAIOR reviewers for their comments, and for
their recommendation to the Constraints journal where the full version of this work is
expected to appear. Thanks also to C. Chu, K. Fleszar, S. van der Laan, W. Lei, K. Leo,
G. Tack and F. Wimmenauer.

http://orcid.org/0000-0001-7326-8110
http://orcid.org/0000-0002-1814-3515

A New Constraint Programming Model and Solving for the Cyclic XXixX

References

1. Boysen, N., Briskorn, D., Meisel, F.: A generalized classification scheme for crane scheduling
with interference. Eur. J. Oper. Res. 258(1), 343-357 (2017)

2. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a Standard CP Modelling Language. In: Bessic¢re, C. (eds.) CP 2007. LNCS, vol. 4741,
pp- 529-543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

3. Riera, D., Yorke-Smith, N.: An improved hybrid model for the generic hoist scheduling
problem. Annals of Oper. Res. 115(1-4), 173-191 (2002). https://doi.org/10.1023/A:
1021101321339

4. Rodosek, R., Wallace, M.: A generic model and hybrid algorithm for hoist scheduling
problems. In: Maher, M., Puget, J.F. (eds.) CP 1998. LNCS, vol. 1520. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-49481-2_28

https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1023/A:1021101321339
https://doi.org/10.1023/A:1021101321339
https://doi.org/10.1007/3-540-49481-2_28

Contents

Invited Papers

The HyperTrac Project: Recent Progress and Future Research Directions

on Hypergraph Decompositionsc.. ...,
Georg Gottlob, Matthias Lanzinger, Davide Mario Longo,
Cem Okulmus, and Reinhard Pichler

Restarting Algorithms: Sometimes There Is Free Lunch.
Sebastian Pokutta

Regular Papers

Discriminating Instance Generation from Abstract Specifications:

A Case Study with CPand MIP
Ozgiir Akgiin, Nguyen Dang, lan Miguel, Andrds Z. Salamon,
Patrick Spracklen, and Christopher Stone

Bilevel Optimization for On-Demand Multimodal Transit Systems
Beste Basciftci and Pascal Van Hentenryck

Local Search and Constraint Programming for a Real-World Examination

Timetabling Problem
Michele Battistutta, Sara Ceschia, Fabio De Cesco, Luca Di Gaspero,
Andrea Schaerf, and Elena Topan

Parameterised Bounds on the Sum of Variables
in Time-Series CONStraintsottt e e
Nicolas Beldiceanu, Maria I. Restrepo, and Helmut Simonis

A Learning-Based Algorithm to Quickly Compute Good Primal Solutions

for Stochastic Integer Programs.,
Yoshua Bengio, Emma Frejinger, Andrea Lodi, Rahul Patel,
and Sriram Sankaranarayanan

Integer Programming Techniques for Minor-Embedding

in Quantum Annealers.
David E. Bernal, Kyle E. C. Booth, Raouf Dridi, Hedayat Alghassi,
Sridhar Tayur, and Davide Venturelli

An Ising Framework for Constrained Clustering on Special
Purpose Hardware.
Eldan Cohen, Arik Senderovich, and J. Christopher Beck

XXXil Contents

From MiNIZINC to Optimization Modulo Theories, and Back. 148
Francesco Contaldo, Patrick Trentin, and Roberto Sebastiani

Transfer-Expanded Graphs for On-Demand Multimodal Transit Systems 167
Kevin Dalmeijer and Pascal Van Hentenryck

Reinforcement Learning for Variable Selection in a Branch

and Bound Algorithm 176
Marc Etheve, Zacharie Ales, Come Bissuel, Olivier Juan,
and Safia Kedad-Sidhoum

Duplex Encoding of Staircase At-Most-One Constraints
for the Antibandwidth Problem. 186
Katalin Fazekas, Markus Sinnl, Armin Biere, and Sophie Parragh

Core-Guided and Core-Boosted Search for CP 205
Graeme Gange, Jeremias Berg, Emir Demirovi¢, and Peter J. Stuckey

Robust Resource Planning for Aircraft Ground Operations 222
Yagmur S. Gok, Daniel Guimarans, Peter J. Stuckey,
Maurizio Tomasella, and Cemalettin Ozturk

Pierre-Yves Bouchet, Stefano Gualandi, and Louis-Martin Rousseau

An Exact CP Approach for the Cardinality-Constrained Euclidean
Minimum Sum-of-Squares Clustering Problem 256
Mohammed Najib Haouas, Daniel Aloise, and Gilles Pesant

Minimum Cycle Partition with Length Requirements. 273
Kai Hoppmann, Gioni Mexi, Oleg Burdakov, Carl Johan Casselgren,
and Thorsten Koch

Optimizing Student Course Preferences in School Timetabling 283
Richard Hoshino and Irene Fabris

Adaptive CP-Based Lagrangian Relaxation for TSP Solving. 300
Nicolas Isoart and Jean-Charles Régin

Minimal Perturbation in University Timetabling with Maximum
Satisfiability 317
Alexandre Lemos, Pedro T. Monteiro, and Inés Lynce

Leveraging Constraint Scheduling: A Case Study to the Textile Industry 334
Alexandre Mercier-Aubin, Jonathan Gaudreault,
and Claude-Guy Quimper

Template Matching and Decision Diagrams for Multi-agent Path Finding. . . . 347
Jayanth Krishna Mogali, Willem-Jan van Hoeve, and Stephen F. Smith

Contents

Hybrid Classification and Reasoning for Image-Based Constraint Solving . . .

Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, and Tias Guns

Multi-speed Gearbox Synthesis Using Global Search and Non-convex

Optimization.t

Chiara Piacentini, Hyunmin Cheong, Mehran Ebrahimi,
and Adrian Butscher

Enumerative Branching with Less Repetition

Thiago Serra

Lossless Compression of Deep Neural Networks.

Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam

CP and Hybrid Models for Two-Stage Batching and Scheduling.

Tanya Y. Tang and J. Christopher Beck

Improving a Branch-and-Bound Approach for the Degree-Constrained

Minimum Spanning Tree Problem with LKH

Maximilian Thiessen, Luis Quesada, and Kenneth N. Brown

Insertion Sequence Variables for Hybrid Routing

and Scheduling Problems. L

Charles Thomas, Roger Kameugne, and Pierre Schaus

Relaxation-Aware Heuristics for Exact Optimization in Graphical Models . . .

Fulya Trésser, Simon de Givry, and George Katsirelos

Exact Method Approaches for the Differential Harvest Problem

Gabriel Volte, Eric Bourreau, Rodolphe Giroudeau, and Olivier Naud

Scheduling of Dual-Arm Multi-tool Assembly Robots and Workspace

Layout Optimizationt e e et

Johan Wessén, Mats Carlsson, and Christian Schulte

Conflict-Free Learning for Mixed Integer Programming.

Jakob Witzig and Timo Berthold

Author Index

XXXiil

364

381

399

417

431

447

457

475

Invited Papers

®

Check for
updates

The HyperTrac Project: Recent Progress
and Future Research Directions on
Hypergraph Decompositions

Georg Gottlob'®, Matthias Lanzinger?®, Davide Mario Longo?®)

Cem Okulmus?@®, and Reinhard Pichler?

! University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk
2 TU Wien, Vienna, Austria
{mlanzing,dlongo, cokulmus,pichler}@dbai.tuwien.ac.at

Abstract. Constraint Satisfaction Problems (CSPs) play a central role
in many applications in Artificial Intelligence and Operations Research.
In general, solving CSPs is NP-complete. The structure of CSPs is best
described by hypergraphs. Therefore, various forms of hypergraph decom-
positions have been proposed in the literature to identify tractable frag-
ments of CSPs. However, also the computation of a concrete hypergraph
decomposition is a challenging task in itself. In this paper, we report
on recent progress in the study of hypergraph decompositions and we
outline several directions for future research.

1 Introduction

Constraint Satisfaction Problems (CSPs) are arguably among the most impor-
tant problems in Artificial Intelligence with a wide range of applications
including diagnosis, planning, natural language processing, machine learning,
etc. [10,21,47,48,53,54]. CSPs provide convenient means to formulate combina-
torial problems and are, therefore, also used in many applications in Operations
Research spanning scheduling [22,39,45], vehicle routing [9,41,51], all kinds of
graph problems such as colouring, matching, and many other areas [12,15,48].
Formally, solving a CSP comes down to model-checking of a first-order for-
mula, where the formula only uses the connectives 3, A but not V,V,—. In this
sense, solving CSPs is the equivalent problem to answering Conjunctive Queries
(CQs) — one of the most fundamental kinds of queries in the database world,
which essentially corresponds to (unnested) SELECT-FROM-WHERE queries
in the popular database query language SQL or Basic Graph Patterns (BGPs) in

This work was supported by the Austrian Science Fund (FWF): P30930-N35 in the
context of the project “HyperTrac”. Georg Gottlob is a Royal Society Research Professor
and acknowledges support by the Royal Society for the present work in the context
of the project “RAISON DATA” (Project reference: RP\R1\201074). Davide Mario
Longo’s work was also supported by the FWF project W1255-N23.

© Springer Nature Switzerland AG 2020

E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 3-21, 2020.
https://doi.org/10.1007,/978-3-030-58942-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_1&domain=pdf
http://orcid.org/0000-0002-2353-5230
http://orcid.org/0000-0002-7601-3727
http://orcid.org/0000-0003-4018-4994
http://orcid.org/0000-0002-7742-0439
http://orcid.org/0000-0002-1760-122X
https://doi.org/10.1007/978-3-030-58942-4_1

4 G. Gottlob et al.

the Semantic Web query language SPARQL. The underlying structure of these
problems is best captured by a hypergraph. A hypergraph H = (V, E) consists
of a set V of vertices and a set E of edges with £ C 2V. An FO-formula ¢
representing a CSP or CQ gives rise to the hypergraph H = (V| E), where V
contains the set of variables of ¢ and E contains a set e of variables as an edge
if and only if there is an atom in ¢ whose variables are precisely the ones in e.

Solving CSPs and answering CQs are classical NP-complete problems [13].
Therefore, there is a long history of research on finding tractable fragments
of these problems. A natural approach to this task is to search for struc-
tural properties of the underlying hypergraph which ensure tractability of CSP
solving and CQ answering. A key result in this area is that CSP instances
whose underlying hypergraph is acyclic can be solved in polynomial time [55].
Several generalisations of acyclicity have been identified by defining various
forms of hypergraph decompositions, each associated with a specific notion of
width [14,27]. Intuitively, the width measures how far away a hypergraph is
from being acyclic, with a width of 1 describing the acyclic hypergraphs. The
most important forms of decompositions are hypertree decompositions (HDs)
[28], generalized hypertree decompositions (GHDs) [28], and fractional hypertree
decompositions (FHDs) [32]. These decomposition methods give rise to the fol-
lowing notions of width of a hypergraph H: the hypertree width hw(H), gen-
eralized hypertree width ghw(H), and fractional hypertree width fhw(H), where
fhw(H) < ghw(H) < hw(H) holds for every hypergraph H. For definitions, see
Sect. 2.

The use of decompositions can significantly speed up CSP solving and CQ
answering. In fact, in [1], a speed-up of up to a factor of 2,500 was reported for the
CQs studied there. Structural decompositions are therefore already being used
in commercial products and research prototypes, both in the CSP area as well
as in database systems [1,3,4,33,40]. However, deciding if a given hypergraph H
has width < k for given k (for one of the width-notions mentioned above) is itself
a challenging task. Formally, for a given width-notion width and a desired value
k of the width, we are thus confronted with the following family of problems:

CHECK (width, k)

Instance: A hypergraph H.
Question: Is width(H) < k?

We are also interested in the functional counterpart of these problems where, in
case of a “yes’-answer, a witnessing decomposition of width < k should be output
as well. However, all decision procedures recalled in this paper also compute an
explicit witness and so there is little need to distinguish between the decision
variant and function variant of this family of problems.

The CHECK(hw, k) problem is decidable in polynomial time for any fixed k
[28]. In contrast, CHECK(ghw, k) and CHECK(fhw, k) are NP-hard already for
k = 2 [20,29]. Nevertheless, since ghw and fhw are in general smaller than hw,
using GHDs and FHDs allows, in theory, for even more efficient algorithms for
solving CSPs and answering CQs than using HDs. This is due to the fact that

The HyperTrac Project on Hypergraph Decompositions 5

CSP and CQ algorithms using decompositions have a runtime which is exponen-
tial in the width. Hence, a smaller width may ultimately pay off even if the search
for a GHD or FHD is harder than for an HD. In light of the hardness result,
the search for islands of tractability for CHECK(ghw, k) and CHECK (fhw, k) has,
therefore, evolved as an important research goal. In total, we see the following
three main research directions to further increase the applicability of decompo-
sition techniques to CSP solving in AI- and OR-applications:

— Complexity Analysis. We need to identify restrictions on hypergraphs that
guarantee the tractability of the CHECK(ghw, k) and CHECK(fhw, k) problems
for fixed k > 1. Such restrictions should fulfill two main criteria: (i) they need
to be realistic in the sense that they apply to a large number of CSPs and/or
CQs in real-life applications, and (ii) they need to be non-trivial in the sense
that the restriction itself does not already imply bounded ghw or fhw. Trivial
restrictions would be, e.g., bounded treewidth or acyclicity.

— Algorithm Design. The main motivation for identifying tractable fragments is
to lay the foundation for algorithms which perform well on problem instances
that fall into these fragments. Consequently, there have been several differ-
ent approaches to the algorithm design for the CHECK problem, including
a top-down construction of the decomposition (as proposed in the original
paper on HDs [28]), a parallel approach to constructing a decomposition, and
reductions to other problems such as SMT. In addition, preprocessing in the
form of simplifications of a given hypergraph plays an important role.

— From Theory to Practice. To make sure that the decomposition algorithms
work well in practice, extensive empirical evaluation is necessary. Above all, a
good understanding of the hypergraphs occurring in real-world applications
is required. Of course, in the real world, we do not encounter hypegraphs
as such but CSPs and database queries with some underlying hypergraph
structure. Especially for database queries (to a lesser extent also for CSPs)
it has turned out that extracting these hypergraph structures is a non-trivial
task by itself, since the CQs are somehow “hidden” behind the syntax of real-
world SQL or SPARQL queries. In this paper, we report on the challenges
encountered when setting up a hypergraph benchmark, that has already been
used for several validation tasks and in competitions.

The paper is organized as follows: in Sect. 2, we recall some basic notions
and results. Sections 3-5 are then devoted to a report on recent developments
in the three main research areas mentioned above, i.e., “complexity analysis”,
“algorithm design”, and “from theory to practice”. In Sect. 6, we briefly summarize
the current state of affairs and outline promising directions for future research.

2 Preliminaries

We have already introduced in Sect. 1 hypergraphs as pairs (V, F) consisting
of a set V of vertices and a set E of edges. It is convenient to assume that V'
contains no isolated vertices (i.e., vertices not contained in any edge). We can

6 G. Gottlob et al.

then identify a hypergraph H with its edge set F and implicitly assume V = | J E.
A subhypergraph H' = (V', E’) of H is then simply obtained by taking a subset
E’ of E and setting V' = |J E’. The primal graph G = (W, F) of a hypergraph
H = (V,E) is obtained by setting W = V and defining F' such that two vertices
form an edge in G if and only if they occur jointly in some edge in E.

We are interested in the following structural properties of hypergraphs: the
rank of H is the maximum cardinality of the edges of H; the degree of H refers
to the maximum number of edges containing a particular vertex. A class C of
hypergraphs is said to have bounded rank (or bounded degree) if there exists a
constant ¢ such that every hypergraph in C has rank (or degree) < ¢. In [26],
the notion of (¢, d)-hypergraphs for integers ¢ > 1 and d > 0 was introduced:
H = (V,E) is a (¢, d)-hypergraph if the intersection of any ¢ distinct edges in
E has at most d elements, i.e., for every subset E/ C FE with |E'| = ¢, we
have | E’| < d. A class C of hypergraphs is said to satisfy the bounded multi-
intersection property (BMIP) [20], if there exist ¢ > 1 and d > 0, such that every
H in C is a (¢, d)-hypergraph. As a special case studied in [19,20], a class C of
hypergraphs is said to satisfy the bounded intersection property (BIP), if there
exists d > 0, such that every H in C is a (2, d)-hypergraph.

For the definition of hypergraph decompositions and their widths, we need
the following notions: edge weight functions are of the form v: E — [0,1]. We
define B(v) = {v € V' [X cp,e.v(e) > 1} as the set of all vertices covered by
v and weight(y) = .. V(e) as the weight of . The set of edges with non-zero
weight is called the support of v, i.e., supp(y) = {e € E | ~v(e) > 0}. We call v
a fractional edge cover of a set X CV by edges in F, if X C B(v). For X CV,
we write p}; (X) to denote the minimum weight over all fractional edge covers of
X. For integral edge covers, the edge weight functions are restricted to integral
values, i.e., v: E — {0,1}. We write py(X) to denote the minimum weight over
all integral edge covers of X. Clearly, p3;(X) < pu(X) holds for any H = (V, E)
and X C V. The ratio pg(V)/p5; (V) is referred to as the integrality gap.

A tuple (T, (By)uer) is a tree decomposition (TD) of hypergraph H = (V, E),
if T is a tree, every B, is a subset of V', and the following conditions are satisfied:

(1) For every edge e € E, there is a node w in T, such that e C B,,, and
(2) for every vertex v € V, {u € T | v € B,} is connected in T.

The vertex sets B, are usually referred to as the bags of the TD. Note that, by
slight abuse of notation, we write u € T' to express that u is a node in T.

A fractional hypertree decomposition (FHD) of a hypergraph H = (V, E) is
a tuple (T, (By)uer, (Yu)uer), such that (T, (By)uer) is a TD of H and the
following condition holds:

(3) For each uw € T, B, C B(7,) holds, i.e., 7, is a fractional edge cover of B,.

A generalized hypertree decomposition (GHD) is an FHD, where , is an integral
edge weight function for every u € T. Hence, by condition (3), v, is an integral
edge cover of B,. A hypertree decomposition (HD) of H is a GHD with the
following additional condition (referred to as the “special condition” in [28]):

The HyperTrac Project on Hypergraph Decompositions 7

(4) For each uw € T, V(Ty,) N B(.,) C By, where V(Ty,) denotes the union of all
bags in the subtree of T" rooted at wu.

Because of condition (4), it is important to consider T' as a rooted tree in case
of HDs. For TDs, FHDs, and GHDs, the root of T can be arbitrarily chosen
or simply ignored. The width of an FHD, GHD, or HD is defined as the maxi-
mum weight of the functions ~, over all nodes u € T'. The fractional hypertree
width, generalized hypertree width, and hypertree width of H (denoted fhw(H),
ghw(H), and hw(H)) is the minimum width over all FHDs, GHDs, and HDs of H.

We next recall some notions which are of great importance in most of the
current decomposition algorithms. Consider a hypergraph H = (V, E) and let
S C V. A set C of vertices with C C (V' \ 5) is [S]-connected if for any two
distinct vertices v, w € C, there exists a sequence of vertices v = vg,...,v, = W
and a sequence of edges eq,...,en—1 (h > 0) such that {v;,v;11} C (e; \ S), for
each i € {0,...,h —1}. A set C C V is an [S]-component, if C is maximal [S]-
connected. Such a vertex set S that is used to split a hypergraph into components
is referred to as a separator. Note that a separator S also gives rise to disjoint
subsets of E with Ec :={e € E | enNC # 0}. The size of an [S]-component C
is defined as the number of edges in Ec. We call S a balanced separator if all [S]-
components of H have size < @ We say that a TD (T, (By)uer) (analogously
for FHD, GHD, or HD) is in normal form if every internal node u of T satisfies
the following condition: let uq,...,us be the child nodes of uw. Then, for each
i €{1,...,4}, there is a [B,]-component C; of H with C; = V(T,,) \ By, where

V(T,,) denotes the union of all bags in the subtree of T rooted at u;.

3 On the Complexity of Checking Widths

The search for tractable fragments of CHECK(ghw, k) and CHECK(fhw,k) has
seen significant progress in recent years. Where there were individual proofs
for various properties at first, we now have an overarching theoretical framework
and tractability results for highly general properties that unify the current theory
of tractable CHECK fragments. In this section we give a brief overview of this
uniform theory and the resulting tractable classes for CHECK. The presentation
here follows [26] which is the source of all stated results.

The BMIP will play an important role in our discussion. On the one hand,
the structure of edge intersections has been identified as an important factor in
the complexity of the problem. On the other hand, it can be argued that real-
world problems correspond to (¢, d)-hypergraphs with low ¢ and d. An empirical
study of these parameters in real-world instances is presented later in Sect. 5.

3.1 Decompositions from Candidate Bags

In hypertree decompositions, the special condition implies a kind of lower bound
on the bags of the decomposition in the sense that certain vertices need to be
included in certain bags. With the generalization to ghw and fhw the special

8 G. Gottlob et al.

condition is dropped and we lose the lower bound. This then leaves us with
exponentially many possible choices, even in trivial hypergraphs: e.g., every sub-
set of an edge is a possible bag. We will see soon that this exponential number
of possible bags is in fact the main challenge in the construction of polynomial
time algorithms for width checking.

To illustrate this point we consider the computational complexity of con-
structing a tree decomposition from a set of candidate bags which is given to the
procedure as an input. Through rather straightforward dynamic programming
this is indeed possible in polynomial time.

Theorem 1. Let H = (V,E) be a hypergraph and S C 2V. There exists an
algorithm that takes H and S as an input and decides in polynomial time whether
there exists a tree decomposition in normal form such that for every node wu it
holds that B,, € S.

Interestingly, the restriction to normal form decompositions is necessary here.
Without it the problem is in fact NP-complete [26].

We call such a tree decomposition where each bag is from S, a candidate
tree decomposition (w.r.t. S). Theorem 1 thus reduces the check problem to the
problem of computing a set of candidate bags S for hypergraph H such that
there exists a candidate tree decomposition w.r.t. S if and only if ghw(H) < k.
The following example illustrates this idea.

Ezample 1. Let k and r be constant integers and let H = (V, E) be a hypergraph
with rank at most 7. Let S C 2V be the set of all subsets of unions of k edges,

ie.,
s= J 2u¥

E'€E*

where E* contains all k element subsets of E. Since there are (‘f ‘) < |E*
combinations of k edges and each edge has rank at most r we see that S can be
computed in time O(|E|*2*"). Clearly, S contains all bags that can be covered
by k edges. It is then easy to see that there exists a candidate tree decomposition
w.r.t. S if and only if ghw(H) < k.

Thus, computing S and then using Theorem 1 gives us a polynomial time
procedure for CHECK(ghw, k) for hypergraph classes with bounded rank.

Note that it is enough to consider only tree decompositions in Theorem 1.
In our setting it is always possible to find the respective covers of bags, if they
exist, in polynomial time (recall that k is considered constant).

3.2 Computing Candidate Bags

Example 1 illustrates the way we can use candidate bags for tractability results.
However, the problem becomes much more complex as soon as we abandon
bounded rank since we can no longer enumerate all (exponentially many) bags.
The problem thus shifts to constructing appropriate sets of candidate bags.

The HyperTrac Project on Hypergraph Decompositions 9

This splitting of the problem into constructing candidate tree decompositions
and computing lists of candidate bags then becomes very convenient. It separates
the algorithmic considerations for constructing a decomposition from the com-
binatorial problem of limiting the number of bags. Proving both separately is
significantly simpler than doing both at the same time.

Hence, for a polynomial size list of candidate bags we need to consider a
more limited set of decompositions. In particular, we focus only on bag-mazximal
GHDs in which every bag is made as large as possible. Bag-maximal GHDs have
two important properties: First, there always exists a bag-maximal GHD of H
with width ghw(H). Second, for every edge e and node u in the decomposition
we can characterize e N B,, (assuming it is not empty) by some covers in the
decomposition in the following way

¢
eNB, = ﬂeﬂB(%i)

J=1

where (uq,...,u¢) is the path from u to the node u, in which e is covered
completely, i.e., e C B,,.

However, the length of such paths cannot be bounded in terms of ¢, d and
k. Instead, we make use of the assumption that we are dealing with a (c,d)-
hypergraph for constant ¢ and d. Intuitively, we distinguish between two cases
based on whether the intersection along the path intersects e with many (> c)
distinct edges. If so, the intersection is small (< d) and we can compute all
subsets of the intersection. One of them will be eN B,,. In the other case we can
explicitly compute all the intersections of e with up to ¢ edges, which will again
contain e N B,,. A detailed argument can be found in Section 5 of [26].

Theorem 2. Fiz constant k > 1. For every hypergraph class C that enjoys the
BMIP the CHECK(ghw, k) problem is tractable.

We see that CHECK(ghw, k) is tractable in a wide range of cases. The BMIP
properly generalizes many important hypergraph properties. A hypergraph with
rank r is a (1,r)-hypergraph and a hypergraph with degree § is a (§ + 1,0)-
hypergraph. Hence, bounded rank and bounded degree (and bounded intersec-
tion) are all simply special cases of the BMIP.

3.3 One Step Further: Fractional Hypertree Width

The restriction to bounded rank is only one part of what made Example 1 simple.
The other part is that we considered only ghw. With the step to fhw it is no longer
clear of which sets we want to consider the subsets as more than k edges can be
necessary to cover a set of vertices with weight k. In general, the integrality gap
for edge cover in hypergraphs is ©(log|V|) [44]. This means that we would need
the union of & log|V| edges to cover every set of vertices U with p*(U) < k. If
we follow the naive approach in Example 1, we would thus get a time bound of
O(|E|FlogVIgrklog V1) which is no longer polynomial.

10 G. Gottlob et al.

We see that for CHECK(fhw, k) we have an additional challenge, bounding
the support of fractional edge covers with weight at most k. Indeed, in cases
where the support is boundable we can, in a sense, reduce the problem to the
ghw case. This reduction results in Theorem 3 below.

Definition 1. We say an FHD (T, (By)uer, (Yu)uer) s g-limited if for every
node w in T it holds that |support(v,)| < q. Analogous to fhw(H) we define
Jhw,(H) as the minimum width of all q-limited FHDs of H.

Theorem 3. Fiz constants q and k. For every hypergraph class C that enjoys
the BMIP the CHECK(fhw,, k) problem is tractable.

Theorem 3 abstracts away the computation of the tree decomposition and the
computation of the candidate bags. We can show that fhw checking is tractable
for some class C if for each hypergraph H € C there exists a constant ¢ such that

Jhw,(H) = fhuw(H).

o V(H,) = {vo,v1,...,0n}
E(H,) ={{vo,vi} |1 <i<n}U
U Uy U3 e Uy {{v1,v2,...,0n}}

Fig. 1. (2,1)-hypergraphs H,, with large support

However, bounding the support of fractional edge covers is a difficult problem.
Consider the (2,1)-hypergraphs given in Fig. 1. We have p*(H,) =2 — % where
the optimal cover assigns weight % to all the edges incident to vg and 1 — % to
the big edge. That is, the optimal cover has support of size n.

The example demonstrates that it is not possible to bound the support of
the optimal cover, even in (2, 1)-hypergraphs. However, if we were interested in
checking fhw < 2 for such a H,, we do not necessarily need to consider the
optimal covers but can instead consider slightly heavier covers (still with weight
< 2) for which we can bound the support. In this case it is easy as we can always
cover the whole hypergraph with 2 edges that are assigned weight 1.

While the problem is much more complex in general, the main idea stays
the same. One can show that for every cover v of weight at most k, there exists
another weight assignment v such that B(y) C B(v), weight(v) < k, for which
the support can be bounded in terms of k, ¢, and d if either ¢ <2 or d = 0. In
consequence we arrive at the following theorem.

Theorem 4. Fiz constants q and k. For every hypergraph class C that enjoys
either bounded degree or bounded intersection the CHECK(fhw,k) problem is
tractable.

Note that Theorem 4 holds also for classes of bounded rank because it is a
special case of bounded intersection.

The HyperTrac Project on Hypergraph Decompositions 11

4 Hypergraph Decomposition Algorithms and Systems

In this section we give a brief overview on recent developments in the field of
hypergraph decomposition algorithms. We highlight some selected works which
implement decomposition algorithms, i.e., released systems which can produce
decompositions and are therefore advancing the practical ability to use decom-
positions within more complex systems, such as a database management system
or a CSP solver.

4.1 Hypergraph Preprocessing

Since simplifications of the input hypergraph are common across many of the
presented systems and algorithms, we present here an overview of the techniques
so far developed. The common idea is always to reduce the input in such a way
that no valid solutions are lost, thus reducing the effective search space.

Fichte et al. 18] use a number of simplifications, each reducing the size of the
SMT encoding: 1) the removal of edges contained in other edges, 2) splitting H
into its biconnected components, and working on each of them separately (for a
definition of biconnected components we refer to [25]), 3) the removal of vertices
of degree one and 4) the removal of simplicial vertices, defined as vertices whose
neighbourhood in H forms a clique in the primal graph. This is allowed for the
computation of fhw, since the fractional cover number of this clique then forms
a lower bound on the fhw of H. Additional simplifications from the literature
are: 5) the removal of all vertices (bar one) of the same type [30], where a type of
a vertex is the set of all its incident edges and 6) splitting H into its hinges [25].
This is a generalisation of simplification 2). A definition of hinge is found in [25].

4.2 Top-Down Construction

HD Computation. We will briefly recall the basic principles of the DetKDecomp
algorithm from [31], which improves significantly on the first implementation,
called OptKDecomp [43] of the original HD algorithm from [28]. For a fixed k > 1,
DetKDecomp tries to construct an HD of a hypergraph H in a top-down fashion.
Its input is a subhypergraph H' (initially the same as H). It produces a new node
u (initially serving as the root), then computes the [B,]-components C1, ..., Cy.
We define for each component a new hypergraph H; = (V;, E;), where E; =
{e | enC; # 0} and V; = |J F;. Then DetKDecomp recursively searches for an
HD of width < k for each hypergraph H;. If this succeeds for each H;, then
DetKDecomp accepts. If there exists an H; s.t. no HD of width < k can be found,
then DetKDecomp backtracks and produces a new node u. If all choices for nodes
have been exhausted, it rejects.

Tractable GHD Computation. Novel algorithms for solving the aforemen-
tioned problem of CHECK(ghw, k) in polynomial time for (2, d)-hypergraphs with
low d are presented in [20]. Based on these results, implementations of these

12 G. Gottlob et al.

algorithms are developed in [19], built on the basis of DetKDecomp (with the
new system aptly named NewDetKDecomp). The source code is publicly available
under https://github.com/TUfischl/newdetkdecomp.

We proceed to sketch out the tractable ghw algorithm used in NewDetKDecomp.
As mentioned in Sect. 3, the main reason for the NP-completeness of the
CHECK(ghw, k) problem is the exponential number of candidate bags. Follow-
ing the construction from [20], NewDetKDecomp explicitly computes intersections
of up to k edges, and considers these subsets of edges (called subedges in the
sequel) as part of the input. From Theorem 2 it follows that this can be done in
polynomial time for hypergraph classes with the BIP (as it is a special case of
BMIP). Based on when exactly those subedges are added to the currently consid-
ered subhypergraph, two variants were defined, called GlobalBIP and LocalBIP.
We leave out details here and refer readers to [19].

4.3 Parallel Approaches

Balanced Separator Algorithm. Yet another ghw algorithm from [19],
BalSep builds on an observation from [2]: For any hypergraph H with ghw
< k, there exists a balanced separator S with pg(S) < k. This gives rise to an
algorithm which checks for the presence of such separators, and if they cannot be
found, can immediately reject. By definition, a balanced separator reduces the
size of hypergraphs to be considered by at least half. This means that BalSep
has logarithmically bounded recursion depth, compared with the linear recursion
depth of DetKDecomp. This property makes BalSep a promising candidate for a
parallel approach to computing ghw.

Parallel GHD Computation. On the basis of the Balanced Separator algo-
rithm, a parallel algorithm for computing GHDs is presented in [30], as well as
a series of generally applicable algorithmic improvements for computing GHDs.
This system, called BalancedGo, is able to decompose nearly twice as many real-
world CSP instances within a feasible time, when compared to NewDetKDecomp.
Written in the programming language Go [16], BalancedGo is available under
https://github.com/cem-okulmus/BalancedGo. We proceed to detail this paral-
lel approach below.

The following generally applicable improvements are presented in [30]: 1)
While existing algorithms, such as DetKDecomp make use of heuristics consisting
of ordering the edges in such a way as to try out promising separators first, none
of the existing methods proved fruitful for speeding up the search for balanced
separators. A number of heuristics are considered in [30], ultimately settling on
one, which balances out the speed-up of the search against the actual time to
compute the heuristic itself, and 2) the existing implementation of the Balanced
Separator algorithm from [19] proved to be inefficient w.r.t. considering all rele-
vant subsets of a given separator. Reorganising the way subedges are considered,
as well as more effective caching helps to provide significant speed-ups here.

The programming language Go has a model of parallelisation inspired by
Communicating Sequential Processes of Hoare [34]. It is based on light-weight

https://github.com/TUfischl/newdetkdecomp
https://github.com/cem-okulmus/BalancedGo

The HyperTrac Project on Hypergraph Decompositions 13

threads, called goroutines, which communicate over channels. This model min-
imises, as far as possible, the need for explicit synchronisation. For BalancedGo,
there are two areas of parallelism: the search of balanced separators, and the
recursive calls. Each is implemented via goroutines, in such a manner as to reduce
the need for explicit synchronisation, to enable effective backtracking and utilise
existing CPU resources as best as possible. For details we refer to [30].

Finally, a hybrid algorithm is presented [30], which combines the above men-
tioned parallel Balanced Separator algorithm, with the existing NewDetKDecomp
algorithm (extended to compute ghw as mentioned above): for a constant num-
ber m of recursions, it uses the Balanced Separator algorithm. After recursion
depth m +1 has been reached, it proceeds to use NewDetKDecomp. The Balanced
Separator algorithm is effective at initially reducing the size of instances, but
gets slower as it needs to backtrack more and more often. The NewDetKDecomp
algorithm is very effective at quickly computing HDs for smaller instances, or
rejecting if no HD of sufficiently low width exists. The hybrid approach therefore
combines the best of both worlds.

4.4 Using Established Solvers and Other Approaches

HD and GHD Computation via SMT Encoding. A very different app-
roach to compute hypergraph decompositions is utilised by Fichte et al. [18].
Instead of implementing or designing algorithms to compute decompositions,
the aim is instead to encode the problem into SMT (SAT modulo Theory) with
Linear Arithmetic and then use the SMT solver Z3. From this result a provably
minimum width FHD can then be constructed. This system, called FraSMT, is
available under https://github.com/daajoe/frasmt.

The basis of the aforementioned encoding is an ordering-based characteri-
sation of fhw, similar to the well known elimination ordering for treewidth [7].
As the elimination ordering has already been used successfully for SAT encod-
ings of treewidth [49], it seems natural to investigate a similar approach for
fhw computation. To this end, Fichte et al. define, for a given ordering of the
vertices L = (v1,...,v,), an extension of the hypergraph H?, which iteratively
constructs and adds a new edge e;, covering all such vertices v;, where i < j <n
and there exists some edge e in Hfl such that v;,v; € e. The fhw of H w.r.t.
a linear ordering L is then defined as the largest fractional cover number of the
vertices e; U v;, for any v; € L, where only edges in H are considered for the
fractional cover. Fichte et al. then prove that the fhw of H is exactly the same
as the smallest fhw of H w.r.t. to any linear ordering.

The above defined ordering is then translated into a formula F'(H,w), where
F(H,w) is true if and only if H has a linear ordering L such that the fhw of H
is < w. For symmetry breaking, Fichte et al. consider the hyperclique (defined
as cliques in the primal graph), with the highest fractional cover number, and
require the vertices of this hyperclique to appear at the end of the ordering, thus
reducing the search space.

An extension of FraSMT, is presented by Schidler and Szeider [50], called
HtdSMT, available under https://github.com/ASchidler /htdsmt. They extend

https://github.com/daajoe/frasmt
https://github.com/ASchidler/htdsmt

14 G. Gottlob et al.

the above defined encoding to SMT in order to express the special condition of
HDs. They won first prize in the PACE 2019 Challenge [17], in the track for the
exact computation of hw of up to 100 instances in less than 30 min, beating out
a version of NewDetKDecomp.

Approaches Based on the Enumeration of Potential Maximal Cliques.
Korhonen et al. [37] present a novel approach to compute ghw based on
the Bouchitté-Todinca (BT) algorithm [11]|, which enumerates so-called poten-
tial mazimal cliques(PMC). It is available under https://github.com/Laakeri/
Triangulator. While PMC-based approaches were previously used to define a
number of algorithms for solving treewidth, minimum fill-in width and other
measures, Korhonen et al. are the first to present a practical implementation of
the BT algorithm which computes ghw. Based on their evaluation, it compares
quite favourably to DetKDecomp, despite computing ghw instead of hw.

5 From Theory to Practice

In this section we discuss the problem of evaluating the quality of decomposition
algorithms over real-world instances. Indeed, while the theory of hypergraph
decompositions is well understood and implementations show promising results,
very little was known about the typical instances that these should decompose.
To this end, we focus here on the challenges encountered during the development
of a benchmark that can be used to reduce the gap between theory and practice.

5.1 The Need for Benchmarks

Over the years, the performance evaluation of algorithms and systems tackling
variants of the CHECK problem has been conducted against provisional datasets.
When DetKDecomp [31] appeared, a collection of CSPs was used to show the
superiority of DetKDecomp w.r.t. OptKDecomp. However, since the dataset lacks
CQs, no assessment of DetKDecomp can be made for usage in databases.

Later on, Scarcello et al. proposed in [23,24] a system for the evaluation
of SQL queries using hypertree decompositions. Although their study showed
promising results, the dataset used to evaluate the system performance consisted
only of a limited set of queries coming from the same source. Thus, the conclusion
cannot be generalized to query answering in general.

These examples highlight the need for a comprehensive, easily extensible,
public benchmark. This could not only be used to evaluate concrete CSP-solving
and database systems, but also to empirically test theoretical properties. Indeed,
if a large part of the instances satisfies a certain property, then it is worth
developing specialized algorithms exploiting the property.

https://github.com/Laakeri/Triangulator
https://github.com/Laakeri/Triangulator

The HyperTrac Project on Hypergraph Decompositions 15

5.2 HyperBench: Challenges and Results

The desire for collecting hypergraphs and comparing algorithm performances led
to the implementation of HyperBench [19], which is a comprehensive collection
of circa 3000 hypergraphs representing CSPs and CQs. The hypergraphs and the
experimental results are available at http://hyperbench.dbai.tuwien.ac.at.

Collecting Instances. HyperBench altogether contains 3070 hypergraphs
divided into three classes: Application-CSPs, Application-CQs, Random. Table 1
shows, for each class, the number of instances and the number of cyclic hyper-
graphs, i.e., the ones having hw > 2. Out of the 1172 Application-CSPs, 1090
come from XCSP [5] and 82 were used in previous analyses [6,31]. The 535
Application-CQs have been fetched from a variety of sources. In particular, all
the 70 SPARQL queries having hw > 2 from [8] and all the cyclic SQL queries
from SQLShare [35] have been included. The remaining CQs come from different
benchmarks such as the Join Order Benchmark (JOB) [42] and TPC-H [52]. The
Random class contains 863 random CSP instances from [5] and 500 random con-
junctive queries generated with the tool used for [46]. This class has the purpose
of comparing real application instances to synthetic ones.

Table 1. Overview of the classes of instances contained in HyperBench [19].

Class Num. instances | hw > 2
Application-CSPs | 1172 1172
Application-CQs | 535 81
Random 1363 1327
Total 3070 2580

Obtaining the Hypergraphs. Collecting CSPs and CQs is only a preliminary
step in building a benchmark. The very next task is the translation of instances
into a uniform hypergraph format. The details of this phase depend on the
language in which the instances are written, thus, here, we briefly go over the
translation of two specific sets of instances: the CSPs from [5] and the SQL
queries from [35]. While the translation of the first set did not pose any particular
challenge, the second one turned out to be rather difficult.

The CSPs fetched from XCSP are encoded in well-structured XML files in
which variables and constraints are defined explicitly. Moreover, an extensive
library for parsing the instances, in which most of the process is automatized, is
available. In this case, it is sufficient to redefine the behaviour of some callback
methods so that, whenever the program reads a variable, it adds a vertex to the
hypergraph, and, whenever it reads a constraint, it adds an edge containing the
vertices corresponding to the variables affected by the constraint.

http://hyperbench.dbai.tuwien.ac.at

16 G. Gottlob et al.

Given its multifaceted nature, the SQLShare dataset poses numerous chal-
lenges for the translation of the queries into hypergraphs. Since it is a collection
of databases and handwritten queries by different authors, the original format
is highly irregular and requires several refinement phases. Some of them follow:

Cleaning the queries from trivial errors that impede parsing.

Extracting table definitions from the databases.

Inferring the definition of undefined tables from the queries.

Resolving ambiguities in the queries semantics, e.g., choosing one definition
for the tables that appear with the same name in different databases.

5. Extracting conjunctive query cores from a complex SQL query, i.e., given a
single query, producing a collection of simpler conjunctive queries that can
be used to compute the result of the original query.

- W=

Particular attention has been devoted to views. Indeed, a query that uses
views must be expanded first and only afterwards should be translated. In this
way, the resulting hypergraph will accurately reflect the query structure.

Experiments. We report on some experiments carried out using HyperBench.
The results reveal a comprehensive picture of the hypergraph characteristics of
the collection. We present aggregate results for the classes in Table 1.

For sake of uniformity, we adapt the terminology of [19] to the one of Sect. 3. A
hypergraph H has degree bounded by ¢ if and only if H is a (641, 0)-hypergraph.
We say H has c-multi-intersection size d if H is a (¢, d)-hypergraph. In the special
case of ¢ = 2, we talk of intersection size of H. If we do not have in mind any
particular ¢, we simply speak of multi-intersection size of H.

Table 2. Percentage of (c,d)-hypergraphs with degree < 5 and c-multi-intersection
size < 5, for ¢ € {2,3,4}. (6,0)-hypergraphs are the ones with degree at most 5 [19].

Class

(6,0)-hgs (%)

(2,5)-hgs (%)

(3,5)-hgs (%)

(4,5)-hgs (%)

Application-CSPs

53.67

99.91

100

100

Application-CQs | 81.68 100 100 100
Random 10.12 76.82 90.17 93.62
Total 39.22 89.67 95.64 97.17

One of the goals of [19] was to find out whether low (multi-)intersection size is
a realistic and non-trivial property. For the purposes of the study, the value d = 5
has been identified as a threshold separating low values from high values. Table 2
shows the percentage of instances having low degree and low c-multi-intersection
size, for ¢ € {2,3,4}. It can be seen that for each class the amount of instances
with low (multi-)intersection is greater than the ones having low degree. Also,
the (multi-)intersection size tends to be (very) small for both CSPs and CQs
taken from applications, while it is still reasonably small for random instances.

The HyperTrac Project on Hypergraph Decompositions 17

An additional correlation study between the hypergraph properties establishes
that there is no correlation between (multi-)intersection size and hw, thus low
(multi-)intersection size does not imply low hw.

After the analysis of structural properties, lower and upper bounds for hw
have been computed for the whole dataset. For these experiments a timeout of 1 h
was set. The results are summarized in Table 3. It has been determined that 694
of all 1172 Application-CSPs (59.22%) have hw < 5 and, surprisingly, hw < 3 for
all Application-CQs. In total, considering also random instances, 1849 (60.23%)
out of 3070 instances have hw < 5. For 1778 of them, the bound on hw is tight,
while for the others the actual value of hw could be even less. To conclude, for
the vast majority of CSPs and CQs (in particular those from applications), hw
is small enough to allow for efficient CSP solving or CQ answering, respectively.

Table 3. Number and percentage of instances having hw < 5 [19].

Class hw < 5| Total | %
Application-CSPs | 694 1172 | 59.22
Application-CQs | 535 535 | 100
Random 620 1363 | 45.49
Total 1849 3070 |60.23

As computing ghw is more expensive, the algorithms ran on the hyper-
graphs with small width. Thus, for all the hypergraphs having hw < k with
k € {3,4,5,6}, the check ghw < k — 1 has been performed. If the algorithm
did not timeout and gave either a yes or mo answer, we say the instance is
solved. Though it is known that, for each hypergraph H, hw(H) < 3-ghw(H)+1
holds [2], surprisingly it turns out that 98% of the solved instances, which form
57% of all instances, have identical values of hw and ghw.

5.3 Further Uses of HyperBench

Since its publication, HyperBench has been used in several ways in the world
of decomposition techniques. As already discussed, the restrictions defining
tractable fragments of variants of the CHECK problem presented in Sect. 3 have
been already investigated in [19]. Moreover, it has been used to gain an under-
standing of the differences between hw and ghw in real-world CSPs and CQs.

In [36], the edge clique cover size of a graph is identified as a parameter
allowing fixed-parameter-tractable algorithms for enumerating potential maxi-
mal cliques. The latter can be used to compute exact ghw and fhw. An edge
clique cover of a graph is a set of cliques of the graph that covers all of its edges.
In case of a CSP with n variables and m constraints, the set of constraints is
an edge clique cover of the underlying (hyper)graph. Thus, this property can be
exploited for CSPs having n > m and HyperBench has been used to verify that
it happens in circa 23% of the instances.

18 G. Gottlob et al.

HyperBench has also been used in the PACE 2019 Challenge [17] to compare
the performance of several HD solvers. The challenge dedicated two tracks to
HDs: in the ezact track, the participants had to compute hw(H) for as many
hypergraphs as possible, while in the heuristic track, the task was to compute a
decomposition with low hw in short time.

6 Conclusion and Future Work

In this paper, we have reported on recent progress in the research on hyper-
graph decompositions. This progress has several facets: we now have a fairly
good understanding of the complexity of constructing various kinds of decompo-
sitions. In particular, we have seen several structural restrictions on hypergraphs
which make the CHECK(ghw, k) and CHECK(fhw, k) problems tractable, such as
low rank, low degree, small intersection and, in case of ghw, also small multi-
intersection. On the algorithmic side, several different approaches have been
proposed for the computation of concrete hypergraph decompositions — either
for some desired upper bound k£ on the width or with minimum width. The
main categories of these decomposition algorithms are the “classical” top-down
construction of a decomposition (as suggested in [28]), a parallel approach, and
the reduction to other problems such as SMT. Finally, we have recalled the work
on the HyperBench benchmark, which has already been used for the empirical
evaluation of several implementations of decomposition algorithms and which
has also allowed us to get a realistic picture as to which structural properties
the hypergraphs underlying CSPs and CQs in practice typically have.

There are several promising directions of future research in this area. As
mentioned in Sect. 1, decomposition techniques have already been introduced
into research prototypes and first commercial products. Our aspiration is to
see decomposition techniques incorporated more widely also into mainstream
systems — both in the CSP world and in the database world. Another kind of
system where decomposition techniques may have a lot of potential are integer
programming solvers. Indeed, integer programs are readily modelled as hyper-
graphs whose vertices correspond to the variables in the integer program and
the non-zero entries in each row are represented by an edge. The application of
hypergraph decompositions, in particular, to sparse integer programs seems very
promising to us. The topic has been touched on in [38] but a deeper investiga-
tion is missing to date. Another important direction for future work is to study
the dynamics of decompositions when the corresponding CSP or CQ is slightly
modified. In such a case, does the entire decomposition have to be re-computed
from scratch or can it be obtained from the “old” one via suitable modifications?

References

1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: EmptyHeaded: a relational engine for
graph processing. In: Proceedings of SIGMOD 2016, pp. 431-446 (2016)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The HyperTrac Project on Hypergraph Decompositions 19

Adler, I., Gottlob, G., Grohe, M.: Hypertree width and related hypergraph invari-
ants. Eur. J. Comb. 28(8), 2167-2181 (2007)

Amroun, K., Habbas, Z., Aggoune-Mtalaa, W.: A compressed generalized hyper-
tree decomposition-based solving technique for non-binary constraint satisfaction
problems. AT Commun. 29(2), 371-392 (2016)

Aref, M., et al.: Design and implementation of the LogicBlox system. In: Proceed-
ings of SIGMOD 2015, pp. 1371-1382 (2015)

Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an XML-based
format designed to represent combinatorial constrained problems (2016). http://
WWW.XCSp.org/

Berg, J., Lodha, N., Jarvisalo, M., Szeider, S.: Maxsat benchmarks based on deter-
mining generalized hypertree-width. In: MaxSAT Evaluation 2017: Solver and
Benchmark Descriptions, vol. B-2017-2, p. 22 (2017)

Bodlaender, H.L.: Discovering treewidth. In: Vojtas, P., Bielikova, M., Charron-
Bost, B., Sykora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1-16. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4 1

Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. VLDB J. 29, 655-679 (2019). https://doi.org/10.1007/s00778-019-00558-9
Booth, K.E.C., Beck, J.C.: A constraint programming approach to electric vehicle
routing with time windows. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019.
LNCS, vol. 11494, pp. 129-145. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19212-9 9

Booth, K.E.C., Tran, T.T., Nejat, G., Beck, J.C.: Mixed-integer and constraint
programming techniques for mobile robot task planning. IEEE Robot. Autom. Lett.
1(1), 500-507 (2016)

Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. Comput. 31(1), 212-232 (2001)

Brailsford, S.C., Potts, C.N.; Smith, B.M.: Constraint satisfaction problems: algo-
rithms and applications. Eur. J. Oper. Res. 119(3), 557-581 (1999)

Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proceedings of STOC 1977, pp. 77-90. ACM (1977)
Cohen, D.A.; Jeavons, P., Gyssens, M.: A unified theory of structural tractability
for constraint satisfaction problems. J. Comput. Syst. Sci. 74(5), 721-743 (2008)
Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2003)

Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language. Addison-
Wesley Professional, Boston (2015)

Dzulfikar, M.A., Fichte, J.K., Hecher, M.: The PACE 2019 parameterized algo-
rithms and computational experiments challenge: the fourth iteration. In: Proceed-
ings of IPEC 2019, Leibniz International Proceedings in Informatics (LIPIcs), vol.
148, pp. 25:1-25:23. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik (2019)
Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: An SMT approach to fractional
hypertree width. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 109-127.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 8

Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: HyperBench: a benchmark and
tool for hypergraphs and empirical findings. In: Proceedings of PODS 2019, pp.
464-480. ACM (2019)

Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decomposi-
tions: hard and easy cases. In: Proceedings of PODS 2018, pp. 17-32. ACM (2018)

http://www.xcsp.org/
http://www.xcsp.org/
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/978-3-030-19212-9_9
https://doi.org/10.1007/978-3-030-19212-9_9
https://doi.org/10.1007/978-3-319-98334-9_8

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

G. Gottlob et al.

Gange, G., Harabor, D., Stuckey, P.J.: Lazy CBS: implicit conflict-based search
using lazy clause generation. In: Proceedings of ICAPS 2019, pp. 155-162. AAAI
Press (2019)

Geibinger, T., Mischek, F., Musliu, N.: Investigating constraint programming for
real world industrial test laboratory scheduling. In: Rousseau, L.-M., Stergiou,
K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 304-319. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19212-9 20

Ghionna, L., Granata, L., Greco, G., Scarcello, F.: Hypertree decompositions for
query optimization. In: Proceedings of ICDE 2007, pp. 36—45. IEEE Computer
Society (2007)

Ghionna, L., Greco, G., Scarcello, F.: H-DB: a hybrid quantitative-structural SQL
optimizer. In: Proceedings of CIKM 2011, pp. 2573-2576. ACM (2011)

Gottlob, G., Hutle, M., Wotawa, F.: Combining hypertree, bicomp, and hinge
decomposition. In: Proceedings of ECAI 2002, pp. 161-165. I0S Press (2002)
Gottlob, G., Lanzinger, M., Pichler, R., Razgon, I.: Complexity analysis of gen-
eralized and fractional hypertree decompositions. CoRR abs/2002.05239 (2020).
https://arxiv.org/abs/2002.05239

Gottlob, G., Leone, N.; Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artif. Intell. 124(2), 243-282 (2000)

Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci. 64(3), 579-627 (2002)

Gottlob, G., Miklés, Z., Schwentick, T.: Generalized hypertree decompositions: NP-
hardness and tractable variants. J. ACM 56(6), 30:1-30:32 (2009)

Gottlob, G., Okulmus, C., Pichler, R.: Fast and parallel decomposition of con-
straints satisfaction problems. In: Proceedings of IJCAI 2020, pp. 1155-1162 (2020)
Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposi-
tion. ACM J. Expe. Algorithmics 13 (2008)

Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans.
Algorithms 11(1), 4:1-4:20 (2014)

Habbas, Z., Amroun, K., Singer, D.: A forward-checking algorithm based on a
generalised hypertree decomposition for solving non-binary constraint satisfaction
problems. J. Exp. Theor. Artif. Intell. 27(5), 649-671 (2015)

Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666—
677 (1978)

Jain, S., Moritz, D., Halperin, D., Howe, B., Lazowska, E.: SQLShare: results from
a multi-year SQL-as-a-service experiment. In: Proceedings of SIGMOD 2016, pp.
281-293. ACM (2016)

Korhonen, T.: Potential maximal cliques parameterized by edge clique cover. CoRR
abs/1912.10989 (2019). https://arxiv.org/abs/1912.10989

Korhonen, T., Berg, J., Jarvisalo, M.: Solving graph problems via potential maxi-
mal cliques: an experimental evaluation of the Bouchitté-Todinca algorithm. ACM
J. Exp. Algorithmics 24(1), 1.9:1-1.9:19 (2019)

Korimort, T.: Heuristic hypertree decomposition. Ph.D. thesis, Vienna University
of Technology (2003)

Laborie, P., Rogerie, J., Shaw, P., Vilim, P.: IBM ILOG CP optimizer for scheduling
- 20+ years of scheduling with constraints at IBM/ILOG. Constraints Int. J. 23(2),
210-250 (2018)

Lalou, M., Habbas, Z., Amroun, K.: Solving hypertree structured CSP: sequential
and parallel approaches. In: Proceedings of RCRA@QAT*TA 2009, CEUR Workshop
Proceedings, vol. 589 (2009). CEUR-WS.org

https://doi.org/10.1007/978-3-030-19212-9_20
https://arxiv.org/abs/2002.05239
https://arxiv.org/abs/1912.10989

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

The HyperTrac Project on Hypergraph Decompositions 21

Lam, E., Hentenryck, P.V., Kilby, P.: Joint vehicle and crew routing and scheduling.
Transp. Sci. 54(2), 488-511 (2020)

Leis, V., et al.: Query optimization through the looking glass, and what we found
running the join order benchmark. VLDB J. 27(5), 643-668 (2018)

Leone, N., Mazzitelli, A., Scarcello, F.: Cost-based query decompositions. In: Pro-
ceedings of SEBD 2002, pp. 390—403 (2002)

Lovész, L.: On the ratio of optimal integral and fractional covers. Discret. Math.
13(4), 383-390 (1975)

Musliu, N., Schutt, A., Stuckey, P.J.: Solver independent rotating workforce
scheduling. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 429—
445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 31
Pottinger, R., Halevy, A.Y.: Minicon: a scalable algorithm for answering
queries using views. VLDB J. 10(2-3), 182-198 (2001). https://doi.org/10.1007/
s007780100048

Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and
machine learning. In: Proceedings of AAAT 2010. AAAT Press (2010)

Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 45-50. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02777-2_ 6

Schidler, A., Szeider, S.: Computing optimal hypertree decompositions. In: Pro-
ceedings of ALENEX 2020, pp. 1-11. STAM (2020)

Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417-431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30
Transaction Processing Performance Council (TPC): TPC-H decision support
benchmark (2014). http://www.tpc.org/tpch/default.asp

Tsang, E.: Foundations of Constraint Satisfaction. Academic Press Limited, Cam-
bridge (1993)

Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., Schaus, P.: Learning opti-
mal decision trees using constraint programming. In: Proceedings of BNAIC 2019.
CEUR Workshop Proceedings, vol. 2491(2019). CEUR-WS.org

Yannakakis, M.: Algorithms for acyclic database schemes. In: Proceedings of VLDB
1981, pp. 82-94 (1981)

https://doi.org/10.1007/978-3-319-93031-2_31
https://doi.org/10.1007/s007780100048
https://doi.org/10.1007/s007780100048
https://doi.org/10.1007/978-3-642-02777-2_6
https://doi.org/10.1007/978-3-642-02777-2_6
https://doi.org/10.1007/3-540-49481-2_30
http://www.tpc.org/tpch/default.asp

q

Check for
updates

Restarting Algorithms: Sometimes There
Is Free Lunch

Sebastian Pokutta!-2(®)

I Technische Universitit Berlin, Berlin, Germany
pokutta@zib.de
2 Zuse Institute Berlin, Berlin, Germany

Abstract. In this overview article we will consider the deliberate
restarting of algorithms, a meta technique, in order to improve the algo-
rithm’s performance, e.g., convergence rates or approximation guaran-
tees. One of the major advantages is that restarts are relatively black
box, not requiring any (significant) changes to the base algorithm that is
restarted or the underlying argument, while leading to potentially signif-
icant improvements, e.g., from sublinear to linear rates of convergence.
Restarts are widely used in different fields and have become a powerful
tool to leverage additional information that has not been directly incor-
porated in the base algorithm or argument. We will review restarts in
various settings from continuous optimization, discrete optimization, and
submodular function maximization where they have delivered impressive
results.

Keywords: Restarts - Convex optimization * Discrete optimization -
Submodular optimization

1 Introduction

Restarts are a powerful meta technique to improve the behavior of algorithms.
The basic idea is to deliberately restart some base algorithm, often with changed
input parameters, to speed-up convergence, improve approximation guarantees,
reduce number of calls to expensive subroutines and many more, often leading to
provably better guarantees as well as significantly improved real-world compu-
tational performance. In actuality this comes down to running a given algorithm
with a given set of inputs for some number of iterations, then changing the
input parameters usually as a function of the output, and finally restarting the
algorithm with new input parameters; rinse and repeat.

One appealing aspect of restarts is that they are relatively black-box, requir-
ing only little to no knowledge of the to-be-restarted base algorithm except for
the guarantee of the base algorithm that is then amplified by means of restarts.
The reason why restarts often work, i.e., improve the behavior of the base algo-
rithm is that some structural property of the problem under consideration is not
explicitly catered for in the base algorithm, e.g., the base algorithm might work

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 22-38, 2020.
https://doi.org/10.1007/978-3-030-58942-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_2

Restarting Algorithms 23

for general convex functions, however the function under consideration might be
strongly convex or sharp. Restarts cater to this additional problem structure and
are in particular useful when we want to incorporate data-dependent parame-
ters. In fact, for several cases of interest the only known way to incorporate
that additional structure is via restarts often pointing out a missing piece in our
understanding.

On the downside, restarts often explicitly depend on parameters arising from
the additional structure under consideration and obtained guarantees are off
by some constant factor or even log factor. The former can be often remedied
with adaptive or scheduled restarts (see e.g., [23,39]) albeit with some minor
cost. This way we can obtain fully adaptive algorithms that adapt to additional
structure without knowing the accompanying parameters explicitly. The latter
shortcoming is inherent to restart scheme as due to their black box nature addi-
tional structural information might not be incorporated perfectly.

Restarts have been widely used in many areas and fields and we will review
some of these applications below to provide context. We would like to stress that
references will be incomplete and biased; please refer also to the references cited
therein.

SAT Solving and Constraint Programming. Restarts are ubiquitous in SAT Solv-
ing and Constraint Programming to, e.g., explore different parts of the search
space. Also after new clauses have been learned, these clauses are often added
back to the formulation and then the solver is restarted. This can lead to dra-
matic overall performance improvements for practical solving; see e.g., [7,25] and
references contained therein.

Global Optimization. Another important area where restarts are used is global
optimization. Often applied to non-convex problems, the hope is that with ran-
domized restarts different local optima can be explored, ideally one of those
being a global one; see e.g., [24] and their references.

Integer Programming. Modern integer programming solvers use restarts in many
different ways, several of which have been inspired by SAT solving and Constraint
Programming. In fact, Integer Programming solvers can be quite competitive
for pseudo-Boolean problems [6]. A relatively recent approach [4] is clairvoy-
ant restarts based on online tree-size estimation that can significantly improve
solving behavior.

Most of the restart techniques mentioned above, while very important, come
without strong guarantees. In this article, we are more interested in cases, where
provably strong guarantees can be obtained that also translate into real-world
computational advantages. In the following, we will restrict the discussion to
three examples from convex optimization, discrete optimization, and submodular
function maximization. However, before we consider those, we would like to
mention a two related areas where restarts have had a great impact not just from
a computational point of view but also to establish new theoretical guarantees,
but that are unfortunately beyond the scope of this overview.

24 S. Pokutta

Variance Reduction via Restarts. Usually when we consider stochastic convex
optimization problems where the function is given as a general expectation and
we would like to use first-order methods for solving the stochastic problem, we
cannot expect a convergence rate better than O(1/v7) under usual assumptions,
where ¢ is the number of stochastic gradient evaluations. However, it turns out
that if we consider so-called finite sum problems, a problem class quite common
in machine learning, where the expectation is actually a finite sum and some
mild additional assumptions are satisfied, then we can obtain a linear rate of
convergence by means of variance reduction. This is an exponential improve-
ment in convergence rate. Variance reduction techniques replace the stochastic
gradient which is an unbiased estimator of the true gradient with a different,
lower variance, unbiased estimator that is formed with the help of a reference
point obtained from an earlier iterate. This reference point is then periodically
reset via a restart scheme. Important algorithms here are for example Stochastic
Variance Reduced Gradient Descent (SVRG) [26] and its numerous variants, such
as e.g., the Stochastic Variance Reduced Frank-Wolfe algorithm (SVRFW) [22].

Acceleration in Convex Optimization. Restarts have been heavily used in convex
optimization both for improving convergence behavior via restarts in real-world
computations (see e.g., [37]) but also as part of formal arguments to establish
accelerated convergence rates and design provably faster algorithms. As the lit-
erature is particularly deep, we will sample only a few of those works in the
context of first-order methods here that we are particularly familiar with; we
provide further references in the sections to come. For example restarts have
been used in [1] to provide an alternative explanation of Nesterov’s acceleration
as arising from the coupling mirror descent and gradient descent. In [39] it has
been shown how restarts can be leveraged to obtain improved rates as the sharp-
ness of the function (roughly speaking how fast the function curves around its
minima) increases and these restart schemes have been also successfully carried
over to the conditional gradients case in [27]. Restarts have been also used to
establish dimension-independent local acceleration for conditional gradients [16]
by means of coupling the Away-step Frank-Wolfe algorithm with an accelerated
method. As we will see later in the context of submodular maximization, restarts
can be also used to reduce the number of calls to expensive oracles. This have
been extensively used for lazification of otherwise expensive algorithms in [11,12]
leading to several orders of speed-up in actual computations while maintaining
worst-case guarantees identical to those of the original algorithms and in [28] a
so-called optimal method based on lazification has been derived. Very recently,
in [23] a new adaptive restart scheme has been presented that does not require
any knowledge of otherwise inaccessible parameters and its efficacy for saddle
point problems has been demonstrated.

Restarting Algorithms 25

Outline

In Sect. 2 we consider restart examples from convex optimization and in Sect. 3
we consider examples from discrete optimization. Finally we consider submodu-
lar function maximization in Sect. 4. We keep technicalities to a bare minimum,
sometimes simplifying arguments for the sake of exposition. We provide refer-
ences though with the full argument, for the interested reader.

2 Smooth Convex Optimization

Our first examples come from smooth convex optimization. As often, the exam-
ples here are (arguably) the cleanest ones. We briefly recall some basic notions:

Definition 1 (Convexity). Let f : R" — R be a differentiable function. Then
f is convex, if for all x,y it holds:

JO) = f(x) =2 (Vf(x)y-x).
In particular, all local mimima of f are global minima of f.

Definition 2 (Strong Convexity). Let f : R" — R be a differentiable convex
function. Then f is p-strongly convex (with u > 0), if for all x,y it holds:

FO) = £0) 2 (VFG)y =) + Elly = 2l

Definition 3 (Smoothness). Let f : R® — R be a differentiable function.
Then f is L-smooth (with L > 0), if for all x,y it holds:

F0) = £ < (VFhy =) + Sy =l

In the following let x* € X* = argmin f(x) denote an optimal solution from
the set of optimal solutions X*. Choosing x = x* and applying the definition of
strong convexity (Definition 2) we immediately obtain:

FO) = £ = (VA y =2y + Sy =2 = Sly-x1% ()

where the last inequality follows from (V f(x*),y — x*) > 0 by first-order opti-
mality of x* for min f(x), i.e., the primal gap upper bounds the distance to the
optimal solution. This also implies that the optimal solution x* is unique.

Smooth Convex to Smooth Strongly Convex: The Basic Case. Let
f : R" - R be an L-smooth convex function. Then using gradient descent,
updating iterates x; according to x;41 < x; — %V f(x;), yields the following stan-
dard guarantee, see e.g., [21,29,33,35].

26 S. Pokutta

Proposition 1 (Convergence of gradient descent: smooth convex case).
Let f: R" — R be a smooth convex function and xo € R" and x* € X*. Then
gradient descent generates a sequence of iterates satisfying

L||xo—x
t

*”2

fGa) = f(x7) < (2)

Now suppose we additionally know that the function f is u-strongly convex.
Usually, we would expect a linear rate of convergence in this case, i.e., to reach
an additive error of &, we would need at most T < ﬁlogw iterations.
However, rather than reproving the convergence rate (which is quite straightfor-
ward in this case) we want to reuse the guarantee in Proposition 1 as a black
box and the u-strong convexity of f. We will use the simple restart scheme given
in Algorithm 1: in restart phase £ we run a given base algorithm A for a fixed

number of iterations 7, on the iterate x‘~! output in the previous iteration:

Algorithm 1. Simple restart scheme

Input: Initial point xg € R", base algorithm A, iteration counts (T¢).

Output: Iterates x1,...,xK e R™.
1: for (=1 to K do

2. xf— AL T {run base algorithm for T, iterations}
3: end for

A priori, it is unclear whether the restart scheme in Algorithm 1 is doing any-
thing useful, in fact even convergence might not be immediate as we in principle
could undo work that we did in a preceding restart phase. Also note that when
restarting vanilla gradient descent with a fixed step size of % as we do here the
final restarted algorithm is identical to vanilla gradient descent, i.e., the restarts
do not change the base algorithm. This might seem nonsensical and we will get
back to this soon; the reader can safely ignore this for now.

In order to analyze our restart scheme we first chain together Inequalities (2)
and (1) and obtain:

Lllxo = x"|I* _ 2L f(x0) = f(x")

t T ou t '

This chaining together of two error bounds is at the core of most restart

arguments and we will see several variants of this. Next we estimate how long

we need to run the base method, using Inequality (3) to halve the primal gap

from some given starting point xq (this will be the point from which we are going
to restart the base method), i.e., we want to find ¢ such that

2L f(xo) = f(x¥T) _ f(x0) = f(x7)
Iz t - 2 ’

JG) = f(x7) < 3)

Jlx) = f(x7) <

which implies that it suffices to run gradient descent for T, = [%-‘ steps for all

¢ =1,...,K to halve a given primal bound as there is no dependency on the

Restarting Algorithms 27

state of the algorithm in this case. Now, in order to reach f(xr)— f(x*) < &, we
have to halve f(xp) — f(x*) at most K = [1og M} times and each of the

halving can be accomplished in at most [i—’“} gradient descent steps. All in all
we obtain that after at most

K
TZZngK-le (4)

=1

{4L} {1 f(x0) —f(X*)w
og °

gradient descent steps we have obtained a solution f(x7)—f(x*) = f(xK)—f(x*) <
&. With this we have obtained the desired convergence rate. Note that the iterate
bound in Inequality (4) is optimal for vanilla gradient descent up to a constant
factor of 4; see e.g., [21,29,33].

In the particular case from above it is also important to observe that our
base algorithm gradient descent is essentially memoryless. In fact, the restarts
do not ‘reset’ anything in this particular case and so we have also indirectly
proven that gradient descent without restarts will converge with the rate from
Inequality (4). This is particular to this example though and will be different in
our next one. Also, note that a direct estimation would have yielded the same
rate up to the factor 4 discussed above.

Smooth Convex to Smooth Strongly Convex: The Accelerated Case.
While the rate from Inequality (4) is essentially optimal for vanilla gradient
descent it is known that (vanilla) gradient descent itself is not optimal for smooth
and strongly convex functions and also Proposition 1 is not optimal for smooth
and (non-strongly) convex functions. In fact Nesterov showed in [36] that for
smooth and (non-strongly) convex functions a quadratic improvement can be
obtained; a phenomenon commonly referred to as acceleration:

Proposition 2 (Convergence of accelerated gradient descent). Let f :
R"™ — R be an L-smooth convexr function and xg € R" and x* € X*. Then
accelerated gradient descent generates a sequence of iterates satisfying

cLllxo - x*|1?

Floe) =) € ST
for some constant ¢ > 0.

Again, we could try to directly prove a better rate via acceleration for the
smooth and strongly case (which is non-trivial this time) or, as before, invoke
our restart scheme in Algorithm 1 in a black-box fashion, which is what we will
do here. As before we will use an analog of Inequality (3) to estimate how long
it takes to halve the primal gap, i.e., we want to find ¢ such that

) - fx*) < % f (xo)t;f(x*) L f(xo); fa)

28 S. Pokutta

which implies that it suffices to run accelerated gradient descent for T, = [‘ /%]

steps for all £ = 1,...,K to halve a given primal gap. With the same reasoning

fxo)-fx
&

as above we need to halve the primal gap at most K = [log *)] times to

reach an additive error of . Putting everything together we obtain that after at

most
4cL
i

accelerated gradient descent steps we have obtained a solution f(xr) — f(x*) =
F(xX) = f(x*) < &. Note that the iterate bound in Inequality (5) is optimal for
strongly convex and smooth functions (up to a constant factor). In contrast to
the unaccelerated case, this time the restart actually ‘resets’ the base algorithm
as accelerated gradient descent uses a specific step size strategy that is then
reset.

{ LR f(x*)} -

K
TZZngK-le
=1

Remark 1. Sometimes it is also possible to go backwards. Here we recover the
optimal base algorithm for the smooth and (non-strongly) convex case from the
strongly convex one. The argument is due to [34] (we follow the variant in [42]).
Suppose we know an optimal algorithm for the strongly convex and smooth

case that ensures f(xy)— f(x*) < & after O (\/%log w) iterations. Now

consider a smooth and convex function f and an initial iterate x¢ together with
some upper bound D on the distance to some optimal solution, i.e., ||xo—x*|| < D.
Given an accuracy € > 0, we consider the auxiliary function

&

2
W”x = xoll%

Je(x) = f(x) +

which is (L + 55z)-smooth and 55z-strongly convex. It can be easily seen that

FO) = F() < folx) = fols) + 5,

so that finding an &/2-optimal solution to min f, provides an g-optimal solution
to min f. We can now run the purported optimal method on the smooth and
strongly convex function f; to compute an &/2-optimal solution to min f;, which

we obtain after:
[2LD% +& (L +¢&)D?
log
€ &

(L+&)D?
2

0]

& ’

2D2

* b o elio) - f8<x*>) <o
&

iterations, where we used fs(xg) — fo(x*) <

log factor, ,/% <To ZL?# < g, which is the bound from Proposition 2.

. Finally note, ignoring the

The approach used in this section to obtain better rates of convergence under
stronger assumptions by means of the simple restart scheme in Algorithm 1 works
in much broader settings in convex optimization (including the constrained case).

Restarting Algorithms 29

For example it can be used to improve the O(1/v/f)-rate for general non-smooth
convex functions via sub-gradient descent into the O(1/¢)-rate for the non-smooth
strongly convex case. Here the base rate is f(x;)— f(x*) < w, where G is a

bound on the norm of the subgradients. We obtain the restart inequality chain
(analog to Inequality (3)):

ey o Gllxo =X G /f(xO)—f(x*)
) = f(x7) < Vi S\/E .)

and halving the primal gap takes at most Iﬁjﬂx*» iterations. Following the

argumentation from above, we then arrive that the total number of required

subgradient 2glescent iterations using Algorithm 1 to ensure f(x;)— f(x*) < g is at
8G

most ¢ > °Z- for the non-smooth but u-strongly convex case, which is optimal

up to constant factors.

Related Approaches. In a similar way we can incorporate additional information
obtained e.g., from so-called Hdlder(ian) Error Bounds or sharpness (see, e.g.,
[9,10] and references contained therein for an overview). The careful reader might
have observed that the restart scheme in Algorithm 1 requires knowledge of the
parameter y. While this could be acceptable in the strongly convex case, for more
complex schemes to leverage, e.g., sharpness, this is unacceptable as the required
parameters are hard to estimate and generally inaccessible. This however, can
be remedied in the case of sharpness, at the cost of an extra O(log?)-factor in
the rates, via scheduled restarts as done in [39] that do not require sharpness
parameters as input or when an error bound (of similar convergence rate) is
available as in the case of conditional gradients [27]; see also [23] for a very
recent adaptive restart scheme using error bounds estimators.

3 Discrete Optimization

In this section we consider a prominent example from integer programming: opti-
mization via augmentation, i.e., optimizing by iteratively improving the current
solution.

We consider the problem:

max {cx|x € PNnZ"}, (6)

where P C R” is a polytope and ¢ € Z".

To simplify the exposition we assume that P C [0,1]" and ¢ > 0 (the latter is
without loss of generality by flipping coordinates), however the arguments here
generalize to the general integer programming case. Suppose further that we can
compute improving solutions, i.e., given ¢ and a solution xg, we can compute
a new solution x, so that c¢(x — xg) > 0 if xo was not already optimal; such a
step (Line 3 in Algorithm 2) is called an augmentation step. Then a trivial and
inefficient strategy is Algorithm 2, where we continue improving the solution

30 S. Pokutta

Algorithm 2. Augmentation

Input: Feasible solution x° and objective ¢ € VAR
Output: Optimal solution of max {cx|x € PN {0,1}""}

1: ¥ e—x9

2: repeat

3 compute x € P integral with ¢(x — X) > 0 and set X « x {improve solution}
4: until no improving solution exists

5: return x {return optimal solution}

until we have reached the optimum. It is not too hard to see that Algorithm 2
can take up to 2" steps, essentially enumerating all feasible solutions to reach
the optimal solution; simply consider the cube P = [0,1]" and an objective ¢
with powers of 2 as entries.

Bit Scaling. We will now show that we can do significantly better by restarting
Algorithm 2, so that we obtain a number of augmentation steps of O(nlog||c||w),
where ||c|le = maX;e[n ;- This is an exponential improvement over base algo-
rithm and the restart scheme, called bit scaling, is due to [41] (see also [17,20]).
It crucially relies on the following insight: Suppose we decompose our objec-
tive ¢ = 2¢1 + ¢o with ¢g € {0,1}" (note this decomposition is unique) and
we have already obtained some solution xo € P N {0,1}" that is optimal for
max {c1x|x € PN Z"}, then we have for all x e PN {0,1}":

c(x —x9) = 2c1(x — xp) +co(x — xg) < n, (7)
—_———
<0

by the optimality of xg for ¢; and cg, x, xg € {0,1}". Hence starting from x,
for objective ¢, there are at most n augmentation steps to be performed with
Algorithm 2 to reach an optimal solution for ¢. Equipped with Inequality (7)
the following strategy emerges: slice by the objective ¢ according to its bit rep-
resentation and then successively optimize with respect to the starting point
from a previous slice. We first present the formal bit scaling restart scheme in
Algorithm 3, where A denotes Algorithm 2.

Next, we will show that restart scheme from Algorithm 3 requires at most
O(nlog||c|l) augmentation steps (Line 3 in Algorithm 2) to solve Problem (6).
First observe, that by construction and the stopping criterion in Line 5 of Algo-
rithm 3 it is clear that we call A in Line 3 at most [log C7 times. Next, we bound
the number of augmentation steps in Line 3 executed within algorithm A. To
this end, let x and u denote the input to A. In the first iteration ¢* € {0, 1}", so
that A can perform at most n augmentation steps. For later iterations observe
that ¥ was optimal for ¢? = |c/(2u)]|. Moreover, we have c* = |c/u] = 2¢? +cy,
where ¢ € {0, 1}" as before. Via Inequality (7) we obtain for all feasible solutions
xePnzm

Hx—3%)=2c(x-%)+colx—%) <n,

Restarting Algorithms 31

Algorithm 3. Bit Scaling
0

Input: Feasible solution x
Output: Optimal solution to max {cx|x € PN Z"}

1: C—lclloo + 1, u 2MogCl 5 0, ot Le/ul {initialization}
2: repeat

3 Call ¥ « A(x, c*)

4 g pf2, M e e/p]

5 until pu <1
6: return X {return optimal solution}

which holds in particular for the optimal solution x* to Problem (6). As each
augmentation step reduces the primal gap c#(x—x) by at least 1, we can perform
at most n augmentation steps. This completes the argument.

Geometric Scaling. The restart scheme in Algorithm 3 essentially restarted
via bit-scaling the objective function, hence the name. We will now present a
more versatile restart scheme that is due to [40] (see also [30] for a comparison
and worst-case examples), which essentially works by restarting a regularization
of our objective ¢. For comparability we also consider Problem (6) here, however
the approach is much more general, e.g., allowing for general integer program-
ming problems and with modifications even convex programming problems over
integers.

Again, we will modify the considered objective function ¢ in each restart.
Given the original linear objective ¢, we will consider:

M, X) = c(x = %) — pllx = X||1.

Note that c¢*(x, x) is a linear function in x € {0,1}" for a given x € {0,1}".
In particular we can call Algorithm 2 with objective ¢#(-,-) and starting point
X. The restart scheme works as follows: For a given u we call Algorithm 2 with
objective c#(-,-) and starting point x. Then we halve u and repeat.

As in the bit-scaling case, the key is to estimate the number of augmentation
steps performed in such a call. To this end let xy be returned by Algorithm 2 for
a given u and starting point x. Then

ct(x, x0) = c(x = x0) — pllx = xolly <0,

holds for all x € PN Z" and in particular for the optimal solution x*; this is
simply the negation of the improvement condition. Now let x’ be any iterate in
the following call to Algorithm 2 for which an augmentation step is performed
with objective ¢#/2(.,-) and starting point xo, i.e., there exists x* so that

P x) = et = x) = pf2llt = X[l > 0.
We can now combine these two inequalities, substituting x < x*, to obtain

c(xt —x") c(x* = xp)
llx* = x'[lx ~ et = xollh

32 S. Pokutta

which implies

1||x* —x’ 1
U=l oL

+ ’
cx’"—x") > >
) S Tl on

where [|[x* — x’||; > 1 as the iterates are not identical and ||x* — xoll1 < n as
x*,xg € P C [0,1]". As such each augmentation step recovers at least a %—
fraction of the primal gap c(x* — xg) and therefore we can do at most 2n such
iterations before the condition in Line 3 has to be violated. With this we can
formulate the geometric scaling restart scheme in Algorithm 4. The analysis now
is basically identical to the one as for Algorithm 3, however this time we have
O(logn||c||) restarts, leading to an overall number of augmentation steps of
O(nlognl|c|lw), which can be further improved to O(nlog||c||w), matching that of

bit-scaling, with the simple observation in [30].

Algorithm 4. Geometric Scaling
0

Input: Feasible solution x
Output: Optimal solution of max {cx|x € PN Z"}
1: C e |lcllo + 1, pp = nC, ¥ —x9, cH(x,y) = c(x — y) — pllx = yll1. {initialization}
repeat
Call ¥ « A(x, c*)
Ho— p/2
until p <1
return ¥ {return optimal solution}

Related Approaches. Chvatal-Gomory cutting planes, introduced by Chvatal in
[13], are an important tool in integer programming to approximate the integral
hull conv(P N Z"™) by means of successively strengthening an initial relaxation
P with conv(P N Z") C P. This is done by adding new inequalities valid for
conv(P NZ") cutting off chunks of P in each round. A key question is how many
rounds of such strengthenings are needed until we recover conv(PNZ"). In [14] it
was shown that in general the number of rounds can be arbitrarily large. It was
then shown in [8] via a restart argument that for the important case of polytopes
contained in [0, 1]* the number of rounds can be upper bounded by O(n?log n).
The key here is to use basic bounds on the number of rounds, e.g., from [14],
first for inequalities with some maximum absolute entry ¢, then doubling up ¢
to 2¢, and restarting the argument. This bound was further improved in [18§]
to O(n*logn) by interleaving two restart arguments, one multiplicative (e.g.,
doubling) over the maximum absolute entry ¢ and one additive (e.g., adding a
constant) over the dimension, which matches the lower bound of Q(n?) of [38]
up to a log factor; closing this gap remains an open problem. As mentioned in the
context of the scheduled restarts of [39], it might be possible that the additional
log factor is due to the restart schemes itself and removing it might require a
different proof altogether.

Restarting Algorithms 33

Another important application is the approximate Carathéodory problem,
where we want to approximate x° € P, where P is a polytope, by means of a
sparse convex combination x of vertices of P, so that ||xg—x|| < & for some norm
[|-]] and target accuracy . In general it is known that this can be done with a
convex combination of O(1/&?) vertices. However, it turns out as shown in [31]
that whenever x; lies deep inside the polytope P, i.e., we can fit a ball around
xo with some radius r into P as well, then we can exponentially improve this
bound via restarts to O(rl2 log %). This restart argument here is particularly nice.
We run the original O(1/&?)-algorithm down to some fixed accuracy and obtain
some approximation X, then scale-up the feasible region by a factor of 2, and
restart the O(1/&?)-algorithm on the residual xo— % and repeat. The argument in
[31] relies on mirror descent as underlying optimization routine. More recently,
it was shown in [15] that the restarts can be removed and adaptive bounds
for more complex cases can be obtained by using conditional gradients as base
optimization algorithm, which automatically adapts to sharpness (and optima
in the interior) [27,43].

4 Submodular Function Maximization

We now turn our attention to submodular function maximization. Submodular-
ity captures the diminishing returns property and is widely used in optimization
and machine learning. In particular, we will consider the basic but important
setup of maximizing a monotone, non-negative, submodular function subject
to a single cardinality constraint. To this end we will briefly repeat necessary
notions. A set function g : 2¥ — R, is submodular if and only if for any e € V
and A C B C V\{e} we have ga(e) > gp(e), where ga(e) = g(A+e)— g(A) denotes
the marginal gain of e w.r.t. A and A+ e = AU {e}, slightly abusing notation.
The submodular function g is monotone if for all A € B C V it holds g(A) < g(B)
and non-negative if g(A) > 0 for all A C V.

Given a monotone, non-negative submodular function g over ground set V of
size n and a budget k, we consider the problem

sonax g(S) (8)

It is well known that solving Problem (8) exactly is NP-hard under the
value oracle model, however the greedy algorithm (Algorithm5) that in each
iteration adds the element that maximizes the marginal gain yields a (1 — 1/e)-
approximate solution S* C V with [S*| < k, i.e., g(S*) > (1 — 1/e) g(S*), where
§* = argmaxgcy, |s|<x&(S) S V is an optimal solution to Problem (8) and e
denotes the Euler constant (see [19,32]).

The proof of the approximation guarantee of 1 — 1/e is based on the insight
that in each iteration it holds:

g(8") —g(SH) < k- max gs+ (). 9)

34 S. Pokutta

Algorithm 5. Greedy Algorithm
Input: Ground set V of size n, budget k, and monotone, non-negative, submodular
function g : 2V — R.

Output: feasible set ST with |S*| < k.

1: St 0

2: while |S*| < k do

31 e« argmax,cy\s+ gs+(€)

4: St St+e

5: end while

To see that Inequality (9) holds, let S* = {es,...,ex}, then

k
2(5") < g(S"UST) = g(S*) + D 50 er. mmerr(€0)
i=1

k
< 8(5")+ D gs+(er) < 8(S") + kmax gs+(e),
i=1

where the first inequality follows from monotonicity, the equation follows from
the definition of gg(v), the second inequality from submodularity, and the last
inequality from taking the maximizer.

With Inequality (9) the proof of the (1 — 1/e)-approximation is immediate.
In each iteration the greedy element we add satisfies max,.cy gs+(e) > %(g(S*) -
g(S%)), therefore after k iterations we have obtained a set S* with |S*| = k, with

8(87) = 8(8") < (1= 1/k)(g(5") ~ £(0)) < (1= 1/k)"g(8") < %g(s*x

so that the desired guarantee (1 — %)g(S*) < g(8*) follows.

Unfortunately, due to Line 3 in Algorithm 5 computing such a (1 — 1/e)-
approximate solution can cost up to O(kn) evaluations of g in the value oracle
model, where we can only query function values of g. For realistic functions this
is often quite prohibitive. We will now see a different application of a restart
scheme to reduce the total number of function evaluations of g by allowing for
a small error &€ > 0. We obtain a total number of evaluations of g of O(% log 2),
quasi-linear and independent of k, to compute a (1-1/e—&)-approximate solution.
The argument is due to [5] and similar in nature to the argument in Sect. 3 for
geometric scaling. We simplify the argument slightly for exposition; see [5] for
details.

The basic idea is rather than computing the actual maximum in Line 3 in
Algorithm 5, we collect all elements of marginal gains that are roughly maxi-
mal within a (1 — g)-factor, then scale down the estimation of the maximum,
and then restart. We present the restart scheme, the so-called Threshold Greedy
Algorithm in Algorithm 6. This time we present the scheme and the base algo-
rithm directly together. Note that the inner loop in Lines 3 to 7 in Algorithm 6
adds all elements that have approximately maximal marginal gain. The restarts

Restarting Algorithms 35

are happening whenever we go back to the beginning of the outer loop starting
in Line 2, with a reset value for ®.

Algorithm 6. Threshold Greedy Algorithm

Input: Ground set V of size n, budget k, accuracy &, and monotone, non-negative,
submodular function g : 2V — R,
Output: feasible set ST with |S*| < k.
1: ST «— 0, ®g « maxcy gle), ® «— Dy
2: while ® > £®(do
3: foreeVdo

4: if |S*| < k and gg+(e) > ® then
5: St —St+e

6: end if

7 end for

8 D—Dd(1-¢g)

9:

end while

We will first show that the gain from any new element e € V added in Line 5
of Algorithm 6 is at least

@22 Y goi)

xeS*\S*

To this end suppose we have chosen element e € V to be added. Then gg+(e) > @
by Line 4 and for all x € §*\ (St + ¢) we have gs+(x) < ®/(1 — &); otherwise
we would have added x in an earlier restart with a higher value @ already.
Combining the two inequalities we obtain

gs+(e) 2 (1 - £)gs+(x),

for all x € §*\ (S* + ¢) and averaging those inequalities leads to

@2 o S ezt Y g, (10)

&
* +
IS \ § | xeS*\S+ xeS*\S+

which is the desired inequality. From this we immediately recover the (approxi-
mate) analog of Inequality (9). We have via submodularity and non-negativity

D g5t (x) 2 gs+(S7) 2 g(S%) - g(S*),
xeS*\S+

and together with Inequality (10)

l1-¢
k

gs+(e) > (g(87) — g(8™)).

36 S. Pokutta
Therefore, as before, after k iterations we obtain a set §* with |S*| = k, with
g(87) —g(8") < (1-(1-8)/k)(g(S") - g(0)) < (1 - (1 - &)/k)*g(S")

1 . 1 «
S T80 < (— +8) 8(8%),
€ (§

A

leading to our guarantee g(S*) > (1 - % — &) g(8*). If we do fewer than k iter-
ations, the total gain of all remaining elements is less than &, establishing the
guarantee in that case.

Now for the number of evaluations of g, first consider the loop in Line 2 of
Algorithm 6. The loops stops after £ iterations, whenever (1 — &)’ < £ which is
satisfied if 1/(1 — &)t > (1 +&)¢ > 2 and hence ¢ > élog 2. For each such loop
iteration we have at most O(n) evaluations of g in Line 4, leading to the overall

bound of O(% log Z) evaluations of g.

Related Approaches. The approach presented here for the basic case with a
single cardinality constraint can be applied more widely as already done in
[6] for matroid, knapsack, and p-system constraints. It can be also used to
reduce the number of evaluations in the context of robust submodular function
maximization [2,3].

A similar restart approach has been used to ‘lazify’ conditional gradient
algorithms in [11,12,28]. Here is the number of calls to the underlying linear
optimization oracle is dramatically reduced by reusing information from previ-
ous iterations by solving the linear optimization problem only approximately
as done in the case of the Threshold Greedy Algorithm. The algorithm, in a
similar vein, is then restarted, whenever the threshold for approximation of the
maximum is too large.

Acknowledgement. We would like to thank Gabor Braun and Marc Pfetsch for
helpful comments and feedback on an earlier version of this article.

References

1. Allen-Zhu, Z., Orecchia, L.: Linear coupling: An ultimate unification of gradient
and mirror descent. arXiv preprint arXiv:1407.1537 (2014)

2. Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., Torrico, A.: Structured
robust submodular maximization: offline and online algorithms. In: Proceedings of
AISTATS (2019)

3. Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., Torrico, A.: Struc-
tured robust submodular maximization: offline and online algorithms. INFORMS
J. Comput. (2020+, to appear)

4. Anderson, D., Hendel, G., Le Bodic, P., Viernickel, M.: Clairvoyant restarts in
branch-and-bound search using online tree-size estimation. In: Proceedings of the
AAAT Conference on Artificial Intelligence, vol. 33, pp. 1427-1434 (2019)

5. Badanidiyuru, A., Vondrak, J.: Fast algorithms for maximizing submodular func-
tions. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1497-1514. STAM (2014)

http://arxiv.org/abs/1407.1537

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Restarting Algorithms 37

Berthold, T., Heinz, S., Pfetsch, M.E.: Solving pseudo-Boolean problems with SCIP
(2008)

Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Biining, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28-33. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_4

Bockmayr, A., Eisenbrand, F., Hartmann, M., Schulz, A.: On the Chvatal rank of
polytopes in the 0/1 cube. Discrete Appl. Math. 98, 21-27 (1999)

Bolte, J., Daniilidis, A., Lewis, A.: The lojasiewicz inequality for nonsmooth sub-
analytic functions with applications to subgradient dynamical systems. STAM J.
Optim. 17(4), 1205-1223 (2007)

Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.W.: From error bounds to the
complexity of first-order descent methods for convex functions. Math. Program.
165(2), 471-507 (2016). https://doi.org/10.1007/s10107-016-1091-6

Braun, G., Pokutta, S., Zink, D.: Lazifying conditional gradient algorithms. In:
Proceedings of the International Conference on Machine Learning (ICML) (2017)
Braun, G., Pokutta, S., Zink, D.: Lazifying conditional gradient algorithms. J.
Mach. Learn. Res. (JMLR) 20(71), 1-42 (2019)

Chvatal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Math. 4, 305-337 (1973)

Chvétal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial
optimization. Linear algebra Appl. 114, 455-499 (1989)

Combettes, C.W., Pokutta, S.: Revisiting the Approximate Carathéodory Problem
via the Frank-Wolfe Algorithm. Preprint (2019)

Diakonikolas, J., Carderera, A., Pokutta, S.: Locally accelerated conditional gra-
dients. Proceedings of AISTATS (arXiv:1906.07867) (2020, to appear)

Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248-264 (1972)

Eisenbrand, F., Schulz, A.: Bounds on the Chvatal rank on polytopes in the 0/1-
cube. Combinatorica 23(2), 245-261 (2003)

Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions—ii. In: Balinski, M.L., Hoffman, A.J. (eds.)
Polyhedral Combinatorics, pp. 73-87. Springer, Heidelberg (1978). https://doi.
org/10.1007/BFb0121195

Graham, R.L., Grotschel, M., Lovéasz, L.: Handbook of Combinatorics, vol. 1. Else-
vier (1995)

Hazan, E.: Lecture notes: Optimization for machine learning. arXiv preprint
arXiv:1909.03550 (2019)

Hazan, E., Luo, H.: Variance-reduced and projection-free stochastic optimization.
In: International Conference on Machine Learning, pp. 12631271 (2016)

Hinder, O., Lubin, M.: A generic adaptive restart scheme with applications to
saddle point algorithms. arXiv preprint arXiv:2006.08484 (2020)

Hu, X., Shonkwiler, R., Spruill, M.C.: Random restarts in global optimization
(2009)

Huang, J., et al.: The effect of restarts on the efficiency of clause learning. IJCAI
7, 2318-2323 (2007)

Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in Neural Information Processing Systems, pp.
315-323 (2013)

Kerdreux, T., d’Aspremont, A., Pokutta, S.: Restarting Frank-Wolfe. In: Proceed-
ings of AISTATS (2019)

https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/s10107-016-1091-6
http://arxiv.org/abs/1906.07867
https://doi.org/10.1007/BFb0121195
https://doi.org/10.1007/BFb0121195
http://arxiv.org/abs/1909.03550
http://arxiv.org/abs/2006.08484

38

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

S. Pokutta

Lan, G., Pokutta, S., Zhou, Y., Zink, D.: Conditional accelerated lazy stochas-
tic gradient descent. In: Proceedings of the International Conference on Machine
Learning (ICML) (2017)

Lan, G.: First-order and Stochastic Optimization Methods for Machine Learning.
Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-39568-1

Le Bodic, P., Pfetsch, M., Pavelka, J., Pokutta, S.: Solving MIPs via scaling-based
augmentation. Discrete Optim. 27, 1-25 (2018)

Mirrokni, V., Paes Leme, R., Vladu, A., Wong, S.C.W.: Tight bounds for approx-
imate Carathéodory and beyond. In: Proceedings of the 34th International Con-
ference on Machine Learning, pp. 2440-2448 (2017)

Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions—I. Math. Program. 14(1), 265-294 (1978)
Nemirovski, A.: Lectures on modern convex optimization. In: Society for Industrial
and Applied Mathematics (SIAM). Citeseer (2001)

Nesterov, Y.: How to make the gradients small. Optima. Math. Optim. Soc.
Newslett. 88, 10-11 (2012)

Nesterov, Y.: Lectures on Convex Optimization. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-91578-4

Nesterov, Y.E.: A method for solving the convex programming problem with con-
vergence rate O(1/k?). Dokl. akad. nauk Sssr. 269, 543-547 (1983)

O’donoghue, B., Candes, E.: Adaptive restart for accelerated gradient schemes.
Found. Comput. Math. 15(3), 715-732 (2015)

Rothvo8, T., Sanita, L.: 0/1 polytopes with quadratic chvdtal rank. Oper. Res.
65(1), 212-220 (2017)

Roulet, V., d’Aspremont, A.: Sharpness, restart and acceleration. ArXiv preprint
arXiv:1702.03828 (2017)

Schulz, A.S., Weismantel, R.: The complexity of generic primal algorithms for
solving general integer programs. Math. Oper. Res. 27(4), 681-692 (2002)
Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-integer programming: optimiza-
tion and augmentation are equivalent. In: Spirakis, P. (ed.) ESA 1995. LNCS,
vol. 979, pp. 473-483. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60313-1_164

Scieur, D., d’Aspremont, A., Bach, F.: Regularized nonlinear acceleration. In:
Advances in Neural Information Processing Systems, pp. 712-720 (2016)

Xu, Y., Yang, T.: Frank-Wolfe Method is Automatically Adaptive to Error Bound
Condition (2018)

https://doi.org/10.1007/978-3-030-39568-1
https://doi.org/10.1007/978-3-319-91578-4
http://arxiv.org/abs/1702.03828
https://doi.org/10.1007/3-540-60313-1_164
https://doi.org/10.1007/3-540-60313-1_164

Regular Papers

®

Check for
updates

Discriminating Instance Generation from
Abstract Specifications: A Case Study
with CP and MIP

Ozgiir Akgiin, Nguyen Dang®™), Tan Miguel, Andras Z. Salamon,
Patrick Spracklen, and Christopher Stone

School of Computer Science, University of St Andrews, St Andrews, UK
nttd@st-andrews.ac.uk

Abstract. We extend automatic instance generation methods to allow
cross-paradigm comparisons. We demonstrate that it is possible to com-
pletely automate the search for benchmark instances that help to dis-
criminate between solvers. Our system starts from a high level human-
provided problem specification, which is translated into a specification for
valid instances. We use the automated algorithm configuration tool irace
to search for instances, which are translated into inputs for both MIP and
CP solvers by means of the CONJURE, Savile Row, and MiniZinc tools.
These instances are then solved by CPLEX and Chuffed, respectively.
We constrain our search for instances by requiring them to exhibit a sig-
nificant advantage for MIP over CP, or vice versa. Experimental results
on four optimisation problem classes demonstrate the effectiveness of our
method in identifying instances that highlight differences in performance
of the two solvers.

Keywords: Instance generation - MIP - Constraint Programming

1 Introduction

When developing a model of a combinatorial problem class, a set of representa-
tive instances drawn from the class is essential for evaluating the model’s perfor-
mance. Recently, Akgiin et al. [1] demonstrated how to generate instances auto-
matically from the ESSENCE! specification of a problem class [10]. The instances
generated are graded: neither too difficult nor too easy relative to a given solver
and resource limits. Graded instances are particularly valuable for model eval-
uation, since they are less likely to be solved trivially with the model under
development or to remain unsolved at the expiry of a time budget. Either of
these outcomes would reveal little useful information about model performance.

! ESSENCE is an abstract constraint specification language that supports a formal
statement of a problem without committing to detailed modelling decisions.
© Springer Nature Switzerland AG 2020

E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 41-51, 2020.
https://doi.org/10.1007/978-3-030-58942-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_3

42 O. Akgiin et al.

In this paper we consider a more complex situation: rather than focus on
modelling for a single solving paradigm, it is often the case that we might wish
to evaluate two or more solving paradigms for a problem of interest. In this
context, it is desirable to generate instances that are not only graded, but also
discriminating, i.e. which exhibit a pronounced difference in solving performance
among the solving paradigms under consideration. Discriminating instances are
valuable both for a manual inspection of the instance characteristics that favour
one paradigm over the others, and to provide coverage of the instance space when
training the selection process for an algorithm portfolio [28]. Our hypothesis is
that starting from a single high-level specification of a problem we can generate
discriminating instances automatically via synthesising an “instance generator
model” and using standard algorithm tuning tools.

We consider two paradigms: Constraint Programming (CP) and Mixed Inte-
ger Programming (MIP). Extending the approach of Akgiin et al., we employ
the automated configuration tool irace [22] to search for graded discriminating
instances for the CP solver Chuffed [7] and the MIP solver CPLEX [17]. This
search is performed twice, with each solver in turn first considered the base
solver, and the other the favoured solver. irace is guided to search for discrimi-
nating instances where the favoured solver performs significantly better than the
base solver. The advantage of this approach is that, even when one of the two
solvers predominantly performs better, the search for discriminating instances is
pushed towards regions of the instance space where the generally weaker solver
has the advantage. This provides good coverage of the instance space and a clear
picture of relative solver performance, as our empirical results demonstrate.

2 Related Work

Benchmarks play an important role in combinatorial optimisation as they are
often the main device employed to verify the quality of solvers. For a long time
this involved bundling a collection of problem instances, with one or more prob-
lem classes, that are then solved and compared by practitioners. In many cases,
this has led to the reuse of the same set of instances for several decades causing
algorithms to become highly tailored to solve those specific sets and becoming
less generally applicable [13]. This is not an ideal practice, as it has been observed
that different algorithmic techniques have their own strengths and weaknesses
[6,19,30]. An alternative approach is making use of instance generators that
can produce a stream of new instances. The two main approaches to generate
instances in an automated manner are based on handcrafted programs [9,15,32],
where practitioners use their knowledge to specify desired characteristics, and
on meta-heuristic approaches where instances are created and selected accord-
ing to some objective functions [18,29]. In both cases these generators can pro-
duce instances only for specific problem classes and making them applicable to
new problem classes would require substantial modifications. Another criticism
raised [31] is that often only a small number of algorithms are tested on a small
set of instances to certify the superiority of one algorithm over another instead
of studying the strengths and weaknesses of both.

Discriminating Instance Generation from Abstract Specifications 43

Belov et al. [6] demonstrated automatic translation of CP specifications
expressed in the MiniZinc language to lower-level FlatZinc [24], using knowledge
of the target paradigm to guide the translation. Their experiments showed that
the MIP and CP solving paradigms have different sets of strengths and weak-
nesses, and found discriminating instances among the MiniZinc benchmarks.

Generation of discriminating instances is increasingly popular [4], for instance
to measure algorithm performance across instances [28] or to improve algorithm
selection tools [14,30]. Most studies in this area tackle one problem class at a
time. We here extend [1] to automatically produce instances for any problem
class. The goal is to automate finding instances that are particularly suited to
one algorithm but not another, and to study characteristics of these instances.

3 Background

CP and MIP solvers work by solving a problem instance model composed of
decision variables with associated domains, a set of constraints on the deci-
sion variables (and optionally an objective function for optimisation problems).
CP modelling languages typically offer a richer language in comparison to MIP
modelling languages thanks to having a richer set of constraint types. Modern
modelling languages for both formalisms allow models to be written for a prob-
lem class. A problem class model is instantiated by a modelling tool before it is
given to a solver to achieve a problem instance model.

ESSENCE is a problem specification language for combinatorial decision and
optimisation problems [10]. ESSENCE supports abstract decision variables, such
as multiset, relation and function, as well as nested types, such as multiset of
sets. In addition to language features for specifying decision variables, constraints
and the objective function (find, such that, min/maximising respectively) it
allows the specification of problem parameters which define problem instances
(given) and restrictions on values that parameters can take on valid instances
(where).

Problem specifications written in ESSENCE are converted to class level con-
straint models by CONJURE [2,3], which are then fed into Savile Row [26] to
instantiate the model and convert it into input suitable for a supported solver.
Savile Row also applies instance level model improvements automatically [26].

A problem specification can be automatically converted to an instance gen-
erator specification by CONJURE [1]. First, the given statements that declare
parameters are converted into £ind statements that declare corresponding deci-
sion variables. Second, the where statements are converted to such that state-
ments. This process is explained in more detail in [1].

The main objective of [1] was to generate graded instances (neither too easy
nor too hard for a selected backend solver). This is achieved by using a general-
purpose automated algorithm tuning tool to search for generator configurations
covering the problem instance space, with solving time between the given bounds.
In [1], irace was used for this task. irace is an automated algorithm configura-
tion tool that supports tuning parameters of algorithms efficiently. The core idea

44 O. Akgiin et al.

behind irace is iterated racing, an iterative search procedure where at each itera-
tion, statistical tests are used to eliminate configurations with poor performance
early, so that the budget is saved for evaluating more promising configurations.

4 Experimental Method

4.1 Problem Classes

We demonstrate our method on the following four optimisation problem classes.
The first three are typically solved by Operations Research methods. We work
with existing ESSENCE specifications from CSPlib [12], where available.

Transshipment (TP): Given costs of transporting goods from a warehouse to
a transshipment point and from a transshipment point to a customer, warehouse
stock levels, and customer demand, the objective is to minimise the total trans-
port cost while meeting customer demand. TP is known to have efficient linear
programming solutions [27] and we expected CPLEX to dominate Chuffed.

Progressive Party (PPP, CSPlib 013): The objective is to minimise the num-
ber of boats hosting a party at a yacht club, where some boats (with capacities)
are designated as hosts, and the crews of the remaining boats visit the host boats
for fixed time periods; two guest crews may meet at most once. PPP is a classic
CP problem and we expected Chuffed to dominate CPLEX.

Warehouse Location (WLP, CSPlib 034): A central warehouse will supply
depots, each with a maintenance cost and a capacity; each store will be supplied
from exactly one depot at some cost. The objective is to find a subset of depots
to open so as to minimise the sum of the maintenance and supply costs. We had
no prior opinion on whether CP would outperform MIP.

Capacitated Vehicle Routing (CVRP): The task is to find least cost routes
for identical vehicles with capacities, delivering goods from a central depot. Each
location is visited once by one vehicle. A route starts at the depot and finishes
there [8,20]. We had no prior opinion on whether MIP would outperform CP.

4.2 irace’s Scoring Function to Find Discriminating Instances

Each evaluation during the tuning involves a generator configuration and a ran-
dom seed, both sampled by irace. The CP solver minion [11] is used to solve the
configuration with the given random seed. A solution is returned as an instance
of the original problem. That instance is evaluated using the two solvers and a
score value (to be minimised) is calculated. The default setting of irace compares
configurations based on ranking. Therefore, the absolute difference between score
values is not important. Details of the scoring are as follows.

— If the generator configuration is unsatisfiable, then a special infinite score
value is returned. irace will discard the configuration immediately.

http://www.csplib.org/Problems/prob013/
http://www.csplib.org/Problems/prob034/

Discriminating Instance Generation from Abstract Specifications 45

— If the generator configuration is too large be to translated (Savile Row is out
of time or memory), or not solvable by minion, then the score is set to 2.
— If the generator configuration is satisfiable and an instance is found:
e if the instance is unsatisfiable or too large to be translated (Savile Row
is out of time or memory for either solver), then a score of 1 is returned,
e if the instance is too difficult for the favoured solver, or too easy for the
base solver, then a score of 0 is returned, or
e if the instance is solved within the given time and memory limits, then
the negation of the ratio between the solving time of the base and the
favoured solvers is returned.

4.3 Experimental Setup

The memory limit given to each evaluation is 7 GB. The time limit for Savile
Row and minion is 5 min each. The time limit for the favoured solver is 5 min,
while the base solver is allowed between 10s and 25 min. Chuffed version 0.10.3
and CPLEX version 12.9 are used. Instances are translated to Chuffed directly
via Savile Row. CPLEX input is translated to MiniZinc format first using Savile
Row, and then to CPLEX input format using MiniZinc [6]. The compilation time
required by MiniZinc was never more than a few seconds, as the input MiniZinc
files have been pre-processed and optimised by Savile Row.

Solving time on an instance is calculated as the average value across three
runs. Each experiment is run on a cluster node with two 2.1 GHz Intel Xeon
E5-2695 processors. Since irace supports parallelism, 30 cores are used per exper-
iment. Each tuning is given a budget of 5000 evaluations and 48 h of wall-time,
and is stopped when either of the two budgets is exhausted.

5 Results

The discriminating instances found? for each problem class are plotted in Fig. 1.
Table 1 details how many evaluations the tuning spent on each type of instance,
with numbers describing what the search space looks like during tuning.

For CVRP and PPP, we found discriminating instances for both CPLEX
and Chuffed. However, the number of instances found in the Chuffed-favoured
experiment is larger than in the CPLEX-favoured experiment (/2000 vs. ~50
instances for CVRP, and ~1400 vs. ~600 instances for PPP). Detailed results
on the search space during the tuning show that in the Chuffed-favoured exper-
iment, the majority of evaluations is spent on instances solved by Chuffed
within 300s, while in the CPLEX-favoured experiment, the majority is spent
on instances where CPLEX timed out (both problem classes), or on instances
that are very easy for Chuffed (CVRP only). This indicates that in our current
setting, although instances where CPLEX is better than Chuffed on those two
problem classes exist (and are found by our tuning), overall Chuffed is better at
solving these problems than CPLEX.

2 Code and data are at: https://github.com/stacs-cp/CPAIOR2020-InstanceGen.

https://github.com/stacs-cp/CPAIOR2020-InstanceGen

46 O. Akgiin et al.

10° e . Lo 10° 1:1 ratio
3 : . ® CPLEX favoured
Chuffed Time-out
Sae R . @ Chuffed favoured
t X CPLEX Time-out

102 s L. . o _— 102

Chuffed
Chuffed

1:1 ratio
® CPLEX favoured
10° Chuffed Time-out
o Chuffed favoured
CPLEX Time-out -,

10°

- >3 -2
10° 10! 10° 103 10°
CPLEX
102 T 103
102 L.t s 10?
3 B 3
& E
=} =}
S S
10° 1:1 ratio 10° 1:1 ratio
® CPLEX favoured ® CPLEX favoured
Chuffed Time-out Chuffed Time-out
10° 10t 10? 10° 10° 10! 10? 10°
CPLEX CPLEX

Fig. 1. Solving time of Chuffed and CPLEX on the discriminating instances found. We
run irace twice with each solver favoured in turn. The plotted time-outs are only for
the base solver.

For the two remaining problems, Transshipment and Warehouse Location, we
see a different picture. Many CPLEX-favoured instances are found, while there
are no Chuffed-favoured instances at all. For Transshipment, in the majority of
evaluations in both tuning experiments either Chuffed times out or the gener-
ator configuration was not solved in time. Figurel also shows that CPLEX’s
solving time on the discriminating instances of the same problem is quite small
(£10s). These observations suggest that CPLEX completely dominates Chuffed
on Transshipment, which is exactly what we expected. For Warehouse Location,
the story is a bit different. Instances in the CPLEX-favoured experiment are
mostly too easy for Chuffed. A more detailed look at those instances reveals
that Chuffed is comparable to CPLEX on the instances that are “too easy”.
Therefore, we conjecture that CPLEX may not completely dominate Chuffed
on Warehouse Location, but it does dominate Chuffed on the “more difficult”
instances which take at least 10s to solve by Chuffed in our setup.

Discriminating Instance Generation from Abstract Specifications 47

6 Feature Analysis

To gain more insights into the discriminating instances found, we extract their
FlatZinc features using the fzn2feat tool (part of mzn2feat [5]). There are 95
features grouped into 6 categories (variables, constraints, domains, global con-
straints, objective, and solving features) [5]. For each of the two problem classes
where discriminating instances are found, CVRP and PPP, we use the Balanced
Random Forest classifier from the Python package imblearn [21] with 200 esti-
mators and 5-fold cross validation. To identify the most important features rep-
resenting the discriminating property between the two solvers, Mean Decrease
Impurity [23] of each feature is calculated across 20 runs. Random Forests have
been shown to be the overall best choice for modelling running time of CP and
SAT solvers [16]. The Mean Decrease Impurity (MDI) is a widely-used measure-
ment for feature importance analyses in Random Forest models. The MDI of a
feature in each tree is the weighted decrease in impurity (using Gini importance)
across all tree nodes where the feature is used in the splits. The overall MDI of
a feature is calculated by averaging the MDI values across all trees in the forest.

Table 1. Number of runs for each instance type during tuning. Experiment name
has the problem class and the favoured solver. Columns: gen failed (unsolved gen-
erator configurations), SR-timeout&unsat (Savile Row timed out or the instances are
unsatisfiable), base easy (solved by the base solver within 10s), favoured timeout
(the favoured solver timed out), within the range (sat instances solved within 300s
by the favoured solver and not solved within 10s by the base solver). The four final
numbers for each experiment show how discriminating instances are; ratio is solving
time of the base to the favoured solver. If the base solver times out, 25 min is used.

gen SR-timeout base favoured within the range
failed & unsat easy timeout [ratio<1 ratio>1 ratio>2 ratio>10
PPP-chuffed 85 932 538 554 4 1474 1471 1419
PPP-cplex 67 1019 301 1290 14 670 665 597
CVRP-chuffed| 457 178 1117 741 4 2225 2224 2080
CVRP-cplex | 686 178 1768 1865 330 110 59 8
TP-chuffed 1762 30 323 2862 0 0 0 0
TP-cplex 2108 479 50 643 0 1096 1096 1038
WLP-chuffed | 626 58 4277 34 0 0 0 0
WPL-cplex 819 298 1174 0 0 519 518 481

To avoid noise in the measurement of solving time, we only consider discrim-
inating instances where the ratio between the solving time of the bad solver and
the good solver is larger than 1.5. Each instance is labelled as either Chuffed-
favoured or CPLEX-favoured.

48 O. Akgiin et al.

Figure2 show the importance values of the top 10 features for PPP and
CVRP. For PPP, the first feature, v_cv_domdeg vars, shows a much higher
importance value compared to the rest. This feature defines the Coefficient of
Variance of the ratios between domain size and degree (number of constraints
involved) of all variables. A more detailed look into the data indicates that
Chuffed-favoured instances tend to have similar ratios between domain size
over degree across different variables, while for CPLEX-favoured instances those
ratios differ more drastically between variables. For CVRP, there is no clearly dis-
tinguished single feature. Moreover, the list of the most important features varies
between the two different problem classes. This suggests that the favouring-
behaviours of the two solvers depend on the problem.

0.16
0.14
0.12

= ﬂ“fﬁ@]@@q;g]% LTS

0.02
0.00

:

<

o

J o o 6 & &
° & © 3 o @& SN R S R S SIS
& &S S S K & | & & (P Q(’o g R 4’° é‘@ Q@ q{"
& VIRV 7 ©
& 5 Y R (@A/ & beq/voa/ & @ & o\o & &z& & t>° sz &
S N A 7
b°<° &7 7 &7 8T S @7 ¥ b° x\°/ o &S » &7 2O
a7 8 & & SR N SRS Ay ARV Ry
N7 ds S
) %

Fig. 2. Top 10 FlatZinc features for discriminating instances based on MDI

7 Conclusion and Future Work

In this work, we presented an automated instance generation system that can
produce discriminating instances between two solvers. We demonstrated our
method on four problem classes with the CP solver Chuffed and the MIP solver
CPLEX. This revealed the strengths and weaknesses of each solver. A further
analysis of the discriminating instances using FlatZinc features [5] suggests that
the discriminating behaviour is problem dependent.

In future work, we plan to extend our system for finding discriminating
instances for a portfolio of more than two solvers; the open question here is how
to define the discriminating property. We also plan more detailed feature analy-
sis investigating the relationship between solver performance and instance space.
This can involve defining new instance features based on the high-level types sup-
ported by ESSENCE, which may provide more high-level structural information
about the instances. Finally, we currently rely on irace’s built-in exploration
of the generator configuration space to ensure the diversity of the generated
instances. This can be improved by investigating more advanced approaches for
controlling instance diversity more directly, including incorporating a diversity
measurement such as multi-objective indicators [25] into the scoring values of the

Discriminating Instance Generation from Abstract Specifications 49

tuning, or forcing each generator configuration to generate instances far away
from the current instance set by adding constraints into the generator model.

Acknowledgements. This work is supported by EPSRC grant EP/P015638/1 and
used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk)
funded by the University of Edinburgh and EPSRC (EP/P020267/1).

References

10.

11.

12.

13.

Akgiin, O., Dang, N., Miguel, I., Salamon, A.Z., Stone, C.: Instance generation via
generator instances. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802,
pp. 3-19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_1
Akgun, O., et al.: Automated symmetry breaking and model selection in CONJURE.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107-116. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0_11

Akgiin, O., Miguel, L., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated
constraint modelling. In: AAAT 2011: Proceedings of the Twenty-Fifth AAAT Con-
ference on Artificial Intelligence, pp. 4-11. AAAT Press (2011). https://www.aaai.
org/ocs/index.php/AAAI/AAAILL/paper/viewPaper/3687

Alissa, M., Sim, K., Hart, E.: Algorithm selection using deep learning without
feature extraction. In: GECCO 2019: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 198-206. ACM (2019)

Amadini, R., Gabbrielli, M., Mauro, J.: An enhanced features extractor for a
portfolio of constraint solvers. In: SAC 2014: Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pp. 1357-1359. ACM (2014). https://
doi.org/10.1145/2554850.2555114. Code available from https://github.com/CP-
Unibo/mzn2feat

Belov, G., Stuckey, P.J., Tack, G., Wallace, M.: Improved linearization of constraint
programming models. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 49-65.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_4

Chu, G., de la Banda, M., Stuckey, P.: Exploiting subproblem dominance in con-
straint programming. Constraints 17(1), 1-38 (2012). https://doi.org/10.1007/
$10601-011-9112-9. Code available from https://github.com/chuffed /chuffed
Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80-91 (1959). https://doi.org/10.1287 /mnsc.6.1.80

Drex], A., Nissen, R., Patterson, J.H., Salewski, F.: Progen/mx-an instance gener-
ator for resource-constrained project scheduling problems with partially renewable
resources and further extensions. Eur. J. Oper. Res. 125(1), 59-72 (2000)

Frisch, A.M., Harvey, W., Jefferson, C., Martinez-Herndndez, B., Miguel, I.:
Essence: a constraint language for specifying combinatorial problems. Constraints
13(3), 268-306 (2008). https://doi.org/10.1007/s10601-008-9047-y

Gent, L.P., Jefferson, C., Miguel, I.: Minion: a fast scalable constraint solver. In:
Proceedings of ECAI 2006, pp. 98-102. IOS Press (2006). http://ebooks.iospress.
nl/volumearticle/2658

Gent, I.P., Walsh, T.: CSPlib: a benchmark library for constraints. In: Jaffar, J.
(ed.) CP 1999. LNCS, vol. 1713, pp. 480-481. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-540-48085-3_36. http://www.csplib.org

Hooker, J.N.: Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33-42
(1995)

http://www.cirrus.ac.uk
https://doi.org/10.1007/978-3-030-30048-7_1
https://doi.org/10.1007/978-3-642-40627-0_11
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewPaper/3687
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewPaper/3687
https://doi.org/10.1145/2554850.2555114
https://doi.org/10.1145/2554850.2555114
https://github.com/CP-Unibo/mzn2feat
https://github.com/CP-Unibo/mzn2feat
https://doi.org/10.1007/978-3-319-44953-1_4
https://doi.org/10.1007/s10601-011-9112-9
https://doi.org/10.1007/s10601-011-9112-9
https://github.com/chuffed/chuffed
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1007/s10601-008-9047-y
http://ebooks.iospress.nl/volumearticle/2658
http://ebooks.iospress.nl/volumearticle/2658
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36
http://www.csplib.org

50

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

0. Akgiin et al.

Hoos, H.H., Kaufmann, B., Schaub, T., Schneider, M.: Robust benchmark set
selection for boolean constraint solvers. In: Nicosia, G., Pardalos, P. (eds.) LION
2013. LNCS, vol. 7997, pp. 138-152. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-44973-4_16

Horie, S., Watanabe, O.: Hard instance generation for SAT. In: Leong, H.-W., Imai,
H., Jain, S. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 22-31. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63890-3_4

Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
methods & evaluation. Artif. Intell. 206, 79-111 (2014)

IBM: IBM ILOG CPLEX Optimization Studio documentation (2019)

Julstrom, B.A.: Evolving heuristically difficult instances of combinatorial problems.
In: GECCO 2009: Proceedings of the 11th Annual conference on Genetic and
Evolutionary Computation, pp. 279-286. ACM (2009). https://doi.org/10.1145/
1569901.1569941

Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In:
Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D.
(eds.) Data Mining and Constraint Programming. LNCS (LNAI), vol. 10101, pp.
149-190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50137-6_7
Laporte, G.: The vehicle routing problem: an overview of exact and approximate
algorithms. Eur. J. Oper. Res. 59(3), 345-358 (1992). https://doi.org/10.1016/
0377-2217(92)90192-C

Lemaitre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1-5 (2017). http://jmlr.org/papers/v18/16-365.html

Lépez-Ibanez, M., Dubois-Lacoste, J., Céaceres, L.P., Birattari, M., Stiitzle,
T.: The irace package: iterated racing for automatic algorithm configuration.
Oper. Res. Perspect. 3, 43-58 (2016). https://doi.org/10.1016/j.0rp.2016.09.002.
http://iridia.ulb.ac.be/irace/

Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable impor-
tances in forests of randomized trees. In: Advances in Neural Information Process-
ing Systems, pp. 431-439 (2013)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529-543. Springer, Heidelberg (2007). https://doi.org/10.1007 /978~
3-540-74970-7_38

Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity opti-
mization using multi-objective indicators. In: GECCO 2019: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 837-845. ACM (2019)
Nightingale, P., Akgiin, O7 Gent, L.P., Jefferson, C., Miguel, 1., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artif. Intell. 251, 35—
61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

Orden, A.: The transhipment problem. Manag. Sci. 2(3), 276-285 (1956). https://
doi.org/10.1287 /mnsc.2.3.276

Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures
of algorithm performance across instance space. Comput. Oper. Res. 45, 12-24
(2014)

Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algo-
rithms by learning from evolved instances. Ann. Math. Artif. Intell. 61(2), 87-104
(2011). https://doi.org/10.1007/s10472-011-9230-5

https://doi.org/10.1007/978-3-642-44973-4_16
https://doi.org/10.1007/978-3-642-44973-4_16
https://doi.org/10.1007/3-540-63890-3_4
https://doi.org/10.1145/1569901.1569941
https://doi.org/10.1145/1569901.1569941
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1016/0377-2217(92)90192-C
https://doi.org/10.1016/0377-2217(92)90192-C
http://jmlr.org/papers/v18/16-365.html
https://doi.org/10.1016/j.orp.2016.09.002
http://iridia.ulb.ac.be/irace/
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1287/mnsc.2.3.276
https://doi.org/10.1287/mnsc.2.3.276
https://doi.org/10.1007/s10472-011-9230-5

30.

31.

32.

Discriminating Instance Generation from Abstract Specifications 51

Smith-Miles, K., Lopes, L.: Generalising algorithm performance in instance space: a
timetabling case study. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp.
524-538. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-
3.41

Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Comput. Oper. Res. 39(5), 875-889 (2012)

Vanhoucke, M., Maenhout, B.: NSPLib-a nurse scheduling problem library: a tool
to evaluate (meta-) heuristic procedures. In: Operational Research for Health Pol-
icy: Making Better Decisions, Proceedings of the 31st Annual Meeting of the Work-
ing Group on Operations Research Applied to Health Services, pp. 151-165 (2007)

https://doi.org/10.1007/978-3-642-25566-3_41
https://doi.org/10.1007/978-3-642-25566-3_41

l‘)

Check for
updates

Bilevel Optimization for On-Demand
Multimodal Transit Systems

Beste Basciftci’2(™) and Pascal Van Hentenryck®

1 Georgia Institute of Technology, 30332 Atlanta, GA, USA
beste.basciftci@gatech.edu, pascal.vanhentenryck@isye.gatech.edu
2 Sabanci University, 34956 Istanbul, Turkey

Abstract. This study explores the design of an On-Demand Multimodal
Transit System (ODMTS) that includes segmented mode switching mod-
els that decide whether potential riders adopt the new ODMTS or stay
with their personal vehicles. It is motivated by the desire of transit agen-
cies to design their network by taking into account both existing and
latent demand, as quality of service improves. The paper presents a
bilevel optimization where the leader problem designs the network and
each rider has a follower problem to decide her best route through the
ODMTS. The bilevel model is solved by a decomposition algorithm that
combines traditional Benders cuts with combinatorial cuts to ensure the
consistency of mode choices by the leader and follower problems. The
approach is evaluated on a case study using historical data from Ann
Arbor, Michigan, and a user choice model based on the income levels of
the potential transit riders.

Keywords: On-demand transit system + Mode choice * Bilevel
optimization - Benders decomposition - Combinatorial cuts

1 Introduction

On-Demand Multimodal Transit Systems (ODMTS) [13,15] combines on-
demand shuttles with a bus or rail network. The on-demand shuttles serve
local demand and act as feeders to and from the bus/rail network, while the
bus/rail network provides high-frequency transportation between hubs. By using
on-demand shuttles to pick up riders at their origins and drop them off at their
destinations, ODMTS addresses the first/last mile problem that plagues most
of the transit systems. Moreover, ODMTS addresses congestion and economy
of scale by providing high-frequency along congested corridors. They have been
shown to bring substantial convenience and cost benefits in simulation and pilot
studies in the city of Canberra, Australia and the city of Ann Arbor, Michigan.

The design of an ODMTS is a variant of the hub-arc location problem [4,5]:
It uses an optimization model that decides which bus/rail lines to open in order
to maximize convenience (e.g., minimize transit time) and minimize costs [13].
This optimization model uses, as input, the current demand, i.e., the set of

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 52-68, 2020.
https://doi.org/10.1007/978-3-030-58942-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_4

Bilevel Optimization for On-Demand Multimodal Transit Systems 53

origin-destination pairs over time in the existing transit system. Transit agen-
cies however are worried about latent demand: As the convenience of the transit
system improves, more riders may decide to switch modes and adopt the ODMTS
instead of traveling with their personal vehicles. By ignoring the latent demand,
the ODMTS may be designed suboptimally, providing a lower convenience or
higher costs. This concern was raised in [3] who articulated the potential of
leveraging data analytics within the planning process and proposing transit sys-
tems that encourage riders to switch transportation modes.

This paper aims at remedying this limitation and explores the design of
ODMTS with both existing and latent demands. It considers a pool of potential
riders, each of whom is associated with a personalized mode choice model that
decides whether a rider will switch mode for a given ODMTS. Such a choice
model can be obtained through stated and revealed preferences, using surveys
and/or machine learning [17]. The main innovation of this paper is to show how
to integrate such mode choice models into the design of ODMTS, capturing
the latent demand and human behavior inside the optimization model. More
precisely, the contributions of the paper can be summarized as follows:

1. The paper proposes a novel bilevel optimization approach to model the
ODMTS problem with latent demand in order to obtain the most cost-efficient
and convenient route for each trip.

2. The bilevel optimization model includes a personalized mode choice for each
rider to determine mode switching or latent demand.

3. The bilevel optimization model is solved through a decomposition algorithm
that combines both traditional and combinatorial Benders cuts.

4. The paper demonstrates the benefits and practicability of the approach on a
case study using historical data over Ann Arbor, Michigan.

The remainder of the paper is organized as follows. Section 2 reviews the
relevant literature. Section 3 specifies the ODMTS design problem. Section 4
proposes a bilevel optimization approach for the design of ODMTS with latent
demand, and Sect. 5 develops the novel decomposition methodology. The case
study is presented in Sect. 6 and Sect. 7 concludes the paper with final remarks.

2 Related Literature

Hub location problems are an important area of research in transit network
design (see [7] for a recent review). More specifically, the transit network design
problem considering hubs can be considered as a variant of the hub-arc location
problem [4,5], which focuses on determining the set of arcs to open between hubs,
and optimizing the flow with minimum cost. Mahéo, Kilby, and Van Hentenryck
[13] extended this problem to the ODMTS setting by introducing on-demand
shuttles and removing the restriction that each route needs to contain an arc
involving a hub. Furthermore, instead of the restriction of hubs being intercon-
nected in the network design, they consider a weak connectivity within system
by ensuring the sum of incoming and outgoing arcs to be equal to each other for

54 B. Basciftci and P. Van Hentenryck

each hub. Although these studies provide efficient solutions for a given demand,
they neglect the effect of the latent demand which can change the design of the
transit systems.

Bilevel optimization is an important area of mathematical programming,
which mainly considers a leader problem, and a follower problem that optimizes
its decisions under the leader problem’s output. Due to this hierarchical deci-
sion making structure, this area attracted attention in different urban transit
network design applications [8,11] such as discrete network design problems [9]
by improving a network via adding lines or increasing their capacities, and bus
lane design problems [16] under traffic equilibrium. Another line of research
focuses on the pricing aspects of these problems for toll optimization by consid-
ering a multi-commodity network flow problem [1], and [2] extends this setting
by jointly designing the underlying network. Studies [6,14] provide an overview
of various solution methodologies to address these problems including refor-
mulations based on Karush—Kuhn—Tucker (KKT) conditions, descent methods
and heuristics. User preferences and the corresponding latent demand constitute
important factors impacting the network design. Because of the computational
complexity involved with solving bilevel problems, it is preferred to model rider
preferences within a single level optimization problem [10]. To this end, our app-
roach provides a novel bilevel optimization framework for solving the ODMTS
by integrating user choices, and developing an exact decomposition algorithm as
its solution procedure.

3 Problem Statement

This section defines the problem statement and stays as close as possible to the
original setting of the ODMTS design [13]. In particular, the input consists of
a set of (potentially virtual) bus stops N, a set of potential hubs H C N, and
a set of trips T. Each trip r € T is associated with an origin stop or”™ € N, a
destination stop de” € N, and a number of passengers taking that trip p” € Z,..
This paper often abuses terminology and uses trips and riders interchangeably,
although a trip may contain several riders. The distance and time between each
node pair ¢, 7 € N is given by parameters d;; and ¢;;, respectively. These parame-
ters can be asymmetric and are assumed to satisfy the triangular inequality. The
network design optimizes a convex combination of convenience (mostly travel
time) and cost, using parameter 6 € [0, 1]: In other words, convenience is multi-
plied by 8 and cost by 1 — 6. The investment cost of opening a leg between the
hubs h,l € H is given by as fp; = (1 — 6) b n dp;, where b is the cost of using a
bus per mile and n is the number of buses during the planning period. For each
trip r € T, the weighted cost and convenience of using a bus between the hubs
h,l € H is given by 77, = 0(tp + S), where S is the average waiting time of a
bus (the bus cost is covered by the investment).

This paper adopts a pricing model where the ODMTS subsidizes part, but
not all, of the shuttle costs. More precisely, for simplicity in the notations, the

Bilevel Optimization for On-Demand Multimodal Transit Systems 55

paper assumes that the transit price is half of the shuttle cost of a trip.! With
this pricing model, the weighted cost and convenience for an on-demand shuttle
between ¢ and j for the ODMTS and riders is given by (1—6) § d;; +6t;;, where
g is the cost of using a shuttle per mile. Moreover, the shuttles act as feeders to
bus system or serve the local demand. As a result, their operations are restricted
to serve requests in a certain distance. This is captured by a threshold value of
A miles that characterizes the trips that shuttles can serve. As a result, it is
suitable to define the weighted cost and convenience of an on-demand shuttle
between the stops i,j € N as follows:

. =0 %dy + oty ifdy < A
T M if dij > A.

where M is a big-M parameter.
To capture latent ridership, this paper assumes that a subset of trips 7" C T
currently travel with their personal vehicles, while the trips in 7'\ T” already
use the transit system. The goal of the paper is to capture, in the design of
the ODMTS, the fact that some riders may switch mode and use the ODMTS
instead of their own cars as the transit system has a better cost/convenience
trade-off. Each rider r € T’ has a choice model C" that determines, given the
cost/convenience of the novel ODMTS, whether r will switch to the transit

system. For instance, the cost model could be
C'(d")=1(d" <a" d

CGT)

where d,, represents the weighted cost and convenience of using a car for rider
r, d" represents the weighted cost and convenience of using the ODMTS in some
configuration, and o” € R;. In other words, rider r would switch to transit if
its convenience and cost is not more than a” times the cost and convenience of
traveling with her personal vehicle. The choice model could of course be more
complex and include the number of transfers and other features. It can be learned

using multimodal logic models or machine learning [17].

4 Model Formulation

This section proposes an optimization model for the design of an ODMTS follow-
ing the specification from Sect. 3. In the model, binary variable zj; is 1 if there is
a bus connection from hub A to [. Furthermore, for each trip r, binary variables
xp,, and y;; represent whether rider r uses a bus leg between hubs h,l € H and
a shuttle leg between stops ¢ and j respectively. Binary variable 6" for r € T’
is 1 if rider r switches to the ODMTS. The bilevel optimization model for the

! The results in this paper generalize to other subsidies and pricing models, and they
will be discussed in the extended version of the paper.

56 B. Basciftci and P. Van Hentenryck

ODMTS design can then be specified as follows:

min Z Brizn + Z p"d" + Z p"é"d" (1a)

h,leH reT\T’ reT’

s.t. Z Znl = Zzlh Vhe H (1b)
led leH
= CT(d) WreT (1c)
zn € {0,1} Vh,le H (1d)
§me{0,1} vreT’ (le)

where d" is the cost and convenience of trip r, i.e.,

d" = min Z Thi%h + Z ViiYij (2a)
h,leH 1,jEN
1 Jif i =or”
sto > (@ -2+ Y (W —yh) =4 -1 Lifi=dem WieN

ek iJEN 0 ,otherwise

(21)

xp < zn VhileH (2¢)

o € {0,1} Vh,l€ Hy}, €{0,1} Vi jeN. (2d)

The resulting formulation is a bilevel optimization where the leader problem
(Egs. (1a)—(1e)) selects the network design and the follower problem (Egs. (2a)-
(2d)) computes the weighted cost and convenience for each rider » € T in the
proposed ODMTS.

The objective of the leader problem (la) minimizes the investment cost of
opening legs between hubs and the weighted cost and convenience of the routes in
the ODMTS for those riders. Constraint (1b) ensures weak connectivity between
the hubs and constraint (1c) represents the rider choice, i.e., whether rider r € T’
switches to the ODMTS.

The follower problem of a given trip minimizes the cost and convenience of
its route between its origin and destination, under a given transit network design
between the hubs (objective function (2a)). Constraint (2b) ensures flow conser-
vation for the bus and shuttle legs. Constraint (2c) guarantees that only open
legs are considered by each trip. The follower problem has a totally unimodu-
lar constraint matrix, once the leader problem determines the transit network
design decisions z. In this case, integrality restrictions (2d) can be relaxed, and
the problem can be solved as a linear program.

As specified, the follower problem takes into account all of the arcs between
each node pair i,j € N for possible rides with on-demand shuttles. However,
due to the triangular inequality, it is sufficient to consider a subset of the arcs
for the on-demand shuttles of each trip. More precisely, the optimization only
needs to consider arcs i) from origin to hubs, ii) from hubs to destination, and
iii) from origin to destination. This subset of necessary arcs for trip r is denoted

Bilevel Optimization for On-Demand Multimodal Transit Systems 57

by A". Consequently, the model only needs the following decision variables for
describing the on-demand shuttles used in trip r:

yz;rrh’y;;der € {0’ 1} Vhe H
ygrrdeT S {0,].}

This preprocessing step significantly reduces the size of the follower problem and
provides a significant computational benefit.

5 Solution Methodology

This section presents a decomposition approach to solve the bilevel problem (1).
The decomposition combines traditional Benders optimality cuts with combina-
torial Benders cuts to capture the rider choices. The Benders master problem
is associated with the leader problem and considers the complicating variables
(2n1,0",d") and the subproblems are associated with the follower problems. The
master problem relaxes the user choice constraint (1c). The duals of the sub-
problems generate Benders optimality cuts for the master problem. Moreover,
combinatorial Benders cuts are used to ensure that the rider mode choices in
the master problem are correctly captured by the master problem. The overall
decomposition approach iterates between solving the master problem and guess-
ing (24,0",d") and solving the subproblems to obtain the correct value d” from
which the switching decision C"(d") can be derived. The overall process termi-
nates when the lower bound obtained in the master problem and upper bound
computed through the feasible solutions converge.

Section 5.1 presents the master problem and Sect. 5.2 discusses the subprob-
lem along with some preprocessing steps. Section 5.3 introduces the cut gener-
ation procedure and proposes stronger cuts under some natural monotonicity
assumptions. Section 5.4 specifies the proposed decomposition algorithm and
proves its finite convergence. Finally, Sect. 5.5 improves the decomposition app-
roach with Pareto-optimal cuts.

5.1 Relaxed Master Problem

The initial master problem (3) is a relaxation of the bilevel problem (1), i.e.,

min Z Brizn + Z p"d" + Z p"o"d"

hleH reT\T" reT”

s.t. (1b),(1d), (1e). (3a)

Each iteration first solves the relaxed master problem (3), before identifying
combinatorial and Benders cuts to add to the master problem. These cuts depend
on the proposed transit network design and rider choices as discussed in Sects.
5.2 and 5.3. The objective function (3a) involves nonlinear terms and needs to be
linearized. Since the mode choice is binary, the nonlinear terms can be linearized

58 B. Basciftci and P. Van Hentenryck

easily by defining v" = §"d" and adding the following constraints to the master
problem for each trip r € T":

vt < MO (4a)
vh<d" (4b)
V> d" — MT(1— 6" (4c)
v >0, (4d)

where the constant M" is an upper bound value on the objective function value
of the lower level problem of trip r.

5.2 Subproblem for Each Trip

The subproblems for the decomposition algorithm are the duals of the follower
problems (2). Since the follower problems have a totally unimodular constraint
matrix for a given binary z vector, the integrality condition for variable z7; can
be relaxed into by xgj > 0 and the bounds x;-”j < 1 can be discarded since it
is redundant due to constraint (2c). Then, the dual of the subproblem for each

route 7 € T' can then be specified by introducing the dual variables u} and vy,:

max (Whr —ufer) = Y Zwivpy (5a)
hilcH

st. up —u; —vy; <7, VhileH (5b)

uj —uj <7 Vije A (5¢)

u; >0 Vie N,v,; >0 Vh,leH. (5d)

Problem (2) is trivially feasible by using the direct trip between origin and des-
tination (which may have a high cost) and hence the dual problem (5) bounded.
The optimal objective value of subproblem (2) under solution {Zui}nicq is
denoted by SP"(z). In the following section, this value is utilized to evaluate
the rider’s mode choice and possibly to generate combinatorial cuts.

5.3 The Cut Generation Procedure

The cut generation procedure receives a feasible solution ({Zni}n,1cm, {07} e,
{d"},er) to the relaxed master problem. It solves the dual subproblem (5) for
each trip € T under the network design z. For any trip r € T”, the cut genera-
tion procedure then analyzes the feasibility and optimality of the solution of the
relaxed master problem, depending on the value of SP"(Z). The cut generation
first needs to enforce the consistency of the choice model.

Definition 1 (Choice Consistency). For a given trip r, the solution values
{Znithicn and 0" are consistent with SP"(Z) if

5" =CT(SP"(2)).

Bilevel Optimization for On-Demand Multimodal Transit Systems 59
As a result, it is useful to distinguish the following cases in the cut generation
process:

L. Solution values {Zp;}nicn and 8" are inconsistent with SP"(Z)
(a) 6" =1and C"(SP"(z)) = 0;
(b) 6" =0 and C"(SP"(2)) = 1.

2. Solution values {Zn;}n1emr and 6" are consistent with SP"(Z).
The first inconsistency (case 1(a)) can be removed by using the cut

St Y. -z =" (6)

(h,l):ihl 0 (h l) Zni=1

Proposition 1. Constraint (6) removes inconsistency 1(a).
The second inconsistency (case 1(b)) can be removed by using the cut

S aut Y. (—zw)+d" =1 (7)

(h,l):zhL—O (h l) Zhi=1

Proposition 2. Constraint (7) removes inconsistency 1(b).

Combinatorial cuts (6) and (7) ensure the consistency between the rider choice
model and the transit network design z. These cuts can be strenghtened under
a monotonicity property.

Definition 2 (Anti-Monotone Mode Choice). 4 choice function C is anti-
monotone if di < dy = C(dy) > C(d2).

Proposition 3. Let r € T. If z; < Zy, then SP"(z1) > SP"(Z2).

Proof. If Z; < Z5, more arcs are available in the network defined by Z; than in
the network defined by Z;. Therefore, the length of the optimum shortest path
for trip r under z; is greater than or equal to that of Zs. a

The following proposition follows directly from Proposition 3.

Proposition 4. Letr € T and C" be an anti-monotone choice function. If z; <
Zo, then C"(SP"(z1)) < C"(SP"(z2)).

When the choice function is anti-monotone, stronger cuts can be derived.

Proposition 5. Consider an anti-monotone choice function. Then constraint
(6) for case 1(a) can be strengthened into constraint

Z Zhl Z (V (8)

(h,l):ihl:()

60 B. Basciftci and P. Van Hentenryck

Proof. Consider case 1(a) and network design z. Let Z be a network design
obtained by removing some arcs from z. By Proposition 3, SP"(Z) > SP"(z) for
any trip r. Hence, by Proposition 4, C"(SP"(2)) < C"(SP"(Z)). Therefore, the
right term of cut (6) does not remove the inconsistency and the result follows. O

Proposition 6. Consider an anti-monotone choice function. Then constraint
(7) for case 1(b) can be strengthened into constraint

Z (I—zpm)+0">1 (9)

(h,1):Zp=1

Proof. Consider case 1(b) and network design z. Let Z be a network design
obtained by adding some arcs to z. By Proposition 3, SP"(Z) < SP"(Z) for any
trip r. Hence, by Proposition 4, C"(SP"(2)) > C"(SP"(z)). Thus, the left term
of cut (7) does not remove the inconsistency and the result follows. O

Since the dual subproblem (5) is bounded, it is also possible to add an optimality
cut to the master problem in both cases of 1 and 2 using the weighted cost and
convenience of each obtained route. This cut is the standard Benders optimality
cut and it uses the vertex (@”,?") obtained when solving the dual subproblem
as follows:

d" > (ag'ﬂ - ageT) - Z zhl@zl' (10)

hilcH

It is also possible to obtain an upper bound from the solutions to the subprob-
lems. Indeed, the rider choices can be derived from the solutions of the sub-
problems and used instead of the corresponding master variables for the mode
choices.

The experimental results use the choice function C"(d") = 1(d” < o d.,,.): A
rider r chooses the ODMTS if her weighted cost and convenience is not greater
than o times the weighted cost and convenience d,,, of using her personal car.
This choice function is anti-monotone.

Proposition 7. The choice function C"(d") = 1(d" < o df,,.) is anti-
monotone.

Proof. By definition, d" decreases when adding arcs to a network and df < dj
implies C"(d}) > C"(d5). O

5.4 Decomposition Algorithm

The decomposition is summarized in Algorithm 1. It uses a lower and an upper
bound to the bilevel problem (1) to derive a stopping condition. The master
problem provides a lower bound and, as mentioned earlier, an upper bound can
be derived for each network design by solving the subproblems and obtaining
the mode choices for the trips.

Proposition 8. Algorithm 1 converges in finitely many iterations.

Bilevel Optimization for On-Demand Multimodal Transit Systems 61

Algorithm 1. Decomposition Algorithm
1: Set LB = —oco, UB = o0, 2" =).
2: while UB > LB + ¢ do

3: Solve the relaxed master problem (3) and obtain the solution ({Zni}n,cH,
(5" rers, (@ }rer).

4 Update LB.

5: for all r € T do

6: Solve the subproblem (5) under z, and obtain SP"(Zz).

T Add optimality cut in the form (10) to the relaxed master problem (3).

8 forallr € T' do

9: if {Zni}niem and 8" are inconsistent with SP"(Z) then

10: Add cuts in the form (8) or (9) to the relaxed master problem.

11: if C"(SP"(z)) is 1 then

12: Set " = 1.

13: else

14: Set 6" = 0.

150 UB =Y cp Bz + X crm D" SP(2) + X, cqn 0" SP7(2).
16: if UB<UB then _
17: Update UB as UB, z* = z.

Proof. The algorithm generates traditional Benders optimality cuts and, in addi-
tion, the consistency cuts of the form (8) or (9). When all the consistency cuts are
generated, the algorithm reduces to a standard Benders decomposition. There
are only finitely many consistency cuts, because the decision variables z and 0"
are binary. Since each iteration adds at least one new consistency or Benders
cut, the algorithm is guaranteed to converge in finitely many iterations. a

5.5 Pareto-Optimal Cuts

The decomposition algorithm can be further enhanced by utilizing Pareto-
optimal cuts [12] through alternative optimal solutions of the subproblems. To
this end, the algorithm first solves the follower problem (2) under a given network
design, obtains the optimal objective value for the corresponding trip, and then
solve the Pareto subproblem, i.e., a restricted version of the dual subproblem (5)
under this optimal value.

Observe that, once the transit network design Z is given, the follower prob-
lem of each trip r is equivalent to solving a shortest path problem considering
the union of the arcs defined by Z and the arcs in the set A”. Consequently,
this shortest path information can be obtained by solving a linear program and
obtaining the objective value ¢” for trip r. Using this information, the Pareto

62 B. Basciftci and P. Van Hentenryck

subproblem for trip r is defined as follows:

max (uf, —) — S (11a)
h,leH
st. wup —u; —vp, <7, VhileH (11b)
uj —uj <7 Vi,jeA” (11c)
(Upyr = Wher) = Y Zravhy =0 (11d)
hl€H
u; >0 Yie N,vp; >0 Vh,le€H, (11e)
where 2" is a core point that satisfies the weak connectivity constraint (1b). To

obtain an initial core point, it suffices to select a value n € (0, 1), and set zp; =7
for all h,l € H.

6 Computational Results

The computational study considers a data set from Ann Arbor, Michigan with 10
hubs located around high density corridors and 1267 bus stops. The experiments
examine a set of trips from 6 pm to 10 pm on a specific day. The studied data set
involves 1503 trips with a total of 2896 users, where the origin and destination
of each trip are associated with bus stops. The costs and times between the bus
stops are asymmetric in the studied data set. The study included a preprocessing
step to ensure the triangular inequality with respect to the cost and convenience
parameters of the on-demand shuttles between the stops.

To model rider preferences in the formulation, the computational study used
an income-based classification. This approach assumes that, as the income level
of a rider increases, she becomes more sensitive to the quality of the ODMTS
route (convenience). In particular, the study considers three classes of riders: i)
low-income, ii) middle-income and iii) high-income, where a certain percentage of
riders from each class is assumed to use the ODMTS. The trips are then classified
with respect to their destination locations, which can be associated with the
residences of the corresponding riders. In particular, in the base scenario, 100%
of low-income riders, 75% of middle-income riders, and 50% of high-income users
utilize the transit system, whereas the remaining riders have the option to select
the ODMTS or use their personal vehicles by comparing the obtained route with
their current mode of travel.

The convenience parameter 6 is set to 0.01 for weighting cost and convenience.
The cost of an on-demand shuttle per mile is taken as ¢ = $2.86 and the cost
of a bus per mile is b = $7.24. The buses between hubs have a frequency of
15 min, resulting in 16 buses during the planning horizon with length of 4h. As
mentioned earlier, the price of a ride in the ODMTS is half the cost of the shuttle
legs. The base case of the case study sets o” to 1.25 and 1 for middle-income
and high-income riders respectively. The distance threshold for the on-demand
shuttles, A, is set to 2 or 5mi.

Bilevel Optimization for On-Demand Multimodal Transit Systems 63

6.1 Transit Design and Mode Switching

Figure 1 depicts the transit network design between hubs under the proposed
approach. The bus stops associated with the lowest income level are red dots,
those of the middle-income level are grey boxes, and those of the high-income
level are green plus symbols. In the resulting network design, almost every hub
is connected to at least another hub ensuring weak connectivity of the network.

L ™ B ;
<+ L 3
& g North QSR oy ST Ind!pPsE\
[=] ¥ Charter Twp <
¢
+48 00 40 068 o
..
&
% o
o® o0 O

°* will
. L A

g:, [alnlar 5 gn @00 oW

og ,% o 0’0 e %3.

é‘g Sooogoon@ © dfee eme e@ee "‘f’ ..“.t :'E

o 8 @ L4 & .'. o2

LK N]

‘55 y) "‘?. S
o ittsfield] .e ® o0 Sy
O Gharter Twp 5] ¢
& SPH0e &
Ypsilant
o EE Chz?rt‘eriv‘/p
| @ $ee

Fig. 1. Network design for the ODMTS with 10 Hubs with A = 2.

Table 1. Adoption rates, average route time and average ride cost for the ODMTS.

Income | #trips | %adoption | #riders | %adoption | Avg Avg
level route route
time (s) | cost (%)
Low 476 1.00 877 1.00 901.45 2.41
Middle 784 0.96 1615 0.97 553.43 2.43
High 149 0.72 285 0.79 583.10 2.78

Table 1 shows the rider preferences, and the average time and cost of the
obtained routes. In particular, columns ‘#trips’ and ‘#riders’ represent the num-
ber of trips and riders of the ODMTS. The “%adoption” columns correspond to
the adoption rate, i.e., the percentage of trips or riders utilizing the ODMTS.
When computing the adoption rate, these numbers include the initial set of
riders, i.e., 100% of low-income riders, 75% of middle-income riders and 50%

64 B. Basciftci and P. Van Hentenryck

of high-income riders. The cost and convenience of the ODMTS is sufficiently
attractive to exhibit significant mode switching, even for the high-income pop-
ulation. Columns for the average route time and cost represent the averages for
the obtained routes regardless of the fact that whether riders adopts the tran-
sit system or not. The results highlight the high adoption rates. The average
route time is the longest for the low-income riders given their long commuting
trips. Similar results are observed for the number of transfers, which include the
transfers between on-demand shuttles and buses, and between the buses in the
hubs. Specifically, from the set of riders choosing the transit system, 22% of low-
income riders, 8% of medium-income riders, and 3% of high-income riders have
at least 3 transfers. Moreover, the number of transfers decreases with increases
in income level.

Table 2. Comparing the average cost and time of the ODMTS trips and those using
personal vehicles (Cars).

ODMTS trips Car trips

Time Cost Time Cost
Income level | ODMTS | Cars | ODMTS | Cars | ODMTS | Cars | ODMTS | Cars
Low 901.45 405.96 | 2.41 10.72 | NA NA
Medium 528.94 |296.95|2.38 7.14]1489.80 |585.03 |5.17 14.55
High 529.84 326.53 | 2.30 7.06 | 93.77 31.51 |0.21 0.88

Table 2 presents a cost and convenience analysis for the ODMTS trips and
those using personal vehicles (cars). The columns corresponding to “ODMTS
Trips” represent users who chose the transit system, whereas columns corre-
sponding to “Car Trips” are for those using their personal vehicles, once they
observe the transit network design. It also provides the cost and convenience of
the other mode, i.e., the convenience and cost of using a personal vehicle for those
using the ODMTS and vice-versa. As can be seen, the cost of using the ODMTS
is significantly lower, although personal vehicles would decrease the commute
time significantly for low-income riders. Note however that the ODMTS has also
achieved low commuting times. Riders using personal vehicles do so because the
transit times are simply too large for their trips.

The next results examine the effect of the threshold value A on the rides with
on-demand shuttles. Figure 2 presents the network design with A = 5 mile. This
allows for longer shuttle rides from origin to destination of each trip compared to
the A =2 case in Fig. 1. As a result, the network design has fewer connections
between hubs. Although the investment cost for the network design is lower
in this case, the average trip cost increases and the average time of the trips
decreases through the adoption of more on-demand shuttles. This highlights the
trade-off between the high-frequency buses and on-demand shuttles.

Bilevel Optimization for On-Demand Multimodal Transit Systems 65

g : f poh *'7 Superior i
0% r [s] Charter Twp
L

5P ?m‘:d]ma@

[
O, } L
O Bittsfield = & @& oo
O @yarter Twp 8 0z [<
& PPHRe &
Ypsilanti
o EE Charter;wp
L $ee

Fig. 2. Network design for the ODMTS with 10 Hubs with A = 5.

6.2 The Benefits of the Formulation

This section compares the novel bilevel formulation with latent demand (L) with
the original formulation that ignores the latent demand (O). In other words, the
original formulation designs the network with 7'\ T” trips but is evaluated on the
complete set T of trips. The two network designs are then compared in terms of
cost and convenience. To obtain a realistic setting, the share of public transit is
assumed to be 10% for each income level. The results are presented in Table 3.

Table 3. Comparison of the proposed (L) and original (O) models with A = 5.

Model | Income | Adoption | Investment ($) | ODMTS trips ($) | Conv. (s) | Cost &
Conv.
L Low 1.00 2482.38 17530.24 1269263.87 | 32505.13
Middle | 1.00
High | 0.84
0] Low 1.00 861.54 20685.56 1167457.12 | 33006.20
Middle | 0.99
High 0.82

The results show that both models have similar results in terms of mode
switching. However, the new formulation has a higher investment cost and a
lower cost for the ODMTS trips compared to the original formulation. The dif-
ference between the models is highlighted in Fig. 3, which shows the network

66 B. Basciftci and P. Van Hentenryck

designs under the two approaches: The dashed legs represent the design under
the original model, and the other legs correspond to the design of the proposed
model. This result is intuitive: With more ridership, the ODMTS should open
more legs and further reduces congestion. It shows that the novel formulation
provides a more robust solution that should reassure transit agencies. As the orig-
inal formulation opens fewer legs between hubs, users utilize more on-demand
shuttles, resulting in trips with more convenience but at much higher costs. In
terms of the total investment and trips cost, the results show that the new and
original formulations have total costs of $20012.62 and $21547.10, respectively.
As this cost improvement corresponds to a planning horizon of 4 h, it scales up to
a gain of $1227585 over a yearly plan with 200 days over 16h. This is signifi-
cant for this case study and highlights why transit agencies are worried about the
success of ODMTS when they are planned with the existing demand only: They
will under-invest in bus lines and sustain higher shuttle costs. The formulation
proposed in this paper remedies this limitation: By taking into account the per-
sonalized choice models of riders, the network design invests in high-frequency
buses, decreasing the overall cost while maintaining an attractive level of con-
venience. Note also that, the pricing model adopted in this paper keeps the
transit costs low but is also conducive to numerous mode switchings, since the
transit system subsidies half the cost. It is also important to report the compu-
tational performance of the proposed algorithms. The formulation with latent
demand requires 513 s to converge in 8 iterations, whereas the original formula-
tion requires 189 s in 8 iterations for the case study.

Ind@pen
Superior Par
Charter Twp o
%
.
e% o
L N X J
.
[J Wil
L At
£ |
°
goeog ¢
e, 5
s eenm
L y. ‘e ﬂ?.
0 ittsfield e .: @ ¢ ot
O yarter Twp 8 B3]]
& SPow0e @
Ypsilanti
o EE Charter dwp
(=3
¢ $ee

Fig. 3. Network designs of the proposed model (L) and the original model (O).

Bilevel Optimization for On-Demand Multimodal Transit Systems 67

7 Conclusion

This study presented a bilevel optimization approach for modeling the ODMTS
by integrating rider preferences and considering latent demand. The transit net-
work designer optimizes the network design between the hubs for connecting
them with high frequency buses, whereas each rider tries to find the most cost-
efficient and convenient route under a given design through buses and on-demand
shuttles. The paper considered a generic preference model to capture whether
riders switch to the ODMTS based on the obtained route and their current
mode of travel. To solve the resulting optimization problem, the paper proposed
a novel decomposition approach and developed combinatorial Benders cuts for
coupling the network design decisions with rider preferences. A cut strengthen-
ing was also proposed to exploit the structure of the follower problem and, in
particular, a monotonicity assumption of the choice model. The potential of the
approach was demonstrated on a case study using a data set from Ann Arbor,
Michigan. The results showed that ignoring latent demand can lead to significant
cost increase (about 7.5%) for transit agencies, confirming that these agencies
are correct in worrying about customer adoption. This is the case even for a
pricing model where the transit agency and riders share the shuttle costs. The
new formulation can also be solved in reasonable time.

Current work is devoted to examining the impact of various cost models
and different choice models for riders. Applications of the model to the city of
Atlanta is also contemplated and should reveal some interesting modeling and
computational challenges given the size of the city.

Acknowledgements. This research is partly supported by NSF Leap HI proposal
NSF-1854684.

References

1. Brotcorne, L., Labbé, M., Marcotte, P., Savard, G.: A bilevel model for toll opti-
mization on a multicommodity transportation network. Transp. Sci. 35(4), 345-358
(2001)

2. Brotcorne, L., Labbé, M., Marcotte, P., Savard, G.: Joint design and pricing on a
network. Oper. Res. 56(5), 1104-1115 (2008)

3. Campbell, A.M., Van Woensel, T.: Special issue on recent advances in urban trans-
port and logistics through optimization and analytics. Transp. Sci. 53(1), 1-5
(2019)

4. Campbell, J.F., Ernst, A.T., Krishnamoorthy, M.: Hub arc location problems: Part
ii-formulations and optimal algorithms. Manage. Sci. 51(10), 1556-1571 (2005)

5. Campbell, J.F., Ernst, A.T., Krishnamoorthy, M.: Hub arc location problems: Part
i-introduction and results. Manage. Sci. 51(10), 1540-1555 (2005)

6. Colson, B., Marcotte, P., Savard, G.: Bilevel programming: a survey. 40R 3(2),
87-107 (2005)

7. Farahani, R.Z., Hekmatfar, M., Arabani, A.B., Nikbakhsh, E.: Hub location prob-
lems: a review of models, classification, solution techniques, and applications. Com-
put. Ind. Eng. 64(4), 1096-1109 (2013)

68

10.

11.

12.

13.

14.

15.

16.

17.

B. Basciftci and P. Van Hentenryck

Farahani, R.Z., Miandoabchi, E., Szeto, W., Rashidi, H.: A review of urban trans-
portation network design problems. Eur. J. Oper. Res. 229(2), 281-302 (2013)
Fontaine, P., Minner, S.: Benders decomposition for discrete-continuous linear
bilevel problems with application to traffic network design. Transp. Res. Part B:
Methodological 70, 163-172 (2014)

Laporte, G., Marin, A., Mesa, J.A., Perea, F.: Designing robust rapid transit net-
works with alternative routes. J. Adv. Transp. 45(1), 54-65 (2011)

LeBlanc, L.J., Boyce, D.E.: A bilevel programming algorithm for exact solution of
the network design problem with user-optimal flows. Transp. Res. Part B: Method-
ological 20(3), 259-265 (1986)

Magnanti, T.L., Wong, R.T.: Accelerating benders decomposition: algorithmic
enhancement and model selection criteria. Oper. Res. 29(3), 464-484 (1981)
Mahéo, A., Kilby, P., Van Hentenryck, P.: Benders decomposition for the design
of a hub and shuttle public transit system. Transp. Sci. 53(1), 77-88 (2019)
Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to
evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276
295 (2018)

Van Hentenryck, P.: Social-aware on-demand mobility systems. ISE Mag. (Fall
2019)

Yu, B., Kong, L., Sun, Y., Yao, B., Gao, Z.: A bi-level programming for bus lane
network design. Transp. Res. Part C Emerg. Technol. 55, 310-327 (2015)

Zhao, X., Yan, X., Van Hentenryck, P.: Modeling heterogeneity in mode-switching
behavior under a mobility-on-demand transit system: an interpretable machine
learning approach. CoRR abs/1902.02904 (2019). http://arxiv.org/abs/1902.02904

http://arxiv.org/abs/1902.02904

®

Check for
updates

Local Search and Constraint
Programming for a Real-World
Examination Timetabling Problem

Michele Battistuttal, Sara Ceschia?@®, Fabio De Cesco!, Luca Di Gaspero?®,
Andrea Schaerf2®) @, and Elena Topan!

! BasyStaff srl, Via Adriatica, 278, 33030 Campoformido, UD, Italy
{michele,fabio,elena}@easystaff.it
2 DPIA, University of Udine, Via delle scienze 206, 33100 Udine, Italy
{sara.ceschia,luca.digaspero,andrea.schaerf }@uniud.it

Abstract. We investigate the examination timetabling problem in the
context of Italian universities. The outcome is the definition of a general
problem that can be applied to a large set of universities, but is quite
different in many aspects from the classical versions proposed in the lit-
erature.

We propose both a metaheuristic approach based on Simulated
Annealing and a Constraint Programming model in MiniZinc. We com-
pare the results of the metaheuristic approach (properly tuned) with
the available MiniZinc back-ends on a large set of diverse real-world
instances.

Keywords: Examination timetabling - Simulated annealing - MiniZinc

1 Introduction

Examination timetabling (ETT) is one of the classical problems that every uni-
versity has to deal with on a regular basis. Many formulations of the ETT
problem have been proposed in the literature, some of which have received con-
siderable attention [5,12].

We propose a novel formulation of ETT, which applies to Italian universities.
This formulation is quite different from the ones proposed in the literature [15,
16], as it involves many specific constraints and objectives. For example, some
exams are composed by separate written and oral part, which must be scheduled
at suitable distance and have different overlap acceptability levels in relation to
other exams. In addition, the same exam might be repeated more than once in
a session, with prescribed minimal distances among rounds. As another quite
distinctive feature, exams might require multiple rooms, typically in exclusive
use.

In this work, we propose a metaheuristic approach based on a tailored
neighborhood structure, a Simulated Annealing procedure, and a statistically-
principled parameter tuning. The main motivation for the choice of Simulated

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 69-81, 2020.
https://doi.org/10.1007/978-3-030-58942-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_5&domain=pdf
http://orcid.org/0000-0003-1191-1929
http://orcid.org/0000-0003-0299-6086
http://orcid.org/0000-0001-6965-0536
https://doi.org/10.1007/978-3-030-58942-4_5

70 M. Battistutta et al.

Annealing is that it already turned out to be capable of obtaining state-of-the-art
results in many educational timetabling problems (see, e.g., [1,2,6]).

We also developed a MiniZinc model that allows us to compare the results
of the metaheuristic, by testing many available back-ends on this challenging
problem.

The outcome is that Simulated Annealing is able to solve real-world instances
to a good quality. Conversely, most instances are currently beyond the reach of
exact Constraint Programming methods.

As a byproduct of this research, we are collecting many real-world instances,
which are made available to the community for future comparisons, and could
potentially become a new benchmark. Instances, solutions, and the MiniZinc
model are available at https://bitbucket.org/satt /ExamTimetablingUniudData.
The repository includes also a Python validator that checks the cost of a solution,
so as to provide against possible misunderstanding about the constraints and the
objectives.

2 Problem Formulation

Our problem consists of scheduling an examination session at the end of a
semester for a university campus. The problem is based on the following entities:

Courses, Exams, & Events: For each course, we have to schedule one or
more exams within the session. Each exam might be a single event (either
written or oral) or composed by two events, identified as the written part
(first) and the oral part (second), to be handed out in this strict order.

Rooms & Roomsets: Some events require one or more rooms, others do not,
as they take place in teacher’s office or in external rooms. Rooms are classi-
fied as small, medium, or large, and for each written event we set the number
and the type of rooms requested (mixed requests are not considered). Due to
logistic issues, not all combinations of homogeneous rooms can be assigned
to a single event. The available ones, called roomsets, are explicitly listed in
the input data. Oral events might require at most one room (of any size).

Days, Timeslots, & Periods: The session is divided in days and each day in
divided in timeslots, with the same number of timeslots for each day. Each
pair day/timeslot represents a period of the session.

Curricula: A curriculum is a set of courses that have students in common,
which might enroll in the corresponding exams. The set of courses of a cur-
riculum is split into primary courses, that are the ones taught in the current
semester, and the secondary ones, that have been taught in the previous
semester, but such that some students might still have to undertake them.
The level of conflict between primary and secondary exams of a curriculum
varies, as detailed below.

The problem consists in assigning a period and a location (a room, a roomset,
or nothing) to each event, satisfying the hard and soft constraints explained in
the following paragraphs.

https://bitbucket.org/satt/ExamTimetablingUniudData

Local Search and Constraint Programming for Examination Timetabling 71

COURSES

Exam | Exam | W/O
Distance| Type |Distance
Databases |Andrea 2 5 W+ O (4,8) |2 Large

Name Teacher|#Exams Location

Algorithms|Luca 2 5 w 1 Large
Program. |Elena 2 4 w — |2 Large
Oper. Res. |Sara 2 4 W+ O (1,1) |1 Small + 1 Small
Analytics |Michele 1 — @ — |-
Roowms ROOMSETS
- CURRICULA
Name| Type Roomset|Size| Type -
Name Primary |Secondary
A | Large {A, B} | 2 |Large -
Databases |Analytics
B Large {A, C} | 2 |Large Man. Eng. o
per. Res.
C | Large Datab Oper. R
G | Small PERIODS Ele. Eng. A? a .:}Sles Apef.t‘ o8-
H Small ’—‘20 gorithms|Analytics

Fig. 1. A toy instance.

All the data representing a toy instance is shown in Fig. 1. The table COURSES
shows the structure of the courses, with teacher, number of exams, distance
between exams, exam type (W for written, O for oral), and location requested.
The other tables show the respective features, including the available roomsets.
Preferences and constraints are not shown for the sake of brevity.

We propose a possible solution in Fig. 2. We can see that the 5 courses are
“exploded” into 13 events. Each single event has its own conflict and distance
constraints, as discussed in the following paragraphs.

The hard constraints are the following:

H1. RoomRequest: for each written event, type and number of the rooms
assigned must be correct; for oral exams, a single room, of any type, must
be assigned, if requested.

H2. RoomOccupation: in one period, a room can be used by at most one event.

H3. HardConflicts: Two events in hard conflict cannot be scheduled in the
same period. Two events are in hard conflict in the following cases:

— They are part of courses that are both primary courses of one curriculum.

— They have the same teacher.

— There is an explicit constraint stating that the overlap of the two events
is forbidden.

H4. Precedences: When two events have a precedence constraint, the first
must be scheduled strictly before the second. Two events have a precedence
constraint in the following cases:

— They are part of two exams of the same course.
— They are part of the same exam (written and oral).

H5. Unavailabilities: An event might be explicitly stated as unavailable in a
specific period, so that it cannot be assigned to that period. Similarly, a

72 M. Battistutta et al.

SOLUTION
Event Assignment
Course Exam|Part|ID||Period| Rooms
41 w |0 2| A, B
Databases - - «(2 - —1 B —5~ -
49 w2 12| A, B
O |3 15
Algorithms z; x g 18 E
Programming 7l W6 0 A C
#2 W |7 17| A, B
w8 6 H
1
Oper. Res #— G E 7 G
49 w |10 16 H
O |11 17 G
[Analytics |#1 |0 [12]] 8 ~ —]

Fig. 2. A solution for the toy instance.

room might be unavailable for a specific period, so that no event can use it
in that period.

The objectives (soft constraints) are they following:

S1. SoftConflicts: Two events in soft conflict should not be scheduled in the
same period. Two events are in soft conflict in the following cases:

— They belong to courses that are in the same curriculum, either as primary
and secondary or both as secondary.

— There is an explicit constraint stating that their overlap is undesirable.

S2. Preferences: Like Unavailabilities, preferences between events and periods
and between periods and rooms stating the undesirability of an assignment
can be expressed explicitly. For periods, it is also possible to state a positive
preference for a specific event, so that in presence of preferred periods for an
event, all indifferent ones are assumed undesired (and explicitly undesired
one are given a larger penalty).

S3. Distances: Among events there might be requested separations in term of
periods. Distances can be either directed, imposing that one event must pre-
cede the other, or undirected so that any order is acceptable. The situations
that require a distance are the following:

— Same exam (directed): different parts of the same exam have a minimum
and a maximum distance, stated specifically for each course (e.g., events
0 and 1 in the example).

— Same course (directed): different exams of the same course must be sep-
arated. The separation constraint is applied between the first (or single)
part of each of the two exams (e.g., events 0 and 2 in the example).

— Same curriculum (undirected): if two courses belong to the same cur-
riculum, there should be a separation between the exams (as above, for

Local Search and Constraint Programming for Examination Timetabling 73

two-part exams, we consider the first one). The amount of separation and
the weight for its violation depend on the type of the two (primary or
secondary) memberships.

— Additional requests can be added explicitly.

The weight of the violation of the various types of soft conflicts are set by
the end-user. Similarly, all distance limits and the corresponding weights are
configurable.

We can see that the solution of Fig. 2 has a few soft constraint violations. For
example, the distance between the two parts of Databases is 3 periods for both
exams, whereas the minimum is 4. Another violation is related to the curriculum
Ele. Eng. for which the written part of the first exam of Databases (at period 2)
is too close to the written part of the single exam of Algorithms (at period 0),
given that the minimum distance for primary/primary exams is assumed to be
6.

3 Related Work

The literature on the examination timetabling problem is rather vast. We refer
to Qu et al. [15] for a relatively up-to-date survey.

Among the large set of proposed formulations, two have received considerable
attention in the literature. The first is the classical one from Carter et al. [5].
This is a very essential version of the problem, in which each exam is a single
event and rooms are not considered. Differently from our formulation, which is
curriculum-based, in the work of Carter et al. conflicts are based on student
enrollments, so that each student contributes to the penalty of a schedule when-
ever the exams (s)he takes are too close. Given also that rooms are not involved,
the only constraint is HardConflicts (H3) and the only objective is Distances (S3).
Distances are penalized in a fixed exponential patterns: the cost of scheduling
two exams with £ common students at distance 1, 2, 3, 4, and 5 periods is 16k,
8k, 4k, 2k, and k, respectively.

This formulation comes with a challenging dataset of 13 real-world instances
form North American universities that are still not solved to proven optimality.
The dataset has been subsequently extended and generalized by other authors
(see, e.g.., [13]). Recent results on this formulation have been obtained by Leite
et al. [10].

The other popular formulation is the one coming from Track 1 of the 2nd
International Timetabling Competition [12]. This is a much richer formulation,
taken mainly from British universities, that includes rooms and many specific
constraints. Among others, periods and exams can have different length, so that
some periods might be unsuitable for certain exams. Rooms might be used either
exclusively or shares among exams (preferably of the same length). Exams might
have precedence constraints. The objective function components regard mainly
the spreading of exams for students and the assignment of large exams in the
initial periods.

74 M. Battistutta et al.

For this formulation 12 instances are available which are also quite challeng-
ing and not solved to optimality up to today. The contributions on this problem
include [1,4,11].

Another notable formulation is the one proposed by Miiller [14], which rep-
resents a complex real-world problem. The formulation comes along with 9 chal-
lenging instances in XML format.

4 Local Search Solver

We now introduce our local search method. We first describe the search space,
the cost function, and the initial solution (Sect. 4.1), then we introduce the neigh-
borhood relations (Sect.4.2), and finally we discuss our metaheuristic strategy
(Sect. 4.3).

4.1 Search Space, Cost Function, and Initial Solution

A state in the search space is represented by two vectors that store for each
event the period when it is scheduled and the location where it takes place. As
already mentioned, the location can be either a single room, a roomset, or the
dummy room (no room assigned). Any period can be assigned to an event unless
it is unavailable for the event. For the location assignment, instead, we consider
only locations of the correct type, according to the requirements.

This means that the constraints H1 and H5 are always satisfied. Conversely,
we let the search method visit also infeasible state, by violating constraints H2,
H3, and H4.

The cost function is thus the weighted sum of the penalties of the soft con-
straints S1-S3 and the violations of hard constraints H2-H4 multiplied by a
suitably high weight, such that a single hard constraint violation is never pre-
ferred to any combination of soft ones.

The initial solution is generated at random, but satisfying constraints H1
and H5. In particular, for the selection of the location, the choice is among
the compatible ones. For example, an event that does not require a room is
compatible only with the dummy room, so that this is the location that is always
selected.

4.2 Neighborhood Relations

The typical basic neighborhood relation in examination timetabling is the repo-
sition of a single event. We call this neighborhood MoveEvent:

MoveEvent (ME). Given an event e, a period p and a location [, the move
ME(e, p, 1) repositions e at p in [.
Preconditions: p is available for e and [is compatible with e.

Local Search and Constraint Programming for Examination Timetabling 75

In our case, the presence of exams composed by two events suggests that
it might be useful to consider a neighborhood that could move the two paired
events jointly. However, we should consider the possibility of moving either the
single event or the complete exam. This leads us to the following neighborhood:

MoveEventOrExam (MEE). Given an event e, a period p, a location [, a Boolean
b, a period p’, and a location ', the move MEE(e, p, 1, b,p’,l’) repositions e at
pin [. If b is true, it also repositions the event e’ associated with e at p’ in
I'. If b is false, then p’ and I’ are ignored.

Preconditions: p is available for e and [is compatible with e; if e is not part
of a composite exam then b is false; if b is true, p’ is available for ¢’ and I’ is
compatible with €’.

4.3 Simulated Annealing

As a metaheuristic to guide the local search we use Simulated Annealing (SA)
[9]. For an up-to-date exhaustive introduction to Simulated Annealing and its
variants we refer to the work of Franzin and Stiitzle [7].

Our SA procedure starts from an initial random state and at each iteration
draws a random move in the MEE neighborhood. For the MEE move selection, we
first select uniformly the event e, the period p, and the location [. If e is not part
of a composite exam, then b is set to false. If instead e is part of a composite
exam, we select b = true with probability p, and b = false with probability
1 —pp. If b is true, p’ and I’ are randomly selected, whereas if b is false p’ and I’
are ignored.

As customary for SA, calling A the difference of cost induced by the selected
move, this is accepted if A < 0, whereas it is accepted based on time-decreasing
exponential distribution (called Metropolis) in case A > 0. Specifically, a wors-
ening move is accepted with probability e=4/T, where T is the temperature. The
temperature starts at the initial value Ty, and decreases by being multiplied by
a value o (with 0 < a < 1), each time a fixed number of samples n, has been
drawn.

To the basic SA procedure, we add the cut-off mechanism that speeds up the
early stages. The idea is to decrease the temperature also when a given number
of moves has been accepted. That is, we add a new parameter n,, that represents
the maximum number of accepted moves at each temperature. The temperature
is decreased when the first of the following two conditions occurs: (¢) the number
of sampled moves reaches ng, (i) the number of accepted moves reaches n,.

We use the total number of iterations Z as stop criterion. This guarantees that
the running time is the same for all configurations of the SA parameters. With
respect to a criterion based on a strict time limit, our criterion has the advantage
that it is deterministic (given the random seed) and it is not dependent on the
environment, so that each run can be reproduced precisely.

In order to keep total number of iterations Z fixed, one of the parameters,
namely ng, is not left free, but is computed from Z and from the others using
the formula:

76 M. Battistutta et al.

n=1/ (

where T} is the expected final temperature. Notice that T is used to compute
ng, but the actual final temperature might fall below, as the potential iterations
saved in the early stages, due to the cut-off mechanism, are returned at the end
of the search.

Given that ng is not fixed, n, is not fixed directly, but is set to be a fraction
p of the computed ng, where p is a new parameter (that replaces n,).

The running time is equal for all configurations on the same instance, but
may be different from instance to instance, as the computation of the costs
depends on the size of the instance.

log(Ty/ To)>

log v

5 Constraint Programming Model

In order to use MiniZinc, the input format needs to be preprocessed in such a
way to flatten all the data (conflicts, distances, ...) at the level of each single
event, and write it in terms of a set of arrays.

The decision variables are two vectors of size equal to the number of events,
called EventPeriod and EventLocation, storing the assigned period and the
assigned location, respectively. As for the local search solver, the location
assigned can be either a single room, a roomset, or the dummy room.

The constraint stating that the same room cannot be used simultaneously by
two events is the following, where LocationOverlap is a binary input matrix,
stating of two locations overlap (1) or not (0).

constraint
forall(el in 1..Events-1, e2 in el+1..Events)
(EventPeriod[el] !'= EventPeriod[e2] \/
LocationOverlap[EventLocation[el], EventLocation[e2]] = 0);

Obviously, two locations overlap if they have a room in common; the dummy
room does not overlap with any room, not even with itself, so that more than
one event can be placed in the dummy room at the same time.

This is the most critical constraint, as it involves a disjunction. The other
constraints are relatively straightforward, and are not shown here.

The objective function is obtained as the weighted sum of various compo-
nents. For example, the variable carrying the count of the soft conflict violations
is connected to the main variables by the following constraint.

constraint
ConflictCost = sum(el in 1..Events-1, e2 in el+1..Events
where Conflicts[el,e2] > 0)
((EventPeriod[el] = EventPeriod[e2]) * Conflicts[el,e2]);

Local Search and Constraint Programming for Examination Timetabling 77

Table 1. Main features of the instances.

Dept. | #inst | Courses | Events Periods | Rooms Slots
min max |min max |min max |min|max | min max

D1 7 239 |281 |239 |281 | 26 | 52 |64 |65 |2 2
D2 3 57 | 58 | 61 | 62 |156 204 | O 0 |6 6
D3 9 76 | 89 | 78 |177 | 48 |188 14 |15 |4 4
D4 6 223 240 | 235 |514 | 38 | 88 |34 |34 |2 2
D5 5 125 | 156 | 132 |426 | 24 |136 |17 |20 |2 2
D6 8 189 | 207 346 [539 | 52 | 90 |29 |29 |2 2
D7 2 60 | 63 | 136 150 | 155 1330 |22 |22 |5 10

The symmetric matrix Conflicts carries the value of the penalty of the
conflict between two events. It has the conventional value —1 in case of hard
conflict. The other components have similar structure and they are not shown
here.

Finally, for variable and value selections, we use the default strategy (i.e., no
search annotation is used).

6 Problem Instances

At present, we have collected 40 instances coming from 7 different departments
(of 6 different universities), which show a good variety of diverse practical sit-
uations. Table1 summarizes, for each department, the values (minimum and
maximum) of the main features of the corresponding instances.

Notice that one department (D2) has 0 rooms, so that all events are assigned
to the dummy room. This means that the management has decided to leave
outside the system the assignment of the rooms. Notice also that the number of
rooms and courses is rather stable within the instances of the same department,
whereas the number of events might change considerably. This is due to the fact
that in different sessions during the year the exam of the same course might be
repeated a different number of times.

7 Experimental Analysis

The experiments have been run on an Ubuntu Linux 18.4 machine with 4 cores
Intel® i7-7700 (3.60 60 GHz), with a single core dedicated to each experiment.

7.1 Tuning

The tuning phase of the local search solver has been performed using the tool
JSON2RUN [17], which samples the configurations using the Hammersley point
set [8] and implements the F-Race procedure [3] for comparing them.

The resulting best configuration is shown in Table 2, which shows also the
initial intervals selected based on preliminary experiments.

78 M. Battistutta et al.

Table 2. Parameter settings.

Name | Description Value | Range

To Start temperature 118.75 | 100—500

Ty Final temperature 0.280.1—1
Cooling rate 0.99 | 0.8—0.999

p Accepted moves ratio 0.2 /0.1—0.3

Db Move written/oral together rate | 0.75|0.0—1.0

7.2 Comparative Results

For the MiniZinc model we have tested the back-ends available in the standard
distribution (v. 2.3.2), plus cplex (v. 12.9). For all of them we set a timeout of
1h for each run.

The results obtained are shown in Table 3, along with the average and best
results out of 30 runs of the Simulated Annealing solver, with Z = 108. The
outcome is that all instances have feasible solutions. In addition, some cases can
be easily solved to a perfect solution (0 cost), some others are more challenging
and result in relatively high costs. For the MiniZinc back-ends, the symbol x
means that the solver exhausted the memory, and the symbol — that it has not
been able to produce any feasible solution within the time limit. Optimality has
been proved only for the 0 cost solutions.

The metaheuristic approach has been able to obtain satisfactory solutions,
and it proved to be quite robust, as the gap between the best costs and the
average ones is relatively low.

On the contrary, the straightforward CP model in MiniZinc turned out to be
unusable for most practical instances, leaving room for search strategies and/or
smarter encodings to be developed.

Only for the department D2, cplex has been able to provide better results
than SA in all three instances, and coin-bc in two of them. In particular, in those
two instances, both have found the perfect solution, whereas SA is consistently
stuck in a solution of cost 22.

Local Search and Constraint Programming for Examination Timetabling

Table 3. Comparative results.

Instance | SA MiniZinc

avg. best | time | chuffed | gecode | coin-bc | cplex
D1-1-16 | 180.40 180 | 568.1| x — X X
D1-1-17 | 134.00 134 | 499.2| x — X X
D1-2-16 | 258.63 257 | 541.6 | x — X X
D1-2-17 | 352.00 351 | 698.9 | x — X X
D1-3-16 | 478.37 477 | 483.3 | X — X X
D1-3-17 | 354.57 354 | 493.1| x — X X
D1-3-18 | 80.00 80 | 536.6 | x — X X
D2-1-18 | 427.77 426 94.7 | — 8731 906 406
D2-2-18 | 22.00 22 88.7 | 1543 4022 0 0
D2-3-18 | 22.00 22 95.0 | 1873 3985 0 0
D3-1-16 | 0.00 0 61.9 | — 75947 | x —
D3-1-17 | 0.00 0 83.5 | — 82948 | x —
D3-1-18 | 0.00 0 83.9 | — 82433 | x —
D3-2-16 | 0.00 0 0.8|0 — 0
D3-2-17 | 0.00 0 3.1/0 — — 0
D3-2-18 | 0.00 0 3.5 — — 0
D3-3-16 | 0.00 0 1.0/0 — — 0
D3-3-17 | 0.00 0 230 — 0
D3-3-18 | 0.00 0 220 — 0
D4-1-17 | 132.43 18 | 312.0| x — X X
D4-1-18 | 567.73 563 | 1401.4 | x — X X
D4-2-17 | 575.50 566 | 1307.3 | x — X X
D4-2-18 | 11609.33 | 9685 39.3 | x — X X
D4-3-17 | 137.03 137 | 462.6 | — — X X
D4-3-18 | 379.50 372 | 555.2 | — — X X
D5-1-17 | 7361.03 | 5870 2.9 — — X X
D5-1-18 | 38.00 36 | 824.2 | — — X X
D5-2-17 | 60.20 60 | 930.0 | — — X X
D5-2-18 | 274.37 270 |1237.8| x — X X
D5-3-18 | 0.00 0 68.4 | — — X —
D6-1-16 | 898.83 872 |1429.1 | x — X X
D6-1-17 | 740.87 723 | 1385.5| x — X X
D6-1-18 | 881.50 873 | 1420.1 | x — X X
D6-2-16 | 948.00 935 | 1551.3 | x — X X
D6-2-17 | 943.13 920 | 1428.5 | X — X X
D6-2-18 | 692.03 683 | 1650.4 | x — X X
D6-3-16 | 355.40 355 | 882.4 | x — X X
D6-3-17 | 381.57 381 | 969.0 | x — X X
D7-1-17 | 373.20 360 | 222.5| — 56891 | x —
D7-2-17 | 766.50 758 | 219.3 | — 114385 | — —

79

80 M. Battistutta et al.

8 Conclusions and Future Work

We have modeled a complex real-world version of the examination timetabling
problem.

The metaheuristic solver has found good results on most instances, although
the presence of a few results far from the optimum is a clue that further improve-
ments are possible. To this aim, we plan to devise new neighborhood relations
and different metaheuristic strategies.

The results show that the problem, in its straightforward modeling, is beyond
the reach of MiniZinc back-ends. Smarter encodings are necessary in order to
try to improve the performances of all the back-ends.

The future work includes also the extension of the model to features that
appear in a few cases, which have been neglected in our current formulation. The
most important ones are: events that span over several periods, heterogeneous
roomsets, conflicts at the level of the day (not only of the single period), exams
to be given in the same day and in the same location, and uniform spreading of
the primary courses of a curriculum.

References

1. Battistutta, M., Schaerf, A., Urli, T.: Feature-based tuning of single-stage sim-
ulated annealing for examination timetabling. Ann. Oper. Res. 252(2), 239-254
(2015)

2. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., Urli, T.: Feature-based tuning of
simulated annealing applied to the curriculum-based course timetabling problem.
Comput. Oper. Res. 65, 83-92 (2016)

3. Birattari, M., Yuan, Z., Balaprakash, P., Stiitzle, T.: F-Race and iterated F-Race:
an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311-336. Springer, Heidelberg (2010)

4. Bykov, Y., Petrovic, S.: An initial study of a novel step counting hill climb-
ing heuristic applied to timetabling problems. In: Proceedings of the 6th Mul-
tidisciplinary International Conference on Scheduling : Theory and Applications
(MISTA-13), pp. 691-693 (2013)

5. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: algorithmic strate-
gies and applications. J. Oper. Res. Soc. 74, 373-383 (1996)

6. Ceschia, S., Di Gaspero, L., Schaerf, A.: Design, engineering, and experimen-
tal analysis of a simulated annealing approach to the post-enrolment course
timetabling problem. Comput. Oper. Res. 39, 1615-1624 (2012)

7. Franzin, A., Stiitzle, T.: Revisiting simulated annealing: a component-based anal-
ysis. Comput. Oper. Res. 104, 191-206 (2019)

8. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Chapman and Hall,
London (1964)

9. Kirkpatrick, S., Gelatt, D., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671-680 (1983)

10. Leite, N., Fernandes, C., Melicio, F., Rosa, A.: A cellular memetic algorithm for
the examination timetabling problem. Comput. Oper. Res. 94, 118-138 (2018)

11.

12.

13.

14.
15.

16.

17.

Local Search and Constraint Programming for Examination Timetabling 81

Leite, N., Melicio, F., Rosa, A.: A fast simulated annealing algorithm for the exam-
ination timetabling problem. Expert Syst. Appl. 122, 137-151 (2019)

McCollum, B., et al.: Setting the research agenda in automated timetabling: the
second international timetabling competition. INFORMS J. Comput. 22(1), 120-
130 (2010)

Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for
the examination timetabling problem. In: Burke, E., De Causmaecker, P. (eds.)
PATAT 2002. LNCS, vol. 2740, pp. 207-231. Springer, Heidelberg (2003)

Miiller, T.: Real-life examination timetabling. J. Sched. 19(3), 257-270 (2014)
Qu, R., Burke, E.;, McCollum, B., Merlot, L., Lee, S.: A survey of search method-
ologies and automated system development for examination timetabling. J. Sched.
12(1), 55-89 (2009)

Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87-127
(1999)

Urli, T.: json2run: a tool for experiment design & analysis. CoRR abs/1305.1112
(2013)

l‘)

Check for
updates

Parameterised Bounds on the Sum
of Variables in Time-Series Constraints

Nicolas Beldiceanu!®) Maria I. Restrepo’, and Helmut Simonis?
! TASC (LS2N-CNRS), IMT Atlantique, 44307 Nantes, France
nicolas.beldiceanu@imt-atlantique.fr, mrestrep@uco.fr
Insight Centre for Data Analytics, University College Cork, Cork, Ireland
helmut.simonis@insight-centre.org

Abstract. For two families of time-series constraints with the aggre-
gator Sum and features one and width, we provide parameterised sharp
lower and upper bounds on the sum of the time-series variables wrt these
families of constraints. This is important in many applications, as this
sum represents the cost, for example the energy used, or the manpower
effort expended. We use these bounds not only to gain a priori knowledge
of the overall cost of a problem, we can also use them on increasing pre-
fixes and suffixes of the variables to avoid infeasible partial assignments
under a given cost budget. Experiments show that the bounds drastically
reduce the effort to find cost limited solutions.

1 Introduction

Time series is an increasingly important format of data in many applications,
from financial to scientific. Time series are sequences of values taken at suc-
cessive equally spaced points in time. Two traditional topics are time series
forecasting [16] and time series pattern recognition [15,19]. A more recent topic
is the generation of time series satisfying a given set of constraints. Indeed, in an
industrial or commercial setting, time series are constrained by physical laws or
organisational regulations. In this case, when time series correspond to a resource
produced or consumed, the question of maximising or minimising the sum of the
elements of a time series becomes important. This article focuses on this issue.

Context and Motivation. From a constraint perspective work on time-series con-
straints was introduced in [13] to formalise the notions of exact and approximate
similarity between time-series patterns and data. More recently, some authors
have proposed quantitative regular expressions [1,2] as a way to (i) formalise
and identify common types of time-series patterns [9,18], and to (i) express

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant number 12/RC/2289-P2 which is co-funded
under the European Regional Development Fund as well as from the Gaspard-Monge
program.

© Springer Nature Switzerland AG 2020

E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 82-98, 2020.
https://doi.org/10.1007/978-3-030-58942-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_6

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 83

time-series constraints, which are then used to generate constrained time series.
To improve propagation, implied constraints and cuts were derived in [3,6,7].

These ideas have been used to solve real-life problems including the analysis
of the output of electric power stations over multiple days [11], the solution of a
staff scheduling problem in a service company [5], power management for large-
scale distributed systems [10] and the generation of typical energy consumption
profiles of a data centre [12,14]. Most of these problems require the incorporation
of an objective function which is represented by the sum of the decision variables.
Hence, computing bounds on such sum is an important issue.

Time-Series Constraints. A time-series constraint (X, R) is a constraint which
restricts an integer result variable R to be the result of some computations over
a sequence of n integer variables X. The components of a time-series constraint
we reuse from [9] are a pattern o, a feature f, and an aggregator g. A pattern
is described by a regular expression over the alphabet X = {* <’ ‘=" >"}
whose language £, does not contain the empty word. For instance, in [4] the
Plateau pattern is characterised by the expression ¢ <=*>'. A feature and an
aggregator are functions over integer sequences.

— A time-series constraint with the aggregator Sum and the feature one restricts
R to be the number of occurrences of pattern ¢ in X.

— A constraint with the aggregator Sum and the feature width restricts R to
be the sum of the widths of the maximal occurrences of pattern ¢ in the
integer sequence. The width of an occurrence of ¢ is the number of time-series
variables included in ¢ minus a constant corresponding to the sum of two
integer trimming values. For instance, consider a time series X = (0, 3, 3,0)
with one occurrence of 0 = Plateau = ¢ <=*>’; the width of the occurrence
of o is equal to 2, as the two integer trimming values of o are equal to 1.

Motivating Example. Assume we have to generate a time series of size n = 14
with R = b increasing terraces, i.e. ¢ = * <=7< ’, while maximising the sum
of the 14 variables, each restricted to be in [¢,u] = [2, 6]. Ignoring the 5 terraces
leads to an upper bound of 84, while, as shown in Part (D) of Fig. 1, considering
the 5 terraces gives a sharp upper bound n-u—p-(2-t+s+1)—7r-(2-s+3) = 59.
The procedure for deriving the formulas p = min(R, L"_QQ'RJ), s = Lmj,

t= %, r = R mod max(1,p), is presented in Sect.3. Our goal is to find a

method to derive such formula for different patterns.

Focus and Contributions of This Paper. We focus on the g_f_o(X, R) families of
time-series constraints with g being Sum, with f being either one or width, and
with o being a pattern described by a regular expression over the alphabet Y =
{* <’,“=",>"}. Our contributions counsist of parameterised sharp upper and
lower bounds on the sum of the time-series variables for the SUM_ONE_o (X, R)
(also denoted as NB_o(X, R)) and the SUM_WIDTH_o (X, R) families provided all
X variables are in the interval [¢, u]. The parameters in the bounds correspond
to the sequence length, the values ¢ and u, and the regular expression o. The
limits ¢ and w are typically given by physical limitations of the system, which

84 N. Beldiceanu et al.

are time independent, and therefore apply to all variables. The parameterised
bounds are valid provided some condition on the regular expression ¢ holds,
which in practice is true for 80% of the 22 regular expressions of [4]. Note that
an approach encoding the full problem with an automaton would lead to a
pseudo-polynomial algorithm since such automaton would have O(n?u?) states:
assuming ¢ = 0, each state would record the values of R (from 0 to n), of X;_;
(from 0 to n), of the partial sum X; 4+ --- 4+ X; (from 0 to u X n), and would
have up to u outgoing transitions.

Outline of the Paper. Section 2 presents a background on time-series constraints.
Section 3 introduces our contribution, a unique per family expression that defines
upper and lower bounds on the sum of the time-series variables wrt the time-series
constraints. Section 4 evaluates the impact of the bounds. Section 5 concludes.

2 Background

We present the background to define bounds on the sum of the time-series vari-
ables wrt the time-series constraints with aggregator Sum and features one and
width. A time-series constraint imposed on a sequence of n integer variables
X = (X4, ..., X,,) and a result variable R is described by a feature f, an aggrega-
tor g, and a pattern o as mentioned in the introduction. Let S = (Sy,..., Sp—1)
be the signature of a time series X, which is defined by: (X; < X;11 & S; =<
’)/\(Xi =X e S5, ="= ’)/\(Xi >Xip1e S, => ’) for all i € [1,’[7,—1]. If
a sub-signature (S;, ..., .S;) is a maximal word matching o in the signature of X,
then the subsequence (X4, ..., Xjt1—q,) is called a o-pattern, and the subse-
quence (Xj, ..., Xj41) is called an extended o-pattern. The constants b, and a,
respectively trim the left and right borders of an extended o-pattern to obtain
a o-pattern from which a feature value is computed. They are useful when there
is the need to perform computations from only a part of the occurrence of o, as
shown in Ex. 1. As in [9], we assume o-patterns not to overlap.

Ezample 1. Consider the ¢ = IncreasingTerrace = * <="< ’ regular expres-
sion with a, = b, = 1 and the time series X shown in the figure in the
right over the interval [2,5] and with signature S = (<,=,<,>,<,=,=,<).

A o-pattern called increasing terrace within X is a subset whose signature is a

maximal occurrence of o in the sig- _ _

nature of X. Time series X contains T terrace® torrace ®
two increasing terraces, labelled @ and T T T
@, namely (3,4,4,5) and (2,3,3,3,5)
with widths 2 and 3, respectively.
Hence, the aggregation of the num-
ber of occurrences using the aggrega-
tor Sum is 2 and the aggregation of
their widths using Sum is 5. The cor-
responding time-series constraints are
NB_o(X, R) and SUM_WIDTH_o (X, R), respectively. A

:3\i :

[I N =)

\

X1 X2 X3 X4 X5 X6 X7 Xs Xo
2 3 feature values (width)

5 aggregator (Sum)

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 85

Regular-expression characteristics were introduced as a way to parameterise the
bounds on the result value of time-series constraints [8] and to derive AMONG
implied constraints [6] in a systematic way. We now present a brief definition of
the characteristics we reuse in this paper and illustrate them with one example.

— The size of o, denoted by w,, is the length of a shortest word in the language
L, of the regular expression o.

— The height of o, denoted by 7,, is the smallest difference between the domain
upper and lower limits, i.e. u — ¢, such that there is a ground time series (all
X are fixed) over [¢,u] whose signature has at least one occurrence of o.

— The range of o wrt n, denoted by ¢§">, is the minimum difference between
the maximum and the minimum values in an extended o-pattern of width n.

— The set of inducing words of o, denoted by O, is a subset of L, such that for
every word v in L, there exists a word w = wiws...w in O, such that every
w; is non-empty and every v in £, can be represented as v;w; Vaws.. Vg WEVk41
with every v; being a word in {* <7, ¢ =">"}*.

— The overlap of o wrt (¢, u), denoted by off’w, is the maximum number of
time-series variables that belong simultaneously to two consecutive extended
o-patterns of a time series among all time series over [¢, u]. If such maximum
is not bounded, then off’u> is undefined.

— The smallest variation of mazima of o wrt (£,u), denoted by 6¢<f’u>, corre-
sponds to the smallest difference between the maximum values of two consec-
utive extended o-patterns that have at least one common time-series variable.

— The set of supporting time series of a word v in L, wrt (¢,u), denoted by
i (v), is a set of time series where each element of IS (v) is a time
series over [¢,u] whose signature is v.

Ezample 2. Consider the 0 = IncreasingTerrace = ‘ <=7< ’ regular expres-
sion and the sequence X = (3,4,4,5,5,6). The figure on the right illustrates

regular-expression characteristics asso-

. .) (0,6) _
ciated with X. The common time- %o 2
. . . increasing increasing
series variables of the two consecutive terrace @ terrace @
extended o-patterns are coloured in < =<, = <y
(0.6) _| _ "
grey. The ﬁrst (resp.. second) extended 5500 = —1 Mo = ¢&™)
o-pattern is shown in blue (resp. red). Tl =2
Points L; and Ly correspond to the o
<Z7u> 3
overlap os e The dlﬁ’grence between X1 Xz X5 Xa Xg Xe
the y-coordinates of points Lo and Lg — pe
{e0) wo =3 O, = { <=<"}
corresponds to the value of §5 7', A —

we =3
We reuse in Sect. 3 the notions of interval without restart and superposition
of two words from [8] that we now recall. An interval without restart consists
of a subsequence such that every two consecutive extended o-patterns within

. ¢
this subsequence have 05, up > 0 common time-series variables. The intervals

86 N. Beldiceanu et al.

without restart are always disjoint. Consequently, two consecutive extended o-
patterns belonging to distinct intervals without restart do not share any time-
series variables. The superposition of two words v and w in L, wrt (¢,u) is the
signature ¢ of some ground time series over [¢,u] that contains at least two o-
patterns. For instance, the word z = * <=<=< " is the superposition of the two
increasing terraces in the figure from Example 2.

3 Bounds on the Sum of the Time-Series Variables

Consider a regular expression o, an integer interval [/, u], and a time series X =
(X1,...,Xn), with every X; ranging over [¢,u]. We present a method to derive
upper bounds on the sum of the X; for NB_o(X, R) and SUM_WIDTH_0 (X, R).
Wlog lower bounds are obtained in a similar way.

3.1 New Regular-Expression Characteristics

We present in this section two new regular-expression characteristics that will
be used to maximise the sum of the time-series variables, while at the same time
(i) constructing a fixed number of pattern occurrences, or (ii) building a number
of pattern occurrences achieving a given total width. We first motivate and give
the intuition of such characteristics in the context of the IncreasingTerrace =
¢ <=T< pattern before providing their formal definitions.

— The first characteristic corresponds to the mazimum weight of the inducing
word of a regular expression o. For example, given * <="< ’ and the domain
value u, the maximum weight is the maximum value which can be achieved
by a supporting time series of the inducing word ‘¢ <=<", i.e. (u—2) + (u —
D+(u—1)4u=4-u—4.

— The second characteristic corresponds to the weight of the overlap of the
inducing word of a regular expression o with itself. We need to know this
quantity to evaluate the maximum weight that can be achieved by a sup-
porting time series of a stretch of overlapping inducing words. For example,
given * <=T< "’ and the domain value u, the maximum weight of the overlap
highlighted in grey in ’<=<=<’ of two consecutive inducing words ¢ <=<"’
isequal to (u—2)+(u—1)=2-u—3.

Definition 1 (Maximum weight of ¢). Consider a reqular expression o with

exactly one word v € O, with length w,, and an integer interval domain [, u].

The maximum weight of o wrt (u), denoted by Aﬁf”, is a function that maps an

element of Ry X Z to Z. It is defined by A =y (we + 1) — v,, where vy is

the weight variation of o. The function v, maps an element of Ry to Z,

Vy = mmin (we +1) - max X; — Xi] ,
(€,u) X €t
teNRy " (v) X, et

where t is a supporting time series of v € O, wrt (£,u) denoted by Qi (v),
and Ry denotes the set of regular expressions over the alphabet X .

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 87

Definition 2 (Total weight of the overlap of o). Consider a reqular expres-
sion o with exactly one word v in O,, and an integer interval domain [¢,u].
The total weight of the overlap of o wrt (u), denoted by a§“>, is a function that
maps an element of Ry X Z to Z. It is defined by a§"> =u- oée’w — &5, where
&, is the weight variation of the overlap of o, defined by

¢ (I[ni{l(| o™ maxx,er Xi — Soxier, Xils if I (v, v) # 0
o = te;" (v

0, otherwise.

where Féz’m(v,w) is the shortest superposition of words v and v in O,

Qégm (v,v) is the supporting time series set for the shortest superposition between
v and v wrt ({,u), and t, is a subsequence of t corresponding to the overlap of

two consecutive extended o-patterns from Fcﬁz’w (v,v).

Ezample 3. Consider o1 = StrictlyDecreasingSequence, o0 = Peak = ‘ < (<
| =)*(>] =)* >, and o3 = IncreasingTerrace = ‘ <="<’, and the interval
[0, 3]. Table1 presents the values for the weight variation and the total weight
regular-expression characteristics of the inducing words and the overlap of o1, 09
and o3. A

3.2 Time-Series Constraints with Feature ONE

We show how to derive bounds on the sum of the time-series variables for the
NB_o(X, R) constraint family, provided all variables are in an interval [¢, u].

Table 1. Regular-expression characteristics for StrictlyDecreasingSequence, Peak,
IncreasingTerrace; column “length” gives the number of variables in the time series
of interest, i.e. the number of filled dots in the column “illustration”.

o word type O, length illustration new characteristics

weight total
variation weight
inducing .
Strictly- wmaueing > 2 w1 \ 1 2u—1
A word
Decreasing-

Sequence overlap - 0 w“ ,Z C\C/\O 0 Ou—0
inducing s 3 u A 9 3 — 92
Peak word vt
inducing

overlap - 1 w—1 M 1 u—1

Increasing- f=< 4 “ 4 du — 4
word u—1
Terrace u—2

u

overlap - 2 w—1 3 2u—3

u — 2
u — 3

88 N. Beldiceanu et al.

— First, Example 4 provides the basis for understanding the intuition of the
method.

— Second, we list the properties required by a regular expression to use the
intuitions we just described for deriving an upper bound.

— Finally, based on these properties, we give a greedy method to construct a
time series that maximises the sum of its variables wrt the NB_o (X, R) family
of time-series constraints.

From an Intuition to a Methodology

Ezxample 4. (Intuition for constructing a time series reaching the upper bound).

Figurel gives three examples of how to build a time series that max-
imises the sum of its variables, while reaching a given number of pattern
occurrences. Part (A) gives three constraints of the form NB_o; with o7 =
StrictlyDecreasingSequence = >T 7 g9 =Peak = < (< | =)*(> | =)* >,
and 03 = IncreasingTerrace = * <=1< ’ respectively enforcing 3 occurrences
of o1, 3 occurrences of o5, and 5 occurrences of o.

— Since strictly decreasing sequences cannot overlap, Part (B) shows a time
series with three intervals without restart where each interval corresponds to
a strictly decreasing minimum size sequence positioned at its highest level,
the remaining variables X7, Xg being set at their maximum value.

— Even if consecutive peaks may overlap, their maximal values may remain at
the same level, Part (C) shows a time series with a single interval without
restart containing three minimum size peaks positioned at their highest level,
the remaining variables Yy, Yy being set at their maximum value.

— As two consecutive intersecting increasing terraces are necessarily offset in
height, Part (D) shows a time series containing the maximum number of
possible intervals without restart, given that 5 increasing terraces have to be

positioned in a sequence of size 14. The 5 terraces @, @, ..., ® are distributed
in two intervals without restart in the most balanced way, i.e. 3 and 2 terraces,
by placing them at the highest possible level. A

To build a time series whose sum of variables is maximum, while having R
maximal occurrences of the pattern o, we proceed as follows.

— [MAXIMISING THE NUMBER OF VARIABLES SET TO u] We minimise the overall
size taken by all R maximal occurrences of o in order to set all remaining
variables to their maximum value wu.

- [POSITIONING PATTERN OCCURRENCES AS CLOSE AS POSSIBLE TO u] We try
to position the R maximal occurrences of o at their maximum height wrt to u.
Unfortunately, as shown in Example 4 for the IncreasingTerrace pattern,
this is not always possible: in Part (D) of Fig. 1, only the terraces labelled
with @ and @ are placed at their highest possible level. This can occur for
patterns such that OSZM # 0 and (557[’“) # 0, when R is too large wrt the size
of the time series. In this case, the R pattern occurrences are distributed in
a balanced way over as many intervals without restart as possible.

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 89

NB_STRICTLY -DECREASING_SEQUENCE({X71, X5, ..., Xg),3), with X; € [2,6]
(A) NB_PEAK((Vi, Y. .., Y5),3), with Y; € [2,6]
NB_INCREASING_TERRACE((Z1, Zs, . .., Z14),5), with Z; € [2,6]
6 k<<)<, = 6 Sa s <> P vy
(B), b ol s ©), N HEHEE e
0 2 0 l l l l l
: : 1@ : V1@
4 4 4 v 0 0 v ' '
! @ ' l @ l l
3 3 3 T T T T T T
@ 1 1 1 1 1 1
9 9 9 A L L L L L L
X1 X2 X3 X4 X5 Xo X7 X5 Yi Yo Vs Ya Vs Y Y7 Vs Vo 2y Zp Zs Za Zs Ze Z7 Zs Zo ZroZ11Zr2Z13214
[R WG W S i U T)
Three intervals One single interval First interval Second interval

without restart without restart without restart without restart

Fig. 1. (A) Three constraints and their corresponding time series that maximise the
sum of the time-series variables respectively containing (B) three strictly decreasing
sequences, (C) three peaks, and (D) five increasing terraces

— [SELECTING EACH PATTERN OCCURRENCE] Finally, each maximal occurrence
of o corresponds to a supporting time series X, Xs,..., X, +1 of a word v
of L, verifying simultaneously all the following conditions:

i v is a word whose size is as short as possible; hence its size is w, + 1.
ii Xi,...,X,,+1 minimises the variation wrt the maximum value of its
variables, i.e. (wo + 1) - maXie(,0,+1] Xi = Die w, +1) Xi-

Required Properties of Regular Expressions. As shown before, building
in a greedy way a time series ¢ that maximises the upper bound on the sum of
the time-series variables wrt a time-series constraint with aggregator Sum and
feature one, requires finding R maximal words of £, such that the superposition
of these R words wrt an integer interval domain [, u] simultaneously optimises
several regular-expression characteristics. To define these properties, we use two
regular-expression characteristics presented in Sect. 2 and Sect. 3.1: the set of
inducing words and the weight variation of word v, denoted by 6, and v, (v).

Prop. 1. The language of o does not include the word ‘ =" i.e., ‘=1 & L,.

Prop. 2. Regular expression o has only one inducing word, i.e., | ©, |= 1.

Prop. 3. The weight variation wrt the maximum domain value u of the only
inducing word of o, denoted by v, is lower than or equal to the weight
variation of any other word in the language of o, i.e., v,(v) < vy (w),
for each w € L, : w # v.

Prop. 1 guarantees that when the number of time-series variables included in
the R maximal occurrences of o is lower than the sequence length n, the time
series t can be completed by setting all its reminder variables in the maximal
domain value u. Prop. 2 guarantees that the smallest possible number of time-
series variables is used to include R maximal occurrences of pattern o in time
series t. Prop. 3 ensures that the weight variation of a ¢ occurrence is minimised.
Hence, the upper bound on the sum of the time-series variables associated with
the R occurrences of ¢ in t is maximal. We show in Lemma 2 that these three
properties give a sufficient condition for getting a sharp upper bound on the sum
of time-series variables wrt a NB_o (X, R) constraint.

90 N. Beldiceanu et al.

Structure of a Time Series Achieving the Upper Bound on the Sum
of the Time-Series Variables. Following the description of the methodology
presented in Example 4, Lemma 2 defines the structure of a time series achieving
the upper bound on the sum of time-series variables wrt a NB_o (X, R) time-series
constraint. For regular expressions with off"") = (0 and 557[’“) # 0 (e.g., Part (D) of
Fig. 1), we present an intermediary lemma (Lemma 1) which defines the mazimal
number of intervals without restart containing R maximal occurrences of ¢ in a
time series X achieving the upper bound on the sum of its variables.

Lemma 1. Consider a regular expression o, a time series X = (X1,...,X,)
with every X; ranging over the same integer interval domain [¢,u], a NB_o(X, R)

constraint with R > 0. When 0§f’"> # 0, (5[<7Z’u> % 0 and Prop. 2 holds, the
mazximal number of intervals without restart, denoted by p, is defined by

. . . {0, u)
p = min (R, {” el t 100)D (1)

Oc

Proof. When OS,ZM # 0 and 55,@’1” # 0 the R o-patterns might be contained
in one or more intervals without restart. Since each interval without restart
contains at least one o-pattern, p cannot exceed R. Wlog assume that we have
only one o-pattern in the first p — 1 intervals without restart and R — p + 1
in the last one; we remark that moving one o-pattern from an interval without
restart containing more than one o-pattern to another interval without restart,
does not change the overall number of time-series variables belonging to the R
o-pattern occurrences. By Prop. 2 we use the only inducing word of ¢, hence:

— In the first p — 1 intervals without restart the total number of time-series
variables used is (p — 1) - (ws + 1).

— In the last interval without restart the total number of time-series variables
used is (R—p+1)- (wo +1) = (R—p) - o™,

Since the total number of time-series variables used by the R o-patterns must

be lower than or equal to n we have:

(p—l)-(wa—i—l)—i—(R—p—i—1)~(wg—i—l)—(R—p)-off’"> <n.

By isolating p, and since p is an integer, we obtain p < { o
Og

n—R-(wy+1—0H™)) J
which is thus the second term inside the min term in Eq. (1). O

Lemma 2. Consider a regular expression o that has Prop. 1, Prop. 2 and
Prop. 3. Then for any integer number n > 2 and given number of occurrences
of 0 R > 0, there exists a word z with an associated ground time series t of
length n over [¢,u] achieving the upper bound on the sum of the X; time-series
variables.

Proof. We first construct a word z composed by the concatenation of two words,
a prefix, denoted by z, containing R maximal occurrences of o, and a suffix,

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 91

denoted by z, containing zero occurrences of o. Second, we prove that there
exists a supporting time series wrt [¢,u] with signature z that maximises the
sum of the time-series variables.

Part A: Construction of the Word z. When building word z, if off”” =0,
each pair of consecutive o-patterns does not share any time-series variables.
Hence, each extended o-pattern belongs to a different interval without restart
and p = R. If off’w # 0 and 5572’") = 0, all pairs of consecutive extended o-
patterns share off’w time-series variables. Hence, time series ¢ has a single inter-
val without restart that contains all o-patterns and p = 1. By Lemma 1, if
057[’“) # 0 and 55,[’“) # 0, all o-pattern occurrences of time series t are contained
in p > 1 intervals without restart. There exists R words of L, a prefix word z
including the R words, and a concatenation of z with a suffix word z such that
all the conditions of Prop. 1, Prop. 2 and Prop. 3 are satisfied. We construct
the signature of the time series, denoted by z, by first building the signature zj
(with k € [1,p]) of every interval without restart of ¢ by imposing the following
conditions:

e [Structure of each interval without restart] Each word z; (with k €
[1,p]) has ¢ occurrences of o and is defined by

2 = Vo, cr =1, if off”” =0
2 = vk, cr = R, if o # 0 and s5m =0 (2)
= 1 < /
2 = vw 1 cr=s+1 ifk< P otherwise
Cp = S, otherwise

where v € O, vF denotes the concatenation of k occurrences of v, vw is the
superposition between v and v, s = Lﬁj, and p’ = R mod max(1,p).

e [Combining the intervals without restart: structure of z | Word z is
defined by

(€yu)

wR’lv, ifos7’ =0
21, if 0(<f’u> # 0 and 5%’@ =0

3)

21° << gy, off”” # 0 and 5§£’u> >0
21t > > gy, off’w #0 and 55,-@’”) <0

where v € O, and word w belonging to {‘v >, ‘v =’,‘v <’} is not a proper
factor of any word in £, and its height is 7, .

e [Completing the set of intervals without restart: structure of z] Word
z with length m is defined by

g, ifm=O
‘<=*7 ifm>0and ‘> (=|>)*" is a suffix of v (4)

=t otherwise

92 N. Beldiceanu et al.

Part B: Proving that There is a Ground Time Series t with Signature
z that Maximises the Sum of the Time-Series Variables. Since we assume
that regular expression ¢ has Prop. 1, time-series variables in z can be assigned
to the maximal domain value u without creating a new occurrence of pattern.
Hence, to prove the maximality on the sum of the X; variables belonging to ¢, it
suffices to show that there exists a ground time series over [¢, u] obtained with the
signature of word z achieving the upper bound on the sum of its variables. For
space reasons we only consider the case where 5,(;g’u> # 0. We define two ground
time series t* and ¢’ such that their signatures contain R o-pattern occurrences
and p intervals without restart:

— t* corresponds to the ground time series with signature z satisfying Eq. (2)
and where the first o-pattern occurrence of each interval without restart is
at level 0, i.e. the level closest to the maximal domain value w.

— t’ corresponds to any other ground time series where the number of o-patterns
located at level O is strictly less than p.

To obtain the total weight of a ground time series, i.e. the upper bound on
the sum of the time-series variables, we first define the maximum weight of a
o-pattern located at level e by A — (w, +1)- | 684% | - e, and the weight of

—~—

A B
the overlap between two consecutive o-patterns located at levels e and e + 1

by al® —oltw. | 564 | .e. Terms A and C, defined in Sect. 3.1, correspond
~— _'5_/
to the maximum weight of a o-pattern and to the total weight of the overlap
between two consecutive o-patterns, respectively. B and D are two correction
terms which respectively adjust the weight of a o-pattern and the weight of the
overlap between two consecutive o-patterns, caused by a change in the level of
a o-pattern occurrence.
The total weight of a ground time series t, denoted by W;, is the sum of the
weights of the R o-patterns minus the sum of the weights of the R — p overlaps
between consecutive pairs of o-patterns. Hence, W; is defined by

P Jk Jr—1
W, = (R-A§u>—(wa+l)zzAe)—((R—p)) ol ZZA)
k:le}:ik k= 1eDzk

where A, =| 55}’“) | - e, and iy, ji are the highest and the lowest levels of the o-
patterns in interval without restart k € [1, p], respectively. Note that in Eq. (5),
the only terms that depend on the level of the o-pattern occurrences are the
correction terms By and D7. Let i, = 0 and ji = ¢x — 1 be the levels of the
highest and the lowest o-pattern occurrence in interval k € [1,p] for t*. For ¢’
we assume that at least one i > 0 with k& € [1,p]. Therefore, we compare the
terms Br and Dr for t* and ¢’ in the following way:

ZZA>|6““>\+ZZA (6)

=1e=ig

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 93

22A>|a<“|+22A (7)

k=1 e=iy
Our objective is to show that Wy > Wy, i.e. the total weight of t* is strictly
greater than the total weight of ¢'. Hence, by using Eq. (5) to define Wy« and
Wy, by including Inequalities (6) and (7) in Wy and by factorising, we have

(L) P cp—2 P cg—1
05 kZ ZO Ae = (wo +1) kZ Z (8)
P Ck-—2 V4 Ck—l
oﬁf’”(EEAED YD Ae> — (wo + 1)(|65 [+ Y Ae>
k=1 e=0 k=1 e=0
By factorising Inequality (8), we have
wo +1> ol (9)

Since the size of o is always greater than or equal to the overlap of o, i.e.
Wy > og’“), Inequality (9) holds and W;» > Wy, m|

Upper Bound on the Sum of the Time-Series Variables. Consider a
NB_o (X, R) family of time-series constraints with every X; ranging over the same
interval [¢, u]. Theorem 1 provides an upper bound on the sum of the time-series
variables wrt the time-series constraint.

Theorem 1. Consider a reqular expression o satisfying the conditions of
Prop. 1, Prop. 2 and Prop. 8. The upper bound on the sum of the time-series
variables for the NB_o(X, R) family is defined by

—
(V)

Ck— C—

p p
Z —(ws +1) - Z — o A +meu, (10)
k=1 e=0 k=1 e=0

) cr—1 p cp—2 (6u)
where m is defined by: m =n — Z Z (wWe +1)= >0 > oo
k=1 e= k=1 e=0
Proof. Tt uses the construction of the proof of Lemma 2. O

This upper bound is valid for all 22 regular expressions of [4], except for
Inflexion, Zigzag, Steady and SteadySequence, since the first two regular
expressions do not satisfy the condition in Prop. 2 and the last two regular
expressions do not satisfy the condition in Prop. 1.

3.3 Time-Series Constraints with Feature WIDTH

For patterns o satisfying Prop. 1 and Prop. 2 we sketch a method to derive
bounds on the sum of the time-series variables for the SUM_WIDTH_o (X, R) fam-
ily, provided all X; (with ¢ € [1,n]) variables are in an interval [¢, u]. To build a
time series ¢ whose sum of variables is maximum, while having R as the sum of
the widths of the occurrences of the pattern o, we use a two-step procedure.

94 N. Beldiceanu et al.

— [STEP 1: NORMALISING THE PATTERN OCCURRENCES| For each o pattern,
we define a transformation 7, whose repeated application from any initial
signature Sinitiar leads to a target signature Siarget- Sinitial and Starger have
the same value for R, and no matter the value of S;isiai, this signature will
converge to a signature Starget with the same number of o-pattern occur-
rences. A single application of 7, from a signature S to a signature S’ has
the following properties:

i S and S’ share the same sum of the widths for their o patterns.
ii The largest sum of the X; variables compatible with S is less than or

equal to the largest sum of the X; variables compatible with S’.
To find the time series with the largest sum of the X; variables compatible

with signature S we first perform generalised arc consistent (GAC) in the
induced constraint satisfaction problem. Second, we fix all X; variables to
their respective maximal value. Note that for a binary constraint of the type
<, = or >, we can always set its two variables to their respective maximal
values, while satisfying the constraint in question.

— [STEP 2: NORMALISATION OUTSIDE THE PATTERN OCCURRENCES| We modify
Starget 10 Sfnar so that all X; variables that do not belong to an extended
o-pattern of Spnq can be set to their maximum value u.

We define two transformations, denoted by 7! and 7.2. For space reasons, we
sketch the two transformations but we only illustrate 7.} in Example 5.

— T} transforms Sinia into a sequence Starget containing the smallest possi-
ble words in L,, i.e. inducing words whose widths are equal to 7, = w, +
1 —ay, — b,. T} works for 0 = DecreasingSequence, IncreasingSequence,

StrictlyIncreasingSequence, and StrictlyDecreasingSequence, and for
(R) (R) (€u)

Gorge and Summit when n > ps ' - (we + 1) — (ps ' — 1) - 05", i.e. there is
enough space to create pﬁ,m = L%J inducing words of ¢. The upper bound

on the sum of X; variables when 7} is used is

P AL — (R~ 1) -0l (Rmod m,) - (u— (n, + 1) + 01,

where m = n — (;DS;R> (we + 1) — (pf,R> —-1)- o™ + R mod 7). Term 1

corresponds to the maximum weight of the concatenation of pgR> occurrences
of the only inducing word of . Term II is related to a correction term which
is used when it is not possible to obtain a sum of the widths equal to R
with p§R> inducing words. Term III corresponds to the maximum weight of
the variables that do not belong to any o-pattern occurrence. In Part (C) of
Fig. 2 points @, @ and o respectively contribute to terms I, IT and III.

— 72 transforms Siniia into a sequence Starget containing one occurrence of o.
7.2 works for 10 other o-pattern including IncreasingTerrace and Peak. The

upper bound on the sum of X; variables when 7.2 is used is)\STR’u) +m - u,

where m = n— (R+ay,+b,), and AP s the maximum weight of the regular

expression ¢ where words in £, have a fixed length of R + a, + b, — 1.

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 95

(A) (B) 21‘,6[1,8] X; =26 (C) Zie[],s] Xi=128

4 4 16 T 4 (. —O—O0
! (I 1 | 1 1.

s 5 N6 o 3 N

2 2 | 11 - = | s 35:111
1 I I I I [‘O—} III

1 1 1 L1 1 1 L L1 1

0 Xi:pf,R> ->\(<,Z'u> 7(p§,R> 71)»o¢§,€’u> +(R mod 75) (u—(ne+1))+m-u
S I O T
2 7 2 0 5 2 4 1 3 4

Fig. 2. Transforming an initial time series to a final time series that maximises the
sum of the X; variables, where both time series share the same value, i.e. R = 5, for
the sum of the widths of the strictly decreasing sequences

Ezxample 5. Figure?2 gives an example of how to build a time series that max-
imises the sum of its variables while reaching a given sum of the widths of
the pattern occurrences. The constraint used is SUM_WIDTH.o ((X1, ..., Xs),5)
with ¢ = * >% " a, = b, = 0, and X; € [0,4]. Part (A) shows an initial
time series with the largest sum of the X; variables compatible with signature
Sinitial = (=,>,>,>,>,=,=). Part (B) presents a time series with the largest
sum of the X; variables compatible with Sigrger = (=,>,>, <,>,=,=). Siarget
is obtained after applying 7.} to Siniia by changing the fourth signature vari-
able from ‘>’ to ‘<’. Note that Sinitiar and Sierger share the same value for
R and that the largest sum of the X; variables compatible with S;,izia is less
than the largest sum of the X; variables compatible with Sygrges. Part (C) shows
a final time series with the largest sum of the X; variables compatible with
Sfinal = (=,>,>,<,>, <,=), which is obtained by applying STEP 2 to Siarget,
i.e. by changing the sixth signature variable from ‘=" to ‘<’. This allows one to
obtain a larger value for the sum of the X;, i.e. 28 instead of 26. A

4 Evaluation

As a test for our procedure, we run all time-series constraints from the NB_o
and the SUM_WIDTH_ o families for synthetic time series with length between 5
and 60, and for all possible result values (in all 45,835 runs), and find a sin-
gle optimal solution minimising the sum of the time-series variables. The indi-
vidual constraints use a state-of-the-art implementation, combining optimised
automata [5], bounds on the result variables [8], glue-matrix constraints linking
all prefixes and suffixes [5], and selected redundant linear constraints based on
Farkas lemma [17]. For the variable assignment, we compare four search methods
shown below, while using the bounds obtained for cost variables.

96 N. Beldiceanu et al.

Search This is the default search in SICStus,

the variables are assigncd in natural OI‘dCI‘, enu- All Constraints, All Result Values, One Solution

10000 Only Satisfy

merating the values from the smallest to the Custom Only
Search Only

1000 Custom + Bounds

Custom Impose + Bounds
Search + Bounds

Impose + Bounds

largest.

Custom This implements a custom search rou-

Time (s)

tine based on assigning the signature variables

first. The same method is used for all test cases.

Search Impose This uses the default search

in SICStus, but first assigns the cost variable 0 1 2 30 4 50 60

to its smallest value. As the bounds are sharp,

the first solution found is optimal. Fig. 3. Comparing baseline solutions with
Custom Impose We use the custom search different search strategies

method, but also initially impose the lower

bound of our method for each constraint.

Since the conjunction of arithmetic constraints encoding bounds can propa-
gate poorly, which results in some poor performance in the context of optimisa-
tion, we do not propagate the bounds directly; we rather use a table constraint to
link the cost and result variables with a pre-computed table of all possible pairs.
We compare against three baseline solutions. The first one (Only Satisfy) finds
a single feasible solution, the second one (Search Only) solves the optimisation
problem without bounds on the cost and with the default search routine, the
third one (Custom Only) uses the custom search, again without the bounds on
the cost variable. All experiments were run with SICStus Prolog 4.3.5 on a single
core of a Windows 10 laptop with an Intel Core i7 CPU running at 2.9 GHz and
with 64 Gb of memory. We stop the search if, for a given size, the time to run
all its instances exceeds 600s, or if we reach size 60.

As we observed that both families NB_o and SUM_WIDTH_o behave similarly
in our benchmarks, the results are shown in Fig. 3, using a log scale for the y
axis. We see that without the new bounds on the cost even a custom search
routine does not find solutions for all cases if the size exceeds 18. Adding the
bounds significantly increases the size of the problem one can handle. The custom
search outperforms the default search for larger sizes, and further improvements
are possible if we impose the lower bound before starting the search on the time-
series variables. The best search combines imposing the lower bound with the
default search, which seems to impose only a very limited overhead compared to
the Only Satisfy base line, which only finds feasible solutions.

5 Conclusion

On the one hand, the theoretical contribution of this paper consists of parame-
terised sharp bounds on the sum of the time-series variables for two families of
time-series constraints. Future work may look how to extend this work to any
linear cost function, e.g. linear functions where all coefficients are not set to one.

Parameterised Bounds on the Sum of Variables in Time-Series Constraints 97

On the other hand, the practical insight of this paper is related to the impor-
tance of encoding all arithmetic constraints representing a bound as a table con-
straint in order to get all the benefits from the bounds. An interesting avenue
for future research is related to the derivation of bounds for the conjunction of
time-series constraints.

References

1. Abbas, H., Rodionova, A., Bartocci, E., Smolka, S.A., Grosu, R.: Quantitative
regular expressions for arrhythmia detection algorithms. In: Feret, J., Koeppl, H.
(eds.) CMSB 2017. LNCS, vol. 10545, pp. 23-39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67471-1_2

2. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 15-40. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-
1.2

3. Arafailova, E., Beldiceanu, N., Carlsson, M., Flener, P., Francisco Rodriguez, M.A.,
Pearson, J., Simonis, H.: Systematic derivation of bounds and glue constraints for
time-series constraints. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 13-29.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_2

4. Arafailova, E., et al.: Global constraint catalog, volume II, time-series constraints.
arXiv preprint arXiv:1609.08925 (2016)

5. Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodriguez, M.A.,
Pearson, J., Simonis, H.: Time-series constraints: improvements and application in
CP and MIP contexts. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676,
pp. 18-34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_2

6. Arafailova, E., Beldiceanu, N., Simonis, H.: among implied constraints for two
families of time-series constraints. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416,
pp- 38-54. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_3

7. Arafailova, E., Beldiceanu, N., Simonis, H.: Generating linear invariants for a con-
junction of automata constraints. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416,
pp. 21-37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_2

8. Arafailova, E., Beldiceanu, N., Simonis, H.: Deriving generic bounds for time-series
constraints based on regular expressions characteristics. Constraints 23(1), 44-86
(2017). https://doi.org/10.1007/s10601-017-9276-2

9. Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for
describing and synthesising structural time-series constraints. Constraints 21(1),
22-40 (2015). https://doi.org/10.1007/s10601-015-9200-3

10. Beldiceanu, N., Feris, B.D., Gravey, P., Hasan, S., Jard, C., Ledoux, T., Li, Y.,
Lime, D., Madi-Wamba, G., Menaud, J.-M., Morel, P., Morvan, M., Moulinard,
M.-L., Orgerie, A.-C., Pazat, J.-L., Roux, O., Sharaiha, A.: Towards energy-
proportional clouds partially powered by renewable energy. Computing 99(1), 3-22
(2016). https://doi.org/10.1007/s00607-016-0503-2

11. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solu-
tions for the EDF unit commitment problem with the ModelSeeker. In: Schulte, C.
(ed.) CP 2013. LNCS, vol. 8124, pp. 733-748. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40627-0_54

12. Eeckhout, L., De Bosschere, K., Neefs, H.: Performance analysis through synthetic
trace generation. In: 2000 IEEE International Symposium on Performance Analysis
of Systems and Software. ISPASS (Cat. No. 00EX422), pp. 1-6. IEEE (2000)

https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-319-44953-1_2
http://arxiv.org/abs/1609.08925
https://doi.org/10.1007/978-3-319-33954-2_2
https://doi.org/10.1007/978-3-319-66158-2_3
https://doi.org/10.1007/978-3-319-66158-2_2
https://doi.org/10.1007/s10601-017-9276-z
https://doi.org/10.1007/s10601-015-9200-3
https://doi.org/10.1007/s00607-016-0503-z
https://doi.org/10.1007/978-3-642-40627-0_54
https://doi.org/10.1007/978-3-642-40627-0_54

98

13.

14.

15.

16.

17.

18.

19.

N. Beldiceanu et al.

Goldin, D.Q., Kanellakis, P.C.: On similarity queries for time-series data: constraint
specification and implementation. In: Montanari, U., Rossi, F. (eds.) CP 1995.
LNCS, vol. 976, pp. 137-153. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60299-2_9

Kegel, L., Hahmann, M., Lehner, W.: Template-based time series generation with
loom. In: EDBT/ICDT Workshops, vol. 1558. Citeseer (2016)

Lin, J., Williamson, S., Borne, K.D., De Barr, D.: Pattern recognition in time
series. In: Way, M.J., Scargle, J.D., Ali, K.M., N, S.A. (eds.) Advances in Machine
Learning and Data Mining for Astronomy. CRC (2016)

Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Anal-
ysis and Forecasting, 2nd edn. Wiley (2016)

Rodriguez, M.A.F., Flener, P., Pearson, J.: Implied constraints for automaton con-
straints. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Global Conference on
Artificial Intelligence, GCAI 2015, Thilisi, Georgia, 16-19 October 2015. EPiC
Series in Computing, vol. 36, pp. 113-126. EasyChair (2015)

Rodriguez, M.A.F., Flener, P., Pearson, J.: Automatic generation of descriptions
of time-series constraints. In: 2017 IEEE 29th International Conference on Tools
with Artificial Intelligence (ICTAI), pp. 102-109. IEEE (2017)

Shokoohi-Yekta, M., Chen, Y., Campana, B.J.L., Hu, B., Zakaria, J., Keogh, E.J.:
Discovery of meaningful rules in time series. In: Cao, L., Zhang, C., Joachims,
T., Webb, G.I., Margineantu, D.D., Williams, G. (eds.) Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Sydney, NSW, Australia, 10-13 August 2015, pp. 1085-1094. ACM (2015)

https://doi.org/10.1007/3-540-60299-2_9
https://doi.org/10.1007/3-540-60299-2_9

®

Check for
updates

A Learning-Based Algorithm to Quickly
Compute Good Primal Solutions for
Stochastic Integer Programs

Yoshua Bengio®?, Emma Frejinger?, Andrea Lodi®, Rahul Patel’3(&)
and Sriram Sankaranarayanan®

! Canada Excellence Research Chair, Polytechnique Montreal, Montreal, Canada
andrea.lodi@polymtl.ca, rahul.polymtl@gmail.com
2 Department of Computer Science and Operations Research, University of Montreal,
Montreal, Canada
3 Mila - Quebec Artificial Intelligence Institute, Montreal, Canada

Abstract. We propose a novel approach using supervised learning to
obtain near-optimal primal solutions for two-stage stochastic integer
programming (2SIP) problems with constraints in the first and second
stages. The goal of the algorithm is to predict a representative scenario
(RS) for the problem such that, deterministically solving the 2SIP with
the random realization equal to the RS, gives a near-optimal solution
to the original 2SIP. Predicting an RS, instead of directly predicting a
solution ensures first-stage feasibility of the solution. If the problem is
known to have complete recourse, second-stage feasibility is also guaran-
teed. For computational testing, we learn to find an RS for a two-stage
stochastic facility location problem with integer variables and linear con-
straints in both stages and consistently provide near-optimal solutions.
Our computing times are very competitive with those of general-purpose
integer programming solvers to achieve a similar solution quality.

Keywords: Stochastic integer programming - Machine learning -
Heuristics

1 Introduction

Two-stage stochastic integer programming (2SIP) is a standard framework to
model decision making under uncertainty. In this framework, first the so-called
first-stage decisions are made. Then, the values of some uncertain parameters in
the problem are determined, as if sampled from a known distribution. Finally,
the second set of decisions are made depending upon the realized value of the
uncertain parameters, the so-called second-stage or recourse of the problem. The
decision maker, in this setting, minimizes the sum of (i) a linear function of
the first-stage decision variables and (ii) the expected value of the second-stage
optimization problem.

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 99-111, 2020.
https://doi.org/10.1007/978-3-030-58942-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_7

100 Y. Bengio et al.

2SIP is studied extensively in the literature [5,8,12,14-16,18-21,25] owing to
its applicability in various decision making situations with uncertainty, like the
stochastic unit-commitment problems for electricity generation [19,20], stochas-
tic facility location problems [15], stochastic supply chain network design [22],
among others. With the overwhelming importance of 2SIP a wide range of solu-
tion algorithms have been proposed, for example, [2,3,7,16,23,24].

In this paper we are interested in using machine learning (ML) to obtain good
primal solutions to 2SIP. Along this line, Nair et al. [17] proposed a reinforcement
learning-based heuristic solver to quickly find solutions to 2SIP. Given that the
agent can be trained offline, the algorithm provided solutions much faster for
some classes of problems compared to an open-source general-purpose mixed-
integer programming (MIP) solver, in their case, SCIP [10,11]. However, their
method is based on the following restrictive assumptions:

a. All first-stage variables are required to be binary. General integer variables
or continuous variables in the first stage cannot be handled.

b. Any assignment of the binary variables is required to be feasible for the first
stage of the problem, i.e., no constraints are allowed in the first stage.

Assumption a above is intrinsic to the method in [17], as both the initialization
policy and the local move policy of the method involves flipping the bits of the
first-stage decision vector. Hence, one cannot easily have general integer vari-
ables or continuous variables. Assumption b is again crucial to the algorithm in
[17], as flipping a bit in the first stage could potentially make the new decision
infeasible and it might require a more complicated feedback mechanism to check
and discard infeasible solutions. In fact, if there are constraints, it is N P-hard
to decide if there exists a flip that keeps the decision feasible. Alternatively, one
could empirically penalize the infeasible solutions, but tuning the penalty might
be a hard problem in itself.

In contrast, our method does not require either of these two restrictive
assumptions. We allow binary, general integer as well as continuous variables
in both first and second stage of the problem. We also allow constraints in both
stages of the problem. Furthermore, we have a simple and direct approach to
handle the first-stage constraints, without requiring any empirical penalties.

We make the following common assumption to exclude pathological cases,
where an uncertain realization can turn a feasible first-stage decision infeasible.

Assumption 1. The 2SIP has complete recourse, i.e., if a first-stage decision
is feasible given the first-stage constraints, then it is feasible for all the second
stage problems as well.

We make another assumption of uncertainty with finite support, so we can
have a proper benchmark to compare our solution against. However, this assump-
tion can be readily removed, without affecting the proposed algorithm.

Assumption 2. The uncertainty distribution in the 2SIP has a finite support.

Learning Based SIP 101

2 Problem Definition

We formally define a 2SIP as follows:

; T
Jmin Tz + B¢ [Q(z,)] (1a)
subject to Az <b (1b)
x €7, Yiel, (1c)
where,
Qz,§) = min {qug :Wye < he — Tex,ye =2 O;ys €ZVi € Zz}
y n

where x € R™ and y € R™ are the first and second-stage decisions respectively,
ceR™M, AcR™M*™ beR™, y: € R, ge € R"2, W € R™2*"2 T, ¢ RM2*"1,
he € R™, I; C {1,...,m},Zo C {1,...,no}, £ € = and where (=, %=,p)
defines a probability space.

When Assumption 2 holds, the 2SIP described above can also be expressed
as a single deterministic MIP as follows:

min Tz + V&ZGE Peaive (2a)
subject to Az <b (2b)
Wye < he —Tex VEe = (2¢)

v, €4, Viel (2d)

Yyes €L, VE€ Z,VieD. (2e)

where, 5 is the set of random scenarios and pe is the probability of a random
scenario ¢ € =.

When Assumption 2 does not hold, the formulation (2) could be a finite-
sample approximation of (1), which is extensively studied in the stochastic pro-
gramming literature. Imitating [17], we compare our algorithm against solving
(2) with a general-purpose MIP solver.

3 Methodology

In this section, we discuss the algorithmic contribution of the paper.

3.1 Surrogate Formulation

We first define the objective value function (OVF) & : R™ — R, mapping
x— Tz + E¢ [Q(x,§)] - the function we are trying to optimize over the mixed-
integer set defined in (1).

102 Y. Bengio et al.

Given (2), we define the surrogate problem associated with & = (q,h,T), as
follows:

min Tz + 7'y (3a
ERY
subject to Ax <b (3b

Wy<h-Tx (3¢
Ti,Yj € Z, Vi € 1; je 1> (3d

In other words, should the value that the uncertain parameters are going
to take is deterministically known to be &, then the decision maker can solve
the surrogate problem associated with &. Now, the idea behind the algorithm
proposed in this paper is captured by Conjecture 1.

Conjecture 1. Let (2) (and hence (1)) have an optimal objective value of f*.
There exists ¢*, h*, T* in R"2, R™2 and R™2*"t such that if (z7,y") solves the
(much smaller) surrogate problem defined by (¢*, h*,T*), then, f* = &(xf).

Observe that by construction, z' is feasible to the original problem in (1).
Also, Conjecture 1 asserts that, there exists a realization of the uncertainty
(& = (¢*, h*,T™*)) such that if one deterministically optimizes for that realization
&*, then its solutions are optimal for the original 2SIP. Each such £* is called a
representative scenario (RS) for the given 2SIP.

Now, given adequate computing resources, one can solve the following bilevel
program to obtain an RS.

. T T
51101111) c'x + Z Peqe Ye (4a)
T,y véeE
Ax < b;
Ww <v—-Ux;
. . T T . —_ b
subject to (z,w) € arg min g ¢Te + oTw : s el VieT, (4b)
w; € 7 Viely
Wyg < hf - TEZ VEe = (4(1)
Yei €L, V€€ Z,Viel (4d)

If the optimal value of this problem matches the optimal value of the original

2SIP, then the corresponding values for (U, v, w) form the RS. Note that if T
is the same for all £ € =, then (4) is a mixed-integer bilevel linear program
(MIBLP) and can hopefully be solved faster than the general case.

3.2 Learning Algorithm

The goal of ML algorithms is to predict an optimal (U, v, w) to (4), given the
data for the 2SIP. On the one hand, we are expecting the ML algorithms to
predict the solutions of a seemingly much harder optimization problem than

Learning Based SIP 103

the original 2SIP. On the other hand, this is easier for ML since there are no
constraints on the predicted variables — U, v, w. Supervised learning is a natural
tool to achieve this goal.

Supervised learning can be used if there is a training dataset of problem
instances and their corresponding RS. The task of predicting RS can be formu-
lated as a regression task as RS is real valued. The algorithm tries to minimize
the mean squared error (MSE) between the true and predicted RS. The predic-
tion can also be evaluated on the merits of optimization metrics, comparing the
solution and objective value of true and predicted RS.

4 Computational Study

This section discusses the computation study performed to support Conjecture 1.

4.1 Problem Definition

In this work, we consider a version of two-stage stochastic capacitated facility
location (S-CFLP) for computational analysis. The problem is enhanced such
that both the first and the second stage of the problem have integer as well as
continuous variables. More precisely, the first stage consists of deciding (i) the
locations where a facility has to be opened (binary decisions), and (ii) if a facil-
ity is open, then the maximum demand that the facility can serve (continuous
decisions). There are also constraints which dictate bounds on the total number
of facilities that can be opened. The uncertainty in the problem pertains to the
demand values at various locations in the second stage of the problem, which
are sampled from a finite distribution. Once the demand is realized, the second
stage consists in deciding (i) if a given open facility should serve the demand in a
location (binary decisions) (ii) if a facility serves the demand in a location, then
what quantity of demand is to be served (continuous decisions). These decisions
have to ensure that the demand and supply constraints are met. The problem
formulation is presented formally in Appendix A.1.

4.2 Data Generation

Generate Instances. We generate 50K instances of S-CFLP, with 10 facilities, 10
clients and 50 scenarios. We provide details on how the data for these instances
are generated in Appendix A.2. The generated instances are solved using Gurobi,
running 2 threads, to at most 2% gap or 10min time limit.

Next, we compute an RS for each of the 50K instances. As stated earlier, one
could solve mixed-integer bilevel programs (4) to obtain the RSs. However, due
to the computational burden, we use heuristics that work using the knowledge of
the (nearly) optimal solutions to the 2SIP already obtained from Gurobi. These
heuristics are detailed in Appendix A.3. Out of 50K instances, they find an RS
for 49,290 instances. We believe that a more thorough search will enable us to
find the RS for all the problems.

104 Y. Bengio et al.

4.3 Learning Algorithm

We formulate the task of predicting the RS as a regression task. The size of the
dataset, which comprises of instances and their corresponding RS, is 49,290. The
dataset is split into training and test sets of size 45K and 4,290, respectively.
Further, a validation set of 5K is carved out from the training set. We use
linear regression (LR) and artificial neural network (ANN) to minimize the MSE
between the true and predicted RS.

Feature Engineering. It is well known that features describing the connection
between variables, constraints and other interaction help ML to perform well
rather than just providing plain data matrices [4,6,9,13]. In this spirit, along
with the fixed and variable costs to open facilities at different locations, we
also provide aggregated features on the set of scenarios. These features give
information about each of the potential locations for facilities in S-CFLP as well
as the way different locations interact through the demands in adjacent nodes.
A detailed set of the features is given in Appendix A.4.

4.4 Comparison

In order to evaluate the ML-based prediction of £*, which we refer to as fA*, we
compare the solution obtained by solving the surrogate problem associated with
{* against solutions obtained by various algorithms.

We use LR and ANN to predict £*. We compare these predictions against (i)
Solution obtained using Gurobi by solving (2) (GRB) (ii) a solution obtained by
solving the surrogate associated with the average scenario, namely Ef\il =,/N
(AVG) (iii) a solution obtained by solving the surrogate associated with a ran-
domly chosen scenario from the N choices (RND) (iv) a solution obtained by
solving the surrogate associated with a randomly chosen scenario from the distri-
bution of the scenario predicted by LR (DIST). Note that GRB produces better
solutions (in most cases) than the ML methods, however, taking a significantly
longer time. We therefore assess the time it takes GRB to get a solution of
comparable quality to LR and ANN. We refer to these as GRB-L and GRB-A,
respectively.

5 Results

Table 1 reports the objective value difference ratio defined as ((Obj val by a
method—GRB obj val)/GRB obj val) for each method and Table2 statistics
on computing times. Before analyzing the results in more detail, we note a key
finding that emerges. Namely, LR and ANN perform almost as good as GRB
(in terms of quality of the objective value) in a fraction of the time taken by
GRB. Figurel captures the trade off between the quality of solutions obtained
by different methods as well as the time taken to obtain these solutions.

We observe from Table 1 that LR and ANN produce decisions that are as good
as GRB ones on an average (and by the median value), and in some cases the

Learning Based SIP 105

0.12 1 @ Random Scenario

@ Average

@ From &* distribution

Gurobi - as good as LR

Obj val difference ratio
o o o o
o o o =
N [o)] [e] o
1 1 1 1

Gurobi - as good as ANN
ANN \
:LR) ®
Gurobi
T T

102 107! 10° 10!
Avg time in seconds

©

o

N
1

0.00 A

Fig. 1. Objective value difference ratio vs. avg time in seconds

ML-based methods even beat GRB, i.e., produce solutions whose objective value
is better than that of GRB. This is possible because GRB does not necessarily
solve the problem to optimality, but only up to a gap of 2%. Further, even in
the worst of the 4,290 test cases, LR is at most 2.64% away from GRB. To show
that this is not easily achieved, we also compare GRB against AVG, RND and
DIST. We observe that these methods perform much poorer than GRB, unlike
LR and ANN.

Table 1. Objective value difference ratio, GRB vs. the five other methods (in %)

GRB vs. | AVG |RND |DIST |LR ANN

Min 3.36 | —0.33| —-0.17 | —=0.62 | —0.45
Max 14.23 1 94.42 1 49.87 |2.64 |7.85
Avg. 8.10 |12.10 |5.41 |0.64 1.02

Median |8.08 [8.24 [3.54 |0.60 |0.90
Std. dev. | 1.59 |12.11 |5.39 |0.41 |0.70

Analyzing the time improvement in using LR and ANN, we observe from
Table 2 that these methods solve the S-CFLP orders of magnitude faster than
GRB. Indeed, GRB takes over 8 s on an average to solve these problems, while
the maximum time is 0.046 s using LR and ANN. We emphasize that the time
taken to solve using the ML methods includes the time elapsed in computing the
values of the features used in ML and the time elapsed in solving the surrogate
associated with the corresponding §A*. Recall that GRB-L and GRB-A denote

106 Y. Bengio et al.

Table 2. Statistics on computing times of the different methods

Method |GRB |AVG |RND |DIST |GRB-L| GRB-A LR ANN

Min 0.4354 | 0.0041 | 0.0041 | 0.0040 | 0.4049 |0.4268 |0.0194 |0.0197
Max 559.32 | 0.0077 | 0.0081 | 0.0065 | 140.43 | 140.43 | 0.0454 | 0.0457
Avg. 8.7713 | 0.0043 | 0.0045 | 0.0043 | 4.2650 | 3.0398 | 0.0206 | 0.0209

Median |2.2621 | 0.0043 | 0.0044 | 0.0042 | 1.4613 | 1.2898 |0.0200 | 0.0204
Std. dev. | 17.919 | 0.0001 | 0.0003 | 0.0001 | 8.5576 | 6.8362 | 0.0019 | 0.0019

the time it takes GRB to produce a solution of comparable quality to LR and
ANN. The results show that GRB cannot produce a solution of the same quality
as LR and ANN in a comparable time. In fact, LR and ANN are still orders of
magnitude faster than GRB.

6 Discussion

In this paper, we present an algorithm to solve 2SIP using ML-based methods.
The method hinges on the existence of the RS conjectured in Sect.3.1. Compu-
tationally, we see that the methods proposed in this paper consistently provide
good quality solutions to S-CFLP orders of magnitude faster.

An important observation we had while training the models is that we were
never able to get the training loss close to zero. Naturally, the predicted RS in
the test dataset were quite different from the RS estimated using our heuris-
tics. The differences in the predicted values of the components of RS and those
obtained using the heuristics are documented by Fig. 2 in the Appendix. Despite
this, the solution value to the 2SIP as determined by our algorithm were near
optimal as shown in the results and significantly better than those obtained with
other methods. The mismatch between the ML metrics and those characterizing
discrete optimization problems is a known issue [4] requiring extensive research
and, in our context, we believe that exploring this avenue might produce better
solutions.

Another interesting observation is that LR beats ANN in this task. We sus-
pect that this is partly caused by the parsimony offered by LR. However, this
is also encouraging news that the sample complexity of the learning task might
be relatively small in general. We believe that a natural extension to this work
is to provide these analyses more formally.

Further, we believe that computational tests assessing the performance of the
algorithms in different datasets of 2SIP is crucial to show how much and where
our method generalizes. This might involve learning solutions to other forms of
2SIP like the stochastic unit-commitment problem, the stochastic supply chain-
network design problem etc. These are cases where we believe that Conjecture
1 still holds, but we do not have computational validation.

Finally, we would also be interested in extending the theory side when Con-
jecture 1 is not expected to hold at all or holds only with weaker guarantees;

Learning Based SIP 107

for example, in the case where both the stages are mixed-integer nonlinear pro-
gramming (MINLP) problems. In such cases, it will be useful to understand the
reach of ML-based solution techniques as opposed to traditional MINLP solvers.

A Computational Test Details

A.1 Problem Formulation

We provide below the problem considered in this work for computational study.

. 2 : f1. (T
be{O,?;}f}ueRi im1 (ci bita UZ) +Ee(Q(x,) (5)
n " 3n
— < E ; < —
10 — p bi = 4 (5b)
v < Mb; (5¢)

where Q(z,§) is

min Z Z Cg;')yij + Z Z Cguij (5d)

X nxn
ue{0, 1} X" y€ERY i=1 j=1 i=1 j=1

Zyij < v (5e)
j=1

Z vii = d;(§) (5)

Yi; < uyM (52)

In this problem, we minimize the fixed and variable costs of opening a facility
along with the fixed and variable costs of transportation between the facilities
and the demand nodes. There are n potential locations where a facility could
be opened. A fixed cost of czf is incurred, if a facility is opened in location i,
and a variable cost of ¢} is incurred per-unit capacity of the facility opened in
location i. The binary variable, b; tracks if a facility is opened in location i and
the continuous variable v; indicates the size of the facility at location i. The
constraint in (5c¢), along with the binary constraint on b ensures that the costs
are incurred in the right way. Finally, (5b) is a complicating constraint, which
says that at least a tenth of the locations must have a facility open and not more
than three-quarters of the locations must have a facility open.

In the second stage, czjf is the fixed cost incurred in transporting from location
i to j; cf;’ is the per-unit variable cost incurred in transporting from i to j. The
binary variable u;; denotes if any transportation happens from ¢ to j and the

continuous variable y;; denotes the actual quantity transported from ¢ to j.

108 Y. Bengio et al.

Algorithm 1: GENERATEXIHAT

Data: 2SIP P with first-stage solution z¢ and objective value 0°, max iterations
iter, a constant ¢ > 0

Result: £* or NULL

£ el G

while iter do

Formulate surrogate problem P’ associated with &

AW N =

Solve P’ and extract first-stage solution z¢ with objective og;

if Z—f <c thf)n
L return &;

else

®» I o wm

L Perturb £ using heuristics based on z° and zt

©

return NULL

The second-stage objective in (5d) minimizes the transportation cost incurred
under a random demand scenario parameterized by £. Then, (5e) ensures that
the total quantity transported out of a facility is not greater than the capacity
of the facility, while (5f) ensure that the total quantity supplied to a location j
equals the (random) demand at j. Finally, constraints (5g) link « and y variables
appropriately.

A.2 Data Generation

Instance Generation. We generate 50K instances of S-CFLP, with 10 facilities,
10 clients and 50 scenarios. The random parameters ¢/, ¢’ and = = [¢4, .. ., &50)
vary across instances, where as ¢!/ and ¢ are fixed across all instances. More-
over, ¢/ and ¢? are sampled from a discrete uniform distribution [15, 20) and
[5, 10), respectively. The demand matrix = is generated by first evaluating
A = |(¢/ +10c¢")/y/n]. The i'* demand scenario (1 < i < 50) is generated
by sampling from a Poisson distribution with the mean equal to A.

The generated instances are solved using Gurobi, running 2 threads, to opti-
mality (less than 2% gap) or 10 min time limit. We store the objective value, gap
closed and master solution z* = (b*, v*). We were able to solve all the instances
up to the specified gap, within the specified time limit.

We follow Algorithm 1 for generating £*. Then, |=| refers to the cardinality
of & and ¢ = 1.01 in step 6. The heuristics for updating the RS, based on x°
and z¢, are described in Appendix A.3.

A.3 Heuristics

Let 2* = (b*,v*) and a6 = (bg, 3) be the first-stage optimal and surrogate solu-
tion associated with the scenario £, respectively. There are three heuristics that

Learning Based SIP 109

we use in tandem to generate £*. The first heuristic is based on the compari-
son of facilities being open or close in the optimal and surrogate solution. The
demand in the ¢ is zeroed out at clients for which the b* is close and b¢ is open,
as suggested by

Gi=0Ab=1= =0 i=1...n (6)

The remaining two heuristics are based on the comparison of capacities installed
in facilities in the optimal and the surrogate solution. First, the client with max-
imum absolute difference between capacities installed in optimal and surrogate
solution is identified i.e., argmax; [vf — v$|. The demand at this client in the &
is updated either by a fixed percentage p of the current demand

3

_ _ vF — s _

&=&+ 172— X p&i, (7)
vy — 7|

or by a fraction f of the difference between the capacities installed in optimal
and surrogate solutions

& =&+ (vf — o5 &, (8)

Demand histogram

0.12 4 RS
AVG
R
0.10 - NN
>
3
S 0.08
S
o
£
T 0.06 -
N
T
£
E
2 0.04
0.02
0.00 - . . .
0 20 40 60 80 100

Demand value

Fig. 2. Demand histogram for different methods.

A.4 Feature Engineering

The inputs of the models are ¢/, ¢’ and Z. We do not provide ¢!/ and ¢ in
the input as they are fixed across all instances. We do feature engineering on
=, instead of providing it as a raw input, to extract information which can be
useful in predicting £*. Let = be an m X n matrix, where m is the number
of scenarios and n is the number of clients. We calculate minimum, maximum,

110 Y. Bengio et al.

average, standard deviation, median, 75" quantile, and 25" quantile of ZL
(i*" column of =) fori=1,...,n.

We also find the percentage of scenarios in which some fraction of demand
for a client is greater than and less than the demand on all the other nodes

C* i) 2 i) C* i) S S

and
m m

We set ¢ to different values (0.9, 1, 1.1, 1.2 and 1.5) and we thus end up with an
input vector of size 190, combining ¢/, ¢V and features extracted from =. The
feature extraction performs an aggregation over the number of scenarios.

A.5 ML Model Details

For the LR model, we use the vanilla LR implementation provided by Scikit-
Learn without regularization.

For the ANN based regression, we consider a fully connected feed-forward
neural network with two hidden layers. The configuration of the network was an
input of 190 dimensions, two hidden layers with 128 neurons each and an output
of 10 dimensions. We used ReLU activation in the hidden layers and trained
the ANN using Stochastic Gradient Descent with momentum 0.9. The ANN was
implemented using PyTorch. An implementation of the algorithm to solve capac-
itated facility location problem is available at https://github.com/ds4dm/nectar

[1].

References

1. Nectar: CPAIOR2020 release - code archived using zenodo. https://doi.org/10.
5281 /zenodo.3690293. Accessed 30 Sept 2010

2. Ahmed, S.: A scenario decomposition algorithm for 0-1 stochastic programs. Oper.
Res. Lett. 41(6), 565-569 (2013)

3. Ahmed, S., Tawarmalani, M., Sahinidis, N.V.: A finite branch-and-bound algorithm
for two-stage stochastic integer programs. Math. Program. 100(2), 355-377 (2004)

4. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128 (2018)

5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-1-4614-0237-4

6. Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer
quadratic programming problems. In: van Hoeve, W.-J. (ed.) CPAIOR 2018.
LNCS, vol. 10848, pp. 595-604. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93031-2_43

7. Carge, C.C., Tind, J.: L-shaped decomposition of two-stage stochastic programs
with integer recourse. Math. Program. 83(1-3), 451-464 (1998)

8. Dupacovd, J., Growe-Kuska, N., Romisch, W.: Scenario reduction in stochastic
programming. Math. Program. 95(3), 493-511 (2003)

9. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combina-
torial optimization with graph convolutional neural networks. arXiv preprint
arXiv:1906.01629 (2019)

https://github.com/ds4dm/nectar
https://doi.org/10.5281/zenodo.3690293
https://doi.org/10.5281/zenodo.3690293
http://arxiv.org/abs/1811.06128
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-3-319-93031-2_43
https://doi.org/10.1007/978-3-319-93031-2_43
http://arxiv.org/abs/1906.01629

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Learning Based SIP 111

Gleixner, A., et al.: The SCIP Optimization Suite 6.0. Technical report, Optimiza-
tion Online, July 2018. http://www.optimization-online.org/DB_HTML/2018/07/
6692.html

Gleixner, A.: The SCIP Optimization Suite 6.0. ZIB-Report 18-26, Zuse Institute
Berlin, July 2018. http://nbn-resolving.de/urn:nbn:de:0297-zib-69361

Kall, P., Wallace, S.W.: Stochastic Programming, John Wiley and Sons, Chichester,
(1994)

Khalil, E.B., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Thirtieth AAAT Conference on Artificial Intel-
ligence (2016)

Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods
for stochastic programming. Ann. Oper. Res. 142(1), 215-241 (2006)

Louveaux, F.V., Peeters, D.: A dual-based procedure for stochastic facility location.
Oper. Res. 40(3), 564-573 (1992)

Lulli, G., Sen, S.: A branch-and-price algorithm for multistage stochastic integer
programming with application to stochastic batch-sizing problems. Manag. Sci.
50(6), 786-796 (2004)

Nair, V., Dvijotham, D., Dunning, 1., Vinyals, O.: Learning fast optimizers for
contextual stochastic integer programs. In: UAI, pp. 591-600 (2018)

Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approxi-
mation approach to stochastic programming. STAM J. Optim. 19(4), 1574-1609
(2009)

Powell, W.B., Meisel, S.: Tutorial on stochastic optimization in energy-part i: mod-
eling and policies. IEEE Trans. Power Syst. 31(2), 1459-1467 (2015)

Powell, W.B., Meisel, S.: Tutorial on stochastic optimization in energy-part ii: an
energy storage illustration. IEEE Trans. Power Syst. 31(2), 1468-1475 (2015)
Prékopa, A.: Stochastic Programming, vol. 324. Springer, Heidelberg (2013)
Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming
approach for supply chain network design under uncertainty. Eur. J. Oper. Res.
167(1), 96-115 (2005)

Sen, S.: Stochastic mixed-integer programming algorithms: beyond benders’
decomposition. Wiley Encyclopedia of Operations Research and Management Sci-
ence (2010)

Sen, S., Higle, J.L.: The C?® theorem and a D? algorithm for large scale stochas-
tic mixed-integer programming: set convexification. Math. Program. 104(1), 1-20
(2005)

Shapiro, A., Dentcheva, D., Ruszczyniski, A.: Lectures on Stochastic Programming:
Modeling and Theory. STAM (2009)

http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361

l‘)

Check for
updates

Integer Programming Techniques
for Minor-Embedding in Quantum
Annealers

David E. Bernal**®) Kyle E. C. Booth®>*®, Raouf Dridi?,
Hedayat Alghassi®, Sridhar Tayur?, and Davide Venturelli*®

! Department of Chemical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
bernalde@cmu.edu
2 Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, ON M5S 3G8, Canada
kbooth@mie.utoronto.ca
3 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{rdridi,halghass,stayur}@andrew.cmu.edu
4 Quantum AI Laboratory (QuAIL), NASA Ames Research Center, Moffett Field,
CA 94035, USA
davide.venturelli@nasa.gov
® USRA Research Institute for Advanced Computer Science (RIACS),
Mountain View, CA 94043, USA

Abstract. A major limitation of current generations of quantum anneal-
ers is the sparse connectivity of manufactured qubits in the hardware
graph. This technological limitation has generated considerable interest,
motivating efforts to design efficient and adroit minor-embedding pro-
cedures that bypass sparsity constraints. In this paper, starting from
a previous equational formulation by Dridi et al. (arXiv:1810.01440),
we propose integer programming (IP) techniques for solving the minor-
embedding problem. The first approach involves a direct translation
from the previous equational formulation to IP, while the second decom-
poses the problem into an assignment master problem and fiber con-
dition checking subproblems. The proposed methods are able to detect
instance infeasibility and provide bounds on solution quality, capabilities
not offered by currently employed heuristic methods. We demonstrate
the efficacy of our methods with an extensive computational assessment
involving three families of random graphs of varying sizes and densities.
The direct translation as a monolithic IP model can be solved with exist-
ing commercial solvers yielding valid minor-embeddings but it is outper-
formed, overall, by the decomposition approach. Our results demonstrate
the promise of our methods for the studied benchmarks, highlighting the
advantages of using IP technology for minor-embedding problems.

Keywords: Graph minors + Quantum annealers - Integer
programming - Decomposition - Algebraic geometry

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 112-129, 2020.
https://doi.org/10.1007/978-3-030-58942-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_8

Integer Programming Techniques 113

1 Introduction

Quantum annealing processors have been developed to perform the quantum
annealing algorithm, which searches for the minimum of a quadratic uncon-
strained binary optimization (QUBO) problem equivalent to finding the min-
imum energy state of an Ising spin system [18]. The most successful implemen-
tation of quantum annealers use superconducting quantum bits (qubits), where
the interactions between qubits are controlled in order to perform an adiabatic
evolution to a state whose energy function represents the objective function to be
optimized. This is the case of the quantum annealers manufactured by D-Wave,
which is the current largest quantum annealing hardware producer.

The hardware configuration of D-Wave quantum annealers follows a Chimera
graph topology (Fig. 1). The Chimera graph, Cr am,n, is a grid of M x N cells of
K, 1, biclique graphs connected in a nearest-neighbor fashion by means of non-
planar edges [22]. This architecture is selected due to the advantages it provides,
both in terms of the physical implementation (e.g., the ability to incorporate on-
chip control circuitry, 2D chip integration, and minimization of noise-to-signal
ratio), the chip topology characteristics (e.g., non-planarity, ability to embed
complete graphs [3]). Figure 1 presents photographs of the D-Wave Two processor
chip, and how this physical topology corresponds to a Chimera C4 8 g graph.

q1 92 43 qa

Fig.1. Chimera graph with one cell magnified. Each cell contains 8 qubits, whose
internal connections can be described by a K44 graph. Qubits are laid in thin loops
(red), and connected with each other in the Chimera cell by couplers (blue cells), and
outside of it to neighbor cells (blue circles, in this case only to cells located south and
east). Images adapted from Supplementary material of [18] and [30,31]. (Color figure
online)

Given the connectivity restrictions of the graph defining the processor’s archi-
tecture, representing an arbitrary QUBO requires the use of graph minor the-
ory (GMT). GMT, the central theme of this work, is prominent across many
fields. Mapping a dense source graph to a sparse target graph can be achieved
by constructing connected subgraphs of the target graph from the high degree
logical vertices in the source graph. The resulting mapping is called a minor-
embedding of the source graph inside the target graph. In quantum computing,

114 D. E. Bernal et al.

GMT is employed to extend the scope of problems that can be represented on
current quantum annealing hardware [5,19]. An example of minor-embedding is
presented in Fig. 2, where an example source graph is embedded in Cy 1 2.

A i

) Source graph) Valid embedding) Min. size embedding

Fig. 2. Source graph of illustrative example [9], a valid embedding and its minimal
size embedding in C4,1,2. Grey nodes and edges represent unused nodes and edges in
embedding, but present at the target graph. Bold edges represent edges in chains.

Numerous heuristics for finding minor-embeddings have been proposed |1,
4,32], with some work focused on finding embeddings within Chimera graphs
specifically [14,23,29,32]. While these approaches are generally fast, they do
not provide guarantees on the quality of the produced minor-embeddings (e.g.,
minimal size of the embedding), nor can they prove the nonexistence of a minor-
embedding for infeasible problems. An approach that attempts to address these
shortcomings was recently introduced by Dridi et al. [9] and uses tools from
algebraic geometry to produce an equational formulation, as opposed to a purely
combinatorial approach, to the minor-embedding problem.

In this paper, starting from the equational formulation presented by Dridi
et al. [9], we propose integer programming (IP) techniques for tackling the embed-
ding problem. Our proposed approaches differ from the computationally demand-
ing Groebner bases computation used previously and are aimed at more effi-
ciently computing embeddings while retaining interesting properties that arise
from the equational formulation of the problem. Our first approach, detailed in
Sect. 3, directly translates the previous equational formulation to IP, while our
second approach decomposes the problem into an assignment master problem
and fiber condition checking subproblems, as described in Sect. 4. The proposed
methods are able to detect instance infeasibility and provide bounds on solu-
tion quality for a specific objective function, capabilities not offered by currently
employed heuristic methods. While recent work uses an approach with IP to
address the embedding problem based on templates specific to D-Wave quan-
tum annealers [28], the techniques we present in this paper are target graph
agnostic.

We conduct an extensive empirical analysis involving a benchmark consist-
ing of three different families of random graphs in Sect.5. There we present
our results in an illustrative and challenging case for heuristics, which moti-
vates the use of IP over computational algebraic geometry (CAG) methods in
random structured and unstructured graphs as well as in applications for quan-
tum annealing. The results of the experiments indicate that, while the IP-based
methods are slower than currently employed heuristics whenever the heuristics

Integer Programming Techniques 115

are able to find an embedding, the IP methods provide infeasibility proofs and
quality guarantees which the heuristics are unable to provide. Furthermore, our
experiments suggest that the decomposition method outperforms the monolithic
IP in finding compact embeddings. However, the decomposition approach does
not always perform as efficiently as the monolithic IP approach in providing
optimality or infeasibility guarantees, especially seen in the illustrative example
and small structured graphs. We provide concluding remarks in Sect. 6.

Notations. All graphs considered in this paper are simple and undirected. We use
V(X) and E(X) to denote the vertex and edge sets of a graph X, respectively.
We also define n = |V(X)|, and m = |V(Y)|. Finally, given a vector v, v denotes
the concatenation v = (v1,...,v}y|).

2 Problem Definition

Let X and Y be a fixed target and source graph, respectively. The problem we
consider is finding a minor-embedding of the graph Y inside X. As the target
graph (often) cannot directly represent all the edges in the source graph, a vertex
in the source graph will typically be represented by one or more vertices in the
target graph that form a connected subgraph. We call the collection of vertices
in the target graph that represent a vertex, y € V(Y), in the source graph the
vertex model of y, denoted ¢(y). An embedding, then, is defined as the union
of all vertex models of y € V(Y'). The vertex models are constructed such that,
for each edge {y1,y2} € E(Y), there exists at least one edge in E(X) connecting
the two vertex models ¢(y1) and ¢(y2). For the sake of a simplicity, we use
the term embedding instead of minor-embedding throughout the remainder of
the paper. Suppose we have an embedding of the graph Y inside the graph X.
The embedding is given by subgraph of X that satisfies ¢(Y) := Uyev(v)d(y),
which in GMT is known as a Y minor. In the context of quantum annealers,
this embedding represents the quantum processor’s representation of the source
graph, since it does not distinguish between qubits representing different nodes
of the source graph or qubits representing the same node in the source graph.
The vertices of X belonging to the same vertex model are known as chains
in the quantum annealing community and as fibers using CAG terminology. In
practice, quantum annealers use a strong ferromagnetic coefficient to enforce
these replicated values to be equal (i.e., acting as a single qubit).

In the equational approach, embedding the source graph Y inside the target
graph X is represented by a map 7 : X — Y such that: 7= 1(y) = ¢(y),y € V(Y).
The map 7 is required to be surjective to guarantee that all logical qubits are
embedded. The goal, then, is finding an embedding, which is equivalent to finding
the mapping 7 given graphs X and Y.

Although finding a valid embedding is sufficient for a problem represented
by graph X to be implemented in a quantum annealer described by graph Y, as
in Fig. 2, it is often desirable to find an embedding which optimizes an objective
function. In particular, given the limitations on the number of qubits in available

116 D. E. Bernal et al.

quantum hardware, a desired property of an embedding is to have a small qubit
footprint [7], as shown in Fig. 2(c).

3 Problem Formulation

We tackle the problem of determining the mapping 7 using integer programming
(IP). IP is a mathematical optimization technique used for problems modeled as
a set of decision variables taking on integer values, constrained by linear con-
straints and with a linear objective function. The standard solution approach to
IP models is branch-and-bound tree search. Indeed, due to their many practical
applications, the computational capabilities of modern IP solvers have increased
tremendously in recent years [2]. These IP solvers are capable of proving instance
infeasibility and providing certificates of optimality and bounds on solution
quality.

In our first approach, the previously proposed polynomial equations [9] are
reformulated such that they represent the original logic and are representable
in the IP formalism (i.e., linear constraints involving integer variables). Defining
the mapping 7 explained above as:

m(x)= Y ayy;, Ya € V(X) (1)
Jiy; EV(Y)

where «;; are binary coeflicients. For this map to be well-defined we impose:

Y <1 Va e V(X), (2)
Jy; €V(Y)

that is, at most one o; is non-zero for each vertex in the graph X. The unique
non zero «; (if any) represents whether the physical qubit z; embeds y;, i.e.,
o(y;) = x;. When all the coefficients «;; are zero, we get m(x;) = 0 indicating
that the physical qubit is not used. In other words, while the domain of definition
of is V(X), its support is only a subset of V(X). The other conditions included
in the definition of the embedding ¢(Y") (e.g., the connectivity of the fibers) can
similarly be written in equational form.

3.1 Constraints

Here, we present the IP formulation of the polynomial conditions, from Dridi
et al. [9], that the coefficients «;; € {0,1},Vz; € V(X),Vy; € V(Y) need to
satisfy for m to be a valid embedding. This constitutes the first contribution of
the paper. Note that, with a slight abuse of notation, our IP approaches redefine
a;; as a binary decision variable equal to 1 if z; belongs to the vertex model of
y;, and 0 otherwise.

1. Minimum and maximum size. These constraints ensure that the total number
of qubits is bounded within the number of variables in the original problem and
the total number of qubits n.

Integer Programming Techniques 117

m < Z Z a;; < n. (3)
iz €V(X) jiy; €V(Y)
2. Well-definition of the map w. This is captured by Eq. (2).
3. Fiber size constraint. This constraint on the size of the vertex models |¢(y;)],
known as fiber size, is given by:

1< Y <k Wy e V(Y. (4)

iz EV(X)

where k is the desired maximum size of each fiber 7 !(y;). The lower bound
ensures that all the logical variables are embedded i.e., the map 7 is a surjection
on the set V(X). We also include the following constraint:

1>a;j+ 0, Vo, x, € V(X),mind(z,,,2;:,) > k,Yy; € V(Y). (5)

This additional refinement excludes pairs (z;,,%;,) from being in the
fiber 771 (y;) whenever their distance, d(z;,,x;,), is larger than k, the desired
maximum size of the fiber.

4. Fiber condition. We require that each fiber to be a connected subtree of X:

Vi, iy, € TN (Y5) Qiyg i + > (Ver,j) — 1) <2. (6)

ck(Tiy Tiy) ECK(Tiy ,Tiy)

The binary variable ., ; takes a value of 1 if a fiber cy(x;,,%;,) is used in the
vertex model of y;, and 0 otherwise. Here ci(z;,,x;,) is a fiber of size < k con-
necting the two physical qubits x;, and z;,, and Ty ;, 4, = int(ck(ziy,2i,)) =
ek, Tip) \{@iy, Tip }- We also write Ci(x,, ;,) to denote the set of all fibers of
size < k connecting z;, and x;,. This condition implies the existence of a unique
fiber connecting the pair and completely contained in 7~*(y;). This automati-
cally implies that W’l(yj) is connected. The binary 7., ; is defined using the fol-
lowing IP representable constraints: Veg (i, , 2i,) € Ci(i,, x:,) and Vy; € V(Y):

Verg Sy Ve € Tijy iy
Yerj = Quj < 7
o H ! {Vck:j Z 1 - (k - 1) + ZZ:Z(GI)CJ‘,L,‘Q aé] ()

Cxo €Tk iy ,ig
The constraint in Eq. (6) does not exclude the cases where 2 variables in
the source graph (y;,,y;,) € E(Y) are mapped to 4 different qubits in a
fiber {x;,,...,;,}, where the vertex models are intercalated, i.e. ¢(y;,) =
{zi,, Tis }, #(yj,) = {xiy, i, }- The following constraint ensures that if two nodes
in the target graph are in the vertex model of the same logical variable, and are
not neighbors in the target graph, then one of the fibers joining them has to be
active.

Uiyj + Qi — > (Yed) <1 ¥y € V(Y)
cr(Tiy, @iy)ECK (T4 ,Tiy) (8)
V(Iiuxiz) € V(X)7 (:Ciuxiz) ¢ E(X)a min d(zll) xiz) <k

118 D. E. Bernal et al.

5. Pullback condition. We require that for each edge (y;,,¥:,) in E(Y), there
exists at least one edge in E(X) connecting the fibers 7= (y;,) and 7= (y;,).
The way we guarantee this is by requiring that the quadratic form of the source
graph y vanishes modulo the (pullback along 7 of the) quadratic form of the
graph X. The details of this are in [9]. The resulting constraint can be written
as

1< Y (g) Ywun) €BY). ()
i17i2:(a:i1 ,a:iz)EE(X)
. | N
where we have introduced the binaries &;, ;. ;, and &;; ; . defined V(x;,,z;,) €
E(X) and Y(y;,,v;,) € E(Y): The binary variable 52“”-2]-”2 is one if z;, and w;,

are edges of the vertex-models ¢(y;,), ¢(y;,) respectively, and the binary variable

63;@]-1]-2 is one if x;, and x;, are edges of the vertex-models ¢(y;,), ¢(y;,) respec-
. . . . I B _ N B
tively. This conditions are equivalent to &;;,; 5, = Qi jiQiyyp and 65, 5 . =
Qi j, 0ty 5, - We can then represent these new variables using linear inequalities as

follows: V(z;,,2:,) € B(X),Y(y),,v;,) € E(Y):

I
61”11'2]'1]'2 < Qi gy
?\1i2j1j2 < Qs
4; > Qi + Qijy — 1

118271]2

5)

irisgije — Qirgr inga <

and equivalently for 51#2 j1j»+ Both variables cannot be one for a single combina-

tion of (i1i271j2) simultaneously. This leads to the following constraint.

5)

1112172

+ 07, <1 V(zi,@i,) € E(X),Y(yj0,y5) € E(Y). (10)

114271]2

3.2 Complete IP Model

The feasible region of the IP formulation is defined by:

F={(a7,6!,6) (81,67 € (2)n---n (10) }. (11)

A constant objective function can be set for this problem such that any solution
that lies within the feasible region defined in Eq. (11) optimizes it.
Embedding Size. The objective function that minimizes the embedding size is
min Y Y ay; st (a,8,60)€eF (12)
1z, EV(X) y; €V(Y)

Other objective functions such as fiber size minimization, minimal fiber size
dispersion, and available edges in the embedding, among others are also IP
representable and can be implemented within this framework.

Integer Programming Techniques 119

4 Decomposition Approach

Implementing all the constraints at once in the IP formulation leads to a model
which is often intractable in practice. The fiber conditions require many con-
straints to be enforced, and only a small fraction of these are active in optimal
solutions. We investigate the application of a decomposition approach which iter-
ates between a qubit assignment master problem and fiber condition checking
subproblems. The strategy adds strengthened ‘no-good’ constraints (i.e., cuts)
to the master problem when they are found to be violated. Such an approach
bears resemblance to decomposition techniques used for scheduling and routing
problems, such as classical and logic-based Benders decomposition and branch-
and-check [13,17,27].

4.1 Master Problem

In the master problem, we relax the fiber conditions, permitting a node in
the source graph to be mapped in multiple parts of the target graph without
being connected. For our master problem, we introduce a new binary decision
variable, zc ., Ve, € E(X),Ve, € E(Y), to track the embedding of prob-
lem edges in the target graph edges. The variable takes on a value of 1 if
edge e, = (xiy,Ti,) : ex € E(X) is mapped through the embedding in edge
ey = (Yj1:Yjn) © €y € E(Y), and 0 otherwise. For modeling purposes, we also
denote e;1 = x;,,ez2 = T4y, y1 = Yj;, and ey 2 = y;,. This master problem
formulation includes previously expressed mapping constraints, Eq. (2), and size
constraints in Eq. (4), in addition to constraints (13) through (15) as follows:

Assignment of FEdges. Each edge in the source graph has to be assigned to an
edge in the target graph.

> Zee, =1 Ve, €E(Y). (13)
ez €E(X)

Linking Constraints. To link the assigned qubit values to the z ., variables, we
use the following set of constraints Ve, € E(X),Ve, € E(Y):

Regey < Qe,1em0 Regey < Aey 1ey2- (14)

Together, these constraints ensure that a problem edge can only be assigned to
an edge in the target graph if the pair of nodes involved in that edge take on
the required values, which are aggregated in the following constraint

2- Regey < e, 1ez,2 + Aey 1ey,2 Ve, € E(X),Vey € E(Y) (15)

Subproblem Relazation. Although the constraints above already represent the
assignment problem to be modeled in the master problem, we can include a
relaxation of the subproblem to help guide to master problem towards feasible

120 D. E. Bernal et al.

solutions. This requires the addition of another set of binary variables, w; that
track whether vertex model ¢(y;) has a size greater than one. Then, Yy; € V(Y):

Z i —n-w; <1, (16a)
:x; EV(X)
n(l —a;;) + Z oy + Z ag; > w; Ve, € V(X). (16b)
C:(z;,xe) EE(X) L:(zp,xi)EE(X)

This constraints ensure that the variable w; is one if the node y; is mapped to
more than one node z;. Equations (13)—(16), together with the cuts generated
by the subproblems, define the master problem.

4.2 Subproblems

The subproblem validates if there exist vertices in the embedding belonging to
the same vertex model ¢(y;) which are not connected in the target graph. If this
is the case, it returns a constraint that either: i) encourages connectivity in future
iterations, or ii) removes occurrences of the disconnected vertex models from the
graph. For each vertex model with more than one vertex on the embedding, it
checks at each vertex on the target graph that belongs to that vertex model. If
that vertex does not contain an edge that connects it to another vertex of that
vertex model, then the checking procedure returns disconnected.

4.3 Cuts

If a particular vertex model is found to be disconnected in the solution, we
add a constraint to remove the current solution and prevent future solutions
from having the same disconnectivity. Let the set of disconnected vertices in
the source graph be denoted as : y; € Y. Let the set of vertices in the target
graph that belong to this vertex model, Y5, in the current incumbent solution,
be represented as the vertex model ¢(y;) C X. Let the set of vertices that are
adjacent to any vertex in ¢(y3), but are not assigned value y;, be denoted 104 (yj)
The constraint generated in the current iteration for disconnected qubit y; is
then given by:

;) = > et > e =1 (17)

iz € (y3) iz €7 (y5)

This removes the current infeasible solution from the search space and requires
the master problem to: i) include at least one fewer vertex with this vertex model
(bracketed term), or ii) include at least one more vertex with this vertex model,
among the set of vertices that could improve connectivity (non-bracketed term).

Notice that we reformulated the pullback condition from the Eq. (9) in terms
of 8! and &% into the variables Ze,e, and its corresponding constraints, while

Integer Programming Techniques 121

the fiber condition is relaxed with the subproblem and cut generation proce-
dure. Following the intuition in [4], where the heuristic method tries to obtain
embeddings with a small qubit footprint, the default objective function imple-
mented in the master problem is to minimize size, as in Eq. (12). This objective
leads the master problem to return compact assignments of variables. In the case
that the feasibility objective is considered within this approach, the optimization
procedure is stopped when the first feasible solution is found.

5 Results

The model in Sect.3 was implemented using the Python package Pyomo
[16], which interfaces with several open-source and commercial solvers.
The decomposition approach presented in Sect.4 is implemented in C++
and uses the CPLEX 12.9 solver [6]. Our approaches are compared with
the D-Wave default heuristic minorminer, introduced in [4] (available
at github.com/dwavesystems/minorminer). Unless otherwise stated, the mono-
lithic IP method assumes a value of maximum fiber size & = 3, which is jus-
tified for the structured random graphs given their construction. This provides
the monolithic method an advantage with respect to the decomposition method
given that the infeasibility proofs are contingent on k. All experimental results
were obtained using a laptop running Ubuntu 18.04 with an Intel Core i7-6820HQ
CMU @ 2.7GHz with 8 threads and 16 GB of RAM.

5.1 Illustrative Example

Our illustrative example is taken from [9], where a K44 bipartite graph is con-
nected through a single edge to a structured graph with 4 nodes and is embedded
in a C4,1,2 Chimera graph, as seen in Fig. 2. This embedding is challenging for
heuristic methods that search vertex models outside of the blocks [9]. The embed-
ding with the minimal size is given when one of the nodes in the 4-node block
is embedded in a chain of length 2, resulting in an embedding of length 13. The
heuristic implemented in minorminer fails roughly 50% of the 1000 runs (i.e., it
is not able to find a valid embedding in half of the experiments). We consider
solving this problem using the CAG approach proposed in [9], by computing the
Groebner basis of the polynomial ideal. When using the software Maple 2017 [20],
which includes Faugére’s algorithm [10,11], the Groebner basis computation is
unable to find a solution after 5 h of computation, before running out of mem-
ory. We apply our IP approach with the open-source solvers GLPK 4.61 [24] and
CBC 2.9.6 [12], as well as the commercial solvers Gurobi 8.1 [15] and CPLEX
12.9 [6]. We use a time limit of one minute per experiment.

The open-source solvers fail to provide feasible solutions within the time
limit when there is a constant objective function. The CBC solver, however, can
find a solution when minimizing embedding size, illustrating that including an
objective function can be beneficial. In this case, although it finds the optimal
solution, the CBC solver is unable to prove it is optimal (with a gap at the

122 D. E. Bernal et al.

end of the runtime of 8.3%). The commercial solvers, on the other hand, can
provide both feasible and optimal solutions in under a minute of computation.
In particular, Gurobi takes 1.3 s to find an initial feasible solution and 31.2 s
to find and prove the optimal solution, while CPLEX takes 3.5 s and 9.4 s for
the same tasks, respectively. As expected, the time required to provide a feasible
solution is less than that taken to give optimality guarantees.

Finally, the decomposition approach provides feasible solutions more effi-
ciently, and with higher quality, than the other approaches. Specifically, it took
0.4 s for the decomposition approach to provide a feasible solution which was
nearly optimal, with a 7% optimality gap. Finding a provably optimal solution
required 46.5 s. These results suggest that the usage of commercial solvers is
required for solving these challenging IP problems. The performance difference
between commercial and open-source solvers for a given mathematical formu-
lation is driven by a large number of factors; recent solver benchmarks have
identified that commercial IP solvers, overall, significantly outperform their open-
source counterparts [21]. For the problem presented here, the open-source solvers
evaluate the root node relaxation less efficiently than the commercial approaches.
Furthermore, the commercial solvers appear to have much more effective branch-
ing heuristics resulting in fewer nodes explored, overall. Our initial experimen-
tation indicated that, out of the commercial solvers, CPLEX had superior per-
formance to Gurobi, and so we only report CPLEX results for the remainder of
the manuscript.

5.2 Random Graphs

1. Random Structured Graphs. Here we generalize the example above. We con-
sider the bipartite graph K4 4(Dinter) parameterized by pipter, which is the prob-
ability of the existence of edges between the two partitions. We randomly choose
¢ edges, which we contract into nodes (each edge into a single node). This graph
is then connected to a complete K4 4 bipartite graph by 4 edges chosen with a
probability pintrq. By construction, the resulting graph is a subgraph of C4 1 2,
and its size is m + (. It is the smallest minor of the corresponding graph with-
out contraction. The example of Sect. 5.1 is obtained with (=1 (and m = 12).
Fixing pinter = Dintra = 0.5, for each value of contracted edges ¢ € {0,...,3},
we generate 10 random graphs. These random graphs were embedded in a C4 1 2
graph with a time limit of 300 s. Figure3a gives the runtimes for the mono-
lithic IP and the decomposition methods solved using CPLEX. This figure also
shows the boxplots for the 1000 runs of minorminer. For this case, given the
way the random structured graphs are constructed, we see that the longest fiber
will be at most of size 3, which we encode for the monolithic IP approach using
the parameter k = 3. Notice that this observation biases the results in favor
of the monolithic IP approach with respect to the decomposition approach. For
finding a feasible solution, the decomposition approach is more efficient than
the monolithic IP approach. When ¢ = 0, where finding a feasible embedding
is practically finding the minimally sized embedding, there is no difference in

Integer Programming Techniques 123

time performance between the cases of embedding size minimization and find-
ing a feasible solution. For ¢ > 0, the embedding size minimization becomes
more expensive, in particular for the decomposition approach. The monolithic
IP and the decomposition approaches were able to find smaller or equally sized
embeddings for 33 and 30 cases out of the 40 experiments, respectively. When
the objective function is the size minimization, this number increased for all
instances in all cases and is strictly better in 22 cases for the monolithic IP and
21 cases for the decomposition approach. We note that the monolithic IP app-
roach was able to find an embedding for one instance which was smaller than
any of the 1000 runs of the heuristic method.

Larger instances of random structured graphs can be generated by combining
two graphs like the ones described above, and including the edges appearing in a
C4,2.2 graph between the cells with probability pintrq. As before, we generated 10
random instances with values of ¢ ranging from 0 to 3. The time performance of
the different methods is shown in Fig. 3a. Out of the 40 instances, the monolithic
IP and the decomposition method are still able to find embeddings as compact
as the median heuristic behavior in 17 and 23 instances when trying to find a
feasible solution, and in 20 and 17 instances when trying to minimize the size
of the embedding, respectively. Similar to the previous case, the monolithic 1P
approach is able to find smaller embeddings than any of the 1000 runs of the
heuristic method for two problem instances.

Figure 3b shows a comparison of the embedding median sizes obtained by
the heuristic method versus the ones obtained for the IP methods. The size of
the markers represents the heuristic failure rate fraction, computed from the
1000 runs of the heuristic method for each instance. Both the monolithic and
the decomposition approaches (different colors) and the feasibility and size min-
imization objectives (different marker shapes) are represented in this figure. In
total, out of the 80 structured instances, the heuristic failed more than 50% for
47 instances, more than 80% for 12 instances, and more than 90% for 3 instances.
These instances appear on the right side of Fig. 3b. For those instances, the 1P
approaches were able to find a feasible solution in less than 20 s, and only for 19,
7, and 2 instances, respectively, the optimal solution could not be guaranteed
within the time limit. For high failure rate problems (>50% failure rate) for the
heuristic, our methods find a feasible solution in under 20 s and prove optimal-
ity in more than half of the instances in less than 5min. Notice that most of
the runs corresponding to finding a feasible embedding (circles) are above the
diagonal line, indicating a larger embedding size for the IP methods compared
to the heuristic, while size minimization runs (triangles) lie on the diagonal or
below it.

2. Erdos-Rényi Graphs. These graphs are parametrized by the number of nodes
v and the probability of an edge existing between each pair of nodes p. We
consider a set of 10 random instances for each combination of v € {5,6,...,16}
and p € {0.3,0.5,0.7}. Each of these graphs is embedded in different sizes of
Chimera, C41,1,C42,1,Ca3,1, and Cs22 . We set the time limit to 60 s. In this
experiment, we considered 2160 instances. In 1100 of them, the heuristic method

124 D. E. Bernal et al.

Random structured embedding times Random structured embedding size

AAAA ‘

Solver)
feas Monolithic 8‘6

min size Monolithic

feas Decomp

min size Decomp

w
<}

8

4 cells Chimera
>en> o0

N
]

Heuristic fail frac

e 00

Number of qubits required by IP methods

©
@ 20
£ ® 025
;S
o ° @ o5
T o¢ @ o
N 10
i °
10
=0 =1 =2 =3 =0 {1 (=2 (=3 10 15 20 25 30 35
2 cells Chimera 4 cells Chimera 2 cells Chimera 4 cells Chimera
Experiment Number of qubits required by heuristic method
(a) Embedding time (b) Embedding size

Fig. 3. Embedding time and size comparison for different embedding methods for struc-
tured random graphs in C4,1,2 and C4,2 2 with respect to median behavior of minorminer.
Values beyond the red lines represent embeddings where the heuristic median perfor-
mance (right) or the IP methods (top) failed to return an embedding. (Color figure
online)

could not find any feasible embedding after 1000 runs. In 94% of these cases,
at least one of the monolithic IP methods does not time out, meaning that
the methods could prove the infeasibility of the embedding or find a feasible
embedding. This proves that the methods proposed in this work are valid for
providing guarantees of the embeddability of graph minors in cases where the
current heuristics are unable to answer this satisfiability question. In the trivially
infeasible case where v > n our methods could almost immediately identify the
infeasibility, contrary to the minorminer heuristic. The conclusion is that the
runtime for the monolithic IP methods increases with the size of the target and
source graphs, the density of the source graph given by p, and when the objective
function is to minimize the embedding sizes.

We complete our benchmark of random graphs by embedding larger prob-
lems. In this case we, consider 5 random instances for each combination of
v € {10,15,...,35} and p € {0.1,0.3,0.5,0.7} embedded into Cy 4 4, where the
longest fiber size was increased to k = 5. We observe that, for these instances,
the only IP solver that does not run out time is CPLEX implementing either the
monolithic IP or the decomposition approach with the feasible solution objective.

Figure 4 presents the embedding size and time comparison for the small ran-
dom graph experiments. For this test case, in 60% of the instances the decom-
position approach yielded embeddings with sizes equal to, or smaller than, the
median of the ones returned by the heuristic, when looking for a feasible solu-
tion, and in 90% of the instances when minimizing the embedding size. The
monolithic IP approach was more efficient to declare infeasibility in non-trivial
cases (v < n) than the decomposition approach, Figs. 4a and 4b, as the values

Integer Programming Techniques 125

Random graphs embedding time

Random graphs ing size
aa ssasasasd)

Random graphs embedding time

, O @@ @ : A A
10? £ 10?
- , g - —
= o0 £ w0 =
3) s 3 .
z £ z
£ o ¢ &3 N £ o 7
£ |8 & 48t AS t
= 4 = -
= L z 3 2
S w z 5w
s ? 5
= == 5 = £
z T Heuristic fail frac 220 Heuristic failfrac > 7\ Heuristic fail frac
T w0 5 . 00 8 2 00 B Pt d 4 00
s 4 5 5 b
g ® o025 N A 025 g A 025
o e o s ! A o5 ® A o5
£ 10 5 £ 10
£ @ o H Ao £ A o
10 2 10 10
[] 2, A A
10°? - 10 -
107? 1077 1071 10° 10* 107 0 10 20 30 40 10°* 1077 107! ° 10! 107
Time required by Decomposition method [s] Number of qubits required by Decomposition method Time required by Decomposition method [s]
(a) Feasibility: Time (b) Minimize size: Size (¢) Minimize size: Time

Fig. 4. Embedding size and time comparison for Erdés-Rényi graphs (v € {5,6,...,16},
p € {0.3,0.5,0.7}) given different objectives. Values beyond the red lines represent
embedding where the decomposition (right) or the monolithic IP methods (top) failed
to return an embedding or went over the time limit.

are below the diagonal with large heuristic failure fractions and longer runtimes.
When compared to the minimal size found after the 1000 runs of the heuristic
method, the monolithic IP methods are still able to find smaller embeddings for
around 5% of the cases. The comparison in Fig. 4 highlights that the sizes of the
embeddings found by the decomposition approach are in most cases as small or
smaller than the monolithic IP approach. In terms of the computational time,
we observe that those instances that were challenging for the heuristic (large
markers) are more easily solved by the decomposition approach, especially when
minimizing the size of the embedding. The remaining instances appear to be
solved more efficiently using the monolithic IP approach. The larger and more
challenging instances lead to different results. Out of the 120 instances solved,
the decomposition approach outperforms the monolithic IP approaches, obtain-
ing equally good or better embeddings than the median heuristic behavior in
30% of the cases, compared to around 10% for the monolithic IP approaches.
The solution requires larger fibers, which affected directly the formulation size
of the monolithic case making it more challenging to solve. Only for one instance,
a smaller embedding than any of the observed heuristic solutions is obtained, in
this case by the decomposition approach.

5.3 Applications

1. Gadgets. It has been shown previously [8] that all of the cubic gadgets can be
embedded in a single Chimera cell, but three of the quartic gadgets require more
than a single Chimera cell. The three gadgets were K¢ — e, Double K4, and K.

We find more efficient embeddings for several of the gadgets, namely K5
(with 2 and 1 auxiliary variables), K¢, and K¢ — e compared to [8]. The embed-
dings found can be guaranteed to be the minimal size within a few seconds of
computation. For the case of the quartic gadgets, all but one (double K4) could

126 D. E. Bernal et al.

be embedded in a single Chimera cell, in which case our method could provide
infeasibility guarantees in less than 10 s.

2. Spanning Tree. An example of an application is the communication of vehi-
cles/agents with a central control station that can be disrupted in a particular
area and can be routed through A agents/vehicles. Finding the communica-
tion routing of the vehicles that minimizes the distance, is equivalent to finding
the minimum spanning tree with bounded degree A. Rieffel et al. [26] propose
three different formulations of this problem that can be embedded in a quantum
annealer. Given the graph defined by the agents/vehicles, the distances among
them might change but not the graph itself. At the same time, the degree of
the spanning tree A is fixed by the communication equipment. We generate 80
instances with graphs of 4 vertices and between 3 and 5 edges. When reformu-
lating the problems as a QUBO, we obtain instances where the target graph
ranges in size between 19 and 29 nodes and with 35 to 70 edges. The resulting
QUBOs were embedded using the decomposition approach and compared to the
heuristic in minorminer. We obtain smaller (or equally sized) embeddings than
the median length of the heuristic in 12.5% (15%) of the instances in 5min of
computational time (compared to 1000 runs of the heuristic).

3. Protein Folding. Perdomo-Ortiz et al. [25] encode the different configuration of
the amino acids in a protein in terms of a QUBO representing the overall energy
of the system. Minimizing this QUBO with respect to the different number of
bonds between amino-acids would yield the protein’s least-energy configuration.
[25] not only encodes the problem as a QUBO, but also provides a custom algo-
rithm to embed it in the D-Wave One chip, which has hardware described by
a faulty Cy4 44 graph. The largest instance solved in this paper involved embed-
ding a QUBO of 19 variables in a target graph of 127 qubits. The resulting
embedding involved 81 qubits with the largest vertex model of length 5, being
at the time the largest problem embedded and solved with D-Wave’s quantum
annealers. We highlight two qualities of our approach: 1) we are not making any
assumption about the source or target graphs, allowing us to work with faulty
Chimera graphs as targets; and 2) we can exploit the fact of having an existing
embedding to initialize our procedures, allowing us to solve our IP problems
more efficiently. Initializing with the embedding provided by Perdomo-Ortiz et
al. [25] while restricting the £ = 5 in the monolithic IP approach, we find an
embedding of length 77 (4.9% qubit footprint reduction) within an hour of com-
putation. Allowing longer fibers, we find an embedding of size 74 (8.6% qubit
footprint reduction) with a fiber of size 6. These embeddings are not guaranteed
to be optimal, but in both cases improve those previously found.

6 Conclusions

Integer programming (IP) approaches are proposed to solve the graph minor-
embedding problem. Specifically, we develop a monolithic IP derived from the
polynomial equations presented in Dridi et al. [9], and a decomposition app-
roach, both of which are capable of identifying infeasible instances and provid-
ing bounds on solution quality. These approaches are also agnostic to the source

Integer Programming Techniques 127

and target graphs. Both approaches were implemented and tested using a range
of different source graphs with various sizes, densities, and structures. The tar-
get graphs used follow the architecture of the chips in D-Wave’s current and
future quantum annealers. Although slower overall than the currently-employed
heuristic method [4], the proposed methods prove to be a viable solution app-
roach for highly structured source graphs, where the heuristic fails with a higher
probability.

The results presented highlight more general approaches to minor-embedding
using IP. The proposed formulations and results are a baseline for future meth-
ods that can work at larger scales. Applications to gadget embeddings, spanning
tree problems, and protein folding demonstrate the advantages of our approaches.
Promising future directions include using symmetries and the invariant formula-
tion as suggested in [9], or the design of chip-specific cuts/techniques. Another
direction is to reduce the search space by imposing certain limitations on the
embedding, e.g., by allowing only certain topologies for the vertex models or
by fixing certain embedding characteristics, such as maximum fiber size. Ini-
tial attempts to include these approximations show a promising decrease in the
computation time with an acceptable trade-off in quality.

Acknowledgements. We thank Prof. Ignacio Grossmann and Dr. Eleanor Rieffel for
the constructive discussions during the preparation of this work. DB, KB, and DV are
supported /partially supported by NASA NAMS (NNA16BD14C), AFRL NYSTEC
Contract (FA8750-19-3-6101). DB is also supported by the USRA Feynman Quantum
Academy and the Center for Advanced Process Decision Making (CAPD) at CMU.
NASA QuAIL acknowledges support from the Office of the Director of National Intelli-
gence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA), via
TAA 145483. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of ODNI, IARPA, AFRL, or the U.S. Government.

References

1. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete
optimization using quantum annealing on sparse Ising models. Front. Phys. 2, 56
(2014)

2. Bixby, R.E.: A brief history of linear and mixed-integer programming computation.
Documenta Mathematica - Extra (2012)

3. Bunyk, P.I., et al.: Architectural considerations in the design of a superconducting
quantum annealing processor. IEEE Trans. Appl. Superconductivity 24(4), 1-10
(2014)

4. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors.
arXiv:1406.2741 (2014)

5. Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal
graph design. Quant. Inf. Process. 10(3), 343-353 (2011)

6. Cplex: 12.9 user’s manual (2019)

7. Date, P., Patton, R., Schuman, C., Potok, T.: Efficiently embedding qubo problems
on adiabatic quantum computers. Quant. Inf. Process. 18(4), 117 (2019)

http://arxiv.org/abs/1406.2741

128

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

D. E. Bernal et al.

. Dattani, N., Chancellor, N.: Embedding quadratization gadgets on Chimera and

Pegasus graphs. arXiv:1901.07676 (2019)

. Dridi, R., Alghassi, H., Tayur, S.: A novel algebraic geometry compiling framework

for adiabatic quantum computations. arXiv:1810.01440 (2018)

Faugere, J.C.: A new efficient algorithm for computing Grobner bases (F4). J. Pure
Appl. Algebra 139(13), 61-88 (1999)

Faugere, J.C.: A new efficient algorithm for computing Groébner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC 2002, pp. 75-83. ACM, New York
(2002)

Forrest, J., Lougee-Heimer, R.: CBC user guide. In: Emerging Theory, Methods,
and Applications (2005)

Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl.
10(4), 237-260 (1972)

Goodrich, T.D., Sullivan, B.D., Humble, T.S.: Optimizing adiabatic quantum pro-
gram compilation using a graph-theoretic framework. Quant. Inf. Process. 17(5),
1-26 (2018). https://doi.org/10.1007/s11128-018-1863-4

Gurobi Optimization, L.: Gurobi optimizer reference manual (2019)

Hart, W.E., et al.: Pyomo-Optimization Modeling in Python, vol. 67. Springer,
Heidelberg (2017). https://doi.org/10.1007,/978-3-319-58821-6

Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Program.
96(1), 33-60 (2003)

Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature
473(7346), 194-198 (2011)

Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing
of NP-hard problems. In: Leggett, A.J., Ruggiero, B., Silvestrini, P. (eds.) Quan-
tum Computing and Quantum Bits in Mesoscopic Systems, pp. 229-236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-1-4419-9092-1 25

Maplesoft: Algorithms for Groebner basis, Maple 2017 (2019)

Mittelmann, H.D.: Benchmarking optimization software - a (hi)story. SN Oper.
Res. Forum 1(1), 2 (2020). ISSN 2662-2556, https://doi.org/10.1007 /s43069-020-
0002-0

Neven, H., Denchev, V.S., Drew-Brook, M., Zhang, J., Macready, W.G., Rose, G.:
NIPS 2009 demonstration: binary classification using hardware implementation of
quantum annealing (2009)

Okada, S., Ohzeki, M., Terabe, M., Taguchi, S.: Improving solutions by embedding
larger subproblems in a D-wave quantum annealer. Sci. Rep. 9(1), 2098 (2019)
Oki, E.: GLPK (GNU Linear Programming Kit). In: Linear Programming and
Algorithms for Communication Networks (2012)

Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.:
Finding low-energy conformations of lattice protein models by quantum annealing.
Sci. Rep. (2012)

Rieffel, E.G., et al.: From Ansétze to Z-gates: a NASA View of Quantum Comput-
ing. arXiv:1905.02860 (2019)

Roshanaei, V., Booth, K.E.C., Aleman, D.M., Urbach, D.R., Beck, J.C.: Branch-
and-check methods for multi-level operating room planning and scheduling. Int. J.
Prod. Econ. (2019)

Serra, T., Huang, T., Raghunathan, A., Bergman, D.: Template-based Minor
Embedding for Adiabatic Quantum Optimization. arXiv:1910.02179 (2019)

http://arxiv.org/abs/1901.07676
http://arxiv.org/abs/1810.01440
https://doi.org/10.1007/s11128-018-1863-4
https://doi.org/10.1007/978-3-319-58821-6
https://doi.org/10.1007/978-1-4419-9092-1_25
https://doi.org/10.1007/s43069-020-0002-0
https://doi.org/10.1007/s43069-020-0002-0
http://arxiv.org/abs/1905.02860
http://arxiv.org/abs/1910.02179

29.

30.

31.

32.

Integer Programming Techniques 129

Sugie, Y., et al.: Graph minors from simulated annealing for annealing machines
with sparse connectivity. In: Fagan, D., Martin-Vide, C., O’Neill, M., Vega-
Rodriguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp. 111-123. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-04070-3 9

Tichy, W.: Is quantum computing for real? An interview with Catherine McGeoch
of D-wave systems. Ubiquity 2017 (July), 1-20 (2017)

Venegas-Andraca, S.E., Cruz-Santos, W., McGeoch, C., Lanzagorta, M.: A cross-
disciplinary introduction to quantum annealing-based algorithms. Contemp. Phys.
59(2), 174-197 (2018)

Yang, Z., Dinneen, M.J.: Graph minor embeddings for D-wave computer archi-
tecture. Technical report, Department of Computer Science, The University of
Auckland, New Zealand (2016)

https://doi.org/10.1007/978-3-030-04070-3_9

q

Check for
updates

An Ising Framework for Constrained
Clustering on Special Purpose Hardware

Eldan Cohen!®) Arik Senderovich?, and J. Christopher Beck?

! Department of Mechanical & Industrial Engineering, University of Toronto,
Toronto, Canada
{ecohen, jcb}@mie.utoronto.ca
2 Faculty of Information, University of Toronto, Toronto, Canada
sariks@mie.utoronto.ca

Abstract. The recent emergence of novel hardware platforms, such as
quantum computers and Digital/CMOS annealers, capable of solving
combinatorial optimization problems has spurred interest in formulating
key problems as Ising models, a mathematical abstraction shared by a
number of these platforms. In this work, we focus on constrained cluster-
ing, a semi-supervised learning task that involves using limited amounts
of labelled data, formulated as constraints, to improve clustering accu-
racy. We present an Ising modeling framework that is flexible enough
to support various types of constraints and we instantiate the frame-
work with two common types of constraints: pairwise instance-level and
partition-level. We study the proposed framework, both theoretically and
empirically, and demonstrate how constrained clustering problems can be
solved on a specialized CMOS annealer. Empirical evaluation across eight
benchmark sets shows that our framework outperforms the state-of-the-
art heuristic algorithms and that, unlike those algorithms, it can solve
problems that involve combinations of constraint types. We also show
that our framework provides high quality solutions orders of magnitudes
more quickly than a recent constraint programming approach, making it
suitable for mainstream data mining tasks.

1 Introduction

Recent years have seen the emergence of novel computational platforms, includ-
ing adiabatic and gate-based quantum computers, Digital/CMOS annealers, and
neuromorphic computers (for a review see [8]). These machines represent a chal-
lenge and opportunity to Al and OR researchers: how can specialized models
of computation as embodied by the new hardware be harnessed to better solve
AI/OR problems. Several new hardware platforms have adopted Ising models
[19] as their mathematical formulation and, consequently, a number of exist-
ing problems have been formulated as Ising models, including clustering [22],
community detection [34], and partitioning, covering, and satisfiability [26].
Constrained clustering is a semi-supervised learning task that exploits small
amounts of labelled data, provided in the form of constraints, to improve cluster-
ing performance [35]. In the past two decades, this topic has received significant

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 130-147, 2020.
https://doi.org/10.1007/978-3-030-58942-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_9

Ising Framework for Constrained Clustering on Special Purpose Hardware 131

attention and algorithms that support different types of constraints have been
proposed [6,24,29]. As finding an optimal solution to the (semi-supervised) clus-
tering problem is an NP-hard problem [27], the commonly used algorithms rely
on heuristic methods that quickly converge to a local optimum.

In a recent work, Kumar et al. [22] presented an Ising model for unsuper-
vised clustering and observed mixed results using a quantum annealer. However,
formulating constrained clustering problems as Ising models and solving them
in hardware has not been studied. In this work, we introduce and analyze a
novel Ising modeling framework for semi-supervised clustering that supports the
combination of different types of constraints and we instantiate it with pairwise
instance-level and partition-level constraints. We demonstrate the performance
on the Fujitsu Digital Annealer [28,33], and discuss several hardware-related
considerations when embedding our framework on this hardware.

Our main contributions are summarized as follows:

— We introduce an Ising framework for constrained clustering with pairwise and
partition-level constraints that can be solved on a variety of novel hardware
platforms.

— We demonstrate the performance of our framework on a specialized CMOS
annealer and show that it outperforms the state-of-the-art heuristic methods
for constrained clustering and produces approximately equal or better solu-
tions compared to a constraint programming model in a small fraction of the
runtime (i.e., a two orders of magnitude speed-up).

— We show that the framework can seamlessly solve semi-supervised clustering
problems with both pairwise and partition constraints, problems that cannot
be solved by the existing heuristic techniques.

— We discuss some of the challenges in embedding Ising models onto quantum
and quantum-inspired hardware.

2 Background

Let X = {x;}7_; be the set of n data points with x; being a finite-sized feature
vector and K be the number of clusters (K <n). Combinatorial clustering algo-
rithms attempt to find a partition of X into K disjoint subsets, S = S1U---USk,
that minimizes a chosen objective function, typically the total within-cluster
scatter [32] based on pairwise dissimilarities, d(z;,2;). When the dissimilarity is
represented by the squared Euclidean distance the objective is:

K K
minz Z d(mi,xj)zz Z ;= 2% (1)
k=1 k=1

= i<j: = 1<j:
z;,x;ESK T, ESk

In the Euclidean case, another commonly used objective function is the sum
of squared errors [18],

K
minz Z llzs — pnll?, (2)

k=1xz,€Sk
where py is the mean vector of the points in cluster k.

132 E. Cohen et al.

2.1 Constrained Clustering

In a semi-supervised setting, we assume some amount of labelled data in the form
of constraints. Constrained clustering is the problem of finding a partition that
satisfies the provided constraints [35]. First, we consider two pairwise constraints:
must-link (ML) and cannot-link (CL) [4]. ML constraints are defined by a set,
M, of pairs of points that must be assigned to the same cluster, (z;,z;) €
M = s(z;) = s(z;), where s(z;) denotes the cluster that z; is assigned to,
s(x;) =k < x; € Sg. CL constraints are defined by a set, C, of pairs of points
that must be assigned to different clusters, (z;,z;) € C = s(z;) # s(z;).

Bilenko et al. [6] proposed the Pairwise Constrained K-Means (PCK-Means)
problem that incorporates the constraints in the objective function:

K
minz Z lx; — ujH2 + ZUJi,j]l[S(in) # s(xj)]

k=1x,€S5k (zi,zj)GM
+ Z@wﬂ[s(mi) = s(z;)] (3)
(z;,x;)€C

where 1[true] = 1 and 1[false] = 0. PCK-Means is solved using a greedy iter-
ative algorithm, adapted from the K-Means algorithm [25]. Note that Eq. (3)
allows violation of ML and CL constraints depending on the weights w; ; and
w; ; that correspond to the confidence in the external information [23]. Metric
PCK-Means (MPCK-Means) [6] is a combination of PCK-Means with distance-
metric learning [36] that outperforms PCK-Means [9].

Other well-known approaches include Constrained Vector Quantization Error
(CVQE) [13] that augments the clustering objective to account for constraint
violations, but uses the distances between the centroids to compute the viola-
tion costs, and linear-time CVQE (LCVQE) [29] that computes the violation
costs based on the distances between objects and centroids. LCVQE was found
to be competitive in terms of accuracy with CVQE while violating fewer con-
straints [9].

We also consider partition-level (PL) constraints, where some points have
predefined cluster labels. Formally, assuming an arbitrary labeling of clusters
k, X C X denotes the set of points that must be assigned to cluster k. For
example, in clustering of patients into two cancer risk categories, X7 (X32) is the
set of patients known to have low (high) risk of having cancer.

To handle PL constraints, Liu et al. [24] proposed the Partition-Level Con-
strained Clustering (PLCC) problem that uses the following objective:

K
min Y Y [ldY —m{ |2 + A1[d; € P —mP|? (4)
k=1z,€Sk

where the first term is the squared distance from centroid and the second term
is the constraint violation weighted by A. PLCC is solved using a K-Means-like
algorithm.

Ising Framework for Constrained Clustering on Special Purpose Hardware 133

Several works have applied model-based exact techniques to constrained clus-
tering, including constraint programming [10-12] and integer linear program-
ming [2]. In a recent work, Dao et al. [12] proposed a constraint programming
(CP) approach for constrained clustering that minimizes within-cluster pairwise
dissimilarity (Eq. (1)) using a dedicated global constraint. In an earlier work,
they showed that a similar CP approach for minimizing sum of squared errors
outperforms integer programming [11]. Although exact techniques are able to
find and prove optimal solutions, they are often several orders of magnitude
slower than heuristic techniques and for large problems can be intractable. Fur-
thermore, they do not return a solution in case of contradictory constraints.

2.2 Ising Models

Ising models are graphical models that comprise a set of nodes N representing
spin variables, o; € {—1,1},7 € N and a set of edges & representing interactions
between spin variables, (i,j) € £. The problem is parameterized by the biases
h; and the couplers J; ;. The objective is to minimize the energy of the model
given by the Hamiltonian:

E(o)= Y Jijoio;+ Y hio;. (5)

(i,5)€E iEN

Quadratic unconstrained binary optimization (QUBO) models are equivalent
representations used to model problems with binary decision variables. Specif-
ically, a QUBO model has n decision variables, ¢; € {0,1},7 € [l..n], with
corresponding biases, c;, and couplers, c; ;. The objective of the QUBO is to
minimize the following quadratic function:

n

E(q) = Z Cigi + Z Ci,j9i4;- (6)

i=1 i<j

QUBO models can be converted to Ising models by setting o; = 2¢; — 1 [5]
and thus we refer to them as Ising models.

2.3 Unsupervised Clustering with Ising Models
Kumar et al. [22] presented a QUBO model for unsupervised clustering,
K) n
E(q) =Y ey dial+ > Mo (7)
i<j k=1 i=1

The first term in the objective is the within-cluster all-pairs dissimilarity. The
cluster assignment for each data point is represented using one-hot encoding,
i.e., K binary variables g, such that ¢,=1 <= ;€S). Since each point is

134 E. Cohen et al.

assigned to exactly one cluster, the QUBO model includes a quadratic penalty
term to ensure the one-hot encoding holds:

K 2
i = (Zqz—l) : (8)
k=1

If z; is assigned to exactly one cluster ¢; = 0, otherwise ¢; > 1 and the objective
is penalized by \;¢;.

Kumar et al. [22] could only fit very small instances on a quantum annealer
(up to 40 points) and used classical solver for larger instances. Their results were,
at best, competitive with the K-Means heuristic in terms of solution quality.

3 A Framework for Constrained Clustering

We start by formulating the semi-supervised constrained clustering problem as
a constrained optimization problem (COP). Given a problem instance defined
by (X, K, M,C,{X;}), we wish to find a partition, S = S; U--- U Sk, that
minimizes the objective in Eq. (1) while satisfying the constraints:

K
mn Y Y el
k=1 i<j:
xi,x; €Sy
st s(z;) = s(xj), Y(z,z;) € M
s(w;) # s(x;), Y(wi,x5) €C
s(acz) =k, Vk € K,Vx; € X.

3.1 A QUBO Model for Constrained Clustering

We modify the unsupervised clustering model (Eq. (7)) to include clustering
constraints. Specifically, we introduce the pairwise and partition-level constraints
as quadratic penalty terms in the energy function:

K n
E(q) =) ciy > _dia.+ Y Nti > wiivlly
k=1 =1

i<j i<j:
(wi,x5)EM (10)
K
c ., C P P
Y WG Yo D Wi
i<j:(xi,x5)€C k=1li:x;eXy
The cost function is ¢; ; = ||z; — z;||> and the terms \;¢; enforce the one-

hot encoding (Eq. (8)). The terms w4}, enforce must-link constraints by
penalizing the energy function if x; and x; are assigned to different clusters,

K
iy =D (g —al)?, (11)

k=1

Ising Framework for Constrained Clustering on Special Purpose Hardware 135

with (g}, —qi)2 being quadratic terms equal to one if ¢}, # qi and zero if ¢} = qi.l

The terms wﬁjd)gj) enforce the cannot-link constraints by penalizing the
energy function if x; and x; are in the same cluster, i.e., there exists k such that
q,i:landqi:l,

K
CJ) = ZQIZQ{« (12)
k=1

The terms wf k?/}ﬁ k) enforce the partition-level constraints by penalizing the
energy function for assigning a data point x; € X in a cluster m # k,

(i k) qu (13)

m#k

Once we obtain a solution to the QUBO in Eq. (10), each point z; is repre-
sented by K bits ¢, k€[1..K] where ¢}, = 1 if and only if x; is in cluster k. We
can extract the cluster for each point using the following function:

2i(q) = arg maxq,. (14)
ke[l..K]
If the one-hot encoding constraint is satisfied, z; is bijective and therefore the
partition can be obtained as follows:

x; € Sy <= zi(q) =k. (15)

3.2 Choosing the Weights

Given Eq. (10), we must choose weights for the penalty terms to control the
constraint violation. In most practical cases, the one-hot encoding is a hard
constraint that we do not want violated. However, depending on the confidence
we have in each of the constraints, we may be willing to violate some of these
constraints in favor of satisfying others.

We consider the case in which our constraints come from a trusted source
and we wish to find a partition that satisfies all constraints. Setting the weights
for all penalty terms to be nd, where d = max ¢; _j» guarantees that the optimal
solution to the QUBO model in Eq. (10) is an optimal solution for the COP in

Eq. (9).

Theorem 1 Consider a constrained clustering problem defined by (X, K, M,C,
{ X}, such that the COP in Eq. (9) is satisfiable. Let E(q) be the energy func-
tion in our QUBO model (Eq. (10)), with the following weights for the penalty

terms A\; = w/\gl = uwf i = wZPk =nd. Let § be an optimal solution to our QUBO

model. Then the corresponding partition S, x; € Sy <= 2zi(q) = k, is an
optimal solution to the COP in Eq. (9).2

1 If the one-hot encoding constraint is satisfied, violating a must-link constraint will
apply two penalty terms, one for each of the two clusters of the data points.
2 All proofs appear in tidel.mie.utoronto.ca/pubs/constrained-clustering-proofs.pdf.

136 E. Cohen et al.

3.3 An Efficient Encoding for K = 2

In the special case of K = 2, we can use an encoding that only requires n
variables, rather than Kn variables:

ZCW p'+p’ 1) waa(w

i<j 1<j:(zi,xz;) EM
K (16)
+ 05,00, Z Z B0y
i<j:(wq,z;)€C k=1li:x,€ Xy

The variables p’ represent the partition: x; is in the first cluster if p* = 0 and in
the second cluster otherwise. The terms aé\/f N = (p" — p’)? enforce the must-link

constraints, the terms a(o= = (p* 4+ p’ — 1)? enforce the cannot-link constraints,

and the terms o] = = [p’ — (k — 1)]? enforce the partition-level constraints.

Theorem 2 shows that the equivalence between the efficient encoding and the
general model for K = 2. The bound in Theorem 1 is therefore applicable for
this model.

Theorem 2 Consider a constrained clustering problem defined by (X, K, M,
C,{ X1} such that K = 2. Let ¢ be an assz'gnment of variable for the K-
clustering model in Eq. (10). We set wM = 2w”, IDZ% = wcj and wF i = wP]
If the one-hot encoding constraint is satzsﬁed (i.e., ¢; = 0 in Eq. (10)), then

E(q) = Ep(p) where p* is equal to zero if ¢§ =1 and equal to one if ¢4 = 1.

4 Constrained Clustering on the Fujitsu Digital Annealer

The Fujitsu Digital Annealer (DA) is recent CMOS hardware designed for Ising
optimization problems formulated as a QUBO [28,33]. We use the first generation
of the DA that is capable of representing problems with up to 1024 variables
with 16-bit precision for the couplers and 26-bit precision for the biases.

The DA algorithm is based on simulated annealing [21], however it takes
advantage of the massive parallelization provided by the custom CMOS hardware
[1]. Furthermore, it has several key differences compared to simulated annealing:

— It starts every run from the same arbitrary state to reduce computational
effort.

— It uses a parallel-trial scheme in which each Monte Carlo step considers all
possible one-bit flips, in parallel. If more than one flip is accepted, one of
accepted flips is chosen uniformly at random.

— It uses dynamic offset to increase the energy of a state in order to escape
local minima.

3 Kumar et al. [22] presented a model for unsupervised clustering with n variables
for K =2. Their model uses spin-glass variables and does not optimize the energy
function in Eq. (10).

Ising Framework for Constrained Clustering on Special Purpose Hardware 137

4.1 Embedding Problems on the DA

When solving constrained clustering problems on the DA we have to make some
practical representation and configuration choices. Due to the precision limit, we
need to embed the couplers and biases on a scale with limited granularity. We
therefore make the following implementation choices:

1. The distances d(x;, x;) are normalized in the discrete range of [0, 150].

2. The chosen weights cannot be arbitrarily high and the bound in Theorem 1
cannot be met. Instead we use the highest supported value for A\, the weight
that enforces the one-hot encoding.

3. The bound in Theorem 1 guarantees that all constraints are satisfied if the
problem is solved to optimality. In practice, the DA does not necessarily solve
problems to optimality and instead terminates after a specified time limit. To
avoid cases where the DA violates a one-hot encoding constraint in favor
of satisfying a clustering constraint, we empirically find that it is better to
use a lower weight for the penalty terms of the clustering constraints. In our
experiments, we used a ratio of 1:4, wM = w® = w? = i)\.

The optimization parameters that represent the temperature schedule are
tuned once per data set based solely on the obtained objective value (we do not
use the true labels).

Unlike K-Means-based algorithms that run until convergence, our method
runs for a given time limit and returns the best solution encountered. We there-
fore need to define a time limit to use in the evaluation of our approach. Con-
sidering the run time of heuristic techniques can vary significantly (for example,
Liu and Fu [23] found LCVQE average run time varies between 0.01 to 76.73s
across different data sets) and the needs of practical applications, we arbitrarily
choose 5 s as a time limit for each execution of our model (see Sect. 5.6 for further
discussion).

5 Empirical Evaluation

We perform an empirical evaluation of our method across eight benchmark data
sets. As the commonly used methods only support one type of constraint (pair-
wise or partition-level), we first compare performance on problems with one con-
straint type. Then, we evaluate our method on problems that involve both pair-
wise and partition-level constraints. To demonstrate the advantages of using spe-
cial purpose hardware for combinatorial optimization, we compare our method
to constraint programming [12] and two CPU solvers for Ising models.

5.1 Data Sets

We run experiments on eight data sets: Breast Cancer, Ionosphere, Pima, Sonar,
Seeds, Optdigits, Letters [15], and Protein [36]. Optdigits-389 is a randomly
sampled subset of the UCI handwritten digits data set containing only the digits

138 E. Cohen et al.

Table 1. Description of data sets

Data set Instances | Features | Classes | CV

Breast cancer | 683 9 2 0.424
Tonosphere 351 34 2 0.399
Pimal 768 8 2 0.427
Sonar 208 60 2 0.095
Seeds 210 7 3 0.000
Protein 116 20 6 0.330
Optdigits-389 | 283 64 3 0.032
Letters-IJLT | 250 16 4 0.168

fData is normalized using the standard deviation.

{3,8,9}, generated by sampling each instance with a probability of 0.15. Letters-
IJLT is a randomly sampled subset of 250 instances from the letter recognition
data set containing only the letters {I,J, L,T}.

Table 1 reports the number of instances, features, and classes. The coefficient
of variation (CV) [14] describes the degree of class imbalance: zero indicates
perfectly balanced classes, while higher values indicate higher class imbalance.

5.2 Algorithms

For problems with pairwise constraints, we compare our model to MPCK-Means*
and LCVQE.® For problems with partition-level constraints, we compare our
model to PLCC.% For MPCK-Means and PLCC we used the weights proposed
in the original papers. Increasing the weights did not lead to a significant change
in results.

If K =2, we use the efficient QUBO encoding (Eq. (16)). Otherwise, we use
the general QUBO model (Eq. (10)).

5.3 Evaluation Measures

Since labels are available for the data sets, we use the following measures to
evaluate and compare the different methods.

Adjusted Rand Index (ARI). Rand Index [30] measures agreement between
two partitions of the same data, P; and P,. Each partition represents (g) deci-
sions over all pairs, assigning them to the same or different clusters. Let a be

* Obtained from www.cs.utexas.edu/users/ml/risc/code.
5 Obtained from github.com/danyaljj/constrained_clustering.
5 As the code is not available, we implemented PLCC in Python.

www.cs.utexas.edu/users/ml/risc/code

Ising Framework for Constrained Clustering on Special Purpose Hardware 139
the number of pairs assigned to the same cluster in both P; and P,. Let b be the
number of pairs assigned to different clusters. Rand Index is defined as follows:
a+b

(3)
while the Adjusted Rand Index (ARI) [17] is a correction for RI, based on its
expected value:

RI(Py, Py) =

RI — E(RI)
Max(RI) — E(RI)
An ARI of zero indicates the partition is not better than a random assignment,
while one indicates a perfect match.

ARI =

Normalized Mutual Information (NMI). Mutual information quanti-
fies the statistical information shared between two distributions [31]. We use
MI(Py, Py) to denote the mutual information between partitions P; and P,
and H(P;) to denote the entropy of partition P;. Normalized mutual information
(NMI) [31] is normalized using a generalized mean (e.g., arithmetic or geometric)
of H(Pl) and H(PQ)

MI(Py, Py)

NMI(P, P) = Mean(H(Py), H(P))

Values close to zero indicate independent partitions, while values close to
one indicate a significant agreement between P1 and P2. We use NMI based on
arithmetic mean.

Fraction of Violated Constraints. We compute the mean fraction of con-
straints that were violated in the partition.

5.4 Empirical Results

Instance-Level Pairwise Constraints. We compare our framework with
MPCK-Means and LCVQE, on clustering with different numbers of randomly
generated pairwise constraints. Following Covoes et al. [9], each constraint is gen-
erated by randomly selecting two different instances in the data set and adding
an ML constraint if they are in the same cluster and a CL constraint otherwise.
Figure 1 shows the performance for a varying number of pairwise constraints,
measured by ARI. Each point in the plot is the average of 50 runs with different,
randomly generated, sets of constraints. The bands represent the 95% confi-
dence interval obtained using bootstrapping with 1000 replications. Note that
the graphs do not share the same y-axis to increase readability (each graph
presents data for a different data set and we do not compare across data sets).
Results for NMI exhibited similar patterns and are omitted due to space.

140 E. Cohen et al.

breast-cancer ionosphere sonar pima

095
08
090 04
06
/ o2 /_//
075 000

optdigits-389 seeds protein letters-1JLT

08 08
08 09
z 06 06
<
08
06 04 04 /

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
constr_level constr_level constr_level constr_level

ARI
o o
2 @
8 &
o o
[
o o o =
b g 3 g
% &8 & 8

—— Ising-DA MPCK —— LCVQE

Fig. 1. Comparison of ARI scores for clustering with pairwise constraints.

In all cases but one, our framework outperforms the other methods. In Breast
Cancer, Ionosphere, Sonar, Pima, Optdigits-389, Seeds, Letters-IJLT our frame-
work is at least as good, and usually significantly better, across all numbers of
constraints. In Protein there is no dominating algorithm and our framework is
the best performing one for problems with large number of constraints (approxi-
mately 300 or more) while LCVQE is the best performing algorithm for problems
with smaller number of constraints (less than 300).

Interestingly, there is no clear winner between LCVQE and MPCK-Means.
In three data sets LCVQE outperforms MPCK-Means, in two data sets MPCK-
Means outperforms LCVQE, and in the rest they are comparable. In contrast,
our framework clearly outperforms the other methods.

Figure 2 shows the average fraction of violated must-link constraints and the
95% confidence interval for four data sets. In all data sets but Breast Cancer,
we find that our method violates fewer constraints than the other methods,
and in most cases does not violate any of the constraints. On Breast Cancer,
our method and LCVQE outperform MPCK-Means, but do not dominate each
other. Analysis of violated CL constraints is omitted due to space. As with ML
constraints, our method is as good or better than the other methods in all cases
except for Breast Cancer.

breast-cancer ionosphere optdigits-389 protein

006 08 0.06
02
004 02 004
01
002 01 002
Ee—r————

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
constr_level constr_level constr_level constr_level

violatedML

—— Ising-DA MPCK —— LCVQE

Fig. 2. Average fraction of violated must-link constraints.

Partition-Level Constraints. We compare our framework with PLCC on
clustering with different numbers of randomly generated partition-level con-
straints, taken from the true labels. To be consistent with previous work [23,24],

Ising Framework for Constrained Clustering on Special Purpose Hardware 141

we present the number of constraints as the fraction of the labeled data points.
Figure 3 shows the performance of PLCC and our algorithm, measured by ARI.
Results for NMI exhibit similar patterns and are omitted due to space.

Our method is consistently at least as good as PLCC, and in most cases
better. Interestingly, for PL constraints, the improvement observed for general
clustering problems is larger than the one observed for problems with K = 2.

Next, we analyze the fraction of violated partition-level constraints. When
K = 2, we found that both algorithms satisfy approximately 100% of the con-
straints, with no significant differences. For the data sets with K > 2, PLCC
violates a significant portion of the partition-level constraints while our method
continues to satisfy all of them (see Fig.4). This may account for the larger
difference in performance between the two algorithms for data sets with K > 2.

breast-cancer ionosphere sonar pima

03 05
002 08

_ 02 04 y

Z o090 04
088 03 01 03 /

optdigits-389 seeds protein letters-LT

06
o / 085 05
7 0.80 05
z° 04
<
06 075 04

0.1 02 03 04 0.5 0.1 02 03 04 05 01 0.2 03 04 05 01 02 03 04 05
constr_level constr_level constr_level constr_level

—— Ising-DA PLCC

Fig. 3. ARI scores for clustering with partition-level constraints.

optdigits-389 seeds protein letters-1JLT

0.10 04

o

0.05 0.2

violatedPC
°

°
°
3
8

0.0 0.0

02 03 04 05 04 02 03 04 05 01 02 03 04 05 04 02 03 04 05
constr_level constr_level constr_level constr_level

—— Ising-DA PLCC

°

Fig. 4. Average fraction of violated partition-level constraints for K > 2.

Mixed Constraint Types. One of the advantages of our method, based on a
mathematical model solved using a general optimization technique, is the ability
to easily combine different types of constraints without the need to create a
specialized algorithm.

To demonstrate this ability, we present results for problems that involve
both pairwise and partition-level constraints. As far as we are aware, such prob-
lems cannot be solved by any existing heuristic techniques. Figure5 reports

142 E. Cohen et al.

ionosphere letters-IJLT

-0.9

-0.8

pairwise

100 200 300 400 500
pairwise

100 200 300 400 500

0.60
0.45

0.1 0.2 0.3 04 05 0.1 0.2 0.3 0.4 0.5
partition_level partition_level

Fig.5. ARI for mixed constraints.

the ARI for Ionosphere and Letters-1JLT for different combinations of pairwise
and partition-level constraints. We can see that fusing different types of side-
information can improve the clustering performance. Results for the other data
sets exhibit similar patterns and are omitted due to space.

5.5 Comparison to Exact Methods

Despite the differences, it may be of interest to compare our approach to exact
techniques. In this section, we compare our Ising framework to the CP approach
with similar objective function [12] based on both the objective value and the
accuracy of obtained solutions. We use the original code that is implemented in
the Gecode solver [16]7 and compare the solutions obtained by the DA after 5s
to the solutions found by Gecode with a time limit of 500s. Note that objective
value is only comparable in case both methods satisfy the same set of constraints.
For CP, solutions that satisfy all pairwise constraints were found for all instances.
For DA, solutions that satisfy all pairwise constraints were found for 595 out
of the 600 instances. In each of the other five instances only a single pairwise
constraint was not satisfied, however we remove these instances when comparing
the objective values.

Table 2 shows the average objective value (lower is better) and ARI (higher
is better) obtained by each of the approaches on four data sets with differ-
ent characteristics and a varying number of pairwise constraints. We also list
the percentage of instances for which CP was able to prove optimality and the
average per-instance objective ratio between the two methods (DA/CP). In the
majority of cases Gecode was not able to prove optimality within the time limit.
Furthermore, solutions found by the DA within 5s are approximately equal or
better for all configurations. In terms of clustering accuracy (measured by ARI),
our approach outperforms CP for Ionosphere and Protein while in Sonar and
Optdigits the methods are comparable.

5.6 Comparison to CPU Baselines

Our interest in Ising models is motivated by their ability to be efficiently solved
by a variety of specialized hardware platforms. To demonstrate the benefit of

" Obtained from cp4clustering.github.io.

Ising Framework for Constrained Clustering on Special Purpose Hardware 143

Table 2. Comparison between our Ising approach and Constraint Programming.

Data set Num. constr. | Ising-DA (56s) |CP (500s limit) DA/CP
Obj. ARI|Obj. ARI| % Opt | Obj.
Sonar (K = 2) 50 31764.7/0.02 32992.2/0.04 | 0% 0.9632
150 35501.9/0.43 35760.6|0.41 | 0% 0.9927
350 36588.7/0.94 36588.5/0.94 {100% | 1.0000
Ionosphere (K =2)| 50 433763.2/0.20 | 464745.6/0.13 0% 0.9344
150 478007.9/0.34| 500041.8/0.30 | 0% 0.9566
350 514919.0/0.84 | 514922.3|0.84 |94% |1.0000
Optdigits (K =3) | 50 18790486.7 1 0.73 | 18840370.7|0.73 | 0% 0.9974
150 18862921.9|0.85 | 18947962.6 | 0.87 | 0% 0.9955
350 18955340.4 10.94 | 18957524.6 | 0.94 | 0% 0.9999
Protein (K = 6) 50 226791.6/0.31| 260764.2/0.23 | 0% 0.8701
150 245273.6/0.35| 270906.9/0.29 0% 0.9070
350 259862.0/0.62 | 269950.0|0.56 | 6% 0.9643

specialized hardware, we compare the results of the DA, a CMOS annealer, to
two CPU baselines for Ising models: neal, a simulated annealer for Ising models,
and gbsolv, a decomposing solver that splits QUBO problems into sub-problems
solved by a tabu search (both are part of D-Wave’s Ocean software package).®

We compare the quality of solutions obtained by these tools after 10s and
after 30s to the solutions obtained by the DA after one and 5s. Table 3 reports
the mean ARI for four selected data sets for different numbers of pairwise con-
straints. Solutions that violate the one-hot encoding are considered to have an
ARI of zero. As solutions obtained by the CPU solvers often do not satisfy all
constraints, we do not compare the methods based on objective value.

We can see that the DA achieves better performance compared to the CPU
baseline, even when we allow the CPU baselines longer time limits. In all but
one configuration, DA with 5s outperforms neal and gbsolv with 30s. Inter-
estingly, even when given only one second the DA performs well and in most
configurations obtain solutions that are equal or better than those found by the
CPU baselines in 30s.

8 Both tools obtained from github.com/dwavesystems.

144 E. Cohen et al.

Table 3. Mean ARI for DA vs. CPU solvers.

Num DA neal gbsolv Num DA neal gbsolv
const. 1s 5s| 10s 30s | 10s 30s const. 1s 5s|10s 30s| 10s 30s
50 .02 .02|.02 .02|.02 .02 50 .19 .20 .18 .19 .16 .16
150 41 .43 .38 40| .39 .40 150 33 .34 .26 .31 .32 .33
350 .94 .94|.94 .94 |.94 .94 350 |.84 .84 | .82 .83| .80 .82
(a) Sonar (K=2) (b) Ionosphere (K=2)
Num DA neal gbsolv Num DA neal gbsolv
const. 1s 5s|10s 30s | 10s 30s const. | 1s Hs|10s 30s| 10s 30s
50 71 .73 .35 48| .27 .29 50 29 .31 .02 .02| .26 .27
150 | .85 .85 .57 .72] .32 0.35 150 |.30 .35 | .06 .05| .28 .31
350 .94 .94 | .89 91| .82 0.83 350 |.59 .62 .32 .37| .61 .63
(c) Optdigits (K=3) (d) Protein (K=6)

6 Discussion and Limitations

Our empirical evaluation shows that our method, based on an Ising model
and specialized hardware, outperforms state-of-the-art K-Means-like methods.
In unsupervised clustering, Kumar et al. [22] found that using Ising models for
clustering achieves, at best, equal performance to K-means. Our results suggest
that in the semi-supervised setting, where the problems include a set of con-
straints, using specialized hardware is a promising direction. The comparison
to CP and CPU baselines shows that our approach can provide high quality
solutions fast, making it an attractive solution for modern data mining tasks.

Our framework can be extended to other scenarios: representing new types
of constraints (e.g., cluster-size constraints [7]), tuning the weights of the con-
straints if they are not fully-trusted, and evaluating our model with constraints
arising from active learning [3] are all potential extensions of our work. While our
models can incorporate any constraint that can be represented as a quadratic
equality or inequality over the binary variables, some constraints may require
additional auxiliary or slack variables. Investigating ways to efficiently encode
other types of constraints is also an interesting direction for future work.

Our method is sensitive to hardware-related limitations. For example, the
number of data points is limited by the number of variables supported by the
hardware and our ability to represent the objective is limited by the precision.
However, new hardware allows for larger problems and increased precision (e.g.,
[1,37]) and improved optimization schemes can reduce the need to tune the
temperature schedule and potentially yield superior performance [20].

Our model can be solved on any platform that supports Ising models. As a
large number of novel computational platforms (including quantum computers)

Ising Framework for Constrained Clustering on Special Purpose Hardware 145

have chosen Ising as their main abstraction [8], experimenting with new and
different hardware platforms is an important direction of future work.

7 Conclusion

We address the problem of semi-supervised clustering on specialized hardware
and present an Ising formulation that can be solved on a variety of novel hard-
ware platforms. Our empirical analysis shows that our method outperforms
the state-of-the-art heuristic methods for semi-supervised clustering and, unlike
those algorithms, can support combinations of constraint types. The use of a
mathematical model means that our framework is easily extended to support
other types of constraints and hardware platforms.

Acknowledgements. This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada, Fujitsu Co-Creation Research Laboratory at the
University of Toronto, and the Lyon Sachs Fellowship.

References

1. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber,
H.G.: Physics-inspired optimization for quadratic unconstrained problems using a
digital annealer. Front. Phys. 7, 48 (2019)

2. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation.
In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 438-454. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07046-9_31

3. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: SDM, pp. 333-344. SIAM (2004)

4. Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications. CRC Press (2008)

5. Bian, Z., Chudak, F., Macready, W.G., Rose, G.: The ising model: teaching an old
problem new tricks. D-wave Syst. 2 (2010)

6. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: ICML, pp. 81-88 (2004)

7. Bradley, P., Bennett, K., Demiriz, A.: Constrained k-means clustering. Microsoft
Res. Redmond 20 (2000)

8. Coffrin, C., Nagarajan, H., Bent, R.: Evaluating ising processing units with integer
programming. In: CPAIOR, pp. 163-181 (2019)

9. Covoes, T.F., Hruschka, E.R., Ghosh, J.: A study of k-means-based algorithms for
constrained clustering. Intel. Data Anal. 17(3), 485-505 (2013)

10. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained
clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Zelezny, F. (eds.) ECML
PKDD 2013. LNCS (LNAI), vol. 8190, pp. 419-434. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40994-3_27

11. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: Constrained minimum sum of squares clus-
tering by constraint programming. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 557-573. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5.39

https://doi.org/10.1007/978-3-319-07046-9_31
https://doi.org/10.1007/978-3-642-40994-3_27
https://doi.org/10.1007/978-3-319-23219-5_39
https://doi.org/10.1007/978-3-319-23219-5_39

146

12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

E. Cohen et al.

Dao, T.B.H., Duong, K.C., Vrain, C.: Constrained clustering by constraint pro-
gramming. Artif. Intell. 244, 70-94 (2017)

Davidson, I., Ravi, S.: Clustering with constraints: feasibility issues and the k-
means algorithm. In: SDM, pp. 138-149 (2005)

DeGroot, M.H., Schervish, M.J.: Probability and Statistics. Pearson Education
(2012)

Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

Gecode Team: http://www.gecode.org

Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193-218 (1985)
James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical
Learning. Springer, NewYork (2013). https://doi.org/10.1007/978-1-4614-7138-7
Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature
473(7346), 194 (2011)

Katzgraber, H.G., Trebst, S., Huse, D.A., Troyer, M.: Feedback-optimized parallel
tempering Monte Carlo. J. Stat. Mech: Theory Exp. 2006(03), P03018 (2006)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671-680 (1983)

Kumar, V., Bass, G., Tomlin, C., Dulny, J.: Quantum annealing for combinatorial
clustering. Quantum Inf. Process. 17(2), 1-14 (2018). https://doi.org/10.1007/
s11128-017-1809-2

Liu, H., Fu, Y.: Clustering with partition level side information. In: IEEE ICDM,
pp. 877-882 (2015)

Liu, H., Tao, Z., Fu, Y.: Partition level constrained clustering. IEEE TPAMI
40(10), 2469-2483 (2018)

Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129-137 (1982)

Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)
Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp.
274-285. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00202-
1.24

Matsubara, S., et al.: Ising-model optimizer with parallel-trial bit-sieve engine. In:
Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 432-438. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-61566-0-39

Pelleg, D., Baras, D.: K-means with large and noisy constraint sets. In: Kok, J.N.,
Koronacki, J., Mantaras, R.L., Matwin, S., Mladeni¢, D., Skowron, A. (eds.) ECML
2007. LNCS (LNATI), vol. 4701, pp. 674-682. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74958-5_67

Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846-850 (1971)

Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3, 583-617 (2002)

Trevor, H., Robert, T., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-0-387-84858-7

Tsukamoto, S., Takatsu, M., Matsubara, S., Tamura, H.: An accelerator archi-
tecture for combinatorial optimization problems. Fujitsu Sci. Tech. J 53(5), 8-13
(2017)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.gecode.org
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/s11128-017-1809-2
https://doi.org/10.1007/s11128-017-1809-2
https://doi.org/10.1007/978-3-642-00202-1_24
https://doi.org/10.1007/978-3-642-00202-1_24
https://doi.org/10.1007/978-3-319-61566-0_39
https://doi.org/10.1007/978-3-540-74958-5_67
https://doi.org/10.1007/978-3-540-74958-5_67
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7

Ising Framework for Constrained Clustering on Special Purpose Hardware 147

34. Ushijima-Mwesigwa, H., Negre, C.F., Mniszewski, S.M.: Graph partitioning using
quantum annealing on the d-wave system. In: Proceedings of the Second Interna-
tional Workshop on Post Moores Era Supercomputing, pp. 22-29. ACM (2017)

35. Wagstaff, K., Cardie, C., Rogers, S., Schrédl, S.: Constrained k-means clustering
with background knowledge. In: ICML, pp. 577-584 (2001)

36. Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with
application to clustering with side-information. In: NIPS, pp. 521-528 (2003)

37. Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.:
A 20k-spin ising chip to solve combinatorial optimization problems with CMOS
annealing. IEEE J. Solid-State Circuits 51, 303-309 (2016)

)

Check for
updates

From MINIZINC to Optimization Modulo
Theories, and Back

Francesco Contaldo®™?, Patrick Trentin®, and Roberto Sebastiani®™?

DISI, University of Trento, Trento, Italy
francesco.contaldo@alumni.unitn.it,
{patrick.trentin, roberto.sebastiani}@unitn.it

Abstract. Optimization Modulo Theories (OMT) is an extension of SMT that
allows for finding models that optimize objective functions. In this paper we
aim at bridging the gap between Constraint Programming (CP) and OMT, in
both directions. First, we have extended the OMT solver OPTIMATHS AT with
a FLATZINC interface — which can also be used as FLATZINC-to-OMT encoder
for other OMT solvers. This allows OMT tools to be used in combination with
MZN2FZN on the large amount of CP problems coming from the MINIZINC com-
munity. Second, we have introduced a tool for translating SMT and OMT prob-
lems on the linear arithmetic and bit-vector theories into MINIZINC. This allows
MINIZINC solvers to be used on a large amount of SMT/OMT problems.

We have discussed the main issues we had to cope with in either directions.
We have performed an extensive empirical evaluation comparing three state-of-
the-art OMT-based tools with many state-of-the-art CP tools on (i) CP problems
coming from the MINIZINC challenge, and (i) OMT problems coming mostly
from formal verification. This analysis also allowed us to identify some criticali-
ties, in terms of efficiency and correctness, one has to cope with when addressing
CP problems with OMT tools, and vice versa.

1 Introduction

The last two decades have witnessed the rise of Satisfiability Modulo Theories (SMT)
[12] as efficient tool for dealing with several applications of industrial interest, in par-
ticular in the contexts of Formal Verification (FV). SMT is the problem of finding value
assignments satisfying some formula in first-order logic wrt. some background theory.
Optimization Modulo Theories (OMT) [15,33,34,36,39,42,53,56] is a more-recent
extension of SMT searching for the optimal value assignment(s) w.r.t. some objective
function(s), by means of a combination of SMT and optimization procedures. (Since
OMT extends SMT, hereafter we often simply say “OMT” for both SMT and OMT.)
Several distinctive traits of OMT solvers —like, e.g., the efficient combination of
Boolean and arithmetical reasoning, incrementality, the availability of decision proce-
dures for infinite-precision arithmetic and the ability to produce conflict explanations—
are a direct consequence of their tight relationship with the FV domain and its practical
needs. On the whole, it appears that OMT can be a potentially interesting and efficient
technology for dealing with Constraint Programming (CP) problems as well. At the

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 148-166, 2020.
https://doi.org/10.1007/978-3-030-58942-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_10

From MINIZINC to Optimization Modulo Theories, and Back 149

same time, modeling CP problems for OMT solvers requires a higher-level of exper-
tise, because the same CP instance can have many possible alternative formulations, s.t.
the performance of SMT solvers on each encoding are hardly predictable [26,28,29].

On the other hand, the availability, efficiency and expressiveness of CP tools makes
them of potential interest as backend engines also for FV applications (e.g., [22,23,31]),
in particular with SW verification, where currently SMT is the dominating backend
technology, s.t. a large amount of SMT-encoded FV problems are available [11].

In this paper we aim at bridging the gap between CP and OMT, in both directions.

In the CP-to-OMT direction, we have extended the state-of-the-art OMT solver
OPTIMATHSAT [58] with a FLATZINC interface (namely “FZN20MT”). In combi-
nation with the standard MZN2FZN encoder [38], this new interface can be used to
either (i) solve CP models with OPTIMATHS AT directly or (ii) generate OMT formu-
las encoded in the SMT-LIB [25] format with optimization extensions, to be fed to
other OMT solvers, such as BCLT [16] and Z3 [15]. This allows state-of-the-art OMT
technology to be used on MINIZINC problems coming from the CP community.

In the OMT-to-CP direction, we have introduced a tool for translating SMT and
OMT problems on the theories of linear arithmetic over the integers and rational
(LIR.A) and bit-vector (BYV) into MINIZINC models (hereafter “OMT2MzN”). This
allows MINIZINC solvers to be used on OMT problems, giving them access to a large
amount of OMT problems, mostly coming from formal verification.

With both directions, we first present and discuss the challenges we encountered and
the solutions we adopted to address the differences between the two formalisms. Then
we present an extensive empirical evaluation comparing three OMT tools with many
state-of-the-art CP tools on (i) CP problems coming from the MINIZINC challenge,
and (ii) OMT problems coming mostly from formal verification. This analysis allowed
us to identify some criticalities, in terms of efficiency and correctness, one has to cope
with when addressing CP problems with OMT tools, and vice versa.

Overall, our new compilers FZN20MT and OMT2MZN in combination with the stan-
dard compiler MZN2FZN [38] provide a framework for translating problems encoded in
the SMT-LIB or the MINIZINC format in either direction. This framework enables also
for a comparison between OMT solvers and CP tools on problems that do not belong
to their original application domain. To the best of our knowledge, this is the first time
that such a framework has been proposed, and that the OMT and CP technologies have
been extensively compared on problems coming from both fields.

Related Work. The tight connection between SMT and Constraint Programming (CP)
has been known for a relatively long period of time [43] and it has previously been
subject to investigation. Some works considered a direct encoding of CP [28,29] and
weighted CP [8] into SMT and MAXSMT, or an automatic framework for translat-
ing MINIZINC —a standard CP modeling language [40]— into SMT-LIB —the standard
SMT format— [17,18]. Other works explored the integration of typical SAT and SMT
techniques within CP solvers [27,45]. Nowadays, several MINIZINC solvers —like, e.g.,
HAIFACSP [61] and PICAT [62]- are at least partially based on SAT technology.

To this extent, our first contribution FZN2OMT also obviates the loss, due to obsoles-
cence, of the FZN2SMT compiler proposed by Bofill et al. in [17,18]. FZN2SMT is not

150 F. Contaldo et al.

compatible with the changes that have been introduced to the MINIZINC and FLATZ-
INC standards starting from version 2.0 of the MINIZINC distribution. Since some of
these changes are not backward compatible, it is also not possible to use FZN2SMT in
conjunction with an older version of the MZN2FZN compiler when dealing with recent
MINIZINC models. Furthermore, FZN2SMT translates satisfaction problems into the
Version 1 of the SMT-LIB standard and produces no SMT-LIB output in the case of
optimization problems, that are solved directly. However, the optimization interface of
modern OMT solvers is based on the Version 2 of the SMT-LIB standard. This makes
it difficult to use it together with OMT solvers. Unfortunately, the FZN2SMT compiler is
closed source, with only the binaries being freely distributed, and seemingly no longer
maintained. This made it necessary to provide a new alternative solution to FZN2SMT.
To this extent, our new FLATZINC interface of OPTIMATHS AT, FZN20OMT, translates
both satisfaction and optimization problems in the Version 2 of the SMT-LIB standard
enriched with the optimization extensions for OMT described in [58].

Content. The rest of the paper is organized as follows. In Sect. 2 we provide some
background on OMT, MINIZINC and FLATZINC. In Sect. 3 we describe the process
from MINIZINC to OMT. In Sect. 4 we describe the process from OMT to MINIZINC.
In Sect. 5 we describe an empirical evaluation comparing a OMT-based tool with many
state-of-the-art CP tools. Finally, in Sect. 6 we conclude and point out some further
research directions.

A longer and more detailed version of this paper is publicly available as [24].

2 Background

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a first-order formula ¢ with respect to a combination of decidable first-order theories.
Typical theories of SMT interest are (the theory of) linear arithmetic over the ratio-
nals (LR.A), the integers (LZ.A) or their combination (LZR.A), non-linear arithmetic
over the rationals (N LR.A) or the integers (M LZA), arrays (AR), bit-vectors (BY),
floating-point arithmetic (FP), and their combinations thereof. (See [12,44,52] for an
overview.). The last two decades have witnessed the development of very efficient SMT
solvers based on the so-called lazy-SMT schema [12,52]. This has brought previously-
intractable problems to the reach of state-of-the-art SMT solvers.

Optimization Modulo Theories (OMT), [15,34,36,39,42,53,56,60], is an extension
to SMT that allows for finding a model of a first-order formula ¢ that is optimal with
respect to some objective function expressed in some background theory, by means
of a combination of SMT and optimization procedures. State-of-the art OMT tools
allow optimization in a variety of theories, including linear arithmetic over the rationals
(OMT(LR.A)) [53] and the integers (OMT(LZ.A)) [15,56], bit-vectors (OMT(BYV))
[39] and floating-point numbers (OMT(FP)) [60].

A relevant strict subcase of OMT(LR.A) is OMT with Pseudo-Boolean objective
functions (OMT(PB)) in the form), w;A; s.t. w; are rational values and A; are
Boolean variables whose values are interpreted as {0, 1}. Notice that OMT(PB) is also
equivalent to (partial weighted) MAXSMT, the SMT extension of MAXSAT, and that

From MINIZINC to Optimization Modulo Theories, and Back 151

OMT(PB) and MAXSMT can be encoded into OMT(LR.A) but not vice versa [54].
Encoding OMT(PB)/MAXSMT into OMT(LR.A), however, is not the most efficient
way to solve them, so that modern OMT solvers such as BCLT [16], OPTIMATHS AT
[58] and Z3 [15] implement specialized OMT (PB)/MAXSMT procedures which are
much more efficient than general-purpose OMT(LR.A) ones [15,57,58].

We stress the fact that —unlike with purely-combinatorial problems, which are
encoded into SAT or MAXSAT and are thus solved by purely-Boolean search— typi-
cally OMT problems involve the interleaving of both Boolean and arithmetical search:
search not only for the best truth-value assignment to the atomic subformulae, but also
for the best values to the numerical variables compatible with such truth-value assign-
ment [54].

To this date, few OMT solvers exist, namely BCLT [16], CEGIO [9], HAZEL [39],
OPTIMATHSAT [58], PULI [33], SYMBA [36] and Z3 [15]. To this aim, we observe
that (i) some of these solvers are quite recent, (ii) most of these solvers focus on dif-
ferent, partially overlapping, niche subsets of Optimization Modulo Theories, and (iii)
the lack of an official Input/Output interface for OMT makes it hard to compare some
of these tools with one another. OMT finds applications in the context of static analysis
[19,32], formal verification and model checking [37,48], scheduling and planning with
resources [33,35,46,50], software security and requirements engineering [41], work-
flow analysis [13], machine learning [59], and quantum computing [14].

A distinctive trait of SMT (and OMT) solvers is the trade-off of speed against the
ability to certify the correctness of the result of any computation, which is particularly
important in the contexts of Formal Verification (FV) and Model Checking (MC). When
dealing with linear arithmetic in particular, SMT solvers employ infinite-precision arith-
metic software libraries to avoid numerical errors and overflows.

SMT-LIB [25] is the standard input format by SMT solvers, it provides a stan-
dardized definition of the most prominent theories supported by SMT solvers and the
corresponding language primitives to use these features. At present, there is no standard
input format for modeling optimization problems targeting OMT solvers, although there
exist only minor syntactical differences between the major OMT solvers. The tools pre-
sented in this paper conform to the extended SMT-LIB format for OMT presented in
[58], that includes language primitives for modeling objectives.

OPTIMATHS AT [53-58] is a state-of-the-art OMT solver based on the MATHS AT5
SMT solver [3,21]. OPTIMATHSAT features both single- and multi-objective opti-
mization over arbitrary sets of LRA, LTA, LIRA, BV, FP, Pseudo-Boolean (PB)
and MAXSMT cost functions. Multiple objective functions can be combined with one
another into a Lexicographic or a Pareto optimization problem, or independently solved
in a single run (for the best efficiency).

MINIZINC [38,40] is a widely adopted high-level declarative language for mod-
eling Constraint Satisfaction Problems (CSP) and Constraint Optimization Problems
(COP). The MINIZINC format defines three scalar types (bool, int and float) and two
compound types (sets and fixed-size arrays of some scalar type). The standard provides
an extensive list of predefined global constraints, a class of high-level language primi-
tives that allows one to encode complex constraints in a compact way.

152 F. Contaldo et al.

P vwoen R my [paNZouT |

MINIZINC < =

MODEL SMT-Lip | == ‘ OMT SOLVER. ‘ SAT, M(0bj)
“ OMT2MZN ‘ @& o OPTIMATHSAT 4 UNSAT

Fig. 1. Circular translation schema from MINIZINC to SMT-LIB and back, resulting from the
composition of MZN2FZN, OPTIMATHS AT and OMT2MZN. In this picture, OPTIMATHS AT acts
both as a FLATZINC/OMT solver, and also as a FLATZINC to SMT-LIB compiler.

FLATZINC is a lower-level language whose purpose is to bridge the gap between the
high-level modeling in MINIZINC and the need for a fixed, and easy-to-parse, format
that can simplify the implementation of the input interface of MINIZINC solvers. A
MINIZINC model is typically flattened into a FLATZINC instance using the MZN2FZN
compiler [38], and then solved with some MINIZINC tool.

3 From MINIZINC to OMT

We consider the problem of translating MINIZINC models into OMT problems first.
Similarly to other MINIZINC solvers, we assume that the MINIZINC model is first
translated into FLATZINC using the MZN2FZN standard compiler, as depicted in Fig. 1.
We describe the main aspects of FZN20MT, focusing on the challenges we have encoun-
tered and on the solutions we have adopted.

FLATZINC data-types. The first challenge is to find a suitable representation of the
data-types supported by FLATZINC in SMT-LIB.

One possible choice for modeling the three basic scalar types of FLATZINC —namely
bool, int and £loat— with SMT-LIB are the Boolean, bit-vector and floating-point
theories respectively. However, the decision procedures for the bit-vector and floating-
point numbers theories can be significantly more resource demanding than the decision
procedure for the linear arithmetic theory (LZR.A), in particular when dealing with
a substantial amount of arithmetic computations. For this reason, we have opted to
model FLATZINC int and float data-types with the SMT-LIB integer and rational
types respectively, by default. For the case in which no substantial linear arithmetic
computation is performed, we also optionally allow for encoding the FLATZINC int
data-type as a SMT-LIB bit-vector.

For what concerns the two compound types of FLATZINC, that is the set and
array data-types, we have chosen to proceed as follows. Given that OPTIMATHS AT
lacks a decision procedure for the theory of finite sets [7], we model a set using the
Boolean and integer theories, similarly to what has been done in [17]. The basic idea
is to introduce a fresh Boolean variable for each element in the domain of a set, and
use such variable as a placeholder for the membership of an integer element to the set
instance. Differently from [17], we make an extensive use of cardinality networks [10]
to encode constraints over the sets because they are handled more efficiently, for their
nice arc-consistency properties. No action is required to encode a FLATZINC array
into SMT-LIB, because it is used only as a container for other variables.

From MINIZINC to Optimization Modulo Theories, and Back 153

Floating-Point Precision. A consequence of encoding the FLATZINC int and float
data-types with the linear arithmetic theory is that all of our computation is performed
with infinite-precision arithmetic. This can result in a performance disadvantage wrt.
other MINIZINC solvers using finite-precision arithmetic, due to the increased cost of
each operation, but it has the benefit of guaranteeing the correctness of the final result
of the computation.

Currently, the MINTZINC language does not allow one to express a certain quantity
as an infinite-precision fraction between two constant numbers. Instead, the MZN2FZN
compiler computes on-the-fly the result of any division operation between two constant
integers or floating-point numbers applying the rules corresponding to the type of the
operands. However, there are some instances in which we really need to be able to both
express quantities and perform computation with infinite-precision arithmetic. One of
such situations is to double-check the correctness of the MINIZINC models generated
by the OMT2MZN compiler described in Sect. 4 (we have done this for the experimental
evaluations in Sect. 5.2). In order to get around this limitation we developed a simple
wrapper around the MZN2FZN compiler, called EMZN2FZN [5], that replaces any frac-
tion among two constant £1oats with a fresh variable and, after the basic MZN2FZN
compiler generated the FLATZINC model, the EMZN2FZN wrapper restores the original
fractional values using the FLATZINC constraint float_div ().

FLATZINC Constraints. The SMT-LIB encoding of the majority of FLATZINC con-
straints in OPTIMATHS AT follows their definition in the FLATZINC Standard, with the
exception of Pseudo-Boolean constraints, which we examine in detail later on. Several
global constraints are also supported in the same way, because the OMT-solver cur-
rently lacks ad hoc and efficient decision procedures for dealing with them. Constant
values and alias variables (e.g. those arising from the definition of some arrays) are
propagated through the formula, so as to keep the set of problem variables as compact
as possible. Those constraints requiring non-linear arithmetic —like, e.g., trigonometric,
logarithmic and exponential functions— are currently not supported; this situation may
change soon due to the recent extension of MATHS ATS with a procedure for it [20].

Pseudo-Boolean Constraints. When dealing with Pseudo-Boolean sums of the form
Zi]lv A; - w;, where A; is a Boolean variable and w; is a numerical weight, the
MZN2FZN compiler associates a fresh 0/1 integer variable x; to each A;, and encodes
the sum as sz[x; - w;. Notice that the original A;s may not be eliminated from
the FLATZINC model, because they typically occur elsewhere in the problem, i.e. as
part of a Boolean formula. From our own experience, this situation arises frequently,
because Pseudo-Boolean sums are typically used to express cardinality constraints that
have a variety of uses. As described in [57], one limitation of this naive approach is that
SMTand OMTsolvers do not typically handle this encoding efficiently. The main reason
is that the pruning power of the conflict clause resulting from a conflicting assignment
is typically limited to one specific Boolean assignment at a time, meaning that a large
number of conflict clauses (possibly exponential) has to be generated along the search.
As shown in [57], SMTand OMTsolvers can benefit from encoding Pseudo-Boolean
constraints with cardinality networks.

154 F. Contaldo et al.

FZN20MT goes through some effort in order to recognize Pseudo-Boolean sums
over the integers, and replace the naive encoding with one based on cardinality net-
works. We note that using this technique generally results in a trade-off between solving
time and the overhead of generating cardinality networks prior to starting the search,
especially when dealing with a large number of variables.

Multi-objective Optimization. FZN20OMT allows for multiple optimization goals, of
heterogeneous type, being defined within the same FLATZINC model. This is a non-
standard extension to the FLATZINC format. Multiple objectives can be solved inde-
pendently from one another, or combined into a Lexicographic or Pareto optimization
goal. We refer the reader to [58] for details on the input encoding and the solver config-
uration.

Functionality. Given a satisfiability or optimization problem encoded in the FLATZINC
format, OPTIMATHS AT can be used in the following ways (Fig. 1):

— to directly solve the problem, optionally enumerating any sub-optimal solution
found during the search or all possible solutions with the same optimal value;

— to produce an OMTproblem encoded with the extended SMT-LIB format described
in [58]. This problem can be directly solved with OPTIMATHSAT or, with minor
transformations', fed as input to other OMT solvers such as BCLT and Z3.

4 From OMT to MINIZINC

In this section, we consider the problem of translating OMT formulas, encoded in the
optimization-extended SMT-LIB format of [58], into MINIZINC models. Hereafter, we
describe the main challenges we have faced and the solutions we have adopted. Further
details about this conversion are available in [4].

General Translation Approach. The main challenge is to design an encoding from OMT
to MINIZINC that is correct (i.e., it preserves in full the semantics of the input OMT
problems), effective (i.e., it produces as output MINIZINC models which are as compact
and easy-to-solve as possible), and efficient (i.e. it does it with the least consumption of
time and memory). To this extent, one critical design choice is the way in which the
internal representation of the input OMT formula is organized and converted in terms of
MINIZINC primitives. After a preliminar experimental evaluation we determined that
the sweet-spot, in terms of compactness and easiness to solve of the resulting MINIZINC
model, is to adopt what we call “>2-father DAG-ification”: a Directed-Acyclic-Graph
(DAG) internal representation of the formula where a fresh label is associated to all and
only DAG nodes with at least two fathers, inlining all other nodes (see [24] for details).

! To make this step as easy as possible, we collected our scripts into a public repository [1].

From MINIZINC to Optimization Modulo Theories, and Back 155

Theories Restriction. The SMT-LIB standard describes a wide number of SMTtheo-
ries, most of which have no direct counterpart in MINIZINC due to the few data-types
supported (see Sect. 2)). Hence, of linear rational and integer arithmetic, and their com-
bination. On this regard, we note that even though OMT2MZN can also handle the theory
of bit-vectors, we do not cover it here because it is not used in the experimental evalua-
tion in Sect. 5 (We cover it in the long version of this paper [24]). We leave the handling
of other SMT theories to future work.

Linear Arithmetic Theory. On the surface, encoding linear arithmetic constraints com-
ing from OMT in MINIZINC, using the int and float data-types, looks like a trivial task.
In reality, this poses several challenges and it is subject to several limitations, due to a
couple of facts.

First, in SMT-LIB the linear arithmetic theory requires the capability to per-
form infinite-precision computations. Unfortunately, to the best of our knowledge, no
MINIZINC solver provides infinite-precision arithmetic reasoning, and the MZN2FZN
compiler itself prevents representing arbitrarily-large and arbitrarily-precise quantities
(e.g. the fine-grained decimal weights of the machine learning application in [59]).

Second, in OMT linear arithmetic variables are not required to be bounded and have
quite often no explicit domain (i.e. they lack a lower-bound, an upper-bound or both),
because it is not necessary for the problem at hand or it is implied by other constraints.
This is in contrast with MINIZINC, whereby linear arithmetic variables are expected to
have a finite domain and, when they lack one, their domain appears to be capped with
some solver-dependent pair of values.

These restrictions are currently part of the MINIZINC language and the target appli-
cation domain, and we do not see any obvious work-around solving them. We note
that although there exist methods for bounding all variables in a given LP problem
(e.g. [47]), these have been deemed too impractical at this stage of our investigation.
Nonetheless, we have chosen to translate SMT-LIB linear arithmetic constraints with a
corresponding MINIZINC encoding based on the int and float data-types. Although the
encoding is not always applicable, it does still allow one to correctly translate a number
of interesting OMT problems into MINIZINC, as witnessed by our experimental eval-
uation in Sect. 5.2. More in detail, the translation is done as follows. We declare each
integer variable as unbounded, and then extend the MINIZINC model with the appro-
priate constraints bounding its domain when the input OMT formula contains any such
information. Our empirical observation is that MINIZINC models generated in this way
are correctly handed by all MINIZINC solvers which we have tried, with the exception
of GUROBI, which returns an “unsupported” message. Floating-Point variables, instead,
are always declared with a user-defined domain. This is because all of the MINIZINC
solvers we have tried, among those that can handle floating-point constraints, require
such information.

Other OMT Functionalities. Several problems of OMT interest require the capability of
dealing with soft-constraints (i.e. Weighted MAXSMT) and also with multiple objec-
tives, that are either considered independent goals or combined in a Lexicographic or
Pareto-like fashion. To the best of our knowledge, the MINIZINC standard does not

156 F. Contaldo et al.

allow for an explicit encoding of soft-constraints, nor to deal with more than one objec-
tive function at a time.

We encode (weighted) MAXSMT problems using a standard Pseudo-Boolean
encoding, such as the one used in [53]. When dealing with OMT problems that contain
N goals obj, ...,obj,, for NV > 1, we use the following approach. If these objectives
are independent targets, we generate N MINIZINC models, each with a different goal
obj;, and separately solve each model. If instead the multiple objectives belong to a
Lexicographic OMT problem, then we generate a unique MINIZINC model that lever-
ages the lexicographic-optimization functionality provided by MINISEARCH [49]. (In
all other cases, MINISEARCH is not used). We do not have any encoding for dealing
with Pareto-optimization, yet.

5 Experimental Evaluations

In this section we present an extensive empirical evaluation comparing OMT tools with
many state-of-the-art CP tools on CP problems coming from the MINIZINC challenge
(Sect. 5.1), and on OMT problems coming mostly from formal verification (Sect. 5.2).
The OMT solvers under evaluation are BCLT, OPTIMATHSAT (v. 1.6.0) and Z3
(v. 4.8.5). These are compared with some of the top-scoring solvers that participated at
recent editions of the MINIZINC challenge, including CHOCO (v. 4.0.4), CHUFFED,
G12(FD) (v. 1.6.0), GECODE (v. 6.0.1), GUROBI (v. 8.0.1), HAIFACSP (v. 1.3.0),
JACOP (v. 4.5.0), 1ZPLUS (v. 3.5.0), OR-ToOLS (v. 6.7.4981) and PICAT (v. 2.4).

Remark 1. We could not include FZN2SMT [17,18] in our experimental evaluation
because it is not compatible with the features of MINIZINC that have been added since
version 2.0.

We run all these experimental evaluations on two identical 8-core 2.20 Ghz Xeon
machines with 64 GB of RAM and running Ubuntu Linux. All the benchmark-sets, the
tools and the scripts used to run these experiments, and some of the plots for the results
in Tables 1, 2 and 3 which could not fit into this paper, can be downloaded from [2].

We stress the fact that the goal of these experiments is not to establish a winner
among OMT and MINIZINC tools; rather, it is to assess the correctness, effectiveness
and efficiency of our OMT-to-CP and CP-to-OMT encoders and, more generally, to
investigate the feasibility of solving MINIZINC problems with OMT tools and vice
versa, and to identify the criticalities in terms of efficiency and correctness in these
processes.

5.1 Evaluation on MINIZINC Benchmark Sets

We consider the benchmark-sets used at the MINIZINC Challenge of 2016 (MC16) and
2019 (MC19), each comprised by 100 instances. For compatibility reasons, the version
of MZN2FzN used to convert the problems to the FLATZINC format differs between the
two benchmark-sets. We use version 2.2.1 and 2.3.2 (with patches) for the problems
in MC16 and MC19 respectively. Due to recent changes in the FLATZINC format that
affect the benchmarks in MC19, the version of some MINIZINC tools differs from what

From MINIZINC to Optimization Modulo Theories, and Back 157

described in Sect. 5 (see Table 1). In some cases, we had to download and compile the
latest source available for the tool, i.e. the “nightly” version.

We run each MINIZINC solver with the corresponding directory of global con-
straints, and we run each MINIZINC and OMT tool with the default options. We con-
sider two OMT encodings of the original FLATZINC problems, LA and BV. The first
encodes the FLATZINC int type with the theory of linear integer arithmetic, whereas
the second is based on the theory of bit-vectors. We evaluate each OMT solver on both
SMT-LIB encodings, except for BCLT that has no support for bit-vector optimization.
For uniformity reasons with the other OMT solvers, we evaluate OPTIMATHS AT using
its SMT-LIB interface only, using thus its FZN20MT interface as an external tool, like
with the other OMTsolvers. We note that the solving time for all OMT solvers includes
the time required for translating the formula from the FLATZINC to the SMT-LIB
format. Each solver, either OMT or MINIZINC, is given up to 1200s. to solve each
problem, not including the time taken by MZN2FZN to flatten it.

We verify the correctness of the results by automatically checking that all terminat-
ing solvers agree on the (possibly optimal) solution and, when this is not the case, we
manually investigate the inconsistency.

Experiment Results. The results of this experiment are shown in Table 1, with sepa-
rate numbers for satisfiability (s) and optimization (0) instances in each benchmark-
set. Using the experimental data, we separately computed the virtual best configura-
tion among all MINIZINC solvers (i.e. VIRTUAL BEST(MINIZINC)), all OMT solvers
(i.e. VIRTUAL BEST(OMT)), and also the virtual best among all tools considered in the
experiment (i.e. VIRTUAL BEST(ALL)). The last two columns in the table list the num-
ber of problems solved by the given configuration in the same amount of time as the
VIRTUAL BEST() of each group (col. BT1) and as the VIRTUAL BEST(all) (col. BT2).

We start by looking at the MINIZINC solvers in Table 1. The performance lad-
der is dominated by OR-TOOLS(SAT) and PICAT(SAT), closely followed by GUROBI,
HAIFACSP and CHUFFED (in MC19). By looking at column BT, we observe that
the top-performing MINIZINC solvers tend to dominate over all the others. Looking
at the results of the MC19 experiment, we notice a significant increase in the number
of errors with respect to the benchmark-set of the MC16 edition, as well as a handful
of problems solved incorrectly. In the case of GUROBI and PICAT(SAT), the MZN2FZN
compiler encountered an error over a few instances. As a consequence, the total number
of problems is smaller than 100 for both tools. After taking a closer look, we ascribe
this phenomenon to the recent changes in the MINIZINC/FLATZINC format, that has
created some minor issues with some tools that have not been adequately updated.

Looking at the OMT tools only, we observe that Z3 has leading performance over
the other solvers. When compared to the MINIZINC solvers, the OMT solvers place
themselves in the middle of the rank on both benchmark-sets. Given the fact that none
of the OMT solvers has specialized procedures or encodings for dealing with global
constraints, we consider this an interesting result.

5.2 Evaluation on OMT Benchmark Sets

In this experimental evaluation we use OMT formulas taken from well-known, publicly
available, repositories. We characterize these benchmark-sets as follows:

158 F. Contaldo et al.

Table 1. MINIZINC Challenge formulas. The columns list the total number of instances (inst.), of
timeouts (timeout), of run-time errors (error), of unsupported problems (unsup.), of incorrectly
solved instances (incor.), of correctly solved instances (correct), the total solving time for all
solved instances (time), the number of instances solved in the shortest time within the same
category (BT1) and those solved in the shortest time considering all tools (BT2).

[terminated

[inst. [tlmeout[error[unsup[mcor[correct[time (s.) BT1 | BT2 |

[tool, configuration & encoding ['s] of s| ofs[ofs| ofs[o] s] of s] of s| of s| o
MINIZINC Challenge 2016
PICAT(CP) 15185] 9] 70]0] 0J]0] 0]0] 0] 6] 15]2281] 6043] 0] 0] 0] 0
G12(FD) 1585 4] 71|1] 3|0 o|o| 0[10] 11|4436| 4220/ 0| 0| 0| ©
CHOCO() 15]85 3] 50/0] o[o| 0/o] 0[12|35[4256 | 11423| 1] 0| 1] 0
1ZPLUS() 15(85| 6] 44/0] 0{0] o|o] o 9]41| 999 | 5492| 3| 4| 3| 4
CHUFFED() 15(85 2] 40[0] 0|5| o|o| o 8]45| 635| 4187| 0] 5| 0] 5
JACOP() 15]85) 3] 390 0o o0[o] 0/12]46|3411 | 12825| 0] 0| 0] ©
GUROBI() 15185) 6] 2210 00| 00| O] 9 63|2346 | 3037| 0| 15| 0| 15
HAIFACSP() 1585 4] 23/0] o[o| 0/0] 0f11]62| 591 | 4444| 0| 11| 0] 11
PICAT(SAT) 15]85| 1] 26/0] o[o] o|o]| 01459 151] 7293[10| 1[10] 1
OR-TOOLS(SAT) 15185 1] 15{0] 0[0o| 0[0] 0|14 [70| 555 | 1338 1|45| 145
VIRTUAL BEST(MINIZING) 1585 0] 7|0] 0[0| 0[]0 0|15 78| 146| 3514 -] -] -] -
OPTIMATHSAT(INT) 15 [85]10] 38]0] 0]0] 0[0] O] 5]47] 604 4856] 1]20] 0] O
OPTIMATHSAT(BV) 15185 2] 42{0| olo| o0lo] 0|13 |43|3664 | 8561|11] 2| 0] 0
BCLT(INT) 1518510] 33/0] o|0| o|o] of 5]52/1117] 5998| 0] 15| 0] 2
Z3(INT) 1518510 | 32{0 | ofo| olo] 0| 5]53| 676 | 10424| 0| 11| 0] 0
Z3(BV) 15]85) 5] 28{0] olo| o|o| 0/10]57|2938 | 11113| 2| 19| 0] ©
VIRTUAL BEST(OMT) 15[85[1| 21{0| 0[0| 0|0 0|14 | 64/3842 | 6432| -| -| -| -
[VIRTUAL BEST(ALL) [15785[0] 7[0] O[0[OJ0o| O[15 78] 146 | 3514] -1 -] -1 -]
MINIZINC Challenge 2019

PICAT(CP) [2.7B12] T090] 8] 67]0 [11]0] 5[0] O] 2] 7] 54| 1440] 1] 0] 1] 0
1ZPLUS() 10190 5] 71/0] 4l0| o|o| of 5[15| 14| 3077| 1] 3| 1] 3
G12(FD) 10 90| 5] 64/0 | 10{0| o]0 0f 5|16/ 323| 4010/ 0] 0| 0] ©
CHOCO(STD) 1090 4] 63{0| 5[o] olo] o 6]22| 415| 4312/ 0] 0| 0] 0
GECODE() [6.2.0] 10190 4] 63/0] oo o|o] of 6]27| 420 5094| 0| 6| 0] 6
JACOP() [4.8] 1090| 4] 55/0] 6{0] o|o] o 6[29] 260 | s5467| 0] 1] 0] 1
HAIFACSP() 10190/ 0] 47|01 100 o0|2] 2| 8[31| 2| 6408| 4| 7| 4| 4
CHUFFED() [NIGHTLY] 10 190| 0| 43|10] 0|5 10{0| O] 5|37 1] 4886 319 3|19
GUROBI() [8.1.1] 1080 0] 48/0| o|0o| o|o| o[10]32| 705| 2895 2| 6| 2| 4
PICAT(SAT) [2.7B12] 10190 0] 45(0] 5[0 ©0f0| 1/10]39] 275| 9894| 0| 7| 0| 5
OR-TOOLS(SAT) [NIGHTLY] 1090| 5] 42/0] 30| olo] of 545 8] 7239/ 0] 13| 0] 11
VIRTUAL BEST(MINIZINC) 10 90[0] 29/0] 0|0 | 0|0] O[10 | 61 9| 5247 -] -| -|
OPTIMATHSAT(INT) [1.6.4.1] T0190] 5] 62]0] 0J]0] 0]0] 0] 5] 28] 4] 3650 2[10] 0] 0
OPTIMATHSAT(BV) [1.6.4.1] 1090 4] 59/0] 5[0 o|o] of 6]26| 484 | 7271| 0] 1] 0] ©
BCLT(INT) 1090 5] 60[0] 0[o] ©0lo] 0f 5130 6] 3369 0] 6/ 0] 5
Z3(INT) 1090| 5] 64/0] 0[0] o|o] of 5[26] 4] 5358/ 3] 6/ 0] 1
Z3(BV) 10190 0] 55[0] 20| olo] 0|10 |33|1629| 7550| 5|17/ 0] 3
VIRTUAL BEST(OMT) T0 90| 0] 48[0| 2]0| 0]0| 0|10 |40[1624 | 5179] -] - -]
[VIRTUAL BEST(ALL) [10790] 0] 290 00| oJo| Ofto[61] 9| 4919 -] -[-] -]

SAL [integers]: 66 SMT-based Bounded Model Checking and K-Induction paramet-
ric problems created with the SAL model checker [6];

SAL [rationals]: as above, with problems on the rationals;

Symba [rationals]: 2632 bounded® software verification instances derived from a set
of C programs used in the Software Verification Competition of 2013 [36];
Jobshop and Strip Packing [rationals]: 190 problems taken from [51,53];

Machine Learning [rationals]: 510 OMTinstances generated with the PYLMT tool
based on Machine Learning Modulo Theories [59].

2 We discarded any unbounded instance in the original benchmark-set in [36].

From MINIZINC to Optimization Modulo Theories, and Back 159

The first benchmark-set is on the integers, whereas the other four are on the rationals.
We stress the fact that all formulas contained in all benchmark-sets are satisfiable.

Remark 2. Although there exists a repository of multi-objective OMT formulas (e.g.
[36,56]), we have chosen to not include these in our experimental evaluation. The
reason for this is twofold. First, such comparison would likely be unfair wrt. CP
tools because that the workaround for dealing with multi-independent OMT formulas
described in Sect. 4 is not competitive with the integrated optimization schema pro-
vided by OMT solvers [36,56]. In fact, the experimental evidence in [36,56] collected
on a group of OMT solvers indicates that the latter approach can be an order of magni-
tude faster than the former one. Second, the workaround for dealing with lexicographic-
optimization is limited by the fact that MINISEARCH is not fully compatible with recent
versions of MINIZINC, and it only works with a restricted set of tools.

We have used the OMT2MZN tool described in Sect. 4 to translate each OMT for-
mula to the MINIZINC format. OMT2MZN is written in Python and it is built on top
of PYSMT [30], a general-purpose Python library for solving SMT problems, and it is
available at [4]. During this step, it has been necessary to impose a finite domain to any
unconstrained SMT-LIB rational variable, because otherwise none of the MINIZINC
solvers would have been able to deal with them. We have experimented with two dif-
ferent domains: the largest feasible domain for floating-point variables of 32 bits (i.e.
+3.402823¢ + 38) for the first two benchmark-sets, and the largest feasible domain for
integer variables (i.e. £231) for the last two.

We consider two OPTIMATHSAT configurations: OPTIMATHSAT(SMT), solv-
ing the original OMTformulas, and OPTIMATHS AT(FZN), executed on the generated
MINIZINC instances. The benefits of this choice is two-fold. First, we can double-check
the correctness of such encoding, by comparing the optimum models generated in the
two cases. Second, we can verify whether there is any performance loss caused by the
encoding of the formula.

Only four of the MINIZINC solvers listed in Sect. 5 support floating-point reasoning.
This limited the number of tools that could be used with some OMT benchmark-sets.
The running-time of each MINIZINC solver reported in these experiments (including
OPTIMATHS AT (FZN)) is comprehensive of the time taken by the MZN2FZN compiler,
because the latter can sometime solve the input formulas on its own. The overall timeout
is set to 600 s.

Notice that the optimal solutions found by OPTIMATHS AT (SMT) have been previ-
ously independently verified with a third-party SMT tool as reported in previous publi-
cations [55-57].3 Therefore, we verify the correctness of the results found by any other
configuration by comparing them with those found by OPTIMATHS AT (SMT), and oth-
erwise mark the result as “unverified”.

Experimental Results over the Integers. In this experiment, we evaluate the SAL (over
integers) benchmark-set. The results are collected in Table 2.

3 For every OMT problem (¢, obj) s.t. OPTIMATHSAT(SMT) returns a minimum value min
for obj on the formula ¢, we say min is correct iff ¢ A (obj = min) is satisfiable and
@ A (obj < min) is unsatisfiable. (Dual for maximization.).

160 F. Contaldo et al.

Table 2. SAL over integers. A SAT result is marked as correct when the objective value matches
the reference solution provided by OPTIMATHS AT(SMT) (when run without a timeout), as incor-
rect otherwise.

terminated
tool & configuration inst. |timeout| tool-er. | unsupp. | incor. | correct | tot. time (s.) | avg. time (s.) | med. time (s.)
GUROBI() 66 0 0 66 0 0 0 0.00 0.00
G12(FD) 66 0 66 0 0 0 0 0.00 0.00
1ZPLUS() 66 0 66 0 0 0 0 0.00 0.00
JACOP() 66 0 66 0 0 0 0 0.00 0.00
CHUFFED() 66 19 47 0 0 0 0 0.00 0.00
OR-TOOLS(SAT) 66 57 9 0 0 0 0 0.00 0.00
CHOCO() 66 66 0 0 0 0 0 0.00 0.00
HAIFACSP() 66 66 0 0 0 0 0 0.00 0.00
Picat(cp) 66 66 0 0 0 0 0 0.00 0.00
GECODE() 66 66 0 0 0 0 0 0.00 0.00
GUROBI(L) 66 63 0 0 0 3 166 55.49 52.44
PICAT(SAT) 66 62 0 0 0 4 1667 416.85 467.09
VIRTUAL BEST(MINIZINC) | 66 62 0 0 0 4 718 179.51 78.54
[OPTIMATHSAT (FZN) [66] 18] 0] 0[0] 48] T113] 148.20] 70.52]
[VIRTUAL BEST(FZN) | 66] 18] 0] o[0] 48] 7113] 148.20] 70.52|
[OPTIMATHSAT(SMT) [66] 22] 0] 0 0o 44] 2657] 60.41] 18.72]
[VIRTUAL BEST(ALL) [66] 16] 0] 0] 0] 50] 5037] 100.75] 25.13]

Table 3. OMT Problems defined over the rationals. A SAT result is marked as correct when
the objective value matches the reference solution provided by OPTIMATHSAT(SMT) with an
absolute error A < 107°. A result is marked as unverified when we have no reference solution
and incorrect if neither of the previous two conditions apply.

terminated incorrect results
2 = B g b NIRD

- 14 - <) o |~

I R - T | I T E]

g g; 5l € 2 S| Gl 3| [AAAlALAI
tool & configuration gl £|g| =& g 8 2 H E EIRSIRIRSIRSI RS

SAL, Symba, Jobshop and Strippacking
GECODE() 2888(2733| 0 0 155 0[10800| 69.68] 18.63 0] o[of of o] 0
G12(m1p) 2888| 10| 0]2855 0(23| 317| 13.79| 11.21{|2765(/90|{90(86|39| 0
GUROBI() 2888| 48]0(2728| 104| 8| 3961 | 35.37| 2.14||2684|44|32|32| 1| 0
VIRTUAL BEST(MINIZINC) 2888 0]0(2628| 237(23[13801| 53.08| 6.97 S e e e
[OPTIMATHSAT(FZN) [2888] 3170] 0]2854] 3[22320] 7.81] 0.40[[0] O] O[O] O] 0]
[VIRTUAL BEST(FZN) [2888] o]0 11|2854|23]20674] 7.19] o040 -[-[-[-] -| -]
[OPTIMATHSAT(SMT) [2888] 23[0[0[2865] 0[15676] 5.47] 0.08] O] -[-[-[-] -
[VIRTUAL BEST(ALL) [2888] 0]0] 0]2865[23][15183] 5.26] 0.08] -] -] -[-[-[-]
Machine Learning

GECODE() 510| 322|0| le4| 24| 0 11| 0.44| 043(| 147|17|17| 2| 0| O
G12(MmIP) 510| 108| 0| 400 2| 0| 225[112.47[112.47|| 400 0| O] O] O] 0
GUROBI() 510 9| 0] 472| 28| 1| 201| 6.92| 3.17|| 468| 4| 4| 2| 0] 0
VIRTUAL BEST(MINIZINC) 510 910 464 36| 1| 383| 10.34| 0.46 1A -] -] -] -
OPTIMATHSAT(FZN) 510 710 237| 263| 3| 2797| 10.52| 2.21|| 177|60|59| 0 0| 0
OPTIMATHSAT (FZN+E) 5101 92|10 0 415| 3| 1197| 2.86| 2.03 0 0| 0f 0] 0] O
VIRTUAL BEST(FZN) 510 700 83| 417| 3| 1366 3.25| 2.03 -l -] -] -] -

[OPTIMATHSAT(SMT)
[VIRTUAL BEST(ALL)

510] 10]0] 0] 500] 0] 5766] 11.53] 12.15]] 0
510] 7[0] 0] 500] 3] 2290] 4.55] 2.05]] -

We notice first that OPTIMATHS AT (FZN) always produces correct results and it
shows comparable performances in terms on number of problems solved wrt. the base-

From MINIZINC to Optimization Modulo Theories, and Back 161

line OPTIMATHSAT(SMT), solving even 4 problems more. (We conjecture that the
latter fact should be attributed to the limited, but effective, deduction capabilities of the
MZN2FZN compiler, that may have helped OPTIMATHS AT in solving the input formu-
las.) This suggests that, at least on problems on the integers, OMT2MZN is efficient and
effective and does not affect correctness.

In general, MINIZINC solvers do not seem to deal efficiently with this benchmark-
set. Some tools have experienced some internal error (e.g. dumped-core, segmenta-
tion fault), some others have been killed to a high memory consumption (over 32GB),
whereas the majority of the remaining tools had a timeout.

We explain this behavior with the fact that the given benchmark set is character-
ized by the presence of a heavy Boolean structure combined with arithmetical con-
straints, which requires the efficient combination of strong Boolean-reasoning capabil-
ities (e.g., efficiently handling chains of unit propagations) with strong arithmetical-
solving&optimization capabilities, which is a typical feature of OMT solvers.

None of the input formulas was initially supported by GUROBI. After restrict-
ing the bound of every integer variable to £10°, GUROBI(L) was able to solve 3
instances within the timeout. Among the MINIZINC solvers, the best result is obtained
by PICAT(SAT), that solved 4 problems out of 66.

Experimental Results Over the Rationals. We consider first the first three benchmark-
sets over the rationals: SAL over rationals, Symba, JobShop&Strip-Packing. (Separate
tables for the four benchmarks are reported in the extended version of this paper [24].)
Of all MINIZINC solvers we have tried, only three are able to deal with floating-point
constraints. The results are shown in Table 3. Since each of the input formulas is satisfi-
able, we consider a result incorrect either when it is equal to UNSAT, or when the relative

error A exceeds 1076, s.t.: A £ W, 0smt and o0y, being the optimal value
found by OPTIMATHS AT (SMT) and tﬁehoptimal value found by the MINIZINC solver
under test respectively. (Recall that the former was previously checked to be correct.)

Similarly to the previous experiment on the integers, OPTIMATHS AT (FZN) always
produces correct results, and display comparable performance wrt. OPTIMATH-
SAT(OMT) in terms of number of instances being solved, solving somewhat fewer
problems. This is not the case of the other three MINIZINC solvers. Among these,
GECODE experienced a timeout on the majority of the formulas being considered,
G12(MIP) returned mostly incorrect answers, whereas GUROBI seems to have the best
performance, in particular on the third benchmark-set.

We attribute the large number of incorrect results returned by all three MINIZINC
solvers to the fact that these tools use finite-precision floating-point arithmetic inter-
nally. The incorrect behavior of some of these solvers (e.g. GUROBI) can also be par-
tially explained with the large domain of floating-point variables in these problems.
However, given the nature of these input instances, it was not possible for us to assign
a smaller domain to each variable in the problem a priori.

We analyze separately the results for the last benchmark-set reported in Table 3. The
peculiar aspect of the Machine Learning benchmark-set [59] is that it is characterized by
Pseudo-Boolean sums over rational weights, and by very fine-grained rational values*.

4 For example 1799972218749879

s S951-905 13655245 1S @ sample weight value from problems in [59].

162 F. Contaldo et al.

Unfortunately, these fine-grained rational values are rounded by the standard MZN2FZN
compiler, which causes the incorrect results even of OPTIMATHS AT (FZN) in Table 3,
despite the fact that OPTIMATHS AT uses infinite-precision arithmetic.

In order to overcome this issue, we leverage the EMZN2FZN compiler described
in Sect. 3 so that the original fractional values are preserved in the resulting FLATZ-
INCmodel, and show that with this approach OPTIMATHS AT does not produce incor-
rect results any longer (configuration OPTIMATHS AT (FZN+E) in Table 3), solving cor-
rectly 152 problems more than OPTIMATHS AT (FZN).

Overall, since there are at least 237 formulas affected by the above issue with the
MZN2FZN compiler, we avoid an in-depth discussion of the results obtained by the other
MINIZINC solvers. However, at a first glance the situation does not seem to differ from
the other benchmark-sets over the rationals.

5.3 Discussion

On the whole, from our experiments, OMT tools appear to be still at some disadvantage
when dealing with MINIZINC problems wrt. specific tools, and vice versa.

On the one hand, OMT solvers seem to be penalized by their lack of efficient ad hoc
decision procedures for dealing with global constraints. Moreover, the approach taken
by the MZN2FZN compiler, that creates lots of alias Boolean, integer and floating-point
variables for dealing with Pseudo-Boolean constraints, is particularly challenging to
deal with efficiently by an OMTsolver.

On the other hand, MINIZINC solvers seem to suffer with problems needing
an arithmetic-reasoning component combined with heavy Boolean-reasoning compo-
nent. Even more importantly, the lack of infinite-precision linear arithmetic procedures
causes a number of incorrect results when dealing with OMT problems over the ratio-
nals. Both of these points need to be addressed in order to deal with the vast number of
Formal Verification and Model Checking applications in the SMT/OMT domain.

6 Conclusions and Future Work

In this paper we have taken a first step forward towards bridging the MINIZINC and the
OMT communities. The ultimate goal is to obtain a correct, effective and efficient fully-
automated system for translating problems from one community to the other, so as to
extend the application domain of both communities. With our experimental evaluation,
we have identified some criticalities that need to be addressed by each community in
order to solidify this union.

We plan to push this investigation forward as follows. In the short term, we plan
to address the inefficient handling of Pseudo-Boolean constraints over the rationals
revealed by the experimental evaluation in Sect. 5.2. In order to deal with those FLATZ-
INC constraints that require non-linear arithmetic, we envisage an opportunity to either
extend OPTIMATHS AT with proper handling of the non-linear arithmetic theory [20] or
to experiment with an encoding based on the floating-point theory [60]. This objective
goes hand in hand with the extension of OMT2MZN to deal with other SMT theories. In
the long term, OMT solving may also benefit from adopting efficient ad hoc decision

From MINIZINC to Optimization Modulo Theories, and Back 163

procedures for frequently used global constraints. Finally, we plan to broaden the scope
of our investigation and include other OMT solvers in our study.

References

I e Y N T

10.

11.

12.

13.

14.

16.

17.

19.

20.

. FZN20OMT. https://github.com/Patrick Trentin88/fzn2omt
. Benchmarks, Tools and Data. http://disi.unitn.it/trentin/resources/cpaior2020.tar.xz
. MathSAT 5. http://mathsat.fbk.eu/

OMT2MZN. https://github.com/cespio/omt2mzn
EMZN2FZN Repository. https://github.com/Patrick Trentin88/emzn2fzn

. Sal, symbolic analysis laboratory. http://sal.csl.sri.com

SMT-LIB Format for Finite Lists, Sets and Maps. https://www.cprover.org/SMT-LIB-LSM/

. Ansétegui, C., Bofill, M., Palahi, M., Suy, J., Villaret, M.: Solving weighted CSPs with meta-

constraints by reformulation into satisfiability modulo theories. Constraints 18(2), 236-268
(2013). https://doi.org/10.1007/s10601-012-9131-1

. Aratjo, R., Bessa, 1., Cordeiro, L.C., Filho, J.E.C.: SMT-based verification applied to non-

convex optimization problems. In: 2016 VI Brazilian Symposium on Computing Systems
Engineering (SBESC), November 2016

Asin, R., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E.: Cardinality networks: a
theoretical and empirical study. Constraints 16(2), 195-221 (2011). https://doi.org/10.1007/
s10601-010-9105-0

Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2010). http://www.smtlib.org

Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories, vol. 185,
chap. 26, pp. 825-885. IOS Press, February 2009

Bertolissi, C., dos Santos, D.R., Ranise, S.: Solving multi-objective workflow satisfiability
problems with optimization modulo theories techniques. In: SACMAT. ACM (2018)

Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving SAT and
MaxSAT with a quantum annealer: foundations and a preliminary report. In: Dixon, C., Fin-
ger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 153—171. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66167-4 9

. Bjgrner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In: Baier, C.,

Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194-199. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_14

Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E., Rubio, A.: The barcel-
ogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 294-298.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_27

Bofill, M., Palahi, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with
SAT modulo theories. Constraints 17(3), 273-303 (2012). https://doi.org/10.1007/s10601-
012-9123-1

. Bofill, M., Suy, J., Villaret, M.: A system for solving constraint satisfaction problems with

SMT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 300-305.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_25

Candeago, L., Larraz, D., Oliveras, A., Rodriguez-Carbonell, E., Rubio, A.: Speeding up the
constraint-based method in difference logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016.
LNCS, vol. 9710, pp. 284-301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2_-18

Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization
for satisfiability and verification modulo nonlinear arithmetic and transcendental functions.
ACM Trans. Comput. Logic 19(3), 1-52 (2018)

https://github.com/PatrickTrentin88/fzn2omt
http://disi.unitn.it/trentin/resources/cpaior2020.tar.xz
http://mathsat.fbk.eu/
https://github.com/cespio/omt2mzn
https://github.com/PatrickTrentin88/emzn2fzn
http://sal.csl.sri.com
https://www.cprover.org/SMT-LIB-LSM/
https://doi.org/10.1007/s10601-012-9131-1
https://doi.org/10.1007/s10601-010-9105-0
https://doi.org/10.1007/s10601-010-9105-0
http://www.smtlib.org
https://doi.org/10.1007/978-3-319-66167-4_9
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/s10601-012-9123-1
https://doi.org/10.1007/s10601-012-9123-1
https://doi.org/10.1007/978-3-642-14186-7_25
https://doi.org/10.1007/978-3-319-40970-2_18
https://doi.org/10.1007/978-3-319-40970-2_18

164

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

F. Contaldo et al.

Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93—-107. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

Collavizza, H., Rueher, M.: Exploration of the capabilities of constraint programming for
software verification. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp- 182-196. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372_12
Collavizza, H., Rueher, M., Van Hentenryck, P.: CPBPV: a constraint-programming frame-
work for bounded program verification. Constraints 15(2), 238-264 (2010). https://doi.org/
10.1007/s10601-009-9089-9

Contaldo, F., Trentin, P., Sebastiani, R.: From minizinc to optimization modulo theories, and
back (extended version) (2019). https://arxiv.org/abs/1912.01476

SMTURL: SmtLibav2. www.smtlib.cs.uiowa.edu/

Elgabou, H.A., Frisch, A.M.: Encoding the lexicographic ordering constraint in SAT modulo
theories. In: Proceedings of Thirteenth International Workshop on Constraint Modelling and
Reformulation, September 2014

Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 352-366. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04244-729

Frisch, A.M., Giannaros, P.A.: SAT Encodings of the At-Most-k Constraint Some Old, Some
New, Some Fast, Some Slow (2010)

Frisch, A.M., Palahi, M.: Anomalies in SMT solving: difficulties in modelling combinatorial
problems. In: Proceedings of Thirteenth International Workshop on Constraint Modelling
and Reformulation, September 2014

Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of SMT-based
algorithms. In: SMT Workshop 2015, 13th International Workshop on Satisfiability Modulo
Theories (2015)

Grinchtein, O., Carlsson, M., Pearson, J.: A constraint optimisation model for analysis
of telecommunication protocol logs. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015.
LNCS, vol. 9154, pp. 137-154. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21215-99

Karpenkov, G.E.: Finding inductive invariants using satisfiability modulo theories and con-
vex optimization. Theses, Université Grenoble Alpes (2017)

Kovisznai, G., Erdélyi, B., Bird, C.: Investigations of graph properties in terms of wireless
sensor network optimization. In: 2018 IEEE International Conference on Future IoT Tech-
nologies (Future [0T), January 2018

Larraz, D., Oliveras, A., Rodriguez-Carbonell, E., Rubio, A.: Minimal-model-guided
approaches to solving polynomial constraints and extensions. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 333-350. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09284-3_25

Leofante, F., Abraham, E., Niemueller, T., Lakemeyer, G., Tacchella, A.: Integrated synthesis
and execution of optimal plans for multi-robot systems in logistics. Inf. Syst. Front. 21(1),
87-107 (2018)

Li, Y., Albarghouthi, A., Kincad, Z., Gurfinkel, A., Chechik, M.: Symbolic optimization with
SMT solvers. In: POPL (2014)

Liu, T., Tyszberowicz, S.S., Beckert, B., Taghdiri, M.: Computing exact loop bounds for
bounded program verification. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA 2017.
LNCS, vol. 10606, pp. 147-163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69483-2_9

MiniZinc. www.minizinc.org

https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/11691372_12
https://doi.org/10.1007/s10601-009-9089-9
https://doi.org/10.1007/s10601-009-9089-9
https://arxiv.org/abs/1912.01476
www.smtlib.cs.uiowa.edu/
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-319-21215-9_9
https://doi.org/10.1007/978-3-319-21215-9_9
https://doi.org/10.1007/978-3-319-09284-3_25
https://doi.org/10.1007/978-3-319-09284-3_25
https://doi.org/10.1007/978-3-319-69483-2_9
https://doi.org/10.1007/978-3-319-69483-2_9
www.minizinc.org

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

From MINIZINC to Optimization Modulo Theories, and Back 165

Nadel, A., Ryvchin, V.: Bit-vector optimization. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 851-867. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49674-9_53

Nethercote, N., Stuckey, PJ., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards
a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529-543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38
Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective reasoning with
constrained goal models. Requirements Eng. 23(2), 189-225 (2016). https://doi.org/10.1007/
s00766-016-0263-5

Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156-169. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11814948_18

Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E., Rubio, A.: Challenges in satisfia-
bility modulo theories. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 2—-18. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9_2

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937-977
(2006)

Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Con-
straints 14(3), 357-391 (2009). https://doi.org/10.1007/s10601-008-9064-x

Oliver, R.S., Craciunas, S.S., Steiner, W.: IEEE 802.1Qbv gate control list synthesis using
array theory encoding. In: 2018 IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), April 2018

Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765-768
(1981)

Ratschan, S.: Simulation based computation of certificates for safety of dynamical sys-
tems. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 303-317.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3_17

Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent meta-search
language for MiniZinc. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 376-392.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_27

Roselli, S.E,, Bengtsson, K., Akesson, K.: SMT solvers for job-shop scheduling problems:
models comparison and performance evaluation. In: 2018 IEEE 14th International Confer-
ence on Automation Science and Engineering (CASE), August 2018

Sawaya, N.W., Grossmann, L.E.: A cutting plane method for solving linear generalized dis-
junctive programming problems. Comput. Chem. Eng. 29(9), 1891-1913 (2005)

Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisf. Boolean Model. Comput. JSAT
3(3-4), 141-224 (2007)

Sebastiani, R., Tomasi, S.: Optimization in SMT with £A(Q) cost functions. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 484—498.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_38

Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs. ACM
Trans. Comput. Logics 16(2), 1-43 (2015)

Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories. In: Kroen-
ing, D., Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447-454. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_27

Sebastiani, R., Trentin, P.: Pushing the envelope of optimization modulo theories with linear-
arithmetic cost functions. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
335-349. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_27

https://doi.org/10.1007/978-3-662-49674-9_53
https://doi.org/10.1007/978-3-662-49674-9_53
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s00766-016-0263-5
https://doi.org/10.1007/s00766-016-0263-5
https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/978-3-540-73449-9_2
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-319-65765-3_17
https://doi.org/10.1007/978-3-319-23219-5_27
https://doi.org/10.1007/978-3-642-31365-3_38
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-662-46681-0_27

166

57.

58.

59.

60.

61.

62.

F. Contaldo et al.

Sebastiani, R., Trentin, P.: On optimization modulo theories, MaxSMT and sorting networks.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 231-248. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_14

Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories. J. Autom.
Reason. 64(3), 423-460 (2018)

Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif. Intell. 244,
166-187 (2017)

Trentin, P., Sebastiani, R.: Optimization modulo the theory of floating-point numbers. In:
Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 550-567. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_33

Veksler, M., Strichman, O.: Learning general constraints in CSP. Artif. Intell. 238, 135-153
(2016)

Zhou, N.-F.,, Kjellerstrand, H.: Optimizing SAT encodings for arithmetic constraints. In:
Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 671-686. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66158-2_43

https://doi.org/10.1007/978-3-662-54580-5_14
https://doi.org/10.1007/978-3-030-29436-6_33
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43

®

Check for
updates

Transfer-Expanded Graphs
for On-Demand Multimodal Transit
Systems

=)

Kevin Dalmeijer! and Pascal Van Hentenryck

Georgia Institute of Technology, Atlanta, GA 30332, USA
dalmeijer@gatech.edu, pvh@isye.gatech.edu

Abstract. This paper considers a generalization of the network design
problem for On-Demand Multimodal Transit Systems (ODMTS). An
ODMTS consists of a selection of hubs served by high frequency buses,
and passengers are connected to the hubs by on-demand shuttles which
serve the first and last miles. This paper generalizes prior work by includ-
ing three additional elements that are critical in practice. First, differ-
ent frequencies are allowed throughout the network. Second, additional
modes of transit (e.g., rail) are included. Third, a limit on the number
of transfers per passenger is introduced. Adding a constraint to limit the
number of transfers has a significant negative impact on existing Benders
decomposition approaches as it introduces non-convexity in the subprob-
lem. Instead, this paper enforces the limit through transfer-expanded
graphs, i.e., layered graphs in which each layer corresponds to a certain
number of transfers. A real-world case study is presented for which the
generalized ODMTS design problem is solved for the city of Atlanta. The
results demonstrate that exploiting the problem structure with transfer-
expanded graphs results in significant computational improvements.

Keywords: Combinatorial optimization - Multimodal transportation -
Benders decomposition - Transfer-expanded graphs

1 Introduction

This paper is motivated by the design and implementation of an On-Demand
Multimodal Transit System (ODMTS) for the city of Atlanta. The share of
public transit in Atlanta (about 2-3%) is very low compared to other American
cities (e.g., about 15% in Boston) and Atlanta is also the 8th most congested
city in the world. There is thus a strong need for a modern transit systems that
leverages the train and bus infrastructure of the city and complements it with
innovative mobility concepts.

This paper considers the design of an ODMTS for Atlanta that combines a
network of trains and buses with on-demand multimodal shuttles that act as
feeders to/from the bus/rail network and serve local demand. ODMTS address

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 167-175, 2020.
https://doi.org/10.1007/978-3-030-58942-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_11&domain=pdf
http://orcid.org/0000-0002-4304-7517
http://orcid.org/0000-0001-7085-9994
https://doi.org/10.1007/978-3-030-58942-4_11

168 K. Dalmeijer and P. Van Hentenryck

the first/last mile problem that plagues transit systems, while mitigating con-
gestion on high-density corridors and leveraging economy of scale. ODMTS and
their design challenge was introduced in [11], which also presents an overview of
related work. The main contribution of this paper is to generalize prior work by
including three additional elements that are critical for ODMTS in large cities
such as Atlanta. First, different frequencies are allowed throughout the network.
Second, additional modes of transit (e.g., rail) are included. Third, a limit on
the number of transfers per passenger is introduced. Adding a constraint to limit
the number of transfers has a significant negative impact on existing Benders
decomposition approaches as it introduces non-convexity in the subproblem.
Instead, this paper enforces the limit through transfer-expanded graphs, i.e.,
layered graphs in which each layer corresponds to a certain number of transfers.
A real-world case study is presented for which the generalized ODMTS design
problem is solved for the city of Atlanta, which has the 8th largest transit sys-
tem in the US by ridership. The results demonstrate that exploiting the problem
structure through transfer-expanded graphs results in significant computational
improvements.

2 The Generalized ODMTS Design Problem

This section presents the generalized ODMTS design problem that enhances the
model from [11] along several dimensions: The choice of bus frequencies, addi-
tional transportation modes and, most importantly, a constraint on the num-
ber of transfers. The Benders decomposition approach in [11] exploits a natural
decomposition of the ODMTS design problem. The network design is determined
by the master problem, while the routing of the passengers for a given design is
determined by the subproblem. A major benefit of this decomposition is that the
subproblem can be solved for each trip independently. The same decomposition
is used in this paper.

2.1 The Master Problem for Network Design

Consider a directed multigraph G = (V, A), with vertices V = {1,...,n} and arc
set A. Let F be the set of possible frequencies, i.e., the total number of vehicles
during the time horizon, let M be the set of possible transportation modes, which
may include shuttles, and let K be the total number of arcs that each passenger
may travel. By definition, K is equal to the maximum number of transfers plus
one. In the multigraph G, each arc a € A is uniquely defined by the quadruple
a=(i,j,m,f) €V xV x M x F,i# j. Using arc a means traveling from i to
j with mode m, which departs with frequency f. For a given arc a € A, these
elements are referred to as i(a), j(a), m(a), and f(a), respectively.

Designing a generalized ODMTS amounts to deciding which arcs a € A are
made available to passengers. Let the binary variable z, € B be equal to one if
arc a is made available, and zero otherwise. The cost of enabling arc a is given
by the parameter §,. It is assumed that G, > 0 for all a € A.

Transfer-Expanded Graphs for ODMTS 169

For a given design, a cost is incurred due to passengers traveling trough the
network. This cost ¢(z) is a function of the values of the z-variables that define
the design. The value of &(z) can be found by solving the subproblem, which is
discussed in Sect. 2.2. If the subproblem is not feasible, then ¢(z) = co.

A formulation for the master problem is presented in Fig. 1. For convenience,
5% (4) is defined as the set of all arcs going out of i € V. Similarly, the set 5+ (i, m)
is defined as the set of all arcs with mode m € M going out of ¢ € V. The sets
0~ (4) and 6~ (i,m) are defined analogously for the incoming arcs.

min Y Baza + D(2), (1a)
acA

s.t. Yo fl@z— >, fl@z=0 VieV,me M, (1b)
a€st (i,m) a€éd— (i,m)

> Zijmp <1 VieV,jeVimeM, (lc)
fEF|(i,j,m,f)EA

za €B Va e A (1d)

Fig. 1. Formulation for the generalized ODMTS design problem.

Objective (1a) minimizes the cost of the design plus the cost of routing the
passengers through the network. Constraints (1b) ensure that the frequencies
for each mode are balanced at each vertex. For example, if three buses arrive
during the time horizon, then three buses should also depart. Constraints (1c)
enforce that only one frequency can be selected for a given connection and a
given mode. Equations (1d) state the integrality requirements.

2.2 The Subproblem: Routing Passengers Through the Network

For a given design, the passenger trips are routed through the network at min-
imum cost. Let T be the set of all passenger trips, and let each trip r € T be
defined by an origin o(r), a destination d(r), and a number of passengers p(r). If
trip r € T is routed through arc a € A, then a cost of 7/ is incurred. The total
cost of routing all passenger trips, @(z), is the sum over the costs per trip. It is
assumed that v > 0 for every arc a € A and trip r € T, such that the optimal
route is a simple path from o(r) to d(r).

Solving the subproblem amounts to solving a shortest path problem from o(r)
to d(r) for each trip r € T, with the additional restriction that the number of arcs
in the path is at most K. This problem is known as the cardinality-constrained
shortest path problem (CSP) [6]. Note that the cardinality constraint follows
from the limit on the number of transfers. Without this limit, the subproblem
is an (unconstrained) shortest path problem (SP), as is the case in [11].

It is well-known that SP possesses total unimodularity and can be solved by
linear programming (LP). Adding an additional constraint, however, typically

170 K. Dalmeijer and P. Van Hentenryck

destroys this structure [1]. This is indeed the case when a cardinality constraint
is added to the subproblem formulation in [11]. As a result, the cost function
&(z) would change from convex to non-convex, which negatively impacts Benders
decomposition approaches (see Sect. 3).

To remedy this limitation, this paper presents a new formulation for the
subproblem that enforces the transfer limit without destroying total unimodu-
larity. This formulation uses transfer-expanded graphs, i.e., layered graphs for
which each layer corresponds to a number of transfers. Transfer-expanded graphs
encode the transit constraints directly, making it possible to use shortest-path
algorithms.

2.3 Transfer-Expanded Graphs

Transfer-expanded graphs share some similarities with time-expanded networks,
where each vertex has multiple copies for different periods of time. This is the
case, for example, for modern algorithms for evacuation planning and scheduling
[9,13,14]. Reference [12] also uses a layered network to solve the dynamic gener-
alized assignment problem. As a result, some of the side-constraints do not need
to be handled explicitly. See [3] for a recent literature review on time-expanded
graphs. Reference [8] discusses more general layered graph approaches.

Let G" = (V", A") be the transfer-expanded graph for a given trip r € 7.
This graph contains multiple copies of the original arcs and vertices, organized
in K +1 layers. It is assumed that K > 2, as the subproblem is trivial for K = 1.
A vertex © = (i,k) € V" in the transfer-expanded graph is defined by a vertex
¢ € V in the original graph and by a layer k € {1,..., K + 1}. Similarly, the
definition of an arc is extended to a = (a, k,[), in which a € A is the original
arc, k € {1,..., K} is the layer of the starting vertex of @ and [€ {2,..., K +1}
is the layer of the ending vertex.

The transfer-expanded graph is constructed as follows. For convenience, Fig. 2
provides an example for K = 3. First, the vertex set V" is defined. For the origin
and the destination of the trip, introduce the vertices (o(r), 1) and (d(r), K +1).
For the other vertices i € V\{o(r),d(r)} of the original graph, add the copies
(i,k) for k € {2,...,K} to the transfer-expanded graph. The arc set A" is
constructed based on the arcs of the original graph, as follows:

1. For each arc starting in the origin, i.e., a € 67 (o(r)), add the arc (a,1,2) if
j(a) # d(r), or the arc (a,1, K + 1) if j(a) = d(r).

2. For each arc not adjacent to the origin or the destination, i.e., a € A and
i(a),j(a) ¢ {o(r),d(r)}, add the arcs (a,k,k+1) for all k € {2,..., K —1}.

3. For each arc ending in the destination that does not start in the origin, i.e.,
a € 6 (d(r)), i(a) # o(r), add the arcs (a,k, K +1) for all k € {2,...,K}.

By construction, it follows that solving CSP on the original graph is equivalent to
solving SP on the transfer-expanded graph. Figure 3 formulates the subproblem
as a collection of SPs on transfer-expanded graphs. Let y. € B be the flow on
arc a € A" of trip r € T. For convenience, define ;" (7) to be the set of all arcs
in A™ coming out of ¥ € V. Similarly, let 0,7 (v) be the set of incoming arcs.

Transfer-Expanded Graphs for ODMTS 171

d(r)
"3 iT4

Fig. 2. A transfer-expanded graph for K = 3, |[M| =1, |F| = 1, for a complete graph
as the original graph. The dotted arcs can potentially be removed (discussed below).

o) =min > i (22)

r€T a=(a,k,1)EA"

st vz < 2a vreT,a=(a, k1) € A", (2b)
1 if v = (o(r),1)
dovi— > wa=<-1 ifo=(dr),K+1) VreT,neV’, ()
aest (v) acs; (v) 0 else
vz >0 vreT,ac A", (2d)

Fig. 3. Formulation for the subproblem on transfer-expanded graphs.

Objective (2a) minimizes the cost of all trips. Constraints (2b) state that
passengers can only use arcs available in the design. Constraints (2c) enforce flow
conservation, and Equations (2d) define the variables. Due to total unimodularity
of the SPs, no integrality conditions are required.

The main advantage of using tranfer-expanded graphs is that the limit on
the number of transfers can be enforced without destroying total unimodularity.
A potential downside is that the number of variables and constraints in the
subproblem increases linearly with K. In public transit, however, the number
of transfers that passengers are willing to take, and therefore the value of K, is
typically very low. Furthermore, a larger subproblem does not necessarily mean
that the subproblem is more difficult to solve, as algorithms may benefit from
the fact that the transfer-expanded graph is acyclic. When the z-variables are
integers, for example, the acyclic subproblem for each trip can be solved in linear
time through topological sorting [5].

Finally, it is worth pointing out that if o(r) and d(r) are only served by
shuttles, and shuttles satisfy the triangle inequality, and a direct shuttle trip
is possible, then some arcs may be removed from the transfer-expanded graph
without sacrificing optimality. Specifically, using a shuttle on the path (o(r), 1) —
(1,2) — (d(r), K + 1) for i € V is always dominated by using a direct shuttle

172 K. Dalmeijer and P. Van Hentenryck

from (o(r),1) to (d(r), K + 1). It follows that the shuttle arcs between (i,2)
and (d(r), K + 1) may be removed for all i € V, as also indicated in Fig.2. For
K < 3, it then follows that the transfer-expanded graph does not require more
edges than the original graph.

3 Benders Decomposition

Following [11], a Benders decomposition approach is presented for the generalized
ODMTS design problem. The goal is to solve the master problem (1), which
is complicated by the fact that @(z) is defined implicitly. To apply Benders
decomposition, replace @(z) in Objective (1a) by a new variable § € R, and add
the constraint § > @(z). Note that this does not change the problem, as § = &(z)
in any optimal solution. In Benders decomposition, the constraint § > &(z) is
enforced through Benders cuts. For subproblem (2), these cuts are

0>0(2)+> > > NFE) (20 — Za), (3)

reT acA k=1

with A7¥(2) the dual values of Constraints (2b) and Zz any feasible solution to
the LP relaxation of the master problem [2]. For the case study in this paper,
the subproblem is always feasible. If this assumption is not satisfied, Benders
feasibility cuts, which are similar to (3), may also be included [2].

The Benders decomposition approach is implemented in C++ and Gurobi
8.1.1. The master problem is the main model, and the Benders cuts (3) are sepa-
rated in both the MIP solution callback (in case the z-variables are integer) and
in the MIP node callback (in case the z-variables are fractional). The subproblem
for each trip is also solved with Gurobi, and dual simplex is used to ensure that
the basis remains feasible when the subproblem is solved for different values of z.
To prevent excessive calls to the subproblem, feasibility heuristics are disabled.
The number of cut separation rounds in the root node is set to the maximum
value to get the best possible bound. Finally, the 2e-trick is used to stabilize the
master problem [7]. This stabilization uses € = 0.00001 and the trivial core point
obtained by assigning z, = i to every bus arc.

Without transfer-expanded graphs, the subproblem is not totally unimodular
and @(z) is not convex (see Sect. 2.2). In that case, Benders decomposition cannot
be applied directly. Instead, 8 > &(z) may be enforced by adding combinatorial
Benders cuts in the MIP solution callback and Benders cuts for the LP relaxation
of the subproblem in both callbacks [4,10]. It follows from these references that
combinatorial Benders cuts for the ODMTS design problem are given by 6 >

@(2) (1 - ZTGT ZaGA (Za(l - Za) + (1 - za)za))'

4 Atlanta as a Case Study

The generalized ODMTS design problem was solved for the city of Atlanta. In
Atlanta, the Metropolitan Atlanta Rapid Transit Authority (MARTA) operates

Transfer-Expanded Graphs for ODMTS 173

two modes: bus and rail. The case study adds on-demand shuttles and the bus
system is redesigned accordingly. More precisely, define the three modes M =
{S, B, R} for shuttle, bus, and rail respectively. Shuttle arcs are introduced to
connect from origins to hubs and from hubs to destinations, as well as to serve
the local demand. The corresponding z, variables are fixed to one, as shuttles are
always available. Following [11], the cost of using a shuttle is a weighted sum of
cost and convenience, controlled by the parameter « € [0,1]. Let d, and ¢, be the
travel distance and the travel time of arc a € A, respectively. The parameter ¢* is
the cost of using a shuttle per person per unit of distance. The cost of traversing
arc a € A for trip r € T is then defined as 7/, = p(r) ((1 — a)c”d, + at,). Note
that the frequency does not affect the cost, and can be set to an arbitrary value.

Bus arcs are defined between the potential hub locations and between each
hub and the three nearest rail stations. The cost of enabling bus arc a € A is
given by 3, = (1 — a)c® f(a)d,. That is, the distance is multiplied by the cost
per unit distance and the number of buses over the time horizon. The cost of

traversing a bus arc is given by 7, = « (ta + L+ %) Here L is the fixed time

required for a transfer, H is the time horizon, and %(a) is the expected waiting

time before the next bus arrives, which depends on the frequency. Rail arcs are
defined between all rail stations that are connected by the same rail line. The
costs of traversing an arc is defined in the same way as for the buses. For each
rail arc a € A, the variable z, is fixed to one, which makes the cost of enabling
an arc irrelevant.

The case study is based on passenger trip data provided by MARTA for
March 16, 2018, between 6am and 10am. Connecting trips have been chained
together to obtain origin and destination pairs. This resulted in 2588 unique
trips, with 7167 passengers in total. There are 5563 bus stops and rail stations
in total, and their locations were also provided by MARTA. Eleven hubs were
selected manually on the map. The data shows that demand is very stable and
predictable over time, with about 90% of the trips being recurrent.

For the distances d,, great-circle distances are used. To estimate travel times
t,, the distances are divided by a constant speed of 30 mph. The cost parameters
are set to ¢® = 5 and ¢® = 1. The fixed transfer time is chosen to be five minutes,
i.e., L = 5min, and the time horizon is set to four hours, i.e., H = 240 min. To
balance cost and convenience, o = 0.5 is used. The rail frequency is assumed
to be fixed to six per hour, i.e., f(a) = 6 x 4 = 24, and bus frequencies are
determined by the model to be either three per hour or six per hour. At most
two transfers are allowed, i.e., K = 3. This is feasible, as shuttles can always be
used to decrease the number of transfers (at a cost).

Figure 4a presents the result of solving the generalized ODMTS problem
using transfer-expanded graphs. In total, it took 122's to obtain the optimal solu-
tion and prove optimality, with a objective value of 131,905. Without transfer-
expanded graphs, i.e., when adding combinatorial Benders cuts, it was not pos-
sible to obtain an optimal solution in reasonable time. Instead, the evaluation
considered a relaxation in which the combinatorial Benders cuts are ignored:
Only the Benders cuts for the LP relaxation of the subproblem were added.

174 K. Dalmeijer and P. Van Hentenryck

(a) Based on transfer-expanded graphs. (b) Based on relaxed problem.

Fig.4. Network designs for Atlanta showing rail (lines), low frequency buses
(orange/light), and high frequency buses (purple/dark). (Color figure online)

Solving this relaxation to optimality took 3.8 h. Keep in mind that this relax-
ation explores routes that may require many transfers. To evaluate the quality
of the design obtained by the relaxation, the passengers were routed through the
transfer-expanded formulation with the z-variables fixed to their values found
in the relaxation. The result is presented in Fig.4b and has an objective value
of 131,965. The higher cost is due to the fact that the transfer limit was not
enforced when designing the network, i.e., passenger willingness to transfer was
overestimated, which results in a network with less public transit.

In summary, the main benefit of the transfer-expanded formulation is the
significant computational benefits it provides in capturing the transfer limit.
Without transfer-expanded paths, it can be optimal to fractionally select long
paths that do not adhere to this constraints. These longer fractional paths likely
play a role in the difference of computational performance.

5 Conclusion

This paper presented a generalization of the ODMTS design problem that intro-
duces three elements that are critical in practice: different frequencies, additional
transit modes, and a limit on the number of transfers. Transfer-expanded graphs
are introduced to handle the transfer limit without negatively impacting existing
Benders decomposition approaches. The Atlanta case study demonstrates that
this approach is very effective, as transfer-expanded graphs significantly improve
computational performance. As the case study involves a real world instance and
a significant transit network (the 8th largest in the US by ridership), this is a
good indication that the same approach may be effective for other real-world
instances. Exploiting the problem structure through transfer-expanded graphs
opens the door to designing increasingly realistic networks in the future. One

Transfer-Expanded Graphs for ODMTS 175

possible extension is to incorporate the capacity of the on-demand shuttles. As
capacity of these shuttles is typically small, expanded networks could also be
used to model capacity efficiently.

Acknowledgements. This research is partly supported by NSF Leap HI proposal
NSF-1854684.

References

10.

11.

12.

13.

14.

. Aneja, Y.P., Nair, K.P.K.: The constrained shortest path problem. Naval Res.

Logistics Q. 25(3), 549-555 (1978). https://doi.org/10.1002/nav.3800250314
Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numer. Math. 4(1), 238-252 (1962)

Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M.: The continuous-time service
network design problem. Oper. Res. 65(5), 1303-1321 (2017). https://doi.org/10.
1287 /opre.2017.1624

Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear
programming. Oper. Res. 54(4), 756-766 (2006). https://doi.org/10.1287/opre.
1060.0286

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press (2009)

Dahl, G., Realfsen, B.: The cardinality-constrained shortest path problem in 2-
graphs. Networks 36(1), 1-8 (2000)

Fischetti, M., Ljubié, I., Sinnl, M.: Redesigning Benders decomposition for large-
scale facility location. Manag. Sci. 63(7), 2146-2162 (2017). https://doi.org/10.
1287 /mmnsc.2016.2461

Gouveia, L., Leitner, M., Ruthmair, M.: Layered graph approaches for combina-
torial optimization problems. Comput. Oper. Res. 102, 22-38 (2019). https://doi.
org/10.1016/j.cor.2018.09.007

Hasan, M.H., Van Hentenryck, P.: A column-generation algorithm for evacua-
tion planning with elementary paths. In: Beck, J.C. (ed.) CP 2017. LNCS, vol.
10416, pp. 549-564. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66158-2_35

Laporte, G., Louveaux, F.V., Van Hamme, L.: An integer L-shaped algorithm
for the capacitated vehicle routing problem with stochastic demands. Oper. Res.
50(3), 415-423 (2002). https://doi.org/10.1287/opre.50.3.415.7751

Mabhéo, A., Kilby, P., Van Hentenryck, P.: Benders decomposition for the design of
a hub and shuttle public transit system. Transp. Sci. 53(1), 77-88 (2019). https://
doi.org/10.1287 /trsc.2017.0756

Moccia, L., Cordeau, J.F., Monaco, M.F., Sammarra, M.: A column generation
heuristic for a dynamic generalized assignment problem. Comput. Oper. Res. 36(9),
2670-2681 (2009). https://doi.org/10.1016/j.cor.2008.11.022

Pillac, V., Cebrian, M., Van Hentenryck, P.: A column-generation approach for
joint mobilization and evacuation planning. Constraints 20(3), 285-303 (2015).
https://doi.org/10.1007/s10601-015-9189-7

Pillac, V., Van Hentenryck, P., Even, C.: A conflict-based path-generation heuris-
tic for evacuation planning. Transp. Res. Part B: Methodol. 83, 136-150 (2016).
https://doi.org/10.1016/j.trb.2015.09.008

https://doi.org/10.1002/nav.3800250314
https://doi.org/10.1287/opre.2017.1624
https://doi.org/10.1287/opre.2017.1624
https://doi.org/10.1287/opre.1060.0286
https://doi.org/10.1287/opre.1060.0286
https://doi.org/10.1287/mnsc.2016.2461
https://doi.org/10.1287/mnsc.2016.2461
https://doi.org/10.1016/j.cor.2018.09.007
https://doi.org/10.1016/j.cor.2018.09.007
https://doi.org/10.1007/978-3-319-66158-2_35
https://doi.org/10.1007/978-3-319-66158-2_35
https://doi.org/10.1287/opre.50.3.415.7751
https://doi.org/10.1287/trsc.2017.0756
https://doi.org/10.1287/trsc.2017.0756
https://doi.org/10.1016/j.cor.2008.11.022
https://doi.org/10.1007/s10601-015-9189-7
https://doi.org/10.1016/j.trb.2015.09.008

)

Check for
updates

Reinforcement Learning for Variable
Selection in a Branch and Bound
Algorithm

Marc Etheve!3®) @, Zacharie Ales?3®, Come Bissuel®, Olivier Juan'®,
and Safia Kedad-Sidhoum?

! EDF R&D, Paris, France
{marc.etheve,come.bissuel,olivier.juan}@edf.fr
2 ENSTA Paris, Institut Polytechnique de Paris, Paris, France
zacharie.ales@ensta-paris.fr
3 CNAM Paris, CEDRIC, Paris, France
safia.kedad_sidhoum@cnam.fr

Abstract. Mixed integer linear programs are commonly solved by
Branch and Bound algorithms. A key factor of the efficiency of the most
successful commercial solvers is their fine-tuned heuristics. In this paper,
we leverage patterns in real-world instances to learn from scratch a new
branching strategy optimised for a given problem and compare it with a
commercial solver. We propose FMSTS, a novel Reinforcement Learning
approach specifically designed for this task. The strength of our method
lies in the consistency between a local value function and a global met-
ric of interest. In addition, we provide insights for adapting known RL
techniques to the Branch and Bound setting, and present a new neural
network architecture inspired from the literature. To our knowledge, it is
the first time Reinforcement Learning has been used to fully optimise the
branching strategy. Computational experiments show that our method
is appropriate and able to generalise well to new instances.

Keywords: Reinforcement learning - Mixed integer linear
programming - Neural network - Branch and bound - Branching
strategy

1 Introduction

Mixed Integer Linear Programming (MILP) is an active field of research due to
its tremendous usefulness in real-world applications. The most common method
designed to solve MILP problems is the Branch and Bound (B&B) algorithm
(see [1] for an exhaustive introduction). B&B is a general purpose procedure
dedicated to solve any MILP instance, based on a divide and conquer strategy
and driven by generic heuristics and bounding procedures.

Recently, a lot of attention has been paid to the interactions between MILP
and machine learning. As pointed out in [2], learning methods may compensate

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 176-185, 2020.
https://doi.org/10.1007/978-3-030-58942-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_12&domain=pdf
http://orcid.org/0000-0003-4436-3391
http://orcid.org/0000-0003-4602-2638
http://orcid.org/0000-0002-5430-3168
http://orcid.org/0000-0003-3445-4847
http://orcid.org/0000-0002-2184-2261
https://doi.org/10.1007/978-3-030-58942-4_12

Reinforcement Learning for Variable Selection 177

for the lack of mathematical understanding of the B&B method and its vari-
ants [3,4]. The plethora of different approaches in this young field of research
gives evidence of the variety of ways in which learning can be leveraged. For
instance, a natural idea is to bypass the whole B&B procedure to directly learn
solutions of MILP instances [5]. If one wants to preserve the optimality guar-
antee provided by the B&B algorithm, a solution could be to rather learn the
output of a computationally expensive heuristic used in a B&B scheme [6-8].
Alternatively, [9] suggests learning to select the best cut among a set of available
cuts at each node of the B&B tree. Whether it is by Imitation Learning or by
Reinforcement Learning (RL), these solutions are often limited by their scope:
they seek to take decisions according to a local criterion.

In the present work, we propose FMSTS (Fitting for Minimising the SubTree
Size), a novel approach based on Reinforcement Learning aiming at optimising
a global criterion at the scale of the whole B&B tree. We learn a branching
strategy from scratch, independent of any heuristic.

The paper is structured as follows. First, we define the general setting of our
study. Using RL to minimise a global criterion, we then demonstrate that, under
certain assumptions, a specific kind of value functions enforces the optimality of
such criterion. Next, we propose to adapt known generic learning methods and
neural network architectures to the Branch and Bound setting. We illustrate our
proposed method on industrial problems and discuss it before concluding.

2 General Setting

In real-world applications, companies often optimise systems on a regular basis
given fluctuating data. This case has been studied in the literature for different
purposes, such as learning an approximate solution [5] or imitating heuristics [8].
However, to our knowledge, no concrete contribution has been made regarding
the use of Reinforcement Learning for variable selection (branching) in this set-
ting. The present work fills this gap.

Throughout this paper, we are interested in the following setting. For a given
problem P, the instances are perceived as randomly distributed according to an
unknown distribution D. This distribution, emanating from real-world systems,
governs the fluctuating data (A, b, c) across instances, written as

min ¢’z
zER™

peEP: Az <b (1)

s.t.
Ty € {0, 1}“7‘, T_g € [Rn_“ﬂ

with A € R™*™, b € R™ and ¢ € R™. In practice, as the instances come from a
single problem, they share the same structure. Especially, the set of null coeffi-
cients, the number of constraints m, of variables n and the set of binary variables
J are the same for every instance of a given problem.

178 M. Etheve et al.

In this setting, we seek to learn and optimise a branching strategy to solve
to optimality any instance of a given problem. As pointed out in [10], the prob-
lem of optimising the decisions along a B&B tree is naturally formulated as a
control problem on a sequential decision-making process. More specifically, it
is equivalent to solving a finite-horizon deterministic Markov Decision Process
(MDP) and may thus be tackled by Reinforcement Learning (see [11] for an
introduction).

3 Fitting for Minimising the SubTree Size (FMSTS)

In a finite-horizon setting, Reinforcement Learning aims at optimising an agent
to produce sequences of actions that achieve a global objective. The agent is
guided by local costs associated with the actions it takes. Starting from an
initial state in a possibly stochastic environment, it must learn to take the best
sequence of actions and thus transitioning from state to state to minimise the
overall costs. Exact Q-learning solves such problem by updating a table mapping
(Q-function) from state/action pairs to discounted future costs (Q-values).

In the following, we define the RL problem of interest and, as exact Q-learning
is not practicable, the approximate framework considered. Next, we propose a
specific informative Q-function allowing us to use this framework in practice.

3.1 Approximate Q-Learning with Observable Q-Values

Let us denote by S the set of every reachable state for a given problem P, a state
being defined as all the information available when taking a branching decision
in a B&B tree. Under perfect information, a state associated to a B&B node is
the whole B&B tree as it has been expanded at the time the branching decision is
taken. We write A the set of actions, i.e. the set of available branching decisions
on a specific problem (the set of binary variables A = J in our case) and 7 a
policy mapping any state to a branching decision:

jSs—A
T sem(s)=a

The transitions between states are governed by the B&B solver, and the MDP
is regarded as deterministic: given an instance and a state, performing an action
will always lead to the same next state. In practice, such assumption is met as
soon as the solver’s decisions (apart from branching) are non stochastic.

We call agent any generator I1 of branching sequences following policy 7= and
denote II(p) the sequence of decisions that maps an instance p to a complete
B&B tree. Let p (II(p)) be any metric of interest on the tree generated by II for
an instance p, and assume this metric is to be minimised. For instance, we can
think of p as the size of the generated tree, the number of simplex iterations,
etc. In this setting, we are looking for the p—optimal agent IT* such that

" € argminE,p (1 (11 (7). (2)

Reinforcement Learning for Variable Selection 179

Note here that the expectation is only on the MILP instances, as the MDP is
deterministic.
Let us assume that one can define a Q-function Q™ which is consistent with

1, in the sense that p is minimised if 7(s) = arg min Q™ (s, a). Even in this case,
a

exact Q-learning cannot be used to minimise p. E‘irst, maintaining an exact table

for the Q-function is not tractable due to the size of S, including for small real-

world problems. Second, the transition from a state to the next is too complex

to be modeled since it partly results from a linear optimisation.

To bypass these problems, we approximate the Q-function (see [11] for an
introduction to Approximate Q-learning) by a neural network Q parametrised
by 6 and optimised by a dedicated gradient method as in the DQN (Deep Q-
Network) approach [12]. We define the policy my resulting from the Q-network

as m(s) = argmin Q(s, a;).
acA

When facing a deterministic MDP, the exact Q-value @™ (s, a) of an action
a given a state s and a policy 7y is not stochastic and thus may be observable.
In that case, the classic Temporal Difference loss used in [12] for training the
Q-Network comes down to the simple expression

L) = Evampiy | (@7 (5:0) ~ Qssait)) | 0

where p is the behaviour distribution of our agent, as stated in [12]. Note that, in
Eq. (3), the observed Q-values are naturally influenced by parameter 6 through
the policy. Such loss is actually intuitive: if Q™ is consistent with p, if each action
has non-zero probability to be taken in any encountered state and if L(6) = 0,
then each B&B tree built by agent ITy (following 7y) is optimal with respect to
© with probability 1.

3.2 Using the Subtree Size as Value Function

As highlighted in [8], an important difficulty when applying Reinforcement
Learning to B&B algorithms is the credit assignment problem [13]: in order to
determine the actions that lead to a specific outcome, one may define non-sparse
informative local costs (negative rewards) consistent with the global objective.

This is not mandatory in a RL setting but may facilitate the learning task.

We choose the number of nodes in the generated tree as the global metric
p. This metric is often used to compare B&B methods (see for instance [6-
8]), as it is a proxy for computational efficiency and independent of hardware
considerations.

One of the main contributions of this paper is to propose a local Q-function
Q™ which is consistent with the chosen global metric u. We take advantage of
the deterministic aspect of the environment and define Q7 (s, a) as the size of the
subtree rooted in the B&B node corresponding to s generated by action a and
policy 7. As stated in Proposition 1, this particular Q-function is not consistent
in general with our choice of global criterion . Nonetheless, Proposition 2 asserts
its optimality when using Depth First Search as node selection strategy.

180 M. Etheve et al.

Proposition 1. In general, minimising the size of the subtree under any node
in a BEB tree is not optimal with respect to the tree size.

The proof is omitted for the sake of conciseness, but one can prove that min-
imising the subtree size can be sub-optimal when using Breadth First Search as
the node selection strategy.

Proposition 2. When using Depth First Search (DFS) as the node selection
strateqy, minimising the whole BEB tree size is achieved when any subtree is of
minimal size.

Proof. Let us call O the set of open nodes at a given iteration of the B&B process
for a specific instance. The set of closed nodes (either by pruning or branching)
is denoted C.

We write V7 (s|¢,n) the size of the subtree under s, entirely determined by
the policy 7 followed in this subtree, a set of primal bounds ¢ found in other
subtrees and a node selection strategy 1. When using DFS, the subtrees under
each open node are expanded and fully solved sequentially, thus we can assume
with no loss of generality that O is equal to {1, ..., k} and is sorted according to
the planned visiting order. In that case, the size V' of the whole B&B tree can
be expressed as

k
V=1C|+> V™ {si {2tu|J¢ | n=DFS
=1

j<i

with (; the set of all bounds to be found in the subtree rooted in s; and zy the
best bound obtained in C.

It remains to prove that 7 is optimal only if it leads to the minimal subtree
under s1. As two separate subtrees can only affect each other through their best
primal bound under DFS, we have

k
V=1[C|+ V™ (s1 {20}, n=DFS)+> V™ (s; [{zi-1}, n=DFS)

=2

with Zi—1 = min {{Zo} U (Uj<i Cj) }

Since the B&B procedure (with a gap set to zero) guarantees that we find the
best primal bound of any expanded subtree, (zii:l)k are completely independent
of the branching policies, which gives, for any 7;, j € {2,...,k}:

argmin V' = argmin V™ (s1 [{20}, n = DFS)
m €Il m €1l

with IT; the set of all valid branching policies under s;. Therefore, choosing any

other policy than m € argminV™ (s1 [{z0}, n = DFS) is sub-optimal with
T €Il

respect to the tree size. O

Reinforcement Learning for Variable Selection 181

In the remaining, we use DFS as the node selection strategy according to Propo-
sition 2. We now focus on optimising the branching strategy (variable selection)

to minimise at each node the size of the underlying subtree. If we write D (s)(s)

and Df(s)(s) the child nodes of s following policy 7, such value function sat-
isfies the Bellman Equation (4). The relationship between the value and the
Q-function is trivially defined by Q™ (s,a) = 1+ V™ (Dg(s)) + V™ (D{(s)).

Vr(s) =14V (DF9) + v (D7) (s)) (4)

This value function has two advantages. First, it is observable as assumed earlier:
we only need to count the number of inheriting nodes once the B&B tree is fully
expanded. Second, it is a local objective which guarantees the optimality of
a global criterion, hence allowing us to perform RL without designing a sub-
optimal reward using any domain knowledge.

3.3 Algorithm

Using Approximate Q-learning and the subtree size as value function leads us
to propose the FMSTS algorithm (Algorithm 1). Using Experience Replay and
e-greedy exploration as in [12], the algorithm essentially boils down to consec-
utively solving a MILP instance following the current policy or random choices
with probability ¢, fitting the observed values sampled from an experience replay
buffer and iterating with the updated policy.

Algorithm 1. FMSTS
for t = 0,...,N-1 do
Draw randomly an instance p.
Solve p following 7, with e-greedy exploration.

Collect experiences along the generated tree (si,ai,Q”f’t (s,a),Q(s,a; 0,5)> and
store them into an experience replay buffer B.
Update to 0:+1 using loss (3) on experiences drawn from B.

end for

4 Adapting Learning to the Branch and Bound Setting

To ensure the success of the FMSTS method (Algorithm 1) with respect to the
objective (2), we need to adapt some components to the Branch and Bound
setting. First, we adapt the loss guiding the neural network’s training. Next,
we use Prioritized Experience Replay while normalising probabilities. Last, we
propose a new neural network architecture inspired from the literature.

182 M. Etheve et al.

4.1 Minimising an Expectation on the Instance Distribution

The loss defined by Eq. (3) does not seem to correspond to our objective (2).
Indeed, it naturally gives more importance to the biggest trees, which can be
heavily instance dependent. To neutralise this effect, we weight the loss by the
inverse of the size of the corresponding B&B tree generated by the agent:

L(O) = v {V(l()) (@ (s,a) - Q(s,a;9)>2] (5)

with r(s) the root node of the tree containing s, such that V™ (r(s)) corresponds
to the size of this tree. Then, any instance has equal weight in loss (5).

4.2 Performing Prioritized Experience Replay

Prioritized Experience Replay [14] biases the uniform replay sampling of
Experience Replay [12] towards experiences with high Temporal Difference
errors, i.e. when the predicted Q-values are far from their target. In FMSTS,

an experience is a 4-tuple (sj,aj,Q“j (sj,aj),Q(sj,aj;Gj)> and the target

Q™ (sj,a;) is observed, which reduces the error to the simple expression

Q™ (s, a;) — Q(s5,a5:6;)].

In the context of sampling experiences in a B&B tree, one should take into
account that the scale of the target Q™% may vary exponentially both along the
tree and across instances. As the scale of the error may likely vary with that of
the target, we normalise this error by the target to get the sampling probability
in the experience replay buffer

|Q7T9j (Sj7aj) B Q(Sjuaj;aj”)
Qmj (Sjvaj)

(6)

pj X

4.3 Designing a Regressor for the Q-Function

As in [6], we use both static and dynamic features to represent a state. Although
many features may be relevant for the states’ encoding, we opted to keep them
limited in the present work. For static information, we perform a dimension
reduction by PCA [15]: each instance is represented as the concatenation of its
data (A, b,c) and PCA is applied on the resulting vectors. Our representation
also includes the following dynamic features: the node’s depth, the distance of the
current primal solution to the bounds and the branching state. Concretely, the
branching state B is one-hot encoded in a 3|J| vector. Let us call By and B; the
set of variables that have been respectively set to 0 and 1 in the ascendant nodes
of the current state. With no loss of generality, let us assume that J = {1, ..., J}.
Then we have B = 1,,¢5,, Bjts = 14,e5, and Bjy o5 =1 — B; — B for any
jed.

The chosen Q-function is essentially multiplicative, in the sense that the ratio
between the targets in two consecutive states may be of magnitude 2 due to the

Reinforcement Learning for Variable Selection 183

binary tree structure. In addition, the scale of these targets may strongly vary
between instances. A basic feedforward neural network, based on summations,
may struggle to handle such phenomena. To compensate for these effects and
adapt to the B&B setting, we take inspiration from the Dueling architecture
of [16] and propose the Multiplicative Dueling Architecture (MDA). As shown
in Fig. 1, MDA implements the product between the 1-D output of a block of
fully-connected layers fed with static features and the |7|-D output of a block
fed with both static and dynamic features. A linear activation on the 1-D output
allows our agent to capture the variability of the chosen Q-function.

dynamic features {

static features {

Dense MDA

Fig. 1. Dense and Multiplicative Dueling architectures for the Q-network. The rect-
angles represent consecutive dense layers, the lightblue block being fed with all the
features whereas the lightgreen one is only fed with static features (darkgreen). The
output of the MDA is the product between a single unit and a |J|-unit dense layer.
(Colour figure online)

5 Experiments and Discussion

We test our algorithms on two sets of instances provided by Electricité de France
(EDF), a french electric utility company. They are drawn from two different
problems, one is related to energy management in a microgrid (P;) whereas the
other one comes from a hydroelectric valley (P3). The problems have respectively
186 and 282 constraints, 120 and 207 variables, and 54 and 96 binary variables.

We compare our algorithms to the default branching strategy of CPLEX
(denoted CPLEX in the following) and full Strong Branching (denoted SB). We
use CPLEX 12.7.1 [17] under DFS while turning off all presolving and cutting.

To avoid any dependency of our results to the train or the test set, we present
cross-validated results. Algorithm 1 is run 100 times independently on randomly
partitioned train and test sets. Each time, 200 instances are used for training
while 500 unseen instances are used for testing. Figure2 shows the averaged
number of nodes in the complete B&B trees on the test sets during the learning
process: test instances are solved using the strategy learned on train instances
at the current iteration of Algorithm 1.

184 M. Etheve et al.

—— Dense —— Dense

103 MDA 103 MDA

—— Dueling —— Dueling
---- CPLEX
---- SB

nodes

6 102
s

Number of nodes
=
o
R

Numbe|

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations

Fig. 2. Cross-validated performance on test instances (averaged number of nodes in
log scale) for Py (left) and P (right) through iterations of Algorithm 1. Gaussian
confidence intervals are shown around the means.

As exhibited in Fig. 2, our method is able to learn an efficient strategy from
scratch. As expected, the MDA agent is more flexible than its additive coun-
terpart (Dueling) inspired from the Dueling architecture of [16] and the fully-
connected agent (Dense). It outperforms systematically the Strong Branching
policy, and finds comparable or better strategies than CPLEX, depending on
the problem. Results on training data are not displayed for the sake of concise-
ness, but it is worth mentioning that our agents do not overfit and are able to
generalise well. In addition, the computation time is negligible compared with
full Strong Branching as an action comes only at the price of a forward pass in
our neural network.

Despite these good performances, some limits have to be pointed out at this
stage. First, our framework requires DFS as the node selection strategy, which
can be far from optimal for certain problems. Note that using another strat-
egy may be complicated to handle due to more complex dependencies, but may
also turn out to be effective as targetting small subtrees makes sense in gen-
eral. Second, we only showed promising results on easy problems. With more
difficult problems, the training becomes computationally prohibitive as a ran-
domly initialised agent produces exponential trees. To tackle these limitations,
we encompass different solutions such as fine-tuning the features and network
architecture or using supervision to decrease the size of the generated trees dur-
ing the first episodes. To reduce the cost of exploration, one could apply the
same methodology with a set of branching heuristics as action set, similarly to
what is proposed in [18].

6 Conclusion

In this paper, we presented a novel Reinforcement Learning framework designed
to learn from scratch the branching strategy in a B&B algorithm. In addition
to the specific metrics used in our FMSTS method, we introduced a new neural
network architecture designed to tackle the multiplicative nature of the value
function. Besides, we adapted some known RL techniques to the B&B setting.

Reinforcement Learning for Variable Selection 185

We ran experiments on real-world problems to validate our method and showed
better or comparable performances with existing strategies.

It is worthwhile to highlight that our method is generic enough to be applied

to other metrics than the tree size, e.g. the number of simplex iterations or
even the computation time. If one is not interested in proving optimality, many
other value functions may be encompassed. Furthermore, it may be interesting to
enlarge the scope of the method, especially to include Branch and Cut algorithms
as they usually are more efficient.

References

1.
2.

3.

10.

11.

12.

13.
14.

15.

16.

17.
18.

Wolsey, L.A.: Integer programming. Wiley, Hoboken (1998)

Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128 (2018)
Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W., Vance, P.H.:
Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46(3), 316-329 (1998)

Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization prob-
lems. In: Handbook of Applied Optimization, vol. 1, pp. 65-77 (2002)

Rachelson, E., Abbes, A.B., Diemer, S.: Combining mixed integer programming
and supervised learning for fast re-planning. In: 2010 22nd IEEE International
Conference on Tools with Artificial Intelligence, vol. 2, pp. 63-70. IEEE (2010)
Khalil, E.B., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Thirtieth AAAI Conference on Artificial Intel-
ligence (2016)

Balcan, M.-F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. arXiv
preprint arXiv:1803.10150 (2018)

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combina-
torial optimization with graph convolutional neural networks. arXiv preprint
arXiv:1906.01629 (2019)

Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming:
learning to cut. arXiv preprint arXiv:1906.04859 (2019)

He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound
algorithms. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27,
pp. 3293-3301. Curran Associates Inc., New York (2014)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

Minsky, M.: Steps toward artificial intelligence. Proc. IRE 49(1), 8-30 (1961)
Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015)

Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space.
London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559-572 (1901)

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.:
Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581 (2015)

Manual, C.U.: IBM ILOG CPLEX Optimization Studio (1987)

Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y.: Dash: dynamic approach for
switching heuristics. Eur. J. Oper. Res. 248(3), 943-953 (2016)

http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1803.10150
http://arxiv.org/abs/1906.01629
http://arxiv.org/abs/1906.04859
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.06581

l‘)

Check for
updates

Duplex Encoding of Staircase
At-Most-One Constraints
for the Antibandwidth Problem

Katalin Fazekas! ™)@, Markus Sinnl?®, Armin Biere!
and Sophie Parragh?

)

! Institute for Formal Models and Verification, Johannes Kepler University,
Linz, Austria
{katalin.fazekas,armin.biere}@jku.at
2 Institute of Production and Logistics Management, Johannes Kepler University,
Linz, Austria
{markus.sinnl,sophie.parragh}@jku.at

Abstract. Decision and optimization problems can be tackled with dif-
ferent techniques, such as Mixed Integer Programming, Constraint Pro-
gramming or SAT solving. An important ingredient in the success of each
of these approaches is the exploitation of common constraint structures
with specialized (re-)formulations, encodings or other techniques. In this
paper we present a new linear SAT encoding using binary decision dia-
grams over multiple variable orders as intermediate representation of a
special form of constraints denoted as staircase at-most-one-constraints.
The use of these constraints is motivated by recent work on the antiband-
width problem, where an iterative solution procedure using feasibility-
mixed integer programs based on such constraints was most effective. In
a computational study we compare the effectiveness of our new encoding
against traditional SAT-encodings for staircase at-most-one-constraints.
Additionally we compare against previous exact solution methods for the
antibandwidth problem, such as a constraint programming approach and
the one based on feasibility-mixed integer programs.

1 Introduction

An important ingredient in the success of computational approaches, such as
Mixed Integer Programming (MIP), Constraint Programming (CP) or proposi-
tional satisfiability solving (SAT), for solving optimization and decision problems
is the exploitation of common constraint structures with specialized encodings,
(re-)formulations or other techniques (see e.g. [1-3]).

In this paper we present a new and specialized SAT encoding of problems
where an at-most-one constraint slides over a sequence of Boolean variables.
We denote this special case of sliding sequence constraints [4-7] as staircase at-
most-one constraint (SCAMO) and illustrate the reason for this name with the
following example.

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 186-204, 2020.
https://doi.org/10.1007/978-3-030-58942-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_13&domain=pdf
http://orcid.org/0000-0002-0497-3059
http://orcid.org/0000-0003-1439-8702
http://orcid.org/0000-0001-7170-9242
http://orcid.org/0000-0002-7428-9770
https://doi.org/10.1007/978-3-030-58942-4_13

Duplex Encoding of Staircase At-Most-One Constraints 187

Ezample 1. Given a sequence of variables X = (x1 s ---x19), the staircase at-
most-one constraint set of width 4 is the following formula:

T 4+ X2 4+ T3 + T4 <1A
T2 + T3 + Ta <1A

r3 4+ Ta <1A

T4 <1A

<1A

<1A

r7 + x8 + 9 + x1w0 < 1.

This research is motivated by recent work [8] of the second author on the
antibandwidth problem (ABP). The ABP is a graph labeling problem (see e.g. [9]
for more on such problems) where the goal is to maximize the smallest differ-
ence between labels of neighbouring nodes. It has various applications, such as
scheduling [10], obnoxious facility location [11], radio frequency assignment [12]
and map-coloring [13]. It has been studied from a theoretical point of view (see
e.g. [14-19]), and several heuristics and metaheuristics (e.g. [20-23]) have been
designed for it. In [21], aside from a metaheuristic, also a MIP approach was
presented to solve the ABP exactly.

In [8] new MIP formulations were presented, and based on one of them,
an iterative solution procedure, which repeatedly solved feasibility-MIPs, was
designed. For a given number k, these MIPs encode the question whether there
exists a solution with antibandwidth greater than k. This iterative procedure
actually proved to be the most effective one in the computational study of [8].

Our proposed encoding can be used for more difficult problem structures than
the one given in Examplel. In the ABP, for example, the difference of labels
of neighbouring nodes is restricted by combining two SCAMO constraints on
two sequences of variables. Aside from the ABP (and other labeling problems),
the SCAMO constraints can potentially be used in many further application
contexts, such as scheduling problems (see e.g. [24-26]) or in staff rostering [27,
28] and car sequencing problems [29,30], when at most one variable is allowed
to take a given value in every sequence of variables.

As at-most-one constraints are ubiquitous in applications of SAT they are
featured prominently in the literature, see e.g. [31-36]. They are forming a special
case of cardinality constraints [37-39], which in turn are instances of Pseudo-
Boolean constraints [40-43] and thus 0/1 integer linear programs. Encoding con-
straints (for an overview see [36]) instead of handling them natively (as in [38])
allows to make full use of the power of SAT solving. For some applications mixed
strategies [44] are better though. In practice, size is the most important criteria
to evaluate such encodings, while at least in theory also propagation strength is
considered. See [45] for a discussion of these trade-offs. In particular, the path
based encoding of binary decision diagrams introduced in [45] has the goal to
improve propagation. However, as the authors point out, it can not be used for

188 K. Fazekas et al.

encoding shared constraints, which is the main reason of the efficiency in our
encoding. Thus we also provide a new set of benchmarks for which such sharing
occurs naturally.

2 Preliminaries

A propositional formula in conjunctive normal form (CNF) consists of a set of
clauses, where each clause C' is a disjunction of literals, which are Boolean (also
called 0/1) variables (e.g.) or their negation (—z or 1 —). A truth assignment
T maps truth values (0/1 values) to Boolean variables and can be represented
by a set of consistent literals; it satisfies a literal ¢ (i.e. assigns value 1 to ¢) if
¢ € T, and falsifies it (assigns value 0 to ¢) if =¢ € T, where =¢ = -z if £ = z and
—¢ = z if £ = —z. The satisfiability problem (SAT) for a formula in CNF asks
whether there is a truth assignment such that all clauses contain at least one
satisfied literal. A truth assignment satisfying a formula is also called a model.
An at-most-one (AMO) constraint is an expression of the form Y " x; <1,
where 1, T, ..., T, are Boolean variables. Similarly, we can formulate at-most-
zero (AMZ) constraints (as Y. ; z; < 0), which actually states that each vari-
able must be false (i.e. assigned value 0). Further, an exactly-one (EO) constraint
is an expression of the form)" x; = 1. Notice that we define and use these
constraints over Boolean variables, but they are trivially extensible to literals.
A binary decision diagram (BDD, see e.g. [46,47]) is a rooted, directed, acyclic
graph with at most two leafs, labeled with L (false or 0) and T (true or 1). Every
non-leaf (also called nonterminal) node of a BDD is labeled with a Boolean
variable and has exactly two outgoing edges (called low and high in [46]). In
this paper we use BDDs to represent AMO and AMZ constraints. Figure la
depicts an example BDD of an AMO constraint over variables z1,x2 and x3.
Each path from the root of the BDD that ends in the true leaf (T) is a model
of 1 + x2 + x3 < 1. Whenever the low or high child (marked with dashed
resp. solid line in Fig. 1) of a node labeled with variable x is taken, it means that
x is assigned to be false (true respectively) on that path. Since all our BDDs
represent AMO or AMZ constraints, we will depict them rather in an expanded
form where each node contains the whole Boolean expression represented by the
sub-graph starting from it, as it can be seen on Fig. 1b. To emphasize the decision
variables of the nodes, we mark them explicitly on the edges. Further, beyond
the non-terminal (i.e. non-leaf) nodes we distinguish non-unit nodes that are
representing a constraint over more than one variable. For example, the BDD of
Fig. 1b contains two leaf nodes (T and 1), two unit nodes (over x3) and three
non-unit non-leaf nodes. The ordering of the variables appearing in BDDs is
fixed (e.g. ©1 < 29 < z3 in Fig. 1), i.e. we use ordered BDDs (OBDD in short).
Even though we merge isomorphic subtrees in our BDDs, they are not reduced
because nodes with identical children are kept (see e.g. x5 in Fig.1). Thus we
use partially reduced ordered BDDs (ROBDD) over multiple variable orders.
Given a graph G = (V, E), a feasible solution to the antibandwidth problem
consists of assigning each node v € V' a unique label from the range 1,...,|V].

Duplex Encoding of Staircase At-Most-One Constraints 189

(@1 }--o{@2f--o{@s] [mitaatas<i}--ofmatas <1}--o{z3<1]
l 1 T2 ﬁ;l‘di)fc;;

I B
&KM"M

(a) BDD of (z1 + 22+ 23 < 1) (b) Expanded BDD of (z1 + z2 + 23 < 1)

Fig. 1. Different BDD representations of AMO constraint (z1 + z2 + z3 < 1).

Given such a labeling f, the antibandwidth ABy(v) of a node v is defined as
min{|f(v) — f(v")] : {v,v'} € E}, and the antibandwidth AB;(G) is defined as
min{ABy(v) : v € V'}. The goal of the ABP is to find a labeling f*, such that
J* = arg maxycr(q) ABf(G), where F(G) denotes the set of all labelings of G.

We briefly discuss previous work [8] on which our new SAT solution is based.
Let binary variables #¢ = 1 if and only if vertex i is assigned label ¢ (i.e. f; = £).
For a given k, the question, whether there exists a solution with AB(G) > k+1,
can be formulated as MIP as follows. We will denote this formulation as Fi(k).

max 0
oot =1 Vee{l,...,|V]} (LABELS)
iev
=1 YieV (VERTICES)
ce{l, |V}
oo (af+ah) <1 V{i,i'} e E,1 <A< |V| -k (OBJ)
A<L< Atk
z¢ € {0,1} VieV,vle{l,...,|V|}

Constraints (LABELS) make sure that each label is used only once and con-
straints (VERTICES) ensure that each node i € V' gets assigned one label. Thus,
the solution encoded by these constraints corresponds to a labeling. Constraints
(OBJ) describe that for each edge {i,i'}, the labels f;, fi are not allowed to
be within a range of k. Thus, any solution of the above constraints corresponds
to a labeling with antibandwidth at least k + 1. The iterative algorithm of [§]
starts with a value of k obtained by a heuristic, which constructs a feasible label-
ing, and then iteratively solves F.(k) and increases k by one, until either F, (k)
becomes infeasible (proving optimality of k) or a time limit is reached.

3 Staircase At-Most-One Constraint Sets

As a first step we define and illustrate the main concept of our paper, the so-called
staircase AMO constraint set (SCAMO). Following that, in the next section we
demonstrate step-by-step our proposed SAT encoding of these constraints.

190 K. Fazekas et al.

Definition 1. Given a sequence of Boolean variables X = (x1 22+ 2,) and a
width w s.t. 1 < w < n, a staircase constraint set is formulated as follows:

(n—w) [(i+w)
SCAMO(X,w) = /\ Z z; < 1| wheren=|X|.

i=0 \j=it+1

Notice that this constraint is a special sub-case of SEQUENCE constraints (see
e.g. [4-7]) and so could be formulated as SEQUENCE(0, 1, w, X, {1}).

In Example1 we saw, that there is an ordering of the constraints in that
problem such that each constraint differs only slightly from the previous one.
For instance, in Example1 the 1st and 2nd constraints both include the sum
of x9, 3 and x4 while the 2nd and 3rd both contain the sub-expression x3 +
x4 + x5. Since addition is associative, the sum of the variables can be calculated
regardless of the grouping of the variables. However, if we would like to reuse
previous calculations, it is more beneficial to evaluate the first AMO constraint
for example as x1 + (x2 + x3 + x4) instead of considering any other variable
grouping (e.g. (z1 + x2) + (z3 + 4)). Doing so, the second constraint can just
simply consider the result of (z2 + x3 + x4) together with x5. Continuing the
evaluation with the next constraint, we could reuse (z3+xz4) from (xa+x3+x4),
in case we calculated it as o + (23 + x4), to decide z3 + x4 + x5 + 26 < 1 by
combining it with (x5 + xg). In general, each constraint shares a sub-sum over
w — 1 variables with the previous and at the same time with the next constraint.

Evaluating the very first constraint in this example in a right associative way
allows us to reuse (at least once) all its sub-expression in the following three
(i.e. w—1) constraints. However, in order to reuse these sub-expressions we need
a left associative grouping of variables in the constraint x5 + zg + x7 + g < 1,
since in the second constraint we need x5, then (x5 + xg) and then (x5 + xg +x7)
to complement the reused sub-sums of xy + x5 + 3 + 4.

All in all, considering only the first w constraints, we see that we need a
right associative evaluation of the first constraint and a left associative group-
ing of the (w + 1)’th constraint. Figure 2 depicts how these variable groupings
can be “bonded” together to reconstruct the original constraints of Example 1.
Extending this pattern to the whole set of constraints, we can see that each w
consecutive constraints need to be considered once left associative to combine
with the previous w constraints’ sub-expressions and once right associative, to
combine with the next w constraints. Thus, in Fig.2 the sum over variables
T5,Tg, x7 and zg is actually considered twice, once with a left and once with a
right associative variable ordering. This duplicate view of constraints is the main
concept behind our proposed duplex encoding.

4 Duplex Encoding of Staircase Constraint Sets

Our goal is to exploit sharing of sub-expressions between constraints to obtain
a compact encoding. Again, the main idea of our approach can be seen in Fig. 2
where we identified common sub-sums. In our concrete encoding we have to

Duplex Encoding of Staircase At-Most-One Constraints 191

(x1 + (@2 + (x3 + (24)))) <1A
(@2 + (w3 + (1)) |+ (25) <1A
(s + (za)) |+ ((@5) +) <1A
(@) |+ (((ws) + w6) + a7) <1A
((((@s) + z6) + x7) + ws8)

(s + (ws + (27 + (23)))) <
(e + (z7 + (x8))) + (x9) <1A
(7 + (2s)) |+ ((zo) + z10) <1
(zs)

Fig. 2. Decomposition of the staircase AMO constraint set of Example 1.

go one step further though and actually have to share sub-constraints. This is
achieved by decomposing longer AMO constraints into two smaller ones using
the following proposition. While the original longer constraints may be used only
once, smaller constraints potentially can be shared and reused multiple times.

Proposition 1. A constraint x1 + - -+ x, <1 holds iff foralll1 <i<n

(x14+.. .4z < DA (@ig1+- -+ < DA (21 4. 42 SOV +. . .42, <0).

4.1 Sub-constraint Construction

As a first step, given a sequence of variables X = (z1---x,) and width w, we
partition the variables into M = [] consecutive windows wy,ws, .. .,wn, where
wj contains variables x1, ..., 2y, ws contains 41, ..., T2, etc. Note that unless
(n mod w) = 0, the very last window contains fewer than w variables.

Ezample 2. Continuing the previous example, our width w = 4 splits X into
three windows: wy = {1, z2, 3,24}, wo = {x5, 26, 27,28} and ws = {xg, 10}

To encode a SCAMO set of constraints as compositions of smaller constraints,
we build two BDDs for each window with two different variable orderings (hence
the name “duplex”). Notice that any SAT encoding technique of AMO con-
straints could be employed instead of BDDs (as long as we do duplex encoding
by considering both directions). However, beyond the smaller AMO constraints,
we further need AMZ constraints in order to connect the parts together (see
the binary clause in Proposition 1). One benefit of BDDs is that we get these
constraints automatically already by encoding the AMO constraints. Thus in
this paper we will focus only on this BDD based approach.

Given window w; over variables X; = {z;,,...x;,}, we construct two two-
rooted BDDs, both representing the same two constraints z;, +---+x;, <1 and
Zi, + -+ x5, < 0. The first BDD, which we call forward BDD, considers the
AMO and AMZ constraints with a right associative variable grouping (i.e. with

192 K. Fazekas et al.

variable ordering z;, < x;, < ... < ;,). The other BDD, called backward BDD,
represents the same constraints but with a left associative variable grouping
(i.e. with variable ordering z;, < z;,_, < ... < Z;,).

Abfo et al. in [42] proposed a generalized arc-consistent, polynomial size
ROBDD-based encoding for Pseudo-Boolean constraints. In our setting the con-
straints are all AMO or AMZ constraints without coefficients, and thus apply-
ing their approach leads to small and simple BDDs. The recursive algorithms
in Fig.3 present the main steps of this building process. In these procedures
(x;---x;) means an ordered sequence of consecutive variables and function
if-then-else builds a BDD node with the given decision variable and high
and low BDD nodes. Building the forward BDDs of a window w; simply means
to call BDD-AMO and BDD-AMZ with (z;, - - x;,,) as parameter. To build the back-
ward BDDs, we need to call the methods with (x;, ---x;,) as argument. The
result in both cases (see Example 3) will be a two-rooted BDD with height of at
most (w + 1).

BDD-AMO (consecutive variables (x; ---x;)) BDD-AMZ (consecutive variables (x;---x;))

1 B := Search-AMO((xz; - - - zj)) 1 B := Search-AMZ({z; - - x;))

2 if B={ then 2 if B={ then

3 if [(xz;---z;)| =1 then 3 if [(z;---z;)] =1 then

4 BT,BF = T,T 4 BT,BF = J_,T

5 else 5 else

6 Br := BDD-AMZ({zit1 - x;j)) 6 Br = L1

7 Br := BDD-AMO({@it1---x;)) 7 Bp := BDD-AMZ({(ziy1---x;))
8 B := if-then-else(xz;, Br, Br) 8 B := if-then-else(x;, Br, Br)

9 return B3 9 return B

Fig. 3. Algorithms BDD-AMO and BDD-AMZ to construct binary decision diagrams for
constraints over a given sequence of consecutive Boolean variables.

Consider the following layers of these constructed BDDs. A non-leaf layer I;
(where 1 < j < w) of a forward BDD (backward BDD) consists of two nodes,
one capturing the AMO and another node representing the AMZ constraint over
variables (z;; - --x;,) (respectively (z;,__, -+ ;) for the backward BDD).

Ezxample 3. The upper part of Fig.4 shows what the forward BDD of w; in
Example 2 looks like. The BDD is the result of calling BDD-AMO((x1 x2 &3 x4))
and BDD-AMZ((x; 2 x3 x4)). Notice that due to the search for already existing
BDDs at the beginning of each method (Search-AMO and Search-AMZ), the two
calls result in a single shared structure (i.e. we have a partially reduced ordered
BDD). Further notice that though node x4 < 1 could be reduced simply to T,
we kept this node in the representation. In this BDD we can distinguish four
layers (I3 — l4) that refer to four sub-constraints of the root expressions.

Duplex Encoding of Staircase At-Most-One Constraints 193

The lower part of the figure depicts the backward BDD of wy in Example 2,
resulting from calls BDD-AMO((xg 7z T5)) and BDD-AMZ((xg x7 z6 T5)). The vari-
able ordering here is zg < 7 < zg < 5. Notice that the structure of the two
BDDs are identical, they just talk about different variables in different orders.

I ‘ Iy ‘ s | Lo
| | | |
| | | |

| | |

| |

| o F | 2 (R - SN
T+ as Fas+as <1 ***$2+$3+I4<11 r3+xs <1 ***I4§1f?\\
1) : tooN

by | ba o

‘I1+I2W+CC4<0}>***‘I2+I3+9€4<0H

| T2
1
l1 ‘ l2 . I3 | la |
I I I I
I I I I
bio | b1 | L | .
‘xr—&-re—&-u—}—mg<1}»——+‘er+w+r7<1}»} T5+ 76 < 1 }——»a:sgl RN
xTs X7 L X6 1335 \x
br | (o] | (oo | |
‘x5+xe+m7+rs<0%~*xa+xs+z7<OH +x6 <0 7
I I 177 —xs
l TN o ! l
xrs s

Fig. 4. Forward BDD of w; with variable ordering =1 < z2 < z3 < x4 and backward
BDD of ws with ordering xs < 7 < z¢ < x5. Two-rooted partially reduced OBDDs
to represent constraints x1 4+ x2 + x3 + r4 < K with right and x5 + z6 + z7 + s < K
with left associative variable groupings, where K € {0,1}.

4.2 CNF Encoding of BDDs

During BDD construction (e.g. after Line 5 in both algorithms of Fig. 3), or later
in an independent traversal, we can assign new Boolean variables to each non-
unit non-leaf node. Notice that top nodes of the forward and backward BDDs
over the same variables can use the same Boolean variable.

Now, given a node with auxiliary Boolean variable b, that decides on variable
x; and has a true child node with variable ¢ and a false child node with variable f,
we introduce clauses to encode z; — (b < t) and —z; — (b < f). However, there
are several simplification possibilities due to the structure of our BDDs and our
problem. For instance, all AMZ nodes have L as a true child (see Fig.4) and all
AMO nodes are assumed as unit clauses (due to using them with Proposition 1).
Nodes of a constraint x; < 1 are simply encoded as T, while nodes of constraints
z; < 0 are encoded as —x; in the clausal representation of the parent nodes.

194 K. Fazekas et al.

Ezample 4. On Fig.4 the introduced new Boolean variables are represented
together with their nodes. For example, variable bg belongs to the node of con-
straint 3 + x4 < 1. The introduced clause regarding this node is (—x3 V —zy4).

4.3 Bonding Stairs

An AMO constraint of a SCAMO set is either a root node of one of our BDDs
or can be described by combining two layers of two BDDs via Proposition 1.
As last step of encoding a whole SCAMO set of constraints, we traverse the
forward BDD of each window (denoted as w!-BDD with i € {1,...,M —1})
and combine its nodes with those of the backward BDD of the next window
(w?,,-BDD). Thus, we combine layer [; of wlf with layer [(,_ ;)42 of w?, | for
each j = 2,...,w. At the end, the bonding of two consecutive BDDs yields the
following formula:

BOND(wa,wg’H) = w/-1,-AMO A

(W] -1-AMO A Wl 1Ly +2-AMO A (W] -1;-AMZ V w8 -1y j)+o-AMZ)).

~.

Jj=2

Example 5. We continue the running example. At this point we have seen how
to construct a BDD for each small stair structure in Fig. 2. Next we combine
them using Proposition 1 to capture all AMO constraints. Figure5 depicts how
the layers of the constructed BDDs are meant to be paired with each other.
Applying Proposition1 on layers of w{ -BDD and w4-BDD yields the following
formula:

(x1 +xo+x3+24 <1)A
(l‘2+$3+$4§1)/\($5Sl)/\(.%‘2+l'3+.%'4§0\/335§0)/\
(3?3+$4§1)/\(.%‘5+x6§1)/\((%‘3+.’L‘4§0)\/($5+.’L‘6SO))/\
(s SV A (x5 + 26 + 27 < 1) A ((4 <0) V (25 + 26 + 27 < 0)),

that translates to the clauses by Abs A T A (by V —5) A bg A bia A (b V bg) A
T Ab11 A (—x4 V bs). Notice that with this set of clauses, together with the BDD
clauses, we encoded the first four AMO constraints of our SCAMO problem.

4.4 Arc Consistency of Duplex Encoding

Notice that AMO, AMZ and SCAMO constraints are all monotonic decreasing
Boolean functions, i.e. setting any of the variables to false does not restrict
any other variables. Thus setting a variable to true affects only those variables
that share at least one AMO constraint with it. Note that decomposing each
AMO constraint of a SCAMO set based on Proposition 1 results in an equivalent
problem. Although our constructed BDDs for this decomposition share most of
their nodes with each other (due to the chosen variable orders), our method is
still a BDD-based translation of each AMO and AMZ constraint into clauses.

Duplex Encoding of Staircase At-Most-One Constraints 195

Forward BDD of w;

w{-h (1 + (z2 + (xz3 + (1)) <1

w]-l> (z2 + (23 + (24))) <1 A (ws) <1 wicls
w{-ls (z3 + (za)) <1 A ((z5) + @6) <1 wila
wl-ly (@) <1 A (@) + 7o) + z1) <1 wi-la

(((x5) + @6) + @7) 4+ x8) <1 whly

Backward BDD of w2

Fig. 5. Combining forward and backward BDDs to encode SCAMO constraints.

Thus, applying an arc consistent encoding [48,49] on each BDD node (e.g. the
one in Minisat+ [41]) makes our encoding arc consistent as well.

In fact, notice that our bonding clauses contain a unit clause for each AMO
constraint in order to enforce the output of the corresponding (sub-)BDD to be
true. Beyond that, it is not hard to see that setting an input variable to true
falsifies the output variable of each AMZ-BDD containing it. Thus the binary
clauses of the bonding clauses enforce the root-node of each respective AMZ
constraint to be true, and in turn unit propagation, the main inference rule of
SAT solvers, falsifies all the variables in them.

5 Comparing Encodings of Staircase Constraints

In this section we discuss commonly used existing SAT encodings of AMO con-
straints and possible SEQUENCE encodings of SCAMO constraints. We com-
pare them to our proposed duplex encoding in the context of SCAMOs.

Let N = (n—w)+1 be the number of AMO constraints in a staircase problem
set over n variables and width w. A naive (also called pair-wise or binomial)

encoding of a w-long AMO constraint is /\E:l_l) /\gi)l+1 (m@; V ;). Although
this approach does not require any additional Boolean variable, the number
of clauses constructed with that encoding over N w-long AMO constraints is
N-(w=1)+(w=2)+ ...+ (w— (w—1)) = N . L=l

Using the naive encoding on the SCAMO constraint set would produce more
than once many of the binary clauses. Eliminating duplicated clauses yields the
reduced naive encoding with w + (N —1): (w—1) unique clauses.

Sinz introduced in [37] a sequential counter encoding for Boolean cardinality
constraints. Applying it to an AMO constraint over w variables produces 3-w—>5
binary clauses and introduces w—2 auxiliary variables. With N AMO constraints
this gives N - (3w — 5) clauses and N - (w — 2) new variables.

The BDD-based encoding for Pseudo-Boolean constraints [41,42] applied to
AMO constraints is comparable to the sequential counter encoding. However,
for a fixed variable order, the BDD built for each w-long AMO constraint of a

SCAMO set, will always either contain a variable that does not occur in any

196 K. Fazekas et al.

other constraint or will miss a variable needed in other constraints. Thus for
this approach using a fixed single variable order the amount of sharing of BDD
nodes among constraints is rather restricted. On the other hand the approach
does not require bonding clauses. With a simplified clausal representation of the
BDD nodes, the naive BDD encoding uses at most N-(3-(w—2)42-(w—1)—1)
clauses and introduces N - (2 - w — 3) new variables to encode a SCAMO set.

The so-called 2-product encoding [32] relies on the same decomposition rule
as Proposition 1. This approach breaks an AMO constraint over w variables into
a product of two AMO constraints over p and ¢ variables, where pxq > w. To sim-
plify the calculation we use p = [/w] and ¢ = [w/p] as recommended in [32] and
assume recursive 2-product encoding of the resulting smaller constraints. Even
though this approach can efficiently encode a single AMO constraint, making
use of shared sub-expressions is not straightforward. Thus, based on the esti-
mations given in [32], the number of clauses is N - (2w + 4 - Jw + O(Yw)).
Further, the number of newly introduced variables is N - (2 y/w+ O(¥/w)) again
following [32].

Instead of focusing on specialized AMO encodings, it is also possible to encode
a complete SCAMO set with more generic approaches, like the ones in [6]. For
example, encoding SCAMO as a REGULAR constraint yields similar results as
a naive BDD-based approach with a single variable order (i.e. O(n - w) size).

Another encoding (also from [6]) based on cumulative sums or difference
constraints requires an internal representation which is at least quadratic size
in the worst case. Similarly, partial sums (again see [6]) would consider every
possible sub-sums which also yields O(n - w?) constraints.

The size-wise most competitive sequence encoding from [6] is the log-based
approach where a SCAMO set could be represented as O(n - log w) constraints.

5.1 Duplex Encoding

For a given constraint set over n variables of width w we construct two BDDs of
the same size (each having 2 - (w + 1) nodes) for M = [2] windows. To simplify
the calculation, we will assume that each BDD has the same size (even though
the last window is most of the time way smaller) and that we encode the first
and last windows in both directions. Thus, we provide here just an upper bound
on the actual values. With these assumptions we have 2 - M BDDs. For each
BDD we construct three clauses for the non-unit non-leaf AMZ nodes and at
most two clauses for the non-unit non-leaf AMO nodes. Beyond these clauses,
we need to bond together each layer of the neighbouring forward and backward
BDDs, resulting in M — 1 bond-clause sets, each consisting of two unit and a
binary clause. All in all, the final number of clauses in the encoding is as follows:

#BDD-clauses <2 M- (3- (w—1)+2-(w—1)—1)=10-M -w —12- M
#BOND-clauses < (M —1)- 3 - (w—-1)4+1)=3- M -w—2-M—-3-w+2
#BDD + #BOND-clauses < 13- M -w—14- M — 3 -w + 2

The number of new variables at the very end of the encoding is at most 4 - M -
(w — 1) introducing one for each non-leaf non-unit node of our BDDs.

Duplex Encoding of Staircase At-Most-One Constraints 197

5.2 Comparison Summary

Table 1 summarizes the sizes of different SAT encodings expressed as functions
over the number n of all variables in a SCAMO constraint set and the width
w of the individual AMO constraints, combined into N = (n — w) + 1 (the
number of AMO constraints) and M = [2] (the number of windows in duplex
encoding). The columns capture the number of auxiliary variables and number
of clauses of the encodings. Notice that M is significantly smaller than N. The
last column gives the worst case of each approach, assuming w = n/2, where N
is approximately n/2 too. In this scenario existing encodings are quadratic or
even cubic. However, in our duplex encoding we have M = 2 in that case and
thus it remains linear.

Figure 6 visualizes the difference between SAT encodings for the fixed number
of variables n = 500. The horizontal axis ranges over all possible widths w. Note
that the naive encoding is only partially shown here, and further, that in our
application n/2 is an upper bound on the width w, and thus only the left part
of Fig. 6 is interesting up to the middle w = n/2 = 250.

The asymptotic behavior of the last column of Table1 can be observed in
Fig.6 too. Again, the largest difference between the encodings occurs for w =
n/2. According to Fig.6 the reduced naive encoding turns out to be the best
SAT-based alternative to our approach in terms of number of clauses. Though
Fig.6 focuses only on SAT encodings, note that the smallest sequence-based
alternative (in [6]) would have size O(n - logn) when w = n/2, that is smaller
than most SAT encodings but larger than our proposed linear encoding.

Table 1. Comparison of size of SAT encodings of w-long SCAMO sets over n variables.
Columns #NEWVARS and #CLAUSES show the number of additional variables and
clauses of each approach, where N = (n —w) + 1 and M = [2].

n
w

Encoding | #NEWVARS #CLAUSES WORSTCASE
Naive 0 N - w O(n?)
Reduced |0 w +(N-1) - (w—-1) O(n?)
Sequential | N - (w — 2) N-3-(w—2)+1) O(n?)

BDD N-(2-w—3) N-3 - (w—2)+2-(w—-1)—1) | O(n?)
2-Product | N - (2 yw+ O(Yw)) | N-(2-w+4- Vw+ O(Yw)) 0O(n?)
Duplex 4-M-(w—1) 13-M-w—-14-M—-3-w+2 O(n)

198 K. Fazekas et al.

- jeemt=te, mmmsas NAIVE
300,000 : ‘,-" S = = = REDUCED
. — — ‘E
ke ~ SEQ
R4 R BDD
. .
250,000 . K4 N, 2-PRODUCT
. o DUPLEX
K4 \

200,000 . K4 N,

#CLAUSES

3
: ; . 3
150,000 . .
5 : . Rd N, S
: -
100,000 S " . \,

S -

. - .
i . ~ 3
50,000 il ‘/ - N\

0 100 200 300 400 500
w

Fig. 6. Comparison of number of clauses for different encodings of a single SCAMO
constraint set on n = 500 variables and width w between 2 and 500.

6 Experimental Evaluation

Formulating the antibandwidth problem iteratively, as it was proposed in [8] (see
Sect. 2), asks whether there exists a labelling for a graph G = (V, E) s.t. AB(G) >
k + 1. The question has 2 - |V| pieces of |V|-long exactly-one constraints (as
(LABELS) and (VERTICES)) and for each edge of the graph (i.e. |E| times) a
(V] — k) big set of AMO constraints, each over 2 - k variables (as (OBJy)).

An off-the-shelf SAT solution could encode each of the AMO and exactly-
one constraints one-by-one (e.g. as in Sect. 5). However, for a given edge between
nodes ¢,i (i.e. {i,7'} € E) constraint (OBJj) can be reformulated as

(IVI=k) [(A+k)

/\ Z fo’»I’f/Sl Prozp.l

A=1 SN
(IVI=k) [(A+k) (A k) (A+k) (A k)

/\ Zx<1/\2z/<1/\ Zx<0\/2z/<0
A=1

In that form we have exactly two SCAMO sets of width k + 1, one over the
variables of node ¢ and another over variables of i’. The third component of the
decomposition takes the disjunction of AMZ constraints that can be constructed
easily by combining our smaller AMZ nodes corresponding to the SCAMO sets.

The staircase structure in (OBJy) allows to apply our new duplex encoding
by simply encoding a SCAMO set of width k 4+ 1 for each node of the graph
(i.e. |V| times) and combining the corresponding AMZ constraints (with less than
4-(|V]|—k) binary clauses for each edge). This encodes all AMO constraints of the

Duplex Encoding of Staircase At-Most-One Constraints 199

problem. Also note that we can reuse the Boolean variables representing the root
nodes of the constructed AMO BDDs to encode the (VERTICES) constraints.

Experimental Results

We implemented a framework to compare off-the-shelf SAT encodings in practice
to our proposed SCAMO based duplex encoding on the antibandwidth problem
(as formulated in Sect.2). Beyond SAT encodings, we also compared our app-
roach against alternative exact methods to solve the problem, like Constraint
Programming or the iterative method presented in [8] based on feasibility-MIPs.

The experiments considered 24 matrices of the Harwell-Boeing Sparse Matrix
Collection [50], containing 12 relatively small and 12 rather large graphs (as
in [8]). For each graph lower bounds (by a construction heuristic) and theo-
retical upper bounds of the antibandwidth were provided in [8]. These values
were reused in our experiment as starting and ending points for the iterative
methods and as lower bounds in the CP approaches. All reported results were
experimented on our cluster with Intel Xeon E5-2620 v4 @ 2.10 GHz CPUs.

Table 2 summarizes our results.! For each graph it shows the number of
nodes and edges, the starting width or lower bound and last width to check
of the solving methods (columns |V|,|E| and LB, UB). Then for each solving
technique we report the best found solution together with the time (in seconds)
and memory consumption (in MB). Each approach was limited to 1800s and
120 GB memory. This rather high main memory limit is due to trying to solve
the alternative SAT encodings with a large number of clauses as well, while the
other methods never exceeded 4 GB.

We compare the 2-product [32] and reduced naive AMO encodings to our
proposed duplex SCAMO encoding as the first three techniques in Table 2. All
three techniques are implemented in the same framework and follow the same
method: encode (considering LB as width of SCAMO or as k of the AMO con-
straints) and solve the SAT representation of the problem with a SAT solver (we
used CaDiCaL 1.2.1 [51]). If it is satisfiable, increase the width and start again
to encode and solve the new problem. If it is unsatisfiable or the width is UB,
it means that the optimal solution of ABP was found and the process ends. At
the moment when the 1800s or 120 GB is exceeded, the method stops (with TO
or MO respectively). The reported solutions are the highest widths with what
the formula was still successfully constructed and solved. In case even the first
formula was too hard to solve, it is marked with “-”.

While the 2-product encoding of the largest instance had a memory out
during solving the first formula (after a successful encoding), the reduced naive
approach required less memory and even solved a few of the larger problems with
more than one width in 1800s. The duplex encoding required significantly less
memory and was faster in encoding and solving the problems compared to the
other SAT approaches. It performed well also compared to further techniques.

The next two approaches, Fi.(k) and CP-CPLEX, are taken from [8] as is,
and were executed on our cluster for comparison. Note that while CP-CPLEX

! Source code, data and benchmarks are available at http://fmv.jku.at/duplex/.

http://fmv.jku.at/duplex/

K. Fazekas et al.

200

6¢ OL [~ |1 OL [8OVTOL [~ [ILEOL [~ [g9P90TOL |- O [€2°989— [GPICITGLETSTL STLT Ued-X
6z OL |- [0z oL [L€ |PE’6 |9ET [STYIEE'FT 9ET 6€8CL OL |- [0TI9L |OL - 9ET9ETI[c8TI|S89| SNA"989-M
8¢ OL |- |0¢ OL [pEPIOL - [126TOL [~ 62106 OL - [FELIOTOL [~ |LEEDTE06TTSLI gsou-A
8¢ OL |- 6T OL [0ZETOL [~ [V9STEL'61E0TT [20¥89 |OL |- [FF8€9 OL |~ 08612906 99 SnA"g99-N
L& 0L ~ |0g OL 890TIO.L [~ [€9%¢OL [~ [9€6Z9 |OL |- 91898 |OL |~ 0ST[E0T9STTE6S T6S IMP L
¥e oL |- |61 OL €E0TOL [~ |6CITOL [~ |0986¢ |OL |- [I€0€L OL |~ [cLZ99g[IPEIPPepuewIays-g
1€ |oL - 6T OL |- 116 OL 2S¢ |089TOL |29 |gESE [OL k¥ [1199G |OL |- |I2 9% G9LEE0S €05 4Mp-d
Iz oL [8T 0L [G06 [OL (022 L9TTOL [|0V96T |OL |- [F¥69% OL |~ (9¥261E98S [¥6F SnA76v-O
ve OL |- 8T OL P9 |OL |- [I8STOL - [0€0LZ OL |- [eLST¥ |OL - 0TIB8L [¢89T|STY| SPYTURI-d
¥e oL |- 8T oL 169 OL (26 [€P0TOL |66 (9822% [OL (@6 90€0€ |OL |- [€L1[T6 L9T1geh| Prioodul-0
g€ OL [~ |0g oL v€9 |OL g€ [1Z9T/OL [PE |L608T OL |68 [¢6€€S |OL [~ ©L 8T (0TLEOTT| L0MISSOA-N
g€ oL |- |0z oL 929 |OL g€ [129TOL P& [9.0%C |OL |6 [c6€€S OL |~ [cL 8T (0TLE0TH 90M3sSOq-IN
¢l [cv'9z |6€ [cT ©60TI6E [Ic [6S°0 68 8¢ 66°0 68 [98% [c6'9 |6€ [¢99 [©8°CT 68 (68 (6€ LT [STT|£0imdsoq-]
1T |0L |- €€ |OL |29-TS¥9% OL 8y |LLV OL |67 [296 |[OL LV 26 |OL |[LF |89 9F ©9T LTT|VET4MP-M
¢l OL |- [I€ OL L¥¥€ 90T OL [061 [£€¢898e [I16 |OL [¢€ LEOT |OL (g€ 0¥ [¢€ IL¥E 00T ysou-p
gl |OoL |1z L€ |OL |1€-%g €€1 OL 0T |I€€ OL |68 899 |OL [Iz 6. |OL |[I& |L& T 61¢ (98 gguse-1
¢l g'ec |8 [€9 OL |ge8 ¢ L¥0 8 @& WSO 8 [g¢ [L¥'0 |8 €21 |19 8 8 |8 [I18¢ S |qloodwi-H
1T |69 €T [Tz |sL'¥P |€T €€ 9T €T |61 290 |€T |62 892 (€T 9T |6L'SOTET [T @1 LT LG | LSIIM-D
1T [pU'c 8T [1g [99'%€ |€T jge 99°cT €T 8T (€€°T |81 [I¥ [O'T (€T 6€T |68°0¢ €T [T ©1 ¥el ¥ | pgsiHmno-g
1T [preL9te 61 P8°2E [IZ 90T [c0FLLTE [€1 |[L€'€ |Ig 08 [10°€S I& 9L |[LT'9€ [T [2g [T 69 |67 |g0imdsoq-
gl 989 |6 |I¢ 10T |6 9t [8cc9 6 [PT Gc0 |6 [P 69’8 |6 6ET [IFPFL 6 6 [8 [9LT |87 | 10AMISSOq-Q
IT [OL LT [Tz |82'ST LT 8¢ [¥9'9 [T [€T [e8'€ LT |65 ©0°9S LT 69 [gT'€8 [T LT 9T 9% |6€ |[10imdsoq-D
T LT 6 0T ggL |6 6 |Lg'8c |6 [IT 0€T |6 [LF €09V |6 (IS 90FT 6 6 6 (06 [c€ | cEwWqrd
IT L6'¢ 9 L |OL 89 |6z [IL'€C |9 [¢9 [c9'S8T9 89 8P°9919 08 [98'90g9 8 9 |€0T o€ | 1"sesod-y
| an| ewna faoEan| ewy) fao| g ewir[fqo an| swr[fqo] aw| ewnrfqo| g ewi[fqQ

PognNUD-ZIN-dD| [8] XHTdO-dD (8] (02 xordn(| oareN peonpoy sonpord-gan|d1 |&llAl eouessur

(49 0z21 = OIN Pu® s 0081 = O.L) we[qoid yipimpueqriue oy oa[os 0} soyoroidde JueIdIp Jo s3NsoYy g S[qeL

Duplex Encoding of Staircase At-Most-One Constraints 201

knows LB, F(k) constructs it internally. The last reported approach is based on
Chuffed [44,52] via the MiniZinc language [53]. This hybrid solver employs lazy
clause generation and combines the strengths of SAT and finite domain solving
techniques. Note that both CP approaches encode the ABP naively as a labeling
problem to maximize smallest neighbour-distances, using state-of-the-art solvers
off-the-shelf. All in all we can see that the SCAMO based duplex encoding of
the ABP is comparable and most of the time even better than other approaches.

7 Conclusion and Outlook

In this paper we have proposed a new SAT encoding for at-most-one constraints
with a staircase structure, i.e. where consecutive constraints share sequences of
sub-expressions in a structured way. This structure is exploited in an encoding
which relies on binary decision diagrams using two variable orderings. Compared
to alternative encodings for the ABP, our encoding outperforms the existing ones.

In the future we plan to integrate and interleave the MIP based approach
of [8] and the SAT approach proposed here. Further, we want to apply the pro-
posed method to other problems featuring at-most-one constraints with a stair-
case structure. Another intriguing direction for future work is to explore how
symbolic optimization techniques using decision diagrams [54] can take advan-
tage of multiple variable orders simultaneously, which is essential to keep our
encoding compact.

Acknowledgments. This research has been supported by the Austrian Science Fund
(FWF) under projects W1255-N23, S11408-N23 and by the LIT AI Lab funded by the
State of Upper Austria. The authors would like to thank the reviewers for their useful
suggestions and helpful comments.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1-41 (2009). https://doi.org/10.1007/s12532-008-0001-1

2. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM
Rev. 57(1), 3-57 (2015)

3. Bofill, M., Coll, J., Suy, J., Villaret, M.: SAT encodings of pseudo-Boolean
constraints with at-most-one relations. In: Rousseau, L.-M., Stergiou, K. (eds.)
CPAIOR 2019. LNCS, vol. 11494, pp. 112-128. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19212-9_8

4. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Math. Com-
put. Model. 20, 97-123 (1996)

5. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: a useful special
case of the CARDPATH constraint. In: Ghallab, M., Spyropoulos, C.D., Fakotakis,
N., Avouris, N.M. (eds.) ECAI 2008-Proceedings of the 18th European Conference
on Artificial Intelligence, Patras, Greece, 21-25 July 2008, Volume 178 of Frontiers
in Artificial Intelligence and Applications, pp. 475-479. IOS Press (2008)

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1007/978-3-030-19212-9_8
https://doi.org/10.1007/978-3-030-19212-9_8

202

6.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. Fazekas et al.

Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P., Walsh, T.: Encodings of
the SEQUENCE constraint. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
210-224. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-
717

. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the

sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620—
634. Springer, Heidelberg (2006). https://doi.org/10.1007/11889205_44

Sinnl, M.: A note on computational approaches for the antibandwidth problem.
Cent. Eur. J. Oper. Res. (2020). https://doi.org/10.1007/s10100-020-00688-4
Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Comb. 16(6), 1-219
(2009)

Leung, J.Y., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth
minimization problem. STAM J. Comput. 13(3), 650-667 (1984)

Cappanera, P.: A survey on obnoxious facility location problems (1999)

Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12),
1497-1514 (1980)

Gansner, E.R., Hu, Y., Kobourov, S.: GMap: visualizing graphs and clusters as
maps. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 201-208.
IEEE (2010)

Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19(6),
651-666 (1989)

Liu, Y., Yuan, J.: The dual bandwidth problem for graphs. J. Zhengzhou Univ.
35(1), 1-5 (2003)

Raspaud, A., Schréder, H., Sykora, O., Torok, L., Vrt’o, I.: Antibandwidth and
cyclic antibandwidth of meshes and hypercubes. Discrete Math. 309(11), 3541—
3552 (2009)

Wang, X., Wu, X., Dumitrescu, S.: On explicit formulas for bandwidth and
antibandwidth of hypercubes. Discrete Appl. Math. 157(8), 19471952 (2009)
Dobrev, S., Kralovi¢, R., Pardubska, D., Toérok, L., Vrt’o, I.: Antibandwidth and
cyclic antibandwidth of hamming graphs. Discrete Appl. Math. 161(10-11), 1402—
1408 (2013)

Bekos, M.A., Kaufmann, M., Kobourov, S., Veeramoni, S.: A note on maximum
differential coloring of planar graphs. J. Discrete Algorithms 29, 1-7 (2014)
Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization
problem. J. Heuristics 17(1), 39-60 (2011). https://doi.org/10.1007/s10732-010-
9124-4

Duarte, A., Marti, R., Resende, M.G., Silva, R.M.: GRASP with path relinking
heuristics for the antibandwidth problem. Networks 58(3), 171-189 (2011)
Lozano, M., Duarte, A., Gortazar, F., Marti, R.: Variable neighborhood search
with ejection chains for the antibandwidth problem. J. Heuristics 18(6), 919-938
(2012). https://doi.org/10.1007/s10732-012-9213-7

Scott, J., Hu, Y.: Level-based heuristics and hill climbing for the antibandwidth
maximization problem. Numer. Linear Algebra Appl. 21(1), 51-67 (2014)

van den Akker, J.: LP-based solution methods for single-machine scheduling prob-
lems. Ph.D. thesis, Technische Universiteit Eindhoven - Department of Mathemat-
ics and Computer Science (1994)

Boland, N., Kalinowski, T., Waterer, H., Zheng, L.: Mixed integer programming
based maintenance scheduling for the hunter valley coal chain. J. Sched. 16(6),
649-659 (2013). https://doi.org/10.1007/s10951-012-0284-y

Maravelias, C.T.: On the combinatorial structure of discrete-time MIP formula-
tions for chemical production scheduling. Comput. Chem. Eng. 38, 204-212 (2012)

https://doi.org/10.1007/978-3-540-74970-7_17
https://doi.org/10.1007/978-3-540-74970-7_17
https://doi.org/10.1007/11889205_44
https://doi.org/10.1007/s10100-020-00688-4
https://doi.org/10.1007/s10732-010-9124-4
https://doi.org/10.1007/s10732-010-9124-4
https://doi.org/10.1007/s10732-012-9213-7
https://doi.org/10.1007/s10951-012-0284-y

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Duplex Encoding of Staircase At-Most-One Constraints 203

Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of the
art of nurse rostering. J. Sched. 7(6), 441-499 (2004). https://doi.org/10.1023/B:
JOSH.0000046076.75950.0b

Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and roster-
ing: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3-27
(2004)

Dincbas, M., Simonis, H., Hentenryck, P.V.: Solving the car-sequencing problem
in constraint logic programming. In: Kodratoff, Y. (ed.) Proceedings of the 8th
European Conference on Artificial Intelligence, ECAI 1988, Munich, Germany, 1—
5 August 1988, pp. 290-295. Pitmann Publishing, London (1988)

Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The car sequencing prob-
lem: overview of state-of-the-art methods and industrial case-study of the
ROADEF’2005 challenge problem. Eur. J. Oper. Res. 191(3), 912-927 (2008)
Prestwich, S.D.: CNF encodings. In: Biere, A., Heule, M., van Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability. Volume 185 of Frontiers in Artificial Intelli-
gence and Applications, pp. 75-97. IOS Press (2009)

Chen, J.: A new sat encoding of the at-most-one constraint. In: Proceedings of the
Constraint Modelling and Reformulation (2010)

Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102-117.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3_14
Holldobler, S., Nguyen, V.H.: On SAT-encodings of the at-most-one constraint.
In: Katsirelos, G., Quimper, C.G. (eds.) Proceedings of the Twelfth International
Workshop on Constraint Modelling and Reformulation, Uppsala, Sweden, 16—20
September 2013, pp. 1-17 (2013)

Knuth, D.E.: The Art of Computer Programming, Volume 4B, Fascicle 6: Satisfi-
ability. Addison-Wesley, Boston (2015)

Nguyen, V.: SAT encodings of finite-CSP domains: a survey. In: Proceedings of the
Eighth International Symposium on Information and Communication Technology,
Nha Trang City, Viet Nam, 7-8 December 2017, pp. 84-91. ACM (2017)

Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827-831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751_73

Liffiton, M.H., Maglalang, J.C.: A cardinality solver: more expressive constraints
for free. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp.
485-486. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-
847

Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints
in CNF. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 285-301.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_22

Roussel, O., Manquinho, V.M.: Pseudo-Boolean and cardinality constraints. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 695-733.
IOS Press (2009)

Eén, N., Sorensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT
2(1-4), 1-26 (2006)

Abio, I., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E., Mayer-
Eichberger, V.: A new look at BDDs for pseudo-Boolean constraints. J. Artif.
Intell. Res. 45, 443-480 (2012)

https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1007/978-3-642-39611-3_14
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-642-31612-8_47
https://doi.org/10.1007/978-3-642-31612-8_47
https://doi.org/10.1007/978-3-319-09284-3_22

204

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

K. Fazekas et al.

Philipp, T., Steinke, P.: PBLib — a library for encoding pseudo-Boolean constraints
into CNF. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 9-16.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_2

Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, L.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352-366. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04244-7_29

Abio, 1., Gange, G., Mayer-Eichberger, V., Stuckey, P.J.: On CNF encodings of
decision diagrams. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp.
1-17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_1
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677-691 (1986)

Bryant, R.E.: Binary decision diagrams. Handbook of Model Checking, pp. 191—
217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_7

Gent, I.P.: Arc consistency in SAT. In: van Harmelen, F. (ed.) Proceedings of the
15th European Conference on Artificial Intelligence, ECAI 2002, Lyon, France,
2002 July 2002, pp. 121-125. IOS Press (2002)

Bacchus, F.: GAC via unit propagation. In: Bessiere, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 133-147. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_12

Rodriguez-Tello, E., Romero-Monsivais, H., Ramirez-Torres, J., Lardeux, F.:
Harwell-boeing graphs for the CB problem (2015). https://www.researchgate.net/
publication/272022702_Harwell-Boeing_graphs_for_the_CB_problem

Biere, A.: CaDiCaL at the SAT Race 2019. In: Heule, M., J&rvisalo, M., Suda,
M. (eds.) Proceedings of SAT Race 2019 - Solver and Benchmark Descriptions.
Volume B-2019-1 of Department of Computer Science Series of Publications B,
pp. 8-9. University of Helsinki (2019)

Stuckey, P.J.: Lazy clause generation: combining the power of SAT and CP (and
MIP?) solving. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,
vol. 6140, pp. 5-9. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13520-0_3

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529-543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

Bergman, D., Ciré, A.A., van Hoeve, W., Hooker, J.N.: Decision Diagrams for Opti-
mization. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

https://doi.org/10.1007/978-3-319-24318-4_2
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-319-33954-2_1
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-540-74970-7_12
https://doi.org/10.1007/978-3-540-74970-7_12
https://www.researchgate.net/publication/272022702_Harwell-Boeing_graphs_for_the_CB_problem
https://www.researchgate.net/publication/272022702_Harwell-Boeing_graphs_for_the_CB_problem
https://doi.org/10.1007/978-3-642-13520-0_3
https://doi.org/10.1007/978-3-642-13520-0_3
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-42849-9

®

Check for
updates

Core-Guided and Core-Boosted Search
for CP

Graeme Gange'®) | Jeremias Berg?, Emir Demirovié¢3, and Peter J. Stuckey!

! Monash University, Melbourne, Australia
{graeme.gange,peter.stuckey }@monash.edu
2 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
jeremias.berg@helsinki.fi
3 University of Melbourne, Melbourne, Australia
emir.demirovic@unimelb.edu.au

Abstract. Core-guided search has proven to be the state-of-the-art in
finding optimal solutions for maximum Boolean satisfiability and these
techniques have recently been successfully imported in constraint pro-
gramming. While effective on a wide range of problems, the methods are
direct translations of their propositional logic counterparts. We propose
two reformulation techniques that take advantage of the rich formalism
offered by constraint programming rather than relying on propositional
logic strategies, and generalise two existing techniques to improve core-
extraction and the overall performance. Our experiments demonstrate
the effectiveness of our approaches over the conventional (core-guided)
CP methods, both in terms of proving optimality and quickly computing
high-quality solutions.

1 Introduction

Discrete optimisation problems are ubiquitous: they include scheduling, roster-
ing, production planning, and many other important questions. Optimal or good
solutions to these problems result in more efficient use of scarce resources, saving
time, money and the environment. Because of their importance, there are many
paradigms to solve optimisation problems, including Mixed Integer Program-
ming (MIP), Constraint Programming (CP), Maximum Satisfiability (MaxSAT)
and local search. In this work, we focus on constraint programming, and in par-
ticular on improving core-guided search for CP.

There are two main approaches to optimization in constraint programming;:
1) branch-and-bound, that iteratively improves a best known solution during
search, and 2) core-guided search, where the algorithm assumes all constraints
can be satisfied, and upon detecting infeasibility, relaxes the assumptions and
reiterates. Branch-and-bound and core-guided search can be seen as upper and
lower bounding methods, respectively. Branch and bound is by far the most used
approach in CP.

Core-guided search originates from the MaxSAT community, where problems
are specified as propositional logic formulae. It is one of the central approaches

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 205-221, 2020.
https://doi.org/10.1007/978-3-030-58942-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_14

206 G. Gange et al.

to complete MaxSAT solving, as a large portion complete solvers in the annual
MaxSAT Evaluation use the core-guiding methodology. In contrast, in CP, core-
guided approaches have only recently been developed. In particular, the solver
LCG-Glucose-UC, based on core-guiding, achieved the third highest score in the
MiniZinc Challenge 2016, and OR-tools has introduced core-guided search in 2018
as part of their parallel solver. While these techniques have seen success in CP, they
do not, in fact, use the expressivity offered by the constraint programming frame-
work. Indeed, the methods are direct translations of the MaxSAT approaches,
which were originally developed for the low-level language of propositional logic.

In this work, we advance the state-of-the-art for core-guided search in CP by
exploiting the high-level language constructs offered by constraint programming.
We provide two novel reformulation techniques for CP which are unique to con-
straint programming. Moreover, we generalise two existing techniques for CP,
namely assumption probing to improve core-extraction and core-boosting [7] to
increase the overall performance. We also discuss an issue with using explana-
tion lifting with the conventional CP core-guided approach and note a number
of techniques adapted from the MaxSAT community which play an important
role in obtain high quality results. Our experiments on benchmarks from the
MiniZinc Challenge show improvements over the conventional (core-guided) CP
approaches, both in terms of the number of instances solved to optimality and
the ability to quickly produce high-quality solutions.

The rest of the paper is organised as follows. In the next section, we introduce
basic notations; constraint programming solvers with explanations, and core-
guided MaxSAT methods along with their conventional translation for CP. Our
main contributions are given in Sect. 3, together with additonal techniques that
improve empirical performance. A report on the experimental evaluation is given
in Sect. 4. We conclude in Sect. 5.

2 Preliminaries

Notation: A Boolean variable can take values true (1) or false (0). A literal is a
Boolean variable b or its negation —b. A clause is a disjunction (set of) of literals.
The set VAR(F) and LIT(F) contain all variables (resp. literals) of the formula
F. The binary variable (x o k) is an indicator for the condition x o k being true,
e.g., (x > k) is true if the integer variable z is assigned a value greater than k.
For two formulas R and L, R = L denotes logical entailment, i.e., all models
R are also models of L. We use the notation unsat(L) to indicate that formula
L is unsatisfiable (i.e. has no models). We will use [|z[|* to denote the function
returning the excess of x above [, up to u. That is, lz]l}* = max(0, min(u, z) —1)-
For convenience, we write Nz as |z,

CP solvers typically (implicitly) reason about an integer variables = taking
values in [I...u] by using the atomic constraints: x > d, z < d, x = d, v # d and
false for d € [l..u]. Given a set of constraints F, the current domain D, seen
as a formula containing conjunction of atomic constraints, represents all possi-
ble values that each variable z € VAR(F) can take. We denote the upper and

Core-Guided and Core-Boosted Search for CP 207

lower bound (in the current domain) of an integer variable = by ub(z) and Ib(z),
respectively. A propagator f. for a constraint ¢ € F takes the current domain D
and returns a set f.(D) of atomic constraints such that each r € f.(D) is entailed
by D ac but not D alone, i.e. D % r and D ac = r. If false € f.(D), the prop-
agator has detected unsatisfiability, i.e. that the current domain is inconsistent
with the constraint c¢. For example, if ¢ is a clause, then f.(D) = {false} if the
current domain sets all literals in ¢ to 0. If instead, D sets all but one literal
l € ¢ to false, then f.(D) ={l =1}.

We consider the problem of minimising a linear objective function), w;x;,
subject to a set of constraints F. Here each z; is an integer variable taking values
in some domain [I..u] assigned a weight w;. Whenever all variables are binary
and all constraints in F are clauses, we talk about a (weighted partial) MaxSAT
problem. We say that a literal b; € LIT(F) for which w; > 0 is an objective
variable and denote the set of all objective variables by S(F). A model 7 of F is
a solution and has cost COST(F,7) = 32, c () wiT(bi). A solution 7 is optimal
if COST(F,7) < COST(F,7") holds for all solutions 7/ to F. Note that the
traditional description of MaxSAT is somewhat different to the above, but this
is closer to the mathematical view of optimisation problems, and more closely
reflects how MaxSAT solvers (including core-guided solvers) work internally [9].

An important concept in this work is that of an (unsatisfiable) core. Given a
set F of constraints and conjunction of assumption atomic constraints A, a core
K is a set k of atomic constraints s.t. F = « and k = —A. In other words, a core
is a nogood made up of negated assumptions. A key observation for core-guided
search methods is that the existence of a core s that only contains objective
variables implies a lower bound w" = min{w; | b; € xk} on the objective function
Z?zl w;b;. Core-guided search methods make use of this fact by reformulating
the instance during search. More specifically, given a lower bound Ib(z;) on
each (integer) objective variable x;, the objective function can be rewritten as
Z?:l W;T; = Z?:l wllb(xz) + Z?:l wlﬂxlﬂ|b(z7) = Clb + Z?:l Wy ﬂmlﬂ|b(z7) where
Cip is constant. We also note that, for an integer variable x, the following holds:
lzfl, = (& > k) + 2]y 1 and (x> k) = |z[|F . For an integer variable z with
initial domain [I..u] then 2 = [+)3

Lifting Explanations in CP Solving: Similarly to how core-guided MaxSAT
solvers make extensive use of conflict driven clause learning (CDCL) SAT solv-
ing under assumptions [13], core-guided CP solvers make extensive use of lazy
clause generation solving (LCG) under assumptions [23]. Given a set F' of prop-
agators (representing a set of constraints), a current domain D, and a set A of
assumptions (in the form of atomic constraints) over integer variables, an LCG
solver LCG(F, D, A) determines if there exists an assignment 6 to the variables
that entails: (i) all constraints, (ii) all assumptions and (iii) the original domain
D,yig- If so, the solver returns SAT(6). Otherwise the solver returns UNSAT (k)
where k a core of the instance.

As we use LCG solvers in a black-box manner, we will not go into detail on
how such solvers operate (see e.g. [14] for more details). A central concept for

208 G. Gange et al.

applying LCG solvers in core-guided CP is that of explanations for propagations.
Each propagator f. in a LCG solver must be able to explain its propagation
of an atomic constraint r in the form of a clause, i.e., compute an explanation
clause expl(c, D,r) = (E — r) where F is a conjunction of atomic constraints and
D = FE, as well as c = E — r. During conflict analysis, a learnt clause is derived
by starting from the conflict C', and repeatedly replacing some atom r € C with
its reason, i.e. E/. Analogously to how learned clauses over assumptions represent
cores in core guided MaxSAT, the explanations for failure over assumptions
represent cores in core-guided CP. We note that for a single propagation there can
be (and often are) are many different explanations. Instead any explanation that
is correct in the current domain suffices. The following examples demonstrate
that some of the explanations are better for core guided CP than others.

Ezxample 1. Consider the propagation of the linear inequality 2x + 3y + 4z < 27
with the current domain x € [5..7], y € [4..9], z € [5..8]. The propagator detects
unsatisfiability, a simple explanation is: (x > 5) A (y = 4) A (z = 5) — false i.e.
the clause Cy = ({(x <5) V (y < 4) V (z <5)). This is not however, the only
explanation. By relaxing bounds we obtain the lifted explanation (x > —2) A
(y =4y A (z=5) — false i.e. the clause Cy = ((x < =2y V (y < 4) V (z < b)),
for the same propagation. Observe that the lifted explanation is stronger than
the simple one as Cs = C. Some lifted explanations can be particularly attrac-
tive, for example if the original domain sets x > 0, then the lifted explanation is
equivalent to (y > 4) A (z > 5) — false, containing one less literal. O

One way of obtaining stronger explanations is through lifting, informally speak-
ing a lifted explanation can be computed by making use of the original propa-
gator in order to compute an explanation for an atom in the (partial) learned
clause, instead of the explanation graph. The reason computed by the propa-
gator will frequently be weaker than the atom that was originally inferred, and
allow the construction of a more general explanation.

Example 2. Consider a propagator f. for the linear inequality ¢ = 7Ty + 4t > 34,
and a current domain y € [0..10] and t € [0..2]. The propagator can prop-
agate (y >4) with explanation (¢ <2) — (y >4). Now suppose a partial
learned clause of form —{y > 1)V @, is encountered during conflict analy-
sis. Since (y >4) = (y > 1) the original explanation can be used to obtain
C1 =~ {t < 2) V Q. However, the propagator f. can return the lifted explanation
(t < 8) — (y > 1) which allows deriving the learned clause Cy = = (t < 8) V Q.
We observe that Cy = (', i.e. the learned clause obtained with the lifted expla-
nation is stronger than the original one. O

Objective Probing: Branch-and-bound (B&B) CP solvers iteratively search
for better solutions by constraining that the objective value must be better than
in the previous found solution. A common issue that arises is slow convergence:
after finding a solution, B&B solvers typically generate many incrementally bet-
ter solutions before reaching the true optimal solution. One strategy for improv-
ing convergence rate is optimistic partitioning [19]: after finding a solution with

Core-Guided and Core-Boosted Search for CP 209

objective value Z given lower bound z, optimistic partitioning speculatively
posts a constraint (z < 2} (instead of (z < 2)). If this succeeds, we have a
much better solution; otherwise, the lower bound is greatly increased.

Core-Guided MaxSAT: that originated with the Fu-Malik algorithm [15] is
today one of three central approaches to complete industrial MaxSAT solving,
together with the implicit hitting set approach [10,24] and the model improv-
ing (corresponding to branch-and-bound in CP) approach [12,18,20,22]. Core-
Guided search is a lower bounding approach based on first assuming that all
objective literals can be set to false and relaxing the assumption whenever new
cores (i.e. sources of unsatisfiability) are detected.

In more detail, when minimising an objective), w;x; subject to a set F of
clauses, modern core-guided MaxSAT solvers maintain a working instance F*,
initialised to F. During each iteration, a SAT solver is used to determine if there
exists a solution of cost 0 to F* by querying it on the clauses of F* while
assuming A = {—x|z € S(F")}, that is that all objective variables are false. If
the result is satisfiable, a solution satisfying F* and A will be an optimal solution
to F. Otherwise, the solver returns a set of variables k C S(F™) that represents
a core of F¥. Next F¥ is relaxed (reformulated) based on k. First, the weight of
each objective variable in & is lowered by w® = min{w(z) | € x} (this is known
as weight-splitting). Second, new objective variables and clauses REFORM(%) that
rule out x as a source of unsatisfiability are added to F*.

Most core-guided solvers differ mainly in the instantiation of REFORM(k).
We detail the OLL algorithm [1,21] as it been shown to be the most effective
in the MaxSAT evaluations and can be naturally extended to CP. Assuming
|| = n OLL adds new objective variables (o, > 1), ..., (0, > n — 1), each of
weight w" and clauses corresponding to AS-CNF(}_,.,.(I) > k — (o, > k)) for
each k € [1..n — 1] (the CNF encoding of the constraint). Assuming one of the
commonly used encodings [4,6], the clauses enforce that setting k > 1 literals
of k to true propagates the literals (o, > 1),...,(0ox > k — 1) to true, incurring
(k—1)w" additional cost. Informally, the new clauses allow setting one objective
variable in x to true for free while incurring more cost for any additional ones.

Example 3. Consider the following problem:

min z = 3z1 + 229 + 223 + 44

s.t. max(xy,x9) =2, max(re,x3) > 2, max(xs,zq) = 2.

where each z; is an integer variable with domain [0..3]. To solve this problem
with the MaxSAT OLL algorithm, we consider the equivalent problem:

3 3 3 3
minz= Y 3(x1 2 k) +> 2=k + > 2wz >k)+ Y 4(zs > k)
k=1 k=1 k=1 k=1
st (x;2k)—> (x;2k—1) forie[l.4],k € [2..3]
<$1>2>\/<$2>2>, <l‘2>2>\/<l‘322>, <x322>\/(x4>2>.

210 G. Gange et al.

We sketch an execution of the MaxSAT OLL algorithm. The initial solver
call is made assuming (z; > k) to false for all ¢ € [1..4], and k € [1..3]. Let
k1 = {{x2 = 2), (x3 = 2)} be the first core extracted. First the weights of both
variables in the core are lowered by min{w({zs > 2)),w({xz3 > 2))} = 2. Then
a new variable (07 > 1) (with weight 2) defined with clauses corresponding to
(= {01 > 1) — Den, (1) < 1) is introduced to the instance before the solver reit-
erates. In the next iteration, the objective variables of the instance are (o1 > 1),
(x; > k) for k € [1..3] and i € {1,4} as well as (z; > 1), (z; > 3) for j € {2,3}.
Let ky = {{z1 > 2), (01 > 1), (x4 > 2)} be the next core. As in the first itera-
tion, the weight of each objective variable in the core is lowered by 2 and new
objective variables (02 > 1) and (02 > 2) (weight 2) are introduced and defined
with constraints AS-CNF (= (02 > k) — Y., (1) < k).

Next the algorithm extracts two unit cores arising due to the order-encoding
of integers before terminating with the satisfying assignment that sets (zq > 1),
(xg = 1), (x2 = 2), (x3 > 2) and (01 > 1) to true and all other variables to false.
This assignment has cost 8 and corresponds to 1 = x4 = 0 and x5 = x3 = 2,
an optimal assignment to the original problem. a

Core-Boosting is a recently proposed [7] search strategy for MaxSAT that
combines core-guided search with an anytime approach (originally a B&B type
search for MaxSAT). The intuition underlying core-boosting is that core-guided
search is mostly an “all-or-nothing” strategy. In its most basic form, core-guided
search only finds one feasible solution during search, an optimal one. Further-
more, core-guided search tends to be somewhat bimodal [7], either proving opti-
mality fairly quickly or not terminating within a reasonable time. Core-boosted
search is designed to take advantage of the fact that core-guided search may rule
out a significant number of cores from the instance that would cause trouble for
approaches like B&B.

More specifically, given a total resource budget, core-boosting spends a small
fraction of its budget running in a core-guided mode. If this budget is exhausted
and optimality has not yet been proven it rebuilds the objective based on the
cores found so far, and then spends its remaining time optimizing the reformu-
lated objective in a branch-and-bound mode.

3 Advancing Core-Guided Search for CP

In this section, we overview core-guided search for CP and discuss our contri-
butions toward advancing its performance. We begin with what we call slice-
based reformulation, i.e. the conventional translation of the OLL algorithm for
MaxSAT to CP. We also discuss potential issues when applying explanation lift-
ing to the slice based formulation. Motivated by these we then detail our main
contributions: coefficient elimination and variable-based reformulation, two novel
core-guided reformulations specific for CP. Finally, we also discuss improvements
and generalisations of existing search heuristics from MaxSAT and CP; assump-
tion probing and core-boosting.

Core-Guided and Core-Boosted Search for CP 211

3.1 Slice-Based Reformulation

The following restatement of Example 3 for CP provides intuition for the slice
based reformulation.

Ezxample 4. In contrast to MaxSAT, the OLL algorithm with slice based refor-
mulation works directly on the original problem of Example3. For each vari-
able x;, we track a threshold: initially Ib(x;), the threshold is the amount of
x; which is already accounted for elsewhere in the objective. Initially, the LGC
solver is called while assuming all variables to their initial threshold, i.e. (z; < 0)
for i € [1.4]. Let k1 ={-{z2<0),=(x3 <0}, ie. {{ma>1),(x3>1)} be
the first core obtained. The algorithm now introduces a new integer vari-
able 01 > (2 > 1) + (x3 > 1) with an initial domain oy = {1,2} (notice that
o1 # 0 as at least one of the literals in the core has to be false). For an
alternative view, o1 could be seen as the variable 0; = (x5 > 1) + (z3 > 1) that
has its upper bounds enforced by assumptions. Next the objective is reformu-
lated using 01 to 2z = 2 + 2[lo1[|; + 3z1 + 2[|z=]|; + 2[|x3]l; + 4x4- For some
intuition, notice for example that the term 2[z,||, corresponds to the term
22i:2 (x9 = k) in the MaxSAT objective and that the term 2lo1]|, + 2 can
be seen as 2 (xy > 1) + 2 (x5 > 1) plus the lower bound implied by &;.

In the next iteration, all variables are again assumed to their current thresh-
old ie. (x1 <0), (x2 < 1), (x3<1), (x4 <0), and (07 < 1). Notice how the
threshold for x5 and x5 is 1, conceptually, the (potential) weight for zo =
x3 = 0 is accounted for by the variable o;. Assume the next core obtained
is ko = {{z2 > 2), (x3 > 2)}. Similarly to before, a new variable o; and con-
straint os > (z2 > 2) + (w3 > 2) is introduced, and the objective reformulated
to z =4+ 2o1]l; + 2[loz]ly + 3z1 + 2@y + 2[|z3]l, + 424 -

In the next iteration, the thresholds for the variables are (z; <0), (z2 <
2), (3 <2), (£4<0), (01 <1), and (02 <1). Assume that the next core
extracted is k3 = {(x1 = 1), (02 > 2), (x4 > 1)} after which the constraint o3 >
(1 =2 1) + (02 2 2) + (x4 > 1) is introduced and the objective reformulated to
2 = 6+ 2lorll + 2 llo + 3llwally + 2llwalls + 2llza]ly + 2zallo + Alzally-

Finally, the solver still extracts the core k4 = {(01 > 2)} and reformulates
the instance one last time before terminating with the solution x; = z4 = 0,
ro =x3=2and 01 =0y =2, 03 =04 = 1. O

Example 4 gives some intuition for the term slice based reformulation. In
each iteration the algorithm slices off the current threshold value of all variables
appearing in a core k, packaging the removed values into a new penalty term o,.

Algorithms 1 and 2 detail OLL with slice based reformulation for CP. Given
a set F of constraints and an objective z to minimize, the algorithm initially
checks the feasibility of the problem by calling the LCG solver on the constraints
without assumptions. If the problem has feasible solutions, the algorithm enters
its main search loop. On each iteration, the LCG solver is invoked on the instance
while assuming all objective terms to their current thresholds. These thresholds
are maintained in a mapping F that maps each variable z; to a tuple (¢;, u;, w;)
containing its threshold (¢;), its residual weight u; and its full weight w;. If the

212 G. Gange et al.

Algorithm 1: OLL for constraint programming using slice-based reformu-
lation

Data: Constraints F, an original domain D, and objective

Z=w1T1+ ...+ WnTm.

Result: Optimal solution 6*.

Zlb < Z:‘L:I wl|b($1)

switch LCG(F,D,,o) do
case UNSAT(2)

| return UNSAT

case SAT(0)
E — {z; — (Ib(x;),w;,w;) | i € 1...n}
while true do
switch LCG(F,D,,{(x; < ti) | E[zi] = (¢i,ui, w;)}) do
case SAT(D)
L return D,z

case UNSAT(k)
L F, zip, E < REFORMULATE-SLICE(F, 21, E, K)

Algorithm 2: REFORMULATE-SLICE(F, zj3, E, k)

w® — min{u; | (x; = ki) € k, E[z:] = (¢i, ui, wi)}
0x «— NEW-VAR(F, [1, |x]])
R+—0
for (z; > k;) € k do
(ti,ui,wi) «— E[xz}
R— R+ (x; >2t; +1)
if u; = w” then
L E[{Ez} — (ti —+ 1,7_07;,'[1)1')
else
L Elz;] « (ti, us — w", w;)

Blod] — (1w, w")
F —FAN(ox > R)
return F, z;p + w", E

solver returns SAT(D) the obtained domain will be an optimal solution to the
problem so the algorithm terminates. Otherwise, the solver returns a core k.
The algorithm then reformulates the instance using Algorithm 2. Analoguously
to MaxSAT, slice based reformulation of the instance means: (i) computing w",
the minimum residual weight of all literals in the core, (ii) lowering the (residual)
weight of each literal in the core by w" and (iii) introducing a new variable o,
with lower bound (and threshold) 1 and full weight w" as well as new constraints
0x 2 D e, (1). Any variable whose residual weight gets lowered to 0 during step
(ii) gets its threshold by one and residual weight reset to its full weight

Core-Guided and Core-Boosted Search for CP 213

Ezample 5. Consider core k3 = {(x1 = 1), {02 > 2), (x4 > 1)} from Example 4.
The current state of the objective is Efo1] = (1,2,2), Flos] = (1,2,2), E[z;] =
(0,3,3), Elxs] = (2,2,2), Elas] = (2,2,2), E[z4] = (0,4,4), with 2z = 4. We
determine w" = 2 as the minimum of the u; coefficients of {z1, 02, 24 }. We create
new variable og and collect the expression R = (z1 > 1) + (02 = 2) + (x4 > 1),
updating the E entries to E[z1] = (0,1,3), Elo2] = (3,2,2), Elx4] = (0,2,4)
We set Elos] = (1,2,2) and add the constraint o3 > R. We return z;, = 6. The
resulting objective is exactly as shown in Example 4.

The following example demonstrates a potential weakness of slice-based refor-
mulation, motivating the novel reformulation strategies we propose in the next
section.

Ezample 6. Consider the problem defined in Example 3 and the initial LCG call
made by OLL for CP with the assumptions (z; < 0) for ¢ € [1..4]. Assume now
that we obtain the lifted core] = {{(z3 > 2), (z3 > 2)} and introduce a single
new variable o, = (w5 > 1) + (w2 > 2) + (23 > 1) + (w3 = 2) = [[22]I§ + [lzs]l§
If the solver later derives (x5 > 1) and (x3 > 1), the lower bound on o, is set to
2. However, with the reformulations performed in Example 4 the algorithm has
already derived (zo > 2) V (z3 > 2), implying a lower bound of 3 on o,. O

In other words, slice based reformulation makes using lifted cores difficult. Hence,
instead of the approach presented in Example 6 we instead perform reformulation
similarly to Example 4 instead. We do however add the lifted core to the model,
thus allowing the algorithm to extract it later without search.

3.2 Novel Core-Guided Reformulations for CP

Next we detail the main contribution of this work, two novel reformulation strate-
gies for the CP OLL algorithm: 1) Coefficient Elimination and 2) Variable-based
reformulation. Coeflicient elimination seeks to increase the number of variables
whose lower bounds are increased during reformulation steps., thus increasing
the rate at which the lower bounds of the variables increase. Variable-based
reformulation attempts to make better use of the information provided by lifted
cores in order to increase the lower bound on the objective faster.

Coefficient Elimination. Let x be a set of literals corresponding to a core
obtained during an iteration of OLL for CP and w" the smallest (residual)
weight of the literals in the core. Consider now the weighted sum of the literals
in the core, i.e the variable o,, = inen w; (x; = t; + 1). Since k corresponds to a
core, the lower bound of o, is w” and the objective could be reformulated using
Yiwier WillTilly, = 0" + 0k llyr + 2 e willTilli, 41 - Notice how, in contrast to
the strategy described in Sect. 3.1 and Example 4, coefficient elimination in this
form results in the lower bound of all variables in x being increased by one. The
drawback is instead the (potential) increase in complexity of the subsequent
LCG solver calls.

214 G. Gange et al.

Example 7. Consider the following problem:

n
minimize 1000p + in +vy; s.t. p—z;+y >1, Viel...n
i=1

With weight splitting, the OLL algorithm for CP generates max(n, 1000) cores
of form {(p = 1), (x; = 1),(y; = 1)} i € [1..], each time decreasing the coeflicient
of p by 1. Since p is never removed from the objective, we expect extracting each
core to require approximately similar amounts of computational effort (see also
independent core extraction detailed later in this section).

With coefficient elimination, the algorithm instead introduces the vari-
able o, = 1000p + x; + y1 with a lower bound of 1 when reformulat-
ing k={(p>1),(x1 =2 1)(y1 > 1)}. In the next iteration, the variable p is
no longer directly in the objective. Instead the next core extracted will be
{{ox =2 2),{xza = 1), (y2 = 1)} instead. Informally speaking, all of the subsequent
cores will depend on the reformulation variables introduced in previous itera-
tions thus making extracting cores require increasing amounts of computational
effort. [5] O

The version of coefficient elimination that we consider is a hybrid strategy
designed to balance the number of variables whose lower bounds can be increased
during each reformulation with the potential of extracting independent cores
during subsequent iterations. More specifically, when reformulating on a set
of literals having minimum weight w”, we fully reformulate all literals in « that
have weight less than Bw" where B is a boundary parameter, and slice the
rest. More formally, coefficient elimination introduces a variable o, = Zm,;en CiT;
where ¢; = max(w;, Bw") and reformulates the objective using >, ., willz:fl;, =

W + o e + 2y, cr max (0, w; — Bw®)zilly, + X, c willzilly, 41 -

Variable-Based Reformulation attempts to overcome the difficulties that
slice based reformulation has with exploiting the full potential of lifted cores,
i.e. that slice-based reformulation can only ever increase the 1b of variables by 1
and thus the objective by the minimum (residual) weight of the variables in the
core.

Recall for example the lifted core {(ze >2),(x3 >2)} discussed in
Example 6. When reformulating with variable-based reformulation, the OLL
algorithm for CP introduces the variable o, > x5 + x3 with an initial domain
of [2...). In more general terms, variable based reformulation merges all integer
variables appearing in a core into a single new variable, and assigns the new
variable an initial lower bound equal to the sum of Ib(z;) plus the smallest gap
between the some Ib(z;) and the corresponding value in the core (we do not
maintain a separate threshold). Notice that the potential benefits of variable
based elimination are directly related to the size of the domains of the involved
variables. In this particular case, the approach lifts the lower bound by 2 but it
is easy to create examples where the increase is higher, which we observed to
also occur frequently in practice.

Core-Guided and Core-Boosted Search for CP 215

In addition to more effectively exploiting information in lifted cores, we often
observed that variable based reformulation resulted in unit cores being extracted
in subsequent iterations. Unit cores are particularly attractive for the OLL algo-
rithm for CP as no new variables nor constraints need to be introduced. Instead
it suffices to increase the lower bound of the variable in the core.

3.3 Generalisations of Existing Techniques

Before reporting on an experimental evaluation of the new reformulation strate-
gies, we briefly describe new generalisations and improvements to existing heuris-
tics in both CP and MaxSAT solving that we make use of in this work.

Core-Boosting for CP. We extended core-boosted search from MaxSAT to
CP. A key difference when applying core boosting in CP compared to MaxSAT
is the need to explicitly encode the objective function (which is only implicitly
defined during the core-guided phase) before switching to branch-and-bound
search.

Explicitly encoding the objective function when using variable based reformu-
lation is fairly straightforward. During each reformulation step, a set xz1,...,zg
of variables in the objective are replaced with a variable o representing their
sum. When switching to B&B search, the same procedure is used to remove
all remaining terms and merging them into a single new variable. In contrast,
combining core-boosted search with slice-based reformulation is more intricate.
Consider a possible (implicit) objective:

z= clrlfly, teallzelly, +o0 Ferllrmlly,
+ by <1‘1 = d1> +by <.Z‘2 = d2> +...+bs <£Em = dm> +zip

obtained after several iterations of core-guided search with sliced based refor-
mulation. A simple approach to making z explicit is to introduce fresh vari-
ables for each sub-term, ie. let z, = max(0,2; — d;), =} = (z; > d;) and
z =2+ 3 cwp+ 3 by

A more efficient method makes use of the monotonicity of [|z;]]; which in
turn implies that any atomic constraint <[[3:Zﬂ 4 = c> can be expressed as an
equivalent atom (x; > ¢'):

true ifc<0
aiflf = c) =R @iz li+c) if0<c<u; —1
false ife>wu; —1;

Hence we can use a form of variable view [25] to encode the expressions [|z;]| ;.

and (x; = d;) = |2; g;}“, thus avoiding the need to introduce new variables.

216 G. Gange et al.

Progressive Probing. Recall that when given an incumbent solution with
cost 2 and a lower bound zj;, on the objective, objective (optimistic) probing
attempts to improve the solution and find a solution of cost (% + z;,)/2. In prac-
tice, we observed that objective probing is a risky strategy since the jump from
2 to (£ + z1p)/2 is quite aggressive, and thus can result in difficult unsatisfi-
able subproblems. Instead we consider a more conservative strategy that we call
progressive probing, an idea resembling to the use of progression in MaxSAT
solving [16]. For geometrically increasing values of § (more precisely, in itera-
tion i §; = 2'stepsize where stepsize is a parameter) the solver is queried for a
solution of cost Z — d;. The procedure reiterates until the solver either returns
UNSAT or runs out of the resources allocated for probing.

In addition to B&B search, we also make use of probing during core-guided
search, inspired by techniques from the MaxSAT community [3,17]. Anytime a
singleton core (u > k) is extracted, the bound k is probed by repeated invoca-
tions of LCG(F, D, {{u < k + ¢;)}) for the geometrically increasing values of ¢;
defined above. Core-probing like this is particularly effective in combination with
variable-based reformulation: if Ib(z) + Ib(y) is much smaller than the true lower
bound of u = x + y, core probing will quickly push up the bound of z, skipping
many of the intermediate steps. Recall also that variable based reformulation
often results in unit cores being extracted in subsequent iterations.

3.4 Additional Techniques

Finally, we also considered a number of fairly direct translations of MaxSAT
techniques to CP.

Independent core extraction [8] is a strategy for obtaining simpler cores.
Given some core & of instance, the reformulation (i.e. introduction of new vari-
ables and constraints) is delayed and instead only the assumptions in the core
are relaxed (i.e. their weight is lowered by w" or Tw" in the case of variable
based reformulations). Since at least one of the weights will be lowered to zero,
the solver can be invoked to extract another core without needing to reformu-
late. Note that reformulating the instance makes it more complicated, and thus
delaying is beneficial. The process continues until no more cores can be found,
at which point all found cores are reformulated.

Stratification [2] starts by posting assumptions using only literals with high
weights, and throughout the search introduces the remaining literals. This allows
high-weighted core to be extracted early in the search. As a side effect, feasible
solutions can be generated in the process.

Hardening [2] can be used to enforce satisfaction for certain literals. Given
an upper z,p and lower bound zj;, on the optimal cost, hardening will set false
any Booleans with weight w > z,, — 2z;5. The same rule can be generalised to
integer variables z; by setting ub(z;) = t; 4+ [#%-* | where ¢; is the coefficient
and t; the threshold of z;.

Solution-guided search [11,12] is a value-selection heuristic that assigns a
branching-variable the value it takes in the current best solution if possible, and

Core-Guided and Core-Boosted Search for CP 217

otherwise resorts to the default value-selection strategy. This focuses the search
around the best solution, quickly finding local improvements.

4 Experiments

In order to experimentally evaluate the improvements to core-guided search we
integrated the described core-guided optimisation methods into geas (https://
bitbucket.org/gkgange/geas), a lazy-clause generation solver. The core engine of
geas is written in C++, with a FlatZinc frontend written in OCaml. The core-
guided optimisation techniques are entirely implemented in the OCaml frontend,
using the engine’s assumption interface to handle the cores and reformulation.
Propagators in geas implement lazy explanation with lifting, so it can extract
lifted cores.

As benchmarks, we took the set of models and instances from the MiniZinc
Challenge [26] for years 2015-2018, and selected all optimization models with
a linear objective. This resulted in 48 models, and 249 instances. We then ran
geas on this data-set, comparing its branch-and-bound configuration (bb), with
all combinations of the following core-based configurations:

— core-guided (core), or core-boosted (boost), using a 10% of time limit (i.e. 60
s) core-guided phase before switching to branch and bound search

— slice-based (slice), or variable-based (var) reformulations.

— weight splitting (split) or coeflicient elimination with boundary B = 2 (elim).

All core-based methods were run with stratification, independent core extraction
and hardening. All methods were run using free search (alternating programmed-
and activity-driven search) and a geometric restart sequence. Each instance was
run with a 600s time-limit, reporting the time to prove optimality as well as the
best objective value found.

Figure 1 compares the overall performance of each set of parameters across
the dataset. We observe that branch and bound performs slightly better than
“the basic version” of core guided search, i.e. core-slice-split and core-slice-elim.
Variable based reformulation improves over slice based reformulation, obtain-
ing performance superior to B&B. The best overall performance is obtained by
boost-var-split making use of core-boosted search, variable based reformulation
and weight splitting, although the difference between coefficient elimination and
weight splitting is minor.

Figure 2 gives a per-instance breakdown of the results, comparing core-guided
search with branch-and-bound as well as the reformulation strategies. We observe
that B&B and core-guide search are fairly orthogonal in the sense that there are
many instances on which B&B search finished quickly while core-guided search
times out and vice versa. This observation provides a possible explanation for
the good overall performance of core-boosted search, notice that most of the
instances where core-guided outperforms branch-and-bound are clustered in the
bottom-right of the figure. The other side of the figure also clearly demonstrates
the superior performance of variable based reformulation compared to slice based
reformulation.

https://bitbucket.org/gkgange/geas
https://bitbucket.org/gkgange/geas

218 G. Gange et al.

time to find and prove optimality

600 -

—— bb
—~®- boost-slice-elim
5004 ¢ boost-slice-split

--%-- boost-var-elim
—M- boost-var-split
4004 —r core-slice-elim
core-slice-split

'g —«- core-var-elim
> 300 A core-var-split
£
=1
200 A
100 - N
%
BB
01 %g%ﬁmﬂdwzﬁé‘g
0 20 40 60 80 100 120

instances solved

Fig. 1. Time to prove optimality for all methods.

branch-and-bound versus core-guided reformulation strategies

6001 +++k W+ 4 LR 600 X OKH + AX HAXX, 4K X X

500

IS
S
3

slice-based

N
S
3

core guided, var-based
w
8
8

,ﬂ
o
3

o

0 100 200 300 400 500 600 0 100 200 300 400 500 600
branch-and-bound var-based

Fig. 2. Comparing time-to-optimality. Left: branch-and-bound versus core guided using
a variable-based reformulation. Right: slice-based versus variable-based reformulation.

In addition to proving optimality we investigate the anytime behaviour of
the methods i.e. how good are the solutions obtained when optimality is not
proven? Tables 1 and 2 compare the quality of solutions found by each method
across all (Table 1) and a representative (Table 2) set of benchmarks. The tables
again demonstrates the orthogonality of the methods we consider, no individual
method dominates all others. However, pure core-guided methods were much
less competitive as anytime methods supporting the intuition that core-guided
methods typically either prove optimality quickly, or fail to produce solutions
of reasonable quality. And for anytime search, using variable elimination rather
than splitting is worthwhile: variable elimination paired with core-boosting most
reliably produced the best feasible solution.

Core-Guided and Core-Boosted Search for CP 219

Table 1. How many times did each method (row) report a strictly better objective
value than each other method (column) and the best objective value found overall
(column BEST).

BB | BOOST CORE

VAR SLICE VAR SLICE

ELIM | SPLIT | ELIM | SPLIT | ELIM | SPLIT | ELIM | SPLIT | BEST
BB 0 |25 22 33 38 100 |93 89 87 196
BOOST | VAR |ELIM |39 | O 27 36 36 102 |95 93 91 211
SPLIT | 39 | 23 0 33 36 103 |93 94 91 205
SLICE | ELIM |37 | 18 20 0 25 101 |92 91 88 196

SPLIT | 33 | 22 20 28 0 101 |93 92 87 197

CORE |VAR |ELIM |20 | 4 4 10 8 0 |22 39 34 144
SpLIT |19 | 4 5 9 8 24 0 37 31 152

SLICE | ELIM |22 | 8 8 8 50 |47 0 13 151

SPLIT |22 | 7 8 8 57 |54 25 0 154

Table 2. Quality scores for selected models. Quality of a solution with objective value
z is defined as %7 where 2 is the initial lower bound, and z,ps the best solution
found by any solver.

MODEL BB BOOST CORE

VAR SLICE VAR SLICE

ELIM | SPLIT | ELIM | SPLIT | ELIM | SPLIT | ELIM | SPLIT
cargo_coarsePiles | 0.99 | 1.00 |0.98 |0.90 0.89 |0.81 [0.81 |0.79 |0.79

celar 0.59 [0.97 10.98 /0.99/0.99 |0.68 [0.68 0.94 0.91
oc-roster 0.93 |1.00|0.97 [1.00 096 |0.66 |0.51 |0.55 |0.52
seat-moving 0.84 {095 [0.95 |0.95 |0.95 |1.00|1.00 1.00 1.00
vrplc_service 1.00/0.99 {0.99 |0.99 [1.00 |0.80 |0.80 |0.74 |0.74

5 Conclusion

In this paper, we revisit the use of unsatisfiable core approaches for CP — both
standalone, and as part of a hybrid (core-boosted) strategy. We exploit the extra
expressiveness of lazy clause generation solvers to build more compact OLL-style
reformulations, and to opportunistically tighten lower and upper bounds. We
experimentally evaluated the new methods and draw the following conclusions 1)
Core-boosting is generally worthwhile, both for anytime performance and prov-
ing optimality. 2) Variable-based reformulations are typically better for proving
optimality, but this is model-dependent. 3) If using core-boosting, variable-based
reformulations also produce better solutions. 4) Surprisingly, slice-based refor-
mulations yield better solutions for core-guided; but still not as good as those
for core-boosted. 5) Coefficient elimination finds the best solution slightly more
frequently in combination with variable-based core-boosting (but is slightly

220 G. Gange et al.

worse at proving optimality). In other configurations, it is worse than weight
splitting.

References

1. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: Proceedings of the ICLP Technical Communications. LIPIcs,
vol. 17, pp. 211-221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

2. Ansétegui, C., Bonet, M.L., Gabas, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86-101. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7_9

3. Ansétegui, C., Gabas, J.: WPM3: An (in)complete algorithm for weighted partial
MaxSAT. Artif. Intell. 250, 37-57 (2017)

4. Asin, R., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E.: Cardinality
networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol.
5584, pp. 167-180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02777-2_18

5. Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analysis.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7-15. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09284-3_2

6. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108-122. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8

7. Berg, J., Demirovié¢, E., Stuckey, P.J.: Core-boosted linear search for incom-
plete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 39-56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9.3

8. Berg, J., Jarvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solv-
ing. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 652—-670. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66158-2_42

9. Berg, J., Jarvisalo, M.: Unifying reasoning and core-guided search for maximum
satisfiability. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS
(LNAI), vol. 11468, pp. 287-303. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19570-0_19

10. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MAXSAT. In:
Jarvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166-181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_13

11. Demirovié, E., Stuckey, P.J.: Local-style search in the linear MaxSAT algorithm: a
computational study of solution-based phase saving. In: Pragmatics if SAT Work-
shop (2018)

12. Demirovié, E., Stuckey, P.J.: Techniques inspired by local search for incomplete
MaxSAT and the linear algorithm: varying resolution and solution-guided search.
In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 177-194. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_11

13. Eén, N., Sorensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543-560 (2003)

14. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, L.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352-366. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04244-7_29

https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-02777-2_18
https://doi.org/10.1007/978-3-642-02777-2_18
https://doi.org/10.1007/978-3-319-09284-3_2
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-319-66158-2_42
https://doi.org/10.1007/978-3-030-19570-0_19
https://doi.org/10.1007/978-3-030-19570-0_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-030-30048-7_11
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-642-04244-7_29

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Core-Guided and Core-Boosted Search for CP 221

Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252-265. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814948_25

Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Progres-
sion in maximum satisfiability. In: Proceedings of the 21st European Conference
on Artificial Intelligence, pp. 453-458 (2014)

Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: a python-based MaxSAT solver.
In: MaxSAT Evaluation 2018, p. 22 (2018)

Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial max-sat
solver. J. Satisf. Boolean Model. Comput. 8, 95-100 (2012)

Marriott, K., Stuckey, P.: Programming with Constraints: An Introduction. MIT-
Press, Cambridge (1998)

Martins, R., Manquinho, V.M., Lynce, I.: Improving linear search algorithms with
model-based approaches for MaxSAT solving. J. Exp. Theor. Artif. Intell. 27(5),
673-701 (2015)

Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564-573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_41

Morgado, A., Heras, F., Marques-Silva, J.: Model-guided approaches for MaxSAT
solving. In: Proceedings of the ICTAI, pp. 931-938. IEEE Computer Society (2013)
Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357-391 (2009)

Saikko, P., Berg, J., Jarvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539-546.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_34

Schulte, C., Tack, G.: View-based propagator derivation. Constraints 18(1), 75-107
(2013)

Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008-2013. AT Mag. 35(2), 55-60 (2014)

https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-319-40970-2_34

l")

Check for
updates

Robust Resource Planning for Aircraft
Ground Operations

Yagmur S. Gok'®) | Daniel Guimarans?, Peter J. Stuckey?,
Maurizio Tomasella!, and Cemalettin Ozturk?

! Business School, The University of Edinburgh,
29 Buccleuch Place, Edinburgh EH8 9JS, UK
{Yagmur .Gok,Maurizio.Tomasella}@ed.ac.uk
2 Faculty of Information Technology, Monash University,
900 Dandenong Road, Melbourne, VIC 3145, Australia
{daniel.guimarans,peter.stuckey}@monash.edu
3 United Technologies Research Center,
4th Floor, Penrose Business Centre, Penrose Wharf, Cork T23 XN53, Ireland

OzturkCQutrc.utc.com

Abstract. Aircraft turnaround scheduling and airport ground services
team/equipment planning directly concern both the airport operator
and service providers. We first ensure airport-wide global optimality
by solving a resource-constrained project scheduling problem (RCPSP)
for minimal overall delays. We then support decentralized allocation of
teams/vehicles to flights, independently by each service provider. Either
a multiple traveling salesman problem with time-windows (mTSPTW),
or a vehicle routing problem with time-windows (VRPTW) are solved for
this purpose, by taking advantage of both constraint programming (CP)
and mixed integer programming (MIP) solvers. We also exploit these
models in a matheuristic approach based on large neighborhood search
used to reach good solutions in reasonable time for real-world instances.
Unlike the classical VRP objective of minimizing traveling time, we max-
imize the total slack time between team visits, and show that doing this
fosters robustness of the generated plans. We assess the robustness of
solutions through a discrete-event simulation model, and conclude by
validating our approach with data provided by a major ground handling
company for a day of operations at Barcelona El Prat Airport.

Keywords: Optimization + Scheduling - Routing - Aviation - Airport
operations

1 Introduction

Effective planning and scheduling is crucial in many areas of airport opera-
tions, where decisions are interconnected with each other and the potential for
flight delays due to knock-on effects is rather high. Careful planning for the

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 222-238, 2020.
https://doi.org/10.1007/978-3-030-58942-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_15

Robust Resource Planning for Aircraft Ground Operations 223

Disembarking = Boarding

Refueling

4>‘ Catering

4>{ Cleaning
........... —‘ Potable water }—

Toilet servicing -
TR | "
Unloading baggage I I } Loading baggage

t — - YT
Push-
back

SIBT SOBT.
7:00 8:00

Fig.1. An example of aircraft turnaround operations and precedence relationships
between them within a timeline

day of operations is essential. With many factors out of the control of any air-
port decision maker—weather conditions, aircraft technical faults, delays, late
passengers on boarding, etc.—, plans that are in some form robust should be
sought. This is particularly true for aircraft turnaround and airport ground ser-
vices. When an aircraft lands, it proceeds to a parking stand. Here, it undergoes a
sequence of operations to get ready for the following take-off. A mix of operations
may be needed: passenger disembarking/boarding, baggage unloading/loading,
refueling, cabin cleaning, catering, toilet and potable water servicing, and air-
craft push-back. Precedence relations do apply—e.g. refueling often cannot start
before passengers have disembarked due to safety regulations. Figure 1 shows an
example of a single aircraft turnaround. Conjunctive arcs represent the prece-
dence relations. There exist specific time windows through which each activity
should be performed. Each time window shortens/stretches out depending on
what happens to other related operations. The turnaround should ideally start
as soon as an aircraft arrives at its stand, ideally at the time for which it was
scheduled to arrive there—or start of in-block time (SIBT)—and should be com-
pleted by the time it was scheduled to be pushed-back into the taxiway on its
way to the runway—also called its start of off-block time (SOBT).

Turnaround operations are often handled by different service providers (SPs).
A great deal of coordination is required to make sure they do not delay any
aircraft, and for delays not to propagate to other aircraft. Cross-turnaround
delay propagation may happen if teams from SPs are scheduled back-to-back
between subsequent aircraft: team A finishing late on aircraft turnaround X will

224 Y. S. Gok et al.

surely start late on turnaround Y if it was immediately assigned to it. Team A
will also be occupying the stand for longer, with turnaround Z of the aircraft
next assigned to the same stand likely to start late, and operations of team B
(possibly of a different SP), that was assigned to Z also impacted. Propagation
of delays across the airport parking lot—apron for short—is a certainty.
Organizations in aviation have long been aware of such issues and have
devised an approach named Airport Collaborative Decision Making (A-CDM)
([5]), which is currently in place in just a minority of airports in Europe—albeit
some of the biggest ones in terms of passenger numbers per year. According to
A-CDM, most of the actors involved in aircraft operations must share certain
pieces of information with one another to keep tighter levels of coordination. A
central piece of information is the Target Off-Blocks Time (TOBT), which is
calculated on the day of operations and used as a reference for all other ground
service operations. A-CDM focuses on the coordination of aircraft movements,
seen, probably correctly, as the center-piece of airport operations. But coordina-
tion of the movements of ground service staff and related equipment across busy
aprons is equally critical, as it contributes to delays, but also because certain
pieces of costly equipment are shared by multiple turnaround teams working
for separate SPs. While A-CDM is an appealing concept, to work as expected,
a certain degree of information sharing among the airport and the various SPs
need to be in place, which happens typically only if enforced. Busier hub airports
represent the typical example where the enabling conditions are met. In non-A-
CDM airports, though, coordination is also needed, but without data sharing
mechanisms it is virtually impossible to achieve. The remainder of this paper
proposes a feasible and robust way to support this more general scenario.

2 Related Literature

The Operations Research (OR) community has, in the past three decades,
worked on the modeling and solution of problems related to coordinating the
movements, usage, and sharing of turnaround teams and equipment, but only
partially.

The body of work by Norin and colleagues [18,19] shares quite a few elements
with our study. As we, and others do (e.g., [1] and [21]), the problem is mod-
eled as a form of Vehicle Routing Problem with Time Windows (VRPTW) [22].
Similarly to us, they work in an A-CDM setting, albeit with a different objec-
tive function: they minimize the weighted sum of flight delays and traveling
distance. Due to the computational complexity of the underlying problem, they
also focus on finding reasonable solutions in short times adopting a form of
Greedy Randomized Adaptive Search Procedure (GRASP). They also make use
of simulation to test the robustness of their heuristic plans under a range of
uncertain conditions. Differently from us, the authors focus on one turnaround
operation only: de-icing, with one type of vehicle/related staff to operate them.
Stockholm Arlanda provides for their data set and motivating example.

In another closely related study [12], the authors did not see an option to
adopt a fully centralized solution process, as the ground service providers are

Robust Resource Planning for Aircraft Ground Operations 225

effectively separate legal entities making independent decisions. They also did
not see the point of adopting a complex negotiation mechanism between dif-
ferent service providers, essentially ruling out in their assumptions any form of
information sharing. This is a very relevant paper based on the same problem
as ours, but examined through a substantially different perspective.

Padron et al. [21] probably represents the closest work to our study. They
also consider scheduling all the ground handling vehicles at an airport, and they
combine CP with heuristic search techniques such as Large Neighborhood Search
(LNS) and Variable Neighborhood Descent (VND). Unlike us, their turnarounds
have a fixed sequence of tasks. In a subsequent paper [20], as we do here, they
integrate simulation at the bottom-end of their methodology to investigate the
robustness of the generated heuristic solutions.

Among the remaining studies, less related to ours, [7] represents a more recent
example of VRPTW formulation, but focuses on individual workers and their
synchronization with vehicles, and has no view on collaborative mechanisms.
Works such as [1,10], and [23] provide different heuristic approaches to solve the
vehicle routing problems implied by aircraft turnaround operations at airports.
Finally, many older studies had approached apron resource allocation problems
from a multi-agent distributed planning perspective. Among these, [11,14,16]
and [13] modeled their problems—as we also do in one of our steps—after the
Resource-Constrained Project Scheduling Problem (RCPSP) [2], while [6] mod-
eled the problem as a form of job shop scheduling.

3 Planning Process and Related Models

There are two levels to the turnaround planning problem studied in this paper—
long-term and short-term (Fig. 2). All decisions are of tactical nature, as they
take place ahead of the day of operation. Real-time management of apron oper-
ations and related resources is out of scope for the present paper.

In the longer term, flight schedules for the next few months are known to
both the airport operator (AO) and the SPs. The AO needs this information to
coordinate the scheduling of all the turnaround operations for each of the days
in the planning horizon, aiming at minimum delays. The main decision maker in
the longer-term is the AO, wanting to fix time windows for all operations whilst
keeping overall resource requirements for the airport reasonably contained. After
these decisions are made centrally, each SP can start thinking about their own
resource requirements for each day of operation, and run their own staff rostering
processes.

In the shorter term, approximately a week before the day of operations, the
updated flight schedule is shared with all SPs and the same tactical reasoning
can be rerun, with time windows revisited by the AO and rosters updated by
the SPs.

In the even shorter term, closer to the start of the day of operations, time
windows remain fixed and turnaround teams are known to SPs with a high
degree of certainty. Then, each SP makes sure they can optimally route their

226 Y. S. Gok et al.

Flight schedule \
(6 months prior)

PSP | RCPSP
Minimize Tardiness
Minimize Resources

)

6 months) > Step 1

Updated flight
schedule
PSP | RCPSP

Minimize Tardiness
Minimize Resources

(]

Number of teams per,
resource type,
Starting time of tasks,

Long-term

|

N

Short-term

\] 1] L

mTSPTW | VRPTW mTSPTW | VRPTW mTSPTW /| VRPTW > Step 2
Maximize Maximize Maximize
minimum slack, minimum slack, e minimum slack,
workload balance, workload balance, workload balance,
total slack total slack total slack

SP1 SP2 SPn
— /

Fig. 2. Proposed turnaround planning process

staff through all turnaround tasks, by keeping some slack time to compensate
for unforeseeable delays. At this stage, the objectives and constraints can differ
by SP, but all SPs still have to stick to the time windows set by the AO.

Although our approach would ultimately help to plan for all kinds of resources
in apron operations, we focus on planning for ‘teams’ of handling agents of each
SP, i.e. we focus on human resources. Each of the turnaround operations is
normally executed by small teams of employees, of size known to each SP, and
planning for the sequence of turnarounds to be visited and serviced by each
team during the day of operation is of utmost importance. In the following, we
assume that all needed equipment is either carried over by the teams as they
move from one turnaround to the next, or sourced across the apron area as they
move through their jobs for the day, and as such is not modeled directly.

From an OR perspective, two classes of problems are involved in the descrip-
tion given above: project scheduling provides a convenient framework to the AO’s
problem of fixing time windows and keeping resource requirements under con-
trol, while vehicle routing comes to the rescue of SPs for optimal routing of their
turnaround teams.

We consider (Subsect. 3.1) both versions of project scheduling problems
(PSPs), with and without constraints in the number of resources (e.g., teams for
unloading/loading baggage, cleaning, catering service, refueling, etc.), the latter
class of problems taking the name of resource-constrained project scheduling
problems (RCPSP). The first objective we seek is to minimize the overall tar-

Robust Resource Planning for Aircraft Ground Operations 227

diness for the airport. After achieving a minimal-delay ideal schedule, the total
resource requirement for the airport is minimized by enforcing any optimal solu-
tion found at this stage to maintain at least the same level of tardiness coming
from the PSP.

Moving to optimal routing of teams for each SP (Subsect. 3.2), the frame-
works of reference are two: multi-traveling salesmen problem with time windows
(mTSPTW) [4] and vehicle routing problem with time windows (VRPTW). The
choice depends on whether the vehicles that are operated by teams are capaci-
tated or not. Most resources/teams use a vehicle with limited capacity in order to
service an aircraft, such as catering trucks, where the catering team is responsible
for loading a certain number of galley trolleys into the aircraft. Other resources
are uncapacitated and have no limitations on the number of aircraft that can
be serviced before returning to the depot (e.g., push-back vehicles). Unlike the
typical objective of both mTSPTW and VRPTW, which is minimizing the trav-
eling distance, we first maximize the slack between tasks, in order to give enough
time to absorb any small disruptions. This is meant to enforce a certain degree
of robustness to the plan. After that, we try and maximize the workload balance
among teams of the same SP, as much as possible, to foster fairness of the plan.
Finally, we maximize the total slack time, when the minimum slack time cannot
be improved further, with the effect of increasing all slack times between tasks
except the minimum among all.

Details of our models are provided in the next two sub-sections. Many pow-
erful global constraints from the Constraint Programming (CP) community are
available for PSP/RCPSP and mTSPTW/VRPTW, hence our CP formulations.
By employing such global constraints and taking advantage of the strength of dif-
ferent solvers, one would expect better computational performance with respect
to, say, Mixed-Integer Programming (MIP) formulations and solvers. All models
were developed in MiniZinc [17], a solver-independent modeling framework that
allows the model to be run on many different solvers. This feature was crucial
to enable our solution approach (Sect. 4).

3.1 Project Scheduling Models

For a given day of operations, we set the start time start; € [0,tmqz] of all
tasks i € I = {1...¢} that cover all aircraft turnarounds expected at the given
airport (tmqe is the length of the day of operation). We do so in two steps.
In the first (PSP, Egs. (1a) and (2)—(6)), we aim at minimum costs resulting
from tardy turnarounds, assuming unlimited resources. In the second (RCPSP,
Egs. (1b), (2)—(6), (7b) and (8b)), we aim for minimal resource needs whilst
maintaining tardiness performance established in the first step.

Each task has an expected processing time duration;. Based on the known
flight timetables, both the Scheduled Time of Arrival (STA) and Scheduled Time
of Departure (STD) of each aircraft are known. As a result of this and of the
precedence relations among all tasks (Fig. 1), earliest start times sta; and earliest
end times std; of all tasks are also known in advance. The set of all tasks j € T
which can only start after a given task ¢ € I is completed is denoted as S;. This

228 Y. S. Gok et al.

set will be empty for push-back tasks, which represent the natural conclusion
of the related turnarounds. In between any two tasks, a fixed setup time setup,
will ensure resources can effectively be gathered and moved from one location
to another across the apron. This parameter can be estimated as a function of
the maximum distance among all stands.

Each task represents a specific activity A = {1...a}, e.g. baggage loading.
By AT, we denote the set of all tasks of type a € A. Sets SO and ST represent,
respectively, activities that are only allowed to start a certain time before STD,
or after STA (mostly due to process specifications).

Certain pairs of tasks cannot be performed simultaneously, e.g. potable water
and toilet servicing of the same turnaround. P = {1... N} is the set of such
forbidden pairings, and D, is the set of (two) tasks for each p € P.

Each task requires, uninterruptedly from start to end, a given amount r7;, of
a given type of resource k € K = {1...x}. Resource types effectively represent
teams of handling agents providing services of different nature. Resource capacity
per resource type rci also needs to be decided.

In the joint CP formulation of the PSP/RCPSP steps that follows, we also
denote (Objective Z1, see (1a)) the cost of tardy turnarounds per unit of time as
costtardy, while parameter sobt,—see constraint (4)—states that certain activi-
ties need to be completed within given bounds from the planned departure time.
Finally, we employ two global constraints: global constraint (6) ensures non per-
mitted task pairs are scheduled separately, while global constraint (8b) ensures
resource levels are not exceeded at any time.

CP Formulation

Zf=min Z; =min Y costtardy x maz{0, start; + duration; — std;}
i€l
where

Si={}
(1a)

Zy=min Zy=min Y, rcg
kEK

(1b)

subject to

[\

start; > sta; Vi € 1
start; > start; + duration; Vi€ I,Vj € S;
start; + duration; > std; — sobt, Va € SO, Vi € AT,

start; = sta; Ya € SI, Vi € AT,
disjunctive([start;|i € D,], [duration;|i € D,]) Vp € P

W

Ot

AA/—\,—\A
o N
222

Zy =7} (7b)

Robust Resource Planning for Aircraft Ground Operations 229

cumulative([start; | i € I}, [duration; + setup; | i € I], [rrg,; | @ € I],7ck)

Vk € K where rc, < Z TTh, (8b)
i€l

3.2 Routing Models

After solving the above project scheduling problems, both the AO and all SPs
know all time windows in which tasks should be executed on the given day of
operation, as well as the number of teams of all types that are likely required to
do the job. Each SP then takes this information to optimally schedule for their
own teams to cover all turnaround tasks they are contracted to service. In the
following we will see how this single-SP decision can be supported.

As in Subsect. 3.1, we provide a joint formulation following a lexicographic
approach, with three objectives/sub-problems in this case. The sequence of three
is then repeatedly solved as many times as the resource types managed by the
given SP. For some resource types (teams), the vehicles used, e.g. re-fueling
trucks, have finite capacity, hence they may need to be replenished before visiting
the next turnaround. For these resource types, capacity constraints (20)—(22) will
need to be included in the three models. The sub-problems take then the form of
a VRPTW, irrespective of the objective/step in the sequence. For other resource
types (teams), e.g. push-back trucks, capacity is not an issue, constraints (20)—
(22) are excluded, and the sub-problems take the form of an mTSPTW.

The objective of utmost importance, and the one to pursue first (Egs. (9)
and (12)—(23)), is to maximize the minimum slack time between any two tasks,
in an attempt to absorb short delays and prevent minor knock-on effects. The
second step in the sequence (Egs. (10), (12)—(23) and (24b)) looks at maximizing
the workload balance among teams, to enforce some form of fairness in the
plan, something which would be required in highly-unionized settings. Workload
equity and its calculation is a subject of interest in the literature [15] on routing
problems. The general suggestion points at minimizing the maximum distance
in order to achieve a balanced workload while still ensuring the minimization
of traveling distances. However, we are not as concerned with traveling times in
between tasks as we are with the much higher processing times for each task.
The last step (Egs. (11), (12)—(23), (24b) and (24c)) then seeks to maximize the
total slack time in the plan, in a way to increase its robustness.

On the given day of operation, we focus on a given working shift S =
[startshift, endshift] for which a staff roster of the given SP is available. Within
that, we know the number of teams ¢ € Tspy = {1...tspx} of resource type k,
who need to cover, overall, a known number of tasks i € Igpr = {1...¢spr} C
I, by moving across a given number of parking stands h € H = {1...n}, where
tasks are performed. The SP wants to set, for each task ¢:

— the start time of the task, or stime; € S;
— the team rt; € Tgp), assigned to %;

230

Y. S. Gok et al.

— the task s; immediately following i;
— whether replenishment is needed prior to moving to s;.

For each available team, a specific route needs to be set up for the given shift

(hence the letters ‘rt’ in rt;), where the first task is a dummy task the label of
which is a function of the label/index of the team in question, while all other
tasks are ‘genuine’ tasks from set Isp . Task labels then, whether genuine or

dummy, take on value in set N = Igpy U {¢pspr + 1,...

,0spr + tspr}. As

a result, any task that is not the first task in each route is a task s; € Ispy.
Constraint (14) ensures all the dummy nodes represent the start of individual
routes. Constraint (15) makes sure both ¢ and s; belong to the same route.

CP Formulation

z] = max z; =max min slack;
i€lspk
z5 = max zp = max (min workload; — max workload;)
teTsp,k te€Tsp,k
z3 = max 23 = max Z slack;
i€lspk
subject to
circuit ([s; | © € NJ)
alldifferent ([s; | i € NJ)
’I“t¢,+t =t
rts, = 115

stime; = start;
stime; + duration;+
busy; = < traveltimey, n; + x; X replenish, Vi € Isp
endshift, otherwise
stimes, > busy;
slack; = stimes, — busy;
q; = cap
qs, = q¢; — demands,

cap —demand,,, ifx; =1
% g; — demand,, otherwise
workload; = Z duration;

’iEIspyk
where rt;=t

(12)
(13)
vVt € TSP,k (14)
Vi € Isp’k (15)
Vi € Isp,k (16)

| S; € Isp’k (17)

18
19
20
21

Vi € ISP,k:
Vi € ISP,k
Vie N\ Ispp
Vie N\ Ispp

N = o~ o~

)
)
)
)

Vi € ISP,k: (22)

vVt € Tsp (23)

Robust Resource Planning for Aircraft Ground Operations 231

z9 > 25 (24c¢)

Tasks should start at a time stime; that is no earlier than the start; that
was assigned at the PSP/RCPSP stage. Later starts could be advisable/needed,
e.g. because of resource limitations. Hence, although potentially contributing to
causes of delays, at this routing stage decisions on task start times could be
reconsidered, in principle at least. In our approach we simplify this aspect by
fixing start; exactly as in constraint (16), as this is more akin to maximizing the
form of slack in the system that we have in two out of three objectives.

Tasks should also not start until their immediate predecessor has been com-
pleted, as in constraints (18) and (17). Any time available in between tasks ¢ and
s; is defined as slack—see constraint (19). The replenishment decision is enacted
through binary decision variable x;, which takes on value 1 if replenishment needs
to happen between task ¢ and task s;, 0 otherwise. Each replenishment takes
replenish time. Moving between two consecutive tasks requires traveltimenp, p;,
with h;, h; € H, h; # h;. Task duration is again denoted as duration,;. The sum
of the duration of all tasks assigned to a given team contribute to defining the
total workload workload; for the team, as in constraint (23).

For capacity constrained turnaround services, initial capacity ¢; for the team
and related vehicle is set to cap—constraint (20); capacity then depletes as
required by the demand from each subsequent task s; but is topped-up any
time a replenishment decision is made—see constraints (21) and (22).

Global constraint (12) builds a single overall sequence for all tasks of all
routes, with dummy tasks signposting the start of each team’s own route. Global
constraint (13) is redundant and added to help propagation.

4 Solution Approach

From the above discussion, we know that our overall approach develops as in
Fig. 2, with perspectives from both the AO and all the SPs supported by the
models presented, respectively, in Subsects. 3.1 and 3.2.

Table 1 shows further details around solvers and search strategies we used,
as well as additional parameters around any time limits adopted as stopping
criterion, or whether we made use of a warm-start. Numbers in the first column
to the left correspond to component steps of Steps 1 and 2 from Fig. 2. Variable
names in the table refer to the formulations from Sect. 3.

All models were implemented in MiniZinc, which enabled us to test the per-
formance of different solvers for each model, and ultimately select the most
suitable for use in each case. In the case of steps 1.1 and 1.2, Chuffed [3] clearly
outperformed all other available solvers and we were able to prove optimality for

232 Y. S. Gok et al.

Table 1. Solution steps

Step | Model Obj.| Additional | Solver |Search strategy* |Time | Warm
input limit(s) | start
1.1 | PSP VARRES Chuffed | smallest, - -
indomain_ min
1.2 | RCPSP Zy | Z% Chuffed | smallest, - -

indomain_min
2.1.1 |mTSPTW/ | z1 | tspk,start | Gecode | first_fail/smallest, | 10 -

VRPTW indo-
main_max/min
2.1.2 |mTSPTW/ | z1 | tspuk,start, | Gurobi |- - Yes
VRPTW s, rt
2.2 |mTSPTW/ |z |tspu,start, | Gecode | first_fail/smallest, | 20 -
VRPTW 25 indo-

main_max/min
2.3 |mTSPTW/ |z3 |tspg,start, | Gecode |first_fail/smallest, | 90 -
VRPTW 21, z5 indo-

main_max/min

all instances. The first sub-problem of Step 2 though, that is the maximization of
minimum slack time, proved slightly different, and had to be broken down into
two further component steps. We first used CP with a specialized search strat-
egy (step 2.1.1) which allowed us to reach the maximum as quickly as possible
with Gecode [8]. However, it took very long for CP to prove optimality in almost
all cases. Thus, by taking advantage of the warm-start possibility, we used the
same model and the solution provided by Gecode as a warm start for a MIP
solver (Gurobi [9]) (2.1.2), thanks to which we managed to prove optimality for
all instances in a very short time.

Choosing the right search strategy also proved decisive in terms of solv-
ing times wherever we adopted a CP approach. In steps 1.1 and 1.2, we chose
the start; variables to lead the search. The variable selection strategy smallest
means a variable is chosen with the smallest value in its domain, and the assign-
ment of the value to that variable is done using indomain_min, meaning that
it will get assigned the minimum value in its domain. On the other hand, for
the mTSPTW/VRPTW component, we noticed the model was unable to solve
quickly without specifying any search strategies. We then noticed that the two
forms of the problem claim for different choices of search strategy. We observed
that first_fail, where the variable with the smallest domain is chosen, outper-
forms other strategies for all mTSPTWs, while smallest performed better for
all VRPTWs. On the variable assignment for mTSPTW, indomain_maz ruled
out the rest, meaning the assignment was made with the maximum value in its
domain. For VRPTW, on the other hand, indomain_min performed better.

Robust Resource Planning for Aircraft Ground Operations 233

Algorithm 1: Large Neighborhood Search

Input: rt, s, z3 from CP model (step 2.3)

rt® — rt

sts

z§ «— Z3
while iter < mazlter do
k1l « a random number from {1...tspx}
k2 «— a random number from {1...¢tspr} \ {k1}
for i — 1 to ¢ do
while rt; € [k1,k2] do
| Destroy rt; and s;
end

end

Repair rt, s, z3 with CP model(step 2.3)
rtt — rt

ste—s

Zé — Z3

if 24 < 2% then

23 Zé

rt «— rtt

5 st

else

zg — 2z
b t

rt’ «— 1t

PLIPEPL

end

end

The very last step of our approach involves adopting a Large Neighborhood
Search (LNS) schema (Algorithm 1) to further improve the solutions obtained
from each of the routing sub-problems composing step 2.2. In our implementa-
tion of LNS, we take the solution from maximizing z3 as a starting point, then
‘destroy’ two routes, chosen at random from the given solution, and finally use
again the same model from step 2.3 to ‘repair’ it. If the new solution is better
than the incumbent, we update the record of the best solution, and repeat the
process for up to 200 iterations.

5 Experiments

In this study we used real data coming from Europe’s 6th busiest commercial
airport, Barcelona - El Prat (BCN). Our data relate to one given day of operation
and include seven resource types, with each type handled by a different SP, and
ten different turnaround activity types, for a total of 914 tasks to be scheduled at
the PSP/RCPSP stage. At the mTSPTW/VRPTW stage, we considered the two
shifts per day as currently adopted at the given airport, irrespective of resource
type/SP. There are approximately 50 turnarounds in each shift, amounting to

234 Y. S. Gok et al.

approximately the same number of tasks to be assigned per resource type and
shift. In some cases from out data set, two teams are required to perform a task—
e.g., baggage loading/unloading for wide-body aircraft. In these cases, the tasks
are duplicated to ensure two teams, not one, perform the same task.

We ran all models on a personal laptop (1.6 GHz Intel Core i5) running mac-
OS High Sierra. The overall integration was achieved in Python 3.7 using MiniZ-
inc Python (MiniZinc version 2.3.2), which allowed us to solve the models in an
incremental way, whilst providing a platform for easy integration of our LNS
implementation. Computation times are not of primary concern when dealing
with our problem, as clear from Fig. 2, hence the average 45 min taken to run the
whole solution approach end to end does not represent a problem, to start with.
In reality though, the AO will only run the PSP/RCPSP stage, which will take
only approximately 7min. Each SP will instead run the mTSPTW/VRPTW
separately, on its own, for two shifts, which will take up to around 6 min for
each SP, LNS step included. The RCPSP is proven to be optimal for minimizing
tardiness, as well as for minimizing total resources/teams per SP. Moreover, in
the second stage, we prove optimality for the maximum minimum slack time for
the given tardiness and resource levels. Work balance is between 0 and 66 min,
and 15min on average, within the allowed time limit. Ensuring optimal work-
load balance proved too challenging, hence we limited the time available for this
stage.

The most time-consuming part of the whole approach was to find the optimal
solution for total slack time for each VRPTW. This is due to the workload
balance objective and constraints. When we relaxed this and maximized it for
z1 and z3, we could get an optimal solution using Gurobi for almost all resource
types and shifts, with only a few instances not proven in 5 hours of solving
time. We compared the results of the objective bounds with our lexicographic
approach (excluding workload balance objective and constraint). The average
gap was 0.68% for 14 instances of a mix of mTSPTW and VRPTW (each for
one shift). The maximum gap was 2.72%. The average solution time for our
approach was 1.78 min, while it required 60 min for Gurobi to prove optimality,
if reached.

Padron and Guimarans [20] tackled an extremely similar ground-handling
problem on the exact same data set. Compared to them, our approach was able
to reduce the number of resources used per resource type when tested in the
same instance for BCN. This was largely because in the RCPSP stage we give
flexibility to the ordering of tasks for an individual turnaround, rather than using
a preset plan for each turnaround as they do.

To test our optimization results under the uncertainty that normally per-
meates real airport settings, we developed, validated and used a discrete event
simulator. Uncertain factors in our problem include: aircraft arrival time, task
duration, traveling time between stands, and replenishment time. A bounded
exponential probability distribution was used for the traveling time, and trian-
gular distributions for the rest.

Robust Resource Planning for Aircraft Ground Operations 235

In addition to the real case from BCN, we generated several instances with
different mix of aircraft and frequencies of arrivals and departures. Instances are
presented as ta[f]_t[tmaz]|, where 6 is the number of turnarounds and tmazx is
the planning horizon in minutes. We study these scenarios, together with the one
from Barcelona Airport, by setting different levels of variability (normal and high
variability). We use this experimental setting to evaluate our approach using two
different objectives: maximizing slack time and minimizing traveling time, as in
typical VRPTWs. Ten independent replications were produced for each scenario.
Table 2 provides a summary of relevant indicators. X' is the total delay time,
N is the number of delays, Ny, is the percentage of delays and X< 15 shows the
sum of delays that are in excess of 15 min. Superscripts s and ¢ refer to the two
approaches: maximizing slack and minimizing traveling distance, respectively.
Computation time, including solving the RCPSP plus the average solving time
(in seconds) of all VRPs and excluding simulation for a deterministic bound, are
indicated by 7° and 7! for the respective approaches. Times for the simulated
instances with _normal and _high variability are not provided in the table since
the deterministic instances’ computation times (_det) are the main indicators of
the solution approach and simulation is not part of the solution but only used
as a tool for evaluation.

Table 2. Simulation Key Performance Indicators (KPIs) for slack time maximization
and travel time minimization approaches

Instance Ny, |N& |z® >t %15 | Zhys |AZsas (Tt |7t
ta24_t120_normal | 62.50 | 67.50| 87.67| 106.89 | 4.61 6.58 [1.97 |- |-
tad8_t240_normal | 66.04|76.25| 262.98| 362.66 | 15.67 | 36.18 |20.51 |- |-
ta72_t360_normal | 60.28|69.44| 376.97| 512.09 | 21.65 | 55.86 |34.21 |- |-
ta96-t480_normal | 69.69|78.23| 570.39 | 792.53 | 25.79 | 88.98 |63.19 |- |-
ben_normal 46.67|51.51| 200.36 242.1 0.08 0.82 (0.74 |- |-

ta24_t120_high |86.67|92.50| 290.36 | 279.45| 77.69 48.21|—29.48 |- -
ta48_t240_high 83.54(89.38| 462.05| 670.61 | 71.76 | 165.66 93.90 |- -
ta72_t360-high 84.17|91.67| 708.97|1128.36 |131.77| 337.09 205.32 |- -
ta96_t480_high 85.52/92.81/1015.62 | 1620.01 |154.56 | 509.48 1 354.92 |— -

ben_high 61.72/69.35| 423.13| 541.47 9.65 21.67 |12.02 |- -
ta24_t120_det 25.00 |25.00 32.00 32.00 1.00 1.00 |0.00 21 33
tad48_t240_det 41.67 |41.67 164.00 | 164.00 2.00 2.00 |0.00 558 |120
ta72_t360_det 40.28 [40.28 | 252.00 | 252.00 2.00 2.00 |0.00 961 |415
ta96_t480_det 53.13 |53.13| 370.00 | 370.00 3.00 3.00 |0.00 1171|322
ben_det 22.58 |22.58 71.00 72.00 0.00 0.00 |0.00 327 |270

In the deterministic case, the KPIs are the same since there are enough
teams to perform the given tasks on time, no matter what the objective is. In
the normal and high variability cases, except one, we observe that our approach
maximizing slack outperforms the typical minimization of traveling time. In
the real case of BCN, we only have partial information provided by a ground

236 Y. S. Gok et al.

handling company, and the instance does not correspond to the whole operation
at the airport—i.e., it only includes the flights corresponding to the airlines
currently having a contract with the ground handler. This implies a lower arrival
frequency in the instance, causing long idle times between the majority of tasks.
In these cases, our approach is not significantly better than simply minimizing
traveling time, as long as variability remains low. However, as aircraft arrival
frequency and variability increase, we observe a significant difference between
the two objectives. Figure 3 shows how our approach is able to outperform
travel time minimization, reducing the total delay across all turnarounds. This
figure also shows that our approach provides more predictable delays, with a
more contained spread across simulations for all instances.

Total delay per instance
1000

750

Total delay (minutes)
@
S
o

|
° Objective
== £ Slack
¢ E3 Travel
= =

-

instance_ta24_t120 instance_ta48_t240 instance_ta72_t360 instance_tag6_t480 inst_ben
Instance

Fig. 3. Total delay per instance among 10 simulation replications

Table 2 also includes other important key performance indicators (KPIs),
such as percentage of delayed turnarounds and total minutes of delay exceeding
the on time threshold of 15 min. The latter is a big concern for SPs, since failing
to meet this target carries penalties and potential further delays due to air traffic
management. Our approach clearly reduces the total delay over 15 min, for up to
70% over the day of operation, except for one instance under high variability.
Considering each minute of delay incurs a cost, deploying our approach in real-
life scenarios could potentially result in significant cost savings.

6 Conclusion

In this work, we proposed a novel two-step solution approach to the airport
ground service scheduling and team planning problem. With respect to earlier

Robust Resource Planning for Aircraft Ground Operations 237

approaches, the RCPSP step allows service providers to operate their busy sched-
ules with potentially fewer human resources. Our focus on maximizing minimum
slack in the second step ensures they can do so efficiently. Our simulation proves
the robustness of our approach. Still, tighter links between simulation and the
optimization components could help, in the future, to enhance the performance
of our LNS-based approach, e.g., by generating cuts from the simulation results
for the benefit of the heuristic search component or using simulation within the
CP search strategy.

References

11.

12.

13.

Andreatta, G., Capanna, L., De Giovanni, L., Monaci, M., Righi, L.: Efficiency
and robustness in a support platform for intelligent airport ground handling. J.
Intell. Transp. Syst.: Technol. Plan. Oper. 18(1), 121-130 (2014). https://doi.org/
10.1080/15472450.2013.802160

Blazewicz, J., Lenstraand, J., Rinnooy Kan, A.: Scheduling subject to resource
constraints: classification and complexity. Disc. Appl. Math. 5, 11-24 (1983)
Chu, G.: Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne (2011). http://hdl.handle.net/11343/36679

Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Chapter 2 time constrained
routing and scheduling. In: Network Routing, Handbooks in Operations Research
and Management Science, vol. 8, pp. 35-139. Elsevier (1995). https://doi.org/10.
1016/S0927-0507(05)80106-9

Eurocontrol: Airport Collaborative Decision Making (A-CDM) (2018). http://
www.eurocontrol.int /articles/airport-collaborative-decision-making-cdm

Fan, W., Xue, F.: Optimize cooperative agents with organization in distributed
scheduling system. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS
(LNAI), vol. 4114, pp. 502-509. Springer, Heidelberg (2006). https://doi.org/10.
1007/978-3-540-37275-2_61

Fink, M., Desaulniers, G., Frey, M., Kiermaier, F., Kolisch, R., Soumis, F.: Column
generation for vehicle routing problems with multiple synchronization constraints.
Eur. J. Oper. Res. 272(2), 699-711 (2019). https://doi.org/10.1016/j.ejor.2018.06.
046

Gecode Team: Gecode: generic constraint development environment (2017). http://
www.gecode.org

Gurobi: Gurobi software. http://www.gurobi.com/

Ip, W.H., Wang, D., Cho, V.: Aircraft ground service scheduling problems and
their genetic algorithm with hybrid assignment and sequence encoding scheme.
IEEE Syst. J. 7(4), 649-657 (2013). https://doi.org/10.1109/JSYST.2012.2196229
Kuster, J., Jannach, D.: Handling airport ground processes based on resource-
constrained project scheduling. In: Advances in Applied Artifical Intelligence, pp.
166-176 (2006). https://doi.org/10.1007/11779568_20

van Leeuwen, P., Witteveen, C.: Temporal decoupling and determining resource
needs of autonomous agents in the airport turnaround process. In: 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intel-
ligent Agent Technology. vol. 2, pp. 185-192 (2009). https://doi.org/10.1109/wi-
iat.2009.149

Mao, X., Roos, N., Salden, A.: Distribute the selfish ambitions. In: Bel-
gian/Netherlands Artificial Intelligence Conference, pp. 137-144 (2008)

https://doi.org/10.1080/15472450.2013.802160
https://doi.org/10.1080/15472450.2013.802160
http://hdl.handle.net/11343/36679
https://doi.org/10.1016/S0927-0507(05)80106-9
https://doi.org/10.1016/S0927-0507(05)80106-9
http://www.eurocontrol.int/articles/airport-collaborative-decision-making-cdm
http://www.eurocontrol.int/articles/airport-collaborative-decision-making-cdm
https://doi.org/10.1007/978-3-540-37275-2_61
https://doi.org/10.1007/978-3-540-37275-2_61
https://doi.org/10.1016/j.ejor.2018.06.046
https://doi.org/10.1016/j.ejor.2018.06.046
http://www.gecode.org
http://www.gecode.org
http://www.gurobi.com/
https://doi.org/10.1109/JSYST.2012.2196229
https://doi.org/10.1007/11779568_20
https://doi.org/10.1109/wi-iat.2009.149
https://doi.org/10.1109/wi-iat.2009.149

238

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Y. S. Gok et al.

Mao, X., Ter Mors, A., Roos, N., Witteveen, C.: Agent-based scheduling for aircraft
deicing. In: Proceedings of the 18th Belgium-Netherlands Conference on Artificial
Intelligence, BNVKI, pp. 229-236 (2006)

Matl, P., Hartl, R., Vidal, T.: Workload equity in vehicle routing problems: a
survey and analysis. Transp. Sci. 52(2), 239-260 (2018). https://doi.org/10.1287/
trsc.2017.0744

Neiman, D.E., Hildum, D.W., Lesser, V.R., Sandholm, T.W.: Exploiting meta-level
information in a distributed scheduling system. In: Proceedings of the National
Conference on Artificial Intelligence, vol. 1, pp. 394-400 (1994)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529-543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

Norin, A., Yuan, D., Granberg, T.A., Varbrand, P.: Scheduling de-icing vehicles
within airport logistics: a heuristic algorithm and performance evaluation. J. Oper.
Res. Soc. 63(8), 1116-1125 (2012). https://doi.org/10.1057 /jors.2011.100

Norin, A., Granberg, T.A., Varbrand, P., Yuan, D.: Integrating optimization and
simulation to gain more efficient airport logistics. In: Eighth USA/Europe Air
Traffic Management Research and Development Seminar (2009)

Padron, S., Guimarans, D.: Using simulation for evaluating ground handling solu-
tions reliability under stochastic conditions. In: 2018 ROADEF Lorient, France,
pp. 1-6 (2018)

Padron, S., Guimarans, D., Ramos, J.J., Fitouri-Trabelsi, S.: A bi-objective app-
roach for scheduling ground-handling vehicles in airports. Comput. Oper. Res. 71,
34-53 (2016). https://doi.org/10.1016/.cor.2015.12.010

Solomon, M.M., Desrosiers, J.: Survey paper—time window constrained routing and
scheduling problems. Transp. Sci. 22(1), 1-13 (1988). https://doi.org/10.1287 /trsc.
22.1.1

Trabelsi, S.F., Mora-Camino, F., Padron, S.: A decentralized approach for ground
handling fleet management at airports. In: 2013 International Conference on
Advanced Logistics and Transport, ICALT 2013, pp. 302-307 (2013). https://doi.
org/10.1109/ICAdLT.2013.6568476

https://doi.org/10.1287/trsc.2017.0744
https://doi.org/10.1287/trsc.2017.0744
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1057/jors.2011.100
https://doi.org/10.1016/j.cor.2015.12.010
https://doi.org/10.1287/trsc.22.1.1
https://doi.org/10.1287/trsc.22.1.1
https://doi.org/10.1109/ICAdLT.2013.6568476
https://doi.org/10.1109/ICAdLT.2013.6568476

1

Primal Heuristics for Wasserstein
Barycenters

1,2 1(=)

Pierre-Yves Bouche
and Louis-Martin Rousseau

, Stefano Gualandi
3

! Dipartimento di Matematica “F. Casorati”,

Universita degli Studi di Pavia, Pavia, Italy
stefano.gualandi@unipv.it
2 Dept. de Mathématiques et Génie Industriel,
GERAD-Polytechnique Montréal, Montreal, Canada
3 Dept. de Mathématiques et Génie Industriel,
CIRRELT-Polytechnique Montréal, Montreal, Canada

Abstract. This paper presents primal heuristics for the computation
of Wasserstein Barycenters of a given set of discrete probability mea-
sures. The computation of a Wasserstein Barycenter is formulated as an
optimization problem over the space of discrete probability measures.
In practice, the barycenter is a discrete probability measure which mini-
mizes the sum of the pairwise Wasserstein distances between the barycen-
ter itself and each input measure. While this problem can be formulated
using Linear Programming techniques, it remains a challenging problem
due to the size of real-life instances. In this paper, we propose simple
but efficient primal heuristics, which exploit the properties of the opti-
mal plan obtained while computing the Wasserstein Distance between a
pair of probability measures. In order to evaluate the proposed primal
heuristics, we have performed extensive computational tests using ran-
dom Gaussian distributions, the MNIST handwritten digit dataset, and
the Fashion MNIST dataset introduced by Zalando. We also used Trans-
lated MNIST, a modification of MNIST which contains original images,
rescaled randomly and translated into a larger image. We compare the
barycenters computed by our heuristics with the exact solutions obtained
with a commercial Linear Programming solver, and with a state-of-the-
art algorithm based on Gaussian convolutions. Our results show that the
proposed heuristics yield in very short run time and an average optimal-
ity gap significantly smaller than 1%.

Keywords: Wasserstein Barycenter - Kantorovich-Wasserstein
distance * Linear programming - Constrained optimization

Introduction

®

Check for
updates

The theory of Optimal Transport has recently received a renewed interest from
the Machine Learning community as a mathematical tool to compare probability

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 239-255, 2020.
https://doi.org/10.1007/978-3-030-58942-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_16&domain=pdf
http://orcid.org/0000-0001-6560-8453
http://orcid.org/0000-0002-2111-3528
https://doi.org/10.1007/978-3-030-58942-4_16

240 P.-Y. Bouchet et al.

Fig. 1. Two Gaussian probability distributions and their Wasserstein Barycenter.

distributions by using the Kantorovich-Wasserstein distance [18,21,28,31,32].
The Wasserstein distance is also known as the Earth Mover Distance [27],
because it can be seen as an analogy of the transportation cost of a given “mass
of earth” distributed among the first distribution to the “required quantities
of earth” distributed among the second distribution. Since the late nineties,
the Wasserstein distance is used by the Computer Vision community as a tool
to compare feature histograms of images [19,23], to implement adaptive color
transfer [26], or to perform point set registration [8]. The same distance, but
re-branded as Word Mover Distance, has proved to be extremely efficient for
text classification, outperforming previous state-of-the-art algorithms [16]. The
Wasserstein distance is used also in deep learning for solving optimization prob-
lems in the framework of Generative Adversarial Network (GAN) [4]. In general,
the main idea for using Wasserstein distances consists of interpreting the prob-
lem data as (discrete) probability measures, and then, to compare such measures
by solving an optimal transport problem. For further application domains, we
refer the reader to [24].

In a more recent trend, the theory of Optimal Transport has been used to
perform statistical inference on the space of probability distributions [1,22]. The
main interest, in this case, is the possibility to take as input a given number of
probability distributions, and then to compute a single distribution that repre-
sents them all. Essentially, the idea is to extend the notion of Fréchet mean to
the space of probability functions using the Wasserstein distance [1]. We recall
that the Fréchet mean generalizes the notion of centroid: for a given number
of points in a metric space, it looks for a single point that minimizes the sum
of distances to all other points given in input. For instance, on the field of the
real numbers endowed with the Euclidean distance, the Fréchet mean gives the
arithmetic means; on the field of the real numbers endowed with the hyperbolic
distance, the Fréchet mean yields the geometric mean.

If we consider the space of (discrete) probability distributions endowed with
a Wasserstein distance, and we look for their Fréchet mean, we get what is a
called a Wasserstein Barycenter. For instance, Fig. 1(a) shows two Gaussian
probability density functions defined on R?, while Fig. 1(b) shows their corre-
sponding Wasserstein Barycenter. When we deal with discrete probability mea-

Primal Heuristics for Wasserstein Barycenters 241

sures, that are probability measures whose support points are defined on a finite
and discrete set of support points, we can compute their Discrete Wasserstein
Barycenter, which is the main subject of this paper. Fig. 2 shows two translated
digits 9 (interpreted as discrete measures) along with their Euclidean mean, a
Convolutional Wasserstein Barycenter (heuristic), and the optimal Wasserstein
Barycenter.

Measure 1 Measure 2 Euclidean Conv. [29] Optimal

d F & KK

Fig.2. Comparison among the Euclidean mean, the Convolutional Wasserstein
Barycenters [29], and the optimal Wasserstein Barycenter.

Related Works. The Wasserstein Barycenter problem is introduced in [1], where
the authors give the conditions of existence of a unique barycenter, and pro-
pose a fixed point iterative algorithm to compute the barycenter of a given set
of Gaussian distributions. In the discrete setting, a fast algorithm to compute
Wasserstein Barycenters, based on the Sinkhorn’s algorithm [10], is proposed
n [11]. When the discrete measures are supported on a regular grid (e.g., 2D
images), the Wasserstein Barycenter can be computed by using Gaussian con-
volutions [29]. Other algorithms are reported in [12,20,25,30]. Using a Linear
Programming perspective, most of these algorithms can be interpreted as dual
algorithms, which search for a barycenter without guarantying primal feasibility
(i.e., one or more problem constraints might be violated).

Main Contribution. The main contribution of this paper is to propose primal
heuristics to compute efficiently feasible approximations of discrete Wasserstein
Barycenters of order 2. Our primal heuristics first decompose the problem into
smaller subproblems, and then iteratively interpolates the Wasserstein Barycen-
ter between pairs of discrete measures. The quality of the primal solutions is
evaluated by measuring the optimality gap, using as a baseline the optimal
solutions obtained by solving the Wasserstein Barycenter problem with a com-
mercial Linear Programming solver. Extensive computational tests with differ-
ent datasets confirms that the proposed primal heuristics achieves a very good
tradeoff between average optimality gap and run time.

Outline. This paper is organized as follows. Section 2 reviews the main concepts
of the theory of Optimal Transport used in this paper. The definition of the
Wasserstein Barycenter problem is given in Sect. 3. Section 4 presents our novel
primal heuristics, that are the main contribution of this paper. Section 5 reports
our extensive computational tests.

242 P.-Y. Bouchet et al.

2 Background on Optimal Transport

In this section, we review the main notions of the theory of optimal transport
used in this paper, with a specific focus on discrete probability measures. For an
introduction on the theory of optimal transport, we refer the interested reader
to the textbooks [24,28,32].

Definition 1 (Discrete Finite Probability Measure (Chap. 2.1 in [24])).
A discrete measure p with weights p, ..., i, defined on a finite set of n points

T1,...,T, € X is defined as
n
i=1

where 0, is the Dirac at position x, intuitively a unit of mass concentrated at
location . If the weights are non-negative and Y ., p; = 1, that is, the vector
of weights p; belongs to the simpler 8™, then p is a discrete finite probability
measure.

Definition 2 (Kantorovich-Rubinstein functional). Given two discrete
finite probability measures pu =3 | p1i0,, and v = 377 v;0,, with x;,y; € X,
a cost function ¢ defined on X x X, the Kantorovich-Rubinstein functional is
equivalent to the following Linear Programming problem:

Welp,v) =min Y > elwi, y;)m(wi, y;) (1)

i=1 j=1

s.t. iﬂ'(mi,yj):ui i=1,...,n (2)
j=1
Zﬁ(mi7yj):1/j, j=1,...,n (3)
i=1
m(z;,y;) >0 i=1,....,n, j=1,....,n. (4)

The optimal values of the variables m(z;,y;) yields an optimal transportation
plan, herein denoted by ;.

Note that (1)—(4) is a standard Koopmans-Hitchcock transportation prob-
lem [15], where the decision variables 7(z;,y;) indicates the amount of mass
moving from the support point z; to y;. The problem can be formulated and
solved with Linear Programming, or it can be formulated as an uncapacitated
minimum cost flow problem on a bipartite graph, as in [2,5,7,14].

Definition 3 (Wasserstein distance of order p). When the cost in the
Kantorovich-Rubinstein functional is the pt* power of a distance defined over
X, that is, c(x;,y;) = d(x;,y;)?, the Wasserstein distance of order p is defined
as

W, v) 1= Was ()™ 151, (5)

Primal Heuristics for Wasserstein Barycenters 243

The Wasserstein distance W), is a distance function defined on probability
functions over a space X, that is, it can be shown that W), satisfies the axioms
of a distance: (i) non-negativity, (ii) symmetry, and (iii) the triangle inequality
(for details, see, e.g., [32]). As a consequence, the Wasserstein distance W), is
commonly used to compare probability distribution functions.

In the remaining of this paper, we focus on the Wasserstein distance of order
2 and we restrict to the Euclidean distance dP(z;,y;) = ||z; — yJ||§

Measure 1 t=0.0 t=0.1 t=10.2 t=03 t=04 t=05 t=06 t=07 t=0.8 t=0.9 t=1.0
e = q q _

Measure 2

4

Fig. 3. Weighted Wasserstein Barycenter of two measures with (A1, \2) = (1 — ¢,).

3 Wasserstein Barycenters

Suppose that we are interested in computing the average p between two Dirac §-
measures y = 0,V = d,. A possibility is to average over the two weight vectors,
obtaining a new measure supported in x and y, a sum of two §-measures with
weights equal to %:

.1 1
However, since we are averaging over probability distributions defined on a space
X C R*, we can, alternatively, define the “average” as a new d-measure having

a single support point located at the mean location of the two points x and y.
That is, we get a new measure

p=Osgu.

Moreover, if we want to compute a weighted average, with weights A1, Ay > 0
satisfying A1+ A2 = 1, we can compute the measure p = d(x, x4, y)- If We extend
this basic example to two discrete probability measures defined on a larger set
of support points, as in Fig. 3, we can use the following lemma.

Lemma 1 (Interpolation between two measures (Chap.7, in [24])).
Given (i) two weights (A1, A2) € Ry satisfying A\ + Ao = 1, (i) two discrete
measures |1 and v defined on X :

W= iﬂi(sm and v = i vjdy,,
i=1 j=1

and (iii) an optimal transportation plan ™ minimizing the functional Wa(u,v),
that is, an optimal solution of Problem (1)—(4) with c(z;,y;) = ||z; — yng, the
interpolated average measure p between p and v is

P = f(ﬂa v,)‘17)‘2) = Z Zﬂ;‘kj(s(/\lxﬂr)qyj)- (6)

i=1 j=1

244 P.-Y. Bouchet et al.

While interpolating between two discrete probability measures defined over
a discrete set (e.g. X is a regular grid), it might happen that one (or more)
interpolated support points do not belong to X, that is, (A 2; + A2y;) ¢ X. In
this case, in post processing, we have to select a point z € X that minimizes the

discretization error € = [|[(A1 z; + A2 y;) — 2||,-
The concept of Wasserstein Barycenter is introduced when dealing with a
set of m discrete finite probability measures p1, ..., ftm, with m > 2, assumed

(without loss of generality) to be defined over the same finite set X.

Definition 4 (Wasserstein Barycenter (Chap.5 in [28])). The Weighted
Wasserstein Barycenter of m measures p = (1, ..., m), with given weights

A= (A1,..., Am), such that X\; > 0 and >.1" | \; = 1, is defined as

p" (p, A) := arg min Z Me(Wa (1,)2 (7)
PES™ 2

If p are discrete probability measures and i, is the i-th element of the measure
U, if we use the cost c(x;,y;) = ||z — yJ||§ in the objective function, and if we
fix a set of possible locations y; for the support points of the barycenter p, then
problem (7) is equivalent to the following Linear Program [3]:

B(p,A) =min Y N | D0 las —yslly i (8)
k=1

i=1 j=1

n

s.t. Zm‘jk:uik i=1,...,n,k=1,....m (9)
j=1
n
S omigk=p; J=L...nk=1..m (10)
=1

dopi=1 (11)
j=1

Tije 20,0, >0, 4,5=1,...,n,k=1,....m (12)

Constraints (9) and (10) replicates the constraints of Problem (1)—(4) for com-
puting the distance between the barycenter measure p and each input measure
1. The constraint (11) and the non-negative constraints in (12) force p to belong
to the simplex S™. Whenever the support points of the measures p and py, are
fixed, we can solve Problem (8)—(12) with any Linear Programming solver.

Herein, we denote by p* the values of the optimal decision variables p; which
corresponds to an optimal solution of Problem (8)—(12). We remark that by
solving Problem (6) and by discretizing in post-processing the support points
of p, we can recover a nearly optimal solution of Problem (8)—(12) with m = 2
(it is only “nearly optimal” because of possible discretization errors). Indeed, by
solving (6) we obtain the Wasserstein Barycenter between two discrete measures
on a continuous space.

Primal Heuristics for Wasserstein Barycenters 245

The LP model (8)—(12) is valid also when the distance Ws (ug, p) in (7) is
replaced by the Wasserstein distance of order 1 Wi (ug, p). In the latter case,
we get a different variant of the Wasserstein Barycenter which corresponds to a
Fréchet median, instead of a Fréchet mean. Efficient LP models for the Fréchet
median, based on a network flow formulations of the problem, are studied in [6].

4 Primal Heuristics

In this section, we present two types of heuristics to compute primal solutions for
Problem (7). The only constraint that a feasible solution p of (7) must satisfies
is to belong to the simplex ™. The simplest method to obtain a feasible solution
for (7) is to compute the Euclidean mean of the input measures. If we denote by
Z1,...,%n the union of all the support points of the input measures pq, ..., tim,
then we can define the Euclidean mean as a discrete measure as follows:

n

=) &b =) (i ZM) 3z, (13)
=1 k=1

i=1

where fi;;5 = pix if z; is a support point of the measure uy, and, fi;; = 0 otherwise.
Figure 2 shows that £ is far from the optimal Wasserstein Barycenter.

4.1 Sequential Heuristics

The Iterative Heuristic (IH). The first heuristic we propose approximates p* by
a discrete probability measure p obtained by iteratively computing the barycen-
ters between pairs of measures. At each iteration, the barycenter between two
measures is computed using the interpolating function (6).

Given the input measures with a fixed order uq,..., tmy, our heuristic com-
putes p'H by solving the following recursion:
(k) _ M1 if k= 1,
’ {f (i, 05D, 1 E2L)if k> 1, a4
pH = gtm), (15)

We call this heuristic the Iterative Heuristicc When k = 2, it computes the
barycenter () of the first two input measures p; and po, using the same weights
Al = Mg = % When k = 3, the barycenter 03 is computed using the third
measure pg with weight A; = %, and the barycenter #(2) with weight Ay = % At
the very last iteration, the heuristic computes the barycenter between u,, with
weight L and the accumulated barycenter (=1 with weight =1,

Since the order of the input measures has an impact on the final measure
p' in the iterative heuristic, we have investigated different criteria for sorting
the input sequence. Let us denote by J; = {1,...,m} and by Jx = Jp—1 \ {ix—1}
where the sequence (i) is a permutation of {1,...,m} representing the sorted
sequence of inputs.

246 P.-Y. Bouchet et al.

The Iterative Closest Heuristic (CH). The first idea is, when & = 1, to begin
with the measure that is the closest to the Euclidean barycenter . Then, for
every k > 1, we select, among the measures indexed by Jj, the measure p;, that
is the closest to #*~1). Here, “closest” have to be understood in the sense of
the two measures which minimises a function d defined over two finite discrete
probability measures over X (which is not necessarily a distance). The iterative
heuristic is:

oM = ;. where i1 € arg mind(u;,§), (16)

JEJ

1 k-1
k) = f (uik,ﬁ(kl), T) , where i} € arg mind(,uj,@(kfl)), (17)

j€Jk
pCH =g, (18)
This recursion differs from (14)—(15) because the sequence p1, . .., iy, is dynam-
ically reordered into p;,, ..., 1, , by selecting at each iteration k the “closest”

measure to A%~ while ignoring the measures that were already selected at
the previous iterations. Regarding the function d appearing in (16) and (17), we
could use the Wasserstein distance W,. However, since we have to trade solution
accuracy for run time, and since computing the Wasserstein distance is a com-
putationally demanding task with complexity O(n3log(n)), we decided to use
in our tests the Euclidean distance computed on the weight vectors of the two

discrete distributions, that is, d(p, v) = /> i, (1 — i)

The Iterative Farthest Heuristic (FH). If we replace in Egs. (16) and (17) the
arg min operator with an arg max, we get our third heuristic, which is called
the Iterative Farthest Heuristic. The farthest heuristic is defined as:

oM = ., where i; € arg I}qax d(p;,8), (19)
VISOA
1 k-1
o) = f (uik,ﬁ(kl), -, > , where i) € arg maxd(,uj,ﬂ(kfl)), (20)
k k]‘ejk
prH =gm), (21)
Remarks. There exists an ordering of the input sequence pq, ..., tt,, such that

the iterative heuristic will generate p¢ (or p*'#). However, the worst-case com-
plexity of the closest and farthest heuristic is higher than the iterative heuristic,
since at each iteration we have to perform a linear scan over O(m) elements.

4.2 Pairwise Heuristic

We present in this section another class of heuristics that can solve in parallel
the computation of pairwise barycenters. Let us first suppose that the number of
input measures p1, ..., fm is a power of two, that is, m = 2". Later, we discuss
in detail the case when 2" < m < 2/+1,

Primal Heuristics for Wasserstein Barycenters 247

The Pairwise Heuristic. The main idea of this heuristic is to iteratively divide
the size of the input sequence by two, while computing pairwise barycenters of
consecutive measures. After h iterations, we will get a single discrete probability
measure which is used to approximate the barycenter. We begin with a vector
OO that is equal to the input sequence of measures. Then, at each iteration
k, we compute the barycenter of every consecutive pair of measures @5’5:11) and
9;?71) with weights equal to i 5, and we get a new vector O of size g, = 5%
More formally, the pairwise heuristic is defined by the following procedure:

@(0) :{Mla"'vﬂm}v)‘(m:{1""71} (22)
(k—1) (k—1)
o® = [l g1 Agi—1 Agi
R
2:1,--~aqk (23)
®) = AFTD pAFY =1 g (24)
ﬁPR _ oW (25)

n (23), each element of the vector O can be computed in parallel, since the
barycenter for each consecutive pair is independent from the others.

Dealing with a number of measures 2" < m < 2P+, When the number of
measures m is not a power of 2, we have to distinguish two cases: either g is odd
or g is even, where g is the number of elements left in in @®). If ¢ is even,
we can compute the barycenters between consecutive measures, while dividing
the number of elements in @) by 2. If ¢, is odd, the last measure is unpaired,
and we have to leave it out. Hence, in order to avoid to underweight the last
measures, at the begging of each iteration k, the heuristic randomly shuffles the
order of the measures stored in @*), For this reason, we call the heuristic (22)—
(25) with the addition of the shuffling effect, the Pairwise Random Heuristic
(PR). The number of iterations to obtain the primal solution ' is O(logy, m).

The Pairwise Farthest Heuristic (PF). The pairwise heuristic (22)—(25) relies on
the initial order of the input sequence. Similarly to the closest and the farthest
iterative heuristic, we can change the order of the sequence @*) at run time. We
describe next the idea for the farthest heuristic. Given the vector Q(k) . (95’“),
we want to reorder it into @Z(f), ceey ng) in such a way that (Q(k) @) is the

11 0
farthest pair of measures, (91(5)7 ng)

) is the pair of farthest measures among the
set o) \{Q(k), Z(f)} of remaining measures, and so on. More formally, defining

JE={1,...,q}, the sequence i1,..., i, is constructed in the following way:

(h*,0*) € arg max d (@;lk), Qék)) ,
(RO E(TENTF_)2 hte

(12j-1,125) = (h*, €"),

Jk Jk L \ {h* f*}

Note that we are reordering the input sequence at each iteration by iteratively
computing the pairwise farthest measures. When j = 1, we are taking the two

forj=1,...,qx: (26)

248 P.-Y. Bouchet et al.

farthest measures; when j = 2, we are taking the second pair of pairwise farthest
measures among the remaining, and so on. Indeed, this heuristic has a higher
computational cost per iteration, since we have to sort the measures in @),
However, the number of iterations k remains in O(log, m).

4.3 Improved LP Model for Regular Grids

The objective of our computational tests is to measure the gap between the
optimal solution p* of (7), and the solution obtained with any of the previous
primal heuristics. Unfortunately, if we try to solve directly the LP (8)—(12) for
standard benchmark, we run out of memory already for small values of m. Hence,
we have extended the tripartite model introduced in [5] for computing Wasser-
stein distance of order 2 on regular grids, to the computation of a Wasserstein
Barycenter defined as in (7). Although the improved LP model is not a major
contribution of this paper, it was essential in order to measure the quality of our
primal heuristics in terms of optimality percentage gap with the larger instances.

5 Computational Results

We run extensive computational tests to evaluate the tradeoff between the solu-
tion quality and the run time of the primal heuristics presented in the previous
section, which are herein denoted by Iterative (IH), Farthest (FH), PairRnd
(PR), and PairFar (PF).

The primary objective of our tests is to evaluate the quality of the heuristic
solutions with respect to the optimal Wasserstein Barycenter p* obtained via
the LP model (8)—(12). As a measure of quality, we use the percentage gap
computed as 2=2 - %, where p is the obtained with any of our primal heuristics.
The secondary objective of our test is to measure how the run time scales as a
function of the number of input measures m. Finally, we visualize the barycenters
obtained with the methods, in order to show a qualitative measure of accuracy. In
addition, we compare our primal heuristics with a state-of-the-art algorithm for
computing the Wasserstein Barycenter of 2D images (discrete measures), namely,
the Convolutional Wasserstein Barycenter presented in [29], and implemented in
the Python Optimal Transport (POT) library [13].

Table 1. Solution values of the Wasserstein Barycenter problem for m random Gaus-
sian distributions, with m = 2 and m = 10.

m o p" (A | Lo (e, AT B, A) | p7F
2| 522 43.3 433 | 43.3
10| 801.2 | 654.0 653.7 | 656.7

Primal Heuristics for Wasserstein Barycenters 249

Datasets. We use four different benchmarks. First, we randomly generate a num-
ber of Gaussian probability distributions in R?. For this type of measures, we can
compute the optimal barycenters, and, hence, we can estimate the discretization
error. Second, we used the MNIST handwritten digit dataset [17], and the Fash-
ion MNIST dataset [33]. These two datasets are composed of a large number of
grey scale images of resolution 28 x 28 pixels, divided into 10 classes. Finally,
we use a rescaled and translated set of images from the MNIST dataset, for the
sake of comparison with the method proposed in [29].

Implementation Details. We have implemented all our algorithms in Python 3.7.
In order to compute the optimal transport plan between a pair of measures, we
use the emd algorithm of the POT library [13], which implements the network
simplex algorithm proposed in [9]. The LP models are solved using the commer-
cial solver Gurobi v8.1. All the tests are run using a single thread on a Linux
CentOS workstation equipped with an Intel Xeon Gold 6130 CPU, working with
a base frequency of 2.1 Ghz.

5.1 Barycenter of Gaussian Distributions

First, we evaluate the pairwise farthest heuristic using the barycenter of Gaussian
distributions. The Wasserstein Barycenter of Gaussian probability distributions
can be computed with a fix-point iterative algorithm (see Chap.9 in [24]), and
hence, we can evaluate the impact of discretization of continuous distributions.

Table 1 reports the objective function values of the Wasserstein Barycenter
problems for m random Gaussian distributions. We consider two main cases: first,
the Gaussian distributions are considered as continuous probability distributions,
and, second, the Gaussian are discretized and converted into discrete probability
measures with support points located on a regular grid of dimension 28 x 28.
Table 1 gives for each m, (i) the optimal solution value p* (u, A) of problem
(7) when the Gaussians and the barycenter are continuous distributions; (ii) the
optimal value [p* (i, A)] when the Gaussians are discretized and the support
points of p* are selected among the grid points; (iii) the optimal solution value
B(p, A) of problem (8)—(12) for the discretized Gaussian distributions; and (iv)
the objective function value of the pairwise farthest heuristic attained by p*'%".

The results of Table 1 shows that the discretization of the input measures and
the restrictions for the support points has a strong effect on the overall solution
value. Even though our primal heuristics are sub-optimal, their optimality gaps
are noticeably lower than the error introduced by the discretization.

5.2 MNIST and Fashion MNIST

The MNIST dataset [17] is an entry level dataset for classification and clustering
algorithms, and, recently, it was used as a benchmark for measuring the scalabil-
ity of algorithms that compute Wasserstein Barycenters. The dataset contains
60 000 grey scale images of resolution 28 x 28 pixels, with approximately 6000

250 P.-Y. Bouchet et al.

images representing a given “class” (a digit). The digits are rescaled and cen-
tred in such a way that the center of mass is in the middle of the square grid.
Indeed, we consider every single image as a discrete probability function, by (i)
normalizing each pixel intensity so that the overall sum of pixel intensities is
equal to one, and (ii) by considering that the support points are located on a
square regular grid in R? of dimension 28 x 28. The Fashion-MNIST dataset [33]
is an harder variant of MNIST. It is also constituted of 28 x 28 pixels grey scale
images. Figure 4 shows some of the data in each dataset. In the following tests,
the algorithms are run on a given number of inputs images belonging to the
same class.

Fig. 4. MNIST and Fashion MNIST dataset.

MNIST: performance VS runtime FashionMNIST: performance VS runtime
;j; —=— Optimal I —=— Optimal
16 —4— Euclidean 16 —4— Euclidean
H;i —4— lterative ;i —4— lterative
g1 —+— Farthest 13 —+— Farthest
g PairRnd I PairRnd

—e— PairFar 10 —e— PairFar

average optimality gap (%)

10 100 10! 102 102 104 1070 100 10! 102 102 104
runtime (s) runtime (s)

Fig. 5. Comparison of runtime versus average percentage gap. For each method, there
is a marker for each value of m € {10, 20, 50, 100, 200, 500, 1 000, 1 500, 2 000}.

Runtime vs. Gap. Figure 5 shows the aggregate results for the MNIST and
the Fashion MNIST datasets. The plot reports, for each method, on the z-axis
the average run time (averaged over each classes), and on the y-axis the average
percentage gap for computing the barycenter. Each dot in the plot represents the
pair (runtime, gap) averaged over the 10 classes, for a fixed number m of input
measures, with m € {10, 20,50, 100, 200, 500, 1 000, 1 500,2000}. The runtime
for computing the Wasserstein Barycenter for 2000 inputs reaches the two hours
(last dot of the red line), while the Pairwise Farthest heuristic achieves a solution
with a gap smaller than 1% (last circle marker) in a few hundreds seconds. The
Pairwise Random heuristic (cross marker), is three orders of magnitude faster,

Primal Heuristics for Wasserstein Barycenters 251

MNIST: results per class for 10 input measures FashionMNIST: results per class for 10 input measures
30 30
28 —=— Optimal 28 —=— Optimal
2 —+— Euclidean 26 —+— Euclidean
;: —+— Iterative i: —+— lterative
20 —— Farthest 2 —— Farthest
N PairRnd PairRnd

516 —e— PairFar 16 —e— PairFar

ity
optimality gap (%)

0 1 2 3 4 5 6 7 8 9 Top Trouser Pullover Dress Coat
d

Sandal Shit Sneaker Bag Ankle boot
class 55

la:

Fig. 6. Average percentage gaps for the MNIST and Fashion MNIST datasets.

while achieving a percentage gap smaller than 2%. The Euclidean mean £ is as
fast as inaccurate.

Gap vs. Image Class. Figure 6 shows the percentage gap as a function of image
class, for the two datasets. Clearly, the computation of the barycenter is harder
for digits 1, 4, and 9, and for the class of products 1, 5, and 9, which correspond
respectively to Trousers, Sandals, and Ankle boots. While the Fashion MNIST
dataset was designed to be more difficult than the MNIST dataset, for the com-
putation of the barycenter, and with respect to the average percentage gap, the
Fashion MNIST looks easier than the MNIST, since for most of the methods
(Euclidean mean included) the average gaps are smaller.

Visual Qualitative Impact. Figure 7 shows the Wasserstein Barycenters of each
classes computed by the different methods. Indeed, the Euclidean mean gives a
fuzzy mean of all the images, while the optimal solutions obtained with Gurobi
are the sharpest. The Euclidean means are fuzzy images because the input digits
does not share the exact same support points, and hence the resulting measure
spread the overall mass on the union of all the support points of the input
measures (e.g., digit 1). Some barycenters in the Fashion MNIST dataset are not
relevant (e.g., the dresses), in the sense that it does not represent the cloth. This
shows that when the image classes are highly dissimilar, then their barycenter
is not very representative. However, even though the barycenter is not visually
relevant, it remains the optimal solution of the LP problem (7). Moreover, for
all of our primal heuristics, the approximated barycenter is very similar to the
optimal solution.

5.3 Rescaled and Translated MNIST Images

A modified MNIST dataset, herein called the Translated MNIST, is used in
the literature for stress testing algorithms that compute Wasserstein Barycen-
ters [11]. In this dataset, the input images are randomly rescaled and translated
into a larger grid of dimension h X w = 56 x 56 pixels [11]. Figure 8 shows a small
sample of translated and rescaled images of the digits 9. We used the Translated

252 P.-Y. Bouchet et al.

opt gap:00.000 %

Optimal -
runtime : 07057 s

opt gap:15.119 %

Euclidean ~
runtime : 00001 s

opt gap : 03.298 %

Iterative Tuntime
runtime : 00063 s

opt gap:01.924 %

Farthest ”
runtime : 01432 s

opt gap:01.275 %

PairRnd >
runtime : 00035 s

opt gap : 00.755 %

PairFar e
runtime : 00828 s

01234567¢89

opt gap : 00.000 %

Optimal
P runtime:11360 s

tb-‘
k(b

opt gap: 07.454 %

Euclidean skt
runtime : 00001 s

opt gap:01.623 %
runtime:00127 s

—
[
r

Rihibib

Iterative

!}

opt gap:02.077 %

Farthest ”
runtime: 01492 s

opt gap: 00.686 %

PairRnd -
runtime : 00094 s

opt gap:00.373 %

PairFar it
runtime : 00885 s

Fig.7. Wasserstein Barycenters of 2000 inputs per class for MNIST and Fashion
MNIST. The sharpest images are consistent with the lowest average optimality gaps.

21 o[l g2 [0 7],
4 7]717]

Fig. 8. Random sample of images from Translated MNIST.

MNIST benchmark in order to compare our algorithm with the Convolutional
Wasserstein Barycenters computed using the approach introduced in [29], and
implemented in the POT library [13]. This algorithm depends on a regulariza-
tion term -~ which has to be tuned. In our preliminary test, we tried several
different values of this parameter, but unfortunately the method proved to be
numerically unstable. In the following, we report the results obtained by fixing
the value of the parameter to v(m) = 2m%%10—3, since this formula recovers
closely the best values of v we obtained for a given m, on all datasets. All other
parameters of the convolutional algorithm are left at their default values.
Figures 9 and 10 show that the Translated MNIST dataset is challenging.
The Convolutional Wasserstein Barycenter algorithm is faster than the LP solver
that computes the optimal solution, but it is not competitive with our best
primal heuristics. Notably, the high sensitivity to the regularisation parameter

Primal Heuristics for Wasserstein Barycenters 253

TranslatedMNIST: performance VS runtime

46 —#— Optimal
—&— Euclidean

38 —e— Convo
{Iﬁ —4— lterative
—~— Farthest

\ PairRnd

—e— PairFar

average optimality gap (%)
BN NN NN WWWW

ONPOWONRORONRAIDON KO

.\o.

107t 10° 10t 102 10°
runtime (s)

Fig.9. Translated MNIST: comparison of runtime versus average percentage gap. For
each method, there is a marker for each value of m € {10, 15, 20, 50, 75, 100, 150, 200}.

v, made it to fail on high number of inputs. On the contrary, the Iterative
Heuristic performs very well both in terms of average percentage gap and run
time, since it runs in less than 60s for the large instance, while achieving an
average percentage gap smaller than 0.7%.

:00.000 %

Optimal
1859 s
. 132.243 %
Euclidean opt gap o
runtime : 000 s
:01.121 %
Convo opt gap o

runtime : 050 s

i opt gap:00.487 %
Iterative Tuntime
runtime: 009 s

:118.887 %
Farthest opt gap :

runtime : 007 s

) t gap:00.298 %
PairRnd op gap °
’ runtime : 007 s

. :02.227 %
PairFar opt gap °
runtime : 007 s

Fig. 10. Translated MNIST: Wasserstein barycenters of 50 inputs per class.

6 Conclusions

In this paper, we have introduced two type of primal heuristics to compute the
Wasserstein barycenter of a given number of probability measures: the itera-
tive heuristics and the pairwise heuristics. Although simple in spirit, our primal
heuristics reach near-optimal solutions in very short time, and generate better

254 P.-Y. Bouchet et al.

solutions in terms of average percentage gap than those obtained with the state-
of-the-art Convolutional Wasserstein barycenter algorithm [29]. In particular,
our results show that the pairwise farthest heuristic is the best option for the
MNIST and Fashion MNIST dataset, while the iterative heuristic is the best
option for the Translated MNIST dataset.

As future work, it would be interesting to study the existence of an opti-
mal ordering of the input sequence of measures. However, the question about
the existence of an optimal ordering, and, if one exists, of its characterization,
remains open.

References

1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. STAM J. Math. Anal.
43(2), 904-924 (2011)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, Algorithms, and
Applications. Cambridge, Mass.: Alfred P. Sloan School of Management, Mas-
sachusetts Institute of Technology (1988)

3. Anderes, E., Borgwardt, S., Miller, J.: Discrete Wasserstein Barycenters: optimal
transport for discrete data. Math. Methods Oper. Res. 84(2), 389-409 (2016)

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

5. Auricchio, G., Bassetti, F., Gualandi, S., Veneroni, M.: Computing kantorovich-
wasserstein distances on d-dimensional histograms using (d+ 1)-partite graphs. In:
Advances in Neural Information Processing Systems, pp. 5793-5803 (2018)

6. Auricchio, G., Bassetti, F., Gualandi, S., Veneroni, M.: Computing Wasserstein
Barycenters via linear programming. In: Rousseau, L.-M., Stergiou, K. (eds.)
CPAIOR 2019. LNCS, vol. 11494, pp. 355-363. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19212-9_23

7. Bassetti, F., Gualandi, S., Veneroni, M.: On the computation of Kantorovich-
Wasserstein distances between 2D-histograms by uncapacitated minimum cost
flows. arXiv preprint arXiv:1804.00445 (2018)

8. Bonneel, N., Coeurjolly, D.: Spot: sliced partial optimal transport. ACM Trans.
Graph. 38(4), 1-13 (2019)

9. Bonneel, N., Van De Panne, M., Paris, S., Heidrich, W.: Displacement interpolation
using Lagrangian mass transport. ACM Trans. Graph. 30, 158-160 (2011)

10. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In:
Advances in Neural Information Processing Systems, pp. 2292-2300 (2013)

11. Cuturi, M., Doucet, A.: Fast computation of Wasserstein Barycenters. In: Interna-
tional Conference on Machine Learning, pp. 685-693 (2014)

12. Dvurechenskii, P., Dvinskikh, D., Gasnikov, A., Uribe, C., Nedich, A.: Decentral-
ize and randomize: faster algorithm for Wasserstein Barycenters. In: Advances in
Neural Information Processing Systems, pp. 10760-10770 (2018)

13. Flamary, R., Courty, N.: POT: Python Optimal Transport library (2017). https://
github.com/rflamary/POT

14. Goldberg, A.V., Tardos, E., Tarjan, R.: Network flow algorithms. Cornell Univer-
sity Operations Research and Industrial Engineering, Technical report (1989)

15. Koopmans, T.C.: Optimum utilization of the transportation system. Econom. J.
Econom. Soc. 17, 136-146 (1949)

http://arxiv.org/abs/1701.07875
https://doi.org/10.1007/978-3-030-19212-9_23
https://doi.org/10.1007/978-3-030-19212-9_23
http://arxiv.org/abs/1804.00445
https://github.com/rflamary/POT
https://github.com/rflamary/POT

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

Primal Heuristics for Wasserstein Barycenters 255

Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to doc-
ument distances. In: International Conference on Machine Learning, pp. 957-966
(2015)

LeCun, Y., Cortes, C., Burges, C.J.: MNIST dataset. http://yann.lecun.com/exdb/
mnist/. Accessed 12 Mar 2019

Levina, E., Bickel, P.: The Earth mover’s distance is the mallows distance: some
insights from statistics. In: IEEE International Conference on Computer Vision,
vol. 2, pp. 251-256 (2001)

Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust his-
togram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 840-853 (2007)
Luise, G., Salzo, S., Pontil, M., Ciliberto, C.: Sinkhorn Barycenters with free sup-
port via Frank-Wolfe algorithm. arXiv preprint arXiv:1905.13194 (2019)

Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de
I’Académie Royale des Sciences de Paris (1781)

Panaretos, V.M., Zemel, Y.: Statistical aspects of Wasserstein distances. Ann. Rev.
Stat. Appl. 6, 405-431 (2019)

Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: IEEE Interna-
tional Conference on Computer vision, pp. 460-467 (2009)

Peyré, G., Cuturi, M., et al.: Computational optimal transport. Found. Trends
Mach. Learn. 11(5-6), 355-607 (2019)

Qian, Y., Pan, S.: A proximal ALM method for computing Wasserstein Barycenter
in d2-clustering of discrete distributions. arXiv preprint arXiv:1809.05990 (2018)

Rabin, J., Ferradans, S., Papadakis, N.: Adaptive color transfer with relaxed opti-
mal transport. In: 2014 IEEE International Conference on Image Processing, pp.
4852-4856 (2014)

Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vision 40(2), 99-121 (2000)

Santambrogio, F.: Optimal Transport for Applied Mathematicians, pp. 99-102.
Birkauser (2015)

Solomon, J., et al.: Convolutional Wasserstein distances: efficient optimal trans-
portation on geometric domains. ACM Trans. Graph. 34(4), 66 (2015)

Staib, M., Claici, S., Solomon, J.M., Jegelka, S.: Parallel streaming Wasserstein
Barycenters. In: Advances in Neural Information Processing Systems, pp. 2647—
2658 (2017)

Vershik, A.M.: Long history of the Monge-Kantorovich transportation problem.
Math. Intell. 35(4), 1-9 (2013)

Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1905.13194
http://arxiv.org/abs/1809.05990
http://arxiv.org/abs/1708.07747

)

Check for
updates

An Exact CP Approach for the
Cardinality-Constrained Euclidean
Minimum Sum-of-Squares Clustering
Problem

Mohammed Najib Haouas®™, Daniel Aloise®™), and Gilles Pesant®)

Polytechnique Montréal, Montreal, Canada
{mohammed-najib.haouas,daniel.aloise,gilles.pesant}@polymtl.ca

Abstract. Clustering consists in finding hidden groups from unlabeled
data which are as homogeneous and well-separated as possible. Some con-
texts impose constraints on the clustering solutions such as restrictions
on the size of each cluster, known as cardinality-constrained clustering.
In this work we present an exact approach to solve the Cardinality-
Constrained Euclidean Minimum Sum-of-Squares Clustering Problem.
We take advantage of the structure of the problem to improve several
aspects of previous constraint programming approaches: lower bounds,
domain filtering, and branching. Computational experiments on bench-
mark instances taken from the literature confirm that our approach
improves our solving capability over previously-proposed exact methods
for this problem.

1 Introduction

Data analysis has become an important field of study in an age dominated by
substantial and indiscriminate data collection. One of the most direct ways to
extract information from a set of data observations takes the form of a cluster-
ing procedure wherein data is grouped in homogeneous and/or well separated
bundles based on some measure of similarity/dissimilarity. The partitioned data
offers a more tractable presentation of the unlabeled observations. Depending
on the criterion on which the partitioning is based, different clusters may be
achieved.

Definition 1. Let O = {01, 02, ...,0,} be a set of n data observations in some
space and d : O% — R* a dissimilarity measure (not necessarily a distance). A
k-partition (k <n) A€ A of O into a set of classes C = {C.}, c.c. (with A the
set of all possible k-partitions) is such that : o

C.#22 V1<c<k, Ulgcgkcc:O, C.NCo =@ V1<e<d<k

Let v4 : A — RT be a partitioning criterion based on d. A* is an optimal
partition if A* = argmin 5 4 74(4).
© Springer Nature Switzerland AG 2020

E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 256-272, 2020.
https://doi.org/10.1007/978-3-030-58942-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_17

An Exact CP Approach for the Cardinality-Constrained Euclidean 257

One popular partitioning criterion is the Euclidean Minimum Sum-of-Squares
Clustering (MSSC) which is widely used to produce high quality, homogeneous,
and well-separated clusters [2]. At its core, it minimizes intra-cluster variance.

Definition 2. Consider observations in R®. MSSC aims to find the cluster cen-
ters ¢; € R®, as well as cluster assignments w;; that solve the following pro-
gram [2]

i=1j=1
k

st Y w=1 Vi<i<n
j=1
wi; € {0,1} V1<i<n, V1<j<k,

where w;; = 1 represents the assignment of observation o; to cluster Cj.

MSSC is NP-hard in general dimension [1].

Often, prior information is known about the data and can be introduced to
the clustering process in order to increase performance as well as solution quality.
This is possible through expression of custom constraints on the observations or
the resulting clusters [6,26]. In this paper we propose an exact approach to solve
a specific variant of constrained MSSC: one that involves cardinality constraints
on the resulting clusters (ccMSSC). Strict cardinality constraints in clustering
can be encountered in various fields such as image segmentation [17], distributed
clustering [4], category management in business [5], document clustering [5], and
workgroup composition [15]. Cardinality constraints can also be used to reinforce
the clustering procedure against the presence of outliers as well as groups that
are either too large or too small [23,25]. The ccMSSC is already NP-hard in one
dimension for k& > 2 [9]. In principle, existing Constraint Programming (CP)
approaches for MSSC [13,14,16] may be extended in order to handle such a
variant by adding a global cardinality constraint. Our contribution shows that we
can achieve better performance with specialized global constraints with targeted
filtering algorithms as well as an adapted search heuristic, both designed to take
advantage of the special structure of the problem in order to quickly reduce the
search space. Furthermore, in using CP we ensure easy extension of this work to
include independent user-defined constraints.

In the rest of the paper, Sect. 2 defines the CP model used to solve MSSC, to
which constraints can be added for the special case of ccMSSC, among others.
Section 3 is devoted to a review of the literature surrounding MSSC as well
as constrained MSSC. Sections4 and 5 present our contributions: two filtering
algorithms dedicated to ccMSSC resolution as well as an updated and more
robust version of an existing search heuristic for MSSC. Section 6 summarizes
experimental results as well as comparisons to existing methods. Finally, Sect. 7
provides a brief summary of our work and discusses future research avenues.

258 M. N. Haouas et al.

2 Basic CP Model
The problem stated in Definition 2 was modeled in CP by Dao et al [14]:

Variables. Each observation o; is represented as an integer variable x;, D(z;) =
{1,...,k} representing the index of the class to which the corresponding obser-
vation belongs. A variable n., D(n.) = {0,1,...,n} is introduced for each cluster
to represent its cardinality.

Objective. Recall MSSC involves finding an optimal set of cluster centers that
minimize the intra-cluster variance, per Definition 2. However there is an equiv-
alent formulation [13] of the objective which circumvents these centers, enabling
us to solve the problem without making them explicit:

k
1
minimize 25 Z ||0—0/H2. (1)

0,0/€C.
Using reified constraints, the objective can be further simplified and rewritten
as follows:

Cel

minimize Z Z Z =cAzj=c)-|o; — 0j||2 (2)

‘1 1 j=i+1

The objective expression in Eq.2 can be constrained to be equal to a real
variable Z, D(Z) = [0, o[known as the Within Cluster Sum of Squares (WCSS),
from which the new objective is:

minimize Z (3)

Constraints. A Global Cardinality Constraint (GCC) [21] constrains variables
n. to take on the cardinality of their corresponding cluster:

GCC ({nchgcgk7{172v~~-7k}7{$i}1§¢§n> (4)

This model contains a value symmetry which can hinder performance (cluster
indices are interchangeable). One way to overcome this is to maintain pairwise
integer value precedence on the branching variables as follows [27]:

intValPrecedence <{xi}1<i<n ,C— 1,0) Vi<e<k (5)

In essence, each instance of the above constraint ensures that if z; = ¢ then
3 j < i such that ; = ¢ — 1. A higher level of propagation can theoretically be
achieved by considering each possible pair (as opposed to only adjacent pairs)
of values. However, this comes at a price for virtually no benefit to domain
reductions in practice [20].

An Exact CP Approach for the Cardinality-Constrained Euclidean 259

3 Related Work

MSSC is a very well-studied problem and one that is often tackled through
heuristics due to its extremely hard nature. K-means is perhaps the most impor-
tant and widely-used algorithm to solve the unconstrained MSSC problem [28].
It performs a local search to find a partition with minimal within-cluster vari-
ance, iteratively relocating cluster centers and stopping at a local optimum.
Among exact methods, CP Clustering (CPC) presented in [13] is a first suc-
cessful attempt at using CP for MSSC. Improving on the model presented in
Sect. 2, the authors suggest a simple search heuristic as well as a global con-
straint to efficiently navigate the search space looking for a globally optimal
solution to the problem. The authors leverage calculation of lower bounds to fil-
ter the objective variable as well as perform cost-based filtering on the branching
variables. CP Repetitive Branch and Bound (CP RBBA) presented in [16] is a
second attempt at leveraging CP to solve MSSC. Its operation is inspired from
Repetitive Branch and Bound (RBBA) in [10] where MSSC is divided into sub-
problems, each treated as an independent CP model in CP RBBA. This enables
the use of a range of user constraints (which RBBA doesn’t support) as well as
the computation of tighter bounds, leading to substantially better performance
for many instances.

Turning now to constrained variants of MSSC, the K-means heuristic app-
roach has been extended to support various constraints [8,26]. A special case
of ccMSSC, the balanced MSSC, is approached in [12] using a simple Variable
Neighborhood Search. Through constant-time reevaluations of the objective after
each reassignment as well as carefully selected local search neighborhoods, the
authors are able to find the best known values of several large instances. More
relevant to us, the authors of [23] suggest a method for solving the ccMSSC
using convex relaxations of the problem, whose solutions can be “rounded” to
a valid one for the main problem. Their approach distinguishes itself from the
others by providing a posteriori guarantees on the sub-optimality of the solu-
tions obtained. In fact, based on these guarantees, the authors are able to declare
several of the solutions they found as being globally optimal. An exact Column
Generation framework for solving constrained MSSC was proposed in [3], sup-
porting anti-monotone constraints which can be used to restrict the maximum
cardinality of the clusters. Of course the CP methods previously described for
MSSC, CPC and CP RBBA, can solve the ccMSSC by simply adding a GCC
but a contribution of our work is to show that, for such a constraint, a more
integrated approach is much more productive.

4 Filtering Based on Cardinality-Constrained Clustering

In this section we present two filtering algorithms for a global constraint [13]
aimed at accelerating resolution of the model in Sect. 2 for the case of ccMSSC.

260 M. N. Haouas et al.

4.1 Basic Filtering Derived from CPC

This first filtering algorithm represents a specialization of CPC for the ccMSSC.
We both accelerate and tighten its bound computation by exploiting the fact
that cluster sizes {n.}i1<.<x are fixed.

The global constraint in CPC evaluates, at each search tree node, the mini-
mum contribution Z(C., m) to the objective Z for each cluster C, whenever any
m free observations are assigned to it:

Z(Ce) - |Ce| + 3002, Rile)
|Ce| +m

Z(Ceym) = (6)
where Z(C.) represents the WCSS of the partially filled C. and (R;(c)){_; is a
non-decreasing sequence where each term represents the lowest individual con-
tribution of the i-th free observation to C. (among ¢ which are unassigned at
the current node) such that:

Ri(e) = ra(iye) + Y ra (i) (7)
j=1

where r2(4, ¢) is the contribution of the i-th free observation due to the observa-
tions already in C. and (3 ;())j_, is a non-decreasing sequence where each term
represents half the distance between that same i-th free observation and a nearby
element in U, the set of free observations (itself included, i.e. r31(7) = 0Vi). Refer
to Fig. 1 for an illustration.

The authors of CPC make use of dynamic programming in conjunction with
Eq.6 to compute lower bounds for the general MSSC problem as well as to
perform the necessary filtering on variables [13].

Global Lower Bound for ccMSSC. We observe that at each node of the ccMSSC
resolution, one knows exactly how many observations are to be assigned to each
cluster C. to complete it to its target cardinality n.. As such, given a partial
assignment, a lower bound on the cost of a full solution can be more simply
computed as follows without resorting to dynamic programming to compute
terms for different values of m:

k k k
Z(C) = ZZ(C&”C —|Ccl) = ZZ(C&mC) = ZZO(CC) (8)

where we denote as Z,(C,) the minimum individual contribution of C, when it
is completed to its target cardinality n., using m,. observations (m. := n.—|C¢|).
Equation 8 filters the objective Z by tightening its lower bound. It also prunes
branches that cannot result in a solution better than the incumbent.

Cost-based Filtering on Cluster Assignment Variables. It is possible to recycle
computations in order to reevaluate a global lower bound to the problem for
each value-variable assignment in order to enable effective cost-based filtering.

An Exact CP Approach for the Cardinality-Constrained Euclidean 261

Partial cluster & 3 free observations

Fig. 1. Illustration of the computation of Z(C., m)

Consider assigning the ¢-th free observation o' (w.r.t. the order of the
sequence (R;(c))L,) to cluster C.. Let ¢’ = {C4,...,C.,...,Ck} denote the
set of partially filled clusters identical to C except for C! which also contains o’
(CL =C.U{0'}). It is then possible to write the following:

Z(C") = Z(C) = Zy(Ce) + Z,(C7) 9)

All the terms in Eq.9 are available except the last one. Therefore we devise
a simple way to get a lower bound on it:

o Z(Ceyme —1) - (|Ce| + me — 1) + £-th observation’s contribution
ZO(CC) =

|Ce| +me
Z(Ce) - 1Cel + S Ri(€) + T o (1) + re6) + 7 a5 (0)
|Ce| +me
Z(Ce) - |Cel + S0y [ralin) + ey 73, ()] + 7e(0) + 5, 75(6)
|Ce| +me

. (1Cel +me = 1) - Z1(Ce) +12,6(£) + Z] 1 73,5 (0)
B |Ce| +me

(10)

262 M. N. Haouas et al.

The ¢-th observation’s contribution represents the sum of the following quan-
tities:

— the sum of dissimilarities between it and C.’s components: 72 .(£);

— half dissimilarities between it and m. — 1 other free observations, which is
greater than or equal to Z;n:l r3.;(€);

— the other half dissimilarities between it and m. — 1 other free observations,

mMe

which is greater than or equal to 21:1—1 73.m, ().
with

Z(Co) - |Cel + 0 Rilo) o - .
Z,(C,) = TR where R;(¢) = r2(i,¢) + ;r&j (7)
(11)

which is similar to Z,(C.) with the difference being we only select m.—1 terms of
(Ri(¢))]_, in Z,(C.) instead of m.. This enables the sequential computation of
both values with the same complexity. Comparing Eq. 9 against the upper bound
of Z for each assignment considered enables filtering of values that cannot result
in a solution better than the incumbent.

Summary. Propagation algorithms are called whenever the domain of some vari-
able x; changes or bounds on Z are tightened. Algorithm 4.1 summarizes the
results of this section.

Algorithm 4.1. propagate method: basic filtering

(Computation of r2 and rs not shown for brevity and are identical to [13])
1: forc—1..kdo
2 forv—0..1do
3 for i < 1..n where |D(z;)] > 1 do © there are ¢ unassigned observations
4: if m. —v > 0 then
5: RJ[i] < r2[c,] + r3[i,me — 1]> r3 represents the sum in Eq. 7 directly
6 sort (R[i € 1.n: |[D(x;)| > 1]) > sort the contribs of the ¢ free observations
7 Z(Ce)|Cel+X724 " R[]
8

Z,(C.) — 21y > Zy(Ce) and Z,(C.)
D LB(Z) « Xk, Z,(C) > filter objective, Eq. 8
9: for c—1..k do > cost-based filtering

10: LBg «— LB(Z) — Z,(C.)
11: for £ «+ 1..n where [D(z¢)] > 1 do

12: if ¢ € D(x;) then

13: LBp « UCeltmel-Zy (Cortrafettrsftime 1 > Eq. 10
14: if (LBp + LBp > UB(Z)) then

15: D(z¢) «— D(z) \ {c} > filter if incumbent cost exceeded

The modified CPC filtering algorithm specialized for ccMSSC has a time
complexity in O(qn + ¢*logq + kqlogq + k + kq) = O(qn + ¢*logq) (down

An Exact CP Approach for the Cardinality-Constrained Euclidean 263

from O(gn + kq*logq) [13]) and a space complexity in O(n?). The reduction in
asymptotic complexity is less important than the tighter bounds produced which
enable more aggressive domain reduction for the case of ccMSSC compared to the
original version of the constraint. Computing individual r and r3 contributions
incrementally has a detrimental effect in practice due to the overhead involved
in pinpointing the changes that have occurred since the last node.

However, this filtering algorithm is limited by each cluster’s individual min-
imum contribution being computed at a local level, regardless of that of other
clusters. This means that it is possible for a given observation to be considered
for the minimum contribution of two distinct clusters, hindering lower bound
quality. We propose a way to correct this in the next section.

4.2 Improved Filtering

A Tighter Global Lower Bound for ccMSSC. In computing the smallest cost of
the solution extended from a partial assignment (i.e., the global lower bound at
a certain node of the search tree), it helps to consider all clusters as a whole
rather than each of them separately while distributing free observations between
them. This eliminates the issue identified with the basic filtering discussed above
and can be achieved by solving a minimum-cost flow (MCF) problem. At each
node of the search tree, where |U| = ¢ observations are unassigned, a network
can be built as follows:

1. start from a bipartite assignment graph where the first set of vertices repre-
sents the ¢ free observations and the second set of vertices represents the &’
(k' < k) incomplete clusters;

2. supply each of the vertices representing the observations with one unit of flow
using a common Source;

3. connect each of the vertices representing the partially filled clusters with arcs
of capacity m, to a common sink;

4. all other arcs have a capacity equal to 1;

5. only arcs connecting observations to clusters bear a cost, equal to R;(c)/nc.
Such arcs only exist if the assignment is possible.

The MCF solution is integral because the constraints matrix for the cor-
responding linear program is Totally Unimodular and all other coefficients are
integers. Arcs selected by the MCF represent the optimal division of the free
observations between the incomplete clusters. The corresponding cost incurred
by this completion, based on the minimum individual contributions of each free
observation, necessarily leads to a lower bound on the cost of the solution derived
from the current partial assignment:

z) =Y w + MCF? (12)

cost
c
c=1

This lower bound is greater or equal to the one given by Eq.8.

264 M. N. Haouas et al.

On the surface, the method being discussed here resembles a GCC with
costs [22]. However it is inapplicable here due to changing costs at each node
of the search tree. Indeed, the cost incurred by the assignment of an individual
observation is not known a priori as it changes every time a cluster is modified
(which happens repeatedly in the search tree). Moreover, this continuously vary-
ing nature of the problem prevents us from taking advantage of most incremental
computations involved in maintaining arc consistency in GCC with costs.

A new MCF instance must be solved each time an impactful change occurs
in the search tree. We define such a change as one where an assignment variable
has been fixed or one where a value has been filtered from the domain of an
assignment variable such that it eliminates a flow-carrying arc in the current
MCF solution. Otherwise the latter solution is still valid. If a new MCF solution
must be computed, we use Network Simplex due to its speed and the fact that
implementations of it are readily available.

A More Thorough Cost-Based Filtering. The same way adopting a global view of
the problem facilitates generation of tighter bounds on Z | it is possible to leverage
the flow formulation discussed above to perform a more powerful filtering of the
decision variables. This is done through forcing flow on an arc using augmenting
constraints in the current MCF problem to mandate a particular assignment. If
a bound calculated using an augmenting constraint is higher than the cost of the
incumbent solution, the value corresponding to the assumption made is filtered.

For the sake of efficiency, instead of recomputing a solution to the MCF prob-
lem for every possible augmenting constraint, we start by modifying the one that
has been computed for the global lower bound. Such a modification will result
in an infeasible solution (Fig. 2, left) because one cluster will be overfilled by one
unit (red arc in violation) while another will be missing one unit (transparent
bold arc). The task shifts to reestablishing a feasible and optimal solution from
the situation depicted.

Infeasible modification of the optimal MCF solution Corresponding residual graph and
shortest path (in bold) between vertices in violation
[= remove flow, + = add flow]

Fig. 2. MCF solution update for cost-based filtering

An Exact CP Approach for the Cardinality-Constrained Euclidean 265

One way to fix this is to proceed, in an alternating fashion, to the removal and
the addition of flow in arcs of the network designed to send the excess unit of flow
from the vertex corresponding to the overfilled cluster to the one correspond-
ing to the underfilled cluster. For the solution to be optimal, this alternating
sequence of removals and additions should result in the lowest possible added
cost.

A more straightforward way to look at this operation is through a residual
graph derived from the optimal MCF solution (Fig. 2, right). A flow-carrying arc
in the current solution is flipped in the residual graph and given the opposite cost.
Restoring the optimal solution becomes a shortest path problem between the
vertices in violation. This again is reminiscent of GCC with costs [22]. However
our case is a more targeted one where the resulting residual graph is a simple
bipartite digraph. We use the Bellman-Ford algorithm [7] (due to presence of
negative-cost arcs) to solve the shortest path problem for each assumption. If a
path cannot be found, then the augmented MCF problem is inconsistent and the
value corresponding to the assumption made must be filtered. The cost increase
of the MCF solution after introduction of the augmenting constraint is equal
to the variation due to relocating the free observation between clusters plus the
weight of the shortest path.

Summary. Below is an algorithmic summary of the advanced filtering propaga-
tion. Changes with respect to the basic filtering algorithm are shown in

Algorithm 4.2. propagate method: advanced filtering

(Computation of R, rz, and 73 not shown for brevity; identical to [13] and Alg. 4.1)

1: if then

2:

3:

4:

5: for c+—1..k do > cost-based filtering
6: for ¢ — 1..n where |[D(z¢)] > 1 do

7

8: if ¢ € D(xp) A then

9:

10: if then

11: D(z¢) < D(x¢) \ {c} » filtrer if bound exceeded or

The time and space complexities of Algorithm 4.2 are dominated by Network
Simplex when called. Depending on the implementation [19], these vary and can
be linked to arc costs. In practice, complexity analysis around Network Simplex
rarely represents a faithful depiction of real world performance. The function
impactfulChangeHasOccurred() runs in O(n) time. Solving the shortest path
problem using the Bellman-Ford algorithm is done in time O(gk(k+q)) due to the
graph comprising O(gk) arcs and O(q + k) vertices [7]. Overall time complexity
for the cost-based filtering of assignment variables is thus O(¢?k?(k + q)).

266 M. N. Haouas et al.

5 Search Strategy

The search heuristic discussed in this section is inspired from the one proposed
for CPC [13] with two key improvements.

5.1 Bootstrapping from a Heuristic Solution

To solve MSSC, CPC starts from a feasible, heuristically generated solution
whose cost is used for the first domain reductions (recall that CPC makes use
of a cost-based filtering mechanism). A superior left branch in our search tree,
leading to an initial solution, helps to reduce its size by acting on two separate
aspects of the problem: it provides a tighter initial upper bound and it moves
potentially unsuccessful alternate, future branches near the top of the search
tree to avoid revisiting them repeatedly.

Initial Solution Generation. Instead of starting from a greedy assignment whose
results depend on the order of the observations in O [13] and which produces poor
results when user constraints are present, suppose a feasible good-enough initial
solution 7y is known in advance (which may or may not be globally optimal). We
can use 1y as a guide for the first n branching assignments of the CP search to
ensure the first solution found is equal to 7y, thus also ensuring the initial upper
bound is equal to the cost of 79. Generating this solution can be done using
any number of existing heuristic methods (some of which have been discussed in
Sect. 3) to solve a constrained MSSC.

The cost of 7y is only part of what helps the CP resolution. The order in
which individual assignments appear has its importance.

Order of Initial Assignments. Authors of [11] demonstrate the substantial
impact of initial data sequencing on branch and bound searches. They show
that solution times can spread over several orders of magnitude for randomly
sampled sequences. It is possible to prune off large sub-trees by ordering the
data of a heuristically generated solution in an careful manner.

Based on this, given an initial solution 7y with initial cluster centers, we
suggest two variable orderings in the left branch of the search tree which showed
competitive results in our empirical testing:

— Decreasing distances to own cluster’s center: this method orders assignments
in 79 from the one whose corresponding observation is farthest from the center
of its cluster to the one that is closest. It tries to place potentially disruptive,
hard to assign observations near the root of the search tree, where we have
greater flexibility to recover from a poor choice.

— Decreasing minimal distances to other clusters’ centers: this method is similar
to the previous one with the difference being that the ordering is based on
the minimum distance between each observation and centers of clusters which
are not its own. Therefore, it maximizes the likelihood alternate branches will
fail the closer they are to the top, eliminating bigger sub-trees.

An Exact CP Approach for the Cardinality-Constrained Euclidean 267

5.2 Dynamic Tie-Breaking

Once the left branch has been generated, another branching strategy takes over.
The heuristic in CPC is adequate but displays a major weakness. For each unas-
signed z; and ¢ € D(z;), CPC computes t; ., the WCSS increase on 7 if ; = c.
It then branches on the variable given by argmax; . |p(y,)/>1 MilceD(a;) tie [13]-
However, ties may occur whenever a cluster becomes empty upon backtracking:
if every unassigned variable has this cluster in its domain, the minimum will be
zero for all. In that case, the heuristic essentially falls back to a lexicographical
one. To correct this, we design a dynamic tie-breaking strategy.

When presented with a tie as a result of a cluster becoming empty, we branch
in a way that assigns to the empty cluster the observation whose sum-of-squares
between it and other unassigned observations is the highest:

0* = argmax Z lo—o|? (13)
o€l o'eU

Since bound computations in CPC directly involve the sum of squared dis-
tances between observations of each cluster, the choice depicted in Eq. 13 is akin
to a fail-first strategy: we initiate a cluster with the observation which is most
likely to produce worse solutions through elevation of its cluster’s contribution.

6 Experiments

We compare our CP-centered approach to solving ccMSSC to the works discussed
in Sect. 3. In it, we cited CPC in [13] and CP RBBA in [16] as CP frameworks for
solving MSSC. These two approaches can easily be extended to solve ccMSSC
through the introduction of adequate cardinality constraints to their CP models.
We also cited a numerical method for solving ccMSSC with guarantees on the
sub-optimality of the solutions [23] as well as a column generation framework to
solve constrained MSSC [3]. However the latter’s current implementation does
not support solving ccMSSC and would require a significant amount of work to
add the necessary constraints.!

To carry out our experiments we select 19 instances, summarized in Table 1.
All of them are available in the UCI Machine Learning Repository? except for
HA [18] and RU [24]. Instances from exact methods presented in Sect. 3 all appear
in Table1 and have been completed with randomly sampled datasets from the
UCT repository with 200 data points or less and with numerical attributes.
Table 1 legend: (1) Instance with balanced classes; (2) Number of classes and/or
target cardinalities decided randomly by us; (3) Multiple versions available, ver-
sion Small used here; (4) Multiple versions available, version with 215 observa-
tions used here.

! Personal communication from one of the authors.
2 https:/ /archive.ics.uci.edu.

https://archive.ics.uci.edu

268

M. N. Haouas et al.

Table 1. Description of selected instances

Code Name n s k Targeted cluster cardinalities Notes
AI3 Acute Inflammations 120 6 3 40 40 40 1,2
AI4 Acute Inflammations 120 6 4 30 30 30 30 1,2
BC Breast Cancer Coimbra 116 9 3 3839 39 1,2
BT Breast Tissue 106 9 6 18 17 17 18 18 18 1,2
cB Connectionist Bench 208 60 2 111 97

cs Concrete Slump Test 103 7 3 34 34 35 1,2
GI Glass Identification 214 9 6 70 17 9 29 76 13

HA Hatco 100 14 3 34 33 33 1,2
FI2 Fisher's Iris 150 4 2 60 90 2
FI3 Fisher's Iris 150 4 3 50 50 50 1

PA Parkinson’s 195 22 2 147 48

PR Planning Relax 182 12 2 130 52

RU Ruspini 75 2 4 18 19 19 19 1,2
SE Seeds 210 7 3 70 70 70 1

sy Soybean 47 35 4 11 12 12 12 1,23
TH Thyroid Disease 215 5 3 727172 1,2,4
uL Urban Land Cover 168 147 9 14 16 14 25 15 23 17 15 29

WNO Wine 178 13 3 60 40 78

WNB Wine 178 13 3 59 60 59 1,2

New algorithms® were implemented in C4++ using IBM ILOG CPLEX Opti-
mization Studio 12.9.0. CPC was reimplemented using this same software frame-
work. CP RBBA’s C++ GECODE implementation is publicly available* and was
used with slight alterations (to introduce the necessary constraints for ccMSSC).

All algorithms were compiled using Intel C+4 Compiler 19.0.3.199 and run
on stock Intel Xeon Gold 6148 processors. Each process was allocated 1 GB of
memory and one core. Maximum runtime was set to 86400 seconds (i.e., 1 day).

6.1 Impact of Dynamic Tie-Breaking

We present in Table 2 the impact of our dynamic tie-breaking strategy on the
performance of CPC. To isolate the effect of the tie-breaking, we do not introduce
any cardinality constraints to the model for this specific test. Dashes represent a
run that has timed out. Due to space constraints, we show results for 6 instances
that faithfully convey the general trend.

Table 2. Impact of dynamic tie-breaking on the performance of CPC

| No tie-breaking | Dynamic sum-of-squares tie-breaking

Inst. Time [s] Fails Branches Time [s] Fails Branches
BC 886.2 79.08k 158.21k 56.6 4.03k 8.06k
BT — — — 184 7.73k 15.45k
HA 338.4 40.63k 81.27k 289.8 33.56k 67.14k
FI3 1337.2 56.59k 113.21k 911.5 41.08k 82.19k
RU 0.4 83 170 0.4 82 168
SY 3.2 1.69k 3.38k 2.2 1.15k 2.31k

Table 2 shows a clear and generalized improvement brought on by the tie-
breaking strategy, both with respect to search space size as well as run time.

3 Source-code can be retrieved from: https://github.com/mnhaouas/card-const-
MSSC.
* https://cpaclustering.github.io/.

https://github.com/mnhaouas/card-const-MSSC
https://github.com/mnhaouas/card-const-MSSC
https://cp4clustering.github.io/

An Exact CP Approach for the Cardinality-Constrained Euclidean 269

Notably, Breast Tissue can only be solved by applying the dynamic tie-breaking
to the search process.

6.2 Resolution of ccMSSC

We suggest in Sect. 5.1 starting the CP search from known good solutions to the
problem and arranging them in the search tree to improve performance. To this
end, we make use of two heuristic approaches to start ccMSSC resolution: LIMA-
VNS [12] (discussed in Sect.3) for the balanced instances and Constrained K-
Means Clustering [8] for the others. We use a third-party public implementation®
for the latter and an executable supplied by the authors for the former.

Both heuristic algorithms are seeded using /dev/random and run 10 times
for each instance. The median of the 10 runs is picked as a starting point for the
CP search.

Each instance is solved 8 times: twice through CP RBBA using two distinct
observation orderings recommended by its authors (FF for Farthest First and NN
for Nearest Neighbor) and twice through each of CPC, the basic approach in

Table 3. ccMSSC resolution statistics for all algorithms

|CP RBBA & GCC | CPC & GCC | Basic filtering |Advanced filtering
Inst. Ord. Time [s] Fails Ord. Time [s] Fails Gap [%] Time [s] Fails Gap [%] Time [s] Fails Gap [%]
AI3 NN - — oc - - 53.2 - - 53.2 - - 38.0
FF = — RC — - 55.4 - — 55.4 — — 37.7
AI4 NN - — 0c - - 57.9 - - 57.8 - - 30.0
FF — — RC — - 55.7 - — 55.7 - - 29.6
BC NN — — 0cC — - 81.6 42.6 29.22k - 34.7 6.82k -
FF — — RC — — 81.6 12.2 5.52k - 5.4 787 -
BT NN - — oc - - 99.9 23.0 12.98k - 9.1 886 -
FF — — RC — - 99.9 - — 4.0 — — 3.7
CcB NN - — 0c - - 36.2 - - 35.9 - - 17.4
FF — — RC — - 35.9 - — 35.6 — - 17.3
cs NN - — oc - - 45.7 - - 45.7 - - 28.0
FF — — RC — — 45.5 — — 45.5 — — 28.1
GI NN - — oc - - 96.5 — - 86.4 - — 55.2
FF — — RC — - 96.5 - — 90.3 — — 58.9
HA NN 877.1 195.78k 0C 60.1 14.46k - 6.0 2.58k - 4.0 559 -
FF 2.0 161.82k RC 46.0 11.31k - 3.7 1.72k - 1.4 127 -
FI2 NN 24.7 19.11k OC 380.3 43.51k - 10.8 2.53k - 9.4 1.02k -
FF 2.0 91.56k RC 23.9 6.17k - 3.2 706 - 1.5 142 -
FI3 NN 18.9 1.306M 0OC 2498.7 207.59k - 321.6 58.07k - 147.6 9.94k -
FF = — RC 350.6 33.49k — 54.3 11.93k - 7.8 530 -
PA NN - — 0c - - 79.6 - - 68.0 27022.1 1.74M -
FF — — RC — — 79.6 — — 68.0 24867.4 1.66M -
PR NN - — oc — — 49.3 — — 40.4 — — 25.2
FF — — RC — — 49.3 — — 40.4 — — 25.2
RU NN 1056.9 103.27M 0C 5290.6 3.52M — 157.5 167.28k — 107.1 16.58k -
FF 5192.1 586.64M RC 3341.4 2.21M — 38.8 50.73k - 9.3 1.74k -
SE NN - — 0c - - 47.7 - - 46.8 - - 24.2
FF — — RC — — 47.7 — — 46.8 37197.0 1.69M
sy NN 13543.4 2.51G 0OC 442.3 766.06k - 6.0 16.43k - 13.1 3.54k -
FF_ 58074.8 11.67G RC 99.7 283.89%k — 0.9 2.84k - 1.8 643 -
TH NN - — oc - - 87.4 — - 83.3 - — 37.8
FF = — RC — - 87.4 - — 83.3 — — 37.8
uL NN - — 0cC - - 92.2 - - 60.8 - - 30.3
FF - — RC — — 92.2 — — 60.8 — — 30.3
WNOe NN - — oc - - 70.6 32239.3 6.60M — 6420.8 567.35k -
FF — — RC — — 70.6 58373.0 9.28M — 11335.3 755.86k -
WNB NN - — oc - - 69.4 497.7 154.16k — 240.5 31.71k -
FF — — RC — - 69.4 95.4 15.69k - 13.7 853 -

5 https://github.com/Behrouz- Babaki/MinSizeKmeans.

https://github.com/Behrouz-Babaki/MinSizeKmeans

270 M. N. Haouas et al.

Sect. 4.1, and the advanced approach in Sect.4.2. For each, we make use of the
two observation orderings suggested in Sect. 5.1 (0C for Decreasing distances to
own cluster’s center and RC for Decreasing minimal distances to remote clusters’
centers). We also make use of our tie-breaking strategy to accelerate all methods
except CP RBBA due to its fundamentally different nature.

Table 3 shows a clear advantage for both variants of the filtering algorithms
proposed and particularly for the advanced, flow-based approach. Eight of the
19 instances could not be solved to optimality. However, on the flip side, the
advanced approach is capable of solving two instances none of the other methods
could solve in the allotted time. The basic approach, while fast, produces lower
quality bounds and loses its advantage to substantially bigger search trees.

Overall, ordering RC yields the best results. However, it is not superior for all
instances shown. For example, OC is best for the non balanced version of Wine
as well as Breast Tissue.

CPC is also able to take advantage of our improved search strategy to show
competitive results compared to CP RBBA, tighter bounds computed by the
latter notwithstanding. Without our improved search, CPC with GCC is only
able to solve HA, RU and SY in 12398, 15462 and 6006 s respectively. This confirms
the important role of a reinforced search strategy for ccMSSC.

6.3 Comparison with IBM CP Optimizer Default Search

In order to frame the performance of our search strategy in a recognizable refer-
ence, we compared it to the default strategy shipped with IBM CP Optimizer.
Solving the 6 instances in Table 2 as ccMSSC problems using the advanced filter-
ing method yielded, on average, search trees 27 times bigger for CP Optimizer
search and run times were increased by a factor of 20.

6.4 Comparison with the Conic Optimization Approach

The semidefinite programming lower bound and the rounding heuristic of [23]
were able to prove the optimality of FI3, SE, PR, and PA in 584, 3823, 2637, and
2000 s, respectively, thus surpassing our best advanced filtering approach except
for FI3 where we show vastly improved results. They are also able to guarantee
a solution to CB and UL with gaps of 0.001% and 3% respectively while our
approach’s best gaps are equal to 17% and 30% respectively for these instances.

However this numerical method does not allow easy expression of user con-
straints (ours can leverage the flexibility of CP to quickly and easily introduce
any extra constraints). Besides, our CP method is designed as a global optimiza-
tion method which ends its execution only when all possibilities in the search
space have been exhausted. The method of [23] is not conceived towards obtain-
ing the global optimum of the problem shall the upper bound produced by the
rounding method not coincide with the lower bound obtained via the semidefinite
programming relaxation.

An Exact CP Approach for the Cardinality-Constrained Euclidean 271

7 Conclusion

We presented in this paper a CP approach for exact resolution of the cardinality-
constrained MSSC problem. We suggest both a bolstered search strategy as well
as a global constraint with two distinct filtering schemes: a basic one and a
more advanced one. Experiments on widely used data sets confirm our approach
outperforms previously available exact methods for solving ccMSSC.

Our work can be improved upon by identifying ways that can extend our
global constraint developed for ccMSSC to support soft cardinality constraints
where deviations from target cardinalities could be allowed if it meant obtain-
ing a lower cost solution. Moreover, as seen previously, performance is heavily
dependent on bound quality. Therefore, looking for more innovative ways to fully
exploit the structure of ccMSSC for even tighter bounds could be another avenue
for future research.

Acknowledgements. Financial support from a Natural Sciences and Engineering
Research Council of Canada (NSERC) graduate scholarship is gratefully acknowledged.

References

1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245-248 (2009)

2. Aloise, D., Hansen, P.: Evaluating a branch-and-bound rlt-based algorithm for
minimum sum-of-squares clustering. J. Global Optim. 49(3), 449-465 (2011)

3. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation.
In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 438-454. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07046-9-31

4. Balcan, M.F., Ehrlich, S., Liang, Y.: Distributed k-means and k-median clustering
on general topologies. In: Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 2, NIPS 2013, pp. 1995-2003,
USA. Curran Associates Inc. (2013)

5. Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing constraints.
Data Min. Knowl. Disc. 13(3), 365-395 (2006)

6. Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications, 1st edn. Chapman & Hall/CRC (2008)

7. Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87-90 (1958)

8. Bennett, K.P., Bradley, P.S., Demiriz, A.: Constrained k-means clustering. Tech-
nical report MSR-TR-2000-65, Microsoft Research, May 2000

9. Bertoni, A., Goldwurm, M., Lin, J., Sacca, F.: Size constrained distance clustering;:
separation properties and some complexity results. Fundamenta Informaticae 115,
125-139 (2012)

10. Brusco, M.J.: A repetitive branch-and-bound procedure for minimum within-
cluster sums of squares partitioning. Psychometrika 71(2), 347-363 (2006)

11. Carbonneau, R.A., Caporossi, G., Hansen, P.: Extensions to the repetitive branch
and bound algorithm for globally optimal clusterwise regression. Comput. Opera.
Res. 39(11), 27482762 (2012)

12. Costa, L.R., Aloise, D., Mladenovié¢, N.: Less is more: basic variable neighborhood
search heuristic for balanced minimum sum-of-squares clustering. Inf. Sci. 415—
416, 247-253 (2017)

https://doi.org/10.1007/978-3-319-07046-9_31

272

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. N. Haouas et al.

Dao, T.-B.-H., Duong, K.-C., Vrain, C.: Constrained minimum sum of squares clus-
tering by constraint programming. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 557-573. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5.39

Dao, T.-B.-H., Duong, K.-C., Vrain, C.: Constrained clustering by constraint pro-
gramming. Artif. Intell. 244, 70-94 (2017). Combining Constraint Solving with
Mining and Learning

Desrosiers, J., Mladenovié¢, N., Villeneuve, D.: Design of balanced mba student
teams. J. Oper. Res. Soc. 56(1), 6066 (2005)

Guns, T., Dao, T.-B.-H., Vrain, C., Duong, K.-C.: Repetitive branch-and-bound
using constraint programming for constrained minimum sum-of-squares clustering.
In: Proceedings of the Twenty-Second European Conference on Artificial Intelli-
gence, ECAI 2016, pp. 462-470. I0OS Press, Amsterdam (2016)

Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clus-
tering. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11(9), 1074-1085
(1992)

Hair, J.F., Tatham, R.L., Anderson, R.E., Black, W.: Multivariate Data Analysis,
5th edn. Pearson, New York (1998)

Jungnickel, D.: The network simplex algorithm. In: Graphs, Networks and Algo-
rithms. Algorithms and Computation in Mathematics, pp. 321-339. Springer, Hei-
delberg (2005)

Law, Y.C., Lee, J.H.M.: Global constraints for integer and set value precedence.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 362-376. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30201-8_28

Quimper, C.-G., Lépez-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms
for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol.
3258, pp. 542-556. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30201-8_40

Régin, J.-C.: Arc consistency for global cardinality constraints with costs. In: Jaf-
far, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 390-404. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-540-48085-3_28

Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Size matters:
cardinality-constrained clustering and outlier detection via conic optimization.
SIAM J. Optim. 29(2), 1211-1239 (2019)

Ruspini, E.H.: Numerical methods for fuzzy clustering. Inf. Sci. 2(3), 319-350
(1970)

Tang, W., Yang, Y., Zeng, L., Zhan, Y.: Size constrained clustering with milp
formulation. IEEE Access 8, 1587-1599 (2020)

Wagstaff, K., Cardie, C., Rogers, S., Schrédl, S.: Constrained k-means cluster-
ing with background knowledge. In: Proceedings of the Eighteenth International
Conference on Machine Learning, ICML 2001, pp. 577-584. Morgan Kaufmann
Publishers Inc., San Francisco (2001)

Walsh, T.: Symmetry breaking constraints: Recent results. In: AAAI Conference
on Artificial Intelligence (2012)

Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1-37
(2008)

https://doi.org/10.1007/978-3-319-23219-5_39
https://doi.org/10.1007/978-3-319-23219-5_39
https://doi.org/10.1007/978-3-540-30201-8_28
https://doi.org/10.1007/978-3-540-30201-8_40
https://doi.org/10.1007/978-3-540-30201-8_40
https://doi.org/10.1007/978-3-540-48085-3_28

®

Check for
updates

Minimum Cycle Partition with Length
Requirements

Kai Hoppmann2®)@®, Gioni Mexi'®, Oleg Burdakov?®,
Carl Johan Casselgren®®, and Thorsten Koch!2

! Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{kai.hoppmann,mexi,koch}@zib.de
Chair of Software and Algorithms for Discrete Optimization, TU Berlin,
Str. des 17. Juni 135, 10623 Berlin, Germany
3 Department of Mathematics, Linképing University, 58183 Linkdping, Sweden
{carl. johan.casselgren,oleg.burdakov}@liu.se

2

Abstract. In this article we introduce a Minimum Cycle Partition
Problem with Length Requirements (CPLR). This generalization of the
Travelling Salesman Problem (TSP) originates from routing Unmanned
Aerial Vehicles (UAVs). Apart from nonnegative edge weights, CPLR
has an individual critical weight value associated with each vertex. A
cycle partition, i.e., a vertex disjoint cycle cover, is regarded as a feasible
solution if the length of each cycle, which is the sum of the weights of
its edges, is not greater than the critical weight of each of its vertices.
The goal is to find a feasible partition, which minimizes the number of
cycles. In this article, a heuristic algorithm is presented together with a
Mixed Integer Programming (MIP) formulation of CPLR. We further-
more introduce a conflict graph, whose cliques yield valid constraints
for the MIP model. Finally, we report on computational experiments
conducted on TSPLIB-based test instances.

Keywords: Travelling salesman problem - Combinatorial
optimization + Mixed integer linear programming - Conflict graph -
Unmanned Aerial Vehicles

1 Motivation

UAVs are widely used to execute surveillance tasks, since they can gather infor-
mation about areas from long distance and high altitude. In particular, they
are able to visit areas that are not accessible in any other way. Applications
include monitoring critical infrastructure such as gas pipelines [11], fighting
forest-fires [15], and analyzing widespread animal populations [4]. The Minimum
Cycle Partition Problem with Length Requirements (CPLR) originates from a
routing problem regarding these UAVs.

Given a set of areas V = {v1,...,v,}, the goal is to determine the minimum
number of UAVs necessary to visit all areas, while their individual flying routes
have to fulfill three conditions. First, the UAVs must fly tours, which means that

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 273-282, 2020.
https://doi.org/10.1007/978-3-030-58942-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_18&domain=pdf
http://orcid.org/0000-0001-9184-8215
http://orcid.org/0000-0003-0964-9802
http://orcid.org/0000-0003-1836-4200
http://orcid.org/0000-0002-2741-468X
http://orcid.org/0000-0002-1967-0077
https://doi.org/10.1007/978-3-030-58942-4_18

274 K. Hoppmann et al.

a UAV starts and ends its tour at the same area and visits all other areas assigned
to it exactly once. We assume that a UAV continues on the same tour after
finishing it without any delay. Second, each area is visited by exactly one UAV
and therefore contained in exactly one tour. This is because possible interferences
resulting from the intersection of tours shall be avoided. Third, each area v; € V'
is associated with a critical weight 7; € R>(, which is an upper bound on the
duration for which it can be left unattended, and a scanning time S; € Rx,
which is the amount of time a UAV needs to scan it. Thus, after scanning v; for
S; time units, the UAV has to return and rescan it within 7; time units.

2 Problem Formulation

For CPLR we are given a complete graph G = (V, E), where V = {v1,...,v,}
denotes the set of vertices and E = {{v;,v;} € V x V|1 < i < j < n} the set
of edges. For each vertex v; € V' we are given a critical weight T; € R>o and a
scanning time S; € R>g with S; < T;. The weight of edge e;; := {v;,v;} € E
is given by IA/,»J» € R> and the edge weights respect the triangle inequality, i.e.,
ﬁij < ﬁik + ﬁkj holds for all Vi, V5,V € V.

In the following, we call a nonempty cycle Cy, proper if |C| > 2 and singleton
if |Ck| = 1. Further, Cy is called feasible if 7, < T; holds for each v; € C, where

TE 1= Z Ll‘j+ Z S;
ei; EC v; ECh

denotes the length of C}. In other words, the length of the cycle is not allowed to
be greater than the critical weight of each of its vertices. A solution for CPLR is
a cycle partition C = {C1,...,C,,} of V, i.e., a set of cycles such that each vertex
is contained in exactly one of them. It is feasible if each of its cycles is feasible.
The goal of CPLR is to determine a feasible cycle partition C of minimum size
w.r.t. the cardinality |C|.

In the following, we assume w.l.o.g. that S; = 0 for all v; € V, since the
scanning times can be included in the edge weights: Let L;; := i/ij + # for
each e;; € I/ and consider some cycle C. If it is proper, all vertices have degree
two and we have

Tk = Z Lij + Z S = Z (JiijJrSi;Sj): Z Li;.

ei; ECk v, €CY ei; EC ei; ECk

Note that the new edge weights still respect the triangle inequality. Thus, in
the following we denote an instance of CPLR as a four-tuple (V, E,T, L) with

TGRIZVO‘ andLG]RIZEOI.
Lemma 1. CPLR is NP-hard.

Proof. Consider an instance (V, E, L) of the Travelling Salesman Problem (TSP)
and some B > 0. Setting T; := B as critical weight for each v; € V induces an
instance of CPLR. An optimal solution for the CPLR instance consists of exactly
one tour if and only if there exists a Hamiltonian cycle with length not greater
than B. Thus, since the decision variant of the TSP is known to be NP-complete
[9], it follows that CPLR is NP-hard.

Minimum Cycle Partition with Length Requirements 275

3 Related Work

Optimization problems in which the vertices of a graph have to be visited under
various timing or length constraints are a field of active research. However, to
the best of our knowledge there exists no previous work regarding CPLR.

Drucker et al. [6] consider the Cyclic Routing of UAVs (CR-UAV) problem,
which is a generalization of CPLR. Here, cyclic routes have to be determined,
which have to start and end at the same vertex and can visit vertices multiple
times. Additionally, waiting is possible and the routes are allowed to intersect.
The goal is to determine the minimum number of UAVs that is necessary to
jointly satisfy the critical weight requirements of all vertices. Ho and Ouak-
nine [12] showed that the corresponding decision problem is PSPACE-complete
even in the case of a single UAV. A solution approach based on solving satis-
fiability problems is presented in [8]. However, the proposed method does not
guarantee an optimal solution. In [7] on the other hand, a reduction to model-
checking is suggested and an algorithm, which runs in parallel a bounded model
checker to detect feasible solutions and an explicit-state search attempting to
prove their absence, is presented. Further, Asghar et al. [2] introduce a factor
O(log p) approximation algorithm, where p is the ratio of maximum and min-
imum critical weight. It is based on solving Minimum Cycle Cover Problems
(MCCPs) on a partition of the vertices.

Given a graph G = (V, E) and A € R>(, MCCP is to determine the minimum
number of cycles covering the vertex set, such that the length of each cycle is
not greater than A. In contrast to CPLR, the cycles do not have to be disjoint.
Yu et al. [20] present a 32-approximation algorithm for MCCP.

Besides TSP, there are several other well-known combinatorial optimization
problems, which are closely related to CPLR. One is the Vehicle Routing Problem
with Time Windows (VRPTW), see Solomon and Desrosiers [18] or Desrochers
et al. [5] for surveys on the problem. The goal is to determine a collection of
routes for a fleet of homogeneous vehicles. The routes have to start and end at a
common depot vg and to jointly visit a given set of customers {vy,...,v,}. Each
customer v; € V has some service requirement ¢; which has to be satisfied within
a time window [l;,u;] by exactly one of the vehicles. The goal is to minimize
the number of necessary vehicles while the accumulated requirements of the
customers are not allowed to exceed the capacity of their assigned vehicle.

4 Conflict Graph for CPLR

In this section, we determine vertex pairs, that cannot be contained in a common
feasible cycle. Therefore, we introduce the notion of a conflict graph for CPLR
and show that its cliques give rise to a set of valid constraints. Conflict graphs
are used in many research areas including for example the conflict analysis in
MIP, which has its origin in solving satisfiability problems [1,13,19,21].

Definition 1. Let (V,E,T, L) be an instance of CPLR with underlying graph
G = (V,E). Its conflict graph G¢ = (V, E€) consists of the vertex set V' and the

276 K. Hoppmann et al.

edge set E°, where there is an edge €f; € E° between v; € V and v; € V' if no
feasible cycle containing both vertices emsts

Due to the triangle inequality, the edge set of the conflict graph is equal to the
set of edges in G, that cannot be contained in any feasible cycle.

Lemma 2. Let (V,E,T,L) be an instance of CPLR and let e;; € E. There
exists a feasible cycle containing e;; if and only if 2 - L;; < min{T;, T;}.

Proof. Let C), be a feasible cycle containing e;; € F. This implies that Cj
contains v; € V and v; € V, too. Further, Cj can be split into e;; and a simple
path p;; between these two vertices. Thus, since C}, is feasible and because the
edges respect the triangle inequality, we have

2-L;; <L(pij) + Lij = Z Lij=1 < viréln T, < min{T;,T;}.
ei; ECh

Conversely, if 2- L;; < min{T}, T;} the cycle induced by v;, v; and e;; is feasible.

Corollary 1. Let (V,E,T, L) be an instance of CPLR. The edge set of the con-
flict graph is given by E¢ = {ef; € V x V|2 L;; > min{T;, T;}}.

Using G°¢, we can derive a lower bound on the size of feasible cycle partitions.

Lemma 3. Let (V,E,T,L) be a CPLR instance and let U C V be a clique of
size |U| = m in G°. For each feasible cycle partition C we have |C| > m.

Proof. Let C be a cycle partition with |C| < m. By the pigeonhole principle there
exists a cycle containing at least two vertices from U. Thus, this cycle cannot
be feasible and therefore C is not feasible.

Corollary 2. Let (V,E,T, L) be a CPLR instance and let U C 'V be a mazimum
clique in G°. Then |U| is a lower bound on the optimal solution value of CPLR.

5 Cheapest Insertion Heuristic for CPLR

Next, we present a Cheapest Insertion Heuristic for CPLR, which is inspired by
the corresponding heuristic for TSP [17].

In each iteration k a feasible cycle C}, is determined. First, some vertex v, =
argmin, .y 7; with minimum critical weight is selected. If v, is the only vertex
left in G or the length of a shortest proper cycle containing it, which consists
of v, and a vertex v, being closest to it w.r.t. the edge weights, exceeds Ty, v,
is removed as singleton C} from G and we continue with the construction of
the next cycle. Otherwise, we proceed with a shortest feasible cycle as described
above. Next, we determine two vertices v, and vy, which are adjacent in Cy, and
a vertex v, € V' \ O such that the insertion of v, between v, and v, yields a
minimum increase in the cycle length. If the augmented cycle length does not
exceed T, we insert v, into Cj, and search for more suitable triples of vertices.
Otherwise, we remove C}, from G and continue with the construction of the next
cycle. The algorithm terminates when all vertices have been inserted into a cycle.

Minimum Cycle Partition with Length Requirements 277

Lemma 4. Cheapest Insertion for CPLR has no constant approximation ratio.

Proof. Consider the CPLR instance based on the complete graph G = (V, E)
with |V| = n = 2k? vertices. For each v; € {v1,...,vx} =: V4 let T; = 2k and
for each v; € V\ Vi = Vo let T; = 2k? — k. Additionally, let L;; = 2 for each
edge in e;; € V4 x Vi and let L;; = 1 otherwise. An optimal solution consists of
two cycles: One cycle containing all nodes in V; and the other cycle containing
all nodes in V5. However, the heuristic produces a solution with k cycles, each
featuring one node from V; and 2k — 1 nodes from V5. Hence, Cheapest Insertion
for CPLR does not admit a constant approximation ratio.

In contrast, the corresponding TSP heuristic has an approximation factor of 2.

6 A Mixed Integer Programming Model for CPLR

In this section we present a mixed integer programming (MIP) model for CPLR.
In the following, we consider the induced directed graph G = (V, A), whose arc
set features two directed arcs a;j,a;; € A for each edge e;; € E. Further, both
arcs are assigned L;; as their weights.

For each potential proper feasible cycle Cy with k& € {1,...,[5]} := K we
introduce a binary variable u; indicating whether it contains any vertices or not
and a nonnegative continuous variable 7 representing its length. Additionally,
for each vertex v; € V we introduce a binary variable y; indicating whether
the vertex forms a singleton or not. Further, for each vertex v; € V and each
potential proper cycle Cj, we introduce a binary variable z¥ indicating whether
v; € C) or not and analogously for each arc a;; € A a binary variable xfj
indicating whether a;; € C} or not. The model states as

min Z Yi + Z U (1)

v; €V ke
s.t. yi + Z sz =1 Yv, € V (2)
kel
2 <wu, Y eVVEEK (3)
Z xfj:zf Vv, e VVEe K (4)
a;; €61 (vi)
Z xfl =2 W, eVVkeK (5)
a;; €67 (v;)
> Lijal=m Vkek (6)
a;;€EA
T+ My —Ti)(1—2f) =7 Vv eV,Vkek (7)
Uk, Yis szvxi‘cj € {Oﬂ 1}

Tk € RZO

278 K. Hoppmann et al.

The objective function (1) aims at minimizing the number of cycles. Constraints
(2) ensure that each vertex either forms a singleton or is assigned to a proper
cycle. If vertex v; is assigned to the proper cycle Cy, then (3) indicates that it is
nonempty and v; has to have an outgoing and an ingoing arc due to constraints
(4) and (5), respectively. Next, constraints (6) keep track of the cycle lengths,
while (7) ensures that the critical weights of the vertices are respected. Here,
M, denotes the k-th biggest critical weight among all vertices.

The formulation ensures that each vertex is contained in exactly one cycle and
that all critical weight requirements are satisfied. However, it can happen that
the vertices assigned to some proper cycle C form subtours. Hence, we extend
the model adapting the idea of Miller, Tucker and Zemlin [14] (MTZ) to prohibit
subtours. Here, each vertex is assigned a positive weight while the starting vertex
has value zero. For each pair of consecutive vertices in a tour the weights must
increase except for the last and the starting vertex. A straightforward use for
CPLR is not possible, since we cannot fix starting vertices for the proper cycles
in advance. Thus, for each k € K and each vertex v; € V we introduce additional
binary variables s¥ € {0,1} indicating whether v; is the starting vertex of cycle
C}, or not. Weight variables w! € Zxq together with constraints

Z sf = uy Vk e K (8)
v; eV
sP < ok Vv, € V,VE € K (9)
sz—ukzwf Vv, € V,VE € K (10)
v; €V
k k ko ok
w; —wi + V|- (z5; —s7) < [V[-1 Va;j € A,Vk € K
s¥ e 0,1} Vv, € V,Vk € K
wl € Zso Yo, e V,Vke K. (11)

model the MTZ idea for CPLR. Constraints (8) determine a starting vertex
for each cycle, which has to be part of it due to constraint (9). Furthermore,
the weights necessary for each proper cycle are bounded by (10). Eventually,
constraints (11) are the Miller-Tucker-Zemlin constraints as explained above.
Thus, the MIP formulation consisting of (1)—(7) and (8)—(11) models CPLR.

6.1 Symmetry Breaking Constraints

The solution space of the MIP model can be highly symmetric. Given a feasible
solution, all permutations of the proper cycle indices respecting constraints (7)
are feasible. Assume w.l.o.g. that the vertices are ordered non-increasingly by
their critical weights. Then constraints

2y <Y 2T e e ViVEe K\ {1} (12)
j=1
ensure that only the permutation with the proper cycles sorted by the minimum
index of their vertices is feasible.

Minimum Cycle Partition with Length Requirements 279

6.2 Conflict Graph Clique Constraints

Let (V, E,T, L) be a CPLR instance and let G¢ = (V, E°) be the corresponding
conflict graph. Further, let &/ denote the set of all cliques in G¢ and let U € U.
From the proof of Lemma 3 we derive that no two vertices from U can be
contained in a common feasible cycle. Hence,

Y F<1 Weuvkek (13)
v, €U

are valid constraints for CPLR. In addition, by Corollary 2 the cardinality of a
maximum clique is a lower bound on the number of singletons and proper cycles
contained in an optimal solution. Hence, another valid constraint is

; > . 14
D vit Y ux > max U] (14)

v; eV ke

7 Computational Experiments

For our computational experiments, we generated two sets of test instances based
on the graphs of the 28 instances from the TSPLIB [16], which have 100 or less
vertices. Let 7* denote the length of an optimal tour for the corresponding TSP
instance. For the CPLR instances, we assigned each vertex a random integer
from the interval [%, %} and from the interval [%, TT] as critical weight in the
first and second test set, respectively. All instances can be downloaded from
https://cloud.zib.de/s/CPLR _data/download.

In our MIP formulations, we excluded all edges, which cannot be contained
in feasible cycles by Lemma 2. Beside the symmetry breaking constraints (12),
we computed all maximal cliques of the conflict graph using the algorithm of
Cazals and Karande [3] and added the corresponding constraints (13) as well
as the lower bound (14). Additionally, we used the solution computed by the
Cheapest Insertion Heuristic as initial incumbent and derived a tighter bound
on the necessary size of K in all cases. All mentioned calculations were done in
less than 0.1 seconds for each instance.

We ran our experiments on a cluster of machines composed of two Intel
Xeon Gold 5122 running at 3.60 GHz, which provide 8 cores and 96 GB of RAM
in total. All algorithms were implemented in Python and we used the corre-
sponding interface of Gurobi v9.0 [10] to solve our MIP models with a time limit
of 24 h.

The computational results can be found in Table 1. Here, the number of
removed edges for each instance is given. Furthermore, the value of the solution
found by the Cheapest Insertion Heuristic is shown as UB (heur) and the lower
bound from the size of a maximum clique in the conflict graph is LB (max-
c¢). Finally, the upper and the lower bound at the end of the solving process,
which was either reached when the problem was solved or due to the time limit
(indicated by TL), are shown.

https://cloud.zib.de/s/CPLR_data/download

280 K. Hoppmann et al.

Table 1. Computational results for the instances of the two test sets.

Instance Critical weights from: [%, i] Critical weights from: [%, %]

Removed | UB LB UB | LB | Time | Removed UB LB UB | LB | Time

edges (heur) | (max-c) (sec) edges (heur)| (max-c) (sec)
burmal4 40 5 4 5 5 3 67 8 6 6 6 1
ulysses16 39 5 4 4 4 1 65 6 5 6 6 1
grl7 61 5 4 5 5 1 96 8 7 8 8 1
gr2l 86 6 3 5 5 9 141 9 6 8 8 11
ulysses22 66 5 4 5 5 5 127 7 6 7 7 9
gr24 53 6 4 5 5 89 172 8 7 7 7 1
fri26 105 6 5 6 6 291 188 8 6 8 8 21
bayg29 103 6 4 5 5 5758 238 10 7 8 8 178
bays29 111 7 5 6 6 2661 235 10 6 8 8 206
dantzig42 243 7 4 7 5 TL 478 11 7 9 8 TL
swiss42 160 8 4 7 5 TL 451 10 7 9 8 TL
att48 299 8 5 6 5 TL 605 10 6 9 7 TL
gra8 197 8 4 7 5 TL 536 10 5 10 7 TL
hk48 282 7 4 7 5 TL 548 10 6 10 7 TL
eil51 127 7 3 7 5 TL 521 9 5 9 7 TL
berlin52 264 8 4 8 5 TL 515 12 6 10 8 TL
brazil58 227 6 3 6 4 TL 649 10 5 8 7 TL
st70 217 7 3 7 4 TL 1073 10 5 10 6 TL
eil76 184 7 3 7 5 TL 775 12 5 12 6 TL
pr76 208 8 3 8 4 TL 925 11 6 10 6 TL
gro6 406 8 3 8 4 TL 1587 10 5 10 6 TL
rat99 586 8 3 8 5 TL 1673 11 5 11 6 TL
kroA100 803 8 3 8 4 TL 2141 11 5 11 6 TL
kroB100 643 8 3 8 4 TL 1979 10 5 10 6 TL
kroC100 856 7 3 7 4 TL 2183 12 6 11 7 TL
kroD100 635 8 3 8 5 TL 1962 11 6 11 6 TL
kroE100 678 8 3 8 4 TL 2092 12 5 12 6 TL
rd100 445 8 4 8 4 TL 1817 11 5 11 6 TL

The results show that each of the 18 instances with up to 29 vertices was
solved in at most 96 min. All other instances with 42 and more nodes could not
be solved within 24 h. Furthermore, the Cheapest Insertion Heuristic produced
solutions with at most two extra cycles w.r.t. the upper bounds in UB. Addi-
tionally, the first test set seems to be harder than the second one considering
the solved instances. One reason may be that due to the larger critical weights
there are more degrees of freedom for determining feasible cycles.

8 Conclusion and Outlook

In this article we introduced CPLR, developed a heuristic, and formulated a
MIP model, which features clique constraints derived from a conflict graph. We
were able to solve test instances of small and medium size.

There are several directions of future research that seem worth to be inves-
tigated. From a theoretical point of view, it remains an open question whether
CPLR is contained in APX or not. Additionally, we are currently developing a

Minimum Cycle Partition with Length Requirements 281

MIP model based on a variant of subtour elimination constraints. Furthermore,
extending the conflict graph concept to hypergraphs seems promising. Finally, it
appears natural to study the generalization of CPLR where the triangle inequal-
ity condition on the edge weights is dropped.

References

10.

11.

12.

13.

14.

15.

16.

17.

Achterberg, T.: Conflict analysis in mixed integer programming. Disc. Optim. 4(1),
4-20 (2007)

Asghar, A.B., Smith, S.L., Sundaram, S.: Multi-Robot Routing for Persistent Mon-
itoring with Latency Constraints. arXiv preprint arXiv:1903.06105 (2019)

Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theor. Comput. Sci. 407(1-3), 564-568 (2008)

Chamoso, P., Raveane, W., Parra, V., Gonzéalez, A.: UAVs applied to the count-
ing and monitoring of animals. In: Ramos, C., Novais, P., Nihan, C.E., Corchado
Rodriguez, J.M. (eds.) Ambient Intelligence - Software and Applications. AISC,
vol. 291, pp. 71-80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07596-9_8

Desroches, M., Lenstra, J., Savelbergh, M., Soumis, F.: Vehicle routing with time
windows: optimization and approximation. In: Golden B.L., Assad, A.A. (eds.)
Vehicle routing: Methods and Studies, North-Holland, Amsterdam, pp. 65-84
(1988)

Drucker, N., Penn, M., Strichman, O.: Cyclic routing of unmanned air vehicles.
Information Systems Engineering Technical Reports. IE/IS-2014-02 (2014)
Drucker, N.; Ho, H.M., Ouaknine, J., Penn, M., Strichman, O.: Cyclic-routing of
unmanned aerial vehicles. J. Comput. Syst. Sci. 103, 18-45 (2019)

Drucker, N., Penn, M., Strichman, O.: Cyclic routing of unmanned aerial vehicles.
In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 125-141. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_10

Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H, Freeman
New York (2002)

Gurobi Optimization, L.: Gurobi Optimizer Reference Manual, Version 9.0.0
(2019). http://www.gurobi.com

Hausamann, D., Zirnig, W., Schreier, G.: Monitoring of gas transmission pipelines
- a customer driven civil UAV application. In: ODAS Conference (2003)

Ho, H.-M., Ouaknine, J.: The cyclic-routing UAV problem is PSPACE-complete.
In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 328-342. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46678-0_21

Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506-521 (1999)

Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM (JACM) 7(4), 326-329 (1960)

Ollero, A., Martinez de Dios, J.R., Merino, L.: Unmanned aerial vehicles as tools
for forest-fire fighting. Forest Ecol. Manage. 234(1), S263 (2006)

Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on
Computing 3(4), 267-384 (1991)

Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics
for the traveling salesman problem. STAM J. Comput. 6(3), 563-581 (1977)

http://arxiv.org/abs/1903.06105
https://doi.org/10.1007/978-3-319-07596-9_8
https://doi.org/10.1007/978-3-319-07596-9_8
https://doi.org/10.1007/978-3-319-33954-2_10
http://www.gurobi.com
https://doi.org/10.1007/978-3-662-46678-0_21

282

18.

19.

20.

21.

K. Hoppmann et al.

Solomon, M.M., Desrosiers, J.: Survey paper - time Window constrained routing
and scheduling problems. Transp. Sci. 22(1), 1-13 (1988)

Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed
integer programming. In: International Conference on AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pp. 211-220.
Springer (2017). https://doi.org/10.1007/978-3-319-59776-8_17

Yu, W., Liu, Z., Bao, X.: New approximation algorithms for the minimum cycle
cover problem. Theor. Comput. Sci. 793, 44-58 (2019)

Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven
learning in a boolean satisfiability solver. In: IEEE/ACM International Conference
on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers
(Cat. No. 01CH37281), pp. 279-285. IEEE (2001)

https://doi.org/10.1007/978-3-319-59776-8_17

®

Check for
updates

Optimizing Student Course Preferences
in School Timetabling

Richard Hoshino®™) and Trene Fabris

Quest University Canada, Squamish, BC, Canada
richard.hoshino@gmail.com, irene.fabris@questu.ca

Abstract. School timetabling is a complex problem in combinatorial
optimization, requiring the best possible assignment of course sections
to teachers, timeslots, and classrooms. There exist standard techniques
for generating a school timetable, especially in cohort-based programs
where students take the same set of required courses, along with several
electives. However, in small interdisciplinary institutions where there are
only one or two sections of each course, and there is much diversity in
course preferences among individual students, it is very difficult to create
an optimal timetable that enables each student to take their desired set
of courses while satisfying all of the required constraints.

In this paper, we present a two-part school timetabling algorithm that
was applied to generate the optimal Master Timetable for a Canadian
all-girls high school, enrolling students in 100% of their core courses and
94% of their most desired electives. We conclude the paper by explaining
how this algorithm, combining graph coloring with integer linear pro-
gramming, can benefit other institutions that need to consider student
course preferences in their timetabling.

Keywords: School timetabling - Post Enrollment Course Timetabling
Problem - Integer Programming - Graph coloring - Optimization

1 Introduction

Every educational institution needs to produce a Master Timetable, listing the
complete set of offered courses, along with the timeslot and classroom for each
section of that course. This timetable allows teachers to know what courses they
are teaching, and enables students to enroll in a subset of these courses.

As many school administrators know, creating a timetable is incredibly diffi-
cult, requiring the careful balance of numerous requirements (hard constraints)
and preferences (soft constraints). When timetables are constructed by hand,
the process is often 10% mathematics and 90% politics [4], leading to errors,
inefficiencies, and resentment among teachers and students.

To address these concerns, scholars in Operations Research have analyzed the
School Timetabling Problem (STP) ever since the 1960s [10]. Various heuristics
have been applied to create timetables for schools in Argentina, Brazil, Denmark,
Germany, Greece, Italy, Netherlands, South Africa, and Vietnam [23].

© Springer Nature Switzerland AG 2020
E. Hebrard and N. Musliu (Eds.): CPAIOR 2020, LNCS 12296, pp. 283-299, 2020.
https://doi.org/10.1007/978-3-030-58942-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58942-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-58942-4_19

284 R. Hoshino and I. Fabris

In the most basic version of the STP, the objective is to assign courses
to teachers, timeslots, and classrooms, subject to the following constraints: a
teacher cannot teach two courses in the same timeslot, no classroom can be used
by two courses simultaneously, and each teacher has a set of unavailable teaching
timeslots. This problem is NP-complete [7].

Real-life timetabling problems involve additional constraints that must be
satisfied [24], further increasing the complexity of the STP. These variations
include event constraints (e.g. Course X must be scheduled before Course Y), and
resource constraints (e.g. scheduling only one lab-based course in any timeslot).
At large universities, there are additional constraints that must be considered,
such as taking into account the time students need to walk from one end of the
campus to the other.

Over the past five decades, numerous algorithms have been applied to gener-
ate optimal (or nearly-optimal) timetables for STP benchmark instances. These
techniques include constraint programming [6], evolutionary algorithms [26], sim-
ulated annealing [18], and tabu search [20]. The complete list of methods appears
in a comprehensive survey paper published earlier this decade [23].

Given how hard the STP is, a common practice is to focus only on teacher
requirements and preferences, ignoring the wishes of the students (i.e., the indi-
viduals most affected by the timetable). This assumption is made because many
school programs are cohort-based [15], where students are divided into fixed
groups and take the same sequence of courses to complete their education. At
many high schools and universities, the timetabling is done via homogeneous
sectioning [4], where students are grouped according to their interests or majors:
for example, students in the Arts stream versus students in the Sciences stream.

There are obvious deficiencies to this practice, most notably in small interdis-
ciplinary institutions where cohorts do not exist, and each student takes a unique
set of courses from all departments. Many such institutions are private schools,
where their revenue comes exclusively from student tuition. If students cannot
enroll in their desired courses, they (or their parents) will go to a different school
that will accommodate their preferences. Thus, these schools are under tremen-
dous pressure to create a timetable that satisfies teachers and students. This is
the motivation for the Post-Enrollment Course Timetabling Problem (PECTP),
an active area of research in the field of automated timetabling.

This paper proceeds as follows. In Sect. 2 and 3, we define the PECTP and
provide a brief literature review on related work that incorporates student course
preferences in timetabling. In Sect.4 and 5, we describe our solution to the
PECTP, which is a two-part algorithm that generates an optimal coloring of a
weighted conflict graph for single-section courses, after which an integer linear
program is solved to generate the final timetable. In Sect.6, we generate the
optimal Master Timetable for an interdisciplinary all-girls high school in Canada,
and demonstrate the speed and quality of our two-part algorithm. And in Sects. 7
and 8, we explore the strengths and limitations of our timetabling algorithm to
large universities, and conclude the paper with some ideas and directions for
future research.

Optimizing Student Course Preferences in School Timetabling 285

2 Problem Definition

The standard School Timetabling Problem (STP) is an example of a constraint
satisfaction problem, which asks whether there exists a feasible assignment of
course sections to teachers and timeslots. To avoid confusion, we will rename
timeslots as blocks, so that T will denote the set of teachers and B will denote
the set of blocks during which the courses will take place.

The more general version of the STP is a combinatorial optimization problem,
which asks for the best assignment satisfying all of the hard constraints while
maximizing the preferences of the teachers being assigned their desired courses
in specific blocks.

Both versions of the STP can be set up as a 0—1 integer linear program (ILP),
in which each unknown variable X; .; represents whether teacher ¢ is assigned
to a section of course ¢ in block b. The total number of variables is n = |T||C||B|,
where |T'| is the number of teachers, |C| is the number of offered courses, and
|B| is the number of blocks.

Let Dy .1 be the desirability of teacher ¢ assigned to course c in block b. This
coefficient will be a function of teacher ¢’s ability and willingness to teach course
¢, combined with their preference for teaching that course in block b.

Then, subject to all of the hard constraints, we want to maximize

Z Z Z Dt,c,b : Xt,c,lr

teT ceC beB

The Post-Enrollment Course Timetabling Problem (PECTP) was introduced
just over a decade ago [17], as part of the second International Timetabling
Competition. In the PECTP, points are awarded for enrolling students in any
section of a desired course. For example, if there are ten different sections of
Calculus 101, a student wishing to take Calculus 101 needs to be assigned to
exactly one of these ten sections.

In addition to all of the constraints in the STP (e.g. no teacher can be
assigned to two courses in overlapping blocks), the PECTP involves additional
student-related hard constraints, such as ensuring that no student is enrolled in
multiple sections of the same course.

Let Y. be the binary decision variable representing whether student s is
assigned to a section of course ¢ in block b, and let P .; be the preference of
student s being enrolled in course ¢ in block b.

Then, subject to all of the hard constraints, we want to maximize

Z Z Z Dt,c,b . Xt,c,b + Z Z Z Ps,c,b : Ys,c,b-

teT ceC beB s€S ceCbeB

This is the most basic formulation of the STP and PECTP. There are exten-
sions that we will not consider in this paper, such as adding a penalty function
whenever student s has a class in the last block of the day or has a class in
three consecutive blocks. For a full discussion and treatment of these PECTP
extensions, we refer the reader to [19].

286 R. Hoshino and I. Fabris

3 Related Work

The PECTP was introduced in 2007 as one of the tracks of the International
Timetabling Competition (ITC). Over the past twelve years, different teams of
Operations Research scholars have developed algorithms to tackle hard instances
of the PECTP. The majority of these approaches rely on multi-stage heuristics.

Fonseca et al. [8] propose a three-stage hybrid solver involving graph algo-
rithms, metaheuristics, and “matheuristics”. Nothegger et al. [22] present an
iterative three-step ant colony optimization algorithm. One of the finalists [5]
for ITC 2007 employs a multiphased heuristic solver based on a stochastic local
search, whereas the winning team [3] applies a two-stage local search approach
combining tabu search and simulated annealing.

Heuristics are advantageous for they easily compute within the strict time
limit imposed by the ITC, yet they cannot guarantee the optimality of the output
solution. The latter is a particular weakness of local search approaches, which
lack the flexibility of moving in the space of feasible solutions and get stuck in
local minima despite the large size of the search neighborhood [3].

Recent papers have made much progress. Cambazard et al. [3] find provably-
optimal solutions to three of the PECTP benchmark instances, by augment-
ing simulated annealing with a large neighborhood search. Kristiansen et al.
[15] embed exact repair methods within an adaptive large neighborhood search
(ALNS) to find a feasible solution first, which they optimize by solving a mixed
integer program (MIP). Their ALNS finds timetables within 1% of the optimal
solution, outperforming Gurobi, a state-of-the-art MIP solver, on large instances.

Parallel to the noteworthy progress in heuristic approaches, the last decade
was marked by a significant advance in general-purpose MIP solvers. An obvious
advantage of Integer Programming is its ability to issue certificates of optimal-
ity [14]. Since it is NP-complete to solve a 0-1 Integer Program [13], it has
become common practice to decompose IP models into smaller sub-problems
[27]. Van Den Broek et al. [29] use the lexicographical optimization of four ILP
sub-problems to solve a real-world instance of PECTP at a Dutch university, and
Kristiansen et al. [14] devise a two-step MIP algorithm for Danish high schools.

The problem considered in this paper is most similar to the formulation
of the generalized PECTP presented by Mendez-Diaz et al. [19] and Carter
[4], which were inspired by university timetabling problems in Argentina and
Canada, respectively. In these two papers, the researchers first assign course
sections to blocks, and then assign students to course sections. On the next
page, we present our mathematical model that explains how we can perform
both assignments simultaneously.

We make two contributions in this paper. First, we present a complete algo-
rithm that guarantees fast optimal PECTP solutions for small educational insti-
tutions. Secondly, we provide a graph-theoretic framework to demonstrate how
courses can be “bundled” together and treated as a single super-course, which
significantly reduces the time required to generate a nearly-optimal timetable.
This makes our algorithm scalable for larger schools and universities.

Optimizing Student Course Preferences in School Timetabling 287

4 Mathematical Model

Let T be the set of teachers, S be the set of students, C' be the set of courses,
and B be the set of blocks.

For each t € T,c € C,b € B, let X; .} be the binary variable that equals 1
if teacher t is assigned to course c in block b, and is 0 otherwise. Similarly, for
each s € S,c € C,b € B, let Y ., be the binary variable that equals 1 if student
s is enrolled in course c¢ in block b, and is 0 otherwise.

Earlier we defined the desirability coeflicient Dy . ; and the preference coefhi-
cient Ps .. Our Integer Linear Program (ILP) has the following objective func-

tion:
Z Z Z Dt,c,b : Xt,c,b + Z Z Z Ps,c,b . 1/s,c,b-

teT ceC beB se€S ceCbeB

We now present our hard constraints.
No teacher can be assigned to two different classes in the same block, and at
most one section of any course is offered in any given block.

> Xiew <1 VteT, be B (1)
ceC
> Xiep <1 VeeC,beB (2)
teT

Define O, to be the number of offered sections of course c.
SN Xiew =0, VeeC (3)
beEB teT

No student can be enrolled in more than one course in the same block, nor
can any student be enrolled in two sections of the same course.

> Yien <1 VseS, beB (4)
ceC
> Yeen <1 VseS, cel (5)
beB

No student can be enrolled in a course during a block in which that course
is not offered by any teacher.

Yeeh D Xicp VseS ceC beB (6)
teT

Let R be the number of available rooms in the school.

>3 Xiep <R VbEB (7)

teT ceC

288 R. Hoshino and I. Fabris

Let M be the maximum size of a class.

> Yien <M VeeC,beB (8)
SES

Our ILP maximizes the objective function subject to these eight constraints.

This model has a total of (|T'| + |S|) - |C||B]| binary decision variables. In
practice, the large majority of these variables X;.; and Y .p will be pre-set
to 0, since teachers are qualified to only teach a small subset of the offered
courses, and likewise, students will only want to be enrolled in a small subset
of these courses. By fixing these zero variables, we can solve the PECTP using
the above ILP, guaranteeing an optimal timetable whenever |T|, |S|, and |C|
are of reasonable size. But when these values are large, like at most universities,
simplifications are required to ensure tractability.

There are two natural ways to simplify the problem: assume there are cliques
of teachers or assume there are cohorts of students. In the former, the Master
Timetable is generated one clique at a time: first assign course sections to the
math teachers and fix those assignments, then do the same with the science
teachers, and so on. In the latter, the students are pre-divided into fixed groups,
and each group is assigned to the same set of course sections.

Unfortunately, these two approaches fail when there are many teachers who
teach different subjects (e.g. Ms. X teaches Grade 12 Math and Grade 7 French),
and when cohorts do not exist and students wish to take a unique combination of
courses from two different faculties (e.g. an undergraduate attempting a double-
major in Chemistry and Sociology).

Our approach is not to bundle teachers or bundle students, but rather to
bundle courses. We now present a graph-theoretic approach that efficiently par-
titions one-section courses into discrete bundles that enable us to significantly
reduce the running time of the ILP.

5 Bundling One-Section Courses

C' is the set of courses. Some of these courses will be sought by many students,
and so multiple sections of the course must be offered in the timetable. The rest
are specialized courses that will attract only a small number of students, and
so only a single section is required. Let C = Cjy; U Cp, where C}; is the set of
multiple-section courses and Cyp is the set of one-section courses.

While there is much flexibility to timetabling courses in C};, courses in Cp
can only be assigned to a single block, and so we must ensure that the courses
in Cp avoid any type of scheduling conflict: by teacher, by room, or by student.

Define G to be the weighted conflict graph, where Co is the set of vertices.
For each pair x,y € Co, we calculate the edge weight w(z,y) as follows:

(a) Add a weight of w, if the same teacher is required to teach both x and y.
(b) Add a weight of w, if the same room must be used for both z and y.
(¢) Add a weight of wy for each student who wishes to take both x and y.

Optimizing Student Course Preferences in School Timetabling 289

The weights wy, w,, ws can vary, though in practice it is most logical to set
high values of w; and w, and low values for wy (e.g. w; = 100, w, = 100, ws = 1).

For each integer i > 0, define G; to be the graph with vertex set Co whose
edge set only consists of edges with weight greater than ¢. By definition, there
exists a sufficiently large integer ¢ for which G; is an empty graph with no edges.

For each G;, the chromatic number x(G;) is the fewest number of colors
needed to color the vertices of G; so that no two vertices joined by an edge share
the same color.

If x(Go) is at most | B|, the number of blocks in the timetable, then all of the
one-section courses assigned the same color can be “bundled” together in the
same block. This guarantees that every student will be able to take all of their
desired one-section courses, since no pair will be offered at the same time. These
bundles can be thought of as the “supernodes” of the conflict graph [2].

If x(Go) > |B|, then by definition, it is impossible to create a timetable that
enables every student to get into all of their desired courses. In this case, we find
the smallest index ¢ for which x(G¢) < |B|, and once again, the color classes
correspond to our bundles for the one-section courses.

Although it is NP-complete to determine the chromatic number of a general
graph [13], for many large graphs we can compute x(G) using state-of-the-art
algorithms based on local search [12]. We can also compute x(G) by solving the
corresponding 0—1 ILP, and adding the constraint that no color class can contain
more than R courses, where R is the number of rooms available for teaching.

This motivates our solution to the PECTP, where we use graph coloring to
reduce the number of variables in our ILP.

(i) Construct the weighted conflict graph G, where the vertex set is Co.

(ii) Starting with ¢ = 0, calculate x(G;). If x(G;) < |B|, then stop. Otherwise
increment ¢ by 1 until we find some index i = ¢ for which x(G;) < |B].

(iii) Find a |B|-coloring of x(G;) where the number of one-section courses in
each color class is at most the number of available rooms. Let X; be the set
of courses in Cp assigned to color j.

(iv) Redefine C' to equal Cy UX;UXoU...UX|p|, where there are |Cy/| courses
that have multiple sections, and |B| bundles, each of which is a one-section
“super-course” with multiple teachers that can be assigned to any number
of students. We then solve the previously-defined ILP, using this new set C.

For example, suppose that there are |C| = 120 courses to be timetabled into
| B| = 10 blocks, where |Cs| = 20 and |Co| = 100. The above algorithm bundles
the 100 one-section courses into |B| = 10 bundles. Thus, instead of considering
|C| = 120 courses in our ILP, we now only need to consider |Cys| + |B| = 30
courses. By reducing the number of variables by a factor of four, we create
a massive reduction in the total running time while only sacrificing a small
percentage in quality, as measured by the value of our objective function.

Our approach is particularly useful in small interdisciplinary institutions that
offer numerous one-section courses desired by different sets of students. We now
provide an example of such an educational institution, and apply our algorithm
to create the optimal Master Timetable for this all-girls independent school.

290 R. Hoshino and I. Fabris

6 Application

St. Margaret’s School (SMS) is located in Victoria, the capital city of the Cana-
dian province of British Columbia. Since 1908, educators at SMS have dedi-
cated themselves to inspiring girls who want to change the world and helping
them become women who do change the world. The school has an enrollment of
approximately 375 students, starting from Junior Kindergarten (age 3 and 4).
As mentioned in their online handbook [28], SMS prides itself on their small-
scale learning environment, which provides teachers with the flexibility to per-
sonalize learning for each student and challenge each girl to realize her own
potential. In order to achieve this goal, the school spends several months each
year cons