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(R)GO	 (Reduced) Graphene oxide
[Bmim][BF4]	 1-Butyl-3-methylimidazolium tetrafluoroborate
BET	 Brunauer-Emmet-Teller
BTC	 1,3,5-Benzene-tricarboxylate
CO-PROX	 Carbon monoxide preferential oxidation
CO-SMET	 Carbon monoxide selective methanation
EDTA	 Ethylenediaminetetraacetic acid
H2-TPR	 Hydrogen temperature programmed reduction
IL	 Ionic liquid
MW	 Microwave
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PEM-FC	 Proton exchange membrane fuel cell
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SFRD	 Supercritical fluid reactive deposition
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TOF	 Turnover frequency
TWC	 Three way catalyst
WGS	 Water gas shift
XPS	 X-ray photoelectron spectroscopy
XRD	 X-ray diffraction

3.1  �Introduction

The need of green, renewable, transportable, and storable fuel is nowadays com-
monly accepted. In this context, hydrogen represents an ideal energy vector; it can 
be produced from several sources, such as solar, wind, biomass, and biogas, by dif-
ferent processes, such as electrolysis [1–3], reforming [4–7], thermochemical split-
ting [8, 9], photoelectrochemical splitting [10], etc. Moreover, hydrogen can be 
reacted with captured carbon dioxide to produce both fuels and fine chemicals.

The interest toward hydrogen as a fuel has been increased together with the 
development of proton exchange membrane fuel cells (PEM-FCs). PEM-FCs 
directly convert hydrogen and oxygen into water vapor and electricity; they show 
high efficiency, low operating temperature, and no moving parts, and are a mature 
technology [11]. Hydrogen streams produced by renewable and/or fossil fuel con-
version (i.e., reforming, gasification, pyrolysis, etc.,) also contain CO, CO2, and 
H2O in different ratios. The hydrogen content is generally increased by one or two 
water gas shift (WGS) stages, according to Eq. (3.1).

	 CO H O CO H+ ↔ +2 2 2 	 (3.1)

Due to thermodynamic constraints, the CO concentration cannot be lowered 
below 0.5–2 vol.%. However, PEM-FCs suffer from poisoning by carbon monoxide 
even at very low concentration (≤100 ppm); as a matter of fact, CO strongly adsorbs 
onto Pt active sites of the PEM-FC anode [11]. This means that a purification stage 
is necessary.

Two main processes have been proposed in order to convert CO: selective metha-
nation [CO-SMET; (Eq.  3.2)] and preferential oxidation [CO-PROX; (Eq.  3.3)] 
[12–14].

	 CO H CH H O+ ↔ +3 22 4 2 	 (3.2)

	 CO O CO+ →0 5 2 2. 	 (3.3)

Both of them present pros and cons. Both reactions are exothermic (ΔHCO-SMET ≈ 
−206  kJ/molCO; ΔHCO-PROX ≈ −283  kJ/molCO), and thus, no external heating is 
required (but heat management is needed). Both reactions compete with undesired 
reactions; CO2 methanation and reverse WGS can occur in parallel with CO-SMET, 
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while H2 combustion and reverse WGS can occur in parallel with CO-PROX. H2 
consumption, even if undesired, is unavoidable in both processes. During CO-SMET, 
3 moles of hydrogen per mole of carbon monoxide are consumed even at 100% 
selectivity (i.e., no CO2 consumption by methanation or reverse WGS occurs). 
CO-PROX cannot be carried out under stoichiometric conditions, generally O2 
excess being necessary. However, oxygen cannot be fed to the Pt anode, because 
hydrogen should be directly burned without the production of protons to be trans-
ferred to the cathode side. Therefore, during CO-PROX, H2 consumption is directly 
related to O2 excess [15]. The typical equivalence ratio (λ; it corresponds to the ratio 
between the actual O2/CO ratio and the stoichiometric one) is 2; this means that 1 
mole of hydrogen per mole of carbon monoxide is consumed at complete CO and 
O2 conversions. Accordingly, CO-PROX is characterized by a lower H2 loss than 
CO-SMET.

On the other hand, O2 supply for CO-PROX occurs via air addition, related to 
safety issues in the mixer; moreover, the low but not negligible hydrogen dilution 
with nitrogen is to be considered as a con absent for CO-SMET.

A definitive preference between CO-PROX and CO-SMET has not yet been 
defined; however, some prototype systems have been developed with one or more 
CO-PROX stages to purify the hydrogen stream [16–19].

The first paper on CO-PROX was published in 1922 [20], followed by other two 
papers in 1930 [21, 22]. In these works, CO-PROX was suggested as the purifica-
tion stage of hydrogen streams for the Haber process. As is known, CO-PROX is not 
used in the Haber process and, thus, the interest toward this reaction dramatically 
dropped.

Fundamental studies on the platinum activity toward CO and H2 oxidation [23–
25] led to renewed interest toward CO-PROX [26]. As is known, platinum can be 
considered as an intrinsic preferential CO oxidation catalyst due to the strong CO 
adsorption at low temperature, which is also the reason for the high sensitivity of 
PEM Pt anodes to low CO partial pressures in the H2 streams.

Starting from these works, the number of papers related to CO-PROX signifi-
cantly increased, as shown in Fig. 3.1. Obviously, the increase was strictly related to 
the development of low-temperature PEM-FC.

Catalysts for preferential oxidation of carbon monoxide should show (1) good 
activity toward CO oxidation, (2) high selectivity (i.e., hydrogen oxidation rate 
should be lower than CO oxidation rate), (3) resistance to the inhibiting effect of 
carbon dioxide and water vapor (unavoidable in reformate streams), and (4) long 
life-time. Noble metal-based catalysts were first studied and are still of interest [27–
33]. Their performance toward CO-PROX was also reviewed [12, 34]. In addition to 
platinum, gold nanoparticles were also proposed for CO-PROX showing interesting 
activity, selectivity, and resistance to the inhibiting effect of CO2 and H2O [27, 35–
40]. A review of the most interesting results was published by Lakshmanan 
et al. [41].

Transition metal oxides, mainly supported on ceria, represent the last class of 
catalysts proposed for CO-PROX. Despite several attempts, copper oxide supported 
on ceria is undoubtedly the most interesting catalytic system. For instance, Cwele 
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et al. [42] and Chagas et al. [43] studied the promoting effect of copper on cobalt 
substituted ceria and Ni-CeO2, respectively, and concluded that copper/ceria cata-
lysts, i.e., the system without Co or Ni, showed the best catalytic properties.

As shown in Fig. 3.1, the number of papers devoted to CuO/CeO2 catalysts for 
CO-PROX increased rapidly in the mid of 2000s and represents a significant frac-
tion of the overall scientific production related to CO-PROX. It is widely accepted 
that a key feature, for the good activity of CuO/CeO2 catalysts, is the strong interac-
tions between copper and ceria resulting in an enhanced reducibility of both oxides 
[44–46]. It has been evidenced that copper reducibility depends on its dispersion on 
CeO2, highly dispersed copper showing the best CO oxidation activity and selectiv-
ity [47]. Indeed, copper oxides clusters, not interacting with ceria, are recognized as 
active centers for the (undesired) H2 oxidation [48, 49]. According to the above 
considerations, the nano and subnano structure of CuO/CeO2 catalysts appears of 
fundamental interest in order to understand and tune the features affecting catalytic 
activity and selectivity.

In this chapter, the most interesting results on the effect of nano and subnano 
structures of CuO/CeO2 catalysts on the CO-PROX performance are reviewed and 
critically discussed.
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Fig. 3.1  Number of publications related to CO-PROX (blue bars) and focused on CuO/CeO2 cata-
lysts for CO-PROX (red bars) during the last 40 years (Source: Scopus. Access: May 2019)
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3.2  �CuO/CeO2 Catalysts

As reported above, the interest toward CuO/CeO2 catalysts has grown during the 
last few years. Contemporarily, the research was devoted to the comprehension of 
the nature of the active sites and of the origin of their selectivity. A brief discussion 
on this topic is necessary before introducing how nanostructure affects the catalytic 
activity.

To date, a general consensus on the exact nature of the active sites has not been 
attained. Discussion is open on the oxidation state of active copper [50–55], results 
supporting both Cu2+ and Cu+ as active sites for CO adsorption and oxidation. In 
particular, it is not well established if the active sites for the CO adsorption step are 
isolated small Cu2+ clusters in close contact with CeO2 [50] or Cu+ sites [51]. 
Moreover, copper active sites are assumed as well as dispersed CuOx clusters [52], 
while surface CuyCe1-yO2-x has been suggested as active centers by Elias et al. [53] 
and Arango-Diaz et al. [56].

Nevertheless, some points have been considered accepted and/or more reason-
able. First, the key factor for good CO-PROX catalysts is a strong copper-ceria 
interaction, generally related to a high copper dispersion [57–60]. Moreover, good 
CO-PROX catalysts require a high (mainly surface and/or subsurface) oxygen 
mobility related to ceria sites, generally due to the formation of oxygen vacancies 
[59, 61–63]. It is worth noting that the development of novel in-situ and extra-situ 
characterization techniques and of more reliable theoretical models allowed a deep 
understanding of the role of copper-ceria interaction and oxygen vacancies in catal-
ysis and, specifically, in the CO-PROX reaction [64].

In order to improve copper dispersion and to strengthen copper-ceria interaction, 
several preparation and post-treatment technique were proposed. Preparations 
included deposition−precipitation [65], incipient wetness impregnation [47, 48, 66, 
67], coprecipitation [65, 68–70], sol−gel precipitation [70, 71], solution combus-
tion synthesis [72], urea gelation/coprecipitation [71, 73], “solvent free” synthesis 
[71]. Examples of post-treatments are reported by Avgouropoulos and coworkers; 
they showed redispersion of copper species and improved oxygen vacancies under 
both acid [74] and basic [75] conditions. Du et al. [76] treated the as-calcined CuO/
CeO2 samples with copper loadings as high as 40 at.% with ammonium carbonate 
aqueous solutions showing that the weakly bonded copper species were removed by 
the leaching process and replaced by strongly bonded species (active toward 
CO-PROX) migrating during reduction or reaction condition.

Another key feature related to the strong copper-ceria interaction is the selectiv-
ity of the CuO/CeO2 systems toward CO rather than H2 oxidation. Several studies 
reported that the formation of metallic copper enhances H2 reactivity [47, 69, 77–
79], as sketched in Fig. 3.2; thus, over-reduction of copper under reaction condi-
tions leads to the formation of unselective sites. Accordingly, the shift of copper 
reduction under H2 at temperature significantly higher than the operation tempera-
ture of CO-PROX is beneficial to the catalyst selectivity [80]. Lopez Camara et al. 
[81] reported that the reduction of ceria particle dimension in an inverse CeO2/CuO 
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catalyst (i.e., a system where ceria is dispersed on copper oxide) delayed copper 
reduction under H2 due to a more favored interfacial electron transfer from copper 
to ceria.

The above considerations suggest that the use of nanoparticles with a high num-
ber of copper-ceria contact points can lead to more active and selective CO-PROX 
catalysts [82]. Indeed, more active structures are formed in the transition to the 
nanometer range than with the bulk analogs [83]. This is due to change in the unit 
cell parameters, the mobility of the atoms, the electronic structure, the surface mor-
phology, the reactivity of active centers at the faces, edges, and points of the crystal 
lattice, etc. The systems formed during the incorporation into nanostructures or 
inclusion in porous matrices acquire new properties in addition to the individual 
characteristics of isolated nanosized particles. Such interaction can result in the 
appearance of additional active centers at the contact points of the nanoparticles. In 
these systems, a synergic effect seems to be due to the decrease in the energy of 
electronic transitions in the zones of contact between nanoparticles of different 
chemical nature [84].

As reported above, this chapter is focused on the relationship between nanostruc-
ture and catalytic activity. Results of catalysts characterization, carried out using 
both conventional and advanced techniques (H2-TPR, XRD, N2 physisorption, XPS, 
and (HR-)TEM), reported in the literature are generally easily comparable. In con-
trast, catalytic activity is tested under a wide range of experimental conditions dif-
fering for CO and/or O2 concentrations (and thus for CO/O2 ratio), contact time, and 
CO2 and/or H2O addition (and their concentrations), the only common point gener-
ally being the investigated temperature window (i.e., 50–200  °C). The catalytic 
results are, then, difficult to compare out of a single paper. An attempt was done by 
López et al. more than 10 years ago [85]; in subsequent years, few works reported a 
comparison with literature results and generally in a very limited way (for instance, 
see Di Benedetto et al. [66]). Therefore, in the next sections, catalysts will be not 
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Fig. 3.2  Sketch of the effect of temperature on the copper oxidation state and its influence on the 
selectivity

A. Di Benedetto et al.



85

ranked with respect to their activity and selectivity; the “fil rouge” will be the link 
among nanostructure, physicochemical feature, and catalytic activity.

3.2.1  �How Nanostructure Affects Catalytic Activity

The role of particle dimension has been widely explored for copper-ceria catalysts. 
Sciré et al. [65] highlighted the effect of ceria nanoparticles in determining the cata-
lytic performance. For instance, Di Benedetto et al. [55] reported the occurrence of 
CO oxidation at temperature as low as room temperature over a structured catalyst 
washcoated with CuO/CeO2 having ceria nanoparticles as the support. The associ-
ated transient production of carbon dioxide was related to the high redox properties 
of the catalyst and, particularly, to the large availability of surface and labile oxy-
gen. The same Authors studied the effect of copper loading on a commercial ceria 
nanopowder [66]. Outstanding catalytic performances were achieved due to the 
support nanodimension. In order to observe the effect of copper loading on CO 
conversion, a contact time as low as 0.027 g s cm−3 was necessary. The Authors sug-
gested that on these very active catalysts under certain reaction conditions, the limit-
ing step is not dependent on the copper sites, but more likely on the CO2 desorption 
from ceria sites in the neighborhood of copper centers.

A large variety of methods have been used to synthesize ceria-based catalysts 
with a size as small as possible and, sometimes, with a special morphology, which 
will be briefly described below.

3.2.1.1  �Preparation Techniques

Sciré et al. [65] found that CuCe catalysts prepared by coprecipitation technique 
have a high surface area and lower ceria particle dimension, which generate higher 
amounts of defective sites (corners and edges), where oxygen release occurs with a 
lower energy barrier.

As a consequence, different preparation techniques were proposed in order to 
produce nanometric catalyst particles.

Maciel et al. [44] obtained CuCe catalysts with particles as small as 5 nm by 
hydrothermal synthesis with copper content of about 1%, which showed the highest 
activity with respect to catalysts with higher copper load and larger particles. The 
same authors [86] prepared both CeO2 and Cu/CeO2 samples by hydrothermal syn-
thesis comparing their properties to samples obtained by precipitation with the same 
composition. The high dispersion of copper in the nanometric support particles pre-
pared by the hydrothermal method led to very good catalytic performance. Moreover, 
the small crystallites size of ceria (<10 nm) enhanced redox capability and ionic 
conductivity of CeO2 due to the higher mobility, primarily of the oxygen ions, 
important for the CO-PROX mechanism.

3  Preferential Oxidation of Carbon Monoxide in Hydrogen-Rich Streams…



86

Zhang et al. [87] used the urea gelation method to obtain Cu-Ce mixed catalyst 
with a high surface area and particle dimension of about 10 nm. Furthermore, they 
obtained mixed CuO and CeO2 with the same particle size also by mechanical mix-
ing of the two oxides prepared by urea gelation.

Araújo et al. [88] used a microwave assisted hydrothermal synthesis to obtain 
Ce0.97Cu0.03O2 nanospheres with an average diameter of 20 nm and nanorods with an 
average diameter of 8 nm and 40 nm in length. Moreover, they observed size reduc-
tion of the nanoparticles from 20 to approximately 15 nm with increasing synthesis 
temperature. Catalysts synthesized at the maximum temperature (160  °C) were 
those with the best copper dispersion and best CO-PROX performance.

Arango-Diaz et al. [89] used the freeze-drying method to obtain CeO2 particles 
with a regular size of 9.5 nm. Copper was successively dispersed. The freeze drying 
method consisted in a flask freezing of cerium nitrate and Ethylenediaminetetraacetic 
acid (EDTA) solution using liquid nitrogen to obtain an amorphous precursor which 
was then calcined.

The same authors used the freeze-drying method to synthesize ceria-zirconia and 
ceria-alumina supports.

Kosmambetova [84] reported that CeO2 synthesized from ammonium nitrate pre-
cursor was characterized by greater defect structure, lesser occupation of the oxy-
gen positions (increased amount of vacancies), and smaller average size of the 
crystallites (11  nm) compared with the sample from simple nitrate precursor 
(13 nm).

One of the effective methods to prepare nanosized catalysts is nanocasting gener-
ally using mesoporous silica as a sacrificial template [90]. Advantages of nanocast-
ing method are: (a) uniform and small crystallite size, usually smaller than 10 nm; 
(b) high surface area and uniform pore size; (c) adjustable structure; and (d) crystal-
line framework, with domain sizes that do not increase with increase in synthesis 
temperature [68]. Gu et al. [68] synthesized ordered mesoporous Cu–Ce–O cata-
lysts with different copper contents (5–70 mol%) using mesoporous silica KIT-6 as 
a hard template in one-step nanocasting method with a surface area as high as 
159 m2 g−1. The catalysts nanocasted in one step show better performance than the 
ones prepared by a two-step impregnation method.

A more unusual technique was also proposed [91, 92] using the highly ordered 
HKUST-1 with a microporous structure and a long copper–copper dimer distance 
(well separated by the 1,3,5-benzene-tricarboxylate (BTC) ligand with a distance of 
0.8  nm) as the hard template to disperse cerium ions, which can be uniformly 
adsorbed into the channel of Cu3(BTC)2 (Fig.  3.3). After removing the organic 
ligand by thermal treatment, copper and ceria remain well distributed. The use of a 
nanoporous host provided 10–11  nm CuCe crystals after thermal treatment at 
500–600 °C with very high CO-PROX performance.

Li et al. [93] used a special technique to produce CeO2 nanoparticles (5 nm aver-
age size) with highly dispersed copper: the melt infiltration method into silica hol-
low nanospheres starting from cerium and copper nitrate precursors. They reported 
that this method allows an effective dispersion of precursor salts in the pores of the 
silica hollow nanospheres providing the maximum activity for a Cu/Ce ratio 1/8.
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Tang et  al. [94] proposed a facile solid state impregnation method to prepare 
CuO-CeO2/SBA-15 catalysts. Both copper and ceria were well dispersed on 
SBA-15, and the CO-PROX activity was greatly enhanced, which could be attrib-
uted to the distinct reduction of ceria size.

Gong et  al. [95] used the surfactant template method to produce both CeO2, 
MnOx and CeO2-MnOx with nanometric size (<8 nm), which was preserved also 
after dispersion of CuO by wet impregnation. The same authors [95] obtained simi-
lar dimension of CeO2-MnOx mixed oxides using both deposition-precipitation and 
surfactant template methods. The same effect was obtained by Zeng et  al. [96] 
always on MnOx-CeO2 synthesized by the hydrothermal method but for the prepara-
tion of inverse catalysts. The MnOx-CeO2 particles on CuO have maximum 7 nm 
dimension.

Liu et al. [97] prepared the CuO–CeO2 catalyst by coprecipitation and ethanol 
washing obtaining nanosized samples with a high surface area. They also found lat-
tice defects over the surface of CuO–CeO2, which are beneficial to enhance catalytic 
performance.

Chung and Yeh [98] prepared CuO–CeO2 nanocomposites by coprecipitation of 
nitrates at changing pH values. They found that precipitation at high pH led to a 
high concentration of CeO2 nucleation and significant number of Cu sites at inter-
face between CuO and CeO2. They also demonstrated that the samples obtained at 
high pH values exhibited very high CO conversion and selectivity.

Marban et al. [99] synthesized CuOx/CeO2 nanocatalysts using the silica aquagel 
coprecipitation (SACOP). They found very good performance in terms of both cata-
lytic activity and selectivity. However, they also found catalyst deactivation. From 
their analysis it turns out that the reason for the catalyst deactivation is related to the 
formation of surface carbonates and to the aggregation of dispersed Cu2+ in CuO 
clusters.

Conversely, Sedmak et al. [100] showed that the nanostructured Cu0.1Ce0.9O2 − y 
catalyst prepared by a sol–gel method exhibits very stable operation also under 
severe reducing conditions.

Fig. 3.3  CuO/CeO2 catalyst prepared by MOF precursor for CO-PROX (From Zhang et el. [91] 
Copyright © 2012 Elsevier B.V. Reproduced with permission)
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Xu et al. [101] prepared Cu-doped cerium oxide nanofiber catalyst via electros-
pinning. They obtained samples with high surface areas and a special fiber-like 
nanostructure with highly dispersed and active Cu2+ ions.

As shown in Fig. 3.4, nanofibers present length of about 50 μm and a diameter of 
about 200 nm. The TEM images also show the presence of a large quantity of nano-
fibers with an average diameter of about 8.5 nm.

A simple way to prepare nanocomposite catalysts was suggested by Borchers 
et al. [102]. They found that a 60 min ball milling procedure allowed to generate 
CuO/CeO2 nanoparticles agglomerated into larger aggregates (Fig. 3.5). The milled 
catalysts showed improved catalytic activity due to a better copper dispersion and 
larger Cu+ fraction.

In Table 3.1 the performances and the average nanometric size of most of the 
best catalysts discussed above are reported.

Fig. 3.4  SEM images of Cu0.1Ce0.9O2–x nanofibers (NFs) at low magnification (a) and high magni-
fication (b); TEM images of a single Cu0.1Ce0.9O2–x nanofiber at low magnification (c) and high 
magnification (d) (From Xu et  al. [101] Copyright © 2011 Elsevier B.V.  Reproduced with 
permission)

A. Di Benedetto et al.



89

Fig. 3.5  (a) TEM micrograph of CuO-CeO2 powder milled for 60 min; (b) enlargement showing 
dimension and shape of agglomerated nanoparticles (From Borchers et al. [102] Copyright © 2016 
Elsevier B.V. Reproduced with permission)

Table 3.1  Performance of catalysts prepared by different preparation techniques: average particle 
size (d, nm), best CO conversion (x, %) and corresponding selectivity to CO2 (s, %), temperature 
(T, °C), and contact time (W/F, g s cm−3)

Preparation techniques d x; sa Tb; W/F References

Coprecipitation 6 95; 62 150; 0.038 [65]
Wet impregnation <20 100; 100 110; 0.027 [55]
Hydrothermal synthesis 5–8 100; 100 110; n. a. [44]
Urea gelation 11 n.a.; n.a. 60; n. a. [87]
MW assisted hydrothermal synthesis 20 92; n. a. 150; n.a. [88]
freeze-drying method 12 100; 97 90; 0.18 [89]
Nanocasting with mesoporous silica 8–9 (crystal) 100; 100 40; 0.097 [90]
Nanocasting with mesoporous silica 23 (crystal) 99; 50 170; 0.06 [68]
Thermal treat. of Cu3(BTC)2 precursor 11 (crystal) 100; 100 90; 0.2 [91]
Melt infiltration 5 90; 60 175; 0.0045 [93]
Surfactant template method 5 (crystal) 100; 50 140; 0.06 [95]
Ethanol washing 10 (crystal) 100; 95 120; 0.03 [97]
Coprecipitation at various pH 6 100; 100 120; 0.006 [98]
Silica aquagel coprecipitation (SACOP) 2–3 (crystal) 95; 68 208; 0.06 [99]
Electrospinning 8.5 (crystal) 100; 92 120; 0.3 [101]

n.a. not available (catalyst mass or flow rate not reported)
aValues of conversion and selectivity can be indicative in some cases because extracted from 
graphs. CO conversion reported is the best conversion obtained with the best performing catalyst. 
The value of selectivity is that corresponding to the best conversion
bTemperature corresponding to the best conversion
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3.2.1.2  �Particle Morphology

As reported by Trovarelli and Llorca [83], not only the dimension but also the shape 
of CeO2 nanoparticles can significantly affect the metal-support interaction, thus 
providing enhancement of activity and selectivity. Thus, at the beginning of the last 
decade, in addition to the nanometric dimension the effect of ceria morphology was 
also investigated producing CeO2 particles as stars, cubes, rods, etc.

Han et al. [103] synthesized ceria nanocrystals in different shapes: octahedra, 
rods and cubes with 10–20 nm dimension. They found that copper was deposited at 
higher concentration on octahedra but it better migrates from bulk crystal to the 
surface for rods. This determined a different CO-PROX activity at low and high 
temperature, rods working better at high temperature and cubes at lower tempera-
ture. On the other hand, Monte et al. [104] found that ceria nanocubes were the most 
selective due to the greater exposure of {001} facets, coordinatively more unsatu-
rated, promoting a stronger interaction with copper.

Gamarra et al. [105] investigated the catalysts morphologies and obtained both 
CeO2 support and Cu/CeO2 catalysts with particles dimension as low as 7 nm as 
nanospheres (Fig. 3.6). These catalysts showed a better CO-PROX activity at low 
temperature with respect to nanocubes or nanorods with a larger dimension and 
lower surface area although they also found an effect of crystalline faces exposure 
on selectivity.

The effect of the phase exposure was also reported by Guo and Zhou [106]. They 
compared CuO/CeO2 catalysts synthesized by the impregnation method on differ-
ently shaped ceria (rod, cube, plate and polyhedral), showing that CuO/CeO2-rod 
and CuO/CeO2-polyhedra exhibit a higher low-temperature catalytic oxidation 
activity coupled with a broader operating temperature window, while CuO/CeO2-
cube showed the worst performance. The reason was found in the improved disper-
sion of copper with a stronger interaction on the ceria rods and polyhedra.

Accordingly, Xie et  al. [107] demonstrated that copper-ceria interaction is 
favored onto {111} and {002} ceria planes; so, nanospheres and nanospindles are 

Fig. 3.6  TEM images of the different CeO2 supports: CeO2-nanocubes (left), CeO2-nanorods 
(middle) and CeO2-nanospheres (right). The horizontal scale bar shown corresponds to 50  nm 
except for CeO2-NC for which it represents 20 nm (From Gamarra et al. [105] Copyright © 2013 
Elsevier B.V. Reproduced with permission))
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the preferred nanoshaped supports. Onto these supports in the presence of copper, 
the oxygen vacancies fraction is increased, thus improving the oxygen transfer from 
copper to ceria, according to the following equation.

	 Cu Ce Cu Ce2 3 4+ + + ++ → + 	 (3.4)

Kou et al. [108] prepared CuO/CeO2 nanowires starting from Al90Cu2.5Ce7.5 (at%, 
nominal concentration) alloy ribbons by a de-alloying procedure in 5  M NaOH 
aqueous solution. The so-prepared catalysts preferentially expose the {110} ceria 
plane and showed good activity toward CO-PROX due to good copper dispersion 
and oxygen mobility.

Gong et al. [109] prepared ceria nanocubes by acid or basic treatment of nano-
spheres with an ionic liquid (IL) of 1-butyl-3-methylimidazolium tetrafluoroborate 
([Bmim][BF4]) under hydrothermal condition and used them as support for CuO/
CeO2 catalysts (Fig. 3.7). The best results were obtained with a 2 M NaOH solution, 
providing the best copper-ceria interaction. Figure 3.7 shows a TEM image of this 
catalyst.

In Table 3.2 the performances and the average nanometric size of most of the 
best catalysts discussed above are reported.

3.2.1.3  �Inverse CuO/CeO2 Catalysts

In the same years also inverse catalysts were proposed. In these catalysts CeO2, 
generally as nanoparticles, is deposited on CuO in order to enhance the number of 
contact points between the two oxides where active sites are supposed to be located. 
In 2010 Martinez-Arias and coworkers [110] first reported the inverse CuO/CeO2 

Fig. 3.7  Schematic illustration of the synthetic procedures of CuxO/CeO2 nanocube catalysts and 
TEM image of the sample providing the best catalytic activity. Adapted from Gong et al. [109] 
(Copyright © 2017 Elsevier B.V. Reproduced with permission)
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catalyst for preferential CO oxidation. They showed that the amount and properties 
of copper-ceria interfacial sites in the inverse system keep a high level of CO oxida-
tion activity due to the structure sensitivity of these catalysts.

The inverse CeO2/CuO catalysts show a wider CO conversion window and higher 
CO2 selectivity in comparison with the classical CuO/CeO2 catalyst [111]. A syner-
gistic effect occurs at the interface of the CeO2-CuO catalyst and the particle sizes 
of CuO and CeO2 directly determine the perimeter and area of this contact interface.

Different preparation techniques were proposed to prepare the inverse catalysts. 
Zeng et al. [111] prepared inverse catalysts using the solvothermal method to obtain 
the CuO precursor with cotton-ball-like morphology and CeO2/CuO catalysts with 
a high BET surface area. The authors confirmed that the CO-PROX reaction takes 
place at the interface of the nanometric (<10 nm) CeO2 particles and CuO.

Zeng et al. [112] compared direct and inverse copper cerium catalysts both pre-
pared by the hydrothermal method. TEM analyses indicated that the inverse CeO2/
CuO catalyst has CeO2 crystallites with a dimension of about 3–8 nm gathered into 
many small islands dispersed on the bulk CuO with 20–50 nm size. The traditional 
CuO/CeO2 catalyst shows better activity at lower temperature and the inverse CeO2/
CuO catalyst present higher CO2 selectivity when the CO conversion reaches 100% 
since it can still supply sufficient CuO for CO oxidation T < 200 °C. In the inverse 
sample the bulk CuO can chemisorb CO and H2 at the suitable temperature and the 
small islands of CeO2 can provide oxygen for CO and H2 oxidation. This confirms 
that the reaction occurs at the contact interface of the CeO2 islands and bulk CuO.

Zeng et al. [113] also proposed CeO2/CuO catalysts prepared by hydrothermal 
method using Na2CO3 as precipitant with different Cu/Ce ratio. They obtained CeO2 
particles of about 10 nm and CuO particles with about 20 nm dimension. The CeO2 
particles self-assemble into the rod-like structures during the hydrothermal proce-
dure and the rods of CeO2 become shorter with the decrease of Ce/Cu molar ratio. 

Table 3.2  Performance of catalysts characterized by different shapes: average particle size (d, 
nm), best CO conversion (x, %) and corresponding selectivity to CO2 (s, %), temperature (T, °C), 
and contact time (W/F, g s cm−3)

Shape d x; sa Tb; W/F References

Octahedra 15.3 95; 50 140; 0.1 [103]
Rods n.a. 85; 70 170; 0.12 (in situ Drift) [104]
Cubes 46 >99;70 170; 0.12 [105]
Polyhedra 5–10 >99; 100 85; 0.06 [106]
Spheres 180 100; 100 80; 0.09 [107]
Wires 20 100; 93 95; 0.45 [108]
Cubes 14.1 100; 70 150; 0.06 [109]

n.a. not available
aValues of conversion and selectivity can be indicative in some cases because extracted from 
graphs. CO conversion reported is the best conversion obtained with the best performing catalyst. 
The value of selectivity is that corresponding to the best conversion
bTemperature corresponding to the best conversion
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Furthermore, copper cations enter into the lattice of CeO2 and the highly dispersed 
CuO are favorable for CO oxidation at lower temperature.

The same authors [114] used different precipitants (urea, NaOH, tetramethylam-
monium hydroxide) for a reverse microemulsion impregnation method to obtain 
inverse catalysts with an average particle size of 5 nm. They reported that the cata-
lytic performance was closely associated to the extent of the contact interface 
between CeO2 and CuO depending on the crystal sizes of CeO2 and CuO. In a sub-
sequent work [115] they found that CeO2/CuO catalyst starting from urea precipi-
tant was that with the smallest CuO crystallites. The particle-like structure consists 
of bulk CuO and filamentous and bowl-like structures of 5 nm CeO2 crystallites.

Zeng et  al. [116] also proposed CeO2 nanoparticles supported on CuO with 
sphere-flower and petal-like morphologies. The particle size of CuO support was 
about 20 nm whilst that of CeO2 dispersed particles was about 5 nm. They supposed 
a semi-spherical shape of CeO2 particles because they observed an increase of TOF 
with increasing CeO2 size. In fact, this maximizes the copper-cerium contact con-
firming that active sites are located at cerium-copper interface.

The same authors prepared rod-like CeO2 particles with an average size of 10 nm 
dispersed on CuO by hydrothermal method with different Cu/Ce molar ratio. The 
smaller CeO2 easily entered into the crystal lattice of CuO. Moreover, the rod-like 
CeO2 exposed more {111} planes, representing those with the highest oxygen stor-
age and transportation capacity. The contact interface of highly dispersed ceria and 
bulk CuO was more favorable to CO oxidation than to H2 oxidation thus providing 
the best catalytic performance.

Zeng et al. [117] used the surfactant template method to synthesize both CuO/
CeO2 and inverse CeO2/CuO catalysts to investigate the active sites that they sup-
posed located at the contact interface between the two oxides. They obtained both 
CuO and CeO2 with nanometric dimension.

The hydrothermal in combination with impregnation method was used to pre-
pare the CeO2/CuO catalysts with spherical structure [118]. The microspheres of 
CuO (20–25 nm) consist of the sheet-like CuO and the way of arrangement results 
in the formation of a shell structure. The core in the middle of shell structure was 
composed of the nanosized CuO particles. CeO2 particles are supported on the sur-
face of the CuO microspheres or embedded in the pores of sheet-like CuO and their 
size was 6–7 nm.

Catalysts in inverse configuration (CeO2/CuO) were also proposed by López 
Cámara [119] with CeO2 nanoparticles (4.9 nm) deposited on larger (12–20 nm) 
CuO nanoparticles. They also reported that the addition of ZnO nanoclusters further 
reduced both CeO2 (3.9 nm) and CuO particle dimension and that resulted most 
favorable to the CO-PROX catalytic properties. On the basis of their results, they 
suggested that the crystal size of CeO2 was a relevant parameter to tune CO-PROX 
characteristics of this type of inverse CeO2/CuO catalysts.

Chen et al. [120] proposed a multistep process for synthesizing CeO2 nanoparti-
cles on Cu with a large concentration of oxygen vacancies using urea as the additive 
and NaOH as the precipitation agent. The HR-TEM analysis confirmed the presence 
on Cu surface of pillar-shaped CeO2 nanoparticles with a diameter less than 10 nm 
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with a fluorite-type structure. Oxygen vacancies were generated as a consequence 
of electron donation from metal copper atoms to the CeO2 acceptor and the 
subsequent reverse spillover of oxygen induced by electron transfer in a well-con-
trolled nanoheterojunction. The anchored oxygen vacancies play a bridging role in 
electron capture or transfer and drive oxygen molecules into active oxygen species 
to interact with the CO molecules adsorbed at interfaces, thus leading to an excel-
lent preferential CO oxidation performance.

Gu et al. [121] prepared ceria nanorods and investigated the role of the copper 
content. The best catalyst was characterized by a Cu/Ce ratio equal to about 2.5. 
With respect to the other samples in the best catalyst, the Cu+ and the Ce3+ fractions 
were enhanced.

Xie et al. [122] prepared inverse CeO2/CuO catalysts by using star-shaped Cu2O 
particles. Ceria was detected as nanoparticles dispersed onto the Cu2O surface. 
Despite the starting copper oxidation state was one, the Authors related the catalytic 
activity to the coexistence of Cu2+ and Cu+; in particular, they linked the redox cop-
per cycle to the redox cerium cycle.

In Table 3.3, the performances and the average nanometric size of most of the 
best catalysts discussed above are reported.

3.2.1.4  �CuO/CeO2 on Carbon

In order to get strong copper-ceria interaction and a very high surface area, CuO/
CeO2 catalysts were supported onto carbon nanotubes and similar structures. Zeng 
et al. [124] supported CuO/CeO2 onto multiwall carbon nanotubes (MWCNTs). The 

Table 3.3  Performance of different inverse CeO2/CuO catalysts: best CO conversion (x, %) and 
corresponding selectivity to CO2 (s, %), temperature (T, °C), and contact time (W/F, g s cm−3)

Catalyst x; sa Tb; W/F References

CeCu >99; 100 90; 0.06 [110]
CeCu 100; 75 110; 0.09 [111]
CeCu >99; 100 100; 0.09 [112]
CeCu >99; 100 140; 0.09 [114]
CeCu 100; 80 160; 0.09 [115]
CeCu 100; 100 150; 0.09 [116]
CeCu 100; 100 100; 0.09 [117]
CeCu 100; 90 130; 0.09 [118]
CeCu-Zn 100; 100 150; 0.06 [81]
CeCu 100; 93 120; 0.2 [123]
CeCu 90; 60 160; 0.075 [121]
CuCe 100; 88 120; 0.09 [122]

aValues of conversion and selectivity can be indicative in some cases because extracted from 
graphs. CO conversion reported is the best conversion obtained with the best performing catalyst. 
The value of selectivity is that corresponding to the best conversion
bTemperature corresponding to the best conversion
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catalyst with 20 wt% CuO and equimolar amounts of copper and cerium showed the 
best catalytic activity; the sample was characterized by a large specific surface area 
(about 150 m2 g−1). The pore diameter of carbon tubes was about 20 nm before 
active phase deposition, decreasing down to 12 nm on the catalyzed systems, while 
ceria particles showed wire shape with almost 7  nm characteristic dimension. 
Results showed a relation between copper interaction with ceria, Ce3+ fraction (i.e. 
oxygen vacancies) and catalytic activity, thus confirming other results on this topic. 
On the other hand, the use of multiwall carbon nanotubes with a high surface area 
seemed to weaken the poisoning effect of H2O and CO2.

Similarly, Gao et al. [125] supported CuO/CeO2 catalysts on MWCNTs with dif-
ferent Cu/Ce ratios and compared with Cu/CeO2 supported onto activated carbon, 
γ-alumina and silica. Best performance was measured on the catalyst showing an 
equimolar ratio between copper and cerium supported onto MWCNTs. The Authors 
related the catalytic properties to a unique interaction between the active phase and 
the support, providing also the highest Ce3+ fraction.

Dongil et  al. [126] supported copper-ceria catalysts onto carbon nanotubes 
(CNT) and graphene oxide (GO) and investigated the effect of K addition. Figure 3.8 
shows TEM images of the investigated samples. Catalysts deposited onto CNTs 
were more active than those supported onto GO due to a better active phase disper-
sion. Moreover, K doping (K ≤ 1.0 wt.%) resulted in an improved ceria dispersion 
and stronger copper-ceria interaction, thus improving catalytic performance toward 
CO-PROX.

Zeng and coworkers used reduced graphene oxide (RGO) as CuO/CeO2 support 
in combination with MWCNTs [127] or alone [128]. In the absence of MWCNTs 
[128], the best catalyst was characterized by a Cu/Ce ratio equal to 1. Good copper 
and cerium dispersions were detected, suggesting good interaction; moreover, sig-
nificant fractions of Cu+ and Ce3+ were measured and related to the good catalytic 
activity. In addition, the sample showed improved resistance to the inhibiting effect 
of carbon dioxide and water vapor, probably due to the formation of hydroxyl 
groups by dissociative adsorption of H2O on the surface of reduced graphene oxide. 
MWCNTs added to this catalyst [127] acted as spacer between RGO sheets both 
improving copper oxide and ceria dispersion and enhancing the concentration of 
oxygen vacancies. So, the ternary nanocomposite showed better performance 
toward CO-PROX reaction.

Zhang et al. [129] also prepared CuO/CeO2 (Cu/Ce = 1) catalysts supported on 
reduced graphene oxide according to the procedure sketched in the Fig. 3.9. It is 
nothing that the active phase is dispersed as nanoparticles onto the support; addi-
tionally, the Authors suggested that CuO/CeO2 particles were wrapped up in RGO 
layers with close interfacial interaction, thus providing optimal spatial condition for 
charge transport between RGO layers and CuO/CeO2.

Shi et al. [130] supported CuO/CeO2 with different Cu/Ce ratios onto commer-
cial MWCNT by a special ultrasound-aided impregnation. The sample with a Cu/Ce 
ratio equal to 0.67 showed the best catalytic properties due to an enhanced copper 
reducibility and a good dispersion of CuO and CeO2 particles. They also accounted 
for a higher fraction of oxygen vacancies.
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In Table 3.4, the performances and the average nanometric size of most of the 
best catalysts discussed above are reported.

3.2.2  �How Doping Affects Nano (and Subnano) Features

Improving catalytic activity and selectivity means improving copper dispersion and 
Cu-Ce interactions, thus reducing the typical dimension of the copper aggregates, 
i.e., the active sites. To this end, addition of other elements to Cu-Ce catalysts was 
used to improve catalytic properties.

Fig. 3.8  TEM images of Cu/CeO2 catalysts supported onto carbon nanotubes (a, b) and onto 
graphene oxide (c, d). Samples in figures b and d are doped with potassium (From Dongil et al. 
[126] Copyright © 2016 Royal Society of Chemistry Reproduced with permission)
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Fig. 3.9  Sketch of the preparation of RGO/CuO/CeO2 catalysts (From Zhang et  al. [129] 
Copyright © 2018 Springer Nature Reproduced with permission)

Table 3.4  Performance of CuCe catalysts supported onto different carbon-based supports: average 
particle size (d, nm), best CO conversion (x, %) and corresponding selectivity to CO2 (s, %), 
temperature (T, °C), and contact time (W/F, g s cm−3)

Carbon support d x; sa Tb; W/F References

MWCNT 7.0 100; 100 110; 0.09 [124]
MWCNT 4.3 100; 100 130; 0.03 [125]
CNT (+ K-doping) 4.2 100; 70 175; 0.03 [126]
RGO/MWCNT 2.8 100; 55 120; 0.09 [127]
RGO 3.2 95; 70 140; 0.09 [128]
RGO 100–220 100; 90 120; 0.06 [129]
CNT n.a. 100; 100 120; 0.09 [130]

n.a. not available
aValues of conversion and selectivity can be indicative in some cases because extracted from 
graphs. CO conversion reported is the best conversion obtained with the best performing catalyst. 
The value of selectivity is that corresponding to the best conversion
bTemperature corresponding to the best conversion
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Zr has been generally added to CeO2 to improve performance, as occurring in 
TWCs. However, often different and, in some cases, opposite results are found in 
the literature. A positive effect was reported by Martinez-Arias et  al. [131] and 
Reddy et al. [132]. On the contrary, Caputo et al. [133] and Ayastuy et al. [134] 
reported that adding Zr to the support decreases both activity and selectivity with 
respect to CuO/CeO2 catalyst which outperforms with respect to CuO/CexZr1-xO2 
and is much better than CuO/ZrO2. Wang et al. [135] proposed highly performing 
CuOx/Ce0.8Zr0.2O2 catalysts prepared by a facile and rapid route (urea grind combus-
tion method) with a very small dimension (about 10 nm). The use of this preparation 
technique avoids the formation of bulk unselective CuO and also provides a good 
tolerance to CO2 and H2O.

Guo et  al. [136] modified the redox properties of CuO supported onto CeO2 
nanorods by doping the ceria rods with Mn, Ti, Zr, and Ni. Mn and Ti addition pro-
vided higher activity, selectivity and resistance to the inhibition effect of CO2 and 
H2O, while Zr showed a marginal effect and Ni decreased the catalytic performance. 
Both Mn and Ti promoted the formation of surface defects and oxygen vacancies 
and incorporation of isolated copper. However, while Mn improved low tempera-
ture oxygen mobility due to its surface existence with multiple valence states, Ti 
promoted the formation of a perovskite-like structure enhancing copper dispersion 
and interaction with the support. An evident promoting effect of low Mn amounts 
(Mn/(Mn + Ce) = 0.05) was reported by Jin et al. too [137]. The main reason was 
attributed to the formation of Ce-Cu-Mn-O ternary solid solution, causing the for-
mation of more oxygen vacancies, an improved reducibility and an increased 
amount of surface oxygen species. Further Mn addition decreased the catalytic per-
formance and lowered the related physicochemical features.

Cecilia et al. [138] compared CuO/CeO2 catalysts doped with Zr, La, Tb, and Pr 
to an undoped reference sample. Under “ideal” reaction conditions (i.e., in the 
absence of CO2 and H2O) the doped samples showed higher catalytic activity than 
the undoped one (except the La-doped sample), Zr-doped catalyst showing the best 
performance. These results suggested a relationship between the dopant charge and 
the catalytic activity, 4+ cations being thus preferable. However, under “real” reac-
tion conditions (i.e., in the presence of CO2 and H2O) no significant difference 
among the sample was detected.

Also, the Nb addition was ineffective to improve the catalytic behavior of CuO/
CeO2 catalysts [139]. As a matter of fact, niobia did not modify the redox properties 
of the catalyst, i.e., it did not change the copper-ceria interaction, but it introduced 
acid sites useless for CO-PROX reaction.

As reported in the Sect. 3.1, Pt and Au based catalysts are very active toward 
CO-PROX. Accordingly, several efforts have been done in order to combine the 
good properties of CuO/CeO2-based catalysts with those of Pt and Au.

Kugai et al. [140] reported that nanosized CuO particles or clusters interact with 
CeO2 surface to exhibit synergistic effect in reducibility at the interfacial area. CO 
adsorbs on copper sites and oxygen is supplied from CeO2 through the interface. 
Although CuO/CeO2 shows high selectivity, it has drawback of slow kinetics at low 
CO concentration which makes noble metal still necessary for deep CO removal 

A. Di Benedetto et al.



99

from H2 stream. For this reason, they developed supported PtCu alloy nanoparticles 
(3–4 nm) synthesized by a unique radiation-induced synthesis process supported on 
CeO2. This radiolytic process is described as a simple method to obtain nanoparti-
cles with well-controlled structure and size through irradiating the aqueous ions of 
metal sources with no need for post-treatment by heat or other chemicals.

Cu-Pt alloy nanoparticles with a slightly higher dimension (4–5 nm) were depos-
ited on CeO2 or γ-Fe2O3 by the same authors by electron beam irradiation method 
[141, 142]. They also found that Pt-Cu with CeO2 of small crystallite size had high-
est activity and selectivity in CO-PROX, preserved also when water was added in 
the mixture. The high oxygen transport capacity was attributed to small CeO2 crys-
tallite size (average size 24 nm).

In the work of Lang et al. [143] copper and platinum were loaded simultaneously 
on the ceria-coated alumina sponge by means of supercritical fluid reactive deposi-
tion (SFRD), which consists in adsorption and reduction of metal-organic com-
plexes dissolved in supercritical CO2. Nanosized copper inside and in close contact 
with the ceria layer provided a good reducibility and thus high activity of the 
catalyst.

About Au-doped CuO/CeO2 catalysts, the formation of Au-Cu alloys has been 
reported [144–148]. In particular, alloys with nanometric dimension (5–10  nm) 
with preset stoichiometry dispersed on different support (SiO2, CeO2, γ-Al2O3) were 
prepared by Potemkin et  al. [147] starting from [Au(en)2](NO3)3 and 
(NH4)2[Cu(C2O4)2]·2H2O complex compounds. These catalysts showed a higher 
selectivity in the realistic hydrogen-rich mixture containing CO2 and H2. 
Interestingly, Papavasiliou [148] reported decoration of CuO nanoparticles with 
gold (metallic and cationic) clusters; the presence of these species was related to the 
improved CO-PROX performance.

The promoting effect of iron addition to CeO2 or CuO/CeO2 mixed oxide has 
been studied in several papers [61, 80, 149–154]. Firsova et  al. [149] reported a 
positive effect of iron addition due to the role of iron in the redox cycles, while Bao 
et al. [153] suggested that the improved catalytic activity of a Fe2O3–CeO2 compos-
ite was related to the density of surface oxygen vacancies promoted by iron addi-
tion. Results reported in further papers confirmed that iron addition improved the 
catalytic properties by modifying the nanostructure of the catalysts. In particular, 
improved copper dispersion (and thus copper-ceria interaction) [80] and the genera-
tion of more oxygen vacancies, enhancing the Cu-Ce interaction, trapping the gas-
phase oxygen, and promoting the mobility of subsurface lattice oxygen, [61] were 
claimed to explain the Fe-promoting effect. Recently, Dasireddy et al. [155] pre-
pared bimetallic Cu-Fe/CeO2 and Cu-Co samples supported onto carbon nanotubes 
(CNT) and compared their features and performance to those of monometallic ones. 
The Authors detected the formation of a CuFe2O4 phase enhancing the copper dis-
persion. From the catalytic point of view, the Fe-promoted sample showed a signifi-
cant resistance to the inhibiting effect of CO2 and H2O. In particular, CO2 acted as 
inhibitor, while H2O as promoter. The latter effect was probably due to the forma-
tion of hydroxyl group on the surface, boosting the catalytic activity, in agreement 
with Bueno-Lopez and coworkers [54]. In contrast, on a Fe-promoted CuO/CeO2 
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catalyst, both CO2 and H2O lowered the catalytic performance [156]. The Authors 
reported that the CO2 showed the most inhibiting effect, even higher than CO2 + H2O, 
while H2O addition slightly decreased the catalytic activity. Therefore, iron-
promoted catalysts seem to be less sensitive to H2O addition. However, the promot-
ing effect of H2O detected by Dasireddy et al. [155] could also be due to the CNT 
support.

Doping with potassium was demonstrated to be effective to enhance the catalytic 
properties of CuO/CeO2 catalysts, especially in terms of resistance to the inhibiting 
effect of CO2 and H2O [157]. More recently, Dongil et al. [158] investigated the 
whole group of alkalis (Li, Na, K, Cs), added to CuO/CeO2 samples supported onto 
carbon nanotubes, thus expanding their previous study on K-doped catalysts [126]. 
The results suggested a significant role of the nature of the alkali element on the 
dispersion of ceria and the Cu-ceria interaction. This was also due to the formation 
of CeO2 particles with small crystal size (4–6 nm) in the presence of alkalis (except 
Cs). These features were related to the improved catalytic performance of K-, Li-, 
and Na-doped samples, respectively. In contrast, Cs showed a detrimental effect on 
the CO-PROX activity.

In Table 3.5, the performances and the average nanometric size of most of the 
best catalysts discussed above are reported.

3.3  �Conclusions and Outlooks

The preferential oxidation of carbon monoxide poses both fundamental and applica-
tive issues. Research was, thus, devoted both to investigate the relationship between 
physicochemical features and catalytic properties and to engineer effective cata-
lysts. From this point of view, copper-ceria catalysts are very intriguing. From the 
beginning of their exploration, it was clear that the copper-ceria interaction and, 

Table 3.5  Performance of CuCe catalysts doped with different elements: average particle size (d, 
nm), best CO conversion (x, %) and corresponding selectivity to CO2 (s, %), temperature (T, °C), 
and contact time (W/F, g s cm−3)

Dopant d x; sa Tb; W/F References

Zr (Ce/Zr = 4) 10 100; 100 120; 0.15 [135]
Mn (Mn/(Mn + Ce) = 0.05) 8 100; 100 100; 0.06 [136]
Pt (Cu/Pt = 9) 4 (PtCu particles) 100; 30 90; 0.12 [140]
Au (0.15 wt.%) 5–15 100; 90 120; 0.144 [148]
Fe (5 wt%) n.a. 100; 75 140; 0.054 [80]
K (K/Cu = 0.68) 4.2 100; 75 175; 0.03 [158]

n.a. not available
aValues of conversion and selectivity can be indicative in some cases because extracted from 
graphs. CO conversion reported is the best conversion obtained with the best performing catalyst. 
The value of selectivity is that corresponding to the best conversion
bTemperature corresponding to the best conversion
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thus, the copper dispersion play a fundamental role, pushing the research at 
nanoscale levels.

Reduction of ceria size to nanoparticles showed a positive effect on the catalytic 
properties of CuO/CeO2 systems and several preparation methods were proposed 
for this purpose. The nanodimensions improve both Cu dispersion and oxygen 
mobility and prevent, at the same time, the over-reduction of copper to its metallic 
state, generally identified as the H2 oxidation site, thus affecting also the selectivity. 
Another interesting feature of nanosized copper-ceria catalysts is their easier 
desorption of carbon dioxide; this property is reflected into higher activity at low 
temperature, where CO2 desorption is the rate-limiting step. An improved resistance 
toward the inhibiting effect of CO2, typically present in the composition of the 
reformed stream, is a secondary but nonetheless beneficial effect.

Results reported above show that the ceria nanomorphology affects the catalytic 
properties as well as its dimension. It has been demonstrated that copper is prefer-
entially dispersed onto defective planes, where copper-ceria interaction is boosted. 
Accordingly, catalysts prepared with specific morphologies are generally more 
active and selective.

The fundamental role of copper dispersion and its interaction with ceria is indi-
rectly demonstrated by the development of “inverse” CeO2/CuO catalysts. In these 
materials, ceria is deposited onto copper oxide; results clearly showed that the for-
mation of nanostructures related to ceria and/or copper oxide, improving the contact 
points between the two oxides, is directly related to the catalytic activity and 
selectivity.

Deposition of both CeO2 and CuO onto carbon-based supports intrinsically pro-
vides an intimate contact between copper and ceria. Moreover, the carbon-based 
supports offer large surface area, stable structure and they weaken the inhibiting 
effect of H2O and CO2 as they disadvantage their adsorption. It is worth noting that 
the optimal Ce/Cu ratio is around 1; evidently, the very small size of catalyst parti-
cles dispersed onto the support surface enhances the Cu-Ce distribution and interac-
tion, thus also shifting the best composition to the equimolar ratio with respect to 
conventional CuO/CeO2 catalysts.

Dopants also affect significantly the catalytic properties. In ceria-based catalysts, 
dopant addition is generally related to the modification of the redox properties and, 
in particular, to the improvement of bulk and/or surface oxygen vacancies. With 
regard to CuO/CeO2 systems for CO-PROX, a larger number of oxygen vacancies is 
not straightforwardly linked to better catalytic performance. As a matter of fact, the 
improved redox properties should be coupled with a better copper dispersion in 
order to obtain more performing catalytic systems.

Figure 3.10 summarizes the above considerations.
Despite the absence of a general consensus on the exact nature of the active sites, 

the results reported in this chapter show that good catalysts based on CuO/CeO2 for 
CO-PROX should have a copper-ceria interaction as wide as possible. Accordingly, 
the design of novel catalysts implies their engineering at the nanoscale level with 
the aim of a better utilization of the active components. Moreover, an opportune 
choice of additional components (dopants and/or supports as graphene and carbon 
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nanotubes) can improve not only the intrinsic activity but also the resistance to the 
inhibiting effect of carbon dioxide and water vapor, unavoidable in reformate 
streams.

Finally, this chapter did not address the issue of structuring the active phase onto 
monolithic systems. However, structured catalysts are necessary under applicative 
conditions. Accordingly, another topic of interest is the development of active 
phases and preparation methods suitable for deposition onto substrates such as hon-
eycombs, foams, and slabs.
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