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Abstract. Software architecture description languages (ADLs) cur-
rently adopted by industry for software-intensive systems are largely
semi-formal and essentially based on SysML and specialized profiles.
Despite these ADLs allow describing both structure and behavior of the
architecture, there is no guarantee regarding the satisfaction of correct-
ness properties. Due to their nature, semi-formal ADLs do not support
automated verification of the specified properties, in particular those
related to safety and liveness of the specified behavior. This paper pro-
poses a novel approach for empowering SysML-based ADLs with formal
verification support founded on model checking. It presents (i) how the
semantics of SysADL, a SysML-based ADL, can be formalized in terms
of the CSP process calculus, (ii) how correctness properties can be for-
mally specified in CSP, and (iii) how the FDR4 refinement checker allows
verifying correctness properties through model checking. The automated
model transformation from SysADL architecture descriptions to CSP
composite processes has been implemented as a plug-in to the Eclipse-
based SysADL Studio tool. This paper also describes an application of
SysADL empowered with CSP to validate its usefulness in practice.

Keywords: Software architecture description · Formal verification ·
Correctness properties · CSP · SysML

1 Introduction

Software architecture descriptions play an essential role in the communication
among stakeholders, e.g., architects, developers, etc. The precise communication
of this artifact is quite important since a badly specified architectural model
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causes design and implementation flaws in a software system and can create
misunderstandings [8]. Architecture description languages (ADLs) have been
used as means of expressing software architectures and producing models that
can be used at design time and/or runtime [3].

One of the major challenges in the design of software-intensive systems con-
sists in verifying the correctness of their software architectures, i.e., if the envi-
sioned architecture is able to fully meet the established requirements. Acknowl-
edged as an important activity in software industry [10,14], the architectural
analysis aims to verify system properties using architectural models at design
time to detect incorrectness, inconsistencies, and other undesirable issues as soon
as possible in the software development process. Due to the critical nature of
many complex software systems, rigorous architectural models (such as formal
architecture descriptions) are quite desirable as means of better supporting auto-
mated architectural analysis. The main advantage of adopting a formal approach
is precisely determining if a software system satisfies properties of interest and
constraints related to requirements and check the accuracy and correctness of
architectural designs. The literature indeed reports studies that combine formal
verification and software architecture descriptions as means of ensuring safety,
correctness, and consistency in software systems [1,18].

Despite describing structure and behavior of a software architecture is possi-
ble, there is no guarantee on its correctness properties. Some ways of validating if
a software architecture was correctly designed with respect to its functionalities
are generating source code in a given target programming language or producing
executable models able to be simulated. Nonetheless, simulating the architec-
ture neither constitutes a proof of satisfaction of safety and liveness properties
nor a guarantee that the execution respects the specified architecture behavior.
Another important concern is that semi-formal languages such as SysML have
well-defined syntax, but they lack complete formal semantics. This hampers the
automated verification of the specified properties, in particular those related to
safety and liveness of the architecture behavior.

This paper presents an approach for empowering SysML-based architecture
descriptions with formal verification to support the model checking of correctness
properties. Such an approach relies on the Communicating Sequential Process
(CSP) [15], a process calculus applied in both academia and industry to for-
mally specify and verify the behavior of concurrent processes/systems and how
they interact with each other. More specifically, this paper proposes a CSP-
based semantics for SysADL [13], a SysML-based ADL that combines typical
constructs of ADLs with the use of the popular diagrammatic notation based
on the SysML Standard for modeling software-intensive systems. SysADL is
aligned with the ISO/IEC/IEEE 42010 International Standard [7] for archi-
tectural descriptions by providing multiple viewpoints and views in terms of
requirements, structure, behavior, and execution of software architectures.

The automated transformation model from SysADL architecture descriptions
to CSP composite processes has been implemented and integrated into SysADL
Studio [9], a free, open-source support tool for SysADL. The formal verifica-
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tion itself is supported by FDR4 [5], a widely used refinement checker for CSP
that allows verifying if the architectural model is free from deadlocks, livelocks,
and miracles (i.e., specifications for which it is impossible to provide a valid
implementation), as well as if the executable properties respect the behavioral
specification. The application of SysADL formalized with CSP is herein illus-
trated with a room temperature control system (RTC).

The remainder of this paper is structured as follows. Section 2 briefly presents
SysADL and CSP. Section 3 presents the CSP-based semantics for SysADL.
Section 4 details the formal verification of properties regarding SysADL archi-
tecture descriptions with the FDR4 refinement checker. Section 5 presents the
SysADL Studio extension to support the SysADL–CSP transformation. Section 6
discusses related work. Section 7 contains some concluding remarks.

2 Background

2.1 SysADL

SysADL defines three software architecture viewpoints for a system, namely
(i) structural, (ii) behavioral, and (iii) executable. The structural viewpoint
defines the architectural elements composing the structure of a system (compo-
nents, ports, connectors) and relationships among them. Communication among
components takes place through connectors that bind input and output ports.
SysADL requires declaring all elements before creating their instances. The ele-
ments are declared by using Block Definition Diagrams (BDDs) whereas the
Internal Block Diagram (IBD) is used to specify how instances of components
and connectors form the configuration of architectures.

The behavioral viewpoint details the behavior of (i) components and con-
nectors through activities, actions, constraints and (ii) ports through protocols.
Activity instances are described in the Activity Diagram by instantiating actions
and flows. Activities or actions may have validation constraints specified through
expressions in the OMG Action Language for Foundational UML (ALF). Con-
straints can be also expressed using the Parametric Diagram.

The executable viewpoint represents the concretization of both structural
and behavioral viewpoints by simulating the architecture behavior at runtime.
The main purpose of the simulation is validating the behavior logic regarding the
satisfaction of requirements and analysis of architecture functionalities. In the
executable viewpoint, it is possible to specify details of each action by using ALF
statements as well as define and instantiate elements. The executable instances
should be interpreted by an ALF engine to execute the architecture.

2.2 CSP

CSP is a process algebra that can be used to describe systems composed of inde-
pendent, self-contained processes with interfaces to interact with the environ-
ment [15]. Most CSP tools such as FDR4 [5] and ProBE [4] accept a machine-
processable CSP called CSPM . For the sake of presentation, this paper uses the
CSP notation in theoretical definitions and CSPM in FDR4 verification assertions.
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N = 4
datatype ID = a | b
channel input ,middle, output : ID

IN = input?v → middle!v → IN
OUT (s) = (#s > 0) & output !head(s) → OUT (tail(s))

� (#s < N ) & middle?v → OUT (s � 〈v〉)
BUFFER = (IN |[ {|middle|} ]| OUT (〈〉) \ {|middle|}

Fig. 1. CSP specification of a bounded buffer.

The two basic CSP processes are Stop and Skip: the former does nothing,
i.e., deadlocks, and the latter does nothing but terminates. Prefixing a → P
is initially able to perform only the event a, afterwards it behaves as process
P . Prefixing may have input or output values. Process c?x → P(x ) assigns the
received value c to the implicitly declared variable x and behaves as process P
with x in scope. Process c!e → P(x ) outputs the value c of the expression e
and behaves as process P . A Boolean guard may be associated with a process:
g & P behaves as process P if the predicate g is true, otherwise it deadlocks. The
operator P1

o
9 P2 combines processes P1 and P2 in sequence. The external choice

P1 � P2 initially offers events of both processes P1 and P2. The environment
has no control over the internal choice P1 � P2, which is internally resolved.
The sharing parallel composition P1 |[ cs ]| P2 synchronizes processes P1 and P2

on events in the synchronization set cs, so that events that are not listed occur
independently. Processes composed in interleaving P1 ||| P2 run independently.
The event hiding operator P \ cs encapsulates events in cs.

Figure 1 illustrates the CSP specification of a bounded buffer. There are two
declarations: N is a constant with value 4 and ID is a datatype whose values
are a and b. Process IN is the buffer component that receives a value through
channel input and sends it to process OUT via channel middle. As process OUT
can store N elements, it may receive new values via channel middle if the size
of its sequence has not reached its capacity (#s < N ). The received value is
stored at the tail of its sequence ( s � 〈v〉). Process OUT may also provide an
output , but only if its sequence is not empty (#s > 0). In this case, it writes
the head of the sequence (head(s)) and keeps only its tail (tail(s)). BUFFER is
the parallel composition of process instances of IN and OUT starting with the
empty sequence. Both processes IN and OUT synchronize on channel middle,
which is hidden from the environment.

3 A CSP-Based Formal Semantics for SysADL

The translation from a SysADL architectural description to a CSP-based formal
semantics allows verifying properties such as deadlock-freedom, livelock-freedom,
and consistency among the structural, behavioral, and execution viewpoints of
the model (see Sect. 4). The translation of types, those viewpoints, and the
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overall model are herein presented by using a room temperature control (RTC)
system as running example1. The RTC system uses two temperature sensors
to capture the current temperature. A user can set the desired temperature. A
central controller receives the values from temperature sensors, compares them
with the desired temperature, and turns the cooler/heater on/off. The system
has a motion sensor to detect if there is someone in the room. In case of presence,
the system operates to provide the desired temperature, otherwise it operates to
keep the temperature at 22 ◦C.

datatype Command = On | Off

Commands = {(heater , cooler) |
heater ← Command ,
cooler ← Command}

Fig. 2. Enumeration and composite datatypes in SysADL (left) and their translation
to CSP (right).

Types. SysADL types are used in different viewpoints of the architecture
description. These types can be basic types (Integer , Boolean, String , and Real),
enumerated types, and composite types resulted from the composition of other
types. Integer and Boolean are respectively mapped to Int and Bool . The String
type is mapped to String , a set containing finite sequences of CSP characters
(Char) with a maximum length. Real is translated to a pair of Int values. Enu-
merated types are mapped to CSP datatypes, which allow defining new types
along with an enumeration of its values. Composite types are mapped to sets of
tuples whose values come from the basic types.

Figure 2 shows the SysADL Command type and its mapping to a CSP
datatype. A variable of the Command enumerated type may assume only values
On or Off . The Commands type is a composition of two values of the Command
type (heater and cooler). The Commands type is translated to a set definition
that declares a set of pairs of values of the Command type.

3.1 Structural Viewpoint

Ports. SysADL ports are interaction points between a component and other
architectural elements. They represent how data flow from a component
(out ports) to another component (in ports). Composite ports are com-
posed of other ports. Figure 3 presents an example of a port definition
in SysADL. CTemperatureITP is an input port through which data of the
CelsiusTemperature type flow.

Previously defined ports can be instantiated in component definitions, which
can themselves be instantiated in configurations. In the CSP semantics for
1 CSP files and the extended SysADL Studio are available at http://bit.ly/2PAqYiD.

http://bit.ly/2PAqYiD
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Fig. 3. Example of port (left) and composite component (right) in SysADL.

SysADL, a channel is declared for each port instantiated in component def-
initions or component instantiations. A simple port leads to the declaration
of a CSP channel and a composite port leads to the declaration of one CSP
channel for each port composing it. The names of the CSP channels related
to ports attached to component definitions contain the name of the port and
the name of its definition whereas the name of the channels related to com-
ponent instantiations also includes the name of the instance. In Fig. 3, the
instantiation localTemp1 of the port CTemperatureITP in the composite compo-
nent RoomTemperatureControllerCP and the instantiation rtc of this component
respectively yield the following CSP declarations:

channel localTemp1 CTemperatureIPT : CelsiusTemperature
channel rtc localTemp1 CTemperatureIPT : CelsiusTemperature

Components. SysADL components can be defined as either (i) boundary com-
ponents, i.e., they interface and exchange data with the physical environment or
(ii) non-boundary components. These components repeatedly receive all input
data through input ports, process them, and provide all their outputs in output
ports. In Fig. 3, RoomTemperatureControllerCP is defined as a non-boundary
component that receives four inputs and provides two outputs.

Figure 4 presents the architectural configuration of the RTC system in
SysADL. This architecture is composed of seven component instances. s1, s2
and s3 are sensors that collect data about temperature and presence of people at
the monitored environment. These data are processed by component rtc, which
plays the role of the room temperature controller. Actuators a1 and a2 control
cooling and heating according to decisions taken by rtc. ui is a user-interface
component. In the translation of the definition and instantiation of these com-
ponents, simple components yield processes whose behavior is the process that
translates its activity, whilst composite components yield processes whose behav-
ior is the process that translates its configuration. In Fig. 5, the simple com-
ponent PresenceCheckerCP is translated to PresenceCheckerCP = CheckPres-
enceToSetTemperatureAC and the composite component RoomTemperatureCon-
trollerCP is translated to RoomTemperatureControllerCP = RoomTemperature-
ControllerCP Config.

The semantics of boundary components such as TemperatureSensorCP (see
Fig. 5) considers their non-deterministic behavior. For this reason, their seman-
tics differs from that given for non-boundary components: the resulting process
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Fig. 4. Configuration of the RTC system in SysADL.

Fig. 5. Examples of SysADL boundary components.

randomly chooses a value to communicate in their output ports. As an example,
the semantics of TemperatureSensorCP is a process that non-deterministically
chooses a value from the type of the FahrenheitTemperature port.

Connectors. SysADL connectors bind ports of the connected components for
exchanging data, possibly with some processing during transmission. In the CSP
semantics for SysADL, connectors that do not process data are represented as
CSP processes. Once connected to an output port and an input port, these pro-
cesses repeatedly receive values from the output port and write them to the
input ports. The behavior of a one-place buffer allows assynchronous commu-
nications among components, exactly corresponding to communications among
components in SysADL. For example, the connector CommandCN (see Fig. 4)
is translated to the following CSP process:

CommandCN = commandOut CommandOPT?out →
commandIn CommandIPT !out → CommandCN

Connectors that process data have their behavior defined by activ-
ities and their translation follows the same approach. For instance,
FahrenheitToCelsiusCN is a connector that receives a Fahrenheit temperature
and outputs the corresponding Celsius temperature. This conversion is defined
by process FahrenheitToCelsiusAC as the behavior of the connector (see Fig. 6).

Configuration. In the SysADL structural viewpoint, the configuration defines
how component instances are connected by connector instances. The behav-
ior of a configuration CFD is the parallel composition of all its compo-
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FahrenheitToCelsiusCN =
FahrenheitToCelsiusAC

Fig. 6. Definition of a connector in SysADL (left) and its translation to CSP (right).

nents (ComponentsCFD) and connectors (ConnectorsCFD) synchronizing on
the channels that correspond to the ports (SyncCFD). Internal ports of the
configuration (InternalCFD) are hidden. For example, the configuration of
the RTC system presented in Fig. 4 is translated to the following definitions:

RTCSystemCFD config =⎛
⎝

Components RTCSystemCFD
|[Sync RTCSystemCFD ]|
Connectors RTCSystemCFD

⎞
⎠ \ Internal RTCSystemCFD

Sync RTCSystemCFD =
{| current FTemperatureOPT , current FTemperatureOPT ,
detected PresenceOPT , desired CTemperatureOPT ,
controllerC CommandIPT , controllerH CommandIPT |}

Internal RTCSystemCFD =
{| detectedRTC PresenceIPT , heatingRTC CommmandOPT ,
coolingRTC CommandOPT , userTempRTC CTemperatureIPT ,
localTemP1 CTemperatureIPT , localTemP2 CTemperatureIPT |}

The processes corresponding to components and connectors of the configura-
tion are defined as the interleaving of all components and connectors instances.
The instantiation is achieved by using CSP renaming: every channel is renamed
to a channel prefixed with the instance name and using the port instantiation
name, rather than the port name. The resulting CSP specification2 would be:

Components RTCSystemCFD =
||| TemperatureSensorCP

[current FTemperatureOPT ← s1 current1 FTemperatureOPT ]
||| TemperatureSensorCP

[current FTemperatureOPT ← s2 current2 FTemperatureOPT ]
||| PresenceSensorCP [ . . . ] ||| UserInterfaceCP [ . . . ] ||| CoolerCP [ . . . ]
||| HeaterCP [ . . . ]
||| RoomTemperatureControllerCP [ . . . ]

Connectors RTCSystemCFD =
FahrenheitToCelsiusCN[

Ct CTemperatureIPT ← rtc localtemp1 CTemperatureIPT ,
Ft FTemperatureOPT ← s1 current1 FTemperatureOP

]

||| FahrenheitToCelsiusCN [ . . . ] ||| DetectedCN [ . . . ]
||| CTemperatureCN [ . . . ]
||| ControlCommandCN [ . . . ] ||| ControlCommandCN [ . . . ]

2 For the sake of conciseness, parts of the specification are omitted. The complete
version can be found at http://bit.ly/2PAqYiD.

http://bit.ly/2PAqYiD
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The proposed translation approach is indeed compositional. Therefore, the
translation of simple and composite components follow the same rules. For
instance, the configuration of the composite component RoomTemperatureCon-
trollerCP presented in Fig. 7 is translated like RTCSystemCFD config , i.e., the
parallel composition of its component and connector instances synchronizing on
the channels that correspond to the ports with its internal events hidden from
the environment. However, there is a minor increment in the definition of the pro-
cess that represents connectors, Connectors RoomTemperatureControllerCP : it
also interleaves a process that translates the delegations, which are special con-
nectors between proxy ports and ports in components as presented in Fig. 7:

Connectors RoomTemperatureControllerCP =
CTemperatureCN [ . . . ] ||| CTemperatureCN [ . . . ] ||| Delegation rtc

Delegation rtc = detectedRTC to detected ||| userTempRTC to userTemp
||| localtemp1 to s1 ||| localTemp2 to s2
||| heating to heatingRTC ||| cooling to coolingRTC

For illustration purposes, the translation of delegation detectedRTC to
detected is presented in the following. As for connectors, the behavior of a one-
place buffer allows assynchronous communications among components, exactly
corresponding to the behavior of SysADL delegations. The other translations
follow the same approach.

detectedRTC to detected =
rtc detected PresenceIPT?PresenceIPT →
pc detected PresenceIPT !PresenceIPT → detectedRTC to detected

3.2 Behavioral Viewpoint

In SysADL, the behavioral viewpoint defines the behavior of components, con-
nectors, and ports of the model. The behavior is described in terms of activities,
actions, and constraints.

Constraints. Constraints are described as predicates that can be used to restrict
the set of values of an activity. Once defined, constraints can be used in actions.
As an example, Fig. 8 presents the constraint FahrenheitToCelsiusEQ , which
verifies if the values given as arguments correctly correspond to the same tem-
peratures in both Celsius and Fahrenheit units, and its translation to the CSP
function FahrenheitToCelsiusEQ(f , c).

Actions. SysADL actions process arguments given as inputs and provide an
output that must respect its constraints. As many possible outputs may exist
for the same input, the translation considers a non-deterministic choice of such
possible output values. For example, the action FahrenheitToCelsiusAN returns
the temperature value in the Celsius unit that corresponds to the temperature
given in the Fahrenheit unit. In the translation, this corresponds to a com-
munication on the channel that represents the output port. The translation of
FahrenheitToCelsiusAN called by the connector named s1 is presented in Fig. 8.
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Fig. 7. Configuration of a composite component in SysADL.

FahrenheitToCelsiusEQ(f , c) =
(c == (5 ∗ (f − 32)/9))

FtC FahrenheitToCelsiusAN =
current1 FahrenheitTemperature?c1 →
� l1 : {x | x ← CelsiusTemperature,

FahrenheitToCelsiusEQ(x , c1)} •
loadTemp1 FahrenheitToCelsiusAN !l1 →
FtC FahrenheitToCelsiusAN

Fig. 8. Examples of constraint (left) and action (right) in SysADL.

Activities. SysADL activities are composed of one or more actions, which may
communicate values between them. Figure 9 shows the DecideCommandAC
activity as the composition of three actions that communicate values among
them: actions CommandHeaterAN and CommandCoolerAN receive the output
of the CompareTemperatureAN action.

The result of the translation of both constraints and actions is used in the
translation of activities. Similarly to the translation of actions, the translation
of activities also takes the name of the allocated component or connector. The
activity is translated to a parallel composition of processes considering the activ-
ity entry and exit points (pins), i.e., the allocation of the activity on the asso-
ciated component. For example, the activity DecideCommandAC is composed
of actions CompareTemperatureAN , CommandHeaterAN , and CommandCool-
erAN. The translation of this activity is:
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Fig. 9. Examples of activity (left) and executable elements (right) in SysADL.

DecideCommandAC =

⎛
⎝

Pins DecideCommandAC
|[Sync DecideCommandAC]|
Actions DecideCommandAC

⎞
⎠

\ Internal DecideCommandAC

Process Pins DecideCommandAC is the parallel composition of the pro-
cesses that represent all pins in the activity. The pin average2Decide
CommandAC receives the value from the component port average2 and sends
it to the DecideCommandAC activity pin.

Pins DecideCommandAC =
|[Sync DecideCommandAC ]| i : {1 . . 4} •

Pins DecideCommandAC Func(i)
Pins DecideCommandAC Func(1) = average2 DecideCommandAC
. . .
Pins DecideCommandAC Func(4) = cooling DecideCommandAC
average2 DecideCommandAC = average2 CTemperatureIPT?average2 →

average2 CelsiusTemperature!average2 →
average2 DecideCommandAC

. . .

Similarly, process Actions DecideCommandAC is the parallel composition of the
processes that represent all actions in the activity:

Actions DecideCommandAC =
|[Sync DecideCommandAC ]| i : {1 . . 3} •

Actions DecideCommandAC Func(i)
Actions DecideCommandAC Func(1) = ct CompareTemperatureAN
. . .

3.3 Execution Viewpoint

The execution viewpoint must satisfy the conditions defined in the actions and
related constraints within the behavioral viewpoint. The translation of exe-
cutable elements translates their bodies to CSP functions. For example, the
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FahrenheitToCelsiuEX executable element (see Fig. 9) receives a temperature
value in the Fahrenheit unit and returns another one in the Celsius unit. The
translation of the executable element FahrenheitToCelsiuEX is a CSP function
parameterized on the temperature value in the Fahrenheit unit according to the
equation FahrenheitToCelsiuEX (f ) = (5 ∗ (f − 32)/9).

4 Formal Verification of SysADL Models

The translation of the SysADL models to CSP fosters their formal verification.
This work uses FDR4 [5], a refinement model checker for CSP to automat-
ically verify if the model satisfies (i) deadlock-freedom, (ii) livelock-freedom,
(iii) absence of miracles, and (iv) the compliance of the execution model with
the behavioral model. The translation of the model and the verification of these
properties are fully automatic. The compliance with functional requirements can
also be automatically verified. Nevertheless, the specification of the requirement
currently needs to be expressed in CSP. The implementation of a user-friendly
functional requirement description UI using SysADL diagrams is underway.

Deadlock-freedom and livelock-freedom are classical concurrency properties.
A deadlock happens when a group of processes are permanently held on a sit-
uation in which each process waits for resources held by another process in the
group. This makes the process to not progress. A livelock also has the same
consequence, but for a different reason. In a livelock, processes are indefinitely
progressing with internal events that cannot be seen by the external environ-
ment. This absence of external event leads the system to present no progress. It
is possible to easily check the resulting CSP processes against these two proper-
ties by using FDR4 standard assertions for deadlock- and livelock-freedom. For
example, the following assertions can be used in FDR4 to check if the running
example (modeled as process RTCSystemCFD) is free of deadlock and livelock:

assert RTCSystemCFD:[deadlock free]

assert RTCSystemCFD:[divergence free]

Another property to be verified is that the behavioral model is not a mir-
acle, i.e., the model has no possible executable model. Considering a SysADL
constraint C defined in terms of inputs i1 . . . in and outputs o1 . . . om , for every
possible combination of input values that satisfy the pre-condition constraint
pre, there must exist output values satisfying the post-condition constraint post .
Formally, it is defined a CSP process that diverges if, and only if, the constraint
is a miracle. For this verification, an auxiliary process IS TRUE (c) is defined
as successfully terminating only if predicate c is true, otherwise it diverges.

The process created for each constraint receives all input values and checks
the pre-condition by using a guarded process pre & IS TRUE (. . . ). If pre is
false, then the process deadlocks avoiding a divergence, otherwise it checks if
a set defined using the CSP set comprehension notation is not empty. This set
contains all tuples (o1, . . . , om) with values o1, . . . , om respectively are of type
T1, . . . ,Tn and satisfy the post-condition post(i1, . . . , in , o1, . . . , om). Informally,
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this set is not empty if, and only if, the constraint is not a miracle. Therefore, it
is possible to find output values satisfying the constraints when the input values
satisfy the pre-condition.

C_check = C_i1?i1 -> ... C_in?in ->

pre(i1,...,in) &

let S = {(o1,...,om) | o1 <- T1, ..., om <- Tm,

post(i1,...,in,o1,...,om)}

within IS_TRUE(not(S == {}))

assert C_check:[livelock free]

In the running example, the constraint FahrenheitToCelsiusEQ is verified
against miracles with the following assertion:

FahrenheitToCelsiusEQ_check =

FahrenheitToCelsiusEQ_f?f ->

true & let S = {c | c <- CelsiusTemperature, FahrenheitToCelsiusEQ(f,c)}

within IS_TRUE(not(S == {}))

assert FahrenheitToCelsiusEQ_check:[livelock free]

The last verification is that the execution model is a refinement of the behav-
ioral model. The only difference between these models regards the specification
of actions, which are replaced by their executions. The former is composed of
possibly constrained actions whereas the latter provides procedures that imple-
ment the behavior specified in the actions. This implementation must respect the
constraints described in the activity. Theorem 1 states that an indexed internal
choice over a set S is a failures-divergences refinement of an indexed internal
choice over a set T if, and only if, S is a subset of T .

Theorem 1. � x : T • P(x ) �FD � x : S • P(x ) ⇔ S ⊆ T

The verification if the execution is a refinement of the behavior is
done by simply checking subset containment: the set of pairs satisfy-
ing the executable FahrenheitToCelsiusEX must be a subset of the set
of pairs satisfying FahrenheitToCelsiusEQ . Current work includes the inte-
gration with the CVC4 SAT solver [2] to optimize this verification.

FahrenheitToCelsiusEQ s = {(f , c) | f ← FahrenheitTemperature,
c ← CelsiusTemperature,
FahrenheitToCelsiusEQ(f , c)}

FahrenheitToCelsiusEX s = {(f , c) | f ← FahrenheitTemperature,
c ← CelsiusTemperature,
c == FahrenheitToCelsiusEX (f )}

assert IS_TRUE(subset(FahrenheitToCelsiusEX_s,

FahrenheitToCelsiusEQ_s)):[divergence free]
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5 Tool Support and Validation

The translation from SysADL architectural models to CSP processes and the
verification of the resulting processes has been implemented as a plug-in to the
Eclipse-based SysADL Studio tool [9]. The main thrust behind implementing
the plug-in is making both formalization and verification as much transparent as
possible to end-users. The translation to CSP and further verification of SysADL
models require a single action: the user selects the SysADL model and then the
verification operation. This action opens a window at which the user can select
the configuration of the SysADL model to be verified.

The tool translates3 the SysADL model to CSP by using the rules presented
in Sect. 3, interacts with FDR4, analyzes the verification results from this inter-
action, and presents them in a user-friendly way. For each verified property, the
tool shows whether it has been satisfied or not. When the property has not
been satisfied, a trace that exemplifies the violation of the property is textually
displayed. Current work also includes visually displaying the indication of the
problem source at the SysADL diagram itself.

The validation of the correctness and effectiveness of the proposed approach
and tool support consisted in using the plug-in to verify the aforementioned
properties in existing SysADL models publicly available at the literature4. These
properties were also verified in variations of such models as means of intentionally
inserting errors and confirming that the proposed approach indeed identify them.
As an example, a miraculous specification was identified in the model presented
in Sect. 3. The original authors used the same range of natural numbers for
temperature values in Celsius and Fahrenheit units, thus making it impossible
to find valid values in the Celsius unit to every valid value in the Fahrenheit unit
while respecting the equation celsius = (5 ∗ (fahrenheit − 32)/9).

The errors intentionally inserted into the original models were also success-
fully identified. For instance, the implementation of FahrenheitToCelsiusEX in
the execution model was changed to celsius = 5 ∗ (fahrenheit + 32)/9 and the
plug-in identified that the execution model has not respected the specification
of the behavioral model.

The implemented plug-in was also able to successfully verify the compliance
of SysADL architectural models with functional requirements. A first require-
ment was that the cooler and the heater cannot be turned on at the same time
(safety property). Another requirement was that if no presence is detected in the
room, then its temperature is always adjusted to a predefined temperature (live-
ness property). These requirements are currently expressed as CSP processes.
Future work will address the description of such requirements by using SysADL
diagrams.

Ongoing work also includes computational experiments to demonstrate the
scalability of the proposed approach. Preliminary results obtained with the run-

3 The translation is implemented in Acceleo (http://www.eclipse.org/acceleo/).
4 Available at http://sysadl.org.

http://www.eclipse.org/acceleo/
http://sysadl.org
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ning example5 showed a overall time of 774 ms when performing the verifica-
tion on a computer with an Intel® CoreTM i5 processor, 8 GM of RAM, and
Microsoft® Windows 10 as operating system. These results demonstrated a lin-
ear increase of the verification time with the number of instances.

6 Related Work

The literature reports approaches with formal verification of software architec-
tures based on model checking [1,18]. Some of them have formalized their archi-
tectural descriptions as one of the primary means of ensuring reliability, security,
correctness, and consistency of their projects. However, as far as it is known,
none of them targets improving a SysML-based ADL with formal verification
founded on model checking and with tool support. This is specially interesting
for industry, which largely adopts SysML-based modeling languages [10].

Mouraditis et al. [12] defined a set of structural, behavioral, and security
primitives and conceptualized it with the Z specification language to capture
a core architectural model to build secure architectures. The approach herein
proposed does not rely on a restricted set of architectures, but rather on any
software architecture modeled using SysADL, which is a general-purpose ADL.
The Mokni et al.’s work [11] considered software architecture changes to be ver-
ified and validated as means of ensuring a valid, reliable evolution process. The
authors proposed a set of rules defined as a B formal model of the Dedal ADL
along with consistency properties, which were checked and validated by using
the ProB animator and model checker. The approach proposed here also ensures
consistency among different elements of a SysADL model, but it focuses on the
consistency among different viewpoints and takes advantage of the use of a pro-
cess algebra (CSP) rather than a model-based formalism (B or Z) to guarantee
concurrency aspects of the model, such as the safe interaction among components
(deadlock- and livelock-freedom). The Taoufik et al.’s work [17] proposed to open
UML 2.0 on the Wright ADL to verify the behavioral consistency of architectures.
The compatibility with the Wr2Fdr tool [16] motivated the use of Wright/CSP
since the tool generates eleven standard properties related software architecture
consistency. Moreover, the Wright/CSP target configuration can be automati-
cally translated to an FDR specification acceptable by the FDR2 model-checker.
Besides providing SysADL with the same verification possibilities, the proposed
approach allows verifying concurrency properties and functional requirements.
Furthermore, SysADL Studio was integrated with the translator to CSP and its
communication with FDR4 in a transparent way to users.

7 Conclusion

This paper presented a CSP-based approach to support the automated formal
verification of properties specified in SysADL, a semi-formal SysML-based ADL.

5 A short demo is available at https://youtu.be/vlchTK3fk2Y.

https://youtu.be/vlchTK3fk2Y
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The solution relies on empowering SysADL with model checking by combin-
ing the CSP process algebra and the FDR4 model checker, besides providing a
semantics for SysADL diagrams. With the proposed approach, it was possible to
verify properties related to deadlocks, livelocks, miracles, and consistency among
the different viewpoints of the specified configuration-based behavior. The con-
cretization of the approach in the Eclipse-based SysADL Studio tool allowed
validating it in several scenarios, including the example presented throughout
this paper. The same approach can be applied to other SysML-based ADLs
to formally verify architectural properties. Future work includes providing a π-
calculus based semantics for SysADL and the formalization of both translations
and a cross-verification of the semantics by using the strategy presented in the
Unifying Theories of Programming (UTP) [6].
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