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Abstract. Contemporary application domains make more and more
appealing the vision of applications built as a dynamic and opportunis-
tic assembly of autonomous and independent resources. However, the
adoption of such paradigm is challenged by: (i) the openness and scal-
ability needs of the operating environment, which rule out approaches
based on centralized architectures and, (ii) the increasing concern for
sustainability issues, which makes particularly relevant, in addition to
QoS constraints, the goal of reducing the application energy footprint.
In this context, we contribute by proposing a decentralized architecture
to build a fully functional assembly of distributed services, able to opti-
mize its energy consumption, paying also attention to issues concerning
the delivered quality of service. We suggest suitable indexes to measure
from different perspectives the energy efficiency of the resulting assem-
bly, and present the results of extensive simulation experiments to assess
the effectiveness of our approach.

1 Introduction and Motivation

Contemporary systems (for domains including, for example, smart cities, intel-
ligent transportation systems, augmented reality) more and more envision the
definition of applications that dynamically emerge as an opportunistic aggrega-
tion of autonomous and independent resources available within the execution
environment. Service-oriented architecture (SOA), in particular its microservice
evolution, appears well suited as reference architectural model for this kind of
applications, as it supports the vision of new services built as an assembly of
independent services, where each service offers specific functionalities, and could
require functionalities offered by others to carry out its own task.

However, to be successfully adopted in these emerging computing environ-
ments, the service assembly procedure should be able to tackle the following main
issues: (i) decentralization: services are offered by autonomous and independent
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resources distributed in the environment, which makes hardly usable assem-
bly procedures based on the presence of some centralized assembly manager;
(ii) dynamics: the offered services are not statically defined but they appear
and disappear or change their behavior; (iii) quality-awareness: the assembly
should be able to guarantee quality of service (QoS) requirements (e.g., time-
liness, availability, cost). Besides them, another major issue to be considered
is: (iv) energy-awareness: the assembly should be able to take into account the
energy consumption caused by its computation and communication activities.
This latter issue is particularly important for several reasons: besides sustain-
ability concerns that are more and more important in the contemporary world,
systems often rely on battery-powered resources, where a parsimonious and effec-
tive use of available energy is mandatory to extend the system lifetime.

Considerable effort has been already devoted in the past to QoS-aware ser-
vices assembly procedures [14]. On the other hand, energy efficiency of composite
services has received less attention until recently, when the growing interest on
sustainability themes has put this issue in the foreground [17,19]. However, to
the best of our knowledge, no available solution exists yet that is able to deal
with all the issues (i)-(iv) mentioned above.

Paper Contribution. In this respect, we propose an initial solution of the
following problem: how to devise a decentralized architecture that supports the
dynamic building of a fully resolved assembly of distributed services, collectively
fulfilling functional requirements while minimizing the energy consumption, in
an open and variable execution environment. On answering to this question we
also take into account the impact on the system’s QoS.

Specifically, we propose a (fully) decentralized and dynamic service assembly
framework whose main characteristics are: (i) a system architecture for service
assembly management; (ii) explicit modelling of service energy consumption
for both processing and communication activities; (iii) an energy-aware service
selection and composition procedure; (iv) a set of “social welfare” indexes aimed
at measuring the system effectiveness with respect to QoS and energy objectives.

Related Work. Our work lies within the general area of service selection and
composition problem in a distributed environment. There is quite a large amount
of literature on the topic (e.g., [2,4,14] and references therein); hereafter, we
briefly review works closer to ours having a focus on energy-aware solutions.
Recently, the software engineering community at large is paying increasing atten-
tion to energy efficiency solutions, a summary can be found in [6]. Also from a
software architecture point of view, the need to consider the energy attribute at
architectural level is gaining consensus [18]. However, to the best of our knowl-
edge, only a limited amount of effort has been devoted up to now to the definition
of architectural approaches for energy-aware decentralized service assemblies.
Examples of existing solutions can be found in [15–17,19], where service assem-
blies are considered for cloud-based applications [17], in wireless-sensor-networks
context/domain [16] and for cyber-physical systems [15,19]. However, the pro-
posed solutions are based on the definition of single [16,19] or multi-objective
optimization problems [15,17], which leverage on centralized approaches.
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Structure of the Paper. Section 2 presents the system model we refer to
Sect. 3 introduces the service assembly energy consumption model, and Sect. 4
the indexes derived from this model to measure the assembly energy and QoS
effectiveness. Section 5 illustrates the decentralized architecture for the assembly
construction and maintenance. Section 6 shows the results of our experiments,
Sect. 7 discusses threats to validity, while Sect. 8 provides conclusions and hints
for future work.

2 System Model

We consider a distributed system consisting of a set N of nodes (e.g., nodes
of an edge cloud architecture), and a set S of (sw-implemented) services that
must be deployed on these nodes. Each node provides basic computing and
communication services, used by the other services hosted by the same node for
their operations. For the sake of simplicity, we assume that each node offers only
a single type of computing and communication service, and do not consider other
basic service categories (e.g., storage). We leave to future work the extension of
our model to these other categories, and to different types of services within each
category (e.g., both specialized GPU and general purpose CPU as computing
services). Each service S ∈ S must be bound to a computing and communication
service. Besides this, S could require functionalities offered by other services in
the set S to carry out its own task. We denote by B the set of all computing and
communication services offered by nodes in N, and by node(S) ∈ N the node
hosting service S ∈ S ∪ B. We assume that services in the set B are the only
direct sources of energy consumption, while the energy consumption of services
in S is related with the use they directly or indirectly make of services in B.

For the purpose of the service assembly procedure we intend to devise, we
now introduce a more detailed service model. A service S ∈ S is represented as
a tuple 〈Type,Deps,Prov ,Req〉, where:

– S.Type ∈ T denotes the type of the provided interface (we say that S.Type
is the type of S). We assume the existence of a function match : T × T →
[0, 1] such that match(T1, T2) = 0 if type T1 does not match type T2 and
match(T1, T2) > 0 if a matching exists according to some suitable matching
criterion [1,9].

– S.Deps ⊆ T
⋃{comp, comm} is the set of required dependencies for S. We

assume that S.Deps is fixed for each service and known in advance. Note
that the dependency set S.Deps does not contain duplicates, meaning that a
service may depend at most once on any specific interface type. We assume
that S.Deps always includes two dependencies d1 = comp and d2 = comm:
in this way we model the fact that S needs at least to be bound to a com-
puting and a communication service, for its internal operations and for its
interactions with other services. For each d ∈ S.Deps we assume that it is
known (e.g., through a locally performed monitoring activity) a value μS,d,
which represents the average number of times service S requires dependency
d to fulfill each request it has received.
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– S.Prov ⊆ S is the set of Providers of S, i.e., the set of services to which
S is bound to resolve its dependencies. We denote by comp(S) ∈ B and
comm(S) ∈ B the computing and communication services used to resolve
dependencies comp ∈ S.Deps and comm ∈ S.Deps, respectively. It must
obviously hold node(comp(S)) = node(comm(S)).

– S.Req ⊆ S is the set of Requesters of S, i.e., is the set of other services that
are bound to S to resolve one of their dependencies.

A service is either fully resolved or partially resolved. Basic services in the
set B are fully resolved by definition. A service S ∈ S is fully resolved if for
all d ∈ S.Deps there exists a fully resolved service S′ ∈ S.Prov such that
match(d, S′.Type) > 0. On the other hand, a partially resolved service S ∈ S has
at least one dependency that is either not matched, or is matched by a partially
resolved service.

Finally, a service assembly A is a directed graph A = (S,E), where E ⊆ S×S
is the set of resolved dependencies. Specifically, a directed edge (Si, Sj) ∈ E
denotes that Si is using Sj to resolve one of its dependencies. In general, a given
Si has multiple simultaneous outgoing bindings (towards Si.P rov), one for each
dependency, and can have multiple simultaneous incoming bindings from other
services (belonging to Si.Req), using Si to resolve one of their dependencies.

Figure 1 shows an example of a simple service assembly (including services
S1, S2, S3 and S4) that illustrates the actual deployment of services on nodes
N1, N2 and N3. The figure highlights also the service dependencies and their
binding to computation and communication services.

N1

Comm1

S1

Comp1

N2

Comm2

S2

Comp2

N3

Comm3

S4

Comp3

S3

S1.type = T1
S1.deps = {comm,comp,T2}
S1.prov= {comm1,comp1,S2}
S1.req = {}

S2.type = T2
S2.deps = {comm,comp,T3}
S2.prov= {comm2,comp2,S3}
S2.req = {S1}

S3.type = T3
S3.deps = {comm,comp,T4}
S3.prov= {comm3,comp3,S4}
S3.req = {S2}

S4.type = T4
S4.deps = {comm,comp}
S4.prov= {comm3,comp3}
S4.req = {S3}

Fig. 1. Service assembly example

3 Energy Model

In this section we introduce the model we adopt to estimate the energy con-
sumption of each service S ∈ S, as a function of the bindings it establishes



Decentralized Architecture for Energy-Aware Service Assembly 61

with other services to resolve its dependencies. As we are considering comput-
ing and communication services as the only “physical” resources causing energy
consumption, the model consists of two parts: a computing energy model and a
communication energy model.

3.1 Computation Energy

Let us consider a service S ∈ S. When the flow of requests addressed to services
in S.Prov eventually reach a service of type comp, it will cause some computation
energy consumption. This will happen in one step for the dependency of type
comp of S (“internal operations” of S). Otherwise, the flow of requests will go
through a number of virtual services before reaching a service of type comp. To
model this process, we introduce the following three indexes S.Icomp, S.Lcomp

and S.Ecomp that model, respectively, the individual, node level and system
level computation energy consumption caused by a single request addressed to
S. They are defined as follows:

S.Icomp = hnode(S)(μS,comp) (1)

S.Lcomp = S.Icomp +
∑

S′∈S.Prov,
s.t.S′.Type �=comp

∧node(S′)=node(S)

μS,S′.Type · S′.Lcomp (2)

S.Ecomp = S.Icomp +
∑

S′∈S.Prov,
s.t.S′.Type �=comp

μS,S′.Type · S′.Ecomp (3)

where hn(μ) represents the energy consumption of the comp service hosted by
a node n for the execution of μ operations1. As an example, hn(μ) could be
instantiated as hn(μ) = an + en ·μ, with a fixed part an (energy consumed when
the comp service is switched on, independently of its operations), and a dynamic
part en · μ linearly depending on the load addressed to the comp service (en
represents the energy consumption for a single operation).

From the definitions given above, we see that S.Icomp models only the energy
consumption directly consumed by S for its internal operations. Besides the
directly consumed energy, S.Lcomp includes also the computation energy indi-
rectly consumed by S because of its use of services S′ ∈ S.Prov, but limited to
services co-located with S on the same node (their energy consumption is mul-
tiplied by the average number of times S uses S′, given by μS,S′.Type). Finally,
S.Ecomp adopts a system-wide perspective and models the overall computation
energy consumption caused by S on any node in the system.

We point out that S.Icomp, S.Lcomp and S.Ecomp refer to computing energy
consumption caused by a single request addressed to S. To get measures of the
1 By “operation” we mean a conventional average unit of computation. We make an

analogous assumption for the communication model.
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energy consumption per unit time (energy consumption rate), we introduce the
concept of load vector ΛS = [λS(n)]n∈N associated with any service S ∈ S,
where each vector entry λS(n) denotes a flow of requests (expressed as requests
per unit time) addressed to service S by services hosted by node n ∈ N. ΛS

can be easily estimated by some local monitoring activity. Given a load vector
ΛS, we can derive from S.Icomp, S.Lcomp and S.Ecomp corresponding measures
of the computing energy consumption rate:

S.ρcomp
X =

( ∑

n∈N

λS(n)
) · S.Xcomp (4)

where X stands for any of: I, L, E.

3.2 Communication Energy

Let us consider a service S ∈ S. As already stated in the previous subsection,
S represents a “virtual” (software implemented) resource: the communication
energy consumption caused by S depends on the interactions that S has both
with services that use it to resolve their dependencies (services in the set S.Req)
and services used by S itself to resolve its dependencies (services in the set
S.Prov). In this respect, we assume that the energy spent by a communication
service of a node for these interactions depends both on the data volume, and
the latency and bandwidth of the links connecting it with other nodes [5].

To model this process, we introduce the three indexes S.Icomm
n , S.Lcomm

n
and S.Ecomm

n that model, respectively, the individual, node level and system
level communication energy consumption caused by a single request addressed
to S by some other service hosted by a node n ∈ N. They are defined as follows:

S.I
comm
n = φ

req
node(S)(δ

rcv
S , bw(n, node(S)), lt(n, node(S)))

+
∑

S′∈S.Prov,

s.t.node(S)�=node(S′)

μS,S′.Type · φ
prov
node(S)(δ

snd
S,S′.Type , bw(node(S), node(S

′
)), lt(node(S), node(S

′
)) (5)

S.Lcomm
n = S.Icomm

n +
∑

S′∈S.Prov,
s.t.node(S′)=node(S)

μS,S′.Type · S′.Lcomm
node(S) (6)

S.Ecomm
n = S.Icomm

n +
∑

S′∈S.Prov

μS,S′.Type · S′.Ecomm
node(S) (7)

where:

– bw(n1, n2) and lt(n1, n2), with n1, n2 ∈ N, denote, respectively, the band-
width and latency of the link connecting nodes n1 and n2;

– δrcvS and δsndS,d denote, respectively, the average amount of data S receives for
each service request addressed to it, and the average amount of data S sends
for each invocation of its dependency d, to fulfill that request;
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– φreq
n (δ, b, l) denotes the energy consumed by the comm service of node n ∈ N

(in the following we denote it as commserv(n)), when it receives an amount
δ2 of data addressed to a service hosted by n over a link with bandwidth b
and latency l;

– φprov
n (δ, b, l) denote the energy consumed by commserv(n), n ∈ N, when it

sends an amount δ of data to a service hosted by another node over a link
with bandwidth b and latency l.

The first term in the r.h.s. of Eq. (5) represents the energy consumed by
commserv(node(S)) for the reception of a service request addressed to S, com-
ing from an external node n. The second term in the r.h.s. of Eq. (5) represents
the energy consumed by commserv(node(S)) to send the requests S addresses
to services solving its dependencies (i.e., services in S.Prov) and hosted by dif-
ferent nodes. Hence, S.Icomm

n models the communication energy consumption
of commserv(node(S)) caused only by the direct interactions S has with other
services hosted by different nodes.

On the other hand, S.Lcomm
n in Eq. (6) adds to the energy consumption mea-

sured by S.Icomm
n also the communication energy consumption indirectly caused

by S, corresponding to interactions that services in S.Prov have with other ser-
vices to carry out their own task. As it can be seen from the r.h.s. of Eq. (6),
S.Lcomm

n limits its scope to the energy consumption of commserv(node(S)) only.
Finally, S.Ecomm

n in Eq. (7) adopts a system-wide perspective, measuring the
communication energy consumption directly or indirectly caused by S on any
node in the system, when S receives a single request from a service hosted by a
node n.

Analogously to the computing energy case, we can derive from S.Ecomm
n ,

S.Icomm
n and S.Lcomm

n measures of the communication energy consumption rate,
given a load vector ΛS = [λS(n)]:

S.ρcomm
X =

∑

n∈N

λS(n) · S.Xcomm
n (8)

where X stands for any of: I, L, E.

4 Welfare Indexes

In this section we formally define the indexes, based on the model defined in the
previous section, that we will use to measure the effectiveness of our approach
with respect to its ability in achieving a good local and social welfare. By this
we mean that our goal is to analyze our approach effectiveness from a two-fold
perspective. On the one side, we measure the achievement of some average global
system “quality”, thanks to the contribution of all services. On the other side,
we measure whether there is an unbalanced distribution among services of this
global quality.

2 δ is measured in terms of a conventional average communication unit.
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Besides energy consumption, which is our main focus in this paper, we include
in our notion of quality also the delivered QoS. For space reasons, we do not
introduce an explicit QoS model of a service assembly. Several models of this
kind have been already introduced (e.g., [4,19]). For notational purposes, we just
assume that a QoS index S.Q is associated with each service S ∈ S, related with
suitable QoS measures like response time or reliability, where the value of S.Q
is estimated at each node by some monitoring activity. We only point out that,
for the sake of realism, we assume that the QoS delivered by a service is load-
dependent, in the sense that it degrades with the increase of the load of requests
addressed to it [10,12]. The welfare indexes we adopt are defined as follows.

Given a fully resolved assembly A = (S,E), we first define the average Global
Energy Consumption rate delivered by all services in A:

GEC(A) =
1

|N|
∑

n∈N

( ∑

S∈S
s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )
)

(9)

We use S.ρcomp
I and S.ρcomm

I , defined as in Eqs. (4) and (8), respectively, in
the definition of GEC(A) to avoid counting more than once the energy con-
sumption caused by a service. Note that GEC(A) is a “lower is better” index.

From the QoS perspective, we define as follows the average Global QoS deliv-
ered by all services in A:

GQoS(A) =
1

|S|
∑

S∈S

S.Q (10)

However, both GEC(A) and GQoS(A) do not allow to capture to what
extent all involved services and the nodes hosting them fairly contribute to the
measured average quality.

To this end, we introduce the following fairness indexes based on the Jain’s
fairness index [7] as additional measures of the achieved social welfare, to mea-
sure how uniform is the quality achieved by all the participating services, from
the energy consumption and QoS perspectives, respectively:

FEC(A) =

( ∑
n∈N

( ∑
S∈S

s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )
))2

|N| ∑
n∈N

( ∑
S∈S

s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )
)2 (11)

FQoS(A) =

(
∑

S∈S

S.Q)2

|S| ∑
S∈S

S.Q2
(12)

The value of these fairness indexes ranges from 1
|N| or 1

|S| , respectively (worst
case), to 1 (best case), and it is maximum when all nodes experiment the same
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energy consumption rate or all services deliver the same QoS, respectively. In
general, indexes of this type penalize situations where the quality achieved by
different entities is highly unbalanced. Hence, by using FEC(A) or FQoS(A),
we intend to reward assemblies that result in a fair share of the overall quality
measured by GEC(A) and GQoS(A), respectively.

network

Ni

Monitor

Dissemination

Service Pool

S1 S2 Sn…

Nj

Service Pool

S1 S2 Sn…

Assembly Manager

Monitor

Dissemination

Assembly Manager

Fig. 2. Node architecture

1: procedure ActiveThread
2: loop
3: Wait Δt
4: for all Sj ∈ GetPeers() do
5: Send 〈S.P rov ∪ {S}〉 to Sj

6: procedure PassiveThread
7: loop
8: Wait for message 〈M〉 from Sj
9: for all Sk ∈ M do

10: if ∃d ∈ S.Deps — matches(d, Sk.Type) > 0 then
11: BestS,d ← Update(BestS,d, Sk)
12: S.P rov ← Select(BestS,d, S.P rov)

Fig. 3. Gossip based dissemination

Regarding energy-related indexes, we note that the relative importance of
the indexes GEC(A) and FEC(A) could depend on the scenario where they
are applied. In scenarios where all nodes have access to continuous power
sources, the most relevant effectiveness index could be GEC(A), for system
sustainability reasons. On the other hand, in scenarios where system nodes are
battery-powered, the most relevant effectiveness index could be FEC(A), as a
highly unbalanced energy consumption among nodes could lead to the prema-
ture “death” of some node, with possible negative consequences on the whole
system lifetime.

5 System Architecture

In this section we present a fully decentralized architecture that drives a service-
oriented system towards the construction of an energy-efficient fully resolved
service assembly. The core idea underpinning this architecture is the use of a
decentralized information dissemination procedure, based on a gossiping pro-
tocol [13], through which each service S advertises its functional (S.Type) and
extra-functional (energy and QoS ) characteristics. Thanks to this procedure,
services at each node become eventually aware of other services in the system
that can resolve their dependencies, thus providing the basis for the fulfillment of
the goal of driving the system toward the construction of a fully resolved assem-
bly. To fulfill the goal of energy-driven assembly, the advertised information is
used to select, within a set of functionally equivalent candidates, the best suited
service.

Figure 2 shows the main architecture components deployed at each node Ni:
Monitor, Assembly Manager and Dissemination. Besides them, the figure shows
also Service Pool, the set of services S ∈ S running on node Ni.
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Monitor is in charge of monitoring the energy consumption (i.e., S.Xcomp

and S.Xcomm
n ) for each service S in the Service Pool, and notifying detected

changes to the Assembly Manager.
Assembly Manager receives information about the type, QoS and energy con-

sumption of local and remote services from Monitor and Dissemination, respec-
tively, which are used to build the assembly. In particular, it receives from Dis-
semination the set S.Prov that specifies which services should currently be used
to solve the dependencies of a local service S, and manages the corresponding
bindings. Moreover, it receives notifications of incoming binding requests for each
local service S, and keeps updated the corresponding set S.Req.

Finally, Dissemination implements decentralized information dissemination
by exploiting a gossip communication model [13]. This model relies on the con-
tinuous execution of two concurrent threads, ActiveThread and PassiveThread
(see Algorithm in Fig. 3).

For each service S hosted by the node, ActiveThread periodically sends a
Gossip message to its peer set3. The message payload is a set of services, with
the associated type, QoS and energy information, containing the list of currently
bound dependencies S.Prov plus S itself.

PassiveThread listens for messages coming from other peers. Upon receiving
a message containing the set M, it checks all services Sk ∈ M to see whether
some of them can be used to resolve some dependency of S. If Sk.Type is required
as a dependency, then Sk is considered as a candidate to be added to BestS,d
(line 10), where BestS,d collects the currently known “best” services according
to the specific service selection criterion used to solve the dependency d (see
Sect. 5.1). The decision whether to include Sk in BestS,d is taken by function
Update() (line 11), possibly dropping from BestS,d some other service whose
utility is worse than Sk. The update of the sets BestS,d can lead to a substi-
tution of the service currently used to solve dependency d (as specified in the
set S.Prov) with a new “better” service taken from BestS,d. The decision about
this possible substitution is taken by function Select() (line 12), implemented
following one of the selection criteria described in Sect. 5.1.

As it is typical with gossip-based protocols, a new instance of the algorithm
in Fig. 3 is created at each node for each service S in the Service Pool.

5.1 Energy-Aware Service Selection

In this section we present possible energy-aware service selection criteria that
could be used in the implementation of the Select() function in Fig. 3.

Given a service S and a set of candidates BestS,d, we recall that Select()
must select, within that set, a service that resolves a dependency d ∈ S.Deps.

Energy-Aware Overall. The Energy-aware Overall criterion aims at selecting
the service that causes the minimal energy consumption on a system-wide basis

3 The peer set is provided by the underlying gossip communication protocol [13].
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(i.e., GEC(A)). In order to use this criterion, each service S is required to
disseminate the values S.Ecomp and S.Ecomm

n , n ∈ N, defined by Eqs. (3) and
(7), respectively. This criterion can be stated as:

Select S ∈ BestS,d such that:

S = arg min
S′∈BestS,d

{S′.Ecomp + μS,S′.Type · S′.Ecomm
node(S)} (13)

Energy-Aware Local. The Energy-aware Local criterion is similar to the pre-
vious one, but it acts on the basis of a more limited scope, as it focuses on the
minimization of the energy consumption involving node(S) only (the definition
of Eq. (14) is derived from the definition of the S.Lcomp and S.Lcomm

n indexes
in Eqs. (2) and (6), respectively). For this reason, differently from the Overall
criterion, it does not require the dissemination of any energy consumption value,
as all the information needed for its application can be collected at each node
by a local monitoring activity. This criterion can be stated as:
Select S ∈ BestS,d such that:

S = argmin
S′∈BestS,d

{
μS,S′.Type · S

′
.L

comp · I{node(S′)=node(S)}

+ μS,S′.Type · φ
prov
node(S)(δ

snd
S,S′.Type , bw(node(S), node(S

′
)), lt(node(S), node(S

′
)) · I{node(S′)�=node(S)}

+ μS,S′.Type · S
′
.L

comm
node(S) · I{node(S′)=node(S)}

}
(14)

where I{cond} is the indicator function that holds 1 when condition cond is true,
and 0 otherwise.

As pointed out in Sect. 4, focusing on the minimization of GEC(A) could not
be a good choice in contexts where one should instead aim at fairly balancing
energy consumption among all nodes. We thus propose a third criterion, aimed
at the maximization of the fairness index FEC(A).

Energy-Aware Learning. The Energy-aware Learning criterion selects the
service in BestS,d hosted by the node that currently results to have the lowest
energy consumption rate. This criterion can be stated as:
Select S ∈ BestS,d such that:

node(S) = arg min
n∈node(BestS,d)

{
∑

S∈S
s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )} (15)

where, with a little abuse of notation, node(BestS,d) ⊆ N denotes the set of all
nodes hosting services that belongs to the set BestS,d.

The actual application of this criterion deserves however more attention with
respect to the former two criteria. Indeed, we can note that both Eqs. (13)
and (14) used in the definition of Energy-aware Overall and Energy-aware Local,
respectively, are based on load-independent indexes. They are thus well suited
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for the greedy approach underlying these two criteria. On the other hand, the
indexes used in Eq. (15) are load-dependent, with consequent worsening of their
value when the load of node n increases. The greedy approach underlying the
definition of Energy-aware Learning given above can thus lead to well known
problems of system instability. Indeed, what currently results to be the node
with the smallest energy consumption rate could rapidly become overloaded,
thus triggering the need of new selections, and so on. A more judicious defini-
tion of this criterion is thus necessary, more suited for the goal of achieving a
fair energy consumption balance.

To this end, we implement this criterion according to the learning method
proposed in [11], originally proposed for a scenario of decentralized load balanc-
ing in a distributed system with load-dependent QoS. In this method, resource
selection by the participating services is based on a suitable balance between
exploitation (what services have learnt from past observations about the current
“best” resource, giving proper weight to the received information based on its
age) and exploration (random selection of apparently “not best” resources). In
our adaptation of this method, we assume that each node advertises the current
value of S.ρcomp

I and S.ρcomm
I , using the gossiping procedure we have described

above. This information is then managed according to the method proposed in
[11], to which we refer for details, omitted here for space reasons.

6 Experimental Evaluation

In this section we present a set of simulation experiments to assess the effec-
tiveness of different service selection strategies on the social welfare of the sys-
tem. To this end, we experiment with the three energy-aware service selection
strategies introduced in Sect. 5.1. In addition, we consider a baseline Random
strategy that randomly selects a functionally matching service; and a state-of-
the-art QoS-aware Learning-based criterion [4], which serves as a benchmark to
compare the impact on QoS of our energy-focused selection criteria.

We implemented a large-scale simulation model for the PeerSim simulator [8].
The replication package is publicly available to researchers interested in repli-
cating and independently verifying the results presented in this paper4.

6.1 Experimental Settings

Our experimentation mimics a wireless sensor network (WSN) deployment sce-
nario of an edge computing application. We consider a system with N services
and num int different interface types T = {T1, . . . , Tnum int}. Without loss of
generality we assume that each sensor node hosts a single service. We create
�N/num int	 services of each type and, for each service, we define a probabilis-
tic attachment to interface types to generate S.Deps with probability p.

We define the energy cost of a k-bits CPU operation equal to the average
energy cost of sending k-bits. Moreover, the energy cost of sending k-bits is on
4 https://github.com/mi-da/Energy-Aware-Service-Assembly.

https://github.com/mi-da/Energy-Aware-Service-Assembly
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average two times more costly than the energy cost of receiving k-bits [5]. We
deploy the services in a network area with a diameter of 200 m. The nodes are
randomly positioned in the area and are endowed with symmetric latency links.
Each node adopts a decentralized network coordinate system to estimate latency
values [3]. Without loss of generality, we assume that the packet loss in the net-
work is null. We adopt the first order radio model, a commonly used communi-
cation energy consumption model for WSN [5], which leads to the instantiation
of φreq

n (δ, b, l) and φprov
n (δ, b, l) (see Sect. 3.2). Finally, we assume that the load-

dependent QoS function of each service S is a randomly monotonic decreasing
function that returns values in the range (0, 1] [4].
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Fig. 4. Selection criteria effectiveness: N = 500, num int = 10, p = 0.6

6.2 Experimental Results

Each experiment shows the progress of our gossip-based decentralized architec-
ture towards the construction of fully resolved assemblies5.

Let us consider first the impact on the global indexes GEC(A) and
GQoS(A). Figure 4a shows that all strategies are better than the baseline Ran-
dom with respect to the overall energy consumption. The greatest energy saving

5 The gossip procedure eventually leads to the creation of fully resolved assemblies.
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Fig. 5. FEC(A) of different classes of applications, higher is better, N = 500

is achieved by the Energy-aware Overall strategy, thus confirming the effective-
ness of its system-wide perspective, which comes however at the cost of dissemi-
nating energy-related information. This cost is not incurred by the Energy-aware
Local strategy, whose energy saving performance is slightly worse and compa-
rable to the one achieved by the energy-unaware QoS-aware Learning strategy.
The Energy-aware Learning shows instead that its goal of leveling the energy
consumption rate of all nodes is not very compatible with the goal of minimizing
the overall energy consumption.

On the other hand, Fig. 4c obviously shows that the best overall QoS is
achieved by the QoS-aware Learning strategy, while Energy-aware Overall has
the worst performance, even worse than Random. Energy-aware Local and
Energy-aware Learning, notwithstanding their focus on energy, have instead a
good impact on the overall QoS, quite close to the result achieved by QoS-aware
Learning. Given our assumption of load-dependent QoS, this is an indication
that both these strategies distribute better the load among the different nodes
with respect to Energy-aware Overall : in case of Energy-aware Learning, this
is likely due to its intrinsic balancing attitude; in case of Energy-aware Local
this is likely due to its myopic perspective, which has in this case the positive
side-effect of leading to the selection of services hosted by nearby nodes, as they
make each node incur in less energy consumption (which is greatly influenced
by the energy required to amplify the signal in WSN [5]). This behaviour causes
a sort of geographical load-balancing effect, where clusters of nodes form service
assemblies that run approximately in the same geographical area.

Let us consider now the fairness indexes FEC(A) and FQoS(A). In this case,
Fig. 4b shows that Energy-aware Learning achieves the best result in balancing
the energy consumption rate among all nodes, according to its primary goal,
while Energy-aware Overall is the worst. This very bad performance is due to
its energy information global sharing that leads every node to get the same
energy-related knowledge. As a result, the most energy efficient services will
be globally targeted by binding requests, with very good results on the overall
energy consumption, but at the cost of an unfair energy allocation. All the
other three strategies achieve instead quite similar and satisfactory results with
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respect to FEC(A), with Energy-aware Local performing slightly better than
the other two: for different reasons (the intrinsic randomness of Random, the
energy-unawareness of QoS-aware Learning, the myopic perspective of Energy-
aware Local), all these strategies have as a side effect a quite fair distribution of
the energy load on the different nodes.

Figure 4d shows that also from a QoS perspective Energy-aware Overall per-
forms very bad also in terms of fairness, thus confirming the negative impact
that this strategy has on QoS because of the load unbalance it tends to favor.
The balancing attitude of Energy-aware Learning leads instead to good results
also in terms of QoS fairness (after a number of learning steps), quite close to
the best result achieved by QoS-aware strategy.

Finally, we analyze the effectiveness of the Energy-aware Learning strategy
on the FEC(A) index for different classes of applications: they are simulated
by varying independently the probabilistic attachment parameter (i.e., p) affect-
ing the dependency set of a service, and the number of interface types (i.e.,
num int), affecting the maximum depth of a fully resolved assembly.

Our experiments (Figs. 5b-a) show that FEC(A) decreases with increasing p
and num int. These results highlight that architectures with many dependencies
or many interface types impair the energy fairness of the system.

7 Threats to Validity

A threat to external validity concerns the approach evaluation. Indeed, we
adopted an evaluation based on extensive simulations, instead of considering sin-
gle case studies. However, to evaluate the practical implication of the adoption
of our service assembly framework, we plan to select one of the existing service
discovery platforms to support the actual implementation of our approach, so to
validate it in a real-word settings.

A threat to internal validity is represented by the selection of the social wel-
fare indexes. To smooth this threat we adopted two different indexes to comple-
ment measures of the overall energy consumption and overall QoS with fairness
indexes. We are also planning to investigate the definition of other social welfare
indexes to extend the validity of our approach.

8 Conclusion and Future Work

In this paper, we have proposed a decentralized architecture to build a fully
functional assembly of distributed services, able to optimize its energy consump-
tion in an open and heterogeneous execution environment, paying also attention
to issues concerning the delivered quality of service. We also suggested suitable
indexes to measure from different perspectives the energy efficiency of the result-
ing assembly, and presented the results of extensive simulation experiments to
assess the effectiveness of our approach.

As future work we plan to analyse combined energy and QoS selection cri-
teria, and to take into account also other sources of energy consumption. We
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also plan to investigate issues concerning the presence of finite sources of energy
(e.g., batteries) and differentiate between green and brown energy sources.
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