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Abstract. This paper develops a generic approach to model control
loops and their interaction within the Internet of Things (IoT) environ-
ments. We take advantage of MAPFE-K loops to enable architectural self-
adaptation. The system’s architectural setting is aligned with the adap-
tation goals and the components run-time situation and constraints. We
introduce an integrated framework for IoT Architectural Self-adaptation
(IAS) where functional control elements are in charge of environmen-
tal adaptation and autonomic control elements handle the functional
system’s architectural adaptation. A Queuing Networks (QN) approach
was used for modeling the IAS. The IAS-QN can model control lev-
els and their interaction to perform both architectural and environmen-
tal adaptations. The IAS-QN was modeled on a smart grid system for
the Melle-Longchamp area (France). Our architectural adaptation app-
roach successfully set the propositions to enhance the performance of
the electricity transmission system. This industrial use-case is a part of
CPS/EU European industrial innovation project (CPS4EU is a three
years project funded by the H2020-ECSEL-2018-IA. The project devel-
ops four vital [oT technologies, namely computing, connectivity, sensing,
and cooperative systems. It incorporates those IoT technologies through
pre-integrated architectures and design tools. It instantiates the archi-
tectures in dedicated use-cases from a strategic application viewpoint for
automotive, smart grid, and industrial automation https://cpsdeu.eu).

Keywords: 10T - Software architecture - Self-adaptation - Autonomic
control - Functional control - Performance - Queuing networks

1 Introduction

Internet of Things (loT) systems are composed of distributed smart elements
that are pervasively installed to affect the environment. Like most software sys-
tems, loT is exposed to changes that occur in both their state and their sur-
rounding environment. The changes cause uncertainties during system operation.
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Control loops are introduced to facilitate self-adaptation to handle changes and
uncertainties. JoT sensors supply raw data (M) to central or distributed compu-
tational components to be refined and analyzed (A) towards further actuation
planning (P) and execution (F). This process within comprehensive knowledge
(K) forms the MAPE-K control loop. Control loops can be designed and devel-
oped in many different ways. Architecture-based adaptation is an example that
focuses on the role of architectures in engineering self-adaptive systems. Typ-
ically, modeling architectural self-adaptation imposes separating the concerns
about system functionality from adaptation [1].

In contrast to most of the architecture-based adaptation models, we propose
an approach that considers the adaptation internal to the system functionality.
More specifically, we regard functional control elements (FCE) in charge of man-
aging the system functionality and autonomic control elements (ACE) respon-
sible for monitoring the functional system’s situation and handling the archi-
tectural composition. In our IoT Architectural Self-adaptation (IAS) frame-
work, we are concerned with the interaction among various levels of control
loops that are driven by the system adaptation goals. Our focus is on reasoning
and modeling various IoT architectural patterns and their run-time architec-
tural transitions managed by the autonomic control logic. The IAS conceptual
framework, while inspired by the IEEE/ISO/IEC 42010 architecture description
standard [2], comprises both functional and autonomic control elements as well
as their interaction mechanisms.

We define the IAS conceptual framework, and we model it on a real smart
grid application: the Melle-Longchamp area (France). Since the area expands
renewable energy generation using several wind-farms as sources of energy, the
voltage and current of the system sometimes become hard to forecast. Therefore,
to avoid the risk of overloading the lines and creating danger for people’s safety,
the peak current has to be managed. Instead of developing new installations, the
French Transmission System Operator policy is to investigate new exploitation
methods of the existing electrical installations and favor their optimal operation.
Wind-farm generation can be limited by opening their feeder’s circuit breaker,
or more efficiently, by modulating their generation. Additional means can also
be used, such as batteries, power electronics, and IoT. The heterogeneity and
variation of sensors, actuators, and processing elements of power systems increase
the concerns on reliability and performance. In our use-case, while the circuit
breakers are the safe and quick solution to avoid overloading of lines, their usage
should be minimized to prevent imposing indirect costs. Modulating wind-farms’
generation is a solution exposed to a high actuation time, and batteries can store
electricity for a few seconds. Thus, the system needs to make quick decisions on
its own composition to keep the performance within an adequate threshold.

Putting the self-adaptation control at the center of the software process, we
started by analyzing the problem and selecting the data to see what factors
affect the system response time. Then we upgraded the software architecture
from local centralized to hierarchical, which enables all types of architectural
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transition. We further modeled the IAS approach by queuing networks (QNs)
that facilitate designing the various levels of control for performance evaluation.

The paper makes the following contributions: i) presenting an IoT archi-
tectural self-adaptation framework that focuses on functional and autonomic
control components and their run-time interaction; ) modeling the proposed
framework with queuing networks to estimate the performance of IoT systems
and to support architectural decisions and transitions; %) applying our frame-
work to a smart grid system by analyzing its various components and their
run-time behavior, for establishing performant operations.

The paper is organized as follows. Relevant literature is discussed in Sect. 2.
The TAS framework is thoroughly explained in Sect.3. The approach is applied
to a real case in Sect. 4, and conclusions are finally drawn in Sect. 5.

2 Related Work

In software engineering, works on self-adaptation typically focus on functional
control elements that interact with the environment to provide a service. Here we
find works on using feedback control loops (such as MAPE-K) and their interac-
tion that can be presented as patterns [3], in which the functions from multiple
loops are coordinated in different ways. Such interactive coordination mecha-
nisms are indeed crucial to model ever-growing distributed systems. Each inter-
action pattern can satisfy several non-functional requirements while guaranteeing
the functionality of the system [4]. To quote an example, QoSMOS [5] is an adap-
tive service-based platform that enables dynamic adaptation to run-time changes
to achieve some quality of service (QoS) requirements. Some studies [6] take
advantage of layered queuing networks (LGNs) while considering run-time QoS
to automatically generate adaptation policies. Each element of MAPE-K loop
should dynamically react [7] to changes that occur in system’s goals and require-
ments. Current research on goal modeling takes into account uncertainty [8], but
the goals’ dynamic transition [1] and multiple dynamic goals’ satisfaction [9] has
not received much attention. We believe that the self-adaptive software systems’
goals are highly influenced by the limitations and constraints imposed by the
non-controllable environment. Various modes of functional requirement satisfac-
tion should be engineered to enable the system to pick, synthesize, and verify
those modes dynamically.

Such a challenge is even bolder in IoT systems, which comprise heterogeneous
devices that dynamically interact through the internet. The problem can be tack-
led by designing self-managing devices that can adapt their state to changes in
the system context and environment [10,11]. However, realizing the IoT devices
is challenging because of inherent uncertainties in their operation contexts, such
as interferences and dynamic traffic in the network [12]. Often these uncertain-
ties are difficult to predict by architects at development time and often lead to
indecisiveness.

Several studies propose the use of software architectures to address self-
adaptation [13,14]. An architecture model provides a global view of the sys-
tem and its properties and behavior [15]. While architectures can give a global
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idea of the system, the heterogeneity of software systems makes it challeng-
ing to design a set of self-adaptation architectural patterns. Some studies argue
that architectural adaptation includes an architectural model of the controllable
software components that allows the feedback loop to reason about various sys-
tem configurations and adapt it based on goals [16]. However, considering the
feedback loop running on FCE as an external mechanism to the system mini-
mizes the dynamicity of the self-adaptive system. We believe that the functional
control mechanism should be monitored and adapted by autonomic control com-
ponents [17,18], which gets input from both dynamic goals and real-time state
of the system.

3 IAS Framework

This section introduces the conceptual foundations of IAS, comprising a meta-
model that focuses on the FCE and ACE interaction. The framework is inspired
by the IEEE/ISO/IEC 42010 standard [2], but focuses on architecture self-
adaptation rather than architecture description. The metamodel (Fig. 1) depicts
vital concepts of systems and the control mechanism as a process to be consid-
ered in the software design and adaptation process. The metamodel is divided
into two parts: the right side depicts functional control component and its inputs
and dependencies, and the left side deals with autonomic control component and
its correlation with other elements of the system. Software system stakehold-
ers comprise users, developers/clients/managers, and citizens/occupants. Stake-
holders have concerns regarding the system-of-interest [2]. As the focus of this
paper, developers and managers are concerned with the architecture variant,
including the life cycle from system needs and requirements, design choices and
implementation, and operating considerations.

IEEE/ISO/IEC 42010 standard [2] specifies that the system goals and con-
cerns are traditionally formed of functional and non-functional requirements,
design constraints, assumptions, dependencies, and architecture decisions. A
system contains both functional and adaptation goals that are set by stake-
holders. Functional goals specify the system’s functionality under various envi-
ronmental constraints, and adaptation goals mostly concern the quality of the
system. In the IAS approach, we argue that self-adaptation is a goal-directed pro-
cess and its goals should be captured. As shown in Fig. 1, the goals are generally
affected by the environment. In other words, the environment context might
enforce prioritizing a set of goals or ignoring another set of goals. For instance,
if the goal of a self-adaptive smart grid system is performance improvement, a
disaster may prioritize taking adequate measures to prevent the emergency by,
e.g., activating circuit breakers.

Thus, a system is situated in the environment. The environment is the real
world, by which the software system interacts. The environment might include
both physical and virtual elements [1], that the system does not directly control
their functionality. The system interacts with the environment and is influenced
by it. A system can also interact with other systems in the environment.
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Fig. 1. Conceptual model of IoT Architectural Self-adaptation (IAS).

The environment can be sensed and affected through sensors and actua-
tors, respectively, which locate within IoT elements subsystem and perform the
functionality of the IoT system. As shown in Fig.2/right, the sense elements
frequently retrieve raw data [19] to input the control components, and actuate
elements receive periodic commands to affect environment. The mentioned data
transmission is continuous since the environment is not under full control of the
software system, and the dynamics of the environment should be tackled.

The functional control comprises the adaptation logic that allows the sys-
tem to perform the intended adaptation within the environment. The FCFE has a
MAPE-K (Monitor, Analysis, Plan, Execute and comprehensive knowledge) app-
roach behind [14,17,19]. The Monitor element aggregates and refines the data
to be analyzed and updates the knowledge base of the control component. The
Analyze element interprets the monitored data based on the functional goals.
The Plan element builds actuation strategies, and the Erecute element processes
the actuation strategies and prepares the type of message to be set to each set
of actuators.

The left side of the metamodel (Fig. 1) shows the autonomic control that
is more extensively described within Fig.2/left. The autonomic control sup-
ports a continuous self-adaptation process [17]. It enables the system to monitor
itself continuously and perform necessary adaptation to achieve the adaptation
goals. The ACE takes advantage of the MAPE-K concept as well. It monitors
the system’s situation (including functional control) and assesses both the sys-
tem functionality and quality to update the knowledge base. The ACE further
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Fig. 2. TAS autonomic control (right) and functional control (left) mechanisms.

analyzes the data and compares it with real-time adaptation goals. Afterward, an
adequate strategy will be planned to be executed by architecture variant adapta-
tion. For instance, suppose that the adaptation goal is to keep the performance
in a proper threshold, and the high CPU time on a local controller is preventing
such a purpose. In this situation, the autonomic control component adapts the
architecture based on a specific strategy, e.g., switching from local to the remote
control.

Architecture variant determines variations in both software and hardware
architectures [20]. The hardware architecture includes IoT hardware elements,
i.e., sensors, network facilities, controllers, and actuators. The software architec-
ture that is run on hardware elements includes a set of components that are
bounded by connectors based on specific rules and constraints. These archi-
tectures are designed by stakeholders and self-adapted by ACE during system
execution [21].

It is worth mentioning that, from a software architecture point of view, FCFE
and ACE and architecture variant are all part of the architecture. Architecture
variant determines multiple functional deployment types, which appear as archi-
tectural patterns shown in Fig.3. The patterns are composed of IoT elements
layer and one or several functional control layers. The functional control can
perform locally and/or centrally and remotely. Here is the point in which a cen-
tralized cloud and distributed edge and fog can form the hierarchical pattern.
Thus, the patterns [22] characterize IoT systems based on their levels of dis-
tribution and collaboration [20,22]. Distribution specifies whether data analysis
software ought to be deployed on a single node (centralized) or on several nodes
(distributed and hierarchical) that are dispersed across the IoT system. The col-
laboration deals with interaction among functional control components to satisfy
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the goals, requirements, and strategies. This collaboration may appear as a level
of information sharing, coordinated analysis or planning, or synchronized exe-
cution [14].

The IAS-based architectures contain the mechanisms to determine the
required architectural adaption, based on intended QoS satisfaction level. Our
conceptual framework does not rely on any specific tool; thus, practical mod-
eling solutions can be mapped within it. The following section describes the
steps taken to map a smart grid system within IAS, to improve its performance
indices.

4 Application

We model our IAS framework on the performance improvement for RTE' Com-
pany’s transmission network, located in the Melle-Longchamp area (France).
Figure4 shows the smart grid network that includes 35 substations connected
by 30 lines. The grid has some constraints regarding current and voltage. In
addition to the power flowing through the network, it contains wind-farms with
a total peak production capacity of 700 MW. Melle-Longchamp area’s control
network is being upgraded from a traditional centralized control to an IoT dis-
tributed control system to enhance the performance of the software system.

! Electricity Transmission Network, usually known as RTE, is the electricity trans-
mission system operator of France.



340 M. T. Moghaddam et al.

The system follows the usual sense - compute - actuate structure from loT sys-
tems. We applied the IAS approach to analyze the system and its objectives, and
to design an architectural self-adaptation mechanism that keeps the performance
within a desirable threshold. It is worth mentioning that IAS and its associated
generalized queuing networks models (IAS-QN) can be re-used for functionality
and quality analysis of all IoT systems.
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Fig. 4. Smart grid network for Melle-Longchamp. It includes 35 substations connected
with 30 lines.

4.1 Problem and Goals Analysis

Renewable energy systems that convert wind and sun’s rays into electricity are
growing as the primary source of energy. Such renewable generation is mainly
connected to the distribution grid but has an impact on the transmission grid as
well. In the example presented in Fig. 5/lower, a high percentage of the required
electricity to distribute is being supplied from RTE substation, e.g. B and a
small percentage form distribution substation D. If a strong wind blows and
the generation in D becomes excessive, an overload will occur on the transmis-
sion line between B and A. To deal with this problem, the functional controller
can activate different levers: i) the battery in F can be charged, ii) the produc-
tion in D can be limited, 44) the circuit breaker on B can be activated (less
desirable option). Practically, a combination of the actions mentioned above is
required. Dealing with transmission overload risk necessitates considering some
information from sensors such as values of currents and voltages on every line,
state of the network circuit breakers, state of battery’s charge, and also a set of
parameters such as time to limit production of the wind farms, current overload
thresholds on every line and eventually generator merit order.
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Having such sensory input, FCE must ensure the safe operation of the net-
work by sending: i) topological orders to the network circuit breakers, 4) modu-
lation orders to the generators, i) set-point orders to the storage batteries. The
adaptive management of such smart transmission systems is exposed to per-
formance issues since: i) some types of sensors and actuators need a significant
service time, i) enhanced forecasting algorithms for generation require a notable
computation time, 4ii) network transmission and propagation delays sometimes
become long, and 4v) the collaboration pattern among local and remote control
resources (with various processing power) is not always efficiently designed.

The typical application needs the delay between data acquisition and actu-
ation to be less than five seconds, but shorter operation times seek. Within the
next subsections, we design the RTE’s 14 5-based system that enables the smart
grid to tackle both functional and performance problems.

Fig. 5. The smart grid problem specification. The overloading of the lines because of
e.g. a strong wind can create danger for people’s safety.

4.2 Architecture

Figure 6 shows the architecture we designed for the Melle-Longchamp case by
taking advantage of the New Automated Adaptive Zone (NAZA) platform [23].
The architecture follows a hierarchical pattern with distributed collaborative
controllers (see Fig.3) that can turn into centralized or distributed patterns
if needed. As shown at the bottom of the figure, each of the 35 substations
acquires data from two types of sensors: ) current and voltage transducers, and
i) position relays. This function can include aggregation or basic combination
of acquired data (e.g., turning high-frequency sample values into root mean
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square values). Data from the sensors is sent to the control level, eventually after
filtering. Each substation has a gateway that is in collaboration with other areas’
gateways. Gateway are servers Advantech ECU-4787 or MOXA 681-C. Current
and voltage measurements (in protocol IFC61850) are sent every second to the
local gateway. The position of circuit breaker (in protocol IEC60780-5-104) is
sent to the local gateway on every event.

Each gateway can act as the central controller of the whole network, with lim-
ited CPU capacity that is five times less than the central remote controller. The
gateway on substation 1 acts as the autonomic control element (ACE) that plans
the combination of functional control elements (FCE) in use. The ACE can be
moved to any other substation’s gateway or the cloud. The ACFE implements the
control logic given the states, conditions, and behaviors of the functional con-
trollers.

As shown in the middle of Fig. 6, the main functional element retrieves and
stores data from the gateways, performs the computation, and sends orders to
the actuators. NAZA platform principally relies on RESTful API to communi-
cate with the transducers, relays, and actuators. The collected data is stored
in a MySql DBMS. The DBMS can also provide the solver inner-component
with summary and real-time statistics. Besides, the system associated with the
simulator service allows back-office to monitor the system state.

Dashboards Set . -
[ Dashboard 1 ] [Dashboard] } 53 o ,‘-:ﬁ
b [F5]] | 8 e [ES 23 2 EH
. p—Ed 5% :
. q by s @ a @ -g
| | g 2
. . O [S]
[ Batteries Set
i ] L
o\.¥ y / &
<1 l z
=
O/ - v ~ S
2 Windmills Set D
Windfarm 1_ y Windfarm 2_ / =
P — =] b —4
1 N [\
5 by J
L 1
Circuit Breakers Set s )
Circuit Breaker 1) [Circuit Breaker 3!
S e
7/ L.
- ~ '] 0 ']
S s . —
§ 7 E e ~ =
g ‘g Position Relaysl f‘IJ: Position Relaysl
2 3 (Gt HCEIERE
/oltage Transduders| \Voltage Transduders
(Dt (O
\ \ loT Sensors ._loT Sensors /

Fig.6. The proposed hierarchical architecture for RTE. The architecture includes
sense, process and actuating layers. NAZA platform can be run on gateways, local
controller, and cloud.
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The solver implements a Model Predictive Control (MPC) model to opti-
mize a cost function to use levers such as batteries set-points and generation
limit values. It gets real-time data from the gateways and calculates the values
for actuators every 5s. In some cases that the algorithm finds no solution or
computation takes too long; simple flow charts enforce safety rules such as cur-
tailing all necessary generations. NAZA platform can be run on RTE substation
gateways, local controller, and cloud. Cloud has an unlimited processing power
but causes 2 or 3 times more network delay than local servers mode. The left
side of Fig. 6 shows the actuators. Circuit breakers that are the fastest mode to
stop the current in a line are located in every substation. The batteries can store
the electricity for dozens of seconds to give some time to wind-farms to shut
down. The dashboards show controllers’ state, the values measured by sensors,
and the set-points or limits sent to batteries and generators.

Our main architectural challenges are related to the combination and loca-
tion of the computation components, i.e., gateways, RTE controllers, and cloud.
The challenge mainly arises when the intended QoS (here performance) is not
satisfied, and a run-time architectural pattern switch is required. Such run-time
dynamic adaptation and reconfiguration is set by ACE. The architectural pat-
terns and their adaptation can be modeled by the Queuing Networks (QNs)
concept. In the following section, we introduce a QNs modeling approach that
can facilitate dealing with computation components’ combination and location
issues.
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Fig. 7. IAS-QN patterns based on Fig.3. These generalized patterns can be re-used
for functionality and quality analysis of all loT systems.

4.3 Modeling IAS Using QNs

In this section, we model the IAS within Queuing Networks (QNs) to introduce
a generalized set of TAS-QN models. Our approach provides a pattern-based
performance modeling of the entire self-adaptive system. The patterns can be
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re-used to model various self-adaptive loT systems. In IAS-@QN, the architectural
components are represented by @N stations, and various sensing, computing,
and actuating activities are represented by job classes that flow through the
@N. In our MAPFEK-based approach, the activities are performed both within
and between components.

Figure 7 shows the TAS-QN patterns corresponding to the IoT architectural
patterns shown in Fig. 3. Data coming from sense elements feed the controllers
to plan for specific actuation. The computation on sensed data is performed by
the functional control elements (shown as F'CE), while the composition of FCE
is set by the autonomic control elements (shown as ACE). The ACFE adopts
a MAPE-K loop to assess the conformity between the FCF situation and the
goals. Based on the locality of ACE and FCE, the communication between them
suffers form some delay. Centralized pattern benefits from only one FCE so that
the architectural adaptation can only take place on other elements, i.e., sense,
actuate, and network. A centralized pattern can be associated with using a
central server or cloud as the FCE.

Distributed pattern benefits from a minimum of two FCFE that might share
some information. Here the ACE can also enforce adaptation on FCE level by
heading data toward a controller that enhances system quality. A distributed
pattern is generally associated with the local processing and storage, which take
place in fog nodes. Fog brings a degree of cloud functionality to the network
edge. The computation capacity of fog is lower than the cloud, but it reduces
a significant point of failure by shifting towards more than one computational
component. However, fog only performs locally so that it does not have global
coverage over large IoT systems. To tackle the mentioned shortcomings, hierar-
chical pattern that contains the advantages of both centralized and distributed
patterns is designed. In this pattern, the ACFE can execute dynamic architec-
tural adaptation by using local or remote functional controllers in a centralized
or distributed way.

4.4 Modeling TAS-QN for the Melle-Longchamp Application

Figure 8 depicts the IAS-QN designed for the Melle-Longchamp smart grid sys-
tem. The case study consists of 35 local FCE, but because of the space limit,
the figure shows 2 of them only. The proposed IAS-QN conforms the hierar-
chical architecture represented in Fig. 6. However, it can dynamically switch to
other patterns shown in Fig. 7. The dynamic control flows through the IAS-QN
components are specified as follows:

1. Environmental data are sampled by sampling nodes in charge of specifying the
sampling rate. Our system has two types of sensors with different sampling
rates; thus, tow sampling nodes are required. The effect of the system on the
environment is shown by done node. The mentioned nodes are located on the
environment side (shown in Fig. 2).

2. The sense nodes represent various types or clusters of sensors, which take as
input specific kinds of sampled data. In our smart grid system, the trans-
ducers sample voltage and current every second, while the relays sample the
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circuit breakers position in an event-based manner. The sensory data is for-
warded through a network to the controller(s). The network is exposed to
both transmission delay (td) and propagation delay (pd).

3. The autonomic control element (ACE) is represented by class-switches nodes
(A — B) which use the MAPE-K logic. As we pointed out previously, the
ACE class-switches, monitor the situation of the FCE, analyze its situation
based on system goals, and plan for architectural adaptation execution in line
with system goals (shown as ACE: M — A — P). The adaptation specifies
where the sensory data should be routed for specific processing. When the
feedback from the FCFE goes back to the ACE, the composition of controllers
to which the next job should be sent is decided (shown as ACE: — E). Such
decisions can be based on various control selection strategies:

e Probabilities: the destination controller is chosen according to predefined
probabilities that, in general, are different for each controller.

e Random: the destination controller is chosen randomly; i.e., each con-
troller has the same probability of selecting.

e Round-Robin: controllers are cyclically and circularly chosen as the des-
tination controller.

e Join the Shortest Queue: the task is routed to the controller with the
minimum number of tasks. The controller may be able to process the
tasks immediately or with a queuing delay.

e Shortest Response Time: the task is instantly routed to the controller,
which implies the minimum response time for the corresponding task
type.

e Least Utilization: the controller with the smallest instant utilization is
chosen as the destination controller.

e Fuastest Service: the task is routed to the controller with the minimum
service time for the corresponding task type.

Due to both the RTE preferences and the smart network configurations, we
set the ACE logic based on Probabilities and keep the other strategies for
future work. The following subsection clarifies the use of such probabilities.
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4. The Functional Control elements (FCE) adopt the MAPE-K loop to achieve
the system functional goals. In our smart grid system, the aggregated sensory
data might be processed in distributed collaborative gateways and/or local
or remote central controllers. The transition from local to central FCE (or
vice versa) is a mode-switch dependent on the autonomic control, and the
adoption of a more complex algorithmic model is a mode switch dependent
on the functional control. These two levels of interactive adaptation drive
the functionality of IAS-based systems. Mode transition in TAS-@QN aims at
adapting the control mechanisms and deployment of their execution by ade-
quate actuation. In this example of application, a powerful RTF processor is
used in the centralized pattern, while in the distributed pattern, the gateways
with lower processing power collaborate to manage the situation. In the hier-
archical pattern, hierarchies among central cloud and collaborative gateways
are designed.

The FCE of the Melle-Longchamp area should deal with three modes:

e Mode 1: Fast action mode. Due to a critical situation of the transmission
network, a simple flow chart logic is used to activate the circuit breakers
only. This mode is a fall-back plan of mode 2 as well. The computation
consumes a low CPU.

e Mode 2: Normal mode. The MPC solver base the computation on a cost
function to give the optimal use of all levers (wind-farms modulation,
batteries, and circuit breakers) on a 60 s horizon. If no solution is found in
the allocated time slot, it switches to mode 1. The computation consumes
medium CPU).

e Mode 3: Enhanced forecasting mode. A more sophisticated MPC provides
data-driven forecasts which enhance the predictions on generation. The
computation consumes high CPU).

It is worth mentioning that the system’s situation is shown on the operators’
dashboards in all three modes. Each of the modes has an occurrence prob-
ability. The probabilities that come from the RTFE data-driven estimation
specify the amount of time each mode is in operation. The probabilities are
stipulated as 10% for Mode 1, 60% for mode 2, and 30% for mode 3.

5. The fork/join nodes split the sampled data for different sensors and/or actua-
tors sets. These nodes facilitate adaptation in sense and/or actuate levels by,
e.g., specifying the routing probabilities for each brand-new task type heading
to sensors and/or actuators.

6. The actuation plan is implemented by actuators to achieve common goals.
In our smart grid system, the dashboard components receive the data every
second, but other actuation types perform in an event-based manner. The
loop is complete when the actuation on the environment is perceived again
by sensors.
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Table 1. IAS-@QN task types and CPU times for the Melle-Longchamp case.

Mean Service time (milliseconds)

IAS-QN Layer Service Center Task Type Name  Centralized Distributed  Hierarchical
(RTE) (Gateways) (Fog-Cloud)
Current/voltage CVSense 200
IoT Eelements (sensors) Position Relays PRSense 500
Sense to Gateways (td4pd) CVSense and PRSense 1
Network Gateways to Controllers (td4+pd) CVSense and PRSense 400 - 1200
ACE Model, 2, 3 10 25 1
Model 15 35 1
Processing Mode 2 200 440 1
FCE
Mode 3 800 1760 1
Control to Dashboard (td+pd) DashboardActuate 150
Control to Circuit Breakers (td4pd) BreakerActuate 150
Network Control to Batteries (td+pd) Battery Actuate 300
Control to Windmills (td+pd) WindmillActuate 300
Dashboards DashboardActuate 1
Circuit Breakers BreakerActuate 100
IoT Elements (actuators) Batteries Battery Actuate 1000
Windmills WindmillActuate 20000

4.5 Simulation

The IAS-QN is modeled and simulated in JMT 1.0.5 [24]. We ran all the experi-
ments on a Corei7 2.7 GHz computer with 716 GB of RAM memory under Win-
dows 10 pro 64-bits. While flowing through the IAS-@QN, each task takes a certain
amount of service (CPU) demand on each visited station. The CPU depends on
the job class associated with the tasks. Table 1 shows mean service time on each
TAS-@QN component and layer. Workload intensities that are the entry rate of
job classes to IAS-QN, must be specified as well. In our application scenarios,
the workloads associated with transducers and relays are 1s and event-based,
respectively. As already mentioned, the architectural self-adaptation within our
process is addressed by mode adaptation. Mode adaptation relies on class-switch
routing probabilities, i.e., the probability of monitoring tasks routed to functional
controllers. In this study, we are mainly concerned with mean system response
time, which is the mean time spent from sampling to the time that actuation
ends.

We tested three architectural patterns (see Fig.7) and their transition to
assess their impact on the system’s performance. Figure9 shows the mean
response time associated with the smart transmission network managed by our
self-adaptive pattern transition approach. We considered 21 different scenarios
resulted from the architectural patterns’ combinations for handling the three
modes. 18 out of 27 scenarios address the transition between patterns (i.e., run-
time adaptation), each being in charge of managing a specific computation mode
of the Melle-Longchamp o T architecture.
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Fig. 9. The experimental results: response time (seconds).

4.6 Architectural Design Decisions

Experimental results on system response time (blue bars of Fig.9) show that
managing the fast action mode (mode 1) and the normal mode (mode 2) with
the centralized, and the enhanced forecasting mode (mode 8) with the hierarchi-
cal architecture minimizes system response time (1.66 s). Furthermore, adapting
the architecture from distributed (for mode 1) to centralized (for mode 2), and
hierarchical (for mode 3) provides the same optimal response time (1.665s).

In several IoT systems, the architectural adaptation can take place only on
sensors and actuators levels. This might happen, e.g., due to the restrictions on
algorithm distribution, hardware resources availability, or middleware design.
Thus, if we ignore pattern transition for our smart grid system, we see that,
compared with only distributed or only hierarchical, managing the situation with
only the centralized pattern increases the delay by 58%. Apart from the fact that
the performance depends on how much the processing and storage components
are pushed to the edge in a decentralized way, other QoS consideration may
entirely change the story. If we prioritize, e.g., the fault-tolerance of the system,
using a centralized pattern causes a single point of failure. Thus, a hierarchical
architecture can guarantee the fault-tolerance [22] since if one fog node fails, the
IoT system can shift the computation to another fog to avoid the single point
of failure.

Furthermore, we tested using the more powerful computing resource (i.e., the
same as RTE central control element) distributed at the edge of the network (i.e.,
gateways). The corresponding result is shown as the orange bars in Fig. 9. The
results show an improvement in response time in all pattern transitions where
the distributed pattern is involved. This upgrade highlights the only distributed
pattern as the optimal solution, by an 11% response time improvement over the
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previous optimal solution. Thus, taking advantage of our IAS-QN, we proposed
the RTE company to i) re-design their software architecture adaptation policy
to manage their mode 2 with centralized and mode & with hierarchical, while
choosing among centralized and distributed patterns for mode 1; i) push the
powerful FCE to the edge of the network in a distributed collaborative way.

Lessons Learned. The modeling and development of the Melle-Longcham area
smart grid system are still ongoing. However, we learned that adopting a run-
time architectural adaptation mechanism is crucial, specially to set the proposi-
tions to enhance the performance of the system. We believe that applying [AS
could bring various benefits to IoT systems. We notably learned that Inter-
net of Things architectures require containing the mechanisms to determine the
architectural adaption based on their QoS satisfaction level. In our use-case, the
architectural adaptation performed by changing the computational components’
combination to satisfy the performance requirements. However, the adaptation
can also take place in sensing, network, and actuating components. The adap-
tation can be considered internal to the system. The autonomic control element
can analyze the situation of functional control elements in run-time, and plan for
specific architecture variant adaptation. Architecture variant determines multi-
ple functional deployment types as patterns. In our use-case, this process was
executed by class-switch in QNs, which enabled a run-time pattern adaptation
for performance improvements.

5 Conclusion

This paper presents a conceptual framework for IoT Architectural Self-
adaptation (IAS). The approach facilitates architectural adaptation by corre-
lating it with autonomic and functional control elements. The method is further
modeled within Queueing Networks to provide architecture-based performance
assessments. We took advantage of the IAS framework to design and improve
the architecture of RTE Company ’s transmission network, located in the Melle-
Longchamp area (France). By modeling the interaction among autonomic and
functional control elements, we designed and further improved a set of IAS-
@N models that take advantage of MAPE-K approach for desirable run-time
adaptation. We observed that a proper architecture could keep the response
time in a level that is compliant with real-time requirements. We also noticed
that some architecture patterns and their switch provide similar response times.
Thus in future work, we will consider other complementary criteria (e.g.,
resiliency) to make architectural design-decisions. We will also apply our app-
roach to test other performance indices. Another improvement that can be per-
formed in future work is formalizing both the run-time pattern selection process
and sampling rate settings.
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