
Determining Microservice Boundaries: A
Case Study Using Static and Dynamic

Software Analysis

Tiago Matias1, Filipe F. Correia1,2(B), Jonas Fritzsch4,5, Justus Bogner4,5,
Hugo S. Ferreira1,2, and André Restivo1,3

1 Faculty of Engineering, University of Porto, Porto, Portugal
{up201700421,filipe.correia,hugosf,arestivo}@fe.up.pt

2 INESC TEC, FEUP Campus, Porto, Portugal
3 LIACC, FEUP Campus, Porto, Portugal

4 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{jonas.fritzsch,justus.bogner}@iste.uni-stuttgart.de

5 University of Applied Sciences Reutlingen, Reutlingen, Germany

Abstract. A number of approaches have been proposed to identify ser-
vice boundaries when decomposing a monolith to microservices. How-
ever, only a few use systematic methods and have been demonstrated
with replicable empirical studies. We describe a systematic approach for
refactoring systems to microservice architectures that uses static analysis
to determine the system’s structure and dynamic analysis to understand
its actual behavior. A prototype of a tool was built using this approach
(MonoBreaker) and was used to conduct a case study on a real-world
software project. The goal was to assess the feasibility and benefits of a
systematic approach to decomposition that combines static and dynamic
analysis. The three study participants regarded as positive the decompo-
sition proposed by our tool, and considered that it showed improvements
over approaches that rely only on static analysis.

Keywords: Microservices · Refactoring · Software architecture

1 Introduction

The microservices architecture steadily gained popularity over the last years.
Nowadays, it is often used in greenfield projects, but a lot of the times, systems
are first developed as monoliths, which are quicker to develop and to test than
microservices. Monoliths can then be broken up into microservices, when and
if the need arises [1]. Doing this may promise high scalability, shorter release
cycles or better maintainability. However, missing to identify the right bound-
aries may hinder reaching these benefits [2]. Therefore, an essential part of such
a refactoring is the decomposition approach [3], which has the end-goal to iden-
tify contextually-related functionality and encapsulate it into different services.
These should be characterized by a high cohesion inwards and loose coupling
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 315–332, 2020.
https://doi.org/10.1007/978-3-030-58923-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_21


316 T. Matias et al.

outwards. To optimally leverage from the microservices architectural pattern,
existing functionality has to be split up with appropriate granularity as well.

There have been a number of approaches proposed already to decompose
monoliths into microservices [4,5]. However, Fritzsch et al. found that such refac-
toring approaches were often not considered by practitioners and that identifying
suitable service cuts is still perceived as a major challenge [3]. They asked 16
practitioners from 10 companies who were in the process of migrating their sys-
tems. Participants were either not aware of such tools or even convinced that it
would be impossible to automate such a complex task. In a review of refactor-
ing approaches, the same authors ascribed a lack of automation and missing tool
support to most approaches proposed by academia [5]. This lack of tools inhibits
adoption in industrial contexts and makes empirical studies more challenging to
conduct.

We address this gap by a) identifying a systematic approach that combines
principles of the previously proposed methods, b) using it to create a prototypical
implementation, and c) conducting an industry case study with the prototype.

In the remainder of the paper, we discuss related work to provide an
overview of other approaches, and describe our own approach, which relies
on static and dynamic analysis. We introduce a prototype – MonoBreaker –
that embodies this approach, and that identifies service boundaries for monoliths
based on the Django web framework. Afterward, we present a case study, in
which we contrast the results of MonoBreaker with ServiceCutter by surveying
three developers of the project.

2 Related Work

The subject of decomposing and migrating monolithic applications to microser-
vices is addressed in books such as Building Microservices [6], Monolith to
Microservices [7] and Microservices Patterns [8]. Likewise, a variety of research
papers describe ways to tackle such transformations.

Building microservices ideally means to create services that are highly cohe-
sive and loosely coupled. Tyszberowicz [9] confirms that Domain-Driven Design
(DDD) is the most common technique for modeling microservices. With DDD,
the software mirrors business domains and sub-domains as well as the related
domain models and bounded contexts. Each bounded context implements a small
set of strongly-related behaviors and conforms to the Common Closure Princi-
ple [10]. These sets of behaviors shape individual units, resulting in cohesive
designs of loosely-coupled services [11]. A system following DDD supports a
higher degree of team independence as well as better scalability, testability and
changeability [12].

Meta-studies. Ponce et al. provide an up-to-date overview in their review of 20
papers of migration and refactoring techniques [4]. Their study focuses on the
approaches, the applicability to certain system types, validations of the tech-
niques, and the associated challenges. The authors group works by their under-
lying decomposition approaches: model-driven (involving design elements, e.g.,



Determining Microservice Boundaries 317

DDD), static analysis (based on source code) and dynamic analysis (based on
runtime data).

Fritzsch et al. similarly compare 10 refactoring approaches and likewise pro-
vide a classification [5]. They distinguish decompositions based on Static Code
Analysis, Meta-Data, Workload-Data, and Dynamic Microservice Composition.
While the first three classes imply a fixed decomposition result, a dynamic com-
position of services would be continuously re-calculated, e.g., based on workload
constraints. The study moreover reveals that most approaches are only applica-
ble to certain types of applications, require significant amounts of input, or have
limited and prototypical tool support.

Concrete Approaches and Tools. Nunes et al. pursue an approach based on
identifying transactional contexts of business applications and using a clustering
algorithm to determine service candidates [13]. Chen et al. similarly base the
decomposition on the data flow of the business logic [14]. They compare the
resulting service cut with the output of ServiceCutter [15], a freely-available
tool implementing the approach by Gysel et al. [16]. ServiceCutter applies a
clustering algorithm to identify new services and currently supports the Girvan-
Newman and Leung algorithms for this purpose. To calculate the service cut,
it requires that an Entity-Relationship Model (ERM) of the system is given in
a specific format along with User Representations and Coupling Criteria. The
collection of these partly-exhaustive system specifications is done in a manual
process and requires the help of domain experts.

Ren et al. acknowledge the inadequacy of approaches only relying on static
analysis [17]. They recognize that not analyzing the runtime behavior would hin-
der the calculation of a complete and accurate service cut. Therefore, they com-
bine static and dynamic analysis based on the applications’ runtime behavior. A
subsequent clustering calculates the candidate service cut. Likewise, Taibi et al.
propose a combined approach based on dependency analysis and process mining
techniques [18]. The decomposition encompasses execution path and frequency
analysis. After removing circular dependencies, additionally specified decompo-
sition options are ranked based on coupling and granularity metrics to produce
the candidate service cut. The authors employ a tool1 that is capable of generat-
ing graphical visualizations to represent the business processes. Although a tool
is referenced to capture the dynamic behavior of the system, the suggestion of
service cuts is outside the scope of the work and must be done by experts, even
if the authors mention that the process can somehow be automated.

Implications for our Approach. The methods described by Richardson [8]
(Decompose by business capability and Decompose by subdomain) provide general
guidelines for a partly-automated decomposition process. They support archi-
tects in choosing appropriate input values and assessing the resulting candidate
service cuts.

The two meta-studies by Ponce and Fritzsch yield a variety of strategies
to break down a monolith. Most do not combine static and dynamic analysis

1 More information is found at the tool’s website – https://fluxicon.com/disco/.

https://fluxicon.com/disco/


318 T. Matias et al.

to steer the decomposition. As such, the works by Ren et al. and Taibi et al.
comprise the core concepts of the approach described in our work. These works
do not provide tools for service decomposition, or for any form of automation,
but we will build on the concept of gathering runtime behavior and its analysis.

ServiceCutter is also of importance to our work, as it too implements the
deterministic Girvan-Newman algorithm. In some aspects, our work is less
sophisticated than ServiceCutter, as it does not yet consider quality attributes
like security, scalability, and business ownership. However, it trades that for the
benefit of being independent from extraneous, subjective, information provided
by experts to determine the service cuts.

3 Approach

Decomposing a monolith is often done based on insights from software developers
on the specific context of the problem domain and of the application’s architec-
ture. The challenge that we aim to address is to reduce subjectivity, making the
process more systematic and automated. The approach described below is based
on ideas that have been documented before [16–18], but are employed here for
determining service boundaries with minimal to no manual input, which so far
has not been feasibly demonstrated. Therefore, the approach is described as a
hypothesis, and the case study in Sect. 5 as a first step to provide support for
its effectiveness.

In more concrete terms, this approach aims to be data-driven and to be
independent of sophisticated input from experts. To do this, we do not take
into account all the intricacies of the process as it is often done manually today.
Instead, we focus on what information can be obtained from the application itself
via static and dynamic analysis to find beneficial service cuts. We rely on the
availability of a) static software artifacts, namely source code, and b) operational
data, such as the use of API endpoints, of datastores, and of issued method calls.

Static Analysis. Software artifacts are analyzed and the collected information
used to build a graph-like model of the system, representing components as nodes
and the dependencies between them as edges. Components and dependencies can
be of different types, and identifying them will depend on the used programming
languages, frameworks and environments. For example, components can refer to
classes, packages or modules, and dependencies to imports or method calls.

Each edge is assigned a weight to represent the strength of the dependency.
This is a function of the number and quality of connections between the two
components. The weight of edges after static analysis can, for example, be the
sum of the number of imports and method calls between its two components.

Dynamic Analysis. The system is then monitored at runtime to gather oper-
ational data, which is analyzed to identify how the dependencies are exercised
during execution, and gain an understanding of how the system is actually used.
Such information is used to compute a new weight for each edge of the graph.
The final weight values are a function of the static and dynamic weights, and



Determining Microservice Boundaries 319

are a measure for how the components in the system are mutually bound. The
underlying assumption is that a high amount of interaction between two compo-
nents correlates with belonging to a common bounded context. Including them
in different microservices would imply higher costs in latency and in maintaining
resilience and fault tolerance.

Clustering. A graph of the service composition will support identifying different
clusters of components. The nodes connected by the edges with higher weight
values will be grouped to form clusters of relatively high cohesion. These clusters
will depend on each other through edges with low weight values, representing
relatively low coupling. The clusters can, therefore, be used to determine a set
of possible service cuts. The specific clustering algorithm to be used is outside
the scope of this approach, but would be interesting to explore (see Sect. 6).

Decomposition Suggestion. The identified service cuts serve as a foundation
for assigning existing software artifacts to each of the new services and advise
on the architectural refactoring process.

4 The MonoBreaker Tool

MonoBreaker aims to demonstrate the feasibility of the approach and was used
in the case study described in Sect. 5. It is a prototype2 and currently works
with applications using the Django web framework. It takes a project’s direc-
tory as input and does a static analysis of the source code to identify the
overall project structure. This information is mapped to a graph-like model
together with associated files and their dependencies. The same graph is popu-
lated with data collected through dynamic analysis to quantify the strength of
the dependencies. The graph is then traversed to suggest a decomposition into
new services, highlighting the source code files that will be involved and how the
resulting services should communicate. This workflow is depicted in Fig. 1 and
the several steps are exemplified below.

Fig. 1. Operation flow of MonoBreaker with inputs and outputs.

2 MonoBreaker is freely available at https://github.com/tiagoCMatias/monoBreaker.

https://github.com/tiagoCMatias/monoBreaker


320 T. Matias et al.

4.1 Collect Operational Data

Operational data is gathered using Silk, which is a profiling tool for Django3. The
tool is capable of supplying information about the usage of entrypoint methods
(the ones invoked when a URL is requested), and the model classes and queries
involved in the process of returning results from the database. It uses this infor-
mation to infer some of the internal method calls, as we will see in the next
section.

4.2 Build Model of the System

The static analysis inspects the domain model, the views, and the dependencies
between them. In particular, it tracks the use of Django’s Model class, identi-
fying its subclasses (i.e., the domain model of the application) and how they
are connected through the declared foreign keys. It also tracks the use of the
ModelViewSet class by identifying its subclasses (i.e., the views of the applica-
tion) as well as the connections between these views and the model classes, via
the import statements.

To illustrate the process, we present a minimalist example and the steps
involved in suggesting a service decomposition using MonoBreaker. The file
exemplified in Listing 1.1 results in the extraction of the ViewItem class as
a new graph node. The imports of Attribute (line 4) and Item (line 6) refer to
subclasses of Django’s Model class, therefore, these are also extracted as nodes,
with graph edges connecting them to the ViewItem node. Both the model sub-
classes Attribute and Item have a connection to ViewItem because it imports
them and invokes their methods.

1 from rest_framework.decorators import action
2 from rest_framework.response import Response
3 from rest_framework.viewsets import ModelViewSet
4 from .. models.Attribute import Attribute
5 from .. serializers.ItemSerializer import ItemSerializer
6 from .. models.Item import Item
7
8 class ViewItem(ModelViewSet):
9 queryset = Item.objects.all()

10 serializer_class = ItemSerializer
11
12 @action(methods =[’get’], detail=False)
13 def get_item_details(self, request):
14 if request.GET.get(’attributes ’, None):
15 data = self.serializer_class(self.queryset , many=True).

to_representation(self.queryset)
16 for item in data:
17 item[’attributes ’] = Attribute.objects.get_by_item(item[’id’])
18 return Response(data)
19 else:
20 return Response(ItemSerializer(Item.objects.all(), many=True).data)

Listing 1.1. The ViewItem class, an example of a view in a Django application.

3 See https://github.com/jazzband/django-silk for more information.

https://github.com/jazzband/django-silk


Determining Microservice Boundaries 321

Monobreaker uses the graph resulting from the analysis described thus far
to generate the visual representation depicted by Fig. 2a. The weight values
associated to the edges represent the strength of the dependencies and are
determined by:

StaticEdgeWeight = NumImports + NumMethodCalls

After the analysis of all source code files, a global dependency graph of the
project is built. In this example, these files would also include Listing 1.2.

1 from rest_framework.decorators import action
2 from rest_framework.response import Response
3 from rest_framework.viewsets import ModelViewSet
4 from .. serializers.OrderSerializer import OrderSerializer
5 from .. models.Order import Order
6
7 class ViewOrder(ModelViewSet):
8 queryset = Order.objects.all()
9 serializer_class = OrderSerializer

10
11 @action(methods =[’get’], detail=False)
12 def get_order_details(self, request):
13 if request.GET.get(’items’, None):
14 data = self.serializer_class(self.queryset , many=True).

to_representation(self.queryset)
15 for order in data:
16 order[’items’] = Order.objects.get_order_items(order[’id’])
17 return Response(data)
18 else:
19 return Response(OrderSerializer(self.queryset , many=True).data)
20
21 def list(self):
22 return Response(OrderSerializer(Order.objects.all(), many=True).data)

Listing 1.2. The ViewOrder class, an example of a view in a Django application.

Figure 2b represents the updated version of the graph after the static analysis
of the second view class. Note also the dependency between ViewOrder and Item
via the call to the get order items() method. Detecting it could be attempted
through deeper static analysis, in particular of chains of method calls that jump
into framework code. The static detection of this dependency is a limitation of
the current implementation of MonoBreaker, but it is one of little consequence,
as it can still be detected through dynamic analysis, as we will see next.

The static analysis of the system is followed by the runtime analysis. The
operational data that was previously collected (see Sect. 4.1) is processed and
the result used to update the graph with a) previously undetected dependencies
(in this example, the one between ViewOrder and Item) and b) with updated
weight values. This ensures that we also consider the existence and the strength
of dependencies that cannot be determined solely by inspecting the source code.

The requests received by the application may result in multiple method calls
that eventually touch specific model classes. These are determined by Mono-
Breaker via the database queries that are issued during the processing of a
specific request. Table 1 shows some of the data resulting from the dynamic
analysis, which is used to compute the dynamic weights.



322 T. Matias et al.

Table 1. Data determined through dynamic analysis for this example.

View Method # Calls Related models

ViewOrder list() 2 Order

ViewOrder get order details() 4 Order, Item

ViewItem list() 4 Item

ViewItem get item details() 8 Item, Attribute

To keep the weight values calculated by the dynamic analysis in the same
order of magnitude as those calculated from static analysis, MonoBreaker nor-
malizes them – the highest weight determined from the dynamic analysis will be
at most as high as the highest one calculated from static analysis. Therefore, the
equation representing the weight that arises from dynamic analysis becomes:

DynaEdgeWeight = NumMethodCalls× MaxStaticWeight

MaxNumMethodCalls

In this implementation, the weights from the static and dynamic analyses
were considered in equal parts for determining the final weights, resulting in:

EdgeWeight = StaticEdgeWeight + DynaEdgeWeight

Figure 2c depicts the resulting graph, showing the computed DynaEdge
Weight in green and the final EdgeWeight in black.

4.3 Clustering

The dependencies collected through the static and dynamic analyses are used by
MonoBreaker to create a graph-like model of the system. Nodes consist mainly of
Django model and view classes. A clustering algorithm is then applied to break

Item

ViewItem

Attribute

1

22

(a)

Item

ViewItem

Attribute

1

22

Order

ViewOrder

3

(b)

Item

ViewItem

Attribute

1

45

Order

ViewOrder

4.5

1
23

1
1.5

(c)

Fig. 2. Each graph shows a different stage of the example, (a) is after analysing the
ViewItem class, (b) after analysing the ViewOrder class, and (b) after incorporating
the results from the dynamic analysis. Values in green are the weights determined by
dynamic analysis alone, and those in black are the total weight produced up to that
stage.



Determining Microservice Boundaries 323

the network down into smaller communities, thus grouping nodes according to
the weights of the edges. We have chosen the Girvan-Newman algorithm4 [19]
given its apparent successful use in tools such as ServiceCutter. The resulting
clusters indicate a set of potential service cuts.

4.4 Generate Decomposition Suggestions

After clustering the nodes, MonoBreaker provides an overview of the decompo-
sition. It obtains the service cuts through the Girvan-Newman algorithm and
provides the lists of the classes that will be needed for each service. These can
be used by the developers to guide the refactoring process. Listing 1.3 shows the
output for our simple example.

Total Files: 19
Django_Views: 2
Django_Models: 3

GraphNumber: 0
list_of_files: [

’models.Attribute ’,
’models.Item’,
’serializers.ItemSerializer ’,
’views.ViewItems ’

]

GraphNumber: 1
list_of_files: [

’models.Item’,
’models.Order’,
’serializers.OrderSerializer ’,
’views.ViewOrder ’

]

Listing 1.3. Example of an output of MonoBreaker.

4.5 Limitations

The approach described in Sect. 3 is designed to apply to a wide range of con-
texts. The tool described in this section, on the other hand, was designed with
a narrower scope and it is worth highlighting some of its limitations.

Technologies. The opportunity, of using a fully developed monolith built with
Django to conduct a case study in the industry, led us to develop MonoBreaker
specifically for Django-based monoliths that use the object-relational mapper. At
this point, the tool will work only for systems developed using these technologies.

DesignAssumptions.The implementation makes simplistic assumptions about
the system to decompose, such as that it was designed around a domain model,
and that it avoids cyclic dependencies and other kinds of unnecessary complexity.
Such design problems should be approached before running MonoBreaker.
4 Connectivity-based clustering algorithm, such as Girvam-Newman, are based on the

idea that nodes have more affinity to nearby nodes than to those farther way.



324 T. Matias et al.

Operational Time Frame. The quality of the decomposition is sensible to the
choice of an appropriate time frame for collecting operational data, as it should
be representative of how the system is normally used. Functionality not used
during the dynamic analysis time frame will not be considered for calculating
dynamic weights.

Balancing Quality Attributes. Another assumption is that there is a single
optimal set of service cuts, but we know that there are often trade-offs when
refactoring. Users of MonoBreaker are still not able to specify, for e.g., how the
maintainability of the resulting system should be weighed against its scalability.

5 Case Study

To assess the feasibility and benefits of a systematic approach to decomposition
that combines static and dynamic analysis, we conducted an industry case study
using the developed prototype. We were interested in generating insights about
the approach, in particular, in understanding its effectiveness for identifying good
service boundaries when refactoring a monolith, and the impact that dynamic
analysis has on the decomposition result. For the latter part of the study, we
turned to ServiceCutter for a comparison.

5.1 Context

The case study focused on a web application for supporting the collaboration
between two centers of a logistics startup company. The application had 15
KLOC and more than 40 domain-model elements, and had recently gone through
significant growth in its use, making it an interesting candidate for the study.

We achieved the participation of three of the four developers that form
the team responsible for this application. Their professional experience was in
the range of 1–5 years for two of the developers and 5–15 years for the third
developer.

5.2 Process

MonoBreaker was used to analyze the project and produced a suggestion for
decomposing it into different services. The process consisted of four steps:

a) Run MonoBreaker – We gathered the project source code and the runtime
data collected through Silk and provided them as input to MonoBreaker,
which used both static and dynamic analysis to produce a suggestion of how
the system could be decomposed.

b) Run ServiceCutter – The data statically-collected in step a) was trans-
formed to the ERM format expected by ServiceCutter and was provided as
input to produce an alternative decomposition using static analysis only.

c) Present MonoBreaker – A session was scheduled with the development
team and included an introduction that explained the goal of the experiment
and a showcase of MonoBreaker using an example project.



Determining Microservice Boundaries 325

Table 2. Questions and answers in the approach group.

Question [It’s important ...] Answers

... to know what methods are called between the
components of the monolith

5, 4, 3

... to know how frequently each method is called when the
monolith is run in production

4, 3, 3

... to identify what the domain objects of the monolith
are

5, 5, 5

... to identifying what are the relationships between the
monolith components

5, 5, 5

... to know how the relationships between the components
are used when the monolith is run in production

5, 5, 5

... to identify what imports are made by each software
component of the monolith

5, 4, 3

... to identify what the schema of the database/datastore
is

5, 5, 5

... to know the operations made to the
database/datastore

5, 4, 4

... to identify how frequently the operations made to the
database/datastore are executed when the monolith is
run in production

4, 3, 4

d) Questionnaire – Following the MonoBreaker demo, a questionnaire was
handed out to the participants. It aimed to assess how the feasibility of the
approach and the impact of dynamic analysis on the quality of the results were
perceived by the team. The participants did not have access to the source code
during the questionnaire, and the two service decompositions were presented
visually as dependency graphs. Participants were given 30 min to analyze the
graphs and answer the questionnaire.

Table 3. Questions and answers in the feasibility group.

Question [The proposed decomposition as microservices ...] Answers

... is the best one possible 4, 3, 2

... is easier to scale (performance) 4, 3, 2

... is easier to deploy new versions of the system 4, 3, 2

... is easier for maintainability by the existing team(s) 4, 3, 2



326 T. Matias et al.

Fig. 3. MonoBreaker decomposition result as depicted in the questionnaire.

5.3 Data Sources

The case study used as data sources: a) the source code of the project, b) opera-
tional data collected through Silk during one week in a production environment
and c) the answers to the questionnaire that were given by the team of the
project.

The source code was obtained from the company’s code repository. The oper-
ational information was collected in two tables created by Silk in the application’s
database (silk request and silk sqlquery). The questionnaire was built using
Google Forms and the answers were gathered in a spreadsheet.

5.4 Data Analysis

Most questions were based on a Likert scale [20], ranging from (1) Strongly
Disagree to (5) Strongly Agree. Questions were organized into four groups. Below,
we summarize the answers provided by the three interviewees for each group of
questions.

Personal Experience. These questions support understanding the team’s pro-
fessional experience, its familiarity with the case study project and with the
process of migrating monoliths to microservices. The answers reveal that all
team members have some experience migrating monoliths to microservices (3,

4, 3)5 and that they were very familiar with the case study project (5, 5, 5), as
expected. This ensures their ability to evaluate the decomposition approach.

Approach. The questions in this group aim to assess the perceived impor-
tance of different aspects when decomposing a monolith into microservices. If

5 Throughout this section, we’ll use this notation to represent the answers of the three
team members to a questionnaire item using a five-level Likert scale.



Determining Microservice Boundaries 327

the understanding of these aspects by the study participants revealed to be dif-
ferent from our own, it could explain differences in the answers to questions in
the next groups of questions. The questions and answers from the three devel-
opers are shown in Table 2. The results show unanimous agreement in that
identifying the domain objects, the relationships between components, how these
relationships are used in production and the schema of the data store are very
important factors when determining potential new services (5,5,5).

The answers to the remaining questions were not unanimous, but still show
that significant importance is attributed to knowing what operations are made
to the database/datastore (5,4,4).

These results show the relevance, as perceived by the members of this team,
of both structural and behavioral information for service decomposition, and
therefore are aligned with the concepts that we used to define our approach.

Feasibility. The questions in this group evaluate the perceived feasibility of
the approach regarding the quality attributes of the application. Namely, the
questions focus on the scalability, ease of deployment, and ease of maintenance.
They are supported by the decomposition created by MonoBreaker, which was
visually presented as depicted by Fig. 3. Both the questions and the answers are
shown in Table 3.

The participants did not agree in their answer to these questions but
answered consistently to all the questions (4,3,2). This led us to inspect more
closely the answers for the justification question (the open-ended question where
they could provide further context to their answers) and conclude that the
decomposition was perceived as a good basis, but insufficient. Namely, the
decomposition consists of 3 services, but team members argued in favor of
a more aggressive decomposition. Looking closely at Fig. 3, we can see clus-
ters around three different classes – CargoMovement, MasterdataProducts and
ShippingTransfer. From their answers, we understood that the team was
expecting the ShippingTransfer cluster to be further decomposed into two
distinct services. Section 6 outlines a few factors that can be explored in future
work to improve the decomposition.

Comparison With Using Only Static Analysis. This group has two Likert-
scale questions, each accompanied by an open-ended justification question.

The first question compared the decomposition using both dynamic and
static analysis with the one using only static analysis. To ease the comparison
between the outputs, we transported the information to Gephi6 and extracted
both graphs. The graphs were depicted in the beginning of this group of questions
as Decomposition A and Decomposition B (respectively, Fig. 4 and Fig. 3).

The second question directly addressed the usefulness of the output provided
by MonoBreaker, listing the classes that would be required by each service.

Table 4 shows the two questions and the associated answers.

6 Gephi is a tool for graph analysis and visualization – https://gephi.org.

https://gephi.org


328 T. Matias et al.

Table 4. Questions and answers in the “comparing with the state-of-the-art” group.

Question Answers

The decomposition A is better than the decomposition B 2, 2, 1

A tool to support decomposing a monolith into
microservices would be useful if it provided this output

5, 5, 5

Fig. 4. ServiceCutter decomposition result as depicted in the questionnaire.

The answers dismiss Decomposition A as the best, concluding that combining
static and dynamic analysis provided a better decomposition when compared to
using static only.

Regarding the output provided by MonoBreaker for guidance on the refac-
toring, the answers were unanimous in that it would be helpful.

5.5 Threats to Validity

The purpose of this case study is to gather evidence to support the approach.
The design described in Section 5 tries to minimize possible threats to validity,
but those that exist need a closer look.

Projects and Participants. The sample of our case study was limited to one
project and three software developers. The answers to the questionnaire’s app-
roach group can be used to confirm if this team valued both structural and
behavioral information when decomposing services, as these were base assump-
tions used to design our approach, but the small scale doesn’t allow to generalize
conclusions. We would certainly like to see this case study replicated for other
products and larger organizations with different backgrounds, to verify if these
preliminary results hold in other contexts.

Possible Biases from Respondents. The partnership with the startup com-
pany for this case study was only possible due to good working and personal rela-



Determining Microservice Boundaries 329

tionships and commitment between the company and the researchers. Therefore,
there is always the possibility that the participants may have been inadvertently
influenced. During the MonoBreaker presentation (Sect. 5.2), we took particular
caution to take an impartial stance regarding the merits of the tool and of its
underlying approach and to not interfere in any way when participants were
responding to the questionnaire. Moreover, they didn’t know which decomposi-
tion had been made using only static analysis or using both static and dynamic
analysis. For these reasons, we are confident in discarding this as a threat to
validity.

Representativeness of Sampled Data. The company supplied the project
source code and allowed to alter it to enable the collection of operational data
that otherwise would not be possible. As already mentioned, the operational
data covered only one week of the application’s run time information and col-
lecting data for a longer period may have led to different results. All the relevant
functionality of the application seems to have been used during this time, and
we believe the amount of data to be sufficient to base a decomposition decision
on. For this reason, we are confident in discarding this as a threat to validity.

Suboptimal Baseline. To assess the impact of dynamic analysis in the decom-
position, we compared the result of MonoBreaker (using static and dynamic
analysis) with that of ServiceCutter (using static analysis only). The choice of
ServiceCutter stemmed from the intention to compare MonoBreaker with leading
tools from the current state of the art. ServiceCutter is the only freely-available
tool that we could run to automate the decomposition process with minimal
manual input7.

However, we realized that the specific purpose of assessing the impact of
dynamic analysis would have been better served by comparing the output of
MonoBreaker when run with static and dynamic analysis with its output when
run with static analysis only. We believe that when the Girvan-Newman algo-
rithm is chosen when running ServiceCutter, the resulting output should be iden-
tical to MonoBreaker’s if only static analysis is used, as MonoBreaker uses the
same algorithm for clustering dependent components. Notwithstanding, running
MonoBreaker with and without dynamic analysis would provide more robust
evidence that no other factors had a significant influence on the decomposition
result.

6 Conclusions and Future Work

In this work we contribute, a) a systematic approach to decompose monolithic
applications to microservices, b) a tool prototype (MonoBreaker) that imple-
ments this approach and c) the design and results of an industry case study.

7 This was possible by synthesizing a part of the inputs that it requires – namely,
the ERM – and omitting the remaining inputs, which we were unable to create
without resourcing to software developers – namely, the User Representations and
the Coupling Criteria.



330 T. Matias et al.

The approach is based on previous ideas but differs in its focus on fully
automating the process of determining service boundaries. It does so by relying
on static and dynamic software analysis. The case study uses MonoBreaker to
assess the feasibility and merits of the approach. The decomposition obtained
by the tool was regarded positively by the participants and seen as an improve-
ment over using only static analysis. MonoBreaker is freely available, and the
methodological design is documented to enable the replication of the case study
by other researchers.

To improve these contributions, several aspects will be addressed in future
work:

Model Building. The approach doesn’t define a specific way to build the model
of the application using the results of static and dynamic analysis. Future work
will evaluate if other algorithms for calculating the weight of dependencies may
perform better than our current implementation, which is currently based on a
set of simple heuristics.

Clustering Algorithms. The approach is also not prescriptive of a particular
clustering algorithm. It will be interesting to evaluate if others render better
results than Girvan-Newman, the one currently used by MonoBreaker.

Evaluation Metrics. To enable a more objective evaluation of the proposed
decomposition, the approach could be extended with service-based metrics –
e.g., coupling and cohesion [21]. The approach of Taibi et al. [18] already includes
metrics to rank decomposition candidates. A set of suitable service-based metrics
for our approach would have to be determined, and can help to drive the search
for better model-building and clustering algorithms.

Comparison with Human Experts. Future studies will evaluate if a data-
driven approach such as ours is, not only able to automate the decomposition
process fully, but will also provide a better decomposition than human experts.

Further Studies. More industry case studies will need to be conducted to
improve our understanding of the effectiveness and limitations of the approach,
ideally with a diverse and significant number of applications and participants.

Representativeness of Sampled Data. Future studies will compare the num-
ber of requests – per request type – that are received during the collection of
operational data with those of more extended periods where operational data
wasn’t captured, but for which we are able to collect request statistics nonethe-
less. This will reinforce our confidence that the operational data collected is
representative enough of a normal use of the application.

Fully Automatic Decomposition. MonoBreaker can identify file contents
affected by the suggested decomposition, e.g., which class has to be extracted
for each resulting service. The next step could be to suggest a sequence of lower-
level refactorings required for the decomposition or even to automatically apply
such refactorings to decompose the system.



Determining Microservice Boundaries 331

Acknowledgment. João Paiva Pinto and Isabel Azevedo discussed different forms of
this work with us. We thank them for all the precious feedback.

This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020.

References

1. Fowler, M.: Monolith first. Martin Fowler’s Bliki (2015). https://martinfowler.
com/bliki/MonolithFirst.html. Accessed 27 Nov 2019

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

3. Fritzsch, J., Bogner, J., Wagner, S., Zimmermann, A.: Microservices migration
in industry: intentions, strategies, and challenges. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 481–490 (2019)

4. Ponce, F., Márquez, G., Astudillo, H.: Migrating from monolithic architecture to
microservices: a rapid review. In: Proceedings of 38th International Conference of
the Chilean Computer Science Society (SCCC 2019), Chile (2019)

5. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

6. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn.
O’Reilly Media, Sebastopol (2015)

7. Newman, S.: Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith, 1st edn. O’Reilly Media, Sebastopol (2019)

8. Richardson, C.: Microservices Patterns: With examples in Java. Manning, Shelter
Island (2018)

9. Tyszberowicz, S., Heinrich, R., Liu, B., Liu, Z.: Identifying microservices using
functional decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA
2018. LNCS, vol. 10998, pp. 50–65. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99933-3 4

10. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Prentice Hall, Upper Saddle River (2017)

11. Evans, E.: Domain-Driven Design. Addison-Wesley Professional, Boston (2003)
12. Millett, S., Tune, N.: Patterns, Principles, and Practices of Domain-driven Design.

Wiley, Hoboken (2015)
13. Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices archi-

tecture: an approach based on transactional contexts. In: Bures, T., Duchien, L.,
Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 37–52. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29983-5 3

14. Chen, R., Li, S., Li, Z.: From monolith to microservices: a dataflow-driven app-
roach. In: Proceedings of the 24th Asia-Pacific Software Engineering Conference –
APSEC 2017, pp. 466–475. IEEE (2018)

15. Kälbener, L., Gysel, M.: Service cutter: a structured way to service decomposition.
https://servicecutter.github.io/

https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-030-29983-5_3
https://servicecutter.github.io/


332 T. Matias et al.

16. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

17. Ren, Z., et al.: Migrating web applications from monolithic structure to microser-
vices architecture. In: Proceedings of the Tenth Asia-Pacific Symposium on Inter-
netware, series ICPS, Internetware 2018. ACM, New York (2018)

18. Taibi, D., Systä, K.: From monolithic systems to microservices: a decomposition
framework based on process mining. In: Proceedings of the 9th International Con-
ference on Cloud Computing and Services Science—CLOSER 2019 (2019)

19. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2) (2004). https://journals.aps.org/pre/abstract/10.1103/
PhysRevE.69.026113

20. Likert, R.: A technique for measurement of attitudes. Arch. Psychol. 22, 5–55
(1932)

21. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service- and microservice-based systems: a literature review. In: Pro-
ceedings of the 27th International Workshop on Software Measurement and 12th
International Conference on Software Process and Product Measurement, series
ICPS, IWSM Mensura 2017, pp. 107–115. ACM, New York (2017)

https://doi.org/10.1007/978-3-319-44482-6_12
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026113
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026113

	Determining Microservice Boundaries: A Case Study Using Static and Dynamic Software Analysis
	1 Introduction
	2 Related Work
	3 Approach
	4 The MonoBreaker Tool
	4.1 Collect Operational Data
	4.2 Build Model of the System
	4.3 Clustering
	4.4 Generate Decomposition Suggestions
	4.5 Limitations

	5 Case Study
	5.1 Context
	5.2 Process
	5.3 Data Sources
	5.4 Data Analysis
	5.5 Threats to Validity

	6 Conclusions and Future Work
	References




