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Abstract. Security Operation Centers (SOC) leverage a number of tools to detect,
thwart and deal with security attacks. One of the key challenges of SOC is to
quickly integrate security tools and operational activities. To address this chal-
lenge, an increasing number of organizations are using Security Orchestration,
Automation and Response (SOAR) platforms, whose design needs suitable archi-
tectural support. This paper presents our work on architecture-centric support
for designing a SOAR platform. Our approach consists of a conceptual map of
SOAR platform and the key dimensions of an architecture design space. We have
demonstrated the use of the approach in designing and implementing a Proof of
Concept (PoC) SOAR platform for (i) automated integration of security tools and
(ii) automated interpretation of activities to execute incident response processes.
We also report a preliminary evaluation of the proposed architectural support for
improving a SOAR’s design.

Keywords: Security orchestration - Security automation - Software
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1 Introduction

The adoption of Security Orchestration, Automation and Response (SOAR) platforms
has recently gained major popularity among security analysts, Security Operation Cen-
ters (SOC) and incident response team [ 1-4]. SOAR platforms enable integration, orches-
tration and automation of the activities (e.g., block IP, scan endpoint and isolate host)
performed by security tools and human experts [2].

Existing SOAR platforms lack proper abstractions for designing a platform at the
architectural level [1-3, 5]. Most of the existing SOAR platforms are implemented in
ad-hoc manners without much attention to the underlying infrastructure [2]. As a result,
there can be several engineering challenges involved in embedding agility in a SOAR
platform [2, 4, 7]. These challenges result in highly complex and monolithic design that
is hard to evolve overtime. A SOAR’ design complexity may also worsened by a lack
of conceptual and practical guidelines for optimal architectural design decisions [2, 6].
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An architecture-centric approach [7-9] is expected to help in reducing the design
complexity of a SOAR by modularizing the functionalities and non-functional require-
ments. The architectural design decision provides a foundation for analyzing and under-
standing the sub-optimal design choices [7], which can be improved by leveraging
suitable architectural styles and patterns.

A design space is required to capture and characterize design decisions for integrating
techniques and tools that underpin a SOAR platform [2]. Developing design spaces for
different domains of software systems is a growing trend [7]. The design space of a SOAR
platform involves many architectural design decisions and trade-offs that are impacted
by security tools and applications integrated into these platforms. We propose a concept
map considering the functionalities performed by a SOAR platform. It allows one to
modularize the functions and separate the concerns of the components that provide the
design space of a SOAR platform.

In this article, we present an architecture-centric approach to design and implement
a SOAR platform. The proposed approach consists of three parts:

— Abstraction to model SOAR platform design space: We provide a concept map of
a SOAR platform that defines and relates the key concepts of SOAR to support
understanding of security tools integration and orchestration. The design space is
useful for understanding and analyzing requirements of emerging SOAR platforms
and integration technologies for faster response and efficiency.

— Layered Architecture for SOAR platform: We provide a layered architecture that mod-
ularizes the components into different layers based on two key functionalities — inte-
gration and orchestration. These two key requirements are to guide architects to design
and deploy a SOAR platform to integrate security tools and orchestrate activities based
on integrated security tools. We further consider the architecture style and pattern as
a mean for delimiting the design space.

— Proof of concept SOAR support: We have developed a Proof of Concept (PoC) SOAR
platform that has been designed to fulfill the quality requirements - integrability, inter-
pretability and interoperability following the proposed architecture. We have used
seven security tools with different capabilities. The evaluation results show the feasi-
bility of the proposed architecture approach for (i) automated integration of security
tools and (ii) automated interpretation of incident response activities.

This paper is organized as follows. Section 2 introduces a concept map of a SOAR
platforms’ design space. Section 3 presents the modularized architecture of a SOAR
platform. Section 4 details the dimension of a SOAR platform’s integration design space.
Section 5 presents a case study. Section 6 demonstrates the evaluation of the PoC.
Section 7 discusses related work and Sect. 8 concludes the paper.

2 Security Orchestration and Automation

The SOAR platforms are integrated solutions for an organization’s SOC. The under-
lying technologies of SOAR platforms are designed to interweave people, process and
technology. In a SOAR platform, people are responsible for intelligence-based decision
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making and technologies are used to streamline complex process. The key purpose of a
SOAR platform is to power automation through orchestration. The functionalities of a
SOAR are mainly categorized into integration, orchestration and automation [2].

The development of any SOAR platform first needs to focus on integrating the
security tools in a single platform. Depending on the organizations, the security tools
can be open source, commercial, proprietary, packaged or even legacy bunch of scripts.
Security tools are generally integrated using plugins, scripts, APIs and modules. Mostly
SOAR vendors provide plugins and APIs based support for 150-200 security tools [10,
11]. Security tools generate data in a variety of formats. Further, the data are unified to
enable interoperability among security tools.

The second key task of a SOAR is orchestration. It allows organizations to deploy
and operationalize their security process or Incident Response Process (IRP) using a
piece of code or script, also known as a playbook. An IRP is a set of activities performed
by security experts and security tools. Playbooks contain a set of instructions that makes
security tools interoperate in a manner where the output of one tool is used as an input
to other tools. An orchestration process improves the response to a security incident by
reducing the manual and repetitive tasks done by human experts.

The third task of a SOAR is automation or response. An organization needs to
identify what they need to orchestrate and what can be automated. Mostly validation,
prioritization, reducing false alarms and checking for access control authorization are
the different types of activities that are automated through orchestration processes. The
SOAR community has not quite reached a consensus on any standard mechanism of
automation of security activities.

2.1 Functional Requirements of Security Orchestration and Automation

SOAR as a Unifier or Hub. We adopt the functionality of a SOAR outlined in a recent
multivocal review [2]. We consider a SOAR platform as a hub that unifies the activities
of security tools and provides a single pane for supporting operations of a SOC. Security
tool integration is one of the most important resource intensive and time-consuming
activities in a SOC. Security tools can be integrated using several architectural integra-
tion styles [12]. Semantic technology can be leveraged for integrating security tools. A
semantic integration mechanism ensures that a SOAR platform can interpret the data
consumed and generated by security tools for interoperability. A SOAR platform first
needs to integrate security tools and then based on integration mechanisms it inter-
prets the IRPs. It can enable organizations to use playbooks from different vendors to
model an orchestration process by unifying the semantics provided in playbooks. Most
SOAR platforms filter incoming alerts based on their syntactic and semantics correct-
ness before delivering them to analytics tools. A SOAR’s architecture should support
semantics integration among the artifacts produced and consumed by security tools.

SOAR as a Coordinator or Orchestrator. A SOAR platform orchestrates security
tools activities and streamlines complex security processes into simplified processes.
The orchestration processes can be considered as a sequence of actions, where the out-
put of one tool needs to be the input of other tools. A simplified process is easy to follow
and enables a SOC to differentiate between manual and automated processes. It also
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helps to keep track of the ongoing scans and activities that require immediate human
involvement. It should be noted that a lot of SOAR literatures tend to use integration
mechanisms or connecting tools as an umbrella term to cover all processes that happen
under-the-hood of security orchestration. Whilst this abstraction is helpful to gain an ini-
tial understanding of security orchestration, we argue that architects would benefit from
a more modularized model that clearly distinguishes the activities related to integration,
orchestration and automation within SOAR platforms.

2.2 Quality Attribute Requirements

A SOAR should also satisfy certain quality attribute requirements. The essential quality
attribute requirements or Non-Functional Requirements (NFRs) of a SOAR are catego-
rized into design time and runtime requirements. To design an architecture of a SOAR
platform, we focus on the following quality attributes.

o Integrability: Security tools integrated into a SOAR platform come from different
vendors. An architecture of a SOAR platform is expected to seamlessly integrate
security tools and quickly adapt modification of security tools’ functionalities.

e Interoperability: A SOAR platform should support semantic integration of differ-
ent types of artifacts generated by security tools and data sources. The integration
mechanism needs to ensure that security tools can interoperate with each other.

o Interpretability: A SOAR platform should be able to semantically interpret the data
generated and consumed by security tools.

o Flexibility: A SOAR platform’s tasks depend on IRPs and emerging threat behav-
ior which changes continuously. A SOAR architecture should be flexible to provide
mapping support for security tools and IRPs to adapt the changes.

e Usability: A SOAR’s architecture needs to be easily understandable so that a SOC can
easily learn and operate a SOAR platform and interpret the input, output and activities
of the components.

2.3 Abstraction for Security Orchestration and Automation

Organizations generically deploy and run a SOAR platform on top of existing secu-
rity tools, information systems and organizational infrastructures to fulfill their security
requirements and business needs. An architect must understand the core concepts of a
SOAR platform to design and communicate about the orchestration process and required
integration and automation technologies with stakeholders and developers of a SOAR
platform. The lack of a comprehensive view might result in concept overlapping and
ambiguity. To address this issue, we propose a conceptual map to capture the common
terminologies of a SOAR. Figure 1 shows the conceptual map of a SOAR platform that
provides the key elements and relationships among these elements.

A SOAR platform connects a wide variety of security tools that have different capabil-
ities. By capability, we mean the features and characteristics of security tools, which can
support different types of activities. Security tools are generally categorized as detection,
analysis and response tools depending on their capabilities (Fig. 1). This categorization
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Fig. 1. Conceptual map of security orchestration and automation

is made based on the activities performed by security tools while responding to an inci-
dent. For example, monitoring tools can be considered under detection or analysis tools
depending on their contribution to an IRP. A detailed description of security tools used
for this research is out of the scope of this paper.

A SOAR platform is designed and deployed based on an organization’s security
requirements and the available security tools. A SOAR developer needs to design and
develop different types of integration mechanisms (e.g., APIs, plugins or modules) to
integrate security tools (Fig. 1). A SOAR platform performs a set of tasks that can be
categorized in unification, orchestration and automation. It runs the orchestration process
that invokes security tools to perform certain activities. An orchestration process is the
composition of tasks performed by a SOAR and activities performed by security tools.
It contains the invocation actions, scripts to invoke tools and the responses of security
tools. Orchestration processes govern the integration, orchestration and automation task
to respond to a security incident.

The orchestration process primarily is designed in the form of a set of playbooks,
which are generally dedicated to a particular security incident and have a dedicated set
of security tools that are deployed in an organization’s environment. Most organiza-
tions also have dedicated Security Incident Response Team (CSIRT) who mainly design
IRPs for security incidents based on an organization’s preferred security requirements
(i.e., confidentiality, integrity and availability), policies and quality requirements. SOAR
developers or playbook designers design and develop playbooks based on the available
security tools and well-known integration mechanisms.

3 SOAR Architecture

‘We propose an architecture to ensure the functional and non-functional requirements of a
SOAR platform. The key research objective is “how software architecture can play a role
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in improving the design practices of a SOAR platform?”. We design the architecture of
SOAR platform at two levels of abstraction. The architecture is first designed following
the layered architectural style which provides the first level of abstraction. There are
six layers — (i) security tool, (ii) integration, (iii) data processing, (iv) semantic, (V)
orchestration and (vi) User Interface (UI) layer as shown in Fig. 2. Each layer has both
logical and physical aspects. The logical aspects cover the architectural building blocks
and design decisions of a SOAR platform. The physical aspects include the realization
of the logical aspects by using organizations’ technologies and products. Each layer
has a separation of concerns that allows security staff to freely choose the preferred
components and deploy a SOAR based on their requirements (Fig. 2).
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Fig. 2. High-level architecture for SOAR platform

Each layer is decomposed into components and sub-components. We consider the
components as the lower level of abstractions. Figure 2 shows the core components and
interactions among the components that are required to achieve the desire goals of a
SOAR platform. Different functionalities of a SOAR platform require different com-
binations of these components. We specify the components as a principle computation
element that implement different tasks of a SOAR to execute IRPs.

Ul Layer: Security staff initiate existing IRPs or define new plans using a SOAR’s User
Interfaces (UIs) such as interactive dashboards or Integrated Development Environment
(IDE) or Command Line Interface (CLI). The UI layer supports flexibility in designing
UIs that helps define IRPs and integrate security tools. A SOC can easily learn and operate
a SOAR platform using the UI. An abstraction layer or API layer can be implemented as
part of the UI layers to maintain and encapsulate the interaction among a SOAR’s user
and its components (Fig. 2).
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Orchestration Layer: The orchestrator and task manager together form the coordi-
nator of a SOAR platform (Fig. 2). The orchestrator is responsible for coordinating and
forming configuration to achieve interoperability and automating the execution of IRPs.
The planner in the orchestration layer has a set of ‘playbooks’ to automate the execu-
tion of an IRP and keep track of the tasks being executed. Each playbook has a set of
tasks that contains the details of the process about the input required to execute a task
and also the output that is generated after task execution. The playbooks further contain
the conditions that trigger the execution of a particular task. A playbook’s tasks vary
depending on the requirements of a SOC and the types of security tools available. The
orchestrator monitors the successful or unsuccessful execution of tasks. The planner
provides a set of APIs through which a user can update or modify the orchestration
process. An orchestrator may use a set of APIs to govern the execution of an IRP.

Semantic Layer: The semantic layer is responsible for the semantic interpretation of
data that flows across a SOAR platform. It consists of a knowledge base, query engine
and interpreter. A knowledge base usually consists of an ontology of security tools,
their capabilities and activities of an IRP, which enables the interpreter to semantically
interpret security tools’ capability and IRPs’ activities. The details of the ontology can
be found in [13]. The query engine is responsible for extracting data from a knowledge
base. In our proposed architecture, we consider the semantic layer separate from other
layers to give SOC the flexibility to define or modify an ontology.

Data Processing Layer: The information used by a SOAR ranges from business-
critical data to usage systems logs, alerts logs and malicious activities that are processed
by the data processing layer. Data curator, data extractor and data analyzer are the three
main components of data processing layer. The data curator gathers the data produced
by tools for analysis. This layer contributes toward interoperability and interpretability
by processing the heterogeneous structured and unstructured data of different security
tools and playbooks. It is responsible for sharing semantically structured data among
different components of a SOAR throughout an IRP execution process. An architect
can incorporate any automation algorithm or data analysis techniques as part of data
analyzer without affecting other components of a SOAR.

Integration Layer: The integration layer has five components: integration manager,
wrapper, tool registry, plugin repository and API gateway. This layer is designed to inte-
grate security tools. The integration manager works as a description module through
which security tools are integrated and information is provided to enable interpretability
among them. A ool registry is responsible for discovering and registering available secu-
rity tools to monitor their status and report any changes. Security tools are registered
in terms of their capabilities (i.e., input, output and functions) and types. The wrap-
per, API gateway and plugins are intermediary components that provide interfaces to
encapsulate security tools for data translation or imposing orchestration. An integration
manager uses these components to initiate a request and become the ultimate recipient
of orchestrator’s commands. The difference between wrapper, plugins and API gateway
lies in security tools integration and communication protocols.
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Security Tool Layer: The security tools layer consists of multivendor heterogeneous
security tools, which are typically a mix of open source, proprietary, custom and
commercial-of-the shelf (COT) products. These tools are mainly characterized as unmod-
ifiable components of a SOAR platform. Given most of the security tools are required to
interact with each other, an in-depth understanding of the security tools’ data structures
and capabilities are necessary to integrate them into a SOAR platform.

Figure 3 shows an example UML sequence diagram for responding to a security
incident that comprises of components from each layer.

:Security Tool H :APIs/plugins H :Data Analyzer H :Interpreter H :Orchestrator
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Fig. 3. An example sequence diagram showing the flow of data and interaction of components

4 Dimensions of the Design Space of SOAR

The design space of a SOAR reveals that the integrated security tools and orchestra-
tion process mainly govern the tasks of a SOAR platform. Hence, we have consid-
ered the architectural design decisions from the process and technology perspective for
automatically integrating security tools and orchestrating IRPs.

Process Decision: Along with defining the orchestration process, it is important to
define the process for integrating security tools and analyzing data. A SOAR’s process
varies depending on the mode of a task — automated, semi-automated or manual. The
automation of the integration process relies on five design decisions for integration
process, interpretation process, security tools to capability mapping process, security
tool discovery process and security tool invocation process. A decomposition of the
functions based on layers helps in selecting a suitable technology depending on required
process. For example, the task to manually integrate security tools is separated from
automatically interpreting the security tools’ data. Security tools are first required to
integrate into a SOAR platform, then processes are designed to interpret the security
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tools data and IRPs activities. Here, the modular architecture helps with defining different
processes, which are mainly orchestration of security tools, SOAR’s components and
organizational information systems.

A SOAR platform can be centralized, distributed or hybrid depending on an organi-
zation’s infrastructure [2]. For centralized or distributed applications, the communica-
tion protocols are different. In most cases, these communication protocols (i.e., REST
API, RPC and event-driven) are hidden under the internal structures of security tools,
which expose their functions through APIs. A communication process can be designed
to manage distributed communication among different security tools.

Technology Decision: From a technology perspective, we mainly consider the integra-
tion technologies, interpretation mechanisms and tools discovery mechanisms that are
required for integrating security tools, designing the orchestration process and power-
ing automation. A SOAR’s taxonomy has six automation strategies [2]. An underlying
technology infrastructure consists of the assets of an organization depending on the
type of the automation strategy. Example of assets includes various hardware and soft-
ware infrastructures (i.e., computer systems, operating systems and applications) that
an organization needs to protect from security attacks. Orchestrations can take place in
different types of environments which can be open or restricted. We need to consider
different architectural integration styles to ensure that the integration constraints related
to different security tools and stakeholders (e.g., semantic, performance and component
constraints) are addressed [12].

Following we provide a set of design decisions that need to be made by an architect.

e Building a generic block of a SOAR platform. An architect can choose to design a
playbook and script for orchestration and automation.

e Disseminating tools that are integrated and participate in orchestration. Architects
have to decide on how to map security tools to IRP and where to deploy them in an
organization’s environment so that orchestrator can invoke the tools when required.

e Setting up a mechanism for an orchestrator to discover security tools. An architect
has to choose integration styles and define processes for discovery of security tools.

e Setting up and starting an orchestration process. An architect has to decide who has
the right to modify the process and provide an interface to modify or add new IRPs.

Table 1 shows a summary of the architectural design decisions for achieving the
desired functional and non-functional requirements of a SOAR platform. By architectural
design decisions we mean the design decisions that would have system wide impact
and/or impact on more than one non-functional requirements [8].
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Table 1. Summary of architectural design decision

Design decisions Expected benefits

Ontology for formalizing security tools and | Make a SOAR architecture flexible to integrate
activities of IRPs different types of security tools with varied
data formats

Use of ontology for semantic integration and | Support tools specific integration and

information discovery automated execution of IRPs in dynamic
environment

Layered architectural style Easy evolution of SOAR’s components and
easy modularization of functionalities and
components

Abstraction of SOAR’s components task with | Make a SOAR platform easy to use, manage

a set of APIs and learn for end-users

Automated integration and interpretation Enable reuse of existing components with
process changes in IRPs and security tools

Share ontology template in a centralized Provide access of the ontology to its end users
repository pattern and support flexibility in update

5 Case Study - Prototype Implementation

In this section, we present a Proof of Concept (PoC) SOAR platform that we have
designed and implemented based on the proposed architectural approach [14]. The func-
tional requirements of our PoC are to automate the process of integrating security tools,
automate the selection of security tools to execute an IRP and automate the execution
of a set of IRPs. We designed the PoC in a way so that it is easily evolvable for future
changes. In this implementation, we considered two types of changes that are most
common is SOARs execution environment — change in security tools and change in
IRPs. Figure 4 presents the implementation architecture of the PoC. We analyzed the
instruction of integration and orchestration to select the technologies and identify the
design decisions. We designed automated integration processes and selected semantic
technologies to enable semantic integration and interpretation of security tools data.
We selected seven open-source tools' with varied capabilities. The selected tools
are Snort, Splunk, LimaCharlie, MISP, Windows defender, Wireshark and WinPCap
which are IDS (Intrusion Detection System), SIEM (Security Information and Event
Management Tool), EDR (Endpoint Detection and Response) tool, Open Source Threat
Intelligence and Sharing Platform (OSINT), Firewall and packet monitoring and log-
ging tools respectively. The security tools were selected based on the diversity in their
capabilities because execution of an IRP would require multiple security tools. We used
24 different capabilities of the selected tools with MISP as a new tool to be integrated
later. We have curated a set of IRPs from Demisto’s (i.e., a SOAR platform provider)

1https://www.snort.org, https://www.splunk.com/, https://www.limacharlie.io/, https://www.
misp-project.org.
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Fig. 4. Implementation architecture of the PoC for security tool integration

collaborative playbooks [15]. We have selected 21 IRPs and slightly modified them to fit
the capabilities of the seven security tools used for our research. We designed another 48
IRPs as a new set of IRPs that PoC would require to execute without user intervention.
The list of capabilities and IRPs are available at [14].

The implementation decision incorporated APIs based integration style as our pri-
mary mechanism to integrate security tools into a SOAR. The data from the security
tools such as MISP and Splunk have been made accessible through their APIs. Besides,
we have built wrappers for security tools that do not provide specific APIs such as Snort.
Integrating a new tool required us to identify security tool’s APIs or information sharing
protocol and implement a suitable integration mechanism. The API and wrappers of
Fig. 4 are part of the integration layer of the PoC.

We also designed an ontology to formalize security tools, their capabilities and IRP’s
activities to enable semantic interpretation of security tools data [13]. Each security tool
can execute multiple activities and each activity can be executed by multiple security
tools. We used Apache Jena Fuseki server to store the ontology. Security tools are
formalized based on their capabilities and the activities of IRPs are mapped with security
tool class of an ontology. Table 2 and Table 3 illustrate how security tools and IRPs have
been mapped onto an ontology. We designed a SPARQL query engine to retrieve the
required information from the ontology. The retrieve data are interpreted through an
interpreter, which mainly deconstructs the data for further processing. The designed
ontology along with the interpreter built the semantic layer.

We built a collector to gather security tools’ data, which are sent to an orchestrator
via the interpreter for actions, e.g., Splunks API is configured to receive system logs of
various endpoints. This data is searched and processed to find programs, files or users
that could be malicious. Further to formulate the commands, an input constructor is built.

The automation algorithms or processes have been mainly built as integration pro-
cesses that are the parts of the orchestration layer (Fig. 4). We designed and implemented
scripts to define the automated integration process, which includes selecting the security
tools based on activity description, interpreting their capabilities, formulating the input
commands and finally invoking the security tool by calling appropriate APIs [16]. An
example is shown in Fig. 5 where the output of Splunk is sent to LimaCharlie. The
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Table 2. Illustration of a selected set of object properties of security tool class of an ontology

Security tool Security has Capability Capability class executeActivity
tool class
snort_s IDS intrusion_detection_s | IntrusionDetection | detectIncident
limaCharlie_1 |EDR intrusion_detection_| | IntrusionDetection | detectIncident
process_killing_1 ProcessKilling killProcess
splunk_s SIEM log_collection_s LogCollection collectAlertLog
alert_analysis_a AlertAnalysis investigateAlert

Table 3. Illustration of a selected set of data properties of security tool class of an ontology

Security tool | Security tool class | isIntegrated | hasInputType | hasRule |hasConfigFile
snort_s IDS True Network traffic | False snorts.config
limaCharlie_| | EDR True Payloads True inputs.conf
splunk_s SIEM True Logs True LCConf

orchestrator is required to collect the output of Splunk and then interpret it. All the
data generated by Splunk might not be required by LimaCharlie; so, the orchestrator
would require to construct the input of LimaCharlie from Splunk’s output to invoke
LimaCharlie. We developed and designed this process as part of the integration process
to automate the interpretation of the security tools data, which enable seamless inter-
operability among security tools. Using the integration process, data sharing among the
security tools of Fig. 5 happened seamlessly.

6 Evaluation

In this section, we report how the PoC has been evaluated to demonstrate the feasibility
of the proposed architecture approach based on two scenarios.
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6.1 Automating the Process for Integration Security Tools

Let’s assume that a user has expressed a goal of integrating security tools. We have
decided to use the proposed architecture for automating security tools integration. In the
current implementation, an ontology is available that works as a knowledge base of a
set of existing security tools. To integrate the available security tools, the orchestrator
provides a template of an ontology to users for specifying the tools’ capabilities and
map it with the available activities or activity it can execute. This process stores the
security tools’ information in an ontology that makes the information available to the
orchestrator. If the security tools have different capabilities, the information is updated
in the ontology. Further, the process for automating the integration of security tools is
invoked which enables the collector to collect the security tools” output and orchestrator
to formulate and send commands to the security tool for executing the desired activities.

Other integration approaches such as designing static APIs for communicating with
security tools or plugin-based integration require to develop wrapper along with con-
nection with the data curator and the orchestrator to collect the security tool data. The
collector needs to be configured to access the data generated by security tools. Thus,
integrating a single tool would require development of at least one component and
connection of that component with the orchestrator. For a security tool with multiple
capabilities, for instance, Splunk and Limacharlie have different sets of APIs to invoke
different capabilities, a single API or wrapper would fail to invoke different capabilities.
For example, for LimaCharlie with static API based integration, we have designed two
sets of scripts to kill a process and isolate a process. For seven security tools with 24
capabilities at least 48 connections are required among the orchestrator and security tools
while considering API and wrapper-based integration for taking the output and provide
the commands to execute an activity. An increase in the connections and components
increases the design space of a SOAR. With the inclusion of new security tools, a new
connection emerges and a user would require to go through the existing APIs, wrapper
and connection to integrate a security tool in a playbook to execute an IRP. An update in
the existing security tool features, for example, addition of new capabilities or change
in the existing API parameters also requires designing the connections and updating the
playbook where the security tools have been used.

With the semantic-based integration approach, we only need to update security tools
details in an ontology. The connections between the ontology and other components
have already been designed and that do not require any changes. Thus, with the PoC,
the number of components and connections remain constant with the integration of new
security tools — that is MISP. Without considering the proposed architecture approach the
number of components increased at least by 2 upon the integration of new security tools.
We found that semantic-based integration is more suitable in this case. This demon-
strates that the proposed architecture-based implementation keeps the components and
connections lower by reusing the existing components.

Our observation from running the experiment reveals that building wrapper and
APIs require more time than updating the security tool details in an ontology. Hence,
ontology-based automated integration process free SOC’s time.
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6.2 Automating the Interpretation of the Activities to Execute an IRP

We assume a user has expressed his/her goal to identify and isolate suspicious endpoints.
Using the current implementation, the orchestrator can identify the capabilities required
to execute the activities and then select the security tools that can execute that capabil-
ity. As the process for automatically identifying the capabilities required to execute an
activity and selecting the security tools are already defined, a user would not require to
manually identify the security tools. He/she just needs to request the orchestrator for
security tools that can perform the required activities. The orchestrator runs the process
and returns the available security tools. Then the user can also define which security
tools would be used for each activity. Next, the orchestrator automatically generates the
commands to invoke the security tools to execute a sequence of activities. In this whole
process, the current architectural based implementation has reused the existing process,
components and protocols.

With the non-modular and monolithic implementation of a SOAR platform, a play-
book is required to design to fulfill a user’s goal. Developing a playbook would require
an understanding of a playbook’s structure, knowledge of the available security tools,
developing scripts to access the generated data of the security tools and their specific
APIs to execute an activity. In the monolithic approach, each playbook is designed for a
specific IRP which cannot be reused even if the new IRP is a subset of the existing IRPs.
A user requires to modify the existing playbook to execute the new IRP.

Modularizing a SOAR’s architecture provides a clear understanding of which part
would require an update and which components can be reused without modification.
Reusing the existing components provides the following benefits: a SOC spends less time
in adapting the changes and the evolution of a system does not increase the complexity
of architecture. Further, it has reduced the overhead for users in adopting the changes by
providing the processes that can be reused. The evaluation shows that without separating
the concerns, the number of changes would require more than our proposed architectural
based implementation.

The PoC has accurately executed 45 IRPs among the new 48 IRPs. For three of the
IRPs, the orchestrator could not find any security tools with the required capabilities
to execute some of the activities, thus those were executed partially. The successful
execution of the 45 IRPs demonstrates that the developed PoC has accurately interpreted
the data generated by the used security tools without user intervention. The security tool
MISP is also used by some of the new IRPs; thus, it has also been successfully integrated.
From the evaluation, we also observe that incorporating the changes in the PoC is easier
compared to other approaches.

This paper has demonstrated the feasibility of the proposed architecture for security
tool integration and IRP interpretation based on three quality attributes - integrability,
interpretability and interoperability. Other quality attributes of a SOAR can be evaluated
by following different architectural evaluation techniques such as Scenario based Archi-
tecture Analysis Method (SAAM) and Architecture Tradeoff Analysis Method (ATAM)
[8, 17].
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7 Related Work

The leading security service providers aim to provide SOAR platforms to deliver end to
end security services [10, 11, 18, 19]. For example, FireEye (i.e., a leading cybersecurity
company) designs a SOAR platform to integrate its endpoint products and offer supports
to its industry partners [10]. Whilst the start-ups mainly focus on developing APIs to
integrate different third-party solutions and provide playbooks for automated and semi-
automate IRPs [20]. The ad-hoc implementations of a SOAR platform increase the
design complexity of such a platform as these platforms are built as a whole without
separating the concerns of the deployed components. Further, a SOAR is a large-scale
system that integrates an organization’s information and security systems. Organizations
are facing several challenges in managing these solutions while any changes occur in the
underlying operating environment such as integrating new security tools and defining
new IRPs [2, 13]. Our work addresses these kinds of challenges.

The current state-of-the-practices and state-of-the-arts of SOARs lack a shared under-
standing between the vendors and stakeholders of SOAR [1, 3, 4, 21, 22]. For example,
there is no shared understanding of the key software components and technologies that
are necessary to integrate and enable interoperability among various security tools and
bring automation in IRPs execution. In these studies, a SOAR platform has mainly
focused on security tools interactions, isolated processes and low-level infrastructures,
while paying less attention to the problems of how different components of a SOAR and
security tools coordinate.

A security team requires an understanding of the internal structure of a SOAR (i.e.,
libraries to integrate new security tools or requirements) to adopt the changes in a SOAR
platforms execution environment. Adopting the changes remains a tedious and difficult
undertaking for end-users. State-of-the-art approaches for security process modeling
provide limited or no decomposition mechanisms, which easily results in monolithic
processes that address multiple concerns in a single model [1, 3, 4, 22].

None of the existing works provides the architectural design space that could inform
architects of the decisions to be made where multiple components are interconnected.
Software architecture is composed of early design decisions, which can help to address
some of the existing challenges to be addressed by SOAR platform designers [6—8]. An
increased focus on architectural aspects of SOAR can also facilitate further research on
the design decisions of the exiting SOAR platforms to form guidelines, rules and design
techniques. The rise of security incidents has increased the demand for knowledge,
processes and techniques for designing and deploying highly configurable and scalable
SOAR platforms. As most organization prefer to utilize their available software and
security tools, it would be helpful to consider architectural design decisions for trade-off
analysis before deploying a SOAR platform to enhance a SOC’ efficiency.

8 Conclusion

Exploring and understanding the architectural design decision before designing and
implementing a SOAR platform is a valuable task. The captured design decision would
help developers as well as a SOC staff of an organization to systemize their decision
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process and trade-off analysis. The architectural design decisions would serve as a stan-
dalone lexicon to describe and evaluate the existing and new SOAR platform. In this
paper, we have designed a conceptual diagram of SOAR platform to support an architect’s
understanding of the design space of SOAR. We have further identified the requirement
of a SOAR in terms of unification, orchestration and automation and proposed a layered
architecture to modularize the functions and separate the concerns of the components
of a SOAR platform. The architecture design decisions are chosen from the process
and technology perspectives. We have used the proposed approach to design and imple-
ment a PoC SOAR platform for an ad-hoc SOC infrastructure and observe its impact
on the automated integration and interpretation process. We have leveraged well-known
architectural styles and patterns to implement the PoC. We have observed that the consid-
eration of the principal dimension of the architecture design space has improved SOAR
design practices.

The proposed approach has further laid a foundation for future research on the
design space and deployment automation of SOAR platforms. In our future work, we
plan to conduct a large-scale mapping of the existing SOAR platform and IRPs onto
the architecture design decisions to generate patterns and hide interaction among the
different components across multiple technology paradigm.
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