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Systems that process large amounts of data from varied sources have become an
important class of software systems in recent years. Reasons for this development
are the vastly increasing amount of data sources from which data is gathered

Data Stream Operations as First-Class
Entities in Component-Based
Performance Models

Dominik Werle®) @, Stephan Seifermann, and Anne Koziolek

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
{dominik.werle,stephan.seifermann,koziolek}@kit.edu

Abstract. Data streaming applications are an important class of data-
intensive systems. Performance is an essential quality of such systems. It
is, for example, expressed by the delay of analysis results or the utiliza-
tion of system resources. Architecture-level decisions such as the config-
uration of sources, sinks and operations, their deployment or the choice
of technology impact the performance. Current component-based perfor-
mance prediction approaches cannot accurately predict the performance
of those systems, because they do not support the metrics that are spe-
cific to data streaming applications and only approximate the behavior of
data stream operations instead of expressing it explicitly. In particular,
operations that group multiple data events and thus introduce timing
dependencies between different calls to the system are not represented
sufficiently. In this paper, we present an approach for modeling networks
of data stream operations including their parameters with the goal of
predicting the performance of the resulting composed data streaming
application. The approach is based on a component-based performance
model with queueing semantics for processing resources. Our evaluation
shows that our model can more accurately express the behavior of the
system, resulting in a more expressive performance model compared to
a well-encapsulated component-based model without data stream oper-
ations.
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From a software engineering viewpoint, building such software systems entails
specific challenges in the different activities that are part of the software engi-
neering process [8]: for example planning which types of processing hardware
are required for the system and how the system will behave in future scenarios
where the number of data sources or other data characteristics change.

In this paper, we address the problem that current component-based per-
formance models to our knowledge cannot express stateful operations which are
commonly used in data streaming applications. For example, when data is col-
lected and emitted as a group when a data item with specific characteristics
arrives or when a specified duration has passed introduce timing dependencies
between calls. Expressing such state requires modeling workarounds that break
the encapsulation and thus hinder the separate reusability and maintainability
of components [21].

There are different paradigms for building systems that process large amounts
of data. In the context of this paper, we will focus on applications that process
continuously arriving streams of data (streaming applications), as opposed to
applications that regularly process larger batches of data.

Overall, we present a new approach for modeling the performance of data
streaming applications. More specifically, we provide a method for expressing the
interaction between components that process data streams in performance mod-
els and a simulation approach for analysing these models. This article extends
a previously presented sketch of the approach [21] with a more thorough discus-
sion of the modeling approach and its relation to component-based performance
models, as well as an implementation and initial evaluation of the approach.

The main stakeholders of the approach are the software engineers that have
to make decisions about the configuration of the system, for example, suitable
sizes for sliding windows. Furthermore, we target the operations engineers that
have to predict how the system will scale with expected changes in the load or
additional analyses on the data. We consider both groups by incorporating the
decisions they have to make in the modeling language, thus allowing them to
make what-if analyses using the presented approach.

Subsequently, the main goal of our approach is to support software engi-
neers that build data streaming applications with suitable modeling and quality
prediction tools. To this end, this article addresses the following two research
questions.

RQ;: What is a suitable way of representing data stream operations in
component-based performance models while keeping components and data
stream operations reusable and parameterizable?

RQ,y: How can the behavior of data stream operations be incorporated into
simulations of otherwise stateless component-based performance models?

RQ; is targeted at the modeling language itself. It is focused on identifying
the relevant operations and how they can be included in a modeling language in a
composable way that can be used in combination with current component-based
performance modeling tools. The second question, RQ,, focuses on the way the
models are then analysed. Particularly, the simulation of the system behavior



150 D. Werle et al.

that includes data stream operations needs to be able to interface with current
simulation approaches. We present three contributions towards these questions:

C1: An approach for representing operations in a composable, architecture level
performance model,

Ca: A simulation approach for data stream operations,

Cs: An evaluation of the simulation for a case study system.

2 Running Example

To illustrate our approach, we use a running example that is an adaptation of the
2014 grand challenge of the conference on Distributed and Event-Based Systems
(DEBS 2014) [10]. The example application processes meter readings that smart
plugs send to a system to calculate an outlier score for houses.
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Fig. 1. lllustration of the running exam- Fig. 2. Simplified illustration of the per-
ple (Source: [21]). formance model (Source: [21]).

The example system is illustrated in Fig. 1. The following more detailed expla-
nation is partially taken from [21, Sect. 3], where we initially introduced the
example. Figure 2 shows an implementation of the system in our modeling app-
roach and will be discussed in detail Subsect.5.4. N smart plugs send data to
the system. Each of the smart plugs belongs to one of H households. A plug
with id j that belongs to household ¢ is named h;, p; in the illustration. The rate
at which plugs send data can differ for different plugs and can vary over time.
Window creates data windows of time length S. The data is collected grouped
by the plug id, i.e., Window emits a data window for each plug and each point of
time that windows are created. The windows are created every A time units, at
the points of time T; = A-i,4 € N, resulting in NV newly created windows for each
point in time T;. Windows overlap if A < S. Then, sensor readings are included
in multiple windows. As a result, every window spans the S time units prior to
its creation. Median creates a median for each window and plug, resulting in IV
(number of smart plugs) medians for each T;. Average collects all medians for
one T; and calculates one overall average value of all medians for each T;. Group
collects all median values for one household for one T; by collecting all median
values of all plugs for the T; and regrouping them by the household id. For each
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of the H households, Qutlier calculates the ratio of readings of plugs inside the
household that are greater than the overall average and emits this value as the
outlier value of the household, resulting in H values for each T;. The metric of
interest for this system is the time between the creation of a date in the plug
and its first appearance in the result of an outlier calculation, the delay.

Interesting questions that the architect of the system may want to answer are
how well the system scales if the number of plugs increases, and which resources
are needed for a particular load. Other questions can be more closely related to
the actual functionality of the system: How does changing the shift and size of
the windowing operation change the delay? How does the association between
plugs and households change the quality of the system (i.e., small amount of
households with many plugs each in comparison to large amount of households
with little plugs each)?

3 Background

In this section, we present relevant foundations for our approach regarding the
way component-based performance models are constructed and used.

3.1 Component-Based Performance Models

Component-based performance models allow a decomposition of systems into
so-called components. An example for a modeling language that allows this is
the Palladio Component Model (PCM) [17], which we have based our approach
on. The model defines interfaces that describe a collection of services. A compo-
nent can either require or provide interfaces and describes the observable effect
regarding performance for each provided service. Particularly, components can
call other components’ services. A system model is composed of components that
together provide services to the user of the system. Based on its modeling prim-
itives, there are extensions to the model and its analysis that add capabilities
for simulating additional behavior of the system that are relevant for its perfor-
mance such as virtualization, network protocols or different types of hardware
resources and operating system schedulers. A usual way of evaluating models is
to map resources to queues and serving nodes that process items in those queues.
This network of queues is then either statically analysed or simulated.

Performance models are used to evaluate different performance metrics, such
as the response time of systems to requests of different types and the utilization
of resources. It should be possible to model, calibrate and reuse the different
parts of the model independent from each other. This allows simple reuse and
extension of models. Additionally, the system should be described in a way that
exposes all relevant design decisions to the architect.

Parametric dependencies additionally allow effect descriptions to be parame-
trized regarding characteristics of the environment of the call. An example for
this environment are parameters that are passed into a method. The concrete
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values that these parameters take depend on the composition of the system from
components and are usually resolved when the system is analysed or simulated.
This approach enables both the reuse and exchange of components, as well as a
change of the workload if parameters are also used at the system interface.

3.2 State in Performance Models

A basic idea for component-based architecture models is that they are stateless.
This means that the description of the service effects cannot refer to the cur-
rent state of the system, its resources, or other components, but the analysis
will implicitly keep state and schedule or parametrize service effects accordingly.
Therefore, the interaction between different calls to the system is clearly encap-
sulated in so-called resources. The PCM distinguishes two types of resources.
Active resources represent for example CPUs or HDDs. They can be represented
as queues and service places in queueing models. Incurring a resource demand
in a process blocks and thus delays the process until the resource has satisfied
the demand. If multiple processes request the same resource at the same time,
there needs to be some form of queueing or scheduling. Passive resources behave
similar to semaphores. They have a specified token count and tokens can either
be acquired or released. If a process wants to acquire a token when there is none
left, it is blocked until another process releases a token. To summarize, while the
systems that are modeled have state at runtime, the model of the components
themselves cannot refer to this state in an explicit way, for example by branching
depending on the current load of the system. The only way to depend on the
current state of the system is through resources.

3.3 Stochastic Expressions and Dependencies

Performance models use stochastic expressions to describe stochastic processes
that occur in the system or in its usage. A common example for this is the
behavior of users of the system. Furthermore, stochastic descriptions can be
used for aspects of the system that are not modeled in detail, for example when
garbage collection happens in the Java Virtual Machine. If stochastic expressions
are used with parametric dependencies, they can be used to express stochastic
dependencies regarding the performance of the system.

3.4 Challenges for Modeling Data Streaming Applications

In this section, we discuss the major challenge for modeling data streaming
applications using component-based performance models: representing timing
dependencies between calls to the system.

Data streaming applications usually describe the behavior of the system
depending on incoming calls that deliver data at the system interface. In the
following, we use the term data events for those calls. In our work, we consider
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data stream operations that are aligned with the well-established CQL continu-
ous query language [2]. In contrast to business information systems that provide
services that users can call, data stream operations are not described in terms
of single requests that are handled independently. Instead, they operate on mul-
tiple requests. For example, data events may be grouped in windows and then
processed further as a group instead of single elements, which introduces a delay
for single data events that depends on other events or operation characteristics.

Secondly, stochastic descriptions of resource demands cannot be stochasti-
cally dependent at different points of the system for one data event, if system
models do not operate on groups of data. For example, if a particularly hard to
calculate data point arrives at the system, high resource demands might incur
at different points of the system in succession, resulting in an outlier of the cal-
culation time for this data event. However, if these stochastic dependencies are
not made explicit across regrouping or joining of data, resource demand descrip-
tions in the model are stochastically independently from each other and thus
may lead to loss of accuracy of the model. The need for suitable state abstrac-
tions in component-based performance models has been previously identified and
discussed in the context of messaging systems by Happe et al. [7].

In current modeling approaches, if architects desire to model a data stream-
ing application, they have to use a model of the system that does not reflect
the actual structure and behavior of the system, but an approximation that
behaves similarly regarding the performance metric of interest. For example,
data events that are grouped into sliding windows inside the system might have
to be modeled by modeling the arrival of windows instead of single data events
at the system boundary. As a consequence, the performance-related characteris-
tics of windows, such as the number of contained elements, have to be modeled
manually instead of being derived automatically by the model.

4 Approach

In this section we introduce the modeling concepts that are provided in our app-
roach in detail. This section addresses RQ; (see Sect.1): What is a suitable way
of representing data stream operations in component-based performance models
while keeping components and data stream operations reusable and parameteriz-
able?

4.1 Modeling Concepts

In this section, we introduce the modeling concepts that are novel in our app-
roach and their role in modeling data streaming applications. An overview of
the concepts is illustrated in Fig. 3. The illustration is explained in detail in the
following subsections.
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We currently do not support the full set of operations for a streaming appli-
cation (as for example in CQL [2] or in LINQ [15]). While our implementation
focuses on operations that are required for our case study system, our simulation
is implemented to be extensible for additional types of operations that change
the stream of data that flows through the system.

Data Events. A data event describes the context of a call that is passed through
the system in our approach. In our model, this context has an identity and can
be passed between different calls.

Each data event is explicitly created by a process in the system. In addition
to an implicit date of birth, the architect can also specify other characteristics
that are relevant for the performance of the system or for the distribution inside
data stream operations, for example because the characteristic influences how
elements are grouped. Each characteristic is described via an expression and it
is fixed when the data event is created. The expression can be stochastic, i.e.,
be described as a distribution function. Then, a value from this distribution is
generated when the value is fixed. Additionally, the expression can depend on
other parts of the current call context, such as parameters of the current call.

An example for a characteristic is the plug id of sensors that a data event is
created from and then sent to the system. It is either specified as a distribution
function in the workload that is applied to the system or is the result of different
workload drivers (sensors) with fixed sensor types that send data to the system
simultaneously. At some point in the system, the data events are then grouped
by the type of sensor, resulting in different sizes of groups that have to be further
communicated and processed in the system.

Note that a data event is separate from the notion of call flow through the
system. While a workload might specify calls to system interfaces that pass data
events to the system, this data event might then be picked up and further pro-
cessed by other calls or recurring processes in the system. Thus, the data event
carries an identity and fixed characteristics through the system. This identity
and the attached date of birth of the data event can then be used for delay mea-
surements in the system by specifying a point in the system where the current
age of a data event is to be recorded. This information is then collected and
presented to the performance analyst as a result of the analysis. Subsequently,
our definition of data events addresses the challenge of parametric dependencies
across calls (see Subsect. 3.4).

Data Channels. The main novelty in our approach are so called data channels.
The concept is based on event channels as introduced by Rathfelder [16] which
are, however, mapped to normal call semantics for a system. We extend the idea
of event channels by additional state and active processing inside the channel. A
data channel is a type of resource that encapsulates state regarding data events.
When modeling a system, data can be either emitted to or consumed from a
data channel.
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Fig. 3. Illustration of the model of a data channel. Data events that are emitted to
the data channel by components pass through different queues.

Overall, a data channel can be seen as a series of queues that data events
emitted to the channel are passed through, as illustrated in Fig.3. The steps
between queues have an associated operation and a trigger. When triggered, the
step takes one or multiple elements from the previous queue and emits a new
element to the next queue. For the first queue (raw data events, Fig. 3), elements
are directly added by emitting components. For the last queue (Repartitioned
data), consuming components can take data events. Our current implementation
supports the following steps: join, grouping and partitioning. In principle, this
can be extended to further steps, if required for different types of operations.

In the following we discuss how a data channel can be configured regarding
the following aspects, in order of processing: 1) sinks, sources and connectors, 2)
capacity, 3) over-/underflow discipline, 4) joining, 5) grouping, 6) partitioning,
distribution strategy. Together, the configuration and the semantics contribute
towards allowing timing dependencies in the model (see Subsect. 3.4).

Sinks, Sources and Connectors. A component can communicate with the
data channel via a connector. A connector can be either a sink or a source con-
nector, depending on whether it connects the channel to a source (i.e., a compo-
nent that emits data to the channel), or a sink (i.e., a component that consumes
data from the channel). Sink connectors can either be pushing or polling. If the
connector is pushing then a process is immediately triggered when new data is
available and starts a service that is associated with the given connector inside
the component. The parameter to these service calls is the data event. If the
connector is polling then data events can be actively consumed from any service
inside the component.

Capacity. A data channel can define a capacity of data events it can keep at
a point of time. If no capacity is defined, there is no limit to this number. The
capacity is defined in terms of the number of data events, not their size; this
would however be a possible extension to our concept, if required. Currently,
our notion of capacity only considers total raw data events that are put into
the data channel and have not been processed further yet; however, this can be
extended to the total number of data elements currently residing in the channel,
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or other notions of capacity. If an incoming data event would surpass the capac-
ity of the data channel, the over-/underflow discipline determines how the call
proceeds.

Over-/Underflow Discipline. The channel specifies an overflow discipline
that determines whether in case of an incoming data event that would surpass
the capacity of the data channel, 1) an incoming data event is dropped, 2) it
replaces the element that was last added to the channel, 3) the first element that
would be emitted is dropped and the new element is added, or 4) the call that
wants to emit an data event to the channel is blocked until the capacity is not
reached anymore. In the latter case, the waiting calls are handled in the order
they try to emit data to the channel, i.e., the first call that wants to emit data
to the channel can do this first after data has been removed from the channel
and there is free capacity again.

For consuming calls, the channel specifies an underflow discipline that deter-
mines how calls that want to consume data from the channel when there is none
available should be handled. The available options are to either 1) return with-
out data elements, or 2) block until data is available. In the latter case, similar
to calls waiting to emit data to the channel, the calls are handled in the order
they try to consume data from the channel.

The described disciplines focus on the capacity of the channel and do not
address other reasons for not accepting data elements, such as elements that
arrive too late at a channel, which we are planning to address in future work.

Joining. Joining regroups elements on a given join condition. In our implemen-
tation, joins are realized by tagging data with information about the incoming
connectors. A joint data element is emitted to the Joint data queue, when a
data event for each connector is available. The modeler specifies for each incom-
ing connector whether a data event can contribute multiple times to joint data
events or only once. If it can contribute multiple times, the last data event for
each incoming connector is not removed but can be used multiple times; previous
elements are removed if a new element arrives. If data events for a connector can
only contribute once, they are removed from the data channel upon inclusion in
a joint date.

Grouping. In general, a grouping operation retains elements until a trigger
occurs. This trigger is either 1) based on the time in the system, 2) on charac-
teristics of the data in the group, or 3) or on an external trigger. Our imple-
mentation currently provides three types of grouping, which are examples for
the respective types of triggers: 1) sliding windows, 2) holdback grouping, and
3) consume-all grouping. We explain these types in the following in more detail
to illustrate the principle of grouping channels.

Sliding windows are a concept where elements are grouped in windows at
periodic points of time. Usually, a sliding window operation is configured with
a size S and a shift A. Every A time units, the windowing operation emits all
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data events that have arrived in the last S time units as a grouped data event.
This means that windows overlap if A < S. Then, data events are included in
multiple windows.

Holdback grouping is a type of grouping, where elements are grouped accord-
ing to a key function. Elements with the same key are collected in a group and
held back. The channel can keep a given number of groups at the same time
(default is one). If an additional key is discovered in an arriving data event for
whose calculated key function currently no group that is held back exists, a new
one is created. If the number of groups then exceeds the specified maximum, the
oldest group that is held back is emitted. Another example for grouping based
on characteristics of the data in the group would be to emit a group of elements
when a specified number of elements are reached.

Consume-all grouping describes the idea that elements are collected and emit-
ted as a whole as soon as a trigger happens, such as a consume action.

Partitioning. Partitioning is an example for an operation that further operates
on data that is already grouped. Particularly, it is regrouped according to a key
function. This means that for every element in the input group of data events,
the key function is calculated. Then, for each distinct value of the key function,
a grouped data event is created that contains all elements that have mapped to
this key. In our running example, this occurs when medians have been calculated
for all plugs for a window and then are regrouped according to the household the
plug belongs to. Note that for this to work, first all elements in the window, i.e.,
all calculated medians for all plugs in the sliding window, have to be collected
and then regrouped according to the key function household id.

Distribution Strategy. Distribution strategy describes whether elements 1)
are distributed to all target connectors, 2) are passed out to the connectors in
succession (round-robin), or 3) the first connector to request data (for polling
consumers) gets the next data event from the data channel.

5 Evaluation

In this section, we show how the presented approach can support software archi-
tects in predicting the performance of the system by explicitly representing its
expected behavior in a performance model.

5.1 Evaluation Question

The evaluation presented in this section addresses RQ, (see Sect. 1): How can the
behavior of data stream operations be incorporated into simulations of otherwise
stateless component-based performance models? The derived evaluation question
is: Is it feasable to model and simulate the timing behavior of stateful data-stream
operations using our approach?
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To answer this question we discuss how our modeling approach applies to the
system introduced in Sect. 2. We first describe the workload and configuration of
our system in our experiment (Subsect. 5.2). In Subsect. 5.3 we discuss the metric
of interest and the expected behavior of the system regarding this metric. We
subsequently show, how we can build a model that predicts its performance
(Subsect. 5.4). We then discuss the results and benefits of the simulation. Our
evaluation provides initial evidence that we can use the presented approach to
model relevant data streaming applications. The evaluation of the accuracy of
our modeling approach regarding measurements from a real system and the
comparison with other modeling approaches is subject to future work and not
addressed in this evaluation.

5.2 Experiment Setup: Workload and Configuration

We have created a workload that is based on the first ten minutes of the data
from the house with house id 0 from the DEBS 2014 grand challenge data'. As
a result, our workload represents 14 households with 107 plugs total. While our
approach can handle larger experiments, we chose a small excerpt of the data to
keep the following presentation easy to understand. To provide further evidence
about the limits of the scalability of our approach, both for the simulation as well
as for building the models, we need to model larger systems in future work and for
more complicated workloads. On average, around 45.775 data points arrive at the
system interface per second. For our chosen window size (S = 25 ), we can expect
an average number of total data points per window of R = 25-45.775 = 1144.375.
The shift of windows is chosen as A = 50s.

5.3 Experiment Setup: Metric and Performance

We assume that in the case study system, the system architect is interested in
the delay of data events when they appear in the ouput of the outlier detection
for the first time. This delay of the system is formed as follows. Each data event
has to be sent from the sensor to the system, resulting in a network delay. For
each data event, windowing with size S and A leads to a delay that is uniformly
distributed in [0,.5]. The number of elements in the window is determined by
the number of data events that arrive during this window, which depends on
the usage scenario. Sensor readings that arrive just before a window is emitted
are only negligibly delayed by the windowing, data points that arrive just after
a window has been created are delayed by 25s. Calculating the median takes a
resource demand that depends linearly on the number of elements inside each
window, or log-linear resource demand if implemented naively using sorting.
This number of elements depends on the arrival patterns of data events. In our
example, we chose every resource demand as 100+ 100-n, where n is the number
of elements in the grouped data element. Regrouping the elements results in a
resource demand that depends on the number of elements to regroup. In this

! The data is available publicly via the website of the challenge [9].
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example this is the number of plugs. The resource demand for calculating the
average of all medians inside a time window depends linearly on the number of
medians, i.e., the number of plugs. This number depends on the usage scenario.
The calculation can only be triggered if the system determines that all relevant
medians have arrived at the component. To do this, the system detects when a
median for the next window has arrived. This leads to an additional delay of
A = 50s. The outlier detection has to wait for both the overall average and
the household-wise regrouped elements. For each joint element, the calculation
resource demand then depends on the number of plugs in the given household.

Additionally, communication delays between components occur and become
relevant if the operations are distributed across resources. In our example, every
operation is implemented as a single component. For each component there runs
one process that takes all available input data, processes it and then waits for
additional input data.

If we only consider the timing dependencies introduced by collective opera-
tions in the system, we can expect a delay inside [50s, 75s]: The sliding window
contributes 0s to 25s to the delay, waiting for one window shift due to grouping
contributes an additional delay of 50s.

For a processing rate of P = 10000 resource demand units per second and no
contention at active resources (i.e., resources can serve infinitely many requests
in parallel), we assume about an additional delay of 2-(100+100-R)/P = 22.91s
(R as defined in Subsect. 5.2): The creation of medians and the outlier calculation
each have to pass over all data points in the window. As a result, we expect an
overall delay in [72.91s,97.915s].

5.4 Experiment Setup: Model

In this section, we present how our approach can be applied to the example
system. We have implemented the parts of the approach that are required to
model this system and make on-going implementation publicly available [19].
All artefacts used in our evaluation and a guide on how to extract the relevant
data from the DEBS data set and run the simulation are available online [20].
Figure 2 illustrates a realization of our running example in PCM. The follow-
ing is an extended explanation based on previous work where we have introduced
a sketch of this model [21, Sect. 4]. The component Ingress handles the sensor
reading ingress and writes data to data channel C;. There is a usage scenario
for each sensor which calls Ingress with a characterization of its plug and house-
hold id. Ingress then creates a date with the specified characteristics (thus also
implicitly creating a birth date) and emits it. The windowing of readings is
specified in the data channel C;. In our example setup, the data channel creates
windows of size 25s every 50s. This means that windows are created at points
of time 7; = 50s,100s,150s,etc. and span all data points that arrive during
[25s,5058),[75s,100s), [125s, 150 8), etc. respectively. For every other component,
there exists an additional usage scenario (and interface to trigger the compo-
nent’s processing) that repeatedly triggers the component after it has finished
its current processing. Components for which such a scenario exists are depicted
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with the symbol €. This means that for each of the components Median, Group,
Average and Qutlier, there is a process that tries to consume data from the
respective data channel. If necessary, the process waits until data is available.
Then it processes the data. The processes take an amount of time that depends
on the number of elements that are processed. Each of the processes then emits
data or, in case of Qutlier, ends the processing and measures the delay of all
data points in the currently processed group of elements.

For each plug and each T;, Median consumes a window from C;, possibly
blocking until a window is available. It then emits to Cy and Cs. Cy groups
depending on window start and end and partitions according to the household
id. Cy emits the group when it discovers that the window has changed, thus
delaying the processing chain by one window size. Group consumes from Co and
emits to C4. C3 again groups by the window start and end. Average consumes
groups of medians for each time window from Cs and emits to Cy4. Cy4 joins data
from Group and Average based on the start/end of windows. Since the overall
average of a window is only calculated once, it can contribute arbitrarily often
to the join. As a result, C4 contains a joint date for each Qutlier consumes from
C,4 and specifies an appropriate resource demand.

We have generated a usage model from the DEBS data set, which results in
an additional usage scenario for each of the 107 plugs. Each of the users calls
the system interface that is delegated to Ingress and provides its household id
and plug id as parameters to the call. We create a distribution of times between
readings for each plug and use this distribution as the time between readings in
our model.
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Fig. 4. Delay for data events that arrive
in the analysis component in our evalua-
tion system.
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Fig. 6. Delay for data events that arrive
in the analysis component in our evalua-
tion system.

Fig. 5. Histogram of delays that are
measured in the simulation for negligible
processing times (cf. Fig. 4).
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Fig. 7. Histogram of delays that are
measured in the simulation for non-
negligible processing times.
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5.5 Results

Our simulation reproduces the expected number of arriving elements described
in Subsect.5.2 (R = 1144.375). Using the simulation we can derive the previ-
ously described metrics about the system. We first focus on the case where delay
introduced by processing can be neglected and only consider temporal depen-
dencies. Therefore, all data points and groups are processed as soon as they are
available. The delay at the point of measuring (after the outlier calculation is
finished) is depicted in Fig. 4. The distribution of delays across the simulation is
displayed in Fig. 5. The results of the simulation with non-negligible processing
times is depicted in Fig. 6 and Fig. 7. This shows a scenario, where processing of
data groups uses resources and thus leads to additional delay.

5.6 Discussion

As can be seen from the results, our model can represent the expected number
of arriving elements in the sliding window. Furthermore it predicts delays in
[61s,75s] with an average of 63s and thus accurately reproduces the expected
delay for negligible processing times in [50s,75s] (midpoint at 62.5s). If pro-
cessing times are not negligible, the resulting additional delay leads to a change
of the distribution of the delay. The results of the simulation are in the inter-
val [63.67s,105.85s] with an average of 84.66s as compared to the manually
deducted estimate in [72.91s,97.91s] (midpoint at 85.41s). Creating the esti-
mate as discussed in Subsect. 5.3 requires manual effort for deriving how which
part of the system influences the behavior and interacts with the type of data it
receives instead of plugging the system together from components and simulating
the actual behavior. This is particularly challenging, if the influence of different
parts changes due to changes in the configuration of the system. For example,
if the constant factors in the resource demands are relevant, the influence of the
distribution of plugs to households can (unexpectedly) become more relevant
than it is in the depicted case, because more groups with less elements have to
be considered and delay the processing. Representing such effects is simplified if
the model directly represents the behavior of the system.

If we want to use a state of the art modeling approach instead of a manual
calculation of the performance, we have to approximate the behavior by deriving
the points of time that windows are created, the distribution of their characteris-
tics and partitions, and the delay incurred by grouping operations (i.e., waiting
for the end of a window). While we have hinted at how this can be done for
simple scenarios where data arrives in regular patterns and where processing
does either not take additional time or the additional time can be estimated, it
is unclear how this can be done in a systematic way for more complex scenarios.

6 Related Work

There have recently been considerable efforts in modeling the performance of
Big Data applications. We identify two main groups of related work.
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The first group is approaches that are used to model Big Data systems of
different types. Krof} et al. [11,12] present an approach that utilizes the Pal-
ladio modeling language to extract performance models for Apache Spark and
Hadoop. Their work is similar in the overall intent, predicting the performance of
data-intensive applications. They do not represent stateful operations as model
elements that are used in the analysis of the system natively but can represent
streaming applications and the performance of streaming frameworks by mod-
eling relevant impact factors, such as number of partitions for a data stream,
directly. Other related work models the batch processing of large data sets. For
example, Castiglione et al. [4] use an agent-based approach to analyse how highly
concurrent big data applications behave in cloud infrastructures regarding the
performance, number of used virtual machines and energy efficiency. Aliabadi
et al. [1] present an approach that uses Stochastic Activity Networks for modeling
different types of batch applications and how they perform when using differ-
ent frameworks. In the context of the DICE project [3], methods for modeling
Big Data systems have been developed. The models explicitly separate between
platform, technology and concrete deployment [5] of a big data application. The
authors also propose performance simulation methods for simulating their mod-
els by transforming models into Petri Nets [6]. Their approach allows modeling
complex systems that combine different technologies, including Apache Storm
topologies with different types of bolts. We are, however, not aware of an explicit
modeling and simulation of stateful operations in their approach. Maddodi et al.
[13] present an approach that uses Layered Queuing Networks (LQNs) to anal-
yse the behavior of event-sourcing applications. While they support aggregation
of multiple calls for event-sourcing, they do not generalize to other types of
aggregation and interaction of calls, such as windows or joins.

The second group of related work addresses systems that process single events
but, however, do not target the level of architecture and the abstractions required
on this level. Sachs [18] presents an approach for the model-based evaluation of
the performance of event-based systems. The work proposes patterns for Queue-
ing Petri Nets that allow architects to model similar behavior as proposed in our
approach (such as time windows). However, the work does not target the decom-
position of systems on the architecture level. Wu et al. [22] describe a language for
defining information needs as queries on event streams and a method for imple-
menting the resulting queries in a high-performance manner. While approaches
for specifying complex event processing networks provide similar concepts to the
ones presented for our approach, they do not build abstractions that can be used
in architecture-level performance models.

Overall, to our knowledge, the state of the art currently does not target the
decomposition of data streaming applications in stateful data stream operations
and a simulation of this composed system.

7 Conclusion

In this article, we have presented a novel approach for representing and simulat-
ing data stream operations in architecture-level component-based performance
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models. Our approach contributes towards two research questions: 1) how can
we represent data stream operations in performance models and 2) how can we
analyse the systems’ behavior using these models? The representation of data
stream operations is relevant, because they commonly appear in an important
class of software systems: data-intensive streaming applications. Our evaluation
shows that the models of our approach can be used to ease making quantitative
statements about the performance of a streaming application because the models
express the behavior of the system more accurately, particularly in comparison
with a manually derived performance estimate. All of the code of our approach
and the artefacts used for this article are publicly available.

Future work will extend our implementation and evaluation and consider the
performance impact of employing specific technology realizations for data stream
operations. We, furthermore, will investigate the applicability of our approach
to other types of systems, particularly self-adaptive systems. Another interest-
ing direction of research is how to extract the type of model presented in this
article from code or other artifacts and how to integrate the prediction using
these models in an agile software engineering process, as proposed by Mazkatli
et al. [14].
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