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Abstract. Microservices are the go-to architectural style for building
applications that are polyglot, support high scalability, independent
development and deployment, and are rapidly adaptable to changes.
Among the core tenets for a successful microservice architecture is high
independence of the individual microservices, i.e. loose coupling. A num-
ber of patterns and best practices are well-established in the literature, but
most actual microservice-based systems do not, as a whole or in part, con-
form to them. Assessing this conformance manually is not realistically pos-
sible for large-scale systems. This study aims to provide the foundations
for an automated approach for assessing conformance to coupling-related
patterns and practices specific for microservice architectures. We propose
a model-based assessment based on generic, technology-independent met-
rics, connected to typical design decisions encountered in microservice
architectures. We demonstrate and assess the validity and appropriate-
ness of these metrics by performing an assessment of the conformance of
real-world systems to patterns through statistical methods.

1 Introduction

Microservice architectures [14,15,22] describe an application as a collection of
autonomous and loosely coupled services, typically modeled around a domain.
Key microservice tenets are development in independent teams, cloud-native
technologies and architectures, polyglot technology stacks including polyglot
persistence, lightweight containers, loosely coupled service dependencies, high
releasability, and continuous delivery [22]. Many architectural patterns that
reflect recommended “best practices” in a microservices context have already
been published in the literature [18,19,23]. The fact that microservice-based
systems are complex and polyglot means that an automatic or semi-automatic
assessment of their conformance to these patterns is difficult: real-world systems
feature combinations of these patterns, and different degrees of violations of the
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same; and different technologies in different parts of the system implement the
patterns in different ways, making the automatic parsing of code and identifica-
tion of the patterns a haphazard process.

This work focuses on describing a method for assessing architecture con-
formance to coupling-related patterns and practices in microservice architec-
tures. Coupling between microservices is caused by existence of dependencies,
e.g. whenever one service calls another service to fulfill a request or share data.
Loose coupling is an established topic in service-oriented architectures [22] but
the application to the specific context of microservice architectures has not, to
our knowledge, been examined so far.

Strong coupling is conflicting with some of the key microservice tenets men-
tioned above. In particular, releasability, which is a highly desirable character-
istic in modern systems due to the emergence of DevOps practices, relies on
the rapid and independent release of individual microservices, and is compro-
mised by strong dependencies between them. For the same reason, development
in independent teams becomes more difficult, and independent deployment of
individual microservices in lightweight containers is also impeded. This work
covers three broad coupling aspects: Coupling through Databases, resulting from
reliance on commonly accessed data via shared databases; Coupling through Syn-
chronous Invocations, resulting from synchronous communication between indi-
vidual services; and Coupling through Shared Services, which arises through the
dependence on common shared services (for details see Sect. 3).

In reality, of course, no microservice system can support all microservice
tenets well at the same time. Rather the architectural decisions for or against the
use of specific patterns and practices must reflect a trade-off between ensuring
the desired tenets and other important quality attributes [12,22]. From these
considerations, this paper aims to study the following research questions:

– RQ1 How can we automatically assess conformance to loose coupling-related
patterns and practices in the context of microservice architecture decision
options?

– RQ2 How well do measures for assessing coupling-related decision options
and their associated tenets perform?

– RQ3 What is a set of minimal elements needed in a microservice architecture
model to compute such measures?

In pursuing of these questions, we surveyed the relevant literature (Sect. 2)
and gathered knowledge sources about established architecture practices and
patterns, their relations and tenets in form of a qualitative study on microser-
vice architectures. This enabled us to create a meta-model for the description
of microservice architectures, which was verified and refined through iterative
application in modelling a number of real-world systems, as outlined in Sect. 4.
We manually assessed all models and model variants on whether each deci-
sion option is supported, thereby deriving an objective ground truth (Sect. 5).
As the basis for an automatic assessment, we defined a number of generic,
technology-independent metrics to measure architecture conformance to the
decision options, i.e. at least one metric per major decision option (Sect. 6).



Assessing Architecture Conformance 5

These metrics (and combinations thereof) were applied on the models and model
variants to derive a numeric assessment, and then compared to the ground truth
assessment via an ordinal regression analysis (Sect. 7). Section 8 discusses the
results of our approach, as well as its limitations and potential threats to valid-
ity. Finally, in Sect. 9 we draw our conclusions and discuss options for future
work.

2 Related Work

Many studies focus on best practices for microservice architectures. Richard-
son [18] has published a collection of microservice patterns related to major
design and architectural practices. Patterns related to microservice APIs have
been introduced by Zimmermann et al. [23], while Skowronski [19] collected best
practices for event-driven microservice architectures. Microservice fundamentals
and best practices are also discussed by Fowler and Lewis [14], and are summa-
rized in a mapping study by Pahl and Jamshidi [16]. Taibi and Lenarduzzi [20]
study microservice “bad smells”, i.e. practices that should be avoided (which
would correspond to violations in our work).

Many software metrics-related studies for evaluating the system architecture
and individual architectural components exist, but most of them are not specific
to the microservices domain. Allen et al. [1,2] study component metrics for mea-
suring a number of quality attributes, e.g. size, coupling, cohesion, dependencies
of components, and the complexity of the architecture. Additional studies for
assessing quality attributes related to coupling and cohesion have been proposed
and validated in the literature [3,4,6,11]. Furthermore, a small number of stud-
ies [5,17,21] propose metrics specifically for assessing microservice-based soft-
ware architectures. Although these works study various aspects of architecture,
design metrics, and architecture-relevant tenets such as coupling and indepen-
dent deployment, their approach is usually generic. None of the works covers all
the related software aspects for measuring coupling in a microservice context:
the use of databases, system asynchronicity, and shared components. This is the
overarching perspective of our work, and the chief contribution of this paper.

3 Decisions

In this section, we briefly introduce the three coupling-related decisions along
with their decision options (i.e. the relevant patterns and practices) which we
study in this paper. We also discuss the impact on relevant microservice tenets,
which we later on use as an argumentation for our manual ground truth assess-
ment in Sect. 5.

Inter-Service Coupling Through Databases. One important decision in
microservice-based systems is data persistence, which needs to take into account
qualities such as reliability and scalability, but also adhere to microservice-
specific best practices, which recommend that each microservice should be
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loosely coupled and thus able to be developed, deployed, and scaled indepen-
dently [14]. At one extreme of the scale, one option is No Persistent Data Storage,
which is applicable only for services whose functions are performed on transient
data. Otherwise, the most recommended option is the Database per Service pat-
tern [18]: each service has its own database and manages its own data indepen-
dently. Another option, which negatively affects loose coupling, is to use a Shared
Database [18]: a service writes its data in a common database and other services
can read these data when required. There are two different ways to implement
this pattern: in Data Shared via Shared Database multiple services share the
same table, resulting in a strongly coupled system, whereas in Databased Shared
but no Data Sharing each service writes to and reads from its own tables, which
has a lesser impact on coupling.

Inter-Service Coupling Through Synchronous Invocations. Service inte-
gration is another core decision when building a microservice-based system. A
theoretically optimal system of independent microservices would feature no com-
munication between them. Of course, services need to communicate in reality,
and so the question of integrating them so as to not result in tight inter-service
coupling becomes paramount. The recommended practice is that communica-
tion between the microservices should be, as much as possible, asynchronous.
This can be achieved through several patterns which are widely implemented in
typical technology stacks: the Publish/Subscribe [13] pattern, in which services
can subscribe to a channel to which other services can publish; the use of a
Messaging [13] middleware, which decouples communication by using a queue
to store messages sent by the producer until they are received by the consumer;
the Data Polling [18] pattern, in which services periodically poll other services
for data changes; and the Event Sourcing [18] pattern, that ensures that all
changes to application state are stored as a sequence of events; Asynchronous
Direct Invocation technique, in which services communicate asynchronously via
direct invocations. Applying these patterns ensures loose coupling (to different
degrees), and increases the system reliability.

Inter-Service Coupling Through Shared Services. Many of the microser-
vice patterns focus on system structure, i.e. avoiding services sharing other ser-
vices altogether, or at least not in a strongly coupled way. An optimal system
in terms of architecture quality should not have any shared service. In reality,
this is often not feasible, and in larger systems service sharing leads to chains of
transitive dependencies between services. This is problematic when a service is
unaware of its transitive dependencies, and of course for the shared service itself,
where the needs of its dependents must always be taken into account during its
evolution. We define three cases: a Directly Shared Service is a microservice which
is directly linked to and required by more than one other service; a Transitively
Shared Service is a microservice which is linked to other services via at least one
intermediary service; and a Cyclic Dependency [10] which is formed when there
is a direct or transitive path that leads back to its origin, i.e. that allows a ser-
vice to be ultimately dependent on itself after a number of intermediary services.
Cyclic dependencies often emerge inadvertently through increasing complexity
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over the system’s lifecycle, and require extensive refactoring to resolve. All three
cases are inimical to the principle of loose coupling as well as to system qualities
such as performance, modifiability, reusability, and scalability.

4 Research and Modeling Methods

In this section, we summarize the research and modeling methods applied in our
study. The code and models used in and produced as part of this study have
been made available online for reproducibility1.

4.1 Research Method

Figure 1 shows the research steps from initial data collection to final data anal-
ysis. For the data collection phase we conducted a multi-vocal literature study
using web resources, public repositories, and scientific papers as sources [9]. We
then analyzed the data collected using qualitative methods based on Grounded
Theory [7] coding methods, such as open and axial coding, and extracted the
three core architectural decisions described in the previous section along with
their corresponding decision drivers and impacts. As data for our further research
we used generated models taken from the Model Generation process, described
below. We defined a rating scheme for systematic assessment based on support
or violation of core practices and tenets. From these we derived a ground truth
for our study (the ground truth and its calculation rules are described in Sect. 5)
as well as a set of metrics for automatically calculating conformance to each
individual pattern or practice per decision. We then used the ground truth data
to assess how well the hypothesized metrics can possibly predict the ground
truth data by performing an ordinal regression analysis. Ordinal regression is
a widely used method for modeling an ordinal response’s dependence on a set
of independent predictors, which is applicable in a variety of domains. For the
ordinal regression analysis we used the lrm function from the rms package in
R [8].

4.2 Model Generation

We began by performing an iterative study of a variety of microservice-related
knowledge sources, and we gradually refined a meta-model which contains all the
required elements to help us reconstruct existing microservice-based systems. In
order to investigate the ontology, and to evaluate the meta-model’s efficiency, we
gathered a number of microservice-based systems, summarized in Table 1. Each is
either a system published by practitioners (on GitHub and/or practitioner blogs)
or a system variant adapted from a published example according to discussions in
the relevant literature in order to explore the possible decision space. Apart from
the specific variations described in Table 1 all other system aspects remained the
same as in the base models.
1 https://bit.ly/2WmFP3N.

https://bit.ly/2WmFP3N
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Model Generation

Metrics Definition

Architectural Design DecisionsData Analysis

Extract Ontology (Data
Types) from best practices and

tenets  

Determine Decision Impacts for
each option 

Objective AssessmentStatistical Evaluation

Metrics Evaluation: Regression
analysis on ability of the metrics to
predict the ground truth assessment

Data Analysis: Qualitative study
based on Grounded Theory method

Define Metrics for quantifying
extent of support/violation of each

pattern/practice and tenet

Automatic Calculation of generated
metrics based on the system

component models

System Component
Model

Data Collection Phase

Repositories

Research Papers

Formulation of Core Decisions 

Establish a Rating Scheme for
System Assessment: Ordinal scale

based on support or violation of
patterns/practices and tenets

Static Code Analysis

Ground Truth Definition: Manual
assessment of system model
according to rating scheme

Definition of Decision Options:
Patterns and practices

Extraction of Decision Drivers:
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Model VisualisationCodeable Models
Generator

Web Resources

Fig. 1. Overview diagram of the research method followed in this study

The systems were taken from 9 independent sources in total. They were devel-
oped by practitioners with microservice experience, and they are representative
of the best practices summarized in Sect. 3. We performed a fully manual static
code analysis for those models where the source code was available (7 of our 9
sources; two were modeled from documentation published by the practitioners).

To create our models, we used our existing modeling tool CodeableModels2, a
Python implementation for the precise specification of meta-models, models, and
model instances in code. Based on CodeableModels, we specified meta-models
for components, connectors and relationships. We then manually created model
instances for each of the systems in Table 1. In addition, we realized automated
constraint checkers and PlantUML code generators to generate graphical visu-
alizations of all meta-models and models.

The result is a set of precisely modeled component models of the examined
software systems (modeled using the techniques described below). This resulted
in a total of 27 models summarized in Table 1. We assume that our evaluation
systems are, or reflect, real-world practical examples of microservice architec-
tures. As many of them are open source systems with the purpose of demon-
strating practices or technologies, they are at most of medium size and modest
complexity, though.

2 https://github.com/uzdun/CodeableModels.

https://github.com/uzdun/CodeableModels
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4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of
components and connectors, with a set of component types for each compo-
nent and a set of connector types for each connector. For modeling microservice
architectures we followed the method reported in our previous work [21].

5 Ground Truth Calculations

In this section, we present and describe the calculation of the ground truth
assessment for each of the decisions from Sect. 3. The results of those assessments
are reported in Table 2. The assessment begins with a manual evaluation by the
authors on whether each of the relevant patterns (decision options) is either
Supported, Partially Supported, or Not Supported (S, P, N in Table 2). Based
on this and informed by the description of the impacts of the various decision
options in Sect. 3, we combined the outcome of all decision options to derive
an ordinal assessment on how well the decision as a whole is supported in each
model, using the ordinal scale: [ ++: very well supported, +: well supported, o:
neutral, -: badly supported, --: very badly supported]. This was done according
to best practices documented in literature. For instance, following the ordinal
scale the assessment for the model BM1 is +: well supported, since a) option
Database per Service is not supported, b) some services have a shared database,
but c) they do not share data via the shared database.

For the Inter-Service Coupling through Databases decision, we derive the
following scoring scheme for our ground truth assessment:

• ++: All services (which require data persistence) have individual databases
Database per Service.

• +: Some services have Shared Databases and no Data Shared via the Shared
Databases.

• o: All services have Shared Databases and no Data Shared via the Shared
Databases.

• -: Some services have Shared Databases and Data Shared via the Shared
Databases.

• --: All services have Shared Databases and Data Shared via the Shared
Databases.

From the Inter-Service Coupling through Synchronous Invocations decision, we
derive the following scoring scheme for our ground truth assessment:

• ++: All services communicate asynchronously via Message Brokers or Pub-
lish/Subscribe or Stream Processing

• +: All services communicate asynchronously via API Gateway or HTTP
Polling or Direct Asynchronous calls, or (some) via Message Brokers or Pub-
lish/Subscribe or Stream Processing.

• o: None or some services communicate asynchronously and all other services
communicate asynchronously via Data Sharing (e.g. Shared DB).
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Table 1. Overview of modelled systems (size, details, and sources)

Model ID Model Size Description / Source
BM1 10 components

14 connectors
Banking-related application based on CQRS and event sourcing (from https://
github.com/cer/event-sourcing-examples).

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service invocations
instead of event-based communication.

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service invocations
instead of event-based communication.

CO1 8 components
9 connectors

The common component model E-shop application implemented as microservices
directly accessed by a Web frontend (from https://github.com/cocome-
community-case-study/cocome-cloud-jee-microservices-rest).

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message broker.
Added support for Open Tracing. Added an API gateway.

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communication, but
a shared database for accessing product and store data. Added support for Open Tracing.

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases per service,
and an API gateway (from https://codeburst.io/build-a-nodejs-
cinema-api-gateway-and-deploying-it-to-docker-\part-4-
703c2b0dd269).

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway.

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway.

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and another sub-
system routing all traffic via the API gateway.

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an API
gateway for service-based API (from https://microservices.io/patterns/
microservices.html).

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally.

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interactions.

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interaction, a
middleware-triggered identity service, databases per service (4 SQL DBs, 1 Mongo
DB, and 1 Redis DB), and backends for frontends for two Web app types and
one mobile app type (from https://github.com/dotnet-architecture/
eShopOnContainers).

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-
based communication and one shared SQL DB for all 6 of the services using DBs. No
service interaction via the shared database occurs.

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-
based communication and one shared database for all 4 of the services using SQL DB in
ES1. However, no service interaction via the shared database occurs.

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly linked to
a Web UI (from https://github.com/jferrater/Tap-And-Eat-
MicroServices).

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API composition and asynchronous
interservice communication. Added Jaeger-based tracing per service.

FM3 13 components
15 connectors

Variant of FM1 which demonstrates a cyclic dependency case, uses the store service as
an API composition and asynchronous inter-service communication

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and OpenCensus moni-
toring & tracing for all but one services as well as on the gateway. (from https:
//github.com/GoogleCloudPlatform/microservices-demo).

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except for
one service, and realizes the tracing on all services.

RM1 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain
event interactions. Rudimentary tracing support (from https://github.com/
microservices-patterns/ftgo-application).

RM2 14 components
14 connectors

Variant of RM1 which contains transitively shared services, API Gateway for client ser-
vices communication, database per service and direct communication between service.

RM3 14 components
15 connectors

Variant of RM1 which demonstrates a cyclic dependency case, API Gateway for client
services communication, database per service and direct communication between service.

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data stores, and
Instana tracing on most services (from https://github.com/instana/robot-
shop).

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases per services from
(https://www.nginx.com/blog/introduction-to-microservices/).

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all but one
service interactions.
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• -: None or some services communicate asynchronously, none or some com-
municate asynchronously via Data Sharing, some services communicate syn-
chronously.

• --: All services communicate synchronously.

Finally, from the Inter-Service Coupling through Shared Services decision, we
derive the following scoring scheme for our ground truth assessment:

• ++: None of the services is a Directly Shared Service or Transitively Shared
Service and no Cyclic Dependencies exist.

• +: Some of the services are Transitively Shared Services, but none are Directly
Shared Services and no Cyclic Dependencies exist.

• o: Some or none of the services are Transitively Shared Services and some are
Directly Shared Services, but no Cyclic Dependencies exist.

• -: Some of the services are Transitively Shared Services and all other services
are Directly Shared Services, but no Cyclic Dependencies exist.

• --: There are Cyclic Dependencies or all the services are Transitively Shared
Components and all the services are Directly Shared Components.

6 Metrics

In this section, we describe the metrics we have hypothesized for each of the
decisions described in Sect. 3. All metrics, unless otherwise noted, are a contin-
uous value with range from 0 to 1, with 1 representing the optimal case where
a set of patterns is fully supported, and 0 the worst-case scenario where it is
completely absent.

6.1 Metrics for Inter-Service Coupling Through Databases Decision

Database Type Utilization (DTU) Metric. This metric returns the number
of the connectors from Services to Individual Databases in relation to the total
number of Service-to-Database connectors. This way, we can measure how many
services are using individual databases.

DTU =
Database per ServiceLinks

Total Service-to-DatabaseLinks

Shared Database Interactions (SDBI) Metric. Although a Shared Database
is considered as an anti-pattern in microservices, there are many systems that
make use of it either partially or completely. To measure its presence in a system,
we count the number of interconnections via a Shared Database compared to the
total number of service interconnections.

SDBI =
Service Interconnectionswith SharedDatabase

Total Service Interconnections
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6.2 Metrics for Inter-Service Coupling Through Synchronous
Invocations Decision

Service Interaction via Intermediary Component (SIC) Metric. We
defined this metric to measure the proportion of service interconnections via
asynchronous relay architectures such as Message Brokers, Publish/Subscribe,
or Stream Processing. These represent the best current practices, and are not
exhaustive; should any new architectures emerge, these should be added to this
list.

SIC =
Service Interconnections via [MessageBrokers |Pub/Sub |Stream]

Total Service Interconnections

Asynchronous Communication Utilization (ACU) Metric. This metric
measures the proportion of the sum of asynchronous service interconnections
(via API Gateway/HTTP Polling/Direct calls/Shared Database) to the total
number of service interconnections.

ACU =
Asynchronous Service Interconnections via [API |Polling |DirectCalls |SharedDB]

Total Service Interconnections

6.3 Metrics for Inter-Service Coupling Through Shared Services
Decision

Direct Service Sharing (DSS) Metric. For measuring DSS we count all the
directly shared services and set this number in relation to the total number of
system services. To this add all the shared services connectors in relation to the
total number of services interconnections. This gives us the proportion of the
directly shared elements in the system.

DSS =

SharedServices

Total Services
+

Shared ServicesConnectors

Total Service Interconnections
2

Transitively Shared Services (TSS) Metric. For measuring TSS we count
all the transitively shared services and set this number in relation to the total
number of system services. To this we add all the transitively shared service
connectors in relation to the total number of service interconnections. This gives
us the proportion of the transitively shared elements in the system.

TSS =

Transitively SharedServices

Total Services
+

Transitively Shared ServicesConnectors

Total Service Interconnections
2
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Cyclic Dependencies Detection (CDD) Metric. Let SG = (S,C) be the
service graph, S the set of service nodes, and C the set of connector edges in a
microservice model. Based on the generic definition of closed paths, we define
a closed service path in SG as a sequence of services s1, s2, . . . , sn (each service
∈ S) such that (sn, sn + 1) ∈ C is a directed connector between services for
i = 1, 2, . . . , n and s1 = sn. A service cycle is a closed service path in which no
service node is repeated except the first and last, and which contains at least two
distinct service nodes. Let ServiceCycles() return the set of all service cycles in
a service graph. CDD returns 1 (True) if there is at least one cyclic dependency
in the model:

CDD =

{
1 : if |ServiceCycles(SG)| = 0

0 : otherwise

6.4 Metrics Calculation Results

We note that for the Inter-Service Coupling through Shared Services decision as
well as SDBI metric, our metrics scale is reversed in comparison to the other two
decisions, because here we detect the presence of an anti-pattern: the optimal
result of our metrics is 0, and 1 is the worst-case result.

The metrics results for each model per decision metric are presented in
Table 3.

7 Ordinal Regression Analysis Results

The dependent outcome variables are the ground truth assessments for each
decision, as described in Sect. 5 and summarized in Table 2. The metrics defined
in Sect. 6 and summarized in Table 3 are used as the independent predictor
variables. The ground truth assessments are ordinal variables, while all the inde-
pendent variables are measured on a scale from 0.0 to 1.0. The objective of the
analysis is to predict the likelihood of the dependent outcome variable for each
of the decisions by using the relevant metrics for each decision.

Each resulting regression model consists of a baseline intercept and the inde-
pendent variables multiplied by coefficients. There are different intercepts for
each of the value transitions of the dependent variable (≥Badly Supported,
≥Neutral, ≥Well Supported, ≥Very Well Supported), while the coefficients reflect
the impact of each independent variable on the outcome. For example, a positive
coefficient, such as +5, indicates a corresponding five-fold increase in the depen-
dent variable for each unit of increase in the independent variable; conversely, a
coefficient of −30 would indicate a thirty-fold decrease.

The statistical significance of each regression model is assessed by the p-value;
the smaller the p-value, the stronger the model. A p-value smaller than 0.05 is
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Table 3. Metrics calculation results

Metrics BM1 BM2 BM3 CO1 CO2 CO3 CI1 CI2 CI3 CI4 EC1 EC2 EC3

Database-based inter-service coupling

DTU 0.33 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00

SDBI 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-service coupling through synchronous invocations

SIC 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

ACU 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-service coupling through shared services

DSS 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.38 0.00 0.00 0.00 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Metrics ES1 ES2 ES3 FM1 FM2 FM3 HM1 HM2 RM1 RM2 RM3 RS TH1 TH2

Database-based inter-service coupling

DTU 1.00 0.00 0.33 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.66 1.00 1.00

SDBI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Inter-service coupling through synchronous invocations

SIC 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.80 1.00 0.00 0.00 0.11 0.00 0.60

ACU 0.00 0.00 0.00 0.00 1.00 0.08 0.50 0.20 0.00 0.00 0.00 0.11 0.00 0.00

Inter-service coupling through shared services

DSS 0.27 0.34 0.34 0.62 0.47 0.55 0.52 0.00 0.00 0.00 0.00 0.36 0.33 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.18 0.16 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

generally considered statistically significant. In Table 4, we report the p-values
for the resulting models, which in all cases are very low, indicating that the sets
of metrics we have defined are able to predict the ground truth assessment for
each decision with a high level of accuracy.

Table 4. Regression analysis results

Intercepts/coefficients Value Model p-value

Database-based inter-service coupling

Intercept (≥Badly Supported) 2.6572 1.706019e−06

Intercept (≥Neutral) 0.8789

Intercept (≥Well Supported) −1.3820

Intercept (≥Very Well Supported) −3.1260

Metric Coefficient (DTU) 6.4406

Metric Coefficient (SDBI) −3.7048

(continued)
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Table 4. (continued)

Inter-service coupling through synchronous invocations

Intercept (≥Badly Supported) −2.6973 6.705525e−11

Intercept (≥Neutral) −4.4087

Intercept (≥Well Supported) −5.8513

Intercept (≥Very Well Supported) −15.3677

Metric Coefficient (SIC) 17.3520

Metric Coefficient (ACU) 6.5520

Inter-service coupling through shared services

Intercept (≥Neutral) 59.4089 1.625730e−10

Intercept (≥Very Well Supported) 9.7177

Metric Coefficient (DSS) −82.4474

Metric Coefficient (TSS) −122.2583

Metric Coefficient (CDD) −57.4650

8 Discussion

In this section, we first discuss what we have learned in our study that helps to
answer the research questions and then discuss potential threats to validity.

8.1 Discussion of Research Questions

To answer RQ1 and RQ2, we proposed a set of generic, technology-independent
metrics for each coupling-related decision, and to each decision option corre-
sponds at least one metric. We objectively assessed for each model how well
patterns and/or practices are supported for establishing the ground truth, and
extrapolated this to how well the broader decision is supported. We formu-
lated metrics to numerically assess a pattern’s implementation in each model,
and performed an ordinal regression analysis using these metrics as independent
variables to predict the ground truth assessment. Our results show that every
set of decision-related metrics can predict our objectively evaluated assessment
with high accuracy. This suggests that automatic metrics-based assessment of a
system’s conformance to the tenets embodied in each design decision is possible
with a high degree of confidence.

Here, we make the assumption that the source code of a system can be
mapped to the models used in our work. To enable this, we used rather simplistic
modeling means, which can rather easily be mapped from a specific source code
to the system models. However, it should be noted that full automation of this
mapping is an additional effort that needs to be considered and is the subject of
ongoing work on our part.
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Regarding RQ3, we consider that existing modeling practices can be easily
mapped to our microservice meta-model and there is no need for major exten-
sions. More specifically, for completing the modeling of our evaluation system
set, we needed to introduce 25 component types and 38 connector types, ranging
from general notions such as the Service component type, to very technology-
specific classes such as the RESTful HTTP connector, which is a subclass of Ser-
vice Connector. Our study shows that for each pattern and practice embodied in
each decision, and the proposed metrics, only a small subset of the meta-model
is required.

The decisions Inter-Service Coupling through Databases and Inter-Service
Coupling through Shared Services require to model at least the Service and
the Database component types and the technology-related connector types (e.g.
Database Connector, RESTful HTTP and Asynchronous Connector) and the
read/write process which explicitly modeled in the Database Connector type.
The Inter-Service Coupling through Synchronous Invocations decision requires a
number of additional components (e.g. Event Sourcing, Stream Processing, Mes-
saging, PubSub) and the respective connectors (e.g. Publisher, Subscriber, Mes-
sage Consumer, Messages Producer, RESTful HTTP and Asynchronous Con-
nector) to be modeled.

8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to
increase internal validity, thus avoiding bias in system composition and struc-
ture. It is possible that our search procedures introduced some kind of uncon-
scious exclusion of certain sources; we mitigated this by assembling an author
team with many years of experience in the field (including substantial industry
experiences), and performing very general and broad searches. Given that our
search was not exhaustive, and that most of the systems we found were made
for demonstration purposes, i.e. relatively modestly sized, this means that some
potential architecture elements were not included in our meta-model. In addi-
tion, this raises a possible threat to external validity of generalization to other,
and more complex, systems. We nevertheless feel confident that the systems doc-
umented are a representative cross-cut of current practices in the field, as the
points of variance between them were limited and well attested in the literature.
Another potential threat is the fact that the variant systems were derived by the
author team. However, this was done according to best practices documented in
literature. We carefully made sure only to change specific aspects in a variant
and keep all other aspects stable. That is, while the variants do not represent
actual systems, they are reasonable evolutions of the original designs.

The modeling process is also considered as source of internal validity threat.
The models of the systems were repeatedly and independently cross-checked
by the author team that has considerable experience in similar methods, but
the possibility of some interpretative bias remains: other researchers might have
coded or modeled differently, leading to different models. As a mitigation, we
also offer the whole models and the code as open access artifacts for review. Since
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we aimed only to find one model that is able to specify all observed phenomena,
and this was achieved, we consider this threat not to be a major issue for our
study. The ground truth assessment might also be subject to different interpre-
tations by different practitioners. For this purpose, we deliberately chose only
a three-step ordinal scale, and given that the ground truth evaluation for each
decision is fairly straightforward and based on best practices, we do not consider
our interpretation controversial. Likewise, the individual metrics used to evalu-
ate the presence of each pattern were deliberately kept as simple as possible, so
as to avoid false positives and enable a technology-independent assessment. As
stated previously, generalization to more complex systems might not be possi-
ble without modification. But we consider that the basic approach taken when
defining the metrics is validated by the success of the regression models.

9 Conclusions and Future Work

Our approach considered that it is achievable to develop a method for auto-
matically assessing coupling related tenets in microservice decisions based on a
microservice system’s component model. We have shown that this is possible
for microservice decision models that contain patterns and practices as decision
options. In this work, we first modeled the key aspects of the decision options
using a minimal set of component model elements. These could be possibly auto-
matically extracted from the source code. Then we derived at least one metric
per decision option and used a small reference model set as a ground truth. We
then used ordinal regression analysis for deriving a predictor model for the ordi-
nal variable. The statistical analysis shows that each decision related metrics are
quite close to the manual, pattern-based assessment.

There are many studies related on metrics for component model and other
architectures so far, but specifically for microservice architectures and their cou-
pling related tenets have not been studied. Based on our discussion in Sect. 2,
assessing microservice architectures using general metrics it is not very help-
ful. Our approach is one of the first that studies a metrics-based assessment of
coupling-related tenets in the microservices domain. We aim to a continuous
assessment, i.e. we envision an impact on continuous delivery practices, in which
the metrics are assessed with each delivery pipeline run, indicating improvement,
stability, or deterioration in microservice architecture conformance. With small
changes, our approach could also be applied, for instance, during early architec-
ture assessment. As future work, we plan to study more decisions, tenets, and
related metrics. We also plan to create a larger data set, thus better supporting
tasks such as early architecture assessment in a project.
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