
Anton Jansen · Ivano Malavolta · 
Henry Muccini · Ipek Ozkaya · 
Olaf Zimmermann (Eds.)

LN
CS

 1
22

92

14th European Conference, ECSA 2020
L’Aquila, Italy, September 14–18, 2020
Proceedings

Software 
Architecture



Lecture Notes in Computer Science 12292

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Anton Jansen • Ivano Malavolta •

Henry Muccini • Ipek Ozkaya •

Olaf Zimmermann (Eds.)

Software
Architecture
14th European Conference, ECSA 2020
L’Aquila, Italy, September 14–18, 2020
Proceedings

123



Editors
Anton Jansen
Koninklijke Philips N.V.
Eindhoven, The Netherlands

Ivano Malavolta
VU Amsterdam
Amsterdam, The Netherlands

Henry Muccini
University of L’Aquila
L’Aquila, Italy

Ipek Ozkaya
Carnegie Mellon University
Pittsburg, PA, USA

Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland
Rapperswil, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-58922-6 ISBN 978-3-030-58923-3 (eBook)
https://doi.org/10.1007/978-3-030-58923-3

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5773-8346
https://orcid.org/0000-0001-6365-6515
https://orcid.org/0000-0002-7336-4775
https://doi.org/10.1007/978-3-030-58923-3


Preface

The European Conference on Software Architecture (ECSA) is the premier European
conference that provides researchers and practitioners with a platform to present and
discuss the most recent, innovative, and significant findings and experiences in the field
of software architecture research and practice. This 14th edition of ECSA builds upon a
series of successful European workshops on software architecture held during
2004–2006, as well as a series of European software architecture conferences during
2007–2019. This edition of ECSA had a unique nature as due to the novel coronavirus,
COVID-19, it was the first ECSA conference that was originally to be held in L’Aquila,
Italy, but convened the participants around the globe virtually during September 14–18,
2020.

This year’s technical program included a main research track, three keynote talks,
and an industry track (included in this volume), as well as a doctoral symposium track
with its own keynote, a gender diversity in software architecture track with its own
keynote, and a tool demos track. In addition, ECSA 2020 also offered nine workshops
on diverse topics related to the software architecture discipline, such as automotive
architectures, quality-aware DevOps, and IoT systems. In addition, ECSA 2020 fea-
tured a journal first track partnering with the Journal of Software and Systems, Elsevier,
and the IEEE Software Magazine. The contributions of all these other meetings are
included in the companion proceedings, published in a volume by Springer CCIS.

ECSA 2020 received 103 contributions to all tracks. For the main research track, we
received 60 submissions in the two main categories: full and short research papers.
Based on the recommendations of the Program Committee, we accepted 12 papers as
full papers and 5 additional papers as short papers. Hence the acceptance rate for full
research papers was 20% for ECSA 2020. For the industrial track, we received 11
submissions and accepted 6 of them. The conference attracted papers (co-)authored by
researchers, practitioners, and academia from 24 countries (Austria, Australia, Brazil,
Canada, Chile, Columbia, Denmark, Ecuador, Finland, France, Germany, Italy, the
Netherlands, New Zealand, Spain, Pakistan, Poland, Portugal, Romania, Sweden,
Switzerland, Tunisia, the UK, and the USA).

The main ECSA program had three keynotes. Professor Ivica Crnkovic from
Chalmers University, Sweden, talked about “AI engineering—new challenges in sys-
tem and software architecting and managing lifecycle for AI-based systems.” Professor
Diomidis Spinellis, from Athens University of Economics and Business, Greece, gave
a presentation on “Fifty years of sustained progress: Form, forces, and lessons of Unix
architectural evolution.” The industry keynote was delivered by Michael Keeling, an
experienced software engineer and the author of the book “Design It! From Pro-
grammer to Software Architect.”

We are grateful to the members of the Program Committee for helping us to seek
submissions and provide valuable and timely reviews. Their efforts enabled us to put
together a high-quality technical program for ECSA 2020. We would like to thank the



members of the Organizing Committee of ECSA 2020 for playing an enormously
important role in successfully organizing the event with several tracks and collocated
events, as well as the workshop organizers, who made significant contributions to this
year’s successful event.

We also thank our sponsors who provided financial support for the event: the
University of L’Aquila, Italy, provided the technology infrastructure and the support
needed, nExpecto, and Springer.

The ECSA 2020 submission and review process was supported by the EasyChair
conference management system. We acknowledge the prompt and professional support
from Springer who published these proceedings in electronic volumes as part of the
Lecture Notes in Computer Science series. Finally, we would like to thank the authors
of all the ECSA 2020 submissions and the attendees of the conference for their
participation.

ECSA 2020 planning and execution took place during an unprecedented time in our
history, globally we had to face a pandemic as well as understand and react to con-
sequences of systematic racism and intolerance. As the ECSA community, we pledge
to stand against racism and intolerance and strive to elevate the ideas and voices of
black, indigenous, and people of color who have been historically excluded because of
systemic racism.

We thank the support of the software architecture community, they reacted by
continuing to advance the field of software architecture through their scientific sub-
missions to ECSA, while staying flexible as the Organizing Committee had to pivot
several times from an in-person, to hybrid, to an all-online conference.

July 2020 Anton Jansen
Ivano Malavolta
Henry Muccini
Ipek Ozkaya

Olaf Zimmermann

vi Preface



Organization

General Chair

Henry Muccini University of L’Aquila, Italy

Steering Committee

Muhammad Ali Babar The University of Adelaide, Australia
Paris Avgeriou University of Groningen, The Netherlands
Tomas Bures Charles University, Czech Republic
Rogério de Lemos University of Kent, UK
Laurence Duchien CRIStAL, University of Lille, France
Carlos E. Cuesta Rey Juan Carlos University, Spain
David Garlan Carnegie Mellon University, USA
Paola Inverardi University of L’Aquila, Italy
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Antónia Lopes University of Lisbon, Portugal
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Raffaela Mirandola Politecnico di Milano, Italy
Henry Muccini University of L’Aquila, Italy
Flavio Oquendo (Chair) IRISA, University of South Brittany, France
Ipek Ozkaya Carnegie Mellon University, USA
Jennifer Pérez Technical University of Madrid, Spain
Bedir Tekinerdogan Wageningen University, The Netherlands
Danny Weyns KU Leuven, Belgium
Uwe Zdun University of Vienna, Austria

Research Track

Program Committee Chairs

Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Ipek Ozkaya Carnegie Mellon University, USA

Program Committee

Jesper Andersson Linnaeus University, Sweden
Paris Avgeriou University of Groningen, The Netherlands
Rami Bahsoon University of Birmingham, UK
Luciano Baresi Politecnico di Milano, Italy
Thais Batista Federal University of Rio Grande do Norte, Brazil
Steffen Becker University of Stuttgart, Germany
Stefan Biffl TU Wien, Austria



Barbora Buhnova Masaryk University, Czech Republic
Tomas Bures Charles University, Czech Republic
Javier Cámara University of York, UK
Rafael Capilla Rey Juan Carlos University, Spain
Jan Carlson Malardalen University, Sweden
Siobhán Clarke Trinity College Dublin, Ireland
Vittorio Cortellessa University of L’Aquila, Italy
Carlos Cuesta Rey Juan Carlos University, Spain
Rogerio De Lemos University of Kent, UK
Elisabetta Di Nitto Politecnico di Milano, Italy
Andres Diaz Pace UNICEN University, Argentina
Khalil Drira LAAS-CNRS, France
Laurence Duchien University of Lille, France
Neil Ernst University of Victoria, Canada
George Fairbanks Google, USA
Matthias Galster University of Canterbury, New Zealand
Ilias Gerostathopoulos TU Munich, Germany
Carlo Ghezzi Politecnico di Milano, Italy
Volker Gruhn Universität Duisburg-Essen, Germany
Petr Hnetynka Charles University, Czech Republic
Paola Inverardi University of L’Aquila, Italy
Pooyan Jamshidi University of South Carolina, USA
Wouter Joosen KU Leuven, Belgium
Anne Koziolek Karlsruhe Institute of Technology, Germany
Heiko Koziolek ABB Corporate Research, Germany
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Nuno Laranjerio University of Coimbra, Portugal
Nicole Levy CNAM, France
Grace Lewis Carnegie Mellon University, USA
Antónia Lopes University of Lisbon, Portugal
Kristina Lundquist Malardalen University, Sweden
Sam Malek University of California, Irvine, USA
Tomi Männistö University of Helsinki, Finland
Antonio Martini University of Oslo, Norway
Tommi Mikkonen University of Helsinki, Finland
Mehdi Mirakhorli Rochester Institute of Technology, USA
Raffaela Mirandola Politecnico di Milano, Italy
Marina Mongiello Politecnico di Bari, Italy
Gabriel Moreno Carnegie Mellon University, USA
Juan Manuel Murillo University of Extremadura, Spain
Elisa Yumi Nakagawa University of São Paulo, Brazil
Elena Navarro University of Castilla-La Mancha, Spain
Flavio Oquendo Université Bretagne Sud, France
Claus Pahl Free University of Bozen-Bolzano, Italy
Liliana Pasquale University College Dublin, LERO, Ireland
Cesare Pautasso USI Lugano, Switzerland

viii Organization



Patrizio Pelliccione Chalmers University of Technology, Sweden
Jennifer Perez Universidad Politécnica de Madrid, Spain
Claudia Raibulet University of Milano-Bicocca, Italy
Maryam Razavian Eindhoven University of Technology, The Netherlands
Ralf Reussner Karlsruhe Institute of Technology, Germany
Bradley Schmerl Carnegie Mellon University, USA
Romina Spalazzese Malmö University, Sweden
Girish Suryanarayana Siemens Corporate Technology, India
Bedir Tekinerdogan Wageningen University, The Netherlands
Chouki Tibermacine University of Montpellier, France
Rainer Weinreich Johannes Kepler University Linz, Austria
Danny Weyns KU Leuven, Belgium
Uwe Zdun University of Vienna, Austria
Liming Zhu The University of New South Wales, Australia
Olaf Zimmermann Hochschule für Technik Rapperswill, Switzerland

Additional Reviewers

Anastase Adonis
Abdulatif Alabdulatif
Maria Istela Cagnin
Everton Cavalcante
Milena Guessi

Axel Legay
Samir Ouchani
Eduardo Silva
Roberto Verdecchia

Industry Track

Program Committee Chairs

Anton Jansen Philips, The Netherlands
Olaf Zimmermann Hochschule für Technik Rapperswil, Switzerland

Program Committee

Mohsen Anvaari Independent Consultant, Norway
Andrei Furda Hitachi Rail STS, Australia
Heiko Koziolek ABB Corporate Research, Germany
Thomas Kurpick Trusted Shops, Germany
Xabier Larrucea Tecnalia, Spain
Daniel Lübke iQuest GmbH, Germany
Željko Obrenović Incision, The Netherlands
Eltjo Poort CGI, The Netherlands
Daniele Spinosi Micron Technology, Italy
Michael Stal Siemens, Germany
Johannes Wettinger Bosch, Germany
Erik Wittern IBM T.J. Watson Research Center, USA
Eoin Woods Endava, UK

Organization ix



Additional Reviewers

Stefan Kapferer
Mirko Stocker

Organizing Committee

Proceedings Chair

Mirco Franzago University of L’Aquila, Italy

Web Chair

Karthik Vaidhyanathan Gran Sasso Science Institute, Italy

Tool Demos Chairs

Paris Avgeriou University of Groningen, The Netherlands
Barbora Buhnova Masaryk University, Czech Republic

Gender Diversity in SA Chairs

Javier Camara University of York, UK
Catia Trubiani Gran Sasso Science Institute, Italy

Doctoral Symposium Chairs

Patrizia Scandurra DIIMM, University of Bergamo, Italy
Danny Weyns KU Leuven, Belgium

Workshops Chairs

Mauro Caporuscio Linnaeus University, Sweden
Anne Koziolek Karlsruhe Institute of Technology, Germany

Journal First Chair

Uwe Zdun University of Vienna, Austria

Publicity Chairs

Stéphanie Challita Inria, France
Juergen Musil TU Wien, Austria

Student Volunteer Chairs

Roberta Capuano University of L’Aquila, Italy
Jamal El Hecham IRISA, France

x Organization



Virtualization Chairs

Claudio Di Sipio University of L’Aquila, Italy
Luca Traini University of L’Aquila, Italy

Organization xi



Keynotes



AI Engineering — New Challenges in System
and Software Architecting and Managing

Lifecycle for AI-based Systems

Ivica Crnkovic

Chalmers University, Gothenburg, Sweden
ivica.crnkovic@chalmers.se

Abstract. Artificial Intelligence based on Machine Learning, and in particular
Deep Learning, is today the fastest growing trend in software development, and
literally used in all other research disciplines, with a very high impact on the
modern society. However, a wide use of AI in many systems, in particular
dependable systems, is still far away of being widely used. On the one hand
there is a shortage of expertise, on the other hand the challenges for managing
AI-based complex and dependable systems are enormous, though less known,
and in general underestimated. Some aspects of these challenges are based on
management of resources, including computational, data storage capacity, per-
formance, and real-time constraints. Introduction of AI-based components, i.e.
components that includes AI algorithms, require significant changes in system
and software architecture, and its successful deployment is based on many
architectural decisions and on changes of the development process.

This talk discusses some of these challenges, illustrate a case of
Cyber-physical systems, and gives some ideas for new research in software
engineering inducing software architecture, i.e. for AI engineering.

Short Bio

Ivica Crnkovic is a professor of software engineering at Chalmers University,
Gothenburg, Sweden. He is the director of ICT Area of Advance at Chalmers
University, and the director of Chalmers AI Research Centre (CHAIR). His research
interests include, software architecture, software development processes, software
engineering for large complex systems, component-based software engineering, and
recently Software engineering for AI. Professor Crnkovic is the author of more than
200 refereed publications on software engineering topics, and guest editor of a number
of special issues in different journals and magazines, such as IEEE Software, and
Elsevier JSS. He was the general chair of 40th International Conference on Software
Engineering (ICSE) 2018, held in Gothenburg, 2018. Before Chalmers, Ivica Crnkovic
was affiliated with Mälardalen University, Sweden, and before that he was employed at
ABB company, Sweden, where he was responsible for software development envi-
ronments and tools.

More information is available on http://www.ivica-crnkovic.net

http://www.ivica-crnkovic.net


Fifty Years of Sustained Progress: Form,
Forces, and Lessons of Unix Architectural

Evolution

Diomidis Spinellis

Department of Management Science and Technology,
Athens University of Economics and Business, Greece

dds@aueb.gr

Abstract. Unix has evolved over five decades, shaping modern operating sys-
tems, key software technologies, and development practices. Studying the
evolution of this remarkable system from an architectural perspective can pro-
vide insights on how to manage the growth of large, complex, and long-lived
software systems. Along main Unix releases leading to the FreeBSD lineage we
examine core architectural design decisions, the number of features, and code
complexity, based on the analysis of source code, reference documentation, and
related publications. We see that the growth in size has been uniform, with some
notable outliers, while cyclomatic complexity has been religiously safeguarded.
A large number of Unix-defining design decisions were implemented right from
the very early beginning, with most of them still playing a major role. Unix
continues to evolve from an architectural perspective, but the rate of architec-
tural innovation has slowed down over the system’s lifetime. Architectural
technical debt has accrued in the forms of functionality duplication and unused
facilities, but in terms of cyclomatic complexity it is systematically being paid
back through what appears to be a self-correcting process. Some unsung
architectural forces that shaped Unix are the emphasis on conventions over rigid
enforcement, the drive for portability, a sophisticated ecosystem of other
operating systems and development organizations, and the emergence of a
federated architecture, often through the adoption of third-party subsystems.
These findings allow us to form an initial theory on the architecture evolution of
large, complex operating system software.

Short Bio

Diomidis Spinellis is a Professor in the Department of Management Science and
Technology at the Athens University of Economics and Business, Greece. His research
interests include software engineering, IT security, and cloud systems engineering. He
has written two award-winning, widely- translated books: “Code Reading” and “Code
Quality: The Open Source Perspective”. His most recent book is “Effective Debugging:
66 Specific Ways to Debug Software and Systems”. Dr. Spinellis has also published
more than 300 technical papers in journals and refereed conference proceedings, which
have received more than 8000 citations. He served for a decade as a member of the



IEEE Software editorial board, authoring the regular “Tools of the Trade” column, and
as the magazine’s Editor-in- Chief over the period 2015–2018. He has contributed code
that ships with Apple’s macOS and BSD Unix and is the developer of UMLGraph,
CScout, git-issue, and other open-source software packages, libraries, and tools.
Dr. Spinellis is a senior member of the ACM and the IEEE.

Fifty Years of Sustained Progress: Form, Forces, and Lessons of Unix xvii



Mighty Methods: Four Essential Tools
for Every Software Architect’s Silver Toolbox

Michael Keeling

LendingHome, USA
mkeeling@neverletdown.net

Abstract. It is an oversimplification to say that we are living in extraordinary
times. When my team was first asked to work from home back in February we
were happy to do our part in attempting to stem the tide of an inevitable global
pandemic. While we were eager to help, we were also nervous about how
suddenly distributing our co-located team would affect our way of working. And
yet, after several months we’ve settled into a “new normal” that looks sur-
prisingly similar to our way of working from Before. Much about how we
worked changed, in some cases dramatically, but a handful of design methods
that were central to our team remained effective even after the shift from a
co-located to fully distributed context. In particular, mob programming, example
mapping, architecture decision records, and visual thinking are consistently
among the most versatile and reliable tools in my silver toolbox.
In this talk we’ll briefly explore these four methods and speculate about what

makes them effective tools for software architects in such a broad range of
contexts and situations. While this is not a talk about remote work per se, we’ll
attempt to use the shifting context of work we’ve all experienced to further
isolate variables that might help us identify other potential mighty methods
waiting for software architects to adopt.

Short Bio

Michael Keeling is a software engineer at LendingHome and the author of Design It!:
From Programmer to Software Architect. Prior to LendingHome, Keeling worked at
IBM on the Watson Discovery Service, Vivisimo, BuzzHoney, and Black Knight
Technology. Keeling has also served as an Adjunct Faculty member at Carnegie
Mellon University in the Master of Software Engineering Distance Program since
2009. He holds a Master in Software Engineering from Carnegie Mellon University in
Pittsburgh, PA and a Bachelor of Science in Computer Science from the College of
William and Mary in Williamsburg, VA.

Keeling’s current research interests include software architecture design methods,
agile software development, and human factors of software engineering. He is a regular
speaker in the architecture and agile communities, presenting papers and talks, and
facilitating workshops for both national and international audiences. Keeling is a
two-time winner of the SEI/IEEE Software “Architecture in Practice” Best Presentation
Award for talks given at the 2012 and 2014 SATURN conferences. A full list of his
talks and workshops are available on his website:

http://www.neverletdown.net/p/speaking-and-writing.html.

http://www.neverletdown.net/p/speaking-and-writing.html


Contents

Microservices

Assessing Architecture Conformance to Coupling-Related Patterns
and Practices in Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas,
Sebastian Meixner, and Sebastian Geiger

Formal Software Architectural Migration Towards Emerging
Architectural Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Nacha Chondamrongkul, Jing Sun, and Ian Warren

Monolith Migration Complexity Tuning Through the Application
of Microservices Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

João Franscisco Almeida and António Rito Silva

Uncertainty, Self-adaptive, and Open System

Decentralized Architecture for Energy-Aware Service Assembly . . . . . . . . . . 57
Mauro Caporuscio, Mirko D’Angelo, Vincenzo Grassi,
and Raffaela Mirandola

Continuous Experimentation for Automotive Software on the Example
of a Heavy Commercial Vehicle in Daily Operation . . . . . . . . . . . . . . . . . . 73

Federico Giaimo and Christian Berger

Towards Using Probabilistic Models to Design Software Systems
with Inherent Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Alex Serban, Erik Poll, and Joost Visser

Model-Based Approaches

Empowering SysML-Based Software Architecture Description with Formal
Verification: From SysADL to CSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Fagner Dias, Marcel Oliveira, Thais Batista, Everton Cavalcante,
Jair Leite, Flavio Oquendo, and Camila Araújo

A Flexible Architecture for Key Performance Indicators Assessment
in Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Martina De Sanctis, Ludovico Iovino, Maria Teresa Rossi,
and Manuel Wimmer



Performance and Security Engineering

A Multi-objective Performance Optimization Approach
for Self-adaptive Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Davide Arcelli

Data Stream Operations as First-Class Entities in Component-Based
Performance Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Dominik Werle, Stephan Seifermann, and Anne Koziolek

Architecture-Centric Support for Integrating Security Tools
in a Security Orchestration Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Chadni Islam, Muhammad Ali Babar, and Surya Nepal

VisArch: Visualisation of Performance-based Architectural Refactorings . . . . 182
Catia Trubiani, Aldeida Aleti, Sarah Goodwin, Pooyan Jamshidi,
Andre van Hoorn, and Samuel Gratzl

Architectural Smells and Source Code Analysis

An Initial Study on the Association Between Architectural Smells
and Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Sebastian Herold

Architectural Technical Debt: A Grounded Theory . . . . . . . . . . . . . . . . . . . 202
Roberto Verdecchia, Philippe Kruchten, and Patricia Lago

Does BERT Understand Code? – An Exploratory Study on the Detection
of Architectural Tactics in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Jan Keim, Angelika Kaplan, Anne Koziolek, and Mehdi Mirakhorli

Education and Training

Teaching Students Software Architecture Decision Making. . . . . . . . . . . . . . 231
Rafael Capilla, Olaf Zimmermann, Carlos Carrillo,
and Hernán Astudillo

The PDEng Program on Software Technology: Experience Report
on a Doctorate Level Architecture Training Program . . . . . . . . . . . . . . . . . . 247

Ad T. M. Aerts and Yanja Dajsuren

Experiences and Learnings from Industrial Case Studies

Architectural Concerns for Digital Twin of the Organization. . . . . . . . . . . . . 265
Mauro Caporuscio, Farid Edrisi, Margrethe Hallberg,
Anton Johannesson, Claudia Kopf, and Diego Perez-Palacin

xx Contents



Quick Evaluation of a Software Architecture Using the Decision-Centric
Architecture Review Method: An Experience Report . . . . . . . . . . . . . . . . . . 281

Pablo Cruz, Luis Salinas, and Hernán Astudillo

The Quest for Introducing Technical Debt Management in a Large-Scale
Industrial Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Somayeh Malakuti and Sergey Ostroumov

Architecting Contemporary Distributed Systems

Determining Microservice Boundaries: A Case Study Using Static
and Dynamic Software Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Tiago Matias, Filipe F. Correia, Jonas Fritzsch, Justus Bogner,
Hugo S. Ferreira, and André Restivo

IAS: An IoT Architectural Self-adaptation Framework . . . . . . . . . . . . . . . . . 333
Mahyar T. Moghaddam, Eric Rutten, Philippe Lalanda,
and Guillaume Giraud

A Comparison of MQTT Brokers for Distributed IoT Edge Computing . . . . . 352
Heiko Koziolek, Sten Grüner, and Julius Rückert

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Contents xxi



Microservices



Assessing Architecture Conformance
to Coupling-Related Patterns
and Practices in Microservices

Evangelos Ntentos1(B), Uwe Zdun1, Konstantinos Plakidas1,
Sebastian Meixner2, and Sebastian Geiger2

1 Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Vienna, Austria

{Evangelos.Ntentos,Uwe.Zdun,Konstantinos.Plakidas}@univie.ac.at
2 Siemens Corporate Technology, Vienna, Austria

{Sebastian.Meixner,Sebastian.Geiger}@siemens.com

Abstract. Microservices are the go-to architectural style for building
applications that are polyglot, support high scalability, independent
development and deployment, and are rapidly adaptable to changes.
Among the core tenets for a successful microservice architecture is high
independence of the individual microservices, i.e. loose coupling. A num-
ber of patterns and best practices are well-established in the literature, but
most actual microservice-based systems do not, as a whole or in part, con-
form to them. Assessing this conformance manually is not realistically pos-
sible for large-scale systems. This study aims to provide the foundations
for an automated approach for assessing conformance to coupling-related
patterns and practices specific for microservice architectures. We propose
a model-based assessment based on generic, technology-independent met-
rics, connected to typical design decisions encountered in microservice
architectures. We demonstrate and assess the validity and appropriate-
ness of these metrics by performing an assessment of the conformance of
real-world systems to patterns through statistical methods.

1 Introduction

Microservice architectures [14,15,22] describe an application as a collection of
autonomous and loosely coupled services, typically modeled around a domain.
Key microservice tenets are development in independent teams, cloud-native
technologies and architectures, polyglot technology stacks including polyglot
persistence, lightweight containers, loosely coupled service dependencies, high
releasability, and continuous delivery [22]. Many architectural patterns that
reflect recommended “best practices” in a microservices context have already
been published in the literature [18,19,23]. The fact that microservice-based
systems are complex and polyglot means that an automatic or semi-automatic
assessment of their conformance to these patterns is difficult: real-world systems
feature combinations of these patterns, and different degrees of violations of the

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-58923-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_1


4 E. Ntentos et al.

same; and different technologies in different parts of the system implement the
patterns in different ways, making the automatic parsing of code and identifica-
tion of the patterns a haphazard process.

This work focuses on describing a method for assessing architecture con-
formance to coupling-related patterns and practices in microservice architec-
tures. Coupling between microservices is caused by existence of dependencies,
e.g. whenever one service calls another service to fulfill a request or share data.
Loose coupling is an established topic in service-oriented architectures [22] but
the application to the specific context of microservice architectures has not, to
our knowledge, been examined so far.

Strong coupling is conflicting with some of the key microservice tenets men-
tioned above. In particular, releasability, which is a highly desirable character-
istic in modern systems due to the emergence of DevOps practices, relies on
the rapid and independent release of individual microservices, and is compro-
mised by strong dependencies between them. For the same reason, development
in independent teams becomes more difficult, and independent deployment of
individual microservices in lightweight containers is also impeded. This work
covers three broad coupling aspects: Coupling through Databases, resulting from
reliance on commonly accessed data via shared databases; Coupling through Syn-
chronous Invocations, resulting from synchronous communication between indi-
vidual services; and Coupling through Shared Services, which arises through the
dependence on common shared services (for details see Sect. 3).

In reality, of course, no microservice system can support all microservice
tenets well at the same time. Rather the architectural decisions for or against the
use of specific patterns and practices must reflect a trade-off between ensuring
the desired tenets and other important quality attributes [12,22]. From these
considerations, this paper aims to study the following research questions:

– RQ1 How can we automatically assess conformance to loose coupling-related
patterns and practices in the context of microservice architecture decision
options?

– RQ2 How well do measures for assessing coupling-related decision options
and their associated tenets perform?

– RQ3 What is a set of minimal elements needed in a microservice architecture
model to compute such measures?

In pursuing of these questions, we surveyed the relevant literature (Sect. 2)
and gathered knowledge sources about established architecture practices and
patterns, their relations and tenets in form of a qualitative study on microser-
vice architectures. This enabled us to create a meta-model for the description
of microservice architectures, which was verified and refined through iterative
application in modelling a number of real-world systems, as outlined in Sect. 4.
We manually assessed all models and model variants on whether each deci-
sion option is supported, thereby deriving an objective ground truth (Sect. 5).
As the basis for an automatic assessment, we defined a number of generic,
technology-independent metrics to measure architecture conformance to the
decision options, i.e. at least one metric per major decision option (Sect. 6).



Assessing Architecture Conformance 5

These metrics (and combinations thereof) were applied on the models and model
variants to derive a numeric assessment, and then compared to the ground truth
assessment via an ordinal regression analysis (Sect. 7). Section 8 discusses the
results of our approach, as well as its limitations and potential threats to valid-
ity. Finally, in Sect. 9 we draw our conclusions and discuss options for future
work.

2 Related Work

Many studies focus on best practices for microservice architectures. Richard-
son [18] has published a collection of microservice patterns related to major
design and architectural practices. Patterns related to microservice APIs have
been introduced by Zimmermann et al. [23], while Skowronski [19] collected best
practices for event-driven microservice architectures. Microservice fundamentals
and best practices are also discussed by Fowler and Lewis [14], and are summa-
rized in a mapping study by Pahl and Jamshidi [16]. Taibi and Lenarduzzi [20]
study microservice “bad smells”, i.e. practices that should be avoided (which
would correspond to violations in our work).

Many software metrics-related studies for evaluating the system architecture
and individual architectural components exist, but most of them are not specific
to the microservices domain. Allen et al. [1,2] study component metrics for mea-
suring a number of quality attributes, e.g. size, coupling, cohesion, dependencies
of components, and the complexity of the architecture. Additional studies for
assessing quality attributes related to coupling and cohesion have been proposed
and validated in the literature [3,4,6,11]. Furthermore, a small number of stud-
ies [5,17,21] propose metrics specifically for assessing microservice-based soft-
ware architectures. Although these works study various aspects of architecture,
design metrics, and architecture-relevant tenets such as coupling and indepen-
dent deployment, their approach is usually generic. None of the works covers all
the related software aspects for measuring coupling in a microservice context:
the use of databases, system asynchronicity, and shared components. This is the
overarching perspective of our work, and the chief contribution of this paper.

3 Decisions

In this section, we briefly introduce the three coupling-related decisions along
with their decision options (i.e. the relevant patterns and practices) which we
study in this paper. We also discuss the impact on relevant microservice tenets,
which we later on use as an argumentation for our manual ground truth assess-
ment in Sect. 5.

Inter-Service Coupling Through Databases. One important decision in
microservice-based systems is data persistence, which needs to take into account
qualities such as reliability and scalability, but also adhere to microservice-
specific best practices, which recommend that each microservice should be



6 E. Ntentos et al.

loosely coupled and thus able to be developed, deployed, and scaled indepen-
dently [14]. At one extreme of the scale, one option is No Persistent Data Storage,
which is applicable only for services whose functions are performed on transient
data. Otherwise, the most recommended option is the Database per Service pat-
tern [18]: each service has its own database and manages its own data indepen-
dently. Another option, which negatively affects loose coupling, is to use a Shared
Database [18]: a service writes its data in a common database and other services
can read these data when required. There are two different ways to implement
this pattern: in Data Shared via Shared Database multiple services share the
same table, resulting in a strongly coupled system, whereas in Databased Shared
but no Data Sharing each service writes to and reads from its own tables, which
has a lesser impact on coupling.

Inter-Service Coupling Through Synchronous Invocations. Service inte-
gration is another core decision when building a microservice-based system. A
theoretically optimal system of independent microservices would feature no com-
munication between them. Of course, services need to communicate in reality,
and so the question of integrating them so as to not result in tight inter-service
coupling becomes paramount. The recommended practice is that communica-
tion between the microservices should be, as much as possible, asynchronous.
This can be achieved through several patterns which are widely implemented in
typical technology stacks: the Publish/Subscribe [13] pattern, in which services
can subscribe to a channel to which other services can publish; the use of a
Messaging [13] middleware, which decouples communication by using a queue
to store messages sent by the producer until they are received by the consumer;
the Data Polling [18] pattern, in which services periodically poll other services
for data changes; and the Event Sourcing [18] pattern, that ensures that all
changes to application state are stored as a sequence of events; Asynchronous
Direct Invocation technique, in which services communicate asynchronously via
direct invocations. Applying these patterns ensures loose coupling (to different
degrees), and increases the system reliability.

Inter-Service Coupling Through Shared Services. Many of the microser-
vice patterns focus on system structure, i.e. avoiding services sharing other ser-
vices altogether, or at least not in a strongly coupled way. An optimal system
in terms of architecture quality should not have any shared service. In reality,
this is often not feasible, and in larger systems service sharing leads to chains of
transitive dependencies between services. This is problematic when a service is
unaware of its transitive dependencies, and of course for the shared service itself,
where the needs of its dependents must always be taken into account during its
evolution. We define three cases: a Directly Shared Service is a microservice which
is directly linked to and required by more than one other service; a Transitively
Shared Service is a microservice which is linked to other services via at least one
intermediary service; and a Cyclic Dependency [10] which is formed when there
is a direct or transitive path that leads back to its origin, i.e. that allows a ser-
vice to be ultimately dependent on itself after a number of intermediary services.
Cyclic dependencies often emerge inadvertently through increasing complexity



Assessing Architecture Conformance 7

over the system’s lifecycle, and require extensive refactoring to resolve. All three
cases are inimical to the principle of loose coupling as well as to system qualities
such as performance, modifiability, reusability, and scalability.

4 Research and Modeling Methods

In this section, we summarize the research and modeling methods applied in our
study. The code and models used in and produced as part of this study have
been made available online for reproducibility1.

4.1 Research Method

Figure 1 shows the research steps from initial data collection to final data anal-
ysis. For the data collection phase we conducted a multi-vocal literature study
using web resources, public repositories, and scientific papers as sources [9]. We
then analyzed the data collected using qualitative methods based on Grounded
Theory [7] coding methods, such as open and axial coding, and extracted the
three core architectural decisions described in the previous section along with
their corresponding decision drivers and impacts. As data for our further research
we used generated models taken from the Model Generation process, described
below. We defined a rating scheme for systematic assessment based on support
or violation of core practices and tenets. From these we derived a ground truth
for our study (the ground truth and its calculation rules are described in Sect. 5)
as well as a set of metrics for automatically calculating conformance to each
individual pattern or practice per decision. We then used the ground truth data
to assess how well the hypothesized metrics can possibly predict the ground
truth data by performing an ordinal regression analysis. Ordinal regression is
a widely used method for modeling an ordinal response’s dependence on a set
of independent predictors, which is applicable in a variety of domains. For the
ordinal regression analysis we used the lrm function from the rms package in
R [8].

4.2 Model Generation

We began by performing an iterative study of a variety of microservice-related
knowledge sources, and we gradually refined a meta-model which contains all the
required elements to help us reconstruct existing microservice-based systems. In
order to investigate the ontology, and to evaluate the meta-model’s efficiency, we
gathered a number of microservice-based systems, summarized in Table 1. Each is
either a system published by practitioners (on GitHub and/or practitioner blogs)
or a system variant adapted from a published example according to discussions in
the relevant literature in order to explore the possible decision space. Apart from
the specific variations described in Table 1 all other system aspects remained the
same as in the base models.
1 https://bit.ly/2WmFP3N.

https://bit.ly/2WmFP3N


8 E. Ntentos et al.

Model Generation

Metrics Definition

Architectural Design DecisionsData Analysis

Extract Ontology (Data
Types) from best practices and

tenets  

Determine Decision Impacts for
each option 

Objective AssessmentStatistical Evaluation

Metrics Evaluation: Regression
analysis on ability of the metrics to
predict the ground truth assessment

Data Analysis: Qualitative study
based on Grounded Theory method

Define Metrics for quantifying
extent of support/violation of each

pattern/practice and tenet

Automatic Calculation of generated
metrics based on the system

component models

System Component
Model

Data Collection Phase

Repositories

Research Papers

Formulation of Core Decisions 

Establish a Rating Scheme for
System Assessment: Ordinal scale

based on support or violation of
patterns/practices and tenets

Static Code Analysis

Ground Truth Definition: Manual
assessment of system model
according to rating scheme

Definition of Decision Options:
Patterns and practices

Extraction of Decision Drivers:
Quality attributes/Tenets

Model VisualisationCodeable Models
Generator

Web Resources

Fig. 1. Overview diagram of the research method followed in this study

The systems were taken from 9 independent sources in total. They were devel-
oped by practitioners with microservice experience, and they are representative
of the best practices summarized in Sect. 3. We performed a fully manual static
code analysis for those models where the source code was available (7 of our 9
sources; two were modeled from documentation published by the practitioners).

To create our models, we used our existing modeling tool CodeableModels2, a
Python implementation for the precise specification of meta-models, models, and
model instances in code. Based on CodeableModels, we specified meta-models
for components, connectors and relationships. We then manually created model
instances for each of the systems in Table 1. In addition, we realized automated
constraint checkers and PlantUML code generators to generate graphical visu-
alizations of all meta-models and models.

The result is a set of precisely modeled component models of the examined
software systems (modeled using the techniques described below). This resulted
in a total of 27 models summarized in Table 1. We assume that our evaluation
systems are, or reflect, real-world practical examples of microservice architec-
tures. As many of them are open source systems with the purpose of demon-
strating practices or technologies, they are at most of medium size and modest
complexity, though.

2 https://github.com/uzdun/CodeableModels.

https://github.com/uzdun/CodeableModels


Assessing Architecture Conformance 9

4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of
components and connectors, with a set of component types for each compo-
nent and a set of connector types for each connector. For modeling microservice
architectures we followed the method reported in our previous work [21].

5 Ground Truth Calculations

In this section, we present and describe the calculation of the ground truth
assessment for each of the decisions from Sect. 3. The results of those assessments
are reported in Table 2. The assessment begins with a manual evaluation by the
authors on whether each of the relevant patterns (decision options) is either
Supported, Partially Supported, or Not Supported (S, P, N in Table 2). Based
on this and informed by the description of the impacts of the various decision
options in Sect. 3, we combined the outcome of all decision options to derive
an ordinal assessment on how well the decision as a whole is supported in each
model, using the ordinal scale: [ ++: very well supported, +: well supported, o:
neutral, -: badly supported, --: very badly supported]. This was done according
to best practices documented in literature. For instance, following the ordinal
scale the assessment for the model BM1 is +: well supported, since a) option
Database per Service is not supported, b) some services have a shared database,
but c) they do not share data via the shared database.

For the Inter-Service Coupling through Databases decision, we derive the
following scoring scheme for our ground truth assessment:

• ++: All services (which require data persistence) have individual databases
Database per Service.

• +: Some services have Shared Databases and no Data Shared via the Shared
Databases.

• o: All services have Shared Databases and no Data Shared via the Shared
Databases.

• -: Some services have Shared Databases and Data Shared via the Shared
Databases.

• --: All services have Shared Databases and Data Shared via the Shared
Databases.

From the Inter-Service Coupling through Synchronous Invocations decision, we
derive the following scoring scheme for our ground truth assessment:

• ++: All services communicate asynchronously via Message Brokers or Pub-
lish/Subscribe or Stream Processing

• +: All services communicate asynchronously via API Gateway or HTTP
Polling or Direct Asynchronous calls, or (some) via Message Brokers or Pub-
lish/Subscribe or Stream Processing.

• o: None or some services communicate asynchronously and all other services
communicate asynchronously via Data Sharing (e.g. Shared DB).



10 E. Ntentos et al.

Table 1. Overview of modelled systems (size, details, and sources)

Model ID Model Size Description / Source
BM1 10 components

14 connectors
Banking-related application based on CQRS and event sourcing (from https://
github.com/cer/event-sourcing-examples).

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service invocations
instead of event-based communication.

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service invocations
instead of event-based communication.

CO1 8 components
9 connectors

The common component model E-shop application implemented as microservices
directly accessed by a Web frontend (from https://github.com/cocome-
community-case-study/cocome-cloud-jee-microservices-rest).

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message broker.
Added support for Open Tracing. Added an API gateway.

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communication, but
a shared database for accessing product and store data. Added support for Open Tracing.

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases per service,
and an API gateway (from https://codeburst.io/build-a-nodejs-
cinema-api-gateway-and-deploying-it-to-docker-\part-4-
703c2b0dd269).

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway.

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway.

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and another sub-
system routing all traffic via the API gateway.

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an API
gateway for service-based API (from https://microservices.io/patterns/
microservices.html).

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally.

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interactions.

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interaction, a
middleware-triggered identity service, databases per service (4 SQL DBs, 1 Mongo
DB, and 1 Redis DB), and backends for frontends for two Web app types and
one mobile app type (from https://github.com/dotnet-architecture/
eShopOnContainers).

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-
based communication and one shared SQL DB for all 6 of the services using DBs. No
service interaction via the shared database occurs.

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-
based communication and one shared database for all 4 of the services using SQL DB in
ES1. However, no service interaction via the shared database occurs.

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly linked to
a Web UI (from https://github.com/jferrater/Tap-And-Eat-
MicroServices).

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API composition and asynchronous
interservice communication. Added Jaeger-based tracing per service.

FM3 13 components
15 connectors

Variant of FM1 which demonstrates a cyclic dependency case, uses the store service as
an API composition and asynchronous inter-service communication

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and OpenCensus moni-
toring & tracing for all but one services as well as on the gateway. (from https:
//github.com/GoogleCloudPlatform/microservices-demo).

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except for
one service, and realizes the tracing on all services.

RM1 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain
event interactions. Rudimentary tracing support (from https://github.com/
microservices-patterns/ftgo-application).

RM2 14 components
14 connectors

Variant of RM1 which contains transitively shared services, API Gateway for client ser-
vices communication, database per service and direct communication between service.

RM3 14 components
15 connectors

Variant of RM1 which demonstrates a cyclic dependency case, API Gateway for client
services communication, database per service and direct communication between service.

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data stores, and
Instana tracing on most services (from https://github.com/instana/robot-
shop).

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases per services from
(https://www.nginx.com/blog/introduction-to-microservices/).

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all but one
service interactions.



Assessing Architecture Conformance 11

T
a
b
le

2
.
G

ro
u
n
d

tr
u
th

a
ss

es
sm

en
t

re
su

lt
s

B
M

1
B
M

2
B
M

3
C
O
1

C
O
2

C
O
3

C
I1

C
I2

C
I3

C
I4

E
C
1

E
C
2

E
C
3

E
S
1

E
S
2

E
S
3

F
M

1
F
M

2
F
M

3
H
M

1
H
M

2
R
M

1
R
M

2
R
M

3
R
S

T
H
1

T
H
2

D
a
ta

b
a
se

-b
a
se

d
in
te

r-
se

rv
ic
e
c
o
u
p
li
n
g

D
a
ta

ba
se

p
e
r
S
e
r
v
ic
e

N
S

S
S

S
P

S
S

S
S

S
S

N
S

N
P

S
S

S
S

S
N

S
S

N
S

S

S
h
a
re
d

D
a
ta

ba
se

P
N

N
N

N
P

N
N

N
N

N
N

S
N

S
P

N
N

N
N

N
S

N
N

S
N

N

D
a
ta

S
h
a
re
d

v
ia

S
h
a
re
d

D
B

N
N

N
N

N
P

N
N

N
N

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N

A
s
s
e
s
s
m

e
n
t
s

+
+

+
+

+
+

+
+

+
-

+
+

+
+

+
+

+
+

+
+

+
+

--
+

+
o

+
+

+
+

+
+

+
+

+
+

+
o

+
+

+
+

o
+

+
+

+

In
te

r-
se

rv
ic
e
c
o
u
p
li
n
g

th
ro

u
g
h

sy
n
c
h
ro

n
o
u
s
in
v
o
c
a
ti
o
n
s

A
sy

n
c
h
ro

n
o
u
s
D
ir
ec

t

In
te
rc
o
n
n
ec

ti
o
n
s

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
S

S
P

P
N

N
N

P
N

N

P
u
b
S
u
b
/
E
v
e
n
t

S
o
u
rc
in

g

In
te
rc
o
n
n
ec

ti
o
n
s

S
N

N
N

N
N

N
N

N
N

N
S

N
P

N
N

N
N

N
N

S
P

N
N

N
N

P

A
sy

n
c
h

In
te
r
-c
o
m
m
u
n
ic
a
ti
o
n

v
ia

A
P
I
G
W

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N

S
h
a
re
d

D
a
ta

ba
se

In
te
rc
o
n
n
ec

ti
o
n
s

N
N

N
N

N
P

N
N

N
N

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N

M
e
ss
a
g
in

g

In
te
rc
o
n
n
ec

ti
o
n
s

N
N

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
P

N
N

P
N

N

A
s
s
e
s
s
m

e
n
t
s

+
+

--
-

--
+

+
-

--
--

--
--

--
+

+
o

+
--

--
--

+
+

-
+

+
+

--
--

o
--

+

In
te

r-
se

rv
ic
e
c
o
u
p
li
n
g

th
ro

u
g
h

sh
a
re

d
se

rv
ic
e
s

D
ir
ec

t
S
e
r
v
ic
e
S
h
a
r
in

g
N

N
N

N
N

N
P

N
P

N
N

N
N

P
P

P
P

P
P

P
N

N
N

N
P

P
N

T
ra

n
si
ti
v
e
ly

S
h
a
re
d

S
e
r
v
ic
e
s

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

P
N

N
N

S
N

N
N

N

C
y
c
li
c
D
e
p
e
n
d
e
n
c
ie
s

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

S
N

N
N

N
S

N
N

N

A
s
s
e
s
s
m

e
n
t
s

+
+

+
+

+
+

+
+

+
+

+
+

o
+

+
o

+
+

+
+

+
+

+
+

o
o

o
o

o
--

o
+

+
+

+
o

--
o

o
+

+



12 E. Ntentos et al.

• -: None or some services communicate asynchronously, none or some com-
municate asynchronously via Data Sharing, some services communicate syn-
chronously.

• --: All services communicate synchronously.

Finally, from the Inter-Service Coupling through Shared Services decision, we
derive the following scoring scheme for our ground truth assessment:

• ++: None of the services is a Directly Shared Service or Transitively Shared
Service and no Cyclic Dependencies exist.

• +: Some of the services are Transitively Shared Services, but none are Directly
Shared Services and no Cyclic Dependencies exist.

• o: Some or none of the services are Transitively Shared Services and some are
Directly Shared Services, but no Cyclic Dependencies exist.

• -: Some of the services are Transitively Shared Services and all other services
are Directly Shared Services, but no Cyclic Dependencies exist.

• --: There are Cyclic Dependencies or all the services are Transitively Shared
Components and all the services are Directly Shared Components.

6 Metrics

In this section, we describe the metrics we have hypothesized for each of the
decisions described in Sect. 3. All metrics, unless otherwise noted, are a contin-
uous value with range from 0 to 1, with 1 representing the optimal case where
a set of patterns is fully supported, and 0 the worst-case scenario where it is
completely absent.

6.1 Metrics for Inter-Service Coupling Through Databases Decision

Database Type Utilization (DTU) Metric. This metric returns the number
of the connectors from Services to Individual Databases in relation to the total
number of Service-to-Database connectors. This way, we can measure how many
services are using individual databases.

DTU =
Database per ServiceLinks

Total Service-to-DatabaseLinks

Shared Database Interactions (SDBI) Metric. Although a Shared Database
is considered as an anti-pattern in microservices, there are many systems that
make use of it either partially or completely. To measure its presence in a system,
we count the number of interconnections via a Shared Database compared to the
total number of service interconnections.

SDBI =
Service Interconnectionswith SharedDatabase

Total Service Interconnections



Assessing Architecture Conformance 13

6.2 Metrics for Inter-Service Coupling Through Synchronous
Invocations Decision

Service Interaction via Intermediary Component (SIC) Metric. We
defined this metric to measure the proportion of service interconnections via
asynchronous relay architectures such as Message Brokers, Publish/Subscribe,
or Stream Processing. These represent the best current practices, and are not
exhaustive; should any new architectures emerge, these should be added to this
list.

SIC =
Service Interconnections via [MessageBrokers |Pub/Sub |Stream]

Total Service Interconnections

Asynchronous Communication Utilization (ACU) Metric. This metric
measures the proportion of the sum of asynchronous service interconnections
(via API Gateway/HTTP Polling/Direct calls/Shared Database) to the total
number of service interconnections.

ACU =
Asynchronous Service Interconnections via [API |Polling |DirectCalls |SharedDB]

Total Service Interconnections

6.3 Metrics for Inter-Service Coupling Through Shared Services
Decision

Direct Service Sharing (DSS) Metric. For measuring DSS we count all the
directly shared services and set this number in relation to the total number of
system services. To this add all the shared services connectors in relation to the
total number of services interconnections. This gives us the proportion of the
directly shared elements in the system.

DSS =

SharedServices

Total Services
+

Shared ServicesConnectors

Total Service Interconnections
2

Transitively Shared Services (TSS) Metric. For measuring TSS we count
all the transitively shared services and set this number in relation to the total
number of system services. To this we add all the transitively shared service
connectors in relation to the total number of service interconnections. This gives
us the proportion of the transitively shared elements in the system.

TSS =

Transitively SharedServices

Total Services
+

Transitively Shared ServicesConnectors

Total Service Interconnections
2



14 E. Ntentos et al.

Cyclic Dependencies Detection (CDD) Metric. Let SG = (S,C) be the
service graph, S the set of service nodes, and C the set of connector edges in a
microservice model. Based on the generic definition of closed paths, we define
a closed service path in SG as a sequence of services s1, s2, . . . , sn (each service
∈ S) such that (sn, sn + 1) ∈ C is a directed connector between services for
i = 1, 2, . . . , n and s1 = sn. A service cycle is a closed service path in which no
service node is repeated except the first and last, and which contains at least two
distinct service nodes. Let ServiceCycles() return the set of all service cycles in
a service graph. CDD returns 1 (True) if there is at least one cyclic dependency
in the model:

CDD =

{
1 : if |ServiceCycles(SG)| = 0

0 : otherwise

6.4 Metrics Calculation Results

We note that for the Inter-Service Coupling through Shared Services decision as
well as SDBI metric, our metrics scale is reversed in comparison to the other two
decisions, because here we detect the presence of an anti-pattern: the optimal
result of our metrics is 0, and 1 is the worst-case result.

The metrics results for each model per decision metric are presented in
Table 3.

7 Ordinal Regression Analysis Results

The dependent outcome variables are the ground truth assessments for each
decision, as described in Sect. 5 and summarized in Table 2. The metrics defined
in Sect. 6 and summarized in Table 3 are used as the independent predictor
variables. The ground truth assessments are ordinal variables, while all the inde-
pendent variables are measured on a scale from 0.0 to 1.0. The objective of the
analysis is to predict the likelihood of the dependent outcome variable for each
of the decisions by using the relevant metrics for each decision.

Each resulting regression model consists of a baseline intercept and the inde-
pendent variables multiplied by coefficients. There are different intercepts for
each of the value transitions of the dependent variable (≥Badly Supported,
≥Neutral, ≥Well Supported, ≥Very Well Supported), while the coefficients reflect
the impact of each independent variable on the outcome. For example, a positive
coefficient, such as +5, indicates a corresponding five-fold increase in the depen-
dent variable for each unit of increase in the independent variable; conversely, a
coefficient of −30 would indicate a thirty-fold decrease.

The statistical significance of each regression model is assessed by the p-value;
the smaller the p-value, the stronger the model. A p-value smaller than 0.05 is



Assessing Architecture Conformance 15

Table 3. Metrics calculation results

Metrics BM1 BM2 BM3 CO1 CO2 CO3 CI1 CI2 CI3 CI4 EC1 EC2 EC3

Database-based inter-service coupling

DTU 0.33 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00

SDBI 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-service coupling through synchronous invocations

SIC 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

ACU 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-service coupling through shared services

DSS 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.38 0.00 0.00 0.00 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Metrics ES1 ES2 ES3 FM1 FM2 FM3 HM1 HM2 RM1 RM2 RM3 RS TH1 TH2

Database-based inter-service coupling

DTU 1.00 0.00 0.33 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.66 1.00 1.00

SDBI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Inter-service coupling through synchronous invocations

SIC 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.80 1.00 0.00 0.00 0.11 0.00 0.60

ACU 0.00 0.00 0.00 0.00 1.00 0.08 0.50 0.20 0.00 0.00 0.00 0.11 0.00 0.00

Inter-service coupling through shared services

DSS 0.27 0.34 0.34 0.62 0.47 0.55 0.52 0.00 0.00 0.00 0.00 0.36 0.33 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.18 0.16 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

generally considered statistically significant. In Table 4, we report the p-values
for the resulting models, which in all cases are very low, indicating that the sets
of metrics we have defined are able to predict the ground truth assessment for
each decision with a high level of accuracy.

Table 4. Regression analysis results

Intercepts/coefficients Value Model p-value

Database-based inter-service coupling

Intercept (≥Badly Supported) 2.6572 1.706019e−06

Intercept (≥Neutral) 0.8789

Intercept (≥Well Supported) −1.3820

Intercept (≥Very Well Supported) −3.1260

Metric Coefficient (DTU) 6.4406

Metric Coefficient (SDBI) −3.7048

(continued)



16 E. Ntentos et al.

Table 4. (continued)

Inter-service coupling through synchronous invocations

Intercept (≥Badly Supported) −2.6973 6.705525e−11

Intercept (≥Neutral) −4.4087

Intercept (≥Well Supported) −5.8513

Intercept (≥Very Well Supported) −15.3677

Metric Coefficient (SIC) 17.3520

Metric Coefficient (ACU) 6.5520

Inter-service coupling through shared services

Intercept (≥Neutral) 59.4089 1.625730e−10

Intercept (≥Very Well Supported) 9.7177

Metric Coefficient (DSS) −82.4474

Metric Coefficient (TSS) −122.2583

Metric Coefficient (CDD) −57.4650

8 Discussion

In this section, we first discuss what we have learned in our study that helps to
answer the research questions and then discuss potential threats to validity.

8.1 Discussion of Research Questions

To answer RQ1 and RQ2, we proposed a set of generic, technology-independent
metrics for each coupling-related decision, and to each decision option corre-
sponds at least one metric. We objectively assessed for each model how well
patterns and/or practices are supported for establishing the ground truth, and
extrapolated this to how well the broader decision is supported. We formu-
lated metrics to numerically assess a pattern’s implementation in each model,
and performed an ordinal regression analysis using these metrics as independent
variables to predict the ground truth assessment. Our results show that every
set of decision-related metrics can predict our objectively evaluated assessment
with high accuracy. This suggests that automatic metrics-based assessment of a
system’s conformance to the tenets embodied in each design decision is possible
with a high degree of confidence.

Here, we make the assumption that the source code of a system can be
mapped to the models used in our work. To enable this, we used rather simplistic
modeling means, which can rather easily be mapped from a specific source code
to the system models. However, it should be noted that full automation of this
mapping is an additional effort that needs to be considered and is the subject of
ongoing work on our part.



Assessing Architecture Conformance 17

Regarding RQ3, we consider that existing modeling practices can be easily
mapped to our microservice meta-model and there is no need for major exten-
sions. More specifically, for completing the modeling of our evaluation system
set, we needed to introduce 25 component types and 38 connector types, ranging
from general notions such as the Service component type, to very technology-
specific classes such as the RESTful HTTP connector, which is a subclass of Ser-
vice Connector. Our study shows that for each pattern and practice embodied in
each decision, and the proposed metrics, only a small subset of the meta-model
is required.

The decisions Inter-Service Coupling through Databases and Inter-Service
Coupling through Shared Services require to model at least the Service and
the Database component types and the technology-related connector types (e.g.
Database Connector, RESTful HTTP and Asynchronous Connector) and the
read/write process which explicitly modeled in the Database Connector type.
The Inter-Service Coupling through Synchronous Invocations decision requires a
number of additional components (e.g. Event Sourcing, Stream Processing, Mes-
saging, PubSub) and the respective connectors (e.g. Publisher, Subscriber, Mes-
sage Consumer, Messages Producer, RESTful HTTP and Asynchronous Con-
nector) to be modeled.

8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to
increase internal validity, thus avoiding bias in system composition and struc-
ture. It is possible that our search procedures introduced some kind of uncon-
scious exclusion of certain sources; we mitigated this by assembling an author
team with many years of experience in the field (including substantial industry
experiences), and performing very general and broad searches. Given that our
search was not exhaustive, and that most of the systems we found were made
for demonstration purposes, i.e. relatively modestly sized, this means that some
potential architecture elements were not included in our meta-model. In addi-
tion, this raises a possible threat to external validity of generalization to other,
and more complex, systems. We nevertheless feel confident that the systems doc-
umented are a representative cross-cut of current practices in the field, as the
points of variance between them were limited and well attested in the literature.
Another potential threat is the fact that the variant systems were derived by the
author team. However, this was done according to best practices documented in
literature. We carefully made sure only to change specific aspects in a variant
and keep all other aspects stable. That is, while the variants do not represent
actual systems, they are reasonable evolutions of the original designs.

The modeling process is also considered as source of internal validity threat.
The models of the systems were repeatedly and independently cross-checked
by the author team that has considerable experience in similar methods, but
the possibility of some interpretative bias remains: other researchers might have
coded or modeled differently, leading to different models. As a mitigation, we
also offer the whole models and the code as open access artifacts for review. Since



18 E. Ntentos et al.

we aimed only to find one model that is able to specify all observed phenomena,
and this was achieved, we consider this threat not to be a major issue for our
study. The ground truth assessment might also be subject to different interpre-
tations by different practitioners. For this purpose, we deliberately chose only
a three-step ordinal scale, and given that the ground truth evaluation for each
decision is fairly straightforward and based on best practices, we do not consider
our interpretation controversial. Likewise, the individual metrics used to evalu-
ate the presence of each pattern were deliberately kept as simple as possible, so
as to avoid false positives and enable a technology-independent assessment. As
stated previously, generalization to more complex systems might not be possi-
ble without modification. But we consider that the basic approach taken when
defining the metrics is validated by the success of the regression models.

9 Conclusions and Future Work

Our approach considered that it is achievable to develop a method for auto-
matically assessing coupling related tenets in microservice decisions based on a
microservice system’s component model. We have shown that this is possible
for microservice decision models that contain patterns and practices as decision
options. In this work, we first modeled the key aspects of the decision options
using a minimal set of component model elements. These could be possibly auto-
matically extracted from the source code. Then we derived at least one metric
per decision option and used a small reference model set as a ground truth. We
then used ordinal regression analysis for deriving a predictor model for the ordi-
nal variable. The statistical analysis shows that each decision related metrics are
quite close to the manual, pattern-based assessment.

There are many studies related on metrics for component model and other
architectures so far, but specifically for microservice architectures and their cou-
pling related tenets have not been studied. Based on our discussion in Sect. 2,
assessing microservice architectures using general metrics it is not very help-
ful. Our approach is one of the first that studies a metrics-based assessment of
coupling-related tenets in the microservices domain. We aim to a continuous
assessment, i.e. we envision an impact on continuous delivery practices, in which
the metrics are assessed with each delivery pipeline run, indicating improvement,
stability, or deterioration in microservice architecture conformance. With small
changes, our approach could also be applied, for instance, during early architec-
ture assessment. As future work, we plan to study more decisions, tenets, and
related metrics. We also plan to create a larger data set, thus better supporting
tasks such as early architecture assessment in a project.

Acknowledgments. This work was supported by: FFG (Austrian Research Promo-
tion Agency) project DECO, no. 846707; FWF (Austrian Science Fund) project API-
ACE: I 4268.



Assessing Architecture Conformance 19

References

1. Allen, E.B., Gottipati, S., Govindarajan, R.: Measuring size, complexity, and cou-
pling of hypergraph abstractions of software: an information-theory approach.
Softw. Qual. J. (2), 179–212. https://doi.org/10.1007/s11219-006-9010-3

2. Allen, E.B., Gottipati, S., Govindarajan, R.: Measuring size, complexity, and cou-
pling of hypergraph abstractions of software: an information-theory approach.
Softw. Qual. J. 15, 179–212 (2006)

3. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)

4. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

5. Bogner, J., Wagner, S., Zimmermann, A.: Towards a practical maintainability qual-
ity model for service-and microservice-based systems, pp. 195–198, September 2017

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

7. Corbin, J., Strauss, A.L.: Grounded theory research: procedures, canons, and eval-
uative criteria. Qual. Sociol. 13, 3–20 (1990)

8. Frank, E., Harrell, J.: Regression Modeling Strategies: With Applications to Linear
Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd edn. Springer,
Heidelberg (2013)

9. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including the grey
literature and conducting multivocal literature reviews in software engineering.
CoRR

10. Goldstein, M., Moshkovich, D.: Improving software through automatic untangling
of cyclic dependencies. In: Association for Computing Machinery, New York, NY,
USA (2014)

11. Harrison, R., Counsell, S.J., Nithi, R.V.: An evaluation of the mood set of object-
oriented software metrics. IEEE Trans. Softw. Eng. 24(6), 491–496 (1998)

12. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision models for microservices:
design areas, stakeholders, use cases, and requirements. In: Lopes, A., de Lemos,
R. (eds.) ECSA 2017. LNCS, vol. 10475, pp. 155–170. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65831-5 11

13. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Boston
(2003)

14. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term,
March 2004. http://martinfowler.com/articles/microservices.html

15. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly,
Sebastapol (2015)

16. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: 6th Interna-
tional Conference on Cloud Computing and Services Science, pp. 137–146 (2016)

17. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric
for service design. In: 18th International Conference on World Wide Web, pp.
911–920. ACM (2009)

18. Richardson, C.: A pattern language for microservices (2017). http://microservices.
io/patterns/index.html

19. Skowronski, J.: Best practices for event-driven microservice architecture (2019).
https://hackernoon.com/best-practices-for-event-driven-microservice-architectur
e-e034p21lk

https://doi.org/10.1007/s11219-006-9010-3
https://doi.org/10.1007/978-3-319-65831-5_11
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk


20 E. Ntentos et al.

20. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018)

21. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture confor-
mance to microservice decomposition patterns. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 411–429. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 29

22. Zimmermann, O.: Microservices tenets. Comput. Sci. - Res. Dev., 301–310 (2016).
https://doi.org/10.1007/s00450-016-0337-0

23. Zimmermann, O., Stocker, M., Zdun, U., Luebke, D., Pautasso, C.: Microservice
API patterns (2019). https://microservice-api-patterns.org

https://doi.org/10.1007/978-3-319-69035-3_29
https://doi.org/10.1007/s00450-016-0337-0
https://microservice-api-patterns.org


Formal Software Architectural Migration
Towards Emerging Architectural Styles

Nacha Chondamrongkul(B), Jing Sun, and Ian Warren

School of Computer Science, University of Auckland, Auckland, New Zealand
ncho604@aucklanduni.ac.nz, {jing.sun,i.warren}@auckland.ac.nz

Abstract. Software systems are evolved over time to enhance various
qualities of the software system by adopting new technologies and prin-
ciples. The architecture design is usually required to be migrated from
one architectural style to another to support this adoption, while the
key functionalities still need to be preserved. This paper presents a for-
mal approach that supports architectural migration. Our approach auto-
mates refactoring the architectural design to support the exploitation of
emerging technologies such as microservices and blockchain. With our
approach, the refactored architectural design can be verified to ensure
that the essential functional requirements are still preserved, and the
design has complied with the behavioural constraints of new architec-
tural styles. We have evaluated the accuracy and performance of our
approach. The results prove that it performs reasonably well.

Keywords: Software architecture · Architectural migration ·
Microservice · Blockchain

1 Introduction

Emerging technologies and principles have been applied to the software system
to enhance the system qualities such as maintainability, scalability and security.
Software engineers have been facing challenges to modernise the software system
by migrating the existing legacy system to take advantage of new technologies
and principles [1], such as continuous software engineering, microservices, con-
tainerisation and blockchain. Architectural patterns [13,15,19] have been pro-
posed to give structures of how software architecture should be designed to
support new technologies and principles. At the migration, software architec-
ture usually needs to be refactored to convert from an architectural pattern to
another [6], while the key functionalities need to be preserved [10].

This paper focuses on the architectural migration that modernises the soft-
ware system to support emerging technologies [18]. As discussed in Sect. 5, some
works [2,7,20] have been proposed to provide guidelines and patterns that sup-
port architectural migration. A number of tools [3,9,11,14,17] have been pro-
posed to support this task. However, existing approaches focus either refactor-
ing at the implementation level or supporting particular architectural styles.
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 21–38, 2020.
https://doi.org/10.1007/978-3-030-58923-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_2


22 N. Chondamrongkul et al.

Moreover, most of the existing tools have not addressed how to ensure that
the refactored design would preserve the system functionalities. There is still a
lack of approaches that generally support the architectural migration by both
refactoring and verifying the architectural design in an automatic manner.

This paper presents a formal approach that supports architectural migration
by refactoring and verifying the architecture design before the actual system
migration can be performed. Our approach applies ontology reasoning and model
checking technique. The contribution of this work can be summarised as follows:
1) The formal modelling of software architecture design is proposed to describe
the structural and behavioural aspect of architectural design based on architec-
tural styles. 2) A set of generic rules is presented to automate the architectural
design refactoring towards new architectural styles that support emerging tech-
nologies and principles. 3) The verification approach helps to ensure that key
functional requirements are preserved in the refactored design, and the design
has complied with the desired architectural styles. 4) We have evaluated the
accuracy and performance of our approach with the architectural design of four
real-world software systems.

The rest of this paper is organised in the following sections. Section 2 shows
how to model and refactor software architecture design. Section 3 presents the
verification approach and migration benefits. Section 4 presents the evaluation
result and the discussion. Section 5 discusses the related approaches in compar-
ison to our approach. This paper is concluded in Section 6.

2 Formal Architectural Migration

The overall process of our approach is shown in Fig. 1. Firstly, the model of cur-
rent architecture is analysed to identify parts of the design that require changes
according to the refactoring rules. The refactoring rules help to select design
entities such as connector and component that need to be changed according to
the desired architectural styles to be applied. Secondly, the refactoring steps in
the rules are performed to create the model of target architecture design. Lastly,
the verification has been performed on the model of target architecture design
to ensure that the functional requirements are still preserved, and the target
architecture design behaves according to the architectural styles.

2.1 Architecture Modelling

As this work focuses on refactoring logical architecture design for the architec-
tural migration, our architecture model is based on Connector and Connector
(C&C) view [8]. Both structure and behaviour of architecture design are sig-
nificant to refactor and verify the architecture design to support desired archi-
tectural styles [20]. Therefore, we apply ontology representation in Ontology
Web Language (OWL) to capture the structural aspect of architecture design,
according to the modelling proposed in [4]. The ontology model is expressive to



Formal Software Architectural Migration 23

Current Architecture 
Design

Target Architecture 
Design

Architecture 
Redesigner

Refactoring 
Rules

1. Identify entities to refactor

2. Perform design
 refactoring

Design Verifier
Pattern 

Constrainst
Functional

Requirement

3. Verify target architecture

Verification 
Result

Fig. 1. Overall migration process

describe the concepts and their relationship in the knowledge domain. Architec-
tural Description Language (ADL) is used to capture the behavioural aspect of
architecture design according to Wright# language proposed in [5]. Wright# is
expressive to describe the dynamic behaviour of components and connectors.

In the ontology model, the design entities in C&C view such as component,
connector, role and port are defined as classes and their relationships are defined
as object properties. The components have ports representing its interface. The
connector have roles representing parties involved in the interaction. To form
the connectivities, ports are attached to one or more roles. The architectural
patterns are formally defined to support architectural styles based on this struc-
ture. The definition of architectural patterns describes specific structural and
behavioural characteristics of different types of component and connector1. We
have formally defined basic architectural patterns such as Client-Server (CS),
Publish-Subscribe (PS), and Data Repository (RP). To support modern archi-
tectural styles, architectural patterns such as Event-Sourcing (ES) and Com-
mand Query Responsibility Segregation (CQRS - CR for command and QR for
query) [13] are also defined for event-driven architecture that is commonly used
in microservices. Oracle (OR) and Reverse-Oracle (RO) pattern are defined for
the blockchain-based architecture [19]. The structure of these architectural pat-
terns can be found in the refactoring rules presented in Sect. 2.2.

In this section, we use LifeNet as an illustrative example to present our app-
roach. Figure 2 shows the current architecture design of LifeNet. The components
are represented as rectangles and connectors are represented as rounded edged
rectangles. LifeNet is a software system that assists patients with Alzheimer’s
disease and related dementia. The system allows patients to send an emergency
request from his wristband (Lifeband) that notifies the mobile application for
medical staff (Lifeguard) and caregiver (Lifecare) to help. These requests are ver-
ified and handled by SOSGateway and RequestDispatcher component. There are
data storage components such as EMCenter and PatientRecord, represented by
cylinder box, to allow other components to query and update data. This model

1 The formal architectural patterns can be found at https://bit.ly/2vGv6qi.

https://bit.ly/2vGv6qi


24 N. Chondamrongkul et al.

applies three architectural patterns. Client-Server patterns are used for connec-
tors such as soswire and dispatchwire. Publish-Subscribe patterns are used for
notiwire connector. Data Repository patterns are used for connectors that query
and update data such as emwire and emupwire.

Patient
Record

LifeBand SOS
Gatewaysoswire

requester responder

alert sos

Request
Dispatcher

dispatchwire

requester

responder

accept

notiwire

Lifeguard Lifecare

publisher

subscriber

gnotify
cnotify

ptwire

reader ptaccess

Hospital
Mgmt

EMCenter emwire

reader

storage

storageemaccess

Practitioner

pgwire

storage
reader

pgaccess

BackOffice

emupwire

pgupwire

writestorage emupdate

writer

update
writer

ptupwire

update

writerwritestorage
pgupdate

ptupdate
writestorage

Port

Role

Fig. 2. LifeNet’s current design

The structural model of a software system are semantically defined as ontol-
ogy individuals based on the architectural pattern that are predefined as the
ontology class. Due to the page limit, we present some part of the LifeNet
model2. Listing 1.1 shows the definition of Patient component and its ports:
ptaccess and ptupdate. ptaccess takes readstorage role of ptwire connector, which
allows querying data. ptupdate takes writestorage role to allow updating data.

Listing 1.1. LifeNet’s current structural model

Individual(ex: Patient
value(ex: hasPort ex: ptaccess, ptupdate))

Individual(ex: ptaccess
value(ex: hasAttachment ex: readstorage))

Individual(ex: ptupdate
value(ex: hasAttachment ex: writestorage))

Individual(ex: ptwire
value(ex: hasRole ex: reader,readstorage)

2 The complete model in OWL of LifeNet can be found at https://bit.ly/3bhsCgO.

https://bit.ly/3bhsCgO


Formal Software Architectural Migration 25

The behavioural model are defined to describe how the components are exe-
cuted at runtime to serve the system functionalities. The description of different
connector type are defined for the interactive behaviour of architectural patterns.
Listing 1.2 shows some part of behavioural model of LifeNet3. The CSConnec-
tor is the definition of a connector type for Client-Server. The components and
their port are defined such as LifeBand and SOSGateway. The system scope
defines how component are interacting with each other. The connector such as
soswire is declared, and used later in the attach statement to define what roles
are attached to the component’s port. The execute statement defines what ports
are executed during runtime. More details about Wright# can be found in [5].

Listing 1.2. LifeNet’s current behavioural model

connector CSConnector {
role requester(j) = request -> req!j -> res?j -> process ->

Skip;
role responder() = req?j -> invoke -> process -> res!j ->

responder(); }
component LifeBand {

port alert() = onalert->alert();}
component SOSGateway {

port sos() = acknowledge->alert->sos();}
system lifenet {

declare soswire = CSConnector;
attach LifeBand.alert() = soswire.requester(49);
attach SOSGateway.sos() = soswire.responder() <*>

dispatchwire.requester(19);
execute LifeBand.alert() || SOSGateway.sos() ...

2.2 Refactoring Rules

To create the target architecture design, we defines a set of refactoring rules to
automate revising the current design. Each refactoring rule consists of ontology
definition and refactoring routine. The ontology definition captures the logic to
find component or connector that needs to be changed. The refactoring routine is
a sequence of steps that can programmatically change the design configuration to
support architectural patterns of desired architectural styles. These refactoring
rules are generic and can be applied to the architectural design of any software
system. The rules presented in this paper focuses on the migration to event-
based and blockchain-based architecture style. They represents the possible rules
that cover most well-known cases and are frequently used for migrating basic
architectural styles to modern styles. These refactoring rules are as follows:

Event Centre. The connector that helps to process events should be changed
to Event-Sourcing pattern. The ontology definition aims to select the Publish-
Subscribe connector (PSConnector) that has an inbound role subscribed to

3 The complete model in ADL of LifeNet can be found at https://bit.ly/2zhLbnN.

https://bit.ly/2zhLbnN


26 N. Chondamrongkul et al.

events to process. InboundRole represents any role that waits to be triggered.
Below is the ontology definition followed by the refactoring routine.

EventCentre ≡ PSConnector � ∃ hasRole
(InboundRole � ∃ isAttachOf (Port � EventProcessor))

a) Convert the type of connector to Event-Sourcing pattern (ESConnector) by
roles mapping shown in Fig. 3; publisher is changed to event publisher and
subscriber is changed to event subscriber.

b) Add an component of type EventStore to logs incoming events.
c) Connect the connector to the component in step b).

<component>
Event Source

<connector>
ESConnector

evpublish
event 

publisher event 
logger

<component>
Event Store

evwrite

event subscriber

<component>
Event Consumer

listen

<component>
Publisher

<component>
Subscriber

<connector>
PSConnector

publisher

subscriber

subscribe

publish <Mapping>

<Mapping>

Fig. 3. Mapping of event centre

According to these steps, the LifeNet model can be refactored as shown in
Fig. 4 a), the notiwire connector has been converted to Event-Sourcing connector
and the RequestLog component is added as an event store component.

Request
Dispatcher

accept

notiwire

Lifeguard Lifecare

eventpublisher

eventsubscriber

gnotify
cnotify Request

Log

eventstore

a) Event Centre for LifeNet b) Command & Query for LifeNet

EMCenter

Practitioner

pgwire

readstorage
reader

pgaccess

emaccess

log

BackOffice

emupwire

read
storage

commander

update

EMCenter
Command

 commandstore

logem

emupdate

Fig. 4. LifeNet’s refactoring for event-based patterns

Event-Based Command. The connector that transfers the event to persist
on a data storage should be converted to a commander in CQRS pattern. The
ontology definition selects the repository writing connector (WRConnector) that



Formal Software Architectural Migration 27

is attached to a component, where the events are created and written to the data
storage.

EventCommand ≡ WRConnector � ∃ hasRole
(Writer � ∃ isAttachOf (Port � EventProcessor))

a) Convert the type of connector to CQRS’s command (CRConnector) as shown
in Fig. 5; writer and storage role is changed to commander and command
store, respectively.

b) Add an component of type ViewDB to be a read-only data storage.
c) Connect the connector to the component in step b).

<connector>
CRConnector

<component>
Command Endpoint

<component>
View DB

issuecommander read 
store

update

<component>
Command DB

command
 store

log

<component>
DataWriter

<component>
Repository

<connector>
WRConnector

writer

storagestore

write

Repository Pattern
 (Write)

<Mapping>

<Mapping>

<connector>
QRConnector

readstore

query

<component>
Read Endpoint

read reader

<component>
DataReader

<connector>
REConnector

data reader

storage

read

access

Repository Pattern
 (Read)

<Mapping>

<Mapping>

CQRS Pattern
 (Command)

CQRS Pattern 
(Query)

Fig. 5. Mapping of Event-based CQRS

The LifeNet model can be refactored as shown in Fig. 4 b). The emupwire
has been converted to a command connector for CQRS pattern and EMCenter-
Command has been added as an command store.

Event-Based Query. The connector that queries the events persisted on the
data storage should be converted to a query processor of CQRS pattern. The
ontology definition captures the connector that has an outbound role to query
events on a data storage.

EventQuery ≡ REConnector � ∃ hasRole
(Reader � ∃ isAttachOf (Port � EventProcessor))

a) Convert the type of connector to CQRS’s query (QRConnector) as shown in
Fig. 5; data reader and storage role is changed to reader and query role of
QRConnector respectively.

b) Reroute the connector to the ViewDB component that is a read-only data
storage connected to the command connector.



28 N. Chondamrongkul et al.

According to these steps, the LifeNet model can be refactored as shown in
Fig. 4 b). The pgwire connector has been converted to query connector for CQRS
pattern. This connector links EMCenter as a ViewDB component.

Secure Data Writing. The repository component storing data that need to
be tamper-proof can be converted to apply blockchain technology. The ontology
definition selects the repository component (Repository) that its inbound port
InboundPort) is data tampering-proof and write data to the storage. InboundPort
represents any port that is attached to the inbound role.

SecureDataWriter ≡ Repository � ∃ hasPort(InboundPort �
DataTamperingProofPort � ∃ hasAttachmentWriteStorage)

a) Add an oracle component (Oracle).
b) Attach WriteStorage role to a port of oracle in step a).
c) Add a connector of type IOConnector, which is an Oracle connector.
d) Attach extsupplier role of connector in step c) to the port added in step b).
e) Add a blockchain component (Blockchain).
f) Connect the connector added in step c) to the blockchain component.

According to these steps, the LifeNet model can be refactored as shown in
Fig. 6. MedRecord is added as an oracle that connects to a blockchain called
MedChain with medupwire connector.

ptupwire
writestorage

MedChain
medfetch

MedRecord
medup
wire seclog

block
storage

extsupplier
Patient
Record

ptaccess

medwire extqurier
blocksupplier

medshare

Fig. 6. LifeNet’s refactoring to blockchain

Secure Data Reading. The blockchain should be applied at the component
that allow data to be queries securely with tampering-proof control applied.
The ontology definition selects the repository component (Repository) that its
inbound port is data tampering-proof and allow data to be queried.

SecureDataReader ≡ Repository � ∃ hasPort(InboundPort �
DataTamperingProofPort � ∃ hasAttachmentReadStorage)

a) Convert the repository to a reverse oracle component (ReverseOracle) as
shown in Fig. 7; access port is changed to blockquery port.



Formal Software Architectural Migration 29

b) Add a connector of type ROConnector, which is a Reverse-Oracle connector.
c) Attach a port converted in step a) to the connector in step b).
d) Connect the connector added in step b) to the blockchain component.

<component>
Reverse Oracle

<connector>
ROConnector

blockquery

blocksupplierextquerier

<component>
Blockchain

blocksupply<component>
DataReader

<component>
Repository

<connector>
REConnector

reader

storage

access

read

Repository Pattern

<Mapping>

Reverse Oracle Pattern

Fig. 7. Mapping of secure data reading

As shown in Fig. 6 After these steps are applied, the PatientRecord is con-
verted to a reverse oracle. The medwire is added to connect the Medchain that
stores patient records on the blockchain.

3 Justification of Architectural Migration

After the architecture design has been refactored, it is verified to ensure that
the functional requirements are preserved, and the target design is compiled
according to the desired architectural patterns. The model checking technique
has been applied to achieve this verification. We also address benefits to the
system qualities that can be gained when new architectural styles are applied.

3.1 Verifying Functional Requirements

As the behavioural model has been expressed in ADL, we use Linear Tempo-
ral Logic (LTL) to define liveness properties that describe the key functional
requirements of the software system. Liveness properties are generally used in
the model checking technique to determine whether certain states occur. In this
work, we use the liveness property to determine the sequence of events that
occurred in the software system. The property �(a → ♦b) check whether every
event a eventually leads to event b). According to the modelling proposed in [5],
the events triggered from the ports are labelled as [Comp.Prt.Evt], where Comp
is name of a component, Prt is name of a port and Evt is name of event. The
events triggered by the roles are labelled as [Comp.Conn.Rle.Evt], where Conn
is name of a connector, Rle is name of a role and Evt is name of event. The
following shows the functional properties that are defined for LifeNet.



30 N. Chondamrongkul et al.

(1) �(SOSGateway.sos.acknowledge → ♦LifeBand .alert .onalert)

(2) �(RequestDispatcher .accept .dispatched → ♦SOSGateway.sos.acknowledge)

(3) �(RequestDispatcher .accept .dispatched → ♦EMCenter .emaccess.emaccessed)

(4) �(Lifeguard .gnotify.acknowledge → ♦Patient .ptaccess.ptaccessed)
(5) �(Lifecare.cnotify.acknowledge → ♦Patient .ptaccess.ptaccessed)

These properties can be explained as follows: (1) When the emergency is
requested, the request is acknowledged and the wristband’s status is switched to
alert mode, (2) After the emergency request is dispatched to process, the request
is acknowledged by the system, (3) After the request is dispatched to process,
the system must find the emergency center in the proximity of patient location,
(4) After the emergency staff acknowledges the emergency request (through Life-
guard application), the patient record can be fetched and verified, (5) After the
caregiver acknowledges the emergency request (through Lifecare application),
the patient record can be fetched and verified.

These functional requirement properties describe how the system should
respond to the emergency request. They are specific to the software system
and have been proved valid on the model of current architecture design. The
same set of properties are used to verify the model of target architecture design.
If the verification results are proved valid, the key functional requirements are
preserved. We used PAT [16] as a model checker to make a verification in this
work. Below are some part of the verification results. All properties above are
proved valid after we verified them against the behavioural model of the target
architecture of LifeNet. In other words, the target architecture design is proved
to support all key functionalities that the current design has.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Verification Result ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
The Assertion (lifenet() |= �(SOSGateway sos ... is VALID .
The Assertion (lifenet() |= �(RequestDispatcher accept ... is VALID .

3.2 Checking Architectural Pattern Constraints

The liveness properties are defined to describe the behavioural constraints of
the architectural pattern. Each refactoring rules has a corresponding constraint
defined as the following formulas.

(1) �([EventPublisher ].[Prt ].[Event ] → ♦[EventStore].[EventCentre].eventstore.persist)

(2) �([EventCommander ].[Prt ].[Event ]

→ ♦[CommandStore].[EventCommand ].commandstore.process)

(3) �([EventReader ].[Prt ].[Event ] → ♦[ViewDB ].[EventQuery].readstore.process)

(4) �([Oracle].[Prt ].[Event ] → ♦[Blockchain].[Conn].blockstorage.stored)

(5) �([Blockchain].[Conn].blocksupplier .process → ♦[ReverseOracle].[Prt ].[Event ])



Formal Software Architectural Migration 31

Formula (1) for the Event Centre rule checks the behaviour of an Event-
Sourcing connector EventCentre. This constraint ensures that every event is
logged in the event store. EventPublisher is a component that its port (Prt)
is attached to the event publisher role. EventStore represent the component
that connects to the EventCentre connector. The eventstore.persist are role and
event predefined for the architectural pattern. Formula (2) is for the Event-based
Command rule. It ensures that every incoming command logged in the command
store. EventCommander is a component that its port (Prt) is attached to the
event commander role. CommandStore represents a component that connects to
the EventCommand connector. Formula (3) is for the Event-based Query rule.
It checks if the event can be queried from the view storage. EventReader is a
component that its port is attached to the reader role. ViewDB is read-only
storage. Formula (4) is for the Secure Data Writing rule. It ensures that the
data can be stored on the blockchain according to Oracle pattern. Oracle is an
oracle component added to the system. Blockchain represents a blockchain com-
ponent and Conn represents a Oracle connector. Formula (5) is for Secure Data
Writing rule. Blockchain represents a blockchain component and Conn repre-
sent a Reverse-Oracle connector. ReverseOracle is a Reverse-Oracle component.
To verify the target architecture design of LifeNet, below are properties that
are defined according to the formulas, respectively. After we have verified these
properties defined for the architectural constraints, the results are given as valid
for all properties. These results prove that the target architecture design has
complied with the desired architectural patterns.

(1) �(RequestDispatcher .accept .dispatched → ♦RequestLog .reqwire.eventstore.persist)

(2) �(BackOffice.updateprofile.updating

→ ♦EmCenterCommand .emupwire.commandstore.process)

(3) �(EmCenter .emaccess.emaccessed → ♦Practitioner .pgwire.readstore.process)

(4) �(MedRecord .seclog .ptcommit → ♦MedChain.medupwire.blockstorage.stored)

(5) �(MedChain.medwire.blocksupplier .process → ♦Patient .ptaccess.ptaccessed)

3.3 Benefits of the Migration

After the architecture designs of subject systems have been migrated to sup-
port new architectural styles, the target architecture designs generally gain the
following attributes.

Maintainability. The event-based architecture style has been applied to miti-
gate cohesive interdependencies among components that are in the current archi-
tecture. This style changes component’s reliance on service of another to the
events. In the target architecture designs, components can, therefore, be inde-
pendently modified, deployed and restored. In LifeNet, after Event-Sourcing pat-
tern has applied to notiwire connector as shown in Fig. 4 a), RequestDispatcher



32 N. Chondamrongkul et al.

chronologically stores all requests on the RequestLog. If the RequestDispatcher
failed or went off-line, the restoration of system state can always be done by
restoring the component’s execution based on the requests logged in the Request-
Log.

Scalability. As the target design embrace the loosely-coupled principle, each
component can be self-contained in the container that allows the component to
be deployed and executed individually. A prominence implementation of contain-
ers is Docker. Docker container is supported by tools like Kubernetes that can
automatically scale the containers. In LifeNet, after the design has been refac-
tored according to CQRS pattern as shown in Fig. 4 b), the query and update
operation performs on separate storages; EMCenterCommand for logging update
operation and EMCenter for query only. This enables us to optimise the read
operation on EMCenter by caching or clustering to support higher loads. This
optimisation can be achieved with less computational resources than traditional
data repository.

Availability. The data repositories become decentralised as the data are repli-
cated dispersedly on blockchain nodes. The decentralisation enhances the avail-
ability of data access, as there is no single point of failure. When a node fails, the
data can be accessible through other available nodes. The transactions on data
are also transparent, as the users with provided authority can always view the
transaction. In the refactored design of LifeNet shown in Fig. 6, as the patient
records are stored on MedChain, the data are replicated on every nodes joining
in the blockchain network. If a node managed by a hospital fails, the data can be
fetched or recovered from other nodes. Also, the patient records can be fetched
and traced by any hospital that joins this blockchain.

Data-Tampering Proof. In term of security, the data structure in the
blockchain is append-only, so data cannot be deleted or altered. The consen-
sus of all the ledger participants is required to record data in the blockchain. As
the target architecture design applies the architectural patterns that support the
interaction to the blockchain, sufficient security control is required to secure the
components that have direct communication with the blockchain network. In the
refactored design of LifeNet, updating data requires a consensus among hospitals
in the networks, so data can only be updated through nodes in the blockchain
network by MedRecord component. Therefore, MedRecord must apply security
controls such as authorisation and firewall to prevent malicious traffic.

4 Evaluation

This evaluation aims to assess the accuracy and performance of our approach.
As there is no benchmark set to evaluate our approach, the architectural design
of four real-world software systems are selected to create the models used in this
evaluation, namely AgriDigital (AD), Life Net (LN), Sock Shop (SS), Supply
Chain (SC). The details of their current architecture design are shown in Table 1.
The Cur.Ptn. Column denotes the architectural patterns that are applied in the



Formal Software Architectural Migration 33

current architecture designs. Tgt. Ptn. denotes the patterns that of the target
architecture designs to apply. The C&C column shows the number of component
and connector. The Req column shows the number of key functional requirements
that have been used to verify the design. The current architecture design of these
systems is based on the monolithic architecture that needs the migration to
the event-based microservice architecture to embrace loosely-coupling principle.
Also, some data are to be securely persisted on the blockchain.

Table 1. Subject systems

System Cur. Ptn. Tgt. Ptn. C&C Req

Agri Digital
Agriculture asset tracking system

CS, PS, RP OR, RO, ES 20 5

Life Net
Medical emergency system

CS, PS, RP OR, RO, ES, CR, QR 19 5

Sock Shop
E-Commerce System

CS, RP CR, QR 22 5

Supply Chain
Business process management

CS, RP OR, RO 18 6

4.1 Experiment Setup

This evaluation aims at assessing the completeness and soundness of the refac-
toring rules, and has been conducted according to the following process. Firstly,
we defined the models of current architecture design and functional requirements
using ArchModeller4. ArchModeller is a graphical user interface that allows users
to seamlessly draw a graphical diagram for software architecture design and make
a verification. The tool can automatically converts graphical diagrams into the
models in OWL and ADL for the verification. Secondly, all five refactoring rules
have been implemented in the tool to refactor the current architecture model
and create the target architecture model5. Thirdly, the functional requirement
properties have been used to verify the target architecture model. Fourthly, we
defined the pattern constraint properties to verify the target architecture model.
Lastly, we have gathered the verification results to determine the completeness
and soundness of refactoring rules. Each rule is assessed by the combination of
verification result of its pattern constraints property and all functional require-
ment properties. If the functional requirements properties have any invalid result,
the refactoring routine alters the system in the way that it incorrectly performs
functionalities. If the pattern-constraint property is proved invalid, the refactor-
ing routine may consist of steps that incorrectly refactor the design, according
to the architectural pattern. The properties that are proved valid are considered
as true-positive (Tpos), and invalid properties are considered as false-positive

4 Arch Modeller can be found at http://bit.ly/2m3LITT.
5 The implementation of refactoring rules can be found at https://bit.ly/2WEHaTw.

http://bit.ly/2m3LITT
https://bit.ly/2WEHaTw


34 N. Chondamrongkul et al.

(Fpos). We also manually verified the target architecture design to find the false-
negative (Fneg) result that is any part of the design that requires refactoring but
not covered by the refactoring rules. Below is how we calculated the measure-
ments, namely precision and recall that were used to evaluate the soundness and
completeness of our approach.

Precision =
Tpos

Tpos + Fpos
Recall =

Tpos

Tpos + Fneg

To assess the performance of our approach, we gathered the performance
statistic of the properties verification against the models of target architecture
design. The performance statistics include processing time in milliseconds and
the number of visited states. This performance evaluation was carried out using
an Intel Core i7-7500U CPU @ 2.7 GHz with 8.00 GB Ram computer.

4.2 Evaluation Result

The result of accuracy evaluation6 has been summarised in Table 2. This table
classifies the results according to the rules presented in Sect. 2.2. The ptn denotes
the verification result of pattern constraint properties. The fnc denotes the veri-
fication result of functional requirement properties. The numbers that are shown
in ptn and fnc column are the precision rate; - means that the rule is not used in
that system, as not all patterns are applied to the design. The msn column indi-
cates the false-negative result as the number of the entities that need refactoring
but not yet refactored. Overall, all refactoring rules have the precision rate of
100%. The recall rates are also 100% as we have not found any false-negative
result.

Table 2. Evaluation results

Rule AD LN SS SC

ptn fnc msn ptn fnc msn ptn fnc msn ptn fnc msn

#1 Event Centre 1.0 1.0 0 1.0 1.0 0 – – – – – –

#2 Event Command – – – 1.0 1.0 0 1.0 1.0 0 – – –

#2 Event Query – – – 1.0 1.0 0 1.0 1.0 0 – – –

#4 Secure Write 1.0 1.0 0 1.0 1.0 0 – – – 1.0 1.0 0

#5 Secure Read 1.0 1.0 0 1.0 1.0 0 – – – 1.0 1.0 0

The result of the performance evaluation is presented in Fig. 8. This graph
illustrates the verification performance of LifeNet model, as it applies all five
refactoring rules. The properties prop1 to prop5 are functional requirement
properties, while const1 to const5 are the pattern constraint properties. The

6 The models and evaluation results can be found at https://bit.ly/3ft3gQv.

https://bit.ly/3ft3gQv


Formal Software Architectural Migration 35

verification generally took less than 0.3 s. The processing times for the verifica-
tion of functional requirements have no significant difference. The const2 that
was used to verify the event command of CQRS pattern took the most processing
time, while the const5 that was used to verify the Reverse-Oracle pattern took
the least processing time. We have found the same trend in the other models.

4.3 Discussion

According to the evaluation result, the refactoring rules have been proved to be
soundness as they have been used to refactor the subject systems, while their
key functional requirements are still preserved. As all design entities that require
changes are refactored, our refactoring rules are proved to be complete. How-
ever, this evaluation focuses on the migration to only event-based microservice
and blockchain-based architecture, so the migration to other architectural styles
requires more refactoring rules to be defined by software architect. The verifi-
cation performance is acceptable for the size of model used in this evaluation,
however more comprehensive evaluation needs to be conducted to better under-
stand how it performs with different sizes of model.

Fig. 8. Performance result

Other advantages of our approach are with the formal modelling of software
architecture design. As the formal model facilitates the application of formal
techniques, the ontology reasoning and model checking can be extended to sup-
port other aspects of verification. For example, the ontology definition can be
defined to represent the security characteristics that measure and compare secu-
rity between current and target architecture designs. Also, the model checking
technique can be used to trace different execution scenarios to determine security
vulnerability or design flaws.

5 Related Work

Fowler [7] presented a principle of how we can refactor the source code to elim-
inate design flaws. Most of these design flaws pose difficulties in maintaining
the software system. Luca et al. [14] and Yun et al. [11] proposed automated



36 N. Chondamrongkul et al.

approaches that suggest refactoring plans using search-based algorithm. How-
ever, these tools are performed on the source code and rely on the user feedback,
unlike our approach that focuses at the architectural design level and rely on
the formal logics. Tanhaei et al. [17] presented a framework for refactoring the
architecture of software product lines (SPLs). Their approach aims to keep SPLs
consistent with the feature model consisted of a set of similarities and differences.
However, this approach requires a custom algorithm to reason and check the
models, unlike our approach that is based on standard techniques such as ontol-
ogy reasoning and model checking. Some guidelines such as Zimmermann [20], [2]
have been proposed to support the migration to modern architecture style such
as microservice and cloud-based software system. Holmes and Zdun [9] proposed
an automated architectural refactoring approach for security and availability
requirements. Their approach has applied formalised architectural knowledge
in model verification and transformation. Their work focuses particularly on
the infrastructure of cloud application, while our approach generally focuses on
the logical view of architecture design with different architectural styles. Nunes
et al. [12] proposed a complete workflow to support the migration to microser-
vice architecture. Their approach applies the static analysis of the source code
that is limited to a development framework. Bucchiarone et al. [3] proposed a
model-driven approach for the automatic migration to microservice architecture.
A meta-programming framework has been applied to transform the source code
and generate the container configuration; however, it does not address how to
ensure that the migrated system would correctly operate.

Overall, none of the existing works proposes a set of generic rules that sup-
port restructuring and verifying the design based on the architectural style.
The architectural styles allow technologies to be exploited in the system imple-
mentation to take various advantages, as discussed in Sect. 3.3. Also, none has
proposed to apply the formal technique to verify the target architecture design,
so it is difficult to extend the verification to check other properties as the existing
approaches rely on custom algorithms hard-coded in the tools. The verification
in our approach can be extended by defining liveness property in LTL to describe
other functional requirements or architectural pattern constraints.

6 Conclusion

In this paper, we introduce the formal approach to support architectural migra-
tion towards emerging architectural styles. A set of generic rules has been pro-
posed to automate the refactoring and checking the architectural design accord-
ing to the functional requirements and architectural styles. The verification
ensures that the key functional requirements are still preserved after the design
has been changed. Also, it ensures that the migrated system behaves according
to the desired architectural styles. With the new architectural styles applied,
new technologies can be exploited at the system implementation to enhance the
system’s qualities. The evaluation has proved that the refactoring rules are valid
and practical to perform architectural migration for the subject systems.



Formal Software Architectural Migration 37

As architectural migration is a part of system migration, we will extend this
approach to automatically plan incremental migration steps that support system
migration towards the target architecture.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

2. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D., Lynn, T.: Microservices
migration patterns. Softw.: Pract. Exp. 48, 2019–2042 (2018)

3. Bucchiarone, A., Soysal, K., Guidi, C.: A model-driven approach towards auto-
matic migration to microservices. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.)
DEVOPS 2019. LNCS, vol. 12055, pp. 15–36. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-39306-9 2

4. Chondamrongkul, N., Sun, J., Warren, I.: Ontology-based software architectural
pattern recognition and reasoning. In: 30th International Conference on Software
Engineering and Knowledge Engineering (SEKE), pp. 25–34, June 2018

5. Chondamrongkul, N., Sun, J., Warren, I.: PAT approach to architecture
behavioural verification. In: 31th International Conference on Software Engineering
and Knowledge Engineering, pp. 187–192, July 2019

6. Ford, N., Parsons, R., Kua, P.: Building Evolutionary Architectures: Support Con-
stant Change. O’Reilly Media Inc., Sebastopol (2017)

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. A Martin Fowler
Signature Book. Addison-Wesley, Boston (2019)

8. Garlan, D., et al.: Documenting Software Architectures: Views and Beyond, 2nd
edn. Addison-Wesley Professional, Boston (2010)

9. Holmes, T., Zdun, U.: Refactoring architecture models for compliance with custom
requirements. In: Proceedings of the 21th ACM/IEEE MODELS 2018, pp. 267–
277. Association for Computing Machinery, New York (2018)

10. Klettke, M., Thalheim, B.: Evolution and migration of information systems. In:
Embley, D., Thalheim, B. (eds.) Handbook of Conceptual Modeling, pp. 381–419.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15865-0 12

11. Lin, Y., Peng, X., Cai, Y., Dig, D., Zheng, D., Zhao, W.: Interactive and guided
architectural refactoring with search-based recommendation. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering FSE 2016, pp. 535–546. Association for Computing Machinery, New
York (2016)

12. Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices archi-
tecture: an approach based on transactional contexts. In: Bures, T., Duchien, L.,
Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 37–52. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29983-5 3

13. Richards, M.: Software Architecture Patterns. O’Reilly Media Inc., Sebastopol
(2015)

14. Rizzi, L., Fontana, F.A., Roveda, R.: Support for architectural smell refactoring.
In: Proceedings of the 2nd International Workshop on Refactoring IWoR 2018, pp.
7–10. Association for Computing Machinery, New York (2018)

15. Stopford, B.: Designing Event-Driven Systems. O’Reilly, Sebastopol (2018)

https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-030-39306-9_2
https://doi.org/10.1007/978-3-030-39306-9_2
https://doi.org/10.1007/978-3-642-15865-0_12
https://doi.org/10.1007/978-3-030-29983-5_3


38 N. Chondamrongkul et al.

16. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: Proceedings of the Third IEEE International
Symposium on Theoretical Aspects of Software Engineering (TASE 2009), pp.
127–135. IEEE Computer Society (2009)

17. Tanhaei, M., Habibi, J., Mirian-Hosseinabadi, S.H.: A feature model based frame-
work for refactoring software product line architecture. J. Comput. Sci. Technol.
31, 951–986 (2016)

18. Ulrich, W.: Introduction to architecture-driven modernization. In: Ulrich, W.M.,
Newcomb, P.H. (eds.) Information Systems Transformation, pp. 3–34. The
MK/OMG Press, Morgan Kaufmann, Boston (2010)

19. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for blockchain-
based applications. In: Proceedings of the 23rd European Conference on Pattern
Languages of Programs EuroPLoP 2018. Association for Computing Machinery,
New York (2018)

20. Zimmermann, O.: Architectural refactoring for the cloud: a decision-centric view
on cloud migration. Computing 99, 129–145 (2017)



Monolith Migration Complexity Tuning
Through the Application of Microservices

Patterns

João Franscisco Almeida and António Rito Silva(B)

INESC-ID/Department of Computer Science and Engineering,
Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

{joao.santos.almeida,rito.silva}@tecnico.ulisboa.pt

Abstract. The microservices architecture has become mainstream for
the development of business applications because it supports the adapta-
tion of scalability to the type of demand, but, most importantly, because
it fosters an agile development process based on small teams focused on
the product. Therefore, there is the need to migrate the existing mono-
lith systems to microservices. Current approaches to the identification
of candidate microservices in a monolith neglect the cost of redesigning
the monolith functionality due to the impact of the CAP theorem. In
this paper we propose a redesign process, guided by a set of complex-
ity metrics, that allows the software architect to analyse and redesign
the monolith functionality given a candidate decomposition. Both, the
redesign process and the metrics are evaluated in the context of candi-
date decompositions of two monolith systems.

Keywords: Microservices architecture · Monolith migration ·
Complexity metrics · Microservices patterns

1 Introduction

Microservices architecture emerged due to the need to have highly available
and scalable systems that can be developed by multiple teams in an agile envi-
ronment. This is achieved through the definition of independently deployable
distributed systems, implemented around business capabilities. As the monolith
application size increases, it imposes several drawbacks as the lack of agility,
modifiability and deployablity. As a consequence there is the need to migrate
monolith systems to a microservices architecture.

However, this transition imposes a cost because the application cannot pre-
serve the behavior that existed in the monolith. This is due to the introduction
of distributed transactions, as the monolith functionalities will be implemented
through multiple independent microservices (transactions). Therefore, transac-
tion management is more complex in a microservice architecture because trans-
actions cannot be executed according to the ACID (Atomicity, Consistency, Iso-
lation, Durability) properties, which introduces extra complexity for developers
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 39–54, 2020.
https://doi.org/10.1007/978-3-030-58923-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_3&domain=pdf
http://orcid.org/0000-0001-9840-457X
https://doi.org/10.1007/978-3-030-58923-3_3


40 J. F. Almeida and A. R. Silva

to handle. This extra complexity is explained by the CAP theorem [6], where
the decision to maintain the same level of consistency as in a monolith can only
be achieved through the application of a two-phase commit protocol, which does
not scale with many local transactions. To solve this problem, the use of sagas [5]
was suggested, in the context of the microservices architecture [11,13], as the
main alternative to the two-phase commit protocol to handle distributed trans-
actions. On the other hand, the API Gateway pattern has been proposed [11,13]
to implement queries in a distributed system.

The SAGA pattern can be applied to functionalities that create or update
data, and consist in dividing a transaction in multiple local transactions, where
each local transaction is executed inside a single service following the ACID
properties. A saga can have two different structures: (1) choreography where
the decision and sequencing is distributed through the saga participants, or (2)
orchestration, where the decision and sequencing is decided in one orchestractor
class, inside a cluster. Independently of the structure, the usage of sagas can
guarantee the properties atomicity, consistency, and durability but cannot ensure
the isolation property [13].

The lack of isolation can generate anomalies such as: (1) lost updates - when
a saga overwrites data without reading changes performed by others sagas, (2)
dirty reads - when a saga reads data changed by others sagas that have not been
committed, (3) nonrepeatable reads - a saga reads the same data twice and gets
different results. To correct this anomalies there is a set of countermeasures that
can be applied. One of them is the semantic lock that corrects these errors by
creating intermediate states as application-level locks that indicate if an entity
was written by one saga, alerting others concurrent sagas to these events. It
can be integrated with the SAGA pattern typically indicating the current saga
state. Because now all the functionalities must be aware of the semantic lock,
this imposes extra complexity to the functionalities design and implementation.
It also adds complexity to queries, that have to handle the possible combination
of semantic locks of the data that they are integrating.

Due to the lack of isolation, the saga local transactions can be of three types:
(1) pivot - a transaction that if succeeds then the saga is going to succeed; (2)
retriable - transactions that occur after the pivot transactions, do not rollback;
and (3) compensatable - the transactions that may have to rollback. In a saga
there is at most one pivot transaction, and all transactions that are not retriable
nor the pivot transaction, are compensatable.

In previous work [12,14], a tool was developed that collects information from
monolith systems and, based on similarity measures, suggests a microservice
candidate decomposition. Its level of complexity can be assessed through a com-
plexity metric that determines the decomposition complexity based on the mean
of its functionalities complexity. This metric calculates the impact that the relax-
ing of atomic transactional behaviour has on the redesign and implementation
of the functionalities. In this paper we leverage on the previous work by, given
a decomposition and a complexity value, support the redesign of the function-
alities and queries, applying the SAGA and the API Gateway patterns, while



Monolith to Microservices 41

the complexity value is tuned, because there is more precise information on the
decomposition. With our approach we intend to answer the following questions:

– RQ1. What set of operations can be provided to the architect such that the
functionalities can be redesigned by applying the SAGA pattern?

– RQ2. Is it possible to refine the complexity value associated with the mono-
lith migration when there is additional information about the functionalities
redesign?

This paper makes two contributions. First, we define a set of operations that
the architect can apply to the initial execution flow of a monolith functionality,
such that it can be transformed in a microservices execution flow based on the
SAGA pattern. Second, we define new metrics that provide a more precise value
on the cost of the migration, due to the inclusion of the information about the
application of the SAGA pattern.

In the next section we present the set of operations used in the redesign. In
Sect. 3 we present the new complexity metrics. In Sect. 4 we evaluate our work
in the context of two monolith systems. Section 5 addresses the related work and
Sect. 6 the conclusions.

2 Functionality Redesign

Definition: Monolith. A monolith is a pair (F,E), where F represents its set
of functionalities, the functionalities are represented with lower case f , and E
represents its set of domain entities, which are accessed by the functionalities,
the domain entities are represented with lower case e.

The entities are accessed by the functionalities in two modes, read and write.
Therefore, M = {r, w} represents the access modes in a monolith, and an access
is a pair domain entity access mode, represented by (e,m).

The accesses of a functionality f are represented as a sequence of accesses
s, where S represents all the sequences of accesses done in the monolith by its
functionalities to the domain entities, f.sequence denotes the sequence of access
of functionality f , s.entities denotes the entities accessed in sequence s.

It is also defined the auxiliary function entities(s : S,m : M) : 2E , as
entities(s,m) = {e ∈ E : (e,m) ∈ s}, which returns the entities accessed in
s in mode m.

When a monolith is decomposed into a set of candidate microservices, each
candidate microservice is a cluster of domain entities.

Definition: Monolith Decomposition. A monolith decomposition into a set
of candidate microservices is defined by a set of clusters C of the monolith
domain entities, where each cluster c represents a candidate microservice and
c.entities denote the domain entities in cluster c, such that all domain entities
are in a cluster,

⋃
c∈C c.entities = E, and in a single one, ∀ci �=cj∈Cci.entities ∩

cj .entities = ∅.



42 J. F. Almeida and A. R. Silva

Given e ∈ E and a decomposition C, e.cluster denotes the entity’s cluster,
and given a set of entities E′ ⊆ E, E′.cluster = {c ∈ C : ∃e∈E′e ∈ c.entities}
denotes its set of entities clusters.

Given a monolith candidate decomposition, the monolith functionalities are
decomposed into a set of local transactions, where each local transaction corre-
sponds to the ACID execution of part of the functionality domain entity accesses
in the context of a candidate microservice.

Definition: Functionality Decomposition. A monolith functionality f is
decomposed, in the context of a candidate decomposition C, by a sequence of
sequences of access to domain entities, denoted by f.subsequences, where all
domain entities in a subsequence are in the same cluster, ∀s∈f.subsequences∃c∈C :
s.entities ⊆ c.entities, two consecutive subsequences occur in different clusters,
∀0≤i<f.subsequences.size−1 f.subsequences[i].entities.cluster �= f.subsequences
[i + 1].entities.cluster. In order to have a consistent subsequence associated
with a functionality f in a decomposition, the following condition must hold:

concati=0..f.subsequences.size−1(f.subsequences[i]) = prune(f.sequence)

Where the prune function removes, for each sequence of accesses inside each
cluster c ∈ C, the accesses according to the following rules: (1) if a domain
entity is read, all subsequent reads of that entity are removed, (2) if an domain
entity is written, all subsequent accesses of that entity are removed. A sequence
of domain entity accesses where these two rules hold is pruned, it only contains
the read and write accesses that are visible outside the cluster, the ones that are
relevant for the semantic lock countermeasure.

In the redesign of a functionality in the context of a decomposition we define
the set of local transactions participating in the saga that implements the func-
tionality.

Definition: Local Transaction. A local transaction lt of a functionality f ,
is a pair (s, t), where s is a pruned sequence of access domain entities, all its
accesses are to domain entities of the same cluster, ∃c∈C : s.sequence.entities ⊆
c.entities, and t is the transaction type, which can be compensatable, pivot, and
retriable.

T denotes the set of transaction types, LT denotes the set of local transac-
tions in a decomposition, lt denotes a local transaction, lt.cluster denotes the
cluster where the lt occurs, lt.sequence denotes the sequence of accesses, and
lt.type denotes the type of the local transaction.

A local transaction sequence should be pruned, for each domain entity in
the sequence there is 0..1 read accesses and 0..1 write accesses, and when there
is a read and a write access to the same domain entity, the read access has to
occur first. These are the accesses that have impact outside the local transaction
atomic execution.

The redesign of a functionality in the context of a decomposition corresponds
to the application of a set of operations to a graph which represents the function-
ality execution, where the nodes represent the functionalities’ local transactions
and the edges the remote invocations between transactions.



Monolith to Microservices 43

Definition: Functionality Execution Graph. A functionality f redesign in
the context of a monolith decomposition is represented by a graph g, where the
nodes are local transactions, denoted by g.lt, and the edges remote invocations
between local transactions, denoted by g.ri:

– g.lt is the set of local transactions, such that:
1.

⋃
lt∈g.lt lt.sequence.entities = f.sequence.entities

2. #{lt ∈ g.lt : lt.type = pivot)} ≤ 1
– g.ri is the set of local transactions pairs that represent the remote invocations:

1. ∀(lti,ltj)∈g.ri{lti, ltj} ⊆ g.lt
2. ∀(lti,ltj)∈g.ri¬∃ltk �=i∈g.lt(ltk, ltj) ∈ g.ri
3. The remote invocations define a partial order between the local transac-

tions, denoted by <g, and build using the transitive closure of the follow-
ing initial elements, ∀(lti,ltj)∈g.ltlti <g ltj . Therefore, given lti, ltj ∈ g.lt
if lti <g ltj then lti executes before ltj .

The redesign of a functionality in the context of a decomposition starts with
its initial graph, which is generated from the functionality decomposition.

Definition: Initial Graph. The initial graph gI of a functionality f has as
vertices the local transactions lt associated to each one of the subsequences of
f , gI .lt = {lt ∈ LT : lt.sequence ∈ f.subsequences ∧ lt.type is not defined},
and has as edges the pairs of local transactions associated with consecutive
subsequences, (ltj , ltk) ∈ gI .ri iff ∃0≤i<f.subsequences.size−1 : ltj .sequence =
f.subsequences[i]∧ ltk.sequence = f.subsequences[i+ 1]. It is trivial to observe
that the initial graph gI is a well-formed graph of f .

A semantic lock is an intermediate state set by a compensatable local trans-
action, a write access, that is visible by the other functionalities, and that may
eventually be undone.

Definition: Local Transaction Semantic Lock. Given an execution graph g
of a functionality f , and one of its local transactions lt, lt.sl denotes the domain
entities with a semantic lock in lt, such that lt.sl =

⋃
(e,m)∈lt.sequence(lt.type =

compensatable ∧ m = w).

Definition: Functionality Semantic Lock. Given an execution graph g of a
functionality f , g.sl denotes the domain entities with a semantic lock in g, such
that g.sl =

⋃
lt∈g.lt lt.sl.

Definition: Final Graph. A final graph gF of a functionality f is a graph
of f where all transactions have a type, ∀lt∈gF .ltlt.type is defined, and all the
transactions that follow the pivot transaction are retriable, given lti ∈ gF .lt :
lti.type = pivot =⇒ ∀jtj :lti<gF

ltj ltj .type = retriable. Additionally, it is not
possible to have a remote invocation between local transactions belonging to the
same cluster, ∀(lti,ltj)∈gF .ri{lti.cluster �= ltj .cluster}. Given that a graph has at
most one pivot transaction, and in a final graph all transactions have a defined
type, it is trivial to observe that all the transactions that do not occur after the
pivot transaction should be compensatable.



44 J. F. Almeida and A. R. Silva

Definition: Redesign Process. The redesign of a functionality f is a process
that starts with its initial graph gI and through the application of graph oper-
ations produces a final graph gF , where, in a first step, the software architect
will perform operations over the execution graph to redesign the execution flow
of f , and, finally the architect will characterize the type of local transactions,
such that the SAGA pattern is applied to the functionality f in the context of
the monolith decomposition.

We propose three basic operations and a composed operation to support the
redesign of a functionality. The basic operations are: Sequence Change, where the
order by which the local transactions are invoked is changed; Local Transaction
Merge, where two local transactions belonging to the same cluster are merged;
and, Add Compensating, where a new local transaction is added when it is neces-
sary to undo the changes done by local transactions. Additionally, we propose a
composed operation, Define Coarse-Grained Interactions, where repetitive fine-
grained interactions between two candidate microservices are synthesized into a
single coarse-grained interaction.

By applying these operations, the software architect transforms the sequence
of local transactions in the initial graph to a saga like interaction, either an
orchestration or a choreography, where in the former case there is a cluster that
coordinates the execution flow between the local transactions.

Definition: Sequence Change. Given a graph g of functionality f , three dis-
tinct local transactions, lt1, lt2, lt3 ∈ g.lt where lt1 �= lt2 �= lt3 �= lt1, lt3 <g lt2,
and a remote invocation ri = (lt1, lt2) ∈ g.ri, it is possible to replace ri by
ri′ = (lt3, lt2), such that g is transformed to g′ = (g.lt, g.ri \ {ri} ∪ ri′), a graph
of f . It is trivial to observe that the transformed graph is a well-formed graph
of f in the context of the decomposition, because lt3 executes before lt2 we can
conclude that the resulting order continues to be a partial order and all local
transactions are remotely invoked by at most one local transaction.

The change sequence operation is used to change the flow of execution of
the functionality in the context of the decomposition and it is possible to apply
when no local transaction in the invocation chain between lt3 and lt2 requires
data produced by lt2. For instance, to change the local transaction (hence the
cluster) that is responsible to trigger the execution of another particular local
transaction, which may be useful to centralize the control of execution in a
microservice that coordinates the execution of other local transactions, and so
reduce the transactional complexity behavior.

Definition: Local Transaction Merge. Given a graph g of functionality f
and two local transaction lt1, lt2 ∈ g.lt, such that they belong to the same
cluster, lt1.cluster = lt2.cluster, and they have adjacent executions, either (1)
(lt1, lt2) ∈ g.ri or (2) ∃lti∈g.lt : (lti, lt1) ∈ g.ri∧ (lti, lt2) ∈ g.ri, a new graph g′ of
f is produced, where, considering the two cases: (1) g′.lt = g.lt \ {lt1, lt2} ∪ ltm,
where ltm.sequence = prune(concat(lt1.sequence, lt2.sequence)) and g′.ri =
g.ri \ {(lt1, lt2)} \ {(lto, lt1) : (lto, lt1) ∈ g.ri} \ {(ltk, ltl) ∈ g.ri : ltk =
lt1 ∨ ltk = lt2} ∪ {(lto, ltm) : (lto, lt1) ∈ g.ri} ∪ {(ltm, lti) : (lt1, lti) ∈
g.ri ∨ (lt2, lti) ∈ g.ri}; (2) g′.lt = g.lt \ {lt1, lt2} ∪ ltm, where ltm.sequence =



Monolith to Microservices 45

prune(concat(lt1.sequence, lt2.sequence)) or ltm.sequence = prune(concat(lt2
.sequence, lt1.sequence)), and g′.ri = g.ri\{(lti, lt1), (lti, lt2)}\{(ltk, ltl) ∈ g.ri :
ltk = lt1 ∨ ltk = lt2} ∪ {(lti, ltm)} ∪ {(ltm, ltl) : (lt1, tll) ∈ g.ri∨ (lt2, tll) ∈ g.ri}.

The local transaction merge operation is used when, in the redesign pro-
cess, two local transactions become adjacent in the execution graph, and can be
included into a single local transaction. From the transactional perspective, it
is necessary to integrate their execution sequences, what is achieved with the
prune function, and in the second case, is the software architect that decide the
order by which the sequences are integrated. As result of applying this operation,
the number of intermediate states in result of the distributed execution of the
functionality is reduced.

Definition: Add Compensating. Given a graph g of functionality f , a new
graph g′ = (g.lt ∪ {ltc}, g.ri ∪ {ric}) of f is produced, where ltc /∈ g.lt,
ltc.sequence.entities =

⋃
lti∈g.lt{e ∈ entities(lti.sequence, w) : lti.cluster =

ltc.cluster ∧ lti.type = compensatable ∧ lti <g ric[1]}, ∀(e,m)∈ltc.sequencem = w,
ric /∈ g.ri and ric = (ltj , ltc), where ltj .cluster �= ltc.cluster ∧ ltj ∈ g.lt.

This operation is used to create new local transactions that access some
of the domain entities changed by other local transactions. It can be used to
create the compensating transactions that are necessary for each compensatable
transaction.

Definition: Define Coarse-Grained Interactions: Given a graph g of func-
tionality f , two candidate microservices, represented by the clusters c1 �= c2,
two remote invocations {(lt11, lt21), (lt12, lt22)} ∈ g.ri, where the remote invoca-
tions are between the given microservices, c1 = lt11.cluster = lt12.cluster∧ c2 =
lt21.cluster = lt22.cluster, and lt11 executes before lt12, lt11 <g lt12, a new
graph g′ of f is produced by applying the basic operations change sequence and
local transaction merge. First, change sequence operation is applied for lt11 and
(lti, lt12), to produce a new graph with remote invocation (lt11, lt12). Note that
is possible to apply the operation, because lt11 <g lt12 and so there exists the
remote invocation (lti, lt12). Then, local transaction merge operation is applied
to lt11, lt12 to produce a new local transaction lt1m which has remote invoca-
tions to lt21 and lt22. Finally, local transaction merge operation is applied to
lt21 and lt22 which results in lt2m local transaction and a coarser-grained remote
invocation (lt1m, lt2m). Note that this operation can be applied to any number
of remote invocations between two cluster, in the given conditions.

This operation is used to create two coarse-grained local transactions, one
in c1 and another in c2, by joining local transactions that are executed in those
clusters, in order to reduce the number of remote invocations. It must be used
when, after the automatically generated decomposition, the software architect
realizes that there are several recurring fine-grained interactions between two
candidate microservices, due to an object-oriented programming style in the
monolith, which promotes the use of fine-grained invocations between the domain
entities.

After the operations have been applied to the initial graph gI of functionality
f , the last step of the redesign is to produce a final graph gF through the charac-



46 J. F. Almeida and A. R. Silva

terization of each one of the local transactions. Therefore, the software architect
must select one transaction in the graph to be the pivot transaction. Transac-
tions that follow the pivot transaction are guaranteed to succeed are classified as
retriable, and all other local transactions are classified as compensatable. The
compensatable transactions that have semantic locks need to have at least one
compensating transaction because some of the transactions that execute after it
in the saga might fail.

3 Complexity Metrics

Given a monolith decomposition, the base metric [14] was defined in previous
works, which measures the complexity associated with the migration of a mono-
lith system to a microservices architecture. It considers the complexity of each
functionality redesign for the overall complexity of redesigning the monolith sys-
tem, due to relaxing the functionality execution isolation, because the redesign
of a functionality has to consider the intermediate states introduced by the exe-
cution of other functionalities.

Definition: Functionality Complexity in a Decomposition. Given a can-
didate decomposition C of a monolith, the complexity associated with the migra-
tion of a monolith functionality f is given by

∑

si∈f.subsequences

#
⋃

(e,m)∈si

{fi ∈ F \ {f} : (e,m−1) ∈ prune(fi.sequence)}

Where fi is a distributed transaction, it executes in more than one cluster, and
m−1 represents the inverse access mode, r−1 = w and w−1 = r.

The overall idea behind the metric is to count, for each subsequence of a func-
tionality, executing inside a cluster, the impact domain entities accesses have.
The impact of a write depends on other functionalities that read it, and, there-
fore, they may have to consider this new intermediate state, while the impact of
a read depends on how many other functionalities write it, and, therefore, intro-
duce new intermediate states to be considered by the functionality. This metric
reflects how many other functionalities need to be considered in the redesign of
a functionality, thus, how the functionality redesign is intertwined with others
functionalities business logic redesign.

However, during the redesign process, while the functionalities are redesigned,
the concepts of local transaction and remote invocation are introduced, which
allows a refinement of the previous metrics, such that, during the redesign pro-
cess, the software architect can have more precise values about the complexity.

Therefore, and because the metric will be used to inform the functionality
redesign activity, we distinguish between the complexity of redesigning the func-
tionality from the complexity that the functionality redesign adds to the redesign
of other functionalities.



Monolith to Microservices 47

Definition: Functionality Redesign Complexity. The complexity of
redesigning a functionality f , executed as a graph g, is the sum of the com-
plexity of each one of its local transaction:

complexity(f) =
∑

lt∈g.lt

complexity(lt)

The complexity of one local transaction depends on the number of semantic
locks that are introduced, because each semantic lock corresponds to an inter-
mediate state for which may be necessary to write a compensating transaction,
and it also depends on the intermediate states set by other functionalities that
the local transaction may have to consider in its reads. Note that, during the
redesign of a functionality, some of the functionalities that f interacts with may
not have been redesigned yet, and so, the metric should take into account both
situations.

Definition: Local Transaction Redesign Complexity. The complexity of lt
is given by the number of semantic locks implemented in entities of lt.sequence,
plus the number of other functionalities that write in entities read in lt, or which
have semantic locks in those entities:

complexity(lt) = #lt.sl +
∑

(e,r)∈lt.sequence

#{fi ∈ F \ {f} : (e, w) ∈ writes(fi)}

where

writes(fi) =

{
{(e, w) : (e, w) ∈ prune(fi.sequence)} if fi not redesigned
{(e, w) : (e, w) ∈ gi.sl} if fi redesigned as gi

Note that when a functionality is redesigned some writes may not be con-
sidered, because if they belong to pivot or retriable local transactions, they will
not introduce intermediate states, and so, the metric will provide a more precise
value.

The redesign of a functionality impacts on other functionalities redesign com-
plexity. For instance, if a semantic lock is created in one entity e due to the exe-
cution of a functionality fi then every other functionality fj (where i �= j) that
read the same entity e must have to be changed to accommodate the existence
of the semantic lock. Hence, the cost of redesigning fj depends on the amount
of semantic locks created by fi in entities that fj access.

Definition: System Added Complexity. Given the redesign of a functional-
ity f executed as a graph g, the system added complexity introduced by redesign
g, is given by:

addedComplexity(f, g) =
∑

lt∈g.lt

∑

fi∈F\{f}
#(reads(fi).entities ∩ lt.sl.entities)

where

reads(fi) =

{
{(e, r) : (e, r) ∈ prune(fi.sequence)} if fi not redesigned
{(e, r) : ∃lt∈gi.lt(e, r) ∈ lt.sequence} if fi redesigned as gi



48 J. F. Almeida and A. R. Silva

The redesign of functionality f may introduce inconsistent states in the appli-
cation when it has two or more semantic locks. However, this situation only
occurs when the entities belong to different clusters, because inside one cluster
the entities are updated simultaneously by ACID transactions. Hence, we con-
sider that a functionality changes a cluster when it introduces a semantic lock in
one of its entities. If we consider that a functionality f writes in more than one
cluster, this behaviour may introduce inconsistency views for any other func-
tionality fi that reads two or more of the changed clusters. Therefore, any func-
tionality fi that reads domain entities in different clusters, previously changed
by f , might encounter inconsistent states.

From a redesign point of view, the inconsistency state complexity is particular
relevant for functionalities that only read and have a single local transaction for
each cluster they access. We call queries to this type of functionalities.

Definition: Query. A query q is functionality which graph g has the following
properties: (1) its local transactions are read only, ∀lt∈g.ltlt.sequence.mode =
{r}; and (2) they only access a cluster at most once, ∀lti �=ltj∈g.ltlti.cluster �=
ltj .cluster.

Note that, if there is a functionality that only has read accesses, it is possible,
by applying the redesign operations, to generate an execution graph that is a
query. We define the cost of implementing a query as the inconsistency state it
has to handle.

Definition: Query Inconsistency Complexity. Given a query q, its incon-
sistency complexity is the sum of all the other functionalities that write in at
least two clusters that q also reads:

queryInconsistencyComplexity(q) =

#{fi ∈ F \ {q} : #clusters(entities(prune(q.sequence)) ∩ writes(fi).entities) > 1}

where writes(fi) is defined as in the local transaction complexity metric.

4 Evaluation

To evaluate the operations and metrics presented we analyzed two systems,
LdoD1 (122 controllers, 67 domain entities) and Blended Workflow2 (98 con-
trollers, 49 domain entities)3. Since the operations and metrics are applied in
the context of a candidate decomposition, we used the expert decompositions of
these systems. As the main goal of this work is to refine the existing complexity
metric we start by showing that the base metric and the new metrics are corre-
lated, when applied for the initial graph where every local transaction is typed

1 data/ecsa2020 in https://github.com/socialsoftware/mono2micro.
2 https://github.com/socialsoftware/blended-workflow.
3 https://github.com/socialsoftware/edition.

https://github.com/socialsoftware/mono2micro
https://github.com/socialsoftware/blended-workflow
https://github.com/socialsoftware/edition


Monolith to Microservices 49

as compensatable. In Fig. 1 we can observe the correlation graphs, for the mono-
lith functionalities, where each point represent for one functionality its values
according to the base metric and to the sum of the refined metrics, complexity
and added complexity. It can be observed that the metrics are correlated.

0 2,000 4,000 6,000

0

0.2

0.4

0.6

0.8

1

1.2
·104

Base Complexity

Fu
nc

ti
on

al
it
y
C
om

pl
ex

it
y
+

Sy
st
em

C
om

pl
ex

it
y

(a) LdoD

0 0.5 1 1.5 2 2.5 3

·104

0

2

4

·104

Base ComplexityFu
nc

ti
on

al
it
y
C
om

pl
ex
it
y
+

Sy
st
em

C
om

pl
ex
it
y

(b) Blended Workflow

Fig. 1. Correlation between the base metric and the sum of Functionality complexity
and System complexity

4.1 Operations Evaluation

Firstly, the set of redesign operations were defined, and formalized, after an
extensive experimentation by the expert that identified which changes have to
be applied to the decomposition of a functionality to create a suitable SAGA
implementation, while preserving its semantics.

To validate the proposed operations we started by filtering the functional-
ities in each system. The goal is to have two sets of functionalities, one with
the functionalities that perform some create, update or delete operation (CUD
operations), i.e, functionalities that write domain entities and that will be imple-
mented using the SAGA pattern, and another with the functionalities that only
read entities, i.e, functionalities that are queries and which implementation is
done using other type of patterns, e.g. API Gateway pattern. Then, for each
system, we performed a quartile analysis over the complexities in the CUD set
where we got 4 distinct groups of functionalities, grouped by their complexity.
We randomly picked a functionality from each group and after careful analysis
of the source code we applied the operations to redesign the functionality for the
given decomposition. The redesign goal was done to achieve a saga orchestra-
tion style as recommended in [13], to minimise the remote invocations between
services and reduce the network latency effect.

In Table 1 are, for each of the selected functionalities, the number of opera-
tions performed to the initial execution graph of each functionality in the systems
LdoD and Blended Workflow, and, for the final execution graph, the number of
transactions of each type, the total number of local transactions and the total



50 J. F. Almeida and A. R. Silva

Table 1. Operations performed and local transactions types in the functionalities of
LdoD and Blended Workflow. C - Compensatable; P - Pivot; R - Retriable; # Clusters
- number of accessed clusters; SC - Sequence Change; AD - Add compensating; DCGI
- Define Coarse-Grained Interactions.

Functionality Operations Local transactions Metrics

SC AC DCGI C P R Total #Clusters Sum for gI Sum for gF

LdoD

Q1: removeTweets – – 2 0 0 4 4 4 442 88

Q2: getTaxonomy 2 – 1 0 1 4 5 3 529 208

Q3: associateCategory 5 4 8 8 1 5 14 4 3470 783

Q4: signUp – – 4 0 1 5 6 4 3861 413

Blended workflow

Q1: updateView 2 1 1 2 1 1 4 3 415 97

Q2: removeSequence

ConditionToActivity

– – 3 2 1 3 6 2 1110 301

Q3: addActivity 1 1 4 6 1 1 8 3 3343 1402

Q4: extractActivity – 4 19 25 1 3 29 4 20628 5992

number of accessed clusters. Additionally, it presents the sum of the two com-
plexity metrics, for the initial and final graph. We can observe that the number
of operations performed to a functionality generally increases as the sum of the
refined metrics increases, which seems to indicate that more complex function-
alities have more room for improvement. We can also observe that, to preserve
the data dependencies in the functionality, it is not possible to apply the oper-
ations until the number of local transactions is equal to the number of accessed
clusters.

In what concerns the local transactions types, one clear and obvious conclu-
sion, since the complexity depends on the number of local transactions, is that
the sum of the refined metrics increases with the number of transactions. We
can also observe that the number of compensatable transactions impacts on the
complexity. This is due to the fact that the existence of compensatable transac-
tions involves the creation of semantic locks (if the access mode is write) and also
the creation of more transactions to implement the compensating transactions
logic needed in case of a transaction abort.

4.2 Complexity Metrics Evaluation

Table 2 shows the complexities for each functionality analyzed in the systems
LdoD e Blended Workflow. We can observe that for both systems the reduction
in the functionality complexity surpasses, in average, 50%. This shows the advan-
tage of the proposed redesign operations and the refined metrics. On the other
hand, we also observe the relation between the functionality associateCategory
and signUp. Before redesign the associateCategory has a lower complexity value
than signUp. However after the redesigning, and the application of the SAGA
pattern, that relation is reversed and the complexity value for the associate-
Category is higher than for signUp. This shows that the impact of the redesign



Monolith to Microservices 51

operations is not the same and depends on the functionality business logic. Addi-
tionally, it shows an advantage of allowing the software architect to redesign the
model that results from the automatic decomposition of the monolith, in partic-
ular the verification of whether the most complex functionalities, according to
the base metric, can or not be significantly reduced.

By analysing the system added complexity values, in both system we got a
significant reduction in the complexity values after the redesign, which allows us
to provide the architect with more precise values on the impact the functionalities
redesign has in the system.

Since the refined metrics separate the base metric into two different concerns,
functionality complexity and added complexity to the system, we can do a more
rich and precise analysis. For instance, only the functionality associateCategory
has a non zero value in the LdoD system, which indicates that only this func-
tionality, of the four functionalities analyzed, introduces complexity in to others
functionalities redesign despite that in gI all functionalities had a non zero value.
A strong example is the functionality signUp, which at the beginning was con-
sidered to have the most impact on the system, ended up having no impact on
the system since it does not create any semantic locks.

Table 2. Functionality complexity and System complexity for the functionalities in
the systems LdoD and Blended Workflow. FRC - Functionality Redesign Complexity;
SAC - System Added Complexity.

Functionality Initial FRC Final FRC % Reduction Initial SAC Final SAC % Reduction

LdoD

Q1: removeTweets 134 88 34% 308 0 100%

Q2: getTaxonomy 317 208 34% 212 0 100%

Q3: associateCategory 1803 677 62% 1667 106 94%

Q4: signUp 1490 413 72% 2371 0 100%

Average: 50.4% 98.5%

Blended workflow

Q1: updateView 204 51 75% 211 46 78%

Q2: removeSequence

ConditionToActivity

861 301 65% 249 0 100%

Q3: addActivity 1775 712 60% 1548 690 55%

Q4: extractActivity 13849 3269 76% 6779 2723 60%

Average: 69% 73.25%

When analyzing both tables, it is visible the relation between the existence of
compensatable transaction and a positive value for the system complexity, where
the only exception is the functionality removeSequenceConditionToActivity in
the Blended Workflow system that contains 2 compensatable transactions and
0 system complexity. After analysing the final redesign graph we noted that the
2 compensatable transactions were read only transactions. They are considered
compensatable because, by definition, all the local transaction that do not occur
after the pivot transaction are compensatable, but in this case they do not need a
compensating transaction in case of a transaction abort. However, as previously



52 J. F. Almeida and A. R. Silva

noted in the relation between the number of compensating transactions and
complexity, we can conclude that most of the compensating transactions require
semantic locks.

Due to space restrictions, the Query Inconsistency Complexity (QIC) analysis
is omitted. However its evaluation on queries of both systems (LdoD and Blended
Workflow) showed that, despite this new metric does not derive from the base
metric, the complexity value from QIC increases as the base metric increases,
they are correlated.

To answer the research questions: (1) we have defined a suitable set of oper-
ations that the architect can use in the design stage in order to design func-
tionalities in a microservices architecture, (2) by separating the base metric in
two distinct metrics we can target different affected areas during the function-
alities design and implementation, and we obtained more precise values for the
functionality migration cost.

4.3 Threats to Validity

In terms of internal validity, the use of the expert decomposition has no impact
on the validation conclusions, actually, to evaluate the metrics refinement and
the operations, any candidate decomposition could be used. The validation of the
operations was done to a small subset of functionalities, but a systematic method
to select them was chosen and functionalities with different levels of complexity
were also chosen. Another threat to internal validity is that the redesign was
done to follow an orchestration style for the functionalities sagas. However, con-
sidering that: (1) we are evaluating the applicability of the redesign operation;
(2) evaluating whether the new metrics can provide a more precise value, this
is not biased by following a orchestration style, though the complexity values
reduction could be smaller, but precise anyway.

In terms of external validity, we believe that our conclusion can be generalized
to the monolith systems that were implemented using a rich domain model, which
is the case of the two analyzed systems, that were implemented using fine-grained
object-oriented interactions.

5 Related Work

Previous work on the migration monolith systems to a microservices architec-
ture [1,7–9] and on the quality of microservices architectures [2–4], evaluate the
candidate decompositions and the microservices architectures through metrics
that focus on aspects like modifiability, cohesion, coupling, performance or even
the size of clusters. However, they do not analyse the complexity associated with
the effort of migrating the monolith, according to the candidate decomposition.
Therefore, their focus is not in the complexity added to the functionalities busi-
ness logic, as explained by the CAP theorem [6]. In this paper we address the
effort required in the monolith functionalities redesign and the application of
microservices design patterns.



Monolith to Microservices 53

Some research has been done on metrics and microservices patterns. In [15] a
set of metrics is proposed to assess the architecture conformance to microservice
patterns. Their metrics evaluate characteristics like independent deployability
and shared dependencies between components. In [4] it is developed a system
that evaluates microservices architectures conformance to a set of microservices
design principles. For each principle a metric is defined. None of these research
addresses the monolith functionality redesign cost using microservices patterns.

Although there are many proposals on how to decompose a monolith into
a microservices architecture, as far as we know, only in [10] is proposed a tool
that, besides providing visualisation of the decomposition, allows the creation
of new microservices, move classes between microservices, and clone a class in
several microservices, while recalculating a set of metrics on the decomposition
quality. However, their modeling focus is not on functionality redesign.

The proposed redesign process, and metrics refinement, leverages on our pre-
vious work on the decomposition of monolith systems based on the identification
of transactional contexts, to reduce the impact of transactional context changes
on the functionalities behavior [12], and on a complexity metric for migration
decomposition [14].

6 Conclusions

This paper proposes a set of operations for the redesign of monolith function-
alities given a decomposition on a set of candidate microservices. The redesign
is guided by a set of metrics which calculate the complexity associated with
functionalities business logic rewriting, due to the lack of isolation. The SAGA
pattern is applied to the functionalities and the number of semantic locks is used
to calculate the complexity. On the other hand, by dividing the complexity into
two distinct metrics, it becomes possible to distinguish between the complexity
inherent to the each functionality redesign, and the complexity added in the
redesign of other functionalities. As an extension of these two metrics, we also
propose a query inconsistency metric that measures the cost of applying the
API Gateway pattern. As result of the evaluation, we observed that through
the application of the operations a suitable execution flow of the functionality,
following the SAGA patterns, is obtained. As expected, more operations are
required when the complexity of the functionality, before the redesign, is higher,
but we also observed that the percentage of complexity reduction depends on
the business logic functionality.

Acknowledgments. This work was supported by national funds through Fundação
para a Ciência e Tecnologia (FCT) with reference UIDB/50021/2020.

References

1. Athanasopoulos, D., Zarras, A.V., Miskos, G., Issarny, V., Vassiliadis, P.: Cohesion-
driven decomposition of service interfaces without access to source code. IEEE
Trans. Serv. Comput. 8(4), 550–562 (2015)



54 J. F. Almeida and A. R. Silva

2. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service-and microservice-based systems: a literature review. In: Proceed-
ings of the 27th International Workshop on Software Measurement and 12th Inter-
national Conference on Software Process and Product Measurement, pp. 107–115.
ACM (2017)

3. Cardarelli, M., Iovino, L., Di Francesco, P., Di Salle, A., Malavolta, I., Lago, P.: An
extensible data-driven approach for evaluating the quality of microservice architec-
tures. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC 2019, pp. 1225–1234, New York, NY, USA. Association for Computing
Machinery (2019)

4. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice
architectures: a metric and tool-based approach. In: Mendling, J., Mouratidis, H.
(eds.) CAiSE 2018. LNBIP, vol. 317, pp. 74–89. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92901-9 8

5. Garcia-Molina, H., Salem, K.: Sagas. ACM Sigmod Rec. 16(3), 249–259 (1987)
6. Gilbert, S., Lynch, N.: Perspectives on the CAP theorem. Computer 45(2), 30–36

(2012)
7. Jin, W., Liu, T., Cai, Y., Kazman, R., Mo, R., Zheng, Q.: Service candidate iden-

tification from monolithic systems based on execution traces. IEEE Trans. Softw.
Eng. (2019)

8. Klock, S., Van Der Werf, J.M.E., Guelen, J.P., Jansen, S.: Workload-based clus-
tering of coherent feature sets in microservice architectures. In: 2017 IEEE Inter-
national Conference on Software Architecture (ICSA), pp. 11–20 (2017)

9. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 524–531 (2017)

10. Nakazawa, R., Ueda, T., Enoki, M., Horii, H.: Visualization tool for designing
microservices with the Monolith-first approach. In: 2018 IEEE Working Conference
on Software Visualization (VISSOFT), pp. 32–42, September 2018

11. Ntentos, E., Zdun, U., Plakidas, K., Schall, D., Li, F., Meixner, S.: Supporting
architectural decision making on data management in microservice architectures.
In: Bures, T., Duchien, L., Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp.
20–36. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29983-5 2

12. Nunes, L., Santos, N., Rito Silva, A.: From a Monolith to a microservices archi-
tecture: a approach based on transactional contexts. In: Bures, T., Duchien, L.,
Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 37–52. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29983-5 3

13. Richardson, C.: Microservices Patterns. Manning Publications Co. (2019)
14. Santos, N., Silva, A.R.: A complexity metric for microservices architecture migra-

tion. In: Proceedings of the IEEE 17th International Conference on Software Archi-
tecture (ICSA 2020), pp. 169–178. IEEE (2020)

15. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture confor-
mance to microservice decomposition patterns. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 411–429. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 29

https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-030-29983-5_2
https://doi.org/10.1007/978-3-030-29983-5_3
https://doi.org/10.1007/978-3-319-69035-3_29


Uncertainty, Self-adaptive, and Open
System



Decentralized Architecture
for Energy-Aware Service Assembly

Mauro Caporuscio1(B), Mirko D’Angelo1, Vincenzo Grassi2,
and Raffaela Mirandola3

1 Linnaeus University, Växjö, Sweden
{mauro.caporuscio,mirko.dangelo}@lnu.se

2 Università di Roma Tor Vergata, Rome, Italy
vincenzo.grassi@uniroma2.it

3 Politecnico di Milano, Milan, Italy
raffaela.mirandola@polimi.it

Abstract. Contemporary application domains make more and more
appealing the vision of applications built as a dynamic and opportunis-
tic assembly of autonomous and independent resources. However, the
adoption of such paradigm is challenged by: (i) the openness and scal-
ability needs of the operating environment, which rule out approaches
based on centralized architectures and, (ii) the increasing concern for
sustainability issues, which makes particularly relevant, in addition to
QoS constraints, the goal of reducing the application energy footprint.
In this context, we contribute by proposing a decentralized architecture
to build a fully functional assembly of distributed services, able to opti-
mize its energy consumption, paying also attention to issues concerning
the delivered quality of service. We suggest suitable indexes to measure
from different perspectives the energy efficiency of the resulting assem-
bly, and present the results of extensive simulation experiments to assess
the effectiveness of our approach.

1 Introduction and Motivation

Contemporary systems (for domains including, for example, smart cities, intel-
ligent transportation systems, augmented reality) more and more envision the
definition of applications that dynamically emerge as an opportunistic aggrega-
tion of autonomous and independent resources available within the execution
environment. Service-oriented architecture (SOA), in particular its microservice
evolution, appears well suited as reference architectural model for this kind of
applications, as it supports the vision of new services built as an assembly of
independent services, where each service offers specific functionalities, and could
require functionalities offered by others to carry out its own task.

However, to be successfully adopted in these emerging computing environ-
ments, the service assembly procedure should be able to tackle the following main
issues: (i) decentralization: services are offered by autonomous and independent

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 57–72, 2020.
https://doi.org/10.1007/978-3-030-58923-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_4


58 M. Caporuscio et al.

resources distributed in the environment, which makes hardly usable assem-
bly procedures based on the presence of some centralized assembly manager;
(ii) dynamics: the offered services are not statically defined but they appear
and disappear or change their behavior; (iii) quality-awareness: the assembly
should be able to guarantee quality of service (QoS) requirements (e.g., time-
liness, availability, cost). Besides them, another major issue to be considered
is: (iv) energy-awareness: the assembly should be able to take into account the
energy consumption caused by its computation and communication activities.
This latter issue is particularly important for several reasons: besides sustain-
ability concerns that are more and more important in the contemporary world,
systems often rely on battery-powered resources, where a parsimonious and effec-
tive use of available energy is mandatory to extend the system lifetime.

Considerable effort has been already devoted in the past to QoS-aware ser-
vices assembly procedures [14]. On the other hand, energy efficiency of composite
services has received less attention until recently, when the growing interest on
sustainability themes has put this issue in the foreground [17,19]. However, to
the best of our knowledge, no available solution exists yet that is able to deal
with all the issues (i)-(iv) mentioned above.

Paper Contribution. In this respect, we propose an initial solution of the
following problem: how to devise a decentralized architecture that supports the
dynamic building of a fully resolved assembly of distributed services, collectively
fulfilling functional requirements while minimizing the energy consumption, in
an open and variable execution environment. On answering to this question we
also take into account the impact on the system’s QoS.

Specifically, we propose a (fully) decentralized and dynamic service assembly
framework whose main characteristics are: (i) a system architecture for service
assembly management; (ii) explicit modelling of service energy consumption
for both processing and communication activities; (iii) an energy-aware service
selection and composition procedure; (iv) a set of “social welfare” indexes aimed
at measuring the system effectiveness with respect to QoS and energy objectives.

Related Work. Our work lies within the general area of service selection and
composition problem in a distributed environment. There is quite a large amount
of literature on the topic (e.g., [2,4,14] and references therein); hereafter, we
briefly review works closer to ours having a focus on energy-aware solutions.
Recently, the software engineering community at large is paying increasing atten-
tion to energy efficiency solutions, a summary can be found in [6]. Also from a
software architecture point of view, the need to consider the energy attribute at
architectural level is gaining consensus [18]. However, to the best of our knowl-
edge, only a limited amount of effort has been devoted up to now to the definition
of architectural approaches for energy-aware decentralized service assemblies.
Examples of existing solutions can be found in [15–17,19], where service assem-
blies are considered for cloud-based applications [17], in wireless-sensor-networks
context/domain [16] and for cyber-physical systems [15,19]. However, the pro-
posed solutions are based on the definition of single [16,19] or multi-objective
optimization problems [15,17], which leverage on centralized approaches.



Decentralized Architecture for Energy-Aware Service Assembly 59

Structure of the Paper. Section 2 presents the system model we refer to
Sect. 3 introduces the service assembly energy consumption model, and Sect. 4
the indexes derived from this model to measure the assembly energy and QoS
effectiveness. Section 5 illustrates the decentralized architecture for the assembly
construction and maintenance. Section 6 shows the results of our experiments,
Sect. 7 discusses threats to validity, while Sect. 8 provides conclusions and hints
for future work.

2 System Model

We consider a distributed system consisting of a set N of nodes (e.g., nodes
of an edge cloud architecture), and a set S of (sw-implemented) services that
must be deployed on these nodes. Each node provides basic computing and
communication services, used by the other services hosted by the same node for
their operations. For the sake of simplicity, we assume that each node offers only
a single type of computing and communication service, and do not consider other
basic service categories (e.g., storage). We leave to future work the extension of
our model to these other categories, and to different types of services within each
category (e.g., both specialized GPU and general purpose CPU as computing
services). Each service S ∈ S must be bound to a computing and communication
service. Besides this, S could require functionalities offered by other services in
the set S to carry out its own task. We denote by B the set of all computing and
communication services offered by nodes in N, and by node(S) ∈ N the node
hosting service S ∈ S ∪ B. We assume that services in the set B are the only
direct sources of energy consumption, while the energy consumption of services
in S is related with the use they directly or indirectly make of services in B.

For the purpose of the service assembly procedure we intend to devise, we
now introduce a more detailed service model. A service S ∈ S is represented as
a tuple 〈Type,Deps,Prov ,Req〉, where:

– S.Type ∈ T denotes the type of the provided interface (we say that S.Type
is the type of S). We assume the existence of a function match : T × T →
[0, 1] such that match(T1, T2) = 0 if type T1 does not match type T2 and
match(T1, T2) > 0 if a matching exists according to some suitable matching
criterion [1,9].

– S.Deps ⊆ T
⋃{comp, comm} is the set of required dependencies for S. We

assume that S.Deps is fixed for each service and known in advance. Note
that the dependency set S.Deps does not contain duplicates, meaning that a
service may depend at most once on any specific interface type. We assume
that S.Deps always includes two dependencies d1 = comp and d2 = comm:
in this way we model the fact that S needs at least to be bound to a com-
puting and a communication service, for its internal operations and for its
interactions with other services. For each d ∈ S.Deps we assume that it is
known (e.g., through a locally performed monitoring activity) a value μS,d,
which represents the average number of times service S requires dependency
d to fulfill each request it has received.



60 M. Caporuscio et al.

– S.Prov ⊆ S is the set of Providers of S, i.e., the set of services to which
S is bound to resolve its dependencies. We denote by comp(S) ∈ B and
comm(S) ∈ B the computing and communication services used to resolve
dependencies comp ∈ S.Deps and comm ∈ S.Deps, respectively. It must
obviously hold node(comp(S)) = node(comm(S)).

– S.Req ⊆ S is the set of Requesters of S, i.e., is the set of other services that
are bound to S to resolve one of their dependencies.

A service is either fully resolved or partially resolved. Basic services in the
set B are fully resolved by definition. A service S ∈ S is fully resolved if for
all d ∈ S.Deps there exists a fully resolved service S′ ∈ S.Prov such that
match(d, S′.Type) > 0. On the other hand, a partially resolved service S ∈ S has
at least one dependency that is either not matched, or is matched by a partially
resolved service.

Finally, a service assembly A is a directed graph A = (S,E), where E ⊆ S×S
is the set of resolved dependencies. Specifically, a directed edge (Si, Sj) ∈ E
denotes that Si is using Sj to resolve one of its dependencies. In general, a given
Si has multiple simultaneous outgoing bindings (towards Si.P rov), one for each
dependency, and can have multiple simultaneous incoming bindings from other
services (belonging to Si.Req), using Si to resolve one of their dependencies.

Figure 1 shows an example of a simple service assembly (including services
S1, S2, S3 and S4) that illustrates the actual deployment of services on nodes
N1, N2 and N3. The figure highlights also the service dependencies and their
binding to computation and communication services.

N1

Comm1

S1

Comp1

N2

Comm2

S2

Comp2

N3

Comm3

S4

Comp3

S3

S1.type = T1
S1.deps = {comm,comp,T2}
S1.prov= {comm1,comp1,S2}
S1.req = {}

S2.type = T2
S2.deps = {comm,comp,T3}
S2.prov= {comm2,comp2,S3}
S2.req = {S1}

S3.type = T3
S3.deps = {comm,comp,T4}
S3.prov= {comm3,comp3,S4}
S3.req = {S2}

S4.type = T4
S4.deps = {comm,comp}
S4.prov= {comm3,comp3}
S4.req = {S3}

Fig. 1. Service assembly example

3 Energy Model

In this section we introduce the model we adopt to estimate the energy con-
sumption of each service S ∈ S, as a function of the bindings it establishes



Decentralized Architecture for Energy-Aware Service Assembly 61

with other services to resolve its dependencies. As we are considering comput-
ing and communication services as the only “physical” resources causing energy
consumption, the model consists of two parts: a computing energy model and a
communication energy model.

3.1 Computation Energy

Let us consider a service S ∈ S. When the flow of requests addressed to services
in S.Prov eventually reach a service of type comp, it will cause some computation
energy consumption. This will happen in one step for the dependency of type
comp of S (“internal operations” of S). Otherwise, the flow of requests will go
through a number of virtual services before reaching a service of type comp. To
model this process, we introduce the following three indexes S.Icomp, S.Lcomp

and S.Ecomp that model, respectively, the individual, node level and system
level computation energy consumption caused by a single request addressed to
S. They are defined as follows:

S.Icomp = hnode(S)(μS,comp) (1)

S.Lcomp = S.Icomp +
∑

S′∈S.Prov,
s.t.S′.Type �=comp

∧node(S′)=node(S)

μS,S′.Type · S′.Lcomp (2)

S.Ecomp = S.Icomp +
∑

S′∈S.Prov,
s.t.S′.Type �=comp

μS,S′.Type · S′.Ecomp (3)

where hn(μ) represents the energy consumption of the comp service hosted by
a node n for the execution of μ operations1. As an example, hn(μ) could be
instantiated as hn(μ) = an + en ·μ, with a fixed part an (energy consumed when
the comp service is switched on, independently of its operations), and a dynamic
part en · μ linearly depending on the load addressed to the comp service (en
represents the energy consumption for a single operation).

From the definitions given above, we see that S.Icomp models only the energy
consumption directly consumed by S for its internal operations. Besides the
directly consumed energy, S.Lcomp includes also the computation energy indi-
rectly consumed by S because of its use of services S′ ∈ S.Prov, but limited to
services co-located with S on the same node (their energy consumption is mul-
tiplied by the average number of times S uses S′, given by μS,S′.Type). Finally,
S.Ecomp adopts a system-wide perspective and models the overall computation
energy consumption caused by S on any node in the system.

We point out that S.Icomp, S.Lcomp and S.Ecomp refer to computing energy
consumption caused by a single request addressed to S. To get measures of the
1 By “operation” we mean a conventional average unit of computation. We make an

analogous assumption for the communication model.



62 M. Caporuscio et al.

energy consumption per unit time (energy consumption rate), we introduce the
concept of load vector ΛS = [λS(n)]n∈N associated with any service S ∈ S,
where each vector entry λS(n) denotes a flow of requests (expressed as requests
per unit time) addressed to service S by services hosted by node n ∈ N. ΛS

can be easily estimated by some local monitoring activity. Given a load vector
ΛS, we can derive from S.Icomp, S.Lcomp and S.Ecomp corresponding measures
of the computing energy consumption rate:

S.ρcomp
X =

( ∑

n∈N

λS(n)
) · S.Xcomp (4)

where X stands for any of: I, L, E.

3.2 Communication Energy

Let us consider a service S ∈ S. As already stated in the previous subsection,
S represents a “virtual” (software implemented) resource: the communication
energy consumption caused by S depends on the interactions that S has both
with services that use it to resolve their dependencies (services in the set S.Req)
and services used by S itself to resolve its dependencies (services in the set
S.Prov). In this respect, we assume that the energy spent by a communication
service of a node for these interactions depends both on the data volume, and
the latency and bandwidth of the links connecting it with other nodes [5].

To model this process, we introduce the three indexes S.Icomm
n , S.Lcomm

n
and S.Ecomm

n that model, respectively, the individual, node level and system
level communication energy consumption caused by a single request addressed
to S by some other service hosted by a node n ∈ N. They are defined as follows:

S.I
comm
n = φ

req
node(S)(δ

rcv
S , bw(n, node(S)), lt(n, node(S)))

+
∑

S′∈S.Prov,

s.t.node(S)�=node(S′)

μS,S′.Type · φ
prov
node(S)(δ

snd
S,S′.Type , bw(node(S), node(S

′
)), lt(node(S), node(S

′
)) (5)

S.Lcomm
n = S.Icomm

n +
∑

S′∈S.Prov,
s.t.node(S′)=node(S)

μS,S′.Type · S′.Lcomm
node(S) (6)

S.Ecomm
n = S.Icomm

n +
∑

S′∈S.Prov

μS,S′.Type · S′.Ecomm
node(S) (7)

where:

– bw(n1, n2) and lt(n1, n2), with n1, n2 ∈ N, denote, respectively, the band-
width and latency of the link connecting nodes n1 and n2;

– δrcvS and δsndS,d denote, respectively, the average amount of data S receives for
each service request addressed to it, and the average amount of data S sends
for each invocation of its dependency d, to fulfill that request;



Decentralized Architecture for Energy-Aware Service Assembly 63

– φreq
n (δ, b, l) denotes the energy consumed by the comm service of node n ∈ N

(in the following we denote it as commserv(n)), when it receives an amount
δ2 of data addressed to a service hosted by n over a link with bandwidth b
and latency l;

– φprov
n (δ, b, l) denote the energy consumed by commserv(n), n ∈ N, when it

sends an amount δ of data to a service hosted by another node over a link
with bandwidth b and latency l.

The first term in the r.h.s. of Eq. (5) represents the energy consumed by
commserv(node(S)) for the reception of a service request addressed to S, com-
ing from an external node n. The second term in the r.h.s. of Eq. (5) represents
the energy consumed by commserv(node(S)) to send the requests S addresses
to services solving its dependencies (i.e., services in S.Prov) and hosted by dif-
ferent nodes. Hence, S.Icomm

n models the communication energy consumption
of commserv(node(S)) caused only by the direct interactions S has with other
services hosted by different nodes.

On the other hand, S.Lcomm
n in Eq. (6) adds to the energy consumption mea-

sured by S.Icomm
n also the communication energy consumption indirectly caused

by S, corresponding to interactions that services in S.Prov have with other ser-
vices to carry out their own task. As it can be seen from the r.h.s. of Eq. (6),
S.Lcomm

n limits its scope to the energy consumption of commserv(node(S)) only.
Finally, S.Ecomm

n in Eq. (7) adopts a system-wide perspective, measuring the
communication energy consumption directly or indirectly caused by S on any
node in the system, when S receives a single request from a service hosted by a
node n.

Analogously to the computing energy case, we can derive from S.Ecomm
n ,

S.Icomm
n and S.Lcomm

n measures of the communication energy consumption rate,
given a load vector ΛS = [λS(n)]:

S.ρcomm
X =

∑

n∈N

λS(n) · S.Xcomm
n (8)

where X stands for any of: I, L, E.

4 Welfare Indexes

In this section we formally define the indexes, based on the model defined in the
previous section, that we will use to measure the effectiveness of our approach
with respect to its ability in achieving a good local and social welfare. By this
we mean that our goal is to analyze our approach effectiveness from a two-fold
perspective. On the one side, we measure the achievement of some average global
system “quality”, thanks to the contribution of all services. On the other side,
we measure whether there is an unbalanced distribution among services of this
global quality.

2 δ is measured in terms of a conventional average communication unit.



64 M. Caporuscio et al.

Besides energy consumption, which is our main focus in this paper, we include
in our notion of quality also the delivered QoS. For space reasons, we do not
introduce an explicit QoS model of a service assembly. Several models of this
kind have been already introduced (e.g., [4,19]). For notational purposes, we just
assume that a QoS index S.Q is associated with each service S ∈ S, related with
suitable QoS measures like response time or reliability, where the value of S.Q
is estimated at each node by some monitoring activity. We only point out that,
for the sake of realism, we assume that the QoS delivered by a service is load-
dependent, in the sense that it degrades with the increase of the load of requests
addressed to it [10,12]. The welfare indexes we adopt are defined as follows.

Given a fully resolved assembly A = (S,E), we first define the average Global
Energy Consumption rate delivered by all services in A:

GEC(A) =
1

|N|
∑

n∈N

( ∑

S∈S
s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )
)

(9)

We use S.ρcomp
I and S.ρcomm

I , defined as in Eqs. (4) and (8), respectively, in
the definition of GEC(A) to avoid counting more than once the energy con-
sumption caused by a service. Note that GEC(A) is a “lower is better” index.

From the QoS perspective, we define as follows the average Global QoS deliv-
ered by all services in A:

GQoS(A) =
1

|S|
∑

S∈S

S.Q (10)

However, both GEC(A) and GQoS(A) do not allow to capture to what
extent all involved services and the nodes hosting them fairly contribute to the
measured average quality.

To this end, we introduce the following fairness indexes based on the Jain’s
fairness index [7] as additional measures of the achieved social welfare, to mea-
sure how uniform is the quality achieved by all the participating services, from
the energy consumption and QoS perspectives, respectively:

FEC(A) =

( ∑
n∈N

( ∑
S∈S

s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )
))2

|N| ∑
n∈N

( ∑
S∈S

s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )
)2 (11)

FQoS(A) =

(
∑

S∈S

S.Q)2

|S| ∑
S∈S

S.Q2
(12)

The value of these fairness indexes ranges from 1
|N| or 1

|S| , respectively (worst
case), to 1 (best case), and it is maximum when all nodes experiment the same



Decentralized Architecture for Energy-Aware Service Assembly 65

energy consumption rate or all services deliver the same QoS, respectively. In
general, indexes of this type penalize situations where the quality achieved by
different entities is highly unbalanced. Hence, by using FEC(A) or FQoS(A),
we intend to reward assemblies that result in a fair share of the overall quality
measured by GEC(A) and GQoS(A), respectively.

network

Ni

Monitor

Dissemination

Service Pool

S1 S2 Sn…

Nj

Service Pool

S1 S2 Sn…

Assembly Manager

Monitor

Dissemination

Assembly Manager

Fig. 2. Node architecture

1: procedure ActiveThread
2: loop
3: Wait Δt
4: for all Sj ∈ GetPeers() do
5: Send 〈S.P rov ∪ {S}〉 to Sj

6: procedure PassiveThread
7: loop
8: Wait for message 〈M〉 from Sj
9: for all Sk ∈ M do

10: if ∃d ∈ S.Deps — matches(d, Sk.Type) > 0 then
11: BestS,d ← Update(BestS,d, Sk)
12: S.P rov ← Select(BestS,d, S.P rov)

Fig. 3. Gossip based dissemination

Regarding energy-related indexes, we note that the relative importance of
the indexes GEC(A) and FEC(A) could depend on the scenario where they
are applied. In scenarios where all nodes have access to continuous power
sources, the most relevant effectiveness index could be GEC(A), for system
sustainability reasons. On the other hand, in scenarios where system nodes are
battery-powered, the most relevant effectiveness index could be FEC(A), as a
highly unbalanced energy consumption among nodes could lead to the prema-
ture “death” of some node, with possible negative consequences on the whole
system lifetime.

5 System Architecture

In this section we present a fully decentralized architecture that drives a service-
oriented system towards the construction of an energy-efficient fully resolved
service assembly. The core idea underpinning this architecture is the use of a
decentralized information dissemination procedure, based on a gossiping pro-
tocol [13], through which each service S advertises its functional (S.Type) and
extra-functional (energy and QoS ) characteristics. Thanks to this procedure,
services at each node become eventually aware of other services in the system
that can resolve their dependencies, thus providing the basis for the fulfillment of
the goal of driving the system toward the construction of a fully resolved assem-
bly. To fulfill the goal of energy-driven assembly, the advertised information is
used to select, within a set of functionally equivalent candidates, the best suited
service.

Figure 2 shows the main architecture components deployed at each node Ni:
Monitor, Assembly Manager and Dissemination. Besides them, the figure shows
also Service Pool, the set of services S ∈ S running on node Ni.



66 M. Caporuscio et al.

Monitor is in charge of monitoring the energy consumption (i.e., S.Xcomp

and S.Xcomm
n ) for each service S in the Service Pool, and notifying detected

changes to the Assembly Manager.
Assembly Manager receives information about the type, QoS and energy con-

sumption of local and remote services from Monitor and Dissemination, respec-
tively, which are used to build the assembly. In particular, it receives from Dis-
semination the set S.Prov that specifies which services should currently be used
to solve the dependencies of a local service S, and manages the corresponding
bindings. Moreover, it receives notifications of incoming binding requests for each
local service S, and keeps updated the corresponding set S.Req.

Finally, Dissemination implements decentralized information dissemination
by exploiting a gossip communication model [13]. This model relies on the con-
tinuous execution of two concurrent threads, ActiveThread and PassiveThread
(see Algorithm in Fig. 3).

For each service S hosted by the node, ActiveThread periodically sends a
Gossip message to its peer set3. The message payload is a set of services, with
the associated type, QoS and energy information, containing the list of currently
bound dependencies S.Prov plus S itself.

PassiveThread listens for messages coming from other peers. Upon receiving
a message containing the set M, it checks all services Sk ∈ M to see whether
some of them can be used to resolve some dependency of S. If Sk.Type is required
as a dependency, then Sk is considered as a candidate to be added to BestS,d
(line 10), where BestS,d collects the currently known “best” services according
to the specific service selection criterion used to solve the dependency d (see
Sect. 5.1). The decision whether to include Sk in BestS,d is taken by function
Update() (line 11), possibly dropping from BestS,d some other service whose
utility is worse than Sk. The update of the sets BestS,d can lead to a substi-
tution of the service currently used to solve dependency d (as specified in the
set S.Prov) with a new “better” service taken from BestS,d. The decision about
this possible substitution is taken by function Select() (line 12), implemented
following one of the selection criteria described in Sect. 5.1.

As it is typical with gossip-based protocols, a new instance of the algorithm
in Fig. 3 is created at each node for each service S in the Service Pool.

5.1 Energy-Aware Service Selection

In this section we present possible energy-aware service selection criteria that
could be used in the implementation of the Select() function in Fig. 3.

Given a service S and a set of candidates BestS,d, we recall that Select()
must select, within that set, a service that resolves a dependency d ∈ S.Deps.

Energy-Aware Overall. The Energy-aware Overall criterion aims at selecting
the service that causes the minimal energy consumption on a system-wide basis

3 The peer set is provided by the underlying gossip communication protocol [13].



Decentralized Architecture for Energy-Aware Service Assembly 67

(i.e., GEC(A)). In order to use this criterion, each service S is required to
disseminate the values S.Ecomp and S.Ecomm

n , n ∈ N, defined by Eqs. (3) and
(7), respectively. This criterion can be stated as:

Select S ∈ BestS,d such that:

S = arg min
S′∈BestS,d

{S′.Ecomp + μS,S′.Type · S′.Ecomm
node(S)} (13)

Energy-Aware Local. The Energy-aware Local criterion is similar to the pre-
vious one, but it acts on the basis of a more limited scope, as it focuses on the
minimization of the energy consumption involving node(S) only (the definition
of Eq. (14) is derived from the definition of the S.Lcomp and S.Lcomm

n indexes
in Eqs. (2) and (6), respectively). For this reason, differently from the Overall
criterion, it does not require the dissemination of any energy consumption value,
as all the information needed for its application can be collected at each node
by a local monitoring activity. This criterion can be stated as:
Select S ∈ BestS,d such that:

S = argmin
S′∈BestS,d

{
μS,S′.Type · S

′
.L

comp · I{node(S′)=node(S)}

+ μS,S′.Type · φ
prov
node(S)(δ

snd
S,S′.Type , bw(node(S), node(S

′
)), lt(node(S), node(S

′
)) · I{node(S′)�=node(S)}

+ μS,S′.Type · S
′
.L

comm
node(S) · I{node(S′)=node(S)}

}
(14)

where I{cond} is the indicator function that holds 1 when condition cond is true,
and 0 otherwise.

As pointed out in Sect. 4, focusing on the minimization of GEC(A) could not
be a good choice in contexts where one should instead aim at fairly balancing
energy consumption among all nodes. We thus propose a third criterion, aimed
at the maximization of the fairness index FEC(A).

Energy-Aware Learning. The Energy-aware Learning criterion selects the
service in BestS,d hosted by the node that currently results to have the lowest
energy consumption rate. This criterion can be stated as:
Select S ∈ BestS,d such that:

node(S) = arg min
n∈node(BestS,d)

{
∑

S∈S
s.t.node(S)=n

(S.ρcomp
I + S.ρcomm

I )} (15)

where, with a little abuse of notation, node(BestS,d) ⊆ N denotes the set of all
nodes hosting services that belongs to the set BestS,d.

The actual application of this criterion deserves however more attention with
respect to the former two criteria. Indeed, we can note that both Eqs. (13)
and (14) used in the definition of Energy-aware Overall and Energy-aware Local,
respectively, are based on load-independent indexes. They are thus well suited



68 M. Caporuscio et al.

for the greedy approach underlying these two criteria. On the other hand, the
indexes used in Eq. (15) are load-dependent, with consequent worsening of their
value when the load of node n increases. The greedy approach underlying the
definition of Energy-aware Learning given above can thus lead to well known
problems of system instability. Indeed, what currently results to be the node
with the smallest energy consumption rate could rapidly become overloaded,
thus triggering the need of new selections, and so on. A more judicious defini-
tion of this criterion is thus necessary, more suited for the goal of achieving a
fair energy consumption balance.

To this end, we implement this criterion according to the learning method
proposed in [11], originally proposed for a scenario of decentralized load balanc-
ing in a distributed system with load-dependent QoS. In this method, resource
selection by the participating services is based on a suitable balance between
exploitation (what services have learnt from past observations about the current
“best” resource, giving proper weight to the received information based on its
age) and exploration (random selection of apparently “not best” resources). In
our adaptation of this method, we assume that each node advertises the current
value of S.ρcomp

I and S.ρcomm
I , using the gossiping procedure we have described

above. This information is then managed according to the method proposed in
[11], to which we refer for details, omitted here for space reasons.

6 Experimental Evaluation

In this section we present a set of simulation experiments to assess the effec-
tiveness of different service selection strategies on the social welfare of the sys-
tem. To this end, we experiment with the three energy-aware service selection
strategies introduced in Sect. 5.1. In addition, we consider a baseline Random
strategy that randomly selects a functionally matching service; and a state-of-
the-art QoS-aware Learning-based criterion [4], which serves as a benchmark to
compare the impact on QoS of our energy-focused selection criteria.

We implemented a large-scale simulation model for the PeerSim simulator [8].
The replication package is publicly available to researchers interested in repli-
cating and independently verifying the results presented in this paper4.

6.1 Experimental Settings

Our experimentation mimics a wireless sensor network (WSN) deployment sce-
nario of an edge computing application. We consider a system with N services
and num int different interface types T = {T1, . . . , Tnum int}. Without loss of
generality we assume that each sensor node hosts a single service. We create
�N/num int	 services of each type and, for each service, we define a probabilis-
tic attachment to interface types to generate S.Deps with probability p.

We define the energy cost of a k-bits CPU operation equal to the average
energy cost of sending k-bits. Moreover, the energy cost of sending k-bits is on
4 https://github.com/mi-da/Energy-Aware-Service-Assembly.

https://github.com/mi-da/Energy-Aware-Service-Assembly


Decentralized Architecture for Energy-Aware Service Assembly 69

average two times more costly than the energy cost of receiving k-bits [5]. We
deploy the services in a network area with a diameter of 200 m. The nodes are
randomly positioned in the area and are endowed with symmetric latency links.
Each node adopts a decentralized network coordinate system to estimate latency
values [3]. Without loss of generality, we assume that the packet loss in the net-
work is null. We adopt the first order radio model, a commonly used communi-
cation energy consumption model for WSN [5], which leads to the instantiation
of φreq

n (δ, b, l) and φprov
n (δ, b, l) (see Sect. 3.2). Finally, we assume that the load-

dependent QoS function of each service S is a randomly monotonic decreasing
function that returns values in the range (0, 1] [4].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

G
EC

(A
)

Steps

QoS-aware Learning
Energy-aware Local

Energy-aware Overall
Energy-aware Learning

Random

(a) GEC(A), lower is better

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

FE
C(

A)

Steps

QoS-aware Learning
Energy-aware Local

Energy-aware Overall
Energy-aware Learning

Random

(b) FEC(A), higher is better

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

G
Q

oS
(A

)

Steps

QoS-aware Learning
Energy-aware Local

Energy-aware Overall
Energy-aware Learning

Random

(c) GQoS(A), higher is better

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

FQ
oS

(A
)

Steps

QoS-aware Learning
Energy-aware Local

Energy-aware Overall
Energy-aware Learning

Random

(d) FQoS(A), higher is better

Fig. 4. Selection criteria effectiveness: N = 500, num int = 10, p = 0.6

6.2 Experimental Results

Each experiment shows the progress of our gossip-based decentralized architec-
ture towards the construction of fully resolved assemblies5.

Let us consider first the impact on the global indexes GEC(A) and
GQoS(A). Figure 4a shows that all strategies are better than the baseline Ran-
dom with respect to the overall energy consumption. The greatest energy saving

5 The gossip procedure eventually leads to the creation of fully resolved assemblies.



70 M. Caporuscio et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

FE
C(

A)

Steps

Energy-aware Learning, p=0.2
Energy-aware Learning, p=0.4
Energy-aware Learning, p=0.6
Energy-aware Learning, p=0.8

(a) num int = 10, variable p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

FE
C(

A)

Steps

Energy-aware Learning, NUM_INT=5
Energy-aware Learning, NUM_INT=10
Energy-aware Learning, NUM_INT=20
Energy-aware Learning, NUM_INT=50

(b) p = 0.4, variable num int

Fig. 5. FEC(A) of different classes of applications, higher is better, N = 500

is achieved by the Energy-aware Overall strategy, thus confirming the effective-
ness of its system-wide perspective, which comes however at the cost of dissemi-
nating energy-related information. This cost is not incurred by the Energy-aware
Local strategy, whose energy saving performance is slightly worse and compa-
rable to the one achieved by the energy-unaware QoS-aware Learning strategy.
The Energy-aware Learning shows instead that its goal of leveling the energy
consumption rate of all nodes is not very compatible with the goal of minimizing
the overall energy consumption.

On the other hand, Fig. 4c obviously shows that the best overall QoS is
achieved by the QoS-aware Learning strategy, while Energy-aware Overall has
the worst performance, even worse than Random. Energy-aware Local and
Energy-aware Learning, notwithstanding their focus on energy, have instead a
good impact on the overall QoS, quite close to the result achieved by QoS-aware
Learning. Given our assumption of load-dependent QoS, this is an indication
that both these strategies distribute better the load among the different nodes
with respect to Energy-aware Overall : in case of Energy-aware Learning, this
is likely due to its intrinsic balancing attitude; in case of Energy-aware Local
this is likely due to its myopic perspective, which has in this case the positive
side-effect of leading to the selection of services hosted by nearby nodes, as they
make each node incur in less energy consumption (which is greatly influenced
by the energy required to amplify the signal in WSN [5]). This behaviour causes
a sort of geographical load-balancing effect, where clusters of nodes form service
assemblies that run approximately in the same geographical area.

Let us consider now the fairness indexes FEC(A) and FQoS(A). In this case,
Fig. 4b shows that Energy-aware Learning achieves the best result in balancing
the energy consumption rate among all nodes, according to its primary goal,
while Energy-aware Overall is the worst. This very bad performance is due to
its energy information global sharing that leads every node to get the same
energy-related knowledge. As a result, the most energy efficient services will
be globally targeted by binding requests, with very good results on the overall
energy consumption, but at the cost of an unfair energy allocation. All the
other three strategies achieve instead quite similar and satisfactory results with



Decentralized Architecture for Energy-Aware Service Assembly 71

respect to FEC(A), with Energy-aware Local performing slightly better than
the other two: for different reasons (the intrinsic randomness of Random, the
energy-unawareness of QoS-aware Learning, the myopic perspective of Energy-
aware Local), all these strategies have as a side effect a quite fair distribution of
the energy load on the different nodes.

Figure 4d shows that also from a QoS perspective Energy-aware Overall per-
forms very bad also in terms of fairness, thus confirming the negative impact
that this strategy has on QoS because of the load unbalance it tends to favor.
The balancing attitude of Energy-aware Learning leads instead to good results
also in terms of QoS fairness (after a number of learning steps), quite close to
the best result achieved by QoS-aware strategy.

Finally, we analyze the effectiveness of the Energy-aware Learning strategy
on the FEC(A) index for different classes of applications: they are simulated
by varying independently the probabilistic attachment parameter (i.e., p) affect-
ing the dependency set of a service, and the number of interface types (i.e.,
num int), affecting the maximum depth of a fully resolved assembly.

Our experiments (Figs. 5b-a) show that FEC(A) decreases with increasing p
and num int. These results highlight that architectures with many dependencies
or many interface types impair the energy fairness of the system.

7 Threats to Validity

A threat to external validity concerns the approach evaluation. Indeed, we
adopted an evaluation based on extensive simulations, instead of considering sin-
gle case studies. However, to evaluate the practical implication of the adoption
of our service assembly framework, we plan to select one of the existing service
discovery platforms to support the actual implementation of our approach, so to
validate it in a real-word settings.

A threat to internal validity is represented by the selection of the social wel-
fare indexes. To smooth this threat we adopted two different indexes to comple-
ment measures of the overall energy consumption and overall QoS with fairness
indexes. We are also planning to investigate the definition of other social welfare
indexes to extend the validity of our approach.

8 Conclusion and Future Work

In this paper, we have proposed a decentralized architecture to build a fully
functional assembly of distributed services, able to optimize its energy consump-
tion in an open and heterogeneous execution environment, paying also attention
to issues concerning the delivered quality of service. We also suggested suitable
indexes to measure from different perspectives the energy efficiency of the result-
ing assembly, and presented the results of extensive simulation experiments to
assess the effectiveness of our approach.

As future work we plan to analyse combined energy and QoS selection cri-
teria, and to take into account also other sources of energy consumption. We



72 M. Caporuscio et al.

also plan to investigate issues concerning the presence of finite sources of energy
(e.g., batteries) and differentiate between green and brown energy sources.

References

1. Caporuscio, M., Ghezzi, C.: Engineering future Internet applications: the prime
approach. J. Syst. Softw. 106, 9–27 (2015)

2. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola,
R.: MOSES: a framework for QoS driven runtime adaptation of service-oriented
systems. IEEE Trans. Softw. Eng. 38(5), 1138–1159 (2012)

3. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. In: Proceedings of SIGCOMM 2004, pp. 15–26. ACM, New
York (2004)

4. D’Angelo, M., Caporuscio, M., Grassi, V., Mirandola, R.: Decentralized learning
for self-adaptive QoS-aware service assembly. Future Gener. Comput. Syst. 108,
210–227 (2020)

5. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proceedings of HICSS 2000,
vol. 2, p. 10 (2000)

6. Horcas, J.M., Pinto, M., Fuentes, L.: Context-aware energy-efficient applications
for cyber-physical systems. Ad Hoc Netw. 82, 15–30 (2019)

7. Jain, R.K., Chiu, D.M.W., Hawe, W.R.: A quantitative measure of fairness and dis-
crimination for resource allocation in shared computer systems. Technical report.
DEC-TR-301, Digital Equipment Corporation (1984)

8. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: 2009 IEEE
Ninth International Conference on Peer-to-Peer Computing, pp. 99–100 (2009)

9. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web
services capabilities. In: First International Semantic Web Conference (2002)

10. Paschalidis, I.C., Tsitsiklis, J.N.: Congestion-dependent pricing of network services.
IEEE/ACM Trans. Netw. 8(2), 171–184 (2000)

11. Schaerf, A., Shoham, Y., Tennenholtz, M.: Adaptive load balancing: a study in
multi-agent learning. J. Artif. Int. Res. 2(1), 475–500 (1995)

12. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. In: Proceedings of DSN 2006, pp. 249–258 (2006)

13. Shah, D.: Gossip Algorithms. Foundations and Trends in Networking, Now Pub-
lishers (2009)

14. She, Q., Wei, X., Nie, G., Chen, D.: QoS-aware cloud service composition: a sys-
tematic mapping study from the perspective of computational intelligence. Expert
Syst. Appl. 138, 112804 (2019)

15. Sun, M., Zhou, Z., Duan, Y.: Energy-aware service composition of configurable
IoT smart things. In: 2018 14th International Conference on Mobile Ad-Hoc and
Sensor Networks (MSN), pp. 37–42. IEEE (2018)

16. Tong, E., Chen, L., Li, H.: Energy-aware service selection and adaptation in wireless
sensor networks with QoS guarantee. IEEE Trans. Serv. Comput. (2017)

17. Wang, S., Zhou, A., Bao, R., Chou, W., Yau, S.S.: Towards green service compo-
sition approach in the cloud. IEEE Trans. Serv. Comput. (2018)

18. Woods, E., Fairbanks, G.: The pragmatic architect evolves. IEEE Softw. 35(6),
12–15 (2018)

19. Zeng, D., Gu, L., Yao, H.: Towards energy efficient service composition in green
energy powered cyber-physical fog systems. Future Gener. Comput. Syst. 105,
757–765 (2020)



Continuous Experimentation for
Automotive Software on the Example of a

Heavy Commercial Vehicle in Daily
Operation

Federico Giaimo1(B) and Christian Berger2

1 Chalmers University of Technology, Gothenburg, Sweden
giaimo@chalmers.se

2 University of Gothenburg, Gothenburg, Sweden
christian.berger@gu.se

Abstract. As the automotive industry focuses its attention more and
more towards the software functionality of vehicles, techniques to deliver
new software value at a fast pace are needed. Continuous Experimen-
tation, a practice coming from the web-based systems world, is one of
such techniques. It enables researchers and developers to use real-world
data to verify their hypothesis and steer the software evolution based on
performances and user preferences, reducing the reliance on simulations
and guesswork. Several challenges prevent the verbatim adoption of this
practice on automotive cyber-physical systems, e.g., safety concerns and
limitations from computational resources; nonetheless, the automotive
field is starting to take interest in this technique. This work aims at
demonstrating and evaluating a prototypical Continuous Experimenta-
tion infrastructure, implemented on a distributed computational system
housed in a commercial truck tractor that is used in daily operations
by a logistic company on public roads. The system comprises computing
units and sensors, and software deployment and data retrieval are only
possible remotely via a mobile data connection due to the commercial
interests of the logistics company. This study shows that the proposed
experimentation process resulted in the development team being able to
base software development choices on the real-world data collected dur-
ing the experimental procedure. Additionally, a set of previously identi-
fied design criteria to enable Continuous Experimentation on automotive
systems was discussed and their validity confirmed in the light of the pre-
sented work.

Keywords: Software engineering · Software architecture · Continuous
Experimentation · Cyber-physical systems · Automotive

1 Introduction

The automotive industry is currently investing considerable efforts and resources
towards the achievement of an autonomous vehicle that would meet the spec-
ification of SAE level 3 [18]. Several companies have in fact already marketed
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 73–88, 2020.
https://doi.org/10.1007/978-3-030-58923-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_5&domain=pdf
http://orcid.org/0000-0003-2400-1465
https://doi.org/10.1007/978-3-030-58923-3_5


74 F. Giaimo and C. Berger

vehicles exhibiting different semi-autonomous capabilities belonging to SAE level
2, ranging from adaptive lane keeping to self-parking features. The most rele-
vant difference between level 2 and 3 in the SAE hierarchy is on who takes the
responsibility of monitoring the driving environment: while in SAE level 2 the
system assists the human driver in latitudinal and longitudinal adjustments, it
is the driver who is expected to perform all the remaining tasks; instead, in SAE
level 3 this is not required, meaning that the vehicle itself should be able to
manage the dynamic driving tasks while the human driver is only expected to
intervene upon request [17].

The software necessary to manage the diversity of situations that a vehicle
can face is bound to be complex and computationally intensive, especially consid-
ering that the software present in modern vehicles already exceeds the Gigabyte
in size [11]. Moreover, as all vehicles share the same basic capabilities but differ
in the provided software functionality, it can be expected that the latter will
constitute for the customers a relevant practical difference between automakers,
thus fuelling a functionality race that will move the value concentration from
the hardware, i.e., the vehicle itself, to its software capabilities.

1.1 Continuous Experimentation

When the software takes over the competitively distinguishing role from the
hardware in the value-creation process, delivering new updates and functionality
in a quick manner becomes necessary. This is very apparent in the software
industry, especially for what concerns web-based software, where development
techniques have been introduced to accelerate the process as much as possible
by learning from how users and customers interact with such systems. Among
them we find Continuous Integration (CI), Continuous Deployment (CD), and
Continuous Experimentation (CE).

Continuous Integration proposes the integration of new software into the rest
of the code base as soon as possible while Continuous Deployment involves the
possibility of immediate deploying newly integrated software code into the target
systems when all automated testing is successfully completed. There are many
platforms that enable these two methodologies for software development teams,
e.g., GitLab, Jenkins, and Zuul among many others. Continuous Experimenta-
tion builds upon the CI/CD pipeline and aims at enabling the developers to test
new software performances by providing the possibility of deploying and run-
ning alongside the official software a number of experiments. These experiments
could be either different versions of the official software or new functionality to
be field-tested. While it adds computational overhead to the systems, Continu-
ous Experimentation allows to confirm or reject hypotheses about the software
suitability for a given task based on real-world data as opposed to simulations
or speculations, making the software evolution process data-driven.

Continuous Experimentation has proven to be very effective on web-based
software systems [10]. However, applying verbatim this way of working onto
safety-critical cyber-physical systems such as vehicles would be an endeavour
destined to face the specific challenges of the automotive context. One challenge



Continuous Experimentation for Automotive Software 75

is the added complexity given by the fact that the target systems in the case
of vehicles are not virtual machines in server farms but highly mobile physical
objects with limited computational performance. Moreover, there is a resource
availability problem given by the Continuous Experimentation practice itself,
which introduces a non-traditional approach when it comes to testing new func-
tionality and needs additional computational power in order to manage the addi-
tional experiments and the data collection [9] on top of the system’s nominal
functions. This can pose issues to the automotive industry, which, being based
on an economy of scale, has always built vehicles with hardware that is just
enough powerful to fulfill its tasks in order to lower production costs. It also
requires a rethinking of the classic system and software’s architectures due to
the new practice in which extra software is downloaded and run while its results
are collected and uploaded back to the manufacturer. Nonetheless, new com-
petitors seem to embrace this challenge as it can be seen from a manufacturer
for luxury electric vehicles. In their quarterly financial reports, they mention
already since 2015 the systematic gathering of driving and sensor data via “field
data feedback loops” that are used to “enable the system to continually learn
and improve its performance” [3]. While software experiments are not explic-
itly named, a company representative did mention the practice of installing “an
‘inert’ feature on vehicles” in order to “watch over tens of millions of miles how
a feature performs” by logging its behavior in a real-world scenario [16].

A previous investigation in the automotive field by the authors shows that
practitioners expect that they would benefit from the introduction of the Con-
tinuous Experimentation practice, even if it now faces these additional chal-
lenges [7]. Another recent study showed that literature was generally focusing
increasing efforts in the study of this practice, but only a small portion of these
studies were actually proposing practical experiments and none of them in the
context of a Continuous Experimentation setting on an automotive or cyber-
physical systems where the object of the experiment was not a visual change in
a user interface [15]. Hence, the current work was devised to fill this research
gap being the first study of this kind to propose and evaluate a system based on
a proof-of-concept architecture for Continuous Experimentation built on previ-
ously identified design criteria [8], housed on a commercial truck tractor oper-
ated on a daily basis by a logistics company in Sweden (the truck is still in use
throughout 2020).

1.2 Scope of this Work

While the aim of this work is to draw conclusions that are valid for the auto-
motive field, it is worth mentioning the differences between the experimental
work and a commercial automotive scenario. One such scenario would gener-
ally involve a fleet of vehicles, likely passengers cars, which are each controlled
by a number of highly resource-constrained Electronic Control Units (ECUs).
The experimental work for this study was instead performed on a single vehicle,
i.e., a commercial truck tractor, equipped with a server-grade computing unit



76 F. Giaimo and C. Berger

more powerful than a typical ECU, and the software was written using a high-
level programming language. These differences are due to the fact that the aim
of this study is to provide and evaluate a proof-of-concept for the Continuous
Experimentation process rather than focusing on a particular automotive func-
tion. A key aspect is however preserved: in the real-world case and in this study
the vehicle is physically inaccessible to the manufacturer, forcing all software
deployment and data exchange to be performed via an Over-The-Air (OTA)
connection while the vehicle is in operation. Finally, it should be noted that
the scope of this study does not include autonomous driving tasks as the vehicle
used in the experimental setting is manually driven by a driver from the logistics
company.

1.3 Research Goal

Previous investigations clearly show that the literature lacks design science stud-
ies about Continuous Experimentation in realistic cyber-physical systems con-
texts, and especially in the automotive domain. This study aims to bridge this
research gap. The Research Goal (RG) of this work can be expressed as:

RG : To provide and evaluate a proof-of-concept that shows the feasibility and
benefit of a Continuous Experimentation decision cycle for an algorithmic
choice in the context of an automotive system, based on previously identi-
fied design criteria.

The Research Goal of this article can be further divided in the following Research
Questions (RQ):

RQ1: What software architecture can support a Continuous Experimentation
decision process on a complex cyber-physical systems such as an automo-
tive system?

RQ2: To what extent do previously identified design criteria for Continuous
Experimentation in the context of automotive cyber-physical systems
hold?

1.4 Contributions

To the best knowledge of the authors, this study presents for the first time a Con-
tinuous Experimentation decision cycle focused on an algorithmic experiment on
a computational system housed in a commercial vehicle, where the deployment
of experimental software to the system and the retrieval of gathered data are
performed via a mobile data connection while the automotive system was oper-
ated by the owner company. The whole experimental setting aimed to be the
least invasive for the company’s operators and their commercial activities. Both
the system and software architectures are reported and the experimental work
offered the chance to discuss and validate a set of design criteria for Continu-
ous Experimentation on automotive cyber-physical systems that were previously
identified in a preceding study.



Continuous Experimentation for Automotive Software 77

2 Related Works

A number of studies explore the Continuous Experimentation practice, in its
native application field, i.e., web-based systems, and more recently in the context
of cyber-physical systems. Gupta et al. [10] describe the First Practical Online
Controlled Experiments Summit. During this summit, a number of experts in
experimentation from several software and online-based companies convened to
discuss the experimentation processes they have in place, the main challenges
they are facing, and some relative solutions.

Fagerholm et al. [6] defined an organizational model for Continuous Experi-
mentation in the context of web-based products, comprising the tasks and arte-
facts that different roles involved in planning and implementation of a software
product should manage in order to enable the experimentation process.

Recent mapping studies on the Continuous Experimentation practice show
that the majority of the works they encountered explore the statistical methods
sub-topic and are often rooted in the web-based applications context, which is
the originating field of this practice; only a minority of studies are addressing the
Continuous Experimentation practice in the cyber-physical systems field [4,15].

A previous work led by the authors [8] explored the design characteristics
that a cyber-physical systems should possess in order to enable a Continuous
Experimentation process on an autonomous vehicle. These design criteria are
evaluated in this study to discuss their validity in the light of the presented
work and considering the difference between the scopes of the two studies.

Olsson and Bosch [14] published a study connecting post-deployment data
and the cyber-physical and automotive field. They interviewed representatives
from three companies, one of which is an automotive manufacturer. The study
reports that while post-deployment data collection mechanisms are in place,
the collected data is only partially used and the purpose of this feedback is
troubleshooting, rather than supporting a product improvement process.

Mattos et al. [13] performed a literature review to identify a set of chal-
lenges for Continuous Experimentation in cyber-physical systems that was used
a starting point for a case study where they tried to identify possible solutions
with industrial representatives.

Cioroaica et al. [5] propose the analysis of Digital Twins to assess the trust-
worthiness of smart agents such as additional functionality or system component
being downloaded to a smart vehicle. While the approach yields value especially
to evaluate third-party functionality, it relies on simulating the new component’s
behavior in a partial simulation of the surrounding environment. While simula-
tions should be part of the evaluation process for new software due to the safety
they can guarantee, in the authors’ view they cannot completely replace the
value coming from a field evaluation since the very high complexity of the real
world and the system’s interaction with it cannot be perfectly simulated.

No relevant publicly available information was found about commercial com-
panies’ practices regarding internal software experiments to improve autonomous
functionality, except from the aforementioned comments regarding inert fea-
tures [3,16].



78 F. Giaimo and C. Berger

3 Methodology

A Design Science methodology, i.e., the design and investigation of artifacts in
context [19], was adopted to achieve the Research Goal. A software architecture
was devised to support a number of software modules that would run and interact
on a system performing a Continuous Experimentation decision cycle, housed in
a commercial heavy vehicle, shown in Fig. 3. The Continuous Experimentation
practice was applied to answer in a data-driven fashion a software development
question regarding an algorithmic choice, performed on a complex cyber-physical
systems such as an automotive vehicle only accessible via a remote connection.
While supporting a software experiment is the goal, the focus of this study is
not on the experiment itself, i.e., what the production and experimental modules
actually do, but instead on the experimentation process itself. In other words,
even if an experiment has been set up, for the purpose of this study what matters
is not the result of the experiment, but rather whether an experiment could
be actually carried out according to the Continuous Experimentation practice.
For this reason, the focus of the results and discussion is the architecture and
infrastructure for the experiment and not its outcome.

The experiment consisted in running different Machine Learning-based object
detectors connected to the live video feed in order to find an object detector
module that would recognise, as accurately as possible, items and road users in
the vehicle’s field of view. The experiment was run in a series of time-wise short
sessions and the resulting data were analysed manually. The machine learning
software modules were based on publicly available detection models1 pre-trained
on the COCO dataset [12]. This dataset was chosen because of the breadth of
its scope, which encompasses automotive items and more, making it a valuable
choice for a general-purpose object detector.

4 Results

4.1 Research Question 1

The work here reported shows a system and software architecture for the applica-
tion of a Continuous Experimentation methodology in order to answer a software
development question regarding an algorithmic choice, on a system housed in a
remotely accessible vehicle. The following paragraphs describe the details of the
software architecture supporting the experimentation process, the system archi-
tecture enabling the software to gather data and communicate results, and the
way that the software was packaged in order to ease the deployment process
while following the Continuous Integration/Continuous Deployment practices.

1 https://github.com/tensorflow/models/blob/master/research/object detection/
g3doc/detection model zoo.md.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md


Continuous Experimentation for Automotive Software 79

Software Architecture. The experimentation process is based on the inter-
action of the three modules Production Software, Experimental Software, and
Supervisor, as shown in Fig. 1. As the names suggests, Production Software sim-
ulates a production component, whose performance must not be influenced by
any other components. Each instance of the Experimental Software module rep-
resents an experiment deployed to test a new software variant, which runs in a
sandboxed way, i.e., they must not issue commands to the actual system (espe-
cially any actuators) but instead have their output logged for later analysis,
similarly to what is done by an automotive manufacturer who revealed it uses
“inert features” [16]. The Supervisor module poses as the experiment manager
software, monitoring the other modules’ performances and deciding at any time
whether to continue or not with the experiment, depending on whether the
Experimental Software modules abide to the experiment parameters. It is also
the module that interacts with the team, represented by the “HQ” box in Fig. 1,
that plans and conducts the deployment of both the software modules and the
Experiment Protocol, which comprises the parameters of the experiment cycle.
Finally, it reports the results observed during operation back to the team.

When an experiment is set up in the computing system, an Experimentation
Protocol is provided, which is a file collecting relevant parameters for the exper-
iment, e.g., CPU usage thresholds for the Experimental Software that should
not be crossed. Upon starting, the Supervisor will wait for the other software
modules to manage the experimentation process. If a performance drop in the
Production Software or an increase in resources consumption by the Experimen-
tal Software modules is detected by the Supervisor, the change is compared to
the thresholds as specified in the Experimentation Protocol. If necessary, the
Supervisor has the capability to request the Experimental Software modules
either a performance degradation, so that it consumes less resources thus leav-
ing more for the Production Software, or a full stop of the experiment if the
violations are deemed too severe. During the experiment, relevant data about
the detection performances are collected. These results are transmitted back to
the remote team at the end of each experiment, allowing them to analyze the
experiment’s performance and finally decide which software version fulfilled its
functional objectives more effectively.

System Architecture. To provide a proof-of-concept for Continuous Experi-
mentation in the automotive context and better understand the underlying chal-
lenges, a research project was initiated as a collaboration between Chalmers
University of Technology’s vehicular laboratory REVERE, Volvo, Trafikverket,
GDL, Kerry Logistics, Speed Group, Bor̊as Stad, Ellos, and Combitech to equip
a modern Volvo tractor with a platform consisting of two computers, five cam-
eras, three GPS sensors, and a GPS/IMU system for daily data logging during
typical operations of a logistics company.

As depicted in Fig. 2, the system is designed in the following manner: The
automotive platform, a commercial truck tractor, is equipped with a Linux-
based, Docker-enabled computer as primary unit and an Accelerated Processing



80 F. Giaimo and C. Berger

Fig. 1. View of the system and its components. The dashed lines represent Over-The-
Air (OTA) communication.

Unit (APU) as secondary computing node. The main computer is equipped
with an Intel Core i9-9900K CPU and an NVidia GP107 GPU. It is directly
connected to two cameras, two GPS systems, and the vehicle’s CAN network.
The secondary unit has instead direct access to one camera, one GPS unit,
and the vehicle’s CAN network, since the computing systems are capable to
access a subset of the CAN signals of the automotive platform, specifically the
ones containing the vehicle’s speed and the IMU data. The secondary unit has
the purpose of providing a stable, low-energy demanding, highly available con-
nection, enabling an additional point of access to the system for maintenance
purposes.

Moreover, being directly connected to a number of input sensors, it can also
act as a reliable fail-over system, although with degraded performances and a
reduced amount of data, should the main unit malfunction during operations.
Finally, the two mobile data connection routers acting as internal network nodes
connect internally both computing units to the remaining two cameras and GPS
units, and externally the whole system to the outside world. To provide a stable
power supply to the hardware and not limit operations to only the time when
the engine runs, the system is powered by a battery pack which is recharged by
the engine when it is running.

The system is monitored live through a software dashboard, shown in Fig. 4,
that allows to easily visualize important parameters such as system time, up-
time, CPU temperature and consumption, system load, vehicle speed, GPS posi-
tion and number of satellites, storage disk space utilization, battery level, and
CAN connections data rates. As the vehicle is in daily operation by the logis-
tics company, the software to test and the resulting data can only be extracted
remotely hence making this project and platform well-suited for this study on
Continuous Experimentation, as it represents the use-case of a single vehicle in



Continuous Experimentation for Automotive Software 81

Fig. 2. Architecture of the system, named Voyager. The two computing units provide
some redundancy should a fail occur while the system is in mission. A comprehensive
set of cameras is available, as well as an IMU signal and several GPS sources.

a fleet that can run software experiments but cannot be physically accessed by
the manufacturer.

Fig. 3. The vehicle housing the system
is part of a project named Highly Auto-
mated Freight Transports (AutoFreight).

Fig. 4. Dashboard monitoring one of the
computing systems on board the com-
mercial truck tractor used in the experi-
mental phase of this work.

Software Development and Deployment. To simplify the deployment
phase, all software modules were developed and encapsulated using Docker2.
Docker uses OS-level resource isolation to enable the execution of software in

2 https://www.docker.com.

https://www.docker.com


82 F. Giaimo and C. Berger

environments called containers, which are run on top of the host OS kernel, thus
resulting in a more lightweight solution than a full-stack virtualization software.
Each container is an instance of a Docker image, which acts similarly as a guest
machine template and can be used to store and deliver applications.

The versioning, integration, and deployment operations were run in a GitLab-
based environment. GitLab is a web-based DevOps lifecycle environment that
provides a Git repository manager providing, among the other services, a Contin-
uous Integration/Continuous Deployment pipeline. The resulting development
cycle would follow these steps: firstly, a new change is introduced in the code-
base via a Git repository commit; then, the Continuous Integration pipeline is
automatically triggered and the new code is integrated and built within the code
base; finally, the Continuous Deployment pipeline is executed triggering the build
a Docker image, which is ready for distribution. If the new code was part of a
software experiment, at the end of these three steps a Docker image with the
experimental software is ready to be deployed and executed. These steps embody
what we can expect an industrial Continuous Experimentation cycle to look like
from development to deployment to execution and finally, by instrumenting the
code, to data collection, analysis, and choice of a final software variant.

From what resulted during the development work, the average code base
change would take around 4 min to be integrated while the Docker image build-
ing phase would last around 7 min. This means that a little more than ten
minutes after new code was committed to the code base it was already avail-
able for deployment into the system. These phases took place at the team’s end
of the process and not on the automotive system itself, which had to down-
load the software modules over the mobile connection. In the described setup,
the resulting Docker image for an Experimental Software module amounted to
approximately 5 GB in size due to the machine learning models and dependen-
cies. While its size is significant, it is worth noting that no optimization nor
compression was applied to the Docker image, which could have reduced sig-
nificantly the amount of data to be deployed. The download of this image into
the automotive system took approximately 14 min, which is comparable to the
time needed to perform software updates in commercial vehicles. However, since
Docker images are built as the aggregation of ID-marked layers based on their
building process, most of the image downloads were only partial as several inter-
mediate layers did not change between software builds and Docker allows to
skip downloading duplicate layers. The experiment was run in a series of rounds
while the vehicle was in operation in the Gothenburg area, as shown in Fig. 5.
At the end of the experiment the resulting data were manually analyzed and it
was concluded that the object detector used in one of the Experimental Software
modules performed more accurately than the Production Software module. The
results of the machine learning experiment are not reported nor discussed in
detail as the focus of this work is not the object of the experiment in itself, but
rather the architecture and infrastructure that made it possible. In the described
experimental setup the process proved to be possible and feasible, and led to a



Continuous Experimentation for Automotive Software 83

successful experiment cycle that produced a data-based answer to a software
development question.

4.2 Research Question 2

In a previous study on the subject a set of design properties was identified that
would enable Continuous Experimentation on a complex cyber-physical system
such as an autonomous vehicle [8]. These properties are here listed and discussed
in the light of the work described so far.

Access to perception sensors and systems, this was of course needed to run
the Production and Experimental Software and was used in this study; access to
full vehicle control, in this work it was not needed since controlling the vehicle
was not in the scope of the experimentation process nor the experiment itself.
Had it been so, a system architecture capable of driving the vehicle would have
been needed; log internal activity and other relevant metrics, a necessary step
to allow the analysis of the experimental results; enabling of data transmission
from the developers to the deployed system and the feedback loop in the oppo-
site direction, also necessary to deploy software and retrieve the resulting data
remotely; reliability, implemented through health checking techniques adopted
to limit fault propagation and to enable remote troubleshooting and “graceful
degradation” by having a secondary computing unit capable to restart the pri-
mary one and having access to own sensors and data streams; testability, as all
changes in functionality were firstly tested on local machines fed with recordings
of past camera streams to ensure that the new code to be deployed to the sys-
tem would perform as expected; safety, in this case the software had no physical
control over the actual vehicle, meaning that even in case of faults, the safety
implications were limited. Nonetheless, safety constraints were implemented in
the form of thresholds over the amount of computational power that the exper-
iment modules could use in order to simulate how the system would respond to
resource-hungry experiments endangering the execution of Production Software;
scalability, an automotive system is naturally distributed across several compu-
tational units, in the present case the system adopted in this study is distributed
over two computing nodes. While one was used to actually execute Production
and Experimental Software modules, the other was still involved in the process as
it was accessed to retrieve the camera feed used by the software. Would it have
been possible or necessary, the modular nature of the software that was used
would have allowed for even more spread-out distribution, since the commu-
nication between software modules was performed via UDP multicast message
exchange, requiring simply a network connection among computing nodes; sep-
aration of concerns, meaning the establishment of abstraction layers between
hardware and software and between data and exchanged messages, definitely
a necessary part of any software running on complex cyber-physical systems;
simplicity to involve new developers, a feature of the development process more
than of the physical system itself, in this case provided mostly by the ease of
use of the development tools, which automated the majority of the steps nec-
essary to perform Continuous Integration/Deployment pipelines; facilitation for



84 F. Giaimo and C. Berger

operators, meaning that the software should not be hard to operate for those
who are not developers, in this study it was not possible to acquire an exter-
nal perspective on this point, as the only tester and operator of the Continuous
Experimentation cycle was also the developer. However it should be noted that
the adoption of microservices allowed to run or stop the execution of Production
or Experimental Software by using a very limited number of console commands;
short cycle from development to deployment, which is necessary whenever possi-
ble in order to roll out changes and new features at a fast pace, was definitely
present in this study due to the automated Continuous Integration/Deployment
mechanisms.

5 Discussion

The presented Continuous Experimentation prototypical implementation shows
that it is possible to achieve enough data feedback from candidate functionality
in a vehicular system to get a better understanding about its performances. This
allows researchers and developers to decide how to proceed with future software
development efforts based on the data coming from the automotive system oper-
ating in real-life scenarios. As the goal was to verify the viability of the approach
and qualitatively evaluate its architecture, the practical limits to the applicabil-
ity or performances of the prototype, such as for example the minimum quality
of service for the data connection or the base amount of experiments’ results
to be collected, were not in the direct focus of this study. Nonetheless it can
be expected that certain parameters would be particularly relevant for the exe-
cution of the envisioned process, such as the remote connection quality, which
has to be high enough to allow the exchange of software and the resulting data
in the timeframe set for the experiment; and the computational capacity of the
unit running the experiments, which has to support their execution so that the
results of interest can be obtained.

Since this was a proof-of-concept implementation, some of the issues that are
specific to commercial vehicles were not addressed in this study. One of them
is connected to the computational limits of automotive ECUs, which were not
used in the experimental setup but are envisioned to be the computational units
of such a production system in the future. Since ECUs are less computationally
powerful than the hardware that was used in this prototype, employing them
as computational hardware could have provided additional insight on how much
could the low resources of these units hinder the execution of experiments. It is
however worth to mention that even with low hardware capabilities it could be
possible to run additional software, although perhaps not by using an off-the-
shelf solution like Docker as it requires support from the Linux kernel. However,
if adding additional computing power to the system is not an option it may
still be possible to find scheduling strategies for the experiments’ execution that
make use of computational resources not needed by the Production Software [9].

Another important difference between this prototype and commercial vehicles
involves the safety constraints for the software. Automotive regulations demand



Continuous Experimentation for Automotive Software 85

strong safety standards for the software run in vehicles to which future experi-
mental software may have to abide. In this prototype the only safety measures
relied in the monitoring capabilities of the Supervisor module and its degra-
dation/abort commands. Moreover, additional coding rules that apply to auto-
motive software were not followed in this case, e.g., the prohibition to allocate
dynamic memory. While sufficient for the aim of this test, it can be envisioned
that more sophisticated coding standards and functional emergency stop mech-
anisms will be needed for future commercial implementations of this concept,
unless perhaps it can be proved that the experiments cannot influence the vehi-
cle’s behavior in any way. Additional smaller challenges were posed by practical
issues such as the size of software downloads to be undertaken by the automotive
system, which was slowed by the bandwidth of the mobile data connection of
the system. It should finally be mentioned that being this a prototype and not
a system ready or close to commercial use, the company owner of the truck did
not use the results of the study to change their strategy or operations at the
present time.

Analyzing the design criteria identified in a previous study, it is the authors’
conclusion that they do hold for a Continuous Experimentation process on
an automotive system, with the only discrepancies explained by the lack of
autonomous capabilities in the present study’s vehicle and the presence of a sin-
gle developer/tester instead of different team members covering different roles.
The design criteria can thus be viewed as a form of checklist to validate the pre-
paredness of a complex cyber-physical systems’ architecture and development
process to run Continuous Experimentation.

Fig. 5. Highlighted GPS traces of the vehicle in the first half of 2020 in the Gothenburg
geographic area. The horizontal lines were artefacts of the overlay script in correspon-
dence of GPS-denied areas.

5.1 Threats to Validity

A number of factors may threaten the validity of this work.
One threat is likely the fact that the experiment infrastructure and the soft-

ware modules do not abide to current automotive standards like [1,2]. For exam-
ple, one of the main differences between the software used in this work and
the commercial automotive software is the use of dynamic memory allocation,



86 F. Giaimo and C. Berger

which is currently forbidden in safety-critical systems due to the introduced
vulnerability that could disrupt critical software capabilities when needed. This
threatens the generalizability of the result since what was achieved in this study
could be technically harder to obtain abiding to the strict automotive software
standards. However, this threat is less impending considering that this work
had the goal of providing a proof-of-concept showing that a working Continu-
ous Experimentation-enabled vehicle is within the automotive industry’s grasp,
rather than provide one ready for commercial use.

Connected to the aforementioned threat, another potential issue is the fact
that the software developed for this work had the capability to only run one or
two Experimental Software modules at the same time. While this may seem an
important limitation, it is worth noting that a higher number of experiments
running concurrently would require a higher amount of spare computational
power in a real-world scenario. Moreover, if a vehicle can only run a set amount of
experiments at the same time this could play in favor of the development efforts
necessary to tackle the previously mentioned threat to validity: the variables
that would normally require an amount of memory dependent on the number of
experiments could be in fact dimensioned a priori since the number is fixed.

Lastly, it should be noted that it is not necessarily possible to generalize the
results obtained with Continuous Experimentation in the automotive field to
the rest of the cyber-physical systems context. While the challenges lurking in
the automotive field are increasingly recognized and faced, it is possible and not
unlikely that several additional challenges peculiar to different cyber-physical
systems sub-fields are still in the way and will prevent a rapid widespread adop-
tion of this practice to non-automotive systems.

6 Conclusions and Future Work

The presented work demonstrated and evaluated the execution of a prototypical
Continuous Experimentation cycle for an automotive system, which is in daily
commercial operations by a logistics company. The system was equipped with
computing units and sensors and accessed remotely via a mobile connection,
which was the only communication channel used to deploy software and retrieve
the data resulting from running a software experiment. A set of previously iden-
tified design criteria to enable Continuous Experimentation on autonomous vehi-
cles was discussed in light of the (non-autonomous) system built for this work.
This study could show for the first time that an algorithmic development ques-
tion can be answered applying a Continuous Experimentation process, while
also highlighting some relevant challenges still standing on the way towards a
fully-functional experiment-enabled vehicle.

One direction for future studies could be for example the automation of those
steps that were manually performed in this work, e.g., the deployment of software
to the automotive system, or the analysis of the resulting experiment data. As
previously mentioned, additional follow-up studies would be the replication of
this proof-of-concept using software and hardware closer to those adopted for



Continuous Experimentation for Automotive Software 87

consumer vehicles. That would require the software to abide at least partly to
existing automotive regulations, and to run experiments on hardware facing
resource constraints closer to what is currently present in real-world vehicles.

Acknowledgment. This work was supported by the project Highly Automated Freight
Transports (AutoFreight), funded by Vinnova FFI [2016-05413].

References

1. ISO 21448:2019: “Road vehicles - safety of the intended functionality”. https://
www.iso.org/standard/70939.html. Accessed 04 Nov 2019

2. ISO 26262-1:2011: “Road vehicles - functional safety”. https://www.iso.org/
standard/43464.html. Accessed 04 Nov 2019

3. Tesla financials & accounting information. https://ir.tesla.com/financial-
information/quarterly-results. Accessed 31 Jan 2020

4. Auer, F., Felderer, M.: Current state of research on continuous experimentation:
a systematic mapping study. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 335–344. IEEE (2018)

5. Cioroaica, E., Kuhn, T., Buhnova, B.: (Do not) trust in ecosystems. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER), pp. 9–12 (2019)

6. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The right model for contin-
uous experimentation. J. Syst. Softw. 123, 292–305 (2017)

7. Giaimo, F., Andrade, H., Berger, C.: The automotive take on continuous exper-
imentation: a multiple case study. In: 2019 45th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), pp. 126–130. IEEE (2019).
https://doi.org/10.1109/SEAA.2019.00028

8. Giaimo, F., Berger, C.: Design criteria to architect continuous experimentation for
self-driving vehicles. In: 2017 IEEE International Conference on Software Archi-
tecture (ICSA), pp. 203–210. IEEE (2017). https://doi.org/10.1109/ICSA.2017.
36

9. Giaimo, F., Berger, C., Kirchner, C.: Considerations about continuous experimen-
tation for resource-constrained platforms in self-driving vehicles. In: Lopes, A., de
Lemos, R. (eds.) ECSA 2017. LNCS, vol. 10475, pp. 84–91. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65831-5 6

10. Gupta, S., et al.: Top challenges from the first practical online controlled experi-
ments summit. ACM SIGKDD Explor. Newsl. 21(1), 20–35 (2019)

11. Hiller, M.: Thoughts on the future of the automotive electronic architecture (2016).
http://h24-files.s3.amazonaws.com/159726/874242-uLYqg.pdf. Accessed 22 Oct
2019

12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

13. Mattos, D.I., Bosch, J., Olsson, H.H.: Challenges and strategies for undertaking
continuous experimentation to embedded systems: industry and research perspec-
tives. In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp.
277–292. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 20

https://www.iso.org/standard/70939.html
https://www.iso.org/standard/70939.html
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://ir.tesla.com/financial-information/quarterly-results
https://ir.tesla.com/financial-information/quarterly-results
https://doi.org/10.1109/SEAA.2019.00028
https://doi.org/10.1109/ICSA.2017.36
https://doi.org/10.1109/ICSA.2017.36
https://doi.org/10.1007/978-3-319-65831-5_6
http://h24-files.s3.amazonaws.com/159726/874242-uLYqg.pdf
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-91602-6_20


88 F. Giaimo and C. Berger

14. Holmström Olsson, H., Bosch, J.: Post-deployment data collection in software-
intensive embedded products. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013.
LNBIP, vol. 150, pp. 79–89. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39336-5 9

15. Ros, R., Runeson, P.: Continuous experimentation and a/b testing: a mapping
study. In: Proceedings of the 4th International Workshop on Rapid Continuous
Software Engineering, RCoSE 2018, pp. 35–41. ACM, New York (2018)

16. Ross, P.E.: Tesla reveals its crowdsourced autopilot data. http://spectrum.ieee.
org/cars-that-think/transportation/self-driving/tesla-reveals-its-crowdsourced-
autopilot-data. Accessed 31 Jan 2020

17. Smith, B.W.: SAE levels of driving automation (2013). http://cyberlaw.stanford.
edu/blog/2013/12/sae-levels-driving-automation. Accessed 31 Jan 2020

18. SAE J3016: Taxonomy and definitions for terms related to on-road automated
motor vehicles. Society of Automotive Engineers, Warrendale, PA (2014)

19. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

https://doi.org/10.1007/978-3-642-39336-5_9
https://doi.org/10.1007/978-3-642-39336-5_9
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-reveals-its-crowdsourced-autopilot-data
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-reveals-its-crowdsourced-autopilot-data
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-reveals-its-crowdsourced-autopilot-data
http://cyberlaw.stanford.edu/blog/2013/12/sae-levels-driving-automation
http://cyberlaw.stanford.edu/blog/2013/12/sae-levels-driving-automation
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8


Towards Using Probabilistic Models to
Design Software Systems with Inherent

Uncertainty

Alex Serban1,2(B), Erik Poll1, and Joost Visser3

1 Radboud University, Nijmegen, The Netherlands
a.serban@cs.ru.nl

2 Software Improvement Group, Amsterdam, The Netherlands
3 Leiden University, Leiden, The Netherlands

Abstract. The adoption of machine learning (ML) components in soft-
ware systems raises new engineering challenges. In particular, the inher-
ent uncertainty regarding functional suitability and the operation envi-
ronment makes architecture evaluation and trade-off analysis difficult.
We propose a software architecture evaluation method called Modeling
Uncertainty During Design (MUDD) that explicitly models the uncer-
tainty associated to ML components and evaluates how it propagates
through a system. The method supports reasoning over how architectural
patterns can mitigate uncertainty and enables comparison of different
architectures focused on the interplay between ML and classical soft-
ware components. While our approach is domain-agnostic and suitable
for any system where uncertainty plays a central role, we demonstrate our
approach using as example a perception system for autonomous driving.

Keywords: Software architecture · Machine learning · Uncertainty

1 Introduction

With the emergent adoption of ML components in software systems, there is
an increased need to tackle and harness their inherent uncertainty. Methods to
address uncertainty exist for design time [4,7] and for run-time [3]. However, pre-
vious work focused primarily on uncertainty related to the parameters used to
model a system or its context [3,4,7]. ML components add a new type of uncer-
tainty that was only briefly explored previously; stemming from the fundamental
impossibility to fully verify that they can satisfy their intended functionality and
that they are able to cope with stochastic events during operation [11].

In this paper we introduce a method to evaluate architecture design alter-
natives for software using both traditional and ML components. The proposal,
called Modeling Uncertainty During Design (MUDD), is based on two guiding
principles. Firstly, the threats due to inherent uncertainty of ML components
are evaluated both locally (for the specific components) and tracked as they
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 89–97, 2020.
https://doi.org/10.1007/978-3-030-58923-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_6


90 A. Serban et al.

propagate and influence other components in the system. Secondly, the prior
information about uncertainty of ML components which is used at design time
is considered incomplete and subject to continuous change.

The rest of the paper is organized as follows. Firstly, MUDD is introduced
(Sect. 2), followed by a demonstration (Sect. 3), related work (Sect. 4) and
conclusions (Sect. 5).

2 Modeling Uncertainty During Design (MUDD)

MUDD explicitly models two sources of uncertainty specific to “automated learn-
ing” [6]: (1) epistemic uncertainty, i.e., the uncertainty about the data generation
process (used for training ML models), and (2) stochastic uncertainty, i.e., the
uncertainty related to stochastic noise in the environment where a ML compo-
nent operates. These uncertainty types have been studied in self-adaptive sys-
tems [8], where software architecture plays an important role. MUDD is distinct
by modeling these uncertainties at design time, rather than at run time.

Notably, MUDD supports reasoning over which design alternatives are less
sensitive to uncertainty and how design patterns can help mitigate it. Moreover,
the method allows to evaluate hypothetical scenarios, in which the data about
uncertainty used at design time is incomplete or assumed to take any value.

From a methodological perspective, MUDD only requires to annotate exist-
ing software architectures with the sources of uncertainty specific to ML compo-
nents. Under the hood, MUDD uses Bayesian networks (BNs) to model a soft-
ware system, propagate the uncertainties and obtain quantitative data about
the architecture’s sensitivity to uncertainty.

We emphasize that MUDD uses these two uncertainty types because they are
application and context independent, i.e., they are valid for any ML model. The
methods used to measure them can be different, depending on the ML algorithm
employed. Therefore, they are parameters rather than fixed elements of MUDD.
Nonetheless, MUDD is not limited to any type of uncertainty.

Throughout the paper we use an example from autonomous driving, inspired
by [1,10] – the design of a perception system for scene understanding. The system
performs three tasks: (1) object detection, which aims to identify the location of
all objects in an image, (2) semantic segmentation, which assigns each pixel in
an image to a predefined class, and (3) depth estimation, which determines the
position of obstacles or the road surface.

The outcome of the example perception system is used in planning the next
driving maneuvers. The functionality of all components is implemented using
deep learning (DL) because no specification can be written for it, and other ML
algorithms perform worse. We are interested to evaluate software architecture
design alternatives and select the one which is the least sensitive to uncertainty.

In Fig. 1a and b we present two architecture candidates inspired by [10]
and [1]. The relevant functional components are illustrated using circles while
the input coming from the camera is depicted with a rectangle. The latter will
not be later considered a node in the BN (therefore its shape).



Modeling Uncertainty During Design 91

Object
Detection

Depth
Estimation

Semantic
Segmen-

tation

Planning

Camera

(a) End-to-end architecture.

Object
Detection

Depth
Estimation

Semantic
Segmen-

tation

PlanningCamera

(b) Component-based archi-
tecture.

Fig. 1. Functional architectures for a scene understanding system in autonomous
vehicles.

EU

Object
Detection

Depth
Estimation

Semantic
Segmen-

tation
Planning

Camera

SU Obj.
Detection

SU Depth
Estimation

SU
 Semantic

Seg.

(a) End-to-end annotated archi-
tecture, as required by MUDD.

Object
Detection

Depth
Estimation

Semantic
Segmen-

tation

PlanningCamera

EU
Semantic

Seg.

SU
 Semantic

Seg.

SU Depth
Estimation

EU Depth
Estimation

EU Obj.
Detection

SU Obj.
Detection

(b) Component-based anno-
tated architecture, as required
by MUDD.

Fig. 2. Uncertainty representation for the two architectures presented in Fig. 1, where
EU stands for epistemic uncertainty and SU for stochastic uncertainty.

The first figure illustrates the end-to-end paradigm, where all components
of the system are jointly trained to form a representation relevant to planning.
This corresponds to the recommendation in [10]. The components share a base
network for feature extraction and have independent layers to decode the features
for each task. An alternative architecture is presented in the Fig. 1, where the
system is organized into distinct ML components and integrated during planning.
This corresponds to the architecture recommended in [1]. We have chosen these
architectural styles as the only alternatives we could find in literature. However,
MUDD is not limited to any architectural style.

For reasoning about uncertainties, we propose to annotate the two architec-
tures with the sources of uncertainty specific to each component. An example
is given in Fig. 2, which departs from the functional view presented in Fig. 1
by illustrating the uncertainty sources, for each component. In the first case,
Fig. 2a, one base encoder is used for all tasks. Therefore, only one node repre-
senting epistemic uncertainty (EU) influences all components.



92 A. Serban et al.

Different sources of stochastic uncertainty (SU) can impact the three tasks
because one random event in the operational environment can influence segmen-
tation, but not detection or depth estimation (and vice versa). Therefore, for
each component there is a different variable for stochastic uncertainty. In the
second scenario from Fig. 2b, the components process raw data from camera
independently. Therefore, they are subject to distinct epistemic and stochas-
tic uncertainties. We note that these decisions are not application and context
specific. All ML components are subject to these types of uncertainty.

3 Quantitative Architecture Evaluation

Under the hood MUDD uses BNs to process quantitative data about uncertain-
ties. The probabilities needed to populate the network can be defined by experts
or inferred through simulations. The random variables in the BN can take con-
tinuous or discrete values. In the former case, the system designer chooses an
a priori distribution for each variable, before seeing any data, and updates its
parameters once new observations are available. In the latter case, the variables
take discrete values and are described by their probability mass functions.

For simplicity, we choose to model all variables through probability mass
functions with two discrete values: low or high uncertainty. When the uncertainty
is low, the system is likely to satisfy its intended functionality and vice versa.
Given the two proposed values for uncertainty, we are interested in evaluating the
influence of different nodes in the network on planning and obtain quantitative
results for the qualitative evaluation presented earlier. Both the probabilities
and the thresholds can be decided by domain experts or by simulation.

For the running example we use a test data set to extract the uncertainty
estimates from DL components, by averaging over samples in this data set. The
thresholds between low and high represent the lowest uncertainty estimate from
the incorrectly classified examples in the testing data set. The probability that
a component has high (epistemic or stochastic) uncertainty will be the total
number of test examples which have uncertainty higher than the threshold over
the total number of testing examples. Note that the correctly classified examples
with high uncertainty will contribute to the probability that a component has
high uncertainty. This choice is deliberate because the system we study is safety-
critical and uncertain decisions should be avoided altogether.

The conditional probabilities – i.e., the influence of components to the con-
nected components – are evaluated in a similar manner. They represent the
probabilities that a component has high uncertainty, given the uncertainty val-
ues of the parent variables. For example, P (OD = H|EP = H,SU = H) is the
probability that the object detector is highly uncertain when the model has high
epistemic and high stochastic uncertainty. We use the same method and data
set as before, but average the results when the parent variables have the same
value. The thresholds are also chosen as before.



Modeling Uncertainty During Design 93

Uncertainty Estimation. All experiments are carried out using the CityScape
data set [2]. For the end-to-end architecture presented in Fig. 1a we train a
variant of MultiNet [12] using an encoder based on the DenseNet architecture,
pre-trained on the ImageNet data set with a dropout probability of p = 0.2. We
use different loss functions in a multi-task learning setting for object detection,
depth estimation and semantic segmentation. Epistemic uncertainty is approxi-
mated by casting a Bernoulli distribution over the model’s weights and sample
it at evaluation time using the dropout layers in the base encoder. The mean of
the dropout samples is used for prediction and the variance to output the uncer-
tainty for each class. Stochastic uncertainty is extracted from the final layer of
each task. For the component-based architecture presented in Fig. 1b we use an
independent encoder and decoder for each task. Training is performed by min-
imizing the task specific loss function used in the multi-task setting described
above. The implementation of DL components was done in Pytorch1 and the
BNs in Pomegranate2. The uncertainty estimates are presented in Table 1 for
the system in Fig. 1a and Table 2 for the system in Fig. 1b.

The heuristics applied to populate the tables represent the prior knowledge
we embed in the network. Depending on the context, software designers may
choose to embed more domain knowledge or rely on expert opinion.

Given the probability tables, we can use the inference rules of BNs to answer
questions about the proposed architectures. We provide a working example:
e.g., we wish to get quantitative evidence about the impact of high stochastic
uncertainty in depth estimation on planning. Setting depth estimation stochas-
tic uncertainty to “High” (SUDE = H), we can compute the final impact on
planning as follows. Let π(x) represent the parent variables of node x (the nodes
that have a directed edge to it). The probability that planning will have high
uncertainty is:

P (Planning = H) = P (SS| π(SS)) · P (DE| π(DE)) · P (OD| π(OD)) ·
P (SUSS) · P (SUDE = H) · P (SUOD) · P (EU),

for the end-to-end architecture and:

P (Planning = H) = P (SS| π(SS)) · P (DE| π(DE)) · P (OD| π(OD)) ·
P (SUSS) · P (SUDE = H) · P (SUOD) · P (EUSS) · P (EUDE) · P (EUOD),

for the component-based architecture, where the acronyms are as in Tables 1 or 2.
Running the computation we observe that the probability of uncertain plan-

ning is approximately 10% lower for the component-based architecture (Fig. 1b)
than for the end-to-end architecture. Moreover, through the same model we can
analyze how high stochastic uncertainty in depth estimation impacts planning
within the minimum and maximum bounds. We plot the probability that plan-
ning is uncertain given that depth estimation stochastic uncertainty is high, by
varying P (DE = H|SU = H, · ) in Tables 1 and 2 between [0, 1] with a step size
of 0.01. The results are illustrated in Fig. 3a.
1 https://pytorch.org/.
2 https://github.com/jmschrei/pomegranate.

https://pytorch.org/
https://github.com/jmschrei/pomegranate


94 A. Serban et al.

Table 1. Independent and conditional probabilities for the end-to-end architecture in
Fig. 2a. The acronyms used are OD – object detection, DE – depth estimation, SS –
semantic segmentation, EU – epistemic uncertainty and SU – stochastic uncertainty.
The uncertainty values are L - low and H - high.

P (·) EU SUOD SUDE SUSS

H 0.18 0.16 0.11 0.19

P (Planning SS)

0.1 L

0.9 H

P (OD EU SUOD)

0.0 L L

0.64 L H

0.61 H L

1 H H

P (DE EU SUDE OD)

0.0 L L L

0.13 L L H

0.76 L H L

0.85 L H H

0.43 H L L

0.78 H L H

0.9 H H L

1 H H H

P (SS EU SUSS DE)

0.0 L L L

0.28 L L H

0.64 L H L

0.72 L H H

0.66 H L L

0.58 H L H

0.61 H H L

1 H H H

The plot represents the influence of high stochastic uncertainty on depth
estimation and the way it propagates on planning. We observe that in the
component-based architecture stochastic uncertainty in depth estimation has
a lower impact on planning than in the end-to-end architecture, for values up to
∼0.7, after which the end-to-end architecture is more resilient to uncertainty.
Depending on the operational environment, a software architect can choose the
design that better fits the expected conditions. For example, if an autonomous
vehicle operates in limited domains – e.g., inside a warehouse – where the proba-
bility of encountering stochastic events is low, the component-based architecture
for the scene understanding system is more appropriate.

Table 2. Independent and conditional probabilities for the component-based architec-
ture in Fig. 2b. The acronyms used are described in Table’s 1 caption.

P (·) EUOD SUOD EUDE SUDE EUSS SUSS

H 0.14 0.16 0.31 0.44 0.17 0.19

P (OD EUOD SUOD)

0.0 L L

0.57 L H

0.41 H L

1.0 H H

P (DE EUDE SUDE)

0.0 L L

0.51 L H

0.47 H L

1 H H

P (SS EUSS SUSS)

0.0 L L

0.11 L H

0.42 H L

1.0 H H

P (Planning SS DE OD)

0.0 L L L

0.34 L L H

0.34 L H L

0.66 L H H

0.34 H L L

0.66 H L H

0.66 H H L

1 H H H



Modeling Uncertainty During Design 95

0.0 0.2 0.4 0.6 0.8 1.0
P (SUDE = H)

0.20

0.25

0.30

0.35

0.40
P
(P

la
n
n
in
g
=

H
|·)

End-to-end architecture
Component-based architecture

(a) Influence of high stochastic uncer-
tainty in depth estimation on planning.

0.0 0.2 0.4 0.6 0.8 1.0
P (SUDE = H,EU = H), P (SUDE = H,EUOD = H,EUDE = H,EUSS = H)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(P

la
n
n
in
g
=

H
|·)

End-to-end architecture
Component-based architecture

(b) Influence of high stochastic uncer-
tainty for depth estimation and all epis-
temic uncertainties on planning.

Fig. 3. Quantitative evaluation of uncertainty in software architecture design.

Using the same model we can evaluate the influence of multiple sources of
uncertainty on planning. We use the realistic assumption that the CityScape data
set does not approximate all driving scenarios and thus may introduce high epis-
temic uncertainties. Therefore, we evaluate the influence of all epistemic uncer-
tainty sources on planning in the scenario described above, where we assume high
stochastic uncertainty in depth estimation. We use the same method as above to
evaluate the probability that planning will have high uncertainty while we vary
all epistemic uncertainty nodes simultaneously with the stochastic uncertainty
in depth estimation. The uncertainties vary between [0, 1], with a step size of
0.01. The results are plotted in Fig. 3b.

As in the previous case, the end-to-end architecture is more resilient to high
uncertainties, for all the components mentioned above. Moreover, the threshold
where the end-to-end architecture becomes more resilient than the component-
based architecture is lower. However, epistemic uncertainty can be removed using
more training data, so the scenario in which epistemic uncertainty is low is
more realistic. In this case, the component-based architecture is more resilient
to uncertainty than the end-to-end architecture.

4 Related Work

At design time, the uncertainty in the parameters used to model a software
system has been taken into account for evaluating the reliability of software
architectures using robust optimization [7], for comparing software architectures
when the impact of architectural decisions can not be quantified, using fuzzy
methods [4] and for evaluating trade-offs specific to quality attributes such as
performance, using sensitivity analysis [5]. However, none of these methods take
into account the uncertainty related to “automated learning”, as indicated by [6].

At run-time, various sources of uncertainty can be mitigated through self-
adaptation [3]. While several methods for self-adaptation use a related formalism,



96 A. Serban et al.

we tackle the problem at design time, and not at run-time, as in self adapta-
tion. Therefore, self-adaptation is complementary, and a method that can unify
uncertainty at design and run time is an interesting direction for future research.

5 Conclusions and Future Work

We introduce MUDD, a method to evaluate and compare architecture design
alternatives for systems using ML components. In particular, we propose to
explicitly model the inherent uncertainty specific to ML components at design
time, and evaluate how it propagates and influences other components in a sys-
tem. The proposed information needed to quantify the uncertainty for each ML
component is well studied both in the software architecture and in the ML lit-
erature. For modeling software systems, MUDD uses Bayesian networks (BNs).

For future work we propose to further validate the sources of uncertainty
with practitioners (e.g., through interviews), and to facilitate the use of MUDD
by developing or integrating with appropriate tools. New scenarios, which can
better exhibit the potential of MUDD and new uncertainty sources (e.g., [9])
are planned as well. Also, BNs are directed graphs and do not allow loops.
Alternatives that can overcome this limitation are planned for future work.

References

1. Behere, S., Törngren, M.: A functional reference architecture for autonomous driv-
ing. Inf. Softw. Technol. 73, 136–150 (2016)

2. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding.
In: IEEE CVPR, pp. 3213–3223 (2016)

3. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

4. Esfahani, N., Malek, S., Razavi, K.: GuideArch: guiding the exploration of archi-
tectural solution space under uncertainty. In: ICSE, pp. 43–52. IEEE (2013)

5. Etxeberria, L., Trubiani, C., Cortellessa, V., Sagardui, G.: Performance-based
selection of software and hardware features under parameter uncertainty. In: Inter-
national Conference on Quality of Software Architectures, pp. 23–32 (2014)

6. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification framework of
uncertainty in architecture-based self-adaptive systems with multiple quality
requirements. In: Managing Trade-Offs in Adaptable Software Architectures, pp.
45–77. Elsevier (2017)

7. Meedeniya, I., Aleti, A., Grunske, L.: Architecture-driven reliability optimization
with uncertain model parameters. JSS 85(10), 2340–2355 (2012)

8. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: ACM/SPEC
International Conference on Performance Engineering, pp. 3–14 (2014)

9. Serban, A., Poll, E., Visser, J.: Adversarial examples on object recognition: a com-
prehensive survey. ACM Comput. Surv. (CSUR) 53, 1–38 (2020)

https://doi.org/10.1007/978-3-642-35813-5_9


Modeling Uncertainty During Design 97

10. Serban, A., Poll, E., Visser, J.: A standard driven software architecture for fully
autonomous vehicles. In: JASE, pp. 20–33. Atlantis Press (2020)

11. Serban, A.C.: Designing safety critical software systems to manage inherent uncer-
tainty. In: IEEE ICSA-C, pp. 246–249. IEEE (2019)

12. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: MultiNet: real-
time joint semantic reasoning for autonomous driving. In: Intelligent Vehicles, pp.
1013–1020. IEEE (2018)



Model-Based Approaches



Empowering SysML-Based Software
Architecture Description with Formal
Verification: From SysADL to CSP

Fagner Dias1, Marcel Oliveira1(B), Thais Batista1 , Everton Cavalcante1 ,
Jair Leite1, Flavio Oquendo2 , and Camila Araújo1,3

1 DIMAp, Federal University of Rio Grande do Norte, Natal, Brazil
fagnerdiasmorais@gmail.com, {marcel,thais,everton,jair}@dimap.ufrn.br,

cmlaraujo@gmail.com
2 IRISA-UMR CNRS/Université Bretagne Sud, Vannes, France

flavio.oquendo@irisa.fr
3 State University of Rio Grande do Norte, Natal, Brazil

Abstract. Software architecture description languages (ADLs) cur-
rently adopted by industry for software-intensive systems are largely
semi-formal and essentially based on SysML and specialized profiles.
Despite these ADLs allow describing both structure and behavior of the
architecture, there is no guarantee regarding the satisfaction of correct-
ness properties. Due to their nature, semi-formal ADLs do not support
automated verification of the specified properties, in particular those
related to safety and liveness of the specified behavior. This paper pro-
poses a novel approach for empowering SysML-based ADLs with formal
verification support founded on model checking. It presents (i) how the
semantics of SysADL, a SysML-based ADL, can be formalized in terms
of the CSP process calculus, (ii) how correctness properties can be for-
mally specified in CSP, and (iii) how the FDR4 refinement checker allows
verifying correctness properties through model checking. The automated
model transformation from SysADL architecture descriptions to CSP
composite processes has been implemented as a plug-in to the Eclipse-
based SysADL Studio tool. This paper also describes an application of
SysADL empowered with CSP to validate its usefulness in practice.

Keywords: Software architecture description · Formal verification ·
Correctness properties · CSP · SysML

1 Introduction

Software architecture descriptions play an essential role in the communication
among stakeholders, e.g., architects, developers, etc. The precise communication
of this artifact is quite important since a badly specified architectural model

This research was partially funded by INES 2.0, FACEPE grant APQ-0399-1.03/17,
CAPES grant 88887.136410/2017-00, and CNPq grant 465614/2014-0.

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 101–117, 2020.
https://doi.org/10.1007/978-3-030-58923-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_7&domain=pdf
http://orcid.org/0000-0003-3558-1450
http://orcid.org/0000-0002-2475-5075
http://orcid.org/0000-0003-4171-2445
https://doi.org/10.1007/978-3-030-58923-3_7


102 F. Dias et al.

causes design and implementation flaws in a software system and can create
misunderstandings [8]. Architecture description languages (ADLs) have been
used as means of expressing software architectures and producing models that
can be used at design time and/or runtime [3].

One of the major challenges in the design of software-intensive systems con-
sists in verifying the correctness of their software architectures, i.e., if the envi-
sioned architecture is able to fully meet the established requirements. Acknowl-
edged as an important activity in software industry [10,14], the architectural
analysis aims to verify system properties using architectural models at design
time to detect incorrectness, inconsistencies, and other undesirable issues as soon
as possible in the software development process. Due to the critical nature of
many complex software systems, rigorous architectural models (such as formal
architecture descriptions) are quite desirable as means of better supporting auto-
mated architectural analysis. The main advantage of adopting a formal approach
is precisely determining if a software system satisfies properties of interest and
constraints related to requirements and check the accuracy and correctness of
architectural designs. The literature indeed reports studies that combine formal
verification and software architecture descriptions as means of ensuring safety,
correctness, and consistency in software systems [1,18].

Despite describing structure and behavior of a software architecture is possi-
ble, there is no guarantee on its correctness properties. Some ways of validating if
a software architecture was correctly designed with respect to its functionalities
are generating source code in a given target programming language or producing
executable models able to be simulated. Nonetheless, simulating the architec-
ture neither constitutes a proof of satisfaction of safety and liveness properties
nor a guarantee that the execution respects the specified architecture behavior.
Another important concern is that semi-formal languages such as SysML have
well-defined syntax, but they lack complete formal semantics. This hampers the
automated verification of the specified properties, in particular those related to
safety and liveness of the architecture behavior.

This paper presents an approach for empowering SysML-based architecture
descriptions with formal verification to support the model checking of correctness
properties. Such an approach relies on the Communicating Sequential Process
(CSP) [15], a process calculus applied in both academia and industry to for-
mally specify and verify the behavior of concurrent processes/systems and how
they interact with each other. More specifically, this paper proposes a CSP-
based semantics for SysADL [13], a SysML-based ADL that combines typical
constructs of ADLs with the use of the popular diagrammatic notation based
on the SysML Standard for modeling software-intensive systems. SysADL is
aligned with the ISO/IEC/IEEE 42010 International Standard [7] for archi-
tectural descriptions by providing multiple viewpoints and views in terms of
requirements, structure, behavior, and execution of software architectures.

The automated transformation model from SysADL architecture descriptions
to CSP composite processes has been implemented and integrated into SysADL
Studio [9], a free, open-source support tool for SysADL. The formal verifica-



SysML-Based Software Architecture Description with Formal Verification 103

tion itself is supported by FDR4 [5], a widely used refinement checker for CSP
that allows verifying if the architectural model is free from deadlocks, livelocks,
and miracles (i.e., specifications for which it is impossible to provide a valid
implementation), as well as if the executable properties respect the behavioral
specification. The application of SysADL formalized with CSP is herein illus-
trated with a room temperature control system (RTC).

The remainder of this paper is structured as follows. Section 2 briefly presents
SysADL and CSP. Section 3 presents the CSP-based semantics for SysADL.
Section 4 details the formal verification of properties regarding SysADL archi-
tecture descriptions with the FDR4 refinement checker. Section 5 presents the
SysADL Studio extension to support the SysADL–CSP transformation. Section 6
discusses related work. Section 7 contains some concluding remarks.

2 Background

2.1 SysADL

SysADL defines three software architecture viewpoints for a system, namely
(i) structural, (ii) behavioral, and (iii) executable. The structural viewpoint
defines the architectural elements composing the structure of a system (compo-
nents, ports, connectors) and relationships among them. Communication among
components takes place through connectors that bind input and output ports.
SysADL requires declaring all elements before creating their instances. The ele-
ments are declared by using Block Definition Diagrams (BDDs) whereas the
Internal Block Diagram (IBD) is used to specify how instances of components
and connectors form the configuration of architectures.

The behavioral viewpoint details the behavior of (i) components and con-
nectors through activities, actions, constraints and (ii) ports through protocols.
Activity instances are described in the Activity Diagram by instantiating actions
and flows. Activities or actions may have validation constraints specified through
expressions in the OMG Action Language for Foundational UML (ALF). Con-
straints can be also expressed using the Parametric Diagram.

The executable viewpoint represents the concretization of both structural
and behavioral viewpoints by simulating the architecture behavior at runtime.
The main purpose of the simulation is validating the behavior logic regarding the
satisfaction of requirements and analysis of architecture functionalities. In the
executable viewpoint, it is possible to specify details of each action by using ALF
statements as well as define and instantiate elements. The executable instances
should be interpreted by an ALF engine to execute the architecture.

2.2 CSP

CSP is a process algebra that can be used to describe systems composed of inde-
pendent, self-contained processes with interfaces to interact with the environ-
ment [15]. Most CSP tools such as FDR4 [5] and ProBE [4] accept a machine-
processable CSP called CSPM . For the sake of presentation, this paper uses the
CSP notation in theoretical definitions and CSPM in FDR4 verification assertions.



104 F. Dias et al.

N = 4
datatype ID = a | b
channel input ,middle, output : ID

IN = input?v → middle!v → IN
OUT (s) = (#s > 0) & output !head(s) → OUT (tail(s))

� (#s < N ) & middle?v → OUT (s � 〈v〉)
BUFFER = (IN |[ {|middle|} ]| OUT (〈〉) \ {|middle|}

Fig. 1. CSP specification of a bounded buffer.

The two basic CSP processes are Stop and Skip: the former does nothing,
i.e., deadlocks, and the latter does nothing but terminates. Prefixing a → P
is initially able to perform only the event a, afterwards it behaves as process
P . Prefixing may have input or output values. Process c?x → P(x ) assigns the
received value c to the implicitly declared variable x and behaves as process P
with x in scope. Process c!e → P(x ) outputs the value c of the expression e
and behaves as process P . A Boolean guard may be associated with a process:
g & P behaves as process P if the predicate g is true, otherwise it deadlocks. The
operator P1

o
9 P2 combines processes P1 and P2 in sequence. The external choice

P1 � P2 initially offers events of both processes P1 and P2. The environment
has no control over the internal choice P1 � P2, which is internally resolved.
The sharing parallel composition P1 |[ cs ]| P2 synchronizes processes P1 and P2

on events in the synchronization set cs, so that events that are not listed occur
independently. Processes composed in interleaving P1 ||| P2 run independently.
The event hiding operator P \ cs encapsulates events in cs.

Figure 1 illustrates the CSP specification of a bounded buffer. There are two
declarations: N is a constant with value 4 and ID is a datatype whose values
are a and b. Process IN is the buffer component that receives a value through
channel input and sends it to process OUT via channel middle. As process OUT
can store N elements, it may receive new values via channel middle if the size
of its sequence has not reached its capacity (#s < N ). The received value is
stored at the tail of its sequence ( s � 〈v〉). Process OUT may also provide an
output , but only if its sequence is not empty (#s > 0). In this case, it writes
the head of the sequence (head(s)) and keeps only its tail (tail(s)). BUFFER is
the parallel composition of process instances of IN and OUT starting with the
empty sequence. Both processes IN and OUT synchronize on channel middle,
which is hidden from the environment.

3 A CSP-Based Formal Semantics for SysADL

The translation from a SysADL architectural description to a CSP-based formal
semantics allows verifying properties such as deadlock-freedom, livelock-freedom,
and consistency among the structural, behavioral, and execution viewpoints of
the model (see Sect. 4). The translation of types, those viewpoints, and the



SysML-Based Software Architecture Description with Formal Verification 105

overall model are herein presented by using a room temperature control (RTC)
system as running example1. The RTC system uses two temperature sensors
to capture the current temperature. A user can set the desired temperature. A
central controller receives the values from temperature sensors, compares them
with the desired temperature, and turns the cooler/heater on/off. The system
has a motion sensor to detect if there is someone in the room. In case of presence,
the system operates to provide the desired temperature, otherwise it operates to
keep the temperature at 22 ◦C.

datatype Command = On | Off

Commands = {(heater , cooler) |
heater ← Command ,
cooler ← Command}

Fig. 2. Enumeration and composite datatypes in SysADL (left) and their translation
to CSP (right).

Types. SysADL types are used in different viewpoints of the architecture
description. These types can be basic types (Integer , Boolean, String , and Real),
enumerated types, and composite types resulted from the composition of other
types. Integer and Boolean are respectively mapped to Int and Bool . The String
type is mapped to String , a set containing finite sequences of CSP characters
(Char) with a maximum length. Real is translated to a pair of Int values. Enu-
merated types are mapped to CSP datatypes, which allow defining new types
along with an enumeration of its values. Composite types are mapped to sets of
tuples whose values come from the basic types.

Figure 2 shows the SysADL Command type and its mapping to a CSP
datatype. A variable of the Command enumerated type may assume only values
On or Off . The Commands type is a composition of two values of the Command
type (heater and cooler). The Commands type is translated to a set definition
that declares a set of pairs of values of the Command type.

3.1 Structural Viewpoint

Ports. SysADL ports are interaction points between a component and other
architectural elements. They represent how data flow from a component
(out ports) to another component (in ports). Composite ports are com-
posed of other ports. Figure 3 presents an example of a port definition
in SysADL. CTemperatureITP is an input port through which data of the
CelsiusTemperature type flow.

Previously defined ports can be instantiated in component definitions, which
can themselves be instantiated in configurations. In the CSP semantics for
1 CSP files and the extended SysADL Studio are available at http://bit.ly/2PAqYiD.

http://bit.ly/2PAqYiD


106 F. Dias et al.

Fig. 3. Example of port (left) and composite component (right) in SysADL.

SysADL, a channel is declared for each port instantiated in component def-
initions or component instantiations. A simple port leads to the declaration
of a CSP channel and a composite port leads to the declaration of one CSP
channel for each port composing it. The names of the CSP channels related
to ports attached to component definitions contain the name of the port and
the name of its definition whereas the name of the channels related to com-
ponent instantiations also includes the name of the instance. In Fig. 3, the
instantiation localTemp1 of the port CTemperatureITP in the composite compo-
nent RoomTemperatureControllerCP and the instantiation rtc of this component
respectively yield the following CSP declarations:

channel localTemp1 CTemperatureIPT : CelsiusTemperature
channel rtc localTemp1 CTemperatureIPT : CelsiusTemperature

Components. SysADL components can be defined as either (i) boundary com-
ponents, i.e., they interface and exchange data with the physical environment or
(ii) non-boundary components. These components repeatedly receive all input
data through input ports, process them, and provide all their outputs in output
ports. In Fig. 3, RoomTemperatureControllerCP is defined as a non-boundary
component that receives four inputs and provides two outputs.

Figure 4 presents the architectural configuration of the RTC system in
SysADL. This architecture is composed of seven component instances. s1, s2
and s3 are sensors that collect data about temperature and presence of people at
the monitored environment. These data are processed by component rtc, which
plays the role of the room temperature controller. Actuators a1 and a2 control
cooling and heating according to decisions taken by rtc. ui is a user-interface
component. In the translation of the definition and instantiation of these com-
ponents, simple components yield processes whose behavior is the process that
translates its activity, whilst composite components yield processes whose behav-
ior is the process that translates its configuration. In Fig. 5, the simple com-
ponent PresenceCheckerCP is translated to PresenceCheckerCP = CheckPres-
enceToSetTemperatureAC and the composite component RoomTemperatureCon-
trollerCP is translated to RoomTemperatureControllerCP = RoomTemperature-
ControllerCP Config.

The semantics of boundary components such as TemperatureSensorCP (see
Fig. 5) considers their non-deterministic behavior. For this reason, their seman-
tics differs from that given for non-boundary components: the resulting process



SysML-Based Software Architecture Description with Formal Verification 107

Fig. 4. Configuration of the RTC system in SysADL.

Fig. 5. Examples of SysADL boundary components.

randomly chooses a value to communicate in their output ports. As an example,
the semantics of TemperatureSensorCP is a process that non-deterministically
chooses a value from the type of the FahrenheitTemperature port.

Connectors. SysADL connectors bind ports of the connected components for
exchanging data, possibly with some processing during transmission. In the CSP
semantics for SysADL, connectors that do not process data are represented as
CSP processes. Once connected to an output port and an input port, these pro-
cesses repeatedly receive values from the output port and write them to the
input ports. The behavior of a one-place buffer allows assynchronous commu-
nications among components, exactly corresponding to communications among
components in SysADL. For example, the connector CommandCN (see Fig. 4)
is translated to the following CSP process:

CommandCN = commandOut CommandOPT?out →
commandIn CommandIPT !out → CommandCN

Connectors that process data have their behavior defined by activ-
ities and their translation follows the same approach. For instance,
FahrenheitToCelsiusCN is a connector that receives a Fahrenheit temperature
and outputs the corresponding Celsius temperature. This conversion is defined
by process FahrenheitToCelsiusAC as the behavior of the connector (see Fig. 6).

Configuration. In the SysADL structural viewpoint, the configuration defines
how component instances are connected by connector instances. The behav-
ior of a configuration CFD is the parallel composition of all its compo-



108 F. Dias et al.

FahrenheitToCelsiusCN =
FahrenheitToCelsiusAC

Fig. 6. Definition of a connector in SysADL (left) and its translation to CSP (right).

nents (ComponentsCFD) and connectors (ConnectorsCFD) synchronizing on
the channels that correspond to the ports (SyncCFD). Internal ports of the
configuration (InternalCFD) are hidden. For example, the configuration of
the RTC system presented in Fig. 4 is translated to the following definitions:

RTCSystemCFD config =⎛
⎝

Components RTCSystemCFD
|[Sync RTCSystemCFD ]|
Connectors RTCSystemCFD

⎞
⎠ \ Internal RTCSystemCFD

Sync RTCSystemCFD =
{| current FTemperatureOPT , current FTemperatureOPT ,
detected PresenceOPT , desired CTemperatureOPT ,
controllerC CommandIPT , controllerH CommandIPT |}

Internal RTCSystemCFD =
{| detectedRTC PresenceIPT , heatingRTC CommmandOPT ,
coolingRTC CommandOPT , userTempRTC CTemperatureIPT ,
localTemP1 CTemperatureIPT , localTemP2 CTemperatureIPT |}

The processes corresponding to components and connectors of the configura-
tion are defined as the interleaving of all components and connectors instances.
The instantiation is achieved by using CSP renaming: every channel is renamed
to a channel prefixed with the instance name and using the port instantiation
name, rather than the port name. The resulting CSP specification2 would be:

Components RTCSystemCFD =
||| TemperatureSensorCP

[current FTemperatureOPT ← s1 current1 FTemperatureOPT ]
||| TemperatureSensorCP

[current FTemperatureOPT ← s2 current2 FTemperatureOPT ]
||| PresenceSensorCP [ . . . ] ||| UserInterfaceCP [ . . . ] ||| CoolerCP [ . . . ]
||| HeaterCP [ . . . ]
||| RoomTemperatureControllerCP [ . . . ]

Connectors RTCSystemCFD =
FahrenheitToCelsiusCN[

Ct CTemperatureIPT ← rtc localtemp1 CTemperatureIPT ,
Ft FTemperatureOPT ← s1 current1 FTemperatureOP

]

||| FahrenheitToCelsiusCN [ . . . ] ||| DetectedCN [ . . . ]
||| CTemperatureCN [ . . . ]
||| ControlCommandCN [ . . . ] ||| ControlCommandCN [ . . . ]

2 For the sake of conciseness, parts of the specification are omitted. The complete
version can be found at http://bit.ly/2PAqYiD.

http://bit.ly/2PAqYiD


SysML-Based Software Architecture Description with Formal Verification 109

The proposed translation approach is indeed compositional. Therefore, the
translation of simple and composite components follow the same rules. For
instance, the configuration of the composite component RoomTemperatureCon-
trollerCP presented in Fig. 7 is translated like RTCSystemCFD config , i.e., the
parallel composition of its component and connector instances synchronizing on
the channels that correspond to the ports with its internal events hidden from
the environment. However, there is a minor increment in the definition of the pro-
cess that represents connectors, Connectors RoomTemperatureControllerCP : it
also interleaves a process that translates the delegations, which are special con-
nectors between proxy ports and ports in components as presented in Fig. 7:

Connectors RoomTemperatureControllerCP =
CTemperatureCN [ . . . ] ||| CTemperatureCN [ . . . ] ||| Delegation rtc

Delegation rtc = detectedRTC to detected ||| userTempRTC to userTemp
||| localtemp1 to s1 ||| localTemp2 to s2
||| heating to heatingRTC ||| cooling to coolingRTC

For illustration purposes, the translation of delegation detectedRTC to
detected is presented in the following. As for connectors, the behavior of a one-
place buffer allows assynchronous communications among components, exactly
corresponding to the behavior of SysADL delegations. The other translations
follow the same approach.

detectedRTC to detected =
rtc detected PresenceIPT?PresenceIPT →
pc detected PresenceIPT !PresenceIPT → detectedRTC to detected

3.2 Behavioral Viewpoint

In SysADL, the behavioral viewpoint defines the behavior of components, con-
nectors, and ports of the model. The behavior is described in terms of activities,
actions, and constraints.

Constraints. Constraints are described as predicates that can be used to restrict
the set of values of an activity. Once defined, constraints can be used in actions.
As an example, Fig. 8 presents the constraint FahrenheitToCelsiusEQ , which
verifies if the values given as arguments correctly correspond to the same tem-
peratures in both Celsius and Fahrenheit units, and its translation to the CSP
function FahrenheitToCelsiusEQ(f , c).

Actions. SysADL actions process arguments given as inputs and provide an
output that must respect its constraints. As many possible outputs may exist
for the same input, the translation considers a non-deterministic choice of such
possible output values. For example, the action FahrenheitToCelsiusAN returns
the temperature value in the Celsius unit that corresponds to the temperature
given in the Fahrenheit unit. In the translation, this corresponds to a com-
munication on the channel that represents the output port. The translation of
FahrenheitToCelsiusAN called by the connector named s1 is presented in Fig. 8.



110 F. Dias et al.

Fig. 7. Configuration of a composite component in SysADL.

FahrenheitToCelsiusEQ(f , c) =
(c == (5 ∗ (f − 32)/9))

FtC FahrenheitToCelsiusAN =
current1 FahrenheitTemperature?c1 →
� l1 : {x | x ← CelsiusTemperature,

FahrenheitToCelsiusEQ(x , c1)} •
loadTemp1 FahrenheitToCelsiusAN !l1 →
FtC FahrenheitToCelsiusAN

Fig. 8. Examples of constraint (left) and action (right) in SysADL.

Activities. SysADL activities are composed of one or more actions, which may
communicate values between them. Figure 9 shows the DecideCommandAC
activity as the composition of three actions that communicate values among
them: actions CommandHeaterAN and CommandCoolerAN receive the output
of the CompareTemperatureAN action.

The result of the translation of both constraints and actions is used in the
translation of activities. Similarly to the translation of actions, the translation
of activities also takes the name of the allocated component or connector. The
activity is translated to a parallel composition of processes considering the activ-
ity entry and exit points (pins), i.e., the allocation of the activity on the asso-
ciated component. For example, the activity DecideCommandAC is composed
of actions CompareTemperatureAN , CommandHeaterAN , and CommandCool-
erAN. The translation of this activity is:



SysML-Based Software Architecture Description with Formal Verification 111

Fig. 9. Examples of activity (left) and executable elements (right) in SysADL.

DecideCommandAC =

⎛
⎝

Pins DecideCommandAC
|[Sync DecideCommandAC]|
Actions DecideCommandAC

⎞
⎠

\ Internal DecideCommandAC

Process Pins DecideCommandAC is the parallel composition of the pro-
cesses that represent all pins in the activity. The pin average2Decide
CommandAC receives the value from the component port average2 and sends
it to the DecideCommandAC activity pin.

Pins DecideCommandAC =
|[Sync DecideCommandAC ]| i : {1 . . 4} •

Pins DecideCommandAC Func(i)
Pins DecideCommandAC Func(1) = average2 DecideCommandAC
. . .
Pins DecideCommandAC Func(4) = cooling DecideCommandAC
average2 DecideCommandAC = average2 CTemperatureIPT?average2 →

average2 CelsiusTemperature!average2 →
average2 DecideCommandAC

. . .

Similarly, process Actions DecideCommandAC is the parallel composition of the
processes that represent all actions in the activity:

Actions DecideCommandAC =
|[Sync DecideCommandAC ]| i : {1 . . 3} •

Actions DecideCommandAC Func(i)
Actions DecideCommandAC Func(1) = ct CompareTemperatureAN
. . .

3.3 Execution Viewpoint

The execution viewpoint must satisfy the conditions defined in the actions and
related constraints within the behavioral viewpoint. The translation of exe-
cutable elements translates their bodies to CSP functions. For example, the



112 F. Dias et al.

FahrenheitToCelsiuEX executable element (see Fig. 9) receives a temperature
value in the Fahrenheit unit and returns another one in the Celsius unit. The
translation of the executable element FahrenheitToCelsiuEX is a CSP function
parameterized on the temperature value in the Fahrenheit unit according to the
equation FahrenheitToCelsiuEX (f ) = (5 ∗ (f − 32)/9).

4 Formal Verification of SysADL Models

The translation of the SysADL models to CSP fosters their formal verification.
This work uses FDR4 [5], a refinement model checker for CSP to automat-
ically verify if the model satisfies (i) deadlock-freedom, (ii) livelock-freedom,
(iii) absence of miracles, and (iv) the compliance of the execution model with
the behavioral model. The translation of the model and the verification of these
properties are fully automatic. The compliance with functional requirements can
also be automatically verified. Nevertheless, the specification of the requirement
currently needs to be expressed in CSP. The implementation of a user-friendly
functional requirement description UI using SysADL diagrams is underway.

Deadlock-freedom and livelock-freedom are classical concurrency properties.
A deadlock happens when a group of processes are permanently held on a sit-
uation in which each process waits for resources held by another process in the
group. This makes the process to not progress. A livelock also has the same
consequence, but for a different reason. In a livelock, processes are indefinitely
progressing with internal events that cannot be seen by the external environ-
ment. This absence of external event leads the system to present no progress. It
is possible to easily check the resulting CSP processes against these two proper-
ties by using FDR4 standard assertions for deadlock- and livelock-freedom. For
example, the following assertions can be used in FDR4 to check if the running
example (modeled as process RTCSystemCFD) is free of deadlock and livelock:

assert RTCSystemCFD:[deadlock free]

assert RTCSystemCFD:[divergence free]

Another property to be verified is that the behavioral model is not a mir-
acle, i.e., the model has no possible executable model. Considering a SysADL
constraint C defined in terms of inputs i1 . . . in and outputs o1 . . . om , for every
possible combination of input values that satisfy the pre-condition constraint
pre, there must exist output values satisfying the post-condition constraint post .
Formally, it is defined a CSP process that diverges if, and only if, the constraint
is a miracle. For this verification, an auxiliary process IS TRUE (c) is defined
as successfully terminating only if predicate c is true, otherwise it diverges.

The process created for each constraint receives all input values and checks
the pre-condition by using a guarded process pre & IS TRUE (. . . ). If pre is
false, then the process deadlocks avoiding a divergence, otherwise it checks if
a set defined using the CSP set comprehension notation is not empty. This set
contains all tuples (o1, . . . , om) with values o1, . . . , om respectively are of type
T1, . . . ,Tn and satisfy the post-condition post(i1, . . . , in , o1, . . . , om). Informally,



SysML-Based Software Architecture Description with Formal Verification 113

this set is not empty if, and only if, the constraint is not a miracle. Therefore, it
is possible to find output values satisfying the constraints when the input values
satisfy the pre-condition.

C_check = C_i1?i1 -> ... C_in?in ->

pre(i1,...,in) &

let S = {(o1,...,om) | o1 <- T1, ..., om <- Tm,

post(i1,...,in,o1,...,om)}

within IS_TRUE(not(S == {}))

assert C_check:[livelock free]

In the running example, the constraint FahrenheitToCelsiusEQ is verified
against miracles with the following assertion:

FahrenheitToCelsiusEQ_check =

FahrenheitToCelsiusEQ_f?f ->

true & let S = {c | c <- CelsiusTemperature, FahrenheitToCelsiusEQ(f,c)}

within IS_TRUE(not(S == {}))

assert FahrenheitToCelsiusEQ_check:[livelock free]

The last verification is that the execution model is a refinement of the behav-
ioral model. The only difference between these models regards the specification
of actions, which are replaced by their executions. The former is composed of
possibly constrained actions whereas the latter provides procedures that imple-
ment the behavior specified in the actions. This implementation must respect the
constraints described in the activity. Theorem 1 states that an indexed internal
choice over a set S is a failures-divergences refinement of an indexed internal
choice over a set T if, and only if, S is a subset of T .

Theorem 1. � x : T • P(x ) �FD � x : S • P(x ) ⇔ S ⊆ T

The verification if the execution is a refinement of the behavior is
done by simply checking subset containment: the set of pairs satisfy-
ing the executable FahrenheitToCelsiusEX must be a subset of the set
of pairs satisfying FahrenheitToCelsiusEQ . Current work includes the inte-
gration with the CVC4 SAT solver [2] to optimize this verification.

FahrenheitToCelsiusEQ s = {(f , c) | f ← FahrenheitTemperature,
c ← CelsiusTemperature,
FahrenheitToCelsiusEQ(f , c)}

FahrenheitToCelsiusEX s = {(f , c) | f ← FahrenheitTemperature,
c ← CelsiusTemperature,
c == FahrenheitToCelsiusEX (f )}

assert IS_TRUE(subset(FahrenheitToCelsiusEX_s,

FahrenheitToCelsiusEQ_s)):[divergence free]



114 F. Dias et al.

5 Tool Support and Validation

The translation from SysADL architectural models to CSP processes and the
verification of the resulting processes has been implemented as a plug-in to the
Eclipse-based SysADL Studio tool [9]. The main thrust behind implementing
the plug-in is making both formalization and verification as much transparent as
possible to end-users. The translation to CSP and further verification of SysADL
models require a single action: the user selects the SysADL model and then the
verification operation. This action opens a window at which the user can select
the configuration of the SysADL model to be verified.

The tool translates3 the SysADL model to CSP by using the rules presented
in Sect. 3, interacts with FDR4, analyzes the verification results from this inter-
action, and presents them in a user-friendly way. For each verified property, the
tool shows whether it has been satisfied or not. When the property has not
been satisfied, a trace that exemplifies the violation of the property is textually
displayed. Current work also includes visually displaying the indication of the
problem source at the SysADL diagram itself.

The validation of the correctness and effectiveness of the proposed approach
and tool support consisted in using the plug-in to verify the aforementioned
properties in existing SysADL models publicly available at the literature4. These
properties were also verified in variations of such models as means of intentionally
inserting errors and confirming that the proposed approach indeed identify them.
As an example, a miraculous specification was identified in the model presented
in Sect. 3. The original authors used the same range of natural numbers for
temperature values in Celsius and Fahrenheit units, thus making it impossible
to find valid values in the Celsius unit to every valid value in the Fahrenheit unit
while respecting the equation celsius = (5 ∗ (fahrenheit − 32)/9).

The errors intentionally inserted into the original models were also success-
fully identified. For instance, the implementation of FahrenheitToCelsiusEX in
the execution model was changed to celsius = 5 ∗ (fahrenheit + 32)/9 and the
plug-in identified that the execution model has not respected the specification
of the behavioral model.

The implemented plug-in was also able to successfully verify the compliance
of SysADL architectural models with functional requirements. A first require-
ment was that the cooler and the heater cannot be turned on at the same time
(safety property). Another requirement was that if no presence is detected in the
room, then its temperature is always adjusted to a predefined temperature (live-
ness property). These requirements are currently expressed as CSP processes.
Future work will address the description of such requirements by using SysADL
diagrams.

Ongoing work also includes computational experiments to demonstrate the
scalability of the proposed approach. Preliminary results obtained with the run-

3 The translation is implemented in Acceleo (http://www.eclipse.org/acceleo/).
4 Available at http://sysadl.org.

http://www.eclipse.org/acceleo/
http://sysadl.org


SysML-Based Software Architecture Description with Formal Verification 115

ning example5 showed a overall time of 774 ms when performing the verifica-
tion on a computer with an Intel® CoreTM i5 processor, 8 GM of RAM, and
Microsoft® Windows 10 as operating system. These results demonstrated a lin-
ear increase of the verification time with the number of instances.

6 Related Work

The literature reports approaches with formal verification of software architec-
tures based on model checking [1,18]. Some of them have formalized their archi-
tectural descriptions as one of the primary means of ensuring reliability, security,
correctness, and consistency of their projects. However, as far as it is known,
none of them targets improving a SysML-based ADL with formal verification
founded on model checking and with tool support. This is specially interesting
for industry, which largely adopts SysML-based modeling languages [10].

Mouraditis et al. [12] defined a set of structural, behavioral, and security
primitives and conceptualized it with the Z specification language to capture
a core architectural model to build secure architectures. The approach herein
proposed does not rely on a restricted set of architectures, but rather on any
software architecture modeled using SysADL, which is a general-purpose ADL.
The Mokni et al.’s work [11] considered software architecture changes to be ver-
ified and validated as means of ensuring a valid, reliable evolution process. The
authors proposed a set of rules defined as a B formal model of the Dedal ADL
along with consistency properties, which were checked and validated by using
the ProB animator and model checker. The approach proposed here also ensures
consistency among different elements of a SysADL model, but it focuses on the
consistency among different viewpoints and takes advantage of the use of a pro-
cess algebra (CSP) rather than a model-based formalism (B or Z) to guarantee
concurrency aspects of the model, such as the safe interaction among components
(deadlock- and livelock-freedom). The Taoufik et al.’s work [17] proposed to open
UML 2.0 on the Wright ADL to verify the behavioral consistency of architectures.
The compatibility with the Wr2Fdr tool [16] motivated the use of Wright/CSP
since the tool generates eleven standard properties related software architecture
consistency. Moreover, the Wright/CSP target configuration can be automati-
cally translated to an FDR specification acceptable by the FDR2 model-checker.
Besides providing SysADL with the same verification possibilities, the proposed
approach allows verifying concurrency properties and functional requirements.
Furthermore, SysADL Studio was integrated with the translator to CSP and its
communication with FDR4 in a transparent way to users.

7 Conclusion

This paper presented a CSP-based approach to support the automated formal
verification of properties specified in SysADL, a semi-formal SysML-based ADL.

5 A short demo is available at https://youtu.be/vlchTK3fk2Y.

https://youtu.be/vlchTK3fk2Y


116 F. Dias et al.

The solution relies on empowering SysADL with model checking by combin-
ing the CSP process algebra and the FDR4 model checker, besides providing a
semantics for SysADL diagrams. With the proposed approach, it was possible to
verify properties related to deadlocks, livelocks, miracles, and consistency among
the different viewpoints of the specified configuration-based behavior. The con-
cretization of the approach in the Eclipse-based SysADL Studio tool allowed
validating it in several scenarios, including the example presented throughout
this paper. The same approach can be applied to other SysML-based ADLs
to formally verify architectural properties. Future work includes providing a π-
calculus based semantics for SysADL and the formalization of both translations
and a cross-verification of the semantics by using the strategy presented in the
Unifying Theories of Programming (UTP) [6].

References

1. Araujo, C., Cavalcante, E., Batista, T., Oliveira, M., Oquendo, F.: A research
landscape on formal verification of software architecture description. IEEE Access
7, 171752–171764 (2019)

2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

3. Clements, P., et al.: Documenting Software Architectures: Views and Beyond, 2nd
edn. Addison-Wesley, Reading (2011)

4. Formal Systems (Europe) Ltd.: Process Behaviour Explorer - ProBE User Manual.
FSEL, United Kingdom (2003)

5. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a paral-
lel refinement checker for CSP. Int. J. Softw. Tools Technol. Transfer. 18, 149–167
(2016)

6. Hayes, I.J., Meinicke, L.A.: Developing an algebra for rely/guarantee concurrency:
design decisions and challenges. In: Ribeiro, P., Sampaio, A. (eds.) UTP 2019.
LNCS, vol. 11885, pp. 176–197. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31038-7 9

7. ISO/IEC/IEEE 42010: Systems and Software Engineering - Architecture Descrip-
tion. ISO, Switzerland (2011)

8. Lago, P., Malavolta, I., Muccini, H., Pelliccione, P., Tang, A.: The role ahead for
architectural languages. IEEE Softw. 32(1), 98–105 (2015)

9. Leite, J., Batista, T., Oquendo, F., Silva, E., Santos, L., Cortez, V.: Designing and
executing software architectures models using SysADL Studio. In: Proceedings of
the 2018 IEEE International Conference on Software Architecture Companion,
USA, pp. 81–84. IEEE (2018)

10. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Software Eng. 39(6), 869–891
(2013)

11. Mokni, A., Huchard, M., Urtado, C., Vauttier, S., Zhang, H.Y.: Formal rules
for reliable component-based architecture evolution. In: Lanese, I., Madelaine, E.
(eds.) FACS 2014. LNCS, vol. 8997, pp. 127–142. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-15317-9 8

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-31038-7_9
https://doi.org/10.1007/978-3-030-31038-7_9
https://doi.org/10.1007/978-3-319-15317-9_8
https://doi.org/10.1007/978-3-319-15317-9_8


SysML-Based Software Architecture Description with Formal Verification 117

12. Mouratidis, H., Kolp, M., Faulkner, S., Giorgini, P.: A secure architectural descrip-
tion language for agent systems. In: Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 578–585. ACM,
New York (2005)

13. Oquendo, F., Leite, J., Batista, T.: Software Architecture in Action: Designing
and Executing Architectural Models with SysADL Grounded on the OMG SysML
Standard. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-44339-
310.1007/978-3-319-44339-3

14. Ozkaya, M.: Do the informal & formal software modeling notations satisfy practi-
tioners for software architecture modeling? Inf. Softw. Technol. 95, 15–33 (2018)

15. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010).
https://doi.org/10.1007/978-1-84882-258-0

16. Rouis, T.S., et al.: Wr2Fdr tool maintenance for models checking. In: Fujita, H.,
Selamat, A., Omatu, S. (eds.) New Trends in Intelligent Software Methodologies,
Tools and Techniques, Frontiers in Artificial Intelligence and Applications, vol. 297,
pp. 425–440. IOS Press, Amsterdam (2017)

17. Taoufik, S.R., Tahar, B.M., Mourad, K.: Behavioral verification of UML2.0 soft-
ware architecture. In: Proceedings of the 12th International Conference on Seman-
tics, Knowledge and Grids, pp. 115–120 (2016)

18. Zhang, P., Muccini, H., Li, B.: A classification and comparison of model checking
software architecture techniques. J. Syst. Softw. 83(5), 723–744 (2010)

https://doi.org/10.1007/978-3-319-44339-310.1007/978-3-319-44339-3
https://doi.org/10.1007/978-3-319-44339-310.1007/978-3-319-44339-3
https://doi.org/10.1007/978-1-84882-258-0


A Flexible Architecture for Key
Performance Indicators Assessment

in Smart Cities

Martina De Sanctis1(B) , Ludovico Iovino1 , Maria Teresa Rossi1 ,
and Manuel Wimmer2

1 Gran Sasso Science Institute, L’Aquila, Italy
{martina.desanctis,ludovico.iovino,mariateresa.rossi}@gssi.it

2 CDL-MINT, Johannes Kepler University, Linz, Austria
manuel.wimmer@jku.at

Abstract. The concept of smart and sustainable city has been on the
agenda for the last decade. Smart governance is about the use of inno-
vation for supporting enhanced decision making and planning to make
a city smart, by leveraging on Key Performance Indicators (KPIs) as
procedural tools. However, developing processes and instruments able
to evaluate smart cities is still a challenging task, due to the rigidity
showed by the existing frameworks in the definition of KPIs and model-
ing of the subjects to be evaluated. Web-based platforms, spreadsheets or
even Cloud-based applications offer limited flexibility, if the stakeholder
is interested not only in using but also in defining the pieces of the puzzle
to be composed. In this paper we present a flexible architecture support-
ing a model-driven approach for the KPIs assessment in smart cities.
It identifies both required and optional components and functionalities
needed for realizing the automatic KPIs assessment, while showing flex-
ibility points allowing for different specification of the architecture, thus
of the overall methodology.

1 Introduction

In the domain of smart cities, the smart governance concerns the use of technol-
ogy in processing information and decision making enabling open, transparent
and participatory governments [1], by also supporting the knowledge sharing
among the involved actors. The main instrument through which smart gover-
nance operates is represented by Key Performance Indicators (KPIs) [2] repre-
senting raw set of values that can provide information about relevant measures
that are of interest for understanding the progress of a smart city. The European
Commission released and promoted the Sustainable Development Goals (SDGs1)
to be achieved in 2020 [3], on top of which the International Telecommunication
Union (ITU) drafted a list of all the KPIs for Smart Sustainable Cities (SSCs),
along with its collection methodology [4].
1 https://sustainabledevelopment.un.org/sdgs.

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 118–135, 2020.
https://doi.org/10.1007/978-3-030-58923-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_8&domain=pdf
http://orcid.org/0000-0002-9417-660X
http://orcid.org/0000-0001-6552-2609
http://orcid.org/0000-0003-0273-7324
http://orcid.org/0000-0002-1124-7098
https://sustainabledevelopment.un.org/sdgs
https://doi.org/10.1007/978-3-030-58923-3_8


A Flexible Architecture for Key Performance Indicators Assessment 119

However, decision making for smart cities through KPIs assessment is a quite
challenging task. This is also due to the complexity of smart cities that are, de
facto, systems of systems involving different dimensions (e.g., mobility, environ-
ment, education), each managed by different stakeholders, from public adminis-
trations to private institutions, that not always communicate with each other.
Moreover, despite the support provided by Information and Communications
Technologies (ICT) in managing different aspects of complex systems, such as
smart cities (e.g., [5]), the currently available frameworks for the KPIs assess-
ment are too rigid, not easy to suit each specific smart city’s peculiarity, and
often not released as open frameworks. Examples are online spreadsheets or
Excel programs2 embedding the used models and KPIs calculation formulas, or
web/cloud-based frameworks with pre-defined set of computable KPIs, without
considering that smart cities may differ in several aspects, based on their stage of
economic development, available services, geographical implications. Moreover,
KPIs can vary depending on the spatial granularity (e.g., small, medium and
metropolitan cities).

In this context, we argue that a systematic methodology allowing smart
cities stakeholders to easily define, model and measure the KPIs of interest for
their cities, efficiently supporting the decision making process, is necessary. The
methodology should further support the KPIs customization and evolution to
suit the unique features of different and heterogeneous smart cities. In this direc-
tion, we defined a model-based approach for the automatic KPIs assessment in
smart cities as an effective instrument for smart governance enabling the stake-
holders knowledge sharing, data interpretation and smart cities evaluation and
comparison. The approach foresees the separate modeling of smart cities and
KPIs by experts and stakeholders, leveraging Model-Driven Engineering (MDE)
techniques [6]. The two models are then used by an evaluation engine that will
provide the evaluated KPIs over the candidate smart cities.

To make the approach robust, a supportive software architecture is required,
that needs to leverage the offered abstraction in order to keep deployment aspects
outside of the box. In this paper, we present a flexible architecture supporting
the model-based approach for KPIs assessment in smart cities that identifies
both required and optional components and corresponding functionalities needed
for realizing the automatic KPIs assessment approach, while showing two main
flexibility points allowing for different specification of the architecture, thus of
the overall methodology implementation. The flexibility is given by (i) different
deployment patterns that can be followed for specifying the architecture (e.g.,
standalone, hybrid, online); (ii) the technology-independent nature of the shaped
components, which enables the use of diverse technologies for implementing the
designed architectural components, to also better suit the chosen deployment
style (i.e., online modeling editors better suit in online deployment of the sys-
tem). This last point also includes the tool-independent nature of the KPIs
evaluation engine, which plays a central role in the overall methodology. The
proposed architecture further benefits from all the positive aspects of the model-

2 Key Performance Indicators in Power Pivot at https://bit.ly/37EFR9r.

https://bit.ly/37EFR9r


120 M. De Sanctis et al.

based nature of the approach, i.e., support to software evolution, automation of
software production with code generation, support to technological bridges, and
so on. Moreover, our architecture may provide guidelines for the definition of
MDE tools (i.e., for the development, interpretation, transformation of models)
where quality evaluation is the main objective [7].

2 Related Work

Several architectures have been proposed in the smart cities domain. The min-
imal requirements that a robust smart cities architecture must meet, such as
distributed sensing, integrated management and flexibility are given in [8]. In
[9], the authors present an approach for designing smart city’s ecosystems, by
means of a reference architecture called SmartCityRA. It represents a way to cre-
ate smart cities blueprint that can help the instantiation of smart cities projects.
They exploit variability modeling and model-driven architecture techniques, to
produce a Domain Specific Language (DSL) for modeling smart city systems
(i.e., SmartCityML). The usability of the approach is further shown through a
Smart Parking scenario. However, despite this approach provides features for
smart cities modeling, like our, it does not support the KPIs modeling and
assessment. In [10], a reference architecture for designing a smart city context
through the use of Big Data adhering to the NIST (National Institute of Stan-
dards and Technology) standard is presented. Here, the focus is more on the
design of Big Data processing in smart environment contexts. The aim is that of
exploiting the proposed conceptual model to create a unified intellectual infras-
tructure for environmental monitoring. Thus, they do not consider other smart
cities contexts, different than environment.

From the perspective of using data for decision making in smart cities, differ-
ent architectures are also provided, as for instance in [11] where data is exploited
to support administration processes. Another data-driven approach is presented
in [12]. The authors propose a data-driven IoT Software Platform for realizing
sustainable Smart Utilities, a.k.a. smart services, in order to further develop
applications on top of them. Specifically, they provide a service-oriented archi-
tecture that makes use of Web standards and protocols. The proposed architec-
ture is scalable over cities of different dimensions and is generalizable to different
smart utility domains, other than smart water management. In [13] it is presented
a reference architecture to support the development of smart cities platform in
order to help stakeholders in making projects, investments and decisions about
the cities they manage. In [14] a Distributed-to-Centralized Data Management
(D2C-DM) architecture is proposed. It provides different software and services
layers, which use distinct data types gathered from physical (e.g., sensors) and
non-physical (e.g., simulated data) data sources in the smart city. The aim is to
show the easy adaptation of the architecture in contexts with different software
requirements.

Nevertheless, despite the availability of multiple architectures supporting
smart cities modeling and analysis, either from a wide perspective or focus-
ing on a few dimensions, to the best of our knowledge, none of them specifically



A Flexible Architecture for Key Performance Indicators Assessment 121

targets the modeling and assessment of KPIs that are crucial in the performance
evaluation of smart cities.

3 Approach and Proposed Flexible Architecture

In this section we give an overview of the approach for the automatic KPIs
assessment in smart cities, which represents the background for this work. Basi-
cally the evaluation of a smart city can be summarized in 3 steps: A Define the
smart city in a way that is processable; B Define/select the KPIs of interest;
C Evaluate the selected KPIs on the subject smart city. In order to support
this process, we defined a model-based approach, by identifying smart cities’
concepts and the relations among them. Furthermore, we investigated how KPIs
can be represented and measured, i.e., what type of calculations and data they
require. In MDE, metamodels are central assets that allow designers to formalize
application domains and consequently to achieve superior automation [15] in the
software life cycle. Indeed, this allowed us to design both a Smart City meta-
model and a KPIs metamodel, on top of which appropriate modeling tools (i.e.,
graphical and textual concrete syntaxes and editors) can be defined. In particu-
lar, the KPIs metamodel reflects the KPIs list for SSCs released by the ITU [4]
and conforming to the SDGs [3]. The modeling tools are devoted to smart cities
stakeholders, supported by KPIs experts, and allow them to define in a uniform
way the smart cities they manage ( A ) together with the KPIs they are inter-
ested in ( B ), without knowing technological aspects and abstracting from the
target deployment platform. The generated models will be used as input for an
Evaluation Engine that will interpret and calculate the modeled KPIs for the
candidate cities, by giving as output an evaluated KPIs model ( C ). We highlight
here that the KPIs model can be easily extended or customized to accommodate
specific smart cities requirements as well as the KPIs evolution over time.

Example. To better understand the approach, we report a basic but realistic
example in Fig. 1. We show some simple portions of the models we used to
evaluate the smart city of L’Aquila (Italy). We focus on a single KPI, Bicycle
Network (BN), which is calculated as in Eq. (1). It measures the length of bicycle
paths per 100.000 inhabitants as the ratio between the bicycle paths length and
one 100.000th of the city population.

BN =
Bicycle Path Length (km)

1
100000 × City Population

(1)

In the left side of Fig. 1 we show a portion of the graphical representation
of the model for the city of L’Aquila ( A ), where the concepts needed for the
BN KPI calculation have been modeled, e.g., PisteCiclabili.com is the provider
of the BikePathLength data. In the top-right side of Fig. 1, instead, there is the
portion of the textual representation of the KPIs model ( B ) that refers to the
BN KPI and its formula, as in Eq. (1). Notice that, to be calculated, the BN KPI
needs data coming from the smart city model (e.g., BikePathLength, CityPop).



122 M. De Sanctis et al.

Smart City Model KPIs Model

Evaluated KPIs Model

A

B

C

Fig. 1. Overview of the model-based KPIs assessment approach.

Once these two models have been processed by the evaluation engine, it will give
as output the evaluated KPIs model ( C ), on the bottom-right side of Fig. 1,
which corresponds to the actualized KPIs model. Note that for those cities with
less than 100000 inhabitants, the denominator in Eq. (1) is evaluated to 1. Thus,
for the city of L’Aquila with 69605 inhabitants and 86 km of bicycle paths, the
BN KPI has a value of 86 km per 100000 inhabitants. What we want to highlight
here is that (1) smart governance team can discover weaknesses of the assessed
cities by interpreting the evaluated KPIs; (2) the approach enables simulation
and forecasting of smart cities performances, by testing different settings in the
models.

The Proposed Flexible Architecture. Figure 2 shows the proposed flexible archi-
tecture for KPIs assessment in smart cities supporting the process described
above. It is made by six macro-components (also components from here on), rep-
resenting the main required functionalities, and control- and data-flow between
them. The architecture is devoted to several Stakeholders that can be divided in
two main groups: (i) those designing or applying the architecture, i.e., the Devel-
opers Team (comprising also modelers, DSL engineers and software architects)
and the KPIs Experts, which are responsible of the design and implementation
of the main software components and modeling artifacts; (ii) the final users
of the software solutions based on the architecture, i.e., Municipalities, Smart
Governance Team, Ranking Agencies, Researchers, etc. They can be assigned
different granting access, i.e., read, write, execute, depending on their profile.



A Flexible Architecture for Key Performance Indicators Assessment 123

For instance, municipalities can be interested in modeling the smart cities they
manage and evaluate KPIs on top of them. On the contrary, ranking agencies
might be interested only in the analysis and interpretation of (open) data about
previously evaluated cities.

Smart City 
Modeling Editor

KPIs Fragment 
Selection / Customization

Editor
Data Visualization

SC RankingDashboard

6

6.a 6.b

KPIs 
model

Persistence 
Manager

Fragments 
Generator 

Models 
Manager 

Models 
Repository 

Evaluation 
Engine Users 

Repository 

Persistence

Metamodeling

Modeling

Analysis

evaluated 
KPIs model 

Smartcity Metamodel KPIs Metamodel

KPIs
Modeling Editor

query

2

3

4

5

2.a 2.b

3.a 3.b 3.c

4.a 4.b

5.a

5.b

5.c

5.d

5.e

store / 
query 
retrieve forward

request

Stakeholders

ResearchersRanking AgenciesSmart Governance 
TeamMunicipalities

Authentication  
Manager  

Requests 
Manager 

Requests Management

create user session

11.a 1.b

forward evaluation requests

st
or

e 
/ q

ue
ry

 / 
re

tr
ie

ve

KPIs assessment/ 
query / store / retrieve

model

SC model

forward 
visualization 

requests

S
C

 / 
K

P
Is

 m
od

el
 &

 u
se

r 
da

ta

evaluation results

implement

design

model KPIs

send requests

evaluation
results

Results 
Exporter 

Legend

control-flow

data-flow

KPIs experts

Developers 
team

Fig. 2. The flexible architecture for the KPIs assessment in smart cities.

The six main components are Requests Management, Modeling,
Metamodeling, Analysis, Persistence, and Data Visualization, labeled
from (1) to (6), respectively. In Fig. 2, solid arrows shape the control-flow
among the components and dashed arrows shape the data-flow among them.
It is worth noting that data-flow may involve entire models but also raw data
may be exchanged, usually persisted via XML or customization of XMI. We now
describe each component.

Requests Management. It behaves as the interface among the stakeholders
and all the other components of our architecture. Indeed, it handles all the users
requests through its two sub-components, the Requests Manager (1.a) and the
Authentication Manager (1.b). The Authentication Manager handles the
users registration, authentication and authorization. It supports the Requests
Manager every time it needs to create users sessions to accomplish the requests
they make, based on their access grants. It is an optional component, depending



124 M. De Sanctis et al.

on the deployment style. E.g., it might be not required in standalone specifi-
cations of the architecture, while it is suggested for online ones. The Requests
Manager handles several interactions. It receives and forwards the user’s requests
to the appropriate components and the requests among components. Three main
requests can be handled at this stage, namely (1) the model request to the
Modeling component, from those users (with proper permissions) who needs to
model the smart cities they manage and to select/customize the KPIs they are
interested in, through the available editors; (2) the store/query/retrieve request
to the Models Manager in the Persistence component, from users that want
to store/gather models relating to their previously interactions with the system
(e.g., municipalities) or from those users with read only permissions who wants
to get available open data for their analysis (e.g., researchers); (3) the forward
visualization requests to the Data Visualization component for the graphical
visualization and interpretation of the evaluated KPIs. Furthermore, the model
request to the Modeling component can, in turn, give raise to further interac-
tions: during and after the user interplay with the editors, the Modeling compo-
nent can forward to the Requests Manager the query/store/retrieve request to
interact with the Persistence component, for querying the Models Repository
and for storing the produced models as well as the KPIs assessment request to
be forwarded to the Evaluation Engine, via the forward evaluation requests
interaction.

Metamodeling. It is responsible for hosting the two core metamodels of the
model-based approach for the KPIs assessment in smart cities, namely the
Smartcity Metamodel (2.a) and the KPIs Metamodel (2.b), and the corre-
sponding tools used to model them. It is also responsible for managing and keep
trace of their evolution accomplished cooperatively by the Developers Team
and KPIs Experts (design relation in Fig. 2), which adapt the two metamodels
according to the evolving nature of both smart cities and KPIs. This component
is developed at the beginning of the process and should be freezed and stable for
enabling the modeling phase. In case evolution scenarios occur, coupled-evolution
of the already modeled cities have to be performed in order to be compliant to
the new metamodels [16].

Modeling. It is responsible for managing the generated editors required for
allowing granted users to both model smart cities and model or select and cus-
tomize KPIs. Modeling is the activity in which the designer creates/edits the con-
tents of the application. Nowadays multiple modeling tools are available and they
differ for various aspects, in which we distinguish textual or diagrammatic con-
crete syntax, or even more basic modeling editors, like tree view based. For this
reason, the usability of the final product is strongly driven by the available mod-
eling tools. Specifically, in this component we find the Smart City Modeling
Editor (3.a) devoted both to experienced and non-expert MDE developers,
such as the smart governance team’ members that use the system to model the
smart city they manage, to subsequently evaluate its performance. Graphical
editors are recommended here, for usability reasons, such that to provide user-
friendly editors. Differently, the KPIs Modeling Editor (3.b) is mainly devoted



A Flexible Architecture for Key Performance Indicators Assessment 125

to KPIs Experts who are widely experienced in KPIs and up to date about the
evolving KPIs documentation and collection methodology provided at European
level. From one hand, they are in charge of modeling KPIs (model KPIs in Fig. 2)
reflecting the official guidelines. From the other hand, different smart cities man-
agers might be interested in diverse KPIs. For this reason, a certain degree of
KPIs selection and customization must be provided. This is accomplished by the
KPIs Fragment Selection/Customization Editor (3.c) that allows users to
“query” the KPIs model in the KPIs Modeling Editor to select and possi-
bly customize given KPIs and further generate the so-called model fragments.
Borrowing the definition of interesting object structures [17], we define model
fragments such KPIs model’s internal selection. The main KPIs model includes
all the KPIs defined by experts, while model fragments identify the selection
made by the user. Eventually, the interaction of stakeholders with the modeling
editors brings to the creation of the Smart City model (SC model from here on)
and KPIs model, both conforming to the domain models in the Metamodeling
component, indeed they can be managed by using its generated API.

Analysis. It is responsible for managing the automatic KPIs assessment over
smart cities. It includes the Evaluation Engine (4.a) that is devoted to inter-
pret and calculate the modeled KPIs for one or more candidate smart cities.
In particular, it receives KPIs evaluation requests forwarded by the Requests
Manager (forward evaluation requests in Fig. 2) together with the SC model and
KPIs model. After the evaluation, it sends the evaluated KPIs model to the
Results Exporter (4.b), which is in charge of exporting results in different
formats (e.g., .csv, .xml or JSON files), depending also on the use that stake-
holders intend to make of it (e.g., graphical visualization, textual interpreta-
tion, further elaborations) and from the tool which might be used for their
visualization and interpretation. Eventually, the Analysis component forwards
the evaluation results to the Requests Manager that sends them to the user
who submitted the KPIs evaluation request and/or to the Data Visualization
component.

Persistence. It manages the persistence of all the artifacts involved in the pro-
cess of KPIs assessment, together with the stakeholders related data, such as
their profiles, access grants and authentication data. In particular, it contains
five components. The Models Manager (5.a) acts as the main interface of the
Persistence component. It receives all the store/query/retrieve requests by the
Requests Manager, together with the accompanying data, such as the SC/KPIs
models & user data, and it sends the corresponding replies. Moreover, before for-
warding the received requests to the Persistence Manager (5.c), the Models
Manager interacts with the Fragments Generator (5.b) (store/query/retrieve
in Fig. 2), to handle those cases in which the specific request deals with model-
ing artifacts and there might be the need of generating model fragments from
them. The fragments generation does not apply for those requests addressed
to the Users Repository and containing only user data, in which case the
Fragments Generator does not execute any operation and only forward the
request to the Persistence Manager. Once requests and relative data arrive



126 M. De Sanctis et al.

to the Persistence Manager, it is responsible for storing, querying or retriev-
ing data from the appropriate repository, such as Models Repository (5.d)
and Users Repository (5.e). In addition, artifacts stored in the Models
Repository also contain metadata about the users holding their ownership,
while the Users Repository stores information about users profiles and grant-
ing access.

Data Visualization. It is responsible for the evaluated KPIs model visual-
ization and interpretation through the Dashboard (6.a) and SC Ranking (6.b)
components. The former handles the graphical transformation of evaluated KPIs
in appropriate and easy to understand charts. The latter shows the ranking
among several smart cities whose models are made available and retrieved from
the Models Repository, only for smart cities comparison purposes. To this
aim, the Data Visualization receives forward visualization requests from the
Requests Manager with the evaluation results from the Analysis component.

All the components and their functionalities, except for the Data
Visualization component, are mandatory to allow architecture specifications
to accomplish the task of KPIs assessment in smart cities. On the contrary,
to implement its functionalities, a component might not always require all its
sub-components as we will see.

4 Prototypical Implementation

The presented architecture can be specified by using a combination of various
technologies and deployment patterns. In this section, we present implementation
details about the prototype we developed, corresponding to a standalone speci-
fication3, being the architecture entirely implemented as a standalone platform.
Eclipse is the release platform we have chosen, which also provides pre-packaged
bundles for specific development paradigms. Specifically, the target platform is
represented by the Eclipse Modeling Framework (EMF)4 that provides the mod-
eling language to engineer DSLs [18]. The EMF core includes a metamodeling
language, called Ecore, used for describing domain models, and runtime support
for the models including change notification, persistence support with default
serialization, and reflective APIs for manipulating objects in the models. On top
of the EMF bundle, the Metamodeling component (2) has been defined and it
hosts the two main domain models ((2.a) and (2.b)) from which the Java code,
supporting model manipulation and editors composition, is generated.

On top of this layer, two editors are implemented ((3.a) and (3.b)) to bet-
ter cope with the composition of the involved models, such as the editing of
models with the possibility of filling them with model elements that can be com-
posed. The editors implementation is supported by DSLs that, in general, can
be graphical or textual [19]. From one side, graphical editors provide an intuitive
GUI for modelers. On the other side, textual editors provide a support tool to

3 Project available at: https://github.com/gssi/SmartCityModeling.git.
4 https://www.eclipse.org/modeling/emf/.

https://github.com/gssi/SmartCityModeling.git
https://www.eclipse.org/modeling/emf/


A Flexible Architecture for Key Performance Indicators Assessment 127

evaluation
results

Smart City 
Modeling Editor

KPIs 
Modeling Editor

File System 
Workspace 

Eclipse 
Plugin 

PersistenceMetamodeling

Modeling

Analysis
Requests Management

Stakeholders

Smartcity Metamodel KPIs Metamodel

Eclipse Modeling Framework

Resulting
KPIs Model

Console
Output

Smart Governance 
Team

Ranking Agency

Researchers

SC model

1

1.a

5

5.a

2

2.a 2.b

3

3.a 3.b

4.a

4

KPIs Fragment 
Selection / Customization

Editor

query

KPIs model

3.c

Model KPIs

send requests

forward evaluation requests

evaluated 
KPIs model 

store / query 
retrieve

SC / KPIs model 
& user data

model

KPIs assessment / 
query / store / retrieve

implement

EOL 
Script 

log

result2XLS Municipalities4.b

Acceleo 
Results 

Exporter 

Developers 
team

KPIs experts

design

Fig. 3. Standalone specification of our architecture.

define models as textual specification, which is better transposed by developers.
In order to enable the usage of the editors by both experienced and non-expert
users (e.g., smart cities stakeholders), the component (3) is implemented with
two different technologies. The Smart City Modeling Editor (3.a) is built on
top of Sirius [20], a graphical concrete syntax generator creating the graphi-
cal modeling workbench for modeling smart cities. Smart city projects are quite
large and involve different aspects and view points; since Sirius is based on a view
points approach, it suits perfectly in this case. The KPI Modeling Editor (3.b),
instead, is devised for modelers supporting KPIs experts to specify KPIs and rel-
ative calculation formulas. For this reason it has been implemented with a textual
concrete syntax by means of Xtext [21]. Xtext was chosen because it provides
much more “expressiveness” and “agility” to the users, which can edit raw data
in a very feasible way. The KPI Modeling Editor offers a way to declare how
KPIs are calculated in detail, in the perspective of reuse, where the modelers can
share their definitions. Lastly, the KPIs Fragment Selection/Customization
Editor (3.c) is implemented by means of a custom reusable mechanism offered
by Xtext. In particular, if the KPIs are declared as “reusable operations” in a
library, the users can invoke the KPIs needed through this library. When the
SC model and KPIs model have been defined, then the Analysis component
(4) can be invoked, thus triggering the KPIs evaluation phase. This process is
managed by the Requests Manager (1.a) that is implemented as an Eclipse
plugin organized with the extension point mechanism. It can be activated by file
saving operations or even directly by menu entries in the editors. By selecting a
SC model and a KPIs model (with specific extensions), a menu entry is enabled
and the EOL script implementing the Evaluation Engine (4.a) is triggered.
The Epsilon Object Language (EOL) is an imperative programming language
part of the Epsilon framework [22] for creating, querying and modifying models
built on top of EMF. Basically, the EOL script is a file in the workspace of the



128 M. De Sanctis et al.

project that will be invoked by the plugin. The Evaluation Engine generates
the evaluated KPIs model and the result will be also printed in the output con-
sole of Eclipse. The stakeholders can then request the visualization of the results
in two different ways: by inspecting the textual result in the console or by asking
to the Results Exporter (4.b) to generate an .xls file from the evaluated KPIs
model. The excel file will be produced by a model-to-text transformation, from
the Results Exporter implemented in Acceleo5, i.e., one of the most used tools
for code generation in MDE (Fig. 3).

5 Evaluation

In this section, we evaluate the flexibility of our architecture by giving evidence
of (i) alternative deployment patterns that can be used, and (ii) the technology-
independent nature of the architectural components, enabling the use of diverse
technologies, also w.r.t. the chosen deployment style. Moreover, we evaluate the
performance of our architectural approach by running experiments based on the
realized prototype.

5.1 Flexibility Evaluation

We now describe two additional specifications of our architecture, namely hybrid
and online. They are currently under development, although they rely on a
partial reuse of the implemented standalone specification, thus we focus on the
differences w.r.t. it.

Hybrid Specification. In the hybrid specification, depicted in Fig. 4, part of
the architectural components are deployed online and part of them reside locally
on the user’s machine. The Internet layer is in between them. Components (2)
and (3) are the same as in the standalone specification. The Requests Manager
(1.a) presents both a local and a remote instances. The local one is in charge
of activating the editors and triggering the remote KPIs evaluation by send-
ing a request, via the internet, to the remote one that will forward the request
and the received models to the Evaluation Engine (4.a). This step is pre-
ceded by an authentication process started by the local Requests Manager that
will authenticate the local user to the remote Users Repository (5.e) via the
Authentication Manager (1.b). For the Authentication Manager’s imple-
mentation we plan to use the J2EE framework with the technologies it exploits
for realizing the Model-View-Controller (MVC) architecture (e.g., Spring, Hiber-
nate). The Users Repository and the Models Repository (5.d) are managed
by the Persistence Manager (5.c). Models can be passed as parameters from
the local Eclipse editors, if they are brand new models edited from scratch, or
they can be requested to the Persistence Manager that will execute the query

5 https://www.eclipse.org/acceleo/.

https://www.eclipse.org/acceleo/


A Flexible Architecture for Key Performance Indicators Assessment 129

and retrieve operations on the Models Repository. The Persistence compo-
nent (5) has different tasks that range over the usual repository operations, to
the query management, in order to extract fragments of the models through the
Fragment Generator (5.b), which can be realized by means of a DSL similar
to that used for the KPIs Fragment Selection/Customization Editor (3.c)
allowing for querying models. Repositories operations are delegated to a reposi-
tory manager called MDEForge [23] implementing the Persistence Manager. It
consists of a set of core services that permit to store and manage typical modeling
artifacts and tools, specifically conceived for models. It comes with APIs that can
be used to interact with the repository functions without using the provided web
interface. This allows MDEForge to be easily integrated in the infrastructure.
Lastly, the Models Manager (5.a) will be interposed between the MDEForge
and the Requests Manager, as an interface of the Persistence component.
When the required models are available for the analysis phase, the Evaluation
Engine (4.a) implemented with a Java model parser can be invoked. Through
model interpretation also called compilation, the input models are directly used
to run the system [24] or to invoke other actions during the interpretation at
runtime. As before, the analysis phase will generate the evaluated KPIs model,
however the console output in the hybrid specification is only used for testing
purpose, being accessible only from the server-side. In this specification, the
Acceleo Results Exporter can export results in other format than .xls file or
it can expose itself an API for results visualization purposes, to be forwarded by
the Requests Manager. We then plan to provide a local Data Visualization
component (6) as an Eclipse plugin. It can read the evaluation results both
by receiving the generated results file or by listening to the dedicated API,
thus implying a sort of asynchronous call to the Evaluation Engine. The Data
Visualization populates the charts shaping the results of the KPIs evaluation
in an Eclipse view used by the stakeholders.

Online Specification. The online specification has the peculiarity of being
completely deployed online. For lack of space, we do not show its deployment
design6 and we describe only its relevant differences w.r.t. the hybrid specifica-
tion. Being everything online, the main instrument to use the platform is the
browser, that provides access to a web application including the different com-
ponents. More specifically, the Modeling component (3) will be implemented
through Eclipse Theia7 allowing to run Eclipse online, with all the benefits of
having an in-browser extensible IDE. For the editors, the two candidate technolo-
gies allowing for running modeling editors in web browsers are Eugenia Live [25]
for the Smart City Modeling Editor (3.a) and Xtext (from version 2.9 on)
for the KPIs Modeling Editor (3.b).

The advantage of an online environment supports one of the main problems
that slows down the path of MDE towards a standard: the reluctance in installing
different tools, most of them academic, with all the related issues linked to safety
6 For the interested readers it can be found at https://bit.ly/3bqbqG2.
7 https://theia-ide.org.

https://bit.ly/3bqbqG2
https://theia-ide.org


130 M. De Sanctis et al.

Fragments 
Generator 

KPIs model

Smart City 
Modeling Editor

KPIs Fragment 
Selection / Customization

Editor

Metamodeling

Modeling

Analysis

Smartcity Metamodel KPIs Metamodel

KPIs experts

KPIs
Modeling Editor

query

Text
Dashboard

Data Visualization

SC Ranking

6

6.a
6.b

Stakeholders

Municipalities

Smart Governance 
Team

Ranking Agency

Researchers

2

3

4

MDEForge
Persistence 

Manager
Models 

Manager 

Models 
Repository 

Users 
Repository 

Persistence

5

5.a

5.b

5.c

store / 
query 
retrieve forward

request

Authentication  
Manager  

Requests 
Manager 

Requests Management

create user
session

1

1.a 1.b

Evaluation 
Engine 

2.b2.a

3.a 3.b 3.c

Resulting
KPIs 
Model

Console
Output

evaluated 
KPIs model 

log

4.a

send  requests
store / query 

/ retrieve
SC / KPIs model

& user data

forward visualization requests

forward evaluation
requests

KPIs assessment / query / store / retrieve

SC model

Internet forw
ard visualization requests

evaluation
results

m
od

el

result2XLS

Eclipse 
Plugin 

Requests Management

1

1.a

4.b

evaluation results

evaluation results

im
pl

em
en

t

Eclipse Modeling Framework

Acceleo 
Results 

Exporter 

5.e

5.d

de
si

gn

Developers 
team

Fig. 4. Hybrid specification of our architecture.

and reliability. These aspects cannot be neglected in an industrial scenario. More-
over, collaborative repositories have been extensively proposed and investigated
in MDE [26], highlighting multiple challenges. Among these, visibility of the
repositories stored artifacts seem to be one of the hot topic in industry. Multiple
resolutions have been proposed to tone down the reluctance in employing these
tools, and extended visibility management seems to be needed [27] to assure that
only artifacts intentionally shared will be visible to the community and not the
models including intellectual property rights.

Alternative Candidate Technologies. We did an analysis about available
languages and technologies and their suitability for implementing our architec-
ture. Several valid alternatives exist to implement the different components of
Fig. 2, as shown in Table 1. This list is not intended to be exhaustive, given
the panorama of possible integrations, but we give an idea of available tools. In
the second column of the table, � denotes that the corresponding component is
mandatory, independently of the used deployment style, while ≈ denotes that
the component may be missing, e.g., because its offered functionality may be



A Flexible Architecture for Key Performance Indicators Assessment 131

omitted without compromising the functioning of the approach (e.g., the Data
Visualization) or because it is not required for the used deployment (e.g., the
Authentication Manager in a standalone instance).

Table 1. Architecture flexibility in terms of required components and technologies.

Components Mandatory Candidate Technologies

Requests Manager � Eclipse plugin, Java

Authentication Manager ≈ Java

Smartcity Metamodel � Ecore, Kermeta [28], UML

KPIs Metamodel � Ecore, Kermeta, UML

Smart City Modeling Editor � Sirius, Eugenia Live, Eugenia

KPIs Modeling Editor � Xtext, EMFText [29]

KPIs Fragment Editor � Xtext, OCLa, EMF-Fragmentsb

Evaluation Engine � Java, EOL Script, ATLc, ETLd

Results Exporter ≈ Acceleo, JETe, EGLf , Xtendm

Models Manager ≈ Java, MDEForge

Fragments Generator ≈ EMF + Java + OCL

Persistence Manager � MDEForge, Neo4EMFg, Relational DB, EMFJsonh

Models Repository � MDEForge, EMFStorei

Users Repository ≈ NoSql [30], Mysqlj, MSSqlk

Dashboard ≈ Springl, other J2EE or JS-based frameworks

SC Ranking ≈ Spring, other J2EE or JS-based frameworks
ahttps://bit.ly/3cGvJAC
bhttps://bit.ly/2z6pF5A
chttps://www.eclipse.org/atl/
dhttps://bit.ly/2WZcYl6
ehttps://bit.ly/3eQQef6
fhttps://bit.ly/2Z9bzuR
ghttps://github.com/neo4emf/Neo4EMF
hhttps://emfjson.github.io/
ihttps://www.eclipse.org/emfstore/
jhttps://www.mysql.com/
khttps://bit.ly/353KD0P
lhttps://spring.io/
mhttps://www.eclipse.org/xtend/

5.2 Performance Evaluation

To evaluate the performance of our architecture, we performed a set of experi-
ments by running the standalone specification, using a 6 core CPU running at
2.2 GHz, with 16 Gb memory. The goal of our experiments is that of checking
the evaluation engine execution time w.r.t. the size of the input models, i.e., the
number of elements in the models. Thus, we designed a smart city model, in
which we instantiated every concept of the metamodel, and a KPIs model. In
particular, according to the ITU, KPIs are hierarchically organized [4]. A KPIs
model is composed by 1 . . . n dimensions, also containing sub-dimensions, each
composed by 1 . . . n categories that, in turn, contain 1 . . . n KPIs. The used KPIs

https://bit.ly/3cGvJAC
https://bit.ly/2z6pF5A
https://www.eclipse.org/atl/
https://bit.ly/2WZcYl6
https://bit.ly/3eQQef6
https://bit.ly/2Z9bzuR
https://github.com/neo4emf/Neo4EMF
https://emfjson.github.io/
https://www.eclipse.org/emfstore/
https://www.mysql.com/
https://bit.ly/353KD0P
https://spring.io/
https://www.eclipse.org/xtend/


132 M. De Sanctis et al.

Fig. 5. Exp1: increasing the number of
evaluated smart cities.

Fig. 6. Exp2: increasing the complex-
ity in the calculation of each modeled
KPI.

Fig. 7. Exp3: make each KPI of type
range.

Fig. 8. Exp4: increasing the number of
KPIs.

model is initially made by one dimension with one category of 8 KPIs, thus to
cover all the calculations defined in the KPIs Metamodel.

In Fig. 5, we show the results of our first experiment Exp1. For each execution
run of the evaluation engine, we increment the number of modeled smart cities
in the SC model from 1 to 10 and we measure the 8 KPIs in the KPIs model for
each of them. As shown in Fig. 5, the models size goes from 200 to 632 elements
and the execution time goes from 16 milliseconds (ms) to 79 ms. Figure 6 reports
the results of Exp2 for which we started by giving as input to the evaluation
engine the SC model made by 10 smart cities, which remain fixed, and the KPIs
model as in Exp1. Then, at every run we increase the complexity of the KPIs
calculations, by adding new nested operations, one KPI at a time. This impacts
on the time required to measure each KPIs. In Fig. 6 we can observe that the
size of the models goes from 638 to 676 and the execution time goes from 82 ms
to 198 ms. Interestingly, despite the models size does not increase significantly,
the execution time particularly increases in the last run. This is due to the fact
that this run involves a KPI whose calculation combines the range operation,
i.e., the most time consuming one, with a basic operation (e.g., AV G). From this
observation, we designed Exp3 (Fig. 7) such that, at every run, we add a range
calculation in the definition of each KPI, one KPI at a time. In Fig. 7, we can
observe that the size of models slightly increases from 692 to 803 elements (only



A Flexible Architecture for Key Performance Indicators Assessment 133

127 elements more than the last run in Exp2) while the execution time ranges
from 306 ms to 1279 ms, by showing a considerable increase, thus confirming
our prediction about the time consuming of calculations including the range
operation. However, the overall execution time is still reasonable for the given
models size. Eventually, in Exp4 (Fig. 8) at every run we increment by one the
number of dimensions in the KPIs model, where each dimension includes 8 KPIs
with complex calculations. Consequently, the number of evaluated KPIs goes
from 16 in the first run to 80 in the last one, always assessed on top of the 10
smart cities in the SC model. This means that in the last execution we assessed
800 KPIs in the same run. Figure 8 depicts that the size of the models goes from
1124 to 3692 elements and the execution time ranges from 2426 ms to 12892 ms.

Summarizing, these experiments point out two main findings: (i) the effi-
ciency in terms of the evaluation engine’s execution time, since all the experi-
ments show a linear or polynomial (of degree 2) increase of the execution time
w.r.t. the increasing models size; (ii) promising scalability results showed by
Exp4, indicating that the system takes 12.9 s for assessing 800 KPIs over 10
smart cities.

Threats to Validity. The settings of the input parameters in the evaluation might
internally bias our experimentation. Both the SC model and the KPIs model lead
to the execution of calculations of diverse complexity, depending on the size of
the two models and the number of KPIs, but the overall evaluation procedure is
not affected. For these reasons, we considered incrementally complex models in
each run, to trigger more complex calculation and smooth biases in the output
results. As external threats to validity, we are aware that we need to perform the
KPIs evaluation by using SC models of real smart cities, but we leave this point
as part of our future work, where we plan to evaluate the system by involving
real stakeholders, also to evaluate the provided editors.

6 Conclusion and Future Work

In this paper we presented an architecture supporting a model-based approach
for the KPIs assessment in smart cities. Its goal is to provide a robust and flexible
platform for the performance evaluation of smart cities, to be easily used by
smart cities stakeholders, during the decision making and planning process.

As future work we are finalizing the implementation of the hybrid and online
specifications and designing an experiment to evaluate the feasibility and usabil-
ity of the methodology with the involvement of real smart cities stakeholders who
have to make use of the provided modeling and analysis tools and data visual-
ization facilities. Finally, we consider the integration with legacy data formats
such as CityGML.

Acknowledgment. This work was partially supported by the Centre for Urban Infor-
matics and Modelling, National Project, GSSI as well as by the Austrian Federal Min-
istry for Digital and Economic Affairs and the National Foundation for Research, Tech-
nology and Development.



134 M. De Sanctis et al.

References

1. Mutiara, D., Yuniarti, S., Pratama, B.: Smart governance for smart city. IOP Conf.
Ser. Earth Environ. Sci. 126, 012–073 (2018)

2. Directorate-General for Environment (European Commission): Intrasoft Interna-
tional, University of the West of England (UWE). Science Communication Unit.
Indicators for sustainable cities, April 2018

3. European Commission: Europe 2020 A European strategy for smart, sustainable
and inclusive growth, March 2010

4. International Telecommunication Union (ITU): Collection Methodology for Key
Performance Indicators for Smart Sustainable Cities (2017). https://bit.ly/2SkSZfi

5. Ferro, E., Caroleo, B., Leo, M., Osella M., Pautasso, E.: The role of ICT in smart
city governance. In: International Conference for e-Democracy and Open Govern-
ment (2013)

6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice, 2nd edn. Morgan & Claypool Publishers, San Rafael (2017)

7. Mohagheghi, P., Aagedal, J.: Evaluating quality in model-driven engineering. In:
International Workshop on Modeling in Software Engineering, p. 6. IEEE (2007)

8. da Silva, W.M., Alvaro, A., Tomas, G.H.R.P., Afonso, R.A., Dias, K.L., Garcia,
V.C.: Smart cities software architectures: a survey. In: 28th Annual ACM Sympo-
sium on Applied Computing (SAC), pp. 1722–1727. ACM (2013)

9. Abu-Matar, M., Mizouni, R.: Variability modeling for smart city reference archi-
tectures. In: IEEE International Smart Cities Conference, pp. 1–8 (2018)

10. Voronin, D., Shevchenko, V., Chengar, O., Mashchenko, E.: Conceptual big data
processing model for the tasks of smart cities environmental monitoring. In:
Alexandrov, D.A., Boukhanovsky, A.V., Chugunov, A.V., Kabanov, Y., Koltsova,
O., Musabirov, I. (eds.) DTGS 2019. CCIS, vol. 1038, pp. 212–222. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-37858-5 17

11. Wenge, R., Zhang, X., Dave, C., Chao, L., Hao, S.: Smart city architecture: A
technology guide for implementation and design challenges. China Commun. 11(3),
56–69 (2014)

12. Simmhan, Y., Ravindra, P., Chaturvedi, S., Hegde, M., Ballamajalu, R.: Towards
a data-driven IoT software architecture for smart city utilities. Softw. Pract. Exp.
48(7), 1390–1416 (2018)

13. Santana, E.F.Z., Chaves, A.P., Gerosa, M.A., Kon, F., Milojicic, D.S.: Software
platforms for smart cities: concepts, requirements, challenges, and a unified refer-
ence architecture. ACM Comput. Surv. 50(6), 1–37 (2017)

14. Sinaeepourfard, A., Petersen, S.A., Ahlers, D.: D2C-SM: designing a distributed-
to-centralized software management architecture for smart cities. In: Pappas, I.O.,
Mikalef, P., Dwivedi, Y.K., Jaccheri, L., Krogstie, J., Mäntymäki, M. (eds.) I3E
2019. LNCS, vol. 11701, pp. 329–341. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29374-1 27

15. Bettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A.: Quality-driven detection and
resolution of metamodel smells. IEEE Access 7, 16364–16376 (2019)

16. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for managing co-
evolution in MDE? In: International Workshop on Model Comparison in Practice,
pp. 30–38. ACM (2011)

17. Brottier, E., Fleurey, F., Steel, J., Baudry B., Traon, Y.L.: Metamodel-based test
generation for model transformations: an algorithm and a tool. In: International
Symposium on Software Reliability Engineering, pp. 85–94 (2006)

https://bit.ly/2SkSZfi
https://doi.org/10.1007/978-3-030-37858-5_17
https://doi.org/10.1007/978-3-030-29374-1_27
https://doi.org/10.1007/978-3-030-29374-1_27


A Flexible Architecture for Key Performance Indicators Assessment 135

18. Kolovos, D.S., Paige, R.F., Kelly, T., Polack, F.A.: Requirements for domain-
specific languages. In: Workshop on Domain-Specific Program Development (2006)

19. Veisi, P., Stroulia, E.: AHL: model-driven engineering of android applications with
BLE peripherals. In: Aı̈meur, E., Ruhi, U., Weiss, M. (eds.) MCETECH 2017.
LNBIP, vol. 289, pp. 56–74. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-59041-7 4

20. Viyović, V., Maksimović, M., Perisić, B.: Sirius: a rapid development of DSM
graphical editor. In: International Conference on Intelligent Engineering Systems
(INES), pp. 233–238 (2014)

21. Bettini, L.: Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing, Birmingham (2016)

22. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 11

23. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., Pieran-
tonio, A.: MDEForge: an extensible web-based modeling platform. In: Cloud-
MDE@MoDELS, pp. 66–75 (2014)

24. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley, Boston (2002)

25. Rose, L.M., Kolovos, D.S., Paige, R.F.: EuGENia live: a flexible graphical mod-
elling tool. In: Extreme Modeling Workshop, pp. 15–20 (2012)

26. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Collaborative repositories
in model-driven engineering. IEEE Softw. 32, 28–34 (2015)

27. Basciani, F., Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Model reposi-
tories: will they become reality? In: CloudMDE@MoDELS (2015)

28. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with
Kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2009. LNCS, vol. 6491, pp. 201–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18023-1 5

29. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Model-based lan-
guage engineering with EMFText. In: Lämmel, R., Saraiva, J., Visser, J. (eds.)
GTTSE 2011. LNCS, vol. 7680, pp. 322–345. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35992-7 9

30. Strauch, C., Sites, U.-L.S., Kriha, W.: NoSQL databases. Lect. Notes Stuttg. Media
Univ. 20, 24 (2011)

https://doi.org/10.1007/978-3-319-59041-7_4
https://doi.org/10.1007/978-3-319-59041-7_4
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-642-35992-7_9
https://doi.org/10.1007/978-3-642-35992-7_9


Performance and Security Engineering



A Multi-objective Performance
Optimization Approach for Self-adaptive

Architectures

Davide Arcelli(B)

Università degli Studi dell’Aquila, via Vetoio 1, L’Aquila, Italy
davide.arcelli@univaq.it, davide.arcelli@gmail.com

Abstract. This paper presents an evolutionary approach for multi-ob-
jective performance optimization of Self-Adaptive Systems, represented
by a specific family of Queuing Network models, namely SMAPEA QNs.
The approach is based on NSGA-II genetic algorithm and it is aimed
at suggesting near-optimal alternative architectures in terms of mean
response times for the different available system operational modes. The
evaluation is performed through a controlled experiment with respect
to a realistic case study, with the aim of establishing whether meta-
heuristics are worth to be investigated as a valid support to performance
optimization of Self-Adaptive Systems.

Keywords: Self-adaptive systems · Software architecture · Software
performance engineering · Search-based software engineering ·
Multi-objective optimization · Genetic algorithms · Queuing networks

1 Introduction

In the last 15 years, architecture engineering of Self-adaptive Systems (SaSs)
has become a significant research topic, due to the fact that self-adaptation has
emerged as a very suitable paradigm to represent modern system architectures.

A SaS is composed by a managing and a managed subsystem. The former
implements system’s adaptation logic and controls the latter, which provides
system’s functionalities for perceiving and affecting the environment through its
sensors and actuators, respectively. Such control typically conforms to a MAPE-
K feedback loop, i.e. a Knowledge-based architecture model that divides the
adaptation process into four sequential activities, namely Monitor, Analyze, Plan
and Execute [14], performed by controllers within the managing subsystem.

Approaches addressing architecture engineering of SaSs typically exploit Mo-
del-Driven Architecture (MDA) principles to abstract the system and its self--
adaptation mechanisms. Besides, other kind of notations can be exploited to
model and analyze non-functional SaS attributes [17]. In this context, additional

Supported by the Italian Ministry of Education, University and Research – MIUR, L.
297, art. 10.

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 139–147, 2020.
https://doi.org/10.1007/978-3-030-58923-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_9&domain=pdf
http://orcid.org/0000-0002-8919-9831
https://doi.org/10.1007/978-3-030-58923-3_9


140 D. Arcelli

paradigms such as Control Theory (CT) [11] and Machine Learning (ML) [12]
have been successfully used to devise efficient self-adaptation mechanisms for
the managing subsystem, aimed at supporting performance optimization with a
certain degree of automation [3,5,16].

In this paper we move towards ML, by exploiting evolutionary computa-
tion [1] for multi-objective performance optimization. In particular, we introduce
an evolutionary approach for efficiently solving the so-called Controller Selection
Policy (CSP) problem within SMAPEA QNs [4], i.e. a novel a family of QNs aimed
at modeling and assessing the performance of SaSs, involving both their man-
aging and managed subsystems. Job classes flowing into the QN represent MAPE
tasks that have to be executed by controllers within the managing subsystem of
a SaS, based on a predefined mode-adaptation strategy [15]). The CSP problem
is thus defined as the problem of optimally choosing a destination controller
for MAPE jobs. To this aim, we exploit the NSGA-II genetic algorithm [8] which
explores the search space looking for (near-)optimal Pareto solutions. Ideally, our
approach can be used for adapting the CSP both at run-time and design-time,
introducing a further dimension for self-adaptation beside the mode-based one.

The paper is structured as follows: Sect. 2 discusses related work. Section 3
describes the approach and details how NSGA-II genetic algorithm can be tai-
lored to the CSP problem. Section 4 illustrates a controlled experiment aimed
at assessing if evolutionary meta-heuristics can provide a valid support to per-
formance optimization of SaSs, by means of a realistic case study. Section 5
concludes the paper and devises the final goal for such research direction.

2 Related Work

A number of approaches aimed at optimizing SaS performance through ML
have appeared in literature. Two of them have been included in the surveys by
Becker et al. [5] and Arcelli [3]. In particular, Elkhodary et al. [9] have addressed
run-time self-adaptation of system features, while supporting several learning
algorithms to learn the impact of adaptation decisions on system’s goals. Instead,
Jung et al. [13] have enabled system reconfiguration taking place offline and
directly on a (Layered) QN, by means of decision-tree learners.

More recently, Faniyi et al. [7] have presented a self-aware architecture style
for SaSs, where adaptation was in terms of service selection. Models of sensed
data are learnt by relying on learning mechanisms which are determined by a
meta-self-aware component, based on trade-offs for goals, time, and interaction.

Borges et al. [10] has integrated formal verification and ML aimed at verifying
properties from formal system specifications, coping with incomplete/incorrect
information and providing effective error handling in the specification process
through adaptation of system behavior for graceful performance degradation.

In his Ph.D. thesis, Araujo [2] has presented an approach that allows to inject
learning techniques into (existing) software systems, enabling the latter to learn
(sub-)optimal configurations of user-defined parameters and adapt to different
contexts (i.e. workloads) at run-time, aimed at keeping the desired QoS.



Multi-objective Performance Optimization for Self-adaptive Architectures 141

Similarly to Faniyi et al. [7], SMAPEA QNs devise an architecture style for
SaSs, including the managed subsystem rather than the managing subsystem
only. However, Faniyi et al. [7] represent SaS architectures conforming to an
agnostic notation, whilst SMAPEA QNs abstract SaSs in terms of performance
models, similarly to Jung et al. [13].

The approach in this paper is aimed at finding (sub)optimal solutions to
the CSP problem, i.e. system configurations, through NSGA-II. This opens to a
comparison between the proposed approach and the above ones in the future.
This shall imply dealing with actual SaS implementations and different modeling
notations and, consequently, with different type of knobs for self-adaptation, thus
requiring a significant effort to actually build up a common basis for comparison.

3 Evolutionary Approach for Performance Optimization

3.1 Approach Overview

Figure 1 illustrates the structure of the proposed multi-objective optimization
approach, grounding on a customized version of the NSGA-II genetic algo-
rithm [8]. The latter performs a search-space exploration taking as input a
SMAPEA QN, which defines a performance-oriented architecture style for SaSs [4].
A SMAPEA QN is partitioned in three parts: S and A contain sensors and actu-
ators, respectively; MAPE contains controllers which are in charge of executing
MAPE tasks, based on a set of routing probabilities for S→M class-switch, i.e. the
CSP.

The goal of the approach is to suggest near-optimal solutions to the CSP
problem, i.e. S→M routing probabilities resulting into satisfactory mean response
times for each system mode. The genetic algorithm explores the (potentially
infinite) solution space by generating proper solutions.

Based on an initial population (i.e. solution set) of a certain size, at each
iteration the best solutions are selected and combined by means of Crossover
and Mutation, with probability p(crossover) and p(mutation), respectively. As a
result, a new “generation” of solutions is produced, as basis for the next iteration.
The total number of iterations is thus given by the ratio between the number
of evaluations and the population size. The former represents the total number
of (generated and then) evaluated models. The evaluation is in terms of mean
response times modulo system modes (see Mode1 and Mode2), thus requiring
the simulation of each SMAPEA QN model, by means of a Performance Analyzer.

3.2 NSGA-II Customization for the CSP Problem

In order to apply NSGA-II to the CSP problem, the genetic algorithm must
be customized by specifying how to: (i) represent individuals (i.e. solutions);
(ii) create new individuals using genetic operators (crossover and mutation) to
explore the solution space; (iii) select the individuals to be supplied from one
generation to another; (iv) evaluate individuals using a fitness function for each
objective to optimize.



142 D. Arcelli

Fig. 1. Multi-objective performance optimization approach.

Solution Representation. In our approach, a (candidate) solution is repre-
sented as a c × 4m matrix, where c is the number of controllers within the IL
and m is the number of system modes. Value rpij of the matrix represents the
probability that a job of class j is routed from S→M to controller i, for each
1 � i � c and 1 � j � 4m. Moreover,

∑c
i=1 rpij = 1, for each 1 � j ≤ 4m.

Figure 2 illustrates three solutions – namely Chromosome 1.2, 2.1 and 1.1 –
where each rpij is drawn as a knob for sake of illustration.

Genetic Operators. Crossover and mutation are illustrated in Fig. 2.
For the crossover operator, we use a single, random, cut-point crossover,

which selects two parent solutions and creates two child solutions by halving
those parents and properly mixing the resulting four halves.

Instead, the mutation operator picks one random column of a solution, e.g.
Monitor for Modem, and replaces it with a randomly-generated brand-new one.

Notice that the solutions generated by crossover and mutation operations
are correct by construction, i.e.

∑c
i=1 rpij = 1, for each 1 � j ≤ 4m. This is an

advantage, as it avoids control procedures aimed at excluding invalid solutions.

Fig. 2. Customized (a) crossover and (b) mutation operations.

Selection. NSGA-II sorts the population based on classification of individuals
into different dominance levels and it exploits a crowding distance in order to
select individuals for the next generation [8].

Fitness Function. At each iteration of the genetic algorithm, the solutions
defining the current population must be evaluated with respect to the fitness



Multi-objective Performance Optimization for Self-adaptive Architectures 143

function. For the CSP problem, the objective is to minimize the mean response
times of the concurrent system modes.

In order to estimate mean response times, each solution must be applied to
the reference SMAPEA QN model, which needs to be simulated by a performance
analyzer. Simulation parameters may play a crucial role for putting the app-
roach into practice; for example, letting the simulation running to infinite might
determine disadvantageous conditions for the genetic algorithm.

4 Evaluation

Evaluation is aimed at investigating if evolutionary meta-heuristics can provide
valid support to performance-based architectural optimization of SaSs. To this
aim, we conduct a controlled experiment onto a realistic case study, i.e. an IoT
system that evacuates people in a room in case of fire detection [4], represented
in Fig. 3 as a SMAPEA QN.

Fig. 3. SMAPEA QN for the considered case study [4].

A (shared) sampling rate (i.e. Sampling) is modeled by a workload source
configured as a deterministic distribution, denoted by det(k), which describes a
constant flow of samplings, arriving exactly every k time units [6]. Such sampling
rate is shared among sensing components of the managed subsystem (at the
LHS), i.e.: CCTV cameras to detect people position and movement, temperature
and CO2 sensors to detect possible fires.

Sensed data feed a MAPE loop run by control components (between the two
class-switches), that decides about actuation based on the situation: (i) In normal
mode, the system shows a 2D-representation of people position and movements
on a dashboard; In critical mode – i.e. a fire is detected – additional information
is shown on the dashboard, alarm actuators are activated and evacuation signs
indicate the best evacuation routes.

The experimentation faces the (probability-based) CSP with respect to (i)
three controllers – two are local and one is deployed at the cloud (i.e. CloudCon-
troller), and (ii) two system modes, namely normal and critical.



144 D. Arcelli

4.1 Controlled Experiment

Assumptions. Two assumptions are introduced to control the experiment, i.e.:

A1: Controllers own the same (exponential) distribution with the same mean
value, modulo the job classes flowing through the QN.

A2: Saturation is not allowed at all, with respect to the considered workload
intensities (i.e. the mean values for the deterministic distribution), that are:
2.5, 2.25, 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5.

Methodology. We start from a set of typical system configurations that
a human could conceive, devised by considering controllers deployment: a
centralized pattern routes all jobs to CentralController ; a collaborative
pattern exploits local controllers only, with equal probability (i.e. 1

2 ); a hybrid
pattern exploits all controllers with equal probability (i.e. 1

3 ). Then, we run cus-
tom NSGA-II under disadvantageous conditions (i.e. small population and eval-
uations – 10 and 100, respectively – and potentially infinite simulation time), as
follows:

a) One execution of NSGA-II for each workload intensity, in order to compare
the returned solutions to the human-conceived configurations conforming to
A2, in the ideal situation that the system can reconfigure at run-time.

b) Each non-saturating solution returned for det(0.5) is simulated for all the
workload intensities and compared to the human-conceived configurations
conforming to A2, with the aim of identifying better design alternatives.

Fig. 4. True/False Positive/Negati-
ve classification.

A definition of true positives (TP), false
positives (FP), true negatives (TN) and false
negatives (FN), is needed, in order to clas-
sify NSGA-II solutions in terms of recall (R),
precision (P) and f-measure (F1), as: R =

TP
TP+FN ; P = TP

TP+FP ; F1 = 2 × P×R
P+R . Such

definition is illustrated by Fig. 4, where rt’
and rt denote response times of interest of, respectively, a returned solution and
a reference configuration.1

Execution. All NSGA-II executions – and thus all the QN simulations as well –
have been run onto a machine equipped with an Intel Core i7-3630QM CPU
2.40 GHz and 16 GB of DDR3 RAM at 1600 MHz. For sake of space, we do
not provide simulation configuration parameters, as they can be found in the
replication package available at https://github.com/davewilsonfbc/smapeaqn.
moo.

Results. First, we remark that, among the human-conceived patterns, centra-
lized and collaborative do not fulfill A2, as they saturate with det(1) and
det(0.5), respectively. Hence, hybrid is the reference pattern for comparison.
1 The two factors 0.812 and 1.222 have been respectively obtained by solving the

equations: rt′ + 0.1 × rt′ = rt − 0.1 × rt and rt′ − 0.1 × rt′ = rt + 0.1 × rt, as the
adopted simulation confidence interval is ±10% (0.1).

https://github.com/davewilsonfbc/smapeaqn.moo
https://github.com/davewilsonfbc/smapeaqn.moo


Multi-objective Performance Optimization for Self-adaptive Architectures 145

Table 1. Obtained metrics vs.
system modes.

System mode

Normal Critical

Quantitative metrics

TP 32 22

FP 2 14

TN 1 0

FN 2 1

Qualitative metrics

R 0.9411765 0.95652174

P 0.9411765 0.61111111

F1 0.9411765 0.74576271

For case a – i.e. run-time (CSP) reconfig-
uration – we obtained 43 solutions across the
considered workloads. Among those, 37 were
distinct solutions.

Table 1 reports the resulting quantitative
and qualitative metrics modulo system modes,
based on the previously introduced classifica-
tion mechanism.

Despite the relatively low precision for crit-
ical mode, having much more FPs than FNs
is certainly encouraging, because FPs indicates
non-pejorative solutions rather than non-ameliorative ones. Being able to very
likely suggest ameliorative and non-pejorative solutions (94.6% on average, in
the ideal case) might represent an added-value in non-controlled environment,
i.e. when controllers have heterogeneous service demands.

Unfortunately, run-time reconfiguration in terms of CSP is not currently
supported by JMT [6], i.e. the reference performance modeling and analysis
framework for SMAPEA QNs. For this reason, we have devised case b – i.e. iden-
tifying design alternatives. With this regard, the meta-heuristic returned one
solution with det(0.5), namely S43. As can be noticed from Fig. 5, S43 tends to
be non-ameliorative (i.e. FN). This is intuitive by looking at the actual routing
probabilities of S43, as it can be seen as “a hybrid pattern slightly unbalanced
towards CloudController” (see the replication package).

Being very close to hybrid, that is optimal due to A1, demonstrates that the
meta-heuristic can suggest near-optimal solutions to the CSP problem, resulting
into valid design alternatives, even under disadvantageous conditions.

Fig. 5. Mean response times for (a) Normal and (b) Critical mode.

5 Conclusion

In this paper, we have presented a multi-objective performance optimization
approach, based on custom NSGA-II genetic algorithm, aimed at identifying



146 D. Arcelli

alternative self-adaptive architectures with enhanced performance. The approach
is based on the SMAPEA Queuing Networks notation, which allows to represent
such kind of systems and assess their performance by simulation.

We have preliminarily validated our approach through a controlled experi-
ment onto a realistic case study, in order to understand if evolutionary meta-
heuristics can provide valid support to performance optimization of self-adaptive
systems. To this aim, NSGA-II has been run under disadvantageous conditions,
i.e. small population size and number of evaluations, with potentially infinite si-
mulations. Obtained results have shown that such an investigation is worth to be
conducted. With this regard, we plan to enable simulation timeouts in order to
run the meta-heuristic with greater population size and number of evaluations.

Our definitive goal is to release a tool supporting the performance-based
architecture modeling, assessment and optimization of self-adaptive systems.

References

1. Al-Sahaf, H., et al.: A survey on evolutionary machine learning. J. R. Soc. N. Z.
49(2), 205–228 (2019). https://doi.org/10.1080/03036758.2019.1609052

2. Araujo, R.: Enabling configuration self-adaptation using machine learning. Ph.D.
thesis, University of British Columbia (2018). https://doi.org/10.14288/1.0379346

3. Arcelli, D.: Exploiting queuing networks to model and assess the performance of
self-adaptive software systems: a survey. ANT. Procedia Comput. Sci. 170, 498–
505 (2020). https://doi.org/10.1016/j.procs.2020.03.108

4. Arcelli, D.: Towards a generalized queuing network model for self-adaptive software
systems. In: MODELSWARD, pp. 457–464. SCITEPRESS (2020). https://doi.org/
10.5220/0009180304570464

5. Becker, M., Luckey, M., Becker, S.: Model-driven performance engineering of self-
adaptive systems: a survey. In: QoSA, pp. 117–122. ACM (2012). https://doi.org/
10.1145/2304696.2304716

6. Bertoli, M., Casale, G., Serazzi, G.: Java modelling tools - user manual (2018).
http://jmt.sourceforge.net/Papers/JMT users Manual.pdf

7. Borges, R.V., d’Avila Garcez, A., Lamb, L.C., Nuseibeh, B.: Learning to adapt
requirements specifications of evolving systems (Nier track). In: ICSE, ICSE 2011,
pp. 856–859. ACM (2011). https://doi.org/10.1145/1985793.1985924

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

9. Elkhodary, A., Esfahani, N., Malek, S.: Fusion: a framework for engineering self-
tuning self-adaptive software systems. In: FSE, FSE 2010, pp. 7–16. ACM SIG-
SOFT (2010). https://doi.org/10.1145/1882291.1882296

10. Faniyi, F., Lewis, P.R., Bahsoon, R., Yao, X.: Architecting self-aware software
systems. In: IEEE/IFIP WICSA, WICSA 2014, pp. 91–94. IEEE Computer Society
(2014). https://doi.org/10.1109/WICSA.2014.18

11. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. Wiley, Hoboken (2004). https://doi.org/10.1002/047166880x

12. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical
Learning: With Applications in R, vol. 103. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-7138-7

https://doi.org/10.1080/03036758.2019.1609052
https://doi.org/10.14288/1.0379346
https://doi.org/10.1016/j.procs.2020.03.108
https://doi.org/10.5220/0009180304570464
https://doi.org/10.5220/0009180304570464
https://doi.org/10.1145/2304696.2304716
https://doi.org/10.1145/2304696.2304716
http://jmt.sourceforge.net/Papers/JMT_users_Manual.pdf
https://doi.org/10.1145/1985793.1985924
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1882291.1882296
https://doi.org/10.1109/WICSA.2014.18
https://doi.org/10.1002/047166880x
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7


Multi-objective Performance Optimization for Self-adaptive Architectures 147

13. Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: Generating adap-
tation policies for multi-tier applications in consolidated server environments. In:
ICAC, pp. 23–32. IEEE Computer Society (2008). https://doi.org/10.1109/ICAC.
2008.21

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

15. Musa, J.D.: Operational profiles in software-reliability engineering. IEEE Softw.
10(2), 14–32 (1993). https://doi.org/10.1109/52.199724

16. Shevtsov, S., Berekmeri, M., Weyns, D., Maggio, M.: Control-theoretical software
adaptation: a systematic literature review. IEEE Trans. Softw. Eng. 44(8), 784–810
(2018). https://doi.org/10.1109/TSE.2017.2704579

17. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal
methods in self-adaptive systems. In: C3S2E, pp. 67–79. ACM (2012). https://doi.
org/10.1145/2347583.2347592

https://doi.org/10.1109/ICAC.2008.21
https://doi.org/10.1109/ICAC.2008.21
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/52.199724
https://doi.org/10.1109/TSE.2017.2704579
https://doi.org/10.1145/2347583.2347592
https://doi.org/10.1145/2347583.2347592


Data Stream Operations as First-Class
Entities in Component-Based

Performance Models

Dominik Werle(B) , Stephan Seifermann, and Anne Koziolek

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
{dominik.werle,stephan.seifermann,koziolek}@kit.edu

Abstract. Data streaming applications are an important class of data-
intensive systems. Performance is an essential quality of such systems. It
is, for example, expressed by the delay of analysis results or the utiliza-
tion of system resources. Architecture-level decisions such as the config-
uration of sources, sinks and operations, their deployment or the choice
of technology impact the performance. Current component-based perfor-
mance prediction approaches cannot accurately predict the performance
of those systems, because they do not support the metrics that are spe-
cific to data streaming applications and only approximate the behavior of
data stream operations instead of expressing it explicitly. In particular,
operations that group multiple data events and thus introduce timing
dependencies between different calls to the system are not represented
sufficiently. In this paper, we present an approach for modeling networks
of data stream operations including their parameters with the goal of
predicting the performance of the resulting composed data streaming
application. The approach is based on a component-based performance
model with queueing semantics for processing resources. Our evaluation
shows that our model can more accurately express the behavior of the
system, resulting in a more expressive performance model compared to
a well-encapsulated component-based model without data stream oper-
ations.

Keywords: Data streaming · Performance modeling ·
Component-based software engineering · Complex event processing

1 Introduction

Systems that process large amounts of data from varied sources have become an
important class of software systems in recent years. Reasons for this development
are the vastly increasing amount of data sources from which data is gathered
and improvements in methods for data analysis.

Partially funded by the German Research Foundation (DFG) as part of the Research
Training Group GRK 2153: “Energy Status Data – Informatics Methods for its Col-
lection, Analysis and Exploitation”.

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 148–164, 2020.
https://doi.org/10.1007/978-3-030-58923-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_10&domain=pdf
http://orcid.org/0000-0002-2430-2578
http://orcid.org/0000-0002-1593-3394
https://doi.org/10.1007/978-3-030-58923-3_10


Data Stream Operations in Component-Based Performance Models 149

From a software engineering viewpoint, building such software systems entails
specific challenges in the different activities that are part of the software engi-
neering process [8]: for example planning which types of processing hardware
are required for the system and how the system will behave in future scenarios
where the number of data sources or other data characteristics change.

In this paper, we address the problem that current component-based per-
formance models to our knowledge cannot express stateful operations which are
commonly used in data streaming applications. For example, when data is col-
lected and emitted as a group when a data item with specific characteristics
arrives or when a specified duration has passed introduce timing dependencies
between calls. Expressing such state requires modeling workarounds that break
the encapsulation and thus hinder the separate reusability and maintainability
of components [21].

There are different paradigms for building systems that process large amounts
of data. In the context of this paper, we will focus on applications that process
continuously arriving streams of data (streaming applications), as opposed to
applications that regularly process larger batches of data.

Overall, we present a new approach for modeling the performance of data
streaming applications. More specifically, we provide a method for expressing the
interaction between components that process data streams in performance mod-
els and a simulation approach for analysing these models. This article extends
a previously presented sketch of the approach [21] with a more thorough discus-
sion of the modeling approach and its relation to component-based performance
models, as well as an implementation and initial evaluation of the approach.

The main stakeholders of the approach are the software engineers that have
to make decisions about the configuration of the system, for example, suitable
sizes for sliding windows. Furthermore, we target the operations engineers that
have to predict how the system will scale with expected changes in the load or
additional analyses on the data. We consider both groups by incorporating the
decisions they have to make in the modeling language, thus allowing them to
make what-if analyses using the presented approach.

Subsequently, the main goal of our approach is to support software engi-
neers that build data streaming applications with suitable modeling and quality
prediction tools. To this end, this article addresses the following two research
questions.

RQ1: What is a suitable way of representing data stream operations in
component-based performance models while keeping components and data
stream operations reusable and parameterizable?

RQ2: How can the behavior of data stream operations be incorporated into
simulations of otherwise stateless component-based performance models?

RQ1 is targeted at the modeling language itself. It is focused on identifying
the relevant operations and how they can be included in a modeling language in a
composable way that can be used in combination with current component-based
performance modeling tools. The second question, RQ2, focuses on the way the
models are then analysed. Particularly, the simulation of the system behavior



150 D. Werle et al.

that includes data stream operations needs to be able to interface with current
simulation approaches. We present three contributions towards these questions:

C1: An approach for representing operations in a composable, architecture level
performance model,

C2: A simulation approach for data stream operations,
C3: An evaluation of the simulation for a case study system.

2 Running Example

To illustrate our approach, we use a running example that is an adaptation of the
2014 grand challenge of the conference on Distributed and Event-Based Systems
(DEBS 2014) [10]. The example application processes meter readings that smart
plugs send to a system to calculate an outlier score for houses.

Window

Median

Group

Average

Outlier

h0,p0t

h0,p1t

h1,p2t

h1,p3t

p

t

p

t

h

t

t

h

t

Fig. 1. Illustration of the running exam-
ple (Source: [21]).

Ingress

A Median

A Group

A Average

A Out-
lier

C1

Gt, σ:p

C2

Gn

σ:h

C3

Gn

C4

Gn, ��

emits to consumes from

Fig. 2. Simplified illustration of the per-
formance model (Source: [21]).

The example system is illustrated in Fig. 1. The following more detailed expla-
nation is partially taken from [21, Sect. 3], where we initially introduced the
example. Figure 2 shows an implementation of the system in our modeling app-
roach and will be discussed in detail Subsect. 5.4. N smart plugs send data to
the system. Each of the smart plugs belongs to one of H households. A plug
with id j that belongs to household i is named hi, pj in the illustration. The rate
at which plugs send data can differ for different plugs and can vary over time.
Window creates data windows of time length S. The data is collected grouped
by the plug id, i.e., Window emits a data window for each plug and each point of
time that windows are created. The windows are created every Δ time units, at
the points of time Ti = Δ·i, i ∈ N, resulting in N newly created windows for each
point in time Ti. Windows overlap if Δ < S. Then, sensor readings are included
in multiple windows. As a result, every window spans the S time units prior to
its creation. Median creates a median for each window and plug, resulting in N
(number of smart plugs) medians for each Ti. Average collects all medians for
one Ti and calculates one overall average value of all medians for each Ti. Group
collects all median values for one household for one Ti by collecting all median
values of all plugs for the Ti and regrouping them by the household id. For each



Data Stream Operations in Component-Based Performance Models 151

of the H households, Outlier calculates the ratio of readings of plugs inside the
household that are greater than the overall average and emits this value as the
outlier value of the household, resulting in H values for each Ti. The metric of
interest for this system is the time between the creation of a date in the plug
and its first appearance in the result of an outlier calculation, the delay.

Interesting questions that the architect of the system may want to answer are
how well the system scales if the number of plugs increases, and which resources
are needed for a particular load. Other questions can be more closely related to
the actual functionality of the system: How does changing the shift and size of
the windowing operation change the delay? How does the association between
plugs and households change the quality of the system (i.e., small amount of
households with many plugs each in comparison to large amount of households
with little plugs each)?

3 Background

In this section, we present relevant foundations for our approach regarding the
way component-based performance models are constructed and used.

3.1 Component-Based Performance Models

Component-based performance models allow a decomposition of systems into
so-called components. An example for a modeling language that allows this is
the Palladio Component Model (PCM) [17], which we have based our approach
on. The model defines interfaces that describe a collection of services. A compo-
nent can either require or provide interfaces and describes the observable effect
regarding performance for each provided service. Particularly, components can
call other components’ services. A system model is composed of components that
together provide services to the user of the system. Based on its modeling prim-
itives, there are extensions to the model and its analysis that add capabilities
for simulating additional behavior of the system that are relevant for its perfor-
mance such as virtualization, network protocols or different types of hardware
resources and operating system schedulers. A usual way of evaluating models is
to map resources to queues and serving nodes that process items in those queues.
This network of queues is then either statically analysed or simulated.

Performance models are used to evaluate different performance metrics, such
as the response time of systems to requests of different types and the utilization
of resources. It should be possible to model, calibrate and reuse the different
parts of the model independent from each other. This allows simple reuse and
extension of models. Additionally, the system should be described in a way that
exposes all relevant design decisions to the architect.

Parametric dependencies additionally allow effect descriptions to be parame-
trized regarding characteristics of the environment of the call. An example for
this environment are parameters that are passed into a method. The concrete



152 D. Werle et al.

values that these parameters take depend on the composition of the system from
components and are usually resolved when the system is analysed or simulated.
This approach enables both the reuse and exchange of components, as well as a
change of the workload if parameters are also used at the system interface.

3.2 State in Performance Models

A basic idea for component-based architecture models is that they are stateless.
This means that the description of the service effects cannot refer to the cur-
rent state of the system, its resources, or other components, but the analysis
will implicitly keep state and schedule or parametrize service effects accordingly.
Therefore, the interaction between different calls to the system is clearly encap-
sulated in so-called resources. The PCM distinguishes two types of resources.
Active resources represent for example CPUs or HDDs. They can be represented
as queues and service places in queueing models. Incurring a resource demand
in a process blocks and thus delays the process until the resource has satisfied
the demand. If multiple processes request the same resource at the same time,
there needs to be some form of queueing or scheduling. Passive resources behave
similar to semaphores. They have a specified token count and tokens can either
be acquired or released. If a process wants to acquire a token when there is none
left, it is blocked until another process releases a token. To summarize, while the
systems that are modeled have state at runtime, the model of the components
themselves cannot refer to this state in an explicit way, for example by branching
depending on the current load of the system. The only way to depend on the
current state of the system is through resources.

3.3 Stochastic Expressions and Dependencies

Performance models use stochastic expressions to describe stochastic processes
that occur in the system or in its usage. A common example for this is the
behavior of users of the system. Furthermore, stochastic descriptions can be
used for aspects of the system that are not modeled in detail, for example when
garbage collection happens in the Java Virtual Machine. If stochastic expressions
are used with parametric dependencies, they can be used to express stochastic
dependencies regarding the performance of the system.

3.4 Challenges for Modeling Data Streaming Applications

In this section, we discuss the major challenge for modeling data streaming
applications using component-based performance models: representing timing
dependencies between calls to the system.

Data streaming applications usually describe the behavior of the system
depending on incoming calls that deliver data at the system interface. In the
following, we use the term data events for those calls. In our work, we consider



Data Stream Operations in Component-Based Performance Models 153

data stream operations that are aligned with the well-established CQL continu-
ous query language [2]. In contrast to business information systems that provide
services that users can call, data stream operations are not described in terms
of single requests that are handled independently. Instead, they operate on mul-
tiple requests. For example, data events may be grouped in windows and then
processed further as a group instead of single elements, which introduces a delay
for single data events that depends on other events or operation characteristics.

Secondly, stochastic descriptions of resource demands cannot be stochasti-
cally dependent at different points of the system for one data event, if system
models do not operate on groups of data. For example, if a particularly hard to
calculate data point arrives at the system, high resource demands might incur
at different points of the system in succession, resulting in an outlier of the cal-
culation time for this data event. However, if these stochastic dependencies are
not made explicit across regrouping or joining of data, resource demand descrip-
tions in the model are stochastically independently from each other and thus
may lead to loss of accuracy of the model. The need for suitable state abstrac-
tions in component-based performance models has been previously identified and
discussed in the context of messaging systems by Happe et al. [7].

In current modeling approaches, if architects desire to model a data stream-
ing application, they have to use a model of the system that does not reflect
the actual structure and behavior of the system, but an approximation that
behaves similarly regarding the performance metric of interest. For example,
data events that are grouped into sliding windows inside the system might have
to be modeled by modeling the arrival of windows instead of single data events
at the system boundary. As a consequence, the performance-related characteris-
tics of windows, such as the number of contained elements, have to be modeled
manually instead of being derived automatically by the model.

4 Approach

In this section we introduce the modeling concepts that are provided in our app-
roach in detail. This section addresses RQ1 (see Sect. 1): What is a suitable way
of representing data stream operations in component-based performance models
while keeping components and data stream operations reusable and parameteriz-
able?

4.1 Modeling Concepts

In this section, we introduce the modeling concepts that are novel in our app-
roach and their role in modeling data streaming applications. An overview of
the concepts is illustrated in Fig. 3. The illustration is explained in detail in the
following subsections.



154 D. Werle et al.

We currently do not support the full set of operations for a streaming appli-
cation (as for example in CQL [2] or in LINQ [15]). While our implementation
focuses on operations that are required for our case study system, our simulation
is implemented to be extensible for additional types of operations that change
the stream of data that flows through the system.

Data Events. A data event describes the context of a call that is passed through
the system in our approach. In our model, this context has an identity and can
be passed between different calls.

Each data event is explicitly created by a process in the system. In addition
to an implicit date of birth, the architect can also specify other characteristics
that are relevant for the performance of the system or for the distribution inside
data stream operations, for example because the characteristic influences how
elements are grouped. Each characteristic is described via an expression and it
is fixed when the data event is created. The expression can be stochastic, i.e.,
be described as a distribution function. Then, a value from this distribution is
generated when the value is fixed. Additionally, the expression can depend on
other parts of the current call context, such as parameters of the current call.

An example for a characteristic is the plug id of sensors that a data event is
created from and then sent to the system. It is either specified as a distribution
function in the workload that is applied to the system or is the result of different
workload drivers (sensors) with fixed sensor types that send data to the system
simultaneously. At some point in the system, the data events are then grouped
by the type of sensor, resulting in different sizes of groups that have to be further
communicated and processed in the system.

Note that a data event is separate from the notion of call flow through the
system. While a workload might specify calls to system interfaces that pass data
events to the system, this data event might then be picked up and further pro-
cessed by other calls or recurring processes in the system. Thus, the data event
carries an identity and fixed characteristics through the system. This identity
and the attached date of birth of the data event can then be used for delay mea-
surements in the system by specifying a point in the system where the current
age of a data event is to be recorded. This information is then collected and
presented to the performance analyst as a result of the analysis. Subsequently,
our definition of data events addresses the challenge of parametric dependencies
across calls (see Subsect. 3.4).

Data Channels. The main novelty in our approach are so called data channels.
The concept is based on event channels as introduced by Rathfelder [16] which
are, however, mapped to normal call semantics for a system. We extend the idea
of event channels by additional state and active processing inside the channel. A
data channel is a type of resource that encapsulates state regarding data events.
When modeling a system, data can be either emitted to or consumed from a
data channel.



Data Stream Operations in Component-Based Performance Models 155

S0

S1

S2

C0

C1

C2
Data
channel

Raw data
events

Joint data
Grouped
data

Repar-
titioned data

Overflow
strategy Join

Grouping
Partitioning

Distribution,
Underflow
strategy

Triggered by:
Windowing /

Request

data event

connector

transfer inside channel

queue

Fig. 3. Illustration of the model of a data channel. Data events that are emitted to
the data channel by components pass through different queues.

Overall, a data channel can be seen as a series of queues that data events
emitted to the channel are passed through, as illustrated in Fig. 3. The steps
between queues have an associated operation and a trigger. When triggered, the
step takes one or multiple elements from the previous queue and emits a new
element to the next queue. For the first queue (raw data events, Fig. 3), elements
are directly added by emitting components. For the last queue (Repartitioned
data), consuming components can take data events. Our current implementation
supports the following steps: join, grouping and partitioning. In principle, this
can be extended to further steps, if required for different types of operations.

In the following we discuss how a data channel can be configured regarding
the following aspects, in order of processing: 1) sinks, sources and connectors, 2)
capacity, 3) over-/underflow discipline, 4) joining, 5) grouping, 6) partitioning,
distribution strategy. Together, the configuration and the semantics contribute
towards allowing timing dependencies in the model (see Subsect. 3.4).

Sinks, Sources and Connectors. A component can communicate with the
data channel via a connector. A connector can be either a sink or a source con-
nector, depending on whether it connects the channel to a source (i.e., a compo-
nent that emits data to the channel), or a sink (i.e., a component that consumes
data from the channel). Sink connectors can either be pushing or polling. If the
connector is pushing then a process is immediately triggered when new data is
available and starts a service that is associated with the given connector inside
the component. The parameter to these service calls is the data event. If the
connector is polling then data events can be actively consumed from any service
inside the component.

Capacity. A data channel can define a capacity of data events it can keep at
a point of time. If no capacity is defined, there is no limit to this number. The
capacity is defined in terms of the number of data events, not their size; this
would however be a possible extension to our concept, if required. Currently,
our notion of capacity only considers total raw data events that are put into
the data channel and have not been processed further yet; however, this can be
extended to the total number of data elements currently residing in the channel,



156 D. Werle et al.

or other notions of capacity. If an incoming data event would surpass the capac-
ity of the data channel, the over-/underflow discipline determines how the call
proceeds.

Over-/Underflow Discipline. The channel specifies an overflow discipline
that determines whether in case of an incoming data event that would surpass
the capacity of the data channel, 1) an incoming data event is dropped, 2) it
replaces the element that was last added to the channel, 3) the first element that
would be emitted is dropped and the new element is added, or 4) the call that
wants to emit an data event to the channel is blocked until the capacity is not
reached anymore. In the latter case, the waiting calls are handled in the order
they try to emit data to the channel, i.e., the first call that wants to emit data
to the channel can do this first after data has been removed from the channel
and there is free capacity again.

For consuming calls, the channel specifies an underflow discipline that deter-
mines how calls that want to consume data from the channel when there is none
available should be handled. The available options are to either 1) return with-
out data elements, or 2) block until data is available. In the latter case, similar
to calls waiting to emit data to the channel, the calls are handled in the order
they try to consume data from the channel.

The described disciplines focus on the capacity of the channel and do not
address other reasons for not accepting data elements, such as elements that
arrive too late at a channel, which we are planning to address in future work.

Joining. Joining regroups elements on a given join condition. In our implemen-
tation, joins are realized by tagging data with information about the incoming
connectors. A joint data element is emitted to the Joint data queue, when a
data event for each connector is available. The modeler specifies for each incom-
ing connector whether a data event can contribute multiple times to joint data
events or only once. If it can contribute multiple times, the last data event for
each incoming connector is not removed but can be used multiple times; previous
elements are removed if a new element arrives. If data events for a connector can
only contribute once, they are removed from the data channel upon inclusion in
a joint date.

Grouping. In general, a grouping operation retains elements until a trigger
occurs. This trigger is either 1) based on the time in the system, 2) on charac-
teristics of the data in the group, or 3) or on an external trigger. Our imple-
mentation currently provides three types of grouping, which are examples for
the respective types of triggers: 1) sliding windows, 2) holdback grouping, and
3) consume-all grouping. We explain these types in the following in more detail
to illustrate the principle of grouping channels.

Sliding windows are a concept where elements are grouped in windows at
periodic points of time. Usually, a sliding window operation is configured with
a size S and a shift Δ. Every Δ time units, the windowing operation emits all



Data Stream Operations in Component-Based Performance Models 157

data events that have arrived in the last S time units as a grouped data event.
This means that windows overlap if Δ < S. Then, data events are included in
multiple windows.

Holdback grouping is a type of grouping, where elements are grouped accord-
ing to a key function. Elements with the same key are collected in a group and
held back. The channel can keep a given number of groups at the same time
(default is one). If an additional key is discovered in an arriving data event for
whose calculated key function currently no group that is held back exists, a new
one is created. If the number of groups then exceeds the specified maximum, the
oldest group that is held back is emitted. Another example for grouping based
on characteristics of the data in the group would be to emit a group of elements
when a specified number of elements are reached.

Consume-all grouping describes the idea that elements are collected and emit-
ted as a whole as soon as a trigger happens, such as a consume action.

Partitioning. Partitioning is an example for an operation that further operates
on data that is already grouped. Particularly, it is regrouped according to a key
function. This means that for every element in the input group of data events,
the key function is calculated. Then, for each distinct value of the key function,
a grouped data event is created that contains all elements that have mapped to
this key. In our running example, this occurs when medians have been calculated
for all plugs for a window and then are regrouped according to the household the
plug belongs to. Note that for this to work, first all elements in the window, i.e.,
all calculated medians for all plugs in the sliding window, have to be collected
and then regrouped according to the key function household id.

Distribution Strategy. Distribution strategy describes whether elements 1)
are distributed to all target connectors, 2) are passed out to the connectors in
succession (round-robin), or 3) the first connector to request data (for polling
consumers) gets the next data event from the data channel.

5 Evaluation

In this section, we show how the presented approach can support software archi-
tects in predicting the performance of the system by explicitly representing its
expected behavior in a performance model.

5.1 Evaluation Question

The evaluation presented in this section addresses RQ2 (see Sect. 1): How can the
behavior of data stream operations be incorporated into simulations of otherwise
stateless component-based performance models? The derived evaluation question
is: Is it feasable to model and simulate the timing behavior of stateful data-stream
operations using our approach?



158 D. Werle et al.

To answer this question we discuss how our modeling approach applies to the
system introduced in Sect. 2. We first describe the workload and configuration of
our system in our experiment (Subsect. 5.2). In Subsect. 5.3 we discuss the metric
of interest and the expected behavior of the system regarding this metric. We
subsequently show, how we can build a model that predicts its performance
(Subsect. 5.4). We then discuss the results and benefits of the simulation. Our
evaluation provides initial evidence that we can use the presented approach to
model relevant data streaming applications. The evaluation of the accuracy of
our modeling approach regarding measurements from a real system and the
comparison with other modeling approaches is subject to future work and not
addressed in this evaluation.

5.2 Experiment Setup: Workload and Configuration

We have created a workload that is based on the first ten minutes of the data
from the house with house id 0 from the DEBS 2014 grand challenge data1. As
a result, our workload represents 14 households with 107 plugs total. While our
approach can handle larger experiments, we chose a small excerpt of the data to
keep the following presentation easy to understand. To provide further evidence
about the limits of the scalability of our approach, both for the simulation as well
as for building the models, we need to model larger systems in future work and for
more complicated workloads. On average, around 45.775 data points arrive at the
system interface per second. For our chosen window size (S = 25 s), we can expect
an average number of total data points per window of R = 25·45.775 = 1144.375.
The shift of windows is chosen as Δ = 50 s.

5.3 Experiment Setup: Metric and Performance

We assume that in the case study system, the system architect is interested in
the delay of data events when they appear in the ouput of the outlier detection
for the first time. This delay of the system is formed as follows. Each data event
has to be sent from the sensor to the system, resulting in a network delay. For
each data event, windowing with size S and Δ leads to a delay that is uniformly
distributed in [0, S]. The number of elements in the window is determined by
the number of data events that arrive during this window, which depends on
the usage scenario. Sensor readings that arrive just before a window is emitted
are only negligibly delayed by the windowing, data points that arrive just after
a window has been created are delayed by 25 s. Calculating the median takes a
resource demand that depends linearly on the number of elements inside each
window, or log-linear resource demand if implemented naively using sorting.
This number of elements depends on the arrival patterns of data events. In our
example, we chose every resource demand as 100+100 ·n, where n is the number
of elements in the grouped data element. Regrouping the elements results in a
resource demand that depends on the number of elements to regroup. In this

1 The data is available publicly via the website of the challenge [9].



Data Stream Operations in Component-Based Performance Models 159

example this is the number of plugs. The resource demand for calculating the
average of all medians inside a time window depends linearly on the number of
medians, i.e., the number of plugs. This number depends on the usage scenario.
The calculation can only be triggered if the system determines that all relevant
medians have arrived at the component. To do this, the system detects when a
median for the next window has arrived. This leads to an additional delay of
Δ = 50 s. The outlier detection has to wait for both the overall average and
the household-wise regrouped elements. For each joint element, the calculation
resource demand then depends on the number of plugs in the given household.

Additionally, communication delays between components occur and become
relevant if the operations are distributed across resources. In our example, every
operation is implemented as a single component. For each component there runs
one process that takes all available input data, processes it and then waits for
additional input data.

If we only consider the timing dependencies introduced by collective opera-
tions in the system, we can expect a delay inside [50 s, 75 s]: The sliding window
contributes 0 s to 25 s to the delay, waiting for one window shift due to grouping
contributes an additional delay of 50 s.

For a processing rate of P = 10 000 resource demand units per second and no
contention at active resources (i.e., resources can serve infinitely many requests
in parallel), we assume about an additional delay of 2·(100+100·R)/P = 22.91 s
(R as defined in Subsect. 5.2): The creation of medians and the outlier calculation
each have to pass over all data points in the window. As a result, we expect an
overall delay in [72.91 s, 97.91 s].

5.4 Experiment Setup: Model

In this section, we present how our approach can be applied to the example
system. We have implemented the parts of the approach that are required to
model this system and make on-going implementation publicly available [19].
All artefacts used in our evaluation and a guide on how to extract the relevant
data from the DEBS data set and run the simulation are available online [20].

Figure 2 illustrates a realization of our running example in PCM. The follow-
ing is an extended explanation based on previous work where we have introduced
a sketch of this model [21, Sect. 4]. The component Ingress handles the sensor
reading ingress and writes data to data channel C1. There is a usage scenario
for each sensor which calls Ingress with a characterization of its plug and house-
hold id. Ingress then creates a date with the specified characteristics (thus also
implicitly creating a birth date) and emits it. The windowing of readings is
specified in the data channel C1. In our example setup, the data channel creates
windows of size 25 s every 50 s. This means that windows are created at points
of time Ti = 50 s, 100 s, 150 s, etc. and span all data points that arrive during
[25 s, 50 s), [75 s, 100 s), [125 s, 150 s), etc. respectively. For every other component,
there exists an additional usage scenario (and interface to trigger the compo-
nent’s processing) that repeatedly triggers the component after it has finished
its current processing. Components for which such a scenario exists are depicted



160 D. Werle et al.

with the symbol A . This means that for each of the components Median, Group,
Average and Outlier, there is a process that tries to consume data from the
respective data channel. If necessary, the process waits until data is available.
Then it processes the data. The processes take an amount of time that depends
on the number of elements that are processed. Each of the processes then emits
data or, in case of Outlier, ends the processing and measures the delay of all
data points in the currently processed group of elements.

For each plug and each Ti, Median consumes a window from C1, possibly
blocking until a window is available. It then emits to C2 and C3. C2 groups
depending on window start and end and partitions according to the household
id. C2 emits the group when it discovers that the window has changed, thus
delaying the processing chain by one window size. Group consumes from C2 and
emits to C4. C3 again groups by the window start and end. Average consumes
groups of medians for each time window from C3 and emits to C4. C4 joins data
from Group and Average based on the start/end of windows. Since the overall
average of a window is only calculated once, it can contribute arbitrarily often
to the join. As a result, C4 contains a joint date for each Outlier consumes from
C4 and specifies an appropriate resource demand.

We have generated a usage model from the DEBS data set, which results in
an additional usage scenario for each of the 107 plugs. Each of the users calls
the system interface that is delegated to Ingress and provides its household id
and plug id as parameters to the call. We create a distribution of times between
readings for each plug and use this distribution as the time between readings in
our model.

100 125 150 175 200 225 250

50

60

70

80

Time [s]

D
e
la

y
[s
]

Fig. 4. Delay for data events that arrive
in the analysis component in our evalua-
tion system.

50 60 70
0

1,000

2,000

3,000

Delay [s]

C
o
u
n
t

Fig. 5. Histogram of delays that are
measured in the simulation for negligible
processing times (cf. Fig. 4).

100 125 150 175 200 225 250
60

70

80

90

100

110

Time [s]

D
e
la

y
[s
]

Fig. 6. Delay for data events that arrive
in the analysis component in our evalua-
tion system.

60 80 100
0

1,000

2,000

3,000

4,000

Delay [s]

C
o
u
n
t

Fig. 7. Histogram of delays that are
measured in the simulation for non-
negligible processing times.



Data Stream Operations in Component-Based Performance Models 161

5.5 Results

Our simulation reproduces the expected number of arriving elements described
in Subsect. 5.2 (R = 1144.375). Using the simulation we can derive the previ-
ously described metrics about the system. We first focus on the case where delay
introduced by processing can be neglected and only consider temporal depen-
dencies. Therefore, all data points and groups are processed as soon as they are
available. The delay at the point of measuring (after the outlier calculation is
finished) is depicted in Fig. 4. The distribution of delays across the simulation is
displayed in Fig. 5. The results of the simulation with non-negligible processing
times is depicted in Fig. 6 and Fig. 7. This shows a scenario, where processing of
data groups uses resources and thus leads to additional delay.

5.6 Discussion

As can be seen from the results, our model can represent the expected number
of arriving elements in the sliding window. Furthermore it predicts delays in
[51 s, 75 s] with an average of 63 s and thus accurately reproduces the expected
delay for negligible processing times in [50 s, 75 s] (midpoint at 62.5 s). If pro-
cessing times are not negligible, the resulting additional delay leads to a change
of the distribution of the delay. The results of the simulation are in the inter-
val [63.67 s, 105.85 s] with an average of 84.66 s as compared to the manually
deducted estimate in [72.91 s, 97.91 s] (midpoint at 85.41 s). Creating the esti-
mate as discussed in Subsect. 5.3 requires manual effort for deriving how which
part of the system influences the behavior and interacts with the type of data it
receives instead of plugging the system together from components and simulating
the actual behavior. This is particularly challenging, if the influence of different
parts changes due to changes in the configuration of the system. For example,
if the constant factors in the resource demands are relevant, the influence of the
distribution of plugs to households can (unexpectedly) become more relevant
than it is in the depicted case, because more groups with less elements have to
be considered and delay the processing. Representing such effects is simplified if
the model directly represents the behavior of the system.

If we want to use a state of the art modeling approach instead of a manual
calculation of the performance, we have to approximate the behavior by deriving
the points of time that windows are created, the distribution of their characteris-
tics and partitions, and the delay incurred by grouping operations (i.e., waiting
for the end of a window). While we have hinted at how this can be done for
simple scenarios where data arrives in regular patterns and where processing
does either not take additional time or the additional time can be estimated, it
is unclear how this can be done in a systematic way for more complex scenarios.

6 Related Work

There have recently been considerable efforts in modeling the performance of
Big Data applications. We identify two main groups of related work.



162 D. Werle et al.

The first group is approaches that are used to model Big Data systems of
different types. Kroß et al. [11,12] present an approach that utilizes the Pal-
ladio modeling language to extract performance models for Apache Spark and
Hadoop. Their work is similar in the overall intent, predicting the performance of
data-intensive applications. They do not represent stateful operations as model
elements that are used in the analysis of the system natively but can represent
streaming applications and the performance of streaming frameworks by mod-
eling relevant impact factors, such as number of partitions for a data stream,
directly. Other related work models the batch processing of large data sets. For
example, Castiglione et al. [4] use an agent-based approach to analyse how highly
concurrent big data applications behave in cloud infrastructures regarding the
performance, number of used virtual machines and energy efficiency. Aliabadi
et al. [1] present an approach that uses Stochastic Activity Networks for modeling
different types of batch applications and how they perform when using differ-
ent frameworks. In the context of the DICE project [3], methods for modeling
Big Data systems have been developed. The models explicitly separate between
platform, technology and concrete deployment [5] of a big data application. The
authors also propose performance simulation methods for simulating their mod-
els by transforming models into Petri Nets [6]. Their approach allows modeling
complex systems that combine different technologies, including Apache Storm
topologies with different types of bolts. We are, however, not aware of an explicit
modeling and simulation of stateful operations in their approach. Maddodi et al.
[13] present an approach that uses Layered Queuing Networks (LQNs) to anal-
yse the behavior of event-sourcing applications. While they support aggregation
of multiple calls for event-sourcing, they do not generalize to other types of
aggregation and interaction of calls, such as windows or joins.

The second group of related work addresses systems that process single events
but, however, do not target the level of architecture and the abstractions required
on this level. Sachs [18] presents an approach for the model-based evaluation of
the performance of event-based systems. The work proposes patterns for Queue-
ing Petri Nets that allow architects to model similar behavior as proposed in our
approach (such as time windows). However, the work does not target the decom-
position of systems on the architecture level. Wu et al. [22] describe a language for
defining information needs as queries on event streams and a method for imple-
menting the resulting queries in a high-performance manner. While approaches
for specifying complex event processing networks provide similar concepts to the
ones presented for our approach, they do not build abstractions that can be used
in architecture-level performance models.

Overall, to our knowledge, the state of the art currently does not target the
decomposition of data streaming applications in stateful data stream operations
and a simulation of this composed system.

7 Conclusion

In this article, we have presented a novel approach for representing and simulat-
ing data stream operations in architecture-level component-based performance



Data Stream Operations in Component-Based Performance Models 163

models. Our approach contributes towards two research questions: 1) how can
we represent data stream operations in performance models and 2) how can we
analyse the systems’ behavior using these models? The representation of data
stream operations is relevant, because they commonly appear in an important
class of software systems: data-intensive streaming applications. Our evaluation
shows that the models of our approach can be used to ease making quantitative
statements about the performance of a streaming application because the models
express the behavior of the system more accurately, particularly in comparison
with a manually derived performance estimate. All of the code of our approach
and the artefacts used for this article are publicly available.

Future work will extend our implementation and evaluation and consider the
performance impact of employing specific technology realizations for data stream
operations. We, furthermore, will investigate the applicability of our approach
to other types of systems, particularly self-adaptive systems. Another interest-
ing direction of research is how to extract the type of model presented in this
article from code or other artifacts and how to integrate the prediction using
these models in an agile software engineering process, as proposed by Mazkatli
et al. [14].

References

1. Aliabadi, S.K., et al.: Analytical composite performance models for big data appli-
cations. J. Netw. Comput. Appl. 142, 63–75 (2019)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

3. Casale, G., Li, C.: Enhancing big data application design with the DICE frame-
work. In: Mann, Z.Á., Stolz, V. (eds.) ESOCC 2017. CCIS, vol. 824, pp. 164–168.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79090-9 13

4. Castiglione, A., et al.: Modeling performances of concurrent big data applications.
Softw. Pract. Exper. 45(8), 1127–1144 (2015)

5. DICE consortium: Deliverable 2.4 DICE Deployment Abstractions, European
Union’s Horizon 2020 programme (2017). http://www.dice-h2020.eu/deliverables/

6. DICE consortium: Deliverable 3.4 DICE simulation tools, European Union’s Hori-
zon 2020 programme (2017). http://www.dice-h2020.eu/deliverables/

7. Happe, L., Buhnova, B., Reussner, R.: Stateful component-based performance
models. Softw. Syst. Model. 13(4), 1319–1343 (2013). https://doi.org/10.1007/
s10270-013-0336-6

8. Hummel, O., et al.: A collection of software engineering challenges for big data
system development. In: Euromicro SEAA, pp. 362–369. IEEE (2018)

9. Jerzak, Z., Ziekow, H.: DEBS 2014 grand challenge: smart homes - DEBS.org.
https://debs.org/grand-challenges/2014/

10. Jerzak, Z., Ziekow, H.: The DEBS 2014 grand challenge. In: DEBS 2014, pp. 266–
269. ACM (2014)

11. Kroß, J., Krcmar, H.: Model-based performance evaluation of batch and stream
applications for big data. In: MASCOTS, pp. 80–86. IEEE (2017)

12. Kroß, J., Krcmar, H.: PerTract: model extraction and specification of big data
systems for performance prediction by the example of apache spark and hadoop.
Big Data Cogn. Comput. 3(3), 47 (2019)

https://doi.org/10.1007/978-3-319-79090-9_13
http://www.dice-h2020.eu/deliverables/
http://www.dice-h2020.eu/deliverables/
https://doi.org/10.1007/s10270-013-0336-6
https://doi.org/10.1007/s10270-013-0336-6
https://debs.org/grand-challenges/2014/


164 D. Werle et al.

13. Maddodi, G., Jansen, S., Overeem, M.: Aggregate architecture simulation in event-
sourcing applications using layered queuing networks. In: ICPE 2020, pp. 238–245.
ACM (2020)

14. Mazkatli, M., et al.: Incremental calibration of architectural performance models
with parametric dependencies. In: ICSA 2020. IEEE (2020)

15. Meijer, E.: Your mouse is a database. ACM Queue 10(3), 20 (2012)
16. Rathfelder, C.: Modelling event-based interactions in component-based architec-

tures for quantitative system evaluation. In: The Karlsruhe Series on Software
Design and Quality, KIT Scientific Publishing (2013)

17. Reussner, R.H., et al.: Modeling and Simulating Software Architectures - The Pal-
ladio Approach. MIT Press, Cambridge (2016)

18. Sachs, K.: Performance modeling and benchmarking of event-based systems. Ph.D.
thesis, Darmstadt University of Technology (2011)

19. Werle, D.: GitHub repository of palladio indirections. https://github.com/
PalladioSimulator/Palladio-Addons-Indirections

20. Werle, D.: Data Stream Operations as First-Class Entities in Component-Based
Performance Models - Auxiliary Material (2020). https://doi.org/10.5281/zenodo.
3937718

21. Werle, D., Seifermann, S., Koziolek, A.: Data stream operations as first-class enti-
ties in palladio. In: SSP 2019. Softwaretechnik Trends (2019)

22. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: SIGMOD, pp. 407–418. ACM (2006)

https://github.com/PalladioSimulator/Palladio-Addons-Indirections
https://github.com/PalladioSimulator/Palladio-Addons-Indirections
https://doi.org/10.5281/zenodo.3937718
https://doi.org/10.5281/zenodo.3937718


Architecture-Centric Support for Integrating
Security Tools in a Security Orchestration

Platform

Chadni Islam1,2(B), Muhammad Ali Babar1, and Surya Nepal2

1 CREST Centre, University of Adelaide, Adelaide, SA 5005, Australia
{chadni.islam,ali.babar}@adelaide.edu.au

2 CSIRO’s Data61, Sydney, NSW, Australia
{chadni.islam,surya.nepal}@data61.csiro.au

Abstract. SecurityOperation Centers (SOC) leverage a number of tools to detect,
thwart and deal with security attacks. One of the key challenges of SOC is to
quickly integrate security tools and operational activities. To address this chal-
lenge, an increasing number of organizations are using Security Orchestration,
Automation and Response (SOAR) platforms, whose design needs suitable archi-
tectural support. This paper presents our work on architecture-centric support
for designing a SOAR platform. Our approach consists of a conceptual map of
SOAR platform and the key dimensions of an architecture design space. We have
demonstrated the use of the approach in designing and implementing a Proof of
Concept (PoC) SOAR platform for (i) automated integration of security tools and
(ii) automated interpretation of activities to execute incident response processes.
We also report a preliminary evaluation of the proposed architectural support for
improving a SOAR’s design.

Keywords: Security orchestration · Security automation · Software
architecture · Security tool integration · Design space

1 Introduction

The adoption of Security Orchestration, Automation and Response (SOAR) platforms
has recently gained major popularity among security analysts, Security Operation Cen-
ters (SOC) and incident response team [1–4]. SOARplatforms enable integration, orches-
tration and automation of the activities (e.g., block IP, scan endpoint and isolate host)
performed by security tools and human experts [2].

Existing SOAR platforms lack proper abstractions for designing a platform at the
architectural level [1–3, 5]. Most of the existing SOAR platforms are implemented in
ad-hoc manners without much attention to the underlying infrastructure [2]. As a result,
there can be several engineering challenges involved in embedding agility in a SOAR
platform [2, 4, 7]. These challenges result in highly complex and monolithic design that
is hard to evolve overtime. A SOAR’ design complexity may also worsened by a lack
of conceptual and practical guidelines for optimal architectural design decisions [2, 6].

© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 165–181, 2020.
https://doi.org/10.1007/978-3-030-58923-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_11


166 C. Islam et al.

An architecture-centric approach [7–9] is expected to help in reducing the design
complexity of a SOAR by modularizing the functionalities and non-functional require-
ments. The architectural design decision provides a foundation for analyzing and under-
standing the sub-optimal design choices [7], which can be improved by leveraging
suitable architectural styles and patterns.

Adesign space is required to capture and characterize design decisions for integrating
techniques and tools that underpin a SOAR platform [2]. Developing design spaces for
different domains of software systems is a growing trend [7]. The design space of a SOAR
platform involves many architectural design decisions and trade-offs that are impacted
by security tools and applications integrated into these platforms. We propose a concept
map considering the functionalities performed by a SOAR platform. It allows one to
modularize the functions and separate the concerns of the components that provide the
design space of a SOAR platform.

In this article, we present an architecture-centric approach to design and implement
a SOAR platform. The proposed approach consists of three parts:

– Abstraction to model SOAR platform design space: We provide a concept map of
a SOAR platform that defines and relates the key concepts of SOAR to support
understanding of security tools integration and orchestration. The design space is
useful for understanding and analyzing requirements of emerging SOAR platforms
and integration technologies for faster response and efficiency.

– Layered Architecture for SOAR platform: We provide a layered architecture that mod-
ularizes the components into different layers based on two key functionalities – inte-
gration and orchestration. These two key requirements are to guide architects to design
and deploy a SOARplatform to integrate security tools and orchestrate activities based
on integrated security tools. We further consider the architecture style and pattern as
a mean for delimiting the design space.

– Proof of concept SOAR support: We have developed a Proof of Concept (PoC) SOAR
platform that has been designed to fulfill the quality requirements - integrability, inter-
pretability and interoperability following the proposed architecture. We have used
seven security tools with different capabilities. The evaluation results show the feasi-
bility of the proposed architecture approach for (i) automated integration of security
tools and (ii) automated interpretation of incident response activities.

This paper is organized as follows. Section 2 introduces a concept map of a SOAR
platforms’ design space. Section 3 presents the modularized architecture of a SOAR
platform. Section 4 details the dimension of a SOAR platform’s integration design space.
Section 5 presents a case study. Section 6 demonstrates the evaluation of the PoC.
Section 7 discusses related work and Sect. 8 concludes the paper.

2 Security Orchestration and Automation

The SOAR platforms are integrated solutions for an organization’s SOC. The under-
lying technologies of SOAR platforms are designed to interweave people, process and
technology. In a SOAR platform, people are responsible for intelligence-based decision



Architecture-Centric Support for Integrating Security Tools 167

making and technologies are used to streamline complex process. The key purpose of a
SOAR platform is to power automation through orchestration. The functionalities of a
SOAR are mainly categorized into integration, orchestration and automation [2].

The development of any SOAR platform first needs to focus on integrating the
security tools in a single platform. Depending on the organizations, the security tools
can be open source, commercial, proprietary, packaged or even legacy bunch of scripts.
Security tools are generally integrated using plugins, scripts, APIs and modules. Mostly
SOAR vendors provide plugins and APIs based support for 150–200 security tools [10,
11]. Security tools generate data in a variety of formats. Further, the data are unified to
enable interoperability among security tools.

The second key task of a SOAR is orchestration. It allows organizations to deploy
and operationalize their security process or Incident Response Process (IRP) using a
piece of code or script, also known as a playbook. An IRP is a set of activities performed
by security experts and security tools. Playbooks contain a set of instructions that makes
security tools interoperate in a manner where the output of one tool is used as an input
to other tools. An orchestration process improves the response to a security incident by
reducing the manual and repetitive tasks done by human experts.

The third task of a SOAR is automation or response. An organization needs to
identify what they need to orchestrate and what can be automated. Mostly validation,
prioritization, reducing false alarms and checking for access control authorization are
the different types of activities that are automated through orchestration processes. The
SOAR community has not quite reached a consensus on any standard mechanism of
automation of security activities.

2.1 Functional Requirements of Security Orchestration and Automation

SOAR as a Unifier or Hub. We adopt the functionality of a SOAR outlined in a recent
multivocal review [2]. We consider a SOAR platform as a hub that unifies the activities
of security tools and provides a single pane for supporting operations of a SOC. Security
tool integration is one of the most important resource intensive and time-consuming
activities in a SOC. Security tools can be integrated using several architectural integra-
tion styles [12]. Semantic technology can be leveraged for integrating security tools. A
semantic integration mechanism ensures that a SOAR platform can interpret the data
consumed and generated by security tools for interoperability. A SOAR platform first
needs to integrate security tools and then based on integration mechanisms it inter-
prets the IRPs. It can enable organizations to use playbooks from different vendors to
model an orchestration process by unifying the semantics provided in playbooks. Most
SOAR platforms filter incoming alerts based on their syntactic and semantics correct-
ness before delivering them to analytics tools. A SOAR’s architecture should support
semantics integration among the artifacts produced and consumed by security tools.

SOAR as a Coordinator or Orchestrator. A SOAR platform orchestrates security
tools activities and streamlines complex security processes into simplified processes.
The orchestration processes can be considered as a sequence of actions, where the out-
put of one tool needs to be the input of other tools. A simplified process is easy to follow
and enables a SOC to differentiate between manual and automated processes. It also



168 C. Islam et al.

helps to keep track of the ongoing scans and activities that require immediate human
involvement. It should be noted that a lot of SOAR literatures tend to use integration
mechanisms or connecting tools as an umbrella term to cover all processes that happen
under-the-hood of security orchestration.Whilst this abstraction is helpful to gain an ini-
tial understanding of security orchestration, we argue that architects would benefit from
a more modularized model that clearly distinguishes the activities related to integration,
orchestration and automation within SOAR platforms.

2.2 Quality Attribute Requirements

A SOAR should also satisfy certain quality attribute requirements. The essential quality
attribute requirements or Non-Functional Requirements (NFRs) of a SOAR are catego-
rized into design time and runtime requirements. To design an architecture of a SOAR
platform, we focus on the following quality attributes.

• Integrability: Security tools integrated into a SOAR platform come from different
vendors. An architecture of a SOAR platform is expected to seamlessly integrate
security tools and quickly adapt modification of security tools’ functionalities.

• Interoperability: A SOAR platform should support semantic integration of differ-
ent types of artifacts generated by security tools and data sources. The integration
mechanism needs to ensure that security tools can interoperate with each other.

• Interpretability: A SOAR platform should be able to semantically interpret the data
generated and consumed by security tools.

• Flexibility: A SOAR platform’s tasks depend on IRPs and emerging threat behav-
ior which changes continuously. A SOAR architecture should be flexible to provide
mapping support for security tools and IRPs to adapt the changes.

• Usability: A SOAR’s architecture needs to be easily understandable so that a SOC can
easily learn and operate a SOAR platform and interpret the input, output and activities
of the components.

2.3 Abstraction for Security Orchestration and Automation

Organizations generically deploy and run a SOAR platform on top of existing secu-
rity tools, information systems and organizational infrastructures to fulfill their security
requirements and business needs. An architect must understand the core concepts of a
SOAR platform to design and communicate about the orchestration process and required
integration and automation technologies with stakeholders and developers of a SOAR
platform. The lack of a comprehensive view might result in concept overlapping and
ambiguity. To address this issue, we propose a conceptual map to capture the common
terminologies of a SOAR. Figure 1 shows the conceptual map of a SOAR platform that
provides the key elements and relationships among these elements.

ASOARplatformconnects awidevariety of security tools that havedifferent capabil-
ities. By capability, we mean the features and characteristics of security tools, which can
support different types of activities. Security tools are generally categorized as detection,
analysis and response tools depending on their capabilities (Fig. 1). This categorization



Architecture-Centric Support for Integrating Security Tools 169

Incident Response Plan

Playbook 
Designer

SOAR 
Developer

Detection

Analysis

Response

implements
requires

provides

integrates Activity

Security Tool

Task

executes

executes

Unification

Orchestration

Automation

Playbook

Orchestration Process
runs and 
manages

supports

Organization

SOAR Platform

Capability

Legend A B A BComposition Generalization A Brelation

uses

Fig. 1. Conceptual map of security orchestration and automation

is made based on the activities performed by security tools while responding to an inci-
dent. For example, monitoring tools can be considered under detection or analysis tools
depending on their contribution to an IRP. A detailed description of security tools used
for this research is out of the scope of this paper.

A SOAR platform is designed and deployed based on an organization’s security
requirements and the available security tools. A SOAR developer needs to design and
develop different types of integration mechanisms (e.g., APIs, plugins or modules) to
integrate security tools (Fig. 1). A SOAR platform performs a set of tasks that can be
categorized in unification, orchestration and automation. It runs the orchestration process
that invokes security tools to perform certain activities. An orchestration process is the
composition of tasks performed by a SOAR and activities performed by security tools.
It contains the invocation actions, scripts to invoke tools and the responses of security
tools. Orchestration processes govern the integration, orchestration and automation task
to respond to a security incident.

The orchestration process primarily is designed in the form of a set of playbooks,
which are generally dedicated to a particular security incident and have a dedicated set
of security tools that are deployed in an organization’s environment. Most organiza-
tions also have dedicated Security Incident Response Team (CSIRT) who mainly design
IRPs for security incidents based on an organization’s preferred security requirements
(i.e., confidentiality, integrity and availability), policies and quality requirements. SOAR
developers or playbook designers design and develop playbooks based on the available
security tools and well-known integration mechanisms.

3 SOAR Architecture

Wepropose an architecture to ensure the functional and non-functional requirements of a
SOARplatform. The key research objective is“how software architecture can play a role



170 C. Islam et al.

in improving the design practices of a SOAR platform?”. We design the architecture of
SOAR platform at two levels of abstraction. The architecture is first designed following
the layered architectural style which provides the first level of abstraction. There are
six layers – (i) security tool, (ii) integration, (iii) data processing, (iv) semantic, (v)
orchestration and (vi) User Interface (UI) layer as shown in Fig. 2. Each layer has both
logical and physical aspects. The logical aspects cover the architectural building blocks
and design decisions of a SOAR platform. The physical aspects include the realization
of the logical aspects by using organizations’ technologies and products. Each layer
has a separation of concerns that allows security staff to freely choose the preferred
components and deploy a SOAR based on their requirements (Fig. 2).

Semantic Layer

Integration 
Layer

Orchestration 
Layer

Data Processing 
Layer

Tool Registry

Interpreter

Data Extractor

PlannerOrchestratorTask Manager

Query Engine

Plugin Repositories

UI Layer  

Abstraction Layer

API GatewayWrapper

Security Tool Layer

Knowledge Base

Data Analyzer

Security Tool Security Tool Security Tool Security Tool

Users

Integration Manager

Data Curator

Fig. 2. High-level architecture for SOAR platform

Each layer is decomposed into components and sub-components. We consider the
components as the lower level of abstractions. Figure 2 shows the core components and
interactions among the components that are required to achieve the desire goals of a
SOAR platform. Different functionalities of a SOAR platform require different com-
binations of these components. We specify the components as a principle computation
element that implement different tasks of a SOAR to execute IRPs.

UI Layer: Security staff initiate existing IRPs or define new plans using a SOAR’s User
Interfaces (UIs) such as interactive dashboards or Integrated Development Environment
(IDE) or Command Line Interface (CLI). The UI layer supports flexibility in designing
UIs that helps define IRPs and integrate security tools.ASOCcan easily learn andoperate
a SOAR platform using the UI. An abstraction layer or API layer can be implemented as
part of the UI layers to maintain and encapsulate the interaction among a SOAR’s user
and its components (Fig. 2).



Architecture-Centric Support for Integrating Security Tools 171

Orchestration Layer: The orchestrator and task manager together form the coordi-
nator of a SOAR platform (Fig. 2). The orchestrator is responsible for coordinating and
forming configuration to achieve interoperability and automating the execution of IRPs.
The planner in the orchestration layer has a set of ‘playbooks’ to automate the execu-
tion of an IRP and keep track of the tasks being executed. Each playbook has a set of
tasks that contains the details of the process about the input required to execute a task
and also the output that is generated after task execution. The playbooks further contain
the conditions that trigger the execution of a particular task. A playbook’s tasks vary
depending on the requirements of a SOC and the types of security tools available. The
orchestrator monitors the successful or unsuccessful execution of tasks. The planner
provides a set of APIs through which a user can update or modify the orchestration
process. An orchestrator may use a set of APIs to govern the execution of an IRP.

Semantic Layer: The semantic layer is responsible for the semantic interpretation of
data that flows across a SOAR platform. It consists of a knowledge base, query engine
and interpreter. A knowledge base usually consists of an ontology of security tools,
their capabilities and activities of an IRP, which enables the interpreter to semantically
interpret security tools’ capability and IRPs’ activities. The details of the ontology can
be found in [13]. The query engine is responsible for extracting data from a knowledge
base. In our proposed architecture, we consider the semantic layer separate from other
layers to give SOC the flexibility to define or modify an ontology.

Data Processing Layer: The information used by a SOAR ranges from business-
critical data to usage systems logs, alerts logs and malicious activities that are processed
by the data processing layer.Data curator, data extractor and data analyzer are the three
main components of data processing layer. The data curator gathers the data produced
by tools for analysis. This layer contributes toward interoperability and interpretability
by processing the heterogeneous structured and unstructured data of different security
tools and playbooks. It is responsible for sharing semantically structured data among
different components of a SOAR throughout an IRP execution process. An architect
can incorporate any automation algorithm or data analysis techniques as part of data
analyzer without affecting other components of a SOAR.

Integration Layer: The integration layer has five components: integration manager,
wrapper, tool registry, plugin repository and API gateway. This layer is designed to inte-
grate security tools. The integration manager works as a description module through
which security tools are integrated and information is provided to enable interpretability
among them.A tool registry is responsible for discovering and registering available secu-
rity tools to monitor their status and report any changes. Security tools are registered
in terms of their capabilities (i.e., input, output and functions) and types. The wrap-
per, API gateway and plugins are intermediary components that provide interfaces to
encapsulate security tools for data translation or imposing orchestration. An integration
manager uses these components to initiate a request and become the ultimate recipient
of orchestrator’s commands. The difference between wrapper, plugins and API gateway
lies in security tools integration and communication protocols.



172 C. Islam et al.

Security Tool Layer: The security tools layer consists of multivendor heterogeneous
security tools, which are typically a mix of open source, proprietary, custom and
commercial-of-the shelf (COT)products. These tools aremainly characterized as unmod-
ifiable components of a SOAR platform. Given most of the security tools are required to
interact with each other, an in-depth understanding of the security tools’ data structures
and capabilities are necessary to integrate them into a SOAR platform.

Figure 3 shows an example UML sequence diagram for responding to a security
incident that comprises of components from each layer.

:Security Tool :APIs/plugins :Data Analyzer :Interpreter :Orchestrator

Generate Data
Send Data Collected Data

Interpreted Data

Find Capability

Capability

Invoke Tool

Interpreted Tool

Generate CommandSend Command

Invoke Tool

Find Tool

Tool

Fig. 3. An example sequence diagram showing the flow of data and interaction of components

4 Dimensions of the Design Space of SOAR

The design space of a SOAR reveals that the integrated security tools and orchestra-
tion process mainly govern the tasks of a SOAR platform. Hence, we have consid-
ered the architectural design decisions from the process and technology perspective for
automatically integrating security tools and orchestrating IRPs.

Process Decision: Along with defining the orchestration process, it is important to
define the process for integrating security tools and analyzing data. A SOAR’s process
varies depending on the mode of a task – automated, semi-automated or manual. The
automation of the integration process relies on five design decisions for integration
process, interpretation process, security tools to capability mapping process, security
tool discovery process and security tool invocation process. A decomposition of the
functions based on layers helps in selecting a suitable technology depending on required
process. For example, the task to manually integrate security tools is separated from
automatically interpreting the security tools’ data. Security tools are first required to
integrate into a SOAR platform, then processes are designed to interpret the security



Architecture-Centric Support for Integrating Security Tools 173

tools data and IRPs activities.Here, themodular architecture helpswith defining different
processes, which are mainly orchestration of security tools, SOAR’s components and
organizational information systems.

A SOAR platform can be centralized, distributed or hybrid depending on an organi-
zation’s infrastructure [2]. For centralized or distributed applications, the communica-
tion protocols are different. In most cases, these communication protocols (i.e., REST
API, RPC and event-driven) are hidden under the internal structures of security tools,
which expose their functions through APIs. A communication process can be designed
to manage distributed communication among different security tools.

Technology Decision: From a technology perspective, we mainly consider the integra-
tion technologies, interpretation mechanisms and tools discovery mechanisms that are
required for integrating security tools, designing the orchestration process and power-
ing automation. A SOAR’s taxonomy has six automation strategies [2]. An underlying
technology infrastructure consists of the assets of an organization depending on the
type of the automation strategy. Example of assets includes various hardware and soft-
ware infrastructures (i.e., computer systems, operating systems and applications) that
an organization needs to protect from security attacks. Orchestrations can take place in
different types of environments which can be open or restricted. We need to consider
different architectural integration styles to ensure that the integration constraints related
to different security tools and stakeholders (e.g., semantic, performance and component
constraints) are addressed [12].

Following we provide a set of design decisions that need to be made by an architect.

• Building a generic block of a SOAR platform. An architect can choose to design a
playbook and script for orchestration and automation.

• Disseminating tools that are integrated and participate in orchestration. Architects
have to decide on how to map security tools to IRP and where to deploy them in an
organization’s environment so that orchestrator can invoke the tools when required.

• Setting up a mechanism for an orchestrator to discover security tools. An architect
has to choose integration styles and define processes for discovery of security tools.

• Setting up and starting an orchestration process. An architect has to decide who has
the right to modify the process and provide an interface to modify or add new IRPs.

Table 1 shows a summary of the architectural design decisions for achieving the
desired functional andnon-functional requirements of aSOARplatform.Byarchitectural
design decisions we mean the design decisions that would have system wide impact
and/or impact on more than one non-functional requirements [8].



174 C. Islam et al.

Table 1. Summary of architectural design decision

Design decisions Expected benefits

Ontology for formalizing security tools and
activities of IRPs

Make a SOAR architecture flexible to integrate
different types of security tools with varied
data formats

Use of ontology for semantic integration and
information discovery

Support tools specific integration and
automated execution of IRPs in dynamic
environment

Layered architectural style Easy evolution of SOAR’s components and
easy modularization of functionalities and
components

Abstraction of SOAR’s components task with
a set of APIs

Make a SOAR platform easy to use, manage
and learn for end-users

Automated integration and interpretation
process

Enable reuse of existing components with
changes in IRPs and security tools

Share ontology template in a centralized
repository pattern

Provide access of the ontology to its end users
and support flexibility in update

5 Case Study – Prototype Implementation

In this section, we present a Proof of Concept (PoC) SOAR platform that we have
designed and implemented based on the proposed architectural approach [14]. The func-
tional requirements of our PoC are to automate the process of integrating security tools,
automate the selection of security tools to execute an IRP and automate the execution
of a set of IRPs. We designed the PoC in a way so that it is easily evolvable for future
changes. In this implementation, we considered two types of changes that are most
common is SOARs execution environment – change in security tools and change in
IRPs. Figure 4 presents the implementation architecture of the PoC. We analyzed the
instruction of integration and orchestration to select the technologies and identify the
design decisions. We designed automated integration processes and selected semantic
technologies to enable semantic integration and interpretation of security tools data.

We selected seven open-source tools1 with varied capabilities. The selected tools
are Snort, Splunk, LimaCharlie, MISP, Windows defender, Wireshark and WinPCap
which are IDS (Intrusion Detection System), SIEM (Security Information and Event
Management Tool), EDR (Endpoint Detection and Response) tool, Open Source Threat
Intelligence and Sharing Platform (OSINT), Firewall and packet monitoring and log-
ging tools respectively. The security tools were selected based on the diversity in their
capabilities because execution of an IRP would require multiple security tools. We used
24 different capabilities of the selected tools with MISP as a new tool to be integrated
later. We have curated a set of IRPs from Demisto’s (i.e., a SOAR platform provider)

1 https://www.snort.org, https://www.splunk.com/, https://www.limacharlie.io/, https://www.
misp-project.org.

https://www.snort.org
https://www.splunk.com/
https://www.limacharlie.io/
https://www.misp-project.org


Architecture-Centric Support for Integrating Security Tools 175

MISP API
LimaCharlie API

Splunk API MISP API
LimaCharlie API

Splunk API
InputOutput

Wrapper
Wrapper
Wrapper

Wrapper

Ontology

Collector

Process
Orchestration

Collected data

Integration

Security Tools

Send data (alert, log, report, packet)

Interpreted  
data

invoke process

Invoke tools

MISP Splunk

LimaCharlie

Snort

Wireshark

WinPcap

WinDefender

command

Data Analyzer

SPARQL query engine

IRP Orchestrator

Interpreter

Output Handler Input Constructor

Fig. 4. Implementation architecture of the PoC for security tool integration

collaborative playbooks [15]. We have selected 21 IRPs and slightly modified them to fit
the capabilities of the seven security tools used for our research. We designed another 48
IRPs as a new set of IRPs that PoC would require to execute without user intervention.
The list of capabilities and IRPs are available at [14].

The implementation decision incorporated APIs based integration style as our pri-
mary mechanism to integrate security tools into a SOAR. The data from the security
tools such as MISP and Splunk have been made accessible through their APIs. Besides,
we have built wrappers for security tools that do not provide specific APIs such as Snort.
Integrating a new tool required us to identify security tool’s APIs or information sharing
protocol and implement a suitable integration mechanism. The API and wrappers of
Fig. 4 are part of the integration layer of the PoC.

We also designed an ontology to formalize security tools, their capabilities and IRP’s
activities to enable semantic interpretation of security tools data [13]. Each security tool
can execute multiple activities and each activity can be executed by multiple security
tools. We used Apache Jena Fuseki server to store the ontology. Security tools are
formalized based on their capabilities and the activities of IRPs are mapped with security
tool class of an ontology. Table 2 and Table 3 illustrate how security tools and IRPs have
been mapped onto an ontology. We designed a SPARQL query engine to retrieve the
required information from the ontology. The retrieve data are interpreted through an
interpreter, which mainly deconstructs the data for further processing. The designed
ontology along with the interpreter built the semantic layer.

We built a collector to gather security tools’ data, which are sent to an orchestrator
via the interpreter for actions, e.g., Splunks API is configured to receive system logs of
various endpoints. This data is searched and processed to find programs, files or users
that could bemalicious. Further to formulate the commands, an input constructor is built.

The automation algorithms or processes have been mainly built as integration pro-
cesses that are the parts of the orchestration layer (Fig. 4).We designed and implemented
scripts to define the automated integration process, which includes selecting the security
tools based on activity description, interpreting their capabilities, formulating the input
commands and finally invoking the security tool by calling appropriate APIs [16]. An
example is shown in Fig. 5 where the output of Splunk is sent to LimaCharlie. The



176 C. Islam et al.

Table 2. Illustration of a selected set of object properties of security tool class of an ontology

Security tool Security
tool class

has Capability Capability class executeActivity

snort_s IDS intrusion_detection_s IntrusionDetection detectIncident

limaCharlie_l EDR intrusion_detection_l
process_killing_l

IntrusionDetection
ProcessKilling

detectIncident
killProcess

splunk_s SIEM log_collection_s
alert_analysis_a

LogCollection
AlertAnalysis

collectAlertLog
investigateAlert

Table 3. Illustration of a selected set of data properties of security tool class of an ontology

Security tool Security tool class isIntegrated hasInputType hasRule hasConfigFile

snort_s IDS True Network traffic False snorts.config

limaCharlie_l EDR True Payloads True inputs.conf

splunk_s SIEM True Logs True LCConf

orchestrator is required to collect the output of Splunk and then interpret it. All the
data generated by Splunk might not be required by LimaCharlie; so, the orchestrator
would require to construct the input of LimaCharlie from Splunk’s output to invoke
LimaCharlie. We developed and designed this process as part of the integration process
to automate the interpretation of the security tools data, which enable seamless inter-
operability among security tools. Using the integration process, data sharing among the
security tools of Fig. 5 happened seamlessly.

6 Evaluation

In this section, we report how the PoC has been evaluated to demonstrate the feasibility
of the proposed architecture approach based on two scenarios.

Interpreter

SplunkCollector

-String: dir
+run()
....

OutputHandler

-log: DataElement
+run()
...

Directory

Splunk

<<Interface>>

InputConstructor

+formulateCommand(String)

Output to directory

LimacharlieInputConstructor

+deleteFile(String, String)
+killProcess(String, String)
.....

+interpret(DataElement)
ArrayList<HasMap>

Querier

+getToolCaps(String)
+getReqCaps(String)

Ontology

<<Interface>>

Collector

+getData(DataElement)
.....

LimaCharlie
Orchestrator

+execute()
+getProcess(String) 

IRP

Fig. 5. Example of data transfer from Splunk to LimaCharlie



Architecture-Centric Support for Integrating Security Tools 177

6.1 Automating the Process for Integration Security Tools

Let’s assume that a user has expressed a goal of integrating security tools. We have
decided to use the proposed architecture for automating security tools integration. In the
current implementation, an ontology is available that works as a knowledge base of a
set of existing security tools. To integrate the available security tools, the orchestrator
provides a template of an ontology to users for specifying the tools’ capabilities and
map it with the available activities or activity it can execute. This process stores the
security tools’ information in an ontology that makes the information available to the
orchestrator. If the security tools have different capabilities, the information is updated
in the ontology. Further, the process for automating the integration of security tools is
invoked which enables the collector to collect the security tools’ output and orchestrator
to formulate and send commands to the security tool for executing the desired activities.

Other integration approaches such as designing static APIs for communicating with
security tools or plugin-based integration require to develop wrapper along with con-
nection with the data curator and the orchestrator to collect the security tool data. The
collector needs to be configured to access the data generated by security tools. Thus,
integrating a single tool would require development of at least one component and
connection of that component with the orchestrator. For a security tool with multiple
capabilities, for instance, Splunk and Limacharlie have different sets of APIs to invoke
different capabilities, a single API or wrapper would fail to invoke different capabilities.
For example, for LimaCharlie with static API based integration, we have designed two
sets of scripts to kill a process and isolate a process. For seven security tools with 24
capabilities at least 48 connections are required among the orchestrator and security tools
while considering API and wrapper-based integration for taking the output and provide
the commands to execute an activity. An increase in the connections and components
increases the design space of a SOAR. With the inclusion of new security tools, a new
connection emerges and a user would require to go through the existing APIs, wrapper
and connection to integrate a security tool in a playbook to execute an IRP. An update in
the existing security tool features, for example, addition of new capabilities or change
in the existing API parameters also requires designing the connections and updating the
playbook where the security tools have been used.

With the semantic-based integration approach, we only need to update security tools
details in an ontology. The connections between the ontology and other components
have already been designed and that do not require any changes. Thus, with the PoC,
the number of components and connections remain constant with the integration of new
security tools – that isMISP.Without considering the proposed architecture approach the
number of components increased at least by 2 upon the integration of new security tools.
We found that semantic-based integration is more suitable in this case. This demon-
strates that the proposed architecture-based implementation keeps the components and
connections lower by reusing the existing components.

Our observation from running the experiment reveals that building wrapper and
APIs require more time than updating the security tool details in an ontology. Hence,
ontology-based automated integration process free SOC’s time.



178 C. Islam et al.

6.2 Automating the Interpretation of the Activities to Execute an IRP

We assume a user has expressed his/her goal to identify and isolate suspicious endpoints.
Using the current implementation, the orchestrator can identify the capabilities required
to execute the activities and then select the security tools that can execute that capabil-
ity. As the process for automatically identifying the capabilities required to execute an
activity and selecting the security tools are already defined, a user would not require to
manually identify the security tools. He/she just needs to request the orchestrator for
security tools that can perform the required activities. The orchestrator runs the process
and returns the available security tools. Then the user can also define which security
tools would be used for each activity. Next, the orchestrator automatically generates the
commands to invoke the security tools to execute a sequence of activities. In this whole
process, the current architectural based implementation has reused the existing process,
components and protocols.

With the non-modular and monolithic implementation of a SOAR platform, a play-
book is required to design to fulfill a user’s goal. Developing a playbook would require
an understanding of a playbook’s structure, knowledge of the available security tools,
developing scripts to access the generated data of the security tools and their specific
APIs to execute an activity. In the monolithic approach, each playbook is designed for a
specific IRP which cannot be reused even if the new IRP is a subset of the existing IRPs.
A user requires to modify the existing playbook to execute the new IRP.

Modularizing a SOAR’s architecture provides a clear understanding of which part
would require an update and which components can be reused without modification.
Reusing the existing components provides the following benefits: a SOC spends less time
in adapting the changes and the evolution of a system does not increase the complexity
of architecture. Further, it has reduced the overhead for users in adopting the changes by
providing the processes that can be reused. The evaluation shows that without separating
the concerns, the number of changes would require more than our proposed architectural
based implementation.

The PoC has accurately executed 45 IRPs among the new 48 IRPs. For three of the
IRPs, the orchestrator could not find any security tools with the required capabilities
to execute some of the activities, thus those were executed partially. The successful
execution of the 45 IRPs demonstrates that the developed PoC has accurately interpreted
the data generated by the used security tools without user intervention. The security tool
MISP is also used by some of the new IRPs; thus, it has also been successfully integrated.
From the evaluation, we also observe that incorporating the changes in the PoC is easier
compared to other approaches.

This paper has demonstrated the feasibility of the proposed architecture for security
tool integration and IRP interpretation based on three quality attributes - integrability,
interpretability and interoperability. Other quality attributes of a SOAR can be evaluated
by following different architectural evaluation techniques such as Scenario based Archi-
tecture Analysis Method (SAAM) and Architecture Tradeoff Analysis Method (ATAM)
[8, 17].



Architecture-Centric Support for Integrating Security Tools 179

7 Related Work

The leading security service providers aim to provide SOAR platforms to deliver end to
end security services [10, 11, 18, 19]. For example, FireEye (i.e., a leading cybersecurity
company) designs a SOAR platform to integrate its endpoint products and offer supports
to its industry partners [10]. Whilst the start-ups mainly focus on developing APIs to
integrate different third-party solutions and provide playbooks for automated and semi-
automate IRPs [20]. The ad-hoc implementations of a SOAR platform increase the
design complexity of such a platform as these platforms are built as a whole without
separating the concerns of the deployed components. Further, a SOAR is a large-scale
system that integrates an organization’s information and security systems. Organizations
are facing several challenges in managing these solutions while any changes occur in the
underlying operating environment such as integrating new security tools and defining
new IRPs [2, 13]. Our work addresses these kinds of challenges.

The current state-of-the-practices and state-of-the-arts of SOARs lack a shared under-
standing between the vendors and stakeholders of SOAR [1, 3, 4, 21, 22]. For example,
there is no shared understanding of the key software components and technologies that
are necessary to integrate and enable interoperability among various security tools and
bring automation in IRPs execution. In these studies, a SOAR platform has mainly
focused on security tools interactions, isolated processes and low-level infrastructures,
while paying less attention to the problems of how different components of a SOAR and
security tools coordinate.

A security team requires an understanding of the internal structure of a SOAR (i.e.,
libraries to integrate new security tools or requirements) to adopt the changes in a SOAR
platforms execution environment. Adopting the changes remains a tedious and difficult
undertaking for end-users. State-of-the-art approaches for security process modeling
provide limited or no decomposition mechanisms, which easily results in monolithic
processes that address multiple concerns in a single model [1, 3, 4, 22].

None of the existing works provides the architectural design space that could inform
architects of the decisions to be made where multiple components are interconnected.
Software architecture is composed of early design decisions, which can help to address
some of the existing challenges to be addressed by SOAR platform designers [6–8]. An
increased focus on architectural aspects of SOAR can also facilitate further research on
the design decisions of the exiting SOAR platforms to form guidelines, rules and design
techniques. The rise of security incidents has increased the demand for knowledge,
processes and techniques for designing and deploying highly configurable and scalable
SOAR platforms. As most organization prefer to utilize their available software and
security tools, it would be helpful to consider architectural design decisions for trade-off
analysis before deploying a SOAR platform to enhance a SOC’ efficiency.

8 Conclusion

Exploring and understanding the architectural design decision before designing and
implementing a SOAR platform is a valuable task. The captured design decision would
help developers as well as a SOC staff of an organization to systemize their decision



180 C. Islam et al.

process and trade-off analysis. The architectural design decisions would serve as a stan-
dalone lexicon to describe and evaluate the existing and new SOAR platform. In this
paper,wehave designed a conceptual diagramofSOARplatform to support an architect’s
understanding of the design space of SOAR. We have further identified the requirement
of a SOAR in terms of unification, orchestration and automation and proposed a layered
architecture to modularize the functions and separate the concerns of the components
of a SOAR platform. The architecture design decisions are chosen from the process
and technology perspectives. We have used the proposed approach to design and imple-
ment a PoC SOAR platform for an ad-hoc SOC infrastructure and observe its impact
on the automated integration and interpretation process. We have leveraged well-known
architectural styles and patterns to implement the PoC.We have observed that the consid-
eration of the principal dimension of the architecture design space has improved SOAR
design practices.

The proposed approach has further laid a foundation for future research on the
design space and deployment automation of SOAR platforms. In our future work, we
plan to conduct a large-scale mapping of the existing SOAR platform and IRPs onto
the architecture design decisions to generate patterns and hide interaction among the
different components across multiple technology paradigm.

Acknowledgement. This work is partially supported byCSIRO’s data61, Australia.We acknowl-
edge the contribution of Faheem Ullah, Aufeef Chauhan and Triet Mihn Le for their feedbacks in
improving the work.

References

1. Feitosa, E., Souto, E., Sadok, D.H.: An orchestration approach for unwanted internet traffic
identification. Comput. Netw. 56(12), 2805–2831 (2012)

2. Islam, C., Babar, M.A., Nepal, S.: A multi-vocal review of security orchestration. ACM
Comput. Surv. (CSUR) 52(2), 37 (2019)

3. Luo, S., Salem, M.B.: Orchestration of software-defined security services. In: 2016 IEEE
International Conference on Communications Workshops (ICC 2016), Kuala Lumpur,
Malaysia (2016)

4. Nadkarni, H.: Security orchestration framework. US Patent 9,807,118 (2017)
5. Koyama, T., Hu, B., Nagafuchi, Y., Shioji, E., Takahashi, K.: Security orchestration with a

global threat intelligence platform. NTT Tech. Rev. 13, 1–6 (2015)
6. Chauhan, M.A., Babar, M.A., Sheng, Q.Z.: A reference architecture for provisioning of tools

as a service: meta-model, ontologies and design elements. Future Gener. Comput. Syst. 69,
41–65 (2017)

7. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In:
Proceedings of the 5thWorking IEEE/IFIPConference onSoftwareArchitecture,USA (2005)

8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional, Boston (2003)

9. Haesevoets, R., Weyns, D., Holvoet, T.: Architecture-centric support for adaptive service
collaborations. ACM Trans. Softw. Eng. Methodol. 23(1), 1–40 (2014)

10. FireEye.: Security orchestration in action: integrate – automate –manage. https://www2.
fireeye.com/Webinar-FSO-EMEA.html?utm_source=fireeye&utm_medium=webinar-page.
Accessed 20 Nov 2017

https://www2.fireeye.com/Webinar-FSO-EMEA.html%3futm_source%3dfireeye%26utm_medium%3dwebinar-page


Architecture-Centric Support for Integrating Security Tools 181

11. IBM.: Orchestrate incident response. https://www.ibm.com/security/solutions/orchestrate-
incident-response. Accessed 1 Nov 2019

12. Andersson, J., Johnson, P.: Architectural integration styles for large-scale enterprise software
systems. In: Proceedings Fifth IEEE International Enterprise Distributed Object Computing
Conference, Seattle, WA, USA, pp. 224–236 (2001)

13. Islam, C., Babar, M.A., Nepal, S.: Automated interpretation and integration of security tools
using semantic knowledge. In: Advanced Information Systems Engineering (CAiSE 2019),
Rome, Italy (2019)

14. Islam, C.: Proof of concept SOAR (2020). https://github.com/Chadni-Islam/Security-Orches
tration-PoC

15. Demisto.:Demisto platformcontent repository. https://github.com/demisto/content.Accessed
21 Jan 2020

16. Islam, C., Babar, M.A., Nepal, S.: An ontology-driven approach to automate the process of
integration security software systems. In: IEEE/ACM International Conference on Software
and System Processes (ICSSP 2019), Montreal, Canada, 25–26 June (2019)

17. Babar, M.A., Zhu, L., Jeffery, R.: A framework for classifying and comparing software
architecture evaluation methods. In: Proceedings of 2004 Australian Software Engineering
Conference, pp. 309–318 (2004)

18. Siemplify.: What is security orchestration and automation?. https://www.siemplify.co/resour
ces/what-is-security-orchestration-automation/. Accessed 5 Dec 2019

19. Swimlane.: Security automation and orchestration. https://swimlane.com/use-cases/security-
orchestration-for-automated-defense/. Accessed 20 Nov 2017

20. Demisto.: Security orchestration and automation. https://www.demisto.com/wp-content/upl
oads/2017/04/MH-Demisto-Security-Automation-WP.pdf. Accessed 5 Dec 2017

21. Digiambattista, E.: Enterprise level security orchestration.USPatent 2017/0017795A1 (2017)
22. Poornachandran, R., Shahidzadeh, S., Das, S., Zimmer, V.J., Vashisth, S., Sharma, P.:

Premises-aware security and policy orchestration. US Patent 14/560,141 (2016)

https://www.ibm.com/security/solutions/orchestrate-incident-response
https://github.com/Chadni-Islam/Security-Orchestration-PoC
https://github.com/demisto/content
https://www.siemplify.co/resources/what-is-security-orchestration-automation/
https://swimlane.com/use-cases/security-orchestration-for-automated-defense/
https://www.demisto.com/wp-content/uploads/2017/04/MH-Demisto-Security-Automation-WP.pdf


VisArch: Visualisation
of Performance-based Architectural

Refactorings

Catia Trubiani1(B) , Aldeida Aleti2 , Sarah Goodwin2 ,
Pooyan Jamshidi3 , Andre van Hoorn4 , and Samuel Gratzl5

1 Gran Sasso Science Institute, L’Aquila, Italy
catia.trubiani@gssi.it

2 Monash University, Melbourne, Australia
{aldeida.aleti,sarah.goodwin}@monash.edu
3 University of South Carolina, Columbia, USA

PJAMSHID@cse.sc.edu
4 University of Stuttgart, Stuttgart, Germany
van.hoorn@informatik.uni-stuttgart.de
5 Johannes Kepler University, Linz, Austria

samuel gratzl@gmx.at

Abstract. Evaluating the performance characteristics of software archi-
tectures is not trivial since many factors, such as workload fluctua-
tions and service failures, contribute to large variations. To reduce the
impact of these factors, architectures are refactored so that their design
becomes more robust and less prone to performance violations. This
paper proposes an approach for visualizing the impact, from a perfor-
mance perspective, of different performance-based architectural refactor-
ings that are inherited by the specification of performance antipatterns.
A case study including 64 performance-based architectural refactorings
is adopted to illustrate how the visual representation supports software
architects in the evaluation of different architecture design alternatives.

Keywords: Software architecture · Performance · Visualisation

1 Introduction

Performance evaluation of software architectures is a complex activity, even more
so when workload fluctuations and software/hardware failures contribute to dis-
tributions in requests and resources’ availability [9,14]. These variabilities may
be smoothed by equipping the architecture with a portfolio of refactoring actions
to make it more robust [2,6], i.e., less prone to performance issues. Performance-
based architectural refactorings are behaviour-preserving actions [10] that may

This work has been partially supported by the MIUR PRIN project SEDUCE
2017TWRCNB and the Baden-Württemberg Stiftung.

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 182–190, 2020.
https://doi.org/10.1007/978-3-030-58923-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_12&domain=pdf
http://orcid.org/0000-0002-7675-6942
http://orcid.org/0000-0002-1716-690X
http://orcid.org/0000-0001-8894-8282
http://orcid.org/0000-0002-9342-0703
http://orcid.org/0000-0003-2567-6077
http://orcid.org/0000-0002-3712-8660
https://doi.org/10.1007/978-3-030-58923-3_12


VisArch: Visualisation of Performance-based Architectural Refactorings 183

span in multiple dimensions, such as design changes and/or redeployment, hard-
ware settings, communication patterns among software components, etc. [16,17].

Understanding what are the most suitable performance-based architectural
refactorings is indeed not trivial since there might be several trade-off decisions
arising in the evaluation, and software architects are usually not supported in
this task. To get system performance improvements, we make use of software
performance antipatterns [22] since they have been applied in the context of soft-
ware architectures and shown to be beneficial [24]. The main benefit of adopting
antipatterns is that their specification includes reusable solutions that can be
applied across different domains, e.g.., very recently performance antipatterns
have been investigated for Cyber-Physical Systems [21]. Moreover, to deal with
system uncertainties, polynomial chaos expansion has been applied [2] for com-
puting the cumulative distributions related to performance metrics of interest
that are known to be affected by uncertain parameters.

In the literature, the problem of optimizing the non-functional characteris-
tics of software architectures, even under uncertainty, has been tackled by sev-
eral approaches [1,4,5,7,9,18]. However, most of the developed methodologies
focus on a specific modeling and/or analysis formalism (e.g.., fuzzy logic [9]).
As opposite, to the best of our knowledge, there is limited work in the field of
visualising non-functional (e.g.., performance) data and its match with system
architectural choices. The interest of the research community in software and
performance visualisation is growing [3,19], and the state-of-the-art for perfor-
mance visualisation techniques has been preliminary evaluated in [15].

This paper investigates the effectiveness of interactive visualisation tech-
niques [12,13] in the selection of design alternatives. Our research question is:

How can visualisation help identify refactorings that improve performance?
To answer this question, we design a case study of 64 architectural refactorings
by extending previous work [24] and investigate how visualisation supports the
evaluation of the impact of these refactorings on performance metrics, such as
system response time, service throughput, and resource utilization.

The main contribution of this paper is the VisArch visualisation approach,
applied to a case study, that supports: (i) the evaluation of performance-based
architectural refactorings (with a focus on performance antipatterns); (ii) the
estimation of the uncertainty propagation by measuring the impact of an archi-
tectural change on system robustness (based on polynomial chaos expansion);
(iii) the exploitation of the uncertainty and robustness estimates by software
architects for their decision making in the selection of design alternatives.

The rest of the paper is organized as follows. Section 2 describes the details
of our approach. Section 3 briefly discusses the case study and illustrates the
visualisation results. Section 4 concludes the paper by outlining future research
directions. All artifacts are publicly available [23].

2 VisArch: Visualising Architectural Refactorings

In this paper, we propose an approach to visualise the impact, from a
performance-based perspective, of different architectural refactorings. The chal-



184 C. Trubiani et al.

lenge is to keep track of the interweaving ways in which a refactoring action
at the architectural level may impact the system performance. Our approach,
called VisArch, aims to address this complexity, by leveraging the benefits of data
visualisation to help with assessing the impact of refactoring techniques. Figure 1
provides an overview of the workflow we follow to apply the VisArch approach.
Input/output artifacts and operational steps are described in the following.

Fig. 1. Overview of VisArch.

Performance Requirements – see the box labeled as 1 in Fig. 1 – repre-
sent the required performance characteristics, e.g.., the system response time
has to be less than 10 s. Software Architectural Model ( 2 ) represents the sys-
tem in terms of software components, their interactions, and deployment set-
tings. Uncertain Parameters ( 3 ) represent the system characteristics that are
unknown, parameter values are expressed as distribution functions (e.g.., uni-
form, normal, discrete, triangular). For example, the workload can be specified
as [workload : Distribution = (UNIFORM , 100 , 150 )], meaning that number of
users varies with a uniform distribution between 100 and 150. This allows a
flexible specification of uncertain parameters and also captures their diverse
nature. Software Performance Models ( 4 ) represent the abstractions of the
system to derive its performance characteristics. Several performance models
have been developed in the literature, and we use Layered Queuing Networks
(LQNs) [8], since such models have been demonstrated to suitably approximate
real-world scenarios [11]. Model-based Performance Results ( 5 ) represent the
predictions of the performance characteristics of an application, such as system
response time (RT), throughput (TH) of services, and hardware utilization (U),
via analytical models. In our case, such results are obtained by adopting well-
known solution techniques within the LQN solver [11]. Solution of Performance
Antipatterns ( 6 ) takes as input performance requirements and model-based
performance results that are compared. In case of requirements’ violations, the
generation of architectural refactorings is supported by the solution of perfor-
mance antipatterns, since they have been demonstrated to be beneficial in the
context of software architectures [24]. PA x-Refactored Architectural Model +



VisArch: Visualisation of Performance-based Architectural Refactorings 185

Performance Results ( 7 ) represent the set of architectural models that are
generated after solving the performance antipatterns. Even if not reported in
Fig. 1, all the generated architectural models are transformed into LQN mod-
els and analyzed. Performance results are then coupled with the corresponding
architectural models, since they will be used for visualisation purposes.

Visualisation of Architectural Refactorings ( 8 ) represents the main con-
tribution of this paper. Performance results are presented using a new interac-
tive visualisation technique for exploring heterogeneous multi-attribute rankings,
i.e., LineUp [12]1. This technique allows the large amount of performance data
including the uncertainties to be presented as an intuitive visual overview. The
technique can be described as an interactive table, consisting of visualisations in
rows and columns that can be quickly filtered and reordered. It uses the concept
of small-multiple visualisations [25] to provide first a overview, then analytical
details on demand [20]. Performance results are loaded into LineUp, and a visu-
alisation is built. Each row represents one possible refactoring combination that
has been tested. Individual columns contain the results of the different samples
(resulting from the specification of uncertain parameters), which are presented
as boxplots to highlight the underlying distribution of each sample. Rows and
columns can be sorted on the basis of whether a performance antipattern has
been refactored or not (see Sect. 3). This presents a visual overview showing
the refactoring impact on certain performance requirements. The visualisation
provides an instrument to clearly recognize the most suitable architectural alter-
natives when analyzing the performance requirements of interest.

3 Visualisation Results

The visualisation approach is illustrated by means of a case study presented
in [24], namely the Book and Movie online-Shop (B&M-S). Figure 2 depicts
an excerpt of the software architectural model where the main software com-
ponents and hardware machines are shown (legend at the top right). Table 1
briefly reports the performance-based architectural refactorings (AR), inherited
from [24] and used for the visualisation. The complete description of the case
study is reported in our supplementary material [23].

We applied the LineUp [12] technique to visualise the architectural refac-
torings. Figures 3, 4 depict the detailed outcomes. The first column indicates
which refactoring action has been applied to the initial software architecture.
The refactored solutions are associated to the following colours:

AR1-CTH Red AR2-CPSdb Purple AR3-BLOB Brown AR4-EP

Pink AR5-EST Olive AR6-CPSlib Teal

The impact of the refactoring solution can be inspected visually via the
performance metrics we consider, specifically the throughput (TH) and response
time (RT) of these services: Browse Catalogue (BC), and Purchase Product (PP).
1 https://lineup.js.org.

https://lineup.js.org


186 C. Trubiani et al.

Fig. 2. B&M-S: excerpt of the Software Architectural Model.

Table 1. Performance-based architectural refactorings (AR) driven by the solution of
performance antipatterns.

AR1 Solving the CTH (Circuitous Treasure Hunt) performance antipattern. To
better balance the load between the saleController and dbCustomers
components, the latter is invoked twice. Its demand increases (i) to check
user credentials from 0.03 to 0.09, (ii) to verify customer promotions from
0.03 to 0.06

AR2 Solving the CPSdb (Concurrent Processing System detected on the database
component) performance antipattern. To better balance the resources, the
dbCustomers component is redeployed from databaseNode to the
dispatcherNode

AR3 Solving the BLOB (God class/component) performance antipattern. To
better balance the load between libraryController vs. bookLibrary and
movieLibrary components, these latter components have been redesigned.
The resource demand of libraryController decreases from 0.05 to 0.02,
whereas the demands of bookLibrary and movieLibrary both increase from
0.03 to 0.045

AR4 Solving the EP (Extensive Processing) performance antipattern. A newly
added component, namely catalogEngineMirror handles generic and
expensive catalogs, whereas book and movies catalogs are handled by the
catalogEngine component

AR5 Solving the EST (Empty Semi Trucks) performance antipattern. To better
balance the load between the saleController and productController
components, the computation is moved to this latter component that is
invoked once to check the quality of products, and consequently its demand
increases from 0.01 to 0.03

AR6 Solving the CPSlib (Concurrent Processing System detected on the library
component) performance antipattern. To optimise the resources, the
libraryController component is redeployed from libraryNode to the
dispatcherNode



VisArch: Visualisation of Performance-based Architectural Refactorings 187

(a) AR1-CTH (b) AR2-CPSdb

(c) AR3-BLOB (d) AR4-EP

(e) AR5-EST (f) AR6-CPSlib

Fig. 3. Visualisations of performance-based architectural refactorings. Orange high-
lights reordering and the solutions where performance-based refactoring was applied.
All figures include 64 rows representing the tested refactoring combinations.

TH(BC) (Blue ), RT(BC) (Green ), TH(PP) (Light Blue ) and RT(PP)
(Light Green )



188 C. Trubiani et al.

The distribution of the results for each of the four metrics are shown in
separate columns as a histogram at the top, indicating the total distribution of
the results, and as boxplots in each row, depicting the distribution of the metrics
for each combination of refactoring technique.

Figure 3a, the top half of the table (highlighted orange), depicts solutions
where the CTH was applied, whereas the bottom half shows solutions where
this refactoring was not applied. As we can see, CTH does not have a signifi-
cant impact on any of the performance metrics, since the visual patterns of the
performance metric columns are similar. The same holds true for the refactor-
ing techniques: CPSdb in Fig. 3b, EP in Fig. 3d, and CPSlib in Fig. 3f. Yet, the
visualisations reveal a significant impact on the performance metrics, both in
terms of variance and mean, for the refactoring techniques that address BLOB
and EST performance antipatterns, shown in Figs. 3c and 3e.

The biggest impact of refactoring that addresses BLOB is on throughput,
and is more evident on TH(BC). Figure 3c shows that the solutions depicted in
the top half of the graph have on average a higher throughput, i.e., refactoring
BLOB improves mean throughput. However, the variance of the throughput is
quite high for all solutions, as shown by the wider boxplots compared to solu-
tions without this refactoring. This means that the throughput in the refactored
solutions is likely to fluctuate more, making the system unstable.

A similar scenario is shown for TH(PP) in Fig. 3c, however the impact of
refactoring BLOB is not as strong, and there seems to be an interaction between
BLOB (brown) and EST (olive). The effect of EST on TH(PP) is more evident
in Fig. 3e, where rows have been arranged to show solutions fixing this antipat-
tern at the top of the graph. Refactoring for EST improves TH(PP), and has a
slight negative impact on its variance, i.e., refactored solutions are not as stable
in terms of TH(PP). However, the impact on variance by refactoring EST is not
as bad as the impact of BLOB on TH(BC). EST does not impact TH(BC) in
any way. Interestingly, refactoring EST improves RT as well, both in terms of
reducing mean RT(PP) and its variance. EST is the only refactoring technique
that improves RT(PP). BLOB had a slight positive effect on RT(BC), but this
was not as significant as the impact on RT(PP) by applying EST .

To further investigate the interaction between BLOB and EST , we order
the results based on both columns, see Fig. 4. The visualisation clearly shows
that all performance metrics benefit from it, although in some metrics, such as
RT(BC), the improvement is not as significant. Summarising, BLOB improves
both throughput metrics, i.e., TH(BC) and TH(PP), but the stability of the
system became worse. BLOB also has a negligible impact on response time, by
slightly improving RT(BC) and no impact on RT(PP). EST improves the dis-
tribution of TH(PP) and RT(PP), but has no impact on TH(BC) and RT(BC).



VisArch: Visualisation of Performance-based Architectural Refactorings 189

Fig. 4. Visualisation of AR3.5-BLOB and EST architectural refactorings. For sake of
space, the first 32 rows are showed and represent a subset of tested refactorings.

4 Conclusion

In this paper we presented an approach to visualise performance-based archi-
tectural refactorings. Our experimentation mainly focused on the feasibility of
applying visualisation techniques in the context of evaluating the performance
of different architectural alternatives. As future work, we plan to quantify the
gain for software architects through a user study to learn how do they perceive
visualisation as support for the actual selection of design alternatives. Moreover,
we plan to explore further visualisation techniques and apply the approach to
more complex case studies, possibly from an industrial context.

References

1. Aleti, A., et al.: Software architecture optimization methods: a systematic literature
review. IEEE Trans. Softw. Eng. 39(5), 658–683 (2013)

2. Aleti, A., et al.: An efficient method for uncertainty propagation in robust software
performance estimation. J. Syst. Softw. 138, 222–235 (2018)

3. Beck, F., et al.: Visualizing systems and software performance - report on the
GI-Dagstuhl seminar (2018). https://peerj.com/preprints/27253/

4. Berrevoets, R., Weyns, D.: A QoS-aware adaptive mobility handling approach for
LoRa-based IoT systems. In: SASO, pp. 130–139 (2018)

5. Busch, A., Fuchß, D., Eckert, M., Koziolek, A.: Assessing the quality impact of
features in component-based software architectures. In: Bures, T., Duchien, L.,
Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 211–219. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29983-5 14

6. Calinescu, R., et al.: Designing robust software systems through parametric Markov
chain synthesis. In: ICSA, pp. 131–140 (2017)

7. Cámara, J., Garlan, D., Schmerl, B.: Synthesis and quantitative verification of
tradeoff spaces for families of software systems. In: Lopes, A., de Lemos, R. (eds.)
ECSA 2017. LNCS, vol. 10475, pp. 3–21. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-65831-5 1

https://peerj.com/preprints/27253/
https://doi.org/10.1007/978-3-030-29983-5_14
https://doi.org/10.1007/978-3-319-65831-5_1
https://doi.org/10.1007/978-3-319-65831-5_1


190 C. Trubiani et al.

8. Das, O., Woodside, C.M.: Analyzing the effectiveness of fault-management archi-
tectures in layered distributed systems. Perform. Eval. 56(1–4), 93–120 (2004)

9. Esfahani, N., et al.: GuideArch: guiding the exploration of architectural solution
space under uncertainty. In: ICSE, pp. 43–52 (2013)

10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Boston (2018)

11. Franks, G., et al.: Enhanced modeling and solution of layered queueing networks.
IEEE Trans. Softw. Eng. 35(2), 148–161 (2009)

12. Furmanova, K., et al.: Taggle: combining overview and details in tabular data
visualizations. Inf. Vis. 19(2), 114–136 (2020)

13. Goodwin, S., et al.: What do constraint programming users want to see? Exploring
the role of visualisation in profiling of models and search. IEEE Trans. Vis. Comput.
Graph. 23(1), 281–290 (2017)

14. Incerto, E., et al.: Software performance self-adaptation through efficient model
predictive control. In: ASE, pp. 485–496 (2017)

15. Isaacs, K.E., et al.: State of the art of performance visualization. In: EuroVis -
STARs. The Eurographics Association (2014)

16. Jamshidi, P., et al.: Transfer learning for performance modeling of configurable
systems: an exploratory analysis. In: ASE, pp. 497–508 (2017)

17. Jamshidi, P., Casale, G.: An uncertainty-aware approach to optimal configuration
of stream processing systems. In: MASCOTS, pp. 39–48 (2016)

18. Mahdavi-Hezavehi, S., et al.: A systematic literature review on methods that han-
dle multiple quality attributes in architecture-based self-adaptive systems. Inf.
Softw. Technol. 90, 1–26 (2017)

19. Okanovic, D., et al.: Concern-driven reporting of software performance analysis
results. In: ICPE, pp. 1–4. ACM (2019)

20. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Symposium on Visual Languages, pp. 336–343 (1996)

21. Smith, C.U.: Software performance antipatterns in cyber-physical systems. In:
ICPE, pp. 173–180 (2020)

22. Smith, C.U., Williams, L.G.: Software performance antipatterns for identifying and
correcting performance problems. In: CMG, pp. 717–725 (2012)

23. Trubiani, C., et al.: Artifacts. https://doi.org/10.5281/zenodo.3936656
24. Trubiani, C., et al.: Exploring synergies between bottleneck analysis and perfor-

mance antipatterns. In: ICPE, pp. 75–86 (2014)
25. Tufte, E.: Envisioning Information. Graphics Press, Cheshire (1990)

https://doi.org/10.5281/zenodo.3936656


Architectural Smells and Source Code
Analysis



An Initial Study on the Association
Between Architectural Smells

and Degradation

Sebastian Herold(B)

Department of Mathematics and Computer Science, Karlstad University,
651 88 Karlstad, Sweden
sebastian.herold@kau.se

Abstract. It is generally assumed that architectural smells are asso-
ciated with software architectural degradation. Treating smells could
hence help treating degradation. This article investigates the associ-
ation between three types of architectural smells and the existence
of architecture-violating dependencies as manifestation of architectural
degradation in software.

We gathered data about architectural smells and violations from a
single system with a validated prescriptive architecture. The data was
analysed to identify and characterise associations between architectural
smells and violations. Statistically relevant associations were identified
for two of three smells, namely cyclic dependencies and unstable depen-
dencies. Effect sizes were small for both though.

These results provide evidence for cyclic and unstable dependencies
having a larger risk of including architectural violations. The small
effect sizes indicate that the presence of architectural smells cannot
explain architectural degradation alone. This shows that complementing
methods and techniques are required for exhaustive treatment of both
phenomena.

Keywords: Software architecture degradation · Architectural smells ·
Empirical study

1 Introduction

Software architecture degradation is the phenomenon of continuous divergence
between the prescriptive and the descriptive software architecture of a system
[15]. While the prescriptive software architecture manifests the intended princi-
pal design decisions made to achieve the desired quality attributes, the descrip-
tive software architecture reflects the actual implemented design decisions. Sev-
eral studies provide evidence that severe architectural degradation is prevalent
in practice and may lead to expensive re-engineering efforts [1,4,9,10,16].

Another architectural phenomenon considered harmful to system quality is
known as architectural smells [8]. It is frequently claimed that these smells lead
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 193–201, 2020.
https://doi.org/10.1007/978-3-030-58923-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_13&domain=pdf
http://orcid.org/0000-0002-3180-9182
https://doi.org/10.1007/978-3-030-58923-3_13


194 S. Herold

to, or contribute to architectural degradation, or that avoiding architectural
smells avoids degradation [5,7]. Empirical studies to support these claims are
scarce though.

In this paper, we make a first step into a more detailed exploration of the asso-
ciation between architectural smells and architectural violations as symptoms of
architectural degradation. This is motivated by the question whether mitigating
smells would actually help mitigating degradation. If architectural smells that
manifest in source code reliably indicated elements that very likely contributed
to architecture degradation (if the prescriptive architecture was made explicit),
the effort of recovering the prescriptive architecture for degradation detection
could possibly be omitted.

We gathered data related to the presence of instances of three different types
of architectural smells in a case study system and determined architectural vio-
lations through reflexion modelling [14]. We analysed the data to address the
question whether or not dependencies contributing to those architectural smells
are more likely to be architectural violations than other dependencies.

2 Foundations

2.1 Reflexion Modelling

Reflexion modelling-type approaches focus on the creation of graphical, box-
and-lines models of prescriptive architectures in which boxes denote modules
and arrows indicate desired, or allowed, dependencies. Reflexion modelling starts
with manually constructing a model of the prescriptive architecture which con-
sists of modules and allowed or expected architectural dependencies between
them. In a second step, structural elements of the implementation, such as
classes, packages, or source code files, are manually mapped to the modules
in the model of the prescriptive architecture. In a third step, the source code
is automatically analysed for dependencies. The relevant dependencies, such as
method and function calls, field accesses, etc., are extracted from the source code
and compared to the specified architectural dependencies.

The differences between the prescriptive architecture and dependencies as
implemented are then visualized in the so-called reflexion model. Divergences
are architectural dependencies that have manifested themselves as source code
dependencies but have not been modelled in the prescriptive architecture. They
might be indicators for architectural degradation in the modelled system. In the
following, we will call a dependency between classes contributing to a divergence
in the reflexion model of the system an architectural violation.

2.2 Architectural Smells

For this study, we focus on three types of smells that are described in, among
others, the catalogue by Azadi et al. [2].

A cyclic dependency between two elements A and B exists if A depends
on B, directly or indirectly, and B depends on A, directly or indirectly. In the



The Association Between Architectural Smells and Degradation 195

following, we say a dependency contributes to a cyclic dependency iff it is part
of cycle between A and B.

An element C, usually a class or interface, is said to be the centre of a
hub-like dependency if it has a large number of both incoming and outgoing
dependencies. We say a dependency d contributes to a hub-like dependency
smell iff it is incident with the hub’s centre C.

Unstable dependencies are dependencies from stable towards less stable ele-
ments, usually coarse-grained elements such as packages. Stability in this context
refers to the amount of work required to implement a change in one element due
to dependent elements in which the change might require consequent changes
[13]. We say that a dependency contributes to an unstable dependency, iff the
target of the dependency is contained in a less stable package/namespace/etc.
than its source.

3 Study Setup

3.1 Research Question and Hypotheses

We formulate the research question of this study as follows: are the contribution
to any of the three introduced types of smells and the classification as architec-
tural violation dependent properties of dependencies, and if so, what is the effect
size of this (statistical) dependency?

This leads us to the following three hypotheses:

– Hypothesis H1: The contribution to circular dependencies and classification
as architectural violation are dependent properties.

– Hypothesis H2: The contribution to hub-like dependencies and classification
as architectural violation are dependent properties.

– Hypothesis H3: The contribution to unstable dependencies and classification
as architectural violation are dependent properties.

The corresponding null hypotheses Hx
0 state the independence of the respective

properties.

3.2 System Under Study

For this preliminary and initial study our main requirements for candidate sys-
tems were the availability of a validated prescriptive architecture, access to the
system code and non-trivial functional complexity and size (>50 KLOC).

We decided to use the open-source JabRef reference management software
(version 3.5) as case study. JabRef is widely used in the academic community. It
consists of over 80KLOC. In a previous study, we collaborated with the JabRef
project team to recover the prescriptive software architecture and identify archi-
tecture degradation through reflexion modelling [12]. The developed model of
the prescriptive architecture was discussed with and refined by the project
team until they considered it an adequate representation of the prescriptive
architecture.



196 S. Herold

3.3 Data Gathering

The data required to address the research question and test the hypotheses was
gathered in three steps. In step one, we used the Arcan tool to detect and collect
data about the architecture smells present in JabRef [6]. Arcan is cabable of
identifying instances of the three types of smells of interest in Java bytecode.
It stores the information extracted from the bytecode analysis as a graph in a
neo4j graph database1. The database does not only contain data about smells
but also about dependencies between types.

In order to model JabRef’s prescriptive architecture and extract architec-
tural violations, we used an adaptation of the reflexion modelling tool Jittac
[3] for step two. JabRef’s prescriptive architecture was modelled according to
the specification in the replication package of the aforementioned study [12].
We added functionality to Jittac for exporting architectural violation informa-
tion as .csv files that can be merged into the database created by Arcan. The
resulting database contains all the data generated by Arcan complemented by
edges labelled “violation” representing architectural violations detected by Jit-
tac. After complementing the database with data from Jittac’s analysis, we exe-
cuted queries written in neo4j’s built-in query language Cypher to retrieve the
relevant data in step three.

3.4 Data Analysis

For each dependency we can define binary properties indicating whether or not
the dependency represents an architectural violations and indicating whether a
dependency contributes to any instances of a particular type of architectural
smell. Based on the gathered data, we can determine the values of these prop-
erties for each dependency and type of smell.

For each type of smell, we performed a χ2 test for independence between
the corresponding property and the classification as architectural violation at a
significance level of .01. In case of significance, i.e. rejection of the corresponding
null hypothesis, we computed Φ, the risk factor, and confidence intervals to
analyse the effect size.

4 Results

In total, JabRef consists of 1,486 classes, counting top-level level classes as well
as nested/inner classes. Between these classes, there exist 6,111 dependencies
of which 327 constitute architectural violation according to the model of the
prescribed architecture.

Table 1 summarizes the results of the data analysis. The results for the orig-
inally tested hypothesis H1 is shown in the left-most column. The χ2 test for
independence results in a p-value <.001, which lets us reject the null hypothesis
and assume that contributing to cyclic dependencies and being a violation are
dependent properties of dependencies. The value of ϕ indicates a small effect
1 http://neo4j.com.

http://neo4j.com


The Association Between Architectural Smells and Degradation 197

Table 1. Results for cyclic, unstable, and hub-like dependencies. Columns “NV” and
“V” in the contingency tables stand for “No violations” and “Violations”, respectively.
Rows “NS” and “S” stand for “Not contributing to smells” and “Contributing to
smells”, respectively.

Smell Cyclic Cyclic Dep. Cyclic Dep. Unstable Hub-like
Type Dependencies (> 5 classes) (> 15 classes) Dependencies Dependencies
Contin- NV V Σ NV V Σ NV V Σ NV V Σ NV V Σ
gency NS 3755 136 3891 4200 136 4336 4721 160 4881 5218 266 5484 5357 299 5656
Table S 2029 191 2220 1584 191 1775 1063 167 1230 566 61 627 427 28 455

Σ 5784 327 5784 327 5784 327 5784 327 5784 327

χ2 72.83 144.54 205.76 105.5767 0.6256
p < .001 < .001 < .001 < .001 .4290
ϕ 0.1092 0.1538 0.1835 0.1314 n/a
Risk NS S NS S NS S NS S NS S

0.0350 0.0860 0.0314 0.1076 0.0339 0.1358 0.0485 0.0973 n/a n/a
Risk 2.46 3.43 4.64 2.01 n/a
factor
99% CI (−0.068,−0.034) (−0.096,−0.056) (−0.129,−0.077) (−0.08,−0.017) n/a

size. The risk factor and the confidence interval provide further evidence that
there is an actual higher chance of having violations among smell-contributing
dependencies than in other dependencies. The share of violations among depen-
dencies contributing to cyclic dependencies is 8.6% and 2.46 times as large as in
the set of dependencies not contributing.

During experimentation with Arcan, we noticed that dependencies, which
only were part of small cyclic dependency instances involving five classes at most,
were never architectural violations. We therefore tested also for the dependency
between the property “contributes to cyclic dependencies involving more than n
classes” and “representing an architectural violation” for n ≥ 5. χ2 peaked for
n = 15 resulting in an effect size of ϕ = 0.1835 and a risk factor of 4.64 (equiv-
alent to share of 13.58% of smell-contributing dependencies being violations).

The null hypothesis H3
0 regarding unstable dependencies can be rejected

based on the results as the p-value is <.001 and below the significance level. The
value for ϕ indicates a small effect size. Almost 10% of dependencies contributing
to unstable dependencies are architectural violations which is about twice as high
as for non-contributing dependencies (risk factor 2.01).

Regarding hub-like dependencies, we fail to reject H2
0 as the computed

p-value of 0.4290 is well above the chosen significance level.

5 Discussion

5.1 Interpretation of the Results

The results of the statistical tests provide evidence that cyclic dependencies
and architectural degradation are related phenomena. The higher relative fre-
quency of violations contributing to cyclic dependencies compared to the rela-
tive frequency of violations in the non-cyclic parts of the investigated number is
likely to be systematic and not caused by chance. The same holds for unstable
dependencies.



198 S. Herold

This intuitively confirms that the validated prescriptive architecture of
JabRef follows those design principles that the smells violate. The structure
it defines is acyclic and from the description of its modules it seems to follow
the stable dependency principle [12]. Hence, occurrences of those smells, as long
as they cross module boundaries, are likely to cause architectural violations. We
summarise this as Finding 1: The results provide evidence for cyclic dependen-
cies and unstable dependencies, respectively, being phenomena overlapping with
architecture degradation. Architecture violations were roughly twice as common
in these smells.

It should be stressed that the phenomena only overlap partially. Cyclic depen-
dencies involve 58.4%, unstable dependencies only 18.7% of the overall detected
architectural violations. The effect sizes appear to be quite small (according to ϕ)
and suggest that there might be other important factors than architectural smells
hospitable to architectural degradation. This is supported by the observed abso-
lute differences in the relative frequency of violations between smell-contributing
and non-contributing dependencies which is about 5%. At this rate, it still seems
far from trivial to identify those dependencies that are likely to violate the archi-
tectural intents. We conclude this as Finding 2: The magnitude of the effect is
too small to say that architectural violations could be explained by the presence of
smells mainly; avoiding the right smells might reduce a fair share of degradation
but is far from avoiding it.

The results regarding cyclic dependencies seem also to suggest that the size
of the cycles matter w.r.t. the degree of contributing architectural violations. A
potential reason could be that small cycles are more often considered necessary
structures between semantically cohesive units causing no significant harm. In
JabRef, these smaller cycles mainly consist of bidirectional dependencies between
classes and their inner classes or classes mapped to the same modules. We con-
clude this as Finding 3: The results suggest that the risk for cyclic dependencies
containing architectural violation increases with the cycle size up to a certain
maximum; the smallest cycles might hardly contain any violations at all.

Interestingly, the results provide no evidence that hub-like dependencies are
related to architectural degradation. As a hub tends to aggregate too many
responsibilities and dependencies, possibly due to poor design, it might also
become crucial for parts of the system that are discouraged to use it. Over time,
it could hence potentially aggregate more violations than non-hubs. This how-
ever, does not seem to be the case in JabRef in which the relative frequency of
violations contributing to hubs is very similar to the overall relative frequency
(6.1% vs. 5.3%). We summarise this observation as Finding 4: There is no
evidence that hub-like dependencies and architectural violations are related phe-
nomena; hub-like classes are not necessarily hubs for architectural violations.

5.2 Validity

Several factors of the presented study limit its external validity. First and fore-
most, its generalizability is limited by the fact that only a single system was



The Association Between Architectural Smells and Degradation 199

examined Further studies with more systems of different sizes are planned to
extend the external validity of the findings.

The limitation to three types of architectural smells can be considered
another limitation to the study’s external validity. Due to their focus on depen-
dencies, the selected ones seem natural first candidates for a study like the
presented one. We will, however, extend the study towards more smells in the
near future.

Furthermore, we do not discuss the question which automatically detected
architectural smells instances are actually critical. This could be considered
impairing construct validity.

6 Related Work

To our best knowledge, the presented study is the first that explicitly explores
the relationship between the presence of architectural smells and the presence
of undesirable dependencies between source code entities violating the prescrip-
tive architecture of a system. There are, however, a couple of studies on the
relationship between smells and architectural issues.

Le et al. conducted a study to investigate the nature and impact of archi-
tectural decay in general [11]. The authors investigated whether source code
units suffering from architectural smells are more likely to have associated issues
reported and are more often modified over the course of the development and
evolution of the system. While not directly related to architecture degradation,
the addressed questions touch upon reduced maintainability and fault proneness
which are also connected to architectural violation as discussed in the presented
paper. It is not completely clear if Le et al.’s dataset could be used for that
purpose as they do not require any prescriptive architectures.

A concept related to architectural smells are agglomerations of source code
smells. Vidal et al. investigated different criteria to prioritize code smell agglom-
erations regarding their likelihood to be related to architectural problems [17].
One of the problems is called “architectural violation” by the authors and rep-
resents a situation in which an element is present in the descriptive but not
in the prescriptive architecture or vice versa and is similar to the concept of
violating dependencies used in our study. For one of the examined systems, the
authors reported that 16 agglomerations were detected, 11 of which were related
to architectural violations. This indicates that source code agglomerations might
be useful indicators for architectural inconsistencies as well.

7 Conclusion

The results suggest that architectural smells and degradation overlap to a certain
degree. In order to focus the treatment of smells on those which might also help
remedying architectural degradation, the findings suggest to prioritize these two
smells, in particular cyclic dependencies involving a larger number of classes.



200 S. Herold

However, many architectural violations appear to be unrelated to architectural
smells. We plan to extend the presented study to a larger number of systems
and intend to check the relevance of additional architectural smells both refining
findings and extending their generalisability.

References

1. Ali, N., Baker, S., O’Crowley, R., Herold, S., Buckley, J.: Architecture consistency:
state of the practice, challenges and requirements. Emp. Softw. Eng. 23(1), 224–
258 (2018)

2. Azadi, U., Fontana, F.A., Taibi, D.: Architectural smells detected by tools: a cat-
alogue proposal. In: Proceedings of the 2nd International Conference on Technical
Debt, pp. 88–97. IEEE (2019)

3. Buckley, J., Mooney, S., Rosik, J., Ali, N.: JITTAC: a just-in-time tool for architec-
tural consistency. In: Proceedings of the 35th International Conference on Software
Engineering (2013)

4. Buckley, J., Ali, N., English, M., Rosik, J., Herold, S.: Real-time reflexion modelling
in architecture reconciliation: a multi case study. Inf. Softw. Technol. 61, 107–123
(2015)

5. Dı́az-Pace, J.A., Tommasel, A., Godoy, D.: Towards anticipation of architectural
smells using link prediction techniques. In: 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp. 62–71 (2018)

6. Fontana, F.A., Pigazzini, I., Roveda, R., Tamburri, D., Zanoni, M., Di Nitto, E.:
Arcan: a tool for architectural smells detection. In: 2017 IEEE International Con-
ference on Software Architecture Workshops (ICSAW), pp. 282–285 (2017)

7. Fontana, F.A., Pigazzini, I., Raibulet, C., Basciano, S., Roveda, R.: Pagerank and
criticality of architectural smells. In: Proceedings of the 13th European Conference
on Software Architecture, vol. 2, pp. 197–204. ACM (2019)

8. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural bad
smells. In: 2009 13th European Conference on Software Maintenance and Reengi-
neering, pp. 255–258 (2009)

9. van Gurp, J., Brinkkemper, S., Bosch, J.: Design preservation over subsequent
releases of a software product: a case study of Baan ERP. J. Softw. Maint. Evol.
Res. Pract. 17(4), 277–306 (2005)

10. Herold, S., Rausch, A.: Complementing model-driven development for the detection
of software architecture erosion. In: Proceedings of the 5th International Workshop
on Modeling in Software Engineering, pp. 24–30. IEEE (2013)

11. Le, D.M., Link, D., Shahbazian, A., Medvidovic, N.: An empirical study of archi-
tectural decay in open-source software. In: 2018 IEEE International Conference on
Software Architecture (ICSA) (2018)

12. Lenhard, J., Blom, M., Herold, S.: Exploring the suitability of source code metrics
for indicating architectural inconsistencies. Softw. Qual. J. 27(1), 241–274 (2018).
https://doi.org/10.1007/s11219-018-9404-z

13. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Prentice Hall Press, Upper Saddle River (2017)

14. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: bridging the
gap between design and implementation. IEEE Trans. Softw. Eng. 27(4), 364–380
(2001)

https://doi.org/10.1007/s11219-018-9404-z


The Association Between Architectural Smells and Degradation 201

15. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

16. Sarkar, S., Ramachandran, S., Kumar, G.S., Iyengar, M.K., Rangarajan, K.,
Sivagnanam, S.: Modularization of a large-scale business application: a case study.
IEEE Softw. 26(2), 28–35 (2009)

17. Vidal, S., Oizumi, W., Garcia, A., Pace, A.D., Marcos, C.: Ranking architecturally
critical agglomerations of code smells. Sci. Comput. Program. 182, 64–85 (2019)



Architectural Technical Debt: A
Grounded Theory

Roberto Verdecchia1(B), Philippe Kruchten2, and Patricia Lago1

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{r.verdecchia,p.lago}@vu.nl

2 University of British Columbia, Vancouver, Canada
pbk@ece.ubc.ca

Abstract. Architectural technical debt in a software-intensive system is
driven by design decisions about its structure, frameworks, technologies,
languages, etc. Unlike code-level technical debt, which can be readily
detected by static analysers, and can often be refactored with minimal
efforts, architectural debt is hard to detect, and its remediation is wide-
ranging, daunting, and often avoided. The objective of this study is to
develop a better understanding of how software development organisa-
tions conceptualize their architectural debt, and how they deal with it,
if at all. We used a grounded theory method, eliciting qualitative data
from software architects and senior technical staff from a wide range
of software development organizations. The result of the study, i.e., the
theory emerging from the collected data, constitutes an encompassing
conceptual theory of architectural debt, identifying and relating concepts
such as symptoms, causes, consequences, and management strategies. By
grounding the findings in empirical data, the theory provides researchers
and practitioners with evidence of which crucial factors of architectural
technical debt are experienced in industrial contexts.

Keywords: Software architecture · Technical debt · Grounded theory

1 Introduction

Quoting Avgeriou et al. [3], “In software-intensive systems, technical debt con-
sists of design or implementation constructs that are expedient in the short
term, but set up a technical context that can make a future change more costly
or impossible. Technical debt is a contingent liability whose impact is limited to
internal system qualities, primarily maintainability and evolvability”.

Technical Debt (TD) can take many different forms in software development,
and can be found in many different places [16]. While much of the literature and
tooling available today address code-level TD, our focus is on Architectural Tech-
nical Debt (ATD). This is the technical debt incurred at the architectural level
of software design, i.e., in the decisions related to structure (layering, decompo-
sition in subsystems, interfaces), technologies (frameworks, packages, libraries,
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 202–219, 2020.
https://doi.org/10.1007/978-3-030-58923-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_14


Architectural Technical Debt: A Grounded Theory 203

deployment approach), or even languages, development process, and platform. As
software systems grow in size and their lifespan extends, many of these original
design choices become constraints, limiting future evolution or even preventing
it. To evolve the system, developers find workarounds, introducing quality issues
and delays. Large and long-lived systems are suffering from architectural debt,
while the small and short-lived ones die before ATD becomes a real problem.

To characterize ATD, find attributes of ATD, and develop an interpretation
of ATD based on empirical evidence, we used a grounded theory approach [12]
with experienced industry practitioners as subjects. The result of our study
is an ATD “theory”, providing empirical evidence of how software development
practitioners conceptualize ATD and its management. Some of our theory results
can also be applied to other forms of technical debt, such as code-level TD.

2 Research Method

For our study, we adopted the classic “Glaserian” Grounded Theory (GT)
method [12], and we stayed with it throughout the whole study, from data col-
lection, to data analysis and synthesis, with the exception of our adoption of a
different “coding family” w.r.t. the ones suggested by Glaser [11], as explained
in Sect. 2.2. This GT approach has given us a fresh and independent viewpoint
on ATD, by letting concepts emerge from the personal experience of our partic-
ipants, rather than the preconceived views of the researchers. In line with GT
principles, we delayed the review of the literature until after our theory emerged,
in order to avoid the influence of existing concepts on our theory [10]. Specifi-
cally, the first author was not too immersed in the TD world prior to this study,
and refrained from conducting an extensive literature review on ATD before
analyzing the data, minimizing possible confirmation biases, and improving his
“theoretical sensitivity” [9]. In fact, as stated by Glaser et al., prior knowledge
“violates the basic premise of GT - that the theory emerges from the data,
not from extant theory” [13]. We also followed the recommendations of Stol
et al. [27], on the application of GT to software engineering topics, and avoided
the typical pitfalls they have identified. The investigation, including data collec-
tion, data analysis, and reporting, lasted approximately 6 months.

2.1 Data Collection

To collect data, we conducted semi-structured interviews with industrial practi-
tioners. Initial participants were recruited by convenience and then subsequent
ones driven by theoretical sampling [10], that is, tactically picking new sub-
jects that would allow to confirm or disconfirm the findings so far, or to explore
new areas. Specifically, the initial participants were contacted within our per-
sonal network. Subsequent participants were selected by following theoretical
sampling, in order to fill the gaps identified in our emerging theory, and/or to
explore unsaturated concepts [10]. Specifically, we identified via theoretical sam-
pling [12] senior technical leaders as best fitted participants for data collection,



204 R. Verdecchia et al.

given their hands-on experience on a vast range of ongoing (and concluded)
long-lived software projects. We interviewed 18 experienced software practition-
ers, with a mean industrial experience of 17.5 years, from 14 distinct companies
in different industrial domains. Table 1 presents an overview of the participant
demographics. Interviews lasted approximately 1 h and were conducted face-to-
face at the practitioners’ workplaces or, when not possible, via video-calls.

Table 1. Participant demographics

ID Role Ex Domain OS CC

P1 Senior Vice-President of SE 21 Banking S 72

P2 Software Staff Engineer 17 Telecom M 103

P3 Senior Director of SE 20 Enterprise Software XL 130

P4 Chief Technology Officer 14 Financial Services M 149

P5 Senior Software Engineer 22 Health L 155

P6 Senior Software Engineer 8 Software Tooling M 168

P7 Senior Software Engineer 18 Software Tooling M 174

P8 Senior Software Engineer 23 Software Tooling M 181

P9 Vice-President of Product 15 Data Analysis M 188

P10 Senior Software Engineer 12 Software Tooling M 191

P11 Senior Director of Technology 26 Data Technologies M 198

P12 R&D Director 27 Enterprise Software L 205

P13 Senior Software Engineer 14 Software Tooling M 215

P14 Senior R&D Manager 16 Enterprise Software L 220

P15 Chief Software Architect 11 Cloud Services M 228

P16 Chief Technology Officer 12 Consultancy S 231

P17 Co-Founder 33 Consultancy XS 234

P18 Founder 22 Mobile Applications XS 235
ID: participant identifier; Role: current participant role; Ex: industrial experience (years);
OS: organization size (XS< 20; S< 100; M< 500; L< 5K; XL< 10K); CC: Cumulative num-
ber of codes per participant.

As the emerging theory should guide the sampling process, we solved the
“bootstrap problem” [1] of GT by starting our first interview with the question:
“Which architectural design decision do you regret the most today?”. Subse-
quently, and by following theoretical sampling [12], the other interview ques-
tions emerged iteratively. This strategy, following GT principles, is meant to let
participants express their main concerns on ATD in their own words, and the
researcher to explore unsaturated concepts. In addition, we also gathered data on
the professional background of participants via a predefined set of demographic
questions to collect the data summarized in Table 1.

Interviews were audio-recorded and transcribed manually by following the
denaturalism approach, that is, grammar was corrected, interview noise (e.g.,



Architectural Technical Debt: A Grounded Theory 205

stutters) was removed, and nonstandard accents (i.e., non-majority) were stan-
dardized, while ensuring a full and faithful transcription [25].

The data collection terminated once we reached theoretical saturation, that
is, when components of our theory are well supported and new data is no longer
triggering theory revisions or reinterpretations [9]. The values reported in column
“CC” of Table 1, display the slow increase of cumulative unique codes w.r.t. the
number of participants, indicating that we achieved saturation around P16.

2.2 Data Analysis

We followed Glaser’s grounded theory data analysis and synthesis processes to
create our theory: open coding, selective coding, and theoretical coding [9,12].
Specifically we examined the whole body of text transcripts, subdivided them
into separate “incidents” (sentences or paragraphs) [12], and labeled the inci-
dents with codes to let the theory concepts emerge. When possible, codes are
generated by directly quoting the incidents (e.g., see [S-Q1]). Otherwise, “syn-
thetic” codes summarizing the semantic meaning and emerging concept of the
incidents were created by the authors. Subsequently, concepts were clustered
into core descriptive categories, which guided the future data collection. Finally,
we established the conceptual relations between the different emerging core cat-
egories, leading to the formulation of our theory. We express the relationships
between codes as hypotheses via a UML model to precisely describe the relations
of different nature emerging between the categories of our theory (see Fig. 1).

Numerous concepts of our theory possess a multifaceted nature. For instance,
the concept of “technical debt” itself can be both a cause, leading to the introduc-
tion of additional debt, and a consequence, e.g., of pre-existing debt. Following
GT principles, concepts with multiple facets were coded according to the one
deemed most important by participants. This ensured the emergence of concepts
from the data, rather than from preconceived knowledge of the authors.

During the entirety of the coding procedures, we made use of memoing [12].
We created textual memos to elaborate concepts (i) related to single incidents,
such as “This incident exemplifies the impossibility to implement new functional-
ity due to ATD” and (ii) orthogonal to multiple incidents (e.g., relations between
concepts, or categories, such as “Developer’s intuition can lead both to ATD iden-
tification and prioritization”).

As described in Sect. 2.1, we analysed our data immediately and continuously,
using simultaneous data collection and analysis, guided by theoretical sampling.
Additionally, during data analysis, we constantly compared our data, memos,
codes, and categories, in order to identify and keep track of common notions, top-
ics, and patterns, as they emerged. Similarly, we continuously sorted our memos
to evolve the emerging concepts and categories to best fit our codes, leading to
the formulation of a substantive, cohesive theory. We performed continuous com-
parison until additional data being collected did not add new knowledge about
the categories, i.e., until we reached the state of saturation (see Sect. 2.1).



206 R. Verdecchia et al.

Three researchers were involved in both the data collection and analysis
phases, where the first author carried out the coding, memoing, and anal-
ysis processes, while the others collaboratively analysed and reviewed itera-
tively the results.

3 Results

An overview of our grounded theory on ATD is depicted in Fig. 1. In this section
we describe the 6 core categories emerging from our data, which constitute the
foundation of our grounded theory on ATD1. We also discuss the emerging rela-
tions between the different categories. In line with the grounded theory literature,
this enables us to both present comprehensively the emerging theory, and offer
explanations and predictions underlying ATD related phenomena [9].

1..*

1..*

generates

leads to
*

points to

1..*

1..*

1..*

addresses

affects
ATD
item

Cause

Symptom

displays

*

Consequence

0..1

guides
ATD

management 
strategy

Artifact

possessesATD

*

System

Prioritization
strategy

1..*

influences

*

influences

Person

1..* supports

Tool

* 1..**

*

*

*

*

Communication

Fig. 1. Core categories of the ATD theory and their relations

At the core of our theory lies the ATD item , i.e., the category that embodies
the instances of ATD residing in a software-intensive system (for an in-depth
description of this category, see Sect. 3.1). The identification of the ATD item as
the core category of our theory can be also observed from the numerous relations
between this category and the other ones reported in Fig. 1.

At the root of each ATD item lies one or more cause . Each cause can generate
one or more items (see Sect. 3.2). From our data time pressure and business drive
are the main causes leading to the generation of ATD items: “The plan is one
thing, but the plan is not working now, we have to adapt quickly. Whether or not
we meet the coding rules, I proceed. I don’t care. Something is broken, nobody
cares how nicely something fits the architecture, I care if it’s gonna break our
product. That is not a computer science issue, it’s a business one.”-P8 [R-Q1]

As causes can generate one or more ATD items, so ATD items can lead to one
or more consequences, e.g., reduced development velocity, higher maintenance

1 Due to space limitations, in this paper we do not discuss in detail the categories with
direct semantics in our theory (ATD, Artifact, Tool, and System), and the marginal
categories related to human factors (Person and Communication).



Architectural Technical Debt: A Grounded Theory 207

cost, impossibility to implement new functionality (see Sect. 3.3). Additionally,
in contrast to the relation between Cause and ATD item, ATD items can also
be “dormant”, i.e., the items are present in the system, but do not lead to any
immediate consequence: “There was a developer who wrote a component that
nobody knows how it works, and so we are all afraid of touching it. It works well
for now, but if something stops working, or we have to touch that, for example
to implement some new functionality, we could have a problem.”-P12 [R-Q2]

Consequences can display one or more symptoms, e.g., recurrent customer,
performance, and/or development issues. A consequence can also not display any
symptom, either because an ATD item is “dormant”, or because the observed
symptoms are not sufficiently distinct to establish the relation: “To be honest? I
have a bit of a vibe. As a product manager, I’m pretty like face-to-face and hands
on, and I kind of just gauge the winds on the face of developers”-P9 [R-Q3]

Symptoms point to one or more ATD items, i.e., observing symptoms dis-
played by a consequence can lead to the identification of one or more ATD
items. Often, multiple symptoms point to a single, widespread, ATD item:“You
do things like: “How are your bugs?”, “How is your performance?”. All of those
things tell you something. They are indicators. Like code coverage, it tells you
something, but does it really tell you anything? But it’s just one big underlying
problem!”-P3 [R-Q4]

Nevertheless, as reported in quote [R-Q3], consequences of ATD items can
also not display any clear symptom, making the discovery of related ATD
items harder.

Each ATD item can affect one or more artifacts, e.g., software components,
test suites, software development tools, and/or documentation:“We reached the
point where it [architecture] became quite brittle, and it was also quite difficult
to change the test suite, because the architecture was so complex...so many con-
nectors...and the variance of those connectors!”-P7 [R-Q5]

Similarly, an ATD item can reside in one or more artifacts, i.e., it can be
present simultaneously in various artifacts of different nature, or even occur in
the relation established between two or more artifacts.

ATD items can be addressed via one or more ATD management strate-
gies, e.g., via systematic time allocation, large-scale rewrites, and/or carry out
opportunistic patching (see Sect. 3.5). Additionally, it is also possible to address
multiple ATD items with a single management strategy (typically via rewrites):
“Usually, I just do a gut evaluation: if there is a large disconnect between what
the system does and what it is supposed to achieve, usually it is a big indicator
that there are many problems, and we need a rewrite.”-P1 [R-Q6]

ATD management strategies can be guided by a prioritization strategy,
i.e., a strategy with which ATD management tasks are prioritized along with
other development tasks, such as bug fixes, and implementation of new func-
tionality [15] (see Sect. 3.6). Often, prioritization processes are not carried out
systematically, and can consider one or multiple management strategies depend-
ing on the addressed ATD item(s):“Given three weeks of development time, which
architectural technical debt should we pay down? I would say, we’re not doing it



208 R. Verdecchia et al.

systematically, but we’re probably not coming out with two very different answers.
And if something was really painful, we would know.” -P9 [R-Q7]

ATD management strategies can also be supported by tools, e.g., static
analyzers and linters. In some rare instances tools for detecting architectural
problems, like component dependency anti-patterns, are used. Nevertheless, in
most of the cases, ATD management strategies are not supported by any tools,
potentially due to their perceived immaturity:“The really expensive type of debt
[ATD], I have not seen a tool which is able to detect that. . . ”-P10 [R-Q8]

Two marginal categories emerging in our theory are person and communica-
tion. Being related to human factors [5], the nature of these categories is different
from the others. The relation between person and ATD items is of a multifaceted
nature: among others, people’s personal drive, skill set, and awareness can influ-
ence ATD from its establishment to its prioritization, and resolution. Further,
ATD in a software system often leads to communication of ATD-related con-
cepts among the people working on the system. ATD communication may regard
the exposition of ATD items, the impediments related to discussing ATD, and
even uneasy discussions on who is to blame.

As person and communication categories emerge as subsidiary categories in
our theory, we focus the description of our theory on the categories related the
closest to our core category (i.e. ATD item). Nevertheless, for the sake of com-
pleteness, a discussion of the person and communication categories is reported
in the companion material of this study2.

3.1 ATD Items

In this section we present the five most prominent types of ATD items residing
in software-intensive systems which emerged from our results.

The Minimum Viable Product (MVP) that Stuck. Often ATD mani-
fests itself in a software-intensive system as an MVP that, while intended as a
temporary “bare-bones” solution, evolved into the architectural foundation of a
system, without properly considering the architectural implications of adopting
an immature artifact as architectural basis. This ATD item is often related to
time pressure, lack of architectural awareness, and uncontrolled software evo-
lution:“It was an MVP solution that is still in place. And we were constantly
broadening the scope of the problem. So for quite a long time, we just kept adding
new functionality, and this problem was never solved.”-P6 [ATDI-Q1]

The Workaround that Stayed. ATD can be introduced in a software sys-
tem as a temporary workaround to bypass some architectural constraints, which
over time becomes deeply embedded into the architecture. As described by P8
in [R-Q1], such workarounds can be brought in deliberately, for the sake of devel-
opment velocity, or triggered by unexpected context changes. Nevertheless, the
awareness of the progressive consolidation of the workaround into the architec-
ture can be inadvertent: “. . . somehow we ended up with three pathways through

2 http://s2group.cs.vu.nl/files/ATD GT ECSA companion material.pdf.

http://s2group.cs.vu.nl/files/ATD_GT_ECSA_companion_material.pdf


Architectural Technical Debt: A Grounded Theory 209

the code, first we had one, then two, and so on . . . there was duplication among
the three, but also separate pieces to each one, that stuff was not isolated nicely
. . . ”-P13 [ATDI-Q2]

Consolidated workarounds can become so embedded into an architecture
that, while their consequences is evident, it is no more worthwhile fixing
them:“. . . at this point . . . I think it’s been deemed too expensive at best to
change that [workaround], relative to the other business priorities we have.”-P7
[ATDI-Q3]

Re-inventing the Wheel. This type of ATD item refers to ad-hoc components
developed in-house, which are chosen over already available components with
similar functionalities (e.g., components available as open source software): “We
basically built our own thing . . . why would we build our own persistence library?
That doesn’t make sense! It’s just silly!” P11 [ATDI-Q4]

In addition to the resources required to implement already available solutions,
drawbacks include lower quality, additional maintenance, and lack of documen-
tation: “We built our own thing . . . and now it’s hard to maintain. And now that
we have got to build on top of it, people are getting tired . . . ”-P8 [ATDI-Q5]

Ad hoc components are often chosen due to the perceived velocity of develop-
ing a new component instead of getting accustomed to, and adapting, an existing
one. Individual drive of developers can influence this decision: “I thought to be
smarter, but I was not . . . in the long run, off-the-shelf solutions make people
faster in ramping up, even if you [just] have to adapt them.”-P3 [ATDI-Q6]

Source Code ATD. These are technical debt items strictly related to the
implementation of architectural components, and the relations between them.
As described by P13: “It was not really clear what was common and what was
separated between the modules . . . ”-P13 [ATDI-Q8]

This type of debt is often associated with poor separation of concerns, and/or
tightly coupled architectural components, lowering the overall software qual-
ity, and directly affecting maintainability, modifiability, and adaptability: “For
example [consider] GDPR. They changed their policy, but our change was harder
because our code was just one big clog. Either we built on top of it, making every-
thing even harder, or we separated the pieces”-P8 [ATDI-Q9]

As further discussed in Sect. 3.5, this type of debt can be very expensive to
fix, and can even originate from systematic processes aimed at lowering ATD:
“We did a rewrite, and there the tight coupling started”-P13 [ATDI-Q10]

Architectural Lock-in. Related to the previous debt item, ATD can arise in
architectural components which, due to their deep embedment into a software
architecture, become very costly or even impossible to replace. This debt item is
often referenced as harmful if co-occurring with “dormant” ATD items [R-Q2],
or if the lock-in is of technological nature and unreliable (e.g., a third party
has complete ownership of a component and releases a breaking change). As
described by P1: “Sometimes you make something overly-specific, lock in com-
pletely into a specific library or technology. It’s about how able your system is



210 R. Verdecchia et al.

to change without crystallizing in design choices dictated by the need of adapta-
tion.”-P1 [ATDI-Q11]

New Context, Old Architecture. The last type of ATD item that emerged in
our theory regards not paying continuous effort in order to keep the architecture
of a software-intensive system aligned with its context, leading to an outdated
architecture. This item is mostly incurred inadvertently. Nevertheless, this item
can also be established deliberately, e.g., if driven by a business strategy: “The
business was to keep the costs down and make as much profit as possible, and
after 8–10 years, the architecture was seriously showing its age . . . ”-P11 [ATDI-
Q13]

3.2 Causes

In this section we discuss the four lead root causes of ATD items emerging from
the data gathered for our theory.

Time Pressure. Sixteen of the eighteen participants acknowledged time pres-
sure as the leading cause of ATD. P11 summarized: “In a product you need to hit
quarterly targets. Always on the treadmill, getting things done.”-P11 [CA-Q1]

As [R-Q1] evinces, under time pressure, architectural quality is often sac-
rificed. This is a recurrent theme across participants. P2 noted: “When time
becomes tight, the first thing falling out is cleaning the architecture.”-P2
[CA-Q3]

The rationale behind the sacrifice of architectural quality for the sake of
velocity has to be attributed to the large amount of resources often involved in
architectural changes. As P13 stated: “One thing is always time, it’s quicker to
do feature development instead of doing architectural changes”,-P13 [CA-Q4]

From our data emerges that developers often accumulate ATD when dealing
with time pressure, under the (often incorrect) assumption that these shortcom-
ings will be dealt with at a later stage, as further detailed in Sect. 3.6.

Lack of Architectural Knowledge and Documentation. In the presence of
an unclear architecture, developers often introduce ATD (either inadvertently or
deliberately), in order to save the time that should be invested in understanding
comprehensively the architectural details.

This situation was described by many participants, including P12, who
explained: “When you are working on an older system, you have lots of con-
straints that you have to know about, and they are often not well documented,
and so you don’t know what things will come in your way, things that you have
to work around. So you are constantly extinguishing this little fires to figure out
what is going on, it takes a while . . . ”-P12 [CA-Q5]

In addition to the introduction of ATD, lack of architectural knowledge can
also lead to the obfuscation of ATD items, hindering the awareness of the ATD
present in a software system. P2 described: “There was no documentation or
tests. You never really understood if the code was intended like that, if it was
intended that way, or if it was just “I will get to this later”.”-P2 [CA-Q6]



Architectural Technical Debt: A Grounded Theory 211

Unsuitable Architectural Decision. ATD can arise by making inadvertently
an inappropriate architectural decision. Often, inadvertent design decisions lead-
ing to ATD are associated to the lack of context awareness, resulting in approxi-
mate and/or ill-calibrated trade-off analyses. P14 described one of such instances:
“At the time there were reasons that supported our decision, but later on. . . when
we think back at it, we see that we didn’t evaluate all the options.”-P14 [CA-Q7]

The magnitude of the ATD associated to unfitted decisions varied greatly
across participants, with some notable cases where the impact on a product
was enormous: “That decision didn’t seem important at the time, but we should
have considered the debt associated to it early on. For me, it was a lack in
understanding properly the context. . . the project eventually got killed.”-P14 [CA-
Q8]

Human Influence. Lastly, a recurrent concept of ATD cause regards the influ-
ence of human factors on ATD. Under this category fall aspects related to per-
sonal drive, such as the example reported in [ATDI-Q7], including lack of devel-
oper expertise and cognitive biases (notably the Dunning-Kruger effect [17]).

3.3 Consequences

In this section we document the 4 most prominent consequences of ATD which
emerged from our data.

Carrying Cost. Often, the consequences of ATD are not immediate, but rather
manifest themselves over time. Specifically, a recurrent consequence of ATD is
an incremental amount of resources which have to be dedicated over time in
maintaining and evolving software-intensive systems. As P1 described: “We did
not think hard enough of the [architectural] design, its cognitive overload, the
associated carrying costs, how much will take us on a continuous basis to work
on the system designed in this way.”-P1 [CO-Q1]

To mitigate the negative impact of the carrying on customer perception,
some participants reported to actively invest resources to make refactoring efforts
tangible to end-users: “While doing the refactoring, we also enhanced the front-
end, just to let the customer feel that the product is getting better.”-P4 [CO-Q3]

Implementing New Functionality Becomes Challenging. Associated to
the carrying cost, ATD can also affect the ease with which new functionalities
are implemented. This is often associated with “blurred” responsibilities among
architectural components (cf. [ATDI-Q8]). In some cases, due to ATD, it can
become necessary to completely discard functionality implementation. Especially
telling are instances where such functionalities are characterized by a supposedly
trivial implementation. P6 recalled: “The new functionality, if you talked about
it, was so reasonable to do. . . but in reality. . . it was so difficult to implement in
the current architecture that we ended up scooping it out.”-P6 [CO-Q5]

In the most severe cases, architectures can become “crystallized”, i.e., ATD
hinders almost completely the implementation of new functionalities. One of
this rare cases was described by P4: “They [developers] could not even build new



212 R. Verdecchia et al.

features, because of the architectural debt they were facing. They put workaround
on workaround, and then they couldn’t implement new features”-P4 [CO-Q6]

Reduced Development Velocity. Related to the first two emerging conse-
quences, most participants described one of the main consequences of ATD as
a distinct loss of development velocity. This loss is in most cases associated to
additional time required to understand the architecture, modify multiple com-
ponents when carrying out small changes, and fixing bugs which, due to ATD,
are hard to locate. P13 explained: “Development takes much more time than
expected, sometimes because you run into an unknown issue, and other times
you just cannot properly size the thing that you are working on, because the
architecture is much more complex then what you expected.”-P13 [CO-Q7]

Difficulties in Carrying Out Parallel Work. Due to poor separation of
concerns and tight coupling among architectural components, ATD can impact
also the ability to carry out parallel development. This is often occurring in the
presence of overloaded components, i.e., components encapsulating a big portion
of the business logic or data of a software intensive-system. P14 describes one of
such incidents as follows: “The module became very popular, we just kept building
features on it . . . and now it’s a bottleneck, because we have many teams working
on it at the same time, people are stepping on one another toes.”-P14 [CO-Q8]

3.4 Symptoms

Four types of symptoms, pointing to ATD items, emerged in our theory.

Recurrent Customer Issues. Among all symptoms of ATD, recurring cus-
tomer issues is the most apparent. As P3 explains: “The best indicator of all
are customer issues: if you have an area with lots of recurring customer issues,
either the team is garbage, or you have architectural issues.”-P3 [S-Q1].

With this symptom are often associated recurrent patches in the same area
of the code, pointing to an architectural problem, P9 describes: “There’s this
kind of hard to pin down feeling, when in order to meet some new need you are
like” “okay, it feels weird but I’ll patch it, and I’ll patch it again, and again. And
after a while, you realize that you’re kind of like. . . you’re playing whack-a-mole!
It can’t be that everything is an edge case!”-P9 [S-Q2]

High Number of Defects. As reported by many participants, a high number
of defects localized in a certain area of the code can indicate the presence of
an ATD item. P10 explained: “When you have a lot of bugs in an area of code,
that means: either that area is complex by itself, or there is some unmanaged
architectural complexity leading to that.”-S13 [S-Q3]

Performance Issues. Performance issues which are hard to address can also be
a symptom of ATD. Commonly, performance issues caused by ATD are either
scalability issues, representing the inability of systems to scale due to ATD, or
performance stalls, i.e., performance bottleneck which cannot be solved without



Architectural Technical Debt: A Grounded Theory 213

architectural refactoring. P3 described this symptom as follows: “With perfor-
mance, if you can really just move it around but not solve it, that is an indicator
that you are doing something architecturally wrong.”-P3 [S-Q4]

“I Don’t Want to Touch It”. This symptom of our theory deals with human
intuition and sensitivity. Rather than deriving from a systematic analysis, this
symptom represents the instinctual refrain of software developers to modify a
certain component in which ATD resides. R12 describes one of such instances,
associated with a “dormant” ATD item: “Developers will often tell you if some-
thing stinks, right? There is always something which is hard to work with, maybe
it’s a piece of code that no-one wants to touch, that’s a symptom! It might do its
job well, but no one wants to touch it!”-P12 [S-Q6]

3.5 Management Strategies

Six managements strategies to cope with ATD emerged from our data. We iden-
tified three types of management strategies, namely active, reactive, and passive.

Active Management Strategies. Active strategies are based on the acknowl-
edgment of the presence of ATD in a software system, and the development of a
plan to actively manage it. In the following we present the 3 active management
strategies emerging in our theory.

Boy Scout Rule. This management strategy borrows from the camping rule
“Always leave the campground cleaner than you found it”. Based on this
metaphor, developers pay back the debt in small incremental steps while car-
rying out other development activities on a software component, such as new
functionality implementation or bug fixes. P1 described: “I generally advocate
in “stealing time”, when a component has bothered you enough, I would just say:
fix it, and do not tell anyone. If you are already working on that area of code,
just take some extra time to refactor it.”-P1 [MS-Q1]

This strategy is rarely applied. In fact, unlike other forms of TD, ATD is in
most cases hard, or even impossible, to be addressed in small increments.

Systematically Dedicate Time. This management strategy entails systemati-
cally allocating time in order to repay the accumulated ATD. Most partici-
pants described allocating a fixed percentage of development time per-sprint to
refactor ATD items. The most recurrent percentage of time dedicated to ATD
refactoring results to be between 20% and 30%, with the exception of P1 and P9,
who reported 10% and 50% respectively. P12 jokingly described allocating an
entire day per-sprint exclusively to ATD refactoring activities: “We have a Lan-
nister day, you know, because Lannisters always pay their debts. [laughs].”-P12
[MS-Q2]



214 R. Verdecchia et al.

Technical Credit. This strategy regards the investment of resources to improve
architectural maintainability and evolvability prior to the emergence of ATD.
Specifically, this strategy aims at mitigating future ATD by proactively improv-
ing architectural elements which could slow down future development. Some
participants described this strategy from a theoretical standpoint. Nevertheless,
the common agreement is that, due to time pressure and uncertain pay-off, it
is hardly ever adopted. P3 explained: “You are spending time in trying to make
something perfect. When do you have that time for that? You do not get paid by
“I’ll make it evolvable”, you spend days or weeks in something that might not
pay off, who can afford that?”-P3 [MS-Q3]

Reactive Management Strategies. Reactive strategies entail that, while
the presence of ATD is acknowledged, its management is postponed until the
repayment becomes unavoidable (e.g., when ATD prevents the development of
a new feature). Two prominent reactive strategies emerged in our data, namely
opportunistic patching and major refactoring.

Opportunistic Patching. This strategy, rather than aiming at resolving ATD,
deals with its occurrence by investing the minimum resources necessary to bypass
the limitations imposed by the ATD. This often results in small patches, or
temporary architectural workarounds, which build upon the existing ATD. As
described in [S-Q2], opportunistic patching rarely resolves the root cause of an
ATD item, but can nevertheless point to the underlying problem. P11 described a
similar situation: “It was architectural debt, but we were able to squeeze around it
by doing little incremental changes here and there, which did not touch the archi-
tecture much. . . we were just kicking the can down the road. . . in retrospective we
were just patching, patching all the way.”-P11 [MS-Q4]

Major Refactoring. Due to ATD severity, it can become necessary to method-
ically eradicate it, even at the cost of sacrificing other development activities.
This constitutes a major undertaking, causing the loss of competitive advantage,
and the investment of a conspicuous amount of resources. This strategy includes
refactoring conducted by entire developer teams, or even complete rewrites of
a products. Due to the resources required, and its uncertain outcome, timing
this strategy is a complex problem. P11 explains: “You always have to overcome
this lump of “when is the right time?”. There is never a right time. You have to
decide when it is. It [ATD] has to reach a crest before you realize: “OK this is
enough now”, you bite the bullet, and try to do something about it.”-P11 [MS-Q5]

Passive Management Strategy. The passive management strategy, rather
than aiming to actively or passively resolve ATD, attempts to cope with it by
carrying out development activities by avoiding to address ATD items.



Architectural Technical Debt: A Grounded Theory 215

Neglect. Participants described strategies in which, while the negative impact of
the ATD of a system is evident, the cost of fixing it is not worth addressing it.
In such cases, development activities are carried out at a slower pace, embracing
the ATD, and building upon existing debt. “Sometimes you have a lot of edge
cases but the cost of. . . you know it’s bad, you know you don’t want to do it, you
know there’s a better way, but the better way isn’t worth it.”-P9 [MS-Q6]

3.6 Prioritization Strategies

In this section, we discuss our findings related to how the refactoring of ATD
items is prioritized w.r.t. other development activities, such as feature devel-
opment and bug fixes. Prioritization strategies guide management strategies of
active nature, as reactive and passive strategies respectively manage ATD only
when strictly necessary and not at all.

From our results emerged that often ATD is kept track of, e.g., by character-
izing backlog items according to the classification of Kruchten [15], i.e., by mak-
ing a distinction between functional features, bug fixes, architectural features,
and technical debt. Nevertheless, while ATD items are often traced, prioritizing
their refactoring w.r.t. to other development activities does not follow an estab-
lished methodology. As P10 states: “We fear we do not have a scientific method
here. . . it is basically gut feeling. We do not have any research around what needs
to have the highest priority.”-P10 [PR-Q1]

This “gut feeling” has been a recurrent theme among participants on how
ATD is prioritized. Due to the difficulties associated with quantifying the impact
of ATD, practitioners do not adopt systematic prioritization approaches; rather,
they adopt informal ones, to balance their ATD refactoring activities with other
development activities (cf. [R-Q7]). P3 further clarifies this concept: “I would
say, find your balance, do the minimum necessary. It is not a science, it’s an
art. Why do large companies fail? Because at some point that balance is tilted.”-
P3 [PR-Q2]

4 Related Work

As recommended by Glaserian GT principles [12], to mitigate confirmation bias,
we reviewed the related literature after building our theory. From the inspection
of the ATD corpus, we identified four studies related the closest to ours.

Martini et al. [23] present a multi-case study adopting some GT techniques,
while our investigation systematically applies the GT methodology. Accordingly,
the two works use different techniques for data collection, incident coding, and
results synthesis (cf. Sect. 2 of this study and Sect. 2 of [23]). Regarding the
results, [23] presents a taxonomy of ATD items and a model of their effects:
the specific ATD items are complementary to the ones emerging in our theory;
the effects are categorized into causes, phenomena, and extra activities and the
specific concepts resemble the categories cause and ATD management strategy
emerging in our theory, which in turn resulted in a richer number of categories



216 R. Verdecchia et al.

e.g., tool. Further, a previous work of the same authors [24] zooms into the evolu-
tionary nature of ATD and its accumulation and refactoring over time, e.g., the
causes specific to accumulation. Our work is complementary by emphasizing the
theoretical structure underlying ATD instead. Overall, similarities and comple-
mentarities are promising for a future comparative analysis between the results
of [23,24] and our substantive theory, with the ultimate goal of formulating a
formal theory [29] of ATD.

Besker et al. [4] conducted a systematic literature review to define a descrip-
tive model of ATD. By comparing the findings of such study with our theory,
we can observe a noticeable gap between the results of the two studies. In fact,
numerous aspects reported in the model of [4], such as ATD detection, ATD
identification, ATD measurement, ATD monitoring and related concepts, did
not emerge in our theory. Rather than attributing the absence of such con-
cepts to unsaturation, we conjecture that such divergence in results is due to the
research methodology followed. In fact, we can observe that the missing concepts
are related to ATD aspects which, while actively discussed in academic settings
(e.g. ATD identification [31]), did not yet get traction in industry (e.g., see [R-
Q8]). From this finding we can conclude that more action research is needed to
bridge the gap between studying ATD and dealing with it in practice.

Li et al. [19] present a set of architectural viewpoints and related meta-
model for documenting ATD. The viewpoints were constructed via an itera-
tive process driven by the stakeholder concerns on ATD. The viewpoint meta-
model partially overlaps with some categories of our theory. However, by focus-
ing on documenting ATD, it aims at the exhaustive characterization of ATD
items. Differently, our theory shifts the focus from documentation of ATD items
specifics, to the phenomena surrounding them, and as such, it is more encom-
passing, yet less detailed.

A broader review of the literature shows that the most studied type of tech-
nical debt is source-code ATD [18,31], such as ATD related to component depen-
dency [26] or modularity [20]. This typology of ATD emerged in our theory as a
specific concept of the ATD Item category, namely source-code ATD. This cate-
gory is also mentioned in Brooks’s popular book “The Mythical Man Month” [6],
where a recurrent theme is to plan to throw one away, i.e., designing a system
(and organization) by envisioning change, as it will eventually happen. More-
over, the “workaround that stayed” ATD item is extensively discussed in Fowler’s
book titled “Refactoring: improving the design of existing code” [7], again with
a primary focus on TD at the source code level. The “re-inventing the wheel”
ATD item is instead discussed in Szyperski’s book [28], where design reuse is
advocated as the practice of sharing certain aspects of an approach across various
projects, thus avoiding to re-invent the wheel across projects and organizations.
The book also presents various techniques for addressing this ATD item, e.g.
using software libraries for sharing solution fragments, interaction and subsys-
tem architectures. Other kinds of ATD items, such as “compliance violations”
have been studied exclusively in narrower pockets of research [18,21,31], and
are mapped to our category “new context, old architecture”. In [22], Martini



Architectural Technical Debt: A Grounded Theory 217

et al. identified the information required to prioritize ATD. By comparing their
findings to our theory emerges again the current lack of awareness of research
findings in industrial contexts, as in our theory prioritization emerged as a mere
“gut feeling” (see Sect. 3.6). The literature further investigates other emerging
categories, such as TD management strategies [2], and the impact of TD on
morale [8], but does not systematically focus on the architectural level as we do.

Thanks to the adoption of the Glaserian GT method [12], our theory emerged
independently from prior theories and, as such, either confirms or adds to them.
This may pave the way for future works toward a joint formal theory [29].

5 Verifiability and Threats to Validity

We ensure the anonymity of our participants, their companies, and their collab-
orators. Hence, we keep confidential their identifying details, under the human
ethics guidelines governing this study. Accordingly, as customary in grounded
theory (e.g., [14]), the verifiability of our results should derive from the sound-
ness of the research method followed. Therefore, we report in Sect. 2 an in-depth
description of the method followed, and (within space constraints) we reference
as much as possible to direct quotes from our participants (albeit excerpted).

Our report demonstrates how the emerging theory fulfills the grounded the-
ory evaluation criteria [9], specifically: (i) our categories fit the underlying data,
(ii) the theory is able to work (i.e., explain ATD related phenomena), (iii) the
theory has relevance to the domain (i.e., development practices of large and
long-lived systems), and (iv) the theory is modifiable as new data appears.

As any grounded theory study, our investigation establishes a mid-range sub-
stantive theory, i.e., a theory where elements belonging to the studied context
can be transferred to other contexts with similar characteristics. We hence do
not claim our theory to be absolute or final, and we highly welcome its extension,
e.g., by refining its granularity and adding detail to emerging concepts, or even
unveiling new concepts and categories that did not emerge in this investigation.

6 Conclusions

Our investigation presents structured insights into the challenges faced in indus-
trial settings when dealing with ATD. From our study emerged a set of inter-
related categories regarding ATD, leading to a cohesive theory of ATD that
connects its causes, consequences, symptoms, management strategies, and other
related phenomena. We made a deep-dive into each category, by grounding our
findings in the experience of knowledgeable software practitioners. Our theory
provides a solid empirical foundation which may benefit both (i) practitioners
aiming at a better understanding of the ATD they experience, and (ii) researchers
looking for a theoretical framework of how ATD is experienced in industrial
settings. Notably, among other results, from our investigation emerge a set of
symptoms, consequences, and management strategies on which future research,



218 R. Verdecchia et al.

methodologies, and tooling, can be based. A research avenue we find particu-
larly interesting exploring is the further study of ATD symptoms, with particular
emphasis on quantifiable ones, in order to determine which symptoms are best
suited as foundation for novel ATD identification and management techniques,
e.g. by leveraging the method presented in [30].

References

1. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience
of software development. Empirical Softw. Eng. 16(4), 487–513 (2011)

2. Alves, N., Mendes, T.S., de Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: a systematic mapping study.
Inf. Softw. Technol. 70, 100–121 (2016)

3. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing Technical Debt in
Software Engineering. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

4. Besker, T., Martini, A., Bosch, J.: Managing architectural technical debt: a unified
model and systematic literature review. J. Syst. Softw. 135, 1–6 (2018)

5. Bourque, P., Fairley, R.E.: Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society (2014)

6. Brooks Jr, F.P.: The Mythical Man-Month, Anniversary edn. Addison-Wesley
(1995)

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional (2018)

8. Ghanbari, H., Besker, T., Martini, A., Bosch, J.: Looking for peace of mind?:
Manage your (technical) debt: an exploratory field study. In: ACM/IEEE EMSE
Symposium (2017)

9. Glaser, B.: Theoretical Sensitivity. Sociology Press (1978)
10. Glaser, B.: Basics of Grounded Theory Analysis: Emergence vs Forcing. Sociology

Press (1992)
11. Glaser, B.: The Grounded Theory Perspective III: Theoretical Coding. Sociology

Press (2005)
12. Glaser, B., Strauss, A.: Discovery of Grounded Theory: Strategies for Qualitative

Research. Aldine (1967)
13. Glaser, B.G., Holton, J.: Remodeling grounded theory. In: Forum Qualitative

Sozialforschung/Forum: Qualitative Social Research, vol. 5 (2004)
14. Hoda, R., Noble, J.: Becoming Agile: A Grounded Theory of Agile Transitions in

Practice. In: International Conference on Software Engineering. IEEE Press (2017)
15. Kruchten, P.: What colour is your backlog? (2008). https://tinyurl.com/y6f7vhpx.

Accessed 10 May 2020
16. Kruchten, P., Nord, R., Ozkaya, I.: Technical debt: from metaphor to theory and

practice. IEEE Softw. 29(6), 18–21 (2012)
17. Kruger, J., Dunning, D.: Unskilled and unaware of it: how difficulties in recognizing

one’s own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol.
77(6), 1121 (1999)

18. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 (2015)

19. Li, Z., Liang, P., Avgeriou, P.: Architecture viewpoints for documenting architec-
tural technical debt. In: Software Quality Assurance, pp. 85–132. Elsevier (2016)

https://tinyurl.com/y6f7vhpx


Architectural Technical Debt: A Grounded Theory 219

20. Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A.: An empirical investi-
gation of modularity metrics for indicating architectural technical debt. In: Inter-
national ACM Conference on Quality of Software Architectures (2014)

21. Martini, A., Bosch, J.: The danger of architectural technical debt: contagious debt
and vicious circles. In: WICSA Conference. IEEE (2015)

22. Martini, A., Bosch, J.: Towards prioritizing architecture technical debt: information
needs of architects and product owners. In: Euromicro Conference on Software
Engineering and Advanced Applications, pp. 422–429. IEEE (2015)

23. Martini, A., Bosch, J.: On the interest of architectural technical debt: uncovering
the contagious debt phenomenon. J. Softw.: Evol. Process 29, e1877 (2017)

24. Martini, A., Bosch, J., Chaudron, M.: Investigating architectural technical debt
accumulation and refactoring over time: A multiple-case study. Inf. Softw. Technol.
67, 237–253 (2015)

25. Oliver, D., Serovich, J., Mason, T.: Constraints and opportunities with interview
transcription: towards reflection in qualitative research. Soc. Forces 84, 1273 (2005)

26. Roveda, R., Fontana, F.A., Pigazzini, I., Zanoni, M.: Towards an architectural debt
index. In: Euromicro Conference on Software Engineering and Advanced Applica-
tions. IEEE (2018)

27. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering
research: a critical review and guidelines. In: IEEE/ACM International Confer-
ence on Software Engineering (2016)

28. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Pearson Education (2002)

29. Urquhart, C., Lehmann, H., Myers, M.D.: Putting the ‘theory’ back into grounded
theory: guidelines for grounded theory studies in information systems. Inf. Syst. J.
20(4), 357–381 (2010)

30. Verdecchia, R., Lago, P., Malavolta, I., Ozkaya, I.: ATDx: building an architectural
technical debt index. In: ENASE Conference (2020)

31. Verdecchia, R., Malavolta, I., Lago, P.: Architectural technical debt identification:
the research landscape. In: IEEE/ACM TechDebt Conference (2018)



Does BERT Understand Code? – An
Exploratory Study on the Detection
of Architectural Tactics in Code

Jan Keim1(B) , Angelika Kaplan1, Anne Koziolek1 ,
and Mehdi Mirakhorli2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{jan.keim,angelika.kaplan,koziolek}@kit.edu

2 Rochester Institute of Technology, 134 Lomb Memorial Drive,
Rochester, NY 14623-5608, USA

mxmvse@rit.edu

Abstract. Quality-driven design decisions are often addressed by using
architectural tactics that are re-usable solution options for certain quality
concerns. Creating traceability links for these tactics is useful but costly.
Automating the creation of these links can help reduce costs but is chal-
lenging as simple structural analyses only yield limited results. Transfer-
learning approaches using language models like BERT are a recent trend
in the field of natural language processing. These approaches yield state-
of-the-art results for tasks like text classification. In this paper, we exper-
iment with treating detection of architectural tactics in code as a text
classification problem. We present an approach to detect architectural
tactics in code by fine-tuning BERT. A 10-fold cross-validation shows
promising results with an average F1-Score of 90%, which is on a par
with state-of-the-art approaches. We additionally apply our approach on
a case study, where the results of our approach show promising potential
but fall behind the state-of-the-art. Therefore, we discuss our approach
and look at potential reasons as well as downsides and future work.

Keywords: Software architecture · Architectural tactics · Natural
language processing · Transfer learning · Traceability · Language
modeling · BERT

1 Introduction

Software traceability provides essential support for software engineering activi-
ties like coverage analysis, impact analysis, compliance verification, or testing.
A problem of software traceability is the expensive creation and maintenance of
traceability links [13]. Automation can reduce costs, but is challenging.

Although, the problem to detect architectural tactics is a special case of
design pattern recognition, it turns out to be more challenging. Unlike design
patterns that tend to be described in terms of classes and their associations [14],
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 220–228, 2020.
https://doi.org/10.1007/978-3-030-58923-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_15&domain=pdf
http://orcid.org/0000-0002-8899-7081
http://orcid.org/0000-0002-1593-3394
http://orcid.org/0000-0003-3470-6856
https://doi.org/10.1007/978-3-030-58923-3_15


Does BERT Understand Code? 221

tactics are described in terms of roles and interactions [6]. Therefore, structural
analyses only yield limited results.

Prior work by Mirakhorli et al. present an approach to detect architectural
tactics in code, to trace them to requirements, and to visualize them to properly
display the underlying design decision [23,24]. Their work is based on the premise
that programmers use meaningful terms, e.g., for variables or methods. This is
also a best practice [10] and used in other traceability approaches [3].

Recently, a lot of progress has been made in the domain of natural language
processing (NLP), including text classification, by using (statistical) language
models. Modern language models like the so-called Bidirectional Encoder Rep-
resentations from Transformers (BERT) [11] can be fine-tuned on tasks such as
text classification using so-called transfer learning. Hey et al. state in their intro-
duction to BERT that fine-tuning (with BERT) for text classification is a good
way to achieve good results with less training data [15]. For example, Ruder et al.
[17] show that their transfer-learning approach could match performance with
approaches that are trained on 100x the data. BERT and similar approaches
are as of late replacing traditional discrete natural language processing pipelines
[32]. However, Tenney et al. show that BERT also learns similar structures to
traditional NLP pipelines.

In this work, we experiment with BERT and with the assumption that code is
a special kind of text that can be used as input for BERT. Therefore, our research
questions are: Do the available pretrained models of BERT understand code?
Can we use language models like BERT and their transfer-learning capabilities
to classify code for the detection of architectural tactics?

Thus, this paper has the following contributions: We present an approach
that uses BERT to classify code that has, to the best of our knowledge, not been
tried before. We evaluate our approach, compare it to others, and discuss results.
Moreover, we discuss the lessons learned, especially benefits and downsides of
using (natural) language models like BERT on code.

Additional details are given in our technical report [19].

2 Related Work

The most relevant related work regarding the detection of architectural tactics
is by Mirakhorli et al. [23,24]. The authors use trained classifiers to detect the
presence of architectural tactics like heartbeat, scheduling and authentication.

Besides that, there is other related work in the context of design pattern
detection (cf. [4,9]). However, the detection of architectural tactics differs as
these describe higher-level problems that can be solved using multiple different
strategies.

Additional related work can be divided into three main areas: documenting
design rationales, reconstructing architectural knowledge, and automated trace-
ability. Documenting design rationales is important and different approaches
try to help in this directions (cf. [5,8,25]). Unfortunately, knowledge about
design decisions and architectures are mostly undocumented in many projects



222 J. Keim et al.

(cf. [16]). Therefore, researchers like Ducasse and Pollet [12] have developed tech-
niques to reconstruct architectural knowledge. When documentation is present,
approaches that create traceability links can be used. Our approach, where we
want to trace architectural design patterns, is a special case of automated trace
retrieval, similar to the work by Antoniol et al. [3] and further work.

Additionally, there is some related work about the application of language
models like BERT to different problems like text classification using fine-tuning.
Two examples for such work are Docbert for document classification by Adhikari
et al. [1] and NoRBERT for the classification of requirements [15].

Finally, approaches that are also related to this work are about building lan-
guage models for code. In context of code completion and suggestion, we can find
approaches that apply statistical and neural language models such as recurrent
neural networks (RNNs) and N-gram (cf. [21,29]). In addition to that, further
approaches also use transfer learning with code by learning on one programming
language and transfer to another language, e.g., in the context of detecting code
smells (cf. [30]). However, these approaches are bound to a certain application,
thus not as applicable here.

3 Our Approach

We use the BERT language model fine-tuned for multi-class classification to
detect architectural tactics in code. This is based on two assumptions: program-
mers tend to program similar functionality similarly and we can treat code like
text. These assumptions are also used in other approaches (cf. [3,10]).

We train the BERT model to classify given input code into architectural
tactics, including a Unrelated class. The inputs are classes and code snippets
that should be classified for architectural tactics. Inputs are pre-processed first
to omit irrelevant or not processable parts, including removal of stop-words as
well as separating compound words that are written in camel case or similar.
Additionally, as BERT only supports a maximum input length of 512 tokens, we
truncate the input. We employ two methods for truncation: The first method is
to simply truncate after the first 512 tokens; the second method removes method
bodies before truncating if there are still more than 512 tokens.

We use the pre-trained uncased base model of BERT and fine-tune it. We use
the standard procedure (cf. [15]): We feed the pooled output of BERT into the
classification head that consists of a single layers of linear neurons in a feedfor-
ward neural network. The softmax function gives us a probability distribution
for the different outputs.

During training, we use the cross-entropy loss-function to assess the pre-
dicted distribution. Instead of a stochastic gradient descent, we use the so-called
AdamW -optimizer [22]. AdamW usually gives better results in settings like ours.

We configure the parameters in the following way: We choose commonly
used (default) parameters because of promising first empirical evidence. We use
a weight decay of 0.01 and for the exponential decay rates we use a beta1 (first-
moment estimates) of 0.9 for beta1 and a beta2 (second-moment estimates) of



Does BERT Understand Code? 223

0.999. Additionally we use a training rate of 2e−5 and a batch size of 2 to train
the classification head for our fine-tuning, based on empirical selection as well as
tested parameters for text classification [31]. We perform training for ten epochs.

Our approach currently uses a multi-class, but no multi-label classifier.
Therefore, we can only attach one label for each input. We do not see this
as a major drawback as the case study by Mirakhorli et al. [23] shows that less
than 1% of classes contain more than one architectural tactic. In the future, we
plan to extend our approach to support multiple labels as well.

After fine-tuning, the trained model can be used for classification. Here, we
also propose the usage of a threshold to increase the precision of our approach:
If the highest confidence value of a classification is below the given threshold,
the class is classified as unrelated.

4 Evaluation

One goal of our evaluation is to compare our results with previous results, espe-
cially the results in [23]. We are using the common evaluation metrics precision,
recall, and F1-Score to enable comparisons to the other approaches. Addition-
ally, we reuse the data set of Mirakhorli et al. [23]. As a results, we are aiming to
detect the following five architectural tactics that are represented in the avail-
able data set (cf. [23]): Audit trail, Authentication, Heartbeat, Resource Pooling,
and Scheduling. For each of these tactics, Mirakhorli et al. identified open-source
projects that implement that tactic and collected tactic-related and non-tactic-
related source files. The data set consists of 50 examples for related classes and
50 examples for unrelated classes for each architectural tactic. The data sets are
publicly available [26].

We first look at multiple 10-fold cross-validation experiments. We performed
multiple experiments to evaluate different characteristics, all results along with
our code can be found on Zenodo [18].

For the different parameter settings we can conclude the following: Increasing
the amount of epochs or the batch size as well as the threshold is likely to
increase precision but decrease recall. A learning rate of 2e−05 performs best in
our experiments, which confirms the empirical evidence by Sun et al. [31]. We
can also confirm the observation of Keskar et al. [20] that larger batches result
in an inferior ability of the model to generalize. The best configuration with an
F1-Score of 90% in our case is with a learning rate of 2e−05, a batch size of two,
ten epochs of training and a threshold of 0.9 during classification.

Additionally, we also observe that more data, as expected, increases the
performance. However, oversampling and undersampling both do not improve
results. Lastly, the two truncation methods performed similarly, with the simple
truncation (F1: 90%) slightly outperforming the method body truncation (F1:
89%) as the recall drops when truncating method bodies.

Table 1 presents the comparison of our results with the previously reported
results for the approaches (cf. [23]). Overall, our approach performs similar to



224 J. Keim et al.

Table 1. 10-fold cross-validation of our approach (BERT) and comparison to
approaches by Mirakhorli et al. [23] using Precision (P), Recall (R), and F1-Score.
Reported F1-Scores with asterisks do not fit to their values for precision and recall.

SVM Slipper J48 Bagging AdaBoost Bayesian Tactic Det. BERT

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Audit .96 .46 .62 .85 .78 .81 .85 .85 .85 .88 .88 .88 .85 .85 .85 .94 .91 .92 .84 .92 .88 .89 .89 .89

Authentication .91 .58 .71 .96 .94 .95 .98 .98 .92* 1.0 .92 .96 .98 .98 .94* 1.0 .80 .89 .96 .98 .97 .89 .87 .88

Heartbeat .91 .62 .74 .84 .84 .84 .77 .88 .82 .89 .84 .87 .91 .86 .89 .92 .70 .80 .77 .92 .84 .92 .87 .89

Pooling .97 .66 .79 .94 .96 .95 .94 .96 .95 .94 .94 .94 .98 .96 .97 .94 .96 .95 .92 .98 .95 .97 .93 .95

Scheduler .98 .88 .93 .88 .92 .90 1.0 .98 .99 1.0 .98 .99 1.0 .98 .99 .96 .98 .97 .86 .88 .87 .94 .87 .90

Averages .95 .64 .76 .89 .89 .89 .91 .93 .92 .94 .91 .93 .94 .93 .93 .95 .87 .91 .87 .94 .90 .92 .89 .90

others but yields relatively stable results between the different tactics, mean-
ing the results do not vary as much between tactics compared to the other
approaches.

A Friedman non-parametric statistical test indicates (disregarding the non-
competitive SVM) that the difference between the results is not statistically
significant. Therefore, we conclude that these classifiers perform mostly equiva-
lently for the task of tactic detection in our 10-fold cross-validation.

We further apply our trained classifier to a case study to evaluate the perfor-
mance on a large-scale project and to test how well the approach generalizes. We
replicate the case study of Mirakhorli et al. [23] and detect architectural tactics
in the Hadoop Distributed File System (HDFS).

Table 2. Comparative evaluation of previous approaches (cf. [23]) and our approach
(BERT) for detecting architectural tactics in Hadoop using Precision (P), Recall (R),
and F1-Score.

SVM Slipper J48 Bagging AdaBoost Bayesian Tactic Det. BERT

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Audit .08 .29 .13 .02 .29 .04 .03 .29 .06 1.0 .29 .44 .03 .29 .06 .04 .50 .07 1.0 .71 .83 .50 .50 .50

Authentication .14 .52 .22 .16 .61 .26 .57 .59 .58 .58 .56 .57 .17 1.0 .30 .15 .37 .21 .61 .70 .66 .29 .71 .41

Heartbeat .07 .11 .09 .31 .59 .41 .22 1.0 .36 .50 1.0 .67 .35 .96 .51 .07 .04 .05 .66 1.0 .79 .45 .73 .56

Pooling .71 .11 .19 .13 .44 .20 .89 .97 .93 .88 1.0 .93 .87 .87 .87 .16 .33 .22 .88 1.0 .93 .89 .39 .54

Scheduler .36 .63 .46 .65 .20 .30 .64 .87 .74 .65 .89 .75 .66 .77 .71 .32 .78 .46 .65 .94 .77 .62 .69 .65

Averages .27 .33 .22 .25 .43 .24 .47 .74 .53 .72 .75 .67 .42 .78 .49 .15 .40 .20 .76 .87 .80 .55 .60 .53

The results are displayed in Table 2 and compared against the results reported
by Mirakhorli et al. [23]. The promising results in the 10-fold cross-validation do
not transfer to this case study and the state-of-the-art outperforms our approach.
However, compared to most other approaches within the paper by Mirakhorli et
al., apart from Bagging and the Tactic Detection approach, our approach still
performs similar or better. In this setting, we come to the conclusion that our
approach is promising, but needs further work to compete with state-of-the-art.

Although unsuccessful, we think these results provide valuable information
and lessons learned. However, we think that our approach is still a valuable



Does BERT Understand Code? 225

contribution for the community and that it is important to publish our expe-
riences, a view that we share with others (cf. [28]). The result demonstrates
how important it is to also evaluate on different data and case studies as good
cross-validation results not necessarily transfer to case studies.

5 Discussion

In this section, we want to briefly discuss our results, threats to validity, and
potential future improvements to tackle the downsides of our approach.

We applied and copied commonly used experimental designs to be able to
compare our approach to previous approaches as well as to mitigate potential
risks to construct validity. For reproducibility, we used a randomly selected fixed
(904727489) for the random number generators.

To overcome bias, we reused established data sets. This enables us compa-
rability and increases the internal validity. However, this might affect the per-
formance of our approach. Our data sets, both for training and for evaluation,
come from the same source (cf. [23]), which causes and additional risks and is a
threat to validity. The selection of training data is an important factor as well.
Currently, there seems to be a problem in generalizing from the training data.

Potential issues of our approach are our assumptions that might be wrong.
For example, we detect architectural tactics on a class level like previous
approaches. Furthermore, we assume that we have Java code and developers
use expressive, non-abbreviated variable names that are contained in BERT’s
dictionary.

Our approach also needs pre-processing for BERT that can influence the
results (negatively). We tried to be conservative but the selection can still influ-
ence the results in various ways. However, there are some new ideas like the
Longformer [7] approach that might remove input length limitations. We plan
to look into them in future work.

Another risk is that BERT might look at other characteristics of the data
set. Niven and Kao discovered that statistical cues in the (training) data can
influence BERT’s performance heavily [27]. Evaluating approaches on different
case studies might help in such cases and we will look further into this.

We draw the conclusion that code is not quite the same as a common natural
language text. BERT has proven to work well for text classification, but we
showed that code cannot simply be treated like normal text Relations between
the words in the input are different in normal text compared to code. However,
BERT mainly focuses on these relations.

However, there are potential improvements to our idea of using BERT for
code classification. One way is to try to transform code into a textual descrip-
tion in the pre-processing step with approaches like code2seq [2]. However, impre-
cise transformations might influence the outcome negatively (fault propagation).
Another reasonable way is to adapt BERT more to our needs. We would need
to train the language model on code instead of natural language texts. However,
this is still an open research topic, because of differences in semantics.



226 J. Keim et al.

We still think that transfer learning approaches are useful for tasks like the
detection of architectural tactics. A clear benefit is the capability to train a
task with a rather small data set. However, the underlying approach, e.g., the
language model must be suitable for the kind of input.

6 Conclusion and Future Work

In this paper, we experimented with a transfer-learning approach using the nat-
ural language model BERT to classify if classes implement certain architectural
tactics. We experimented with our hypothesis that BERT can understand code
similarly to text after fine-tuning. We evaluated our approach using 10-fold cross-
validation with promising results. However, the approach could not compete
with state-of-the-are approaches in a case study using Hadoop. Therefore, we
discussed our approach further as we see a lot of potential in transfer-learning
approaches.

In future work, we plan to improve our approach to perform better, e.g.,
by adaptations to our architecture. Additionally, we want find proper ways to
either train a new language model or fine-tune one using code, so that the lan-
guage model is already trained on code, which might boost the performance. We
also plan to experiment with different language models beside BERT. There are
reports of new language models that show better results on standard NLP tasks
as well as new language models that allow longer inputs like Longformer [7].

References

1. Adhikari, A., Ram, A., Tang, R., Lin, J.: Docbert: BERT for document classifica-
tion. arXiv (2019). http://arxiv.org/abs/1904.08398

2. Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: generating sequences from
structured representations of code. In: ICLR (2019)

3. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE TSE 28(10), 970–983 (2002).
https://doi.org/10.1109/TSE.2002.1041053

4. Antoniol, G., Casazza, G., Di Penta, M., Fiutem, R.: Object-oriented design pat-
terns recovery. J. Syst. Softw. 59(2), 181–196 (2001)

5. Babar, M.A., Gorton, I.: A tool for managing software architecture knowledge. In:
2nd SHARK/ADI 2007 ICSE Workshops 2007, pp. 11–11. IEEE (2007)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional (2003)

7. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer.
arXiv (2020). http://arxiv.org/abs/1904.08398

8. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A web-based tool for managing
architectural design decisions. ACM SIGSOFT 31(5), 4 (2006)

9. Chihada, A., Jalili, S., Hasheminejad, S.M.H., Zangooei, M.H.: Source code and
design conformance, design pattern detection from source code by classification
approach. Appl. Soft Comput. 26, 357–367 (2015)

http://arxiv.org/abs/1904.08398
https://doi.org/10.1109/TSE.2002.1041053
http://arxiv.org/abs/1904.08398


Does BERT Understand Code? 227

10. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best prac-
tices for automated traceability. Computer 40(6), 27–35 (2007). https://doi.org/
10.1109/MC.2007.195

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of Deep
Bidirectional transformers for language understanding. In: NAACL-HLT (2019).
https://doi.org/10.18653/v1/N19-1423

12. Ducasse, S., Pollet, D.: Software architecture reconstruction: a process-oriented
taxonomy. IEEE TSE 35(4), 573–591 (2009)

13. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: Determining the cost-quality trade-
off for automated software traceability. In: 20th IEEE/ACM ASE, pp. 360–363.
ACM, New York (2005). https://doi.org/10.1145/1101908.1101970

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Elements of reusable object-
oriented software. arXiv (1995)

15. Hey, T., Keim, J., Tichy, W.F., Koziolek, A.: NoRBERT: Transfer learning for
requirements classification. In: 2020 IEEE 28th RE. IEEE (2020)

16. Hoorn, J.F., Farenhorst, R., Lago, P., Van Vliet, H.: The lonesome architect. J.
Syst. Softw. 84(9), 1424–1435 (2011)

17. Howard, J., Ruder, S.: Fine-tuned language models for text classification. arXiv
(2018). http://arxiv.org/abs/1801.06146

18. Keim, J., Kaplan, A., Koziolek, A., Mirakhorli, M.: Gram21/BERT4DAT, July
2020. https://doi.org/10.5281/zenodo.3925165

19. Keim, J., Kaplan, A., Koziolek, A., Mirakhorli, M.: Using BERT for the detection of
architectural tactics in code. Technical report 2, Karlsruhe Institute of Technology
(KIT), Karlsruhe (2020). https://doi.org/10.5445/IR/1000121031

20. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. arXiv
(2016). http://arxiv.org/abs/1609.04836

21. Li, J., Wang, Y., Lyu, M.R., King, I.: Code completion with neural attention and
pointer networks. 27th IJCAI, July 2018. https://doi.org/10.24963/ijcai.2018/578

22. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv
(2017). http://arxiv.org/abs/1711.05101

23. Mirakhorli, M., Cleland-Huang, J.: Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Trans. Softw. Eng. 42(3), 205–220 (2016). https://doi.
org/10.1109/TSE.2015.2479217

24. Mirakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M.: A tactic-centric approach
for automating traceability of quality concerns. In: 34th ICSE, pp. 639–649, June
2012. https://doi.org/10.1109/ICSE.2012.6227153

25. Mirakhorli, M., Cleland-Huang, J.: Tracing architectural concerns in high assur-
ance systems. In: 33rd ICSE, pp. 908–911. ACM (2011)

26. Mirakhorli, M., et al.: Archie. https://github.com/SoftwareDesignLab/Archie
27. Niven, T., Kao, H.Y.: Probing neural network comprehension of natural language

arguments. In: 57th ACL (2019). https://doi.org/10.18653/v1/P19-1459
28. Prechelt, L.: Why we need an explicit forum for negative results. J. Univ. Comput.

Sci. 3(9), 1074–1083 (1997)
29. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical language

models. In: 35th ACM SIGPLAN PLDI, pp. 419–428. New York, NY, USA (2014).
https://doi.org/10.1145/2594291.2594321

30. Sharma, T., Efstathiou, V., Louridas, P., Spinellis, D.: On the feasibility of transfer-
learning code smells using deep learning. arXiv (2019). http://arxiv.org/abs/1904.
03031

https://doi.org/10.1109/MC.2007.195
https://doi.org/10.1109/MC.2007.195
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1101908.1101970
http://arxiv.org/abs/1801.06146
https://doi.org/10.5281/zenodo.3925165
https://doi.org/10.5445/IR/1000121031
http://arxiv.org/abs/1609.04836
https://doi.org/10.24963/ijcai.2018/578
http://arxiv.org/abs/1711.05101
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/ICSE.2012.6227153
https://github.com/SoftwareDesignLab/Archie
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.1145/2594291.2594321
http://arxiv.org/abs/1904.03031
http://arxiv.org/abs/1904.03031


228 J. Keim et al.

31. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune bert for text classification?
arXiv (2019). http://arxiv.org/abs/1905.05583

32. Tenney, I., Das, D., Pavlick, E.: BERT rediscovers the classical NLP pipeline. In:
57th ACL, pp. 4593–4601. ACL, Florence, Italy, July 2019. https://doi.org/10.
18653/v1/P19-1452

http://arxiv.org/abs/1905.05583
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/P19-1452


Education and Training



Teaching Students Software Architecture
Decision Making

Rafael Capilla1(B) , Olaf Zimmermann2(B), Carlos Carrillo3(B) ,
and Hernán Astudillo4(B)

1 Rey Juan Carlos University, Madrid, Spain
rafael.capilla@urjc.es

2 HSR Hochschule für Technik, Rapperswil, Switzerland
olaf.zimmermann@hsr.ch

3 Technical University of Madrid, Madrid, Spain
carlos.carrillo@upm.es

4 Universidad Técnica Federico Santa María, Santiago de Chile, Chile
hernan@inf.utfsm.cl

Abstract. Making the right decisions is challenging for architects on all levels
of seniority. Less experienced architects in particular perceive the transition from
design problems to their solutions as hard; it is not always clear how to find suit-
able concepts and technologies, how to compare alternatives, and how to build
consensus. Lack of experience makes it difficult to train software engineering
students in the identification, selection, and collective evaluation of design alter-
natives. Moreover, human factors such as cognitive bias make “soft” topics like
architecture decisions rather hard to teach. To overcome these issues and let stu-
dents gain the required experience, a Spanish University ran two experiments.
Undergraduate computer science students assumed different roles in collaborative
decision-making tasks and design activities. They used a novel decision-modeling
tool to capture and challenge the relevant design decisions. This paper describes
this new teaching setup and reports on lessons learned.

Keywords: Architectural knowledge · Collaborative decision making · Design
decision · Design thinking · Reflection · Teaching software architecture

1 Introduction

The creativity of software architects may lead to different designs or solution architec-
tures serving for the same purpose. Diagrams illustrating proven designs may be worth a
thousand words [15]. Nevertheless, teaching novice architects and undergrad students in
the practice of software architecture is not easy because of the plethora of design alterna-
tives and possibilities to compose them. Thus, it is challenging to select adequate design
solutions promoting well-known design principles; years of apprentice are required.
The ISO/IEC 42010 standard1 considers a software architecture as the result of a set of
1 ISO/IEC/IEEE 42010 – Systems and software engineering – architecture description. Available
at: https://www.iso.org/standard/50508.html.

© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 231–246, 2020.
https://doi.org/10.1007/978-3-030-58923-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_16&domain=pdf
http://orcid.org/0000-0002-6943-1285
http://orcid.org/0000-0002-5343-3323
http://orcid.org/0000-0002-6487-5813
https://www.iso.org/standard/50508.html
https://doi.org/10.1007/978-3-030-58923-3_16


232 R. Capilla et al.

design decisions and first-class artifacts. An Architecture Design Decision (ADD) can
be understood as a decision that addresses architecturally significant requirements and
design problems. The tacit knowledge and expertise of software architects should be
captured explicitly via their significant ADDs [35]; this is costly and challenging when
adequate tools are missing [12]. Consequently, teaching novice designers on making
and selecting the right decisions, evaluating the consequences of such selections and
challenging the decisions made by others is still in its infancy.2

An additional challenge is that development teams tend to be decentralized and
distributed more and more. This has raised new forms of collaboration, where several
stakeholders take on different roles and often use collaborative modeling tools to arrive
at adequate and accepted design solutions. This research explores behavior of software
engineering students as novice software architects in different roles: how do they make,
challenge and capture a set of ADDs and architectures in a collaborative way? The set of
decisions captured serves as training material as reusable knowledge; the roles assumed
by the students is supposed to enable and promote critical design thinking to produce
decisions with better quality and architectures.

The remainder of the paper is structured as follows. Section 2 discusses related
work and provides background information. Section 3 outlines the design of two exper-
iments we run in a Spanish university to teach a collaborative decision-making practice.
Section 4 outlines the results we obtained. Section 5 presents lessons learned and result-
ing insights for researchers, educators, and practitioners. Finally, Sect. 6 summarizes
our conclusions and provides an outlook.

2 Background and Related Work

This section describes related background and similar studies used in our experience
and around three different topics.

2.1 Teaching Design and Collaborative Decision-Making

Collaborative software engineering [18] gains more and more significant attention by
software development teams, especially in cases of delocalization in distributed teams.
One important task in the software development process is software modelling, essen-
tially seen as a creative task used to yield the software architecture of a system. In
any architecting process, the chief architect must discuss, evaluate and deliberate with
solution architects, senior and junior designers about the resultant design.

This deliberative task, adapted to different project contexts (e.g. open source, global
development, agile projects, etc.) should capture the significant architecture design deci-
sions. Bang et al. [3] report the insights related to six different roles of software architects
during collaborative software design tasks in a distributed environment. Some teaching
experiences about software architecture [17, 24] reflect the importance of architecture

2 The IBMe-business reference architecture taught about the importanceof architectural decisions;
decision capturing was a recommended practice at IBM since, at least, 1998.



Teaching Students Software Architecture Decision Making 233

design decisions as part as the architect’s soft skills and how to explain the technical deci-
sions to non-technical staff and also how students have to wrestle with the complexity
of design decisions.

Collaborative approaches teaching software architecture [8] evaluate the effect of
design decisions in a collaborative software architecture course in open source projects,
or usingASQ, a collaborativeweb-based platform [36]which allows tracking and record-
ing real-time students’ interactions and thinking. Other experiences report about Group
Decision Making (GDM) practices in software architecture [28] showing that brain-
storming is a preferred activity for team members. The authors of [20] describe the
DVIA approach to provide design verbal intervention analysis to capture GDM activi-
ties; they also categorized the variety of decision topics. However, the lack of tool support
is an important barrier to assist participants in the decision-making process [34].

2.2 Architectural Knowledge Research

The recent evolution in AKM tools has led to more collaborative approaches that let
architects not only capture and share ADDs, but also discuss them collaboratively –
supported by extended capabilities aimed to facilitate collaborative decision-making
[5]. Research tools like RAT, AREL, SAW, and ADvISE (among others) offer sharing
and voting mechanisms to deliberate around the design alternatives and facilitate the
selection of the best design choices, many times complicated by the fact to achieve a
consensus [35].However, the dichotomybetweenAKMand softwaremodeling tools still
does not help to embed the design rationale and their decisions in software architecture
modeling tasks [4]. ADMentor [39] helps novice architects to discriminate between the
problem and solution spaces capturing the key design decisions and providing a design
solution for the decisions chosen. AMarkdown-based template and supporting tools are
presented in [14].

2.3 Design Thinking, Reflection and Reasoning

Critical thinking can enhance problem-solving abilities, not only for learning program-
ming concepts [13, 37], but also to acquire design skills and achieve a clear understand-
ing of the problem and solution spaces. Producing to high quality decisions is not easy;
sometimes reflective approaches [23] such as the Mind1-2 model are necessary [22] to
challenge (Mind 2) the decisions made by others (Mind 1). This reflective thinking (i.e.
reflection in action theory [24, 25]) and reasoning approach have also been highlighted
in [28], considered a learning process to bring the tacit knowledge explicit [9]. As during
the design activity design problems must be solved, designers must consider different
options as design alternatives when they explore the solution space [2, 11] and reduce
the cognitive bias.

Users can experience the reflective activity in different development context. Reflec-
tion, as a conversation during the design thinking activity, can be integrated with agile
practices [29] during software constructions, such as stated in [2]. In [19] the authors
explore how students increase awareness and reflective practices during learning activi-
ties. The study reports that theCritical Incident Technique (CIT) used in a software devel-
opment course promotes critical reflection and communication skills. Other approaches



234 R. Capilla et al.

describe how developers discuss rationale in open source software (OSS) projects [1] to
understand how rationale is discussed using IRC channels. One recent experience [10]
reports the results of teaching reflection in software engineering students as a computer-
supported collaborative learning (CSCL) activity; software engineering teachers and
students reflected during UML modeling sessions.

During the reflective modeling tasks, the participants increased their awareness on
modeling assumptions and sharing knowledge to confront multiple perspectives using
video-taped sessions.Moreover, as software design is recognized as an outcomeof design
reasoning, Tang et al. [33] argue that decisions made collectively are based on some
rationale, but the reasoning and argumentation of such decisions may not be explicitly
stated. They suggest an approach to identify the design issues [31] in an experiment
with students and professionals using reminder cards to investigate the use of design
reasoning explicitly. In an experiment with students and professionals reported in [32],
the authors studied the differences in design reasoning between both groups and the
effort spent in decision-making activities. Another study reports on decision making
practices and the authors identify their gaps and mention a lack of improvement and no
new practices [21].

Finally, one recent study investigates a rationale management case study in an agile
context to uncover what matters to students when they need to integrate decision docu-
mentation into Scrum projects [27]. The authors run an experiment with 400 participants
grouped in 82 teams to analyze the effects of a lightweight architectural decision cap-
ture and understand how students capture decision alternatives and their rationale and
which types of decisions are more important when teaching agile methods. Part of the
results show that the majority of the students do capture multiple design alternatives, but
struggle to capture rationale. However, implementing continuous reflection in software
tools is still challenging but feasible at least to a certain extent, such as described in the
prototype discussed in [26].

3 Experimental Design

As there still not many students showing the impact in teaching architecture with the
capture of design decisions and rationale and also how students reflect and think about
different design choices, this study investigates the quality and effectiveness of teaching
design thinking [30] in a software architecture course. We were interested in evaluation
the positive impact of reflections in design thinking, were students challenge the design
decisions made by others, and to what extent students acting as software modelers
perceive value in having design decisions captured before the modeling tasks in order
to ease the design activity.

The research questions that guided this study are:

RQ1: How does consensus influence the decision-making process in collaborative
environments?
RQ2: Do reflective practices like the Mind1-2 model [Razavian2016] have a positive
influence on design thinking?
RQ3: Do the decisions captured have any positive effect on software architecture
modeling tasks?



Teaching Students Software Architecture Decision Making 235

3.1 Course Description

The learning objectives of the target course on software architecture (third year of under-
graduate studies on Software Engineering) at the Rey Juan Carlos University of Madrid
(Spain) encompasses common topics like design patterns, architecture styles, design
principles and architecture evaluation methods like Architecture Trade-off Analysis
Method (ATAM). Furthermore, we include a lecture on ADDs to train students on their
importance of and the difficulty to capture the significant decisions and evaluate the
design alternatives. Finally, we highlight the importance of reflection as a technique to
challenge design alternatives when dealing with incomplete information and uncertainty
(for instance, design patterns and/or technology selection). The teaching method follows
a classical approach using slides to teach the lessons and minutes for discussion at the
end of each lesson. The students need to pass two practical assignments and form groups
of five to six persons, which is easy to achieve because the average number of students
enrolled in the course is often more than 50.

3.2 Course Selection and Participants

From the course, we selected the following participants from two different years. We
ran two experiments in 2016/17 and 2017/18, with 65 and 58 students respectively. The
age of the participants enrolled in the course 2016/17 was between 19 and 29 years (plus
one student over 30), while the age of the subjects in the course 2017/18 was between
19 and 29. However, most participants were between 19 and 24 years old. Only some of
them have a few months of professional experience in software companies.

3.3 Training and Laboratory Activities

Before the experiment, students had around three weeks of software architecture lec-
tures on concepts, design patterns and architectural design decisions; we used several
examples to train them in modern software architecture practice and emphasized the
importance of capturing the significant architecturally design decisions. The laboratory
sessions for each of the two experiments took 4 weeks in sessions of 4 h per week.
Additionally, the students spent additional time outside the laboratory to complete the
weekly tasks. We established that each week students had to produce one iteration of the
software architecture for the target system, including smaller sub-iterations according
to the number and complexity of the software requirements and design problems.

3.4 Groups and Tasks

We organized the students in 10 teams composed by five to six participants each, with
the following roles (see Fig. 1).

• Two senior architects are in charge of making architectural design decisions and
capturing them, identify design problems, make and capture architecture design
decisions;



236 R. Capilla et al.

Senior 
architects: Make

and capture 
design decisions

Junior 
architects: 

Understand and 
model the design

decisions

Cognitive
architects:

Challenge the
decision made, 

identify risks and 
uncomplete
information

(1) Share decisions

(2) Challenge
decisions(3) Share refined decisions

(4) Discuss about the accuracy
and understandability of decisions

Fig. 1. Relationships between participants in collaborative decision making and design thinking

• Two cognitive architects challenge the decisions captured by senior architects and
raise any concern when risks or incomplete information appear;

• One or two junior architects are in charge of understand and model the decisions
captured providing a solution architecture.

Each team was composed of two senior architects, two cognitive architects, and one to
two junior architects. We selected the most experienced students (i.e., those who had
industry experience) as cognitive and senior architects while those students with no
experience acted as junior architects. Because it was difficult to find enough cognitive
and senior architects, we balanced the groups to have at least one senior and one cogni-
tive architect. The students using the different roles interacted during 2 + 2 laboratory
hours weekly and via Skype to discuss and annotate the changes in the decisions and
architecture documentation using Google drive docs.

In addition, we let the groups to use the ADMentor3 tool [39] for modeling the
problem space and solution space and we limited the granularity of the decisions up
to UML classes to avoid an excessive number of small decisions. Finally, all groups
captured the decisions using any of the three different templates provided: a minimalistic
template including five attributes (i.e., useful for decisions captured in agile projects), a
medium template comprising seven attributes and a longer template comprising eleven
items.

4 Results

During the first experiment, we got responses from ten groups and we discarded one
group because they did not provide significant results that could be used to evaluate the
impact of design decisions in architecture modeling tasks. In the replica experiment,
we received valid responses from ten groups, so in both experiments we had almost
the same number of participants. The collaborative decision-making activities happened
along four weeks, and we collected the following results.

3 https://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4.

https://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html%3f%26L%3d4


Teaching Students Software Architecture Decision Making 237

4.1 Collaborative Decision-Making

Once the senior architects made and captured the key design decisions during each
iteration, they interacted collaboratively with the cognitive architects to produce better
quality decisions. As we show in Fig. 2, cognitive architects from all groups challenged a
number of 110 decisions during the deliberative tasks with senior architects. RQ1: How
does consensus influence the decision-making process in collaborative environments?

Understood
; 16 Don't 

understood;
3

Challenged, 
110

Agreed, 73
Disagreed, 

52

Risks, 42

Consensus
, 59

No 
consensus; 

27

Fig. 2. Activity of senior and cognitive architects (Mind1-2 tasks) regarding the decision
challenges, risks stated and consensus between decisions.

From the data obtained from the discussions between cognitive and senior architects,
they agreed in 73 decisions and disagreed in 52 (please note that we included here
decisions that were challenged and non-challenged). Finally, they achieved a consensus
in 59 cases and no consensus in 27 times. In addition, the cognitive architects stated
the appearance of risks in 42 decisions, as potentially critical decisions or caused by
uncompleted information during the decision-making activity.

The distribution of the percentages during the interactions between senior and cog-
nitive architects prove the utility of the Mind1-2 model and the importance for chal-
lenging the decisions made by others and the intention to arrive to a consensus during
discussions and agree on as much decisions as possible in order to arrive to a solution
architecture. Therefore, building a consensus in architecture decision-making seems to
influence positively the speed to arrive to agreements, particularly for critical decisions.

RQ2: Do reflective practices like the Mind1-2 model have a positive influence on
design thinking? Regarding the second research question, we can strongly affirm reflec-
tion has a positive impact in architecting practices and more specifically in design think-
ing activities. Figure 3 shows the results of the cognitive activity and discussions, which
are quite similar in both experiments. In Fig. 3, the X axis represents the different states



238 R. Capilla et al.

about the decisions as results of the discussion between senior and cognitive architects
while in the Y axis we show howmany decisions in both experiments where challenged,
agreed, understood or needed a consensus.

0
20
40
60
80

100
120
140

Activity from Senior and Cognitive 
architects (Mind1-2)

2016/17 2017/18

Fig. 3. Activity of senior and cognitive architects (Mind1-2 tasks) regarding the decision
challenges, risks stated and consensus.

The results from the collaborative decision-making activity between both roles was
very fruitful, and based on the number of decision challengedwe can say that theMind1-2
model [22] was proven better in yielding higher quality decisions than if senior architects
make decisions alone without the criticism of the cognitive architects. In the replica
experiment we got a bit better results in most cases than in the first experiment, maybe
because we trained the students better in the second year, but the differences in general
terms are small and the replica confirm our initial results.

4.2 Collaborative Analysis and Modelling Tasks

Figure 4 compares the activity of interactions between senior and junior architects in
order to answer research question RQ3.

RQ3: Do the decisions captured have any positive effect on software architecture
modeling tasks? One of the most interesting outcomes derived from both experiments
is the satisfaction of junior architects as software modelers using the decisions made by
others to depict the software architecture. During the interactions between them, junior
architects widely used design patterns and the decisions shared by the senior architects
were useful to model the software architecture. Figure 4 describes the activity of the
interactions performed by junior architects. For instance, we can observe from the first
experiment that junior architects believed decisions were useful to model the software



Teaching Students Software Architecture Decision Making 239

0
5

10
15
20

Usefulness of
decisions to model…

ADD captured are
hard to understand

ADD captured are
easy to understand

Easy to model using
ADDs

Need additional
decisions to model

Don't need
additional…

Design patterns
usage

0
5

10
15
20

Usefulness of
decisions to model…

ADD captured are
hard to understand

ADD captured are
easy to understand

Easy to model using
ADDs

Need additional
decisions to model

Don't need
additional…

Design patterns
usage

Fig. 4. Activities performed by junior architects in the experiment 2016/17 (left side) and in
2017/18 (right side).

architecture and, inmost cases, they did not need an additional explanation.Also, inmany
cases junior architects didn’t need additional decisions tomodel the solution. In addition,
the subjects used design patterns and they experienced that software architectures were
easier to model using ADD descriptions.

Similar results we obtained from the replica experiment run during 2017/18, as show
in Fig. 4. In the replica, more junior architects than in the first experiment thought they
did not need additional decisions to model the software architecture. In some cases,
some of the subjects perceived the design were not so easy to model using the ADDs
because some of the decisions had been not described or captured properly and hence
were hard to use during the modeling tasks.

However, only two more subjects in the replica experiment thought decisions were
hard to use (14 subjects in the replica versus twelve in the first experiment). Related to
this, only three subjects in the first experiment thought more decisions were required,
and four subjects in the replica thought the same. Although some decisions should be
captured better, most of them were understood by the software modelers, and in only a
few cases additional decisions were needed.

Moreover, during the sessions with the students we observed their activity and dis-
cussions but we did not participate in any form of action research as we only hadminimal
interventions about questions in order to avoid bias during the decision-making activity,
as any kind of help could interfere in the decisions chosen by the senior architects. In
addition, we run a questionnaire asking all participants from the three different roles a set
of questions regarding about their activities performed, and with respect to the activity
of junior architects and the interactions with senior architects. Table 1 shows the results
from both experiments.

We got a maximum of 19 and 18 responses out from 20 and 19 junior architects
belonging to the experiments 2016/17 and 2017/18 respectively.Aswe can see in Table 1,
the results from the second experiment confirm the results from the initial one. Most
subjects thought that decisions are useful to model the software architecture. However,
12–14 of junior architects thought also that the decisions descriptions provided by the
senior architects were hard to understand for modeling an architectural solution, while
only 4–7 thought the opposite. In general, most junior architects felt architectures are
easier to model if they have design decisions, but the results of the replica show a
higher disagreement at this point. In addition, in both experiments only three and four
students respectively thought they would need additional decisions to model the solution



240 R. Capilla et al.

Table 1. Results from the questionnaire evaluating the activity and interactions of junior
architects.

Activity of junior architects Experiment 2016/17 Experiment 2017/18

Decisions are useful to model the SA 19 17

ADD descriptions are hard to model the SA 12 14

ADD descriptions are not hard to model the SA 7 4

Architecture is easy to model using ADDs 17 13

Need of additional decisions to model the solution
architecture

3 4

Don’t need additional decisions to model the
architecture

17 12

Use of design patterns 19 18

architecture, while 17 subjects in 2016/17 thought they did not need additional decisions.
Again, there are some differences with junior architects in the replica experiment as
only twelve thought they do not need additional decisions. Finally, most students in both
experiments agreed that using design patterns to define a solution architecture was quite
useful.

4.3 Effort Spent in Cognitive and Modelling Tasks

In order to compare the effort spent in hours by the three different roles in the experiment,
we illustrate in Fig. 5 the results (expressed in hours) from the replica. We observed that
most groups with higher decision-making (including the capturing effort of the ADDs)
and reflective activities required less modeling effort (i.e. groups G1, G2, G3, G6, G8,
G9, G10) while only groups G4, G5 and G7 spent more time during modeling activities
and maybe caused because the design thinking and reflective effort was low.

0.00
2.00
4.00
6.00
8.00

10.00
12.00

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Decision-making & Capturing Reflection Modeling

Fig. 5. Comparison of cognitive and modeling effort of groups from the replica experiment.



Teaching Students Software Architecture Decision Making 241

Some distorting results belong to group G6, which exhibits a high decision-making
effort probably caused because they captured more design alternatives than the rest
of the groups, and group G8, where team members spent the same time in decision-
making and reflective activities. One reason for this (i.e. assuming they measured the
effort correctly) might be that a significant number of discussions were devoted because
unclear decisions, disagreements or high number of risks identified by the cognitive
architects.

Finally, both experiments exhibited a similar patternwhere junior architects classified
more decisions as “hard to understand” easy to understand and model”. Although junior
architects perceived that having decisions eases the modeling tasks, the description of
many decisions require further explanation, which added additional discussion cycles
during the interactions with senior architects. As the subjects stated that in majority of
the interactions, they did not need additional decisions to model the solution, it seems
that it was just a matter of improving the descriptions captured in the templates.

Moreover, the interactions between the junior architects of each group to depict the
architectural sketches [16] revealed that in many cases they performed short iterations
until they model a bunch of design decisions. Fifteen groups out of 20 used Google drive
to upload architectural sketches and documents with junior and senior architects anno-
tating comments collaboratively to deliberate about the resultant architectures, whereas
only five groups used a collaborative modeling tool.

4.4 Effort in Reflective Tasks

The importance of reflective effort compared to the time spent in decision-making and
capturing the decisions is highly relevant to the quality of the decisions made and of
the solution architecture as well. We compared this reflective effort in both experiments
and we got the following results. Figure 6 (left) shows the effort (in hours) spent by the
different teams in making and capturing decisions as well as the extra effort when they
reflected about the decisions.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Decision-making and reflective effort 
(2016/17)

Decision-making & Capturing Reflection

0,00

5,00

10,00

15,00

20,00

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Decision-making and reflective effort 
(2017/18)

Decision-making & Capturing Reflection

Fig. 6. Effort spent in making decisions and during reflective tasks in both experiments.

As shown in Fig. 6 (left), groupsG2 andG4 spent little effort inmaking and capturing
the decisions while G1, G3 and G10 spent much effort than the others. The rest of the



242 R. Capilla et al.

groups spent similar time in this activity. The reflective activity indicates the extra effort
required for producing better quality decisions. Apart from groups G3 and G10, which
present distorting numbers, the rest of the groups employed a reasonable time in reflection
compared to the previous decision-making activity. Only G2 and G4 groups required
more time in reflection than making decisions but the differences are rather small.

As confirmation in the replica shown in Fig. 6 (right), reflective effort is an extra effort
for all groups, not just in addition to making decisions but because the students were
better trained in decision-making than in the first experiment, and they need significantly
less effort for making and reflecting decisions (see effort the Y axis). In this case only
groups G1, G6 and G8 required much more effort than the others and only G10 spent
bit more effort in reflecting than in making decisions.

5 Discussion

The major results derived from both experiences are the following:

(i) The groups using the ADMentor tool understood the distinction of the problem
and solution space much better, while senior architects identified design problems
and design alternatives more accurately.

(ii) The quality of the architectures backed by high-quality design decisions led to an
adequate solution architecture with the desired qualities.

(iii) Groups using ADMentor arrived at “better” architectures as they identified the
design problems more clearly.

(iv) The investment in reflective tasks paid off and produced “good” quality decisions
as outcome of the discussions between senior and cognitive architects.

(v) In most cases, the decisions were useful to model the design solutions; in some
other cases, the description of the decisions was hard to understand by the junior
architects.

(vi) Sometimes a decision might not be fully clear to the junior architects and require
additional clarification; hence, more interactions between junior and senior archi-
tects happened and helped to clarify the design issues; this stresses the importance
of collaborative group decision-making.

It is difficult to say how results would look like if we replicated the experiment with
more experience practitioners from industry: In our study, we assigned multiple roles to
the subjects; in companies, this might not be realistic as the role depends on the years
of experience and the project contexts. However, the effort spent in decision-making
and reflective tasks might be more accurate (as well as the quality of the architectures
produced). Moreover, the experience seems difficult to replicate in multiple real projects
as the timelines and architecture iterations on these projects typically differ a lot [15].
Another factorwe did not study is the granularity of the design decisions aswe focused on
the decision-making as well as reflective and collaborative tasks. Nevertheless, we lim-
ited the size of the decisions to the class level (i.e. in the sense of object-oriented classes)
and dependencies between such classes in object-oriented programs; we did not capture
smaller decisions such as the creation of an attribute or a method. In addition, we did not



Teaching Students Software Architecture Decision Making 243

discuss the relevance of the decisions and the quality of the resulting architectures; the
groups that spent more time in reflective tasks and discussions produced decisions with
better quality (i.e. better described and argued). The quality of the final architectures was
difficult to observe as we did not implement any system or evaluate quality properties
to test how good the architecture is. However, we carried out interviews with the teams
every week to mitigate the risk for having architectures not addressing the design prob-
lems. Our approach complements architecture design methods and techniques such as
ADD [6] and the Architecture Tradeoff Analysis Method (ATAM) [7]. ADD in its latest
version is also decision-centric but does not model these decisions explicitly; it rather
collects related guidance informally. ATAM is an evaluation and review technique cen-
tered on desired quality attributes; it also can play a role in forward engineering. ATAM
investigates architectural decisions made when exploring risks, sensitivity and tradeoff
points. Hence, ATAM can also benefit from the explicit modeling capabilities of our
approach and the ADMentor tool. In summary, one can view the concepts and their
implementation presented in this paper as a sub-step or micro-methodology [38] for
ADD and ATAM. Compared to previous related works and regarding the collaborative
aspects, we investigated the interactions of the team members for the between different
roles and for the same role. For instance, we studied how the students in the role as
senior software architects reason to make decisions and how students acting as cognitive
architects challenge and reflect on the decisions captured. However, we did not include
such qualitative analysis in this paper due to space constraints. However, we did show the
benefits of reflective practices in architecture decision-making using theMind1-2model.
Nevertheless, a deeper analysis to examine the quality of the decisions after reflection
is required. Moreover, we noticed that the students took some time until they learned
how to reflect and challenge the decisions made; in the second and third iterations of the
architecture development process, teammembers applied these reflective practices more
commonly. We did not continue with the same experiment after 2018 as during 2019
and 2020 we moved and compared other architectural knowledge capturing approaches.

6 Conclusion

In this paper, we reported our experiences with teaching software architecture decision
making, and we highlighted the importance of collaborative decision-making to produce
more accurate and complete design decisions, by reducing the cognitive bias and anchor-
ing through reflections using the Mind1-2 model. We summarize the main outcomes of
our work as: (i) Adopting different roles when performing collaborative tasks such as
challenging decisions improved the quality of the architectures. (ii) A significant num-
ber of decisions resulted from the agreement between the different stakeholders during
the interactive decision-making process. (iii) The decisions captured using the Mind1-2
model exhibit better quality than those producedwithout reflection. Tomitigate the threat
to integrity that arises of not having test and control groups to evaluate the experimen-
tal design, we compared the resulting architectures with models produced in previous
instances of the course, where subjects did not have access to captured decisions. Stating
the risks of the decisions reduces the bias for making suboptimal decisions. In the future,
we plan to explore voting systems to arrive to a faster consensus, and to explore cognitive



244 R. Capilla et al.

activity in agile projects where the time for decision-making is limited and very lean
documentation templates are applied. Furthermore, we will investigate a better form of
representing decisions to avoid the problem that decisions are hard to understand or that
additional decisions are required to model a design solution.

Acknowledgements. H. Astudillo’s work was partially funded by grant ANID PIA/APOYO
AFB180002. O. Zimmermann’s work was partially funded by the Hasler Foundation (project
number: 19083).

References

1. Alkadhi, R., Nonnenmacher, M., Guzman, E., Bruegge, B.: How do developers discuss
rationale? In: International Conference on Software Analysis, Evolution and Reengineering
(SANER 2018). IEEE DL (2018)

2. Babb, J., Hoda, R., Norbjerg, J.: Embedding Reflection and Learning into Agile Software
Development (2014)

3. Bang, J.Y., Krka, I., Medvidovic, N., Kulkarni, N.N., Padmanabhuni, S.: How software archi-
tects collaborate: insights from collaborative software design in practice. In: 6th International
Workshop on Cooperative and Human Aspects of Software Engineering, pp. 41–48. IEEE
(2013)

4. Capilla, R.: Embedded design rationale in software architecture. In: JointWorking IEEE/IFIP
Conference on Software Architecture and European Conference on Software Architecture,
pp. 305–308. IEEE DL (2009)

5. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Ali Babar, M.: A 10 years of software
architecture knowledgemanagement: practice and future. J. Syst. Softw. 116, 191–205 (2016)

6. Cervantes, H., Kazman, R.: Designing Software Architectures: A Practical Approach. SEI
Series in Software Engineering. Addison-Wesley, Boston (2016)

7. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. SEI Series in Software Engineering. Addison-Wesley, Boston (2001)

8. van Deursen, A., et al.: A collaborative approach to teaching software architecture. In: ACM
SIGCSETechnical SymposiumonComputer ScienceEducation SIGCSE, pp. 591–596.ACM
(2017)

9. Dingsoyr, T., Lago, P., van Vliet, H.: Rationale promotes learning about architectural knowl-
edge. In: 8th International Workshop on Learning Software Organizations (LSO), Rio de
Janeiro, Brazil. ACM (2006)

10. Dittmar, A., Forbrig, P.: A case study on supporting teachers’ collective reflection in higher
education. In: 36th European Conference on Cognitive Ergonomics ECCE 2018, pp. 4:1–4:8.
ACM DL (2018)

11. Dorst, K.: Design problems and design paradoxes. Des. Issues 22, 4–17 (2006)
12. Hohpe, G., Ozkaya, I., Zdun, U., Zimmermann, O.: The software architect’s role in the digital

age. IEEE Softw. 33(6), 30–39 (2016)
13. Hwang,W.-Y., Shadiev, R.,Wang, C.-Y., Huang, Z.-H.: A pilot study of cooperative program-

ming learning behavior and its relationship with students’ learning performance. Comput.
Educ. 58(4), 1267–1281 (2012)

14. Kopp, O., Armbruster, A., Zimmermann, O.:Markdown architectural records: format and tool
support. In: 10th Central European Workshop on Services and their Composition, pp. 55–62
(2018)



Teaching Students Software Architecture Decision Making 245

15. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn.
Sci. 11(1), 65–99 (1987)

16. Mangano, N., LaToza, T.D., Petre, M., van der Hoek, A.: How software designers interact
with sketches at the whiteboard. IEEE Trans. Softw. Eng. 41(2), 135–156 (2015)

17. Männistö, T., Savolainen, J., Myllärniemi, V.: Teaching software architecture design. In:
Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008), pp. 117–
124. IEEE DL (2008)

18. Mistrík, I., van der Hoek, A., Grundy, J., Whitehead, J.: Collaborative Software Engineering.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10294-3

19. Nylén, A., Isomöttönen, V.: Exploring the critical incident technique to encourage reflection
during project-based learning. In: Koli Calling, pp. 88–97. ACM DL (2017)

20. Pedraza-Garcia, G., Astudillo, H., Correal, D.: DVIA: understanding how software architects
make decisions in design meetings. In: ECSA Workshops 2015, pp. 51:1–51:7. ACM DL
(2015)

21. Razavian, M., Paech, V., Tang, A.: Empirical research for software architecture decision
making. J. Syst. Softw. 149(3), 360–381 (2018)

22. Razavian,M., Tang, A., Capilla, R., Lago, P.: In twominds: how reflections influence software
design thinking. J. Softw. Evol. Process 28(6), 394–426 (2016)

23. Razavian,M., Tang, A., Capilla, R., Lago, P.: Reflective approach for software design decision
making. In: Qualitative ReasoningAbout SoftwareArchitectures, pp. 19–26. IEEEDL (2016)

24. Rupakheti, C.R., Chenoweth, S.V.: Teaching software architecture to undergraduate students:
an experience report. In: 37th IEEE/ACM International Conference on Software Engineering,
vol. 2, pp. 445–454. IEEE CS (2015)

25. Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic Books,
Nueva York (1983)

26. Schoormann, T., Hofer, J., Knackstedt, R.: Software tools for supporting reflection in design
thinking projects. In: 53rd Hawaii International Conference on System Sciences (HICSS
2020), ScholarSpace, pp. 1–10 (2020)

27. Schubanz, M., Lewerentz, C.: What matters to students – a rationale management case study
in agile software development. In: 17. Workshops “Software Engineering im Unterricht der
Hochschulen (SEUH 2020)”, CEUR Workshop Proceedings, pp. 17–26 (2020)

28. Smrithi Rekha, V., Muccini, H.: Group decision-making in software architecture: a study on
industrial practices. Inf. Softw. Technol. 101, 51–63 (2018)

29. Talby, D., Hazzan, O., Dubinsky, Y., Keren, A.: Reflections on reflection in agile software
development. In: Agile Conference, pp. 11–112. IEEE (2006)

30. Tang, A., Aleti, A., Burge, J., van Vliet, H.:What makes software design effective? Des. Stud.
31, 614–640 (2010)

31. Tang,A., Lau,M.F.: Software architecture reviewby association. J. Syst. Softw. 88(2), 87–101
(2014)

32. Tang, A., van Vliet, H.: Software designers satisfice. In: Weyns, D., Mirandola, R., Crnkovic,
I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 105–120. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23727-5_9

33. Tang, A., Bex, F., Schriek, C., van der Werf, J.M.E.M.: Improving software design reasoning
- a reminder card approach. J. Syst. Softw. 144, 22–40 (2018)

34. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software architectural
decisions - a systematic mapping study. Inf. Softw. Technol. 56(8), 850–872 (2014)

35. Tofan, D., Galster, M., Lytra, I., Avgeriou, P., Zdun, U., Fouche, M.-A., de Boer, R.C., Solms,
F.: Empirical evaluation of a process to increase consensus in group architectural decision
making. Inf. Softw. Technol. 72, 31–47 (2016)

https://doi.org/10.1007/978-3-642-10294-3
https://doi.org/10.1007/978-3-319-23727-5_9


246 R. Capilla et al.

36. Triglianos, V., Pautasso, C., Bozzon, A., Hauff, C.: Inferring student attention with ASQ. In:
Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 306–320.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45153-4_23

37. Wachenchauzer, R.: Work in progress – promoting critical thinking while learning program-
ming language concepts and paradigms. In: Proceedings of IEEE International Conference
on Frontiers in Education, Savannah, GA, USA, pp. 13–14 (2004)

38. Zimmermann, O., Koehler, J., Leymann, F.: Architectural decision models as micro-
methodology for service-oriented analysis and design. In: Lübke, D. (ed.) Proceedings of
the Workshop on Software Engineering Methods for Service-oriented Architecture 2007
(SEMSOA 2007), Hannover, Germany, vol. 244. CEUR-WS.org (2007)

39. Zimmermann, O., Wegmann, L., Koziolek, H., Goldschmidt, T.: Architectural decision
guidance across projects. In: Proceedings of IEEE/IFIP WICSA (2015)

https://doi.org/10.1007/978-3-319-45153-4_23


The PDEng Program on Software
Technology

Experience Report on a Doctorate Level Architecture
Training Program

Ad T. M. Aerts(B) and Yanja Dajsuren

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
{a.t.m.aerts,y.dajsuren}@tue.nl

Abstract. Attention for software architecture in higher education used
to be limited to a few (or a single) courses in the later years of a Master
program. In this paper we share our experience on a unique educational
program in the Netherlands in which education and training on architec-
ture is an integrated theme: the PDEng Software Technology program.
The paper provides background information for the program focusing
on its history and demand from industry. The program design adher-
ing to the European Qualification Level (EQF) level 8 while satisfying
industrial requirements is presented in some detail. The way we evaluate
and monitor the quality of the program by Dutch government, industry
partners, and alumni is discussed. In sharing the experience of the past
30 years of training architects and designers, the program has dealt with
many changes and complexities on both academia and industry.

Keywords: Software architecture education · Software architecture
training · PDEng program · Software technology

1 Introduction

Society in general and industry in particular are faced with rapid developments
that pose tremendous challenges. From a technical point of view we observe
that systems (e.g., consumer products) are becoming more and more complex.
We also see that they are becoming increasingly more interconnected ([23] and
references therein). From a business point of view, we are not only confronted
with increasingly competitive markets, shorter time-to-market, and shrinking
resources, but we are also more and more faced with multi-disciplinary prod-
ucts, international multi-site projects, and large-scale project teams with people
from various national and professional cultures ([1]. The increase in complexity
along several dimensions has the consequence that many products no longer are
conceived and produced by a single person. Modern day products and services
typically are realized by a (large) team of specialists under the leadership of one
or a few high level professionals. Architects typically play a leading role in such a
team on aspects such as connecting the problem and the solution space, keeping
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 247–262, 2020.
https://doi.org/10.1007/978-3-030-58923-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_17


248 A. T. M. Aerts and Y. Dajsuren

sight of the big picture, and guiding the team towards realization of a chosen
solution ([16], Chap. 5).

Traditionally people develop themselves to the level of architect by being
involved in a sequence of different projects in various roles and gaining the
necessary experience under the mentoring and by the example of more experi-
enced persons This is the Wellknown apprentice - journeyman - master approach.
This educational model has been working fine for a long time, but in the cur-
rent situation where innovations follow each other quickly and complexity rises
accordingly, significantly more architects are needed to keep up the pace. The
old one-on-one model no longer suffices: it takes ten to fifteen years of relevant
projects in an industrial context to groom a fresh engineer to the level of archi-
tect. Moreover, once someone has become an architect, (s)he typically remains
in that function for a limited number of years. This may be due, amongst other
things to pressures on successful architects to join the company management,
or to the fact that architects continue to evolve and at some point look for new
challenges perhaps in a different organization or profession.

New educational approaches are needed to mature more technical talents
more quickly to the level of architect. One approach is on-the-job architect train-
ing such as discussed in [12,20], where mature professionals (10 to 15 years of
experience) are presented with background knowledge and skills and are stimu-
lated to apply these in their current working situation. This provides them with
a common frame of reference and a common language. But there is still a big gap
with the level of fresh MSc graduates who may have followed Master courses on
architecture and thus obtained a basic, useful awareness of architecture concepts
and processes (see, e.g., [8,9], and [10] for illustrations in the case of Software
Architecture).

In this paper we explain a different approach that is positioned between the
two alternatives mentioned above and that is taken by the industry-oriented,
doctorate level, technological designer programs [17] targeted at recent Master
graduates. We will discuss in particular the technological designer program on
Software Technology (ST) [21] that has been in existence for over 30 years.

The industrial landscape has changed quite a bit in the last 30 years. The role
of software in products has changed from add-on to dominant. For example, new
generation electric automobiles are sometimes referred to as “iPad on wheels”.
Neither existed as commercial products 30 years ago. Also the ST program has
evolved during its existence to stay relevant. In this paper, we mostly focus on
the characteristic features of later (post 2006) editions of the program.

2 General Background

In the early 1980’s, the Dutch industry indicated a strong need for universities
to educate and train motivated and talented people in such a way that they
would have:

R1 knowledge of and experience with advanced, state-of-the-art methods and
techniques for (software) engineering



The PDEng Program on Software Technology 249

R2 state-of-the-art (software) design and development project management
competencies

R3 excellent social and communicative competencies
R4 a strong academic background like PhD’s
R5 strong technical leadership competencies

Industry needed professionals who could immediately be deployed in the various
companies (see also [18]).

Industry convinced the Dutch government of the urgency of their needs and
the government invited the technology-oriented universities in the Netherlands to
set up post-masters (i.e., EQF level 8 [5], NLQF level 8 [13]) education and train-
ing programs for motivated and talented university graduates who had already
successfully completed their M.Sc. studies. Currently, there are nineteen of these
two-year post-master (doctoral) technological designer programs, such as Data
Science, Automotive Systems Design, Mechatronics Systems Design, Chemical
Product Design, Design of Electrical Engineering Systems, and Software Tech-
nology (ST) operational in the Netherlands. These programs are, to our knowl-
edge, unique in the world. They are organized in the 4TU.School for Technolog-
ical Design, Stan Ackermans Institute [17]. The institute is a joint initiative of
the universities of technology in the Netherlands. Recently, on Feb 13th, 2020
the 3000-th PDEng diploma was awarded. The educational models chosen by
each of these designer programs differs according to the knowledge field of the
program. In this paper we concentrate on the Computer Science field, addressed
by the ST program.

The PDEng Software Technology program was founded in 1988 as the sixth
technological designer program and started its first edition in 1990. Every year
up to 20 trainees are appointed. By now it has almost delivered the impressive
number of 500 graduates.

In contrast to the situation with regular B.Sc. and M.Sc. programs, and in
line with the PhD programs, candidates cannot simply register or enroll in these
programs, but they need to apply for admission (similar to PhD positions). Only
after a strong selection process are a small number of candidates (trainees) actu-
ally allowed to participate in these programs. This procedure adds to the level of
talent and motivation of our candidates. To emphasize the importance and rele-
vance of these programs for Dutch industry, the trainees are salaried employees of
the respective universities. Upon successfully completing the program, they are
awarded a Professional Doctorate in Engineering (PDEng) degree, emphasizing
the fact that they have outstanding qualifications after finishing their education
and training program. Industry appreciates the high level of our graduates, none
of whom are unwillingly without a fitting job upon graduation.

3 PDEng Program Design

The program is set up to supply a Bologna third cycle education [5] that is
focused on an integral approach to building knowledge, and design and pro-
fessional skills for a software architect profession. It aims at delivering young



250 A. T. M. Aerts and Y. Dajsuren

professionals who are well on their way to become Software Architects. As the
program is to help reach that goal fully, it promotes a self-directing and learning
attitude. The required elements of a software architect profession are illustrated
in Fig. 1.

As illustrated in Fig. 1, the required elements of a Software Architect pro-
fession include among others Professional Societies such as Software Archi-
tecture scientific community, national and international associations, Code of
ethics, Competence definitions adhering to comprehensive Body of Knowledge
namely SWEBOK, PMBOK as well as Software Architecture Body of Knowl-
edge (SABOK) [4] and Architecture Competency Framework (ACF) [3] defined
by the ST management (currently proprietary). PDEng ST degree defines that
individuals master defined competencies following the education and training
offered by the ST program. As such a number of educational elements has been
chosen that in an integrated fashion promote the growth of the trainees to the
desired exit level. For instance, the curriculum contains a number of courses and
workshops that focus on the explanation of a selected set of core concepts in a
certain domain that are applied directly on representative problem instances to
give the trainees not only insight into the abstract version of the concept but also
into the practical application to solve a (particular type of) problem. The meta
goals of this approach are to instill a methodical way of exploring new domains,
which is the basis of a structured way of independent learning and promoting
the ability of translating abstract concepts into practical solutions and reversely,
abstracting from a practical, industrial problem (instance) to a more abstract
formulation and relating this to (recent) research results.

Another characteristic feature of the program, in support of promoting the
awareness and experience with technological leadership and management and
control of software processes, follows from the fact that the development of indus-
trial software is done in teams, many of the activities during courses and training
and all activities during the projects are done in teams, small or large.

Since the time for learning is so short we do not have any pure elements in
the program that only contribute knowledge or design of professional skills in
isolation.

3.1 Engineer, Designer, or Architect?

In order to position the program more clearly, we briefly describe our nomencla-
ture for the various functions in industry. The nomenclature is schematic and is
only intended to delineate the path of growth we intend the trainees to follow.
It reflects to some extent the function hierarchy in industry. The entry level
for the program is that of Software Engineer. A software engineer can handle
all phases of the software development life cycle, from problem description and
requirements to deployment, as an independent professional. A software engineer
typically will work on software projects with a complexity that one person can
handle independently within a year or less. When he or she is a member of a team
the software engineer typically is responsible for a well specified task or mod-
ule. Because of the coverage of most of the phases of the software development



The PDEng Program on Software Technology 251

F
ig
.
1
.
M

o
d
el

o
f
a

so
ft

w
a
re

a
rc

h
it

ec
t

p
ro

fe
ss

io
n
.
A

d
a
p
te

d
fr

o
m

IE
E

E
M

o
d
el

o
f
P

ro
fe

ss
io

n
[1

4
].



252 A. T. M. Aerts and Y. Dajsuren

life cycle, this function clearly exceeds that of a programmer whose activities
are mostly limited to the creation and maintenance of code, according to given
specifications.

The next major level of software professional is that of Designer. A software
designer exceeds the level of an experienced software engineer by the capacity to
deal with more complicated problems. In addition to possessing more advanced
problem solving skills, a designer typically deals with problems with a size that
require a team in order to realize a solution within a limited amount of time. The
designer is responsible for developing the concept for the solution of the problem
and then refining this concept into smaller parts that can be handled by the
software engineers in the team. The designer then needs to provide the technical
leadership to the team such that the integrity of the concept is safeguarded and
the solutions for the parts can be integrated into an overall solution for the
initial problem. A software development team will be composed of specialists
from various areas of software technology. The problem typically is concerned
with a one-of-a-kind or first-of-a-kind software product (TRL levels 2–5 [7]).

When the complexity of the problem increases still further, because the solu-
tion has to be realized in a number of subsequent versions (for instance for time
or budget reasons) or in several variations as is the case for consumer products,
a professional at the level of Architect is needed. An architect is concerned with
software systems that have a longer lifetime, are realized in stages, and have
a strategic value for a company. Architects are often involved in the creation
of the company product roadmap, and as such have to coordinate the work
of the various teams working on different versions or variations of a product.
Software architects are concerned with software products; system architects are
responsible for products requiring multidisciplinary expertise and including also
hardware (see [23] for an impression of the evolution of architects’ activities).

The program strives to bring the trainees to the level of Designer. Through
the composition of the curriculum with its focus on design, architecture and
personal/professional development, five years of growth and maturation is packed
into two years of training and development. This shortens the time to reach the
level of architect.

3.2 Software Technology Program Framework

The ST progam is a post-master program that prepares independent technolog-
ical designers. It addresses topics of increasing complexity and adheres to the
EQF and NLQF Level 8. We thereby rely on the fact that our trainees have
completed an MSc degree and thus have learnt how to formulate and answer
scientific questions (under the guidance of a supervisor) and access the scien-
tific literature to identify what is already known and what is not. They have
developed a critical attitude to be able to evaluate the relevance of what they
find there in relation to the question(s) they try to answer. By introducing step
by step more complexity we stimulate the growth of their analytical, creative
and critical skills so they can handle this complexity independently [R4]. PhD



The PDEng Program on Software Technology 253

candidates experience a similar growth to become independent researchers who
can create new theoretical knowledge independently.

As mentioned above, development of professional qualities, such as social
and communicative competencies [R3], strong technical leadership competencies
[R5], and strong project management competencies [R2], an important part of
the program is done as a group. To facilitate this the program has only one
starting date such that team processes can start from day one and be continued
up to the graduation project. A group may be the entire group or a part of it.
This way the trainees get insight into what is needed to make a good team and
how to build one. In a team of 15–20 persons some structure may be introduced to
provide sufficient roles (professional/technical, leading/supporting) to practice
responsibility, communication, and action learning. For instance, a leadership
role can be given to a trainee who has advanced technical knowledge in the
problem domain, and therefore can look further ahead, which gives an advantage.
If the problem domain is new to everybody, a trainee who has more advanced
learning goals in communication and leadership (see below) is given the task.

The significant amount of time spent working in teams is productive for estab-
lishing a community of learners that will support inquiry learning [2]. In partic-
ular the first project, where everybody becomes visible to the others, in terms
of what they know and can do is seminal in this. A safe environment emerges
where knowledge is shared, complex problems are solved collaboratively and at
the appropriate level, alternatives are generated and challenged, new insights
are gained, communicated, criticized and provided with a sound rationale. This
may take several iterations where new insights are used to create more complete
solutions. Here a tight community of trusted peers is created that will endure as
professional network long after graduation [R3, R4].

The trainees make a personal development plan in which they itemize which
competency they want to strengthen at some point during the program and set
a level they want to reach. Depending on the role they get assigned, they pick
out appropriate learning goals to practice and realize, and reflect on the degree
of success they reached after the project. They get feedback from their teachers
and coaches before, during and after the project. In this way the trainees take
control of their own development.

Industry is a dynamic environment, and so is academia. Importance of cer-
tain domains rises and wanes. One cannot teach all present and future subjects
in two years time, and assume the acquired knowledge will be sufficient for an
entire career. Insights progress. (A witness of this is that IEEE has made the
SWEBOK guide as of version 3 a living document [19].) This means that in
addition to teaching specific knowledge about some topic or training required
skills, e.g., to be able to do particular project, meta skills such as the ability to
quickly identify relevant/necessary knowledge and acquire it as well as the ability
to master the corresponding skills to use it need to get sufficient attention. The
graduate has to become a self-propelled, reflective learner who knows his/her
level of ability and can organize the proper setting to acquire the required new
knowledge or skill [R1]. To be able to do this we assume that most of the knowl-



254 A. T. M. Aerts and Y. Dajsuren

edge documented in SWEBOK is known by our trainees (and we test this in the
application procedure) and we can build on this.

The training projects typically last a number of weeks, from 7–10 weeks.
These are relatively short projects. The time typically is long enough to cover
the requirements and design aspects of the problem and build a demonstrator
that answers some important questions. After all, we do not need the trainees
to practice their engineering skills: they are certified engineers to start with.
This advantage makes it possible to introduce increasing complexity into the
project, and cover a number of new knowledge domains from which they learn
how to pick up new knowledge quickly. The duration of these projects is relatively
short. This has the consequence that the pressure is high, tasks have to be
performed in parallel and good communication is of the essence. This requires
good organisation and a properly prepared starting point.

During the last ten months of our program our trainees are out-placed indi-
vidually at a company to participate in a relevant project and get responsibility
for a part of it. This way they get on-site experience and provide an added-value
to that project in terms of a transfer of state-of-the-art methods and techniques,
tools, best-practices, and other relevant competencies, as well as knowledge.
These projects are paid for, adding to the responsibility of the trainee (and the
supervisor). The trainees are daily supervised by a software/system architect
from the host company as well as a TU/e scientific staff. The trainees are given
ample opportunity to improve their competencies for a future career as a (senior)
software designer or software architect.

Program Elements. In order to foster the abilities mentioned above, several
ingredients have to be present in the program. Our training program consists of
a number of strongly related courses (including training) and projects that focus
on the various aspects related to

– technical and technology issues [R1]
– management and process issues [R2]
– professional, social, and communicative issues relevant for the project-based

team-oriented design and development of software for resource-constrained
software intensive systems and interconnected and intelligent software sys-
tems. [R3, R4, R5]

Element Details. In the context of the first category, our training program
includes training primarily related to the early phases of design, such as usage
modeling, requirements engineering, system thinking, software and hardware
architecture, object-oriented analysis and modeling, artificial intelligence and
some training related to relevant domain specific knowledge, such as language
technology, system validation and concepts of distributed systems.

In the context of the second category, our training program includes short
training’s primarily related to controlling the design and development process,
such as project management, agile software development, configuration manage-
ment, quality assurance, and quality control.



The PDEng Program on Software Technology 255

In the context of the third category, our training program includes a per-
sonal/professional development program, including assessments, short awareness
training’s, and reflection sessions to develop a learning attitude, related to the
relevant non-technical competencies necessary for effective and efficient com-
munication and behavior, such as presentation techniques, meeting techniques,
designer competencies, teamwork, discussion and negotiation techniques, deci-
sion making techniques, and leadership techniques.

The program covers sustainable competencies such as the various relevant
aspects of systems architecting and software design, including technical aspects,
business and management aspects, and professional development aspects. It also
covers training/courses that add domain knowledge that is required for the
projects (see below). This course and workshop-oriented training is supplemented
with several other elements such as excursions to companies and seminars from
industry partners and alumni. These activities help to acquaint the trainees with
the role of software in the high tech industries and to give them a view on the
state of the art in the industrial application of new software methods and tech-
nologies in practice. The training program provides the theoretical background,
supported by small exercises, for end terms R1 through R5. The practical foun-
dation for the end terms R1 through R5 is laid in the project part.

Our program therefore includes, as discussed above two kinds of projects,
each with a different focus. The first kind of project is the in-house project.
These projects are meant to provide an environment for the trainees to learn
to work in a team and experience the different kinds of roles, structures, and
communication needed to make a team successful. They also serve to let the
trainees experience working with a real customer, dealing with real timing con-
straints, and other realistic projects, such as ill-defined problems, incomplete
information, and multidisciplinary teams. For a recent example, see [15]. The
multidisciplinary character arises naturally by the choice of industry problems
from different problem domains in which the software problems are situated in
a mechanical, electrical, physics or business context. At least one project is in
the automotive or mechatronic domain, which allows our trainees to collabo-
rate with trainees from the Automotive and Mechatronic System Design PDEng
programs in a multidisciplinary team on a system engineering problem.

During the second kind of project, the trainees are out-placed for ten months
to one of our industry partners to participate in an authentic, operational on-
site project. During such a project the trainee has to start and manage a pro-
cess to get from ill-defined wishes and needs to concrete results. These projects
are usually related to a feasibility analysis, a proof-of-concept, or first-of-a-kind
development (TRL levels 2–5 [7]). They may include an engineering sub-project
that can be delegated to a group of third year Bachelor students. The trainee
then acts as customer for this subproject and integrates the results into his own
project. This ten month project is basically the concluding proof-of-ability.

The precise content of the program elements varies from year to year. Since
we collaborate with industry and research partners to create win-win situations,
projects are never repeated. Our partners propose projects from which they can



256 A. T. M. Aerts and Y. Dajsuren

learn about new methods or research results, and invest their time to define a
suitable context in which these questions can be answered. In case of the in-
house project we make sure that the trainees are supplied knowledge about the
core concepts needed for the project. This can be done by rescheduling a short
course or workshop by industrial experts or by inviting one of the research staff
members to give an introduction. In this way, all trainees have a sufficient level of
knowledge of the core concepts at the start of the project, which means the (rel-
atively short) available time can be spent efficiently on identifying and resolving
the problems particular to the project and translate theory into practice. During
the project the teachers involved in the courses double as coaches, supporting
the application of the theory in practice.

Since the introductions are meant to provide a solid foothold in the domain
of the project, and the trainees all have good experience in doing research, work
on the project can be done in parallel by the various trainees, with regular syn-
chronisation of the knowledge at the team level. The trainees take ownership of
the project and organize and execute it independently. Various roles are iden-
tified and assigned to individuals such as project lead, product owner, team
lead, system/software architect, designer, tester, developer, and integrator. The
assignments rotate over the projects so that everybody gets to experience as
many different roles as there are projects. This way of working produces much
valued results.

Trainees come from all over the world. This implies that there is a large
diversity in culture, knowledge, experience and skills in each group. These dif-
ferences provide a rich source of knowledge as some trainees have more advanced
knowledge on some topics than others. Such an advantage puts the trainee in a
leading role, whereas he/she may be in a learning position on another topic or
in another domain. Trainees thus learn quite a bit from each other and this peer
teaching and learning is the best way to learn something fast. See also Ref. [2].

In varying the particular focus of the courses and training for a given gener-
ation attention is paid to the coverage of the end terms, such that the balance
of the program between the various learning targets is preserved.

4 Quality Evaluation

The quality of the program is monitored at several levels by the Dutch govern-
ment, by the industry partners and by its alumni.

4.1 Certification of the Program

Since the program is an official university degree program (PDEng), it is certified
by the government every five years, similar to the Bachelor, Master and Research
programs. The certification procedure is carried out by the CCTO (Certification
Committee for Technological Designer programs), an independent certification
body, instituted by the Dutch government and hosted by the Dutch Engineering
Association (KIVI).



The PDEng Program on Software Technology 257

Every five years, an overview is put together that demonstrates the quality
of the program, in terms of the content of the program and the processes that
are put in place to monitor the quality of the trainees and the teaching staff.
This overview together with supporting documents is submitted for review by
a committee appointed by the CCTO that is composed of representatives from
industry and academia and is chaired by a professor from another university
and supported by a secretary from the CCTO. This committee may request
additional documentation, and visits the program to interview selected trainees,
teaching staff and the program management. Based upon their findings they
recommend the CCTO to certify the program, certify it conditionally or with-
draw certification. The ST program has passed the certification procedure always
unconditionally, the last time in 2018.

4.2 Industry Feedback

The program has instituted an Industrial Advisory Board (EAC) that convenes
twice a year to review the performance and plans of the program. The board
is composed of representatives of the industry from the Brainport area and
industrial research institutes (TNO). The program management presents the
achievements, concerns and any initiatives they want to take to the board for
scrutiny, suggestions and possibly approval.

4.3 Alumni

The program is also rated every few years by the alumni association of the
program in a survey in terms of value for the alumni career and possible pro-
gram improvements or adaptations. This alumni association, called xOOTIc,
was founded by the first generation. At that time the program was called OOTI,
a Dutch abbreviation for Designers Program for Technological Informatics. The
alumni association was called xOOTIc (pronounced as “exotic”) for ex-OOTI
community. The idea was to keep in touch with each other and the program by
building a network of alumni.

The survey of the careers and professional experiences of the alumni gathers
feedback for both the association, the EAC, and the ST program itself. In 2009
the questionnaire went online. From that point on, only the number of completed
questionnaires are known. There was a survey in 2018, but the results of this one
are not yet available for public. We see that the percentage returned in the last
ten years is in the range of 30%–40%. For comparison, the number of alumni in
1993 was 22, that at the start of 2015 was 350.

Of the first three surveys only some summary information is available. The
questionnaire’s from 1998 to 2015 provide detailed information about a number
of concerns. The questions asked change over time, in number, e.g., in 1998 53
questions needed to be answered, in 2012 57, and in 2015 59, but also in content.
One of the consistently asked questions is the Job function. The answers are
shown in Table 1.



258 A. T. M. Aerts and Y. Dajsuren

Table 1. Job function percentage

Year % SoftE % SoftA % SysE % SysA % Researcher % Remainder

1998 26 14 7 17 36

2000 31 19 9 4 12 26

2002 30 26 4 4 9 27

2004 30 26 4 4 9 27

2006 26 17 5 17 12 23

2009 45 15 1 7 9 24

2012 25 11 9 14 20 21

2015 30 17 4 11 17 22

The abbreviations in Table 1 stand for Software Engineer (SoftE), Soft-
ware Architect (SoftA), System Engineer (SysE), System Architect (SysA),
Researcher (both academic and industrial), and Remainder that covers jobs such
as Director or Business Owner, Department Head, Team Leader, and Project
Manager. Note that we use anonymous survey results. We cannot make state-
ments about individual careers, which would involve relating surveys from sub-
sequent years. The survey’s do include a question about the ambition of the
graduates, which gives an indication of the desired career path.

One general conclusion is that a fair fraction of the graduates from the ST
program reach architect functions at some point in their career. On average
18% of the graduates hold a software architect position in the various surveys,
and 9% a system architect position, together more than 26% of the graduates
who participate in the survey. (Note that in 1998, system engineers and system
architects counted together for 7%.) These positions are not reached as a starting
level. Many graduates start out as a software engineer or designer but reach the
architect level sooner than, e.g., peers who start an industry career directly after
getting their MSc degree and thus have a head start of two years. We used this
observation in our hiring campaigns. Not all graduates go for architect functions;
some choose are invited to a different career path. Note for instance the sizeable
fraction (19%) of graduates holding research (academic or industrial) positions.

We see in Table 1 that the percentage of ST graduates reaching, e.g., the
architect level is not monotonous. One reason for this is that the group of par-
ticipants changes between surveys; some participants join, others leave the survey
group. Also, after having been architect for a number of years, ST graduates move
on to other functions, such as director or business owner, manager, researcher
(PhD) or lecturer.

Starting in the 2006 survey, a section of questions were included on the topic
“Relevance of PDEng in your career” that were meant to give feedback to the
ST program and the Industrial Advisory Board. One question was: “Considering
what you know now, would you still have done the PDEng program?” (Answer:
yes or no). Another question was:“Do you feel that following the PDEng pro-



The PDEng Program on Software Technology 259

gram has given you an advantage over other people with a similar background
(age, studies, etc.) but who did not follow the PDEng program?”. The answers
included: “Yes, because I am more technically skilled” and “Yes, because I learn
new things faster” (columns 3 and 4 respectively in Table 2). From column 2 in
Table 2 it appears that 95% of the respondents consider enrolling into the pro-
gram time well spent. We find a good deal of goodwill among our graduates for
the program. Many of them keep in touch with program to offer, e.g., training
of final projects or lectures about topics they are specialists on.

Table 2. Trainee satisfaction

Year Do it again? Tech skills Fast learner (%)

2006 98 35 24

2009 97 58 43

2012 95 61 33

2015 98 46 51

The two aspects of the training they received in Table 2 consistently come
out on top. They are statements about the fact that the program educates at
a more advanced level than, e.g., MSc courses do. The first one may be an
indication that the skills taught and practised in the training project are more
relevant to their working situation than those of their colleagues. The second
one may be an indication that the attention paid in the personal development
courses to promoting a learning attitude is paying off as well. Both statements
are supported by feedback on courses valued most and recommendations for new
courses that also are part of the surveys. This is valuable input. In considering
replacement of certain courses by others we keep in mind the coverage of the
contribution of program elements to the end-terms.

5 Related Work and Discussion

The view that architects, to be successful, should not only be good at dealing
with what and how to document architectures but also at sharing and explaining
the architecture with a variety of stakeholders, and getting their support for
finding the right balance between functional and non-functional requirements
and the way to bridge the gap between the problem space and the solution
space, became accepted around the beginning of this century (see [8,9] and
references therein). The ensuing discussion, however, was constrained by the
focus on how to teach this in an often single Bachelor or Master course setting.
In [18] a professional Master program course is described based on SWEBOK2
engineering profile and includes a yearlong real life project, which is intended
for students with at least one year of industry experience.



260 A. T. M. Aerts and Y. Dajsuren

Since the architect role involves so many different aspects that have to get
attention, and requires a certain readiness of the students to appreciate what is
offered, only a (simplified) part will get across in an isolated course. It requires a
multidisciplinary team of teachers and coaches to help with the various aspects
to make the students aware of the learning opportunities and how they can
handle them in an effective way. This takes time and can be done in a two year
ST program. The students should try out roles and practice. Failing is an option,
and a source of learning, as long as the same failures are not repeated, because
that would constitute an inability to learn.

In [22] van Vliet reflects on teaching a Software Engineering course and for-
mulates traps. Trap 1 reads: “A Software Engineering course needs an indus-
trial project”. Van Vliet speaks about a second year Bachelor SE course and
he is right when he remarks that second year Computer Science students are
not mature enough to appreciate ill-defined, inconsistent problem descriptions
and assignments, inherent to industrial projects or the possibility of more than
one “good” solution. These students need to focus on mastering the basic tech-
niques in a more unambiguous setting. They need to learn to build a system
correctly. In the Master phase they will be confronted with still mild forms of
vagueness (see [9]). In contrast, in our case the trainees have all gone through
the Master phase, where in the course of their thesis work they had to make a
rather vague (open) question more precise and pick out one of the possibilities
to answer. They are now mature enough to deal with authentic situations under
real-life circumstances and corresponding uncertainties and challenges, which
will be their future working situation. For this we need industry projects, and
several of them. They need to learn to build the right system, i.e., they need to
deliver the system that solves the customer’s problem. It is remarkable to see
how our industry partners can steer the projects by adding, changing or reducing
the problem statement and thus ensure that a do-able project results and the
trainees can savour a successful project. After all, this is a big motivator.

Muller lists the challenges mature professionals (10–15 years of experience)
have to overcome during his course in systems architecting [11]. Galster and
Angelov comment on the issues encountered in teaching architecture [6]. In
the ST program the challenges occur as well (we mentioned among others the
abstraction and integration issues). The time period, in which the modeling can
be practiced with feedback from coaches, is advantageous in the ST case since it
allows for multiple iterations. Also, most of our trainees are “fresh out of school”
and their modeling education during the Masters is still there to apply. Some
of it is reactivated by means of the modeling and architecting courses. In the
projects it becomes practical and its consequences tangible. We introduce multi-
disciplinary aspects into the curriculum by collaborating with the Automotive
and Mechatronics System Design PDEng programs in joint projects.

6 Conclusions and Future Work

In this paper we have presented the PDEng Technological Designer program on
Software Technology (ST). As discussed above, the ST progam is unique in a



The PDEng Program on Software Technology 261

sense that it is a doctorate level degree program to train software architects and
designers for industry. It has been running for over 30 years now, with good
results. One notable best practice in the last 25 years has been the collabo-
ration with industry partners who have provided the program with innovative
projects that were well suited to prepare the trainees for their future working
environment.

Over the past 30 years many things have changed. As the program is posi-
tioned on the interface between academia and industry, two dynamic worlds, it
has had to deal with changes and complexities on both sides and align. On the
academic side, the program started after the change of the engineering educa-
tion from a five to a four year program. Around 2000 a five year curriculum
with a Bachelor-Master structure was introduced. Around this time the influx of
trainees from abroad became more important than the influx from trainees with
a Dutch educational background. On the industry side new methods and tech-
nologies developed that became mainstream and durable. These had to be incor-
porated into the program. This led to new courses, several of which were later
adapted and incorporated in the Master program. Industry products became
more complex. Automation claimed a bigger share and the corresponding train-
ing projects required appropriate teaching before the start to make them doable.

In view of the past evolution, it is quite certain that the program will continue
to adapt in order to keep aligned with both academia and industry. The challenge
is to stay abreast of developments and stay relevant by educating high level
young professionals that can drive innovation in industry. We hope that similar
programs can be implemented in other industrialized countries.

Acknowledgements. It is a pleasure to thank Harold Weffers, Dieter Hammer, Mar-
tin Rem, Johan Lukkien and Mark van den Brand for many interesting past and present
discussions on the various topics in the paper.

References

1. Aerts, A.T.M., Goossenaerts, J.B.M., Hammer, D.K., Wortmann, J.C.: Architec-
tures in context: on the evolution of business, application software, and ICT plat-
form architectures. In: Information & Management, vol. 41, no. 6, pp. 781–794.
North-Holland (2004)

2. de Boer, R.C., Farenhorst, R., van Vliet, H.: A community of learners approach
to software architecture education. In: 22nd Conference on Software Engineering
Education and Training, CSEET 2009, pp. 190–197 (2009)

3. Dajsuren, Y.: PDEng Software Technology - Architecture Competency Framework
(proprietary) (2017)

4. Dajsuren, Y.: PDEng Software Technology - Software Architecture Body of Knowl-
edge (SABOK) (proprietary) (2017)

5. EQF Advisory Group: EQF: Descriptors defining levels in the European Qualifica-
tions Framework (2020). https://ec.europa.eu/ploteus/content/descriptors-page

6. Galster, M., Angelov, S.: What makes teaching software architecture difficult? In:
IEEE/ACM 38th International Conference on Software Engineering Companion,
(ICSE-C), pp. 356–359 (2016)

https://ec.europa.eu/ploteus/content/descriptors-page


262 A. T. M. Aerts and Y. Dajsuren

7. Heder, M.: From NASA to EU: the evolution of the TRL scale in Public Sector
Innovation. Innov. J. Public Sect. Innov. J. 22(2), 1–23 (2017)

8. Jaccheri, M.: Tales from a Software Achitecture Course Project (2002). http://
www.idi.ntnu.no/letizia/swarchi/eCourse.html

9. Lago, P., van Vliet, H.: Teaching a course on software architecture. In: Proceedings
18th Conference on Software Engineering Education and Training, CSEET 2005,
pp. 35–42 (2005)

10. Mannisto, T., Savolainen, J., Myllarniemi, V.: Teaching software architecture
design. In: Seventh Working IEEE/IFIP Conference on Software Architecture,
(WICSA 2008), pp. 117–124 (2008)

11. Muller, G.: Challenges in teaching conceptual modeling for systems architecting.
In: Jeusfeld, M.A., Karlapalem, K. (eds.) ER 2015. LNCS, vol. 9382, pp. 317–326.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25747-1 31

12. Muller, G.: Experiences of teaching systems architecting. In: Proceedings of the
International Conference on Systems Engineering, no. 14. INCOSE, Wiley Online,
Toulouse, June 2004

13. Nationaal Coördinatiepunt NLQF: The Dutch qualifications framework (NLQF)
(2020). https://nlqf.nl/

14. PEAB-EIT: Model of a profession (2019). https://www.computer.org/
volunteering/boards-and-committees/professional-educational-activities/model-
of-a-profession

15. Roos, N.: Using AI to streamline remote communication in healthcare (2019).
https://bits-chips.nl/artikel/using-ai-to-streamline-remote-communication-in-
healthcare/

16. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley, Boston (2005, 2012)

17. SAI: 4TU.School of Technological Design Stan Ackermans Institute (2020).
https://www.4tu.nl/sai/en/

18. Shaw, M., Herbsleb, J., Ozkaya, I., Root, D.: Deciding what to design: closing a
gap in software engineering education. In: Inverardi, P., Jazayeri, M. (eds.) ICSE
2005. LNCS, vol. 4309, pp. 28–58. Springer, Heidelberg (2006). https://doi.org/10.
1007/11949374 3

19. SWEBOK-V3: Software Engineering Book of Knowledge, ISO/IEC TR
19759:2015 (2015). https://www.computer.org/education/bodies-of-knowledge/
software-engineering

20. TNO-ESI, van den Aker, J.: Software Architecture (2020). https://www.esi.nl/
innovation-support/competence-development/courses/software-architecture.dot

21. TU/e: PDEng Software Technology program (2020). https://www.tue.nl/
softwaretechnology

22. van Vliet, H.: Reflections on software engineering education. IEEE Softw 2006,
55–61 (2006)

23. Woods, E.: Software architecture in a changing world. IEEE Softw. 33(6), 94–97
(2016)

http://www.idi.ntnu.no/letizia/swarchi/eCourse.html
http://www.idi.ntnu.no/letizia/swarchi/eCourse.html
https://doi.org/10.1007/978-3-319-25747-1_31
https://nlqf.nl/
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/model-of-a-profession
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/model-of-a-profession
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/model-of-a-profession
https://bits-chips.nl/artikel/using-ai-to-streamline-remote-communication-in-healthcare/
https://bits-chips.nl/artikel/using-ai-to-streamline-remote-communication-in-healthcare/
https://www.4tu.nl/sai/en/
https://doi.org/10.1007/11949374_3
https://doi.org/10.1007/11949374_3
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.esi.nl/innovation-support/competence-development/courses/software-architecture.dot
https://www.esi.nl/innovation-support/competence-development/courses/software-architecture.dot
https://www.tue.nl/softwaretechnology
https://www.tue.nl/softwaretechnology


Experiences and Learnings
from Industrial Case Studies



Architectural Concerns for Digital Twin
of the Organization

Mauro Caporuscio1(B), Farid Edrisi1, Margrethe Hallberg2,
Anton Johannesson3, Claudia Kopf2, and Diego Perez-Palacin1

1 Linnaeus University, Växjö, Sweden
{mauro.caporuscio,farid.edrisi,diego.perez}@lnu.se

2 Scania AB, Oskarshamn, Sweden
{grethe.hallberg,claudia.kopf}@scania.se

3 Virtual Manufacturing AB, Göteborg, Sweden
anton.johannessone@virtual.se

Abstract. Employing a Digital Twin of the Organization would help
enterprises to change and innovate, thus enhancing their organization’s
sustainability. However, the lack of engineering best practices for develop-
ing and operating a Digital Twin of the Organization makes it difficult
for enterprises to fully benefit from it. Many companies are currently
investigating the potential use of it, but available solutions are often
context-dependent or system-specific, and challenging to adapt, extend,
and reuse. Therefore, digitalization is perceived as a slow, resource-
demanding, and extremely expensive process whose outcome is uncer-
tain. To this extent, enterprises seek solutions allowing them to gently
introduce a Digital Twin of the Organization into their organization and
to evolve it according to the changing needs and situations. This paper
reports a first attempt on architecting a Digital Twin of an Organiza-
tion, and discusses some architectural concerns to be addressed in order
to facilitate its development and evolution.

1 Introduction

The digitalization of industry is a grand challenge. The advent of Cyber-Physical
Systems (CPS) combined with Data-Driven (DD) technologies creates the neces-
sary infrastructure for the 4th industrial revolution, where machines and humans
are interconnected in sociotechnical systems, which are business or mission-
critical [5]. Indeed, most sociotechnical systems are organizational systems which
support enterprises to achieve their goals by explicitly including all those arti-
facts, processes and people needed to run the business. In this context, having an
accurate digital representation of the organization would facilitate the decision-
making processes in the value chain by providing (i) an aggregated view of
the elements affecting a decision, and (ii) a prediction of the decision outcome:
namely, a Digital Twin of the Organization (DTO) [11].

A Digital Twin of the Organization allows for representing all the elements
and connections of a organizational system in virtual models, which can be
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 265–280, 2020.
https://doi.org/10.1007/978-3-030-58923-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_18


266 M. Caporuscio et al.

perpetually simulated and analyzed to achieve continuous assessment and opti-
mization of the organization. Employing a well-defined DTO is an important
asset in positioning new developments within the context of existing processes
and other assets of an organization, as it helps in identifying necessary and/or
opportunistic changes. Indeed, good DTO practices can help organizations to
change and innovate, thus enhancing the organizations sustainability.

However, the digitalization process is far from being fast, inexpensive, or
effortless. The lack of engineering best practices for developing and operating
DTOs makes it difficult for industry to fully benefit from them. Many compa-
nies are currently investigating the potential use of DTOs, but provided solu-
tions are often context-dependent or system-specific, and challenging to adapt,
extend and reuse. Indeed, making optimal business/design decisions and select-
ing the right technology (given the considerable number of DTO, CPS, and DD
technologies and platforms available) able to satisfy both current and future
needs is challenging. The following main question, raised by industry, should be
addressed:

IQ: “Digitalization can’t happen overnight, but should be a long step-by-step
journey into the future from where we start today. How to gently introduce
a DTO satisfying current needs, and then evolve it according to changing
situations?”

In fact, the adoption of DTO is, as we describe above, not straightforward and
the many challenges prevent organizations from deciding to move into and invest
in DTOs and related technology. Some decisions, among others, are: (1) How to
incorporate CPS, DD and DTO technologies into an existing organization? (2)
How to benefit from incorporating DTO in products and/or production? (3)
How to define and achieve a long-term strategy for adopting DTO? (4) How
to access and analyze data in real-time and enact changes based on decision
support mechanisms? (5) When the organization executes structural changes,
how to systematically evolve the DTO to reflect these changes?

To this extent, engineering best practices suggest the exploitation of archi-
tectures (at different levels of abstraction) to capture different aspects of the
system under development. Indeed, separation of concerns (e.g., structure from
behavior) improves the design and eases the maintenance of the system.

In this paper, we report about a first attempt made in architecting and
developing a DTO, and evolving it to accommodate changes occurred at the
business level. Evolvability is investigated through development. Specifically, we
first investigate how to employ a DTO in an already-in-place manufacturing
process (representing only a small part of the whole production system), then
we evolve it by developing and integrating, new features. The paper details the
development process, and pinpoints a set of concerns to be confronted with
when architecting a DTO that is expected to evolve overtime according to the
organizations requirements. From the experience, it emerges the need for defining
an architectural framework for facilitating DTO development and evolution.



Architectural Concerns for Digital Twin of the Organization 267

Fig. 1. Incremental approach

The paper is organized as follows. Section 2 reports our experience in imple-
menting and evolving a DTO for a given industrial case study, whereas Sect. 3
pinpoints and discusses some architectural concerns to be addressed in order
to facilitate the DTO evolution. Section 4 discusses related work, and Sect. 5
conclude the paper by addressing future research directions.

2 Industrial Case Study

This Section describes the first steps towards the digitalization of an existing
production line. It provides details on the DTO development, and some examples
about how the organization can benefit from the DTO.

2.1 Digitalization Journey

The digitalization journey in the organization requires the construction of the
DTO focusing on its evolvability. Evolvability is a design principle that takes
into account the future change and growth of the system. Within the incremen-
tal digitalization process, it serves as a measure of the ability to extend and
modify DTO upon the introduction of new activities to be digitalized or new
requirements to be fulfilled. We use the evolvability measure to assess the level
of effort necessary to evolve the DTO and put it into operation.

As a key requirement for a DTO is to mimic the structure of the organization
that produces it, we leverage on Enterprise Architecture [20] (EA) to describe
the different aspects of a DTO. In fact, EA is by default positioned to play a



268 M. Caporuscio et al.

key role in realizing a DTO, as it embeds all the principles and models used
in the realization of an organization: (i) the Organizational Architecture (OA)
and Business architecture (BA) provide the structural and behavioral models,
respectively, whereas (ii) the Information Architecture (IA) provides the data
representing the actual status of the organization.

We adopt the incremental development approach in Fig. 1, where each evo-
lution step is divided into four phases: development, integration, validation, and
operation. As illustrative example, consider that we start from a subsystem S1

that has already been digitalized into DTO1. We incrementally digitalize the
organization by taking another subsystem S2 and developing its DTO2, imple-
menting the necessary integration of digitalized subsystems and validating it,
resulting in DTO1 + DTO2.

2.2 Organization Description

The organization is a supplier of articles in the automotive industry. It manufac-
tures a product line with a large number of variants (≥ 1000). The automotive
industry supply chain requires Just-In-Time production. This requirement pre-
vents from, for instance, producing to a buffer. We focus only on one of the
different activities, namely the manufacturing of a specific part P of the final
product. To keep the appropriate synchronization among all parts of a product
in the whole assembly line, there is an additional requirement for P : units must
leave their production line in the same sequence as they were ordered.

Figure 2 illustrates the OA/BA representing the production line P according
to the notation introduced in [20], which consists of two workstations: Work-
station A (WA) manufactures the product and it is highly automated with two
machines working in parallel (WA1 and WA2). An operator must supervise the
machines and must change their configuration between orders of a different vari-
ant of P . Workstation D (WD) packages the product. It also has two machines
working in parallel (WD1 and WD2), but it is less automatized and requires
two operators continuously working on it, one on each machine. The business
process is supported by a legacy in-house software for Enterprise Resource Plan-
ning (ERP), which constitutes the IA. Data about both the products and the
production activities is collected by the operators, which are required to check
the products (e.g., for identifying defects), to observe the process events (e.g.,
for identifying deviations in the production plan), and to report all their obser-
vations into the IA.

This section of the plant receives orders to produce P . Each order refers to
a concrete variant v of P . An order specifies the number n of units to produce.
The operator in WA will configure either WA1 or WA2 to produce n products
P of variant v. When an order is received and both WA1 and WA2 are busy,
it waits for its manufacturing turn in a queue. When the manufacturing in WA
completes, P moves towards its packaging in WD. Operators in WD create
packages containing up to 30 units. If both operators in WD are busy when
P arrives for its packaging, then P joins a priority queue. The queue uses as



Architectural Concerns for Digital Twin of the Organization 269

Fig. 2. OA/BA of the case study

priority the sequence number of the order. Older orders have more priority than
newer orders, to help preserve the in-order delivery requirement.

The organization stakeholders (e.g., management and operators) want to
digitalize this section of the plant. The reason is that they would like to know,
in real time, the orders lead time, the utilization of resources, and the amount of
work-in-progress in the line. They would also like to predict the near future of
these three characteristics. These predictions will allow the sales department to
give better estimations of the delivery time to the clients at the moment they are
filling an order, and the production planning department can plan less disruptive
maintenance of machinery.

2.3 DTO Development – Iteration 1

According to the IA, the monitorable data in the production line are: According
to the IA, the monitorable data in the production line are:

– the moment when an order is placed, and its unique identifier ID;
– the type of variant v, and the number of units, n, to produce;
– the moment when an order ID enters WA;
– the moment when the units belonging to a given order ID are produced;
– the moment when the units enter WD;
– the moment when an order ID is packaged and ready to be delivered; and,
– the moment when an order ID is delivered.

Figure 3a shows the digitalization of the production line P based on the moni-
torable points. The model, developed using the Discrete Event System toolbox
in Matlab/Simulink1, shows the sequence of order arrival, waiting in queue for
WA, execution in WA, waiting in queue for WD, execution in WD, and in order
delivery. The last is modeled with a selection gate that controls the orders ID

1 https://se.mathworks.com/solutions/discrete-event-simulation.html.

https://se.mathworks.com/solutions/discrete-event-simulation.html


270 M. Caporuscio et al.

(a
) 

D
ig

it
al

T
w

in
of

th
e

O
rg

an
iz

at
io

n
in

th
e

fir
st

it
er

at
io

n

(b
) 

E
vo

lv
ed

D
ig

it
al

T
w

in
of

th
e

O
rg

an
iz

at
io

n

F
ig
.
3
.
D

ig
it

a
l
tw

in
s

o
f
th

e
o
rg

a
n
iz

a
ti

o
n

(m
o
d
el

fo
r

si
m

u
la

ti
o
n
)

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)



Architectural Concerns for Digital Twin of the Organization 271

(a) Orders size, arrival and delivery times

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r 

of
 U

ni
ts

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Order id

0

1

2

3

4

5

6

7

8

9

10

T
im

e 
(D

ay
)

Lead-Time
Order Unit

(b) Orders lead time

Fig. 4. Observations from DTO (Color figure online)

and a small storage. The small storage stocks some orders if necessary until the
order with the next ID to deliver is packaged in WD.

This DTO allows for observing the status of the plant –in terms of lead time
of orders, utilization of workstations, amount of work-in-progress, products in
queue waiting for an available workstation–, and simulating future scenarios.

Figure 4 shows this type of observations. The horizontal axis indicates the
observation time, 30 days. Figure 4a shows the arrival (blue line) and delivery
(black line) of orders along time, and the size of each order. In the last 30 days,
59 orders arrived to the production line, adding up 3303 units to produce. The
blue area that is demarcated by these two lines exposes the work-in-progress in
the line. The height of the blue area in each x value exposes the work-in-progress
in the line in that moment.

Figure 4b illustrates the lead time of each order. The number of units to
produce in a single order is variable in the interval [1]. Since the size of an order
affects its lead time, Fig. 4b puts together a bar for the lead time of an order
and a bar for the number of units n in the order.

2.4 DTO Development – Iteration 2 (Evolution)

The organization would like to predict more accurately the lead time and to
estimate in real time what is the optimal task for an operator. To achieve these
new goals, the organization needs to evolve its DTO.

The DTO evolution consists in providing a more realistic representation of
what happens in the organization between the moment an unit leaves machines
WA1 or WA2 and an order is ready for packaging. In the real production line,
machines in WA do not always manufacture the units correctly. Sometimes they
have defects and they need a subsequent rework before joining the queue for
packaging. The rework is manually done, and requires one of the operators in
WD. We refer to the new manual rework station as WB.

This evolved DTO will enable a more accurate estimation of the lead time
of an order –coming from the explicit digitalization of WB– and a better under-
standing of the utilization of resources –coming from the more accurate repre-



272 M. Caporuscio et al.

Fig. 5. Number of units in the production line that need rework

sentation of operators’ tasks. In the first iteration in Sect. 2.3, the busy time
of stations WD1 and WD2 also included the time that operators spent in the
rework station. The separation of the operators’ tasks into their actual work in
WD and their work in WB enables a more accurate understanding of the busy
time and service time of packaging activities in WD. Using this improved under-
standing, the DTO can assist the production planning in scheduling the optimal
task for an operator in a given moment.

To gain this new information, it is necessary to first obtain new monitored
data. This is achieved by connecting the quality sensors in the production line
that inspect units for possible defects to their digitalized representation in the
DTO. The operators gain awareness of defects at a glance since each quality
sensor, upon the detection of a defect, sends a notification to a control panel
and raises a short audible alarm. The DTO development in this phase includes
that the notifications of each sensor are also sent to the DTO (the alarm is
not). In case of defective unit, the DTO receives precise information of the nec-
essary rework and, therefore, the expected lead time of its associated order is
recalculated. This dynamic recalculation increases the accuracy of the lead time
estimation. As soon as the quality sensors discover that an order will need a time-
consuming “extra” activity (the number of defects from WA is relatively low),
the information is sent to the DTO and integrated into the lead-time prediction
calculations.

According to the incremental approach in Fig. 1, in this iteration we first need
to develop the DTO of WB. After that, we need to integrate it with the previous
DTO in Fig. 3a, considering the new data acquisition points and the sharing of
human operators among WD and WB. Figure 3b illustrates the resulting model
of the integration, where highlighted (yellow) areas represent the new parts that
have been added to Fig. 3a to evolve the initial DTO.

The evolved DTO can be analyzed to estimate the most efficient allocation
of operations in each moment, and to easily control the evolution of the num-
ber of units that require manual rework (Fig. 5 illustrates an example of this
information) and the number of operators in WD and WB.

From the description in previous paragraphs, one can deem the DTO incre-
mental evolution as a simple activity. However, it is not. The next section



Architectural Concerns for Digital Twin of the Organization 273

describes the difficulties and complications arose during the DTO integration
and validation phases at iteration 2, and the lessons learned during the journey.

3 Architectural Concerns

As discussed in previous section, evolving the production line and the DTO
accordingly is essential for the sustainability of the organization. To this end,
we reported about the physical changes made in the production line (e.g., a new
workstation WB, and new sensors in WA), as well as the changes made in the
initial DTO to reflect the changes in the production line.

3.1 Architectural Concerns in the Case Study

By comparing the two DTOs depicted in Fig. 3a and Fig. 3b, it is clear that
changes mainly occurred between WA and WD. We introduced in WA a set of
different sensors, which are the quality sensors that identify defective units. As
these quality sensors send different type of raw data (e.g., ASCII, Binary, Hex,
and etc.) at different points in time, we added in the DTO a pre-processing
entity (i.e., the Faulty Unit Identification in Fig. 3b), which is in charge of
analyzing sensors data, tag defective articles, and aggregate data by number
of defective articles in a concrete order. It is worth noticing that, due to the
volume of raw data, this activity is complex and time consuming. After the
analysis, the output of Faulty Unit Identification consists in: (i) the order
ID, (ii) the number of defective articles in such an order (can be zero if none of
the articles had any defect), and (iii) the predicted necessary time for reworking
the defective articles (can be zero). Using this information, the DTO recalculates
the estimation of the manufacturing lead time for the work-in-progress orders.

An order proceeds its way to either WD or WB according to the existence
of defective articles. If the order is healthy (i.e., the number of defective units
is 0) it is transferred to the priority queue that precedes WD, otherwise it is
transferred to WB. When entering WB, the order is buffered into a FIFO queue
and waits for an operator. Once the rework is finished the order proceeds to the
priority queue before WD, while the operator can remain working in WB or go to
WD. The DTO records the defective order ID, the number of defective units, and
the actual rework time. The DTO uses this information to increase the accuracy
of the future estimations of the necessary rework time and, in consequence, to
increase its future lead time predictions accuracy.

Further, the evolved DTO also incorporates a policy that computes how to
optimally allocate operators to WB and WD to minimize lead time. It uses the
information about the status of the production line and the number of articles in
each stage, including articles under rework and waiting for rework. In fact, while
DTO1 (see Fig. 3a) was not aligned with OA/BA because it naively assumed
two human resources continuously working in WD, the evolved DTO can also
suggest the calculated optimal allocation to the operators in each moment.



274 M. Caporuscio et al.

For example, suppose that the two operators are working in WD. When the
quality sensors detect a defective article, one of the workers in WD may decide
to attend the defective article and rework it. However, this decision can result in
a sub-optimal allocation of resources. It is possible that the optimal allocation
still assigns two operators to WD, maybe because the current bottleneck in
the production line is still WD. The evolved DTO can continuously provide a
suggestion about the optimal allocation operators.

From this discussion, it is clear that making an evolved DTO is challenging,
as it requires to consider many different dimensions. Summarizing, the main
issues emerge from:

– The OA, BA, and IA are misaligned, and it is difficult to understand the
relationships between different resources, between resources and processes,
and between resources, processes and the available data.

– Both OA, BA and IA are not flexible and they are hard to evolve. When
introducing/changing resource/processes/data all of the architectures need
be rearranged by introducing technical debts, which will lead to architecture
erosion.

– DTO is not flexible and hard to evolve. When changes happen into either the
OA or the BA or the IA, the whole DTO requires to be rearranged by still
introducing technical debts, which will lead to architecture erosion.

3.2 Lessons Learned for Sustainable Digitalization

From the above discussion it emerges that, in order to facilitate a straightfor-
ward and sustainable digitalization of the structure, products, operations, and
all relations tying these together, the OA/BA and IA must be fully aligned. In
fact, once the OA/BA and IA are aligned, they can be straightforwardly mapped
to the DTO and used for simulating and analyzing the organization: (i) OA/BA
provides all the structural and behavioral models needed for the simulation and
analysis of the organization, whereas (ii) IA provides both raw (from CPS) and
aggregated (from DD) data representing the actual status of the organization.

Unfortunately, this is a necessary but not sufficient condition. In fact, as the
sustainability of a DTO is largely determined by the sustainability of OA/BA
and IA, it must be flexible and able to accommodate continuous and rapid change
to OA/BA and IA. Indeed, if the OA/BA requires to be changed in response to
new market forces (e.g., manufacturing a new product), the IA should change as
well and fulfill the new requirements (e.g., a functionality for managing the new
production process). Therefore, the DTO should evolve accordingly and reflect
the changes made in both the OA/BA and IA. In fact, if the DTO does not
evolve and align according to the enterprise, its benefits are drastically reduced.
In other words, rigid architectures restrain the sustainability and evolution of the
DTO, and reduce its benefits.

To this end, we need to define Architectural Frameworks, which provide
principles and practices for jointly specifying, aligning, and evolving OA/BA,
IA and DTO. In particular, the Architectural Framework shall include [4]: (1)



Architectural Concerns for Digital Twin of the Organization 275

an Architectural Pattern describing architectural elements and connectors, with
constraints on how they can be combined, achieving flexibility; (2) a Refer-
ence Model decomposing functionality into elements (and data between them)
that cooperatively satisfy the organization needs; (3) a Reference Architecture
mapping the Reference Model onto system elements and defining the data flows
between them. Whereas a reference model splits functionalities, a reference archi-
tecture is the mapping of such functionalities onto a system decomposition. The
Architectural Framework should explicitly address the following concerns:

Modularity – Software engineering defines abstraction as the process of identify-
ing the important aspects of a phenomenon and ignoring the details that are not
relevant. What must be considered as important and what should be considered
as a detail to be ignored depends on the purpose of the abstraction. Modularity is
the degree to which DTOs are decomposed and recombined in terms of abstrac-
tions. Specifically, a modular DTO should be structured into identifiable entities,
which encapsulate the representation of abstractions, and are accessible through
well-defined interfaces. A modular DTO can be then composed entirely from a
set of constituent DTOs, where each of them takes care of a specific aspect (i.e.,
single responsibility), rather than having the aspect spread out over many parts
of the DTO. Modularity and Single Responsibility are then important concerns,
as they allow for separation of concerns, which can be applied in two phases:
first, when dealing with each constituent DTO in isolation (bottom-up design)
and second, when dealing with the overall characteristics of all constituent DTOs
and their relationships as a whole DTO (top-down design).

Granularity – Granularity defines the level of detail of a single constituent DTO.
Indeed, it refers to the extent to how small the constituent DTOs are. When a
DTO is split into constituents, it is important to measure the degree of compo-
nentization. On the one hand, having small, fine-grained constituents provides
greater flexibility when composing them into a DTO. On the other hand, small,
fine-grained constituents are more difficult to govern. In fact, the larger and
coarse-grained constituents are, the easier it is to manage and coordinate them
in a whole DTO. Modularity and granularity are tightly coupled and affect each
other. A DTO can have multiple possible levels of granularity. The granularity
of the data that the physical system can transmit and that can feed the DTO
is also a factor to consider during the decision of the most appropriate DTO
granularity.

Decomposition/Composition Style – Understanding how to properly decom-
pose/compose a DTO into/from constituents is relevant for defining the modu-
larity and granularity of the different entities. A new DTO should be built by
taking reusable constituents and combining them to form the required function-
ality. The capability of understanding each constituent DTO in isolation aids
the adaptation and evolution of the whole DTO. To achieve modular decom-
posability/composability, and understanding, constituent DTOs must have two



276 M. Caporuscio et al.

very important properties, namely high cohesion and loose coupling. A con-
stituent has high cohesion if all its elements are strongly related, and they are
together for a reasonable and well-defined specific purpose (i.e. single responsibil-
ity). Complementary, coupling is determined by the relationship of an individual
constituent with other constituents in the same DTO. Coupling is a measure of
the interdependence of two or more constituents in the form of interaction. If two
constituents depend on each other heavily—i.e., they are tightly coupled—it will
be difficult to observe, analyze, understand, and act them separately. In contrast,
modular structures with high cohesion and low coupling allow for considering
constituent DTOs as black boxes when the overall structure is described. Such
constituents can be observed, analyzed and described separately.

Evolution – A DTO emerges from the interactions among the constituent DTOs.
Despite the adoption of best engineering practices, the DTO must face inher-
ently continuous evolution, as well as heterogeneous and inconsistent changing
elements. Changes inside an organization are the cause of continuous DTO evo-
lution. A DTO evolution occurs when any of the following three basic situations
happen [8]: self-evolution, joint evolution, and emergent evolution.

In self-evolution, a change is introduced because of redesign, redevelopment
or improvement of an existing DTO. Requirements include improved business-
supporting functions, improved performance through using a new design and
more advanced technologies, improved architecture for future development, and
their combinations. Referring to the case study addressed in Sect. 2, an example
could be an improvable production line WA able to accommodate newly designed
robotic arms that best fit the product the machine is working on, or arms that
are simply offering improved performance over the previous ones. Self-evolution
targets a certain level of granularity of a DTO. In fact, self-evolution can occur
at the highest level of granularity, or at lower levels. As the granularity of a DTO
is strictly tied with its modularity, it is important to have a distinct vision of
the constituents and the grains of a DTO to better locate where the evolution
occurs.

In joint evolution, two or more DTOs are to be integrated for improved busi-
ness support. Still referring to the case study in Sect. 2: the two communicating
constituents, namely WA and WD, have to deal with possible multiple changes
involving, interoperability, data sharing, improved functions and services, and
workflow integration. Joint evolution targets two or more DTOs at the same
or different levels of granularity. Furthermore, integration between DTOs could
potentially change the connectors of the constituents involved.

Emergent evolution deals with the design and development of a new DTO
based on existing DTOs. Requirements include new functions developed on a
joint basis of existing constituents, and new DTOs supporting emerging business
needs. An example could be the development of a DTO on the basis of the two
constituents including WA and WD. The new DTO digitalizes the functionalities
of the underlying smart manufacturing system. Emergent evolution targets two
or more DTOs where the one emerging has a higher level of granularity.



Architectural Concerns for Digital Twin of the Organization 277

The previously described evolution types could result in isolated changes.
However, Multiple evolutions could also come out simultaneously, with self-
evolution, joint evolution and emergent evolution directly affecting a large part
of the DTO. If the evolution’s complexity is not controlled the DTO will erode
over time due to such changes. The laws of software evolution [13] state that
uncontrolled evolution brings to

– Increasing complexity: as a large program is continuously changed, its com-
plexity, which reflects deteriorating structure, increases unless work is done
to maintain or reduce it.

– Continuing grow: the functional capability of E-type systems must be con-
tinually enhanced to maintain user satisfaction over system lifetime.

– Declining quality: unless rigorously adapted and evolved to take into account
changes in the operational environment, the quality of an E-type system will
appear to be declining.

Hence, an open and connected DTO requires that evolution dimensions are
controlled to prevent costly reconstruction. Moreover, it is important to under-
stand why, how, when and where this evolution occurs.

4 Related Work

Related work is manifold and spans over different topics, namely Digital Twin
Architectures, Architecture Alignment and Architecture Evolution.

Digital Twin (DT) Architectures – Since the DT conception, more than a decade
ago [21], pioneers have used it in the manufacturing domain in order to improve
the production leveraging Virtual Factory [12]. In the Industry 4.0 domain, the
simulation of different possible behaviors is a main enabler for construction of
the desired intelligent systems [19]. Despite the efforts to systematize and guide
the development and deployment of digital twins in companies [1,9], the system-
atic implementation of digitalization process in sociotechnical systems remains
an open challenge. For instance, DT modeling is recognized as of paramount
importance for its prosperous utilization, but there is not a general agreement in
the community on a general approach to build the DT models [21]. The imple-
mentation of DT in domains such as the Cyber-physical fusion also remains
an engineering challenge due to the lack of a generally accepted framework for
acquiring the data, transmit the data, building operative knowledge from data
through simulation or data mining, and controlling the CPS [14]. Only recently,
researchers have started focusing on the architectural aspects of DT [16]. For
example, in [2] authors propose a layered architecture reference model for cloud-
based CPS, in [17] authors propose a four-layer architecture pattern to design
DT incorporating various types of information sources. The pattern is designed
to be extensible with respect to the number of sources, and flexible with respect
to the type of information. However, in spite of the increasing interest in DT,
little effort has been devoted to investigate architectural quality attributes, such
as modifiability, scalability, evolvability, reusability.



278 M. Caporuscio et al.

Architecture Alignment – The need and importance for aligning the Organi-
zational and IT architectures as been pinpointed over time by many research
studies [7,22], and now many points of alignment are commonly recognized.
Early studies focused on linking the business plan with the IT plan, and/or on
ensuring the alignment of business and IT strategies. Other approaches instead
examined the mapping between business needs and information system prior-
ities. The implications of architecture alignment have been also demonstrated
through many empirical case studies (e.g., [10,15]). The results demonstrate that
the organizations that have their Organizational and IT strategies aligned out-
perform those organizations that do not. Indeed, alignment leads to more focused
and strategic use of IT which, in turn, leads to increased performance [6].

Architecture Evolution – Sociotechnical systems obey the principle of there is
nothing permanent except change. The Organizational/Business Architecture
will evolve and the Information architecture needs to keep aligned. In conse-
quence, the DTO of the sociotechnical system needs to evolve too. At present,
evolving the software-based DT is possible, but doing it in a systematic way
that does not boost the software engineering expenses resides in the research
frontier. In [18], the authors propose a pattern-oriented development approach,
where patterns are considered as the main building blocks of the architecture
and changes are applied by means of patterns substitution, i.e., design evolu-
tion is identified in terms of replacement of patterns by other patterns. Another
interesting approach is proposed in [3], where the authors present the Evolution
Style, which defines a family of domain-specific architecture evolution paths that
share common properties and satisfy a common set of constraints. The evolu-
tion style specifies the set of concepts needed to define and analyze the software
architecture evolution: (i) the set of operators defining the evolution transitions,
(ii) the set of evolution path constraints defining whether a path is allowed or
not, and (iii) the set of evaluation functions used to compare different evolution
paths with respect to quality metrics.

5 Conclusions and Future Work

A Digital Twin of the Organization is an accurate representation of an organi-
zation (including physical, software, and human elements), which aims at facil-
itating decision-making processes, and making informed decision in the value
chain. However, the lack of engineering best practices for developing and operat-
ing DTOs makes industry difficult to fully benefit from this technology. Further,
as current solutions are often context-dependent or system-specific, they result
challenging to change, extend and reuse.

In this paper we reported an initial attempt made in architecting and devel-
oping a DTO from a manufacturing industry, and its further evolution. In par-
ticular, (i) we detailed a development process leveraging Enterprise Architec-
ture to map the organization structure/behavior (i.e., Organizational/Business
Architectures) and status (i.e., Information Architecture) into a DTO, (ii) we



Architectural Concerns for Digital Twin of the Organization 279

pinpointed a set of concerns to be confronted with when architecting a DTO,
and (iii) we discussed the need for an Architectural Framework enabling the
specification, alignment, and evolution of OA/BA, IA and DTO.

To this end, as a future work we mainly plan to address the aforementioned
architectural concerns, by devising an architectural framework which specifically
takes into account DTO’s Modularity, Granularity, Decomposition/Composition,
and Evolution.

References

1. Aitken, A.: Industry 4.0: demystifying digital twins. https://www.lanner.com/
2. Alam, K.M., El Saddik, A.: C2ps: a digital twin architecture reference model for

the cloud-based cyber-physical systems. IEEE Access 5, 2050–2062 (2017)
3. Barnes, J.M., Garlan, D., Schmerl, B.: Evolution styles: foundations and models

for software architecture evolution. Softw. Syst. Model. 13(2), 649–678 (2014).
https://doi.org/10.1007/s10270-012-0301-9

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional, 3rd edn. (2012)

5. Baxter, G., Sommerville, I.: Socio-technical systems: from design methods to sys-
tems engineering. Interact. Comput. 23(1), 4–17 (2011)

6. Chan, Y.E., Sabherwal, R., Thatcher, J.B.: Antecedents and outcomes of strategic
is alignment: an empirical investigation. IEEE Trans. Eng. Manag. 53(1), 27–47
(2006)

7. Chan, Y.E., Reich, B.H.: It alignment: what have we learned? J. Inf. Technol.
22(4), 297–315 (2007)

8. Chen, P., Han, J.: Facilitating system-of-systems evolution with architecture sup-
port. In: Proceedings of the 4th International Workshop on Principles of Software
Evolution IWPSE 2001, pp. 130–133. ACM, New York (2001)

9. Cognizant: Is your organization ready to embrace a digital twin?. https://www.
cognizant.com/

10. de Leede, J., Looise, J., Alders, B., Alders, B.: Innovation, improvement and oper-
ations: an exploration of the management of alignment. Int. J. Technol. Manag.
23(4), 353–368 (2002)

11. El Saddik, A.: Digital twins: the convergence of multimedia technologies. IEEE
MultiMedia 25(2), 87–92 (2018)

12. Grieves, M.: Digital twin: manufacturing excellence through virtual factory repli-
cation. White Pap. 1, 1–7 (2014)

13. Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J.M.: The evolution of
the laws of software evolution: a discussion based on a systematic literature review.
ACM Comput. Surv. 46(2), 28:1–28:28 (2013)

14. Josifovska, K., Yigitbas, E., Engels, G.: Reference framework for digital twins
within cyber-physical systems. In: Proceedings of the 5th International Workshop
on Software Engineering for Smart Cyber-Physical Systems SEsCPS 2019, pp. 25–
31. IEEE Press (2019)

15. Kearns, G.S., Lederer, A.L.: A resource-based view of strategic it alignment: how
knowledge sharing creates competitive advantage. Decis. Sci. 34, 1–29 (2003)

16. Malakuti, S., Grüner, S.: Architectural aspects of digital twins in IIoT systems. In:
Proceedings of the 12th European Conference on Software Architecture: Compan-
ion Proceedings. ECSA 2018. Association for Computing Machinery (2018)

https://www.lanner.com/
https://doi.org/10.1007/s10270-012-0301-9
https://www.cognizant.com/
https://www.cognizant.com/


280 M. Caporuscio et al.

17. Malakuti, S., Schmitt, J., Platenius-Mohr, M., Grüner, S., Gitzel, R., Bihani, P.:
A four-layer architecture pattern for constructing and managing digital twins. In:
Bures, T., Duchien, L., Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp.
231–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29983-5 16

18. Ram, D.J., Rajasree, M.S.: Enabling design evolution in software through pattern
oriented approach. In: Konstantas, D., Léonard, M., Pigneur, Y., Patel, S. (eds.)
OOIS 2003. LNCS, vol. 2817, pp. 179–190. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45242-3 17

19. Schluse, M., Priggemeyer, M., Atorf, L., Rossmann, J.: Experimentable digital
twins-streamlining simulation-based systems engineering for industry 4.0. IEEE
Trans. Ind. Inform. 14(4), 1722–1731 (2018)

20. Sousa, P., Caetano, A., Vasconcelos, A., Pereira, C., Tribolet, J.: Enterprise archi-
tecture modeling with the unified modeling language. In: Rittgen, P. (ed.) Enter-
prise Modeling and Computing with UML, pp. 67–94. IGI Global (2007)

21. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art.
IEEE Trans. Ind. Inform. 15(4), 2405–2415 (2019)

22. Ullah, A., Lai, R.: A systematic review of business and information technology
alignment. ACM Trans. Manag. Inf. Syst. 4(1), 4:1–4:30 (2013)

https://doi.org/10.1007/978-3-030-29983-5_16
https://doi.org/10.1007/978-3-540-45242-3_17
https://doi.org/10.1007/978-3-540-45242-3_17


Quick Evaluation of a Software
Architecture Using the Decision-Centric

Architecture Review Method: An
Experience Report

Pablo Cruz1(B), Luis Salinas1,2, and Hernán Astudillo1,2

1 Departamento de Informática, Universidad Técnica Federico Santa Maŕıa,
Avenida España 1680, Valparáıso, Chile
{pcruz,lsalinas,hernan}@inf.utfsm.cl

2 Centro Cient́ıfico Tecnológico de Valparáıso (CCTVal),
Avenida España 1680, Valparáıso, Chile

https://www.cctval.cl/

Abstract. Software architecture evaluations allow systematic checking
of software architecture fitness regarding the context and business. How-
ever, selecting and using an evaluation method always have some chal-
lenges and issues. This article reports an architecture review while devel-
oping an innovation projects support platform for a Chilean R&D and
engineering institution. We chose DCAR (Decision-Centric Architecture
Review) because it has lightweight requirements on documentation and
resources, it can evaluate a project already running, and it did not impact
a schedule where architecture reviews had not been considered from the
start. We describe the review of three accepted and one rejected decisions.
Lessons learned and benefits observed include recording decisions’ ratio-
nale, visibilization of some technological issues, and rethinking of some
previously made architectural decisions. Finally, we recommend making
frequent mini-reviews of architecture decisions, to understand the archi-
tecture, formalize it with its resulting reports, and raise its visibility in
the team itself.

Keywords: Architecture evaluation · Software architecture ·
Architecture decisions

1 Introduction

There is wide agreement that software architecture is key to reach the desired
level of quality attributes in a software system. We can systematically approach
the evaluation of those quality attributes supported by the software architecture
by the use of software architecture evaluation methods.1

1 The literature in the software architecture evaluation community use the phrases
architecture evaluation and architecture review as synonyms. We will make use of
this convention.

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 281–295, 2020.
https://doi.org/10.1007/978-3-030-58923-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_19


282 P. Cruz et al.

This article describes our experience using the Decision-Centric Architecture
Review (DCAR) method [18] for evaluating a research, innovation and technol-
ogy transfer software system2 developed by a local vendor for a Chilean R&D
and engineering institution. With careful planning and allowing some activities
to be executed in an offline fashion, we managed to perform a complete archi-
tecture review using DCAR requiring in-person participation in about two half
days (four hours each day). Hereinafter, we will refer to the R&D institution
for which the software was developed as “the organization” and to the software
development company as “the vendor”.

This article offers three main contributions. First, we describe how DCAR
was enacted for our purposes, making the reader aware of the key elements to
consider when using the method. Second, we explain how three decisions how
were discussed and accepted, modified or rejected. Third, we present lessons
learned from this case, which we believe interesting because we evaluated a
software architecture while being developed by a third party.

The paper is structured as follows. Section 2 briefly surveys related work
regarding architecture evaluation methods. Section 3 describes the evaluation
context. Section 4 explains how we chose DCAR by using an evaluation method
comparison and assessment framework. Section 5 presents an overview of DCAR
and its steps. Section 6 describes the specific evaluation and presents three
decisions worked on during the review. Section 7 presents lessons learned and
some recommendations. Section 8 offers some considerations regarding the use of
DCAR. Section 9 reviews validity threats and their mitigation. Finally, Sect. 10
summarizes and concludes.

2 Architecture Evaluation and Related Work

Software architecture evaluation is a systematic approach to assess how well the
architecture of a software system meets its required quality attributes levels.
Many methods have been developed, each serving a particular niche [6]. To
mention just a few, the Software Architecture Analysis Method (SAAM) [10]
was proposed for evaluating architectures in regard of maintainability quality
attribute [6,10]. The Architecture Trade-off Analysis Method (ATAM) explicitly
considered more quality attributes than SAAM, requiring the reviewer to deal
with the trade-offs among quality attributes.

SAAM and ATAM are examples of scenario-based methods; while both have
received wide attention, they require an almost complete architecture description
(AD), something not always available at the time of the evaluation (or at any
other, for the matter). To address this shortcoming, the Evaluation Method
for Partial Architectures (ARID) [6] makes use of the well-known active design
reviews [13]. More recently, the Pattern-Based Architecture Reviews (PBAR) [8]
takes advantage of the relationship among patterns and quality attributes for

2 In spanish: “Sistema de Gestión de Proyectos de Investigación, Innovación y Trans-
ferencia Tecnológica”. As of this writing, the system is in production.



Quick Evaluation of a Software Architecture 283

lightweight evaluation of agile projects. Finally, we mention DCAR (Decision-
Centric Architecture Reviews) [18], whose usage we report in this article, a
lightweight decision-centric method based on the concept of using decision forces
to challenge the architectural decisions made.

Many issues arise when using an architecture evaluation method – making
industrial applications of them worth being reported. While many of these issues
are technical, many others are instead socio-political, managerial [3] or social [4].
A survey on the state of practice of architecture reviews [1] reports that most
evaluations are informal; using external reviewers is recommended but not a
common practice; there is a tendency to use practices or techniques from the
methods rather than the complete method; most reviews take place in the early
stages of the project life; and many architecture reviews occur on an ad-hoc
way and not using the methods out-of-the-box. To address these issues, the well-
known Software Architecture Review and Assessment report (SARA) [11] aims
to provide concrete and experience-based advice for architecture evaluations.

In general, the reported perceived benefits of architectural evaluations include
risks identification in the architecture, assessment of quality attributes, identifi-
cation of reuse opportunities, promotion of good design, and rationale capture
[1,7,14].

3 Evaluation Context

The client organization, located in Valparáıso, Chile, is in the midst of an
improvement endeavor, called Organizational Improvement Project3, funded by
the Chilean government to enhance R&D and innovation activities. This project
goals include building a software platform to manage the organization’s internal
projects of research, innovation and technology transfer.

Public bidding was won by a Chilean software company located in Viña
del Mar4, and software development started in the first days of March, 2018.
Given the specific contractual aspects of the public bidding, a waterfall approach
was proposed by the vendor and agreed-to by the organization, although we
stipulated frequent reviews of working software. As expected, in the first two
stages of the project (requirements elicitation and software architecture) there
was little working software to review, and deliverables focused on reporting on
the requirements elicitation tasks and the proposed software architecture. Some
activities, especially requirements gathering, involved intensive in-person work
by the vendor at the organization site; software development was done at the
vendor site, and only the reviews were held at the organization site.

Following a high-level physical view, the vendor proposed a resource-based
architecture [12] (see Fig. 1), with well-known technologies for front-end (Angu-
lar) and back-end (Spring and Java). After the last milestone related to the
second stage (software architecture), the vendor formally started the software

3 In spanish: “Proyecto de Mejora Institucional” (PMI) FSM 1402.
4 Adjacent to Valparáıso.



284 P. Cruz et al.

implementation, with initially four-week iterations5; at the end of each iteration,
we required a review of working software.

Fig. 1. Deployment view of the system front and back (as of this writing).

As the software development went on, we (as counterpart) decided to per-
form an architecture review with two clear goals: first, to assess the current
architectural decisions made by the vendor; and second, to have visibility of the
architecture.

Architecture reviews were not considered in the initial planning. Thus,
although we had specific reasons to run an evaluation, we also wanted to mini-
mize its impact on the project schedule. To this end, we ran some activities in an
off-line fashion, choosing those whose input sources did not require our presence
(see Sect. 6).

4 Choosing a Software Architecture Evaluation Method

As described in Sect. 2, several software architecture evaluation methods exist,
and choosing one among them is not trivial. We adopted as basis an existing
classification and comparison framework [2].

In the following items, we map DCAR characteristics to framework compo-
nents, explaining the rationale behind the decision to use this method:

1. Maturity stage: according to the framework, DCAR is in the second maturity
level, i.e. development: it has been validated (according to [18]) but still lacks
validation in various domains, and to the best of our knowledge there are
no published method refinements (a key requirement for the next maturity
stage: refinement); the currently maturity level is enough for us.

5 Later shortened to one-week.



Quick Evaluation of a Software Architecture 285

2. Definition of software architecture: although DCAR does not offer a concrete
and explicitly stated definition of software architecture, it does focus on
architectural decisions, which allows to infer that its authors understand
software architecture as a set of decisions [5,16]; since we are interested in
checking the key architectural decisions, the focus method focus is suitable.

3. Process support : DCAR offers good process support with templates, concrete
step descriptions, and many examples.

4. Method’s activities: DCAR offers a manageable set of nine steps with an
appropriate trade-off between complexity and granularity.

5. Method’s goals: DCAR authors claim that its goal is to “determine the
soundness of architectural decisions that were made”; As mentioned in item
2 above, checking architectural decisions is our main interest.

6. Number of quality attributes: there is no prescribed quality attributes list
in DCAR; however, it explicitly states that achieving a desired property
naturally requires combining some decisions; therefore, DCAR fits our pur-
poses because it implicitly considers quality attributes and trade-offs, while
providing enough freedom for the reviewers to focus on specific quality
attributes.

7. Applicable project stage: DCAR is oriented to evaluate architectural deci-
sions already made, and its input includes (informal) description of require-
ments, business drivers, and architectural design; therefore, DCAR is clearly
applicable to a middle project stage, as was our case.

8. Architectural description: DCAR requires informal description of require-
ments, business drivers, and architectural design; these three artifacts were
available at the time of evaluation, making DCAR feasible for us.

9. Evaluation approaches : in framework terms, DCAR has a questioning and
experience-based approach. Questioning is carried out in step 8 (decision
evaluation), where participants challenge the decisions already made. Its
experience-based approach is somewhat more general than a scenario-based,
as shown in the initial steps where stakeholders discuss forces and the archi-
tecture. In our opinion, questioning and experience-based analysis is appro-
priate for the kind of review we need.

10. Stakeholder involvement : DCAR defines a specific, though not short, set of
roles that should participate in an evaluation; we had people for those roles.

11. Support for non-technical issues: DCAR does not offer explicit support for
non-technical issues, and we feel that it is easier to use by teams knowledge-
able in architecture evaluations; since we had previous evaluation experience,
we decided to plan the evaluation of non-technical issues accordingly.

12. Method validation: the authors claim the method has been validated in the
distributed control systems domain1, but this does not restrict its use to
only that domain.

13. Tool support : DCAR does not require specific software tools to run an evalu-
ation, and the provided templates where considered enough for our purposes.

14. Experience repository : DCAR does not explicitly incorporate reusable
knowledge. However, we will be recording every issue deemed as impor-
tant for reuse purposes¡ several of these recorded issues are reported in this
article.



286 P. Cruz et al.

15. Resources required : DCAR is considered suitable for projects that do not
have budget, schedule or stakeholders available for a full-fledged architecture
evaluation; this was critical for us, because (as mentioned earlier) architec-
ture evaluation was not considered in the initial project planning.

5 Decision-Centric Architecture Review (DCAR)

DCAR was proposed in [18] as a lightweight method (in terms of time and
resources) to support a decision-by-decision software architecture evaluation.
Unlike scenario-based methods, where reviewers expect to test the architecture
against scenarios, DCAR favors working with a per-decision approach, putting
decision rationale at the core of the method.

A key DCAR concept is “decision force,” which is defined as any non-trivial
influence on an architect making decisions to find a solution for an architec-
tural problem [17,18]. Decision forces are discussed, and then used to challenge
decisions, to see whether they are fit to purpose or must be modified.

DCAR has nine steps:

1. Preparation: the lead architect prepares a presentation of the architecture
with a focus on patterns, styles and technology, and the customer representa-
tive prepares a presentation of the expected software product and its context
(including driving business requirements); this step happens off-line.

2. Introduction to DCAR: the method is presented to all participants, explaining
how DCAR works, its steps, review scope, potential outcomes, and partici-
pants and their roles.

3. Management presentation: someone from customer side or management
gives a short (15–20 min) presentation to enable review participants elicit-
ing business-related decision forces.

4. Architecture presentation: the lead architect presents the architecture to all
participants; a highly interactive presentation (45–60 min) is recommended.

5. Forces and decision completion: the main goal of this step is to clarify deci-
sions and relationships among them, and to complete and verify the forces
relevant to these decisions.

6. Decision prioritization: stakeholders negotiate which decisions are more
important to be reviewed in the following steps; although the prioritization
is context-dependent, DCAR authors recommend considering decisions that
are mission-critical, bear risks, or cause high costs.

7. Decision documentation: each participant selects two or three prioritized deci-
sions, and start documenting them; ideally, each participant selects decisions
that they are knowledgeable about.

8. Decision evaluation: using the previously assigned priority, decisions are pre-
sented and challenged by the team by identifying some forces against the
proposed solution; and participants decide by voting on whether the decision
is good enough, acceptable, or must be reconsidered.



Quick Evaluation of a Software Architecture 287

9. Retrospectives and reporting : DCAR commands the review team to write an
evaluation report within no more than two weeks of the session; reporting is
also useful for socializing the decisions [16].

6 Evaluating the Architecture with DCAR

The evaluation was carried out in a mixed offline-online fashion. The online part
of the evaluation took two half-days and had place at a meeting room of the orga-
nization site, with a whiteboard and a big screen for presentation purposes. In
the first online evaluation session, five people were involved: two client’s project
engineers (one as review leader and the other as customer representative), one
supporting quality engineer, and the vendor’s project manager and lead archi-
tect. The second online evaluation session took place in the same location two
weeks later, but without the supporting quality engineer; his absence forced us
to reorganize some activities related to (1) challenging decisions and (2) writing
down key insights gathered from the evaluation.

The offline activities were mainly devoted to completing decisions, decisions
documentation, and retrospectives and reporting. Nevertheless, frequent emails
and phone calls were required to assure alignment between both organizations.

Finally, when prioritizing decisions, we used consensus rather than voting.

6.1 Three Reviewed Decisions

We present three architectural decisions that were challenged and then validated
or changed. Figure 2 shows the relationships among these decisions, as recom-
mended by DCAR, using a published documentation framework for architecture
decisions [9].

Fig. 2. Revised decisions and their relationships.



288 P. Cruz et al.

User Data Synchronization. The organization maintains a local Active
Directory-based6 repository for storing user data. Given that the new software
will be running on Microsoft Azure7, a synchronization between local and remote
repositories is required. The vendor initially proposed frequent synchronization
(once per hour). After discussing and challenging the decision, we finally agreed
to decrease the frequency to once per day and to provide on-demand synchro-
nization for urgent cases.

The final decision was:

– Decision name: On-demand urgent synchronization of user data between
the platform and the main local repository.

– Problem: the main local repository (Active Directory) needs to be immedi-
ately synchronized with the remote user repository when a new required user
for the software system has been created.

– Considered alternative solutions: More frequent (e.g.., one synchroniza-
tion run every hour) cron-based synchronization.

– Forces in favor of decision:
• Avoid unnecessary synchronizations.
• Synchronization is enough if done once in a day for the general case.

– Forces against decision:
• One person should run the synchronization procedure manually.

– Outcome: Accept.
– Rationale for outcome: We want to avoid unnecessary synchronizations

that could end in failure, leaving the system in an unexpected state.

Asynchronous Project Profile Save. When a researcher wants to apply for
public funding, the organization requires him or her to create a project profile
and notify it to the organization’s Office of Research and Innovation Projects.
When sending the project profile, the system stores the data and then sends back
a summary PDF file to the researcher. The initial implementation of this module
considered synchronous mail sending (see Fig. 3). After discussing and challeng-
ing this decision, we agreed to decouple the mail sending with an asynchronous
approach (see Fig. 4) to improve usability and performance.

The final decision was:

– Decision name: Asynchronous project profile saving.
– Problem: The researcher must receive an email with a summary.
– Considered alternative solutions: When saving a project profile, the sys-

tem will require to wait for the email queue to send an email to researcher.
– Forces in favor of decision:

• Usability improved as the system’s response to storing a project profile is
noticeably faster.

• Mail sending will be decoupled from the main use case.

6 Active Directory: https://azure.microsoft.com/en-us/services/active-directory/.
7 Microsoft Azure: https://azure.microsoft.com/en-us/services/active-directory/.

https://azure.microsoft.com/en-us/services/active-directory/
https://azure.microsoft.com/en-us/services/active-directory/


Quick Evaluation of a Software Architecture 289

Fig. 3. Decision partial documentation, with synchronous project profile save.

– Forces against decision:
• Harder to implement than the typical, natural synchronous way.
• Asynchronous operations are harder to test and maintain.

– Outcome: Accept.
– Rationale for outcome: Current decision appears to be the simplest way

to handle usability issues of storing a project profile.

6.2 Resources Naming

The initial vendor proposal was a resource-oriented architecture, in keeping with
our own goals and preferences. However, in the evaluation we found many APIs
incorrectly named (e.g., some were verbs indicating transactions rather than
resources), so an explicit decision was made about resource naming.

– Decision name: Name representations of resources with nouns.
– Problem: Naming resources with verbs will indicate a transaction not adher-

ing to the resource-oriented architecture.
– Considered alternative solutions: Use ad-hoc naming.
– Forces in favor of decision:

• Resources will be easier to integrate with future developments.
• Adherence to resource-oriented architecture.

– Forces against decision:
• It implies some review and rework of already-implemented components.

– Outcome: Accept.
– Rationale for outcome: We want to avoid typical API naming-related inte-

gration problems with future architectures.



290 P. Cruz et al.

Fig. 4. Decision partial documentation, with asynchronous project profile save (thin
arrowhead).

6.3 A Rejected Decision

Not all reviewed decisions were accepted. In particular, when we reviewed the
proposed authentication solution, we immediately noticed some unusual ele-
ments. The system was required to use the organization’s on-premise Active
Directory, but the proposed system was to be tested and deployed in Microsoft
Azure cloud solution (see sequence diagram in Fig. 1). The vendor proposed
a non-standard hybrid approach that shared authentication elements between
front- and back-end, which would have allowed some kinds of intrusion. We
requested additional details on this proposed solution, and eventually rejected
this decision (which had been already made) and decided to keep synchronized
an Azure-deployed Active Directory instance with the on-premise Active Direc-
tory instance, for which a standard authentication method was in use (OAuth).
Moreover, we requested the vendor to strictly follow Microsoft’s documentation
and guidance for authentication.

We made this decision in the meeting room itself, with the participants
already mentioned. However, synchronizing both Active Directory servers was
outside our domain. Therefore, this decision forced us to start a follow-up con-
versation with the organization’s IT department personnel, which fortunately
agreed to allow its account to synchronize with the cloud-deployed Active
Directory.

An interesting issue is that when we rejected this decision, we made it almost
intuitively and based on experience, not following any detailed guidance. DCAR
does not define specific criteria for accepting or rejecting decisions (i.e., when a
decision should be accepted with agreed improvements, and when just rejected).
We did not find any workaround, so we believe this issue is still open and should
be further developed in the future.



Quick Evaluation of a Software Architecture 291

7 Lessons Learned and Recommendations

In this section we present the main lessons we learned and recommendations for
DCAR adopters.

7.1 With Careful Planning Some Activities Can Be Done Offline

By considering the sources for inputs of some activities and weighting the risks
of offline working, some DCAR activities can be left for offline execution. We
note that, however, that this worked well in a case where development is carried
out by a vendor, and would not necessarily be so for an in-house development.

7.2 Architecture Evaluation Should Be Continuous

Evaluating a proposed architecture allows the organization to make a snapshot of
it (which can be confirmed, rejected or modified in the review), but development
goes on after the evaluation, and architectural erosion may set in [15]. One way
to avoid or minimize it is to continuously (re-)evaluate decisions. Of course, new
decisions taken to address emerging high-priority issues must also be reviewed.

We kept on performing “mini-reviews” by meeting regularly with the lead
architect, and using informally only three DCAR steps: for the already prioritized
decisions we continued checking and updating decision forces and descriptions
(step 5), updating documentation (step 7), and challenging decisions (step 8).

7.3 The Report Can Be Used to Formalize the Implemented
Architecture

DCAR yields an evaluation report that includes all the reviewed decisions; this
forced us to explicitly note the details of each architectural decision. When devel-
opment finishes, we expect this report to contain a (final, updated) architecture
description with minimal erosion (of course, it is our responsibility to maintain
it up-to-date by discussing it with the vendor). In our case, we will also require
the vendor to sign it off.

7.4 Some Decisions Imply Follow-Up Conversations

In one case, we made a decision (see Sect. 6.3) that implied technical issues
outside our domain. We do not regard this situation as accidental: in fact, we
expect that future quick reviews will experience similar issues given the natural
trade-off between a quick evaluation and the time-consuming coordination to
bring all related people into the review sessions.

Also, follow-up conversations should be carried out as soon as possible after
a review session, to allow in the next session to reassess the decisions feasibility
and rework them if necessary.



292 P. Cruz et al.

8 Reflections on the Use of DCAR

Some reflections regarding the use of DCAR in this project are in order.

8.1 Software Architecture Is Seen and Treated as a Set of Decisions

DCAR explicitly recognizes the key nature of architectural decisions, suggesting
explicit writing of decision forces and decision relationships �depends on� and
�caused by� from [9] in decisions diagrams. Besides making them visible to
participants, these relationships also made evident to all a key characteristic of
architectural decisions: they cannot be treated in isolation.

8.2 Quality Attributes Are Discussed Even If Not Explicitly
Mentioned

While quality attributes are not directly addressed in the method, DCAR-using
reviewers will find necessary to consider appropriate discussion about them when
challenging decisions. We believe this characteristic makes DCAR a particularly
appropriate method for experienced software architects and architecture review-
ers, as they can be expected to be knowledgeable about quality attributes.

8.3 The Architecture Gains Visibility

The architecture review allowed us, buyers of the software and technical counter-
parts, to gain visibility over the implemented architecture. The vendor revealed
many of the details of the architecture which allowed us to formalize the high-
priority decisions for documentation. Even though some decisions like the second
one presented as example in this paper appear to be simple, they become appar-
ent only after discussing them as part of an architectural evaluation.

8.4 Architectural Decisions Rationale Is Discussed

This architectural review was the first formal occasion in which the rationale
behind the architecture decisions in the project was actually discussed. This
discussion also motivated writing down their rationale. Interestingly enough, at
one point the project manager commented “we should have made this review
earlier in the project”.

9 Threats to Validity

Some concerns must be addressed regarding internal and external validity, espe-
cially for readers interested in leveraging this experience in future software archi-
tecture evaluations.



Quick Evaluation of a Software Architecture 293

In terms of internal validity, i.e. correctness of results for this specific case,
perhaps the most important threat to be mentioned here is cognitive bias, espe-
cially confirmation and anchoring biases [19]. Two members of the evaluation
team had prior experience in architecture evaluations (specifically with ATAM);
however, we believe this risk was mitigated by including members with no prior
experience in architecture evaluation, as their stance was challenging enough to
avoid experienced members to override other members proposals and opinions.
In any case, these members with no architecture evaluation experience should
have similar “level” to the experienced members, so they can fruitfully challenge
decisions and engage in collaboration with them.

In terms of external validity, i.e.g.eneralizability of results to other cases, the
reader should note that the lessons we learned and the recommendations are to
be considered for similar contexts. For example, one decision was made before
consulting the IT department, but in some cases the relationship between devel-
opment and IT department might not be as fluid, and the team should consider
other mitigation approaches, e.g. incorporating in the evaluation sessions some
IT department representative.

Another aspect here is the selection of the evaluation team members: all team
members were related to software development and/or architecture, which might
not always be the case.

10 Conclusions

Architecture evaluation is a systematic approach to assess a software architec-
ture’s fitness to software requirements, and especially quality attributes.

While running an innovation project support platform that was developed by
a vendor, we considered necessary to evaluate its architecture. Among existing
evaluation methods, we chose DCAR, a decision-analysis oriented method; we
particularly appreciated that it is lightweight in terms of our resources, and that
it would not impact the schedule of a project that had not included architecture
evaluation to start with. We illustrated the method use in our project with three
modified decisions and one rejected decision.

With careful planning, we managed to evaluate the architecture in a mixed
online-offline fashion, with the online part taking just two half-days; since the
software is being developed by a vendor, this allowed us to minimize in-person
participation by their employees. Nevertheless, we are unclear whether this app-
roach implied for us more or less effort than expected in a full online evaluation,
and leave this comparison as invitation for future work.

Finally, we recommend our own experience of making frequent mini-reviews
of architecture decisions, to understand the architecture, formalize it with its
resulting reports, and raise its visibility in the team itself.

Acknowledgments. This work was partially supported by CCTVal (Centro
Cient́ıfico y Tecnológico de Valparáıso, ANID PIA/APOYO AFB180002), DGIIE-
UTFSM, Project InES (PMI FSM 1402), and FONDECYT (grant 1150810). We also
thank Rich Hilliard for his helpful comments on an earlier version of this article.



294 P. Cruz et al.

References

1. Babar, M.A., Gorton, I.: Software architecture review: the state of practice. Com-
puter 42(7), 26–32 (2009)

2. Babar, M.A., Zhu, L., Jeffery, R.: A framework for classifying and comparing soft-
ware architecture evaluation methods. In: 2004 Australian Software Engineering
Conference, Proceedings, pp. 309–318, April 2004

3. Ali Babar, M., Bass, L., Gorton, I.: Factors influencing industrial practices of soft-
ware architecture evaluation: an empirical investigation. In: Overhage, S., Szyper-
ski, C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp.
90–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77619-2 6

4. Bass, L., Kazman, R.: Making architecture reviews work in the real world. IEEE
Softw. 19(01), 67–73 (2002)

5. Bosch, J.: Software architecture: the next step. In: Oquendo, F., Warboys, B.C.,
Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24769-2 14

6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley Longman, Boston (2002)

7. Cruz, P., Astudillo, H., Hilliard, R., Collado, M.: Assessing migration of a 20-year-
old system to a micro-service platform using ATAM. In: 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), pp. 174–181 (2019)

8. Harrison, N., Avgeriou, P.: Pattern-based architecture reviews. IEEE Softw. 28(6),
66–71 (2011)

9. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. J. Syst. Softw. 85(4), 795–820 (2012)

10. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: a method for analyzing the
properties of software architectures. In: 16th International Conference on Software
Engineering, pp. 81–90. ICSE 1994, May 1994

11. Obbink, H., et al.: Report on Software Architecture Review and Assess-
ment (SARA), Version 1.0, p. 58, June 2019. http://kruchten.com/philippe/
architecture/SARAv1.pdf

12. Overdick, H.: The resource-oriented architecture. In: 2007 IEEE Congress on Ser-
vices (Services 2007), pp. 340–347, July 2007

13. Parnas, D.L., Weiss, D.M.: Active design reviews: principles and practices. In: 8th
International Conference on Software Engineering, pp. 132–136. ICSE 1885. IEEE
Computer Society Press, Los Alamitos (1985)

14. Reijonen, V., Koskinen, J., Haikala, I.: Experiences from scenario-based architec-
ture evaluations with ATAM. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 214–229. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15114-9 17

15. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: a
survey. J. Syst. Softw. 85(1), 132–151 (2012)

16. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE
Softw. 22(2), 19–27 (2005)

17. van Heesch, U., Avgeriou, P., Hilliard, R.: Forces on architecture decisions - a
viewpoint. In: 2012 Joint Working IEEE/IFIP Conference on Software Architecture
and European Conference on Software Architecture, pp. 101–110, August 2012

https://doi.org/10.1007/978-3-540-77619-2_6
https://doi.org/10.1007/978-3-540-24769-2_14
http://kruchten.com/philippe/architecture/SARAv1.pdf
http://kruchten.com/philippe/architecture/SARAv1.pdf
https://doi.org/10.1007/978-3-642-15114-9_17
https://doi.org/10.1007/978-3-642-15114-9_17


Quick Evaluation of a Software Architecture 295

18. van Heesch, U., Eloranta, V., Avgeriou, P., Koskimies, K., Harrison, N.: Decision-
centric architecture reviews. IEEE Softw. 31(1), 69–76 (2014)

19. Zalewski, A., Borowa, K., Ratkowski, A.: On cognitive biases in architecture deci-
sion making. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol. 10475, pp.
123–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65831-5 9

https://doi.org/10.1007/978-3-319-65831-5_9


The Quest for Introducing Technical Debt
Management in a Large-Scale Industrial

Company

Somayeh Malakuti1(B) and Sergey Ostroumov2

1 ABB Corporate Research Center, Ladenburg, Germany
somayeh.malakuti@de.abb.com

2 Softability Group Oy, Helsinki, Finland
Sergey.Ostroumov@abo.fi

Abstract. The long lifetime and the evolving nature of industrial prod-
ucts make them subject to technical debt management at different levels
such as architecture and code. Although the classical steps to perform
technical debt management are known, in a study that we have been
performing in a large-scale industrial company as our client, we real-
ized that finding a starting point, which leads to the desired outcome, is
in fact a major challenge. This paper elaborates on various causes that
we have identified for this challenge, and discusses our stepwise app-
roach to address them so that the software quality can be improved. We
believe that our experiences can be beneficial for both practitioners and
researchers to gain more insight into applying quality improvement in
practice as well as indicating open areas for further research.

Keywords: Quality improvement · Technical debt management ·
Software architecture · Source code analysis

1 Introduction

Technical debt is defined as “design of implementation constructs that are expe-
dient in short term but that set up a technical context that can make a future
change more costly or impossible” [1]. Technical debt management can start
by identifying technical debt, followed by measuring its impacts, prioritizing,
documenting, repaying/preventing, and in parallel monitoring it [2]. Various
proposals exist to implement each of these activities in practice [3,4].

The long lifetime and the evolving nature of industrial products (e.g., robots,
controllers, sensors), as well as the usual time to market requirements of indus-
trial companies, make the industrial products subject to technical debt at vari-
ous levels. Since the field of software architecture has reached a level of maturity
such that several commercial tools, methods and techniques exist to support
practitioners, one might be tempted to start by adopting these in the compa-
nies. However, based on our experience, we realized that it is in fact a major

c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 296–311, 2020.
https://doi.org/10.1007/978-3-030-58923-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_20


The Quest for Introducing Technical Debt Management 297

challenge to find a starting point for technical debt management, which leads to
the desired outcome.

We identified that there are various issues that contribute to this challenge.
Examples are: a) The history of quality improvements in the company and its
possible (negative) impacts on the perception of different people of the effec-
tiveness of adopted methods, b) Lack of common understanding of software
architecture and technical debt across the company, c) Adopting certain techni-
cal debt management approaches that would not necessarily lead to the desired
outcomes, d) Necessary quality improvements beyond technical debt in software,
for example, process debt, infrastructure, and hardware debt, and e) Unforeseen
situations such as the impacts of COVID-19 on the availability of resources and
on their priorities.

Using an illustrative case study that we have performed as consultancy for
one of our clients, we explain that a stepwise method must be taken to address
these issues and to introduce technical debt management in a company. Our case
study is a project that has started in 2018, and so far consisted of three phases.

The first phase was focused on high-level identification of technical debt via
assessing the modularity status of a pilot case. The second phase was about
repaying technical debt via architecture and code refactoring. However, in the
second phase we could not achieve our refactoring goal, because the adopted tech-
nical debt management approach was mainly based on gut feeling and domain
experience rather than objective and systematic means. Nevertheless, this expe-
rience was important to raise awareness of systematic technical debt management
approaches, as well as gaining more insights into possible causes of technical debt
in the company. To perform systematic technical debt management in the third
phase, we first identified various kinds of debt (e.g., technical, process, infras-
tructure) and their possible impacts on software quality improvement activities.
Although it is not possible to address all debt at once, we explain our strategy
to narrow down the scope to some feasible steps to be able to still proceed with
technical debt management, while coping with the unforeseen changes in the
company as well as the impacts of other debt on our activities.

Based on our previous experiences and this case study, we observe that most
large-scale hardware-oriented industrial companies have more or less similar
characteristics in terms of their time to market pressure, distribution of teams,
software architecture competence, etc. Therefore, we believe that this paper can
be beneficial for both practitioners and researchers to gain more insight into chal-
lenges in applying technical debt management in practice, as well as identifying
open areas for further research.

This paper is organized as follows. Sect. 2 provides an overview of the project
and its phases; Sect. 3 explains our experience in the phase 1 for identifying
modularity issues; Sect. 4 summarizes our experiences in adopting a not very
systematic technical debt management approach; Sect. 5 outlines our vision for
a more comprehensive technical debt management methodology; Sect. 6 summa-
rizes various challenges and lessons learned; Sect. 7 provides related work and
our insight on open research areas; Sect. 8 outlines conclusion and future work.



298 S. Malakuti and S. Ostroumov

2 Project Setting and Methodology

The illustrative case study is a project in the form of external consultancy that
we have been offering to an industrial company as our client since 2018. The
company naturally has stronger background in hardware design, but software
has gained strong importance over the time as well.

Throughout the project, eight software developers/architects, one process
manager and one technology manager closely participated in the case study. In
addition, the project results were frequently presented to larger audience in the
company. The software engineering competence differed among the participants.

Since the project team was geographically distributed, we have adopted dif-
ferent approaches such as frequent teleconferences, face to face workshops, field
observation, interviews and surveys to reach the goals of the project.

Before the start of the project in 2018, there were several internal workshops
in the company with the aim of achieving bug-free software. The result of those
workshops was that insufficient modularity of the software is the main reason for
the increasing number of bugs as well as long maintenance time. As a result, the
project started in 2018 with the aim of validating this hypothesis and providing
support for improving the modularity of the software in three phases.

Since we needed to gain deeper insight into the software and the way it was
developed, the methodology that we adopted in the project was not fixed at
the beginning; throughout the project we defined our next steps based on the
learnings of the previous steps. Our activities can be summarized as follows:

Assessing the Modularity Status of the Software: The phase 1 of the project was
about getting to know the software better and validating the hypothesis of our
client regarding the low modularity of their software. As a result, we identified
various kinds of technical debt that exist at the architectural and code levels.

Prioritizing and Repaying Technical Debt at the Architecture and Code Levels:
Refactoring large-scale legacy software as a whole require significant amount of
time and resources, which could not be offered by our client. Therefore, our client
opted for an iterative approach of refactoring at architecture and code levels.
Here, the key challenge was to identify architecturally-significant requirements
for each iteration, and to improve their design and implementation. In the phase
2, a high-level sketch of new architecture was defined by our client, and we
were requested to refactor two pilot modules based on the sketched high-level
architecture.

However, this approach was not as effective as we expected, for example,
because the actual time spent for refactoring was twice longer than the estimated
time and still the code did not fully adhere to the envisioned architecture. Inad-
equate technical debt quantification and prioritization, as well as several other
issues were among the reasons that we could not reach our refactoring goals.

Identifying the Root Causes of Software Quality Issues: Based on our field obser-
vation, we realized that there were multiple attempts in past to improve the



The Quest for Introducing Technical Debt Management 299

quality of the software; however, the quality has eventually dropped over time.
This observation besides our experience in the phase 2 motivated us to first iden-
tify various kinds of debt that exist (e.g., technical, process, infrastructure) and
their root causes. Even if we could not resolve all the root causes at once, this
study would help us be more aware of their impacts on technical debt manage-
ment, and prioritize technical debt more effectively. Therefore, we gained more
insight into these, in the phase 3 via field observation, interviews, workshops and
a survey.

Adopting a More Systematic Technical Debt Identification and Prioritization
Approach: As the result phase 2, we realized that the distance between the cur-
rent architecture and the envisioned one is too large, and it is necessary to define
intermediate architectures to reach to the envisioned one in an iterative manner.
Each intermediate architecture must address certain technical debt, and must
accept some other technical debt that will be addressed by future intermediate
architectures. The phase 3 of the project focuses on defining such intermediate
architectures, and adopting the state-of-the-art methods for identifying and pri-
oritizing technical debt, while taking other kinds of debt and their impacts also
into account.

The details of these phases and their results are explained in the subsequent
sections.

3 Phase 1: Modularity Assessment

Since the company considered insufficient modularity as the main technical debt,
we were requested to perform an initial study on modularity status of a pilot
part to validate this hypothesis.

As the first step in this phase, via a requirement elicitation workshop with
15 participants, we collected the stakeholders’ requirements regarding the mod-
ularity of the software. The requirements were assessed and classified from vari-
ous perspectives, such as developers/architects, customers, and product owners.
Examples of the collected requirements are: a) Reducing the required time for
new developers to learn the software, b) Reducing the number of new bugs intro-
duced during the maintenance phase, c) Flexibility in configuring the software
for each customer, and d) Flexibility in deploying software modules on different
processors.

Then a specific subsystem was nominated by the architects as the pilot case.
The lines of code in the pilot case change over the time, as it is being actively
developed and refactored. In 2018, it contained around 300K lines of code in
C/C++. To understand the current architecture of the pilot case, we made use of
the available documentation, which explained the modules and their responsibil-
ities. The documents also described the data flow among the modules. Alongside
the documents, we adopted various static code analysis tools such as Understand
[5], TeamScale [6] and CppDepend [7] to recover the architecture of the software.



300 S. Malakuti and S. Ostroumov

Various metrics such as afferent (incoming) coupling, efferent (outgoing) cou-
pling, module size, and circular dependency were assessed using the aforemen-
tioned tools. Figure 1 shows a high-level call graph of the pilot case, which is
generated using the Understand tool. Here, the anonymized boxes depict various
subsystems, and the links among them show the dependencies.

Our analysis revealed several architectural and code smells, such as high
number of circular dependencies, high number of fan-in and fan-out, high degree
of code duplicate, excessive usage of global variables, God classes, etc. Moreover,
it was clarified that no specific architecture pattern or principle was followed in
the pilot software.

Fig. 1. The dependency graph of the pilot part

4 Phase 2: Modularity Improvement

As a result of the phase 1, the architecture team in the company provided the
high-level sketch of a new layered architecture to be used for further refactoring
activities. Here, the assumption was that due to the complexity of the software,
the large degree of modularity issues, as well as shortage of resources, it was not
feasible to have a fully detailed architecture at once. In this phase, we were asked
to support by the refactoring of two pilot subsystems, mainly at detail design
and code levels.

We defined four goals for this phase: a) Setting up the refactoring infras-
tructure consisting of suitable tools and metrics, and means for lean architec-
ture knowledge management, b) Adopting and validating these for refactoring
two pilot subsystems, c) Defining domain-specific design patterns for improving
modularity at the code level, and d) Knowledge transfer via frequent teleconfer-
ences and the two-week visit of the consultancy team to the company for face
to face architecture discussion/refactoring and another requirements solicitation
workshop.



The Quest for Introducing Technical Debt Management 301

4.1 Tool Selection

There are many static code analysis tools available, which usually support differ-
ent metrics and detect different issues in the code. We relied on existing studies
on assessing these tools [3,8] as well as our field observation in the company to
define criteria for selecting a suitable tool for practical usages. Some important
criteria are listed below:

– Support for architecture recovery and analysis using different metrics: The
company already had one static code analysis tool installed in its build system,
which was not actively used by all teams due to its false positive results,
among other barriers. Therefore, we decided not to introduce yet another
tool that performs analysis at the code level. Nevertheless, since there was
no up-to-date architecture picture of the software available, the adoption of a
tool that supports architecture recovery and analysis seemed to be necessary.

– Support for stepwise refactoring: In large-scale software system, refactoring
will take place in small steps, during different timeframes, by different groups
of architects who are expert in specific parts of the software. Therefore, the
tool must enable each architect to iteratively apply refactoring only at the
desired parts of the software. Naturally, local refactoring is not always suffi-
cient, and the tool must also enable architects to refactor the overall archi-
tecture of the software.

– Support for delayed code-level refactoring: The tool must enable the architects
to refactor the architecture and the structure of the code, without the need for
immediately changing the actual code. This is an important criterion because
of two reasons: a) due to resource and time constraints, software developers
who should implement the refactoring may not immediately be available,
b) since different parts of the architecture are designed by the architects,
who may work at different parts of the company with different refactoring
priorities, the tool must enable collaborative refactoring at the architecture
level before changing the code.

– Support for the integration in the Jenkins’ build system: The tool must be
integrated in the build system of the company so that architectural metrics
and rules can frequently be validated and monitored.

– No reliance on the Git history: Some tools rely on the Git history of commits
to identify modularity violations. Such features assume consistent tagging of
each Git commit by developers in terms of bug fixes, feature development,
refactoring, etc. However, such consistent tagging may not exist across all
projects in the company, especially in older projects.

– Consistency of adopted tools in the company: To make sure the project results
are transferable to other divisions of the company, we aimed at keeping the
adopted tools across divisions consistent.

We selected Lattix [9] among several other tools [5–7,9–12] that we assessed.
Tools such as Understand [5], CppDepend [5], SonarQube [5] and TeamScale [6]
are mostly at code level, and do not fully fulfill our above-listed criteria. DV8
[11] is an architecture assessment tool; however, it heavily relies on Git history
of commits, also the soundness of its metrics is still under validation [13].



302 S. Malakuti and S. Ostroumov

4.2 Architecture Knowledge Management and Documentation

The requirement specifications, architectural models and decisions were docu-
mented in different formats in the company, although not very consistently nor
comprehensively. For example, requirements on each task were documented as
part of the task description in Azure DevOps; Microsoft Visio was adopted for
architectural modelling, but the models were outdated; Atlassian Confluence was
used for collection of technical debt; decision forces are not documented at all,
or very inadequately.

We assessed the lean ways of documenting architecture knowledge as well as
architecture models. Our study mainly targeted available proposals for Archi-
tecture Decision Records [14], as well as other templates such as arch42 [15]. We
also assessed various modelling tools such as Enterprise Architect, IBM Rhap-
sody and Structurizr [16]. Our assessment of the tools was eventually postponed
to future, because the requirements of the company on such tools were not
clear. Nevertheless, we tailored a template for architecture decision records and
adopted it for documenting our new design.

4.3 Refactoring Two Subsystems

The refactoring of two subsystems took almost six months, where we focused
on the detail design of two subsystems, proposed new module structures and
interfaces, implemented the new modules, and adjusted test cases and build
scripts. In this activity, we explored various design patterns that were suitable
for the two subsystems, and assessed the alternatives based on various quality
attributes such as readability, modularity and testability. Due to confidentiality
reasons, we cannot share the details of this activity.

In summary, the major achievements of the phase 2 were: a) The installation
of Lattix in the build system of the company, b) The identification of various
design patterns for refactoring two subsystems, c) The selection of most suitable
design patterns based on various quality attributes, d) Refactoring of the pilot
modules to some degree, and e) Gaining more insight on the obstacles to perform
technical debt management more effectively.

5 Phase 3: Systematic Technical Debt Management

The decision of our client to put more emphasize on code-level improvements can
be interpreted as an example of technical debt prioritization. However, this pri-
oritization was not as effective as we expected, because: a) The actual time spent
for refactoring was twice longer than the estimated time, b) Some modularity-
related technical debt was resolved in one subsystem, and more or less similar
debt had to be introduced in another subsystem, c) The refactored code was
not fully integrated into the final software release, d) The proposed tools and
documentation templates were not actively used later.

Nevertheless, phase 2 helped us illustrate that a) effective technical debt
management at code level cannot be achieved if technical debt at architecture



The Quest for Introducing Technical Debt Management 303

level is not adequately addressed, b) although gut feeling and domain experience
are also important in technical debt prioritization, we need to complement them
with more systematic approaches, c) there are several other kinds of debt in the
company, which impact software quality improvement activities.

Based on our field observation during the phase 2, as well as some inter-
nal workshops and interviews with various participants, we developed a set of
hypotheses about various categories of debt, their root causes, and their impacts
on software quality improvement activities. We started the phase 3 of the project
by performing a survey in the company to validate our hypotheses based on the
responses of a larger set of colleagues. The survey aimed at collecting information
on the impacts of technical debt on the daily work of developers, an estimation
of technical debt growth rate, the causes of technical debt, other kinds of debt
(e.g., process and infrastructure) in the company, as well as the self-assessment
of developers of their software engineering competences.

There were 100 respondents in total, consisting of 70 software developers
or architects, and 30 participants in different managerial roles. The survey was
active for two months; afterwards we analyzed and normalized the results and
presented to large audience in the company. The survey confirmed that most of
the participants see technical debt as an obstacle in their everyday work, and
technical debt is increasing in various parts of the software. Also, the majority of
the participants assessed themselves to have intermediate knowledge of various
software engineering topics.

5.1 Causes of Technical Debt

Due to confidentiality reasons, the survey details cannot be published. Neverthe-
less, based on the results of the survey, we classified the causes of the technical
debt as below. This classification is an extension of the proposal by [1].

Changes in Context: This category contains following causes:

– Changes in business context: New hardware products are introduced, but old
software is reused and adapted for them. This results in the replication of
technical debt across multiple products.

– Aging technology: Where there is good potential for adopting new technolo-
gies such as software product lines, old technology is still used for program-
ming, which limits the usage of advanced object-oriented concepts as well as
reuse across different products.

In addition, there is technical debt in the build system, due to the adopted
ad-hoc approach for supporting multiple hardware/software variants.

– Natural evolution and aging: Some parts of the software have been developed
and extended for many years, with a lot of patches to accommodate new use
cases.



304 S. Malakuti and S. Ostroumov

Business: This category contains the following causes:

– Time and cost pressure: There is time pressure for developing new features.
In addition, cost limitations for hardware development forces developers to
resolve some hardware-related issues at the software level; i.e. technical debt
in hardware propagates to software.

– Requirements shortfall: Customer requirements are not well-documented and
accessible to the developers. The missing history of the requirements makes
it rather impossible to identify obsolete parts of the code that are no longer
requested.

– Misalignment of business goals: The focus of each team is usually on devel-
oping and optimizing a single feature in the code that may be shared across
different hardware products. There is no systematic way of aligning and ensur-
ing quality across different hardware products.

Processes and Practices: This category contains the following causes:

– Insufficient processes: Although it was confirmed by the participants that over
the past years the organizational/software processes have improved, there are
still various possibilities for further improvements. For example, current soft-
ware processes do not include technical debt management and topics related
to it such as templates for technical debt backlog items, quality checklists for
assessing technical debt, etc. In addition, current processes to enable system-
atic cross-team architecture and code review can significantly be improved.

– Insufficient documentations: Missing or outdated architecture and code docu-
mentations make it very hard and or even impossible to keep track of previous
design decisions. Besides, product roadmaps are not always in hand to help
architects identify future changes of the architecture and prepare the archi-
tecture to accommodate those changes. As a result, changes are applied in a
rather ad-hoc way, leading to more technical debt.

– Inadequate software engineering practices and tools: Current practices for
requirements management, architecture design, coding and testing should be
updated based on latest developments in respective areas; for example, via
adoption of new tools, requirements engineering methods, ATAM (architec-
ture trade-off analysis method), etc.

– Inadequate planning: To achieve desired goals in technical debt repayment,
the extent of required refactoring in architecture, code, test cases and build
scripts should be identified and considered during the planning phase. Other-
wise, as we experienced in the phase 2 of the project, not all planned technical
debt can be repaid, or even new technical debt may be introduced due to the
time pressure.

People: This category contains the following causes:

– Inexperienced teams: Software competences may not be very strong in compa-
nies that historically produce hardware products. Although there are already



The Quest for Introducing Technical Debt Management 305

multiple trainings going on in various areas, it was mentioned that such the-
oretical trainings must be combined with more practical coaching to become
more effective.

– Unclear quality-related roles and responsibilities: There is no clear role in
teams for performing quality checks and improvements. Although some col-
leagues have the role of software architect, they may spend the majority of
their time on bug fixing.

– Insufficient motivation with respect to quality improvement: Some partici-
pants feel demotivated regarding this topic because of the large number of
identified causes as well as previous attempts for improving the quality, which
had not fully achieved their goals.

– Coordination and communication shortfall: There are different Scrum teams
that focus on different parts of the software within or across multiple prod-
ucts. To manage intra-, and inter-products dependencies, systematic means of
coordination and communication across teams must be in place. Otherwise,
developers must attend all the meetings of other teams to get informed on
relevant decisions, and this is impractical. Likewise, to manage inter-products
dependencies and to derive course-grained and futuristic architectural deci-
sions, systematic means of coordination and communication among teams
and portfolio managers must be in place. Currently, such communications
are not performed systematically, causing teams make sub-optimal decisions
based on the information that is available to them.

– Lack of common understanding of technical debt: Some developers believe
that technical debt only exists in the older parts of the software, and the
growth rate of technical debt in the new parts of the software is fixed or even
reducing. However, the above-listed causes of technical debt do not make new
software parts immune against technical debt.

5.2 Various Aspects of Technical Debt Management

Based on our survey, there was consensus that debt is not limited to code and
architectural levels, and other kinds of debt such as social, process and infras-
tructure debt also impact the overall quality of products. Accordingly, we derived
Fig. 2 that depicts various elements, which we believe play a role in achieving
successful debt management at the system level.

The impacts of debt are visible in evolving products, which need to accommo-
date new customer requirements in certain period. Therefore, clear understand-
ing of current and possibly futuristic customer requirements helps to plan for the
evolution of the products better. Likewise, business visions define the roadmaps
for future changes of the products, and availability of such roadmaps help archi-
tects to prepare the architecture for accommodating the future changes.



306 S. Malakuti and S. Ostroumov

Fig. 2. The scope of technical debt management

Software engineering topics and software technologies are frequently evolv-
ing to address the need of industries. Consequently, companies must now and
then modernize their technologies and methods to benefit from these advances.
Methods such as test-driven software development, software product lines and
model-driven software development pave the way to prevent various technical
debt.

A systematic debt management methodology must become a mandatory part
of a company. Depending on the causes of debt in the company, such a method-
ology must cover various aspects such as defining suitable processes, competence
development, and infrastructure support.

Last but not least, industrial devices are ‘systems’ that contain both hardware
and software components. Therefore, debt management can only be effective if
its scope is at the system level, so that the interplay between technical debt in
mechanical, electrical software architecture can be taken into account [17].

5.3 Towards Systematic Technical Debt Identification and
Prioritization

Naturally, the depicted scope of debt management in Fig. 2 is very large, requires
significant investment of time and money, and more importantly requires agree-
ment and approval from different parts of the company.

Since it usually takes some time to achieve such an agreement, we had to
narrow down the scope in the phase 3 of the project to the parts that are feasible
in short-term. We see this scope definition as a kind of debt prioritization, where
we have to identify our focus on the debt that can be paid considering the
available constraints. Nevertheless, the awareness about various kinds of debt
and their causes helps us mitigate their impacts on the selected scope of work.

We decided to proceed with more systematic architectural-level technical
debt identification and prioritization based on available proposals in the litera-
ture [3,4,18–20], and adjusting them based on the needs of the company.



The Quest for Introducing Technical Debt Management 307

We are pursuing the following goals in this phase: a) Defining intermediate
architectures to reach to the envisioned one in an iterative manner, b) Proposing
a catalog of criteria for more objective prioritization of technical debt based on
existing proposals in the literature, c) Quantitative and qualitative assessment of
intermediate architectures and the required refactoring effort via Lattix and the
ATAM method, d) Defining criteria of the ’Definition of Done’ for the respective
refactoring activities, e) Proposing a unified template for documenting technical
debt at the architectural and code levels, f) Extending existing infrastructure
(e.g., Azure DevOps) to incorporate the template, and g) Defining necessary
extensions to the existing processes to incorporate the above steps. The results
of this experiment will be reported in our future papers.

6 Challenges and Lessons Learnt

Below is the summary of our observed challenges and lessons learnt so far:

Assessing the Product Development Maturity Level: We believe that assessing
the maturity of the development processes within a company should be one of
the early activities towards software quality improvement in the company. The
Capability Maturity Model [21] could be taken as a reference for this matter.
Such an assessment helps to gain deeper insight on the impacts of current pro-
cesses on (technical) debt accumulation.

Finding the Right Balance to Repay Various Debt: It is a well-known believe
that software architecture may reflect the organizational structure of a company;
meaning that there are more than just technical factors that influence the design
of software architecture. Our study also confirms that to achieve the desired
outcome in software quality improvement, one has to identify both technical and
non-technical debt and their causes (e.g., see Sect. 5.1), identify their impacts on
each other and develop a holistic approach to address debt.

Since we cannot address all causes of debt at the same time, there will always
be some debt remaining at different levels, which we may revisit in the future if
their impacts are high enough. For example, in the phase 2 of our project, it was
clear that there is debt at the documentation, architecture, requirements, infras-
tructure, social and process levels. However, addressing them requires major
agreements and effort across the company, which cannot be combined with
refactoring the code in parallel. Even if we keep the focus on technical debt
management, finding effective ways of prioritizing technical debt at architecture
and code levels is already very challenging. Therefore, one must always assess
such cases and select the most effective path to follow, knowing that some deci-
sions have to revisited later when other debt is addressed or even is accepted to
remain.

Improving Quality-Aware Working Culture: Introducing a methodology for sys-
tematic technical debt management in a large-scale company requires adjusting



308 S. Malakuti and S. Ostroumov

the working culture of the company, which is inherently a long-term activity.
Most developers feel the impacts of technical debt on their work, but may not
agree on the root causes of it. Especially if there are many causes of technical
debt, it is always a challenge to find the right starting point. A major chal-
lenge here is to achieve common understanding of technical debt management
and its associated topics across the company, as well as raising awareness on
the role that each person can play to improve the situation. In addition, allo-
cating dedicated time for quality improvement (e.g., 20% of developers time) is
not sufficient, and more support (e.g., competence development, processes and
infrastructure improvement) should be provided to help developers use that time
more effectively.

Considering Previous/Ongoing Quality Improvement Attempts: In large-scale
companies usually there have been several attempts in the past, or even there are
ongoing activities for improving the quality of products. This can include intro-
ducing a tool that offers some metrics for technical debt measurement, attempts
to improve the processes, attempts to harmonize architecture across multiple
products, etc. To successfully contribute in the quality improvement activities,
one has to familiarize himself with such activities and their positive/negative
impacts on the perception of different parties on the various attempts.

Bi-directional Stepwise Competence Development: Introducing yet another tool
or method, and providing some theoretical trainings are not enough for devel-
oping the competence of teams. Practical coaching to integrate new tools and
methods in the working culture of the company is rather mandatory. Based on
our experience, a stepwise approach is needed to illustrate the effectiveness of
different quality improvement approaches, and to validate the effectiveness of
the state-of-the-art methods in practice. This also requires the familiarity of the
consultancy team with the daily working culture of the company to be able to
effectively adjust existing methods to fit the specifics of the company.

Dealing with Frequently Changing Scope: In working with large-scale companies,
we often hear from managers and developers that ‘we have to start somewhere’.
Finding the right starting point for technical debt management, which can have
the desired impacts under dynamically changing external and internal condi-
tions, is a major challenge. For example, where it was already very difficult
to receive agreement to invest more time on technical debt management, the
impacts of COVID-19 on the availability of resources made it even more dif-
ficult. Therefore, we had to adjust the scope so that we would not need extra
resources allocated to our project. Considering that introducing systematic tech-
nical debt management in a company is a long-term activity, one has to always
be prepared for adjusting the scope of the work to cope with such uncertainties.

7 Related Work

Various studies [22,23] have been performed to provide a better understanding
on how teams in large-scale agile organizations coordinate, and show that the



The Quest for Introducing Technical Debt Management 309

coordination of work between teams influences teams’ internal processes and
how each team makes decisions. The study in [24] focuses on identification of
social and process debt in agile companies. The study in [25] confirms that agile
practices has positive impact in managing technical debt. We also believe that
effective technical debt management at code and architecture levels cannot be
achieved if social and process debt is not tackled.

In [4], the authors propose an approach to adopt business process manage-
ment (BPM) to make the technical debt prioritization decision process more
aligned with business expectations. Based on our insight discussed provided in
our paper, we believe that the study proposed by [4] should be extended for
large-scale embedded systems, where there are different business goals for soft-
ware and hardware components, as well as there are multiple product variants
with not completely aligned business goals.

Systematic technical debt prioritization based on multiple criteria is an active
area of research [3,18–20]. In [18], the authors define multiple criteria based on
customer, project and nature of technical debt for prioritization of technical
debt. In [19], the authors investigated how a model of cost and benefits of incur-
ring technical debt could be part of the change control board’s decision process.
In [20], by studying multiple large-scale companies, various criteria such as cus-
tomer needs, lead time, cost/benefit, maintenance costs, and violated quality
rules are determined to be considered for technical debt prioritization.

Where the input from these studies are useful for the phase 3 of our project,
we found the focus of these studies to be limited to technical debt only, with-
out taking other kinds of debt such as social and process debt into account. To
the best of our knowledge, such a comprehensive study of debt prioritization is
still missing in the research community. Besides, the cross-disciplinary manage-
ment of technical debt by considering the impacts of mechanical, electrical and
software engineering aspects of technical debt is still open for further research.

8 Conclusions and Future Work

Developing highly reliable software with low maintenance costs is ultimately
the goal of most companies. Since software engineering is an evolving field,
there is always the likelihood that advanced methods and techniques are not
fully adopted in large-scale companies, which have long-living software with
strong time to market requirements. Therefore, if a company requires support
to improve the quality of its software, one may quickly strive for adopting vari-
ous advanced software architecture and coding topics in the company. However,
there are usually many challenges and obstacles along the way, which one has to
find an effective solution to cope with.

In this paper, we reported on our ongoing experience in introducing technical
debt management in a large-scale industrial company as our client. We explained
that even if the classical steps for technical debt management are known, one
has to take a stepwise approach to build common understanding on the relevant
topics inside the company, to validate different approaches of technical debt pri-
oritization, and to deal with various challenges that appear along the way. As for



310 S. Malakuti and S. Ostroumov

future work, we will continue assessing and adjusting our current methodology
based on the lessons that we learnt along the way. In addition, we would like to
adopt existing metrics and invest on various company-specific metrics to moni-
tor quality improvement trends at various levels such as planning, architecture,
code, and testing.

References

1. Kruchten, P., Nord, R., Ozkaya, I.: Managing Technical Debt: Reducing Friction
in Software Development. Addison-Wesley Professional, Boston (2019)

2. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 (2015)

3. Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., Fontana, F.A.: Technical
debt prioritization: state of the art. A systematic literature review, ArXiv, vol.
abs/1904.12538 (2019)

4. de Almeida, R.R., Kulesza, U., Treude, C., Feitosa, D.C., Lima, A.H.G.: Aligning
technical debt prioritization with business objectives: a multiple-case study (2018)

5. SciTools - Understand. https://scitools.com/
6. TeamScale. https://www.cqse.eu/en/products/teamscale/landing/
7. CppDepend. https://www.cppdepend.com/
8. Fontana, F.A., Roveda, R., Zanoni, M.: Technical debt indexes provided by tools:

a preliminary discussion. In: 2016 IEEE 8th International Workshop on Managing
Technical Debt (MTD), pp. 28–31 (2016)

9. Lattix. https://www.lattix.com/
10. Structure101. https://structure101.com/
11. Cai, Y., Kazman, R.: Dv8: automated architecture analysis tool suites. In: 2019

IEEE/ACM International Conference on Technical Debt (TechDebt) (2019)
12. SonarQube: SonarQube. https://www.sonarqube.org/
13. Nayebi, M., et al.: A longitudinal study of identifying and paying down architecture

debt. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 171–180 (2019)

14. Parker-Hernderson, J.: Architecture Decision Record (ADR). https://github.com/
joelparkerhenderson/architecture decision record

15. arch42. https://arc42.org/
16. structurizr. https://structurizr.com/
17. Dong, Q.H., Ocker, F., Vogel-Heuser, B.: Technical debt as indicator for weaknesses

in engineering of automated production systems. Prod. Eng. Res. Devel. 13, 273–
282 (2019). https://doi.org/10.1007/s11740-019-00897-0

18. Ribeiro, L.F., Souza Rios Alves, N., Gomes De Mendonca Neto, M., Sṕınola, R.O.:
A strategy based on multiple decision criteria to support technical debt manage-
ment. In: 2017 43rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 334–341 (2017)

19. Snipes, W., Robinson, B., Guo, Y., Seaman, C.: Defining the decision factors for
managing defects: A technical debt perspective. In: 2012 Third International Work-
shop on Managing Technical Debt (MTD), pp. 54–60 (2012)

20. Besker, T., Martini, A., Bosch, J.: Technical debt triage in backlog management.
In: IEEE/ACM International Conference on Technical Debt (TechDebt) (2019)

21. Paulk, M.C., Weber, C.V., Curtis, B., Chrissis, M.B.: The Capability Maturity
Model: Guidelines for Improving the Software Process. Addison-Wesley Profes-
sional, Boston (1994)

https://scitools.com/
https://www.cqse.eu/en/products/teamscale/landing/
https://www.cppdepend.com/
https://www.lattix.com/
https://structure101.com/
https://www.sonarqube.org/
https://github.com/joelparkerhenderson/architecture_decision_record
https://github.com/joelparkerhenderson/architecture_decision_record
https://arc42.org/
https://structurizr.com/
https://doi.org/10.1007/s11740-019-00897-0


The Quest for Introducing Technical Debt Management 311

22. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development
at the very large-scale: a revelatory case study and research agenda for agile method
adaptation. Empir. Softw. Eng. 23(1), 490–520 (2017). https://doi.org/10.1007/
s10664-017-9524-2

23. Bjørnson, F.O., Wijnmaalen, J., Stettina, C.J., Dingsøyr, T.: Inter-team coordina-
tion in large-scale agile development: a case study of three enabling mechanisms.
In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp.
216–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 15

24. Martini, A., Stray, V., Moe, N.B.: Technical-, social- and process debt in large-scale
agile: an exploratory case-study. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp.
112–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2 14

25. Holvitie, J., Leppänen, V., Hyrynsalmi, S.: Technical debt and the effect of agile
software development practices on it - an industry practitioner survey. In: 2014
Sixth International Workshop on Managing Technical Debt, pp. 35–42 (2014)

https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.1007/978-3-319-91602-6_15
https://doi.org/10.1007/978-3-030-30126-2_14


Architecting Contemporary Distributed
Systems



Determining Microservice Boundaries: A
Case Study Using Static and Dynamic

Software Analysis

Tiago Matias1, Filipe F. Correia1,2(B), Jonas Fritzsch4,5, Justus Bogner4,5,
Hugo S. Ferreira1,2, and André Restivo1,3

1 Faculty of Engineering, University of Porto, Porto, Portugal
{up201700421,filipe.correia,hugosf,arestivo}@fe.up.pt

2 INESC TEC, FEUP Campus, Porto, Portugal
3 LIACC, FEUP Campus, Porto, Portugal

4 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{jonas.fritzsch,justus.bogner}@iste.uni-stuttgart.de

5 University of Applied Sciences Reutlingen, Reutlingen, Germany

Abstract. A number of approaches have been proposed to identify ser-
vice boundaries when decomposing a monolith to microservices. How-
ever, only a few use systematic methods and have been demonstrated
with replicable empirical studies. We describe a systematic approach for
refactoring systems to microservice architectures that uses static analysis
to determine the system’s structure and dynamic analysis to understand
its actual behavior. A prototype of a tool was built using this approach
(MonoBreaker) and was used to conduct a case study on a real-world
software project. The goal was to assess the feasibility and benefits of a
systematic approach to decomposition that combines static and dynamic
analysis. The three study participants regarded as positive the decompo-
sition proposed by our tool, and considered that it showed improvements
over approaches that rely only on static analysis.

Keywords: Microservices · Refactoring · Software architecture

1 Introduction

The microservices architecture steadily gained popularity over the last years.
Nowadays, it is often used in greenfield projects, but a lot of the times, systems
are first developed as monoliths, which are quicker to develop and to test than
microservices. Monoliths can then be broken up into microservices, when and
if the need arises [1]. Doing this may promise high scalability, shorter release
cycles or better maintainability. However, missing to identify the right bound-
aries may hinder reaching these benefits [2]. Therefore, an essential part of such
a refactoring is the decomposition approach [3], which has the end-goal to iden-
tify contextually-related functionality and encapsulate it into different services.
These should be characterized by a high cohesion inwards and loose coupling
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 315–332, 2020.
https://doi.org/10.1007/978-3-030-58923-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_21


316 T. Matias et al.

outwards. To optimally leverage from the microservices architectural pattern,
existing functionality has to be split up with appropriate granularity as well.

There have been a number of approaches proposed already to decompose
monoliths into microservices [4,5]. However, Fritzsch et al. found that such refac-
toring approaches were often not considered by practitioners and that identifying
suitable service cuts is still perceived as a major challenge [3]. They asked 16
practitioners from 10 companies who were in the process of migrating their sys-
tems. Participants were either not aware of such tools or even convinced that it
would be impossible to automate such a complex task. In a review of refactor-
ing approaches, the same authors ascribed a lack of automation and missing tool
support to most approaches proposed by academia [5]. This lack of tools inhibits
adoption in industrial contexts and makes empirical studies more challenging to
conduct.

We address this gap by a) identifying a systematic approach that combines
principles of the previously proposed methods, b) using it to create a prototypical
implementation, and c) conducting an industry case study with the prototype.

In the remainder of the paper, we discuss related work to provide an
overview of other approaches, and describe our own approach, which relies
on static and dynamic analysis. We introduce a prototype – MonoBreaker –
that embodies this approach, and that identifies service boundaries for monoliths
based on the Django web framework. Afterward, we present a case study, in
which we contrast the results of MonoBreaker with ServiceCutter by surveying
three developers of the project.

2 Related Work

The subject of decomposing and migrating monolithic applications to microser-
vices is addressed in books such as Building Microservices [6], Monolith to
Microservices [7] and Microservices Patterns [8]. Likewise, a variety of research
papers describe ways to tackle such transformations.

Building microservices ideally means to create services that are highly cohe-
sive and loosely coupled. Tyszberowicz [9] confirms that Domain-Driven Design
(DDD) is the most common technique for modeling microservices. With DDD,
the software mirrors business domains and sub-domains as well as the related
domain models and bounded contexts. Each bounded context implements a small
set of strongly-related behaviors and conforms to the Common Closure Princi-
ple [10]. These sets of behaviors shape individual units, resulting in cohesive
designs of loosely-coupled services [11]. A system following DDD supports a
higher degree of team independence as well as better scalability, testability and
changeability [12].

Meta-studies. Ponce et al. provide an up-to-date overview in their review of 20
papers of migration and refactoring techniques [4]. Their study focuses on the
approaches, the applicability to certain system types, validations of the tech-
niques, and the associated challenges. The authors group works by their under-
lying decomposition approaches: model-driven (involving design elements, e.g.,



Determining Microservice Boundaries 317

DDD), static analysis (based on source code) and dynamic analysis (based on
runtime data).

Fritzsch et al. similarly compare 10 refactoring approaches and likewise pro-
vide a classification [5]. They distinguish decompositions based on Static Code
Analysis, Meta-Data, Workload-Data, and Dynamic Microservice Composition.
While the first three classes imply a fixed decomposition result, a dynamic com-
position of services would be continuously re-calculated, e.g., based on workload
constraints. The study moreover reveals that most approaches are only applica-
ble to certain types of applications, require significant amounts of input, or have
limited and prototypical tool support.

Concrete Approaches and Tools. Nunes et al. pursue an approach based on
identifying transactional contexts of business applications and using a clustering
algorithm to determine service candidates [13]. Chen et al. similarly base the
decomposition on the data flow of the business logic [14]. They compare the
resulting service cut with the output of ServiceCutter [15], a freely-available
tool implementing the approach by Gysel et al. [16]. ServiceCutter applies a
clustering algorithm to identify new services and currently supports the Girvan-
Newman and Leung algorithms for this purpose. To calculate the service cut,
it requires that an Entity-Relationship Model (ERM) of the system is given in
a specific format along with User Representations and Coupling Criteria. The
collection of these partly-exhaustive system specifications is done in a manual
process and requires the help of domain experts.

Ren et al. acknowledge the inadequacy of approaches only relying on static
analysis [17]. They recognize that not analyzing the runtime behavior would hin-
der the calculation of a complete and accurate service cut. Therefore, they com-
bine static and dynamic analysis based on the applications’ runtime behavior. A
subsequent clustering calculates the candidate service cut. Likewise, Taibi et al.
propose a combined approach based on dependency analysis and process mining
techniques [18]. The decomposition encompasses execution path and frequency
analysis. After removing circular dependencies, additionally specified decompo-
sition options are ranked based on coupling and granularity metrics to produce
the candidate service cut. The authors employ a tool1 that is capable of generat-
ing graphical visualizations to represent the business processes. Although a tool
is referenced to capture the dynamic behavior of the system, the suggestion of
service cuts is outside the scope of the work and must be done by experts, even
if the authors mention that the process can somehow be automated.

Implications for our Approach. The methods described by Richardson [8]
(Decompose by business capability and Decompose by subdomain) provide general
guidelines for a partly-automated decomposition process. They support archi-
tects in choosing appropriate input values and assessing the resulting candidate
service cuts.

The two meta-studies by Ponce and Fritzsch yield a variety of strategies
to break down a monolith. Most do not combine static and dynamic analysis

1 More information is found at the tool’s website – https://fluxicon.com/disco/.

https://fluxicon.com/disco/


318 T. Matias et al.

to steer the decomposition. As such, the works by Ren et al. and Taibi et al.
comprise the core concepts of the approach described in our work. These works
do not provide tools for service decomposition, or for any form of automation,
but we will build on the concept of gathering runtime behavior and its analysis.

ServiceCutter is also of importance to our work, as it too implements the
deterministic Girvan-Newman algorithm. In some aspects, our work is less
sophisticated than ServiceCutter, as it does not yet consider quality attributes
like security, scalability, and business ownership. However, it trades that for the
benefit of being independent from extraneous, subjective, information provided
by experts to determine the service cuts.

3 Approach

Decomposing a monolith is often done based on insights from software developers
on the specific context of the problem domain and of the application’s architec-
ture. The challenge that we aim to address is to reduce subjectivity, making the
process more systematic and automated. The approach described below is based
on ideas that have been documented before [16–18], but are employed here for
determining service boundaries with minimal to no manual input, which so far
has not been feasibly demonstrated. Therefore, the approach is described as a
hypothesis, and the case study in Sect. 5 as a first step to provide support for
its effectiveness.

In more concrete terms, this approach aims to be data-driven and to be
independent of sophisticated input from experts. To do this, we do not take
into account all the intricacies of the process as it is often done manually today.
Instead, we focus on what information can be obtained from the application itself
via static and dynamic analysis to find beneficial service cuts. We rely on the
availability of a) static software artifacts, namely source code, and b) operational
data, such as the use of API endpoints, of datastores, and of issued method calls.

Static Analysis. Software artifacts are analyzed and the collected information
used to build a graph-like model of the system, representing components as nodes
and the dependencies between them as edges. Components and dependencies can
be of different types, and identifying them will depend on the used programming
languages, frameworks and environments. For example, components can refer to
classes, packages or modules, and dependencies to imports or method calls.

Each edge is assigned a weight to represent the strength of the dependency.
This is a function of the number and quality of connections between the two
components. The weight of edges after static analysis can, for example, be the
sum of the number of imports and method calls between its two components.

Dynamic Analysis. The system is then monitored at runtime to gather oper-
ational data, which is analyzed to identify how the dependencies are exercised
during execution, and gain an understanding of how the system is actually used.
Such information is used to compute a new weight for each edge of the graph.
The final weight values are a function of the static and dynamic weights, and



Determining Microservice Boundaries 319

are a measure for how the components in the system are mutually bound. The
underlying assumption is that a high amount of interaction between two compo-
nents correlates with belonging to a common bounded context. Including them
in different microservices would imply higher costs in latency and in maintaining
resilience and fault tolerance.

Clustering. A graph of the service composition will support identifying different
clusters of components. The nodes connected by the edges with higher weight
values will be grouped to form clusters of relatively high cohesion. These clusters
will depend on each other through edges with low weight values, representing
relatively low coupling. The clusters can, therefore, be used to determine a set
of possible service cuts. The specific clustering algorithm to be used is outside
the scope of this approach, but would be interesting to explore (see Sect. 6).

Decomposition Suggestion. The identified service cuts serve as a foundation
for assigning existing software artifacts to each of the new services and advise
on the architectural refactoring process.

4 The MonoBreaker Tool

MonoBreaker aims to demonstrate the feasibility of the approach and was used
in the case study described in Sect. 5. It is a prototype2 and currently works
with applications using the Django web framework. It takes a project’s direc-
tory as input and does a static analysis of the source code to identify the
overall project structure. This information is mapped to a graph-like model
together with associated files and their dependencies. The same graph is popu-
lated with data collected through dynamic analysis to quantify the strength of
the dependencies. The graph is then traversed to suggest a decomposition into
new services, highlighting the source code files that will be involved and how the
resulting services should communicate. This workflow is depicted in Fig. 1 and
the several steps are exemplified below.

Fig. 1. Operation flow of MonoBreaker with inputs and outputs.

2 MonoBreaker is freely available at https://github.com/tiagoCMatias/monoBreaker.

https://github.com/tiagoCMatias/monoBreaker


320 T. Matias et al.

4.1 Collect Operational Data

Operational data is gathered using Silk, which is a profiling tool for Django3. The
tool is capable of supplying information about the usage of entrypoint methods
(the ones invoked when a URL is requested), and the model classes and queries
involved in the process of returning results from the database. It uses this infor-
mation to infer some of the internal method calls, as we will see in the next
section.

4.2 Build Model of the System

The static analysis inspects the domain model, the views, and the dependencies
between them. In particular, it tracks the use of Django’s Model class, identi-
fying its subclasses (i.e., the domain model of the application) and how they
are connected through the declared foreign keys. It also tracks the use of the
ModelViewSet class by identifying its subclasses (i.e., the views of the applica-
tion) as well as the connections between these views and the model classes, via
the import statements.

To illustrate the process, we present a minimalist example and the steps
involved in suggesting a service decomposition using MonoBreaker. The file
exemplified in Listing 1.1 results in the extraction of the ViewItem class as
a new graph node. The imports of Attribute (line 4) and Item (line 6) refer to
subclasses of Django’s Model class, therefore, these are also extracted as nodes,
with graph edges connecting them to the ViewItem node. Both the model sub-
classes Attribute and Item have a connection to ViewItem because it imports
them and invokes their methods.

1 from rest_framework.decorators import action
2 from rest_framework.response import Response
3 from rest_framework.viewsets import ModelViewSet
4 from .. models.Attribute import Attribute
5 from .. serializers.ItemSerializer import ItemSerializer
6 from .. models.Item import Item
7
8 class ViewItem(ModelViewSet):
9 queryset = Item.objects.all()

10 serializer_class = ItemSerializer
11
12 @action(methods =[’get’], detail=False)
13 def get_item_details(self, request):
14 if request.GET.get(’attributes ’, None):
15 data = self.serializer_class(self.queryset , many=True).

to_representation(self.queryset)
16 for item in data:
17 item[’attributes ’] = Attribute.objects.get_by_item(item[’id’])
18 return Response(data)
19 else:
20 return Response(ItemSerializer(Item.objects.all(), many=True).data)

Listing 1.1. The ViewItem class, an example of a view in a Django application.

3 See https://github.com/jazzband/django-silk for more information.

https://github.com/jazzband/django-silk


Determining Microservice Boundaries 321

Monobreaker uses the graph resulting from the analysis described thus far
to generate the visual representation depicted by Fig. 2a. The weight values
associated to the edges represent the strength of the dependencies and are
determined by:

StaticEdgeWeight = NumImports + NumMethodCalls

After the analysis of all source code files, a global dependency graph of the
project is built. In this example, these files would also include Listing 1.2.

1 from rest_framework.decorators import action
2 from rest_framework.response import Response
3 from rest_framework.viewsets import ModelViewSet
4 from .. serializers.OrderSerializer import OrderSerializer
5 from .. models.Order import Order
6
7 class ViewOrder(ModelViewSet):
8 queryset = Order.objects.all()
9 serializer_class = OrderSerializer

10
11 @action(methods =[’get’], detail=False)
12 def get_order_details(self, request):
13 if request.GET.get(’items’, None):
14 data = self.serializer_class(self.queryset , many=True).

to_representation(self.queryset)
15 for order in data:
16 order[’items’] = Order.objects.get_order_items(order[’id’])
17 return Response(data)
18 else:
19 return Response(OrderSerializer(self.queryset , many=True).data)
20
21 def list(self):
22 return Response(OrderSerializer(Order.objects.all(), many=True).data)

Listing 1.2. The ViewOrder class, an example of a view in a Django application.

Figure 2b represents the updated version of the graph after the static analysis
of the second view class. Note also the dependency between ViewOrder and Item
via the call to the get order items() method. Detecting it could be attempted
through deeper static analysis, in particular of chains of method calls that jump
into framework code. The static detection of this dependency is a limitation of
the current implementation of MonoBreaker, but it is one of little consequence,
as it can still be detected through dynamic analysis, as we will see next.

The static analysis of the system is followed by the runtime analysis. The
operational data that was previously collected (see Sect. 4.1) is processed and
the result used to update the graph with a) previously undetected dependencies
(in this example, the one between ViewOrder and Item) and b) with updated
weight values. This ensures that we also consider the existence and the strength
of dependencies that cannot be determined solely by inspecting the source code.

The requests received by the application may result in multiple method calls
that eventually touch specific model classes. These are determined by Mono-
Breaker via the database queries that are issued during the processing of a
specific request. Table 1 shows some of the data resulting from the dynamic
analysis, which is used to compute the dynamic weights.



322 T. Matias et al.

Table 1. Data determined through dynamic analysis for this example.

View Method # Calls Related models

ViewOrder list() 2 Order

ViewOrder get order details() 4 Order, Item

ViewItem list() 4 Item

ViewItem get item details() 8 Item, Attribute

To keep the weight values calculated by the dynamic analysis in the same
order of magnitude as those calculated from static analysis, MonoBreaker nor-
malizes them – the highest weight determined from the dynamic analysis will be
at most as high as the highest one calculated from static analysis. Therefore, the
equation representing the weight that arises from dynamic analysis becomes:

DynaEdgeWeight = NumMethodCalls× MaxStaticWeight

MaxNumMethodCalls

In this implementation, the weights from the static and dynamic analyses
were considered in equal parts for determining the final weights, resulting in:

EdgeWeight = StaticEdgeWeight + DynaEdgeWeight

Figure 2c depicts the resulting graph, showing the computed DynaEdge
Weight in green and the final EdgeWeight in black.

4.3 Clustering

The dependencies collected through the static and dynamic analyses are used by
MonoBreaker to create a graph-like model of the system. Nodes consist mainly of
Django model and view classes. A clustering algorithm is then applied to break

Item

ViewItem

Attribute

1

22

(a)

Item

ViewItem

Attribute

1

22

Order

ViewOrder

3

(b)

Item

ViewItem

Attribute

1

45

Order

ViewOrder

4.5

1
23

1
1.5

(c)

Fig. 2. Each graph shows a different stage of the example, (a) is after analysing the
ViewItem class, (b) after analysing the ViewOrder class, and (b) after incorporating
the results from the dynamic analysis. Values in green are the weights determined by
dynamic analysis alone, and those in black are the total weight produced up to that
stage.



Determining Microservice Boundaries 323

the network down into smaller communities, thus grouping nodes according to
the weights of the edges. We have chosen the Girvan-Newman algorithm4 [19]
given its apparent successful use in tools such as ServiceCutter. The resulting
clusters indicate a set of potential service cuts.

4.4 Generate Decomposition Suggestions

After clustering the nodes, MonoBreaker provides an overview of the decompo-
sition. It obtains the service cuts through the Girvan-Newman algorithm and
provides the lists of the classes that will be needed for each service. These can
be used by the developers to guide the refactoring process. Listing 1.3 shows the
output for our simple example.

Total Files: 19
Django_Views: 2
Django_Models: 3

GraphNumber: 0
list_of_files: [

’models.Attribute ’,
’models.Item’,
’serializers.ItemSerializer ’,
’views.ViewItems ’

]

GraphNumber: 1
list_of_files: [

’models.Item’,
’models.Order’,
’serializers.OrderSerializer ’,
’views.ViewOrder ’

]

Listing 1.3. Example of an output of MonoBreaker.

4.5 Limitations

The approach described in Sect. 3 is designed to apply to a wide range of con-
texts. The tool described in this section, on the other hand, was designed with
a narrower scope and it is worth highlighting some of its limitations.

Technologies. The opportunity, of using a fully developed monolith built with
Django to conduct a case study in the industry, led us to develop MonoBreaker
specifically for Django-based monoliths that use the object-relational mapper. At
this point, the tool will work only for systems developed using these technologies.

DesignAssumptions.The implementation makes simplistic assumptions about
the system to decompose, such as that it was designed around a domain model,
and that it avoids cyclic dependencies and other kinds of unnecessary complexity.
Such design problems should be approached before running MonoBreaker.
4 Connectivity-based clustering algorithm, such as Girvam-Newman, are based on the

idea that nodes have more affinity to nearby nodes than to those farther way.



324 T. Matias et al.

Operational Time Frame. The quality of the decomposition is sensible to the
choice of an appropriate time frame for collecting operational data, as it should
be representative of how the system is normally used. Functionality not used
during the dynamic analysis time frame will not be considered for calculating
dynamic weights.

Balancing Quality Attributes. Another assumption is that there is a single
optimal set of service cuts, but we know that there are often trade-offs when
refactoring. Users of MonoBreaker are still not able to specify, for e.g., how the
maintainability of the resulting system should be weighed against its scalability.

5 Case Study

To assess the feasibility and benefits of a systematic approach to decomposition
that combines static and dynamic analysis, we conducted an industry case study
using the developed prototype. We were interested in generating insights about
the approach, in particular, in understanding its effectiveness for identifying good
service boundaries when refactoring a monolith, and the impact that dynamic
analysis has on the decomposition result. For the latter part of the study, we
turned to ServiceCutter for a comparison.

5.1 Context

The case study focused on a web application for supporting the collaboration
between two centers of a logistics startup company. The application had 15
KLOC and more than 40 domain-model elements, and had recently gone through
significant growth in its use, making it an interesting candidate for the study.

We achieved the participation of three of the four developers that form
the team responsible for this application. Their professional experience was in
the range of 1–5 years for two of the developers and 5–15 years for the third
developer.

5.2 Process

MonoBreaker was used to analyze the project and produced a suggestion for
decomposing it into different services. The process consisted of four steps:

a) Run MonoBreaker – We gathered the project source code and the runtime
data collected through Silk and provided them as input to MonoBreaker,
which used both static and dynamic analysis to produce a suggestion of how
the system could be decomposed.

b) Run ServiceCutter – The data statically-collected in step a) was trans-
formed to the ERM format expected by ServiceCutter and was provided as
input to produce an alternative decomposition using static analysis only.

c) Present MonoBreaker – A session was scheduled with the development
team and included an introduction that explained the goal of the experiment
and a showcase of MonoBreaker using an example project.



Determining Microservice Boundaries 325

Table 2. Questions and answers in the approach group.

Question [It’s important ...] Answers

... to know what methods are called between the
components of the monolith

5, 4, 3

... to know how frequently each method is called when the
monolith is run in production

4, 3, 3

... to identify what the domain objects of the monolith
are

5, 5, 5

... to identifying what are the relationships between the
monolith components

5, 5, 5

... to know how the relationships between the components
are used when the monolith is run in production

5, 5, 5

... to identify what imports are made by each software
component of the monolith

5, 4, 3

... to identify what the schema of the database/datastore
is

5, 5, 5

... to know the operations made to the
database/datastore

5, 4, 4

... to identify how frequently the operations made to the
database/datastore are executed when the monolith is
run in production

4, 3, 4

d) Questionnaire – Following the MonoBreaker demo, a questionnaire was
handed out to the participants. It aimed to assess how the feasibility of the
approach and the impact of dynamic analysis on the quality of the results were
perceived by the team. The participants did not have access to the source code
during the questionnaire, and the two service decompositions were presented
visually as dependency graphs. Participants were given 30 min to analyze the
graphs and answer the questionnaire.

Table 3. Questions and answers in the feasibility group.

Question [The proposed decomposition as microservices ...] Answers

... is the best one possible 4, 3, 2

... is easier to scale (performance) 4, 3, 2

... is easier to deploy new versions of the system 4, 3, 2

... is easier for maintainability by the existing team(s) 4, 3, 2



326 T. Matias et al.

Fig. 3. MonoBreaker decomposition result as depicted in the questionnaire.

5.3 Data Sources

The case study used as data sources: a) the source code of the project, b) opera-
tional data collected through Silk during one week in a production environment
and c) the answers to the questionnaire that were given by the team of the
project.

The source code was obtained from the company’s code repository. The oper-
ational information was collected in two tables created by Silk in the application’s
database (silk request and silk sqlquery). The questionnaire was built using
Google Forms and the answers were gathered in a spreadsheet.

5.4 Data Analysis

Most questions were based on a Likert scale [20], ranging from (1) Strongly
Disagree to (5) Strongly Agree. Questions were organized into four groups. Below,
we summarize the answers provided by the three interviewees for each group of
questions.

Personal Experience. These questions support understanding the team’s pro-
fessional experience, its familiarity with the case study project and with the
process of migrating monoliths to microservices. The answers reveal that all
team members have some experience migrating monoliths to microservices (3,

4, 3)5 and that they were very familiar with the case study project (5, 5, 5), as
expected. This ensures their ability to evaluate the decomposition approach.

Approach. The questions in this group aim to assess the perceived impor-
tance of different aspects when decomposing a monolith into microservices. If

5 Throughout this section, we’ll use this notation to represent the answers of the three
team members to a questionnaire item using a five-level Likert scale.



Determining Microservice Boundaries 327

the understanding of these aspects by the study participants revealed to be dif-
ferent from our own, it could explain differences in the answers to questions in
the next groups of questions. The questions and answers from the three devel-
opers are shown in Table 2. The results show unanimous agreement in that
identifying the domain objects, the relationships between components, how these
relationships are used in production and the schema of the data store are very
important factors when determining potential new services (5,5,5).

The answers to the remaining questions were not unanimous, but still show
that significant importance is attributed to knowing what operations are made
to the database/datastore (5,4,4).

These results show the relevance, as perceived by the members of this team,
of both structural and behavioral information for service decomposition, and
therefore are aligned with the concepts that we used to define our approach.

Feasibility. The questions in this group evaluate the perceived feasibility of
the approach regarding the quality attributes of the application. Namely, the
questions focus on the scalability, ease of deployment, and ease of maintenance.
They are supported by the decomposition created by MonoBreaker, which was
visually presented as depicted by Fig. 3. Both the questions and the answers are
shown in Table 3.

The participants did not agree in their answer to these questions but
answered consistently to all the questions (4,3,2). This led us to inspect more
closely the answers for the justification question (the open-ended question where
they could provide further context to their answers) and conclude that the
decomposition was perceived as a good basis, but insufficient. Namely, the
decomposition consists of 3 services, but team members argued in favor of
a more aggressive decomposition. Looking closely at Fig. 3, we can see clus-
ters around three different classes – CargoMovement, MasterdataProducts and
ShippingTransfer. From their answers, we understood that the team was
expecting the ShippingTransfer cluster to be further decomposed into two
distinct services. Section 6 outlines a few factors that can be explored in future
work to improve the decomposition.

Comparison With Using Only Static Analysis. This group has two Likert-
scale questions, each accompanied by an open-ended justification question.

The first question compared the decomposition using both dynamic and
static analysis with the one using only static analysis. To ease the comparison
between the outputs, we transported the information to Gephi6 and extracted
both graphs. The graphs were depicted in the beginning of this group of questions
as Decomposition A and Decomposition B (respectively, Fig. 4 and Fig. 3).

The second question directly addressed the usefulness of the output provided
by MonoBreaker, listing the classes that would be required by each service.

Table 4 shows the two questions and the associated answers.

6 Gephi is a tool for graph analysis and visualization – https://gephi.org.

https://gephi.org


328 T. Matias et al.

Table 4. Questions and answers in the “comparing with the state-of-the-art” group.

Question Answers

The decomposition A is better than the decomposition B 2, 2, 1

A tool to support decomposing a monolith into
microservices would be useful if it provided this output

5, 5, 5

Fig. 4. ServiceCutter decomposition result as depicted in the questionnaire.

The answers dismiss Decomposition A as the best, concluding that combining
static and dynamic analysis provided a better decomposition when compared to
using static only.

Regarding the output provided by MonoBreaker for guidance on the refac-
toring, the answers were unanimous in that it would be helpful.

5.5 Threats to Validity

The purpose of this case study is to gather evidence to support the approach.
The design described in Section 5 tries to minimize possible threats to validity,
but those that exist need a closer look.

Projects and Participants. The sample of our case study was limited to one
project and three software developers. The answers to the questionnaire’s app-
roach group can be used to confirm if this team valued both structural and
behavioral information when decomposing services, as these were base assump-
tions used to design our approach, but the small scale doesn’t allow to generalize
conclusions. We would certainly like to see this case study replicated for other
products and larger organizations with different backgrounds, to verify if these
preliminary results hold in other contexts.

Possible Biases from Respondents. The partnership with the startup com-
pany for this case study was only possible due to good working and personal rela-



Determining Microservice Boundaries 329

tionships and commitment between the company and the researchers. Therefore,
there is always the possibility that the participants may have been inadvertently
influenced. During the MonoBreaker presentation (Sect. 5.2), we took particular
caution to take an impartial stance regarding the merits of the tool and of its
underlying approach and to not interfere in any way when participants were
responding to the questionnaire. Moreover, they didn’t know which decomposi-
tion had been made using only static analysis or using both static and dynamic
analysis. For these reasons, we are confident in discarding this as a threat to
validity.

Representativeness of Sampled Data. The company supplied the project
source code and allowed to alter it to enable the collection of operational data
that otherwise would not be possible. As already mentioned, the operational
data covered only one week of the application’s run time information and col-
lecting data for a longer period may have led to different results. All the relevant
functionality of the application seems to have been used during this time, and
we believe the amount of data to be sufficient to base a decomposition decision
on. For this reason, we are confident in discarding this as a threat to validity.

Suboptimal Baseline. To assess the impact of dynamic analysis in the decom-
position, we compared the result of MonoBreaker (using static and dynamic
analysis) with that of ServiceCutter (using static analysis only). The choice of
ServiceCutter stemmed from the intention to compare MonoBreaker with leading
tools from the current state of the art. ServiceCutter is the only freely-available
tool that we could run to automate the decomposition process with minimal
manual input7.

However, we realized that the specific purpose of assessing the impact of
dynamic analysis would have been better served by comparing the output of
MonoBreaker when run with static and dynamic analysis with its output when
run with static analysis only. We believe that when the Girvan-Newman algo-
rithm is chosen when running ServiceCutter, the resulting output should be iden-
tical to MonoBreaker’s if only static analysis is used, as MonoBreaker uses the
same algorithm for clustering dependent components. Notwithstanding, running
MonoBreaker with and without dynamic analysis would provide more robust
evidence that no other factors had a significant influence on the decomposition
result.

6 Conclusions and Future Work

In this work we contribute, a) a systematic approach to decompose monolithic
applications to microservices, b) a tool prototype (MonoBreaker) that imple-
ments this approach and c) the design and results of an industry case study.

7 This was possible by synthesizing a part of the inputs that it requires – namely,
the ERM – and omitting the remaining inputs, which we were unable to create
without resourcing to software developers – namely, the User Representations and
the Coupling Criteria.



330 T. Matias et al.

The approach is based on previous ideas but differs in its focus on fully
automating the process of determining service boundaries. It does so by relying
on static and dynamic software analysis. The case study uses MonoBreaker to
assess the feasibility and merits of the approach. The decomposition obtained
by the tool was regarded positively by the participants and seen as an improve-
ment over using only static analysis. MonoBreaker is freely available, and the
methodological design is documented to enable the replication of the case study
by other researchers.

To improve these contributions, several aspects will be addressed in future
work:

Model Building. The approach doesn’t define a specific way to build the model
of the application using the results of static and dynamic analysis. Future work
will evaluate if other algorithms for calculating the weight of dependencies may
perform better than our current implementation, which is currently based on a
set of simple heuristics.

Clustering Algorithms. The approach is also not prescriptive of a particular
clustering algorithm. It will be interesting to evaluate if others render better
results than Girvan-Newman, the one currently used by MonoBreaker.

Evaluation Metrics. To enable a more objective evaluation of the proposed
decomposition, the approach could be extended with service-based metrics –
e.g., coupling and cohesion [21]. The approach of Taibi et al. [18] already includes
metrics to rank decomposition candidates. A set of suitable service-based metrics
for our approach would have to be determined, and can help to drive the search
for better model-building and clustering algorithms.

Comparison with Human Experts. Future studies will evaluate if a data-
driven approach such as ours is, not only able to automate the decomposition
process fully, but will also provide a better decomposition than human experts.

Further Studies. More industry case studies will need to be conducted to
improve our understanding of the effectiveness and limitations of the approach,
ideally with a diverse and significant number of applications and participants.

Representativeness of Sampled Data. Future studies will compare the num-
ber of requests – per request type – that are received during the collection of
operational data with those of more extended periods where operational data
wasn’t captured, but for which we are able to collect request statistics nonethe-
less. This will reinforce our confidence that the operational data collected is
representative enough of a normal use of the application.

Fully Automatic Decomposition. MonoBreaker can identify file contents
affected by the suggested decomposition, e.g., which class has to be extracted
for each resulting service. The next step could be to suggest a sequence of lower-
level refactorings required for the decomposition or even to automatically apply
such refactorings to decompose the system.



Determining Microservice Boundaries 331

Acknowledgment. João Paiva Pinto and Isabel Azevedo discussed different forms of
this work with us. We thank them for all the precious feedback.

This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020.

References

1. Fowler, M.: Monolith first. Martin Fowler’s Bliki (2015). https://martinfowler.
com/bliki/MonolithFirst.html. Accessed 27 Nov 2019

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

3. Fritzsch, J., Bogner, J., Wagner, S., Zimmermann, A.: Microservices migration
in industry: intentions, strategies, and challenges. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 481–490 (2019)

4. Ponce, F., Márquez, G., Astudillo, H.: Migrating from monolithic architecture to
microservices: a rapid review. In: Proceedings of 38th International Conference of
the Chilean Computer Science Society (SCCC 2019), Chile (2019)

5. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

6. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn.
O’Reilly Media, Sebastopol (2015)

7. Newman, S.: Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith, 1st edn. O’Reilly Media, Sebastopol (2019)

8. Richardson, C.: Microservices Patterns: With examples in Java. Manning, Shelter
Island (2018)

9. Tyszberowicz, S., Heinrich, R., Liu, B., Liu, Z.: Identifying microservices using
functional decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA
2018. LNCS, vol. 10998, pp. 50–65. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99933-3 4

10. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Prentice Hall, Upper Saddle River (2017)

11. Evans, E.: Domain-Driven Design. Addison-Wesley Professional, Boston (2003)
12. Millett, S., Tune, N.: Patterns, Principles, and Practices of Domain-driven Design.

Wiley, Hoboken (2015)
13. Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices archi-

tecture: an approach based on transactional contexts. In: Bures, T., Duchien, L.,
Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 37–52. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29983-5 3

14. Chen, R., Li, S., Li, Z.: From monolith to microservices: a dataflow-driven app-
roach. In: Proceedings of the 24th Asia-Pacific Software Engineering Conference –
APSEC 2017, pp. 466–475. IEEE (2018)

15. Kälbener, L., Gysel, M.: Service cutter: a structured way to service decomposition.
https://servicecutter.github.io/

https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-030-29983-5_3
https://servicecutter.github.io/


332 T. Matias et al.

16. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

17. Ren, Z., et al.: Migrating web applications from monolithic structure to microser-
vices architecture. In: Proceedings of the Tenth Asia-Pacific Symposium on Inter-
netware, series ICPS, Internetware 2018. ACM, New York (2018)

18. Taibi, D., Systä, K.: From monolithic systems to microservices: a decomposition
framework based on process mining. In: Proceedings of the 9th International Con-
ference on Cloud Computing and Services Science—CLOSER 2019 (2019)

19. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2) (2004). https://journals.aps.org/pre/abstract/10.1103/
PhysRevE.69.026113

20. Likert, R.: A technique for measurement of attitudes. Arch. Psychol. 22, 5–55
(1932)

21. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service- and microservice-based systems: a literature review. In: Pro-
ceedings of the 27th International Workshop on Software Measurement and 12th
International Conference on Software Process and Product Measurement, series
ICPS, IWSM Mensura 2017, pp. 107–115. ACM, New York (2017)

https://doi.org/10.1007/978-3-319-44482-6_12
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026113
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026113


IAS: An IoT Architectural
Self-adaptation Framework

Mahyar T. Moghaddam1(B), Eric Rutten1, Philippe Lalanda2,
and Guillaume Giraud3

1 Univ. Grenoble Alpes, Inria, CNRS, LIG, 38000 Grenoble, France
{mahyar.tourchi-moghaddam,eric.rutten}@inria.fr
2 Univ. Grenoble Alpes, LIG, 38058 Grenoble, France

philippe.lalanda@imag.fr
3 RTE, 92073 Paris, France

guillaume-np.giraud@rte-france.com

Abstract. This paper develops a generic approach to model control
loops and their interaction within the Internet of Things (IoT) environ-
ments. We take advantage of MAPE-K loops to enable architectural self-
adaptation. The system’s architectural setting is aligned with the adap-
tation goals and the components run-time situation and constraints. We
introduce an integrated framework for IoT Architectural Self-adaptation
(IAS) where functional control elements are in charge of environmen-
tal adaptation and autonomic control elements handle the functional
system’s architectural adaptation. A Queuing Networks (QN) approach
was used for modeling the IAS. The IAS-QN can model control lev-
els and their interaction to perform both architectural and environmen-
tal adaptations. The IAS-QN was modeled on a smart grid system for
the Melle-Longchamp area (France). Our architectural adaptation app-
roach successfully set the propositions to enhance the performance of
the electricity transmission system. This industrial use-case is a part of
CPS4EU European industrial innovation project (CPS4EU is a three
years project funded by the H2020-ECSEL-2018-IA. The project devel-
ops four vital IoT technologies, namely computing, connectivity, sensing,
and cooperative systems. It incorporates those IoT technologies through
pre-integrated architectures and design tools. It instantiates the archi-
tectures in dedicated use-cases from a strategic application viewpoint for
automotive, smart grid, and industrial automation https://cps4eu.eu).

Keywords: IoT · Software architecture · Self-adaptation · Autonomic
control · Functional control · Performance · Queuing networks

1 Introduction

Internet of Things (IoT) systems are composed of distributed smart elements
that are pervasively installed to affect the environment. Like most software sys-
tems, IoT is exposed to changes that occur in both their state and their sur-
rounding environment. The changes cause uncertainties during system operation.
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 333–351, 2020.
https://doi.org/10.1007/978-3-030-58923-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_22&domain=pdf
https://cps4eu.eu
https://doi.org/10.1007/978-3-030-58923-3_22


334 M. T. Moghaddam et al.

Control loops are introduced to facilitate self-adaptation to handle changes and
uncertainties. IoT sensors supply raw data (M) to central or distributed compu-
tational components to be refined and analyzed (A) towards further actuation
planning (P) and execution (E). This process within comprehensive knowledge
(K) forms the MAPE-K control loop. Control loops can be designed and devel-
oped in many different ways. Architecture-based adaptation is an example that
focuses on the role of architectures in engineering self-adaptive systems. Typ-
ically, modeling architectural self-adaptation imposes separating the concerns
about system functionality from adaptation [1].

In contrast to most of the architecture-based adaptation models, we propose
an approach that considers the adaptation internal to the system functionality.
More specifically, we regard functional control elements (FCE) in charge of man-
aging the system functionality and autonomic control elements (ACE) respon-
sible for monitoring the functional system’s situation and handling the archi-
tectural composition. In our IoT Architectural Self-adaptation (IAS) frame-
work, we are concerned with the interaction among various levels of control
loops that are driven by the system adaptation goals. Our focus is on reasoning
and modeling various IoT architectural patterns and their run-time architec-
tural transitions managed by the autonomic control logic. The IAS conceptual
framework, while inspired by the IEEE/ISO/IEC 42010 architecture description
standard [2], comprises both functional and autonomic control elements as well
as their interaction mechanisms.

We define the IAS conceptual framework, and we model it on a real smart
grid application: the Melle-Longchamp area (France). Since the area expands
renewable energy generation using several wind-farms as sources of energy, the
voltage and current of the system sometimes become hard to forecast. Therefore,
to avoid the risk of overloading the lines and creating danger for people’s safety,
the peak current has to be managed. Instead of developing new installations, the
French Transmission System Operator policy is to investigate new exploitation
methods of the existing electrical installations and favor their optimal operation.
Wind-farm generation can be limited by opening their feeder’s circuit breaker,
or more efficiently, by modulating their generation. Additional means can also
be used, such as batteries, power electronics, and IoT. The heterogeneity and
variation of sensors, actuators, and processing elements of power systems increase
the concerns on reliability and performance. In our use-case, while the circuit
breakers are the safe and quick solution to avoid overloading of lines, their usage
should be minimized to prevent imposing indirect costs. Modulating wind-farms’
generation is a solution exposed to a high actuation time, and batteries can store
electricity for a few seconds. Thus, the system needs to make quick decisions on
its own composition to keep the performance within an adequate threshold.

Putting the self-adaptation control at the center of the software process, we
started by analyzing the problem and selecting the data to see what factors
affect the system response time. Then we upgraded the software architecture
from local centralized to hierarchical, which enables all types of architectural



IAS: An IoT Architectural Self-adaptation Framework 335

transition. We further modeled the IAS approach by queuing networks (QNs)
that facilitate designing the various levels of control for performance evaluation.

The paper makes the following contributions: i) presenting an IoT archi-
tectural self-adaptation framework that focuses on functional and autonomic
control components and their run-time interaction; ii) modeling the proposed
framework with queuing networks to estimate the performance of IoT systems
and to support architectural decisions and transitions; iii) applying our frame-
work to a smart grid system by analyzing its various components and their
run-time behavior, for establishing performant operations.

The paper is organized as follows. Relevant literature is discussed in Sect. 2.
The IAS framework is thoroughly explained in Sect. 3. The approach is applied
to a real case in Sect. 4, and conclusions are finally drawn in Sect. 5.

2 Related Work

In software engineering, works on self-adaptation typically focus on functional
control elements that interact with the environment to provide a service. Here we
find works on using feedback control loops (such as MAPE-K) and their interac-
tion that can be presented as patterns [3], in which the functions from multiple
loops are coordinated in different ways. Such interactive coordination mecha-
nisms are indeed crucial to model ever-growing distributed systems. Each inter-
action pattern can satisfy several non-functional requirements while guaranteeing
the functionality of the system [4]. To quote an example, QoSMOS [5] is an adap-
tive service-based platform that enables dynamic adaptation to run-time changes
to achieve some quality of service (QoS) requirements. Some studies [6] take
advantage of layered queuing networks (LQNs) while considering run-time QoS
to automatically generate adaptation policies. Each element of MAPE-K loop
should dynamically react [7] to changes that occur in system’s goals and require-
ments. Current research on goal modeling takes into account uncertainty [8], but
the goals’ dynamic transition [1] and multiple dynamic goals’ satisfaction [9] has
not received much attention. We believe that the self-adaptive software systems’
goals are highly influenced by the limitations and constraints imposed by the
non-controllable environment. Various modes of functional requirement satisfac-
tion should be engineered to enable the system to pick, synthesize, and verify
those modes dynamically.

Such a challenge is even bolder in IoT systems, which comprise heterogeneous
devices that dynamically interact through the internet. The problem can be tack-
led by designing self-managing devices that can adapt their state to changes in
the system context and environment [10,11]. However, realizing the IoT devices
is challenging because of inherent uncertainties in their operation contexts, such
as interferences and dynamic traffic in the network [12]. Often these uncertain-
ties are difficult to predict by architects at development time and often lead to
indecisiveness.

Several studies propose the use of software architectures to address self-
adaptation [13,14]. An architecture model provides a global view of the sys-
tem and its properties and behavior [15]. While architectures can give a global



336 M. T. Moghaddam et al.

idea of the system, the heterogeneity of software systems makes it challeng-
ing to design a set of self-adaptation architectural patterns. Some studies argue
that architectural adaptation includes an architectural model of the controllable
software components that allows the feedback loop to reason about various sys-
tem configurations and adapt it based on goals [16]. However, considering the
feedback loop running on FCE as an external mechanism to the system mini-
mizes the dynamicity of the self-adaptive system. We believe that the functional
control mechanism should be monitored and adapted by autonomic control com-
ponents [17,18], which gets input from both dynamic goals and real-time state
of the system.

3 IAS Framework

This section introduces the conceptual foundations of IAS, comprising a meta-
model that focuses on the FCE and ACE interaction. The framework is inspired
by the IEEE/ISO/IEC 42010 standard [2], but focuses on architecture self-
adaptation rather than architecture description. The metamodel (Fig. 1) depicts
vital concepts of systems and the control mechanism as a process to be consid-
ered in the software design and adaptation process. The metamodel is divided
into two parts: the right side depicts functional control component and its inputs
and dependencies, and the left side deals with autonomic control component and
its correlation with other elements of the system. Software system stakehold-
ers comprise users, developers/clients/managers, and citizens/occupants. Stake-
holders have concerns regarding the system-of-interest [2]. As the focus of this
paper, developers and managers are concerned with the architecture variant,
including the life cycle from system needs and requirements, design choices and
implementation, and operating considerations.

IEEE/ISO/IEC 42010 standard [2] specifies that the system goals and con-
cerns are traditionally formed of functional and non-functional requirements,
design constraints, assumptions, dependencies, and architecture decisions. A
system contains both functional and adaptation goals that are set by stake-
holders. Functional goals specify the system’s functionality under various envi-
ronmental constraints, and adaptation goals mostly concern the quality of the
system. In the IAS approach, we argue that self-adaptation is a goal-directed pro-
cess and its goals should be captured. As shown in Fig. 1, the goals are generally
affected by the environment. In other words, the environment context might
enforce prioritizing a set of goals or ignoring another set of goals. For instance,
if the goal of a self-adaptive smart grid system is performance improvement, a
disaster may prioritize taking adequate measures to prevent the emergency by,
e.g., activating circuit breakers.

Thus, a system is situated in the environment. The environment is the real
world, by which the software system interacts. The environment might include
both physical and virtual elements [1], that the system does not directly control
their functionality. The system interacts with the environment and is influenced
by it. A system can also interact with other systems in the environment.



IAS: An IoT Architectural Self-adaptation Framework 337

Architecture
Variant

Functional
Control

Autonomic
Control

Adaptation
Goals

Stakeholders Environment

Connectors Components

Includes

design

set affects

inputs

affects

inputs

adapts

sets

Includes

bind

input

inputs

Functional
Goals

affects

affectsaffects
inputset

Fig. 1. Conceptual model of IoT Architectural Self-adaptation (IAS).

The environment can be sensed and affected through sensors and actua-
tors, respectively, which locate within IoT elements subsystem and perform the
functionality of the IoT system. As shown in Fig. 2/right, the sense elements
frequently retrieve raw data [19] to input the control components, and actuate
elements receive periodic commands to affect environment. The mentioned data
transmission is continuous since the environment is not under full control of the
software system, and the dynamics of the environment should be tackled.

The functional control comprises the adaptation logic that allows the sys-
tem to perform the intended adaptation within the environment. The FCE has a
MAPE-K (Monitor, Analysis, Plan, Execute and comprehensive knowledge) app-
roach behind [14,17,19]. The Monitor element aggregates and refines the data
to be analyzed and updates the knowledge base of the control component. The
Analyze element interprets the monitored data based on the functional goals.
The Plan element builds actuation strategies, and the Execute element processes
the actuation strategies and prepares the type of message to be set to each set
of actuators.

The left side of the metamodel (Fig. 1) shows the autonomic control that
is more extensively described within Fig. 2/left. The autonomic control sup-
ports a continuous self-adaptation process [17]. It enables the system to monitor
itself continuously and perform necessary adaptation to achieve the adaptation
goals. The ACE takes advantage of the MAPE-K concept as well. It monitors
the system’s situation (including functional control) and assesses both the sys-
tem functionality and quality to update the knowledge base. The ACE further



338 M. T. Moghaddam et al.

Self-adaptive software systemSelf-adaptive software system

IoT Elements

Functional Control

Sensors

Monitor

Actuators

transmit data to

inputs affect

commands

Analyze Plan Execute

Environment
Including non-controllable software, hardware, network,

context

Autonomic Control

Monitor Analyze Plan

Adaptation Goals
(affected by environment)

Functional Control

adapts

sets

inputsinputs

Architecture Variant
Patterns: centralized, collaborative, hybrid

inputs

Execute

inputs

Functional Goals
(affected by environment)

K K K K K K

Fig. 2. IAS autonomic control (right) and functional control (left) mechanisms.

analyzes the data and compares it with real-time adaptation goals. Afterward, an
adequate strategy will be planned to be executed by architecture variant adapta-
tion. For instance, suppose that the adaptation goal is to keep the performance
in a proper threshold, and the high CPU time on a local controller is preventing
such a purpose. In this situation, the autonomic control component adapts the
architecture based on a specific strategy, e.g., switching from local to the remote
control.

Architecture variant determines variations in both software and hardware
architectures [20]. The hardware architecture includes IoT hardware elements,
i.e., sensors, network facilities, controllers, and actuators. The software architec-
ture that is run on hardware elements includes a set of components that are
bounded by connectors based on specific rules and constraints. These archi-
tectures are designed by stakeholders and self-adapted by ACE during system
execution [21].

It is worth mentioning that, from a software architecture point of view, FCE
and ACE and architecture variant are all part of the architecture. Architecture
variant determines multiple functional deployment types, which appear as archi-
tectural patterns shown in Fig. 3. The patterns are composed of IoT elements
layer and one or several functional control layers. The functional control can
perform locally and/or centrally and remotely. Here is the point in which a cen-
tralized cloud and distributed edge and fog can form the hierarchical pattern.
Thus, the patterns [22] characterize IoT systems based on their levels of dis-
tribution and collaboration [20,22]. Distribution specifies whether data analysis
software ought to be deployed on a single node (centralized) or on several nodes
(distributed and hierarchical) that are dispersed across the IoT system. The col-
laboration deals with interaction among functional control components to satisfy



IAS: An IoT Architectural Self-adaptation Framework 339

Fig. 3. IoT architectural patterns based on functional control components composition.
The centralized pattern comprises processing on a central local or remote controller. The
distributed pattern includes the processing on independent or collaborative controllers.
The Hierarchical pattern contains independent or hybrid (i.e., with distributed collab-
orative) controllers.

the goals, requirements, and strategies. This collaboration may appear as a level
of information sharing, coordinated analysis or planning, or synchronized exe-
cution [14].

The IAS-based architectures contain the mechanisms to determine the
required architectural adaption, based on intended QoS satisfaction level. Our
conceptual framework does not rely on any specific tool; thus, practical mod-
eling solutions can be mapped within it. The following section describes the
steps taken to map a smart grid system within IAS, to improve its performance
indices.

4 Application

We model our IAS framework on the performance improvement for RTE1 Com-
pany’s transmission network, located in the Melle-Longchamp area (France).
Figure 4 shows the smart grid network that includes 35 substations connected
by 30 lines. The grid has some constraints regarding current and voltage. In
addition to the power flowing through the network, it contains wind-farms with
a total peak production capacity of 700 MW. Melle-Longchamp area’s control
network is being upgraded from a traditional centralized control to an IoT dis-
tributed control system to enhance the performance of the software system.
1 Electricity Transmission Network, usually known as RTE, is the electricity trans-

mission system operator of France.



340 M. T. Moghaddam et al.

The system follows the usual sense - compute - actuate structure from IoT sys-
tems. We applied the IAS approach to analyze the system and its objectives, and
to design an architectural self-adaptation mechanism that keeps the performance
within a desirable threshold. It is worth mentioning that IAS and its associated
generalized queuing networks models (IAS-QN) can be re-used for functionality
and quality analysis of all IoT systems.

Fig. 4. Smart grid network for Melle-Longchamp. It includes 35 substations connected
with 30 lines.

4.1 Problem and Goals Analysis

Renewable energy systems that convert wind and sun’s rays into electricity are
growing as the primary source of energy. Such renewable generation is mainly
connected to the distribution grid but has an impact on the transmission grid as
well. In the example presented in Fig. 5/lower, a high percentage of the required
electricity to distribute is being supplied from RTE substation, e.g. B and a
small percentage form distribution substation D. If a strong wind blows and
the generation in D becomes excessive, an overload will occur on the transmis-
sion line between B and A. To deal with this problem, the functional controller
can activate different levers: i) the battery in E can be charged, ii) the produc-
tion in D can be limited, iii) the circuit breaker on B can be activated (less
desirable option). Practically, a combination of the actions mentioned above is
required. Dealing with transmission overload risk necessitates considering some
information from sensors such as values of currents and voltages on every line,
state of the network circuit breakers, state of battery’s charge, and also a set of
parameters such as time to limit production of the wind farms, current overload
thresholds on every line and eventually generator merit order.



IAS: An IoT Architectural Self-adaptation Framework 341

Having such sensory input, FCE must ensure the safe operation of the net-
work by sending: i) topological orders to the network circuit breakers, ii) modu-
lation orders to the generators, iii) set-point orders to the storage batteries. The
adaptive management of such smart transmission systems is exposed to per-
formance issues since: i) some types of sensors and actuators need a significant
service time, ii) enhanced forecasting algorithms for generation require a notable
computation time, iii) network transmission and propagation delays sometimes
become long, and iv) the collaboration pattern among local and remote control
resources (with various processing power) is not always efficiently designed.

The typical application needs the delay between data acquisition and actu-
ation to be less than five seconds, but shorter operation times seek. Within the
next subsections, we design the RTE’s IAS-based system that enables the smart
grid to tackle both functional and performance problems.

Fig. 5. The smart grid problem specification. The overloading of the lines because of
e.g. a strong wind can create danger for people’s safety.

4.2 Architecture

Figure 6 shows the architecture we designed for the Melle-Longchamp case by
taking advantage of the New Automated Adaptive Zone (NAZA) platform [23].
The architecture follows a hierarchical pattern with distributed collaborative
controllers (see Fig. 3) that can turn into centralized or distributed patterns
if needed. As shown at the bottom of the figure, each of the 35 substations
acquires data from two types of sensors: i) current and voltage transducers, and
ii) position relays. This function can include aggregation or basic combination
of acquired data (e.g., turning high-frequency sample values into root mean



342 M. T. Moghaddam et al.

square values). Data from the sensors is sent to the control level, eventually after
filtering. Each substation has a gateway that is in collaboration with other areas’
gateways. Gateway are servers Advantech ECU-4787 or MOXA 681-C. Current
and voltage measurements (in protocol IEC61850) are sent every second to the
local gateway. The position of circuit breaker (in protocol IEC60780-5-104) is
sent to the local gateway on every event.

Each gateway can act as the central controller of the whole network, with lim-
ited CPU capacity that is five times less than the central remote controller. The
gateway on substation 1 acts as the autonomic control element (ACE) that plans
the combination of functional control elements (FCE) in use. The ACE can be
moved to any other substation’s gateway or the cloud. The ACE implements the
control logic given the states, conditions, and behaviors of the functional con-
trollers.

As shown in the middle of Fig. 6, the main functional element retrieves and
stores data from the gateways, performs the computation, and sends orders to
the actuators. NAZA platform principally relies on RESTful API to communi-
cate with the transducers, relays, and actuators. The collected data is stored
in a MySql DBMS. The DBMS can also provide the solver inner-component
with summary and real-time statistics. Besides, the system associated with the
simulator service allows back-office to monitor the system state.

Voltage Transducers
o

Position Relays
o

G
at

ew
ay

IoT Sensors

Su
b-

St
at

io
n 

1

Circuit Breakers Set

i

Windmills Set

ii

Batteries Set

ii

Battery 1 Battery 2

Dashboards Set

ii

Dashboard 1 Dashboard 35

Windfarm 2Windfarm 1

Circuit Breaker 35

o

C
lo

ud

i

N
A

ZA
 P

la
tfo

rm

So
lv

er
se

rv
ic

e

Si
m

ul
at

or
Se

rv
ic

e

D
B

 s
er

vi
ce

o

o

Io
T 

A
ct

ua
to

rs

i

o

Voltage Transducers
o

Position Relays
o

G
at

ew
ay

IoT Sensors

Su
b-

St
at

io
n 

2

i

o

Voltage Transducers
o

Position Relays
o

G
at

ew
ay

IoT Sensors

Su
b-

St
at

io
n 

35

i

o

i

Circuit Breaker 1

o

Fig. 6. The proposed hierarchical architecture for RTE. The architecture includes
sense, process and actuating layers. NAZA platform can be run on gateways, local
controller, and cloud.



IAS: An IoT Architectural Self-adaptation Framework 343

The solver implements a Model Predictive Control (MPC) model to opti-
mize a cost function to use levers such as batteries set-points and generation
limit values. It gets real-time data from the gateways and calculates the values
for actuators every 5 s. In some cases that the algorithm finds no solution or
computation takes too long; simple flow charts enforce safety rules such as cur-
tailing all necessary generations. NAZA platform can be run on RTE substation
gateways, local controller, and cloud. Cloud has an unlimited processing power
but causes 2 or 3 times more network delay than local servers mode. The left
side of Fig. 6 shows the actuators. Circuit breakers that are the fastest mode to
stop the current in a line are located in every substation. The batteries can store
the electricity for dozens of seconds to give some time to wind-farms to shut
down. The dashboards show controllers’ state, the values measured by sensors,
and the set-points or limits sent to batteries and generators.

Our main architectural challenges are related to the combination and loca-
tion of the computation components, i.e., gateways, RTE controllers, and cloud.
The challenge mainly arises when the intended QoS (here performance) is not
satisfied, and a run-time architectural pattern switch is required. Such run-time
dynamic adaptation and reconfiguration is set by ACE. The architectural pat-
terns and their adaptation can be modeled by the Queuing Networks (QNs)
concept. In the following section, we introduce a QNs modeling approach that
can facilitate dealing with computation components’ combination and location
issues.

Fig. 7. IAS-QN patterns based on Fig. 3. These generalized patterns can be re-used
for functionality and quality analysis of all IoT systems.

4.3 Modeling IAS Using QNs

In this section, we model the IAS within Queuing Networks (QNs) to introduce
a generalized set of IAS-QN models. Our approach provides a pattern-based
performance modeling of the entire self-adaptive system. The patterns can be



344 M. T. Moghaddam et al.

re-used to model various self-adaptive IoT systems. In IAS-QN, the architectural
components are represented by QN stations, and various sensing, computing,
and actuating activities are represented by job classes that flow through the
QN. In our MAPEK-based approach, the activities are performed both within
and between components.

Figure 7 shows the IAS-QN patterns corresponding to the IoT architectural
patterns shown in Fig. 3. Data coming from sense elements feed the controllers
to plan for specific actuation. The computation on sensed data is performed by
the functional control elements (shown as FCE), while the composition of FCE
is set by the autonomic control elements (shown as ACE). The ACE adopts
a MAPE-K loop to assess the conformity between the FCE situation and the
goals. Based on the locality of ACE and FCE, the communication between them
suffers form some delay. Centralized pattern benefits from only one FCE so that
the architectural adaptation can only take place on other elements, i.e., sense,
actuate, and network. A centralized pattern can be associated with using a
central server or cloud as the FCE.

Distributed pattern benefits from a minimum of two FCE that might share
some information. Here the ACE can also enforce adaptation on FCE level by
heading data toward a controller that enhances system quality. A distributed
pattern is generally associated with the local processing and storage, which take
place in fog nodes. Fog brings a degree of cloud functionality to the network
edge. The computation capacity of fog is lower than the cloud, but it reduces
a significant point of failure by shifting towards more than one computational
component. However, fog only performs locally so that it does not have global
coverage over large IoT systems. To tackle the mentioned shortcomings, hierar-
chical pattern that contains the advantages of both centralized and distributed
patterns is designed. In this pattern, the ACE can execute dynamic architec-
tural adaptation by using local or remote functional controllers in a centralized
or distributed way.

4.4 Modeling IAS-QN for the Melle-Longchamp Application

Figure 8 depicts the IAS-QN designed for the Melle-Longchamp smart grid sys-
tem. The case study consists of 35 local FCE, but because of the space limit,
the figure shows 2 of them only. The proposed IAS-QN conforms the hierar-
chical architecture represented in Fig. 6. However, it can dynamically switch to
other patterns shown in Fig. 7. The dynamic control flows through the IAS-QN
components are specified as follows:

1. Environmental data are sampled by sampling nodes in charge of specifying the
sampling rate. Our system has two types of sensors with different sampling
rates; thus, tow sampling nodes are required. The effect of the system on the
environment is shown by done node. The mentioned nodes are located on the
environment side (shown in Fig. 2).

2. The sense nodes represent various types or clusters of sensors, which take as
input specific kinds of sampled data. In our smart grid system, the trans-
ducers sample voltage and current every second, while the relays sample the



IAS: An IoT Architectural Self-adaptation Framework 345

Fig. 8. IAS-QN for the Melle-Longchamp application. It conforms to the architecture
shown in Fig. 6. The case study consists of 35 local FCE, but 2 of them are shown here.

circuit breakers position in an event-based manner. The sensory data is for-
warded through a network to the controller(s). The network is exposed to
both transmission delay (td) and propagation delay (pd).

3. The autonomic control element (ACE) is represented by class-switches nodes
(A → B) which use the MAPE-K logic. As we pointed out previously, the
ACE class-switches, monitor the situation of the FCE, analyze its situation
based on system goals, and plan for architectural adaptation execution in line
with system goals (shown as ACE: M → A → P ). The adaptation specifies
where the sensory data should be routed for specific processing. When the
feedback from the FCE goes back to the ACE, the composition of controllers
to which the next job should be sent is decided (shown as ACE: → E). Such
decisions can be based on various control selection strategies:

• Probabilities: the destination controller is chosen according to predefined
probabilities that, in general, are different for each controller.

• Random: the destination controller is chosen randomly; i.e., each con-
troller has the same probability of selecting.

• Round-Robin: controllers are cyclically and circularly chosen as the des-
tination controller.

• Join the Shortest Queue: the task is routed to the controller with the
minimum number of tasks. The controller may be able to process the
tasks immediately or with a queuing delay.

• Shortest Response Time: the task is instantly routed to the controller,
which implies the minimum response time for the corresponding task
type.

• Least Utilization: the controller with the smallest instant utilization is
chosen as the destination controller.

• Fastest Service: the task is routed to the controller with the minimum
service time for the corresponding task type.

Due to both the RTE preferences and the smart network configurations, we
set the ACE logic based on Probabilities and keep the other strategies for
future work. The following subsection clarifies the use of such probabilities.



346 M. T. Moghaddam et al.

4. The Functional Control elements (FCE) adopt the MAPE-K loop to achieve
the system functional goals. In our smart grid system, the aggregated sensory
data might be processed in distributed collaborative gateways and/or local
or remote central controllers. The transition from local to central FCE (or
vice versa) is a mode-switch dependent on the autonomic control, and the
adoption of a more complex algorithmic model is a mode switch dependent
on the functional control. These two levels of interactive adaptation drive
the functionality of IAS-based systems. Mode transition in IAS-QN aims at
adapting the control mechanisms and deployment of their execution by ade-
quate actuation. In this example of application, a powerful RTE processor is
used in the centralized pattern, while in the distributed pattern, the gateways
with lower processing power collaborate to manage the situation. In the hier-
archical pattern, hierarchies among central cloud and collaborative gateways
are designed.
The FCE of the Melle-Longchamp area should deal with three modes:

• Mode 1: Fast action mode. Due to a critical situation of the transmission
network, a simple flow chart logic is used to activate the circuit breakers
only. This mode is a fall-back plan of mode 2 as well. The computation
consumes a low CPU.

• Mode 2: Normal mode. The MPC solver base the computation on a cost
function to give the optimal use of all levers (wind-farms modulation,
batteries, and circuit breakers) on a 60 s horizon. If no solution is found in
the allocated time slot, it switches to mode 1. The computation consumes
medium CPU).

• Mode 3: Enhanced forecasting mode. A more sophisticated MPC provides
data-driven forecasts which enhance the predictions on generation. The
computation consumes high CPU).

It is worth mentioning that the system’s situation is shown on the operators’
dashboards in all three modes. Each of the modes has an occurrence prob-
ability. The probabilities that come from the RTE data-driven estimation
specify the amount of time each mode is in operation. The probabilities are
stipulated as 10% for Mode 1, 60% for mode 2, and 30% for mode 3.

5. The fork/join nodes split the sampled data for different sensors and/or actua-
tors sets. These nodes facilitate adaptation in sense and/or actuate levels by,
e.g., specifying the routing probabilities for each brand-new task type heading
to sensors and/or actuators.

6. The actuation plan is implemented by actuators to achieve common goals.
In our smart grid system, the dashboard components receive the data every
second, but other actuation types perform in an event-based manner. The
loop is complete when the actuation on the environment is perceived again
by sensors.



IAS: An IoT Architectural Self-adaptation Framework 347

Table 1. IAS-QN task types and CPU times for the Melle-Longchamp case.

IAS-QN Layer Service Center Task Type Name

Mean Service time (milliseconds)

Centralized
(RTE)

Distributed
(Gateways)

Hierarchical
(Fog-Cloud)

IoT Eelements (sensors)

Current/voltage CVSense 200

005esneSRPsyaleRnoitisoP

Network

1esneSRPdnaesneSVC)dp+dt(syawetaGotesneS

Gateways to Controllers (td+pd) CVSense and PRSense 400 - 1200

Processing

3,2,1edoMECA 10 25 1

FCE

Mode1 15 35 1

Mode 2 200 440 1

Mode 3 800 1760 1

Network

Control to Dashboard (td+pd) DashboardActuate 150

051etautcArekaerB)dp+dt(srekaerBtiucriCotlortnoC

Control to Batteries (td+pd) Battery Actuate 300

Control to Windmills (td+pd) WindmillActuate 300

IoT Elements (actuators)

1etautcAdraobhsaDsdraobhsaD

Circuit Breakers BreakerActuate 100

0001etautcAyrettaBseirettaB

00002etautcAllimdniWsllimdniW

4.5 Simulation

The IAS-QN is modeled and simulated in JMT 1.0.5 [24]. We ran all the experi-
ments on a Corei7 2.7 GHz computer with 16 GB of RAM memory under Win-
dows 10 pro 64-bits. While flowing through the IAS-QN, each task takes a certain
amount of service (CPU) demand on each visited station. The CPU depends on
the job class associated with the tasks. Table 1 shows mean service time on each
IAS-QN component and layer. Workload intensities that are the entry rate of
job classes to IAS-QN, must be specified as well. In our application scenarios,
the workloads associated with transducers and relays are 1 s and event-based,
respectively. As already mentioned, the architectural self-adaptation within our
process is addressed by mode adaptation. Mode adaptation relies on class-switch
routing probabilities, i.e., the probability of monitoring tasks routed to functional
controllers. In this study, we are mainly concerned with mean system response
time, which is the mean time spent from sampling to the time that actuation
ends.

We tested three architectural patterns (see Fig. 7) and their transition to
assess their impact on the system’s performance. Figure 9 shows the mean
response time associated with the smart transmission network managed by our
self-adaptive pattern transition approach. We considered 21 different scenarios
resulted from the architectural patterns’ combinations for handling the three
modes. 18 out of 27 scenarios address the transition between patterns (i.e., run-
time adaptation), each being in charge of managing a specific computation mode
of the Melle-Longchamp IoT architecture.



348 M. T. Moghaddam et al.

Fig. 9. The experimental results: response time (seconds).

4.6 Architectural Design Decisions

Experimental results on system response time (blue bars of Fig. 9) show that
managing the fast action mode (mode 1) and the normal mode (mode 2) with
the centralized, and the enhanced forecasting mode (mode 3) with the hierarchi-
cal architecture minimizes system response time (1.66 s). Furthermore, adapting
the architecture from distributed (for mode 1) to centralized (for mode 2), and
hierarchical (for mode 3) provides the same optimal response time (1.66 s).

In several IoT systems, the architectural adaptation can take place only on
sensors and actuators levels. This might happen, e.g., due to the restrictions on
algorithm distribution, hardware resources availability, or middleware design.
Thus, if we ignore pattern transition for our smart grid system, we see that,
compared with only distributed or only hierarchical, managing the situation with
only the centralized pattern increases the delay by 58%. Apart from the fact that
the performance depends on how much the processing and storage components
are pushed to the edge in a decentralized way, other QoS consideration may
entirely change the story. If we prioritize, e.g., the fault-tolerance of the system,
using a centralized pattern causes a single point of failure. Thus, a hierarchical
architecture can guarantee the fault-tolerance [22] since if one fog node fails, the
IoT system can shift the computation to another fog to avoid the single point
of failure.

Furthermore, we tested using the more powerful computing resource (i.e., the
same as RTE central control element) distributed at the edge of the network (i.e.,
gateways). The corresponding result is shown as the orange bars in Fig. 9. The
results show an improvement in response time in all pattern transitions where
the distributed pattern is involved. This upgrade highlights the only distributed
pattern as the optimal solution, by an 11% response time improvement over the



IAS: An IoT Architectural Self-adaptation Framework 349

previous optimal solution. Thus, taking advantage of our IAS-QN, we proposed
the RTE company to i) re-design their software architecture adaptation policy
to manage their mode 2 with centralized and mode 3 with hierarchical, while
choosing among centralized and distributed patterns for mode 1; ii) push the
powerful FCE to the edge of the network in a distributed collaborative way.

Lessons Learned. The modeling and development of the Melle-Longcham area
smart grid system are still ongoing. However, we learned that adopting a run-
time architectural adaptation mechanism is crucial, specially to set the proposi-
tions to enhance the performance of the system. We believe that applying IAS
could bring various benefits to IoT systems. We notably learned that Inter-
net of Things architectures require containing the mechanisms to determine the
architectural adaption based on their QoS satisfaction level. In our use-case, the
architectural adaptation performed by changing the computational components’
combination to satisfy the performance requirements. However, the adaptation
can also take place in sensing, network, and actuating components. The adap-
tation can be considered internal to the system. The autonomic control element
can analyze the situation of functional control elements in run-time, and plan for
specific architecture variant adaptation. Architecture variant determines multi-
ple functional deployment types as patterns. In our use-case, this process was
executed by class-switch in QNs, which enabled a run-time pattern adaptation
for performance improvements.

5 Conclusion

This paper presents a conceptual framework for IoT Architectural Self-
adaptation (IAS). The approach facilitates architectural adaptation by corre-
lating it with autonomic and functional control elements. The method is further
modeled within Queueing Networks to provide architecture-based performance
assessments. We took advantage of the IAS framework to design and improve
the architecture of RTE Company ’s transmission network, located in the Melle-
Longchamp area (France). By modeling the interaction among autonomic and
functional control elements, we designed and further improved a set of IAS-
QN models that take advantage of MAPE-K approach for desirable run-time
adaptation. We observed that a proper architecture could keep the response
time in a level that is compliant with real-time requirements. We also noticed
that some architecture patterns and their switch provide similar response times.
Thus in future work, we will consider other complementary criteria (e.g.,
resiliency) to make architectural design-decisions. We will also apply our app-
roach to test other performance indices. Another improvement that can be per-
formed in future work is formalizing both the run-time pattern selection process
and sampling rate settings.



350 M. T. Moghaddam et al.

References

1. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and
future challenges. In: Chapter in Handbook of Software Engineering (2017)

2. ISO/IEC/IEEE: ISO/IEC/IEEE 42010, systems and software engineering - archi-
tecture description (2011)

3. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

4. Calinescu, R., Gerasimou, S., Banks, A.: Self-adaptive software with decentralised
control loops. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp.
235–251. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9 16

5. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37(3), 387–409 (2010)

6. Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: Generating adap-
tation policies for multi-tier applications in consolidated server environments. In:
2008 International Conference on Autonomic Computing, pp. 23–32. IEEE (2008)

7. Zavala, E., Franch, X., Marco, J., Berger, C.: HAFLoop: an architecture for sup-
porting highly adaptive feedback loops in self-adaptive systems. Future Gen. Com-
put. Syst. 105, 607–630 (2020)

8. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling app-
roach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0 36

9. Shevtsov, S., Weyns, D.: Keep it simplex: satisfying multiple goals with guaran-
tees in control-based self-adaptive systems. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
229–241 (2016)

10. Athreya, A.P., DeBruhl, B., Tague, P.: Designing for self-configuration and self-
adaptation in the Internet of Things. In: 9th IEEE International Conference on
Collaborative Computing: Networking, Applications and Worksharing, pp. 585–
592. IEEE (2013)

11. Iftikhar, M.U., Ramachandran, G.S., Bollansée, P., Weyns, D., Hughes, D.:
DeltaIoT: a self-adaptive Internet of Things exemplar. In: 2017 IEEE/ACM
SEAMS, pp. 76–82. IEEE (2017)

12. Weyns, D., Ramachandran, G.S., Singh, R.K.: Self-managing Internet of Things.
In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.)
SOFSEM 2018. LNCS, vol. 10706, pp. 67–84. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73117-9 5

13. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

14. Muccini, H., Spalazzese, R., Moghaddam, M.T., Sharaf, M.: Self-adaptive IoT
architectures: an emergency handling case study. In: Proceedings of the 12th Euro-
pean Conference on Software Architecture: Companion Proceedings, pp. 1–6 (2018)

15. Garlan, D., Schmerl, B., Cheng, S.-W.: Software architecture-based self-adaptation.
In: Zhang, Y., Yang, L., Denko, M. (eds.) Autonomic Computing and Networking,
pp. 31–55. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-89828-5 2

https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-662-46675-9_16
https://doi.org/10.1007/978-3-662-46675-9_16
https://doi.org/10.1007/978-3-642-04425-0_36
https://doi.org/10.1007/978-3-319-73117-9_5
https://doi.org/10.1007/978-3-319-73117-9_5
https://doi.org/10.1007/978-0-387-89828-5_2


IAS: An IoT Architectural Self-adaptation Framework 351

16. Weyns, D., Iftikhar, M.U., Hughes, D., Matthys, N.: Applying architecture-based
adaptation to automate the management of Internet-of-Things. In: Cuesta, C.E.,
Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 49–67. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00761-4 4

17. Rutten, E., Marchand, N., Simon, D.: Feedback control as MAPE-K loop in auto-
nomic computing. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Soft-
ware Engineering for Self-Adaptive Systems III. Assurances. LNCS, vol. 9640, pp.
349–373. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-74183-3 12

18. Lalanda, P., McCann, J.A., Diaconescu, A.: Autonomic Computing: Principles
Design and Implementation. Springer, London (2013). https://doi.org/10.1007/
978-1-4471-5007-7

19. Arbib, C., Arcelli, D., Dugdale, J., Moghaddam, M., Muccini, H.: Real-time emer-
gency response through performant IoT architectures. In: International Conference
on Information Systems for Crisis Response and Management, ISCRAM (2019)

20. Muccini, H., Moghaddam, M.T.: IoT architectural styles. In: Cuesta, C.E., Garlan,
D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 68–85. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00761-4 5

21. Dugdale, J., Moghaddam, M.T., Muccini, H.: Human behaviour centered design:
developing a software system for cultural heritage. In: International Conference on
Software Engineering, ICSE-SEIS 2020, pp. 85–94. ACM (2020)

22. Moghaddam, M.T., Muccini, H.: Fault-tolerant IoT. In: Calinescu, R., Di Gian-
domenico, F. (eds.) SERENE 2019. LNCS, vol. 11732, pp. 67–84. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30856-8 5

23. Olaru, S., Maeght, J., Straub, C., Panciatici, P.: Zonal congestion management
mixing large battery storage systems and generation curtailment. In: IEEE Confer-
ence on Control Technology and Applications (CCTA), pp. 988–995. IEEE (2018)

24. Casale, G., Bertoli, M., Serazzi, G.: JMT: performance engineering tools for system
modeling. In: ACM SIGMETRICS Performance Evaluation Review, pp. 10–15.
ACM (2009)

https://doi.org/10.1007/978-3-030-00761-4_4
https://doi.org/10.1007/978-3-319-74183-3_12
https://doi.org/10.1007/978-1-4471-5007-7
https://doi.org/10.1007/978-1-4471-5007-7
https://doi.org/10.1007/978-3-030-00761-4_5
https://doi.org/10.1007/978-3-030-30856-8_5


A Comparison of MQTT Brokers
for Distributed IoT Edge Computing

Heiko Koziolek(B), Sten Grüner, and Julius Rückert

ABB Corporate Research Center Germany, Ladenburg, Germany
{heiko.koziolek,sten.gruener,julius.rueckert}@de.abb.com

Abstract. Many enterprise IoT application scenarios, such as connected
cars, smart cities, and cloud-connected industrial plants require dis-
tributed MQTT brokers to achieve high scalability and availability. With
a market of over 20 MQTT brokers, it is hard for software architects to
make a good selection. Existing MQTT comparisons often include only
non-distributed brokers, focus exclusively on performance, or are diffi-
cult to generalize. We compared three distributed MQTT brokers for
performance, scalability, resilience, security, extensibility, and usability
in an enterprise IoT scenario deployed to an edge gateway cluster. We
found that EMQX provided the best performance (28K msg/s), while
only HiveMQ showed no message loss in our test scenario. VerneMQ
offers similar features as the other brokers but is fully available as open
source. The paper includes decision guidance for software architects, list-
ing six major decision points regarding MQTT brokers.

Keywords: IoT · MQTT · Distributed messaging · Edge computing ·
Virtualization · Software containers · Benchmarking · GQM ·
Performance

1 Introduction

The global Internet-of-Things (IoT) market has an estimated volume of 190
BUSD and is expected to grow to more than 1100 BUSD by 2026 [6]. There
are many application areas where connected devices provide value-adding func-
tions: smart cities, industrial plants, smart home, connected cars, smart energy
grids, etc. These devices often send telemetry data to edge gateways and cloud
platforms, where the data is used for monitoring, supervision, predictive mainte-
nance, and optimization. One of the most popular protocols for this type of com-
munication is MQTT (Message Queuing Telemetry Transport, ISO/IEC 20922),
which implements a publish-subscribe pattern [11]. MQTT is specifically suited
for IoT applications, since it is designed for unstable network connections and
bandwidth saving [13].

There are more than 20 MQTT broker implementations available, making a
selection hard for software architects. Software architects need to balance and
prioritize different quality attributes of MQTT brokers to make an informed
c© Springer Nature Switzerland AG 2020
A. Jansen et al. (Eds.): ECSA 2020, LNCS 12292, pp. 352–368, 2020.
https://doi.org/10.1007/978-3-030-58923-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58923-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-58923-3_23


A Comparison of MQTT Brokers for Distributed IoT Edge Computing 353

decision. There is a lack of evaluation criteria for such messaging brokers specif-
ically in enterprise IoT scenarios. Such scenarios require scalable, high available
MQTT brokers deployed to a cluster, which brings special challenges for capacity
planning and configuration.

Researchers and practitioners have studied different aspects of MQTT com-
munication in the past. There are comparisons to other protocols, such as CoAP,
AMQP, and Kafka [5,12,21,22], as well as small-scale performance tests of differ-
ent, non-clustered MQTT brokers [2,15,21]. However, there is no comprehensive
comparison between distributed MQTT brokers available, which are deployed
in highly scalable and redundant edge clusters for enterprise IoT. Practitioner
experience reports have demonstrated impressive scalability of MQTT brokers
on cloud platforms [4,17], but are often difficult to generalize since they are
geared towards specific contexts. Furthermore these tests often focus exclusively
on performance, neglecting other quality attributes.

The contribution of this paper is a comparison of three representative, dis-
tributed MQTT brokers using evaluation criteria systematically defined using a
Goal/Question/Metric (GQM) scheme [3]. We report on evaluation results for
five quantitative metrics and provide additional qualitative analyses for security,
usability, and extensibility. We found that EMQX showed the best throughput,
while only HiveMQ achieved no message loss in our test scenarios. VerneMQ is fully
available as open source, while providing similar features and quality as the com-
mercial brokers. To obtain the previously defined metrics, we deployed the selected
MQTT brokers in redundant edge gateway servers running the open-source edge
virtualization platform StarlingX. This allowed analyzing the interplay with soft-
ware containers and container orchestration using Kubernetes (K8s).

The remainder of this paper is structured as follows: Sect. 2 sets the context
for Enterprise IoT messaging, for which Sect. 3 defines metrics and a represen-
tative experiment scenario. Section 4 provides a brief overview of distributed
MQTT brokers to rationalize the selected candidates. Section 5 presents the
analysis results for performance, scalability, resilience, security, extensibility, and
usability. Section 6 summarizes the results and decision points as guidance for
software architects. Finally, Sect. 7 investigates related work and Sect. 8 con-
cludes the paper.

2 Background: Enterprise IoT Messaging

Figure 1 shows an enterprise-scale, generic edge gateway cluster architecture that
can be useful in different application domains. IoT Devices are for example
sensors and actuators mainly publishing telemetry data to the edge gateway
cluster and occasionally consuming control signals. Due to potential temporal
network failures, possibly involving cellular connections and resource-constrained
devices, the MQTT protocol [13] is well suited as it is resilient against temporal
disconnects and has a low message size overhead thus saving bandwidth.

Message Broker Instances on the edge gateway cluster ingest messages
from the IoT Devices and enable different applications to consume them. Dis-
tributed MQTT brokers with multiple instances, each residing on a separate



354 H. Koziolek et al.

CloudEdge Gateway Cluster

Load Balanced

Device 
Broker 
Client

«pod»
Message 

Broker Instance

«pod»
Message 

Broker Instance «pod»
Messag e 

Broker Instance

«pod»
Broker 

Dashboard

«pod»
Edge 

Applications

«pod»
Edge 

Applications

Mobile 
Apps

Mobile 
Apps

Device 
Broker 
Client

Device 
Broker 
Client

[...]

Mobile 
Apps

«pod»
Edge 

Applications

"Cloud 
Ingestion"

pub/sub

pub/sub

pub/sub
synchronize

pub/sub

synchronize

monitor /
control

pub

synchronize

pub

Fig. 1. Distributed message brokers on edge gateway cluster

physical or virtual node, may scale horizontally (i.e., with the number of avail-
able nodes) to cope with a high number of connected devices and message work-
loads. The instances exchange messages and client session information, so that
the overall system may survive crashes of individual instances of nodes and sup-
port high-availability scenarios. A load balancer provides network endpoints of
available broker instances to clients interested in messaging, for example in a
round-robin fashion. Many MQTT brokers provide a Broker Dashboard for
monitoring and supervision of the clustered instances.

Mobile Apps subscribe for message topics, for example to display an alarm
list to a field operator in an industrial plant or to provide car telemetry data to
a car owner. Edge Applications may utilize messaging data to execute data
analytics algorithms on premises, for example to enable predictive maintenance
of individual devices or derive optimizations for the entire system. For larger
analysis tasks or cross-site statistics, cloud applications in public data centers
ingest the messages via Internet connections.

In enterprise IoT, the edge gateway cluster may contain multiple physical
nodes that run multiple layers of virtualization. There are several platforms
available supporting different aspects of such an edge gateways, e.g., EdgeX-
Foundry, Fledge, KubeEdge, Azure IoT Edge, and StarlingX.

3 IoT Messaging Requirements

We define metrics and evaluation criteria for distributed MQTT brokers
(Sect. 3.1) and specify the basic scenario used in later tests (Sect. 3.2).



A Comparison of MQTT Brokers for Distributed IoT Edge Computing 355

3.1 Goal/Question/Metric

The goal of our study (according to GQM [3]) is to evaluate the quality attributes
of distributed MQTT brokers in enterprise IoT scenarios from the software archi-
tect’s perspective. The following questions with corresponding metrics to answer
them shall support achieving this evaluation for each broker:

What is the Performance? Metric M1 is the maximum sustainable throughput
(MST) [24] at which the broker is able to process all communicated messages. In
this case, both publishers and subscribers are able to maintain stable message
queues for an agreed reference workload. Metric M2 is the average latency from
publisher to subscriber in a given scenario. Short latencies are important for
many IoT applications, where live monitoring of telemetry data is desired. Prac-
tical limits are set by network connections, which introduce latencies outside of
the control of the broker.

What is the Scalability? Metric M3 is the maximum number of supported con-
current connections, each issuing a reference workload to the broker. Large-scale
IoT scenarios involving smart cities, power distribution grids or fleets of con-
nected cars may include millions of IoT devices. Metric M4 is the time to start
a new broker instance in case of a high load on the already running instances.
This metrics pertains the dynamic scalability (elasticity) to cope with changing
workloads without wasting computing resources.

What is the Resilience? Metric M5 is the message loss count in case of a broker
instance crashing for a reference scenario. While losing individual sensor readings
may be acceptable in some scenarios (e.g., temperature values in a smart home),
it may be harmful in others (e.g., missing an emergency shutdown signal of a
plant). This metric is influenced by the queue lengths configuration of a broker
in relation to a particular workload.

What is the Security? Security of a broker is largely determined by the user
configuration and only to a lesser extent by the broker’s security features. These
include authentication and authorization mechanisms, as well as encryption sup-
port and overload protection procedures. We refrain from defining a potentially
misleading, quantitative metric for security and instead provide a qualitative dis-
cussion in the evaluation section. Metric M6 is only a side-aspect of security and
measures the overhead of enabled TLS encryption on the maximum sustainable
throughput (as percentage).

What is the Extensibility? MQTT brokers offer plug-in mechanisms allowing
third-party extensions, e.g., logging messages to a database. The evaluation
section provides a qualitative discussion on the extensibility of the brokers.

What is the Usability? The usability of a distributed MQTT broker includes
both installation and operation. Easy deployment on container orchestration
systems may be valued. We again refrain from defining a quantitative measure
for usability, but instead provide a qualitative discussion.



356 H. Koziolek et al.

3.2 Basic Experiment Scenario

MQTT performance tests can be categorized into “fan-in”-driven, “fan-out”-
driven, and symmetric tests. Fan-in tests reflect typical IoT applications scenar-
ios with a high number of IoT devices (e.g., 10,000s) acting as publishers, but
only a few or a single subscriber (e.g., an analytics application). Fan-out tests
are the opposite, e.g., a high number of mobile applications consuming data from
few or a single publisher (e.g., weather station). We decided to use a symmetric
test scenario with 10 publishers and 10 subscribers, as our goal was to assess
quality differences of different brokers in a mostly representative scenario. This
also avoids the need to optimize broker queue size configurations. We refer to
other scalability tests [4,9,17] for specific fan-in/fan-out tests.

In our scenario, publishers try to send as many messages as possible to the
broker instances and ultimately the subscribers. We tested in a range between
1,000 and 50,000 messages per second, which is higher than many real cases. For
example, BMW’s connected car platform processes 1,500 messages per second
on HiveMQ, while Bose’s messaging backend using VerneMQ ran up to 9,700
messages per second [17]. The workload expected for an industrial plant equipped
with automation by ABB is within our experimentation range.

We used a fixed message payload size of 150 Bytes with random binary con-
tent. While a single telemetry datum (e.g., a temperature value) may be encoded
with only 4 Bytes, we assume that messages provide additional meta data (e.g.,
identification, timestamps, etc.) in a realistic scenario. Payloads of 64 Bytes or
128 Bytes have been used in other benchmarks and a previous work [21] has found
that payload sizes up to 4,096 Bytes have limited influence on the maximum sus-
tainable throughput. Batching messages may improve overall throughput, but
leads to more complexity on the consumer side, where the batches needs to be
de-grouped as part of the application logic.

All publishers and subscribers use MQTT QoS 1 assuring no message loss,
but requiring message acknowledgments (i.e., implying an extra network round
trip). QoS level 2 would also exclude duplicated messages, but is considered to
imply a too high overhead for most IoT scenarios, while QoS level 0 is risky in
terms of message loss.

4 Distributed MQTT Brokers

Comprehensive feature comparison tables are available for more than 20 MQTT
brokers1. There are also MQTT plug-ins available for message brokers originally
designed for other protocols, such as RabbitMQ or Apache Kafka. However these
plug-ins may be limited in their support of MQTT features. One of the most
popular MQTT brokers is Eclipse Mosquitto (implemented in C). It supports
MQTT versions 3.1 and 5.0 and has a low footprint, but provides no multi-
threading and no native cluster support. AWS IoT and Microsoft Azure IoT
provide basic MQTT support, but lack some features [10].

1 https://en.wikipedia.org/wiki/Comparison of MQTT implementations.

https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations


A Comparison of MQTT Brokers for Distributed IoT Edge Computing 357

For our evaluation, we selected three representative, native MQTT brokers
that provide cluster support and are available as open source (at least in feature-
reduced “community-versions”). All of them support the full MQTT version 3.1
and 5.0 protocols, SSL/TLS, and all MQTT QoS levels.

EMQX2: The Erlang/Enterprise/Elastic MQTT Broker (EMQX) started as
an open source project in China in 2013. The developers created the company
EMQ Technologies Co., Ltd. in 2017 for commercial support and services. The
company claims having more than 5,000 enterprise users and customers from
various application domains. EMQX is now available in multiple variants, as
pure open source broker (1.5M docker pulls), as Enterprise broker, and as private
cloud solution. There is also a lightweight variant (15 MB installation) called
“EMQ X Edge” for resource-constrained IoT gateways, which may interface
with KubeEdge3. The open-source variant is available under Apache License 2.0
for all major operating system and processor architectures.

HiveMQ4: The company dc-square started the development of the commercial
MQTT broker HiveMQ in Germany in 2012. dc-square was renamed to HiveMQ
in 2019 and created an open-source variant (Community Edition, Apache License
2.0, 0.5M docker pulls). The company claims having more than 130 customers for
HiveMQ, among them BMW with a connected car platform and Mattenet with a
platform providing the real-time flight status of drones. HiveMQ is implemented
in Java and now available as community, professional, and enterprise edition,
in addition to an IoT cloud platform variant with hourly subscription fees. The
HiveMQ DNS discovery plug-in uses DNS service discovery to add or remove
brokers instances to the cluster at runtime.

VerneMQ5: Octavo Labs AG from Switzerland is developing the VerneMQ
MQTT broker since 2015. It is an open-source project (Apache License 2.0, 7.1M
docker pulls) with two main developers that started after they had been working
on an energy marketplace project. They discovered that AMQP and XMPP did
not scale well enough for a large number of devices and started implementing
VerneMQ using Erlang/OTP. There are no commercial variants with licensing
fees, but the company offers commercial support around VerneMQ. There are
several featured customers, among them Microsoft and Volkswagen.

5 Analysis of Distributed MQTT Brokers

5.1 Test Infrastructure

Our testbed is a StarlingX6 all-in-one duplex bare metal installation running on
two identical servers in a redundant, high-available fashion. Each server has a

2 https://www.emqx.io/.
3 https://kubeedge.io/.
4 https://www.hivemq.com/.
5 https://vernemq.com/.
6 https://www.starlingx.io/.

https://www.emqx.io/
https://kubeedge.io/
https://www.hivemq.com/
https://vernemq.com/
https://www.starlingx.io/


358 H. Koziolek et al.

0 5000 10000 15000 20000 25000
Workload [msg/s]

0

1

2

3

4

5

6

7

8

To
ta

l c
lu

st
er

 C
PU

 u
sa

ge

EMQX
VerneMQ
HiveMQ

Fig. 2. Stable throughput compared to aggregated CPU usage of all broker pods

Dual Intel Xeon CPU E5-2640 v3 running at 2.60 GHz with 8× 2 physical cores
(32 threads), 128 GB of RAM and Gigabit connectivity.

StarlingX v3.0 is an open-source virtualization platform for edge clusters and
runs on top of CentOS 7.6. All tested brokers run in Docker CE orchestrated by
K8s. Prometheus monitoring tools measure CPU load among other metrics. For
the broker installations we used helm charts (VerneMQ 1.10.2, EMQX 4.0.5) or
public tutorials from broker vendors (Enterprise HiveMQ 4.3.2 evaluation). In
K8s, the brokers use replication controllers (HiveMQ), stateful sets (VerneMQ,
EMQX) and load balancer services (metalLB as Level 2 Load Balancer).

A dedicated node in the same Ethernet segment as the StarlingX controllers
acts as load driver (CentOS 8.1, Intel Xeon CPU E5-2660 v4 @ 2.00 GHz, 16
cores (32 threads) and 8 GB of RAM). We evaluated different load driver appli-
cations, including mqtt-stresser, paho-clients, Locust/MQTT, JMeter/MQTT
and MZBench. We decided to use MZBench7 due to a low resource footprint,
convenient Web UI allowing to monitor and export metrics, and also a possibility
to define load scenarios in a simple Benchmark Definition Language (BDL). We
utilized custom MZBench MQTT workers provided by VerneMQ8. We spawn
MQTT workers locally in a Docker CE environment on the load driver node.

In addition to metrics from Prometheus and MZBench, we used broker dash-
boards provided by brokers to validate throughput measurements. A generic
graphical MQTT client MQTTExplorer9 was also used to validate topic lists.

5.2 Performance

To obtain the metrics M1 (maximum sustainable throughput) and M2 (average
latency), we conducted experiments as described in Sect. 3.2.

During each experiment run, the publishers first established a defined pub-
lishing rate (e.g., 4,000 msg/s), held this for two minutes to assure stability, and
then increased the publishing rate (e.g., by 2,000 msg/s) in two minute intervals.

7 https://satori-com.github.io/mzbench/.
8 https://github.com/vernemq/vmq mzbench.
9 http://mqtt-explorer.com/.

https://satori-com.github.io/mzbench/
https://github.com/vernemq/vmq_mzbench
http://mqtt-explorer.com/


A Comparison of MQTT Brokers for Distributed IoT Edge Computing 359

0 10000 20000 30000 40000
Workload [msg/s]

10
1

10
2

10
3

10
4

10
5

Pu
b-

to
-s

ub
 la

te
nc

y 
[m

s]
EMQX
VerneMQ
HiveMQ

Fig. 3. Stable throughput compared to average publisher-to-subscriber latency

Table 1. Performance metrics

Performance EMQX HiveMQ VerneMQ

Maximum sustainable throughput (msg/s) M1 28,000 8,000 10,000

Average latency at 1000msg/s (ms) M2 6.4 119.4 8.7

To avoid interference with background noise from other processes running on the
edge gateway cluster, we configured each broker pod to utilize at most four CPU
cores. This leaves other cores to execute edge analytics applications or broker
dashboards and provides a fair comparison between the brokers.

Figure 2 shows the aggregated CPU utilization (y-axis) over the messaging
rate (x-axis) for the three analyzed brokers. We repeated each experiment three
times and report the average utilizations to exclude outliers. 95%-confidence
intervals are shown as indication for variations across experiments. The figure
shows the CPU utilization curves leveling out at around 4 CPU cores per pod
(2 pods per broker). At this point the broker cannot sustainably handle the
message load and the message queues run full. We defined an instability point
where the average message consumption differs from the published messages by
more than 100 msg/s. The plots only include the measurements before reaching
this instability point after which, eventually, the message broker starts to drop
messages.

Our measurement confirmed that the CPU was the bottleneck in this test
scenario. Scenarios with substantially larger message payloads could however run
into network bottlenecks, while fan-in and fan-out scenarios could overwhelm
the publisher or subscriber queues. In our specific scenario, EMQX managed the
highest MST with 28K msg/s, while VerneMQ managed 10K msg/s, and HiveMQ
managed 8K msg/s. We confirmed these throughput numbers with independent
measurements by MZBench and the respective broker dashboards. It should be
noted that each broker allows for much higher message throughput in other
scenarios if provided more CPU power (e.g., uncapped CPU assignment, and
deployment to more nodes).



360 H. Koziolek et al.

To
ta

l n
um

be
ro

fC
PU

 c
or

es
ut

ili
ze

d

Experiment time1 2 3 4 65 7 8 9 10Publishers:
(each adding 1000 requests/sec)

Initially
2 pods

CPU 
threshold
crossed, 
new pod(s) 
started

New 
publishers
assigned to
new pods

Existing
publishers/subscribers
remain on initially
assigned pods

4 CPU core
cap reached
by pod-1

8 pods
started

Fig. 4. Kubernetes autoscaling applied to broker pods (VerneMQ)

Figure 3 shows the average publisher-to-subscriber latency for the same sce-
nario. Before reaching CPU bottlenecks, the average latencies are below 150 ms
for all brokers. At 28K msg/s for EMQX the bottleneck is reached, so that the
average latency quickly increases beyond acceptable levels. A similar effect is
visible for the other brokers when reaching their CPU bottlenecks.

Our scenario enables a rough performance comparison of the brokers. Table 1
summarizes the GQM metrics. The Erlang-based MQTT brokers outperform
HiveMQ, which is implemented in Java. Each broker had equally configured
message queues sizes. There may be additional configuration options to tune
each broker’s performance including broker specific and system-wide parameters.

5.3 Scalability

Our tests showed that all evaluated brokers are multi-threaded and utilize as
many CPU cores as available on a given host (tested up to 16 cores). Thus they
support vertical scaling with more powerful CPUs. Software architects need to
define their expected workload profile in the application scenario and can then
perform capacity planning for the required number of nodes. Other authors have
conducted MQTT scalability tests with millions of connections in larger clusters
(see Sect. 7), demonstrating theoretically unlimited scalability (metric M3).

In an edge gateway cluster also horizontal scaling by creating additional
broker instances is possible. We minimally tested horizontal scalability, since
our testbed included only two physical servers. We configured K8s auto-scaling
for a minimum number of 2 pods (1 per node) and a maximum of 8 pods. A
CPU threshold was defined which triggered the instantiation of new pods.

Figure 4 shows the CPU utilization per pod instance in a stacked line chart
over the course of an autocaling experiment with VerneMQ. In the experi-



A Comparison of MQTT Brokers for Distributed IoT Edge Computing 361

Table 2. Scalability metrics

Scalability EMQX HiveMQ VerneMQ

Maximum
number of
connections

M3 Unlimited (tests
up to 50 mio)

Unlimited (tests
up to 10 mio)

Unlimited (tests
up to 5 mio)

Time to start
new broker
instance (s)

M4 18.6 20.2 14.2

Container image
sized (MB)

89.2 298.6 82.5

Fig. 5. Consumption rate and number of connections during resilience test

ment, one new publisher connected every minute and added a publishing rate
of 1000 msg/s to the overall publishing rate. At the peak, the experiment had
10 publishers with a total of 10,000 msg/s, and 10 subscribers consuming each
message. Initially, 10 subscribers and 1 publisher are assigned by the load bal-
ancer to two active pod instances. Once three publishers have connected to the
broker, the pre-defined CPU utilization threshold is crossed and K8s starts new
pods.

We also observe that the load balancer assigns new connection requests to
the newly started pods, but existing connections are not shifted between pods.
Thus, the autoscaling is only effective if there are new connections. For a constant
number of connections but a higher messaging rate, the cluster cannot benefit
from autoscaling without disconnecting clients.

Metric M4 is the start-up time of new broker pods, since load peaks below
this time can only be handled by vertical scaling. We measured the duration
of the transition between the “PodSheduled” and the “Ready” condition of the
pod. Table 2 shows the average time of ten pod starts, excluding the time of
downloading the container image when it is run on the node for the first time.



362 H. Koziolek et al.

5.4 Availability/Resilience

We assessed resilience by modifying the scenario described in Sect. 3.2 to avoid
high queue lengths. The modified scenario contains one publisher (100 msg/s),
two subscribers, and two broker pods (B1, B2). B1 had the publisher P and sub-
scriber S1 connected. B2 had subscriber S2 connected. Both subscribers consume
all messages (total consumption rate of 200 msg/s). Furthermore, the scenario
used QoS 1 and persistent sessions. We configured the broker queues to an in-
flight message queue of 1,000 and on-/offline message queue of 50,000.

After a stabilization phase of each experiment, we forcefully stopped the
broker process on B2, i.e., Java VM or Erlang BEAM VM to simulate a crash.
Subscriber S2 was expected to reconnect to B1 via the load balancer immediately,
i.e., before B2 pod is restarted by K8s. Furthermore, S2 is supposed to resume
its session, and receive messages that the broker buffered during the disconnect.

Figure 5 shows that HiveMQ exhibits the expected behavior, resulting in zero
message loss. The dark lines show the consumption rate of 200 msg/s that is tem-
porarily disturbed due the subscriber disconnect upon broker pod B2 stopping.
We observe an immediate re-connection of S2 and a temporary consumption rate
above 200 msg/s for queued messages. Both EMQX and VerneMQ performed
unexpectedly: the temporary decrease of the consumption rate is not equalized
by a later increase over 200 msg/s. For VerneMQ also note the number of clients
constantly decreasing. We repeated each experiment three times to exclude tem-
porary distortions but arrived at the same result summarized in Table 3. This
unexpected behavior requires further investigations in future work.

Table 3. Average message loss during resilience test

Resilience EMQX HiveMQ VerneMQ

Average messages loss in reference scenario M5 580 0 82

0 5000 10000 15000 20000 25000
Workload [msg/s]

0

1

2

3

4

5

6

7

8

To
ta

l c
lu

st
er

 C
PU

 u
sa

ge

EMQX
EMQX TLS
VerneMQ
VerneMQ TLS

Fig. 6. CPU utilization with and without TLS encryption



A Comparison of MQTT Brokers for Distributed IoT Edge Computing 363

5.5 Security

MQTT security can be tackled at the network level (e.g., using VPN), the trans-
port layer (e.g., using TLS) and the application layer (e.g., authentication and
authorization). In the following, we focus on the security at the transport layer.

We conducted tests using TLS encryption to measure CPU and bandwidth
overhead. We configured each broker to use TLS v1.2, where encryption was
terminated directly at the broker instance. Please note, we were not able to
connect MZBench MQTT workers to HiveMQ due to reported SSL errors. Tests
with other MQTT clients, e.g., MQTTExplorer, worked fine.

Figure 6 shows the impact of TLS encryption on the CPU utilization for one
representative broker (EMQX). The CPU utilization levels out at the cap of four
CPU cores already at 16,000 msg/s when using TLS, compared to 28,000 msg/s
without TLS. Installing certificates on the broker was similar between all the
brokers and can be performed, e.g., by using K8s secrets mounted into the pod.
An overview of additional security features of brokers can be found in Table 4.

5.6 Extensibility

All brokers offer plug-in mechanisms for developing extensions to the basic broker
functionality. For example, plug-ins allow special authentication mechanisms or
integration with monitoring frameworks.

VerneMQ provides hooks for changing protocol flow, events, and conditional
events. Developers can write plug-ins in Erlang, Elixir, or Lua and load them
during runtime. VerneMQ also provides webhooks, where a VerneMQ plugin
dispatches an HTTP post request to a registered endpoint. This mechanism
allows implementing extensions in any programming language.

Table 4. Security metrics

Security EMQX HiveMQ VerneMQ

Authentication/authorization Files, database Files,
database,
OAuth,
LDAP

Files, database

Certificate-based authentication Yes Yes Yes

TLS version support v1.1, v1.2 v1.1, v1.2,
v1.3

v1.1, v1.2

Maximum sustainable
throughput (TLS off)

28,000 8,000 10,000

Maximum sustainable
throughput (TLS on)

16,000 ? 8,000

Overhead of enabled TLS on
MST

M6 43% n/a 20%



364 H. Koziolek et al.

HiveMQ plug-ins are Java JAR files and shall be integrated using depen-
dency injection (using Google Guice). HiveMQ provides more than 30 callback
types besides services to interact with the HiveMQ core (e.g., publish services
to send new messages to clients). There is also a “RestService”, which allows to
create a REST API to be consumed by other applications. The HiveMQ mar-
ketplace provides a few open source plug-ins (e.g., Prometheus monitoring) and
commercial plug-ins (e.g., HiveMQ for Kafka).

EMQX can also be extended with Erlang code, 25 plug-ins are already avail-
able from the vendor (e.g,. web dashboard, rule engine, Lua hooks, STOMP
support). Plug-ins can be loaded at runtime, and there are also webhooks avail-
able. EMQ provides 15 hooks, chaining plug-ins on these hooks is possible.

In summary, the extensibility of all brokers is deemed good. HiveMQ has the
most extensive developer guides and the most hooks, while being geared towards
Java development. VerneMQ and EMQX may have more active communities due
to their longer open source history, offer fewer hooks, and are geared towards
Erlang development.

5.7 Usability

The installation of all brokers is smooth, which allows software architects to
quickly perform experiments with their intended workloads configured in a load
driver. All of them offer Docker containers, VerneMQ and EMQX provide helm
charts for K8s. EMQX and HiveMQ are available as Amazon Machine Images.
Users can configure the brokers via files and environment variables. All brokers
provide a web-based dashboard for monitoring and troubleshooting, where con-
nected clients and performance metrics can be investigated. The dashboards of
HiveMQ and EMQX offer the most information. All brokers have command line
interfaces. HiveMQ has the most comprehensive documentation and developer
guides, including several MQTT tutorials, although the documentation of the
other brokers is also good.

6 Architecture Decision Guidance

Figure 7 shows a preliminary problem space modelled with ADMentor10 and
intended as architect decision guidance. In an enterprise IoT scenario, software
architects first (1) need to decide whether the MQTT protocol is appropriate.
This choice is beyond the scope of our paper (see [16,18,21]). To decide for a
clustered broker (2), a detailed specification of the expected workload profile
should be created. This includes the number of publishers, subscribers, payload
sizes, topics, expected QoS levels, publication/subscription rates,etc. Non-trivial
scenarios likely benefit from a cluster.

A potentially business-driven choice (3) is the selection of an open-source or
commercial MQTT broker, which may largely limit the available alternatives.

10 https://github.com/IFS-HSR/ADMentor.

https://github.com/IFS-HSR/ADMentor


A Comparison of MQTT Brokers for Distributed IoT Edge Computing 365

1)
IoT Protocol?

AMQP
CoAP Kafka

...

MQTT

2)
Clustered?

Yes

No

4)
Cluster
Config?

Candidates: 
Mosquitto, 
JoramMQ, 
HBMQTT, ...

Candidates: 
HiveMQ, 
VerneMQ, 
EMQX, ...

5)
Security
Config?

6)
MQTT

Config?

3)
Open Source?

Yes

No

Number of
Replicas

Resource
quotas

Auto-scaling
Thresholds

...
Authentication

Authorization Encryption

...
Queue lenghts

T imeouts Last-Will and
T estament

...

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adRaises»

«adRaises»

«adAddressedBy»

«adRaises»

«adAddressedBy»

Fig. 7. Architecture decision guidance: IoT/MQTT problem space

Here, it needs to be traded-off whether licensing fees, commercial support, and
advanced features are well invested compared to own development efforts and
community support.

In a containerized edge cluster, the software architect may decide (4) on the
number of required pod replicas, resource quotas, and auto-scaling parameters
(if needed at all). Another decision point is the security configuration (5). The
MQTT configuration itself is a set of fine-granular decisions based the expected
workload profile (6).

The design of the MQTT topic space may also be in control of the software
architect and there are guides available with best practices for topic spaces11.
Here, the software architect does not have discrete options.

We found that the comparably easy installation of the brokers and the avail-
ability of powerful MQTT load drivers allow software architects to quickly eval-
uate MQTT brokers for a given application scenario. If the target deployment
hardware is already available for testing, we recommend specifying the expected
workload for a given load driver (e.g., in the simple Benchmark Definition Lan-
guage of MZBench12) and then quickly running a few experiments to get a feeling
on the performance and availability to expect. This exercise has been reported by
others [4,17] and also allows familiarizing with the usability and documentation
of the brokers, which then supports making a final decision.

7 Related Work

A broad survey of IoT technologies, among them MQTT, was provided by Al-
Fuquaha et al. [1]. Several books describe the protocol, applications, and usage
scenarios in detail [8,13,14]. Naik [16] discusses criteria for selecting messaging

11 https://pi3g.com/2019/05/29/mqtt-topic-tree-design-best-practices-tips-
examples/.

12 https://satori-com.github.io/mzbench/scenarios/tutorial/.

https://pi3g.com/2019/05/29/mqtt-topic-tree-design-best-practices-tips-examples/
https://pi3g.com/2019/05/29/mqtt-topic-tree-design-best-practices-tips-examples/
https://satori-com.github.io/mzbench/scenarios/tutorial/


366 H. Koziolek et al.

protocols, such as MQTT, CoAP, AMQP, and HTTP. Several authors compared
MQTT and CoAP [5,12,22].

Sommer et al. [21] specifically investigated MOM for industrial production
systems, aiming at architectural decision support. They conducted performance
tests with Mosquitto, RabbitMQ, Kafka, and JeroMQ and found the MST for
Mosquitto with different payload sizes at around 1000 msg/s on an Intel i7
Windows-PC. These tests did not involve clustered brokers. Mishra [15] com-
pared the throughput and latency of Mosquitto, BevyWiseMQTT, and HiveMQ
in a small-scale, single broker instance scenario on a Raspberry Pi, but found lit-
tle performance differences. Bertrand-Martinez et al. [2] qualitatively evaluated
different MQTT brokers according to ISO 25010 quality criteria, among them
EMQX and Mosquitto. In this scoring, Mosquitto received the highest rank due
to simplicity and lightweightness.

There are also practitioner reports of performance tests with specific MQTT
brokers: Mahony et al. [17] set up a Kubernetes cluster on AWS and deployed
VerneMQ in up to 80 nodes to open 5 million messaging connections and more
than 9500 msg/s (measured with Locust). The company Hotstar [4] evaluated
the open source MQTT brokers VerneMQ and EMQX for distributing a social
feed to mobile applications. They set the brokers up on up to 5 AWS extra-
large node instances, ran performance tests with MZBench, and reached up to
50 million connections with EMQX. The HiveMQ team [9] demonstrated up to
10 million connections to HiveMQ deployed to 40 AWS EC2 instances.

Most broker vendors provide whitepapers on performance tests with their
own brokers. HiveMQ conducted performance tests on AWS including fan-in and
fan-out scenarios. For example, in a fan-in scenario with QoS1 they achieved
up to 60K msg/s on an 8-core CPU. ScaleAgent [20] compared JoramMQ,
Apollo, Mosquitto, and RabbitMQ at up to 44K msg/s and concluded that their
JoramMQ broker performed best. HiveMQ provides several customer case stud-
ies on their website, for example BMW’s connected car scenario with 1500 msg/s
or a scenario involving 1000 connected air quality sensors with 1100 msg/s.

There are more general works related to our study: The SPECjms2007 bench-
mark [19] provided an agreed workload to test messaging systems (supermarket
chain scenario), but has been retired as of 2016. Thean et al. [23] shows Mosquitto
running in Docker Swarm. Architecture decision guidance models have been pro-
posed for example for SOA [25], cloud computing [26], and microservices [7].

8 Conclusions

This paper analyzed distributed MQTT brokers deployed to an edge gateway
cluster. We found that EQMX showed the highest throughput with 28K msg/s,
while VerneMQ managed 10K msg/s and HiveMQ managed 8K msg/s, respec-
tively. The test scenario was intentionally limited to a maximum of eight CPU
cores). We found that the scalability of the brokers is potentially unlimited, since
they are multi-threaded and can be horizontally scaled. Only HiveMQ managed
our test scenario without message loss. All brokers have similar security features
and offer extensions in any programming language using webhooks.



A Comparison of MQTT Brokers for Distributed IoT Edge Computing 367

Our paper provides decision guidance for software architects in enterprise IoT
scenarios. They can use the results in our paper as an orientation and quickly set
up their own experiments using the tools referenced in the paper. Researchers
can derive reference enterprise IoT scenarios from our paper, conduct additional
tests, and build constructive models for IoT messaging.

As a next step, we intend to deepen our analysis with additional metrics
and scenarios and broaden it by integrating additional messaging solutions. In
addition to StarlingX, a complementary evaluation on more resource-constrained
edge gateways is warranted. It is conceivable to construct predictive performance
models for quick forecasting and to work an automated experiment generator as
a software service utilizing cloud computing resources.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of Things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

2. Bertrand-Mart́ınez, E., Feio, P., Nascimento, V., Pinheiro, B., Abelém, A.: A
methodology for classification and evaluation of IoT brokers. In: 9th Latin Amer-
ican Network Operations and Management Symposium, LANOMS. IFIP (2019)

3. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering, pp. 528–532 (1994)

4. Chaudhari, M., Gupta, P.: Building pubsub for 50m concurrent socket connections,
June 2019. https://blog.hotstar.com/building-pubsub-for-50m-concurrent-socket-
connections-5506e3c3dabf

5. De Caro, N., Colitti, W., Steenhaut, K., Mangino, G., Reali, G.: Comparison of
two lightweight protocols for smartphone-based sensing. In: Symposium on Com-
munications and Vehicular Technology in the Benelux (SCVT), pp. 1–6. IEEE
(2013)

6. Fortune Business Insights: Internet-of-Things market research report, July 2019.
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-
iot-market-100307

7. Haselböck, S., Weinreich, R.: Decision guidance models for microservice monitor-
ing. In: International Conference on Software Architecture Workshops (ICSAW),
pp. 54–61. IEEE (2017)

8. Hillar, G.C.: MQTT Essentials-A Lightweight IoT Protocol. Packt Publishing Ltd.,
Birmingham (2017)

9. HiveMQ-Team: 10,000,000 MQTT clients: HiveMQ cluster benchmark paper,
October 2017. https://www.hivemq.com/benchmark-10-million/

10. HiveMQ-Team: Comparison of MQTT support by IoT cloud platforms, May 2020.
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/

11. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2004)

12. Iglesias-Urkia, M., Orive, A., Barcelo, M., Moran, A., Bilbao, J., Urbieta, A.:
Towards a lightweight protocol for industry 4.0: an implementation based bench-
mark. In: International Workshop of Electronics, Control, Measurement, Signals
and their Application to Mechatronics (ECMSM), pp. 1–6. IEEE (2017)

13. Lampkin, V., et al.: Building Smarter Planet Solutions with MQTT and IBM
WebSphere MQ Telemetry. IBM Redbooks (2012)

https://blog.hotstar.com/building-pubsub-for-50m-concurrent-socket-connections-5506e3c3dabf
https://blog.hotstar.com/building-pubsub-for-50m-concurrent-socket-connections-5506e3c3dabf
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.hivemq.com/benchmark-10-million/
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/


368 H. Koziolek et al.

14. Mesnil, J.: Mobile and Web Messaging: Messaging Protocols for Web and Mobile
Devices. O’Reilly Media Inc., Sebastopol (2014)

15. Mishra, B.: Performance evaluation of MQTT broker servers. In: Gervasi, O.,
et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 599–609. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95171-3 47

16. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP. In: International Systems Engineering Symposium (ISSE), pp.
1–7. IEEE (2017)

17. O’Mahony, D., Doyle, D.: Reaching 5 million messaging connections: our
journey with kubernetes, December 2018. https://www.slideshare.net/
ConnectedMarketing/reaching-5-million-messaging-connections-our-journey-
with-kubernetes-126143229

18. Profanter, S., Tekat, A., Dorofeev, K., Rickert, M., Knoll, A.: OPC UA versus
ROS, DDS, and MQTT: performance evaluation of industry 4.0 protocols. In:
IEEE International Conference on Industrial Technology (ICIT) (2019)

19. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of
message-oriented middleware using the SPECjms2007 benchmark. Performance
Evaluation 66(8), 410–434 (2009)

20. ScaleAgent: benchmark of MQTT servers, January 2015. https://bit.ly/2WsTw0Z
21. Sommer, P., Schellroth, F., Fischer, M., Schlechtendahl, J.: Message-oriented mid-

dleware for industrial production systems. In: International Conference on Automa-
tion Science and Engineering (CASE), pp. 1217–1223. IEEE (2018)

22. Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y.: Performance evaluation
of MQTT and CoAP via a common middleware. In: International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp.
1–6. IEEE (2014)

23. Thean, Z.Y., Yap, V.V., Teh, P.C.: Container-based MQTT broker cluster for edge
computing. In: International Conference and Workshops on Recent Advances and
Innovations in Engineering (ICRAIE), pp. 1–6. IEEE (2019)

24. Tran, P., Greenfield, P., Gorton, I.: Behavior and performance of message-oriented
middleware systems. In: International Conference on Distributed Computing Sys-
tems Workshops, pp. 645–650. IEEE (2002)

25. Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural decisions
and patterns for transactional workflows in SOA. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 81–93. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74974-5 7

26. Zimmermann, O., Wegmann, L., Koziolek, H., Goldschmidt, T.: Architectural deci-
sion guidance across projects-problem space modeling, decision backlog manage-
ment and cloud computing knowledge. In: Working IEEE/IFIP Conference on
Software Architecture, pp. 85–94. IEEE (2015)

https://doi.org/10.1007/978-3-319-95171-3_47
https://www.slideshare.net/ConnectedMarketing/reaching-5-million-messaging-connections-our-journey-with-kubernetes-126143229
https://www.slideshare.net/ConnectedMarketing/reaching-5-million-messaging-connections-our-journey-with-kubernetes-126143229
https://www.slideshare.net/ConnectedMarketing/reaching-5-million-messaging-connections-our-journey-with-kubernetes-126143229
https://bit.ly/2WsTw0Z
https://doi.org/10.1007/978-3-540-74974-5_7


Author Index

Aerts, Ad T. M. 247
Aleti, Aldeida 182
Almeida, João Franscisco 39
Araújo, Camila 101
Arcelli, Davide 139
Astudillo, Hernán 231, 281

Babar, Muhammad Ali 165
Batista, Thais 101
Berger, Christian 73
Bogner, Justus 315

Capilla, Rafael 231
Caporuscio, Mauro 57, 265
Carrillo, Carlos 231
Cavalcante, Everton 101
Chondamrongkul, Nacha 21
Correia, Filipe F. 315
Cruz, Pablo 281

D’Angelo, Mirko 57
Dajsuren, Yanja 247
De Sanctis, Martina 118
Dias, Fagner 101

Edrisi, Farid 265

Ferreira, Hugo S. 315
Fritzsch, Jonas 315

Geiger, Sebastian 3
Giaimo, Federico 73
Giraud, Guillaume 333
Goodwin, Sarah 182
Grassi, Vincenzo 57
Gratzl, Samuel 182
Grüner, Sten 352

Hallberg, Margrethe 265
Herold, Sebastian 193

Iovino, Ludovico 118
Islam, Chadni 165

Jamshidi, Pooyan 182
Johannesson, Anton 265

Kaplan, Angelika 220
Keim, Jan 220
Kopf, Claudia 265
Koziolek, Anne 148, 220
Koziolek, Heiko 352
Kruchten, Philippe 202

Lago, Patricia 202
Lalanda, Philippe 333
Leite, Jair 101

Malakuti, Somayeh 296
Matias, Tiago 315
Meixner, Sebastian 3
Mirakhorli, Mehdi 220
Mirandola, Raffaela 57
Moghaddam, Mahyar T. 333

Nepal, Surya 165
Ntentos, Evangelos 3

Oliveira, Marcel 101
Oquendo, Flavio 101
Ostroumov, Sergey 296

Perez-Palacin, Diego 265
Plakidas, Konstantinos 3
Poll, Erik 89

Restivo, André 315
Rossi, Maria Teresa 118



Rückert, Julius 352
Rutten, Eric 333

Salinas, Luis 281
Seifermann, Stephan 148
Serban, Alex 89
Silva, António Rito 39
Sun, Jing 21

Trubiani, Catia 182

van Hoorn, Andre 182
Verdecchia, Roberto 202
Visser, Joost 89

Warren, Ian 21
Werle, Dominik 148
Wimmer, Manuel 118

Zdun, Uwe 3
Zimmermann, Olaf 231

370 Author Index


	Preface
	Organization
	Keynotes
	AI Engineering — New Challenges in System and Software Architecting and Managing Lifecycle for AI-based Systems
	Fifty Years of Sustained Progress: Form, Forces, and Lessons of Unix Architectural Evolution
	Mighty Methods: Four Essential Tools for Every Software Architect’s Silver Toolbox
	Contents
	Microservices
	Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices
	1 Introduction
	2 Related Work
	3 Decisions
	4 Research and Modeling Methods
	4.1 Research Method
	4.2 Model Generation
	4.3 Methods for Modeling Microservice Component Architectures

	5 Ground Truth Calculations
	6 Metrics
	6.1 Metrics for Inter-Service Coupling Through Databases Decision
	6.2 Metrics for Inter-Service Coupling Through Synchronous Invocations Decision
	6.3 Metrics for Inter-Service Coupling Through Shared Services Decision
	6.4 Metrics Calculation Results

	7 Ordinal Regression Analysis Results
	8 Discussion
	8.1 Discussion of Research Questions
	8.2 Threats to Validity

	9 Conclusions and Future Work
	References

	Formal Software Architectural Migration Towards Emerging Architectural Styles
	1 Introduction
	2 Formal Architectural Migration
	2.1 Architecture Modelling
	2.2 Refactoring Rules

	3 Justification of Architectural Migration
	3.1 Verifying Functional Requirements
	3.2 Checking Architectural Pattern Constraints
	3.3 Benefits of the Migration

	4 Evaluation
	4.1 Experiment Setup
	4.2 Evaluation Result
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Monolith Migration Complexity Tuning Through the Application of Microservices Patterns
	1 Introduction
	2 Functionality Redesign
	3 Complexity Metrics
	4 Evaluation
	4.1 Operations Evaluation
	4.2 Complexity Metrics Evaluation
	4.3 Threats to Validity

	5 Related Work
	6 Conclusions
	References

	Uncertainty, Self-adaptive, and Open System
	Decentralized Architecture for Energy-Aware Service Assembly
	1 Introduction and Motivation
	2 System Model
	3 Energy Model
	3.1 Computation Energy
	3.2 Communication Energy

	4 Welfare Indexes
	5 System Architecture
	5.1 Energy-Aware Service Selection

	6 Experimental Evaluation
	6.1 Experimental Settings
	6.2 Experimental Results

	7 Threats to Validity
	8 Conclusion and Future Work
	References

	Continuous Experimentation for Automotive Software on the Example of a Heavy Commercial Vehicle in Daily Operation
	1 Introduction
	1.1 Continuous Experimentation
	1.2 Scope of this Work
	1.3 Research Goal
	1.4 Contributions

	2 Related Works
	3 Methodology
	4 Results
	4.1 Research Question 1
	4.2 Research Question 2

	5 Discussion
	5.1 Threats to Validity

	6 Conclusions and Future Work
	References

	Towards Using Probabilistic Models to Design Software Systems with Inherent Uncertainty
	1 Introduction
	2 Modeling Uncertainty During Design (MUDD)
	3 Quantitative Architecture Evaluation
	4 Related Work
	5 Conclusions and Future Work
	References

	Model-Based Approaches
	Empowering SysML-Based Software Architecture Description with Formal Verification: From SysADL to CSP
	1 Introduction
	2 Background
	2.1 SysADL
	2.2 CSP

	3 A CSP-Based Formal Semantics for SysADL
	3.1 Structural Viewpoint
	3.2 Behavioral Viewpoint
	3.3 Execution Viewpoint

	4 Formal Verification of SysADL Models
	5 Tool Support and Validation
	6 Related Work
	7 Conclusion
	References

	A Flexible Architecture for Key Performance Indicators Assessment in Smart Cities
	1 Introduction
	2 Related Work
	3 Approach and Proposed Flexible Architecture
	4 Prototypical Implementation
	5 Evaluation
	5.1 Flexibility Evaluation
	5.2 Performance Evaluation

	6 Conclusion and Future Work
	References

	Performance and Security Engineering
	A Multi-objective Performance Optimization Approach for Self-adaptive Architectures
	1 Introduction
	2 Related Work
	3 Evolutionary Approach for Performance Optimization
	3.1 Approach Overview
	3.2 NSGA-II Customization for the CSP Problem

	4 Evaluation
	4.1 Controlled Experiment

	5 Conclusion
	References

	Data Stream Operations as First-Class Entities in Component-Based Performance Models
	1 Introduction
	2 Running Example
	3 Background
	3.1 Component-Based Performance Models
	3.2 State in Performance Models
	3.3 Stochastic Expressions and Dependencies
	3.4 Challenges for Modeling Data Streaming Applications

	4 Approach
	4.1 Modeling Concepts

	5 Evaluation
	5.1 Evaluation Question
	5.2 Experiment Setup: Workload and Configuration
	5.3 Experiment Setup: Metric and Performance
	5.4 Experiment Setup: Model
	5.5 Results
	5.6 Discussion

	6 Related Work
	7 Conclusion
	References

	Architecture-Centric Support for Integrating Security Tools in a Security Orchestration Platform
	1 Introduction
	2 Security Orchestration and Automation
	2.1 Functional Requirements of Security Orchestration and Automation
	2.2 Quality Attribute Requirements
	2.3 Abstraction for Security Orchestration and Automation

	3 SOAR Architecture
	4 Dimensions of the Design Space of SOAR
	5 Case Study – Prototype Implementation
	6 Evaluation
	6.1 Automating the Process for Integration Security Tools
	6.2 Automating the Interpretation of the Activities to Execute an IRP

	7 Related Work
	8 Conclusion
	References

	VisArch: Visualisation of Performance-based Architectural Refactorings
	1 Introduction
	2 VisArch: Visualising Architectural Refactorings
	3 Visualisation Results
	4 Conclusion
	References

	Architectural Smells and Source Code Analysis
	An Initial Study on the Association Between Architectural Smells and Degradation
	1 Introduction
	2 Foundations
	2.1 Reflexion Modelling
	2.2 Architectural Smells

	3 Study Setup
	3.1 Research Question and Hypotheses
	3.2 System Under Study
	3.3 Data Gathering
	3.4 Data Analysis

	4 Results
	5 Discussion
	5.1 Interpretation of the Results
	5.2 Validity

	6 Related Work
	7 Conclusion
	References

	Architectural Technical Debt: A Grounded Theory
	1 Introduction
	2 Research Method
	2.1 Data Collection
	2.2 Data Analysis

	3 Results
	3.1 ATD Items
	3.2 Causes
	3.3 Consequences
	3.4 Symptoms
	3.5 Management Strategies
	3.6 Prioritization Strategies

	4 Related Work
	5 Verifiability and Threats to Validity
	6 Conclusions
	References

	Does BERT Understand Code? – An Exploratory Study on the Detection of Architectural Tactics in Code
	1 Introduction
	2 Related Work
	3 Our Approach
	4 Evaluation
	5 Discussion
	6 Conclusion and Future Work
	References

	Education and Training
	Teaching Students Software Architecture Decision Making
	1 Introduction
	2 Background and Related Work
	2.1 Teaching Design and Collaborative Decision-Making
	2.2 Architectural Knowledge Research
	2.3 Design Thinking, Reflection and Reasoning

	3 Experimental Design
	3.1 Course Description
	3.2 Course Selection and Participants
	3.3 Training and Laboratory Activities
	3.4 Groups and Tasks

	4 Results
	4.1 Collaborative Decision-Making
	4.2 Collaborative Analysis and Modelling Tasks
	4.3 Effort Spent in Cognitive and Modelling Tasks
	4.4 Effort in Reflective Tasks

	5 Discussion
	6 Conclusion
	References

	The PDEng Program on Software Technology
	1 Introduction
	2 General Background
	3 PDEng Program Design
	3.1 Engineer, Designer, or Architect?
	3.2 Software Technology Program Framework

	4 Quality Evaluation
	4.1 Certification of the Program
	4.2 Industry Feedback
	4.3 Alumni

	5 Related Work and Discussion
	6 Conclusions and Future Work
	References

	Experiences and Learnings from Industrial Case Studies
	Architectural Concerns for Digital Twin of the Organization
	1 Introduction
	2 Industrial Case Study
	2.1 Digitalization Journey
	2.2 Organization Description
	2.3 DTO Development – Iteration 1
	2.4 DTO Development – Iteration 2 (Evolution)

	3 Architectural Concerns
	3.1 Architectural Concerns in the Case Study
	3.2 Lessons Learned for Sustainable Digitalization

	4 Related Work
	5 Conclusions and Future Work
	References

	Quick Evaluation of a Software Architecture Using the Decision-Centric Architecture Review Method: An Experience Report
	1 Introduction
	2 Architecture Evaluation and Related Work
	3 Evaluation Context
	4 Choosing a Software Architecture Evaluation Method
	5 Decision-Centric Architecture Review (DCAR)
	6 Evaluating the Architecture with DCAR
	6.1 Three Reviewed Decisions
	6.2 Resources Naming
	6.3 A Rejected Decision

	7 Lessons Learned and Recommendations
	7.1 With Careful Planning Some Activities Can Be Done Offline
	7.2 Architecture Evaluation Should Be Continuous
	7.3 The Report Can Be Used to Formalize the Implemented Architecture
	7.4 Some Decisions Imply Follow-Up Conversations

	8 Reflections on the Use of DCAR
	8.1 Software Architecture Is Seen and Treated as a Set of Decisions
	8.2 Quality Attributes Are Discussed Even If Not Explicitly Mentioned
	8.3 The Architecture Gains Visibility
	8.4 Architectural Decisions Rationale Is Discussed

	9 Threats to Validity
	10 Conclusions
	References

	The Quest for Introducing Technical Debt Management in a Large-Scale Industrial Company
	1 Introduction
	2 Project Setting and Methodology
	3 Phase 1: Modularity Assessment
	4 Phase 2: Modularity Improvement
	4.1 Tool Selection
	4.2 Architecture Knowledge Management and Documentation
	4.3 Refactoring Two Subsystems

	5 Phase 3: Systematic Technical Debt Management
	5.1 Causes of Technical Debt
	5.2 Various Aspects of Technical Debt Management
	5.3 Towards Systematic Technical Debt Identification and Prioritization

	6 Challenges and Lessons Learnt
	7 Related Work
	8 Conclusions and Future Work
	References

	Architecting Contemporary Distributed Systems
	Determining Microservice Boundaries: A Case Study Using Static and Dynamic Software Analysis
	1 Introduction
	2 Related Work
	3 Approach
	4 The MonoBreaker Tool
	4.1 Collect Operational Data
	4.2 Build Model of the System
	4.3 Clustering
	4.4 Generate Decomposition Suggestions
	4.5 Limitations

	5 Case Study
	5.1 Context
	5.2 Process
	5.3 Data Sources
	5.4 Data Analysis
	5.5 Threats to Validity

	6 Conclusions and Future Work
	References

	IAS: An IoT Architectural Self-adaptation Framework
	1 Introduction
	2 Related Work
	3 IAS Framework
	4 Application
	4.1 Problem and Goals Analysis
	4.2 Architecture
	4.3 Modeling IAS Using QNs
	4.4 Modeling IAS-QN for the Melle-Longchamp Application
	4.5 Simulation
	4.6 Architectural Design Decisions

	5 Conclusion
	References

	A Comparison of MQTT Brokers for Distributed IoT Edge Computing
	1 Introduction
	2 Background: Enterprise IoT Messaging
	3 IoT Messaging Requirements
	3.1 Goal/Question/Metric
	3.2 Basic Experiment Scenario

	4 Distributed MQTT Brokers
	5 Analysis of Distributed MQTT Brokers
	5.1 Test Infrastructure
	5.2 Performance
	5.3 Scalability
	5.4 Availability/Resilience
	5.5 Security
	5.6 Extensibility
	5.7 Usability

	6 Architecture Decision Guidance
	7 Related Work
	8 Conclusions
	References

	Author Index



