
Property-Based Fault Injection: A Novel
Approach to Model-Based Fault Injection

for Safety Critical Systems

Athira Varma Jayakumar(B) and Carl Elks

Electrical and Computer Engineering Department, Virginia Commonwealth University,
Richmond, VA, USA

{jayakumarav,crelks}@vcu.edu

Abstract. With the recent popularity of model-based design and verification
(MBDE), fault injection testing at the functional model level is gaining signif-
icant interest. The reason for this interest is it aids in detecting design errors and
incorrect requirements on fault detection and tolerance features, very early in the
development lifecycle. This is evidenced by the fact that functional safety stan-
dards like IEC 61508 and ISO 26262 identify fault injection testing as a highly
recommended technique for SIL-3 and SIL-4. The main challenges to date with
model-based fault injection are lack of completeness in the fault injection space,
semi-manual integration and insertion of fault injection modules into the mod-
els and manual identification of fault activation conditions. The work presented in
this paper describes a novel model-based fault injection technique that is property-
based and applies formal model checking verification methods at the functional
model level of design thereby guaranteeing a near-exhaustive state, input and fault
space coverage. This method also introduces the usage of properties and model
checking capabilities to automate the identification of fault activation conditions
for all the faults within the fault space. We describe the workflow and implemen-
tation of the property-based Fault injection using Simulink Design Verifier and its
application on the functional model of a representative safety-critical system.

Keywords: Fault injection · Fault tolerance assessment · Model-based fault
injection · Safety-critical systems · Model-checking

1 Introduction

With technology advancements in semiconductor electronics, communication networks,
system-on-chip architectures we have been witnessing continuing high density integra-
tion of CPS technology. At the same time we are seeing an increase in software intensive
systems for critical applications that take advantage of the capabilities of today’s highly
integrated devices. To identify and understand potential failures and their consequences,
the use of systematic approaches for assuring digital system safety (dependability) is
gaining acceptance across many industries from process control, nuclear, automotive,
to aerospace. These systematic approaches include methods like safety case analysis

© Springer Nature Switzerland AG 2020
M. Zeller and K. Höfig (Eds.): IMBSA 2020, LNCS 12297, pp. 115–129, 2020.
https://doi.org/10.1007/978-3-030-58920-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58920-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-58920-2_8


116 A. V. Jayakumar and C. Elks

methodologies, STPA, STAMP, and formal design assurance methods [1]. Almost all of
these systematic approaches require some formof analysis or study of failures, faults, and
losses within a system context. Dependability evaluation involves the study of failures
and errors and their potential impact on system attributes such as reliability, safety and
security. This is evidenced by the fact that functional safety standards like IEC 61508 and
ISO 26262 identify fault injection testing as a highly recommended validation technique
for SILs 3 and 4.

Fault Injection (FI) is defined as a dependability evaluation technique based on
the realization of formal controlled validation experiments in which system behavior is
observed while faults are explicitly induced in the system by the deliberate introduction
(injection) of faults [2]. At a broad stance, contemporary fault injection approaches fall
into 3 categories; physical fault injection, simulation-based fault injection, and SWIFI
(Software Implemented Fault Injection). While all of these contemporary approaches
to fault injection are needed for assuring dependability and safety case arguments, we
suggest a new class of fault injection should be defined by the dependability community
– model based fault injection. With the recent popularity of model-based design and
development (MBDE) and testing, fault injection testing at the functional model level
is gaining significant interest. The reason for this interest is it aids in detecting design
flaws, omissions and incorrect requirements that impact hazard mitigation very early in
the lifecycle development process.

The work presented in this paper describes a model-based fault injection framework
that is implemented in the Mathworks Simulink environment. The innovation of the
work is that the fault injection technique is property based and applies formal model
checking at the functional model level of design thereby guaranteeing a near-exhaustive
state, input and fault space coverage. This work is noteworthy in that it links fault
injection to properties (safety, functional, and liveness) that are vital for making safety
case arguments in the presence of hazards, failures and faults. This work also solves the
challenge of manually identifying fault activation conditions during fault injection by
employingmodel checking tool to automate it.Our fault injection framework implements
a comprehensive insertion of fault modules throughout the system functional model thus
enabling an exhaustive fault location coverage.

2 Background and Challenges

Fault injection is often characterized by its statistical nature, meaning that statistical
models are used to govern the fault injection experiment [3]. The classical fault injection
approach involves iteratively conducting a set of tests (called trials) to inject faults into the
system and observing the response of the system. As such, the fault space often involves
the dimensions injection time (t), fault location (l), fault type (fm) as sampled from
fault classes, fault value (v) and fault duration (�). An extremely important metric for
assessment of safety-critical systems is fault coverage, C which denotes the conditional
probability that the system detects or corrects a fault given that a fault is present in the
system. Due to the multi-variable nature of the statistical experiments, fault injection
experiments without a-priori knowledge of what types of fault to inject, where to inject,
and at what time to inject becomes very combinatorically challenging, which can lead



Property-Based Fault Injection: A Novel Approach 117

to very large numbers of fault injection experiments. System safety and reliability are
highly sensitive to fault coverage and therefore high levels of fault coverage estimation
is often required for such systems [4]. Another major challenge with simulation-based
FI is the manual identification of fault activation conditions which is very essential for
conducting effective fault injections and avoiding no-response faults. TheProperty-based
FI proposed in this paper is capable of addressing these challenges.

3 Related Work

In the last decade, FI community has started gaining interest on the application of for-
mal methods to fault injection and to the analysis of fault tolerance mechanisms. Few
works that extend formal verification techniques like model checking, assertion based
verification and symbolic analysis to fault injection are discussed below. Scott et al. [5]
present a methodology called ABVFI which is fault injection based on assertion based
verification, that checks for critical properties at the hardware level by embedding asser-
tion statements into the hardware design (RTL). Krautz et al. [6] used formal verification
to exhaustively measure the fault coverage of a VHDL design. Symbolic simulation of
sequential circuits is performed by creating Binary Decision Diagrams of the circuit’s
state space. Leveugle [7] introduced the new approach of combining property withmuta-
tion of the circuits to conduct fault injection experiments on circuits. Critical properties
are checked for any violations in the mutated circuits thereby helping in identifying
the undesirable effects of multiple faults in the circuit. Daniel et al. [8] were the first
to demonstrate the effectiveness of symbolic fault injection on a SIHFT application
in Java platform. This approach involved the injection of symbolic faults during the
symbolic execution of the software. Another work by Vedder et al. [9] that combines
property-based testing with fault injection enables automatic generation of testcases
from specified system properties and verifying them in the presence of faults. Most of
these works combining fault injection with formal verification are targeted for hardware
design level. Whereas this study is targeted to analyze the feasibility and effectiveness
of formal verification for fault injection in a model-based design environment.

Fewworks like [10] and [11] have proven the usage ofmodel checking and fault injec-
tion to automate FMEA and deviation analysis on Behavior Tree models and NuSMV
models respectively. xSAP tool [12] offers a platform to formally conduct faults/safety
analysis, but necessitates the system model to be represented in NuSMV. We extend
on these works by introducing the use of exhaustive model checking for fault injec-
tion and fault behavior analysis on executable functional models in Simulink capable
of progressing into code generation. These Simulink behavioral models are determinis-
tic functional/logical models with no probabilistic aspects. While studies [13] and [14]
describe the usage of Design Verifier model checker to formally prove safety properties
in the presence of faults introduced in the functional models, we go beyond these works
by addressing the practical problem of identifying fault activation conditions during fault
injection. Faults even though triggered may not be activated if other input/state condi-
tions are not satisfied. Inactivated faults could cause themodel checker to falsely validate
the safety properties. This practical problem is systematically addressed using model
checking in this paper. In addition, while other studies including [13] and [14] selectively



118 A. V. Jayakumar and C. Elks

introduce failure modes in the model to capture the various ways in which the system
components malfunction, our work implements exhaustive fault saboteur insertion, thus
allowing for an exhaustive fault behavior analysis by the model checker. An automation
script that is part of our FI framework facilitates insertion of fault saboteurs throughout
all signal lines within the model, thus ensuring complete fault location coverage. The
framework also enables an extensive and diverse fault model selection that consists of
permanent, transient and delay faults [15].

4 Property-Based Fault Injection

The conceptual idea of property proof based fault injection is shown in Fig. 2. The basic
premise of our approach is to use the power of model checking to overcome some of
the challenges associated with classical fault injection methods – namely the burden of
executing large numbers of FI combinatorial experiments and finding fault activation
conditions. This approach is complementary to classical fault injection methods in that it
identifies potential problems as early as possible in the design process. Model checking
is a formal verification technique that mathematically verifies the validity of critical
properties of a model of a system through systematic state exploration. Unlike testing,
where the input and expected output vectors have to be fed into the system, there is no
need to feed in input sequences for model checking. It is a verification procedure that
involves an exhaustive search of the state and input space of the design to ensure that a
system always satisfies specific property under given constraints.

Fig. 1. Classical fault injection vs property based fault injection

To understand the difference between property-based FI and classical statistical-
based FI, we consider the FI experiment space exploration achieved with each of these
methods as shown in Fig. 1. Classical FI experiment covers a single point within the
FI experiment space of the system, per experimental trial. As such, with classical FI
there are always points in the FI experiment space (input/fault/state space points) that
are not covered, which could overlook a faulty part of the design to go unnoticed. In
contrast, fault injection based on property proving works at the property level. Given
a safety property and a functional model, property based FI exhaustively searches the
entire fault, input and state space for safety property violations, by covering all possible
faults in all possible input and state conditions – for that given property.



Property-Based Fault Injection: A Novel Approach 119

Referring to Fig. 2, the fault tolerance properties and fault activation conditions are
specified in a formal language accepted by the chosen model-checker. Fault tolerance
property denotes critical system behavior or safety property that needs to be met by the
systemoutputs in the presence of faults. Fault activation conditions specify the input/state
sequences that cause the injected fault to manifest as error and propagate within the
system design. To activate a fault, the necessary input/state preconditions are specified
as constraints/assumptions to the model checker. Under the given preconditions, the
model-checker systematically explores the state, input and fault space of the system
functional model and mathematically verifies that a fault from the representative fault
space does not violate the fault tolerance property for any given state and input sequence.
While maintaining the assumptions, if any violation of the property is encountered, the
model checker falsifies the property and generates a counterexample showing the input
and fault vector that caused the safety property to fail.

Fig. 2. Fault injection with property proving

We define property based fault injection as: Let system functional model be repre-
sented as five-tuple M = 〈I, O, S, S0, T〉, where I-set of inputs, O-set of outputs, S-set of
states, S0 ⊆ S – set of initial states, T-S X S - set of transitions.

We say a fault tolerance property PFT for the model M is satisfied if every state
reachable from the initial state s0 (by following all possible transition relations within
T) in the Model M satisfies the fault tolerance property PFT, in the presence of fault f i
taken from the fault space F and the fault activation assumptions Afa.

M �PFT If All ReachableT (s0)�PFT | fi and Afa = true (1)

Else

M �PFT If Any ReachableT (s0) �PFT | fi and Afa = true (2)

where s0 ∈ S0, fi ∈ F and Afa = Fault activation conditions as assumptions.
Figure 3 shows the efficacy of the property based fault injection approach in terms

of the coverage of the fault, input and state space. Referring to Fig. 3, the left side
enumerates the assumptions made by the model checker during model checking based



120 A. V. Jayakumar and C. Elks

Fig. 3. Property based fault injection - fault-input-state space coverage

on the constraints we specify in the model. During property-based FI, the model checker
is allowed to assume the fault location control signal to take any value from the list
of defined fault location IDs thus ensuring a complete exploration of the fault location
dimension within the fault space. Model checker assumes that the fault can be injected
at any time instant during an input/state sequence and for any duration (as permitted
by the datatype of the Fault duration control signal). This causes the model checker to
completely explore the entire fault activation time and fault duration dimensions of the
fault space to find property violation. Model checker explores and covers all fault types
within the defined fault model list with constraints to consider only the defined fault
models in the fault injection framework. Model checker is allowed to assume single
or multi bit faults on any of the bits in the signal thus causing the model checker to
completely explore and cover the fault value dimension of the fault space. Thereby, the
model checker exhaustively explores the entire input and state space and identifies all
possible input and state sequences that can activate the considered faults in the fault
space. In this manner, each fault tolerance or safety property verification completely
covers the corresponding fault activation space from within the entire input and state
space.

5 Implementation of Property-Based FI Using Simulink Design
Verifier

Weimplement the proposedproperty-basedFault injection technique onSimulinkbehav-
ioral models using Simulink Design Verifier (SDV) property prover tool [16]. The work-
flow for realizing the Property based Fault injection in Simulink is given below in Fig. 4.
There are few preparation steps (steps 1, 2 and 3) to be performed before starting the
property proving within Simulink Design Verifier (DV).



Property-Based Fault Injection: A Novel Approach 121

Fig. 4. Property based fault injection workflow

1. Instrumentation of Model with Saboteurs - The process starts with an automated
insertion of a generic saboteur into all signals in the given test model. This automated
saboteur insertion framework is described in detail in [15]. In the model-based con-
text, a ‘Saboteur’ can be defined as a special module added between signal drivers
and receivers in the model-based design, which when activated alters the value or
timing characteristics of the signals, thereby simulating faults for Fault Injection
[17]. The saboteur in the considered FI framework [15] is a generic one and supports
multiple fault models. The saboteur instrumented model generated in this process is
further used for the property based fault injection process.

2. Modeling Fault propagation/Error conditions as assumptions – With the auto-
matic exhaustive saboteur insertion within the model, we end up with a very large
set of fault locations within the model. Thus manually finding the activation condi-
tion for each fault location could be an extremely time-consuming process. It would
require a complete analysis of the model and identifying all possible input scenarios
that can activate the faults – which is infeasible for system models commensurate of
practical system scales. The approach we employ to solve this problem is to use the
model checking tool to automatically identify the fault activation conditions (e.g. the
input conditions) for any given fault. In this method, instead of manually exploring
the entire input space to identify and specify the input conditions to activate the
faults, the tester has to specify the state/output condition that indicates an error or
system failure as an assumption that becomes true after a fault is injected. The error
propagation scenario is modeled as an assumption using Simulink Design Verifier
blocks.

3. EncodingFault Tolerance andSafety Properties - Finally, the fault tolerance prop-
erties derived from the safety requirements of the system that needs to be validated
have to be modeled using the proof objective blocks in Simulink DV library.



122 A. V. Jayakumar and C. Elks

After completing all the above preparation steps 1, 2 and 3, property proving is executed
in Simulink Design Verifier as described in the below steps 4, 5 and 6.

4. Choosing fault models from the representative fault space -When property prov-
ing is initiated on the saboteur inserted model, Simulink DV selects fault loca-
tions/signals from the entire set of available fault locations and chooses fault models
from all the available ones implemented in the Saboteurs to consider for fault injec-
tion. DV model checker proves the safety properties in the presence of different
kinds of faults and exhaustively covers the fault space.

5. Identifying fault activation conditions for each fault - With the erroneous/fault
propagation behavior being specified as an assumption in the model, the Design
Verifier explores the entire input space and identifies all the input sequences that can
cause the injected fault to manifest as an error and propagate. In addition to relieving
the tester from the laborious task of identifying the activation input sequences for
each fault, it also ensures a complete fault activation space coverage (from within
the input and state space) for each and every faults in the fault space and avoids
no-response faults.

6. Checking for Violations of the safety property - Finally, the safety properties
modeled as proof objectives are proven tobevalid or false.Validatedpropertieswould
mean that the fault tolerance functionality is capable of tolerating all the specified
faults (from considered fault space). If the property falsifies, a counterexample is
generatedwhich clearly shows the location, duration, type, value and timeof injection
of the fault that bypassed the tolerance functionality or safety feature.

6 Application of Property Based Fault Injection

Property-based fault injection technique was applied to verify “the fail-stop/fail-fast”
semantics and fault tolerant features of a safety-critical digital I&C architecture called
SymPLe [18] developed for Nuclear Power Plant applications. Referring Fig. 5, SymPLe
architecture is an FPGA based architecture comprised of three basic control hierarchies:
the global sequencer, local sequencers or tasks, and a complete set of Function Blocks
(FB) per task lane. In SymPLe, all executions occur in task lanes. These are indepen-
dent processing stations where function blocks organized as function block programs
are executed. Functions blocks assigned to a task lane are scheduled via a determinis-
tic sequence of task executions. Functions blocks receive data, operate on that data per
intended functionality, and provide results in their output registers. The global sequencer
is concerned with scheduling of task lanes and the marshaling of data I/O in the archi-
tecture. The local sequencers’ function is to locally coordinate the triggering of a task
lane and marshal data to function blocks while executing. Function Blocks (FB) are the
elementary “program or computation” units that SymPLe architecture employs for its
program organization or application building.

Fault detection and tolerance mechanisms in SymPLe architecture are implemented
at several levels, however, in this case study we evaluated the fault handling mechanisms
at the Function Block level. Among several fault detection techniques, hardware redun-
dancy is one of the main fault tolerance strategies implemented at the function block



Property-Based Fault Injection: A Novel Approach 123

Fig. 5. SymPLe architecture

level. As shown in Fig. 6, each FB is constructed as a duplex system as a means of
detecting single and multi-event upsets. The inputs, outputs and states of the duplicated
function blocks are compared to report data mismatch/State error that happens due to
any kind of faults within the individual FBs. The individual function blocks in the duplex
structure are each designed to detect errors in SymPLe’s control flow execution and data
path execution. An execution error is an error that violates the execution semantics of
SymPLe computational model like input register read overflow, output register write
overflow, execution timeout and so on. Prolonged execution of a function block could be
a sign of malfunction within the function blocks due to transient or permanent physical
faults. This execution error is detected and reported using the execution timeout feature
of the function block controller. In addition, computation errors that affect logic and
arithmetic operations like datatype error, underflow, overflow, division by zero etc. are
also detected within the function blocks. Described below are two use case examples
of applying the property-based fault injection technique to verify the safety properties
related to hardware redundancy and execution timeout feature of the function block array
consisting of 32 different function blocks in the SymPLe architecture.

The application of the property-based fault injection method on SymPLe architec-
ture is facilitated by an automated fault injection framework developed in Simulink.
This model-based FI framework facilitates FI process on a Simulink model by enabling
fault injection control within the functional model and automating saboteur insertion
throughout the model. A generic saboteur that implements a diverse set of fault models
including ‘Single/Multi Bit Flip’, ‘Stuck at 0’, ‘Stuck at 1’, ‘Floating’, and Delay faults
are automatically inserted on all signal lines within the test model by a Matlab script.
The Saboteurs are designed using basic Simulink blocks and encapsulated in a masked
subsystem. More details on the Saboteur implementation, fault model and the algorithm
of the saboteur insertion script can be found in [15].



124 A. V. Jayakumar and C. Elks

Fig. 6. Duplex function block architecture

6.1 Safety Property 1 - Verifying Redundancy of SymPLe Function Blocks

For verifying the hardware redundancy feature of the function block, the critical property
to be considered is that the state comparator module detects anomalies and sends a high
on ‘state_error’ signalwhen the function blocks in the duplex configuration hold different
states. The property for verifying the hardware redundancy feature of the ‘ADD’ function
block in SymPLe architecture is modeled as shown in Fig. 7. The mismatch property
states that: “A difference between the states of the ADD1 and ADD2 function blocks,
implies that the ‘state_error’ signal is true”.

Prop: (ADD1_State �= ADD2_State)→ (state_error= true) (3)

The fault injected in function blocks gets activated when erroneous values propagate
to the outputs of the function blocks causing a mismatch between the two function
blocks. For each fault location, different preconditions are applicable to ensure the fault
is activated and actually propagates far enough to cause a failure at the output. To direct
the model checker to consider input conditions that can activate the faults, an assumption
condition as stated below is modeled as shown in Fig. 7.

“There is mismatch between the states (which comprises of the inputs read into FBs
and FB outputs) of the ADD1 and ADD2 function blocks, within 5 clock cycles after a
fault is injected”.

Assumption: (Fault Injected)→ (ADD1_State �=ADD2_State within 5 cycles) (4)

Fig. 7. Property for proving hardware redundancy of Function Blocks



Property-Based Fault Injection: A Novel Approach 125

With this assumption in place, the Design verifier explores the entire input space and
finds all possible input sequences that can activate a specific fault in the model. Another
important assumption that is made is that the “redundant data inputs to the two function
blocks are always equal”. Assumption: DataInA = DataInB. This is to ensure that the
state mismatch between the duplex function blocks is not caused due to the mismatch
of inputs to the function blocks, but instead caused due to faults injected within one of
the function blocks. Assumptions on the fault injection control signals help to constrain
the fault space to a representative set of fault locations and fault models during the FI
experiment. The fault location is assumed to be lying within a range of values. The fault
type is constrained to take only the defined fault models. Fault injection time, duration,
and value parameters are unconstrained thus allowing DV to validate the property by
exploring or considering all possible parameter values.

Fig. 8. Counterexample for failed property

The summary of the FI campaign on 6 different function blocks (FBs) are pro-
vided in Table 1. The results indicate that faults injected on any of the FBs in the
duplex configuration satisfied the safety property as it always resulted in state mismatch
error being detected by the system by pulling the ‘state_error’ signal high. But any
transient/permanent faults within the State Comparators in the FBs caused the safety
property to be violated with a counterexample as shown in Fig. 8. The counterexample
shows a scenario where two separate faults are injected in the function block one after
the other. First, a transient bit flip fault is injected in one of the function blocks (ADD1)
(fault location ID = 144) leading to output mismatch between the two redundant FBs
ADD1 and ADD2 in the next cycle, followed by another transient bit flip fault injected in
the State Comparator block. This second fault in State comparator (fault location ID =
183) causes ‘state_error’ signal to remain false even when there is a mismatch between
the redundant FB state/outputs. Thus, the State Comparators were identified as the sin-
gle point of failures within the FB design. These results are reasonable with hindsight,
as state comparators are a vital circuit in the SymPLe function block architecture. The
state comparator fault tolerance capabilities were overlooked in the design. The data in



126 A. V. Jayakumar and C. Elks

Table 1 shows an increase in the property validation time with an increase in the number
of fault locations considered for each experiment.

Table 1. Property-based fault injection campaign results: SymPLe FB redundancy feature

Fault
location IDs

No. of
locations

Faults injected
in module

Function
block

Time taken
(mins)

Proof validity

485–520 36 AND1 AND 15.3 Valid

449–484 36 AND2 AND 16.00 Valid

489–520,
521–528

40 AND1 & State
Comparator

AND 17.3 Falsified

405–440 36 OR1 OR 14.09 Valid

369–404 36 OR2 OR 14.37 Valid

409–440,
441–448

40 OR1 & State
Comparator

OR 16.06 Falsified

220–252 33 MAX1 MAX 11.17 Valid

187–219 33 MAX2 MAX 11.51 Valid

221–252,
253–260

40 MAX1 & State
Comparator

MAX 17.25 Falsified

36–70 35 MIN1 MIN 16.01 Valid

1–35 35 MIN2 MIN 15.12 Valid

37–70,
71–78

42 MIN1 & State
Comparator

MIN 17.53 Falsified

129–178 50 ADD1 ADD 26.16 Valid

79–128 50 ADD2 ADD 26.24 Valid

144–178,
179–186

43 ADD1 & State
Comparator

ADD 15.43 Falsified

311–360 50 SUB1 SUB 26.36 Valid

261–310 50 SUB2 SUB 28.51 Valid

326–360,
361–368

43 SUB1 & State
Comparator

SUB 19.3 Falsified

6.2 Safety Property 2 – Verifying Execution Timeout of Function Blocks

Another critical safety featurewithin SymPLe architecture is its detection ofmalfunction
of the system by detecting a prolonged function block execution. The function block
execution is expected to timeout, send an error and restart the task, when the execution of
a function block extends beyond 50 cycles. The critical property that is expected to hold
true is that: “When ‘execute’ signal is detected high for 50 cycles, the ‘error’ signal and



Property-Based Fault Injection: A Novel Approach 127

timeout bit in the error code shall be set to true indicating the timeout error detection.”

(5)

This property is modeled as shown in Fig. 9. To verify this property, a fault has to be
injected that can cause function block execution to timeout and cause an error. This error
condition is modeled as an assumption as given in Fig. 9. It states that: “Once ‘execute’
signal has gone high and execution has started, for the next 50 cycles execution is not
completed and ‘executed’ signal does not become high”.

(6)

Fig. 9. Property for execution timeout functionality verification

This assumption causesDesignVerifier to explore the design and identify all possible
faults and input conditions to activate these faults. One direct example of a fault that can
cause timeout error is the ‘stuck at 0’ fault (in bit 0) on the boolean ‘executed’ signal
output from the function blocks. Similarly, there could be several faults that can create
a delay in execution. This example also depicts the complete automation of fault and
input space exploration by Design Verifier with minimal specification from the tester on
the error scenario and fault tolerance property. The time-out property was validated true,
indicating that a prolonged execution of function block extending beyond 50 cycles was
detected and signaled as an error. The property proving experiment, for a single fault type
(stuck-at-0) and all fault locations in a single function block took ~50 min to complete
the time-out property verification.

7 Discussions and Future Work

As device geometries and clock speeds shrink, physical faults affecting the operation of
devices are becoming a bottleneck to the dependability of safety-critical cyber physi-
cal systems. This paper introduces and develops a novel fault injection framework that
utilizes the benefits of model checking and model-based design to achieve an efficient
exploration of representative fault space, input and state space to attain near exhaustive



128 A. V. Jayakumar and C. Elks

fault injection on functional models of safety-critical systems. The proposed method
overcomes some of the deficiencies of traditional fault injection methods such as cover-
age of the fault injection experiment space and identifying fault activation conditions for
each fault in the fault space. The property-based fault injection framework we developed
provides an algorithmic/automatedmeans to identify the fault activation conditions for all
faults in the representative fault space using model checking. The time savings achieved
with Property-based Fault Injection as compared to traditional simulation based fault
injection is orders of magnitude more efficient. Our experiments with Simulink Design
verifier and results (in Table 1) indicate that Property based fault injection method was
very efficient with respect to exhaustive single fault location injection for our case studies
(e.g. ~30 s/fault).

The limitations of Property based fault injection is that it works at the functional
level of system development, that is, pre-software and hardware development. In the
age of automatic code generation from Simulink models, the connection from models
to executable code is robust and mature. As example, fault handling properties of error
detection mechanisms can be discharged by property-based fault injection at the model
level and then be synthesized into C code or VHDL code with greater design assurance.
Another limitation is state space explosion for the Design Verifier model checker. All
model checkers suffer from state explosion; we found that property based fault injection
conducted at the sub-module level is more effective at controlling model checker state
explosion issues. This leads one to construct fault injection campaigns based on “com-
posability” arguments from system design – that is, verifying relations between high
level system requirements and lower level design properties. In the future, we intend to
investigate these composability aspects of property based fault injection derived from the
traceability of system requirements. We also plan to extend the proposed property based
fault injection framework with respect to hardware-level fault injection to investigate
equivalence. Finally, we will examine the utility of the property based fault injection
to assist in system level hazards analysis and failure modes and effects analysis on
functional models of safety-critical applications.

References

1. Leveson, N.G., Fleming, C.H., Spencer, M., Thomas, J., Wilkinson, C.: Safety assessment of
complex, software-intensive systems. SAE Int. J. Aerosp. 5(2012-01–2134), 233–244 (2012)

2. Elks, C.R., et al.: Application of a fault injection based dependability assessment process to a
commercial safety critical nuclear reactor protection system. In: 2010 IEEE/IFIP International
Conference on Dependable Systems Networks (DSN), pp. 425–430, June 2010

3. Yu, Y., Bastien, B., Johnson, B.W.: A state of research review on fault injection techniques
and a case study. In: Proceedings of Annual Reliability and Maintainability Symposium,
Alexandria, VA, USA, pp. 386–392. IEEE (2005)

4. Elks, C.R., George, N.J., Reynolds, M.A., Miklo, M., Berger, C.: Development of a fault
injection-based dependability assessment methodology for digital and I&C systems. United
StatesNuclearRegulatoryCommission,OfficeofNuclearRegulatoryResearch,NUREG/CR-
7151 (2012)

5. Bingham, S., Lach, J.: Enhanced fault coverage analysis using ABVFI. In: Workshop on
Dependable and Secure Nanocomputing, Charlottesville, p. 6, June 2009



Property-Based Fault Injection: A Novel Approach 129

6. Krautz, U., Pflanz, M., Jacobi, C., Tast, H.W.,Weber, K., Vierhaus, H.T.: Evaluating coverage
of error detection logic for soft errors using formal methods. In: Proceedings of the Design
Automation Test in Europe Conference 1, 1–6 (2006)

7. Leveugle, R.: A new approach for early dependability evaluation based on formal property
checking and controlled mutations. In: 11th IEEE International On-Line Testing Symposium,
pp. 260–265, July 2005

8. Larsson, D., Hähnle, R.: Symbolic fault injection. In: International Verification Workshop
(VERIFY), vol. 259 (2007)

9. Vedder, B., Arts, T., Vinter, J., Jonsson, M.: Combining fault-injection with property-based
testing. In: Proceedings of International Workshop on Engineering Simulations for Cyber-
Physical Systems, Dresden, Germany, pp. 1–8, November 2013

10. Grunske, L., Winter, K., Yatapanage, N., Zafar, S., Lindsay, P.A.: Experience with fault
injection experiments for FMEA. Softw. Pract Exp. 41(11), 1233–1258 (2011)

11. Heimdahl, M.P.E., Choi, Y., Whalen, M.: Deviation analysis through model checking.
In: Proceedings 17th IEEE International Conference on Automated Software Engineering,
Edinburgh, UK, pp. 37–46 (2002)

12. Fondazione Bruno Kessler and Embedded Systems Unit. xsap - - The xSAP safety analysis
platform. https://xsap.fbk.eu/. Accessed 13 July 2020

13. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of Simulink models using SCADE
design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005. LNCS, vol.
3688, pp. 122–135. Springer, Heidelberg (2005). https://doi.org/10.1007/11563228_10

14. Güdemann, M., Ortmeier, F., Reif, W.: Using Deductive Cause-Consequence Analysis
(DCCA) with SCADE. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680,
pp. 465–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75101-4_44

15. Jayakumar,A.V.: Systematicmodel-based design assurance and property-based fault injection
for safety critical digital systems. Virginia Commonwealth University (2020)

16. Mathworks: Simulink® Design Verifier Reference, September 2018. https://www.mathwo
rks.com/help/releases/R2018b/pdf_doc/sldv/sldv_ref.pdf

17. Shafik, R.A., Rosinger, P., Al-Hashimi, B.M.: SystemC-based minimum intrusive fault injec-
tion technique with improved fault representation. In: 2008 14th IEEE International On-Line
Testing Symposium, Rhodes, Greece, pp. 99–104, July 2008

18. Elks, C., Gibson, M., Hite, R., Gautham, S., Jayakumar, A.V., Deloglos, C., Tantawy, A.:
Achieving verifiable and high integrity instrumentation and control systems through com-
plexity awareness and constrained design. USDOE Office of Nuclear Energy (NE), 15–8044,
July 2019

https://xsap.fbk.eu/
https://doi.org/10.1007/11563228_10
https://doi.org/10.1007/978-3-540-75101-4_44
https://www.mathworks.com/help/releases/R2018b/pdf_doc/sldv/sldv_ref.pdf

	Property-Based Fault Injection: A Novel Approach to Model-Based Fault Injection for Safety Critical Systems
	1 Introduction
	2 Background and Challenges
	3 Related Work
	4 Property-Based Fault Injection
	5 Implementation of Property-Based FI Using Simulink Design Verifier
	6 Application of Property Based Fault Injection
	6.1 Safety Property 1 - Verifying Redundancy of SymPLe Function Blocks
	6.2 Safety Property 2 – Verifying Execution Timeout of Function Blocks

	7 Discussions and Future Work
	References




