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Abstract. We present an integrated method for safety assessment of
automated driving systems which covers the aspects of functional safety
and safety of the intended functionality (SOTIF), including identifica-
tion and quantification of hazardous scenarios. The proposed method
uses and combines established exploration and analytical tools for haz-
ard analysis and risk assessment in the automotive domain, while adding
important enhancements to enable their applicability to the uncharted
territory of safety analyses for automated driving. The method is tai-
lored to support existing safety processes mandated by the standards
ISO 26262 and ISO/PAS 21448 and complements them where necessary.
It has been developed in close cooperation with major German automo-
tive manufacturers and suppliers within the PEGASUS project (https://
www.pegasusprojekt.de/en). Practical evaluation has been carried out
by applying the method to the PEGASUS Highway-Chauffeur, a con-
ceptual automated driving function considered as a common reference
system within the project.

Keywords: Automated driving · Hazard analysis · Risk assessment ·
SOTIF · Scenario identification · Environmental triggers

1 Introduction

In order to bring automated driving systems (ADS) [17] to the market, there
are several challenges that need to be overcome. One of them is the verification
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and validation of such systems. It has been well-established [11] that a mileage-
based approach is infeasible. This is mainly due to the impossibility of driving the
vast distance that is required to obtain a statistically valid argument in support
of a positive safety statement. The most promising alternative for verification
and validation of automated driving is a scenario-based approach where testing
is guided by a manageable set of logical scenarios [13] that have been identi-
fied as crucial. Recent research projects, such as PEGASUS1 and ENABLE-S32,
explored and pushed this scenario-based approach to testing. A central challenge
for this is the systematic identification and quantification of scenarios that are
likely to exhibit hazardous behavior of the ADS. While analyzing already exist-
ing real-world data (such as accident databases, real world driving, etc.) reveals
which scenarios are hazardous for human drivers, the set of hazardous scenarios
for automated driving can only be partially obtained from this data prior to the
large-scale deployment of ADS. Therefore, a complementary, knowledge-based
approach is needed in order to identify and quantify such hazards early on in
the development process. This cannot be replaced by massive testing. In Sect. 2
we revisit the challenges for automated driving and explain why existing meth-
ods for Hazard Analysis and Risk Assessment (HARA) used in the automotive
domain, as suggested by the ISO 26262 [9] and the ISO/PAS 21448 [10], cannot
adequately identify hazardous scenarios for automated vehicles. Moreover, we
briefly introduce the Highway-Chauffeur, a conceptual ADS with the operational
design domain ‘German Highway’, that serves as running example in PEGASUS
and throughout this paper. In Sect. 3 we propose a method for the identification
of hazardous scenarios for automated driving that combines established methods
for HARA with a focus on detecting hazard-triggering environmental conditions.
Moreover, we propose a method for estimating the probability of such a scenario
in real-world traffic and show how the results can be used for risk assessment,
leading to an integrated iterative risk mitigation process. An in-depth review and
application of the method have been conducted within the PEGASUS project.
More detailed information on the method as well as its application and evalu-
ation targeting the PEGASUS highway-chauffeur have been made public in a
German language technical report [5].

2 Problem Characterization and Challenges

Hazardous Scenarios. The ISO 26262 [9] defines a hazard as a potential
source of harm. In PEGASUS [14], different sources of hazards for automated
driving were distinguished, namely hazards arising from (1) the impact of the
environment on the ADS, (2) the impact of the ADS on the environment and (3)
the interaction between human driver and ADS. Although the methods presented
in this paper were developed with a focus on (1), it may be applied to class (2)
as well. As Class (3) has a different focus (e.g. HMI concept) it needs different
methods to consider the specific problems.
1 www.pegasusprojekt.de/en.
2 www.enable-s3.eu.
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According to [19], a scene describes a snapshot of the environment, while
a scenario describes the temporal development between several scenes in a
sequence of scenes. Thus, a hazardous scenario can be characterized by adding
contextual information to an identified hazard by means of environmental trig-
gers. A comprehensive catalog of such scenarios then enables a test-driven veri-
fication approach for automated driving.

Challenges for Automated Driving. Advanced Driving Assistance Systems
currently on the market only perform individual sub-tasks of vehicle control,
while the residual tasks remain the responsibility of the driver. With the driver
acting as a redundant control system, a fail-safe safety concept is sufficient.
Safety mechanisms, as addressed in [10], are therefore primarily concerned with
avoiding false-positive reactions. With SAE Level ≥ 3 [17], ADS (temporar-
ily) relieve the driver of the driving task. Consequently, the driver is no longer
available as a fallback at all times and missing (re-)actions of the ADS’s (false
negative reactions) play a decisive role for operational safety and thus, requiring
a fail-operational (or even fail-silent) safety concept. While hazardous scenarios
for human drivers can be reconstructed relatively well from existing data (e.g.
accident data bases), the question arises whether the corresponding triggers are
the same for ADS. Reflections from metallic objects (e.g. crash barriers) could
lead to erroneous recognition of objects by a radar sensor, an unknown accident
cause for humans. Extensive databases of observed accidents for automated driv-
ing are lacking, so possible hazardous scenarios are not known a priori, rendering
safety assessment of automated vehicles particularly challenging. In addition, the
criticality of automated driving may be highly discontinuous along the param-
eter ranges of environmental models: algorithms make discrete decisions, the
thresholds of which are only partially known, especially machine learning meth-
ods. For example, only a few differences in images that are hardly visible to the
human eye can lead to a false object classification [2]. It is therefore dangerous
to solely rely on a data-driven approach (i.e. a combination of existing driving
data and variation methods) when identifying hazardous scenarios. Although
this problem could, in principle, be countered with a complete characterization
of all scenarios in the Operational Design Domain (ODD), it is impossible to
explicitly describe all relevant scenes and scenarios. Thus, it is inherently diffi-
cult to appropriately specify the ADS’s behaviour. The intended functionality
can therefore neither assumed to be safe nor fully specified (SOTIF). This prob-
lem is addressed in [10], but only for advanced driver assistance systems. In order
to address the aforementioned issues, it is essential to adapt existing methods
for HARA according to the challenges presented by analyzing the safety of ADS.
An integrative HARA, which facilitates an iterative feedback loop into the devel-
opment process, should be performed early in the development of the ADS so
that the results can be incorporated appropriately. With this goal in mind, the
proposed method for identification and quantification of hazardous scenarios has
been developed.

Existing techniques for Hazard Analysis and Risk Assessment. In the
proposed method, we use, combine and extend established techniques for hazard
analysis and risk assessment. Thus, we briefly summarize them here.
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Hazard and Operability Study (HAZOP) was developed and successfully
applied in the chemical industry in the 1970s. Starting in the 1990s HAZOP
was used in other areas and finally also adapted for the automotive industry.
HAZOP is a structured, keyword-based brainstorming approach that investi-
gates significant deviations from the specified behavior in order to identify pos-
sible hazards. Optimally, a HAZOP should be performed by a diverse group of
specialists from different areas of expertise, who study the system under con-
sideration from various points of view. Selected keywords are applied to process
variables and components of the system to investigate deviations from the ideal
state. In the process, possible causes, their consequences and potential counter-
measures are identified, without making any claims of exhaustiveness. For more
details on classical HAZOP we refer to [6]. In this paper we use two different
versions of HAZOP (see step (2.1) and (2.2) of Sect. 3) that were specifically
adapted for the application to ADS.

Fault Tree Analysis (FTA) is a widely used method to identify fault chains
and was originally developed by the U.S. Air Force. The Fault Tree Handbook
[20] provides an excellent overview of the method. FTA follows a top-down app-
roach, i.e. starting from a certain event (called Top Level Event), causes for
this event are systematically identified down to basic events. These causes are
logically entangled using boolean algebra. With quantitative fault trees, mini-
mal sets of triggering events, so-called minimal cut sets, are identified after the
fault tree has been created and a probability of occurrence of the Top Level
Event is calculated from probabilities of the basic events. Classical quantitative
fault trees assume that each Top Level Event is caused by faults of some other
component inside the system. This assumption is no longer tenable for auto-
mated driving, since every environmental conditions could potentially trigger
or propagate faults. Another problem of fault trees are unknown dependencies
between events. Therefore, the FTA is often complemented by a Common Cause
Analysis [7].

System-Theoretic Process Analysis (STPA) is a relatively new hazard anal-
ysis technique that uses STAMP (System-Theoretic Accident Model and Pro-
cesses, [12]). In this accident model, hazards arise from untreated environmental
influences, untreated or uncontrolled defects of components, unsafe interactions
between components or from insufficiently coordinated control actions between
control loops. In STAMP, safety is understood as an emergent property, which
occurs when system components interact in a larger context. This is in contrast
to the safety process of ISO 26262 (and other methods such as FTA or FMEA),
where only defects and malfunctions of components are considered. Based on
this accident model, STPA identifies unsafe control actions and derives safety
constrains. The next step is to identify the causal factors for the occurrence
of the previously identified unsafe control actions. The causes identified here
within the control loop help to refine the previously defined safety constraints
into safety requirements.

Related Work. As the presented method aims at identifying and quan-
tifying hazardous scenarios for scenario based testing while deriving safety



Identification and Quantification of Hazardous Scenarios for AD 167

requirements for the further development, there is related work for serveral parts
of the method. For example, in [3] an ontology is proposed to automatically gen-
erate scenes for the development of automated vehicles. However, this does not
generate a classification of hazardous/relevant scenarios. [1] uses STPA to iden-
tify unsafe interactions of ADS in the absence of system malfunctions. Thus,
this may be used to generate scenarios. However, this is not done there and
they do not use methods to quantify scenarios/malfunctions. [18] uses STPA
to identify hazards that arise from expectations that other road users have of
the ADS (because driving styles of automated vehicles may differ from human
driving styles) which corresponds to class (2) of the before-mentioned sources of
hazards. [21] uses a scenario based STPA and compares it with more traditional
HARA methods. However, they are also only focused on identifying hazards
in specific scenarios and do not present an approach on how to generate and
quantify them.

The PEGASUS Highway Chauffeur. [15] is an example of a ADS, thus not
requiring the driver to monitor the system but needing to be able to take back
the driving task within a defined time margin. The ODD and basic functional-
ity of the Highway Chauffeur were defined to include highways in Germany, a
speed range of [0, 130]kmh , lane changes, following in stop & go traffic and emer-
gency braking and collision avoidance. It excludes construction sites, driving
onto/exiting the highway and extreme weather conditions.

Contribution. We outline an integrated safety process for ADS that addresses
functional safety as well as safety of the intended functionality (SOTIF). Our
method is composed of an identification part (Hazard Analysis) and a quan-
tification part (Risk Assessment) for hazardous scenarios. Identification builds
on a combination of established methods used for Hazard Analysis, which we
adapted to uncover the safety-relevant weaknesses and blind spots of ADS. In
the second part, we propose quantification of hazards via probability estimation
of the hazard’s context. In contrast to the process of ISO 26262, the subsequent
risk assessment abandons the factor of ‘controllability’, which is practically non-
existent (or strongly diminished, at least) for automated driving. Moreover, we
integrate risk mitigation into the safety process. Lastly, we indicate how regu-
latory requirements on hazard exposure, can be used to systematically derive
requirements on error rates. The method introduces the iterative feedback loops
between concept and development phase that are required for establishing a
fail-operational safety concept for ADS, while remaining compatible with the
ISO 26262 and ISO/PAS 21448. Moreover, the method identifies and quantifies
hazardous scenarios for scenario based testing. These can be incorporated into
logical scenarios [13]. This enables specific selection of potentially critical scenar-
ios in the testing process and serves to support the argument for a sufficiently
complete test space coverage.

3 Method for Identification of Hazardous Scenarios

In the following we describe an iterative method for the identification and quan-
tification of hazardous scenarios for highly automated driving. The method, as
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seen in Fig. 1, is divided into two parts. The identification part, described in this
section, consists of steps (1)–(5). For more examples of the steps see [5].

(2) Hazard
Identification

(1) Model of
HAD-Function

Detailed
analysis

necessary?

(3) Causal
Chain Analysis

(5) Derivation
of Hazard
Triggering
Conditions

(4) Environ-
ment Model

Hazardous
Scenarios

(6) Quantifica-
tion and Risk
Assessment

Risk Assess-
ment R/S/P

(7) Deriva-
tion of Re-
quirements

Risk
tolerable?

Start of
Verifcation
& Validation

yes

no

yes

no

Risk Mitigation

Fig. 1. Overview of the method to identify and quantify hazardous scenarios

Step (1): Modeling of the ADS. specifies the functional architecture and the
intended functionality of the ADS. In particular, this needs to include the flow
of information between the components of the system (i.e. inputs and outputs
of each component). This model serves as the starting point for the method (see
Fig. 1) and is iteratively refined in the process as indicated by the dotted lines
leading back to step (1). For the Highway Chauffeur this information flow can
be seen in Fig. 2 where each arrow represents that information is given to the
next component.

Fig. 2. High-level functional architecture for the PEGASUS highway chauffeur.
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Step (2): Hazard Identification aims at identifying hazards related to the
ADS, corresponding to causes in the ADS and possible triggers in the environ-
ment. The focus lies on hazards that are not caused by random hardware faults,
but rather by performance limitations or functional insufficiencies of the ADS
in its perception, in the modeling and interpretation of its environment and in
the planning of maneuvers and trajectories. In particular, this includes hazards
which result from the absence of SOTIF. The hazard identification is split into
two substeps (2.1) and (2.2).

Step (2.1): Scenario-based Identification of Hazards on Vehicle-Level.
We start by identifying generic hazards on vehicle-level using a keyword-based,
HAZOP-inspired brainstorming approach. We start from a set of basic scenar-
ios and a set of basic maneuvers that are chosen according to the ODD of the
ADS. For each combination of basic scenario and basic maneuver, we system-
atically determine the observable effects of this behavior, potential hazards and
additional environmental conditions triggering these hazards. The results of this
step are denoted in a modified HAZOP table (see Table 1), which consists of
9 columns. In the 1st column (cln) we denote a unique ID for later reference.
The basic scenario and basic maneuver under consideration are entered
in the 2nd and 3rd cln respectively. While the set of basic scenarios is highly
dependent on the ODD, the basic maneuvers (BM) form a subset of the set of
all maneuvers that an (automated) vehicle can perform [16], i.e. BM(ODD) ⊆
{start, follow, approach (includes braking), pass, traverse crossover, lane change,
turn left/right, turn back, park, safe stop}. In the 4th cln Correct (if con-
text) we denote the context in which this vehicle behavior would be consid-
ered correct. Now we apply a set of Keywords, denoted in the 5th cln, to the
respective maneuver under consideration to determine possible Incorrect Vehi-
cle Behavior (IVB), denoted in the 6th cln. We propose the following list of
keywords

Table 1. Table (two exemplary rows) for Identification of Hazards on Vehicle-Level.

ID Basic

scenario

Basic

maneuver

Correct if

(context)

Keyword Incorrect

vehicle

behaviour

Observable

effect(s) in

scenario

Additional

scenario

conditions

(necessaroy for

Top Level

Event)

Potential

top level

event

1 Slower

turn into

path

challenger

Decelerate/

braking

Front

distance <

safety

distance

no Necessary

breaking

maneuver

not

initiated

Ego

continues

with

constant

speed

Challenger

with

significantly

lower speed or

critical Time-

To-Collision

Front/side

collision

with

challenger

2 less Braking

maneuver

not strong

enough

Ego does

not

decelerate

to prvent

collision

Challenger

with

significantly

lower speed or

critical Time-

To-Collision

Front/side

collision

with

challenger
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• no, less, more, too early, too late (classical HAZOP keywords)
• non-existent, too large, too small, too many, too few, not relevant,

physically not possible (specific keywords for driving assistance systems
according to the Sense-Plan-Act paradigm [4])

• provided in inappropriate context, stopped too soon, provided too
long (STPA-inspired keywords)

• outdated, misapprehended, inappropriate, falsified, too slow, too
fast (keywords found to be relevant during application of the method)

• wrong (generic, only to be applied if no other keyword is applicable)

Based on the IVB, the 7th cln is filled with Observable Effect(s) in Scenario.
These effects are then used to derive potential hazards at vehicle level (top level
events) in the 9th cln Potential Top Level Event. If Additional Scenario
Conditions are Necessary for Top Level Event to happen, this is denoted
in the 8th cln. The results of step (2.1) are essentially independent of the concrete
implementation and can be used for the development of other ADS within the
same ODD.

Step (2.2): Identification of Functional Insufficiencies with Hazardous
Effects. Now we systematically apply the keywords from step (2.1) to the triple
(Input, Computation, Output) for each functional unit (FU) of the system in
order to examine deviations that may lead to hazards. In particular, we analyze
the effects of these deviations locally, system-wide and on vehcile-level. Again,
the results are documented in a table consisting of 11 columns (Table 2).

Table 2. Table for Identification of Local Failures/Functional Insufficiencies.

Functional
Unit

Function
Key-
word

Local Failure
/ Functional
Insufficiency

Basic
Scenario

System Effect(s) in
Scenario

Incorrect
Vehicle

Behavior

ID(s)
of

IVB

Possible
System
Cause(s)

Environ-
mental

Condition

Relevant for
human
driver?

Input
Compu-
tation

Output

Sensors >
Front

camera >
object

recognition

camera
image

segmen-
tation

seg-
mented
camera
image

no
segmented

camera image
not generated

slower
turn into

path
challenger

challenger not
detected by front

camera > maneuver
planning without
information about

the challenger

necessary
braking

maneuver
not

initiated

1
HW-failure,

degradation or
design fault

none
no

statement

no segments
in camera
imaged

recognized

s/a s/a s/a s/a

no night vision,
lacking

sensibility at
dark

darkness

likely
(human

vision also
impaired by
darkness)

Using the model of the ADS from step (1), we denote in the 1st cln the consid-
ered Functional Unit followed by the triple (Input, Computation, Output) in
the 2nd cln. Then we check whether this triple, in combination with a Keyword
(3rd cln) exhibits incorrect behavior that leads to a Local Failure/Functional
Insufficiency (4th cln). Afterwards, the worst-potential consequences of these
are investigated (bottom-up, inductive). This is done separately for each Basic
Scenario (5th cln). Based on this we derive negative System Effect(s) in this
Scenario (6th cln) leading to Incorrect Vehicle Behavior (IVB) on vehicle
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level (7th cln). If the respective IVB was already identified in step (2.1), we
denote the corresponding ID in the 8th cln. Otherwise, go back to step (2.1) and
create a new row in the table for this IVB. Additionally, local causal chains are
already identified here. If they exist, we denote Possible System Cause(s)
(9th cln) as well as Environmental Trigger(s) (10th cln). Finally, in the 11th

cln, we rate a human driver’s ability to cope with the environmental condition. If
a human driver is also likely to struggle in this situation, it can be argued that no
‘new’ cause of risk was identified here. For this, we propose an estimation using
an ordinal scale (e.g. no statement, very unlikely, unlikely, likely very likely).
Optimally, this estimation is supported by measured real-word data obtained
from accident databases (e.g. GIDAS3), Field Operational Tests, Naturalistic
Driving Studies, simulator studies or tests on proving grounds.

Step (3): Causal Chain Analysis analyzes environmental conditions that
were identified as ‘triggering’ in step (2.2) thoroughly. While in step (2.2) we
merely considered single causes and conditions, the goal here is to identify all
combinations of triggering environmental conditions. The necessity (or expend-
ability) of a Causal Chain Analysis must not be based on the above estimates
for humans alone, but on expert judgment. It is performed via an extended fault
tree analysis focused on identifying design- and specification faults (i.e. systemic
faults) that may, in conjunction, expose hazards. These faults are inherent in
the system, but usually only lead to actual hazards under additional conditions.
These can be other faults in the system, but also environmental conditions.

In order to be able to identify and model them, we extend the classical
fault tree analysis [20] by using inhibit-gates to specify environmental condi-
tions (rather than classical events inside the system) as being necessary for the
propagation of a fault. Using such an environment fault tree (EFT), environ-
mental conditions can be modeled as basic events that trigger higher-level faults.
A hazard H (identified in step (2.1)) constitutes the Top Level Event and there-
fore the root of the EFT. Additionally, we assume as context the corresponding
basic scenario Z. Starting from the Top Level Event H, we create a new node in
the tree and connect it to the root (using AND/OR-Gates), for every deviation
D from the correct behavior of an internal signal S. The hypothesized causes for
these deviations are then subdivided into (random) hardware faults, (systemic)
design faults in hardware or software, (systemic) specification faults, i.e. fault in
some (sub-)specification, either due to incorrect assumptions (SOTIF) or lacking
structural approach. Orthogonal to these classes of faults are so-called propa-
gated faults, i.e. the input of a component is already errorenous; these can be
either random or systemic faults. In order to uncover systemic faults, it is partic-
ularly useful to compare its functionality (and potential faults) to conventional
vehicle operation by human drivers. Additionally, we model every combination
of environmental conditions that propagate systemic faults to the underlying FU
using inhibit-gates. This process is iterated until we either arrive at the level of

3 German In-Depth Accident Study - www.gidas.org.

www.gidas.org
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perception or the corresponding FU has no further output and thus, there can-
not be any more propagated faults. This way of constructing EFTs focuses on
identifying systemic faults that arise newly in the context of automated driving
and are not already covered by accident databases for conventional vehicles. The
first levels of a generic EFT are illustrated in Fig. 3.

Fig. 3. Generic structure of an environment fault tree (EFT).

The input on the level of perception (i.e. sensory data) is the ADS’s environ-
ment. For each type of sensor we can use its characteristics to identify environ-
mental conditions that might cause the faults at the leafs of the EFT, e.g. rain
drops, glare or reflections confusing the camera, metal reflections irritating the
radar or objects with bad light reflection compromising the lidar.

Step (4): Environment Model builds a model of the environment that is first
used for expressing the environmental conditions from Step (3) and later on for
the translation into the output scenario specification language. This intermediate
step ensures independence from the limitations of a specific scenario modeling
language. The environment model has to be built with regard to the ADS and
its ODD. Iterative refinements of this model may become necessary later in the
process (as indicated by the dashed arrow from (5) back to (4) in Fig. 1). In
the context of PEGASUS, we built an exemplary environment model for the
ODD ‘German Highway’ which is based on the functional description of the
Highway-Chauffeur [15] and the PEGASUS-ontology as described in [3].

Step (5): Derivation of Hazard Triggering Scenario Properties for-
malizes the previously identified environmental conditions for individual faults
such that these are unambiguous and formulated in a language suitable for the
description of scenarios. From this we derive properties of scenarios that poten-
tially trigger the corresponding hazard. First, each of the EFTs from step (3) is
reduced to those nodes that represent environmental conditions while maintain-
ing the logical structure of the tree. The next step consists of a Common Cause
Analysis [7] and expressing the environmental conditions in the reduced tree
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using the environment model from step (4). Here, it may be necessary to intro-
duce some extra nodes (using AND-/OR gates) in the tree in case the non-formal
descriptions of the environmental conditions contain implicit con-/disjunctions.
If the environment model is not or only insufficiently able to represent some
EC, we have to go back to step (4), as indicated by the dashed back arrow in
Fig. 1, and extend our environment model accordingly. As of now, the identi-
fied environmental conditions are still described statically, although the events
may have to occur chronologically in order to actually trigger the hazard. There-
fore, the formalized environmental conditions are divided into discrete time steps
(. . . , t−1, t0, t1, . . . ) corresponding to scenes S(ti) such that the relative order-
ing S(ti−1)) < S(ti) describes a possible evolution of situations in time likely
to trigger a hazardous event, resulting in a hazardous scenario Sc = {S(ti)}i.
Here, S(t0) is the starting scene of the scenario, while {S(ti)}i<0 describe pre-
vious scenes and {S(ti)}i>0 describe possible evolutions of S(t0), as illustrated
in Fig. 4.

Fig. 4. Introducing chronological ordering of the events.

Fig. 5. A hazardous scenario specified as Traffic Sequence Chart.

For each EC, the pertinent time to trigger the hazard (according to the
logical structure) must be determined. Here, the environmental conditions may
extend over multiple time steps. In a final step, the identified hazardous scenarios
should be specified using a sufficiently powerful language for specification of traf-
fic scenarios which allows formal expression of environmental conditions on an
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adequate level of abstraction, such as Traffic Sequence Charts (TSCs) [8]. Haz-
ardous scenarios, that are output of the presented method, are more abstract
than logical scenarios, i.e. scenarios described as parameter ranges, but more
concrete than functional scenarios, i.e. scenarios described using natural lan-
guage (cf. [13]). Figure 5 depicts a hazardous scenario that was identified during
the application of the method to the PEGASUS Highway-Chauffeur, specified
as a TSC. In this scenario, the weather is foggy (impacting the Lidar) while
the ego-vehicle (gray car) enters a tunnel (bad lighting conditions impacting the
cameras). Subsequently, the green car, driving much slower than the ego, chal-
lenges the ego to react by turning into its path from the left (therefore, not being
in the field of view of ego’s front radar). The final snapshot of the TSC points
at the potential hazard.

4 Method for Quantification of Hazardous Scenarios

Based on the results of the method presented in Sect. 3, we now outline how
to quantify the identified hazardous scenarios and how the associated risk can
be assessed and classified. The proposed method for quantification corresponds
to steps (6)–(7) in Fig. 1. We propose to integrates the possibility of iteratively
implementing different risk mitigating measures in order to reduce the risk to
tolerable levels. Moreover, we sketc.h how imposing requirements on the prob-
ability classification of hazardous scenarios can be used to derive requirements
on error rates.

Step (6): Quantification and Risk Assessment. According to the ISO 26262
[9], risk can be described as a function of the probability of occurrence, the con-
trollability and the potential severity. In automated driving the passengers have
very limited control over the driving task and controllability only applies to per-
sons outside the ADS. Thus, it is highly questionable whether controllability
should be a parameter for risk assessment of ADS. However, assessing the risk
associated to a hazard by estimating its probability of occurence and its severity
remains a valid strategy. We propose obtaining an upper bound on the proba-
bility of occurence of a hazardous scenario by quantification of the context, i.e.
estimating the exposure of a ADS to the triggering environmental conditions
that define the hazardous scenario (as identified in Sect. 3). Let H be a hazard
occuring in the context of scenario Z and let c1, . . . , cm be the Environmental
Conditions (ECs) corresponding to the reduced, formalized EFT from Step (5).
We quantify and assess the risk R(H ∩ Z) using the following steps:

(1) Quantify the ECs c1, . . . , cm as probability of occurence per hour of
driving (exposure), i.e. e1 = P (c1), . . . em = P (cm) ∈ [0, 1]. Optimally, this
happens on the basis of data that is representative for the ADS’s ODD. If
that is not possible, choose upper bounds e1 ≥ P (c1), . . . em ≥ P (cm) ∈ [0, 1]
on the basis of exposure catalogues and/or expert judgement.

(2) For each EC ci determine the error rate µi ∈ (0, 1], i.e. the probability that
the error propagates in the fault tree under the assumptions that ci occurs.
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If to some EC an error rate cannot be associated or it is simply unknown
at this point, pessimistically set µi = 1.

(3) Every Minimal Cut Set (i.e. conjunction of triggering ECs) of the reduced,
formalized environment fault tree corresponds to a sub-scenario Zj(j =
1 . . . n) of Z. The probability of the hazard occuring in a subscenario is
estimated as P (H|Zj) ≤ ∏

i=1,...,m :Ui∈Zj
µiei .

(4) Under the assumption that Z1, . . . , Zn exhaustively cover the scenario Z,
we obtain an upper bound B for the probability of occurence of hazard
H in scenario Z via P (H ∩ Z) = P (Z)P (H|Z) ≤ P (Z)

∑n
j=1 P (H|Zj) ≤

P (Z)
∑n

j=1

∏
i=1,...,m :Ui∈Zj

µiei =: B .

If B is too large (especially if B > 1) it is not a useful bound and the
process should be reiterated under use of more accurate values for ei and µi.
If B ≤ 1 is reasonably small, it can be sorted into an a probability class, i.e.
B ∈ Pk for some k where

⋃
k Pk = (0, 1], according to its order of magnitude,

e.g. E1 = (0, 10−7]/h, E2 = (10−7, 10−5]/h, E3 = (10−5, 10−3]/h, E4 =
(10−3, 1]/h.

(5) Estimate the potential severity S(H ∩ Z) of hazard H in scenario Z and
sort it into S0, S1, S3, S4 according to the classification in [9, Table B.1].

R E1 E2 E3 E4

S0 nM nM nM nM

S1 nM nM nM M1

S2 nM nM M1 M2

S3 nM M1 M2 M3

Fig. 6. Table for Risk Assessment.

(6) Finish the risk assessment by determing
whether risk mitigating measures
(RMMs) are necessary, using an appro-
priate table featuring the dimensions
‘probability’ and ‘severity’, see e.g.
Fig. 5. In contrast to the automotive
safety integrity level (ASIL) assigned
to a hazardous event in the ISO 26262
process, this risk assessment indicates
whether RMMs have to be implemented or not (nM=no measures); and if
RMMs are necessary, how impactful do they need to be (M1 < M2 < M3)
in order to reduce R = R(H ∩ Z) to a tolerable level (Fig. 6).

Step (7): Derivation of Requirements checks whether regulatory guide-
lines and requirements have been complied with. The existence of such require-
ments/guidelines is a prerequisite for step (7), because as long as there are no
guidelines for automated driving, no requirements for error rates or exposures
can be derived. Reducing the risk R(H ∩ Z) can be realized by either (i) using
tighter bounds for the exposures ei, (ii) using more exact values for the error
rates µi, (iii) implementing and verifying risk mitigating measures (RMMs).
While changes of type (i) or (ii) require reiteration of step (6) using the updated
values, the identification part of the method, i.e. steps (1)–(5), does not have
to be repeated. The method indicates this possibility by the dotted arrow from
step (7) back to step (6) in Fig. 1. However, this is no longer true for RMMs:
they do lead to (far-reaching) changes in the ADS and can trigger a complete
reiteration of the method, indicated by the dotted arrow from step (7) back to
step (1).
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Classes of Risk Mitigating Measures (RMMs). Each RMM can be effec-
tive by reducing exposure (E-effective) or severity (S-effective). We distinguish
four classes of RMMs: (1) Functional Safety Measures according to ISO
26262, such as implementing redundancies, monitors, fault-resistent or reconfig-
urable systems, can be E-effective (reduction of error rates) or S-effective, (2)
Restriction of the ODD to exclude hazardous scenarios is E-effective, (3)
Behavioral Safety Measures, such as a more defensive driving profile for
the ADS, can be E-effective (e.g. proactive driving) or S-effective (e.g. keeping
larger safety distances, driving more slowly), (4) External Measures, such as
better traffic infrastructure for ADS or changes in law that aid automated driv-
ing. External measures passively mitigate risks (S-effective or E-effective) in the
long-run. After implementing a RMM, depending on its class, its effectiveness
has to be verified appropriately. Beware that implementing RMMs may lead to
crucial changes in the ADS’s functional architecture, its ODD, its behavior or
its environment and may therefore invalidate the results of steps (1)–(5).

Derivation of Requirements on Error Rates. Under the assumption that
there exists a regulatory requirement on the E-classification of a hazardous sce-
nario, stated as P (H∩Z) ∈ Ek for some k, it is possible to derive requirements
on the error rates µi such that in the next iteration of step (6) evaluating
P (H ∩ Z) will fall into probability class. More precisely, the requirement on
the E-classification of P (H ∩ Z) induces an inequality for every sub-scenario
Zj(j = 1, . . . , n) that can be reformulated as requirements on the error rates.
Even if not all of these n equalities can be satisfied, formulating these require-
ments gives us an idea about the required error rates. Let H be a hazard occuring
in the context of scenario Z, let e1, . . . , em be upper bounds for exposure and
µ1, . . . , µm the associated error rates from the previous iteration of step (6). We
derive conditions on the error rates which ensure P (H ∩ Z) ∈ Ek using:

(1) Translate the requirement into a worst-case probability pmax ∈ (0, 1] such
that P (H ∩Z) ≤ P (Z)

∑n
j=1 P (H|Zj) ≤ pmax. Here, pmax should be chosen

as the upper bound of the interval Ek.
(2) From each sub-scenario Zj(j = 1, . . . , n), derive the requirement∏

i=1,...,m :Ui∈Zj
µiei = P (H|Zj) ≤ pmax/(n · P (Z)). These can be aggre-

gated into n requirements on the product of error rates
∏

i=1,...,m :Ui∈Zj
µi ≤

pmax/(n · P (Z) · ∏
Ui∈Zj

ei) for j = 1, . . . , n.

In total, we obtain n requirements on products of error rates. In case, the exact
number of sub-scenarios n and/or the probability P (Z) are unknown, upper
bounds for these values should be approximated.

5 Conclusion

The approach presented in this paper is a first step towards an integrated safety
assessment for automated driving systems. On the one hand, it identifies rel-
evant scenarios for scenario based testing while on the other hand deriving
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requirements for the further development of the ADS. Application to the PEGA-
SUS Highway-Chauffeur demonstrated usability of the method in practice, more
examples can be found in [5]. A full assessment on how well it performs to iden-
tify potential hazards in comparison to e.g. STPA or existing standards will need
to be evaluated thoroughly and can (as usual with safety analysis methods) only
be determined later (e.g. through comparisons of hazard rates in real traffic).

For automation at SAE levels 4/5 and more complex environments (e.g.
urban areas), as addressed in the PEGASUS follow-up projects ‘VVMethoden’
and ‘SET Level 4to5’, we aim to extend our method towards analyzing struc-
tural criticalities in traffic and thus combining the expert based analysis with a
data driven approach. Concerning the specification of hazardous scenarios, we
plan on extending Traffic Sequence Charts in order to capture more accurately
the critical phenomena and associated causal relations that trigger hazardous
behavior.
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