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1 Introduction

A dominating set of a graph G is a set S⊆V (G) such that every vertex in V (G)� S
is adjacent to at least one vertex in S. The domination number of G, denoted by
γ (G), is the minimum cardinality of a dominating set of G. A dominating set of G
of cardinality γ (G) is called a γ -set of G.

A total dominating set, abbreviated a TD-set, of a graphGwith no isolated vertex
is a set S⊆V (G) such that every vertex in V (G) is adjacent to at least one vertex in
S. The total domination number of G, denoted by γ t(G), is the minimum cardinality
of a TD-set of G. A TD-set of G of cardinality γ t(G) is called a γ t-set of G. Total
domination is now well studied in graph theory. The literature on the subject of total
domination in graphs has been surveyed and detailed in the book [19].

A proper vertex coloring of a graph G is an assignment of colors (elements of
some set) to the vertices of G, one color to each vertex, so that adjacent vertices
are assigned distinct colors. A proper vertex coloring whose colors are taken from
a set of k colors, usually the set [k]= {1, 2, . . . , k}, is called a proper k-coloring.
In a given coloring of G, a color class of the coloring is a set consisting of all those
vertices assigned the same color. The vertex chromatic number of G, denoted χ (G),
is the smallest positive integer k for which G has a proper k-coloring. A χ -coloring
of G is a proper k-coloring of G that uses χ (G) colors. In what follows, we simply
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call a proper vertex coloring a coloring, and we refer to the vertex chromatic number
as the chromatic number.

In this chapter, we combine the concept of domination (total domination) in
graphs with the concept of colorings in graphs and study dominator colorings
(respectively, total dominator colorings) of a graph. In Section 3, we formally define
dominator colorings in graphs, and in Section 4, we formally define the analogous
concept of total dominator colorings in graphs. In these sections, we present selected
results on the so-called dominator chromatic number and total dominator chromatic
number of a graph.

2 Graph Theory Notation

For completeness, we include some graph theory terminology that we will use
in this chapter. A vertex of degree 1 is called a leaf, and its unique neighbor is
called a support vertex. Two vertices v and w are neighbors in a graph G if they
are adjacent, that is, if vw∈E(G). The open neighborhood of a vertex v in G is
the set of neighbors of v, denoted NG(v), whereas the closed neighborhood of v
is NG[v]=NG(v)∪{v}. The open neighborhood of a set S⊆V (G) is the set of all
neighbors of vertices in S, denoted NG(S), whereas the closed neighborhood of S
is NG[S]=NG(S)∪ S. The S-private neighborhood of a vertex v∈ S is defined by
pnG(v, S)= {w∈V (G) :NG[w]∩ S= {v}}. Thus, pnG(v, S)=NG[v]�NG[S�{v}].
We note that if v∈pnG(v, S), then the vertex v is isolated in the subgraph G[S].
A vertex outside the set S that belongs to the set pnG(v, S) is called an S-external
private neighbor of v. If the graph G is clear from the context, we omit the subscript
G in the above definitions. For example, we write N[v] and N[S] rather than NG[v]
and NG[S], respectively.

We denote a complete graph on n vertices by Kn, and we denote a path and cycle
on n vertices by Pn and Cn, respectively. We denote a complete bipartite graph
with partite sets of cardinality m and n by Km,n. A star is a graph K1,n for some
n≥ 1. A double star is a tree with exactly two (adjacent) non-leaf vertices. If one of
these vertices is adjacent to �1 leaves and the other to �2 leaves, then we denote the
double star by S(�1, �2). By a nontrivial graph, we mean a graph of order at least
two. The corona cor(G) of a graph G, also denoted G ◦K1 in the literature, is the
graph obtained from G by attaching a leaf v′ to every vertex v of G. The 2-corona
G ◦P2 of G is the graph of order 3|V (G)| obtained from G by attaching a path of
length 2 to each vertex of G so that the resulting paths are vertex-disjoint.

Given a graph F, a graph G is F-free if it does not contain any induced subgraph
isomorphic to F. If G is K1,3-free, then G is said to be claw-free. A graph is chordal
if it contains no induced cycle of length 4 or more. A graph is a split graph if its
vertex set can be partitioned into a clique and an independent set. A universal vertex
in a graph is a vertex that is adjacent to every other vertex in the graph. A clique
in G is a complete subgraph of G. The clique number of G, denoted ω(G), is the
maximum cardinality of a clique in G.
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A set of vertices in a graph G is a packing if the vertices in S are pairwise at
distance at least 3 apart, that is, if u and v are arbitrary distinct vertices in S, then
d(u, v)≥ 3. Equivalently, S is a packing if the closed neighborhoods of vertices in
S are pairwise disjoint. A subset S of vertices in a graph G is an open packing
if the open neighborhoods of vertices in S are pairwise disjoint. Further the set S
is a perfect packing (respectively, a perfect open packing) if every vertex belongs
to exactly one of the closed (respectively, open) neighborhoods of vertices in S.
The packing number ρ(G) (respectively, the open packing number ρo(G)) is the
maximum cardinality of a packing (respectively, open packing) in G.

A vertex and an edge are said to cover each other in a graph G if they are incident
in G. A vertex cover in G is a set of vertices that covers all the edges of G. The
vertex covering number τ (G) (also denoted by β(G) or vc(G) in the literature) is the
minimum cardinality of a vertex cover in G. The independence number α(G) of a
graph G is the maximum cardinality of an independent set in G.

3 Dominator Colorings

A vertex in a graphG dominates itself and all vertices adjacent to it. Further, a vertex
is a dominator of a set S if it dominates every vertex in S. A dominator coloring of
a graph G is a proper coloring of G with the additional property that every vertex
in V (G) dominates all vertices in at least one color class, that is, each vertex of the
graph belongs to a singleton color class or is adjacent to every vertex of some (other)
color class. The dominator chromatic number χd(G) of G is the minimum number
of color classes in a dominator coloring of G. A χd-coloring of G is a dominator
coloring of G that uses χd(G) colors.

The concept of a dominator coloring in a graph was birthed in the late 1970s
when Cockayne, Hedetniemi, and Hedetniemi [9] defined the domatic number of a
graph involving partitions into dominating sets. In 2006, Hedetniemi, Hedetniemi,
and McRae [14] further studied the concept of dominator colorings in graphs. (We
remark that these two papers are cited as [4] and [13], respectively, in the 2006
paper by Gera, Horton, and Rasmussen [13].) On March 15, 2004, Hedetniemi,
Hedetniemi, Laskar, McRae, and Wallis [15] submitted a paper on dominator
partitions in graphs, but due to the backlog in the journal at the time, the paper only
appeared 5 years later! In 2006, Gera et al. [13] published a paper on dominator
colorings in graphs, and in 2007, Gera [11, 12] continued the study of dominator
colorings.

Since every vertex is a dominator of itself, the coloring of G that assigns a unique
color to each vertex is a trivial dominator coloring of G. Thus, every graph G
has a dominator coloring, and therefore the dominator chromatic number χd(G)
is well-defined. Since every dominator coloring of G is a coloring of G, we have the
following observation.

Observation 1 For every graph G, we have χ (G)≤χd(G).
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1 3 1 2 4 2 1 5 1 2 6 2 1 7 1 8

Fig. 1 A χd-coloring of a path P17

The simplest example to show that strict inequality may occur in Observation
1 is to take G to be a path P4 given by v1v2v3v4. We note that χ (G)= 2 and the
unique 2-coloring of G has color classes {v1, v3} and {v2, v4}. However, neither
the vertex v1 nor v4 dominates any color class, implying that χd(G)≥ 3. However,
the 3-coloring of G with color classes V1 = {v1, v3}, V2 = {v2}, and V3 = {v4} is
a dominator coloring of G, noting that the vertices v1 and v3 dominate the color
class V2, the vertex v2 dominates both color classes V1 and V2, and the vertex v4
dominates its own color class V3. Thus, χd(G)≤ 3. Consequently, χd(G)= 3. As
shown by Theorems 2 and 3, the difference χd(G)− χ (G) can be made arbitrarily
large by taking, for example, G to be a path Pn or cycle Cn of sufficiently large order
n.

We note that if G is a star K1,k where k≥ 1, then a proper 2-coloring of G
is also a dominator coloring of G, and so χ (G)= χd(G)= 2. If G=Kn, then
χ (G)= χd(G)= n. Hence, equality in Observation 1 is possible.

Gera et al. [13] determined the dominator chromatic number of a path Pn on n
vertices. We note that χd(P2)= χd(P3)= 2. As observed earlier, χd(P4)= 3. It is
a simple exercise to verify that χd(P5)= 3. If G is the path Pn: v1v2 . . . vn where
n≥ 6, let f : V (G) → {1, 2, . . . , 2 + �n

3 �} be the dominator coloring defined by

f (vi) =

⎧
⎪⎪⎨

⎪⎪⎩

1 when n (mod 6) ∈ {1, 3}
2 when n (mod 6) ∈ {0, 4}⌈

i

3

⌉

+ 2 when n (mod 6) ∈ {2, 5}.

However if n≡ 1 (mod 3), then we redefine f (vn) to be the value �n
3 � + 2. When

n= 16, for example, the resulting dominator coloring is illustrated in Figure 1 where
here f (v16) = � 16

3 � + 2 = 8 (and where color 1 is blue, color 2 is white, color 3 is
green, etc.).

Gera et al. [13] proved that the dominator coloring f defined above is a χd-
coloring of the path Pn.

Theorem 2 ([13]) For n≥ 2, we have

χd(Pn) =
{
1 + �n

3 � if n ∈ {2, 3, 4, 5, 7}
2 + �n

3 � otherwise.
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(a) χd(C5) = 3 (b) χd(P5) = 3

Fig. 2 χd-coloring of C5 and P5

In 2007, Gera [12] determined the dominator chromatic number of a cycle Cn on
n vertices.

Theorem 3 ([12]) We have χd(C3)= 3, χd(C4)= 2, and χd(C5)= 3, while for
n≥ 3 and n�∈{4, 5}, we have

χd(Cn) =
⌈n

3

⌉
+ 2.

We note that if H is a spanning proper subgraph of G, then a χd-coloring of G
may not be a dominator coloring of H. As a simple example, the χd-coloring of
the cycle C5 shown in Figure 2(a) is not a dominator coloring of P5, even though
χd(C5)= χd(P5)= 3.

For disconnected graphs, we have the following upper and lower bounds on the
dominator chromatic number.

Theorem 4 ([13]) If G is a disconnected graph with components G1, G2, . . . , Gk

where k≥ 2, then

k − 1 + max {χd(Gi) | i ∈ [k]} ≤ χd(G) ≤
k∑

i=1

χd(Gi).

Proof Let Ci be a χd-coloring of Gi for all i∈ [k], where we can choose the
colorings so that no two color classes uses the same color. Let C be the union of
these k color classes, and so the restriction of C to the component Gi yields the χd-
coloring Ci for all i∈ [k]. The coloring C is a chromatic dominator coloring of G,
and so

χd(G) ≤ |C| =
k∑

i=1

|Ci | =
k∑

i=1

χd(Gi) =
k∑

i=1

χd(Gi).

To prove the lower bound, consider a component of G with largest dominator
chromatic number. Each of the remaining k− 1 components of G requires at least
one additional color, since every vertex must be a dominator of some color class.
Hence, χd(G) ≥ k − 1 + max {χd(Gi) | i ∈ [k]}. �

That the lower bound of Theorem 4 is tight may be seen by taking G to be the
vertex-disjoint union of k≥ 2 stars K1,n, for some n≥ 2. Each componentH ofG has
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χd(H)= 2. Assigning to all leaves of G the same color and assigning to the central
vertex of each of the k stars a unique color produce a dominator coloring of G using
k + 1 = (k − 1) + 2 = k − 1 + max {χd(H) | H is a component of G} colors.

That the upper bound of Theorem 4 is tight may be seen by taking G to be the
vertex-disjoint union of k≥ 2 copies of K2,n for some n≥ 2. Let C be a dominator
coloring of G. Since every vertex must be a dominator of some color class, we
note that each component of G has at least one color not used in any other color
class. Suppose that some component H of G uses exactly one color, say color
1, not used in any other color class. If two or more vertices in H are colored
1, then no vertex in the color class associated with the color 1 is a dominator
of any color class, a contradiction. Hence, exactly one vertex in H is colored 1.
However, every vertex different from v and not adjacent to v in the component
H is therefore not a dominator of any color class, a contradiction. Hence, each
component of G has at least two colors unique to that component, implying that
χd(G) ≥ 2k = ∑k

i=1 χd(Gi), where G1, G2, . . . , Gk denote the components of G.

3.1 Bounds on the Dominator Chromatic Number

By definition of a dominator coloring, we have the following observation.

Observation 5 If v is an arbitrary vertex in a graph G, then in every dominator
coloring of G, the closed neighborhood N[v] of v contains a color class.

Theorem 6 If G is a graph, then χd(G)≥ ρ(G), with strict inequality if there is no
perfect packing in G.

Proof If S is a packing in G, then by Observation 5, the closed neighborhoods of
vertices in S contain at least |S| color classes, and so χd(G)≥|S|. Choosing S to
be a maximum packing, we have that χd(G)≥ ρ(G). Further, if G does not have
a perfect packing, then at least one additional color class is needed to contain the
vertices that do not belong to the closed neighborhood of any vertex in S, and so
χd(G)≥ ρ(G)+ 1. �

The dominator chromatic number of a graph is related to its independence
number as follows, where the independence number α(G) of a graph G is the
maximum cardinality of an independent set in G.

Theorem 7 ([13, 15]) If G is a connected graph of order n, then χd(G)≤ n+ 1
− α(G).

Proof If n= 1, then the result is trivial since in this case χd(G)= n= α(G)= 1.
Hence, we may assume that n≥ 2. Let I be a maximum independent set in G, and
consider the coloring C that colors all vertices in I with the same color, and colors
all remaining n− α(G) vertices each with a different color. Each vertex in V (G)� I
dominates the color class that contains it, noting that it is the unique vertex in that
color class. By the connectivity of G and by the independence of the set I, every
vertex in I has degree at least 1 and has all of its neighbor in V (G)� I. Therefore,
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(a) χ(G) = 2 (a) χd(G) = 3

Fig. 3 A double star G= S(3, 3)

by our choice of the coloring C, every vertex in I dominates every color class that
contains one of its neighbors. Hence, C is a dominator coloring of G, implying that
χd(G) ≤ |C| = n + 1 − |I | = n + 1 − α(G). �

That the bound of Theorem 7 is sharp may be seen by taking, for example, a
double star G= S(�1, �2). We note that the (unique) proper 2-coloring of the double
star is a dominator coloring of G, since no leaf dominates a color class. Hence,
χd(G)≥ 3. However, coloring all the leaves with one color, and coloring the two
central vertices (the non-leaf vertices) with distinct colors, produces a proper 3-
coloring that is a dominator coloring. Hence, χd(G)= 3. In this example, G has
order n= �1 + �2 + 2 and α(G)= �1 + �2 = n− 2, and so χd(G)= n+ 1− α(G). In
the special case when G= S(3, 3), we illustrate the χ -coloring and χd-coloring of
G in Figure 3(a) and 3(b), respectively.

As observed earlier, the coloring of a graph G of order n that assigns a unique
color to each vertex is a trivial dominator coloring of G, and so χd(G)≤ n.
By Observation 1, if G is a connected graph on at least two vertices, then
χd(G)≥ χ (G)≥ 2. We state these observations formally as follows.

Observation 8 If G is a connected graph of order n≥ 2, then 2≤χd(G)≤ n.

A characterization of graphs achieving equality in the lower and upper bounds of
Observation 8 is given by the following result.

Theorem 9 ([11, 15]) If G is a connected graph of order n≥ 2, then the following
holds.

(a) χd(G)= 2 if and only if G is a complete bipartite graph.
(b) χd(G)= n if and only if G is a complete graph.

Proof Suppose that χd(G)= 2. By Observation 1, χ (G)= 2, implying that the 2-
coloring of G is a dominator coloring of G. Let V1 and V2 be the two color classes
of G. If |Vi| = 1 for some i∈ [2], then G=K1,n−1, and the desired result follows.
Hence, we may assume that |Vi|≥ 2 for i∈ [2]. Thus, no vertex can be a dominator
of its own color class, implying that every vertex in Vi is a dominator of the color
class V3−i for i∈ [2], that is, G = Kn1,n2 where ni = |Vi|. Hence if χd(G)= 2, then
G is a complete bipartite graph. The converse is immediate.
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Suppose next that χd(G)= n. By Theorem 7, χd(G)≤ n+ 1− α(G). If G is
not a complete graph, then α(G)≥ 2, implying that χd(G)≤ n− 1, a contradiction.
Hence, G must be a complete graph. The converse is immediate. �

The dominator chromatic number of a graph is related to its domination number.
For a given graph G, let A(G) denote the set of all γ -sets in G. We next present an
upper bound on the dominator chromatic number of a graph.

Theorem 10 If G is a connected graph, then

χd(G) ≤ γ (G) + min
S∈A(G)

{χ(G − S)},

and this bound is tight.

Proof Let S be an arbitrary γ -set of G, and let C be a proper coloring of the graph
G− S using χ (G− S) colors. We extend the coloring C to a coloring of the vertices
of G by assigning to each vertex in S a new and distinct color. Let C′ denote the
resulting coloring of G, and note that C′ uses γ (G)+ χ (G− S) colors. Since S is a
dominating set of G, every vertex in V (G)� S is adjacent to at least one vertex of
S. Since the color class of C′ containing a given vertex of S consists only of that
vertex, each vertex in V (G)� S is adjacent to every vertex of some color class in
the coloring C′. Further, each vertex of S is a dominator of its own (singleton) color
class. Hence, C′ is a dominator coloring of G using γ (G)+ χ (G− S) colors. This is
true for every γ -set of G. The desired upper bound now follows by choosing S to
be a γ -set of G that minimizes χ (G− S). The bound is achieved, for example, by
taking G to be a complete graph. �

The proof of Theorem 10 yields the following more general result.

Theorem 11 If G is a connected graph, and D(G) denotes the set of all dominating
sets of G, then

χd(G) ≤ min
S∈D(G)

{ |S| + χ(G − S) }.

Gera [11, 12] established the following upper and lower bounds on the dominator
chromatic number of an arbitrary graph in terms of its domination number and
chromatic number.

Theorem 12 ([11, 12]) Every graph G satisfies

max{γ (G), χ(G)} ≤ χd(G) ≤ γ (G) + χ(G).

Proof By Observation 1, recall that χ (G)≤ χd(G). To show that γ (G)≤ χd(G),
consider a χd-coloring of G with color classes V1, . . . , Vk, where k= χd(G). Let vi
be an arbitrary vertex in the color class Vi for i∈ [k], and consider the set D= {v1,
. . . , vk}. Let v be an arbitrary vertex of G. By definition of a dominator coloring,
the vertex v is a dominator of the color class Vi for at least one i∈ [k]. In particular,
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the vertex v= vk or the vertex v is adjacent to the vertex vk. This is true for every
vertex v of G, implying that D is a dominating set of G. Hence, γ (G)≤|D| = χd(G).
This establishes the desired lower bound. The upper bound follows from Theorem
10, noting that χ (G− S)≤ χ (G) for every proper subset S⊂V (G). �

Gera [12] established an intermediate value-type result for the dominator chro-
matic number and showed that for every triple (a, b, c) of integers where 1≤ a≤ c
and 2≤ b≤ c is a dominator realizable triple, there exists a connected graph G such
that γ (G)= a, χ (G)= b, and χd(G)= c.

That the lower bound of Theorem 12 is sharp may be seen by taking, for example,
a complete bipartite graph G with both partite sets of cardinality at least 2. In this
case, γ (G)= χ (G)= χd(G)= 2. To see that the upper bound is sharp, let G, for
example, be a path Pn or a cycle Cn for some n≥ 8 even. In this case, γ (G) = �n

3 �
and χ (G)= 2, and so by Theorems 2 and 3, we have χd(G) = 2 + �n

3 � = χ(G) +
γ (G).

3.2 Special Classes of Graphs

In this section, we consider the dominator chromatic number of certain classes of
graphs.

3.2.1 Bipartite Graphs

As a special case of Theorem 12 when G is a bipartite graph, we have the following
result.

Theorem 13 ([11, 12, 15]) If G is a bipartite graph, then γ (G)≤ χd(G)≤ γ (G)+ 2.

In order to characterize the graphs achieving equality in the lower bound of
Theorem 13, we define a special subclass of bipartite graphs as follows.

Definition 1 A bipartite graph G is a partially complete bipartite graph if G can
be obtained from the disjoint union of k≥ 1 complete bipartite graphs Kxi,yi

with
partite sets Xi and Yi where xi = |Xi|≥ 2 and yi = |Yi|≥ 2 for all i∈ [k] by adding
edges between copies of these graphs so that the resulting graph is connected and
the following conditions hold, where X = ∪k

i=1Xi and Y = ∪k
i=1Yi .

(a) For each set Xi where i∈ [k], there is no set A⊆Y � Yi such that |A∩Yj| = 1 for
all j∈ [k]�{i} and the set A dominates the set Xi.

(b) For each set Yi where i∈ [k], there is no set A⊆X�Xi such that |A∩Xj| = 1 for
all j∈ [k]�{i} and the set A dominates the set Yi.

(c) For each set Xi where i∈ [k], if A⊆Xi dominates � of the partite sets in Y , then
�≥|A|.
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(d) For each set Yi where i∈ [k], if A⊆Yi dominates � of the partite sets in X, then
�≥|A|.

We note, for example, that every complete bipartite graph with both partite sets
of cardinality at least 2 is a partially complete bipartite graph. In particular, K2,n is
a partially complete bipartite graph for all n≥ 2.

Theorem 14 ([11]) If G is a connected bipartite graph of order at least 2, then
γ (G)= χd(G) if and only if G is a partially complete bipartite graph.

Let Qn be the n-dimensional hypercube, and so Qn can be represented as the nth

power of K2 with respect to the Cartesian product operation �, that is, Q1 =K2 and
Qn = Qn−1 � K2 for n≥ 2. Gera [11] established the following upper bound on
the dominator chromatic number of an n-dimensional hypercube. The proof given
in [11] is algorithmic in nature.

Theorem 15 ([11]) For n≥ 2, χd(Qn+1)≤ χd(Qn)+ γ (Qn).

The following result established an upper bound on the dominator chromatic
number of a connected bipartite graph in terms of its order.

Theorem 16 ([11]) If G is a connected bipartite graph of order n≥ 2, then
χd(G) ≤ 1

2 (n + 2), and this bound is sharp.

Proof Let X and Y be the partite sets of G, where |X|≤|Y |. Coloring all vertices
in Y with the same color and assigning a new color to each vertex of X produce a
dominator coloring of G using |X|+1 ≤ 1

2n+1 colors. This establishes the desired
upper bound.

That this bound is sharp may be seen by taking G to be the corona of an
arbitrary connected bipartite graph F, and so G= cor(F). The graph G has order
n= 2|V (F)| and satisfies γ (G)= |V (F)|. Coloring all added vertices of degree 1
with the same color and assigning a new color to every vertex of F produce a
dominator coloring of T using |V (F)| + 1 colors. Thus, χd(G)≤|V (F)| + 1. We
note that each added vertex v of degree 1 either dominates its own class, in which
case the vertex v is the only vertex of that color, or dominates the class of its unique
neighbor, in which case its neighbor in F is the only vertex of that color. This
implies that at least |V (F)| vertices must receive a unique color. Since at least one
additional color is needed for the remaining vertices of G, every dominator coloring
of G uses at least |V (F)| + 1 colors. Thus, χd(G)≥|V (F)| + 1. As observed earlier,
χd(G)≤|V (F)| + 1. Consequently, χd(G) = |V (F )| + 1 = 1

2n + 1. �

3.2.2 Trees

Since no tree is a partially complete bipartite graph, we have the following
consequence of Theorems 13 and 14.

Theorem 17 ([11]) If T is a tree of order n≥ 2, then χd(T)= γ (T)+ 1 or
χd(T)= γ (T)+ 2.



Dominator and Total Dominator Colorings in Graphs 111

By Theorem 2, if T is a path Pn where n≥ 8, then χd(T ) = �n
3 �+2 = γ (T )+2.

We note that if T is obtained from k≥ 1 vertex-disjoint copies of K1,r where r≥ 2
by adding a new vertex and joining it to the central vertex of each star, then
χd(T)= k+ 1= γ (T)+ 1. More generally, if a tree T contains a γ -set D such that
V (T)�D is an independent set, then χd(T)= γ (T)+ 1, noting that we can color
all vertices outside D with the same color and assign a new color to every vertex
of D to produce a minimum dominator coloring of T using γ (T)+ 1 colors. In
particular, we note that both values for the dominator chromatic number in Theorem
17 are achievable for infinitely many trees. We say that a tree belongs to dominator
class i if χd(T)= γ (T)+ i for i∈ [2]. It remains an open problem to characterize the
dominator class 1 and dominator class 2 trees.

A sufficient condition for a tree to belong to dominator class 1 is the following.

Proposition 18 ([5, 15]) If T is a nontrivial tree such that γ (T)= τ (T), then T
belongs to dominator class 1.

Proof Let D be a minimum vertex cover in T, and so |D| = τ (T)= γ (T). Since
D is a vertex cover, the set V �D is an independent set. Coloring all vertices in
V �D with the same color and assigning a new color to each vertex of D produce a
dominator coloring of T using |D| + 1= γ (T)+ 1 colors. Thus, χd(T)≤ γ (T)+ 1.
By Theorem 17, χd(T)≥ γ (T)+ 1. Consequently, χd(T)= γ (T)+ 1. �

As observed in [5, 15], the converse of Proposition 18 is not true in general.
For example, the tree T shown in Figure 4 belongs to dominator class 1, noting
that χd(T)= 5= γ (T)+ 1. However, γ (T)= 4 < 5= τ (T). The 5-coloring shown in
Figure 4 is a χd-coloring of the tree T.

In 2012, Boumediene Merouane and Chellali [4] provide a characterization of
trees that belongs to dominator class 1.

Theorem 19 ([4]) If T is a nontrivial tree, then χd(T)= γ (T)+ 1 if and only if
there exists a γ -set, D, of T such that the set V (T)� (D∪N(A)) is an independent
set where A= {v∈D : pn(v, D)= {v}}, that is, A is the set of vertices in D, if any, that
are isolated in T[D] and have no D-external private neighbor.

In practice, a tree may admit many minimum dominating sets, and it may not
be easy to identify such a set satisfying the statement of Theorem 19. Therefore, in
2015, Boumediene Merouane and Chellali [5] provide a different characterization,
which is more pleasing in the sense that it resulted in a polynomial time algorithm

Fig. 4 A χd-coloring of a
tree T

1 3 1 2 1 2 4 1
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(a) The tree T

(b) The vertex cover X in the forest F = T − N[B]

Fig. 5 A tree T and its associated forest F

for computing the dominator chromatic number for every nontrivial tree. In order to
state this result, we need some additional terminology.

Recall that a leaf of a tree is a vertex of degree 1 and a vertex with a leaf
neighbor is a support vertex. Given a tree T, let L and S be the set of leaves and
support vertices of T, respectively. Further, let A be the set of vertices of T that are
neither leaves nor support vertices, but have a support vertex as a neighbor, that
is, if v∈A, then v�∈L∪ S, but the vertex v is adjacent to a vertex in S. Further, let
B be the set of vertices that have all their neighbors in A but do not belong to A,
that is, B= {v∈V �A :N(v)⊆A}. Let F be the forest obtained from T by deleting
all vertices in N[B], that is, F=T −N[B], or, equivalently, F is the subgraph of T
induced by the set V (T)�N[B]. Let X be a minimum vertex cover of F containing
all support vertices of T (if X contains a leaf of T, we simply replace this leaf by its
neighbor in T). To illustrate these definitions, consider the tree T shown in Figure
5(a). The label of each vertex represents one of the sets, namely, L, S, A, or B, that it
belongs to, as shown in Figure 5(a). The associated forest F=T −N[B] is illustrated
in Figure 5(b), where the vertices in the vertex cover X are given by the darkened
vertices.

We are now in a position to state the characterization of trees that belong to
dominator class 1 as given in [5].

Theorem 20 ([5]) If T is a nontrivial tree, then χd(T)= γ (T)+ 1 if and only if the
following three conditions hold.

(a) B is a packing.
(b) B∪X is a γ -set of T.
(c) γ (F)= τ (F).



Dominator and Total Dominator Colorings in Graphs 113

X X B B X

X X

Fig. 6 A χd-coloring of the tree T

Suppose that T is a nontrivial tree satisfying the three conditions in the statement
of Theorem 20. We color the vertices of T as follows.

• For each vertex v in B, we give a unique color to all vertices in N(v).
• To each vertex in X, we give a unique (new) color.
• To all remaining vertices (including all vertices in L∪B), we give the same, but
new, color.

By condition (b), the set X ∪B is a γ -set of T, and so γ (T)= |B| + |X|. Thus,
the resulting coloring is a dominator coloring of T using |B| + |X| + 1= γ (T)+ 1
colors. Hence, γ (T)+ 1≤ χd(T)≤|B| + |X| + 1= γ (T)+ 1. Thus we must have
equality throughout this inequality chain, implying that χd(T)= γ (T)+ 1.

To illustrate this coloring, consider the tree T shown earlier in Figure 5(a), where
a vertex is labelled B or X if it belongs to the set B or X, respectively. To the one
vertex in B, we color its two neighbors green, and to the other vertex in B, we
color its two neighbors yellow. We color the five vertices in X with five new colors,
namely, red, white, black, orange, and pink. Thereafter, we color all remaining
vertices of T with a new color, namely, blue. The resulting coloring, illustrated in
Figure 6, is a dominator coloring of T using |B| + |X| + 1= γ (T)+ 1= 8 colors and
is therefore a χd-coloring of T.

Based on Theorem 20, the authors in [5] give a quadratic time algorithm
computing the dominator chromatic number of any nontrivial tree.

3.2.3 Chordal Graphs and Split Graphs

By Theorem 12, every graph G satisfies χd(G)≥ γ (G). In 2012, Chellali and
Maffray [6] improved this bound by imposing certain structural restrictions on the
graph.

Theorem 21 ([6]) If G is a connected graph of order n≥ 2 that is C4-free or is
claw-free and different from C4, then χd(G)≥ γ (G)+ 1.

Since every chordal graph is C4-free, as is every split graph, as an immediate
consequence of Theorem 21, we have the following result.

Corollary 22 ([6]) If G is a connected graph of order n≥ 2, then the following
holds.
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(a) If G is a chordal graph, then χd(G)≥ γ (G)+ 1.
(b) If G is a split graph, then χd(G)≥ γ (G)+ 1.

We also remark that Theorem 17 follows immediately from Theorem 21, noting
that every tree is, of course, C4-free. Chellali and Maffray [6] characterized the split
graphs that achieve equality in the bound of Corollary 22(b).

Theorem 23 ([6]) If G is a connected split graph whose vertex set is parti-
tioned into a clique Q and an independent set I such that Q is minimal, then
χd(G)= γ (G)+ 1 if and only if every vertex of Q is a support vertex.

3.2.4 Proper Interval Graphs and Block Graphs

In 2015, Panda and Pandey [32] study bounds on the dominator chromatic number
for two important subclasses of chordal graphs, namely, proper interval graphs and
block graphs.

A graph G is an interval graph if there exists a one-to-one correspondence
between its vertex set and a familyF of closed intervals in the real line, such that two
vertices are adjacent if and only if their corresponding intervals intersect. Further, if
no interval in F contains another interval in F , then the graph G is called a proper
interval graph. Panda and Pandey [32] establish the following lower and upper
bounds for the dominator chromatic number of a proper interval graph in terms
of its domination number and chromatic number. We note that the upper bound is a
restatement of the result in Theorem 12.

Theorem 24 ([32]) Every proper interval graph G satisfies

χ(G) + γ (G) − 2 ≤ χd(G) ≤ γ (G) + χ(G).

Moreover, all three values can be achieved by χd(G).

For a vertex v of G, the graph G− v is the graph obtained from G by deleting
v and deleting all edges of G incident with v. A vertex v is a cut-vertex of G if
the number of components increases in G− v. A block of a graph G is a maximal
connected subgraph of G that has no cut-vertex of its own. Thus, a block is a
maximal 2-connected subgraph of G. The number of vertices in a block is called the
order of the block. Any two blocks of a graph have at most one vertex in common,
namely, a cut-vertex. If a connected graph contains a single block, we call the graph
itself a block. A block graph is a connected graph in which every block is a clique.
A block containing exactly one cut-vertex is called an end block. A non-complete
block graph has at least two end blocks. Panda and Pandey [32] generalized the
result of Theorem 17 to the class of block graphs. (We note that every tree is a block
graph, in which every block is a copy of K2.)

Theorem 25 ([32]) If G is a block graph of order at least 2 with k blocks where
each block has the same order, then
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χd(G) = γ (G) + χ(G) − 1 or χd(G) = γ (G) + χ(G).

Further, both values can be achieved by χd(G).

To illustrate the tightness of the bounds, for k≥ 1, let Gk,1 be a block graph with
2k blocks B1, B2, . . . , B2k, each having order s≥ 3, and 2k− 1 cut-vertices v1, v2,
. . . , v2k−1 such that V (Bi)∩V (Bi+1)= {vi} for all i∈ [2k− 1]. The resulting graph
G=Gk,1 satisfies γ (G)= k, χ (G)= s and χd(G)= k+ s− 1. When k= 3 and s= 3,
the block graph Gk,1 is illustrated in Figure 7. We color each vertex of the γ -set,
{v1, v3, v5}, of G3,1 with a unique color (namely, green, yellow, and pink), and we
2-color the remaining vertices with two new colors (namely, blue and red). The
resulting 5-coloring is a χd-coloring of G.

For k≥ 3, let G=Gk,2 be a block graph with 2k+ 1 blocks, B1, B2, . . . , B2k+1,
each having order k, and 2k cut-vertices v1, v2, . . . , v2k. All vertices in block B2k+1
are cut-vertices, say vk+1, vk+2, . . . , v2k. For each i∈ [k], Bi is an end block, having
exactly one cut-vertex vi. For each j where k+ 1≤ j≤ 2k, block Bj has exactly two
cut-vertices vj and vj−k. The resulting graph G=Gk,2 satisfies γ (G)= k, χ (G)= k
and χd(G)= 2k. When k= 3, the block graph Gk,2 is illustrated in Figure 8. We
color each vertex of the γ -set, {v1, v2, v3}, of G3,1 with a unique color (namely,
green, yellow, and pink), and we 3-color the remaining vertices with three new
colors (namely, blue, red, and black). The resulting 6-coloring is a χd-coloring of
G.

As a consequence of Theorem 25, we have the following result. We note that if
G is a block graph, then the clique number ω(G) of G is the maximum order among
all blocks in G.

Corollary 26 ([32]) If G is a non-complete block graph that contains an end block
of order ω(G), then χd(G)= γ (G)+ χ (G)− 1 or χd(G)= γ (G)+ χ (G).

Panda and Pandey [32] characterize the block graphs G for which one of the end
blocks is of maximum size (namely, ω(G)) and χd(G)= γ (G)+ χ (G)− 1.

3.2.5 P4-Free Graphs

Chellali and Maffray [6] determined the dominator chromatic number of the class
of graphs that are P4-free by exploiting the structure of these graphs, namely, that if

v1 v2 v3 v4 v5

B1 B2 B3 B4 B5 B6

Fig. 7 A block graph G3,1
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v1 v4 v5 v2

v3

v6

B1 B4 B7 B5 B2

B6

B3

Fig. 8 A block graph G3,2

G is a P4-free graph of order at least 2, then G or its complement G is disconnected
(see Seinsche [34]). We mention that P4-free graphs are also known as cographs.

Theorem 27 ([6]) If G is a P4-free graph, then the following holds.

(a) If G is connected, then χd(G)= χ (G).
(b) If G is disconnected with k≥ 2 components and h of these components have a

universal vertex, then either G has a component H with a universal vertex and
satisfies χ (G)= χ (H), in which case χd(G)= χ (G)+ 2k− h− 1, or G has no
such component, in which case χd(G)=χ (G)+ 2k− h− 2.

3.2.6 Other Classes

We mention that the dominator chromatic number of other classes of graphs has
also been studied, including degree splitting graph of some graphs [22], dragon and
lollipop graphs [30], wheel related graphs [35], the generalized Petersen graph [31],
and Mycielskian graphs [1]. However, we do not define these classes of graphs here.

3.3 Graph Products

In this section, we present some results on the dominator chromatic number in
Cartesian products of graphs. The Cartesian product G � H of graphs G and H is
the graph with vertex set V (G)×V (H)= {(g, h) : g∈V (G) and h∈V (H)}, where
two vertices (g1, h1) and (g2, h2) in the Cartesian product G � H of graphs G and
H are adjacent if either g1 = g2 and h1h2 is an edge in H or h1 = h2 and g1g2 is an
edge in G.
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Fig. 9 A χd-coloring of
P2 � P4

Fig. 10 The circular ladder
graph CL8
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In 2017, Chen, Zhao, and Zhao [8] determined the dominator chromatic number
of Cartesian products of certain paths and cycles. The Cartesian product Pm �Pn of
paths Pm and Pn is known as a 2× n grid graph.

Theorem 28 ([8]) χd(P2 � P2) = 2, χd(P2 � P3) = χd(P2 � P3) = 4, and for all
n≥ 5,

χd(P2 � Pn) =
⌊n

2

⌋
+ 3.

A dominator coloring of the 2× 4 grid graph, for example, using four colors is
shown in Figure 9.

The Cartesian product of a cycle Cn on n≥ 3 vertices and a path P2 on two
vertices is called a circular ladder graph CLn of order 2n; that is, CLn = Cn � K2
(cf. [23]). A circular ladder graph is also called a cycle prism in the literature. We
note that CLn is bipartite if and only if n is even. The circular ladder graph CLn

is also called the n-prism in the literature. For example, let G = C8 � K2 be
the circular ladder graph CL8 shown in Figure 10. We note that G is a bipartite
graph and γ (G)= 4, and so, by Theorem 13, χd(G)≤ 6. As shown in the proof of
Theorem 12, we can find a dominator coloring of G using six colors as follows.
We first 2-color the vertices of G with the colors 1 and 2 (depicted as the colors
blue and red in Figure 10), and thereafter we recolor the vertices of a γ -set of
G with the colors 3, 4, 5, and 6 (depicted as the colors green, yellow, white,
and black, respectively, in Figure 10). The resulting 6-coloring is a dominator
coloring of G. Thus, χd(G)≤ 6. Moreover, as shown in the proof of Theorem 29,
χd(G)≥ γ (G)+ 2= 6. Consequently, χd(CL8)= 6.

In 2015, Manjula and Rajeswari [29] claimed to have proven that χd(CLn)= n+ 1
for all n≥ 9. This result is incorrect. The correct value for the dominator chromatic
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Fig. 11 A χd-coloring of
CL3 = P2 � C3

number of a circular ladder graph is given in Theorem 29 by Chen, Zhao, and Zhao
[8].

Theorem 29 The dominator chromatic number of the circular ladder graph CLn =
Cn � K2 is given by χd(CL3)= 3 and for all n≥ 4 as follows.

χd(CLn) =
⎧
⎨

⎩

1
2 (n + 4) when n ≡ 0 (mod 4)
1
2 (n + 5) when n (mod 4) ∈ {1, 3}
1
2 (n + 6) when n ≡ 2 (mod 4).

Proof Let G = Cn�K2 be the circular ladder graph CLn where n≥ 3. A dominator
coloring of CL3 using three colors is shown in Figure 11, showing that χd(CL3)≤ 3.
By Observation 1, χd(CL3)≥ χ (CL3)= 3. Consequently, χd(CL3)= 3. Hence in
what follows, we let n≥ 4.

Let x1x2 . . . xnx1 and y1x2 . . . yny1 be the two disjoint copies of the cycle Cn used
to construct CLn = Cn � K2 and where xiyi ∈E(CLn) for i∈ [n]. We note that
γ (G)= �n/2� + �n/4�−�n/4�, that is, γ (G)= n/2 if n≡ 0 (mod 4), γ (G)= n/2+ 1 if
n≡ 2 (mod 4), and γ (G)= (n+ 1)/2 if n (mod 4)∈{1, 3}.

We show firstly that χd(G)≤ γ (G)+ 2. If n is even, then we can apply Theorem
13 to yield χd(G)≤ γ (G)+ 2. Suppose that n≡ 3 (mod 4). Thus, n= 4k+ 3 for
some k≥ 0. In this case, the set

D =
k⋃

i=0

{x4i+1, y4i+3}

is a γ -set ofD, noting thatD is a dominating set ofG and |D| = 2(k+ 1)= (n+ 1)/2
= γ (G). We note that removing the set D from G produced a graph G−D∼=P6k+4.
We now 2-color the vertices of the path G−D, and thereafter we color each vertex
of D with a unique color. The resulting coloring of G is a dominator coloring of G
using γ (G)+ 2= 2k+ 4 colors. Suppose next that n≡ 1 (mod 4). Thus, n= 4k+ 1
for some k≥ 1. In this case, we consider the set

S =
k−1⋃

i=0

{x4i+2, y4i+4}.

We note that the set S is a packing in G. Further, the set S dominates all vertices
of G, except for the two vertices y1 and xn (note that here xn = x4k+1). Further, we
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note that S∪{x1} is a γ -set of G, implying that |S| = γ (G)− 1. We note that with
the set S as defined above, the graph G− S can be obtained from a path P6k on 6k
vertices given by

P : y1y2y3x3x4x5 . . . y4(k−1)+1 y4(k−1)+2 y4(k−1)+3 x4(k−1)+3 x4(k−1)+4 x4(k−1)+5

that starts at the vertex y1 and ends at the vertex x4k+1, by adding the two vertices
x1 and y4k+1 and adding the four edges x1y1, x1x4k+1, y1y4k+1, and x4k+1y4k+1. We
now 2-color the vertices of the path P with the colors 1 and 2 and color x1 and y4k+1
with the same new color 3 to produce a 3-coloring ofG− S. Thereafter, we color the
vertices of S with |S| = γ (G)− 1 new colors, one distinct color to each vertex. The
resulting coloring is a dominator coloring of G using γ (G)+ 2 colors. In particular,
we note that y1 and x4k+1 each are dominators of the color class {x1, y4k+1} (whose
vertices are colored 3), while every other vertex in G− S is a dominator of the
unique vertex in S that it is adjacent to. Further, each vertex v of S is a dominator
of the color class that contains the vertex v (and is a singleton set consisting only of
the vertex v).

To illustrate the above coloring, consider the case, for example, when n= 9. In
this case, the set S= {x2, y4, x6, y8} and is given by the set of darkened vertices in
Figure 12(a). Further the 3-coloring of the graph G− S is illustrated in Figure 12(b).
We then extend this 3-coloring of G− S to a 7-coloring of G by adding four new
colors, one distinct color to each vertex in the set S. The resulting 7-coloring is a
dominator coloring of G, implying that χd(CL9)≤ 7.

In all the above cases, we have shown that χd(G)≤ γ (G)+ 2. Further one
can readily show that χd(G)≥ γ (G)+ 2. We present a proof of the simplest case
when n≡ 0 (mod 4) as an illustration. In this case, n= 4k for some k≥ 1. Further,
γ (G)= 2k, and every γ -set of G is a packing. Each vertex v∈D either dominates its
own class, in which case the vertex v is the only vertex of that color, or dominates a
color class that is a subset of its neighborhood, N(v). Since the sets N[v]=N(v)∪{v}
are vertex-disjoint sets for all v∈D, this implies that at least |D| = γ (G) vertices
must receive a unique color. Since at least two additional colors are needed for the
remaining vertices ofG, every dominator coloring ofG uses at least γ (G)+ 2 colors.
Hence, χd(G)≥ γ (G)+ 2 in this case when n≡ 0 (mod 4). Analogous arguments
show that χd(G)≥ γ (G)+ 2 in the three other cases when n (mod 4)∈{1, 2, 3}. We

y1 y2 y3 y4 y5 y6 y7 y8
y9

x1
x2 x3 x4 x5 x6 x7 x8 x9

(a) χd(G) ≤ 7

y1 y2 y3 y5 y6 y7
y9

x1
x3 x4 x5 x7 x8 x9

(b) The graph G−S

Fig. 12 A circular ladder graph G= CL9
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omit the details. Therefore, χd(G)= γ (G)+ 2. The desired result now follows from
our earlier observation that γ (G)= �n/2� + �n/4�−�n/4�. �

We remark that Chen [7] continued the study of dominator chromatic number of
Cartesian products of certain paths and cycles and considers the 3× n grid, P3�Pn,
the Cartesian product P3�Cn. Two vertices (g1, h1) and (g2, h2) in the direct product
graph G×H of graphs G and H are adjacent if g1g2 ∈E(G) and h1h2 ∈E(H). They
also consider the dominator chromatic number of the Cartesian product Km � Kn

for m, n≥ 2.
Paulraja and Handrasekar [33] determined the dominator chromatic number for

some classes of graphs, such as the direct product Km ×Kn for m, n≥ 2, and the
direct product (Km ◦K1)×Kr form, n≥ 2. They also present results on the Cartesian
product Kn�Qr for r≥ 3, where Qr is the r-dimensional hypercube. We omit these
results here.

3.4 Dominator Partition Number

We discuss briefly in this section the dominator partition number of a graph. In
their introductory paper, Hedetniemi, Hedetniemi, Laskar, McRae, and Wallis [15]
define a dominator partition of a graph G as a coloring (not necessarily proper) with
the property that every vertex in G is adjacent to all other vertices in some color
class (including possibly its own). The dominator partition number of G, which
they denote by πd(G), is the minimum number of color classes in a dominator
partition of G. We note that every dominator coloring is a dominator partition,
but not conversely. Thus, πd(G)≤ χd(G) for all graphs G. Hedetniemi et al. [15]
provide the following lower and upper bounds on the dominator partition number of
a graph in terms of the minimum and maximum degrees.

Theorem 30 ([15]) If G is a graph of order n, then

n

1 + �(G)
≤ πd(G) ≤ n − δ(G).

Hedetniemi et al. [15] showed that the dominator partition number of a graph is
surprisingly one of two possible values.

Theorem 31 ([15]) If G is a graph of order n, then πd(G)= γ (G) or
πd(T)= γ (G)+ 1.

Proof The proof of the lower bound πd(G)≥ γ (G) is identical to the proof we
presented earlier of Theorem 12. To prove the upper bound πd(G)≤ γ (G)+ 1, let
D= {v1, . . . , vk} be a γ -set of G. Since the partition π = {V1, . . . , Vk+1} of V ,
where Vi = {vi} for i∈ [k] and where Vk+1 =V �D, is a dominator partition of G,
we have that πd(T)≤ γ (G)+ 1. �
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3.5 Algorithmic and Complexity Results

In this section, we consider the algorithmic complexity of the problem of computing
the dominator chromatic number of an arbitrary graph. Formally, we consider the
following decision problem:

GRAPH DOMINATOR k-COLORABILITY

Input: A graph G, and an integer k≥ 1.
Question: Does G have a dominator k-coloring?

Hedetniemi et al. [17] showed that to determine if a graph G has a dominator
3-coloring can be computed in polynomial time.

Theorem 32 ([17]) GRAPH DOMINATOR 3-COLORABILITY is solvable in polyno-
mial time.

To show that the GRAPH DOMINATOR k-COLORABILITY is NP-complete for
k≥ 4, we give a transformation from GRAPH k-COLORABILITY:

GRAPH k-COLORABILITY

Input: A graph G, and an integer k≥ 4.
Question: Does G have a k-coloring?

Theorem 33 ([13, 15]) Graph Dominator k-Colorability is NP-complete for
general graphs, for k≥ 4.

Proof Let k be an integer greater than 3. GRAPH DOMINATOR k-COLORABILITY

is clearly in the class NP since we can efficiently verify that an assignment of colors
to the vertices of G is both a proper coloring and that every vertex dominates some
color class.

Next we transform an instance of GRAPH (k− 1)-COLORABILITY to an instance
of GRAPH DOMINATOR k-COLORABILITY. Given an instance of GRAPH (k− 1)-
COLORABILITY, a graph G, and a k− 1 coloring of G, construct an instance of
GRAPH DOMINATOR k-COLORABILITY as follows. Let G′ be the graph obtained
from G by adding a new vertex v to G and adding all edges joining v to every
vertex of G. We now consider the instance given by the graph G′ and a dominator
k-coloring of G.

Let C be a (k− 1)-coloring of G, and let C′ be the k-coloring of G′ obtained
from the coloring C by assigning a new color to the vertex v. Thus, the color class
containing v consists only of the vertex v. Since {v} ⊆ NG′ [u] for every vertex inG′,
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every vertex in G′ dominates some color class. Thus, C′ is a dominator k-coloring
of G′.

Conversely, suppose that G′ has a dominator k-coloring C. Since v is adjacent to
every other vertex inG′, the vertex v is the only vertex in its color class. The removal
of v produces a (k− 1)-coloring of G.

It follows that G is (k− 1)-colorable if and only if G′ is dominator k-colorable.
�

By Theorem 33, it is NP-complete to decide if a graph admits a dominator
coloring with at most four colors. Chellali and Maffray [6] characterized the graphs
G such that χd(G)≤ 3 and showed that their characterization leads to a polynomial
time recognition algorithm for such graphs. A rough estimate of the complexity
of their algorithm is O(n8). We note that this result that the problem “χd(G)≤ 3”
can be solved in polynomial time is in contrast the problem “χ (G)≤ 3,” which in
NP-complete.

In 2009, Hedetniemi et al. [15] and in 2011 Arumugam, Raja Chandrasekar,
Misra, Philip, and Saurabh [2] studied algorithmic aspects of dominator colorings
in graphs. They established the following complexity result.

Theorem 34 ([2, 15]) For k≥ 4 an integer,GRAPH DOMINATOR k-COLORABILITY,
is NP-complete for bipartite, chordal, planar, or split graphs.

Arumugam et al. [2] complemented the above hardness results by showing that
the GRAPH DOMINATOR COLORABILITY is fixed-parameter tractable in certain
classes. Informally, a parameterization of a problem assigns an integer k to
each input instance, and a parameterized problem is fixed-parameter tractable,
abbreviated FPT, if there is an algorithm that solves the problem in time f (k) ·|I|O(1),
where |I| is the size of the input and f is an arbitrary computable function that
depends only on the parameter k. (For a discussion on parameterized complexity,
we refer the reader to the 2013 book by Downey and Fellows [10].)

A graph is an apex graph if there exists a vertex in G whose removal from G
yields a planar graph. A family F of graphs is apex minor-free if there is a specific
apex graph H such that no graph in F has H as a minor. As an example, planar
graphs are apex minor-free since no planar graph has K5 as a minor. Apex graphs
play an important role in aspects of graph minor theory and are closed under the
operation of taking minors, that is, contracting an edge or removing an edge or
vertex leads to another apex graph.

As remarked in [2], for k≥ 4 an integer, GRAPH DOMINATOR k-COLORABILITY,
is not fixed-parameter tractable in general graphs unless P=NP. However, the
problem is fixed-parameter tractable in apex minor-free graphs (which include
planar graphs) and chordal graphs.

Theorem 35 ([2]) For k≥ 4 an integer, Graph Dominator k-Colorability, is fixed-
parameter tractable on apex minor-free graphs and on chordal graphs.
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Arumugam et al. [2] show that for k≥ 4 an integer, GRAPH DOMINATOR k-
COLORABILITY, can be solved in “fast” fixed-parameter tractable time in split
graphs.

Theorem 36 ([2]) For k≥ 4 an integer, Graph Dominator k-Colorability, can be
solved in O(2k · n2) time on a split graph on n vertices.

Arumugam et al. [2] pose the problem of whether for k≥ 4 an integer, GRAPH

DOMINATOR k-COLORABILITY, can be solved in polynomial time on interval
graphs.

4 Total Dominator Colorings

The total version of dominator coloring in a graph was studied by several authors.
The concept of total dominator colorings in graphs was first defined in the
manuscript by Hedetniemi, Hedetniemi, McRae, Rall, and Hedetniemi [16] dated
July 9, 2009. Subsequently, Hedetniemi, Hedetniemi, Hedetniemi, McRae, and Rall
[17] continued the study of total dominator colorings in graphs in their manuscript
dated February 18, 2011. The first published papers on the topic appears to be the
2012 paper by Vijayalekshmi [36] and the 2015 paper by Kazemi [26].

Formally, a total dominator coloring, abbreviated TD-coloring, of a graph G
with no isolated vertex is a proper coloring of G in which each vertex of the graph
is adjacent to every vertex of some other color class (different from its own color
class). The total dominator chromatic number of G which we denote by χ td (and
denoted by χt

d(G) in [18, 26]) is the minimum integer k for which G has a TD-
coloring with k colors. A χ td-coloring of G is a coloring of G that uses χ td(G)
colors. Every total dominator coloring is a dominator coloring. Hence, we have the
following observation.

Observation 37 For every graph G without isolated vertices, we have
χd(G)≤ χ td(G).

Consider an arbitrary χ td-coloring ofG, and let S be a set consisting of one vertex
from each of the resulting χ td(G) color classes. Since every vertex in G is adjacent
to every vertex of some color class (different from its own color class), the set S
is a TD-set in G, implying that γ t(G)≤|S| = χ td(G). Hence we have the following
result, first observed by Vijayalekshmi [36] and Kazemi [26].

Observation 38 ([26, 36]) For every graph G without isolated vertices,
γ t(G)≤ χ td(G).

Analogous results to Observation 8 and Theorem 9 hold for the total dominator
chromatic number.

Theorem 39 ([26, 36]) If G is a connected graph of order n≥ 2, then
2≤ χ td(G)≤ n. Moreover, the following holds.
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1 2 3 1 4 5 4 6 7 6 1 8 9 1

Fig. 13 A χ td-coloring of a path P14

(a) χ td(G)= 2 if and only if G is a complete bipartite graph.
(b) χ td(G)= n if and only if G is a complete graph.

For disconnected graphs, we have the following upper and lower bounds on the
total dominator chromatic number.

Theorem 40 ([36]) If G is a disconnected graph with nontrivial components G1,
G2, . . . , Gk where k≥ 2, then

2k − 2 + max {χtd(Gi) | i ∈ [k]} ≤ χtd(G) ≤
k∑

i=1

χtd(Gi).

We remark that the total dominator chromatic number of a path and cycle is
incorrectly determined in [26]. To state the total dominator chromatic number of a
path Pn and a cycle Cn on n vertices, we shall need the following well-known result
(see [19]).

Observation 41 For n≥ 3, if G∈{Pn, Cn}, then we have

γt (G) =
⌊n

2

⌋
+

⌈n

4

⌉
−

⌊n

4

⌋
,

that is, γt (G) = n
2 if n≡ 0 (mod 4), γt (G) = n

2 + 1 if n≡ 2 (mod 4), and γt (G) =
n+1
2 for n odd.

Theorem 42 ([18]) For n≥ 2, we have

χtd(Pn) =
⎧
⎨

⎩

γt (Pn) for n ∈ {2, 3, 6}
γt (Pn) + 1 for n ∈ {4, 5, 7, 9, 10, 11, 14}
γt (Pn) + 2 otherwise.

For example, a χd-coloring of the path P14 (using γ t(P14)+ 1= 8+ 1= 9
colors) is illustrated in Figure 13.

Thus, by Observation 41 and Theorem 42, we have the following closed formula
for the total dominator chromatic number of a path of large order.

Theorem 43 ([18]) For n≥ 15, χtd(Pn) = ⌊
n
2

⌋ + ⌈
n
4

⌉ − ⌊
n
4

⌋ + 2.

For n≥ 16, we define next a χ td(Pn)-coloring, C∗
n , of a path Pn as follows. Let

G be the path v1v2 . . . vn, where n≥ 16. For each vertex vi where i≡ 2, 3 (mod 4),
assign a unique color. For each vertex vi where i≡ 1 (mod 4), assign a new additional
color, say 1. For each vertex vi where i≡ 0 (mod 4), assign a further additional
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1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 2 1 11 12

1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 2 11 12

1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 11 2

1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 2

Fig. 14 A χ td-coloring of a paths P16, P17, P18, and P19

color, say 2. Let Cn denote the resulting coloring. We now define a coloring C∗
n

as follows. If n≡ 0, 3 (mod 4), let C∗
n = Cn. If n≡ 1 (mod 4), then recolor the

vertex vn−1 (currently colored with color 2) with a new distinct color, and let C∗
n

denote the resulting modified coloring. If n≡ 2 (mod 4), then recolor the vertex
vn−1 (currently colored with color 1) with a new distinct color, and let C∗

n denote the
resulting modified coloring. The coloring C∗

n when n∈{16, 17, 18, 19}, for example,
is illustrated in Figure 14. The darkened vertices in this coloring of C∗

n in Figure 14
form a γ t-set of the path. A new color is assigned to each darkened vertex in the
path.

Theorem 44 ([18]) χ td(C3)= 3, χ td(C4)= 2, and χ td(C11)= 8. For all other
values of n≥ 5, we have χ td(Cn)= χ td(Pn).

4.1 Bounds on the Total Dominator Chromatic Number

By definition of a total dominator coloring, we have the following observation.

Observation 45 If v is an arbitrary vertex in a graph G without isolated vertices,
then in every dominator coloring of G, the open neighborhood N(v) of v contains a
color class.

Theorem 46 If G is a graph without isolated vertices, then χ td(G)≥ ρo(G), with
strict inequality if there is no perfect packing in G.

Proof If S is an open packing inG, then by Observation 45, the open neighborhoods
of vertices in S contain at least |S| color classes, and so χ td(G)≥|S|. Choosing S to
be a maximum open packing, we have that χ td(G)≥ ρo(G). Further, if G does not
have a perfect open packing, then at least one additional color class is needed to
contain the vertices that do not belong to the open neighborhood of any vertex in S,
and so χ td(G)≥ ρo(G)+ 1. �

If H is any connected graph of order k≥ 1, then the 2-corona G=H ◦P2 satisfies
ρo(G)= 2k= χ td(G), illustrating the existence of graphs G that contain a perfect
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Fig. 15 The graph C4 ◦P2

open packing and satisfy ρo(G)= χ td(G). The graph C4 ◦P2, for example, is shown
in Figure 15 (here, H =C4).

If a graph G contains a perfect open packing, then it is not necessarily true
that ρo(G)= χ td(G). The simplest example illustrating this is a path G=P4, with
ρo(G)= 2 and χ td(G)= 3. More generally, ifG=Pn where n≡ 0 (mod 4) and n≥ 8,
then G has a perfect open packing and ρo(G)= γ t(G). However in this case, by
Theorem 42, we have χ td(G)= γ t(G)+ 2= ρo(G)+ 2.

For a given graph G, letAt (G) denote the set of all γ t-sets in G. We next present
an upper bound on the total dominator chromatic number of a graph.

Theorem 47 ([18, 26]) If G is a connected graph without isolated vertices, then

χtd(G) ≤ γt (G) + min
S∈At (G)

{χ(G − S)},

and this bound is tight.

Proof Let S be an arbitrary γ t-set of G, and let C be a proper coloring of the graph
G− S using χ (G− S) colors. We now extend the coloring C to a coloring of the
vertices of G by assigning to each vertex in S a new and distinct color. Let C′ denote
the resulting coloring of G, and note that C′ uses γ t(G)+ χ (G− S) colors. Since S
is a TD-set of G, every vertex in G is adjacent to at least one vertex of S. Since the
color class of C′ containing a given vertex of S consists only of that vertex, each
vertex in G is adjacent to every vertex of some (other) color class in the coloring
C′. Hence, C′ is a TD-coloring of G using γ t(G)+ χ (G− S) colors. This is true for
every γ t-set ofG. The desired upper bound now follows by choosing S to be a γ t-set
of G that minimizes χ (G− S). The bound is achieved, for example, by taking G to
be a complete graph. As shown in [18], the bound is also tight for infinitely many
trees. �

The proof of Theorem 47 yields the following more general result.

Theorem 48 If G is a connected graph without isolated vertices, and TD(G)
denotes the set of all total dominating sets of G, then

χtd(G) ≤ min
S∈TD(G)

{ |S| + χ(G − S) }.

We observe that χ (G− S)≤ χ (G) for every proper subset S⊂V (G). This
observation, together with the results of Observations 37 and 38, gives us the
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following analogous result to Theorem 12, thereby establishing upper and lower
bounds on the total dominator chromatic number of an arbitrary graph in terms of
its total domination number and chromatic number.

Theorem 49 ([26, 36]) Every graph G without isolated vertices satisfies

max{γt (G), χ(G)} ≤ χtd(G) ≤ γt (G) + χ(G).

4.2 Special Classes of Graphs

In this section, we consider the total dominator chromatic number of certain classes
of graphs.

4.2.1 Bipartite Graphs

As a special case of Theorem 49 when G is a bipartite graph, we have the following
result.

Theorem 50 ([26, 36]) If G is a bipartite graph, then γ t(G)≤χ td(G)≤ γ t(G)+ 2.

For each t∈{0, 1, 2}, an infinite family Gt of bipartite graphs such that each graph
G ∈ Gt satisfies χ td(G)= γ t(G)+ t is constructed in [18] as follows.

Let G0 be the family of graphs G without isolated vertices that contain a TD-set
S that is a perfect open packing in G and such that the neighborhood of each edge
e in G[S] induces a complete bipartite graph in G, that is, if e= uv is an edge in
G[S], then the subgraph of G induced by the neighborhood, N[e], of e is a complete
bipartite graph Kn1,n2 where d(u)= n1 and d(v)= n2. Let G ∈ G0. As an example,
if H is an arbitrary graph, then the graph G=H ◦P2 belongs to the family G0 since
the set S=V (G)�V (H) is a TD-set that is a perfect open packing in G and the
neighborhood of each edge e in G[S] induces a complete bipartite graph K1,2 in G.

Let G1 be the family of graphs that can be obtained from a graph H without
isolated vertices by attaching any number of pendant edges, but at least one, to each
vertex of H. For example, if H is an arbitrary isolate-free graph, then the corona
G=H ◦P1 of H belongs to the family G1.

Let G2 be the family of all paths Pn and cycles Cn, where n≡ 0 (mod 4) and
n≥ 8.

Theorem 51 ([18]) The following holds.

(a) If G ∈ G0, then χ td(G)= γ t(G).
(b) If G ∈ G1, then χ td(G)= γ t(G)+ 1.
(c) If G ∈ G2, then χ td(G)= γ t(G)+ 2.
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4.2.2 Trees

Recall that the dominator chromatic number of a tree is one of two values (see
Theorem 17). However, the total dominator chromatic number of a tree is one of
three values. By Theorem 50, if T is a tree, then γ t(T)≤χ td(T)≤ γ t(T)+ 2. Further,
there are infinitely many trees T for which χ td(T)= γ t(T)+ i for each i∈ [2]0 = {0,
1, 2}.
Theorem 52 ([26, 36]) If G is a tree, then γ t(T)≤ χ td(T)≤ γ t(T)+ 2.

The following properties of χ td-colorings in a tree T are established in [18]. We
say that a color class C in a given TD-coloring C of G is free if each vertex of G is
adjacent to every vertex of some color class different from C.

Theorem 53 ([18]) If T is a nontrivial tree, then the following holds.

(a) If γ t(T)= χ td(T), then no χ td(T)-coloring contains a free color class.
(b) If χ td(T)= γ t(T)+ 1, then there exists a χ td(T)-coloring that contains a free

color class.
(c) If χ td(T)= γ t(T)+ 2, then there exists a χ td(T)-coloring that contains two free

color classes.

The trees T satisfying γ t(T)= χ td(T) are characterized in [18]. Let T be the
family of trees constructed as follows. Let T consist of the tree P2 and all trees that
can be obtained from a disjoint union of k≥ 1 stars each of order at least 3 by adding
k− 1 edges joining leaf vertices in such a way that the resulting graph is connected
and the center of each of the original k stars remains a support vertex.

Theorem 54 ([18]) If T is a nontrivial tree, then γ t(T)= χ td(T) if and only if T ∈
T .

In [18] a tight upper bound on the total dominator chromatic number of a tree
in terms of its order is established, and the trees with maximum possible total
dominator chromatic number are characterized. For this purpose, letF be the family
of all trees T that can be obtained from a tree H of order at least 2 by selecting
an arbitrary edge e= uv in H and attaching a path of length 2 to each vertex of
V (H)�{u, v} so that the resulting paths are vertex-disjoint. We callH the underlying
tree of T. A tree in the family F with underlying tree H =P5, for example, is
illustrated in Figure 16 (here the vertices ofH are depicted by the darkened vertices).

Theorem 55 ([18]) If T is a tree or order n≥ 2, then χtd(T ) ≤ 2
3 (n + 1), with

equality if and only if T ∈ F .

Fig. 16 A tree in the family
F

u v
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4.2.3 Mycielskian of a Graph

Let G be a graph without isolated vertices and with V (G)= {v1, v2, . . . , vn}. The
Mycielskian M(G) is the graph obtained from G by adding n new vertices u1, u2,
. . . , un and an additional vertex v and then adding the edges vui for all i∈ [n].
Further, for each edge vivj of G, we add the edges uivj and viuj to complete the
construction of M(G). For example, if G=K2, then M(G)=C5. If G=C5, then
M(G) is the Grötzsch graph. Kazemi [24] proved that the dominator chromatic
number of the Mycielskian of a graph is one of two values.

Theorem 56 ([24]) If G is a graph without isolated vertices, then

χtd(M(G)) = χtd(G) + 1 or χtd(M(G)) = χtd(G) + 2.

4.2.4 Circulants

Jalilolghadr, Kazemi, and Khodkar [20] studied total dominator colorings
of circulant graphs Cn(a, b) with two “jump sequences.” For n≥ 3, let
1≤ a1 < · · · ak ≤�n/2�, and let S= {a1, . . . , ak}. The graph G with vertex set
V (G)= [n] and edge set

E(G) = {{i, j} : |i − j | ≡ ai (mod n) for some i ∈ [k]}

is called a circulant graph with jump sequence S and denoted Cn(S) or Cn(a1,
. . . , ak). We note that Cn(S) is a k-regular graph. Jalilolghadr et al. [20] prove the
following result.

Theorem 57 ([20]) If G is a circulant graph Cn(a, b) where n≥ 6, gcd(a, n) = 1
and a−1b≡ 3 (mod n), then

χtd(G) =
⎧
⎨

⎩

2�n
8 � for n ∈ {8, 9, 10}

2�n
8 � + 1 for n ≡ 1 (mod 8) or n = 11

2�n
8 � + 2 otherwise.

4.2.5 Central Graphs

Kazemi and Kazemnejad [28] studied the total dominator chromatic number of
central graphs, where they define the central graph C(G) of a graph G as the graph
obtained from G by subdividing every edge of G exactly once and adding all edges
joining two vertices that were not adjacent in G. Among other results, they proved
the following.

Theorem 58 ([28]) If G is a connected graph of order n≥ 4, then the following
holds.
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(a) χtd(C(G)) ≥ 2
3n + 1.

(b) χtd(C(G)) ≤ n + � k
2� where k is the order of a longest path in G.

(c) χ td(C(G))≤ n+ 1 if Δ(G)≤ n− 2.
(d) χtd(C(G)) ≤ n + �n

2 �, with equality if and only if G∼=Kn.

4.3 Graph Products

In this section, we present some results due to Kazemi [25] on the total dominator
chromatic number in Cartesian products (�) and direct products (×) of two graphs.

Theorem 59 ([25]) If G and H are two graphs without isolated vertices, then

χtd(G × H) ≤ χtd(G) · χtd(H).

Theorem 60 ([25]) For q≥ p≥ 2, if G is a complete p-partite graph and H is a com-
plete q-partite graph, then χ td(G×H)= p+ 2. In particular, χ td(Kp ×Kq)= p+ 2.

Theorem 61 ([25]) If G and H are two graphs without isolated vertices, then

max{χtd(G), χtd(H)} ≤ χtd(G � H) ≤ min{χtd(G) · n(H), χtd(H) · n(G)}.

Theorem 62 ([25]) If G is a graph without isolated vertices, then χtd(G) ≤ χtd(G�

K2) ≤ 2χtd(G).

4.4 Algorithmic and Complexity Results

We consider in this section the problem of finding the total dominator coloring
number of an arbitrary graph. Formally, we consider the following decision
problem:

GRAPH TOTAL DOMINATOR k-COLORABILITY

Input: A graph G, and an integer k≥ 4.
Question: Does G have a total dominator k-coloring?
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An identical proof to that of Theorem 33 can be used to show that the GRAPH

TOTAL k-DOMINATOR COLORABILITY is NP-complete for general graphs by
transforming it from an instance of GRAPH DOMINATOR k-COLORABILITY.

Theorem 63 ([17, 26]) GRAPH TOTAL DOMINATOR k-COLORABILITY is
NP-complete for general graphs, for k≥ 4.

5 Concluding Comments

In this chapter, we have surveyed selected results on the dominator chromatic
number and total dominator chromatic number of a graph. Other results can be
found, for example, in [3, 21, 27]. We close with a small list of open problems.

Problem 1 Find graphs, or classes of graphs, G satisfying the following.

(a) χd(G)= γ (G).
(b) χd(G)= χ (G).
(c) χd(G)= γ (G)+ χ (G).
(d) χ td(G)= γ t(G).
(e) χ td(G)= χ (G).
(f) χ td(G)= γ t(G)+χ (G).

Problem 2 Characterize the nontrivial trees T satisfying the following.

(a) γ t(T)= χ td(T)+ 1.
(b) γ t(T)= χ td(T)+ 2.

Problem 3 Characterize the graphs G satisfying χd(G)= χ td(G).

Problem 4 Determined the dominator chromatic number and the total dominator
chromatic number of the m× n grid graph, Pm � Pn, for all m, n≥ 2.

Problem 5 For any dominator (or total dominator) coloring, one can construct a
so-called dominator digraph (total dominator digraph, respectively) which is an
orientation of some of the edges of G such that for every vertex u, you orient the
edge uv from u to v if u dominates the color class of vertex v. We note that for
dominator colorings, this digraph will contain loops, if a vertex forms a singleton
color class. However, the total dominator digraph will have no loops. We also note
that these digraphs will have some unoriented edges which can be deleted. Study
the resulting dominator digraphs and total dominator digraphs.
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