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1 Introduction

Domination in digraphs is relatively unexplored if compared to its counterpart in
graphs. In this chapter, we present selected results on domination in digraphs and
give some background on the related topics of bases and kernels. The first two
Ph.D. dissertations devoted to the study of domination in digraphs were written by
Changwoo Lee [62] in 1994 and by Lisa Hansen [46] in 1997. A survey of results
prior to 1998 on domination in directed graphs by Ghoshal, Laskar, and Pillone [43]
is given in Chapter 15 of [54]. For completeness, many of these results are repeated
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here. We first present some terminology. For terminology and notation not found
here, we refer the reader to the glossary in chapter “Glossary of Common Terms” of
this volume.

1.1 Basic Terminology and Notation

Throughout this chapter, we let D= (V, A) be a finite directed graph, or digraph,
with a finite vertex set V =V (D) and an arc set A=A(D) ⊆V ×V , which is a subset
of the Cartesian product V ×V , consisting of all ordered pairs of vertices in V ,
where neither loops (u, u) nor multiple arcs (u, v) and (u, v) are allowed, although
pairs of opposite arcs, such as (u, v) and (v, u), are allowed. Also, G= (V, E) stands
for a simple, finite, undirected graph with vertex set V (G) and edge set E(G), which
consists of a subset of the set of all unordered pairs uv= vu of distinct vertices in V .

For two vertices u, v∈V and an arc (u, v) ∈A, we say that:

(i) (u, v) is an arc from u to v,
(ii) u is adjacent to v,

(iii) v is adjacent from u,
(iv) v is an out-neighbor of u,
(v) u is an in-neighbor of v,

(vi) v is a successor of u or the terminal vertex of the arc,
(vii) u is a predecessor of v or the initial vertex of the arc,

(viii) u and v are incident to arc (u, v), and
(ix) arc (v, u) is the reverse of arc (u, v).

We also denote an arc (u, v) by u→ v. If both arcs (u, v) and (v, u) are in A, we
denote this by u↔ v; and this is called a bidirected or symmetric arc. A digraph
D= (V, A) is called oriented or anti-symmetric if for every (u, v) ∈A, we have (v,
u) �∈A, that is, D has no symmetric arcs. Equivalently, an oriented digraph can be
obtained from a graph G by assigning a direction, either u → v or v → u, to each
edge uv of G.

The outset or out-neighborhood of a vertex u∈V is the set of vertices N+
D(u) =

{v | u → v ∈ A}, while the inset or in-neighborhood of vertex u is the set N−
D(u) =

{v | u ← v ∈ A}. The outdegree of vertex u, denoted odD(u) or d+
D(u) in the

literature, equals |N+
D(u)|, while the indegree of u, denoted idD(u) or d−

D(u) in the
literature, equals |N−

D(u)|. The maximum indegree of a digraph D, denoted �−(D),
is the maximum indegree among the vertices in D. The maximum outdegree of D
is defined as expected and is denoted �+(D). Similarly, the minimum indegree and
minimum outdegree of D are denoted δ−(D) and δ+(D), respectively. The degree of
a vertex v in D is dD(v) = odD(v) + idD(v). We note that

∑

v∈V (D)

odD(v) =
∑

v∈V (D)

idD(v).
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A digraph is r-regular if odD(v) = idD(v) = r for every vertex v of D. We also
define the closed out-neighborhood of a vertex v to equal N+

D [v] = N+
D(v) ∪ {v}

and similarly the closed in-neighborhood to equal N−
D [v] = N−

D(v) ∪ {v}. The
out-neighborhood of a set S of vertices is N+

D(S) = ∪v∈SN+
D(v), and the closed

out-neighborhood of S is N+
D [S] = ∪v∈SN+

D [v]. And finally, the in-neighborhood
of S is N−

D(S) = ∪v∈SN−
D(v), and the closed in-neighborhood of S is N−

D [S] =
∪v∈SN−

D [v].
Let S⊆V and u∈ S. A vertex v∈V \ S is called a private out-neighbor of u with

respect to S if N−
D(v)∩S = {u}, that is, v is an out-neighbor of u, u→ v, but is not an

out-neighbor of any other vertex in S. The set of all private out-neighbors of u with
respect to S is denoted by pn+

D(u, S). Similarly, a vertex v∈V \ S is called a private
in-neighbor of u with respect to S if N+

D(v) ∩ S = {u}, that is, v is an in-neighbor
of u, u← v, but is not an in-neighbor of any other vertex in S. The set of all private
in-neighbors of u with respect to S is denoted by pn−

D(u, S).
If the digraph D is clear from context, we omit the subscript D from the above

notational definitions. For example, we simply write id(u), od(u), N−(u), N+(u),
pn+(u, S), and pn−(u, S), rather than idD(u), odD(u), N−

D(u), N+
D(u), pn+

D(u, S),
and pn−

D(u, S), respectively. A vertex u is called:

(i) an isolated vertex if od(u) = id(u) = 0,
(ii) a source or transmitter if id(u) = 0 and od(u) > 0, and

(iii) a sink or receiver if od(u) = 0 and id(u) > 0.

Given two sets R, S⊆V , we let (R, S) denote the set of all arcs in A from R to S,
that is, (R, S) = {(u, v) ∈A | u∈R, v∈ S}.

For any integer k≥ 1, we use the standard notation [k] = {1, . . . , k} and
[k]0 = [k] ∪{0} = {0, 1, . . . , k}. A directed walk in a digraph D= (V, A) from a
vertex u to a vertex w, called a (u, w)-walk, is a sequence of vertices of the form
u= v0, v1, . . . , vk =w such that for every i∈ [k], we have (vi−1, vi) ∈A. Such a
(u, w)-walk has length k. A directed walk having no repeated edges is called a
directed trail. A directed walk having no repeated vertices is called a directed path.
A directed walk in which v0 = vk is called a closed directed walk, and a closed walk
in which all vertices, except v0 and vk, are distinct is called a directed cycle or a
circuit. Let �Cn denote the directed cycle on n vertices.

The distance dD(u, v) from a vertex u to a vertex v in a digraph D is the minimum
length of a directed (u, v)-path. If the digraph D is clear from the context, we write
d(u, v) rather than dD(u, v).

Given a digraph D= (V, A), the underlying graph of D is the undirected graph
G(D) = (V, E), where uv∈E if and only if u→ v∈A, u← v∈A, or u↔ v∈A.
A digraph D is connected or weakly connected if its underlying graph G(D) is
connected.

A digraph D is said to be strongly connected if for every u, w∈V , there exist
a directed (u, w)-path and a directed (w, u)-path. We note that one could consider
the class of digraphs having the property that for every u, w∈V either there is a
directed walk from u to w or there is a directed walk from w to u.

A digraph D= (V, A) is said to be transitive if (u, v), (v, w) ∈A implies that the
arc (u, w) ∈A. In other applications, a digraph D of order n is said to have a transitive
orientation if there is an ordering of the vertices v1, v2, . . . , vn such that for every
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i∈ [n− 1], we have (vi, vi+1) ∈A. A digraph is complete if for every u, v∈V , either
(u, v), (v, u), or both arcs are in A. A tournament is an oriented complete graph.

We denote the degree of a vertex v in an undirected graph G by dG(v), or simply
by d(v) if the graph G is clear from context. The average degree in G is denoted by
dav(G). The minimum degree among the vertices of G is denoted by δ(G) and the
maximum degree by �(G).

1.2 Domination and Independence

In this section we define independence and the types of domination in digraphs that
will be discussed in this chapter. Let D= (V, A) be a digraph with vertex set V and
arc set A.

Definition 1 A set S of vertices in a digraph D is independent if no two vertices u,
v∈ S are joined by an arc, that is, (u, v) �∈A and (v, u) �∈A. The maximum cardinality
of an independent set in a digraph D is called the vertex independence number of D
and is denoted α(D), while the minimum cardinality of a maximal independent set
of vertices in a digraph is the lower vertex independence number, denoted αmin(D).

Definition 2 A set S of vertices in a digraph D is an out-dominating set, or just
a dominating set, if for every vertex v∈V \ S, there exists a vertex u∈ S such that
u→ v∈A, that is, every vertex in V \ S is adjacent from a vertex in S. In other words,
S is a dominating set of D if V \ S⊆N+[S]. The minimum cardinality of dominating
set in D is called the out-domination number, or simply the domination number, of
D and is denoted γ +(D), or just γ (D).

In general, we adopt the simplified terminology for out-dominating sets by
omitting “out” and simply referring to dominating sets, domination number, and
γ (D).

Definition 3 A set S of vertices in a digraph D is an in-dominating set (also called
a converse dominating set in the literature) if for every vertex v∈V \ S, there exists a
vertex u∈ S such that v→ u∈A, that is, every vertex in V \ S is adjacent to a vertex
in S. In other words, S is an in-dominating set of D if N+(v) ∩ S �=∅. The minimum
cardinality of an in-dominating set in a directed graph D is called the in-domination
number of D and is denoted γ −(D).

Definition 4 A set S of vertices in a digraph D is a twin dominating set of D if it
is both an in-dominating set and out-dominating set of D. The minimum cardinality
of a twin dominating set is the twin domination number γ ±(D) of D (also denoted
γ ∗ (D) in the literature).

To illustrate the above definitions, consider the digraph D shown in Figure 1.
The darkened vertices in Figure 1(a) and 1(b) form a dominating set and an in-
dominating set, respectively, of D, while the darkened vertices in Figure 1(c) form
a twin dominating set of D.
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(a)  γ(D) = 2 (b)  γ−(D) = 2 (c)  γ±(D) = 3

Fig. 1 A digraph D with γ (D) = γ −(D) = 2 and γ ±(D) = 3

2 Background and History

In this section, we recognize and honor Dénes König for his pioneering work on
domination in digraphs. His work on the basis of a digraph, which we shall see
is an independent dominating set, comes some 30 years before any other mention
of domination in the literature. Since König was the originator of domination in
digraphs, we give several of his theorems along with their proofs. In the second part
of this section, we present a brief overview of kernels in digraphs, which we shall
see are independent in-dominating sets. We include some of Berge’s early results
on kernels with a sampling of proofs. We also give some results on the existence of
kernels in digraphs. A survey of the expansive literature on kernels is beyond the
scope of this chapter, so our brief overview is not meant to be complete. For more
information we refer the reader to surveys by Boros and Gurvich [12] and Frankel
[37], respectively.

2.1 Basis of the Second Kind

The concept of domination in digraphs was introduced as early as 1936 by König
[61]. We present his original ideas in what follows, as they form a foundation on
which many ideas for domination in digraphs can be built.

For any vertex a∈V in a digraph D= (V, A), let Va equal the set consisting of a
together with all vertices x for which there exists a directed path from a to x. If there
is no vertex b∈V such that Va ⊂Vb, then Va is called a basic set with source a.

Theorem 1 ([61]) Every vertex a∈V of a finite directed graph D= (V, A) is a
member of some basic set of D.

Proof Let a∈V . If Va is a basic set, then clearly a is a member of a basic set. By
definition, if Va is not a basic set, then there exists a vertex b∈V such that Va ⊂Vb,
which implies that there must exist a directed path from b to a. Thus, if Vb is a basic
set, then a is a member of the basic set Vb. Again, if Vb is not a basic set, then by
definition, there exists a vertex c∈V such that Va ⊂Vb ⊂Vc. If Vc is a basic set,
then a is a member of the basic set Vc. Since V is a finite set, this process must end
with a vertex x∈V , such that Vx is a basic set containing a. �
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König pointed out that this theorem does not hold for infinite directed graphs,
using the example of an infinite directed path v1, v2, v3, . . . , in which every arc has
the form (vi+1, vi). It is easy to see that this infinite directed path has no basic set.

Theorem 2 ([61]) No proper subset of a basic set is a basic set.

Proof Suppose, to the contrary, that a basic set Vb contains a basic set Va as a
proper subset. Since there is a directed path from b to a, and since Va is a basic
set, Va cannot be properly contained in another basic set. Thus, it follows that there
must be a directed path from a to b. From this it follows that Vb must be a subset
of Va and thus that Va =Vb. But this means that Va is not a proper subset of Vb, a
contradiction. �

We can now define a basis of a directed graph.

Definition 5 A basis of a directed graph D= (V, A) is a set B⊂V having the
following two properties:

(i) for every vertex v∈V \B, there exist a vertex u∈B and a directed path from u
to v.

(ii) for every pair of vertices u, v∈B, there is no directed path from u to v.

Theorem 3 ([61]) Every finite directed graph D= (V, A) has a basis.

Proof Let V = {Va, Vb, . . . , Vk} be the set of all basic sets of a finite directed
graph D= (V, A), and let B= {a, b, . . . , k} be sources for each of these basic sets.
We claim that the set B is a basis of D.

Note that Theorem 1 says that every vertex v∈V is a member of some basic set,
say v ∈ V ′ ∈ V . Assume that v∈V \B. But V ′ =Vw for some Vw ∈ V and w∈B,
since V contains all basic sets. Thus, by definition there must be a directed path from
w to v, and property (i) in Definition 5 is satisfied.

In order to show that B satisfies property (ii) in Definition 5, suppose, to the
contrary, that for two sources a and b in B, where Va �=Vb, there is a directed path
from a to b. But in this case, it follows that Vb ⊆Va. However, if Vb ⊂Va, then
Vb cannot be a basic set, a contradiction. On the other hand, if Vb =Va, then we
contradict the supposition that Va �=Vb. �
Theorem 4 ([61]) If a vertex a∈V is contained in a basis B in a directed graph
D= (V, A), then Va is a basic set.

Proof Assume that a vertex a∈V is contained in a basis. Suppose, to the contrary,
that Va is not a basic set. Then there must exist a vertex b∈V not contained in
Va such that Va is a proper subset of Vb. Therefore, there must be a directed path
from b to a. But if this is the case, then b does not belong to the basis B, since by
property (ii) there can be no directed path between two vertices in a basis. Therefore,
there must be a directed path from a vertex c of B to b, where c�=a, for otherwise
b would belong to Va. The directed paths from c to b and from b to a imply, by
Theorem 1, that there exists a directed path from c to a, contradicting property (ii)
in the definition of a basis. �
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Theorem 5 ([61]) Every basis B in a digraph D= (V, A) consists of one source
from each basic set.

Proof By Theorem 4, every vertex of a basis B is a source of a basic set. In addition,
two distinct vertices in B are never sources of the same basic set, since by property
(ii) there can be no directed path between two vertices in B. It only remains to
show that every basic set has a source in B. Suppose there exists a basic set Va

with source a such that a �∈ B. By the definition of basis, there is a vertex b ∈ B

such that there is a directed path from b to a. But b is the source of a basic set
Vb, and so the basic set Va is a proper subset of the basic set Vb, contradicting
Theorem 2. �
Corollary 6 ([61]) Every basis of a digraph D has the same cardinality, which
equals the number of source vertices in D.

Proof By Theorem 5, since every basis has one source from each basic set, every
basis has a cardinality equal to the number of basic sets in D. �

In his book, König pointed out that if every edge of a digraph D is symmetric,
and the digraph D is basically an undirected graph, then the number of basic sets
equals the number of components. König then defined a basis of the second kind as
follows.

Definition 6 A basis of the second kind in a directed graph D= (V, A) is a set B⊂V
satisfying the following two conditions:

(i) if v is a vertex in V \B, then there is an arc (u, v) from a vertex u∈B to v, and
(ii) there is no arc between two vertices in B.

Notice that by property (i) a basis of the second kind is a dominating set of D
and by (ii) a basis of the second kind is an independent set of D. König noted that
Corollary 6 is no longer true for bases of the second kind, i.e., for independent
dominating sets.

In the case where a digraph D is symmetric, König’s basis of the second kind
appears to be the first time in the literature where an independent dominating set is
defined in an undirected graph. It also, of course, defines an independent dominating
set in a digraph for the first time. To illustrate a minimum independent dominating
set in an undirected graph, König used as an example the classical problem of
covering an 8 × 8 chessboard with the minimum number of queens. The Queen’s
graph consists of 64 vertices (one for each square on the chessboard), where two
vertices/squares are adjacent if and only if a queen placed on one square can occupy
the second square in 1 move. Thus, two vertices are adjacent if and only if they are
in the same row, column, or diagonal. The minimum number of queens needed to
cover the chessboard (the domination number of the Queen’s graph) is 5. König’s
example of five queens, placed at the locations shown in Figure 2, covers the board
with the added constraint that no two queens can attack each other, that is, this
placement of these five queens represents a minimum independent dominating set
of the Queen’s graph.
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Fig. 2 Minimum
independent dominating set
of queens

An independent dominating set of a digraph is also called a solution in the
literature. In the context of games, a solution is defined by Von Neumann and
Morgenstern in their now classic book [92]. We formally state the definition of
a solution in terms of digraphs and give notation for a minimum independent
dominating set.

Definition 7 A solution in a digraph D is an independent dominating set of D. The
solution number of D, denoted i+(D), equals the minimum cardinality of a solution
in D, that is, i+(D) = αmin(D).

Richardson [79] showed that every digraph with no odd cycles has at least one
solution.

2.2 Kernels in Digraphs

In 1958, Berge [6] defined an in-dominating set, which he called an absorbant set.
Although he called the in-domination number the absorption number and denoted
it by β(D), we shall continue with the terminology in-domination and denote the
in-domination number as γ −(D), as defined in Section 1.2.

Definition 8 A kernel in a digraph D is an independent, in-dominating (absorbant)
set of D. The kernel number of D equals the minimum cardinality of a kernel in D
and is denoted i−(D).

The topic of kernels in digraphs has its roots in game theory and was introduced
by Von Neumann and Morgenstern in 1944 [92]. Kernel applications have grown
from n-person games and Nim-type games to more recent applications in artificial
intelligence, combinatorics, and coding theory.
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Fig. 3 A graph with a
solution but no kernel

We note that not every digraph has a kernel; for example, a directed cycle �C5
does not. Neither does �C5 have a solution. The graph in Figure 3 has a solution,
consisting of the three vertices of indegree zero, but it has no kernel.

For digraphs with kernels, Berge [6] proved the following.

Theorem 7 ([6]) If S is a kernel, then S is both a maximal independent set and a
minimal in-dominating set.

Proof Let S⊆V be a kernel in a digraph D= (V, A). Since S is an in-dominating
set, for each vertex u∈V \ S, there is an arc (u, v) ∈A where v∈ S. Hence, S∪{u} is
not an independent set, and so, S is a maximal independent set. Similarly, if u∈ S,
then S \{u} is not an in-dominating set since S is an independent set, and therefore
there is no arc (u, v) for any v∈ S \{u}. Thus, S is a minimal in-dominating set. �

Since not all digraphs have kernels, a natural question to ask is: What structural
properties of digraphs imply the existence of a kernel? The existence of a kernel in a
given digraph has been studied in many papers, including [5, 25, 26, 41, 79]. Berge
[7] gave a necessary and sufficient condition for a vertex set to be a kernel in terms
of its characteristic function. Recall that the characteristic function φS:V →{0, 1}
of a set S is defined as: φS(x) = 1 if x∈ S and φS(x) = 0 if x �∈S. We will assume that
if a vertex x has no out-neighbors, then max{φS(y) | y ∈ N+(x)} = 0.

Theorem 8 ([7]) A set S⊆V is a kernel of a digraph D= (V, A) if and only if for
every x∈V , φS(x) = 1 − max{φS(y) | y ∈ N+(x)}.
Proof Let S be a kernel in a digraph D, and assume that φS is the characteristic
function defined on it. If x∈ S, then φS(x) = 1. Since S is an independent set, no
out-neighbor of x is in S. Thus, max{φS(y) | y ∈ N+(x)} = 0, and therefore,
φS(x) = 1 = 1 − max{φS(y) | y ∈ N+(x)}.

If x �∈S, then φS(x) = 0. Since S is an in-dominating set, it follows that there must
be a vertex v∈ S and an arc (x, v) ∈A. Thus, max{φS(y) | y ∈ N+(x)} = 1, and
therefore, φS(x) = 0 = 1 − max{φS(y) | y ∈ N+(x)}.

Conversely, let S be a set for which, for every x∈V , φS(x) = 1 − max{φS(y) |
y ∈ N+(x)}. If x∈ S, then φS(x) = 1. Thus, since φS(x) = 1 − max{φS(y) | y ∈
N+(x)}, it must follow that max{φS(y) | y ∈ N+(x)} = 0, but this means that
no out-neighbor of x is in S. If an in-neighbor of x, say y, is in S, then x is an out-
neighbor of y, and therefore, φS(y) = 1. But max{φS(x) | x ∈ N+(y)} = 1, and so,
1 − max{φS(x) | x ∈ N+(y)} = 0, a contradiction. Therefore, S is an independent
set.
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Similarly, if x �∈S, then φS(x) = 0. But since, for every x∈V , φS(x) = 1 −
max{φS(y) | y ∈ N+(x)}, this must mean that max{φS(y) | y ∈ N+(x)} = 1.
Hence, at least one neighbor of x, say y, is in S. Therefore, S is an in-dominating set.
�

As early as 1936, König [61] proved the following result. A digraph D= (V, A)
is called transitive if whenever (u, v) ∈A and (v, w) ∈A, then (u, w) ∈A.

Theorem 9 ([61]) If D= (V, A) is a transitive digraph, then every minimal in-
dominating set has the same cardinality. Furthermore, a set S⊆V is a kernel if
and only if S is a minimal in-dominating set.

Corollary 10 Every transitive digraph has a kernel, and all of its kernels have the
same cardinality.

In 1990 De la Vega [29] showed that although not all digraphs have kernels,
probabilistically speaking, almost all digraphs do. Let D(n, p) = (V, A) denote a
random digraph of order n where for every u, v∈V , the arc (u, v) is chosen with
probability p.

Theorem 11 ([29]) For any probability p, where 0 ≤ p≤ 1, the probability that the
random digraph D(n, p) has a kernel goes to 1 as n→∞.

Algorithms for determining all the kernels of a digraph D have been presented
by Rudeanu [81] in 1966 and Roy [80] in 1970.

Many of the existence results for kernels are proved under an even stronger
condition that the digraph is kernel-perfect. A digraph D is said to be kernel-
perfect if D has a kernel and every induced subdigraph of D has a kernel. Meyniel
conjectured that if every circuit of a digraph D has at least two chords, then D is
kernel-perfect. Although Galeana-Sánchez [39] proved this conjecture to be false,
the searching for a proof motivated results on sufficient conditions for the existence
of a kernel in a digraph. The proof we present of the following result of Von
Neumann and Morgenstern [92] is due to Berge [7].

Theorem 12 ([92]) Every digraph D without directed cycles is kernel-perfect and
has a unique kernel.

Proof Given a digraph D having no directed cycles, define the set S0 as the
collection of sinks of D, and for each k≥ 1, define Sk as the set of all vertices u
such that a longest (directed) path from u to a vertex in S0 has length k. Thus,

S0 = {v ∈ V | N+(v) = ∅}.
S1 = {v ∈ V | N+(v) ⊆ S0}.
S2 = {v ∈ V | N+(v) ⊆ (S0 ∪ S1)}.

And in general, Sk = {v∈V | N+(v) ⊆ (S0 ∪ S1 ∪ . . . ∪ Sk−1)}.
Since D contains no directed cycles, the sets Sk form a partition of V (D). One

can then define a characteristic function φS(x) = 1 − max{φS(y) | y ∈ N+(x)}
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iteratively, starting with the vertices u∈ S0 for each of which φS(u) = 1, and then
each vertex in S1 receives the value 0. After this, a vertex x can be assigned a value
φS(x) only after all of the vertices in N+(x) have been assigned a value, at which
point the value of max{φS(y) | y ∈ N+(x)} can be determined. By Theorem 8,
S= {v∈V | φS(v) = 1} is a kernel of D.

Since every subdigraph of D is acyclic, it follows that D is kernel-perfect.
Moreover, the set S0 of sinks is nonempty and unique, and so by definition, Sk is
unique for each k≥ 1. The uniqueness of S follows from the fact that any kernel of
D must contain S0, and hence the vertices of Sk ∩ S. �

We next mention classical results due to Richardson [79] and Duchet [25].

Theorem 13 ([79]) Every digraph D without odd directed cycles is kernel-perfect.

Theorem 14 ([25]) If every circuit in a digraph D has at least one symmetric arc,
then D is kernel-perfect.

Recall that a kernel in a digraph D is an independent set S such that every vertex
not in S dominates some vertex in S, where as usual by “dominates” we mean “out-
dominates,” that is, a vertex u dominates a vertex v if there is an arc (u, v) from u to
v. We next define a semi-kernel in a digraph. Recall that the distance dD(u, v) from
a vertex u to a vertex v in a digraph D is the shortest directed path from u to v. We
note that dD(u, v) may be very different from dD(v, u).

Definition 9 A set S of vertices in a digraph D is a semi-kernel if S is an independent
set and every vertex not in S either dominates some vertex in S or dominates a vertex
which in turn dominates some vertex in S. Thus, S is a semi-kernel in D if S is an
independent set and for every vertex v∈V (D) \ S, there is a vertex u∈ S such that
dD(v, u) ≤ 2.

As observed earlier, not all digraphs have kernels. However, every digraph has a
semi-kernel. This result is attributed to Chvátal and Lovász [24]. However, in this
paper they proved Theorem 16, which we state shortly. It is not clear if Theorem 16
immediately implies Theorem 15. The proof of the following result is due to Bondy
[11].

Theorem 15 ([11]) Every digraph has a semi-kernel.

Proof Let D be a digraph and let H be a maximal induced acyclic subdigraph of
D. By Theorem 12, the acyclic digraph H has a (unique) kernel. Let S be the kernel
of H. We claim that S is a semi-kernel of D. Since S is a kernel of H, every vertex
of H − S dominates some vertex of S. Let v be an arbitrary vertex outside H, and so
v∈V (D) \V (H). By our choice of H, there is a directed cycle C in the subdigraph
of D induced by V (H) ∪{v}. The vertex v therefore dominates its successor v+ on C.
Since v+ ∈V (H), either v+ ∈ S, in which case v dominates a vertex of S, or v+�∈S, in
which v+ dominates a vertex of S and therefore v dominates a vertex which in turn
dominates some vertex of S. Thus, S is a semi-kernel of D. �
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Definition 10 For any integer k≥ 2, a set S of vertices in a digraph D is a k-
dominating set if S is an independent set and every vertex not in S can be reached
from a vertex of S by a directed path of length at most k, that is, for every vertex
v∈V (D) \ S, there is a vertex u∈ S such that d(u, v) ≤ k.

We note that a 1-dominating set of a digraph D is an independent, (out-)
dominating set of D. For k≥ 1, every k-dominating set is a (k+ 1)-dominating set.
In particular, every 1-dominating set is a 2-dominating set. Not every digraph has a
1-dominating set; for example, �C5 does not. In 1974 Chvátal and Lovász [24] proved
that every digraph has a 2-dominating set.

Theorem 16 ([24]) Every digraph has a 2-dominating set.

Proof We proceed by induction on the order n of a digraph D. For n= 1 or n= 2, the
result is immediate. Let n≥ 3 and assume that every digraph of order less than n has
a 2-dominating set. Let w be an arbitrary vertex of D. If V (D) = N+

D(w), then the
set {w} is a 1-dominating set and therefore also a 2-dominating set. Hence, we may
assume that V (D) �= N+

D(w). Let D′ be the subdigraph of D induced by the set of
vertices at distance at least 2 from w in D. Thus, V (D′) = {v∈V (D) | dD(w, v) ≥ 2}.
Further, (x, y) ∈A(D′) if and only if x, y∈V (D′) and (x, y) ∈A(D). Applying the
inductive hypothesis, the digraph D′ contains a 2-dominating set S′. Suppose firstly
that there is an arc from u to w for some vertex u∈ S′. Therefore, dD(u, w) = 1, and
every vertex in N+

D(w) is reachable from u by a directed path of length at most 2,
that is, dD(u, x) ≤ 2 for every vertex x ∈ N+

D [w]. In this case, let S= S′. Suppose
secondly that there is no arc from a vertex in S′ to the vertex w, and so dD(u, w) ≥ 2
for all vertices u∈ S′. In this case, we let S= S′∪{w}. In both cases, the set S is a
2-dominating set of D. �

As observed earlier, not every digraph has a 1-dominating set. In 1996 Jacob and
Meyniel [59] proved that a digraph with no 1-dominating set contains at least three
2-dominating sets.

Theorem 17 ([59]) Every digraph with no 1-dominating set contains at least three
2-dominating sets.

Kernels have relations to Grundy functions in digraphs. We conclude this
subsection with some results relating the two.

Definition 11 A non-negative function g:V → [n]0 from the vertex set V of a
digraph D to the integers [n]0 is called a Grundy function if for every vertex u∈V,
g(u) is the smallest non-negative integer not belonging to {g(v) | v∈N+(u)}. It
follows, therefore, that if g is a Grundy function, then the following hold.

(1) g(u) = k implies that for each 0 ≤ j< k, there is a vertex v∈N+(u) with g(v) = j.
(2) g(u) = k implies that for every v∈N+(u), g(v) �=g(u).

Proposition 18 ([7]) If a digraph D has a Grundy function, then D has a kernel.
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Proof Let g:V → [n]0 be a Grundy function on a digraph D= (V, A), and let
S= {u∈V | g(u) = 0}. From condition (2) in Definition 11, we know that g(u) = 0
implies that for every v∈N+(u), g(v) �=g(u) = 0, and therefore, S is an independent
set.

If a vertex v�∈S, then g(v) = k > 0. From condition (1) in Definition 11, we know
that g(u) = k > 0 implies that for each j< k, there is a vertex u∈N+(u) with g(u) = j,
and in particular there is a vertex w∈N+(u) with g(w) = 0. Thus, S is an in-
dominating set. Therefore, S is a kernel. �

While it can be verified that if a graph has a kernel, it need not have a Grundy
function, the following interesting connection to kernel-perfect digraphs was shown
by Berge [7].

Theorem 19 ([7]) Every kernel-perfect digraph has a Grundy function.

Proof Let D=D0 be a kernel-perfect digraph, and let S0 be a kernel of D0. It
follows from the definition of a kernel-perfect digraph that the digraph D1 =D0 − S0
is a kernel-perfect digraph. Therefore, let S1 be a kernel of D1. Let D2 =D1 − S1 and
let S2 be a kernel in D2. In general for k≥ 1, let Sk be a kernel of the subdigraph
Dk. The resulting sets S0, S1, . . . , Sk form a partition of V (D). Define a function
g:V → [k]0 by g(u) = j if and only if u∈ Sj. It follows that g is a Grundy function of
D.

If g(u) = j, then vertex u is a vertex in every digraph D0, D1, . . . , Dj−1. And
S0, S1, . . . , Sj−1 are in-dominating sets of these digraphs, respectively. Therefore,
for each i< j, there is a vertex w∈ Si where w∈N+(u). Thus, condition (1) of a
Grundy function (see Definition 11) is satisfied. If g(u) = j, then u∈ Sj, which is an
in-dominating set of the digraph Dj. This means that the set Sj is an independent set.
Therefore, if g(u) = j, then each v∈N+(u) satisfies g(v) �=j. Therefore, every kernel-
perfect digraph D has a Grundy function g. �

Fraenkel [36] has determined that deciding whether a finite digraph D has a
kernel or a Grundy function is NP-complete, even when restricted to cyclic planar
digraphs with od(x) ≤ 2, id(x) ≤ 2, and od(x) + id(x) ≤ 3, and these bounds are best
possible, since decreasing any of them results in a decision problem that can be
solved in polynomial time. The proof of this theorem uses a simple transformation
from 3-Satisfiability.

3 Bounds on In, Out, and Twin Domination Numbers

In this section, we present bounds on the domination, in-domination, and twin
domination numbers of digraphs.
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3.1 (Out)-Domination

We begin with some well-known results of Ore [75] on dominating sets of graphs.

Theorem 20 ([75]) If G is a graph having no isolated vertices, then the complement
V \ S of any minimal dominating set S is a dominating set of G.

Corollary 21 The vertices of any graph G having no isolated vertices can be
partitioned into two dominating sets.

Corollary 22 For any graph G of order n having no isolated vertices, γ (G) ≤ 1
2n.

Fu was interested in possible analogs of these results of Ore for digraphs. For
example, can the vertices of a digraph D without isolated vertices be partitioned
into two (directed) dominating sets? Fu [38] obtained the following results on
dominating sets of directed graphs.

Theorem 23 ([38]) A dominating set S in a digraph D is a minimal dominating set
if for each u∈ S, there is no arc (u, v) for any vertex v∈ S.

Proof Assume that S is a dominating set of a digraph D having the property that for
no two vertices u, v∈ S, (u, v) ∈A, that is, S is an independent set. Then it follows
that for every u∈ S, S \{u} is a not a dominating set since there is no vertex in S \{u}
that dominates vertex u. Thus, S is a minimal dominating set of D. �

As observed by Fu [38], in order that a digraph D has a dominating set S such that
its complement V \ S is also a dominating set, it is necessary and sufficient that each
vertex u∈ S is dominated by a vertex in V \ S and each vertex in V \ S is dominated
by a vertex in S. Moreover, in order that a digraph D has a dominating set S whose
complement V \ S is an in-dominating set, it is necessary and sufficient that each
vertex in S dominates at least one vertex in V \ S.

Fu defined a digraph D to be cyclic or strongly connected if every pair of vertices
are contained in a directed cycle.

Theorem 24 ([38]) A strongly connected digraph D has a dominating set S whose
complement S = V \ S is also a dominating set if and only if D contains a directed
cycle of even length.

Proof For the necessity part, assume that D has a dominating set S whose
complement S = V \ S is also a dominating set. Assume that no vertices are
colored. Select an arbitrary vertex u∈ S. Color it blue. Since the complement S

is a dominating set, there must be a vertex v ∈ S and an arc (v, u). Color vertex
v red. Since S is a dominating set, there are a vertex w∈ S and an arc (w, v). If
w= u, then we have found a directed cycle of length 2. If w�=u, color vertex w
blue. There must be a vertex z ∈ S which dominates w. If z has been previously
colored, we have found a directed cycle beginning and ending in S and therefore
having even length. If z has not been colored, color it red. Continuing in this way,
all vertices encountered will either be in S and colored blue or in S and colored red.
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Sooner or later we will have to encounter a previously colored vertex and hence
have constructed a directed cycle of even length.

To prove the sufficiency, we assume that there is a directed cycle of even length,
and we need only show that there is a way to assign the vertices of D either to S
or S, in such a way that both sets are dominating sets. We begin with any directed
cycle C0 of even length and alternately assign its vertices to S and S. Thus, all of
the vertices on C0 are assigned to a dominating set of C0. If this includes all vertices
of D, then the theorem is proved. Thus, we may assume that there is an unassigned
vertex, say w. Since D is strongly connected, w and u are on a directed cycle for any
vertex u on C0. We may then find a directed path from u to w and continue until a
vertex is encountered which has already been assigned. The vertices on this directed
path can be alternately assigned to either S or S. This directed path may end with
two consecutive vertices assigned to the same set, but each vertex thus encountered
is always dominated by the vertex which precedes it on the directed path. Since w is
an arbitrary unassigned vertex, every vertex of D can be assigned to one of S and S.
�
Corollary 25 ([38]) A strongly connected digraph D has a dominating set S whose
complement S is also a dominating set, and furthermore both S and S are in-
dominating sets if and only if every vertex of V is in some directed cycle of even
length.

Corollary 26 ([38]) In order that a strongly connected digraph D has a dominating
set S whose complement S is an in-dominating set, it is sufficient that D contains a
directed cycle of even length.

Corollary 27 ([38]) If D is a strongly connected digraph of order n having a cycle
of even length, then γ (D) ≤ 1

2n.

We observe that if D is a Hamiltonian digraph of order n, then γ (D) ≤ ⌈
n
2

⌉
. In

1998 Lee [63] improved the result of Corollary 27 as follows.

Theorem 28 ([63]) If D is a strongly connected digraph of order n, then 1 ≤
γ (D) ≤ ⌈

n
2

⌉
.

In order to prove Theorem 28, Lee [63] proved that if D is a directed tree of
order n that contains a vertex u such that every vertex in D is reachable from u,
that is, for every v in D different from u, there is a directed path from u to v, then
1 ≤ γ (D) ≤ ⌈

n
2

⌉
. The proof of this result given in [63] is algorithmic in nature and

finds a dominating set S in such a directed tree D satisfying 1 ≤ |S| ≤ ⌈
n
2

⌉
. From

this result, we can readily deduce Theorem 28, noting that a strongly connected
digraph has as a subdigraph a directed spanning tree with the desired property.

Lee [62] proved the following upper bound on the domination number of a
digraph D in terms of its order and the minimum indegree δ−(D).

Theorem 29 ([62]) If D is a digraph of order n with δ−(D) = δ−≥ 1, then
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γ (D) ≤
(

δ− + 1

2δ− + 1

)
n.

As a consequence of Theorem 29, we have the following upper bound on the
domination number of a digraph in which every vertex has indegree at least 1.

Corollary 30 ([62]) If D is a digraph of order n with δ−(D) ≥ 1, then γ (D) ≤ 2
3n.

Using standard probabilistic arguments, Lee [62] established the following upper
bound on the domination of a digraph.

Theorem 31 ([62]) If D is a digraph of order n with δ−(D) = δ−≥ 1, then

γ (D) ≤
⎛

⎝1 −
(

1

1 + δ−

) 1
δ− +

(
1

1 + δ−

) 1+δ−
δ−

⎞

⎠ n.

We remark that when the minimum indegree δ−(D) is small, namely, δ−(D) ∈{1,
2}, then the upper bound given by Theorem 29 is better than that given by Theorem
31.

As before, let D(n, p) = (V, A) denote a random digraph of order n where for
every u, v∈V , the arc (u, v) is chosen with probability p. Let Q be a property of
digraphs. If A is the set of digraphs of order n with property Q and the probability
Pr(A) of A has limit 1 as n→∞, then we say almost all digraphs have property Q or
a random digraph has property Q almost surely. Lee [62] established the following
result for random digraphs.

Theorem 32 ([62]) For a fixed p with 0 < p< 1, a random digraph D∈D(n, p)
satisfies

γ (D) = �k∗� + 1 or γ (D) = �k∗� + 2

almost surely, where k∗ = log n − 2 log log n + log log e and where log denotes the
logarithm with base 1/(1 − p).

Ghoshal, Laskar, and Pillone [43] determined lower and upper bounds on the
domination number of a digraph in terms of its order and maximum outdegree.

Theorem 33 ([43]) If D is a digraph of order n, then

n

1 + �+(D)
≤ γ (D) ≤ n − �+(D).

Proof Let x∈V be any vertex having maximum outdegree in D, that is, od(x) =
�+(D). Let S=V \N+(x). It follows that S is an out-dominating set. Thus,
γ (D) ≤|S| = n− �+(D). This establishes the upper bound. To prove the lower
bound, let S⊆V be a minimum dominating set of D, that is, γ +(D) = |S|.
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Every vertex in S dominates at most �+(D) vertices outside S, implying that
n−|S| = |V \ S|≤|S|· �+(D), and so γ +(D) = |S|≥ 1/(1 + �+(D)). �

Hao and Qian [52] strengthened the lower bound of Theorem 33. The Slater
number sl(D) of a digraph D is the smallest integer t such that adding t to the sum
of the first t terms of the non-increasing outdegree sequence of D is at least as large
as the order of D.

Theorem 34 ([52]) If D is a digraph of order n, then

n

1 + �+(D)
≤ sl(D) ≤ γ (D).

Moreover, the authors [52] showed that the difference between sl(D) and⌈
n

1+�+(D)

⌉
can be arbitrarily large.

3.2 In-Domination

We turn our attention to bounds on the in-domination number of a digraph and give
the following classical 1973 results due to Berge [7].

Proposition 35 ([7]) If D is a digraph of order n and size m, then γ −(D) ≥ n−m.

Proof Let S⊆V be a minimum in-dominating set, that is, γ −(D) = |S|. Since for
every vertex w∈V \ S, there exist a vertex v∈ S and an arc (w, v), it follows that
n−|S| = |V \ S|≤m, and so γ −(D) = |S|≥ n−m. �
Proposition 36 ([7]) For any digraph D of order n having maximum indegree
Δ−(D),

⌈
n

1 + �−(D)

⌉
≤ γ −(D) ≤ n − �−(D).

Proof Let x∈V be any vertex having maximum indegree in D, that is, id(x) =
�−(D). Let S=V \N−(x). It follows that S is an in-dominating set. Thus,
γ −(D) ≤|S| = n− �−(D). This establishes the upper bound. To prove the lower
bound, let S⊆V be a minimum in-dominating set of D, that is, γ −(D) = |S|.
Every vertex in S is dominated by at most �−(D) vertices outside S, implying that
n−|S| = |V \ S|≤|S|· �−(D), and so γ −(D) = |S|≥ 1/(1 + �−(D)). �

We note that both bounds of Proposition 36 are sharp for a digraph of order n
having �−(D) = n− 1.
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3.3 Domination and In-Domination

In 1999 Chartrand, Harary, and Yue [19] proved the following upper bound on the
sum of the domination number and the in-domination number of a digraph. Recall
that �C3 denotes the directed cycle on three vertices and an endvertex is a vertex of
degree 1.

Theorem 37 ([19]) If D is a digraph of order n with δ−(D) ≥ 1 and δ+(D) ≥ 1, then

γ (D) + γ −(D) ≤ 4

3
n.

Further, equality holds if and only if D = �C3, or if every vertex of D is an endvertex
or is adjacent to exactly one endvertex and adjacent from exactly one endvertex.

In 2015 Hao and Qian [51] improved the upper bound of Theorem 37 as follows.

Theorem 38 ([51]) Let D be a digraph of order n with δ−(D) ≥ 1 and δ+(D) ≥ 1.
If 2k+ 1 is the length of a shortest odd circuit of D, then

γ (D) + γ −(D) ≤
(

2k + 2

2k − 1

)
n.

As a consequence of Theorem 38, we have the following result.

Corollary 39 ([51]) If D is a digraph of order n with δ−(D) ≥ 1 and δ+(D) ≥ 1 with
no odd directed cycle, then γ (D) + γ −(D) ≤ n.

3.4 Twin Domination

In this section, we present results on the twin domination number of a digraph. We
first present the following key lemma. Recall that for r≥ 1 an integer, a graph G is
r-degenerate if every induced subgraph of G has minimum degree at most r. When
we say that digraph D is minimal with respect to some property P , we mean arc-
minimal, that is, removing any arc from D destroys property P .

Lemma 40 If a digraph D is minimal with respect to the property of every vertex
of D having indegree and outdegree at least k, then the underlying graph is 2k-
degenerate.

Proof Let D be a digraph that is minimal with respect to the property P that
every vertex of D has indegree and outdegree at least k. Let G be the underlying
(undirected) graph of D. We show that G is 2k-degenerate. Suppose, to the contrary,
that there is a set V ′ of vertices such that the subgraph, say G′, of G induced by
the set V ′ has minimum degree at least 2k+ 1. Let D′ be the subdigraph of D
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Fig. 4 A digraph D with
γ ±(D) = 2

3 n

induced by the set V ′, and so G′ is the underlying graph of the digraph D′. Each
vertex v∈V ′ has an excess of in- or out-arcs in D′, noting that dG′(v) ≥ 2k + 1.
Suppose there is an arc av whose removal from D′ destroys the property of v having
indegree and outdegree at least k. If odD′(v) ≥ k + 1, then av is an arc into v
and in this case idD′(v) = k. If idD′(v) ≥ k + 1, then av is an arc out of v and
in this case odD′(v) = k. Thus, the number of arcs incident to v whose removal
from D′ destroys property P is either zero or k. Hence, there are at most k|V ′| arcs
in D whose removal destroys property P . But every arc removal from D′ destroys
property P for some vertex of D′, implying that there are at most k|V ′| arcs in
D′. This in turn implies that every vertex has indegree and outdegree exactly k
in D′, and therefore G′ is a (2k)-regular graph, contradicting the supposition that
δ(G′) ≥ 2k+ 1. �

In 2003 Chartrand, Dankelmann, Schultz, and Swart [20] established the follow-
ing upper bound on the twin domination number of a digraph. We present here a
simple proof of this result, using the key Lemma 40. Our proof is based on the fact
that a k-degenerate graph has chromatic number at most k+ 1, as shown by Szekeres
and Wilf [88] in 1968. Recall that a vertex and an edge cover each other in a graph
G if they are incident in G. A vertex cover in G is a set of vertices that covers all the
edges of G. The vertex cover number β(G) (also denoted by τ (G) or vc(G) in the
literature) is the minimum cardinality of a vertex cover in G.

Theorem 41 ([20]) If D is a digraph of order n with δ−(D) ≥ 1 and δ+(D) ≥ 1, then
γ ±(D) ≤ 2

3n.

Proof We may assume the digraph D is minimal with respect to this property of
δ−(D) ≥ 1 and δ+(D) ≥ 1, since adding arcs cannot increase the twin domination
number. With this assumption, the underlying graph G of D is 2-degenerate by
Lemma 40 and hence 3-colorable. Thus, the independence number of G is at least
n/3, which means that the vertex cover number of G is at most 2n/3. But a vertex
cover of G is a twin dominating set in D since δ−(D) ≥ 1 and δ+(D) ≥ 1. Thus,
γ ±(D) ≤ 2

3n. �
The simplest example of a digraph achieving equality in the upper bound of

Theorem 41 is �C3. As a further small example, the digraph D shown in Figure 4
has order n= 6 and satisfies γ ±(D) = 4 = 2

3n, where the darkened vertices form a
twin dominating set of D of cardinality 4.
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In 2013 Arumugam, Ebadi, and Sathikala [4] gave the following upper bound on
the twin domination number.

Theorem 42 ([4]) If D is a digraph of order n and 
(D) is the length of a longest

directed path in D, then γ ±(D) ≤ n −
⌊


(D)
2

⌋
.

The bound of Theorem 42 is attained, for example, by directed paths and also
by any digraph D obtained from a directed path Pk: u1, u2, . . . , uk by adding a new
vertex u′

i and arc (u′
i , ui) for each ui for i∈ [k].

3.5 Reverse Domination

The digraph obtained from a digraph D by reversing all the arcs of D is called
the reverse digraph (also called the converse in the literature) of D, denoted D−.
We note that γ (D) = γ −(D−) for every digraph D. Thus by Theorem 37, if D is a
digraph of order n with δ−(D) ≥ 1 and δ+(D) ≥ 1, then γ (D) + γ (D−) ≤ 4

3n.
For r≥ 1, let Dr be the class of r-regular strongly connected digraphs. We note

that the only 1-regular strongly connected digraphs are the directed cycles, and so
D1 = { �Cn | n ≥ 3}. Since a directed cycle is isomorphic to its reverse, if D ∈ D1,
then γ (D−) − γ (D) = 0. For r≥ 2, the difference γ (D−) − γ (D) can be arbitrarily
large in the class Dr , as shown by Gyürki [45] in the case when r= 2 and by Niepel
and Knor [73] for all r≥ 3. However, for a fixed r≥ 2, it remains an open problem to
determine the greatest ratio γ (D−)/γ (D) of an r-regular strongly connected digraph.
The best known results to date are the following.

Theorem 43 ([45]) For digraph D ∈ D2, sup
D∈D2

γ (D−)

γ (D)
≥ 4

3
.

Theorem 44 ([45, 73]) For r≥ 3, we have sup
D∈Dr

γ (D−)

γ (D)
≥ 7

6
.

4 Domination in Digraph Products

Vizing’s conjecture [90] asserts that the domination number of the Cartesian product
of two graphs is at least as large as the Cartesian product of their domination
numbers. This conjecture was first stated in 1963 as a problem in [89] and later
in 1968 formally posed as a conjecture in [90]. It is considered by many to be the
main open problem in the area of domination in graphs. It is natural then that the
study of domination in digraphs considers results for Cartesian products of digraphs.

The Cartesian product of two digraphs G= (V (G), A(G)) and H = (V (H), A(H)),
denoted by G�H , is the digraph with vertex set V (G) ×V (H), and there exists an
arc ((u1, v1), (u2, v2)) ∈ A(G�H) if and only if either (u1, u2) ∈A(G) and v1 = v2
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or (v1, v2) ∈A(H) and u1 = u2. Much of the work on Cartesian products in digraphs
considers directed cycles.

In 2009 Shaheen [84] and in 2010 Liu, Zhang, Chen, and Meng [64, 93]
independently determined the domination number of �Cm � �Cn for m≤ 6 and
arbitrary n≥ 2.

Theorem 45 ([64, 84, 93]) For n≥ 2, the following hold.

(a) γ ( �C2 � �Cn) = n.
(b) γ ( �C3 � �Cn) = n if n≡ 0 (mod 3); otherwise, γ ( �C3 � �Cn) = n + 1.

(c) γ ( �C4 � �Cn) = 3
2n if n≡ 0 (mod 8); otherwise, γ ( �C4 � �Cn) = n +

⌈
n+1

2

⌉
.

(d) γ ( �C5 � �Cn) = 2n.
(e) γ ( �C6 � �Cn) = 2n + 2.

Zhang et al. [93] also determined γ ( �Cm � �Cn) when both m and n are divisible
by 3.

Theorem 46 ([93]) If m≡ 0 (mod 3) and n≡ 0 (mod 3), then γ ( �Cm � �Cn) = 1
3mn.

In 2013, Mollard [71] determined the exact values of γ (Cm�Cn) for m congruent
to 2 modulo 3, with the exception of one subcase.

Theorem 47 ([71]) If m, n≥ 2, m≡ 2 (mod 3), k= �m/3�, and 
 = �n/3�, then

γ ( �Cm � �Cn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n(k + 1) if n = 3


n(k + 1) if n = 3
 + 1 and 2
 ≥ k

n(k + 1) if n = 3
 + 2 and n ≥ m

m(
 + 1) if n = 3
 + 2 and n ≤ m.

Furthermore, γ ( �Cm � �Cn) if n= 3
 + 1 and 2
 < k.

Zhang et al. [93] conjectured that if k≥ 2 where k = �m
3 �, then γ ( �Cm � �Cn) =

k(n+1) for n�≡0 (mod 3), but Mollard [71] disproved this conjecture by showing that
it doesn’t always hold when n≡ 1 (mod 3). For example, they noted that γ ( �C3k �

�C4) = γ ( �C4� �C3k) = 3k+
⌈

3k+1
2

⌉
when k �≡0 (mod 8), while the conjecture claims

that γ ( �C4 � �C3k) = 5k. These values are different for k≥ 3.
Mollard [71] also established the following bounds.

Theorem 48 ([71]) If m, n≥ 2 and k = �m
3 �, then

γ ( �Cm � �Cn) ≥

⎧
⎪⎪⎨

⎪⎪⎩

nk if m ≡ 0 (mod 3)

nk + n
2 if m ≡ 1 (mod 3)

nk + n if m ≡ 2 (mod 3).



408 T. W. Haynes et al.

In 2013 Shao, Zhu, and Lang [86] determined upper and lower bounds on γ ( �Cm��Cn) for the case when m is congruent to 1 modulo 3.

Theorem 49 ([86]) If k≥ 1 and n≥ 3 are integers, then

⌈
(2k + 1)n

2

⌉
≤ γ ( �C3k+1 � �Cn) ≤

⌈
(2k + 1)n

2

⌉
+ k.

Based on the bounds of Theorem 49, Shao et al. [86] determined the exact values
of γ ( �Cm � �Cn) for m∈{7, 10}.

We conclude this section by noting that Liu, Zhang, and Meng [65] investigated
domination numbers of Cartesian products of directed paths in 2011, and Ma and
Liu [67] studied the twin domination number of the Cartesian products of directed
cycles in 2016. For domination and twin domination in other types of digraph
products, see [15, 66, 68, 69, 74].

5 Domination in Oriented Graphs

Recall that an oriented graph D is a digraph that can be obtained from a graph G by
assigning a direction to (i.e., orienting) each edge of G. The resulting digraph D is
called an orientation of G. Thus, if D is an oriented graph, then for every pair u and v
of distinct vertices of D, at most one of (u, v) and (v, u) is an arc of D. For example, a
tournament is an oriented complete graph. Recall also that the independence number
of a directed graph D is denoted by α(D). As before, unless otherwise stated, we
refer to an out-dominating set in a digraph simply as a dominating set.

5.1 Oriented Graphs

In 1996 Chartrand, Vanderjagt, and Yue [18] studied domination in oriented graphs.
They defined the lower orientable domination number of a graph G, which they
denoted as dom(G) (denoted by γ d(G) in [17]), to equal the minimum domination
number over all orientations of G. Further, they defined the upper orientable
domination number, or simply the orientable domination number, of a graph G,
which they denoted as DOM(G) (denoted by �d(G) in [17]), as the maximum
domination number over all orientations of G. Thus,

dom(G) = min{γ (D) | over all orientations D of G}
DOM(G) = max{γ (D) | over all orientations D of G}.

The orientable domination number of a complete graph was first studied by Erdős
in 1963 [28], albeit in disguised form. In 1962, Schütte [28] raised the question of
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given any positive integer k > 0, does there exist a tournament Tn(k) on n(k) vertices
in which for any set S of k vertices, there is a vertex u that dominates all vertices
in S. Erdős [28] showed, by probabilistic arguments, that such a tournament Tn(k)
does exist, for every positive integer k. The proof of the following bounds on the
orientable domination number of a complete graph is along identical lines to that
presented by Erdős [28]. This result can also be found in [78]. Here, log is to the
base 2.

Theorem 50 ([28]) For n≥ 2, log n − 2 log(log n) ≤ DOM(Kn) ≤ log(n + 1).

This notion of orientable domination in a complete graph was subsequently
extended to orientable domination of all graphs by Chartrand et al. [18]. They
proved the following result.

Theorem 51 ([18]) For every graph G, dom(G) = γ (G).

In view of Theorem 51, it is not interesting to ask about the lower orientable
domination number, dom(G), of a graph G since this is precisely its domination
number, which is very well studied. We therefore focus our attention on the (upper)
orientable domination number of a graph. Chartrand et al. [18] determined DOM(G)
for special classes of graphs, including paths, cycles, complete bipartite graphs, and
regular complete tripartite graphs. They also proved the following result.

Theorem 52 ([18]) For every graph G and for every integer c with
dom(G) ≤ c≤DOM(G), there exists an orientation D of G such that γ (D) = c.

In 2010 Blidia and Ould-Rabah [8] continued the study of domination in oriented
graphs. For an oriented graph D, let α′(D) denote the matching number of D and
let s(D) denote the number of support vertices in the underlying graph of D. The
authors in [8] proved the following result. In fact, they proved a slightly stronger
result involving the irredundance number of an oriented graph (which we do not
define here).

Theorem 53 ([8]) If D is an oriented graph of order n, then s(D) ≤ γ (D) ≤ n
− α′(D).

Blidia and Ould-Rabah [8] characterized the oriented trees T satisfy-
ing γ (T) − α′(T) and the oriented graphs D satisfying γ (D) = s(D) and
s(D) = n− α′(D).

In 2011 Caro and Henning [16] also studied domination in oriented graphs.
In this paper, they proved a Greedy Partition Lemma, which they used to present
an upper bound on the orientable domination number of a graph in terms of its
independence number. To state their result, let α ≥ 1 be an integer and let Gα be the
class of all graphs G with α ≥ α(G).

Theorem 54 ([16]) For α ≥ 1 an integer, if G ∈ Gα has order n≥α, then

DOM(G) ≤ α
(

1 + 2 ln
(n

α

))
.
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The next result follows as a consequence of Theorem 54, where χ (G) denotes
the chromatic number of G and dav(G) denotes the average degree in G.

Corollary 55 ([16]) If G is a graph of order n, then the following hold.

(a) DOM(G) ≤ α(G) (1 + 2 ln (χ(G))).
(b) DOM(G) ≤ α(G) (1 + 2 ln (dav(G) + 1)).

For any integer d≥ 1, let Fd be the class of all graphs G whose complement is
a d-degenerate graph. The property of being d-degenerate is a hereditary property
that is closed under induced subgraphs, as is the property of the complement of a
graph being d-degenerate. Applying their Greedy Partition Lemma for domination
in oriented graphs, the authors in [16] proved the following result.

Theorem 56 ([16]) For any integer d≥ 1, if G ∈ Fd has order n, then

DOM(G) ≤ 2d + 1 + 2 ln

(
n − 2d + 1

2

)
.

The following upper bound on the orientable domination number of a K1,m-free
graph is established in [16], where a graph is F-free if it does not contain F as an
induced subgraph.

Theorem 57 ([16]) For m≥ 3, if G is a K1,m-free graph of order n with δ(G) = δ,
then

DOM(G) < 2(m − 1)n ln

(
δ + m − 1

δ + m − 1

)
.

Let Gn denote the family of all graphs of order n. We define

NGmin(n) = min{DOM(G) + DOM(G)}
NGmax(n) = max{DOM(G) + DOM(G)}

where the minimum and maximum are taken over all graphs G ∈ Gn. The following
Nordhaus-Gaddum-type bounds for the orientable domination of a graph were
established in [16].

Theorem 58 ([16]) The following hold.

(a) c1 log n ≤ NGmin(n) ≤ c2(log n)2 for some constants c1 and c2.
(b) n + log n − 2 log(log n) ≤ NGmax(n) ≤ n + �n

2 �.

Caro and Henning continued their study of the orientable domination number in
[17]. They defined the maximum average degree in a graph G, denoted by mad(G),
as the maximum of the average degrees taken over all subgraphs H of G, that is,

mad(G) = max
H⊂G

{
2|E(H)|
|V (H)|

}
.
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Theorem 59 ([17]) If G is a graph of order n, then the following hold.

(a) DOM(G) ≥ α(G) ≥ γ (G).
(b) DOM(G) ≥ n/χ (G).
(c) DOM(G) ≥�(diam(G) + 1)/2)�.
(d) DOM(G) ≥ n/(�mad(G)/2� + 1).

Proof We present here only a proof of part (a). Let I be a maximum independent
set in G, and let D be the digraph obtained from G by orienting all arcs from I to
V \ I and orienting all arcs in G[V \ I], if any, arbitrarily. Every dominating set of D
contains the set I, and so γ (D) ≥|I|. However, the set I itself is a dominating set of
D, and so γ (D) ≤|I|. Consequently, DOM(G) ≥ γ (D) = |I| =α(G) ≥ γ (G). �

As remarked in [17], since mad(G) ≤ �(G) for every graph G, as an immediate
consequence of Theorem 59(d), we have that DOM(G) ≥ n/(��(G)/2� + 1). The
following lemma is useful when establishing upper bounds on the orientable
domination number of a graph.

Lemma 60 ([17]) Let G= (V, E) be a graph and let V1, V2, . . . , Vk be subsets of
V , not necessarily disjoint, such that ∪k

i=1Vi = V . If Gi =G[Vi] for i∈ [k], then

DOM(G) ≤
k∑

i=1

DOM(Gi).

Proof Consider an arbitrary orientation D of G. Let Di be the orientation of the
edges of Gi induced by D, and let Si be a γ -set of Di for each i∈ [k]. By Theorem
59(a), DOM(Gi) ≥ γ (Di) = |Si| for each i∈ [k]. Since the set S = ∪k

i=1Si is a
dominating set of D, we have that

γ (D) ≤ |S| ≤
k∑

i=1

|Si | ≤
k∑

i=1

DOM(Gi).

Since this is true for every orientation D of G, the desired upper bound of DOM(G)
follows. �

As a consequence of Lemma 60, the authors in [17] proved the following upper
bounds on the orientable domination number of a graph.

Theorem 61 ([17]) If G is a graph of order n, then the following hold.

(a) DOM(G) ≤ n−α′(G).
(b) If G has a perfect matching, then DOM(G) ≤ n/2.
(c) DOM(G) ≤ n with equality if and only if G = Kn.
(d) If G has minimum degree δ and n≥ 2δ, then DOM(G) ≤ n− δ.
(e) DOM(G) = n− 1 if and only if every component of G is a K1-component, except

for one component which is either a star or a complete graph K3.
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Proof We present here only a proof of part (a). Let M= {u1v1, u2v2, . . . , utvt} be
a maximum matching in G, and so t= α′(G). Let Vi = {ui, vi} for i∈ [t]. If n> 2t, let
(Vt+1, . . . , Vn−2t) be a partition of the remaining vertices of G into n− 2t subsets
each consisting of a single vertex. By Lemma 60,

DOM(G) ≤
n−t∑

i=1

DOM(Gi) = t + (n − 2t) = n − t = n − α′(G). �

Applying results on the size of a maximum matching in a regular graph
established in [57], we have the following consequence of Theorem 61(a).

Theorem 62 ([17]) For r≥ 2, if G is a connected r-regular graph of order n, then

DOM(G) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max

{(
r2 + 2r

r2 + r + 2

)
× n

2
,
n + 1

2

}
if r is even

(r3 + r2 − 6r + 2) n + 2r − 2

2(r3 − 3r)
if r is odd.

The orientable domination number of a bipartite graph is precisely its inde-
pendence number. Recall that König [60] and Egerváry [27] showed that if G is
a bipartite graph, then α′(G) = β(G). Hence by Gallai’s Theorem [42], if G is a
bipartite graph of order n, then α(G) + α′(G) = n.

Theorem 63 ([17]) If G is a bipartite graph, then DOM(G) = α(G).

Proof Since G is a bipartite graph, we have that n− α′(G) = α(G). Thus, by The-
orem 59(a) and Theorem 61(a), we have that α(G) ≤DOM(G) ≤ n− α′(G) = α(G).
Consequently, we must have equality throughout this inequality chain. In particular,
DOM(G) = α(G). �

In 2018 Harutyunyan, Le, Newman, and Thomassé [53] observed that in general
there is no upper bound on the orientable domination number of a graph solely
in terms of its independence number. Nevertheless, they showed that these two
quantities can be related.

Theorem 64 ([53]) If G is a graph of order n, then DOM(G) ≤ α(G) · log n.

Theorem 64 implies that when the independence number of an oriented graph is
sufficiently large, it is possible to bound the orientable domination number of the
graph purely in terms of its independence number.

Theorem 65 ([53]) If D is a graph of order n and α(G) ≥ log n, then
DOM(D) ≤ (α(D))2.
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Harutyunyan et al. [53] concluded their paper with the following conjecture.

Conjecture 1 There exists an integer k such that for any �C3-free oriented graph D
with α(D) = α, we have γ (D) ≤ αk.

The following result establishes an upper bound on the orientable domination
number of a graph in terms of its independence number and chromatic number.

Theorem 66 ([17]) If G is a graph of order n, then the following hold.

(a) DOM(G) ≤ α(G) ·�χ (G)/2�.
(b) DOM(G) ≤ n−�χ (G)/2�.
(c) DOM(G) ≤ (n+ α(G))/2.

The following result establishes an upper bound on the orientable domination of
a graph in terms of the chromatic number of its complement.

Theorem 67 ([17]) If G is a graph of order n, then

DOM(G) ≤ χ(G) · log

(⌈
n

χ(G)

⌉
+ 1

)
.

As a consequence of Theorem 67, we have the following result on the orientable
domination number of a graph with sufficiently large minimum degree.

Theorem 68 ([17]) If G is a graph of order n with minimum degree
δ(G) ≥ (k− 1)n/k where k divides n, then DOM(G) ≤ n

k
log(k + 1).

Let Mop(n) = max{DOM(G)}, where the maximum is taken over all maximal
outerplanar graphs of order n.

Theorem 69 ([17]) For maximal outerplanar graphs of order n, Mop(n) = �n
2 �.

5.2 Tournaments

Since a tournament is an oriented complete graph, many applications interpret a
tournament as a competition graph. That is, a tournament on n vertices represents
a competition between n teams (each represented by a vertex) in which the teams
play each other once. No ties are allowed, and there is an arc from a vertex u to
a vertex v if and only if u defeats v. The score of a vertex v is its outdegree (the
number of teams it defeats). Hence, a dominating set S of a tournament represents a
collection of teams such that every team not in S is defeated by at least one team in S.
Tournaments are popular, in part, because of this pairwise comparison and ranking
of competitors.

The following result is attributed by Moon to Erdős (cf. Moon [72] p. 28). As
before, unless otherwise stated, log is to the base 2.

Theorem 70 (Erdős) If T is a tournament with n≥ 2 vertices, then γ (T ) ≤ �log n�.
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Proof The sum of the outdegrees of the vertices in a tournament T = (V, A) of order
n is the number of arcs in T, that is,

∑

u∈V

odT (u) = 1

2
n(n − 1).

Thus, there must be a vertex x∈V with odT (x) ≥ � 1
2 (n − 1)�. We remove this

vertex x and all out-neighbors of x, thereby removing at least half the vertices. We
now repeat this process on the remaining tournament, which has at most � 1

2 (n− 1)�
vertices, by again selecting a vertex which dominates at least half of the remaining
vertices and then deleting this second vertex and all of its out-neighbors. Repeating
this process will produce a dominating set with no more than �log n� vertices. �

A random tournament is obtained by orienting the edges of a complete graph
randomly, independently, with equal probabilities. Let Tn be the probability space
consisting of the random tournaments on n vertices. In 1997 Bollobás and Szabó [9]
showed that the domination number of a random tournament is one of two values,
where log is to the base 2. We remark that this result was obtained by Lee [62] in
1994.

Theorem 71 ([9, 62]) A random tournament T∈ Tn has domination number �k�+1
or �k� + 2, where k = log(n) − 2 log(log(n)) + log(log(e)).

By Theorem 71, there are tournaments having arbitrarily large domination
numbers. This leads to the question: Which tournaments have bounded domination
number (not dependent on the order n of the tournament)? To partially answer this
question, we first define a k-majority tournament.

Definition 12 As usual, by a linear order in a tournament, we mean with respect
to the transitive orientation of the tournament. A tournament T is a k-majority
tournament if there are 2k− 1 linear orders of V (T) such that for all distinct vertices
u and v in T, if u is adjacent to v, then u is before v in at least k of the 2k− 1 orders.
Let F(k) be the supremum of the size of a minimum dominating set in a k-majority
tournament, where the supremum is taken over all k-majority tournaments, with no
restriction on their size.

Trivially, F(1) = 1. In 2006 Alon, Brightwell, Kierstead, Kostochka, and Winkler
[2] proved that F(2) = 3. To do this, they first showed that every 2-majority
tournament has a dominating set of size at most 3, that is, F(2) ≤ 3. We omit their
proof.

To show that F(2) ≥ 3, Alon et al. [2] provided the following example. Recall that
if there is an integer x with 0 < x < p such that x2 ≡ q (mod p), then q is a quadratic
residue modulo p. In practice, it suffices to restrict the range of x to 0 < x≤�p/2�
because of the symmetry (p − x)2 ≡ x2 (mod p). For example, the quadratic residues
modulo 7 are given by 1, 2, 4 since 11 ≡ 1 (mod 7), 22 ≡ 4 (mod 7), and 32 ≡ 2 (mod
7). Let T be the quadratic residue tournament whose vertices are the elements of the
finite field GF(7) in which i→ j if and only if i− j is a quadratic residue modulo 7,
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Fig. 5 A 2-majority
tournament T′ with γ (T′) = 3

0

1

2

3

45

6

i.e., (i− j) mod 7 ∈{1, 2, 4}. Since the edges of T are preserved under translation, it
suffices for us to consider the subtournament T′ of T with vertex set {0, 1, . . . , 6} as
illustrated in Figure 5.

No two vertices dominate T′, while the set {0, 1, 2}, for example, is a dominating
set of T′, and so γ (T′) = 3. Further, T′ is a 2-majority tournament realized by the
orders P1, P2, and P3, where

P1 : 0 < 1 < 2 < 3 < 4 < 5 < 6,

P2 : 4 < 6 < 1 < 3 < 5 < 0 < 2,

P3 : 5 < 2 < 6 < 3 < 0 < 4 < 1.

Thus, T′ is a 2-majority tournament satisfying γ (T′) = 3. As observed earlier,
the edges of T are preserved under translation, implying that T is a 2-majority
tournament satisfying γ (T) = 3. This example shows that F(2) ≥ 3. As observed
earlier, F(2) ≤ 3. Consequently, F(2) = 3. We state this result formally as follows.

Theorem 72 ([2]) For 2-majority tournaments, F(2) = 3.

The value of F(k) has yet to be determined for any value of k≥ 3. The following
nontrivial result shows that F(3) ≥ 4.

Theorem 73 ([2]) There exists a 3-majority tournament T with γ (T) = 4, that is,
F(3) ≥ 4.

As observed earlier, there are tournaments having arbitrarily large domination
numbers. Kierstead and Trotter (see [2] for a discussion) conjectured that this is not
the case for k-majority tournaments for some fixed k. Alon et al. [2] proved this
conjecture and showed that F(k) is finite for each fixed k.

Theorem 74 ([2]) For an arbitrary fixed integer k≥ 1, if T is a k-majority
tournament, then

γ (T ) ≤ 20(2 + o(1))k log(k(2 log 2)) ≤ (80 + o(1))k log(k).
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We remark that their paper was the first to introduce the idea of using the VC
dimension to study domination in tournaments, where the VC dimension (Vapnik-
Chervonenkis dimension) of a hypergraph H is the largest cardinality of a vertex
subset X shattered by H, that is, for any Y ⊆X, the hypergraph H has an edge A such
that A∩X =Y . The upper bound in the following theorem follows as a consequence
of Theorem 74.

Theorem 75 ([2]) For an arbitrary fixed integer k≥ 1,

(
1

5
+ o(1)

)
k

log k
≤ F(k) ≤ (80 + o(1))k log(k).

A tournament is k-transitive if its edge set can be partitioned into k sets each of
which is transitively oriented. András Gyárfás made the conjecture that k-transitive
tournaments have bounded domination number, and this was explored in 2014 by
Pálvölgyi and Gyárfás [76].

Conjecture 2 (Gyárfás) For each positive integer k, there exists a (least) p(k) such
that every k-transitive tournament has a dominating set of at most p(k) vertices.

We proceed further with the following definitions.

Definition 13 A class C of tournaments has bounded domination if there exists a
constant c such that every tournament in C has domination number at most c. If S and
T are tournaments, then T is called S-free if no subtournament of T is isomorphic
to S. A tournament S is a rebel if the class of all S-free tournaments has bounded
domination.

In 2018 Chudnovsky, Ringi, Chun-Hung, Seymour, and Thomassé [23] investi-
gated the following conjecture posed by HeHui Wu.

Conjecture 3 (HeHui Wu) Every tournament is a rebel.

Chudnovsky et al. [23] disproved Conjecture 3. For this purpose, they defined
the notion of a poset tournament.

Definition 14 A tournament T is a poset tournament if its vertex set can be ordered
{v1, . . . , vn} such that for all 1 ≤ i< j< k≤ n, if vj is adjacent from vi and adjacent
to vk, then vi is adjacent to vk; that is, the “forward” edges under this linear order
form the comparability graph of a partial order.

Chudnovsky et al. [23] observed that not every tournament is a poset tournament.
Thereafter, they proved the following result, hence disproving Conjecture 3.

Theorem 76 ([23]) Every rebel is a poset tournament.

However, it remains an open problem to determine if every poset tournament is a
rebel. Since Wu’s Conjecture, that every tournament is a rebel, is false, it naturally
raises the question: Which tournaments are rebels? Theorem 76 provides a partial



Domination in Digraphs 417

Fig. 6 The non-2-colorable
tournament T∗

v

T1 T2

answer to this question. To further answer this question, we need the definition of a
coloring of a tournament.

Definition 15 A k-coloring of a tournament T is a partition of V (T) into k transitive
sets, or, equivalently, into k acyclic sets. A tournament T with a k-coloring is called
k-colorable.

Chudnovsky et al. [23] proved that Conjecture 3 is true for 2-colorable tourna-
ments. Their proof followed from a direct application of VC dimension.

Theorem 77 ([23]) All 2-colorable tournaments are rebels.

A breakthrough in their paper [23] is that Chudnovsky et al. overcame the
unboundedness of the VC dimension by showing that large shattered sets in a
hypergraph are sparse, which turns out to be enough to carry over the proof of
Theorem 76. This enabled them to give a non-2-colorable tournament T∗ on seven
vertices that satisfies Conjecture 3. Such a tournament T∗ is constructed from a
cyclic triangle by substituting a copy of a cyclic triangle for two of the three vertices
of an original cyclic triangle. A sketch of the tournament T∗ is given in Figure 6,
where the arrow from v to the cyclic triangle T1 indicates that all three arcs from v
to T1 are arcs out of v while the arrow from the cyclic triangle T2 to v indicates that
all three arcs from T2 to v are arcs into v. Further, the arc from T1 to T2 indicates
that every vertex in T1 is adjacent to every vertex in T2.

Theorem 78 ([23]) The non-2-colorable tournament T∗ is a rebel.

Thus, Theorem 78 gives a counterexample to the converse of Theorem 77, that
all rebels are 2-colorable. As a consequence of Theorem 78, the following result
is proven, where the odd girth of a tournament T is the smallest k for which there
exists a subtournament of T with k vertices that is not 2-colorable (and is undefined
if T is 2-colorable).

Theorem 79 ([23]) For k≥ 8, the class of tournaments with odd girth at least k has
bounded domination.

We close this section on domination in tournaments, with a brief discussion on
what we define next as a domination graph of a digraph.

Definition 16 Two vertices x and y dominate an oriented graph D= (V, A) if the
set {x, y} is a dominating set of D, that is, every vertex z different from x and y is
adjacent from at least one of x and y, and so (x, z) ∈A or (y, z) ∈A. The domination
graph of an oriented graph D is the graph G with V (G) =V (D) and with an edge
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between two vertices x and y if x and y dominate T, that is, if every other vertex loses
to at least one of x and y.

Domination graphs were introduced and studied by Fisher et al. [30–35] and [21,
22], who largely considered the domination graphs of tournaments. In particular,
Fisher et al. showed that the domination graph of a tournament is either an odd
cycle with or without isolated and/or pendant vertices or a forest of caterpillars.
They also showed that any graph consisting of an odd cycle with or without isolated
and/or pendant vertices is the domination graph of some tournament.

6 Total Domination in Digraphs

There are several possibilities for defining the counterpart of a total dominating set
in a digraph D. We consider four such versions in the following subsections.

6.1 Total Domination: Version 1

In this version of total domination, we define a set S in a digraph D to be a total
in-dominating set if S is an in-dominating set in D with the added property that
the subdigraph induced by S has no isolated vertices. Here we define the total in-
domination number γ −

t i (D) of a digraph D to equal the minimum cardinality of
such a set S according to Version 1. We note that if the underlying graph of D has
no isolated vertices, then V (D) is vacuously a total in-domination set of D, and so
γ −
t i (D) is well-defined and γ −

t i (D) ≤ |V (D)|.

6.2 Total Domination: Version 2

In this version of total domination, a set S in a digraph D is a total dominating set
if S is a dominating set in D with the added property that the subdigraph induced
by S has no isolated vertices. This is a version defined by Arumugam, Jacob, and
Volkmann [3] in 2007 and Hao [49] in 2017. We define the total domination number
γ t(D) of a digraph D with no isolated vertices to equal the minimum cardinality of
such a set S according to Version 2. As with version 1 above, we note that γ t(D)
is well-defined and γ t(D) ≤|V (D)|. Arumugam et al. [3] established the following
lower bound on the total domination number of a digraph.

Theorem 80 ([3]) If D is a digraph of order n, with maximum outdegree Δ+ and
without isolated vertices, then
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γt (D) ≥
⌈

2n

2�+ + 1

⌉
.

Hao and Chen [50] improved the lower bound in Theorem 80. For this purpose,
they define the out-Slater number of a digraph D of order n as

sl+(D) = min{k : �k/2� + (d+
1 + d+

2 + · · · + d+
k ) ≥ n},

where d+
1 , d+

2 , . . . , d+
k are the first k largest outdegrees of D.

Theorem 81 ([50]) If D is a digraph of order n, with maximum outdegree Δ+ and
without isolated vertices, then

γt (D) ≥ sl+(D) ≥
⌈

2n

2�+ + 1

⌉
.

Further, the gap between the rightmost two numbers can be arbitrarily large.

The authors in [50] also determined the following lower bound on the total
domination number of an oriented tree in terms of its order and number of vertices
of outdegree 0.

Theorem 82 ([50]) If T is an oriented tree of order n≥ 2, with n0 vertices of
outdegree 0 and with non-increasing outdegree sequence d+

1 , d+
2 , . . . , d+

n , then

γt (T ) ≥ sl+(D) ≥ 2

3
(n − n0 + 1),

with equality if and only if n− n0 ≡ 2 (mod 3) and d+
k+1 ≤ 1, where k = 2

3 (n−n0 +
1).

6.3 Total Domination: Version 3

In this version of total domination, a set S in a digraph D= (V, E) is a total in-
dominating set if every vertex in V is adjacent to a vertex in S, that is, N−(S) =V .
This is equivalent to saying that S is an in-dominating set and the subdigraph induced
by S has no isolated vertices and no sources. The minimum cardinality of such a set
could be called the total absorption number, denoted γ −

t (D). We note that every
digraph D with δ−(D) ≥ 1 has a total dominating set according to this definition
since V (D) is such a set. For example, the digraph D shown in Figure 7 satisfies
γ −
t (D) = 3, where the darkened vertices form a total dominating set of D of

cardinality 3.
For a digraph D= (V, E) and for a real-valued function f : V → R, the weight of

f is w(f ) =∑
v ∈ Vf (v). Further, for S⊆V , we define f (S) =∑

v ∈ Sf (v); in particular,
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Fig. 7 A digraph D with
γ −
t (D) = 3

this means that w(f ) = f (V ). Let f :V →{0, 1} be a function which assigns to each
vertex of a graph an element of the set {0, 1}. We say f is a total dominating function
if for every v∈V , the sum of the function values under f in every out-neighborhood
of a vertex is at least 1, that is, for every vertex v∈V , we have

∑

u∈N+(v)

f (u) ≥ 1.

The total absorption number of D can be defined as

γ −
t (D) = min{w(f ) | f is a total dominating function on D}.

In order to present a lower bound on the total absorption number of a digraph,
St-Louis, Gendron, and Hertz [87] in 2012 considered the fractional version of a
total dominating set where vertices have fractional weights in the range [0, 1]. A
real-valued function f :V → [0, 1] is called a fractional total dominating function
of a digraph D if

∑
u∈N+(v) f (u) ≥ 1 for each v∈V . The minimum weight of a

fractional total dominating function of D is the fractional total domination number,
which we denote here by γ −

tf (D). Thus,

γ −
tf (D) = min {w(f ) | f is a fractional total dominating function for D}.

We remark that the fractional total domination number is readily viewed as a
linear program. Thus we can talk of minimum, rather than infimum in the above
definition. By definition, γ −

t (D) ≥ γ −
tf (D), and so the fractional version provides a

lower bound on the total absorption number of D. The girth g(D) of a digraph D is
the number of vertices of the smallest directed cycle in D. St-Louis et al. [87] posed
two conjectures, one of which is the following.

Conjecture 4 ([87]) If D is a digraph with δ+(D) ≥ 1, then γ −
tf (D) > g(D) − 1.

St-Louis et al. [87] proved that Conjecture 4 is equivalent to the 1978 Caccetta-
Häggkvist Conjecture which we state below.

Conjecture 5 ([14]) If D is a digraph of order n with δ+(D) ≥ r≥ 1, then g(D) ≤
�n

r
�.
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Fig. 8 A digraph D with
γ +
to (D) = 3

6.4 Total Domination: Version 4

In this version of total domination, a set S in a digraph D= (V, E) is a total
dominating set if every vertex in V is adjacent from a vertex in S, that is, N+(S) =V .
This is equivalent to saying that S is a dominating set and the subdigraph induced
by S has no isolated vertices and no sinks. This is a version defined by Hansen,
Lai, and Yue [47] in 1999 and by Schaudt [83] in 2012. We shall call this type of
total dominating set a total open dominating set and let γ +

to (D) equal the minimum
cardinality of a total open dominating set in a digraph D. For example, the digraph
D shown in Figure 8 satisfies γ +

to (D) = 3, where the darkened vertices form a total
open dominating set of D of cardinality 3.

In 1999 Hansen et al. [47] defined the lower orientable open domination number
dom1(G) of a graph G as the minimum total open domination number among all
orientations of G. The upper orientable total open domination number DOM1(G)
equals the maximum such total open domination number.

Theorem 83 ([47]) For a connected graph G, dom1(G) and DOM1(G) exist if and
only if G is not a tree.

Hansen et al. [47] also investigated the function DOM1(Kn). They showed this
to be a non-decreasing function and unbounded and determined specific values.
Analogous to Theorem 52, they proved the following result.

Theorem 84 ([47]) For every integer c with dom1(Kn) ≤ c≤DOM1(Kn), there
exists an orientation D of Kn such that γ +

to (D) = c.

In 2012 Schaudt [83] studied efficient total domination in digraphs, where an
efficient total dominating set of a digraph D is a total open dominating set S with the
property that for each vertex v of D, there is a unique vertex u∈ S that is adjacent to
v. Graphs that permit an orientation having such a set were studied in [83]. Further,
complexity results and characterizations were given.

6.5 Fractional Domination in Digraphs

In Section 6.3, we considered the fractional version of total domination in digraphs.
In this section, we present results on the fractional version of domination in
digraphs. Adopting our earlier notation, a real-valued function f : V → R in a
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digraph D is a dominating function if for every v∈V , the sum of the function values
under f in every closed out-neighborhood of a vertex is at least 1, that is, for every
vertex v∈V , we have

∑

u∈N+[v]
f (u) ≥ 1.

The domination number of D can be defined as

γ (D) = min{w(f ) | f is a dominating function on D}.

A real-valued function f :V → [0, 1] is called a fractional dominating function
of a digraph D if

∑
u∈N+[v] f (u) ≥ 1 for each v∈V . The minimum weight of a

fractional dominating function of D is the fractional domination number, which we
denote here by γ f (D). Thus,

γf (D) = min {w(f ) | f is a fractional dominating function for D}.

In 1982 Sands, Sauer, and Woodrow [82] (also due to Erdős) posed the following
conjecture.

Conjecture 6 ([82]) For each n, there is a (least) positive integer f (n) so that every
finite tournament whose edges are colored with n colors contains a set S of f (n)
vertices with the property that for every vertex u not in S, there is a monochromatic
directed path from u to a vertex of S.

A complete multidigraph is a directed graph in which multiple arcs and circuits
of length 2 are allowed and such that there always exists an arc between two distinct
vertices. A tournament, for example, is a complete multidigraph in the special case
when the directed graph is simple (and contains no multiple arcs or circuits of length
2). As remarked in [13], the transitive closure of each color class is a quasi-order
(i.e., a transitive digraph); hence, the Erdős-Sands-Sauer-Woodrow conjecture can
be restated as follows.

Conjecture 7 ([82]) For every k, there exists an integer f (k) such that if T is a
complete multidigraph whose arcs are the union of k quasi-orders, then γ (T) ≤ f (k).

In 2019 Bousquet, Lochet, and Thomassé [13] succeeded in proving this long-
standing 1982 Erdős-Sands-Sauer-Woodrow conjecture. The main ingredient in
their proof is that the fractional domination number of complete multidigraphs (and
therefore of tournaments) is bounded.

Theorem 85 ([13]) For every k, if T is a complete multidigraph whose arcs are the
union of k quasi-orders, then

γ (T ) = O(ln(2k) · kk+2).
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Harutyunyan, Le, Newman, and Thomassé [53] continued the study of fractional
domination in digraphs. Recall that in general there is no upper bound on the
domination number of an oriented graph solely in terms of its independence number.
However, by Theorem 64, if G is a graph of order n, then DOM(G) ≤ α(G) · log n.
In contrast to this result, Harutyunyan et al. [53] showed that for any digraph, its
fractional domination number is at most twice its independence number.

Theorem 86 ([53]) For every digraph D, we have γ f (D) ≤ 2α(D), and this bound
is sharp.

The authors in [53] presented two proofs of Theorem 86. The first proof uses
the duality of linear programming, while the second proof is by induction. To show
sharpness of the bound, given an arbitrary small real number ε > 0, for any integer
k≥ 1, they constructed a digraph D such that α(G) = k and γ f (D) > 2k− ε. Further,
they showed that almost surely a random tournament has fractional domination
number close to the upper bound of 2.

7 The Oriented Version of the Domination Game

In 2002 Alon, Balogh, Bollobás, and Szabó [1] introduced and first studied the
oriented domination game, which belongs to the growing family of competitive
optimization graph games. The oriented domination game describes a process in
which two players with conflicting goals alternately orient an edge of a graph G
until all of the edges are oriented. One player’s goal is to minimize the domination
number of the resulting oriented graph, while the other player wants to maximize it.

Formally, the oriented domination game on a graph G consists of two players,
Minimizer and Maximizer (called Dominator and Avoider in [1]), who take turns
orienting an unoriented edge of a graph G, until all edges are oriented. The goal
of Minimizer is to minimize the domination number of the resulting digraph, while
the goal of Maximizer is to maximize the domination number. The Minimizer-start
oriented domination game is the oriented domination game when Minimizer plays
first. The oriented game domination number γ og(G) of G is the minimum possible
domination number of the resulting digraph when both players play according to the
rule that on each move a player may only orient an unoriented edge. To illustrate
the game, Alon et al. [1] determined the oriented game domination number of a
complete graph.

Proposition 87 ([1]) For a complete graph Kn of order n≥ 4, we have γ og(Kn) = 2.

Proof Minimizer’s strategy is to pick two arbitrary vertices, say u and v. On each
of his turns, Minimizer orients an edge from u or v to a vertex w different from
u and v. His strategy is to orient these edges in such a way that at least one of u
and v is oriented towards w. He can always achieve his goal as follows. Whenever
Maximizer orients the edge uw from w to u, then Minimizer immediately replies
by orienting the edge vw from v to w, if it is not already oriented. Analogously,
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whenever Maximizer orients the edge vw from w to v, then Minimizer immediately
replies by orienting the edge uw from u to w, if it is not already oriented. In this
way, he ensures that the set {u, v} is a dominating set in the resulting oriented graph.
Thus, γ og(Kn) ≤ 2.

To show that γ og(Kn) ≥ 2, Maximizer adopts the following strategy. Maximizer
can clearly prevent a source in the oriented graph resulting when n= 4. In the
case when n≥ 5, there exists a collection of n edge-disjoint paths of length 2, one
centered at each of the n vertices of Kn (see [10]). Maximizer’s strategy is whenever
Minimizer orients one of these edges from a central vertex on one of these paths,
Maximizer responds by orienting the other edge of the corresponding path towards
the central vertex. In this way, Maximizer guarantees that the indegree of each
vertex in the resulting oriented graph becomes at least 1, implying that γ og(Kn) ≥ 2.
Consequently, γ og(Kn) ≥ 2. �

In [1], the authors obtained a sharp lower bound for the oriented game domination
number of trees.

Theorem 88 ([1]) If G is a tree of order n, then 1
2n ≤ γog(G) ≤ 2

3n.

The proof of Theorem 88 implies that the upper bound holds for any connected
graph G, as Minimizer can concentrate his attention on a spanning tree T of G and
play according to his strategy in the tree T. Whenever Maximizer orients an edge
not in T, Minimizer continues to orient edges according to his strategy in the tree.
As shown in [1], both bounds in Theorem 88 are sharp. For graphs with minimum
degree at least 2, the following improved upper bound was given in [1].

Theorem 89 ([1]) If G is a graph of order n with δ(G) ≥ 2, then γog(G) ≤ 1
2n.

If G is a graph of order n with maximum degree �, then a trivial lower bound on
the domination number is γ (G) ≥ n/ �. In the oriented domination game, Maximizer
orients half of the edges. As observed by Alon et al. [1], Maximizer might succeed
in decreasing the outdegree of each vertex to about �/2, in which case the resulting
domination number is at least 2n/ �. This prompted them to pose the following
conjecture.

Conjecture 8 ([1]) If G is a graph of order n with maximum degree Δ, then

γog(G) ≥
(

2

(1 + o(1))�

)
n.

Conjecture 8 has yet to be settled. The best general lower bound to date on the
oriented game domination number in terms of the maximum degree and order of the
graph is the following result in [1].

Theorem 90 ([1]) If G is a graph of order n with maximum degree Δ, then

γog(G) ≥
(

4

3� + 7

)
n.
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Nordhaus-Gaddum-type inequalities for the oriented domination game are given
in [1]. Here, G denotes the complement of a graph G.

Theorem 91 ([1]) If G is a graph of order n, then γog(G) + γog(G) ≤ n + 2, and
this bound is sharp.

We note that if G is the complete graph Kn where n≥ 4, then γog(G) = n and, by
Proposition 87, γ og(G) = 2. Thus, if G=Kn, then γog(G)+γog(G) = n+2, showing
sharpness of the bound in Theorem 91. We close this section with the following
conjecture posed in [1], that the inequality in Theorem 91 can be strengthened for
connected graphs.

Conjecture 9 ([1]) If both G and its complement G are connected graphs of order
n, then

γog(G) + γog(G) ≤ 2

3
n + 3.

8 Concluding Comments

In this chapter, we have surveyed selected results on domination in digraphs. Many
results have been omitted to prevent the chapter from growing too large. For exam-
ple, topics such as signed domination in digraphs, efficient domination in digraphs,
packing in digraphs, reinforcement numbers of digraphs, rainbow domination in
digraphs, and Roman domination in digraphs, to name a few, are omitted. Additional
references on domination in digraphs can be found in [40, 44, 48, 55, 56, 58,
70, 77, 85, 91]. Due to space limitations, we have also omitted proofs of many
important results on domination in digraphs presented in this chapter, including the
proofs of results due to Alon, Brightwell, Kierstead, Kostochka, and Winkler [2];
Chudnovsky, Ringi, Chun-Hung, Seymour, and Thomassé [23]; Harutyunyan, Le,
Newman, and Thomassé [53]; and Bousquet, Lochet, and Thomassé [13] which
have significantly impacted the latest developments in the field of domination in
digraphs and tournaments. We apologize for these omissions.

References

1. N. Alon, J. Balogh, B. Bollobás, T. Szabó, Game domination number. Discrete Math. 256,
23–33 (2002)

2. N. Alon, G. Brightwell, H.A. Kierstead, A.V. Kostochka, P. Winkler, Dominating sets in k-
majority tournaments. J. Combin. Theory Ser. B 96(3), 374–387 (2006)

3. S. Arumugam, K. Jacob, L. Volkmann, Total and connected domination in digraphs. Australas.
J. Combin. 39, 283–292 (2007)

4. S. Arumugam, K. Ebadi, L. Sathikala, Twin domination and twin irredundance in digraphs.
Appl. Anal. Discrete Math. 7, 275–284 (2013)



426 T. W. Haynes et al.

5. C. Balbuena, H. Galeana-Sánchez, M. Guevara, A sufficient condition for kernel-perfectness of
a digraph in terms of semikernel modulo F. Acta Math. Appl. Sin. 28, 340–356 (2012). English
Series

6. C. Berge, Théorie des graphes et ses applications (French), in Collection Universitaire de
Mathematiques, vol. II (Dunod, Paris, 1958), viii+277 pp.

7. C. Berge, Graphs and Hypergraphs (North Holland, New York, 1973)
8. M. Blidia, L. Ould-Rabah, Bounds on the domination number in oriented graphs. Australas. J.

Combin. 48, 231–241 (2010)
9. B. Bollobás, T. Szabó, Domination in oriented graphs. Proceedings of the Twenty-eighth

Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca
Raton, FL, 1997). Congr. Numer. 123, 55–64 (1997)

10. B. Bollobás, T. Szabó, The oriented cycle game. Discrete Math. 186, 55–67 (1998)
11. J.A. Bondy, Short proofs of classical theorems. J. Graph Theory 44, 159–165 (2003)
12. E. Boros, V. Gurvich, Perfect graphs, kernels, and cores of cooperative games. Discrete Math.

306, 2336–2354 (2006)
13. N. Bousquet, W. Lochet, S. Thomassé, A proof of the Erdős-Sands-Sauer-Woodrow conjecture.

J. Combin. Theory Ser. B 137, 316–319 (2019)
14. L. Caccetta, R. Häggkvist, On minimal digraphs with given girth. Congr. Numer. 21, 181–187

(1978)
15. H. Cai, J. Liu, L. Qian, The domination number of strong product of directed cycles. Discrete

Math. Algorithms Appl. 6(2), 1450021, 10 pp. (2014)
16. Y. Caro, M.A. Henning, A greedy partition lemma for directed domination. Discrete Optim. 8,

452–458 (2011)
17. Y. Caro, M.A. Henning, Directed domination in oriented graphs. Discrete Appl. Math. 160,

1053–1063 (2012)
18. G. Chartrand, D. Vanderjagt, B.Q. Yue, Orientable domination in graphs. Congr. Numer. 119,

51–63 (1996)
19. G. Chartrand, F. Harary, B.Q. Yue, On the out-domination and in-domination numbers of a

digraph. Discrete Math. 197/198, 179–183 (1999)
20. G. Chartrand, P. Dankelmann, M. Schultz, H.C. Swart, Twin domination in digraphs. Ars

Combin. 67, 105–114 (2003)
21. H.H. Cho, F. Doherty, S.R. Kim, J.R. Lundgren, Domination graphs of regular tournaments II.

Congr. Numer. 130, 95–111 (1998)
22. H.H. Cho, S.R. Kim, J.R. Lundgren, Domination graphs of regular tournaments. Discrete Math.

252, 57–71 (2002)
23. M. Chudnovsky, R. Kim, C.-H. Liu, P. Seymour, S. Thomassé, Domination in tournaments. J.

Combin. Theory Ser. B 130, 98–113 (2018)
24. V. Chvátal, L. Lovász, Every directed graph has a semi-kernel, in Hypergraph Seminar, ed. by

C. Berge, D.K. Ray-Chaudhuri (Springer, New York, 1974), p. 175
25. P. Duchet, Graphes Noyau-parfaits. Ann. Discrete Math. 9, 93–101 (1980)
26. P. Duchet, A sufficient condition for a digraph to be kernel-perfect. J. Graph Theory 11, 81–85

(1987)
27. E. Egerváry, On combinatorial properties of matrices. Mat. Lapok 38, 16–28 (1931)
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