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Preface

While concepts related to domination in graphs can be traced back to the mid-
1800s in connection to various chessboard problems, domination was first defined
as a graph theoretical concept in 1958. Domination in graphs has experienced rapid
growth from its introduction, resulting in over 1200 papers published on domination
in graphs by the late 1990s.

Noting the need for a comprehensive survey of the literature on domination in
graphs, in 1998 Haynes, Hedetniemi, and Slater published the first two books on
domination, Fundamentals of Domination in Graphs and Domination in Graphs:
Advanced Topics. We refer to these books as Books I and II.

The explosive growth of this field since 1998 has continued, and today more
than 4,000 papers have been published on domination in graphs, and the material in
Books I and II is now more than 20 years old. Thus, the authors feel it is time for an
update on the developments in domination theory since 1998. We also want to give
a comprehensive treatment of only the major topics in domination. This coverage
of domination, including the major results and updates, will be in the form of three
books, which we call Books III, IV, and V.

Book III, Domination in Graphs: Core Concepts, is written by the authors
and concentrates, as the title suggests, on the three main types of domination
in graphs: domination, independent domination, and total domination. It contains
major results on these basic domination numbers, including proofs of selected
results that illustrate many of the proof techniques used in domination theory.

For the companion books, Books IV and V, we invited leading researchers in
domination to contribute chapters.

Book IV concentrates on the most-studied types of domination that are not
covered in Book III. Although well over 70 types of domination have been
defined, Book IV focuses on those that have received the most attention in the
literature, and contains chapters on paired domination, connected domination,
restrained domination, multiple domination, distance domination, dominating func-
tions, fractional dominating parameters, Roman domination, rainbow domination,
locating-domination, eternal and secure domination, global domination, stratified
domination, and power domination.

v



vi Preface

The present volume, Book V, is divided into three parts. The first part focuses
on several domination-related concepts: broadcast domination, alliances, domatic
numbers, dominator colorings, irredundance in graphs, private neighbor concepts,
game domination, varieties of Roman domination, and spectral graph theory. The
second part covers domination in (i) hypergraphs, (ii) chessboards, and (iii) digraphs
and tournaments. The third part focuses on the development of algorithms and
complexity of (i) signed, minus, and majority domination, (ii) power domination,
and (iii) alliances in graphs. The third part also includes a chapter on self-stabilizing
domination algorithms.

The authors of the chapters in Book V provide a survey of known results with
a sampling of proof techniques in their areas of expertise. To avoid excessive
repetition of definitions and notation, Chapter 1 provides a glossary of commonly
used terms.

This book is intended as a reference resource for researchers and is written
to reach the following audiences: first, established researchers in the field of
domination who want an updated, comprehensive coverage of domination theory;
second, researchers in graph theory who wish to become acquainted with newer
topics in domination, along with major developments in the field and some of
the proof techniques used; and third, graduate students with interests in graph
theory, who might find the theory and many real-world applications of domination
of interest for master’s and doctoral theses topics. We also believe that Book
V provides a good focus for use in a seminar on either domination theory or
domination algorithms and complexity, including the new algorithm paradigm of
self-stabilizing domination algorithms.

We wish to thank the authors who contributed chapters to this book as well as the
reviewers of the chapters.

Johnson City, TN, USA Teresa W. Haynes
Clemson, SC, USA Stephen T. Hedetniemi
Johannesburg, South Africa Michael A. Henning
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Glossary of Common Terms

Teresa W. Haynes, Stephen T. Hedetniemi, and Michael A. Henning

1 Introduction

It is difficult to say when the study of domination in graphs began, but for the sake
of this glossary let us say that it began in 1962 with the publication of Oystein Ore’s
book Theory of Graphs [15]. In Chapter 13 Dominating Sets, Covering Sets and
Independent Sets of [15], we see for the first time the name dominating set, defined
as follows: “A subset D of V is a dominating set for G when every vertex not in D
is the endpoint of some edge from a vertex in D.” Ore then defines the domination
number, denoted δ(G), of a graph G, as “the smallest number of vertices in any
minimal dominating set.” So, at this point, and for the first time, domination has a
“name” and a “number.”

Of course, prior to this Claude Berge [3], in his book Theory of Graphs and
its Applications, which was first published in France in 1958 by Dunod, Paris,

T. W. Haynes (�)
Department of Mathematics and Statistics, East Tennessee State University, Johnson City,
TN, USA

Department of Mathematics and Applied Mathematics, University of Johannesburg,
Johannesburg, South Africa
e-mail: haynes@etsu.edu

S. T. Hedetniemi
School of Computing, Clemson University, Clemson, SC, USA
e-mail: hedet@clemson.edu

M. A. Henning
Department of Mathematics and Applied Mathematics, University of Johannesburg,
Johannesburg, South Africa
e-mail: mahenning@uj.ac.za

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
T. W. Haynes et al. (eds.), Structures of Domination in Graphs, Developments
in Mathematics 66, https://doi.org/10.1007/978-3-030-58892-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58892-2_1&domain=pdf
mailto:haynes@etsu.edu
mailto:hedet@clemson.edu
mailto:mahenning@uj.ac.za
https://doi.org/10.1007/978-3-030-58892-2_1


2 T. W. Haynes et al.

had previously defined the same concept, but had, in Chapter 4 The Fundamental
Numbers of the Theory of Graphs of [3], given it the name “the coefficient of
external stability.”

Before Berge, Dénes König, in his 1936 book Theorie der Endlichen und
Unendlichen Graphen [13], had defined essentially the same concept, but in VII
Kapitel, Basisproblem für gerichtete Graphen, König gave it the name “punktbasis,”
which we would today say is an independent dominating set.

And even before König, in the books by Dudeney in 1908 [8] and W. W. Rouse
Ball in 1905 [2], one can find the concepts of domination, independent domination,
and total domination discussed in connection with various chessboard problems.
And it was Ball who, in turn, credited such people as W. Ahrens in 1910 [1], C. F.
de Jaenisch in 1862 [7], Franz Nauck in 1850 [14], and Max Bezzel in 1848 [4] for
their contributions to these types of chessboard problems involving dominating sets
of chess pieces.

But it was Ore who gave the name domination and this name took root. Not long
thereafter, Cockayne and Hedetniemi [6] gave the notation γ (G) for the domination
number of a graph, and this also took root and is the notation adopted here.

Since the subsequent chapters in this book will deal with domination parameters,
there will be much overlap in the terminology and notation used. One purpose of
this chapter is to present definitions common to many of the chapters in order to
prevent terms being defined repeatedly and to avoid other redundancy. Also, since
graph theory terminology and notation sometimes vary, in this glossary we clarify
the terminology that will be adopted in subsequent chapters.

We proceed as follows. In Section 2.1, we present basic graph theory defi-
nitions. We discuss common types of graphs in Section 2.2. Some fundamental
graph constructions are given in Section 2.3. In Section 3.1 and Section 3.2, we
present parameters related to connectivity and distance in graphs, respectively. The
covering, packing, independence, and matching numbers are defined in Section
3.3. Finally in Section 3.4, we define selected domination-type parameters that will
occur frequently throughout the book.

For more details and terminology, the reader is referred to the two books
Fundamentals of Domination in Graphs [10] and Domination in Graphs, Advanced
Topics [11], written and edited by Haynes, Hedetniemi, and Slater and the book
Total Domination in Graphs by Henning and Yeo [12]. An annotated glossary, from
which many of the definitions in this chapter are taken, was produced by Gera,
Haynes, Hedetniemi, and Henning in 2018 [9].

2 Basic Terminology

In this section, we give basic definitions, common types of graphs, and fundamental
graph constructions.
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2.1 Basic Graph Theory Definitions

Before we proceed with our glossary of parameters, we need to define a few
basic terms, which are used in the definitions in the following subsections.
For an integer k≥ 1, we use the standard notation [k]={1, . . . , k} and
[k]0 = [k]∪{0}= {0, 1, . . . , k}.

A (finite, undirected) graph G= (V, E) consists of a finite nonempty set of
vertices V =V (G) together with a set E=E(G) of unordered pairs of distinct
vertices called edges. Each edge e={u, v} in E is denoted with any of e, uv, vu,
and {u, v}. We say that a graph G has order n= |V | and size m= |E|.

Two vertices u and v in G are adjacent if they are joined by an edge e, that is,
u and v are adjacent if e= uv∈E(G). In this case, we say that each of u and v is
incident with the edge e. Further, we say that the edge e joins the vertices u and v.
Two edges are adjacent if they have a vertex in common. Two vertices in a graph G
are independent if they are not adjacent. A set of pairwise independent vertices in
G is an independent set of G. Similarly, two edges are independent if they are not
adjacent.

A neighbor of a vertex v in G is a vertex u that is adjacent to v. The
open neighborhood of a vertex v in G is the set of neighbors of v, denoted
NG(v). Thus, NG(v)={u∈V : uv∈E}. The closed neighborhood of v is the set
NG[v]={v}∪NG(v). For a set of vertices S⊆V , the open neighborhood of S is the
set NG(S)=⋃

v ∈ SNG(v) and its closed neighborhood is the set NG[S]=NG(S)∪ S.
If the graph G is clear from the context, we omit it in the above expressions. For
example, we write N(v), N[v], N(S), and N[S] rather than NG(v), NG[v], NG(S), and
NG[S], respectively.

For a set of vertices S⊆V and a vertex v belonging to the set S, the S-private
neighborhood of v is defined by pn[v, S]={w∈V : NG[w]∩ S={v}}, while its
open S-private neighborhood is defined by pn(v, S)={w∈V : NG(w)∩ S={v}}. As
remarked in [12], the sets pn[v, S]� S and pn(v, S)� S are equivalent and we define
the S-external private neighborhood of v to be this set, abbreviated epn[v, S] or
epn(v, S). The S-internal private neighborhood of v is defined by ipn[v, S]= pn[v,
S]∩ S and its open S-internal private neighborhood is defined by ipn(v, S)= pn(v,
S)∩ S. We define an S-external private neighbor of v to be a vertex in epn(v, S) and
an S-internal private neighbor of v to be a vertex in ipn(v, S).

The degree dG(v) of a vertex v is the number of neighbors v has in G, that is,
dG(v)= |NG(v)|. Again if the graph G is clear from the context, we use d(v) rather
than dG(v). We remark that some books use deg(v) and deg v to denote the degree
of v. We leave it to the authors to choose which of these notations to adopt in their
chapters. For a subset of vertices S⊆V , the degree of v in S, denoted dS(v), is
the number of vertices in S adjacent to the vertex v; that is, dS(v)= |NG(v)∩ S|.
In particular, if S=V , then dS(v)= dG(v). The degree sequence of a graph G with
vertex set V ={v1, v2, . . . , vn} is the sequence d1, d2, . . . , dn, where di = d(vi) for
i∈ [n]. Often the degree sequence, d1, d2, . . . , dn is written in non-increasing order,
and so d1 ≥ d2 ≥· · · ≥ dn.
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An isolated vertex is a vertex of degree 0 in G. A graph is isolate-free if it does
not contain an isolated vertex. The minimum degree among the vertices of G is
denoted by δ(G) and the maximum degree by �(G). A leaf is a vertex of degree 1,
while its neighbor is a support vertex. A strong support vertex is a (support) vertex
with at least two leaf neighbors.

For subsets X and Y of vertices of G, we denote the set of edges that join a vertex
of X and a vertex of Y in G by [X, Y ].

Two graphs G and H are isomorphic, denoted G∼=H, if there exists a bijection
φ: V (G)→V (H) such that two vertices u and v are adjacent in G if and only if
the two vertices φ(u) and φ(v) are adjacent in H. A parameter of a graph G is
a numerical value (usually a non-negative integer) that can be associated with a
graph such that whenever two graphs are isomorphic, they have the same associated
parameter value.

By a partition of the vertex set V of a graph G, we mean a family π ={V1, V2,
. . . , Vk} of nonempty pairwise disjoint sets whose union equals V , that is, for all
1≤ i < j≤ k, Vi ∩Vj =∅ and

k⋃

i=1

Vi = V.

For such a partition π , we will say that π has order k.
A walk in a graph G from a vertex u to a vertex v is a finite, alternating sequence

of vertices and edges, starting with the vertex u and ending with the vertex v, in
which each edge of the sequence joins the vertex that precedes it in the sequence to
the vertex that follows it in the sequence. A trail is a walk containing no repeated
edges, and a path is a walk containing no repeated vertices. We will mainly be
concerned with paths. A path between two vertices u and v is called a (u, v)-path or
a u-v path or a u, v-path in the literature. The length of a walk equals the number of
edges in the walk. A graph G is connected if for any two vertices u and v in G, there
is a (u, v)-path.

A cycle is a path in which the first and last vertices are the same and all other
vertices are distinct. A chord of a cycle C is an edge between two nonconsecutive
vertices of C.

The distance d(u, v) between two vertices u and v, in a connected graph G,
equals the minimum length of a (u, v)-path in G. A shortest, or minimum length,
path between two vertices u and v is called a (u, v)-geodesic; a v-geodesic is any
shortest path from v to another vertex; a geodesic is any shortest path in a graph.
The diameter of G is the maximum length of a geodesic in G.

A graph G′ = (V ′, E′) is a subgraph of a graph G= (V, E) if V ′⊆V and E′⊆E.
A subgraph G′ of a graph G is called a spanning subgraph of G if V ′ =V . If G= (V,
E) and S⊆V , then the subgraph of G induced by S is the graph G[S], whose vertex
set is S and whose edges are all the edges in E both of whose vertices are in S.

Let F be an arbitrary graph. A graph G is said to be F-free if G does not contain
F as an induced subgraph.
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If G= (V, E) and S⊆V , the subgraph obtained from G by deleting all vertices
in S and all edges incident with one or two vertices in S is denoted by G− S; that is,
G− S=G[V � S]. If S={v}, we simply denote G−{v} by G− v. The contraction
of an edge e= xy in a graph G is the graph obtained from G by deleting the vertices
x and y and all edges incident to x or y and adding a new vertex and edges joining
this new vertex to all vertices that were adjacent to x or y in G.

A component of a graph is a maximal connected subgraph. An odd (even)
component is a component of odd (even) order. Let oc(G) equal the number of
odd components of G. A vertex v∈V is a cutvertex if the graph G− v has more
components than G. An edge e= uv is a bridge if the graph G− e obtained by
deleting e from G has more components than G.

2.2 Common Types of Graphs

A graph of order n= 1 is called a trivial graph, while a graph with at least two
vertices is called a nontrivial graph. A graph of size m= 0 is an empty graph, while
a graph with at least one edge is a nonempty graph. Recall that a connected graph
is a graph for which there is a path between every pair of its vertices.

A k-regular graph is a graph in which every vertex has degree k for some k≥ 0.
A regular graph is a graph that is k-regular. A 3-regular graph is also called a cubic
graph.

A graph of order n that is itself a cycle is denoted by Cn, and a graph that is itself
a path is denoted by Pn. Note that a cycle is a 2-regular graph.

A forest is an acyclic graph, that is, a graph with no cycles. A tree is a connected
acyclic graph. Equivalently, a tree is a connected graph having size one less than
its order. Hence, if T is a tree of order n and size m, then T is connected and
m= n− 1. Note that every component of a forest is a tree, and a forest in which
every component is a path is called a linear forest.

If G is a vertex disjoint union of k copies of a graph F, we write G= kF.
A complete graph is a graph in which every two vertices are adjacent. A complete

graph of order n is denoted by Kn. A triangle is a subgraph isomorphic to K3 or C3,
since K3∼=C3.

A graph G is bipartite if its vertex set can be partitioned into two independent
sets X and Y . The sets X and Y are called the partite sets of G. A complete bipartite
graph, denoted Kr,s, is a bipartite graph with partite sets X and Y , where |X| = r,
|Y | = s, and every vertex in X is adjacent to every vertex in Y . The graph Kr,s has
order r+ s, size rs, δ(Kr,s) = min{r, s} and �(Kr,s) = max{r, s}.

A star is a nontrivial tree with at most one vertex that is not a leaf. Thus, a star
is a complete bipartite graph K1,k for some k≥ 1. A claw is an induced copy of the
graph K1,3. Thus, a claw-free graph is a K1,3-free graph.

For r, s≥ 1, a double star S(r, s) is a tree with exactly two (adjacent) vertices
that are not leaves, one of which has r leaf neighbors and the other s leaf neighbors.
Equivalently, a double star is a tree having diameter equal to 3.
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A diamond is an induced copy of the graph K4 − e, which is obtained from a
copy of the complete graph of order 4 by deleting any edge e.

A graph G can be embedded on a surface S if its vertices can be placed on S and
all of its edges can be drawn between the vertices on S in such a way that no two
edges intersect. A graph G is planar if it can be embedded in the plane; a plane
graph is a graph that has been embedded in the plane.

A rooted tree T is a tree having a distinguished vertex labeled r, called the root.
Let T be a rooted tree with root r. For each vertex v, let P(v) be the unique (r, v)-path
in T. The parent of a vertex v is its neighbor on P(v), while the other neighbors of v
are called its children. The set of children of v is denoted by C(v). Note that the root
r is the only vertex of T with no parent. A descendant of v is any vertex u�=v such
that P(u) contains v, while an ancestor of v is a vertex u�=v that belongs to P(v) in T.
In particular, every child of v is a descendant of v, while the parent of v is an ancestor
of v. A grandchild of v is a descendant of v at distance 2 from v. We let D(v) denote
the set of descendants of v, and we define D[v]=D(v)∪{v}. The maximal subtree
at v, denoted Tv, is the subtree of T induced by D[v]. The depth of a vertex v in T
equals d(r, v), and the height of v, denoted ht(v), is the maximum distance from v to
a descendant of v. Thus, ht(v) = max{d(v,w) : w is a descendant of v}.

For classes of graphs not defined here, we refer the reader to the definitive
encyclopedia on graph classes, Graph Classes: A Survey [5] by Brandstädt, Le, and
Spinrad.

2.3 Graph Constructions

Given a graph G= (V, E), the complement of G is the graph G = (V ,E), where
uv ∈ E if and only if uv�∈E. Thus, the complement G of G is formed by taking the
vertex set of G and joining two vertices by an edge whenever they are not joined in
G.

By a graph product G⊗H on graphs G and H, we mean a graph whose
vertex set is the Cartesian product of the vertex sets of G and H (that is,
V (G⊗H)=V (G)×V (H)) and whose edge set is determined entirely by the
adjacency relations of G and H. Exactly how it is determined depends on what kind
of graph product we are considering.

The Cartesian product G�H of two graphs G and H is the graph with vertex
set V (G)×V (H), where two vertices (u1, v1) and (u2, v2) are adjacent if and only
if either u1 = u2 and v1v2 ∈E(H) or v1 = v2 and u1u2 ∈E(G).

The direct product (also known as the cross product, tensor product, categorical
product, and conjunction) G×H of two graphs G and H is the graph with vertex set
V (G)×V (H), where two vertices (u1, v1) and (u2, v2) are adjacent in G×H if and
only if u1u2 ∈E(G) and v1v2 ∈E(H).

Given a graph G= (V, E) and an edge uv∈E, the subdivision of edge uv consists
of (i) deleting the edge uv from E, (ii) adding a new vertex w to V , and (iii) adding
the new edges uw and wv to E. In this case, we say that the edge uv has been
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subdivided. The subdivision graph S(G) is the graph obtained from G by subdividing
every edge of G exactly once.

Given a graph G= (V, E), the line graph L(G)= (E, E(L(G))) is the graph whose
vertices correspond 1-to-1 with the edges in E, and two vertices are adjacent in L(G)
if and only if the corresponding edges in G have a vertex in common, that is, if and
only if the corresponding two edges are adjacent.

The corona G ◦K1 of a graph G, also denoted cor(G) in the literature, is the graph
obtained from G by adding, for each vertex v∈V , a new vertex v′ and the edge vv′.
The edge vv′ is called a pendant edge. The k-corona G ◦Pk of G is the graph of
order (k+ 1)|V (G)| obtained from G by attaching a path of length k to each vertex
of G so that the resulting paths are vertex-disjoint. In particular, the 2-corona G ◦P2
of G is the graph of order 3|V (G)| obtained from G by attaching a path of length 2
to each vertex of G so that the resulting paths are vertex-disjoint. The generalized
corona G ◦H is the graph obtained by adding a copy of H for each vertex v of G
and joining v to every vertex of H. Thus, a generalized corona G ◦H, where H =K1,
is the ordinary corona G ◦K1. We note that whether G ◦Pk is intended to denote a
k-corona or a generalized corona will be clear from context or specifically stated by
the author.

3 Graph Parameters

In this section, we present common graph parameters that may appear in this book.

3.1 Connectivity and Subgraph Numbers

In this subsection, we present parameters related to connectivity in graphs.

(a) blocks bl(G), number of blocks in G. A block of a graph G is a maximal
nonseparable subgraph of G, that is, a maximal subgraph having no cutvertices.

(b) bridges br(G), number of bridges in G.
(c) circumference cir(G), maximum length or order of a cycle in G.
(d) clique number ω(G), maximum order of a complete subgraph of G.
(e) components c(G), number of maximal connected subgraphs of G.
(f) A vertex cut of a connected graph G is a subset S of the vertex set of G with the

property that G− S is disconnected (has more than one component). A vertex
cut S is a k-vertex cut if |S| = k.

(g) vertex connectivity κ(G), minimum cardinality of a vertex cut of G if G is not
the complete graph, and κ(Kn)= n− 1. A graph G is k-vertex-connected (or k-
connected) if κ(G)≥ k for some integer k≥ 0. Thus, κ(G) is the smallest number
of vertices whose deletion from G produces a disconnected graph or the trivial
graph K1. A nontrivial graph has connectivity 0 if and only if it is disconnected.
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(h) An edge cut of a nontrivial connected graph G is a nonempty subset F of the
edge set of G with the property that G−F is disconnected (has more than
one component). Thus, the deletion of an edge cut from the connected graph
G results in a disconnected graph. An edge cut F is a k-edge cut if |F| = k.

(i) edge connectivity λ(G), minimum cardinality of an edge cut of G if G is
nontrivial, while λ(K1)= 0. A graph G is k-edge-connected if λ(G)≥ k for some
integer k≥ 0. Thus, λ(G) is the smallest number of edges whose deletion from
G produces a disconnected graph or the trivial graph K1. Hence, λ(G)= 0 if and
only if G is disconnected or trivial.

(j) girth of G, denoted girth(G) or g(G) in the literature, the length of a shortest
cycle in G.

3.2 Distance Numbers

This subsection contains the definitions of parameters, which are defined in terms
of the distances d(u, v) between vertices u and v in a graph.

(a) eccentricity ecc(v) = max{d(v,w) : w ∈ V (G)}.
(b) diameter diam(G), maximum distance among all pairs of vertices of G.

Equivalently, the diameter of G is the maximum length of a geodesic in G.
Thus, the diameter of G is the maximum eccentricity taken over all vertices of
G. Two vertices u and v in G for which d(u, v)= diam(G) are called antipodal
or peripheral vertices of G. A diametral path in G is a geodesic whose length
equals the diameter of G.

(c) The periphery of a graph G is the subgraph of G induced by its peripheral
vertices.

(d) radius rad(G) = min{ecc(v) : v ∈ V (G)}.
(e) The center of a graph G, denoted C(G), is the subgraph of G induced by the

vertices in G whose eccentricity equals the radius of G. A vertex v∈C(G) is
called a central vertex of G.

3.3 Covering, Packing, Independence, and Matching Numbers

As previously defined, a set S is independent if no two vertices of S are adjacent.
A set M of edges is called a matching if no two edges of M are adjacent, and a

matching of maximum cardinality is a maximum matching. Given a matching M, we
denote by V [M] the set of vertices in G incident with an edge in M. A matching M
of G is a perfect matching if V [M]=V (G). Thus, if G has a perfect matching M,
then G has even order n= 2k for some k≥ 1 and |M| = k.

A vertex and an edge are said to cover each other in a graph G if they are incident
in G. A vertex cover in G is a set of vertices that covers all the edges of G, while
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an edge cover in G is a set of edges that covers all the vertices of G. Thus, a vertex
cover in G is a set of vertices that contains at least one vertex of every edge in G.

A subset S of vertices in G is a packing if the closed neighborhoods of vertices
in S are pairwise disjoint. Equivalently, S is a packing in G if for every u, v∈ S, d(u,
v) > 2. Thus, if S is a packing in G, then |NG[v]∩ S|≤ 1 for every vertex v∈V (G). A
packing is also called a 2-packing in the literature. More generally, for k≥ 2, a set S
is a k-packing in G if for u, v∈ S, d(u, v) > k.

A subset S of vertices in G is an open packing if the open neighborhoods
of vertices in S are pairwise disjoint. Thus, if S is an open packing in G, then
|NG(v)∩ S|≤ 1 for every vertex v∈V (G).

All of the parameters in this subsection have to do with sets that are independent
or cover other sets. These include some of the most basic of all parameters in graph
theory.

(a) vertex independence numbers i(G) and α(G), minimum and maximum cardinal-
ities of a maximal independent set in G. The lower vertex independence number,
i(G), is also called the independent domination number of G, while the upper
vertex independence number, α(G), is also called the independence number of
G. (While the notation i(G) is fairly standard for the independent domination
number, we remark that the independence number is also denoted by β0(G) in
the literature.)

(b) vertex covering numbers β(G) and β+(G), minimum and maximum cardinalities
of a minimal vertex cover in G. (We remark that the vertex covering number is
also denoted by τ (G) or by α(G) in the literature.)

(c) edge covering numbers β ′(G) and β
′+(G), minimum and maximum cardinalities

of a minimal edge cover in G.
(d) k-packing numbers ρk(G), maximum cardinality of a k-packing in G for k≥ 2.

When k= 2, the k-packing number ρk(G) is called the packing number of G,
denoted by ρ(G). Thus, ρ(G) is the maximum cardinality of a packing in G.

(e) open packing numbers ρo(G), maximum cardinality of an open packing in G.
(f) matching numbers α

′−(G) and α′(G), minimum and maximum cardinalities of
a maximal matching in G. The upper matching number, α′(G), is also called the
matching number of G. Recall that a perfect matching is a matching in which
every vertex is incident with an edge of the matching. Thus, if a graph G of
order n has a perfect matching, then α′(G) = 1

2n. It should be noted that by a
well-known theorem of Gallai, that if G is a graph of order n with no isolated
vertices, then α(G)+β(G)= n=α′(G)+β ′(G). (We remark that the matching
number is also denoted by β1(G) in the literature.)

3.4 Domination Numbers

A dominating set in a graph G= (V, E) is a set S of vertices of G such that every
vertex in S = V \ S has a neighbor in S. Thus, if S is a dominating set of G, then
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NG[S]=V and every vertex in S is therefore adjacent to at least one vertex in S. For
subsets X and Y of vertices of G, if Y ⊆NG[X], then the set X dominates the set Y
in G. In particular, if X dominates V (G), then X is a dominating set of G.

The many variations of dominating sets in a graph G are based on (i) conditions
that are placed on the subgraph G[S] induced by a dominating set S, (ii) conditions
that are placed on the vertices in S, or (iii) conditions that are placed on the edges
between vertices in S and vertices in S. We mention only the major domination
numbers here.

A total dominating set, abbreviated TD-set, in a graph G with no isolated vertex is
a set S of vertices of G such that every vertex in V is adjacent to at least one vertex in
S. Thus, a subset S⊆V is a TD-set in G if NG(S)=V . Every graph without isolated
vertices has a TD-set, since S=V is such a set. If X and Y are subsets of vertices
in G, then the set X totally dominates the set Y in G if Y ⊆NG(X). In particular, if X
totally dominates V (G), then X is a TD-set in G.

A paired dominating set, abbreviated PD-set, of G is a set S of vertices of G such
that every vertex is adjacent to some vertex in S and the subgraph G[S] induced by
S contains a perfect matching M. Two vertices joined by an edge of M are said to be
paired and are also called partners in S.

A connected dominating set, abbreviated CD-set, in a graph G is a dominating
set S of vertices of G such that G[S] is connected.

(a) domination numbers γ (G) and �(G), minimum and maximum cardinalities of
a minimal dominating set in G. The parameters γ (G) and �(G) are referred to
as the domination number and upper domination number of G, respectively. A
dominating set of G of cardinality γ (G) is called a γ -set of G, while a minimal
dominating set of cardinality �(G) is called a �-set of G.

(b) independent domination number i(G), minimum cardinality of a dominating set
in G that is also independent. An independent dominating set of G of cardinality
i(G) is called an i-set of G. We note that the maximum order of a minimal
independent dominating set equals the vertex independence number α(G).

(c) total domination numbers γ t(G) and �t(G), minimum and maximum cardinali-
ties of a minimal total dominating set of G. The parameters γ t(G) and �t(G) are
referred to as the total domination number and upper total domination number
of G, respectively. A TD-set of G of cardinality γ t(G) is called a γ t-set of G,
while a minimal TD-set of cardinality �t(G) is called a �t-set of G.

(d) paired domination numbers γ pr(G) and �pr(G), minimum and maximum
cardinalities of a minimal PD-set of G. The parameters γ pr(G) and �pr(G)
are referred to as the paired domination number and upper paired domination
number of G, respectively. A PD-set of G of cardinality γ pr(G) is called a γ pr-
set of G, while a minimal PD-set of cardinality �pr(G) is called a �pr-set of G.

(e) connected domination numbers γ c(G) and �c(G), minimum and maximum
cardinalities of a minimal CD-set of G. The parameters γ c(G) and �c(G)
are referred to as the connected domination number and upper connected
domination number of G, respectively. A CD-set of G of cardinality γ c(G) is
called a γ c-set of G, while a minimal CD-set of cardinality �c(G) is called a
�c-set of G.
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1 Introduction

The concept of broadcast domination was birthed by combining the concepts of
distance and domination in graphs and applying them to modeling the problem
of positioning broadcasting radio transmitters, where each transmitter may have
a different effective radiated power. To formally define broadcast domination, we
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recall the fundamental concepts of distance and domination in graph theory. The
distance between two vertices u and v in a graph G, denoted by dG(u, v), or simply
d(u, v) if the graph G is clear from context, is the length of a shortest (u, v)-path in G.
The eccentricity eccG(v) of a vertex v in G is the maximum distance of a vertex from
v in G. The maximum eccentricity among the vertices of G is the diameter of G,
denoted by diam(G), while the minimum eccentricity among the vertices of G is the
radius of G, denoted by rad(G). A central vertex of G is a vertex whose eccentricity
equals rad(G). A tree is either central or bicentral, depending on whether it has one
or two central vertices. A diametrical path in G is a shortest path whose length is
equal to diam(G). We note that the two vertices at the end of a diametrical path have
maximum eccentricity in G.

A dominating set in a graph G is a set S of vertices of G such that every vertex
outside S is adjacent to at least one vertex in S. The domination number of G,
denoted by γ (G), is the minimum cardinality of a dominating set in G.

A neighbor of a vertex v in G is a vertex adjacent to v. The open neighborhood
of a vertex v in G, denoted by NG(v), is the set of all neighbors of v in G, while the
closed neighborhood of v is the set NG[v]=NG(v)∪{v}. We denote the degree of a
vertex v in G by dG(v)= |NG(v)|. The minimum and maximum degrees among all
vertices of G are denoted by δ(G) and �(G), respectively.

For an integer k≥ 1, the closed k-neighborhood of v in G, denoted by Nk[v;G], is
the set of all vertices within distance k from v, that is, Nk[v;G]={u : dG(u, v)≤ k}.
The open k-neighborhood of v, denoted by Nk(v;G), is the set of all vertices different
from v and at distance at most k from v in G, that is, Nk(v;G)=Nk[v;G]�{v}.

If the graph G is clear from context, we omit the subscript G. For example, we
simply write N(v), N[v], Nk(v), and Nk[v] rather than NG(v), NG[v], Nk(v;G), and
Nk[v;G], respectively. When k= 1, the set Nk[v]=N[v] and the set Nk(v)=N(v). In
what follows, for an integer k≥ 1, we use the standard notation [k]={1, . . . , k} and
[k]0 = [k]∪{0}= {0, 1, . . . , k}.

For a graph G= (V, E) with a vertex set V and an edge set E, a function
f : V →{0, 1, 2, . . . , diam(G)} is called a broadcast on G. For each vertex v in G,
the value f (v) is called the strength (or the weight) of the broadcast from v. For each
vertex u∈V , if there exists a vertex v in G (possibly, u= v) such that f (v) > 0 and
d(u, v)≤ f (v), then f is called a dominating broadcast on G. A vertex v with f (v) > 0
can be thought of as the site from which the broadcast is transmitted with strength
f (v), and such a vertex is called an f-broadcast vertex or simply a broadcast vertex
if the function f is clear from context. The ball of radius r around v is defined as
Nr[v]={u∈V : d(u, v)≤ r}. Thus, the ball Nf (v)[v] is the set of vertices that hear the
broadcast from v. Vertices u with f (u)= 0 do not broadcast. For X ⊆V , we define

f (X) =
∑

v∈X
f (v).

The cost of the dominating broadcast f is the quantity f (V ), which is the sum
of the strengths of the broadcasts over all vertices in G. The minimum cost of a
dominating broadcast is the broadcast domination number of G, denoted by γ b(G).
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Fig. 1 Three broadcast dominating functions of a graph G

An optimal broadcast is a broadcast with cost equal to γ b(G). For the graph G
shown in Figure 1, three broadcast dominating functions are illustrated in Figure
1(a), 1(b) and 1(c). The cost of f1, f2, and f3 is 4, 3, and 3, respectively. For this
graph G, we have γ b(G)= 3 and both f2 and f3 are optimal broadcasts.

Broadcast domination in graphs was first introduced and studied in 2001 by
Erwin [21, 22]. Erwin observed that if a dominating broadcast f satisfies f (v)∈{0,
1} for all v∈V , then f is the characteristic function of a dominating set and hence
has cost at most γ (G). Furthermore, he observed that a broadcast f : V →{0, 1,
. . . , diam(G)} that assigns the strength rad(G) to a central vertex of a connected
graph G and the strength 0 to all remaining vertices of G has cost f (V )= rad(G).
If G=K1, then γ b(G)= 1= γ (G), while rad(G)= 0. Hence, we assume that G�=K1
and therefore has order at least 2. Thus, the broadcast domination number of a graph
G is at most its domination number and at most its radius. We state this formally as
follows.

Observation 1. ([21, 22]) If G is a connected graph of order at least 2, then

γb(G) ≤ min{γ (G), rad(G)}.

Graphs for which the broadcast domination number is equal to the radius are
called radial. In view of Observation 1, we can replace diam(G) by rad(G) in the
definition of a dominating broadcast in a graph G. Erwin [21, 22] showed that if
the domination number or the radius of a graph is at most 3, then the broadcast
domination number is determined.

Proposition 2. ([21, 22]) If G is a connected graph of order at least 2 and k =
min{γ (G), rad(G)} where k∈ [3], then γ b(G)= k.

In 2006, Dunbar, Erwin, Haynes, Hedetniemi, and Hedetniemi [20] defined a key
concept called efficient broadcast. A dominating broadcast is efficient if no vertex
hears a broadcast from two different vertices. If f is not an efficient dominating
broadcast in a graph G= (V, E), then there exists a vertex v such that d(v, x)≤ f (x)
and d(v, y)≤ f (y), where x and y are broadcasting vertices in G. In this case, we can
reassign the value 0 to both x and y, assign the value f (w)+ f (x)+ f (y) to a vertex w
that is within distance f (y) from x and also within distance f (x) from y, and leave the
value of all other vertices unchanged under f. The cost of the new broadcast is equal
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to the cost of the original broadcast. This process can be repeated until an efficient
broadcast is found. This yields the following result.

Theorem 3. ([20]) Every graph G has an optimal dominating broadcast that is
efficient.

As first observed by Herke [31], the broadcast domination number of a connected
graph is equal to the minimum broadcast domination number among its spanning
trees.

Observation 4. ([31]) If G is a connected graph, then

γb(G) = min{γb(T ) | T is a spanning tree of G}.

2 The Dual of Broadcast Domination

Graph theoretic minimization (respectively, maximization) problems expressed as
linear programming problems have dual maximization (respectively, minimization)
problems. Much of the early work on linear programming duality problems for
domination type parameters is done by Slater. A survey of these results can be found
in the 1998 survey paper of Slater [44]. The dual concept of coverings and packings
is also well studied in graph theory. For a survey on the combinatorics underlying
set packing and set covering problems, we refer the reader to the 2001 monograph
by Cornuéjols [17].

In this section, we discuss the dual (in the sense of linear programming) of broad-
cast domination, namely multipacking. The term multipacking was first introduced
in the Master’s thesis of Teshima [47] in 2012. Here, broadcast domination was
considered as a linear programming problem, and the linear programming dual was
used to give the definition of a multipacking. A multipacking is a set S⊆V in a
graph G= (V, E) such that for every vertex v∈V and for every integer r≥ 1, the
ball of radius r around v contains at most r vertices of S, that is, there are at most
r vertices in S at distance at most r from v in G. We note that in this definition
of a multipacking, we may restrict our attention to r ∈ [diam(G)]. By our earlier
observations, we can in fact restrict the integer r to belong to the set [rad(G)]. The
multipacking number of G is the maximum cardinality of a multipacking of G and
is denoted by mp(G). We define next the multipacking number in terms of the dual
of the linear programming problem for broadcast domination.

Let G= (V, E) be a graph with V ={v1, v2, . . . , vn}. The definition of γ b(G)
leads to a 0–1 integer program, which we now describe. For each vertex vi and
integer k∈ [rad(G)], let xik be an indicator variable giving the truth value of the
statement “the strength of the broadcast f at vertex vi equals k,” that is,

xik =
{

1 if f (vi) = k

0 otherwise.
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The formulation of the primal integer program for broadcast domination is given by

Broadcast Domination γ b

Minimize
rad(G)∑

k=1

n∑

i=1
kxik ,

subject to∑

d(vi ,vj )≤k

xik ≥ 1 for all vertices vi and vj,

xik ∈{0, 1} for each vertex vi and integer k∈ [rad(G)].

Multipacking Number mp(G)

Maximize
n∑

k=1
yj ,

subject to∑

d(vi ,vj )≤k

yj ≤ k for all vertices vi and vj and integer k∈ [rad(G)],

yk ∈{0, 1} for each k∈ [n].

Since broadcast domination and multipacking are dual problems, we have the
following observation.

Observation 5. For every graph G, we have mp(G)≤ γ b(G).

The graph G shown in Figure 2 satisfies mp(G)= 3, where the darkened vertices
form a multipacking of maximum cardinality in G. As observed earlier, γ b(G)= 3,
and so for this example, we have mp(G)= γ b(G).

In 2014, Hartnell and Mynhardt [26] provided the following lower bound on the
multipacking number of a graph.

Theorem 6. ([26]) If G is a connected graph, then mp(G) ≥
⌈

1
3 (diam(G)+ 1)

⌉
.

Proof.. Let P : v0, v1, . . . , vd be a diametrical path of G, where d = diam(G). Let
Vi ={v∈V : d(v, v0)= i} for all i∈ [d], and let M ={vi : i≡ 0 (mod 3)}. We note that
|M| = � 1

3 (d + 1)�. By our choice of the set M, every vertex v∈V (P) satisfies
|Nr[v]∩M|≤ r for all integers r≥ 1. We now consider an arbitrary vertex w∈V .
We note that w∈Vj for some j∈ [d]0. Since vj ∈Vj and M ⊆V (P), we note that
Nr[w]∩M ⊆Nr[vj]∩M, implying that |Nr[w]∩M|≤ r for all integers r≥ 1. Since
w∈V is arbitrary, this implies that the set M is a multipacking in G. Thus, mp(G) ≥
|M| = � 1

3 (d + 1)� = � 1
3 (diam(G)+ 1)�. �

Fig. 2 A graph G with mp(G)= 3
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As an immediate consequence of Observation 5 and Theorem 6, we have the
following lower bound on the broadcast domination number first observed by Erwin
[21, 22].

Corollary 7. ([21, 22]) If G is a connected graph, then γb(G) ≥
⌈

1
3 (diam(G)+ 1)

⌉
.

We note that if G is a path Pn on n≥ 2 vertices, then γ (G) = � 1
3n� =

� 1
3 (diam(G) + 1)�. Hence, by Observations 1 and 5 and Theorem 6, we have that

the lower bound of Theorem 6 is tight. Furthermore, we have the following result.

Proposition 8. For every integer n≥ 2,

mp(Pn) = γb(Pn) = γ (Pn) =
⌈n

3

⌉
.

By Observation 4, for n≥ 3, we have γ b(Cn)= γ b(Pn), and so by Proposition 8,
γb(Cn) = �n

3 �. However, mp(Cn) = �n
3 � for all n≥ 3. Thus, for cycles, we have the

following result.

Proposition 9. ([47]) For every integer n≥ 3, mp(Cn)= γ b(Cn) if and only if n≡ 0
(mod 3). For n (mod 3)∈{1, 2}, we have mp(Cn)= γ b(Cn)− 1.

By Theorem 6, if G is a connected graph, then 3mp(G)≥diam(G)+ 1.
By definition, diam(G)≥rad(G). By Observation 1, rad(G)≥ γ b(G). Hence,
3mp(G)≥diam(G)+ 1≥rad(G)+ 1≥ γ b(G)+ 1, or, equivalently, γ b(G)≤
3mp(G)− 1. Hence, as a consequence of our earlier results, we have the following
upper bound on the broadcast domination number in terms of its multipacking
number.

Corollary 10. ([26]) If G is a connected graph, then γ b(G)≤ 3mp(G)− 1.

If the multipacking number of a graph G is at least 2, then Hartnell and Mynhardt
[26] improved the upper bound in Corollary 10 slightly.

Theorem 11. ([26]) If G is a connected graph with mp(G)≥ 2, then γ b(G)≤
3mp(G)− 2.

As a consequence of Corollary 10, we have the following upper bound on the
ratio γ b(G)/mp(G).

Corollary 12. ([26]) If G is a connected graph, then
γb(G)

mp(G)
< 3.

In 2012, Teshima [47] proved that the graph G shown in Figure 3 satisfies
γ b(G)= 4 and mp(G)= 2. Assigning a strength 2 to each of the two vertices of
degree 2 in G as illustrated in Figure 3, and a strength of 0 to the remaining
vertices of G produces an optimal broadcast of G. An example of a multipacking
of maximum cardinality in G is given by the set of two darkened vertices of G
illustrated in Figure 3. This example serves to show the existence of a graph G for
which the ratio γ b(G)/mp(G)= 2.
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2 2

Fig. 3 A graph G with γ b(G)= 4 and mp(G)= 2

(a) G1 (b) G2

Fig. 4 Two graphs satisfying γ b(G)= 4 and mp(G)= 2

To date, no graph G has been found satisfying γ b(G)/mp(G) > 2. Beaudou,
Brewster, and Foucaud [4] posed the following conjecture.

Conjecture 1. ([4]) If G is a connected graph, then γ b(G)≤ 2mp(G).

There are a few known examples of connected graphs G which achieve the
conjectured bound, that is, γ b(G)= 2mp(G). For example, if G is a cycle C4
or C5, then γ b(G)= 2 and mp(G)= 1, and so γ b(G)= 2mp(G). As observed
earlier, if G is the graph shown in Figure 3, then γ b(G)= 4 and mp(G)= 2, and
so γ b(G)= 2mp(G). Two additional examples of graphs G with γ b(G)= 4 and
mp(G)= 2 are the graphs G=G1 and G=G2 shown in Figure 4(a) and 4(b),
respectively. Graph G1 is attributed to C. R. Dougherty in [4, Figure 3(c)] as private
communication, while graph G2 is given in [4].

In 2014, Hartnell and Mynhardt [26] gave a construction of a graph Gk such
that γ b(Gk)−mp(Gk)= k for any given integer k≥ 1, showing that the difference
γ b −mp can be arbitrarily large. In order to explain their construction, let H be the
graph obtained from three vertex-disjoint copies F1, F2, and F3 of K2,4 as follows.
Let ui be a vertex of degree 2 in Fi for i∈ [2], and let v1 and v2 be two vertices
of degree 2 in F3. Let H be obtained from the disjoint union of F1, F2, and F3 by
joining vi to ui for i∈ [2]. Let x be a vertex of degree 2 in F1 different from u1, and
let y be a vertex of degree 2 in F2 different from u2. The graph H is illustrated in
Figure 5.

Let M be a multipacking of maximum cardinality in H. Each induced subgraph Fi

of H contains at most one vertex of M, implying that mp(H)= |M|≤ 3. By Theorem

6, mp(H) ≥
⌈

1
3 (diam(H)+ 1)

⌉
=

⌈
1
3 (8 + 1)

⌉
= 3. Consequently, mp(H)= 3.

An example of a multipacking of maximum cardinality in H is given by the set
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v1 v2u1 u2

4

x y

Fig. 5 A graph H with γ b(H)= 4 and mp(H)= 3

of three darkened vertices of H illustrated in Figure 5. By Observation 5, we have
γ b(H)≥mp(H)= 3. If γ b(H)= 3, then since rad(H)= 4, every optimal broadcast in
H must contain at least two broadcast vertices (of positive strength), one of which
therefore has strength 1 and the other strength 2. But then at least one of the vertices
x and y hears no broadcast, a contradiction. Hence, γ b(H)≥ 4. Since rad(H)= 4 and
γ (H)= 6, by Observation 1, we have γ b(H)≤ 4. Consequently, γ b(H)= 4.

We now return to the general construction given by Hartnell and Mynhardt [26].
For k= 1, let Gk =H. For k≥ 2, let H1, H2, . . . , Hk be k vertex-disjoint copies of
the graph H, where xi and yi are the vertices in Hi named x and y in H. Let Gk be
constructed from the disjoint union of the graphs H1, H2, . . . , Hk by adding the
edges yixi+1 for i∈ [k− 1]. As shown in [26], γ b(Gk)= 4k and mp(Gk)= 3k. This
yields the following result.

Theorem 13. ([26]) For every integer k≥ 1, there exists a connected graph Gk such
that γ b(Gk)= 4k and mp(Gk)= 3k. Thus, the following hold in the graph Gk.

(a) γ b(Gk)−mp(Gk)= k.
(b) γb(Gk)/mp(Gk) = 4

3 .

Recall that in Theorem 11, if G is a connected graph with mp(G)≥ 2, then
γ b(G)≤ 3mp(G)− 2. Hartnell and Mynhardt [26] asked whether the factor 3 in this
bound can be improved. In 2019, Beaudou, Brewster, and Foucaud [4] answered
their question in the affirmative, resulting in a significant improvement of this upper
bound on the broadcast domination number in terms of its multipacking number.

Theorem 14. ([4]) If G is a connected graph, then γ b(G)≤ 2mp(G)+ 3.

Hartnell and Mynhardt [26] were the first to observe that Conjecture 1 is true
when mp(G)≤ 2. The conjecture is shown in [4] to hold for all graphs with
multipacking number at most 4.

Theorem 15. ([4]) If G is a connected graph and mp(G)≤ 4, then γ b(G)≤ 2mp(G).

By Observation 5, for every graph G, we have mp(G)≤ γ b(G). In 2017,
Mynhardt and Teshima [47] proved that equality holds here for the class of trees,
thereby extending a classic result due to Meir and Moon [37] that the domination
number equals the 2-packing number for trees.

Theorem 16. ([47]) For every tree T, we have γ b(T)=mp(T).

For any integer programming problem, a natural variation of the problem
can be obtained by considering the LP relaxation. Since broadcast domination
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Fig. 6 A graph H with mpf (H)= 4 and mp(H)= 3

and multipacking can be regarded as integer programming problems, Brewster,
Mynhardt, and Teshima [11] used this idea to study fractional broadcast domination
and fractional multipacking. Here, the broadcast strength of a vertex can be a
fraction, and a vertex can be considered to be fractionally in a multipacking. For
example, we can assign 1/3 strength to all vertices in C4, for a total cost of 4/3,
resulting in a fractional dominating broadcast where each vertex hears a total
strength at least one. On the other hand, we can pack 1/3 for each vertex in C4 and it
will give a multipacking of size 4/3. We denote the fractional broadcast domination
number as γ b,f (G) and the fractional multipacking number as mpf (G). The duality
theorem of linear programming yields the result below.

Theorem 17. ([11]) If G is a connected graph, then

mp(G) ≤ mpf (G) = γb,f (G) ≤ γb(G).

The difference mpf (G)−mp(G) can be arbitrarily large. The graph H shown in
Figure 5 has fractional multipacking number at least 4 since we can pack 1/3 on
the degree 2 and 4 vertices with the exception of x and y, which are not packed.
The resulting fractional multipacking is shown in Figure 6. Thus, mpf (H)≥ 4.
As observed earlier, γ b(G)= 4, implying by Theorem 17 that mpf (H)≤ 4. Con-
sequently, mpf (H)= 4.

Using the previous construction Gk given by Hartnell and Mynhardt [26], we can
readily deduce the following result.

Theorem 18. For every integer k≥ 1, there exists a connected graph Gk such that
mpf (Gk)= 4k and mp(Gk)= 3k.

3 Broadcast Domination in Trees

Broadcasts in trees have a special structure, which was exploited in the thesis by
Herke [31] in 2007 and in the papers by Herke and Mynhardt [32] in 2009 and
Cockayne, Herke, and Mynhardt [16] in 2011. In order to determine the broadcast
domination number of a tree, the above authors introduced the concept of a shadow
tree of a tree, defined as follows.
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Suppose P : v0v1v2 . . . vd is a diametrical path in a tree T. The shadow tree is
constructed in two steps. First, consider the forest F =T −E(P) obtained from T by
deleting all edges on the path P. For each vertex vk of P, let Qk be a longest path in
F emanating from vk. Let Qk start at vk and end at the vertex bk (possibly, vk = bk).
We note, for example, that Q0 is the trivial path consisting of the vertex v0 = b0,
and Qd is the trivial path consisting of the vertex vd = bk. For example, consider the
tree T in Figure 7, where the vertices of the diametrical path P : v0v1v2 . . . vd and the
vertices b1, b4, and b5 are labeled as shown. We note that in this example, vi = bi

for i∈{0, 2, 3, 6, 7}.
In the first step of the construction of a shadow tree, we reduce the tree T to the

subtree, Treduced, of T induced by the vertices belonging to the set

V (P ) ∪ (

d−1⋃

k=1

V (Qk)).

For the tree T in Figure 7, the resulting reduced tree Treduced is shown in Figure 8.
In the second step of the construction of a shadow tree, if d(vk, bk)≥ d(vk, bi)

for some k∈ [d] and i∈ [d]�{k}, then we remove the vertices in V (Qi)�{vi} from
the tree Treduced. We repeat this process until no such indices k and i exist. The
resulting tree is a shadow tree of T, denoted by Tshadow. The shadow of vertex bk

is the set of vertices {v∈V (Tshadow) : d(vk, bk)≥ d(vk, v)}. In our example, in the

v1v0 v2 v3 v4 v5 v6 v7

b1 b4

b5

Fig. 7 A tree T

v0 v1 v2 v3 v4 v5 v6 v7

b1 b4

b5

Fig. 8 A reduced tree Treduced of T
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v0 v1 v2 v3 v4 v5 v6 v7

b1

b5

Fig. 9 A shadow tree Tshadow of T

reduced tree Treduced shown in Figure 8, we have d(v5, b5)≥ d(v5, b4). According to
the second step of our construction, we remove the vertex b4 from the tree Treduced.
The resulting shadow tree Tshadow of T is shown in Figure 9.

Herke and Mynhardt [32] showed that the broadcast domination number of a tree
equals the broadcast domination number of its shadow tree.

Theorem 19. ([32]) For a tree T and its shadow tree ST , γ b(T)= γ b(ST ).

By Theorem 19, it therefore suffices for us to consider only the shadow tree ST

of a tree T to determine the broadcast domination number of T.
Herke and Mynhardt [32] also introduced the important definitions of split-sets

and split-edges. Let T be a tree with diametrical path P. A split-set is a set of edges
on P whose removal splits T into components such that for each component Ti has
even positive diameter and Ti ∩P is a diametrical path of Ti. A split-edge is an edge
that is contained in some split-set. For example, in Figure 9, v2v3 is a split-edge. On
the other hand, the edge v3v4 is not a split edge since its removal creates a subtree
with diametrical path from b5 to v7. In general, all the edges that have two ends
in some shadow (visually in Figure 9, the only edge that is not in some shadow is
v2v3) cannot be a split-edge. Herke and Mynhardt [32] showed that the broadcast
domination number is a function of the largest size of a split-set.

Theorem 20. ([32]) If M is split-set with maximum cardinality m of a tree T, then

γb(T ) =
⌈

1

2
(diam(T )−m)

⌉

.

Recall that by Observation 1, if G is a connected graph of order at least 2, then
γ b(G)≤rad(G). Graphs G satisfying γ b(G)= rad(G) are called radial graphs, which
form an important class of graphs with respect to broadcast domination. Several
characterizations of radial graphs are given in the literature. A characterization of
radial trees is given by Herke and Mynhardt [32].

Theorem 21. ([32]) A tree T is radial if and only if it has no non-empty split-set.
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As an application of shadow graphs, Herke and Mynhardt [32] gave an upper
bound for the broadcast domination number of a tree in terms of its order.

Theorem 22. ([32]) If T is a tree of order n, then γb(T ) ≤ ⌈
n
3

⌉
.

Proof.. We proceed by induction on the order n≥ 1. The result is immediate for
n∈ [3]. This establishes the base case. Let n≥ 4 and assume that every tree T′ of
order n′ < n satisfies γb(T ) ≤ � 1

3n
′�. Let T be a tree of order n. Suppose that

T has two adjacent vertices u1 and u2 of degree 2. Let vi be the neighbor of ui

different from u3−i for i∈ [2]. Thus, Q: v1u1u2v2 is a path in T. There exists an
edge e∈E(Q) such that T − e has two components T1 and T2 of orders n1 and
n2, respectively, where n1 ≡ 0 (mod 3). Thus, n1 = 3t for some t≥ 1. Applying the
inductive hypothesis to T1 and T2, we have γ b(T1)≤ t and γb(T2) ≤ � 1

3n2� =
� 1

3 (n− 3t)�. Hence,

γb(T ) ≤ γb(T1)+ γb(T2) ≤ t +
⌈

1

3
(n− 3t)

⌉

=
⌈

1

3
n

⌉

.

Hence, we may assume that T does not have two adjacent vertices of degree
2, otherwise the desired result follows. Let rad(T)= k, and let P : v1v2 . . . vd

be a diametrical path in a tree T, and so diam(T)= d − 1. By Observation 1,
γ b(T)≤rad(T)= k.

Recall that a tree is central if it contains exactly one central vertex (whose
eccentricity equals the radius of the tree), while a tree is bicentral if it has two
central vertices. Suppose, firstly, that T is central. In this case, d = 2k+ 1. By our
assumption that T has no adjacent vertices of degree 2, the pigeonhole principle
shows that at least � 1

2 (2k−1)� = k−1 of the vertices in V (P)�{v1, vd} are adjacent
to vertices not on P, implying that n≥ (2k+ 1)+ (k− 1)= 3k. Therefore, in this
case, γb(T ) ≤ k ≤ 1

3n. Suppose, secondly, that T is bicentral. In this case, d = 2k.
Analogously, as before, at least � 1

2 (2k−2)� = k−1 of the vertices in V (P)�{v1, vd}
are adjacent to vertices not on P, implying that n≥ 2k+ (k− 1)= 3k− 1. Therefore,
in this case, γb(T ) ≤ k ≤ � 1

3n�. This completes the proof by induction. �

By Observation 4, Theorem 22 gives an upper bound on the broadcast domination
number of a graph.

Corollary 23. ([32]) If G is a connected graph of order n, then γb(G) ≤ ⌈
n
3

⌉
.

This bound of Corollary 23 is tight for paths and cycles.

4 Broadcast Domination in Graph Products

In this section, we present selected results on broadcast domination in graph
products. By a graph product G⊗H on graphs G and H, we mean the graph that
has vertex set the Cartesian product of the vertex sets of G and H, that is,
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V (G ⊗ H) = V (G)× V (H) = {(g, h) | g ∈ V (G) and h ∈ V (H)},

and has an edge set that is determined entirely by the adjacency relations of G
and H. Exactly how it is determined depends on what kind of graph product we
are considering. In this section, we consider four such graph products, namely the
Cartesian product (�), the direct product (×), the strong product (�) of graphs, and
the lexicographic product (•).

Two vertices (g1, h1) and (g2, h2) in the Cartesian product G�H of graphs G
and H are adjacent if either g1 = g2 and h1h2 is an edge in H or h1 = h2 and g1g2 is
an edge in G.

Two vertices (g1, h1) and (g2, h2) in the direct product graph G×H of graphs G
and H are adjacent if g1g2 ∈E(G) and h1h2 ∈E(H).

Two vertices (g1, h1) and (g2, h2) in the strong direct product G�H of G and H
are adjacent if and only if u= v and u′v′∈E(H) or u′ = v′ and uv∈E(G) or uv∈E(G)
and u′v′∈E(H).

Two vertices (g1, h1) and (g2, h2) in the lexicographic product G•H of G and H
are adjacent if and only if either g1g2 ∈E(G) or g1 = g2 and h1h2 ∈E(H).

In 2009, Braser and Spacaman [10] studied broadcast domination in the Cartesian
product, the direct product, and the strong product of graphs and established the
following upper bounds on the broadcast domination number in the respective
product graphs.

Theorem 24. ([10]) For all graphs G and H,

γb(G�H) ≤ 3

2
(γb(G)+ γb(H)).

Theorem 25. ([10]) For all graphs G and H,

γb(G�H) ≤ 3

2
max{γb(G), γb(H)}.

Theorem 26. ([10]) For all graphs G and H,

γb(G×H) ≤
{

3 max{γb(G), γb(H)} if rad(G) �= rad(H)

3 min{γb(G), γb(H)} + 1 otherwise.

Dunbar, Erwin, Haynes, Hedetniemi, and Hedetniemi [20] presented results on
broadcast domination in m× n grid graphs Gn,m, or equivalently in the Cartesian
product Pm�Pn of paths Pm and Pn. They showed that it suffices to have one
broadcast vertex in the center of the grid, broadcasting with strength rad(Gn,m) =
�m

2 � + �n
2 �. This is illustrated in Figure 10(a) in the case of a 4× 4 grid.

Theorem 27. ([20]) For integers m≥ 1 and n≥ 1,

γb(Pm�Pn) = rad(Pm�Pn) =
⌊m

2

⌋
+
⌊n

2

⌋
.
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1

2

(c) γb (C4 � C4) = 3(b) γb (C4 � P4) = 4(a) γb (P4 � P4) = 4

Fig. 10 Broadcast domination in P4�P4, C4�P4, and C4�C4

We remark that this result was also established by Braser and Spacaman [10].
In 2019, Beaudou and Brewster [3] later extended the result in m× n grids to

multipacking.

Theorem 28. ([3]) For m≥ 4 and n≥ 4,

mp(Pn�Pm) = γb(Pn�Pm),

with the exception of P4�P6, where mp(P4�P6) = 4 and γb(P4�P6) = 5.

In 2015, Koh and Soh [33] determined the broadcast domination number of the
Cartesian product of a cycle and a path. We illustrate this in Figure 10(b) in the case
of the Cartesian product C4�P4.

Theorem 29. ([33]) For integers m≥ 3 and n≥ 2,

γb(Cm�Pn) =
{

m
2 if n = 2 and m is even,
�m

2 � + �n
2 � otherwise.

Braser and Spacaman [10] gave results on broadcast domination in the Cartesian
products Cm�Cn of cycles Cm and Cn, also called the torus in the literature.

Theorem 30. ([10]) For m≥ 3 and n≥ 3,

γb(Cm�Cn) =
{

rad(Cm�Cn)− 1 if bothm and n are even,
rad(Cm�Cn) otherwise.

Using a differen approach to that used in [10], Soh and Koh [46] determined the
broadcast domination number of the torus Cm�Cn. We illustrate this in Figure 10(c)
in the case of the torus C4�C4. We remark that the broadcast domination number
of the grid Pm�Pn and the torus Cm�Cn is the same, except when both m and n are
even.

Theorem 31. ([46]) For m≥ 3 and n≥ 3, we have γb(Cm�Cn) = �m+n
2 � − 1.
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In 2014, Soh and Koh [45] studied broadcast domination in the strong product,
the direct product, and the lexicographic product of two paths.

Theorem 32. ([45]) For integers m≥ n≥ 1,

γb(Pm � Pn) =
⌈

1

2

(

m−
⌊

m

max{p, 3}
⌋)⌉

,

where p = 2
⌈

n−1
2

⌉
+ 1.

The broadcast domination number of the strong product P4 � P4 equals 2 and is
illustrated in Figure 11(a).

Theorem 33. ([45]) For integers m≥ n≥ 1,

γb(Pm × Pn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m if n = 1,

n ·
(

m+1
n+1

)
if n ≥ 2, bothm and n are odd with m+1

n+1

an integer,

2 ·
⌈

1
2

(
m−

⌊
m

n+1

⌋)⌉
otherwise.

The broadcast domination number of the direct product P4 ×P4 equals 2 and is
illustrated in Figure 11(b).

Theorem 34. ([45]) The broadcast domination number of the lexicographic prod-
uct of Pm and Pn has

γb(Pm • Pn) =

⎧
⎪⎨

⎪⎩

max{⌈m
3

⌉
,
⌈
n
3

⌉} if m = 1 or n ∈ {1, 2, 3},

max{
⌈

2m
5

⌉
, 2} if m ≥ 2 and n ≥ 4.

The broadcast domination number of the lexicographic product P4•P4 equals 2
and is illustrated in Figure 11(c), where the darkened vertex has a strength of 2.

(a) γb (P4 � P4) = 2

2

(b) γb (P4 × P4) = 4

22

(c) γb (P4 • P4) = 2

Fig. 11 Broadcast domination in P4 � P4, P4 ×P4, and P4•P4
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5 Irredundant Broadcasts

The upper domination number �(G) of a graph G is the maximum cardinality of
a minimal dominating set of G. The concept of the upper broadcast domination
number was first defined by Erwin [21] and also studied, for example, in [1, 20,
38]. A dominating broadcast is minimal if reducing the strength of any vertex that is
broadcasting results in a broadcast that is no longer dominating. Thus, a dominating
broadcast f on a graph G is a minimal dominating broadcast if no broadcast g < f
is dominating. The maximum cost of a minimal dominating broadcast is the upper
broadcast domination number of G, denoted as �b(G). Thus, for a graph G= (V, E),

�b(G) = max{f (V ) | f is a minimal dominating broadcast of G}.

Ahmadi, Fricke, Schroder, Hedetniemi, and Laskar [1] point out that if you
broadcast with strength diam(G) from a vertex v with ecc(v)= diam(G), then you
have a minimal dominating broadcast. Hence, we have the following lower bound
on the upper broadcast domination number.

Theorem 35. ([1]) Every graph G satisfies diam(G)≤ Γ b(G).

A set X ⊆V (G) is irredundant if each x∈X dominates a vertex y that is not
dominated by any other vertex in X. We note that a maximal irredundant set is
not necessarily a dominating set. The concept of an irredundance broadcast was
first introduced in 2015 by Ahmadi et al. [1]. Essential for their definition of an
irredundant broadcast, they use an important property given by Erwin [21] that
makes a dominating broadcast a minimal dominating broadcast. Thereafter, they
define an irredundant broadcast f to be maximal irredundant if no broadcast g > f
is irredundant and observe that any minimal dominating broadcast is maximal
irredundant. The lower and upper broadcast irredundance numbers of G are given
by

irb(G) = min{f (V ) | f is a maximal irredundant broadcast of G}

and

IRb(G) = max{f (V ) | f is an irredundant broadcast of G},

respectively. We note that if the strength of any vertex in an optimal dominating
broadcast is reduced, this will decrease the number of vertices that hears the
broadcast (as all vertices in G can no longer hear the broadcast), so every
optimal dominating broadcast is maximal irredundant. As a result, we have that
irb(G)≤ γ b(G). More generally, by the properties established by Erwin [21], and by
the above definitions, we have the following inequality chain.
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Theorem 36. ([1]) Every graph G satisfies the inequality chain given by

irb(G) ≤ γb(G) ≤ γ (G) ≤ �(G) ≤ �b(G) ≤ IRb(G).

Conditions under which an irredundant broadcast is maximal irredundant were
determined by Mynhardt and Roux [38]. Their main result is that the ratio γ b/irb is
bounded.

Theorem 37. ([38]) For every graph G, we have γb(G) ≤ 5
4 irb(G).

However, Mynhardt and Roux [38] give constructions illustrating that the ratio
IRb/ �b is unbounded for general graphs.

In 2017, Bouchemakh and Fergani [8] continued the study of the upper broadcast
number and established the following upper bound for the upper broadcast domina-
tion number.

Theorem 38. ([8]) If G is a connected graph of order n, then Γ b(G)≤ n− δ(G)
and the bound is sharp on paths, stars, and complete graphs.

Bouchemakh and Fergani also studied the upper broadcast number on grids.
Recall that the Cartesian product of graphs G and H is denoted by G�H .

Theorem 39. ([8]) For integers m≥ n≥ 2, we have �b(Pm�Pn) = m(n− 1).

6 Independent Domination Broadcasts

In 2006, Dunbar, Erwin, Haynes, Hedetniemi, and Hedetniemi [20] defined the
concept of an independent broadcast. A broadcast f on a connected graph G is
an independent broadcast if every pair of vertices u and v for which f (u) > 0
and f (v) > 0, we have d(u, v) > max{f (u), f (v)}. Equivalently, an independent
broadcast on G is a broadcast f of G such that for every vertex x of G, f (v) > 0
implies that f (u)= 0 for every vertex u of G within distance at most f (v) from
v. Thus, if f is an independent broadcast, then no broadcast vertex can hear a
broadcast from any other broadcast vertex. As observed in [20], an independent
broadcast need not be a dominating broadcast. The broadcast independence number
αb(G) of G is the maximum cost of an independent broadcast of G. The lower
broadcast independence number ib(G) of G equals the minimum cost of a maximal
independent broadcast of G. Thus,

ib(G) = min{f (V ) | f is a maximal independent broadcast of G}, and
αb(G) = max{f (V ) | f is an independent broadcast of G}.

An independent broadcast of G of cardinality αb(G) is called an αb-broadcast
of G. In 2014, Bouchmakh and Zemir [9] studied broadcast independence on grids
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(a) αb (G5,5) = 15
3 3

3 3

3

(b) αb (G5,6) = 16
4 3

3 3

3

Fig. 12 αb-Broadcasts of G5,5 and G5,6

and gave bounds for the broadcast independence number on 2× n, 3× n, and 4× n
grids. Recall that the m× n grid graph is denoted by Gn,m, and so Gn,m = Pm�Pn.

Theorem 40. ([9]) The following hold.

(a) For n≥ 2, αb(G2,n)= 2(n− 1).
(b) For n≥ 3, αb(G3,n)= 2n.
(c) For n≥ 4, αb(G4,n)= 2(n+ 1).
(d) αb(G5,5)= 15 and αb(G5,6)= 16.

An αb-broadcast of G5,5 and G5,6 is illustrated in Figure 12(a) and 12(b),
respectively, where the broadcast vertices are darkened and their strengths are given.

Theorem 41. ([9]) For integers n≥m≥ 5 where (m, n) �∈{(5, 5), (5, 6)},

αb(Gm,n) =
⌈mn

2

⌉
.

Later, Ahmane, Bouchmakh, and Sopena studied the broadcast independence
number for caterpillars [2]. In 2019, Bessy and Rautenbach [5] studied the
relationship between the broadcast independence number and the independence
number, where the independence number α(G) of G is the maximum cardinality
of an independent set in G. Their main result is that the broadcast independence
number and the independence number are within a constant factor from each other.

Theorem 42. ([5]) For every connected graph G, we have α(G)≤αb(G)≤ 4α(G).

Bessy and Rautenbach [5] also characterize all extremal graphs satisfying
equality in the bound of Theorem 42. Imposing a girth condition on the graph, Bessy
and Rautenbach [6] improve the upper bound in Theorem 42.

Theorem 43. ([5]) Let G be a connected graph of girth g and minimum degree δ.
If g≥ 6 and δ≥ 3 or g≥ 4 and δ≥ 5, then αb(G)≤ 2α(G).
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Theorem 44. ([5]) For every positive integer k, there is a connected graph G of
girth at least k and minimum degree at least k such that

αb(G) ≤ 2

(

1 − 1

k

)

α(G).

The results of Theorems 43 and 44 imply that lower bounds on the girth and the
minimum degree of a connected graph G can lower the fraction αb(G)/α(G) from 4
to below 2, but not any further.

7 k-Broadcast Domination

Another variation of broadcast domination is the k-broadcast domination, which
was first studied in 2018 by Henning, MacGillivray, and Yang [29] (also see [49]).
In a k-broadcast, instead of requiring every vertex to hear at least one broadcast, this
time we restrict every vertex to hear at least k broadcasts. The following motivation
is given in [29]. Consider a large city partitioned into many neighborhoods, each of
which has a radio tower to transmit emergency information. It is desirable to have
some redundancy in the system so that everyone can hear a broadcast even if some
of the towers are not functioning. The goal is to design a broadcast protocol with the
property that every neighborhood receives some number k of broadcasts, and which
does not require every tower to be used. Formally, let f : V →{0, 1, . . . , diam(G)}
be a broadcast on a graph G= (V, E), and let V +

f be the set of all vertices in G with
positive strength under f, that is,

V +
f = {v ∈ V | f (v) > 0}.

If, for each vertex u∈V , there exist k different vertices v1, v2, . . . , vk ∈ V +
f such

that for i∈ [k] we have d(u, vi)≤ f (vi), then f is called a dominating k-broadcast.
The cost of a dominating k-broadcast is the quantity f (V ). The minimum cost of a
dominating k-broadcast is the k-broadcast domination number of G and is denoted
by γbk (G). When k= 1, we note that the 1-broadcast domination number is the
broadcast domination number, γ b(G), of G.

The integer programming formulation of k-broadcast domination is a bit more
complicated than for 1-broadcast domination. Here, we need to introduce the �-
adjacency matrix and the ball matrix. Adopting the notation in [29], the �-adjacency
matrix A� is the n× n incidence matrix, where the rows correspond to vertices and
the columns correspond to closed �-neighborhoods. The (i, j)th entry of A� is 1 if the
vertex vi is contained in the closed �-neighborhood of vj, otherwise it is 0. Clearly,
the closed neighborhood adjacency matrix is just A1. We define the ball matrix to
be

A∗ = [
A A2 . . . Ar

]
,
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where r is the radius of the graph. The columns of A∗ are the characteristic vectors
of closed �-neighborhoods of vertices. For i∈ [n] and �∈ [r], let xi� be a Boolean
variable representing the truth value of the statement “there is a broadcast from
vertex vi of strength �.” Let

x = [x11, x21, . . . , xn1, x12, x22, . . . , xn2, . . . , x1r , x2r , . . . , xnr ]T .

We have A∗x≥ [k, k, . . . , k]T if and only if every vertex hears at least k
broadcasts. We must also add constraints to guarantee that each vertex broadcasts at
most once. For each vertex vi, the constraint xi1 + xi2 + · · · + xir ≤ 1, or equivalently
− xi1 − xi2 −· · · − xir ≥−1, guarantees that vi broadcasts with at most one strength,
and therefore at most once. The 0–1 integer program Bk(G) for finding γbk (G) is
described below:

Minimize
rad(G)∑

�=1

n∑

i=1
�xi�,

subject to
A∗x≥ [k, k, . . . , k]T ,
xi1 + xi2 + · · · + xir ≤ 1 for each i∈ [n],
xi� ∈{0, 1} for vi ∈V and �∈ [r].

Recall that the definition of multipacking arose from the dual of the linear
programming relaxation of the broadcast domination integer program, and then
consider it as an integer program. Analogously, we shall use the dual of the linear
programming relaxation of Bk(G) to formulate the definition of k-multipacking.
Considering the dual of the linear programming relaxation of Bk(G) as an integer
program leads to the following integer program, Mk(G):

Maximize
n∑

j=1
k · cj − rj ,

subject to(
∑

d(vi ,vj )≤�

cj

)

− ri ≤ � for each �∈ [r] and each i∈ [n],

cj , rj ∈ N for each vertex vj.

There are two values, cj and rj, associated with each vertex vj. The variable cj

indicates how many times a vertex vj is chosen in the k-multipacking (vertices can
be chosen more than once). The variable rj is the relaxation value on vertex vj which
allows the multipacking restriction on that specific vertex to be relaxed by rj. Thus,
a k-multipacking is a pair (c, r), where c : V → N and r : V → N such that for
every vertex vi ∈V , we have

∑

d(vi ,vj )≤�

c(vj ) ≤ �+ r(vi)
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for each �∈ [r]. The value of a k-multipacking (c, r) is the quantity

∑

v∈V
(k · c(v)− r(v)).

The largest value of a k-multipacking of G is the k-multipacking number of
G, denoted by mpk(G). As remarked in [29], multipacking is the same as 1-
multipacking. To see this, suppose we take a maximum multipacking of a graph
G and consider whether it is an optimal solution to M1(G). If we want to increase
the value of some variable cj, we must also increase some ri from 0 by at least
the same amount, otherwise a constraint is violated at some vertex. Conversely,
given a maximum 1-multipacking, if we want to decrease some positive ri, then
some cj must be decreased by at least the same amount, otherwise a constraint will
be violated. As a result, mp1(G)=mp(G). Thus, the k-multipacking problem is a
generalization of multipacking.

The fractional k-broadcast domination number of G, γbk,f (G), is the optimum
solution of the linear programming relaxation of Bk(G), and the fractional k-
multipacking number of G, mpk,f (G), is the optimum solution of the linear
programming relaxation of Mk(G). By the strong duality theorem of linear program-
ming, we have the following result.

Theorem 45. ([29]) If G is a connected graph, then

mpk(G) ≤ mpk,f (G) = γbk,f (G) ≤ γbk (G).

As observed in [29], by the definition of k-multipacking, we can always let ci

be 1 for all the vertices included in a maximum multipacking and ri be 0 for all
vertices, yielding k ·mp(G) as a lower bound on the k-multipacking number.

Observation 46. ([29]) For a graph G, mpk(G)≥ k ·mp(G).

As an example of a dominating 2-broadcast and a 2-multipacking, consider the
tree shown in Figure 13(a). A dominating 2-broadcast is obtained by broadcasting
with strength 1 from v2 and strength 2 from v1, as illustrated in Figure 13(b). This
gives γb2(G) ≤ 3. On the other hand, we can assign the function values of (c(vi),
r(vi)) as (1, 0), (0, 1), (1, 0), and (0, 0) at the vertices v1, v2, v3, and v4, respectively.
This gives a 2-multipacking with value 3, thus mp2(G)≥ 3. By the duality theorem
of linear programming, we have 3 ≤ mp2(G) ≤ γb2(G) ≤ 3, implying that
γb2(G) = mp2(G) = 3.

The 2-broadcast domination number can differ from twice the broadcast domi-
nation number by an arbitrarily large constant difference as shown in [29].

Theorem 47. ([29]) For any integer t, there exists a connected graph G with
γb2(G) ≤ 2 · γb(G)− t and there exists a graph H with γb2(H) ≥ 2 · γb(H)− t .

The following upper bound on the 2-broadcast domination number of a tree in
terms of its order is given in [29].
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(a) T

v1 v2 v3

v4

(b) γb2
(T) = 3

2 1 0

0

(c) γb2
(T) = 3

(1,0) (0,1) (1,0)

(0,0)

Fig. 13 A tree T with γb2 (T ) = mp2(T ) = 3

Theorem 48. ([29]) If T is a tree of order n≥ 2, then γb2(T ) ≤ � 4n
5 �.

The proof of Theorem 48 is by induction on the order n≥ 2. The tree is carefully
split into two subtrees, and various cases are considered in terms of different
properties of the resulting subtrees. Since a dominating 2-broadcast in a spanning
tree of a connected graph G is also a dominating 2-broadcast in G, as an immediate
consequence of Theorem 48, we have the following result.

Corollary 49. ([29]) If G is a connected graph of order n≥ 2, then γb2(G) ≤ � 4n
5 �.

The authors in [29] believe that the bound in Theorem 48 could possibly be
improved using a more detailed analysis and pose the following conjecture.

Conjecture 2. ([29]) If T is a tree of order n≥ 2, then γb2(T ) ≤ 1
3 (2n+ 4).

If T is a path Pn where n≡ 1 (mod 3), then γb2(T ) = (2n + 4)/3. Thus, if
Conjecture 2 is true, then the bound is tight.

8 Limited Broadcast Domination

In this section, we consider a limited version of the broadcast function. For a graph
G= (V, E) and an integer k≥ 1, a function f : V →{0, 1, . . . , k} is called a k-limited
dominating broadcast, abbreviated kLD-broadcast, in G if for each vertex u∈V ,
there exists a vertex v in G such that f (v) > 0 and d(u, v)≤ f (v). The minimum cost
of a kLD-broadcast is the k-limited broadcast domination number of G, denoted by
γ b,k(G). A kLD-broadcast of cost γ b,k(G) is called a γ b,k-broadcast of G; that is,
a γ b,k-broadcast of G is a minimum kLD-broadcast of G. The 1-limited broadcast
domination number, γ b,1(G), of G is precisely the domination number, γ (G). For
k≥ 1, the function that assigns the weight 1 to the vertices of a minimum dominating
set of G (of cardinality γ (G)) and the weight 0 to the remaining vertices of G is
a kLD-broadcast of cost γ (G), implying that γ b,k(G)≤ γ (G). By definition, every
kLD-broadcast is a dominating broadcast, and so γ b(G)≤ γ b,k(G). We state this
formally as follows.

Observation 50. For an integer k≥ 1 and for every graph G,
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(a) γb(T) = 3

3

(b) γb,2(T) = 5

2

1

1

1

(c) γ(T) = 6

Fig. 14 A tree T with γ (T)= γ b,2(T)= γ (T)= 3

v

Fig. 15 The tree T9 with gluing vertex v

γb(G) ≤ γb,k(G) ≤ γ (G) and γb,k(G) ≤ γb,k+1(G).

The inequalities in the inequality chain of Observation 50 can be strict. For
example, consider the tree T shown in Figure 14. In the case when k= 2, we have
γ b(T)= γ b,3(T)= 3, γ b,2(T)= 5, and γ (T)= γ b,1(T)= 6. An optimal broadcast
with cost equal to γ b(G)= 3 is shown in Figure 14(a). A 2-limited dominating
broadcast of cost γ b,2(T)= 5 is shown in Figure 14(b), while a dominating set of T
of cardinality γ (T)= 6 is shown in Figure 14(c).

We note that the optimal broadcast in Figure 14(b) is not efficient. More gener-
ally, the result of Theorem 3, that every graph has an optimal dominating broadcast
that is efficient, does not apply to k-limited broadcasting for k≥ 2. This above
example illustrates that, even for a tree, an optimal 2-limited dominating broadcast
may not be efficient. However, every graph has efficient k-limited broadcasts for
some values of k, e.g., k= rad(G) and k= diam(G). This raises the question: what is
the smallest value of k for which G has an efficient k-limited broadcast?

Limited broadcast domination in graphs was first studied in 2013 by Rad and
Khosvravi [42], where some fundamental properties were introduced. The first
major results for limited broadcast domination were given in 2018 by Cáceres,
Hernando, Mora, Pelayo, and Puertas [13, 14].

Theorem 51. ([13, 14]) For k≥ 2, if G is a connected graph, then

γb,k(G) = min{γb,k(T ) | T is a spanning tree of G}.

In order to establish a tight upper bound for the 2-limited broadcast domination
number of a general graph, Cáceres et al. [13] construct a family of trees F as
follows. Let T9 be the tree shown in Figure 15. We call the central vertex of degree
2 (that is not a support vertex) the gluing vertex of T9. A tree T belongs to the family
T if T is obtained from k≥ 1 vertex-disjoint copies of the tree T9 shown in Figure 15
by adding k− 1 edges between the gluing vertices.
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2 2

2 2

1 2 1

Fig. 16 A tree T in the family T

An example of a tree T in the family T is shown in Figure 16. Furthermore, an
example of a 2-limited dominating broadcast of cost γ b,2(T)= 12 for the tree T is
illustrated in Figure 16.

We are now in a position to state the result of Cáceres et al. [13].

Theorem 52. ([13]) If T is a tree of order n, then γb,2(G) ≤
⌈

4
9n

⌉
, with equality if

and only if T ∈ F ∪ {P1, P2, P4}.
As a consequence of Theorems 51 and 52, we have the following upper bound

on the 2-limited broadcast domination number of a graph.

Theorem 53. ([13]) If G is a connected graph of order n, then γb,2(G) ≤
⌈

4
9n

⌉
.

Cáceres et al. [13] showed that the upper bound in Theorem 53 can be improved
if the graph G contains a dominating path, that is, a path P such that every vertex
not on P has a neighbor on P. In this case, we note that the graph G has a caterpillar
as a spanning tree, where a caterpillar is a tree in which the removal of all leaves
yields a path.

Theorem 54. ([13]) If G is a graph of order n that contains a dominating path,

then γb,2(G) ≤
⌈

2
5n

⌉
.

In a subsequent paper, Cáceres et al. [14] generalized the upper bound on the 2-
limited broadcast domination number of a tree given in Theorem 52 to the k-limited
broadcast domination number for all k≥ 2.

Theorem 55. ([14]) If T is a tree of order n and k≥ 2 is an integer such that
k < rad(T), then

γb,k(T ) ≤
⌈

k + 2

3(k + 1)
· n

⌉

,

and this bound is tight.

As a consequence of Theorems 51 and 55, we obtain the following bound on the
k-limited broadcast domination number of a graph.

Theorem 56. ([13]) For k≥ 2, if G is a connected graph of order n, then γb,k(G) ≤⌈
k+2

3(k+1) · n
⌉

.
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Recently, Henning, MacGillivray, and Yang [30] studied 2-limited broadcast
domination in subcubic graphs. A subcubic graph is a graph whose maximum
degree is at most 3, while a cubic graph (also called a 3-regular graph in the
literature) is a graph in which every vertex has degree 3. The following conjecture
is posed in [30].

Conjecture 3. ([30]) If G is a cubic graph of order n, then γb,2(G) ≤ 1
3n.

Conjecture 3 is shown in [30] to be true if the cubic graph G is (C4, C6)-free,
where a (C4, C6)-free graph is a graph that does not contain a 4-cycle or a 6-cycle
as an induced subgraph.

Theorem 57. ([30]) If G is a cubic graph of order n that is (C4, C6)-free, then
γb,2(G) ≤ 1

3n.

9 Algorithmic and Complexity Results

We consider in this section the problem of finding the broadcast domination number
of an arbitrary graph. We state the decision problem formally as follows:

BROADCAST DOMINATION

Input: A graph G, and an integer k≥ 1.
Question: Is γ b(G)≤ k?

The most interesting feature about dominating broadcasts is that the broadcast
domination number γ b(G) can be computed in polynomial time for any graph, as
shown by Heggernes and Lokshtanov [27] in 2006. This is quite counter-intuitive
since computing the domination number of a graph is in general NP-hard.

Theorem 58. ([27]) The broadcast domination number of a graph of order n can
be computed in O(n6) time, implying that Broadcast Domination is solvable in
polynomial time.

To find an optimal dominating broadcast, Heggernes and Lokshtanov first
considered a ball graph of the original graph. The ball graph of a dominating
broadcast is a graph whose vertices are the broadcast neighborhoods of the original
graph where two vertices of the ball graph are adjacent if the two broadcast
neighborhoods contain a pair of adjacent vertices in the original graph. By Theorem
3, every graph G has an optimal efficient dominating broadcast, implying that there
exists an optimal efficient broadcast whose ball is either a path or a cycle. The idea is
to assume that for each vertex v∈V , the broadcast neighborhood of v is an end point
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of a ball graph which is a path. This finds all possible optimal dominating broadcasts
which are paths. Next, the case when the ball graph is a cycle is considered. A
broadcast neighborhood from the original graph is first removed, giving a path ball
graph for the remaining subgraph. The running time of this process when the ball
graph is a path is O(n4), and when the ball graph is a cycle, the running time is O(n6).
Heggernes and Sæther [28] later conjectured that BROADCAST DOMINATION can
be solved in O(n5) time in general.

In the literature, several algorithms have been given to find the broadcast number
and the multipacking number for trees. In 2009, Dabney, Dean, and Hedetniemi
[19] (also see [18]) gave a linear algorithm to find an optimal dominating broadcast
for trees. The linearity of the algorithm is based on a complex data structure.
Later, Brewster, MacGillivray, and Yang [12] (see also [49]) gave a simpler greedy
algorithm which makes use of shadow trees, split-edges, and split-sets.

Theorem 59. ([18, 19]) The broadcast domination number of a tree of order n can
be computed in O(n) time, implying that Broadcast Domination is solvable in linear
time for trees.

We consider next the following decision problem:

MULTIPACKING

Input: A graph G, and an integer k≥ 1.
Question: Is mp(G)≥ k?

In 2014, Mynhardt and Teshima [39] (also in [47]) showed that the multipacking
number of a tree of order n can be computed in linear time. Brewster, MacGillivray,
and Yang [12] (also see [49]) gave a simpler algorithm for finding an optimal
multipacking on trees.

Theorem 60. ([39, 47]) The multipacking number of a tree of order n can be
computed in O(n) time, implying that Multipacking is solvable in linear time for
trees.

A block graph is a graph in which every block is a complete graph. In particular,
every tree is a block graph. Heggernes and Sæther [28] showed that BROADCAST

DOMINATION can be solved efficiently on block graphs. As block graphs form a
superclass of trees, their result extends the result given by Theorem 59. Due to the
tree-like structure of a block graph, their algorithm is efficient and elegant.

Theorem 61. ([28]) The broadcast domination number of a block graph of order n
can be computed in O(n+m) time.



Broadcast Domination in Graphs 41

A graph G is an interval graph if there exists a one-to-one correspondence
between its vertex set and a family of closed intervals in the real line, such that
two vertices are adjacent if and only if their corresponding intervals intersect.
Blair, Heggernes, Horton, and Manne [7] studied algorithmic and complexity
results for broadcast domination in interval graphs, series-parallel graphs, and trees.
Employing a dynamic programming method, they found optimal broadcasts for
interval graphs and for series-parallel graphs.

Theorem 62. ([7]) The broadcast domination number of an interval graph of order
n can be computed in O(n3) time.

Theorem 63. ([7]) The broadcast domination number of a series-parallel graph of
order n and radius r can be computed in O(nr4) time.

The complexity result for broadcast domination in interval graphs given in
Theorem 62 was subsequently improved by Chang and Peng [15]. Although their
method is similar to that employed in [7], they use a better data structure resulting
to improve the running time.

Theorem 64. ([15]) The broadcast domination number of an interval graph of
order n and size m can be computed in O(n+m) time.

A chordal graph is a graph in which every cycle of length at least 4 has a chord,
where a chord of a cycle is an edge that is not part of the cycle but joins two vertices
of the cycle. Equivalently, a chordal graph is a graph in which every induced cycle
contains exactly three vertices. Chordal graphs can also be defined in terms of a
perfect elimination ordering. A perfect elimination ordering in a graph G is an
ordering of the vertices of the graph such that, for each vertex v, the set of neighbors
of v that occur after v in the order form a clique. A graph is chordal if and only if
it has a perfect elimination ordering. Heggernes and Sæther [28] gave the following
complexity result to solve BROADCAST DOMINATION in chordal graphs.

Theorem 65. ([28]) The broadcast domination number of a chordal graph of order
n can be computed in O(n4) time.

Furthermore, Heggernes and Sæther [28] conjectured that BROADCAST DOMI-
NATION can be solved in O(n2) time for chordal graphs of order n. Although partial
results have been obtained, their conjecture has yet to be fully settled. However,
pleasing progress for the important subclass of chordal graphs, called strongly
chordal graphs, has been made.

For k≥ 3, a graph G is called a k-trampoline (also called a k-sun in the literature)
if it contains a k-clique with vertex set {v1, v2, . . . , vk} and, for each pair {vi, vi+1},
there is a vertex wi of degree 2 adjacent only to vi and vi+1 in G for all i∈ [k], where
addition is taken modulo k. Thus, a k-trampoline has order 2k. A 3-trampoline is
shown in Fig. 17. A graph G is a strongly chordal graph if it is chordal and does not
contain a k-trampoline as an induced subgraph, for any k.

Brewster, MacGillivray, and Yang [12] (see also [49]) showed that for strongly
chordal graphs, BROADCAST DOMINATION can be solved in O(n3) time. This
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Fig. 17 A 3-trampoline

algorithm is different from previous algorithms in that it uses integer programming
to find an optimal broadcast. As shown in Section 2, BROADCAST DOMINATION

can be defined as a linear programming problem. However, if the solution to the
linear program is fractional, it is not a solution of BROADCAST DOMINATION. In
general, although the class of chordal graphs does not necessarily have an integer
solution to the linear program, the subclass of strongly chordal graphs always has
integer solutions. A matrix is totally balanced if it does not contain any cycle of
length at least 3. It was proved in [12] that the constraint matrix of a strongly chordal
graph is totally balanced. A matrix is called �-free if it does not contain

� =
[

1 1
1 0

]

as a submatrix. Lubiw [34, 35] proved that a totally balanced matrix can have
a �-free ordering, and Farber [23] showed that the linear programming problem
associated with �-free matrices always has an integer solution and it can be solved
greedily. Combining all the results above, Brewster et al. [12] provided an efficient
algorithm for the class of strongly chordal graphs.

Theorem 66. ([12, 49]) The broadcast domination number of a strongly chordal
graph of order n can be computed in O(n3) time.

Brewster et al. [12] noted that every strongly chordal graph G satisfies
γ b(G)=mp(G) by the duality theorem of linear programming.

Corollary 67. ([12, 49]) If G is strongly chordal graph, then γ b(G)=mp(G).

We consider next the following decision problem:

k-LIMITED BROADCAST DOMINATION

Input: A graph G, integers k≥ 1 and �≥ 1.
Question: Is γ b,k(G)≤ �?

Cáceres et al. [13, 14] used a reduction from 3-SAT to prove that for k≥ 2, k-
LIMITED BROADCAST DOMINATION is NP-complete.

Theorem 68. ([13, 14]) For k≥ 2, k-Limited Broadcast Domination is NP-complete
for general graphs.
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Cáceres et al. [13] considered trees and proved the following result.

Theorem 69. ([13]) 2-Limited Broadcast Domination can be solved in linear time
for trees.

10 Concluding Comments

In this chapter, we have surveyed selected results on the broadcast domination in
graphs. Other results on broadcast domination can be found, for example, in [24,
25, 36, 40, 41, 43, 48]. We close with a small list of conjectures and open problems.
We repeat our earlier three conjectures.

Conjecture 1 ([4]). If G is a connected graph, then γ b(G)≤ 2mp(G).

Conjecture 2 ([29]). If T is a tree of order n≥ 2, then γb2(T ) ≤ 1
3 (2n+ 4).

Conjecture 3 ([30]). If G is a cubic graph of order n, then γb,2(G) ≤ 1
3n.

We present next a list of open problems, taken from the “Stephen Hedetniemi
treasure chest of intriguing ideas and open research questions.”

Problem 1. Recall that by Theorem 35, every graph G satisfies diam(G)≤ �b(G).
Is diam(G) < �b(G) possible?

Problem 2. What can you say about γ b,3(T) for trees, as compared with γ b,2(T)?

Problem 3. What is the smallest value of k for which a graph G has an efficient
k-limited broadcast?

Problem 4. In normal domination, every vertex has broadcast strength of 1. In k-
limited broadcasting, a vertex can be assigned any integer value between 0 and k,
that is, if f is a k-limited dominating broadcast, then f : V →{0, 1, . . . , k}. What if
the only values allowed are 0 and k, that is, only one type of broadcast vertex is
made, one of strength k, and so f : V →{0, k}?
Problem 5. Does a broadcast domination chain analogous to that presented in
Theorem 36 exist for k-limited broadcasting?

Problem 6. It would seem worthwhile to define a type of dominating broadcast f in
a graph G in which for every vertex v in V , there exists a distinct broadcast vertex w
in V such that d(v, w)≤ f (w). This would enable a broadcast vertex v to compare its
broadcast with that being given by another broadcast vertex. This is the total version
of broadcast domination, called broadcast total domination.

Problem 7. Let us define a new concept called connected dominating broadcasting.
Given a set B of broadcast vertices, we construct a corresponding broadcast network
N = (B, C), whose vertices are the broadcast vertices B, and two broadcast vertices
are connected by an edge uv in C if d(u, v) ≤ min{f (u), f (v)}, that is u and v
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can hear each others’ broadcasts. What we want is that this broadcast network N
is connected. The problem with normal broadcast domination is that the broadcast
stations are all independent and totally disconnected. We want connected broadcast
domination. This is a much more realistic model.

Problem 8. Even more interesting than connected or network broadcasting is
the directed model, whereby a broadcast vertex v can hear a broadcast from a
broadcast vertex u, but not necessarily conversely. In this case, you need a central,
or originating, broadcast vertex v∗ from which there is a directed path to all other
broadcast vertices. Such a vertex v∗ then originates a broadcast to all broadcast
vertices along these directed edges, which in turn broadcast the originating message
to all remaining non-broadcast vertices. That is, between any two broadcast vertices
u and v, if d(u, v)≤ f (v), then there is an arc from v to u, meaning that u can hear a
broadcast from v. But it is possible that v cannot hear a broadcast from u. In this way,
you can define the directed broadcast network existing among the broadcast vertices,
and this is a directed graph. You want this broadcast network to be connected in the
further sense that there is a central vertex from which a given broadcast message
can be relayed to all broadcast vertices over the arcs in the network, which in turn
can then broadcast this message to all non-broadcast vertices, i.e., the listeners.

Problem 9. Consider, as an example, the 7× 7 grid graph. Place the value 4 in
the center vertex, square (4, 4). Place the value 1 at the four vertices of degree 4
at distance 2 from a vertex of degree 2, as illustrated in Fig. 18(a). You have a
dominating broadcast with a connected broadcast network that is a directed K1,4.
If you decrease the broadcast strength of the center vertex to 3, then you have a
less expensive 3-limited dominating broadcast, but now the broadcast network is
totally disconnected. The two broadcasts are illustrated in Figure 18(a) and 18(b),
respectively.

(a) A connected broadcast of cost 8

1 1

1 1

4

(b) A disconnected broadcast of cost 7

1 1

1 1

3

Fig. 18 Two broadcasts in the 7× 7 grid graph
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Alliances and Related Domination
Parameters

Teresa W. Haynes and Stephen T. Hedetniemi

1 Introduction

An alliance is generally thought of as a treaty or formal agreement between two or
more parties, made in order to unite for a common cause. In 2002, P. Kristiansen,
S. M. Hedetniemi, and S. T. Hedetniemi [69] introduced several types of alliances
in graphs to model such agreements. The study of alliances in graphs has become
a popular area of research with around 100 papers published since its inception
in 2002. In fact, three survey papers have been published on the topic [39, 73,
99]. Since these recent overviews are readily available, the purpose of this chapter
is not to give a comprehensive survey of alliances in graphs. Instead our goal is
to provide selected results along with sample proof techniques used in studying
alliances. Furthermore, since an alliance need not be a dominating set and this book
is on domination in graphs, the main focus of this chapter will be on alliances that
are also dominating sets. In particular, we select a specific dominating alliance (a
global defensive alliance) to serve as an illustration of work in the field. Also, we
present a brief overview of some precursors of alliances and two recently defined
related parameters, namely cost effective sets and distribution sets. For algorithms
and complexity of alliances, we refer the reader to Chapter 17 of this volume.
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We begin with some terminology and a discussion of precursors of alliances in
Section 2. Definitions, preliminary results, and examples of alliances are given in
Section 3. In Section 4, we present a survey of core results on a type of dominating
alliance, namely, a global defensive alliance. The related concepts of cost effective
sets and distribution sets along with open problems and ideas for future work are
discussed in Section 5.

We will use the following terminology throughout the chapter. Given a vertex
set S⊆V , we let S = V \ S and we use the notation dS(v)= |N(v)∩ S| for the
number of neighbors of v that are in S and dS(v) = |N(v) ∩ S| for the number of
neighbors of v in S. Thus, d(v) = dS(v) + dS(v). The boundary of a set S is the
set ∂(S) = N(S) ∩ S. Let the generalized corona G ◦H be the graph obtained by
adding a copy of H for each vertex v of G and joining v to every vertex of H.

2 Preliminary Definitions and Background

This section contains a discussion of parameters that can be considered as precursors
to alliances. We present several types of sets, all of which are defined in terms of
conditions on the degrees of vertices with respect to sets S, ∂(S), and S, such as
dS(v), dS(v), and d(v), either for vertices v∈ S or vertices v ∈ S. Each of these
types of sets naturally arise in different real-world contexts. We present these as
they occurred chronologically in the literature.

2.1 Unfriendly Sets and Satisfactory Partitions

Problems of partitioning the vertex set of a graph with constraints on the degrees
of vertices in the sets can be traced to a problem of unfriendly partitions of graphs
introduced by Borodin and Kostochka [9] in 1977.

Definition 2.1 A partition {S, S} of the vertex set V of a graph G is unfriendly if
for every vertex v∈ S, dS(v) ≥ dS(v) and for every vertex u ∈ S, dS(u) ≥ dS(u).

Stated equivalently, a partition of the vertex set of a graph G into two sets is
called unfriendly if every vertex v∈V has at least as many neighbors in the opposite
set as it has in its own set. In 1990, Aharoni, Milner, and Prikry [1] settled, in the
affirmative, a conjecture by Cowan and Emerson that every graph has an unfriendly
partition (see also Shelah and Milner [85]).

Theorem 2.2 ([1]) Every nontrivial graph has an unfriendly partition.

Proof. Among all partitions of the vertex set V of G into two nonempty sets, select
{S, S} to be one that maximizes the number of edges having one end in S and the
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other in S. We claim that {S, S} is an unfriendly partition. If not, then there must
be at least one vertex having more neighbors in its own set than in the other set.
Moving this vertex to the other set would therefore increase the number of edges
between the two sets, a contradiction. �

It can also be shown that if you start with any arbitrary partition of V into two
nonempty sets and repeatedly find a vertex v in either set, which has more neighbors
in the set containing it than neighbors in the other set, and then move v to the other
set, this process will repeatedly increase the number of edges between the two sets.
Therefore, after a finite number of such moves, this process will terminate with an
unfriendly bipartition.

Corollary 2.3 Every graph G without isolated vertices has a partition into two
dominating sets.

Proof Let {S, S} be an unfriendly partition of the vertex set of G. We show that
both S and S are dominating sets of G. It suffices to consider only set S as the same
argument used for S applies to S. If S is not a dominating set, then there exists a
vertex, say x ∈ S having no neighbors in S. But in this case, x has more neighbors
(at least one) in S than it has in S (none), contradicting that {S, S} is an unfriendly
partition. It follows that both S and S are dominating sets of G. �

Corollary 2.3 is reminiscent of the following well-known theorem and corollary
of Ore [72].

Theorem 2.4 (Ore [72]) If G is a graph having no isolated vertices, then the
complement S of any minimal dominating set S is a dominating set.

Corollary 2.5 Every graph G without isolated vertices has a partition into two
dominating sets.

Although Corollary 2.3 and Corollary 2.5 are the same, the reasoning behind
them makes a difference. With Corollary 2.5, we know that at least one of the two
dominating sets is a minimal dominating set, and furthermore, it can be a minimum
dominating set of cardinality γ (G). We do not have such an assurance in Corollary
2.3.

Our discussion of unfriendly partitions gives rise to the following definitions.

Definition 2.6 A dominating set S is unfriendly if for every vertex w ∈ S, dS(w) ≥
dS(w), that is, w has at least as many neighbors in S as it has in S. An unfriendly
dominating set is very unfriendly if this inequality is strict, that is, dS(w) > dS(w).

Definition 2.7 A dominating set S is friendly if for every vertex w ∈ S, dS(w) ≤
dS(w), that is, w has at least as many neighbors in S as it has in S. A friendly
dominating set is very friendly if this inequality is strict, that is, dS(w) < dS(w).

This leads to the observation: every isolate-free graph G has a partition into
an independent dominating set S and an unfriendly dominating set S, since the
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complement S of every maximal independent set S is necessarily a (very) unfriendly
dominating set. Notice that, by definition, the vertex set V is vacuously a friendly
dominating set, so every graph has a friendly dominating set. We will revisit friendly
and unfriendly dominating sets in Section 5.

In some sense dual to an unfriendly partition, a satisfactory partition is a partition
of the vertex set of a graph into two sets such that each vertex has at least as
many neighbors in the set containing it as it has in the opposite set. We note that
this “friendly” version is equivalent to a partition of the vertex set into two strong
defensive alliances. Satisfactory partitions have been studied in [43–45] and [81].
However, unlike unfriendly partitions, not every graph has a satisfactory partition.
For example, complete graphs of odd order and complete bipartite graphs Kr,s, when
r or s is odd, do not have satisfactory partitions. In fact, it is an NP-complete problem
to decide if an arbitrary graph has a satisfactory partition [4].

2.2 (σ , ρ)-sets

In 1994, Telle [92, 93] introduced the idea of (σ , ρ)-sets S, in which σ is a
nonnegative integer condition that must hold on the number of neighbors a vertex
in S must have in S, and ρ is a nonnegative integer condition that must hold on the
number of neighbors a vertex in S must have in S.

This was generalized by Haynes, Hedetniemi, and Slater in 1998 [50] as follows.
There are four possible values under consideration, namely, dS(v) for v∈ S, dS(v)
for v∈ S, dS(v) for v ∈ S, and dS(v) for v ∈ S. Table 1 illustrates how different
domination parameters are defined using combinations of these four values. A blank

Table 1 Degree Conditions

S is v∈ S, dS(v) v∈ S, dS(v) v ∈ S, dS(v) v ∈ S, dS(v)

a D-set ≥ 1
an independent set = 0
an ID-set = 0 ≥ 1
a TD-set ≥ 1 ≥ 1
a PD-set = 1
a RD-set ≥ 1 ≥ 1
a k-dominating set ≥ k

a D-set and S is a D-set ≥ 1 ≥ 1
a [1, k]-dominating set ≥ 1 and ≤ k

an odd D-set even odd
an open odd D-set odd odd
an efficient D-set =0 = 1
a 1-dependent D-set ≤ 1 ≥ 1
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entry in the table implies that this condition is not relevant to the definition. Let D-
set, TD-set, ID-set, PD-set, and RD-set denote dominating set, total dominating set,
independent dominating set, perfect dominating set, and restrained dominating set,
respectively.

2.3 Signed Domination

In 1995, Dunbar, Hedetniemi, Henning, and Slater [30] introduced the concept of
signed domination in graphs as follows.

Definition 2.8 A function f : V→{−1, 1} is called a signed dominating function if
for every vertex v∈V , f (N[v])= Σu ∈ N[v]f (u)≥ 1.

In effect, a signed dominating function defines a partition of the vertex set of G
into two sets S and S, where S={v : f (v)= 1} and S = {u : f (u) = −1}, such
that for every vertex v∈V , dS(v) > dS(v). We note that in a signed dominating
function the set S is a very unfriendly dominating set of the set S, or equivalently, S
is a global offensive alliance of G, which we will define in the next section.

2.4 Minus Domination

In 1999, Dunbar, Hedetniemi, Henning, and McRae [31] introduced a variation on
signed domination called minus domination, as follows.

Definition 2.9 A function f : V→{−1, 0, 1} is a minus dominating function if for
every vertex v∈V , f (N[v])= Σu ∈ N[v]f (u)≥ 1.

In effect, a minus dominating function defines a partition {S−1, S0, S1} of the
vertex set V , where S−1 ={v : f (v)=−1}, S0 ={v : f (v)= 0}, and S1 ={u : f (u)= 1},
such that for every vertex v∈V , dS1(v) > dS−1(v).

2.5 Strong and Weak Dominating Sets

In 1996, Sampathkumar and Pushpa Latha [80] focused on the degrees of the
vertices in a dominating set S and how they related to the degrees of vertices in S.

Definition 2.10 A dominating set S is said to be strong if for every vertex v ∈ S,
there exists a vertex u∈ S∩N(v) such that d(u)≥ d(v). Similarly, a dominating set
S is said to be weak if for every vertex v ∈ S, there exists a vertex u∈ S∩N(v) such
that d(u)≤ d(v).
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2.6 α-Dominating Sets

In 2000, Dunbar, Hoffman, Laskar, and Markus [32] introduced the concept of α-
domination, where α is a number 0 <α≤ 1.

Definition 2.11 A set S of vertices in a graph G is an α-dominating set if for every
vertex v ∈ S, dS(v)

d(v)
≥ α, where 0 <α≤ 1.

Note that when α≥ 1/2, the vertices in S corresponding to an α-dominating set
S satisfy the unfriendly condition of Aharoni et al. that every vertex in S has at least
as many neighbors in S as it has in S. However, no unfriendly condition is required
for the vertices in an α-dominating set S.

2.7 Communities

In 2000, Flake, Lawrence, and Giles [41] introduced the concept of a community in
a graph as follows.

Definition 2.12 A community is a vertex subset C⊆V of a graph G, such that for
all vertices v∈C, v has at least as many edges connecting to vertices in C as it does
to vertices in C.

This definition can be rephrased as follows. A community is a set S of vertices
having the property that for every vertex v∈ S, dS(v) ≥ dS(v).

3 Alliances

In 2002, concepts almost the same as communities were introduced by Kristiansen,
Hedetniemi, and Hedetniemi [69], but in a completely different context, that of
alliances in networks rather than communities. In 2004, the authors followed the
proceedings [69] with a more detailed introduction to alliances in [57].

An alliance is generally thought of as a treaty or formal agreement between two
or more parties or nations, made in order to unite for a common cause or for mutual
support. For example, defensive alliances are formed during times of war, where
the allies agree to join forces if one or more of them are attacked, and offensive
alliances can be formed in times of peace, where allies might have to join forces
in order to keep peace. In addition to alliances for national defense, applications of
alliances are widespread in nature from social and business associations to political
and scientific groupings. As mentioned in the introduction, the study of alliances
in graphs has become a popular area of research with around 100 papers published
since its introduction in 2002.
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The popularity of alliances is further evidenced by three recent survey papers
on the topic [39, 73, 99]. The first survey by Fernau and Rodríguez-Velázquez
[39] in 2014 focuses mainly on defensive alliances. Yero and Rodríguez-Velázquez
[99] wrote a second survey in 2017. In it, they note that graph parameters and
types of alliances have been studied under many different names, and they provide
a new general and unifying framework for a wide variety of alliances. In 2018,
Ouazine, Slimani, and Tari [73] published the third survey on alliances. This survey
gives another generalization of alliances and presents results for both defensive and
offensive alliances.

In this section, we present definitions, examples, and preliminary results on
alliances. Recall that for a set S, the boundary of S, denoted ∂(S), is the set of vertices
in S that have a neighbor in S.

Definition 3.1 A nonempty set of vertices S of a graph G is a defensive alliance if
for every v∈ S, |N [v] ∩ S| ≥ |N(v) ∩ S|. The minimum cardinality of a defensive
alliance of G is the defensive alliance number of G, denoted by a(G).

This can be stated equivalently as follows. A defensive alliance is a nonempty
set S of vertices having the property that for every vertex v∈ S, dS(v) ≥ dS(v)− 1.
Conceptually, each vertex in S is in alliance with its neighbors in S for defense
against possible attacks from neighbors in ∂(S). For each vertex v∈ S, an attack at
v by the vertices in ∂(S) that are adjacent to v can result in no worse than a draw
(assuming strength in numbers). Thus, each vertex in S can be successfully defended
against attacks from its neighbors in ∂(S).

By changing focus from vertices in S to vertices in ∂(S), Hedetniemi et al. [57]
defined the following.

Definition 3.2 A nonempty set of vertices S of a graph G is an offensive alliance if
for every vertex v∈ ∂(S), |N(v) ∩ S| ≥ |N [v] ∩ S|. The minimum cardinality of an
offensive alliance of G is the offensive alliance number of G, denoted by ao(G).

Equivalently, an offensive alliance is a set S of vertices having the property that
for every vertex v∈ ∂(S), dS(v) ≥ dS(v)+ 1. In terms of application of an offensive
alliance S, it is reasonable to think that each vertex in S is in alliance with its
neighbors in S against its neighbors in ∂(S). For the set S as a whole, since an attack
by an offensive alliance S on the vertices of ∂(S) can result in no worse than a “tie,”
the vertices in S can “successfully” attack any single vertex in ∂(S).

For examples, we note that the offensive alliance and defensive alliance numbers
are equal for a complete graph, that is, a(Kn) = ao(Kn) =

⌈
n
2

⌉
. Note also that any

vertex of degree 0 or 1 is a defensive alliance. It is shown in [57] that a(G)= 1 if
and only if G has a vertex of degree 0 or 1, and it is shown in [37] that ao(G)= 1 if
and only if G is a star. The alliance numbers for paths and cycles follow.

Proposition 3.3 For paths Pn and cycles Cn with n≥ 3,

1. ([57]) a(Pn)= 1 and a(Cn)= 2,
2. ([37]) ao(Pn) =

⌊
n
2

⌋
and ao(Cn) =

⌈
n
2

⌉
.
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Paths and cycles provide examples where the offensive alliance number can
be larger than the defensive alliance number. To see that these two numbers are
incomparable, consider the complete bipartite graphs Kr,s, where 2≤ r≤ s. Then

a(Kr,s) =
⌊
r
2

⌋+⌊
s
2

⌋
, while ao(Kr,s) =

⌈
r+1

2

⌉
. Thus, the defensive alliance number

is larger than the offensive alliance number for Kr,s when r≥ 4.
We mention upper bounds on these two alliance numbers before defining more

alliance numbers. For two sets of vertices A and B, we define an edge having one
end in A and the other in B, an AB-edge.

Theorem 3.4 ([42]) If G is a connected graph of order n≥ 2, then a(G) ≤ ⌈
n
2

⌉
.

Proof The result is trivial if G has a vertex of degree at most 1. Among all balanced
bipartitions {A, B} of V , where |A|−|B|≤ 1, let π ={A, B} be one that minimizes the
number of AB-edges. Without loss of generality, we can assume that |A| = ⌈

n
2

⌉
and

B = ⌊
n
2

⌋
. If A or B is a defensive alliance, then the result holds. Hence, assume

that neither A nor B is a defensive alliance. Thus, there exist vertices a∈A and b∈B
such that |N[a]∩A|< |N(a)∩B| and |N[b]∩B|< |N(b)∩A|. But then swapping a
and b will produce a balanced bipartition with fewer AB-edges, contradicting our
choice of π . �

As we have seen, Theorem 3.4 is sharp for complete graphs.

Theorem 3.5 ([37]) If G is a graph of order n≥ 2, then ao(G) ≤ 2n
3 .

Proof Since the result is trivial if G has an isolated vertex, we may assume that
the minimum degree of G is at least 1. Color the vertices of V with three colors,
say Red, Green and Blue, so that the number of monochromatic edges is minimum.
Let v be a vertex colored red. Then v has at least as many green (respectively, blue)
neighbors as it has red ones, else v could be recolored green (respectively, blue),
decreasing the number of monochromatic edges. Thus, the union of any two color
classes is an offensive alliance, implying that ao ≤ 2n

3 . �
The authors of [37] note that the bound of Theorem 3.5 is tight for K3, K2,2,2, and

the generalized corona K3 ◦K2.
A defensive (respectively, offensive) alliance S is called strong if the inequality

is strict. We state the definitions formally as follows.

Definition 3.6 A nonempty set of vertices S of a graph G is a

1. strong defensive alliance if for every v∈ S, |N [v]∩S| > |N(v)∩S|. The minimum
cardinality of a strong defensive alliance of G is the strong defensive alliance
number of G, denoted by â(G).

2. strong offensive alliance if for every vertex v∈ ∂(S), |N(v) ∩ S| > |N [v] ∩ S|.
The minimum cardinality of a strong offensive alliance of G is the strong offensive
alliance number of G, denoted by âo(G).

In 2009, Shafique and Dutton [84] published a paper that had an interesting
connection to the Aharoni, Milner, and Prikry theorem (Theorem 2.2) that every
graph has an unfriendly partition. A partition {S, S} of a vertex set of a graph G
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is called an alliance-free partition, if neither S nor S contains a strong defensive
alliance as a subset. Shafique and Dutton [84] prove that a connected graph G has
an alliance-free partition exactly when G has a block that is neither an odd clique
nor an odd cycle. For more on alliance numbers, the reader is referred to [2, 3, 5, 8,
20, 37, 59, 63, 65–67, 70].

In 2009, Brigham, Dutton, Haynes, and Hedetniemi [16] studied alliances that
are both defensive and offensive.

Definition 3.7 A nonempty set of vertices S of a graph G is a powerful alliance if
for every v∈N[S], |N[v]∩ S|≥|N[v]� S|. The minimum cardinality of a powerful
alliance of G is the powerful alliance number of G, denoted by ap(G).

This can be stated equivalently as follows. A powerful alliance is a set S of
vertices having the property that for every vertex v∈ S, dS(v) ≥ dS(v) − 1 and
for every vertex v∈ ∂(S), dS(v) ≥ dS(v) + 1. As examples, for the complete graph
Kn, ap(Kn) = ⌈

n
2

⌉
, and the values of the powerful alliance number of paths and

cycles are given in the next result.

Proposition 3.8 ([16]) For paths Pn and cycles Cn with n≥ 3,

ap(Pn) =
⌊

2n

3

⌋

and ap(Cn) =
⌈

2n

3

⌉

.

Powerful alliances are also studied in [14, 15, 46].
An alliance S of any type (defensive, offensive, or powerful) is called global if S

is in addition a dominating set. We state the definitions formally as follows.

Definition 3.9 Any alliance S is a global alliance if S is a dominating set.

1. The global defensive alliance number γ a(G) (respectively, global strong defen-
sive alliance number γâ(G)) is the minimum cardinality of a global defensive
alliance (respectively, global strong defensive alliance) of G.

2. The global offensive alliance number γ o(G) (respectively, global strong offensive
alliance number γô(G)) is the minimum cardinality of a global offensive alliance
(respectively, global strong offensive alliance) of G.

3. The global powerful alliance number γap (G) is the minimum cardinality of a
global powerful alliance of G.

The next result follows directly from the definitions.

Proposition 3.10 For any graph G,

γ (G) � γa(G) � γâ(G),

γ (G) � γo(G) � γô(G), and

γ (G) ≤ γap (G).
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As we mentioned in the introduction, we will survey the results on global
defensive alliances as a sampling of global alliances. For more on global offensive
alliances, see [10, 12, 23, 26, 29, 48, 62, 74, 89, 98].

Shafique and Dutton [82, 83] generalized alliances to k-alliances for an integer
k. Formally, a nonempty set S of vertices of a graph G is a defensive k-alliance
(respectively, an offensive k-alliance) if every vertex of S (respectively, the boundary
of S) has at least k more neighbors in S than it has in S. Note that for k=−1, a
defensive k-alliance is the standard defensive alliance and for k= 0 it is a strong
defensive alliance. Similarly, the case for k= 1 (respectively, k= 2) in a k-offensive
alliance corresponds to the normal offensive alliance (respectively, strong offensive
alliance). A set S⊆V is a powerful k-alliance if it is both a defensive k-alliance and
an offensive (k+ 2)-alliance. Much of the research on alliances has been on these
generalized k-alliances. See [6, 18, 21, 24, 25, 38, 40, 60, 77, 78, 86, 87, 90, 91,
94–97, 100], for example.

We conclude this section by mentioning that Haynes and Lachniet [49] defined
the alliance partition number of a graph as follows. A partition of the vertex set
of G into defensive alliances is called an alliance partition. The alliance partition
number ψa(G) is the maximum order of any alliance partition of G. For example,
the alliance partition number of grid graphs Gr,c = Pr�Pc (the Cartesian product of
path graphs on r and c vertices) was determined in [49]. For examples, see Figures
1 and 2, where the alliances in the partition are circled with dashed blue lines.

Theorem 3.11 ([49]) For the grid graph Gr,c,

ψa(Gr,c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌈
c+1

2

⌉
if 1 = r ≤ c

c if 2 = r ≤ c

c if 3 = r ≤ c and c is odd

c + 1 if 3 = r ≤ c and c is even

⌊
r−2

2

⌋⌊
c−2

2

⌋
+ r + c − 2 if 4 ≤ r ≤ c.

We note that the alliance partition number is also studied in [35] and studied
under a different name, the quorum coloring number, in [58]. As defined by
Hedetniemi, Hedetniemi, Laskar, and Mulder [58] in 2013, the quorum coloring
number is the maximum order k of a vertex partition π ={V1, V2, . . . , Vk} such that
for every vertex v∈Vi, |N[v]∩Vi|≥|N[v]|/2, that is, at least half of the vertices in the
closed neighborhood of every vertex v have the same color as v. They determined
the quorum number, and hence the alliance partition number, of a hypercube Qn as
follows.
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Fig. 1 ψa(G10,10)= 34

Theorem 3.12 ([58]) For the hypercube Qn, ψa(Qn) = 2� n
2�.

Sahbi and Chellali [79] showed that the decision problem associated with the
quorum coloring number (alliance partition number) is NP-complete. Partitioning
the vertex set of a graph into alliances for other types of alliances is also studied in
[84, 90, 96, 100], for example.

4 Global Defensive Alliances

Global defensive alliances were defined in [57, 69] and first studied in [51] and
[52]. As examples, we determine the global defensive alliance and global strong
defensive alliance numbers of the Petersen graph P.

Proposition 4.1 For the Petersen graph P, γ a(P)= 4, while γâ(P ) = 5.
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Fig. 2 ψa(G10,11)= 35

Fig. 3 Petersen Graph P,
γ a(P)= 4

Proof Figure 3 demonstrates a global defensive alliance (the set of darkened
vertices) of the Petersen graph P, while Figure 4 illustrates a global strong defensive
alliance of P. Hence, γ a(P)≤ 4 and γâ(P ) ≤ 5.

First, to see that γ a(P)≥ 4, let S be a γ a-set of P. Since P is 3-regular and for
every vertex v∈ S, dS(v) + 1 ≥ dS(v), it follows that there are no isolated vertices
in P[S]. That is, every vertex in S must have a neighbor in S. Furthermore, no set
of three vertices having this property dominates P, implying that γ a(P)≥ 4, and so
γ a(P)= 4.
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Fig. 4 Petersen Graph P,
γâ(P ) = 5

Table 2 Global defensive alliance numbers for families of graphs

Family of graphs G γ a(G) γâ(G)

Complete graphs Kn

⌊
n+1

2

⌋ ⌈
n+1

2

⌉

Complete bipartite graphs Kr,s, 2≤ r≤ s
⌊
r
2

⌋+ ⌊
s
2

⌋ ⌈
r
2

⌉+ ⌈
s
2

⌉

Cycles Cn
⌊
n
2

⌋+ ⌈
n
4

⌉− ⌊
n
4

⌋ ⌊
n
2

⌋+ ⌈
n
4

⌉− ⌊
n
4

⌋

Paths Pn, n≥ 3, n�≡2 (mod 4)
⌊
n
2

⌋+ ⌈
n
4

⌉− ⌊
n
4

⌋ ⌊
n
2

⌋+ ⌈
n
4

⌉− ⌊
n
4

⌋

Paths Pn, n≥ 3, n≡ 2 (mod 4)
⌊
n
2

⌋+ ⌈
n
4

⌉− ⌊
n
4

⌋− 1
⌊
n
2

⌋+ ⌈
n
4

⌉− ⌊
n
4

⌋

Double Star S(r, s), 1≤ r≤ s
⌊

r−1
2

⌋
+
⌊

s−1
2

⌋
+ 2

⌊
r
2

⌋+ ⌊
s
2

⌋+ 2

We note that γa(P ) = 4 ≤ γâ(P ). To see that γâ(P ) ≥ 5, suppose to the contrary
that γâ(P ) = 4 and let D be a γâ-set of P. Since P has no 4-cycle as a subgraph, at
least one of the vertices, say x, in D has dD(x)= 1 and so dD(x)+ 1 = dD(x) = 2,
contradicting that D is a global strong defensive alliance. Hence, γâ(P ) ≥ 5, and so
γâ(P ) = 5. �

Values of the global defensive alliance and global strong defensive alliance
numbers for several families of graphs are given [52]. We summarize these results
in Table 2.

For the remainder of this section, we focus on bounds on the global (strong)
defensive alliance numbers for general graphs and trees. Bounds for several other
families of graphs have been studied in [19, 33, 34, 47, 61, 68, 71, 76, 88, 91, 101].

4.1 Bounds for General Graphs

From our previous discussion, γ (G) � γa(G) � γâ(G) ≤ n for any graph G
of order n. Bullington, Eroh, and Winters [17] showed that for positive integers a,
b, and c, where 2≤ b and c ≤ 1

2 (ab + 2b − a
√
b/a, there exists a graph G with

γ (G)= a, γ a(G)= b, and γâ(G) = c.
For examples showing that equality and strictness can occur in each of the

inequalities, we consider a family of caterpillars. A caterpillar is a tree that reduces
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Fig. 5 Caterpillars G5,1, G5,2, and G5,3

to a nonempty path, called the spine, upon the removal of all its leaves. For k≥ 2,
let Gk,i denote the caterpillar that has the path Pk as its spine and each vertex on the
spine is adjacent to i leaves. In other words, Gk,i is the generalized corona Pk ◦Ki .

We note that γ (Gk,1) = γa(Gk,1) = γâ(Gk,1) = k and that the vertices of the
spine form a γ -set, a γ a-set, and a γâ-set. Furthermore, γ (Gk,2) = γa(Gk,2) = k <

k + 2 = γâ(Gk,2), while γ (Gk,3) = k < k + 2 = γa(Gk,3) < 2k = γâ(Gk,3). See
Figure 5 for caterpillars G5,1, G5,2, and G5,3, for examples, where the vertices on
the spine form a γ -set and the darkened vertices form a γâ-set. The vertices on the
spine also form a γ a-set of Gk,1 and Gk,2, while for Gk,3, the spine vertices along
with two leaves (one adjacent to each end of the spine) form a γ a-set.

It is observed in [52] that a graph G has γ a(G)= n if and only if G = Kn. In fact,
Haynes, Hedetniemi, and Henning [52] prove the following sharp upper bounds.

Theorem 4.2 ([52]) Let G be a graph with order n and minimum degree δ= δ(G).

1. γa(G) ≤ n− ⌈
δ
2

⌉
, and

2. γâ(G) ≤ n− ⌊
δ
2

⌋
.

Complete graphs achieve both the bounds of Theorem 4.2.
As we have seen, the domination number is a lower bound on the global defensive

alliance number and hence for the global strong defensive alliance number. It was
established in [52] that the total domination number γ t(G) is also a lower bound
on the global (strong) defensive alliance number for graphs G with given minimum
degree.

Theorem 4.3 ([52]) Let G be a graph with minimum degree δ(G).

1. If δ(G)≥ 1, then γt (G) ≤ γâ(G).
2. If δ(G)≥ 2, then γ t(G)≤ γ a(G).

These bounds are sharp as can be seen with cycles, that is, for cycles Cn with
n≥ 3, γt (Cn) = γa(Cn) = γâ(Cn). The caterpillar Gk,3 (as previously defined)
shows that strictness in each bound can occur as γ (Gk,3) = γt (Gk,3) = k < k+2 =
γa(Gk,3) < 2k = γâ(Gk,3), for k ≥ 3. The graph G in Figure 6 gives another
example of strictness in the inequalities, where γ (G) �= γ t(G). To see this, we note
that the support vertices of G along with a single vertex from the triangle form a γ -
set of G, while the support vertices along with their nonleaf neighbors form a γ t-set
of G. Further, the leaves of G along with the three vertices of the triangle form a
γ a-set of G, and the set of darkened vertices in Figure 6 is a γâ-set of G.

Favaron [36] considered relationships between the global (strong) defensive
alliance numbers and the independent domination number. We give here the result
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Fig. 6 Graph G with
γ (G)= 7, γ a(G)= 10,
γ t(G)= 12, and γâ(G) = 13

and the proof to the first part of the theorem but omit the second proof as it can be
proven similarly.

Let F1 be the family of graphs G obtained from the complete graph Kk by
attaching k leaves adjacent to each vertex of the Kk, that is, G = Kk ◦ Kk . Let
F2 be the family of graphs G obtained from the complete graph Kk by attaching
k− 1 leaves adjacent to each vertex of the Kk, that is, G = Kk ◦Kk−1.

Theorem 4.4 ([36]) For every graph G,

1. i(G)≤ (γ a(G))2 − γ a(G)+ 1 with equality if and only if G ∈ F1.
2. i(G) ≤ (γâ(G))2 − 2γâ(G)+ 2 with equality if and only if G ∈ F2.

Proof Let S be a γ a-set of G, A be a maximal independent set of G[S], and B a
maximal independent set of G[S \ N(A)]. Then A∪B is a maximal independent
set of G, and so i(G)≤|A| + |B|. Since S is a defensive alliance, for each v∈ S,
dS(v) ≤ dS(v)+ 1. Furthermore, since S is a dominating set,

|B| ≤ |S \N(A)| ≤
∑

v∈S\A
dS(v) ≤

∑

v∈S\A
(dS(v)+ 1) ≤ |S| − |A| +

∑

v∈S\A
dS(v).

(1)

Thus,

i(G) ≤ |A| + |B| ≤ |S| +
∑

v∈S\A
dS(v). (2)

Since every vertex v∈ S has at most |S|− 1 neighbors in S, i(G)≤|S| + (|S|−|A|)
(|S|− 1) with |A|≥ 1. Hence, i(G)≤|S|2 −|A|(|S|− 1)≤|S|2 −|S| + 1= (γ a(G))2

− γ a(G)+ 1.
If i(G)= (γ a(G))2 − γ a(G)+ 1, then |A| = 1 and dS(v)= |S|− 1 for every

v∈ S�A, that is, S is a clique and A consists of a vertex a∈ S. Moreover, for
any a∈ S, equality in (1) gives |B| = |S \ N(A)|. Thus, S \ N(A) is independent,
and |S \N(A)| = ∑

v∈S\{a} dS(v) =
∑

v∈S\{a}(dS(v)+ 1). This implies that NS(v)

is independent and dS(v) = dS(v)+ 1 for all v∈ S. Moreover, NS(v) ∩ NS(u) = ∅
for all u, v∈ S. It follows that G ∈ F1.
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For the converse, let G be a graph in F1, that is, G = Kk ◦ Kk for k≥ 1.
Note that the vertices of the clique Kk form a minimum dominating set of G and
a global alliance of G, so γ a(G)= k. Let v be a vertex of the clique Kk in G,
L(G) be the set of leaves of G, and L(v) the set of leaves adjacent to v in G. Then
the set (L(G)� L(v))∪{v} is a minimum independent dominating set of G. Hence,
i(G)= |(L(G)� L(v))∪{v}| = k2 − k+ 1= (γ a(G))2 − γ a(G)+ 1.

A similar argument establishes Part (2) of the theorem. �
Sharp lower bounds on the global defensive alliance and global strong defensive

alliance numbers in terms of the order of a graph are given in [52].

Theorem 4.5 ([52]) If G is a graph of order n, then

1. γa(G) ≥
√

4n+1−1
2 , and

2. γâ(G) ≥ √
n.

Proof Let G be a graph of order n, and let S be a γ a-set of G with |S| = γ a(G)= k.

Since S is a defensive alliance, each vertex v∈ S has at least
⌊

d(v)
2

⌋
neighbors in

S. Hence, k = |S| ≥ |{v}| +
⌊

d(v)
2

⌋
. Moreover, dS(v) ≤

⌈
d(v)

2

⌉
≤ k. Since S

is a dominating set, |S| = n − |S| = n − k ≤ ∑
v∈S dS(v) ≤ k2. Equivalently,

k2 + k− n≥ 0, and so k ≥
√

4n+1−1
2 , proving part (1).

Taking into account that strict inequality must hold for a global strong defensive
alliance, a similar argument gives the bound of (2). �

Families of generalized coronas achieve sharpness for the bounds of Theorem
4.5. In particular, Kk ◦ Kk for k≥ 3 has order n= k2 + k and γa(Kk ◦ Kk) = k =√

4n+1−1
2 , while Kk ◦Kk−1 has order n= k2 and γâ(Kk ◦Kk−1) = k = √

n.
Haynes, Hedetniemi, and Henning [52] also proved the lower bounds of 2n

�+3

and 2n
�+2 on the global defensive alliance number and the global strong defensive

alliance number, respectively, of bipartite graphs with order n and maximum degree
�. Rodríguez-Velázquez and Sigarreta [75] showed the bipartite condition was
not necessary for the bound on the global defensive alliance number to hold and
improved the bound of Theorem 4.5 for the global strong defensive alliance number
as follows.

Theorem 4.6 ([75]) If G is a graph of order n with maximum degree Δ= Δ(G),
then

1. γa(G) ≥ 2n
�+3 , and

2. γâ(G) ≥ n
�/2+1 .

Proof Let G be a graph of order n and maximum degree �= �(G). Let S be a

γ a-set of G. Now each vertex v∈ S has at least
⌊

d(v)
2

⌋
neighbors in S and has at

most
⌈

d(v)
2

⌉
neighbors in S. That is, for each v∈ S, dS(v) ≤ dS(v)+ 1, and so
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∑

v∈S
dS(v) ≤

∑

v∈S
dS(v)+ |S|. (3)

Moreover, since S is a dominating set,

n− |S| ≤
∑

v∈S
dS(v). (4)

By Equations 3 and 4, we have

2n− 3|S| ≤
∑

v∈S
(dS(v)+ dS(v)) ≤

∑

v∈S
d(v) ≤ �|S|. (5)

Thus, |S| = γa(G) ≥ 2n
�+3 .

Next let S be a γâ-set of G. Then,

dS(v) ≤
⌊
d(v)

2

⌋

. (6)

By Equations 4 and 6, γâ(G) ≥ n
�/2+1 . �

Recall that Kr,s denotes the complete bipartite graph with partite sets of cardi-
nality r and s. To see that the bounds of Theorem 4.6 are sharp, we again consider
generalized coronas. It is noted in [52] that Kk,k ◦ Kk+1 for k≥ 1 has �= 2k+ 1
and n= 2k+ 2k(k+ 1)= 2k2 + 4k. Since the 2k vertices of the Kk,k form a global
defensive alliance, 2n

�+3 = 2k ≤ γa(Kk,k ◦Kk+1) ≤ 2k, and so the bound is sharp.
Moreover, as noted in [75] and by Theorem 4.1, the Petersen graph P has order
n= 10, �(P)= 3, and γâ(P ) = 4 = n

�/2+1 .
Rodríguez-Velázquez and Sigarreta [75] also determined lower bounds on global

defensive alliance numbers of a graph in terms of its spectral radius λ (the largest
eigenvalue of the adjacency matrix of the graph).

Theorem 4.7 ([75]) If G is a graph of order n with spectral radius λ, then

1. γa(G) ≥ n
λ+2 , and

2. γâ(G) ≥ n
λ+1 .

4.2 Bounds for Trees

We present bounds on the global (strong) defensive alliance numbers of trees. In
particular, upper bounds are detailed in Section 4.2.1 and lower bounds in Section
4.2.2.
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4.2.1 Upper Bounds

The upper bound of Theorem 4.2 on the global defensive alliance number for general
graphs was improved for trees in [52]. The authors also characterized trees attaining
the new bound. To present the new bound and characterization, we introduce some
additional notation and define two families of trees. For a vertex v in a rooted tree
T, let C(v) and D(v) denote the sets of children and descendants, respectively, of v,
and let D[v]=D(v)∪{v}.

Let T1 be the family of all trees defined as follows: Let T ∈{P5, K1,4} or let T
be the tree obtained from tK1,4 (the disjoint union of t ≥ 2 copies of the star K1,4)
by adding t− 1 edges between leaves of these copies of K1,4 in such a way that the
center of each K1,4 is adjacent to exactly three leaves in T.

Theorem 4.8 ([52]) If T is a tree of order n≥ 4, then γa(T ) ≤ 3n
5 , with equality if

and only if T ∈ T1.

Proof We proceed by induction on the order n≥ 4 of T. If n= 4, then either T is
the path P4 or the star K1,3, and so γ a(T)= 2 < 3n/5. Suppose, then, that for all trees
T′ of order n′, where 4≤ n′ < n, γ a(T′)≤ 3n′/5, with equality if and only if T ∈ T1.

Let T be a tree of order n≥ 4. If T is a star, then γa(K1,n−1) =
⌊

n−1
2

⌋
+ 1 ≤ 3n

5

with equality if and only n= 5, that is, if and only if T = K1,4 ∈ T1. If T is a
double star, then from the results in Table 2, γ a(T) < 3n/5. If T is the path P5, then
γ a(T)= 3= 3n/5 and T ∈ T1. Hence, we may assume that diam(T)≥ 4 and that
T �=P5.

Among all support vertices of T of eccentricity diam(T)− 1, let v be one of
minimum degree. Root T at a vertex r, where r is at distance diam(T)− 1 from
v. Let u denote the parent of v and x the parent of u.

Let T′ be the tree of order n′ obtained from T by deleting v and its children, that
is, T′ =T −D[v]. Since diam(T)≥ 4 and T �=P5, it follows from our choice of v that
n′≥ 4. Applying the inductive hypothesis to T′, γ a(T′)≤ 3n′/5. Let S′ be a γ a-set of
T′. Let |C(v)| = �v, and so n= n′ + �v + 1.

If u∈ S′, then adding v and
⌊

�v−1
2

⌋
children of v to S′ forms a global defensive

alliance of T, and so γ a(T)≤|S′| + (�v + 1)/2≤ 3(n− �v − 1)/5+ (�v + 1)/2 < 3n/5.
Hence, we may assume that u�∈S′, else we have the desired result.

If d(v)= 2, then adding the child of v to S′ produces a global defensive alliance
of T, and so γ a(T)≤|S′| + 1≤ 3(n− 2)/5+ 1 < 3n/5. Hence, we many assume that
�v ≥ 2.

We consider two possibilities based on the d(u). Assume first that d(u)≥ 3.
If u has a child v′ different from v that is a support vertex, then, by our choice
of v, |C(v′)|≥ �v ≥ 2. But then we can always choose S′ to contain u and v′,
contradicting our assumption that u�∈S′. Hence, every child of u different from v
must be a leaf. If u is adjacent to more than one leaf, then again we can choose
u∈ S′, a contradiction. Hence, d(u)= 3 and the child y (say) of u different from
v is a leaf. Since u�∈S′, it follows that y∈ S′. Deleting y from S′ and adding u, v,
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and (�v − 1)/2 children of v to S′ yields a global defensive alliance of T, and so
γ a(T)≤|S′|− 1+ 2+ (�v − 1)/2= |S′| + (�v + 1)/2 < 3n/5.

Second assume that d(u)= 2. If diam(T)= 4, then x is adjacent to r, that is, x is
a support vertex. By our choice of v, d(x)≥ d(v)≥ 3. Thus, T −D[u] is a star K1,k
with x as its center, where k≥ �v ≥ 2. The set {x, u, v} together with (�v − 1)/2 leaves
adjacent to v and (k− 1)/2 leaves adjacent to x is a global defensive alliance of T,
and so γ a(T)≤ 3+ (�v − 1)/2+ (k− 1)/2= (k+ �v + 4)/2= (n+ 1)/2. Since n≥ 7,
γ a(T) < 3n/5. Thus, we may assume that diam(T)≥ 5.

Let T∗ =T −D[u] have order n∗ . Since diam(T)≥ 5, it follows from our choice of
v that n∗≥ 4. Applying the inductive hypothesis to T∗ , γ a(T∗ )≤ 3n∗ /5 with equality
if and only if T ∗ ∈ T1.

Let S∗ be a γ a-set of T∗ . Adding u and v along with
⌊

�v−1
2

⌋
children

of v to S∗ gives a global defensive alliance of T. Hence, if �v = 2, then
γ a(T)≤|S∗ | + 2= 3(n− 4)/5+ 2 < 3n/5; while if �v ≥ 3, then γ a(T)≤|S∗ | + (�v + 3)
/2≤ 3(n− �v − 2)/5+ (�v + 3)/2≤ 3n/5. Furthermore, if γ a(T)= 3n/5, then �v = 3
and γ a(T∗ )= |S∗ | = 3n∗ /5. By the inductive hypothesis, T ∗ ∈ T1. Moreover, by our
choice of v, the support vertex adjacent to r has at least three leaf neighbors in T∗ .
Hence, T∗ is not the path P5. If T∗ =K1,4, then T ∈ T1. So we may assume that
T∗ �=K1,4. That is, T∗ is a tree obtained from t ≥ 2 copies of K1,4 by adding t− 1
edges as described in the definition of the family T1. We note that a γ a-set of T∗ can
be chosen to consist of the center, the nonleaf neighbor of the center, and one leaf
neighbor from each of the t copies of K1,4.

Suppose x is a central vertex of one of the copies of K1,4 in T∗ . Now S∗

contains at least one child of x that is a leaf in T∗ . Deleting this child of x
from S∗ and adding u, v, and one child of v forms a global defensive alliance
of T. Thus, γ a(T)≤|S∗ | + 3− 1= |S∗ | + 2= 3(n− 5)/5+ 2 < 3n/5, a contradiction.
Hence, x must be a leaf of one of the copies of K1,4 in T∗ . Let z be the center of the
K1,4 containing x in T∗ , and let N(z)={z1, z2, z3, x}.

Now x may or may not be a leaf in T∗ . If x is a leaf in T∗ , then in T, z is adjacent
to exactly two leaves, z1 and z2, say. Now let D∗ be a γ a-set of T∗ that contains
all the central vertices of the t copies of K1,4 in T∗ , exactly one leaf adjacent to
each central vertex and all the leaves of K1,4 that are incident to the t− 1 added
edges when constructing T∗ . In particular, z, z3 ∈D∗ . We may assume that x∈D∗ .
Let D= (D∗−{x, z, z3})∪{z1, z2, u, v, w}, where w is any child of v. Therefore, D
is a global defensive alliance of T of cardinality γ a(T∗ )+ 2 < 3n/5, a contradiction.
Hence, x is not a leaf in T∗ , that is, x is adjacent to a vertex (a leaf) in a copy of K1,4
in T∗ . Thus, z1, z2, and z3 are leaves in T∗ , and it follows that T ∈ T1. �

A parallel result for the global strong defensive alliance number is also given
[52]. Since its proof is similar to the one for Theorem 4.8, we omit it and only state
the theorem here. Let T2 be the family of trees described as follows: Let T be the
tree obtained from the disjoint union t≥ 1 copies of the star K1,3 by adding t− 1
edges between leaves of these copies of K1,3 in such a way that the center of each
K1,3 is adjacent to at least one leaf in T. Let T2 be the family of all such trees T.

Theorem 4.9 ([52]) If T is a tree of order n≥ 3, then γâ(T ) ≤ 3n
4 , with equality if

and only if T ∈ T2.
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The global defensive alliance number can be much larger than the vertex
independence number for general graphs. For example, the complete graph Kn has

α(Kn) = 1 �
⌊

n+1
2

⌋
= γa(Kn). However, the following result shows that for trees

T, γ a(T) is bounded above by α(T). To prove the theorem, we will use the following
observation.

Observation 4.10 ([22]) If T is a tree obtained from a tree T′ by attaching a star
K1,p, for p≥ 1, with center u by adding edge uv for some vertex v of T′, then
α(T)=α(T′)+ p.

Theorem 4.11 ([22]) For any tree T, γa(T ) � α(T ), and this bound is sharp.

Proof We proceed by induction on the order n of T. It is straightforward to check
the result for trees of order n= 1 and n= 2. Let T be a tree of order n � 3 and
assume that γa(T

′) � α(T ′) for every tree T
′

of order n
′
< n. If T is a star, then

γa(T ) = �n/2� � α(T ) = n− 1, and the result holds.
Assume that T is not a star, and let v be a support vertex of T with exactly one

nonleaf neighbor, say w. Let T be the tree obtained from T by removing v and all its
leaf neighbors. Since T is not a star, T

′
has order at least two. Let S′ be a γ a-set of

T′. We consider two cases based on the number �v of leaves adjacent to v in T.
Assume first that �v ≥ 2. If w∈ S′, then S′ can be extended to a global defensive

alliance of T by adding v and
⌊

�v−1
2

⌋
leaves adjacent to v. If w�∈S′, then adding v

and
⌈

�v−1
2

⌉
leaves from N(v) gives a global defensive alliance of T. In either case,

γa(T ) � γa(T
′) +

⌈
�v−1

2

⌉
+ 1. By Observation 4.10, α(T)=α(T

′
)+ �v. Applying

the inductive hypothesis to T
′
, we obtain γa(T ) � γa(T

′)+
⌈

�v−1
2

⌉
+ 1 � α(T ′)+

⌈
�v−1

2

⌉
+ 1 � α(T )− �v +

⌈
�v−1

2

⌉
+ 1, and therefore γa(T ) � α(T ).

Next assume that �v = 1. Let v′ be the leaf neighbor of v. Then S′ can be extended
to a global defensive alliance of T by adding v if w∈ S′ or adding v

′
if w�∈S′. Thus,

γa(T ) � γa(T
′)+1. By Observation 4.10, α(T)=α(T′)+ 1. Applying the inductive

hypothesis to T
′
, we obtain γa(T ) � γa(T

′)+ 1 � α(T ′)+ 1 = α(T ).
That this bound is sharp may be seen by considering the tree Hk, formed from

an odd path P2k+1, for k≥ 0, labelled 1, 2, . . . , 2k+ 1, where for each odd labelled
vertex v of the path, a new P5 is added by identifying its center vertex with v. Then
γ a(Hk)=α(Hk)= 3(k+ 1). For example, see H3 in Figure 7. �

Fig. 7 The tree H3
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Since α(T ) � (n+�−1)/2 for every nontrivial tree T with � leaves [7], the next
corollary is an improvement on the bound of Theorem 4.8 for � � n/5.

Corollary 4.12 ([22]) For every nontrivial tree T with � leaves, γa(T ) � (n+ �−
1)/2.

The following bounds on the global strong defensive alliance number are also
found in [22].

Theorem 4.13 ([22]) If T is a tree of order n≥ 3 with s support vertices, then

1. γâ(T ) ≤ 3α(T )−1
2 , and

2. γâ(T ) ≤ α(T )+ s − 1.

4.2.2 Lower Bounds

From our previous discussion, γ (T ) ≤ γa(T ) ≤ γâ(T ) for all trees T. Trees T
having γ (T ) = γâ(T ) are characterized in [53].

The following sharp lower bounds for trees are determined in [52].

Theorem 4.14 ([52]) If T is a tree of order n, then

1. γ a(T)≥ (n+ 2)/4, and
2. γâ(T ) ≥ (n+ 2)/3.

Proof For part (1), let S be a γ a-set of T and γ a(T)= k. Further, let F =T[S], and
so V (F)= S. Since F is a forest,

∑
v ∈ SdS(v)= 2|E(F)|≤ 2(|S|− 1)= 2(k− 1). Since

S is a global defensive alliance, dS(v) ≤ dS(v) + 1 for all v∈ S. Combining these
inequalities with the fact that S is a dominating set, it follows that

n− k = |S| ≤
∑

v∈S
dS(v) ≤

∑

v∈S
(dS(v)+ 1) ≤ 2(k − 1)+ k = 3k − 2.

Hence, k≥ (n+ 2)/4.
For part (2), let S be a γâ-set of T and γâ(T ) = k. Let F =T[S]. As in part (1),∑
v ∈ SdS(v)= 2|E(F)|≤ 2(|S|− 1)= 2(k− 1). Since S is a global strong defensive

alliance, dS(v) ≤ dS(v) for every v∈ S. Since S is a dominating set,

n− k = |S| ≤
∑

v∈S
dS(v) ≤

∑

v∈S
dS(v) ≤ 2(k − 1),

and so k≥ (n+ 2)/3. �
We note that the tree T of order n obtained from a tree F of order n′ by adding

dF(v)+ 1 leaves adjacent to each vertex v of F has γ a(T)= n′ = (n+ 2)/4, attaining
the bound of Theorem 4.14(1). Further, the tree T of order n obtained from a tree F
of order n′ by adding dF(v) leaves adjacent to each vertex v of F has γâ(T ) = n′ =
(n+ 2)/3, attaining the bound of Theorem 4.14(2).
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Fig. 8 Tree T1

Fig. 9 Tree T2

Rodríguez-Velázquez and Sigarreta [76] generalized the lower bounds of Theo-
rems 4.14 as follows.

Theorem 4.15 ([76]) Let T be a tree of order n.

1. If S is a γ a-set of T and T[S] has c components, then γ a(T)≥ (n+ 2c)/4.
2. If S is a γâ-set of T and T[S] has c components, then γâ(T ) ≥ (n+ 2c)/3.

Note that if T[S] is connected, then the bounds of Theorem 4.15 reduce to the
bounds of Theorem 4.14. Bouzefrane, Chellali, and Haynes [13] also improved the
lower bounds given in Theorem 4.14 as follows.

Theorem 4.16 ([13]) Let T be a tree of order n≥ 2 with � leaves and s support
vertices. Then,

1. γa(T ) ≥ 3n−�−s+4
8 , and

2. γâ(T ) ≥ 3n−�−s+4
6 .

We note that constructive characterizations are given in [13] for the trees attaining
each of the bounds of Theorem 4.16. For examples of trees achieving the bounds,
consider the trees T1 and T2 in Figures 8 and 9. The tree T1 shown in Figure 8
has order n= 18, �= 13, and s= 5. The set of support vertices of T1 is a γ a-set of
T1, and so γ a(T1)= 5= (3n− �− s+ 4)/8. Also, the tree T2 shown in Figure 9 has
order n= 11, �= 4, and s= 3. The set of darkened vertices form a γâ-set of T2, so
γâ(T2) = 5 = (3n− �− s + 4)/6.

In [36], Favaron considered relationships between the global (strong) defensive
alliance numbers and the independent domination number of trees. We state the
result but omit the proofs as they are similar to the proof of Theorem 4.4 for general
graphs.

Let H1 be the family of trees T obtained from a tree H by attaching dH(u)+ 1
leaves to each vertex u of H. Let H be the family of trees H such that for every



Alliances and Related Domination Parameters 69

maximal independent set I of H, the number of components of the forest of H − I
is at most |n(H)|/2. Further, let H2 be the family of trees T obtained from a tree
H ∈ H by attaching dH(u) leaves to each vertex u of H.

Theorem 4.17 ([36]) For every tree T of order n≥ 2,

1. i(T)≤ 2γ a(T)− 1 with equality if and only if T ∈ H1.
2. i(T ) ≤ 3γâ(T )/2 − 1 with equality if and only if T ∈ H2.

In concluding this section, we note that relationships between global defensive
alliance and global offensive alliance numbers are given in [11, 102].

5 Related Parameters and Future Work

We conclude this chapter with ideas for future research involving alliances. We
begin by presenting two related concepts, namely cost effective sets and distribution
sets, that were defined subsequent to the introduction of alliances. As they are
relatively unstudied compared to alliances, we include them here. Additional
avenues for future research are discussed in Section 5.1.3.

5.1 Cost Effective and Distribution Sets

Cost effective and distribution sets depend on degrees of vertices in the sets S and S

and are similar to alliances.

5.1.1 Cost Effective Sets

In 2012 Haynes, Hedetniemi, Hedetniemi, McCoy, and Vasylieva [54] introduced
cost effective sets and cost effective domination in graphs. This was a reworking of
the 1990 concept of unfriendly partitions of Aharoni, Milner, and Prikry [1]. Cost
effective sets were proposed to model applications, where services are provided to
clients.

Consider the client–server model of human relationships, in which we let a set S
represent a collection of servers, providing services to the vertices in ∂(S) over the
edges between S and ∂(S). We say that a server, a vertex u∈ S, is cost effective if it
serves at least as many clients as other servers, that is, if dS(v) ≥ dS(v).

Definition 5.1 A subset S of vertices of a graph G is cost effective if for every
vertex v∈ S, dS(v) ≥ dS(v). The cost effective number CE(G) equals the maximum
cardinality of a cost effective set in G, and the lower cost effective number ce(G)
equals the minimum cardinality of a maximal cost effective set in G.
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Notice that the property of being a cost effective set is hereditary, that is, every
subset of a cost effective set is cost effective. Notice also that every independent set
is a cost effective set.

Proposition 5.2 For any graph G, α(G)≤CE(G).

Since a set can be maximal independent but not maximal cost effective, no
inequality exists between ce(G) and i(G).

If the inequality is strict, that is, if dS(v) > dS(v) for a vertex v∈ S, then v is said
to be very cost effective.

Definition 5.3 A subset S of vertices in a graph G is very cost effective if every
vertex of S is very cost effective. The very cost effective number V CE(G) equals
the maximum cardinality of a very cost effective set in G, and the lower very cost
effective number vce(G) equals the minimum cardinality of a maximal very cost
effective set in G.

Cost effective domination numbers are defined as expected. The following results
are given in [54].

Observation 5.4 ([54]) For a connected graph G of order n≥ 2,

γce(G) ≤
⌊n

2

⌋
.

Observation 5.5 ([54]) Every independent dominating set S in an isolate-free
graph G is a very cost effective dominating set.

Corollary 5.6 ([54]) For any isolate-free graph G,

γ (G) ≤ γce(G) ≤ γvce(G) ≤ i(G) ≤ α(G) ≤ �vce(G) ≤ �ce(G) ≤ �(G).

For more on cost effective sets, the reader is referred to [27, 55, 56, 64].

5.1.2 Distribution Centers

In 2018 Desormeaux, Haynes, Hedetniemi, and Moore [28] defined a distribution
center in a graph to model a supply and demand situation. In business, a distribution
center for products is a structure or a group of units used to store goods that are to be
distributed to retailers, to wholesalers, or directly to consumers. Distribution centers
are usually thought of as being demand driven.

Definition 5.7 A nonempty set S of vertices in a graph G is a distribution center if
for each vertex v∈ ∂(S), there exists a vertex u∈ S such that u∈N(v) and |N [u] ∩
S| ≥ |N [v] ∩ S|. The minimum cardinality of a distribution center of a graph G is
the distribution center number dc(G).
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Equivalently, a nonempty set S of vertices in a graph G is a distribution center if
for each vertex v∈ ∂(S), there exists a vertex u∈ S∩N(v) with dS(u) ≥ dS(v). For
such vertices, we say that u supplies the demand of v, or equivalently, v is supplied
by u.

One perspective of a distribution center S is to think of a vertex v∈ ∂(S) and its
neighbors in S as needing some amount of resource units, one unit per vertex, while
each vertex in S is able to supply one unit of the resource. Thus, a vertex in ∂(S)
makes a demand on the distribution center S and is supplied by one of its neighbors
in S. Vertex v asks a vertex u∈ S∩N(v) to deliver dS(v) + 1 units for itself and
its neighbors in S. This is possible only if the vertex u can receive from itself and
its neighbors in S at least this demand, that is, dS(u) ≥ dS(v). Hence, such a set
S models a distribution center that is capable of providing two-day delivery to any
vertex (customer) in ∂(S): on day 1, each neighbor of u∈ S ships one unit of resource
to u, and then, on day 2, vertex u ships dS(v) + 1 units of resource to its neighbor
v∈ ∂(S).

Notice the contrast between a distribution center and an offensive alliance. With
an offensive alliance S, the neighbors of a vertex v ∈ S that are in S can provide
one unit of resource in one day. Thus, the total demand of dS(v)+ 1 by vertex v can
be met by the vertices in S, each sending one unit of resource to v. In this way, an
offensive alliance is like a one-day distribution center.

One can think of a distribution center as a type of an alliance between the
vertices of S to service the vertices in ∂(S). Although distribution centers and
offensive alliances are similar concepts, the corresponding parameters can easily
be shown to be incomparable. To see this, note that for cycles Cn with n≥ 5,
ao(Cn) = ⌈

n
2

⌉
> 2 = dc(Cn). On the contrary, for the complete bipartite graph

Kr,s with 1≤ r≤ s, ao(Kr,s) =
⌈

r+1
2

⌉
< r = dc(Kr,s).

As with alliances, a distribution center that is also a dominating set is called a
global distribution center.

Definition 5.8 A set S of vertices of a graph G is a global distribution center if for
each vertex v ∈ S, there exists a vertex u∈ S∩N(v) such that dS(u) ≥ dS(v). The
global distribution center number γ dc(G) is the minimum cardinality of a global
distribution center of G.

Clearly, every global distribution center is a dominating set. Moreover, every
graph G has a distribution center and a global distribution center since the set V (G)
is trivially both of these.

Observation 5.9 ([28]) For any graph G of order n, γ (G)≤ γ dc(G) and
dc(G)≤ γ dc(G)≤ n.

We conclude our discussion of distribution centers by illustrating the distribution
and global distribution numbers of the Petersen graph P in Figures 10 and 11,
respectively, where the darkened vertices represent the appropriate sets.

Notice in this example that both the set of darkened vertices and the set of
undarkened vertices are global distribution centers. In fact, in any prism, that is,
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Fig. 10 Petersen Graph P,
dc(P)= 4

Fig. 11 Petersen Graph P,
γdc (P ) = 5

a Cartesian product of the form G�K2, the set of vertices in each copy of G in
G�K2 is a global distribution center. As another illustration, it can be seen that the
set of vertices in any two (or more) consecutive rows (or columns) of a grid graph
of the form Gm,n = Pm�Pn forms a distribution center in a grid graph.

5.1.3 Future Research

Much work remains to be done on cost effective sets and distribution sets in graphs,
since they were only introduced in 2012 and 2017, respectively.

We note that Corollary 2.3 raises two optimization questions:

Problem 5.10 Over all possible unfriendly partitions {S, S} of a graph G, what is
the smallest and largest cardinality of sets S and S, or, equivalently, what is the
largest difference |S| − |S|?
Problem 5.11 Over all possible unfriendly partitions {S, S} of a graph G, what is
the smallest and largest cardinality of the set of edges between S and S?

The definitions given in this chapter suggest a broader avenue for future research.
For example, our discussion of unfriendly partitions suggests the definition of

friendly and unfriendly sets as follows. A set S is friendly if for every vertex v∈ ∂(S),
dS(v) ≤ dS(v), and is very friendly if this inequality is strict, that is, dS(v) < dS(v).

If we reverse this inequality, we get the following:
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Table 3 Degree Conditions dS(v) ≤ dS(v) dS(v) ≥ dS(v)

for every v∈ S cost effective internally strong
for every v∈ ∂(S) friendly unfriendly

A set S is unfriendly if for every vertex v∈ ∂(S), dS(v) ≥ dS(v), and is very
unfriendly if this inequality is strict, that is, dS(v) > dS(v).

If we change focus from every vertex v ∈ S to every vertex u∈ S, we get the
following:

A set S is cost effective if for every vertex u∈ S, dS(u) ≤ dS(u), and is very cost
effective if this inequality is strict, that is, dS(u) < dS(u).

If we reverse this inequality, we get the following:
A set S is internally strong if for every vertex u∈ S, dS(u) ≥ dS(u), and is very

internally strong if this inequality is strict, that is, dS(u) > dS(u).
We conclude by summarizing these concepts in Table 3. As usual, if ∂(S) = S,

then the relevant table entries represent dominating sets. Thus, three new types of
dominating sets are defined in Table 3.
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1 Introduction

In this chapter, we survey some results concerning the fractional domatic, fractional
idomatic, and fractional total domatic numbers of a graph. First, we recall the
fundamental concepts of a dominating set, an independent dominating set, and a
total dominating set.

A dominating set of a graph G is a set S of vertices of G such that every vertex
not in S has a neighbor in S. The domination number of G, denoted γ (G), is the
minimum cardinality of a dominating set.

An independent dominating set of G is a set that is both a dominating set
and an independent set. The independent domination number, denoted i(G), is the
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minimum cardinality of an independent dominating set of G. An independent set
of vertices in a graph G is a dominating set of G if and only if it is a maximal
independent set. Thus, i(G) is equivalently the minimum cardinality of a maximal
independent set of vertices in G. A survey on independent domination in graphs can
be found in [9].

A total dominating set, abbreviated TD-set, of a graph G with no isolated vertex
is a set S of vertices such that every vertex in G is adjacent to a vertex in S. The total
domination number, denoted by γ t(G), is the minimum cardinality of a TD-set of
G. For a recent book on total domination in graphs, we refer the reader to [14].

The parameters studied in this chapter represent the fractional relaxation of the
count of the maximum number of disjoint dominating, independent dominating, and
total dominating sets. We discuss these in the next three sections. In Section 5, we
discuss a common framework in hypergraphs and in Section 6 some generalizations.

2 The Fractional Domatic Number

In this section, we survey results on the fractional domatic number of a graph. First,
we recall the concept of the domatic number of a graph. The maximum number
of vertex-disjoint dominating sets in a graph G is called the domatic number of G.
While this is often denoted by d(G), we will use here the notation dom(G). The
domatic number was introduced in 1975 by Cockayne and Hedetniemi [4] and
has since been the subject of a large number of publications; a rough estimate
says that it occurs in more than 200 papers to date. Much of the early work
on the domatic number of a graph and its variants was due to Zelinka. As he
remarked in [31], the word “domatic” was created from the words “dominating” and
“chromatic” since, although it is defined using the concept of domination in graphs,
it is somewhat analogous to the chromatic number of a graph, where we partition
the vertex set into classes having certain properties (in this case, each class is a
dominating set).

We consider here a fractional analog of the parameter dom(G). For a family F of
subsets of V (G), let m(F) denote the maximum number of times a vertex appears in
F (equivalently, the maximum degree of the hypergraph with F as the hyperedges).
The fractional domatic number of a graph G, denoted FDOM(G), is defined as

FDOM(G) = max
|F |

m(F)
,

where the maximum is taken over all families F of dominating sets of G. (For a
discussion of why FDOM can be viewed as a fractional analog and why maximum
can be used instead of supremum in the above formula, see Section 5.) The fractional
domatic number seems to have been formally introduced in 2006 by Suomela [26],
although the concept was studied in 2000 by Fujita, Yamashita, and Kameda [8].
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We start with the following immediate lower and upper bounds on the fractional
domatic number of a graph.

Theorem 1 For every graph G, we have

dom(G) ≤ FDOM(G) ≤ n(G)

γ (G)
.

Proof. To prove the lower bound, consider a family F that consists of a maximum
number of vertex-disjoint dominating sets of G. In this case, |F | = dom(G) and
m(F) = 1, implying that FDOM(G) ≥ |F |/m(F) = dom(G).

To prove the upper bound, let F be a family of dominating sets of G. Each set in
the family F has size at least γ (G). Thus,

γ (G) · |F | ≤
∑

F∈F
|F | ≤ n(G) ·m(F),

or, equivalently, |F |/m(F) ≤ n(G)/γ (G), whence the result. �

We note that equality occurs in the upper bound of Theorem 1 for all complete
graphs. We show next that equality also occurs in the upper bound for all cycles. We
use the standard notation [k]={1, . . . , k}.
Proposition 2 For n≥ 3, we have FDOM(Cn)= n/γ (Cn).

Proof. Let G be the cycle v1v2 . . . vnv1. Let S be an arbitrary minimum dominating
set of G; so |S| = γ (G). Let S = {j | j ∈ [n] and vj ∈ S}. For i∈ [n], let

Si = {vi+j | j ∈ S},

where addition is taken modulo n. Each set Si is a minimum dominating set of G.
Let F = {S1, S2, . . . , Sn}. We note that each vertex of G appears in exactly γ (G) of
these sets, implying that m(F) = γ (G) and therefore that

|F |
m(F)

= n

γ (G)
.

Hence, FDOM(G)≥ n/γ (G). The desired result now follows from the upper bound
of Theorem 1. �

The above proposition immediately generalizes to any circulant. Recall that
γ (Cn)=�n/3�. Hence, as a consequence of Proposition 2, the fractional domatic
number of a cycle is determined as follows:

FDOM(Cn) =

⎧
⎪⎨

⎪⎩

3 if n ≡ 0 (mod 3)
3n
n+2 if n ≡ 1 (mod 3)
3n
n+1 if n ≡ 2 (mod 3).
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It is immediate that a graph G of minimum degree δ has dom(G)≤ δ+ 1. The
same upper bound holds for the fractional domatic number:

Theorem 3 If a graph G of order n has minimum degree δ, then

n

n− δ
≤ FDOM(G) ≤ δ + 1.

Proof. Let v be a vertex of minimum degree in G, and so dG(v)= δ. Let F be a
family of dominating sets of G. Each set in the family F must contain the vertex v
or a neighbor of v in order to dominate v. By the pigeonhole principle, at least one
vertex in the closed neighborhood of v appears in at least |F |/(δ + 1) sets, and so
m(F) ≥ |F |/(δ + 1), or, equivalently, |F |/m(F) ≤ δ + 1. This is true for every
family F of dominating sets of G, implying that FDOM(G)≤ δ+ 1.

To prove the lower bound, consider the collection F of all subsets F of the vertex
set of exactly n− δ elements. Since every vertex belongs to F or has a neighbor in
F, each such subset F is a dominating set of H; that is, F is a family of dominating
sets of G. Furthermore, every vertex is in

(
n−1

n−δ−1

)
sets of F , and so

|F |
m(F)

=
(

n
n−δ

)

(
n−1

n−δ−1

) = n

n− δ
.

Hence, FDOM(G)≥ n/(n− δ). �

Thus, for example, by Theorem 3, if a graph G contains an isolated vertex, then
dom(G)=FDOM(G)= 1. However, if G has no isolated vertex and S is a maximal
independent set in G, then both S and V (G)� S are dominating sets, implying that
dom(G)≥ 2. Thus, FDOM(G)≥ 2 if and only if G contains no isolated vertex.

It remains an open problem to characterize the graphs G achieving equality in the
upper bound of Theorem 3. In the special case when the graph is a regular graph,
Fujita, Yamashita, and Kameda proved in [8] the following result.

Theorem 4 ([8]) If G is a δ-regular graph of order n, then FDOM(G)= δ+ 1 if
and only dom(G)= δ+ 1.

We note that the parameter FDOM is monotonic, in that it cannot decrease on the
addition of edges. We next examine the fractional domatic number of the disjoint
union or join of graphs. Let G and H be two graphs. The join of G and H, written
G⊕H, is the graph obtained from the disjoint union of G and H by joining each
vertex of G to every vertex of H, while the union of G and H, written G+H, is the
graph consisting of the disjoint union of G and H. As a consequence of Lemma 32
later, we get the following result.

Theorem 5 For graphs G and H, it holds that

FDOM(G+H) = min(FDOM(G),FDOM(H)).
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A universal vertex of a graph G is one adjacent to all other vertices in G.

Lemma 6 For graphs G and H without a universal vertex with orders n1 and n2,
respectively, the following hold:

(a) FDOM(G⊕H)= n1 if n1 = n2.
(b) min(n1, n2) < FDOM(G⊕H) ≤ (n1 + n2)/2 otherwise.

Proof. The upper bound follows from Theorem 1, since the join of G and H has
domination number 2. For the lower bound in (a), let F consist of n1 disjoint pairs,
each pair containing one vertex of G and one vertex of H. For the lower bound in
(b), assume n1 < n2. Then, let F consist of (i) all pairs of one vertex in G and one
vertex in H and (ii) the set V (H). Then, |F | = n1n2 + 1 and m(F) = n2, whence
the result. �

Fujita, Yamashita, and Kameda proved the following surprising and beautiful
result in [8].

Theorem 7 ([8]) If G is a cubic graph, then G has a family F of five dominating
sets of G such that m(F) ≤ 2. Furthermore, such a family F can be constructed in
polynomial time.

As an immediate consequence of Theorem 7, we have the following lower bound
on the fractional domatic number of a cubic graph.

Theorem 8 If G is a cubic graph, then FDOM(G) ≥ 5
2 .

As remarked by Fujita et al. [8], it is not true that if G is a cubic graph, then
G has a family F of six dominating sets of G such that every vertex is in at
most two of these. We note that if a cubic graph had such a property, then this
would imply that FDOM(G)≥ 6/2= 3. However, that in turn would imply that
γ (G)≤ n(G)/3, but Kostochka and Stodolsky [19] showed there are cubic graphs
G, where γ (G)= 8n(G)/23+ o(1).

Abbas, Egerstedt, Liu, Thomas, and Whalen [1] generalized Theorem 7 to a
larger class of graphs, namely the class of K1,6-free graphs; that is, graphs with
no induced subgraph isomorphic to K1,6. Their study was motivated by a problem
encountered both in the multiagent robotics and in the mobile sensor networks
domains. As remarked in [1], the generalization to K1,6-free graphs is of interest
in multiagent robotics, because the class of K1,6-free graphs includes the class of
unit disk graphs, where for every vertex there is a disk of radius 1 centered at the
vertex representing its transmission or interaction range (see [23]).

In order to state their result, we recall a 1989 result due to McCuaig and Shepherd
[22]. Let B be the family of seven graphs shown in Figure 1. McCuaig and Shepherd
[22] showed that if G is a connected graph of minimum degree at least 2 and G is not
one of graphs in the family B, then the domination number of G is at most two-fifths
its order.
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Fig. 1 The family B of seven
exceptional graphs

We are now in a position to state the result of Abbas et al. [1]:

Theorem 9 ([1]) If G is a K1,6-free connected graph with minimum degree at least
2 and G /∈ B ∪ {K2,3}, then G has a family F of five dominating sets of G such that
m(F) ≤ 2, implying that FDOM(G) ≥ 5

2 .

We remark that the proof of Theorem 9 given by Abbas et al. [1] is algorithmic
and gives a polynomial-time algorithm to find such a family F .

We conclude this section with a comment about planar graphs. By Theorem 3,
the maximum fractional domatic number of a planar graph is at most 6, since the
minimum degree is at most 5. As observed in [12], an example of a planar graph
with fractional domatic number equal to 6 is the icosahedron; this has six disjoint
independent dominating sets of size 2, each consisting of a vertex and the unique
vertex at distance 3 from it.

3 The Fractional Idomatic Number

In this section, we survey results on the fractional idomatic number of a graph. First,
we recall the concept of the idomatic number of a graph. The maximum number
of vertex disjoint independent dominating sets in a graph G is called the idomatic
number of G denoted by idom(G). This terminology was introduced by Zelinka
[29], but the parameter was originally defined by Cockayne and Hedetniemi [5]. In
this section, we consider a fractional version of the idomatic number of a graph. The
fractional idomatic number of graph G, denoted FIDOM(G), is defined as

FIDOM(G) = max
|F |

m(F)
,

where the maximum is taken over all families F of independent dominating sets
of G and where, as before, m(F) is the maximum number of times an element
appears in F . (We note that this parameter should be defined as the supremum, but
as explained in Section 5, one can show that the supremum is always achieved.) The
results in this section are mainly due to the authors [12].

Using analogous proofs to those presented in Theorems 1 and 3, one can establish
the following immediate lower and upper bounds on the fractional idomatic number
of a graph.

Theorem 10 ([12]) The following hold in a graph G with minimum degree δ.
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(a) idom(G)≤FIDOM(G)≤ n(G)/i(G).
(b) FDOM(G)≤ δ+ 1.

Examples of equality in the upper bound of Theorem 10(a) are the cycles of
length a multiple of 3. We note that FIDOM(G)= 1 only if the graph G has an iso-
late. As shown, for example, by Favaron [7], the independent domination number of
a graph of order n can be as much as n−o(n), even with prescribed minimum degree.
For such a graph G, we have that idom(G)= 1 and that FIDOM(G)= 1+ o(1). Even
restricted to special classes of graphs, one can still see this behavior. Here is one
such result. Recall that a graph is claw-free if it does not contain K1,3 as an induced
subgraph.

Proposition 11 ([12]) There exist connected claw-free graphs G with arbitrarily
large minimum degree for which FIDOM(G)= 1+ o(1).

Proof. Let G be the claw-free graph G constructed as follows. For a and d positive
integers, let G be obtained from a complete graph H of order ad as follows. Let X1,
. . . , Xa be a partition of V (H) into sets each of size d. For each resulting set Xi, we
add a vertex xi of degree d adjacent to every vertex of Xi for i∈ [a]. The resultant
split graph G is claw-free and has minimum degree d. Letting X ={x1, . . . , xa}, we
note that every independent dominating set of G contains at least a− 1 vertices of
X, implying that

FIDOM(G) ≤ a

a − 1
.

Furthermore, for all i∈ [a] if Fi = (X \ {xi}) ∪ {x′i}, where x′i is an arbitrary vertex
in Xi, then F = {F1, . . . , Fa} is a family of independent dominating sets of G
satisfying m(F) = a − 1, implying that

FIDOM(G) ≥ |F |
m(F)

= a

a − 1
.

Consequently, FIDOM(G)= a/(a− 1). The desired result now follows by taking a
and d arbitrarily large. �

We next present a lower bound on the fractional idiomatic number in terms
of dynamic colorings. An r-dynamic coloring, also called r-hued coloring in the
literature, of a graph G is a proper coloring of the vertices of G such that every
vertex v has at least min(dG(v), r) colors in its neighborhood, where dG(v) is the
degree of the vertex v in G. For more details on r-dynamic colorings, we refer the
reader to Jahanbekam et al. [17].

Theorem 12 ([12]) If G is a graph with minimum degree at least r that has an
r-dynamic coloring using k colors, then

FIDOM(G) ≥ k

k − r
,
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and therefore i(G)≤ (k− r)n/k.

As a consequence of Theorem 12, we have the following lower bound on the
fractional idiomatic number in terms of the chromatic number.

Theorem 13 ([12]) If G is an isolate-free graph with chromatic number k, then

FIDOM(G) ≥ k

k − 1
.

By Theorem 10(b), the maximum fractional idomatic number of a planar graph
is at most 6, since the minimum degree is at most 5. As noted earlier, an example of
a planar graph with fractional idomatic number equal to 6 is the icosahedron; this
has six disjoint independent dominating sets of size 2, each consisting of a vertex
and the unique vertex at distance 3 from it.

We next consider lower bounds on the fractional idomatic number of a planar
graph. As a consequence of Theorem 13 and a result by MacGillivray and Seyffarth
[20] that provides an upper bound for the independent domination number in terms
of the chromatic number, we obtain the following result.

Theorem 14 ([12]) The following hold in a planar connected graph G of
order n.

(a) If n≥ 2, then FIDOM(G) ≥ 4
3 .

(b) If n≥ 10, then i(G) ≤ 3
4n− 2.

Recall that the corona G ◦P1 of a graph G, also denoted cor(G) in the literature,
is the graph obtained from G by adding a pendant edge to each vertex of G. As
remarked in [12], the two bounds in Theorem 14 are sharp because of the corona
K4 ◦P1 of K4 illustrated in Figure 2.

If one considers planar graphs of minimum degree at least 2, then the lower bound
on the fractional idiomatic number in Theorem 14(a) can be improved. The key is
a result due to Kim, Lee, and Park [18], who showed that every connected planar
graph has a 2-dynamic coloring using at most four colors, except for C5. Therefore,
by Theorem 12 (with r= 2 and k= 4), we have that every connected planar graph
G, except possibly for C5, satisfies FIDOM(G)≥ 2. However, since the 5-cycle has
FIDOM(C5) = 5

2 , the 5-cycle is no exception to the lower bound FIDOM(G)≥ 2.
We therefore have the following lower bound on the fractional idiomatic number of
a planar graph with minimum degree at least 2.

Theorem 15 ([12]) If G is a planar graph with δ(G)≥ 2, then FIDOM(G)≥ 2.

Fig. 2 A planar graph G with
FIDOM(G) = 4

3
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As an immediate consequence of Theorem 10(a) and Theorem 15, we have the
following upper bound on the independent domination number of a planar graph
with minimum degree at least 2.

Corollary 16 ([12]) If G is a planar graph with δ(G)≥ 2, then i(G) ≤ 1
2n(G).

The following construction, given in [12], shows that there exists an infinite
family of planar graphs G with minimum degree two that satisfy FIDOM(G)= 2.
For s≥ 2, let Hs be the graph obtained from a 4-cycle v1v2v3v4v1 by adding s new
vertices whose neighbors are the pair {vi, vi+2} for each i∈ [2]. When s= 4, for
example, the resulting graph Hs is illustrated in Figure 3. As observed in [12], it
holds that i(Hs) = 1

2n(Hs) and FIDOM(Hs)= 2. Thus, the bounds of Theorem 15
and Corollary 16 are tight.

As remarked in [12], there are numerous families of planar graphs G with
minimum degree two that satisfy FIDOM(G)= 2 and i(G) < 1

2n(G). It remains,
however, an open problem to characterize the graphs achieving equality in the
bounds of Theorem 15 and Corollary 16. It is also noted in [12] that there are
numerous families of planar graphs G with minimum degree two that do not have
two disjoint independent dominating sets, and therefore such graphs G satisfy
idom(G)= 1 and FIDOM(G)≥ 2.

It remains an open problem to determine a best possible lower bound on the
fractional idiomatic number of a planar graph with minimum degree 3. In this case,
we believe that the upper bound of Theorem 15 can be improved from 2 to 5

2 . We
pose this formally as a conjecture.

Conjecture 1 If G is a planar graph with δ(G)≥ 3, then FIDOM(G) ≥ 5
2 .

We note that if G = C5 �K2 is the 5-prism illustrated in Figure 4, then i(G) =
4 = 2

5n and FIDOM(G) = 5
2 . Thus, if Conjecture 1 is true, the bound is best

possible.

Fig. 3 The planar graph H4
with i(H4) = 1

2n(H4) and
FIDOM(H4)= 2

v3 v4

v2v1

Fig. 4 The 5-prism C5 �K2
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The fractional idiomatic number of a maximal outerplanar graph is easy to
compute. If G is a maximal outerplanar graph, then G is 3-colorable and every color
class is an independent dominating set, implying that idom(G)≥ 3. Furthermore,
since G has minimum degree 2, Theorem 10(b) implies that FIDOM(G)≤ 3.
Consequently, idom(G)=FIDOM(G)= 3 for a maximal outerplanar graph G, as
observed in [12].

If G is a general outerplanar graph, then G is 3-chromatic and, by Theorem 13,
we therefore have FIDOM(G) ≥ 3

2 . This, in turn, implies by Theorem 10(a) that
i(G) ≤ 2

3n(G). If G is obtained from K3 by attaching k≥ 1 pendant edges to
each vertex of the triangle, then the resulting graph G has order n(G)= 3(k+ 1)
and satisfies i(G)= 2k+ 1. Thus, for k sufficiently large, the bounds i(G) ≤ 2

3n(G)

and FIDOM(G) ≥ 3
2 are asymptotically sharp. If, however, we impose a minimum

degree condition, then we can improve the lower bound of 3
2 on the fractional

idiomatic number to a lower bound of 2, as shown by the following result in [12].

Theorem 17 ([12]) If G is an outerplanar graph with minimum degree at least 2,
then FIDOM(G)≥idom(G)≥ 2.

Let G and H be two graphs. As above, the join of G and H is written as G⊕H,
while their disjoint union is written as G+H. The lexicographic product of G and
H, written G[H], is the graph with vertex set V (G)×V (H), where two vertices
(g1, h1) and (g2, h2) are adjacent in G[H] if and only if g1g2 ∈E(G) or g1 = g2 and
h1h2 ∈E(H). For these graph operations, the fractional idiomatic number behaves
as follows.

Theorem 18 ([12]) For graphs G and H, the following hold:

(a) FIDOM(G+H) = min(FIDOM(G),FIDOM(H)).
(b) FIDOM(G⊕H)=FIDOM(G)+FIDOM(H).
(c) FIDOM(G[H])=FIDOM(G)×FIDOM(H).

The following result is shown in [11].

Theorem 19 ([11]) If G is a graph with minimum degree at least 2 and maximum
degree at most 3, then idom(G)≥ 2.

As an immediate consequence of Theorem 19, every cubic graph G satisfies
idom(G)≥ 2, a result attributed to Berge. We note that there are many cubic graphs
G satisfying idom(G)= 2. We pose the following question.

Question 1 Is it true that if G is a connected cubic graph different from K3,3, then
FIDOM(G) ≥ 5

2 ?

As observed earlier, if G = C5 �K2 is the 5-prism shown in Figure 4, then
FIDOM(G) = 5

2 . Hence, if Question 1 is true, then the lower bound value 5/2 for
the fractional idiomatic number would be best possible.
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4 The Fractional Total Domatic Number

In this section, we survey results on the fractional total domatic number of a graph.
First, we recall the concept of the total domatic number of a graph. The total domatic
number of a graph G, denoted by tdom(G) and first defined by Cockayne, Dawes,
and Hedetniemi [6], is the maximum number of total dominating sets into which
the vertex set of G can be partitioned. The parameter tdom(G) is equivalent to the
maximum number of colors in a (not necessarily proper) coloring of the vertices of
a graph, where every color appears in every open neighborhood. Chen, Kim, Tait,
and Verstraete [3] called this the coupon coloring problem. This parameter is now
well studied. We refer the reader to Chapter 13 in the book [14] on total domination
in graphs for a survey of results on the total domatic number and to [10] for a recent
paper on this topic.

In this section, we consider a fractional version of the total domatic number of
a graph. The fractional total domatic number of a graph G, denoted FTD(G), is
defined as

FTD(G) = max
|F |

m(F)
,

where the maximum is taken over all families F of total dominating sets of G and
where, as before, m(F) is the maximum number of times an element appears in
F . (As before, the parameter should be defined as the supremum, but as shown in
Section 5, the supremum is always achieved.)

The following trivial lower and upper bounds on the fractional total domatic
number of a graph are established in [10].

Theorem 20 ([10]) If G is an isolate-free graph, then

tdom(G) ≤ FTD(G) ≤ n(G)

γt (G)
.

Theorem 21 ([10]) If a graph G of order n has minimum degree δ≥ 1, then

n

n− δ + 1
≤ FTD(G) ≤ δ.

Thus, for example, by Theorems 20 and 21, we get the following observation.

Proposition 22 ([10]) The following hold in a graph G with minimum degree δ.

(a) If δ≥ 1, then FTD(G)= 1.
(b) If δ≥ 2, then FTD(G) > 1.

We note that there are graphs G with arbitrarily large minimum degree with
FTD(G) < 1+ ε for any given ε > 0. Indeed, these are the graphs that Zelinka [30]
provided as examples that have tdom(G)= 1 and arbitrarily large minimum degree.
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A lower bound on the fractional total domatic number of a claw-free graph with
minimum degree at least 2 is determined in [10].

Theorem 23 ([10]) If G is a claw-free graph with δ≥ 2, then FTD(G) ≥ 3
2 .

The lower bound of Theorem 23 is in a sense best possible in that the graphs K3
and C6 have fractional total domatic number exactly 3/2. However, asymptotically
the bound should be improvable. As remarked in [10], perhaps it is true that if G
is a connected, claw-free graph with δ≥ 2, then FTD(G)≥ 2−o(1). Furthermore,
if G is a connected, claw-free graph with δ≥ 3, then maybe this guarantees that
FTD(G)≥ 2. As shown in [10], there are arbitrarily large connected K1,4-free graphs
with fractional total domatic number exactly 3/2.

We note that the union of two disjoint dominating sets is a total dominating set.
Thus, it is immediate that tdom(G)≥�dom(G)/2�. But, in the case that the ordinary
domatic number is odd, one can say slightly more:

Theorem 24 ([10]) If G is an isolate-free graph, then FTD(G) ≥ 1
2 dom(G).

Proof. Let dom(G)= k, and let D1, . . . , Dk be k disjoint dominating sets in the
graph G. The family

F = {Di ∪Dj | 1 ≤ i < j ≤ k }

is a family of
(
k
2

)
total dominating sets of G. Since every vertex of G appears in at

most k− 1 sets in the family F , we note that m(F) = k − 1. Thus,

FTD(G) ≥ |F |
m(F)

=
(
k
2

)

k − 1
= k

2
.

The desired result now follows recalling that k= dom(G). �

Equality in Theorem 24 occurs, for example, in complete graphs.
We consider now planar graphs. A triangulated disc is a (simple) planar graph

all of whose faces are triangles, except possibly for the outer face. Matheson and
Tarjan [21] showed that if G is a triangulated disc, then dom(G)≥ 3. Hence, as an
immediate consequence of Theorem 24 and the Matheson–Tarjan result, we have
the following lower bound on the fractional total domatic number of a triangulated
disc.

Theorem 25 ([10]) If G is a triangulated disc, then FTD(G) ≥ 3
2 .

As remarked in [10], the lower bound of Theorem 25 is tight as may be seen by
considering the triangulated disc G illustrated in Figure 5, where the shaded area
consists of any maximal planar graph (or, equivalently, triangulation). Let S be the
set of three vertices on the outer face of G that have degree at least 4. If F is an
arbitrary family of total dominating sets of G, then each set in the family F contains
at least two vertices of S. By averaging, there is a vertex in S that belongs to at least
2|F |/3 sets in F , implying that m(F) ≥ 2|F |/3, or, equivalently, |F |/m(F) ≤ 3/2.
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Fig. 5 A triangulated disc G
with FTD(G) = 3

2

any triang-
ulation

Since this is true for every family F of total dominating sets of G, this implies that
FTD(G)≤ 3/2. Consequently, by Theorem 25, FTD(G)= 3/2.

We next consider triangulations, where by triangulation we mean a simple graph
embedded in some orientable surface such that every region is a triangle. The
following key lemma establishes an upper bound on the fractional total domatic
number of a graph G in terms of its average degree, which we denote by dav(G).

Lemma 26 ([10]) If G is a triangulation of order at least 4, then

FTD(G) ≤ dav(G)− 1.

If G is a planar triangulation of order n, then dav(G) = 6 − 12
n

. Thus, as an
immediate consequence of Lemma 26, we have the following upper bounds on the
total domatic and fractional total domatic numbers of a planar graph.

Theorem 27 ([10]) The following hold in a planar graph G.

(a) tdom(G)≤ 4.
(b) FTD(G) ≤ 5 − 12

n
.

As remarked in [10] there are planar graphs G with tdom(G)= 4. For example,
if G is obtained from a truncated tetrahedron and adding a vertex inside each
hexagonal face that is joined to all vertices on the boundary, then G is a planar graph
G of order 16 satisfying tdom(G)= 4. Illustrated in Figure 6 (which corrects a figure
in [10]) is a spanning subgraph thereof that still has four disjoint total dominating
sets: the vertices labeled i form a total dominating set for each i∈ [4].

As shown in [10], there are planar graphs G for which FTD(G) > 4. We note that
the result of Lemma 26 applies on all surfaces. In particular, since the average degree
of a toroidal graph is at most 6, this yields the following upper bounds on the total
domatic and fractional total domatic numbers of a toroidal graph.

Theorem 28 If G is a toroidal graph, then tdom(G)≤FTD(G)≤ 5.

There are toroidal graphs G satisfying tdom(G)=FTD(G)= 5. The example
provided in [10] is illustrated in Figure 7, where the top and bottom dotted lines
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Fig. 6 A planar graph G with
tdom(G)= 4

4 4

4

4

1

1

1
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2

Fig. 7 A toroidal graph G
with tdom(G)= 5

1 1 2 2 3 3 4 4 5 5

4 4 5 5 1 1 2 2 3 3

2 2 3 3 4 4 5 5 1 1

5 5 1 1 2 2 3 3 4 4

3 3 4 4 5 5 1 1 2 2

should be identified and similarly with the left and right dotted lines; the vertices
labeled i form a total dominating set of G for each i∈ [5].

It remains generally an open problem to determine good lower bounds for
triangulations. Since every planar triangulation is a triangulated disc, Theorem 25
implies that every planar triangulation G satisfies FTD(G) ≥ 3

2 . However, we
believe this lower bound can be improved. In this regard, the following conjectures
are posed in [10].

Conjecture 2 ([10]) If G is a planar triangulation of order at least 4, then
tdom(G)≥ 2.

Using the Four Color Theorem, it is shown in [10] that Conjecture 2 is true if
every vertex has odd degree or if the dual of G is Hamiltonian. By characterizing
the maximal outerplanar graphs H that have tdom(H) < 2, Nagy [24] showed that
the conjecture is true if G is Hamiltonian. A stronger version of the above is the
following conjecture.

Conjecture 3 ([10]) Every planar triangulation with at least four vertices has
a proper 4-coloring (C1, C2, C3, C4) such that C1 ∪C2 and C3 ∪C4 are total
dominating sets.
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Fig. 8 The Heawood graph

As with the parameter FDOM, the parameter FTD is monotonic. The fractional
total domatic number of the disjoint union of graphs behaves as expected.

Theorem 29 ([10]) For all graphs G and H, it holds that FTD(G + H) =
min{FTD(G),FTD(H)}.

We conclude this section with some comments on regular graphs. It remains a
long-standing open problem to characterize those cubic graphs that do not have two
disjoint total dominating sets; that is, the 3-regular graphs with tdom(G)= 1. It is
well known that the Heawood graph, shown in Figure 8, is the smallest example of
such a graph G without two disjoint total dominating sets.

Nevertheless, a natural question is whether the fractional total domatic number
of a cubic graph is always at least 2. This question was answered in [16].

Theorem 30 ([16]) If G is a connected cubic graph, then FTD(G)≥ 2.

Recall that Fujita, Yamashita, and Kameda proved in Theorem 7 the beautiful
result that every connected cubic graph G has a family F of five dominating sets
such that every vertex is in at most two of these. The following strengthening of
Theorem 30 is conjectured in [10].

Conjecture 4 ([10]) If G is a connected cubic graph, then G has a family of four
total dominating sets of G such that every vertex is in at most two of these.

For regular graphs with higher minimum degree, we have the following lower
bound on the fractional total domatic number of a regular graph.

Theorem 31 ([16]) For all k≥ 3, if G is a k-regular graph, then

FTD(G) >
k

1 + ln(k)
.

5 Fractional Definitions and Hypergraphs

The three parameters explored in this chapter can be defined in terms of hyper-
graphs. The fractional matching number of a hypergraph H, denoted ν∗ (H), is
defined by the linear program
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max
∑

e∈E(H)

w(e) such that ∀e ∈ E : w(e) ≥ 0 and ∀v ∈ V (H) :
∑

e�v
w(e) ≤ 1.

The matching number of H, denoted ν(H), is the maximum number of disjoint
hyperedges. Clearly, ν∗ (H)≥ ν(H). Also, by linear programming duality, the frac-
tional matching number equals the fractional transversal/cover number.

As before, for a multiset F of E(H), we define m(F) as the maximum number of
times a vertex of H appears in F .

Since the linear program has a rational solution,

ν∗(H) = sup
|F |

m(F)
= max

|F |
m(F)

,

where the maximum and the supremum are over all such multisets F . See Chapter
1 of [25] for a fuller discussion.

Consider a family D of subsets of the vertex set of a graph G. This set can
naturally be thought of as a hypergraph HD. Then, the matching number of HD is
the maximum number of disjoint members of D. If we let D be the set of dominating
sets, we get the domatic number and fractional domatic number, discussed in
Section 2. If we let D be the set of independent dominating sets, we get the idomatic
number and fractional idomatic number, discussed in Section 3. If we let D be the
set of total dominating sets, we get the total domatic number and fractional total
domatic number, discussed in Section 4.

The results about the behavior of the three fractional parameters under disjoint
union are a special case of a result in hypergraphs. Given two disjoint hyper-
graphs H1 and H2, we define their direct sum as the hypergraph with vertex set
V (H1)∪V (H2) and edge set {e1 ∪ e2�e1 ∈E(H1), e2 ∈E(H2)}. Bujtás and Tuza [2]
showed that the matching number of the direct sum of two hypergraphs equals the
smaller of the two matching numbers. We note that the analogous result is true for
the fractional matching number too.

Lemma 32 If hypergraph H is the direct sum of hypergraphs H1 and H2, then
ν∗(H) = min(ν∗(H1), ν

∗(H2)).

Proof. For �∈{1, 2}, let hi be an optimal weighting of E(Hi). Let Y =
max(ν∗(H1), ν

∗(H2)). Then define the weighting h of the direct sum H by

h(e1 ∪ e2) = h1(e1)h2(e2)/Y.

For each vertex v∈V (H1), we have

∑

e�v
h(e) =

∑

e1�v
h1(e1)

∑

e2

h2(e2)/Y ≤
∑

e1�v
h1(e1) ≤ 1.

Similarly, the constraint is satisfied for v∈V (H2). And the total weight of h is
ν∗(H1)ν

∗(H2)/Y = min(ν∗(H1), ν
∗(H2)). It follows that
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ν∗(H) ≥ min(ν∗(H1), ν
∗(H2)).

Conversely, let h be the optimal weighting for the direct sum H. Then, define the
weighting h1 on hypergraph H1 by

h1(e1) =
∑

e⊇e1

h(e).

It follows readily that for each vertex v∈V (H1), we have
∑

e1�v h1(e1) ≤ 1. That
is, the weighting h1 represents a fractional matching of H1. Thus, ν∗ (H1)≥ ν∗ (H).
Analogously, ν∗ (H2)≥ ν∗ (H). That is, ν∗(H) ≤ min(ν∗(H1), ν

∗(H2)).
The two inequalities combined give the desired result. �

As a consequence the results on disjoint union follow for the fractional domatic,
independent domatic, and total domatic numbers given earlier.

6 More on Hypergraphs

While the previous section described a general conversion from a particular domatic
number of a graph to the matching number of an associated hypergraph, another
hypergraph provides a more general setting for the fractional domatic and fractional
total domatic number.

Recall that a subset T of vertices is a transversal (also called vertex cover or
hitting set) in a hypergraph H if T has a nonempty intersection with every edge of
H. The transversal number τ (H) of H is the minimum size of a transversal in H.
We denote by disjτ (H) the disjoint transversal number of a hypergraph H, which
is the maximum number of disjoint transversals in H. Analogous to the fractional
total domatic number, one can define the fractional disjoint transversal number. The
fractional disjoint transversal number of H, denoted FDT(H), is defined as

FDT(G) = max
|F |

m(F)
,

where the maximum is taken over all families F of transversals of H. Analogous to
earlier results, we have the following bounds on the fractional disjoint transversal
number.

Theorem 33 ([10]) For every isolate-free hypergraph H of order n,

disjτ (H) ≤ FDT(H) ≤ n

τ(H)
.

For k≥ 2, if H is the complete k-uniform hypergraph of order n, then
τ (H)= n− k+ 1, and so by Theorem 33, FDT(H)≤ n/(n− k+ 1). To prove that
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Fig. 9 The Fano plane F7

FDT(H)≥ n/(n− k+ 1), we consider the collection F of all n− k+ 1 element
subsets of V (H). The resulting family F is a family of

(
n

n−k+1

)
transversals of H.

Each vertex is in
(
n−1
n−k

)
sets of F , and so

FDT(H) ≥ |F |
m(F)

=
(

n
n−k+1

)

(
n−1
n−k

) = n

n− k + 1
.

Consequently, FDT(H)= n/(n− k+ 1). Thus, the upper bound of Theorem 33 is
achieved, for example, by the complete k-uniform hypergraph of order n.

As another example, if F7 is the Fano plane, illustrated in Figure 9, then
τ (F7)= 3, and so by Theorem 33, FDT(F7)≤ 7/3. If we take F to be the family
consisting of the seven edges of F7, then F is a family of transversals of F7. Each
vertex belongs to exactly three sets of F , and so FDT(F7) ≥ |F |/m(F) = 7/3.
Consequently, FDT(F7)= 7/3. Thus, the Fano plane achieves equality in the upper
bound of Theorem 33. We note however that disjτ (F7)= 1.

Analogous to Lemma 32, we have the following result on the fractional disjoint
transversal number of the disjoint union of hypergraphs.

Theorem 34 ([10]) If H is the disjoint union of isolate-free hypergraphs H1 and
H2, then FDT(H) = min{FDT(H1),FDT(H2)}.

We describe next the interplay between the fractional (total) domatic number
and the fractional disjoint transversal number. The open neighborhood hypergraph,
abbreviated ONH, of a graph G is the hypergraph ON (G) whose vertex set is
V (G) and whose hyperedges are the open neighborhoods of vertices in G. Thus,
if H = ON (G), then V (H)=V (G) and E(H)={ NG(x)�x∈V (G)}. As first
observed by Thomassé and Yeo [27], a total dominating set in G is a transversal
in ON (G) and conversely. Thus, the transversal number of ON (G) is precisely the
total domination number γ t(G). Similarly, the closed neighborhood hypergraph,
abbreviated CNH, of a graph G is the hypergraph CN (G) whose vertex set is
V (G) and whose hyperedges are the closed neighborhoods of vertices in G. Again,
a dominating set in G is a transversal in CN (G) and conversely. We state this
connection formally as follows.

Proposition 35 ([10]) For every graph G, FDOM(G) = FDT(CN (G)) and for
every isolate-free graph G, FTD(G) = FDT(ON (G)).
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As an example, if G is the Heawood graph, illustrated in Figure 8, then the ONH
consists of two disjoint copies of the Fano plane F7. Therefore, by Theorem 34
and Proposition 35, we have FTD(G) = FDT(ON (G)) = FDT(F7 ∪ F7) =
FDT(F7) = 7/3. In contrast, the Heawood graph does not have two disjoint total
dominating sets; that is, tdom(G)= 1. Nevertheless, there is a general fractional
lower bound.

Theorem 36 ([16]) If H is a 3-regular 3-uniform hypergraph, then FDT(H)≥ 2,
and this bound is tight.

As regards tightness, it is shown in [13] that there are infinitely many (connected)
3-regular 3-uniform hypergraphs H satisfying τ(H) = 1

2n(H), implying by
Theorem 33 that each of these hypergraphs satisfies FDT(H)≤ 2. The lower bound
in Theorem 36 shows that FDT(H)≥ 2. Consequently, FDT(H)= 2 for these
hypergraphs.

As a consequence of a result due to Thomassen [28] and a relationship given
in [15] between the total domatic number of a k-regular graph and 2-colorings
of k-uniform k-regular hypergraphs, we have that if H is a 4-regular 4-uniform
hypergraph, then FDT(H)≥disjτ (H)≥ 2. However, it is conjectured in [16] that this
lower can be improved when H is a 4-regular 4-uniform hypergraph.

Conjecture 5 ([16]) If H is a 4-regular 4-uniform hypergraph, then FDT(H) ≥ 7
3 .

We note that if Conjecture 5 is true, then it implies that every 4-regular graph G
satisfies FTD(G) ≥ 7

3 .
Using probabilistic arguments, the following lower bound on the fractional

disjoint transversal number of a k-regular k-uniform hypergraph was established
in [16].

Theorem 37 ([16]) For all k≥ 3, if H is a k-regular k-uniform hypergraph, then

FDT(H) >
k

1 + ln(k)
.

Furthermore, this bound is essentially best possible as there exist k-regular k-
uniform hypergraphs Hk with FDT(Hk) ≤ k

ln(k) (1 + o(1)).

7 Conclusion

In this chapter, we survey results on the fractional relaxation of the count of
the maximum number of disjoint dominating, independent dominating, and total
dominating sets in a graph. We discuss a common framework in hypergraphs and
show that the fractional domatic and fractional total domatic numbers of a graph
can be placed in a more general hypergraph setting. We present the main results
known to date on the fractional domatic parameters and list several outstanding
open problems and conjectures that have yet to be settled.
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Dominator and Total Dominator
Colorings in Graphs

Michael A. Henning

AMS Subject Classification: 05C65, 05C69

1 Introduction

A dominating set of a graph G is a set S⊆V (G) such that every vertex in V (G)� S
is adjacent to at least one vertex in S. The domination number of G, denoted by
γ (G), is the minimum cardinality of a dominating set of G. A dominating set of G
of cardinality γ (G) is called a γ -set of G.

A total dominating set, abbreviated a TD-set, of a graph G with no isolated vertex
is a set S⊆V (G) such that every vertex in V (G) is adjacent to at least one vertex in
S. The total domination number of G, denoted by γ t(G), is the minimum cardinality
of a TD-set of G. A TD-set of G of cardinality γ t(G) is called a γ t-set of G. Total
domination is now well studied in graph theory. The literature on the subject of total
domination in graphs has been surveyed and detailed in the book [19].

A proper vertex coloring of a graph G is an assignment of colors (elements of
some set) to the vertices of G, one color to each vertex, so that adjacent vertices
are assigned distinct colors. A proper vertex coloring whose colors are taken from
a set of k colors, usually the set [k]={1, 2, . . . , k}, is called a proper k-coloring.
In a given coloring of G, a color class of the coloring is a set consisting of all those
vertices assigned the same color. The vertex chromatic number of G, denoted χ (G),
is the smallest positive integer k for which G has a proper k-coloring. A χ -coloring
of G is a proper k-coloring of G that uses χ (G) colors. In what follows, we simply
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call a proper vertex coloring a coloring, and we refer to the vertex chromatic number
as the chromatic number.

In this chapter, we combine the concept of domination (total domination) in
graphs with the concept of colorings in graphs and study dominator colorings
(respectively, total dominator colorings) of a graph. In Section 3, we formally define
dominator colorings in graphs, and in Section 4, we formally define the analogous
concept of total dominator colorings in graphs. In these sections, we present selected
results on the so-called dominator chromatic number and total dominator chromatic
number of a graph.

2 Graph Theory Notation

For completeness, we include some graph theory terminology that we will use
in this chapter. A vertex of degree 1 is called a leaf, and its unique neighbor is
called a support vertex. Two vertices v and w are neighbors in a graph G if they
are adjacent, that is, if vw∈E(G). The open neighborhood of a vertex v in G is
the set of neighbors of v, denoted NG(v), whereas the closed neighborhood of v
is NG[v]=NG(v)∪{v}. The open neighborhood of a set S⊆V (G) is the set of all
neighbors of vertices in S, denoted NG(S), whereas the closed neighborhood of S
is NG[S]=NG(S)∪ S. The S-private neighborhood of a vertex v∈ S is defined by
pnG(v, S)={w∈V (G) : NG[w]∩ S={v}}. Thus, pnG(v, S)=NG[v]�NG[S�{v}].
We note that if v∈pnG(v, S), then the vertex v is isolated in the subgraph G[S].
A vertex outside the set S that belongs to the set pnG(v, S) is called an S-external
private neighbor of v. If the graph G is clear from the context, we omit the subscript
G in the above definitions. For example, we write N[v] and N[S] rather than NG[v]
and NG[S], respectively.

We denote a complete graph on n vertices by Kn, and we denote a path and cycle
on n vertices by Pn and Cn, respectively. We denote a complete bipartite graph
with partite sets of cardinality m and n by Km,n. A star is a graph K1,n for some
n≥ 1. A double star is a tree with exactly two (adjacent) non-leaf vertices. If one of
these vertices is adjacent to �1 leaves and the other to �2 leaves, then we denote the
double star by S(�1, �2). By a nontrivial graph, we mean a graph of order at least
two. The corona cor(G) of a graph G, also denoted G ◦K1 in the literature, is the
graph obtained from G by attaching a leaf v′ to every vertex v of G. The 2-corona
G ◦P2 of G is the graph of order 3|V (G)| obtained from G by attaching a path of
length 2 to each vertex of G so that the resulting paths are vertex-disjoint.

Given a graph F, a graph G is F-free if it does not contain any induced subgraph
isomorphic to F. If G is K1,3-free, then G is said to be claw-free. A graph is chordal
if it contains no induced cycle of length 4 or more. A graph is a split graph if its
vertex set can be partitioned into a clique and an independent set. A universal vertex
in a graph is a vertex that is adjacent to every other vertex in the graph. A clique
in G is a complete subgraph of G. The clique number of G, denoted ω(G), is the
maximum cardinality of a clique in G.
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A set of vertices in a graph G is a packing if the vertices in S are pairwise at
distance at least 3 apart, that is, if u and v are arbitrary distinct vertices in S, then
d(u, v)≥ 3. Equivalently, S is a packing if the closed neighborhoods of vertices in
S are pairwise disjoint. A subset S of vertices in a graph G is an open packing
if the open neighborhoods of vertices in S are pairwise disjoint. Further the set S
is a perfect packing (respectively, a perfect open packing) if every vertex belongs
to exactly one of the closed (respectively, open) neighborhoods of vertices in S.
The packing number ρ(G) (respectively, the open packing number ρo(G)) is the
maximum cardinality of a packing (respectively, open packing) in G.

A vertex and an edge are said to cover each other in a graph G if they are incident
in G. A vertex cover in G is a set of vertices that covers all the edges of G. The
vertex covering number τ (G) (also denoted by β(G) or vc(G) in the literature) is the
minimum cardinality of a vertex cover in G. The independence number α(G) of a
graph G is the maximum cardinality of an independent set in G.

3 Dominator Colorings

A vertex in a graph G dominates itself and all vertices adjacent to it. Further, a vertex
is a dominator of a set S if it dominates every vertex in S. A dominator coloring of
a graph G is a proper coloring of G with the additional property that every vertex
in V (G) dominates all vertices in at least one color class, that is, each vertex of the
graph belongs to a singleton color class or is adjacent to every vertex of some (other)
color class. The dominator chromatic number χd(G) of G is the minimum number
of color classes in a dominator coloring of G. A χd-coloring of G is a dominator
coloring of G that uses χd(G) colors.

The concept of a dominator coloring in a graph was birthed in the late 1970s
when Cockayne, Hedetniemi, and Hedetniemi [9] defined the domatic number of a
graph involving partitions into dominating sets. In 2006, Hedetniemi, Hedetniemi,
and McRae [14] further studied the concept of dominator colorings in graphs. (We
remark that these two papers are cited as [4] and [13], respectively, in the 2006
paper by Gera, Horton, and Rasmussen [13].) On March 15, 2004, Hedetniemi,
Hedetniemi, Laskar, McRae, and Wallis [15] submitted a paper on dominator
partitions in graphs, but due to the backlog in the journal at the time, the paper only
appeared 5 years later! In 2006, Gera et al. [13] published a paper on dominator
colorings in graphs, and in 2007, Gera [11, 12] continued the study of dominator
colorings.

Since every vertex is a dominator of itself, the coloring of G that assigns a unique
color to each vertex is a trivial dominator coloring of G. Thus, every graph G
has a dominator coloring, and therefore the dominator chromatic number χd(G)
is well-defined. Since every dominator coloring of G is a coloring of G, we have the
following observation.

Observation 1 For every graph G, we have χ (G)≤χd(G).
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1 3 1 2 4 2 1 5 1 2 6 2 1 7 1 8

Fig. 1 A χd-coloring of a path P17

The simplest example to show that strict inequality may occur in Observation
1 is to take G to be a path P4 given by v1v2v3v4. We note that χ (G)= 2 and the
unique 2-coloring of G has color classes {v1, v3} and {v2, v4}. However, neither
the vertex v1 nor v4 dominates any color class, implying that χd(G)≥ 3. However,
the 3-coloring of G with color classes V1 ={v1, v3}, V2 ={v2}, and V3 ={v4} is
a dominator coloring of G, noting that the vertices v1 and v3 dominate the color
class V2, the vertex v2 dominates both color classes V1 and V2, and the vertex v4
dominates its own color class V3. Thus, χd(G)≤ 3. Consequently, χd(G)= 3. As
shown by Theorems 2 and 3, the difference χd(G)−χ (G) can be made arbitrarily
large by taking, for example, G to be a path Pn or cycle Cn of sufficiently large order
n.

We note that if G is a star K1,k where k≥ 1, then a proper 2-coloring of G
is also a dominator coloring of G, and so χ (G)=χd(G)= 2. If G=Kn, then
χ (G)=χd(G)= n. Hence, equality in Observation 1 is possible.

Gera et al. [13] determined the dominator chromatic number of a path Pn on n
vertices. We note that χd(P2)=χd(P3)= 2. As observed earlier, χd(P4)= 3. It is
a simple exercise to verify that χd(P5)= 3. If G is the path Pn: v1v2 . . . vn where
n≥ 6, let f : V (G) → {1, 2, . . . , 2 + �n

3 �} be the dominator coloring defined by

f (vi) =

⎧
⎪⎪⎨

⎪⎪⎩

1 when n (mod 6) ∈ {1, 3}
2 when n (mod 6) ∈ {0, 4}⌈

i

3

⌉

+ 2 when n (mod 6) ∈ {2, 5}.

However if n≡ 1 (mod 3), then we redefine f (vn) to be the value �n
3 � + 2. When

n= 16, for example, the resulting dominator coloring is illustrated in Figure 1 where
here f (v16) = � 16

3 � + 2 = 8 (and where color 1 is blue, color 2 is white, color 3 is
green, etc.).

Gera et al. [13] proved that the dominator coloring f defined above is a χd-
coloring of the path Pn.

Theorem 2 ([13]) For n≥ 2, we have

χd(Pn) =
{

1 + �n
3 � if n ∈ {2, 3, 4, 5, 7}

2 + �n
3 � otherwise.
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(a) χd(C5) = 3 (b) χd(P5) = 3

Fig. 2 χd-coloring of C5 and P5

In 2007, Gera [12] determined the dominator chromatic number of a cycle Cn on
n vertices.

Theorem 3 ([12]) We have χd(C3)= 3, χd(C4)= 2, and χd(C5)= 3, while for
n≥ 3 and n�∈{4, 5}, we have

χd(Cn) =
⌈n

3

⌉
+ 2.

We note that if H is a spanning proper subgraph of G, then a χd-coloring of G
may not be a dominator coloring of H. As a simple example, the χd-coloring of
the cycle C5 shown in Figure 2(a) is not a dominator coloring of P5, even though
χd(C5)=χd(P5)= 3.

For disconnected graphs, we have the following upper and lower bounds on the
dominator chromatic number.

Theorem 4 ([13]) If G is a disconnected graph with components G1, G2, . . . , Gk

where k≥ 2, then

k − 1 + max {χd(Gi) | i ∈ [k]} ≤ χd(G) ≤
k∑

i=1

χd(Gi).

Proof Let Ci be a χd-coloring of Gi for all i∈ [k], where we can choose the
colorings so that no two color classes uses the same color. Let C be the union of
these k color classes, and so the restriction of C to the component Gi yields the χd-
coloring Ci for all i∈ [k]. The coloring C is a chromatic dominator coloring of G,
and so

χd(G) ≤ |C| =
k∑

i=1

|Ci | =
k∑

i=1

χd(Gi) =
k∑

i=1

χd(Gi).

To prove the lower bound, consider a component of G with largest dominator
chromatic number. Each of the remaining k− 1 components of G requires at least
one additional color, since every vertex must be a dominator of some color class.
Hence, χd(G) ≥ k − 1 + max {χd(Gi) | i ∈ [k]}. �

That the lower bound of Theorem 4 is tight may be seen by taking G to be the
vertex-disjoint union of k≥ 2 stars K1,n, for some n≥ 2. Each component H of G has
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χd(H)= 2. Assigning to all leaves of G the same color and assigning to the central
vertex of each of the k stars a unique color produce a dominator coloring of G using
k + 1 = (k − 1)+ 2 = k − 1 + max {χd(H) | H is a component of G} colors.

That the upper bound of Theorem 4 is tight may be seen by taking G to be the
vertex-disjoint union of k≥ 2 copies of K2,n for some n≥ 2. Let C be a dominator
coloring of G. Since every vertex must be a dominator of some color class, we
note that each component of G has at least one color not used in any other color
class. Suppose that some component H of G uses exactly one color, say color
1, not used in any other color class. If two or more vertices in H are colored
1, then no vertex in the color class associated with the color 1 is a dominator
of any color class, a contradiction. Hence, exactly one vertex in H is colored 1.
However, every vertex different from v and not adjacent to v in the component
H is therefore not a dominator of any color class, a contradiction. Hence, each
component of G has at least two colors unique to that component, implying that
χd(G) ≥ 2k = ∑k

i=1 χd(Gi), where G1, G2, . . . , Gk denote the components of G.

3.1 Bounds on the Dominator Chromatic Number

By definition of a dominator coloring, we have the following observation.

Observation 5 If v is an arbitrary vertex in a graph G, then in every dominator
coloring of G, the closed neighborhood N[v] of v contains a color class.

Theorem 6 If G is a graph, then χd(G)≥ ρ(G), with strict inequality if there is no
perfect packing in G.

Proof If S is a packing in G, then by Observation 5, the closed neighborhoods of
vertices in S contain at least |S| color classes, and so χd(G)≥|S|. Choosing S to
be a maximum packing, we have that χd(G)≥ ρ(G). Further, if G does not have
a perfect packing, then at least one additional color class is needed to contain the
vertices that do not belong to the closed neighborhood of any vertex in S, and so
χd(G)≥ ρ(G)+ 1. �

The dominator chromatic number of a graph is related to its independence
number as follows, where the independence number α(G) of a graph G is the
maximum cardinality of an independent set in G.

Theorem 7 ([13, 15]) If G is a connected graph of order n, then χd(G)≤ n+ 1
−α(G).

Proof If n= 1, then the result is trivial since in this case χd(G)= n=α(G)= 1.
Hence, we may assume that n≥ 2. Let I be a maximum independent set in G, and
consider the coloring C that colors all vertices in I with the same color, and colors
all remaining n−α(G) vertices each with a different color. Each vertex in V (G)� I
dominates the color class that contains it, noting that it is the unique vertex in that
color class. By the connectivity of G and by the independence of the set I, every
vertex in I has degree at least 1 and has all of its neighbor in V (G)� I. Therefore,
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(a) χ(G) = 2 (a) χd(G) = 3

Fig. 3 A double star G= S(3, 3)

by our choice of the coloring C, every vertex in I dominates every color class that
contains one of its neighbors. Hence, C is a dominator coloring of G, implying that
χd(G) ≤ |C| = n+ 1 − |I | = n+ 1 − α(G). �

That the bound of Theorem 7 is sharp may be seen by taking, for example, a
double star G= S(�1, �2). We note that the (unique) proper 2-coloring of the double
star is a dominator coloring of G, since no leaf dominates a color class. Hence,
χd(G)≥ 3. However, coloring all the leaves with one color, and coloring the two
central vertices (the non-leaf vertices) with distinct colors, produces a proper 3-
coloring that is a dominator coloring. Hence, χd(G)= 3. In this example, G has
order n= �1 + �2 + 2 and α(G)= �1 + �2 = n− 2, and so χd(G)= n+ 1−α(G). In
the special case when G= S(3, 3), we illustrate the χ -coloring and χd-coloring of
G in Figure 3(a) and 3(b), respectively.

As observed earlier, the coloring of a graph G of order n that assigns a unique
color to each vertex is a trivial dominator coloring of G, and so χd(G)≤ n.
By Observation 1, if G is a connected graph on at least two vertices, then
χd(G)≥χ (G)≥ 2. We state these observations formally as follows.

Observation 8 If G is a connected graph of order n≥ 2, then 2≤χd(G)≤ n.

A characterization of graphs achieving equality in the lower and upper bounds of
Observation 8 is given by the following result.

Theorem 9 ([11, 15]) If G is a connected graph of order n≥ 2, then the following
holds.

(a) χd(G)= 2 if and only if G is a complete bipartite graph.
(b) χd(G)= n if and only if G is a complete graph.

Proof Suppose that χd(G)= 2. By Observation 1, χ (G)= 2, implying that the 2-
coloring of G is a dominator coloring of G. Let V1 and V2 be the two color classes
of G. If |Vi| = 1 for some i∈ [2], then G=K1,n−1, and the desired result follows.
Hence, we may assume that |Vi|≥ 2 for i∈ [2]. Thus, no vertex can be a dominator
of its own color class, implying that every vertex in Vi is a dominator of the color
class V3−i for i∈ [2], that is, G = Kn1,n2 where ni = |Vi|. Hence if χd(G)= 2, then
G is a complete bipartite graph. The converse is immediate.
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Suppose next that χd(G)= n. By Theorem 7, χd(G)≤ n+ 1−α(G). If G is
not a complete graph, then α(G)≥ 2, implying that χd(G)≤ n− 1, a contradiction.
Hence, G must be a complete graph. The converse is immediate. �

The dominator chromatic number of a graph is related to its domination number.
For a given graph G, let A(G) denote the set of all γ -sets in G. We next present an
upper bound on the dominator chromatic number of a graph.

Theorem 10 If G is a connected graph, then

χd(G) ≤ γ (G)+ min
S∈A(G)

{χ(G− S)},

and this bound is tight.

Proof Let S be an arbitrary γ -set of G, and let C be a proper coloring of the graph
G− S using χ (G− S) colors. We extend the coloring C to a coloring of the vertices
of G by assigning to each vertex in S a new and distinct color. Let C′ denote the
resulting coloring of G, and note that C′ uses γ (G)+χ (G− S) colors. Since S is a
dominating set of G, every vertex in V (G)� S is adjacent to at least one vertex of
S. Since the color class of C′ containing a given vertex of S consists only of that
vertex, each vertex in V (G)� S is adjacent to every vertex of some color class in
the coloring C′. Further, each vertex of S is a dominator of its own (singleton) color
class. Hence, C′ is a dominator coloring of G using γ (G)+χ (G− S) colors. This is
true for every γ -set of G. The desired upper bound now follows by choosing S to
be a γ -set of G that minimizes χ (G− S). The bound is achieved, for example, by
taking G to be a complete graph. �

The proof of Theorem 10 yields the following more general result.

Theorem 11 If G is a connected graph, and D(G) denotes the set of all dominating
sets of G, then

χd(G) ≤ min
S∈D(G)

{ |S| + χ(G− S) }.

Gera [11, 12] established the following upper and lower bounds on the dominator
chromatic number of an arbitrary graph in terms of its domination number and
chromatic number.

Theorem 12 ([11, 12]) Every graph G satisfies

max{γ (G), χ(G)} ≤ χd(G) ≤ γ (G)+ χ(G).

Proof By Observation 1, recall that χ (G)≤χd(G). To show that γ (G)≤χd(G),
consider a χd-coloring of G with color classes V1, . . . , Vk, where k=χd(G). Let vi

be an arbitrary vertex in the color class Vi for i∈ [k], and consider the set D={v1,
. . . , vk}. Let v be an arbitrary vertex of G. By definition of a dominator coloring,
the vertex v is a dominator of the color class Vi for at least one i∈ [k]. In particular,
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the vertex v= vk or the vertex v is adjacent to the vertex vk. This is true for every
vertex v of G, implying that D is a dominating set of G. Hence, γ (G)≤|D| =χd(G).
This establishes the desired lower bound. The upper bound follows from Theorem
10, noting that χ (G− S)≤χ (G) for every proper subset S⊂V (G). �

Gera [12] established an intermediate value-type result for the dominator chro-
matic number and showed that for every triple (a, b, c) of integers where 1≤ a≤ c
and 2≤ b≤ c is a dominator realizable triple, there exists a connected graph G such
that γ (G)= a, χ (G)= b, and χd(G)= c.

That the lower bound of Theorem 12 is sharp may be seen by taking, for example,
a complete bipartite graph G with both partite sets of cardinality at least 2. In this
case, γ (G)=χ (G)=χd(G)= 2. To see that the upper bound is sharp, let G, for
example, be a path Pn or a cycle Cn for some n≥ 8 even. In this case, γ (G) = �n

3 �
and χ (G)= 2, and so by Theorems 2 and 3, we have χd(G) = 2 + �n

3 � = χ(G)+
γ (G).

3.2 Special Classes of Graphs

In this section, we consider the dominator chromatic number of certain classes of
graphs.

3.2.1 Bipartite Graphs

As a special case of Theorem 12 when G is a bipartite graph, we have the following
result.

Theorem 13 ([11, 12, 15]) If G is a bipartite graph, then γ (G)≤χd(G)≤ γ (G)+ 2.

In order to characterize the graphs achieving equality in the lower bound of
Theorem 13, we define a special subclass of bipartite graphs as follows.

Definition 1 A bipartite graph G is a partially complete bipartite graph if G can
be obtained from the disjoint union of k≥ 1 complete bipartite graphs Kxi,yi with
partite sets Xi and Yi where xi = |Xi|≥ 2 and yi = |Yi|≥ 2 for all i∈ [k] by adding
edges between copies of these graphs so that the resulting graph is connected and
the following conditions hold, where X = ∪k

i=1Xi and Y = ∪k
i=1Yi .

(a) For each set Xi where i∈ [k], there is no set A⊆Y � Yi such that |A∩Yj| = 1 for
all j∈ [k]�{i} and the set A dominates the set Xi.

(b) For each set Yi where i∈ [k], there is no set A⊆X �Xi such that |A∩Xj| = 1 for
all j∈ [k]�{i} and the set A dominates the set Yi.

(c) For each set Xi where i∈ [k], if A⊆Xi dominates � of the partite sets in Y , then
�≥|A|.
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(d) For each set Yi where i∈ [k], if A⊆Yi dominates � of the partite sets in X, then
�≥|A|.

We note, for example, that every complete bipartite graph with both partite sets
of cardinality at least 2 is a partially complete bipartite graph. In particular, K2,n is
a partially complete bipartite graph for all n≥ 2.

Theorem 14 ([11]) If G is a connected bipartite graph of order at least 2, then
γ (G)=χd(G) if and only if G is a partially complete bipartite graph.

Let Qn be the n-dimensional hypercube, and so Qn can be represented as the nth

power of K2 with respect to the Cartesian product operation �, that is, Q1 =K2 and
Qn = Qn−1 � K2 for n≥ 2. Gera [11] established the following upper bound on
the dominator chromatic number of an n-dimensional hypercube. The proof given
in [11] is algorithmic in nature.

Theorem 15 ([11]) For n≥ 2, χd(Qn+1)≤χd(Qn)+ γ (Qn).

The following result established an upper bound on the dominator chromatic
number of a connected bipartite graph in terms of its order.

Theorem 16 ([11]) If G is a connected bipartite graph of order n≥ 2, then
χd(G) ≤ 1

2 (n+ 2), and this bound is sharp.

Proof Let X and Y be the partite sets of G, where |X|≤|Y |. Coloring all vertices
in Y with the same color and assigning a new color to each vertex of X produce a
dominator coloring of G using |X|+1 ≤ 1

2n+1 colors. This establishes the desired
upper bound.

That this bound is sharp may be seen by taking G to be the corona of an
arbitrary connected bipartite graph F, and so G= cor(F). The graph G has order
n= 2|V (F)| and satisfies γ (G)= |V (F)|. Coloring all added vertices of degree 1
with the same color and assigning a new color to every vertex of F produce a
dominator coloring of T using |V (F)| + 1 colors. Thus, χd(G)≤|V (F)| + 1. We
note that each added vertex v of degree 1 either dominates its own class, in which
case the vertex v is the only vertex of that color, or dominates the class of its unique
neighbor, in which case its neighbor in F is the only vertex of that color. This
implies that at least |V (F)| vertices must receive a unique color. Since at least one
additional color is needed for the remaining vertices of G, every dominator coloring
of G uses at least |V (F)| + 1 colors. Thus, χd(G)≥|V (F)| + 1. As observed earlier,
χd(G)≤|V (F)| + 1. Consequently, χd(G) = |V (F )| + 1 = 1

2n+ 1. �

3.2.2 Trees

Since no tree is a partially complete bipartite graph, we have the following
consequence of Theorems 13 and 14.

Theorem 17 ([11]) If T is a tree of order n≥ 2, then χd(T)= γ (T)+ 1 or
χd(T)= γ (T)+ 2.
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By Theorem 2, if T is a path Pn where n≥ 8, then χd(T ) = �n
3 �+2 = γ (T )+2.

We note that if T is obtained from k≥ 1 vertex-disjoint copies of K1,r where r≥ 2
by adding a new vertex and joining it to the central vertex of each star, then
χd(T)= k+ 1= γ (T)+ 1. More generally, if a tree T contains a γ -set D such that
V (T)�D is an independent set, then χd(T)= γ (T)+ 1, noting that we can color
all vertices outside D with the same color and assign a new color to every vertex
of D to produce a minimum dominator coloring of T using γ (T)+ 1 colors. In
particular, we note that both values for the dominator chromatic number in Theorem
17 are achievable for infinitely many trees. We say that a tree belongs to dominator
class i if χd(T)= γ (T)+ i for i∈ [2]. It remains an open problem to characterize the
dominator class 1 and dominator class 2 trees.

A sufficient condition for a tree to belong to dominator class 1 is the following.

Proposition 18 ([5, 15]) If T is a nontrivial tree such that γ (T)= τ (T), then T
belongs to dominator class 1.

Proof Let D be a minimum vertex cover in T, and so |D| = τ (T)= γ (T). Since
D is a vertex cover, the set V �D is an independent set. Coloring all vertices in
V �D with the same color and assigning a new color to each vertex of D produce a
dominator coloring of T using |D| + 1= γ (T)+ 1 colors. Thus, χd(T)≤ γ (T)+ 1.
By Theorem 17, χd(T)≥ γ (T)+ 1. Consequently, χd(T)= γ (T)+ 1. �

As observed in [5, 15], the converse of Proposition 18 is not true in general.
For example, the tree T shown in Figure 4 belongs to dominator class 1, noting
that χd(T)= 5= γ (T)+ 1. However, γ (T)= 4 < 5= τ (T). The 5-coloring shown in
Figure 4 is a χd-coloring of the tree T.

In 2012, Boumediene Merouane and Chellali [4] provide a characterization of
trees that belongs to dominator class 1.

Theorem 19 ([4]) If T is a nontrivial tree, then χd(T)= γ (T)+ 1 if and only if
there exists a γ -set, D, of T such that the set V (T)� (D∪N(A)) is an independent
set where A={v∈D : pn(v, D)={v}}, that is, A is the set of vertices in D, if any, that
are isolated in T[D] and have no D-external private neighbor.

In practice, a tree may admit many minimum dominating sets, and it may not
be easy to identify such a set satisfying the statement of Theorem 19. Therefore, in
2015, Boumediene Merouane and Chellali [5] provide a different characterization,
which is more pleasing in the sense that it resulted in a polynomial time algorithm

Fig. 4 A χd-coloring of a
tree T

1 3 1 2 1 2 4 1

5

1
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(a) The tree T

(b) The vertex cover X in the forest F = T − N[B]

Fig. 5 A tree T and its associated forest F

for computing the dominator chromatic number for every nontrivial tree. In order to
state this result, we need some additional terminology.

Recall that a leaf of a tree is a vertex of degree 1 and a vertex with a leaf
neighbor is a support vertex. Given a tree T, let L and S be the set of leaves and
support vertices of T, respectively. Further, let A be the set of vertices of T that are
neither leaves nor support vertices, but have a support vertex as a neighbor, that
is, if v∈A, then v�∈L∪ S, but the vertex v is adjacent to a vertex in S. Further, let
B be the set of vertices that have all their neighbors in A but do not belong to A,
that is, B={v∈V �A : N(v)⊆A}. Let F be the forest obtained from T by deleting
all vertices in N[B], that is, F =T −N[B], or, equivalently, F is the subgraph of T
induced by the set V (T)�N[B]. Let X be a minimum vertex cover of F containing
all support vertices of T (if X contains a leaf of T, we simply replace this leaf by its
neighbor in T). To illustrate these definitions, consider the tree T shown in Figure
5(a). The label of each vertex represents one of the sets, namely, L, S, A, or B, that it
belongs to, as shown in Figure 5(a). The associated forest F =T −N[B] is illustrated
in Figure 5(b), where the vertices in the vertex cover X are given by the darkened
vertices.

We are now in a position to state the characterization of trees that belong to
dominator class 1 as given in [5].

Theorem 20 ([5]) If T is a nontrivial tree, then χd(T)= γ (T)+ 1 if and only if the
following three conditions hold.

(a) B is a packing.
(b) B∪X is a γ -set of T.
(c) γ (F)= τ (F).
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X X B B X

X X

Fig. 6 A χd-coloring of the tree T

Suppose that T is a nontrivial tree satisfying the three conditions in the statement
of Theorem 20. We color the vertices of T as follows.

• For each vertex v in B, we give a unique color to all vertices in N(v).
• To each vertex in X, we give a unique (new) color.
• To all remaining vertices (including all vertices in L∪B), we give the same, but

new, color.

By condition (b), the set X ∪B is a γ -set of T, and so γ (T)= |B| + |X|. Thus,
the resulting coloring is a dominator coloring of T using |B| + |X| + 1= γ (T)+ 1
colors. Hence, γ (T)+ 1≤χd(T)≤|B| + |X| + 1= γ (T)+ 1. Thus we must have
equality throughout this inequality chain, implying that χd(T)= γ (T)+ 1.

To illustrate this coloring, consider the tree T shown earlier in Figure 5(a), where
a vertex is labelled B or X if it belongs to the set B or X, respectively. To the one
vertex in B, we color its two neighbors green, and to the other vertex in B, we
color its two neighbors yellow. We color the five vertices in X with five new colors,
namely, red, white, black, orange, and pink. Thereafter, we color all remaining
vertices of T with a new color, namely, blue. The resulting coloring, illustrated in
Figure 6, is a dominator coloring of T using |B| + |X| + 1= γ (T)+ 1= 8 colors and
is therefore a χd-coloring of T.

Based on Theorem 20, the authors in [5] give a quadratic time algorithm
computing the dominator chromatic number of any nontrivial tree.

3.2.3 Chordal Graphs and Split Graphs

By Theorem 12, every graph G satisfies χd(G)≥ γ (G). In 2012, Chellali and
Maffray [6] improved this bound by imposing certain structural restrictions on the
graph.

Theorem 21 ([6]) If G is a connected graph of order n≥ 2 that is C4-free or is
claw-free and different from C4, then χd(G)≥ γ (G)+ 1.

Since every chordal graph is C4-free, as is every split graph, as an immediate
consequence of Theorem 21, we have the following result.

Corollary 22 ([6]) If G is a connected graph of order n≥ 2, then the following
holds.
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(a) If G is a chordal graph, then χd(G)≥ γ (G)+ 1.
(b) If G is a split graph, then χd(G)≥ γ (G)+ 1.

We also remark that Theorem 17 follows immediately from Theorem 21, noting
that every tree is, of course, C4-free. Chellali and Maffray [6] characterized the split
graphs that achieve equality in the bound of Corollary 22(b).

Theorem 23 ([6]) If G is a connected split graph whose vertex set is parti-
tioned into a clique Q and an independent set I such that Q is minimal, then
χd(G)= γ (G)+ 1 if and only if every vertex of Q is a support vertex.

3.2.4 Proper Interval Graphs and Block Graphs

In 2015, Panda and Pandey [32] study bounds on the dominator chromatic number
for two important subclasses of chordal graphs, namely, proper interval graphs and
block graphs.

A graph G is an interval graph if there exists a one-to-one correspondence
between its vertex set and a family F of closed intervals in the real line, such that two
vertices are adjacent if and only if their corresponding intervals intersect. Further, if
no interval in F contains another interval in F , then the graph G is called a proper
interval graph. Panda and Pandey [32] establish the following lower and upper
bounds for the dominator chromatic number of a proper interval graph in terms
of its domination number and chromatic number. We note that the upper bound is a
restatement of the result in Theorem 12.

Theorem 24 ([32]) Every proper interval graph G satisfies

χ(G)+ γ (G)− 2 ≤ χd(G) ≤ γ (G)+ χ(G).

Moreover, all three values can be achieved by χd(G).

For a vertex v of G, the graph G− v is the graph obtained from G by deleting
v and deleting all edges of G incident with v. A vertex v is a cut-vertex of G if
the number of components increases in G− v. A block of a graph G is a maximal
connected subgraph of G that has no cut-vertex of its own. Thus, a block is a
maximal 2-connected subgraph of G. The number of vertices in a block is called the
order of the block. Any two blocks of a graph have at most one vertex in common,
namely, a cut-vertex. If a connected graph contains a single block, we call the graph
itself a block. A block graph is a connected graph in which every block is a clique.
A block containing exactly one cut-vertex is called an end block. A non-complete
block graph has at least two end blocks. Panda and Pandey [32] generalized the
result of Theorem 17 to the class of block graphs. (We note that every tree is a block
graph, in which every block is a copy of K2.)

Theorem 25 ([32]) If G is a block graph of order at least 2 with k blocks where
each block has the same order, then
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χd(G) = γ (G)+ χ(G)− 1 or χd(G) = γ (G)+ χ(G).

Further, both values can be achieved by χd(G).

To illustrate the tightness of the bounds, for k≥ 1, let Gk,1 be a block graph with
2k blocks B1, B2, . . . , B2k, each having order s≥ 3, and 2k− 1 cut-vertices v1, v2,
. . . , v2k−1 such that V (Bi)∩V (Bi+1)={vi} for all i∈ [2k− 1]. The resulting graph
G=Gk,1 satisfies γ (G)= k, χ (G)= s and χd(G)= k+ s− 1. When k= 3 and s= 3,
the block graph Gk,1 is illustrated in Figure 7. We color each vertex of the γ -set,
{v1, v3, v5}, of G3,1 with a unique color (namely, green, yellow, and pink), and we
2-color the remaining vertices with two new colors (namely, blue and red). The
resulting 5-coloring is a χd-coloring of G.

For k≥ 3, let G=Gk,2 be a block graph with 2k+ 1 blocks, B1, B2, . . . , B2k+1,
each having order k, and 2k cut-vertices v1, v2, . . . , v2k. All vertices in block B2k+1
are cut-vertices, say vk+1, vk+2, . . . , v2k. For each i∈ [k], Bi is an end block, having
exactly one cut-vertex vi. For each j where k+ 1≤ j≤ 2k, block Bj has exactly two
cut-vertices vj and vj−k. The resulting graph G=Gk,2 satisfies γ (G)= k, χ (G)= k
and χd(G)= 2k. When k= 3, the block graph Gk,2 is illustrated in Figure 8. We
color each vertex of the γ -set, {v1, v2, v3}, of G3,1 with a unique color (namely,
green, yellow, and pink), and we 3-color the remaining vertices with three new
colors (namely, blue, red, and black). The resulting 6-coloring is a χd-coloring of
G.

As a consequence of Theorem 25, we have the following result. We note that if
G is a block graph, then the clique number ω(G) of G is the maximum order among
all blocks in G.

Corollary 26 ([32]) If G is a non-complete block graph that contains an end block
of order ω(G), then χd(G)= γ (G)+χ (G)− 1 or χd(G)= γ (G)+χ (G).

Panda and Pandey [32] characterize the block graphs G for which one of the end
blocks is of maximum size (namely, ω(G)) and χd(G)= γ (G)+χ (G)− 1.

3.2.5 P4-Free Graphs

Chellali and Maffray [6] determined the dominator chromatic number of the class
of graphs that are P4-free by exploiting the structure of these graphs, namely, that if

v1 v2 v3 v4 v5

B1 B2 B3 B4 B5 B6

Fig. 7 A block graph G3,1
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v1 v4 v5 v2

v3

v6

B1 B4 B7 B5 B2

B6

B3

Fig. 8 A block graph G3,2

G is a P4-free graph of order at least 2, then G or its complement G is disconnected
(see Seinsche [34]). We mention that P4-free graphs are also known as cographs.

Theorem 27 ([6]) If G is a P4-free graph, then the following holds.

(a) If G is connected, then χd(G)=χ (G).
(b) If G is disconnected with k≥ 2 components and h of these components have a

universal vertex, then either G has a component H with a universal vertex and
satisfies χ (G)=χ (H), in which case χd(G)=χ (G)+ 2k− h− 1, or G has no
such component, in which case χd(G)=χ (G)+ 2k− h− 2.

3.2.6 Other Classes

We mention that the dominator chromatic number of other classes of graphs has
also been studied, including degree splitting graph of some graphs [22], dragon and
lollipop graphs [30], wheel related graphs [35], the generalized Petersen graph [31],
and Mycielskian graphs [1]. However, we do not define these classes of graphs here.

3.3 Graph Products

In this section, we present some results on the dominator chromatic number in
Cartesian products of graphs. The Cartesian product G � H of graphs G and H is
the graph with vertex set V (G)×V (H)={(g, h) : g∈V (G) and h∈V (H)}, where
two vertices (g1, h1) and (g2, h2) in the Cartesian product G � H of graphs G and
H are adjacent if either g1 = g2 and h1h2 is an edge in H or h1 = h2 and g1g2 is an
edge in G.
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Fig. 9 A χd-coloring of
P2 � P4

Fig. 10 The circular ladder
graph CL8
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In 2017, Chen, Zhao, and Zhao [8] determined the dominator chromatic number
of Cartesian products of certain paths and cycles. The Cartesian product Pm�Pn of
paths Pm and Pn is known as a 2× n grid graph.

Theorem 28 ([8]) χd(P2 � P2) = 2, χd(P2 � P3) = χd(P2 � P3) = 4, and for all
n≥ 5,

χd(P2 � Pn) =
⌊n

2

⌋
+ 3.

A dominator coloring of the 2× 4 grid graph, for example, using four colors is
shown in Figure 9.

The Cartesian product of a cycle Cn on n≥ 3 vertices and a path P2 on two
vertices is called a circular ladder graph CLn of order 2n; that is, CLn = Cn � K2
(cf. [23]). A circular ladder graph is also called a cycle prism in the literature. We
note that CLn is bipartite if and only if n is even. The circular ladder graph CLn

is also called the n-prism in the literature. For example, let G = C8 � K2 be
the circular ladder graph CL8 shown in Figure 10. We note that G is a bipartite
graph and γ (G)= 4, and so, by Theorem 13, χd(G)≤ 6. As shown in the proof of
Theorem 12, we can find a dominator coloring of G using six colors as follows.
We first 2-color the vertices of G with the colors 1 and 2 (depicted as the colors
blue and red in Figure 10), and thereafter we recolor the vertices of a γ -set of
G with the colors 3, 4, 5, and 6 (depicted as the colors green, yellow, white,
and black, respectively, in Figure 10). The resulting 6-coloring is a dominator
coloring of G. Thus, χd(G)≤ 6. Moreover, as shown in the proof of Theorem 29,
χd(G)≥ γ (G)+ 2= 6. Consequently, χd(CL8)= 6.

In 2015, Manjula and Rajeswari [29] claimed to have proven that χd(CLn)= n+ 1
for all n≥ 9. This result is incorrect. The correct value for the dominator chromatic
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Fig. 11 A χd-coloring of
CL3 = P2 � C3

number of a circular ladder graph is given in Theorem 29 by Chen, Zhao, and Zhao
[8].

Theorem 29 The dominator chromatic number of the circular ladder graph CLn =
Cn �K2 is given by χd(CL3)= 3 and for all n≥ 4 as follows.

χd(CLn) =
⎧
⎨

⎩

1
2 (n+ 4) when n ≡ 0 (mod 4)
1
2 (n+ 5) when n (mod 4) ∈ {1, 3}
1
2 (n+ 6) when n ≡ 2 (mod 4).

Proof Let G = Cn�K2 be the circular ladder graph CLn where n≥ 3. A dominator
coloring of CL3 using three colors is shown in Figure 11, showing that χd(CL3)≤ 3.
By Observation 1, χd(CL3)≥χ (CL3)= 3. Consequently, χd(CL3)= 3. Hence in
what follows, we let n≥ 4.

Let x1x2 . . . xnx1 and y1x2 . . . yny1 be the two disjoint copies of the cycle Cn used
to construct CLn = Cn � K2 and where xiyi ∈E(CLn) for i∈ [n]. We note that
γ (G)=�n/2�+ �n/4�−�n/4�, that is, γ (G)= n/2 if n≡ 0 (mod 4), γ (G)= n/2+ 1 if
n≡ 2 (mod 4), and γ (G)= (n+ 1)/2 if n (mod 4)∈{1, 3}.

We show firstly that χd(G)≤ γ (G)+ 2. If n is even, then we can apply Theorem
13 to yield χd(G)≤ γ (G)+ 2. Suppose that n≡ 3 (mod 4). Thus, n= 4k+ 3 for
some k≥ 0. In this case, the set

D =
k⋃

i=0

{x4i+1, y4i+3}

is a γ -set of D, noting that D is a dominating set of G and |D| = 2(k+ 1)= (n+ 1)/2
= γ (G). We note that removing the set D from G produced a graph G−D∼=P6k+4.
We now 2-color the vertices of the path G−D, and thereafter we color each vertex
of D with a unique color. The resulting coloring of G is a dominator coloring of G
using γ (G)+ 2= 2k+ 4 colors. Suppose next that n≡ 1 (mod 4). Thus, n= 4k+ 1
for some k≥ 1. In this case, we consider the set

S =
k−1⋃

i=0

{x4i+2, y4i+4}.

We note that the set S is a packing in G. Further, the set S dominates all vertices
of G, except for the two vertices y1 and xn (note that here xn = x4k+1). Further, we
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note that S∪{x1} is a γ -set of G, implying that |S| = γ (G)− 1. We note that with
the set S as defined above, the graph G− S can be obtained from a path P6k on 6k
vertices given by

P : y1y2y3x3x4x5 . . . y4(k−1)+1 y4(k−1)+2 y4(k−1)+3 x4(k−1)+3 x4(k−1)+4 x4(k−1)+5

that starts at the vertex y1 and ends at the vertex x4k+1, by adding the two vertices
x1 and y4k+1 and adding the four edges x1y1, x1x4k+1, y1y4k+1, and x4k+1y4k+1. We
now 2-color the vertices of the path P with the colors 1 and 2 and color x1 and y4k+1
with the same new color 3 to produce a 3-coloring of G− S. Thereafter, we color the
vertices of S with |S| = γ (G)− 1 new colors, one distinct color to each vertex. The
resulting coloring is a dominator coloring of G using γ (G)+ 2 colors. In particular,
we note that y1 and x4k+1 each are dominators of the color class {x1, y4k+1} (whose
vertices are colored 3), while every other vertex in G− S is a dominator of the
unique vertex in S that it is adjacent to. Further, each vertex v of S is a dominator
of the color class that contains the vertex v (and is a singleton set consisting only of
the vertex v).

To illustrate the above coloring, consider the case, for example, when n= 9. In
this case, the set S={x2, y4, x6, y8} and is given by the set of darkened vertices in
Figure 12(a). Further the 3-coloring of the graph G− S is illustrated in Figure 12(b).
We then extend this 3-coloring of G− S to a 7-coloring of G by adding four new
colors, one distinct color to each vertex in the set S. The resulting 7-coloring is a
dominator coloring of G, implying that χd(CL9)≤ 7.

In all the above cases, we have shown that χd(G)≤ γ (G)+ 2. Further one
can readily show that χd(G)≥ γ (G)+ 2. We present a proof of the simplest case
when n≡ 0 (mod 4) as an illustration. In this case, n= 4k for some k≥ 1. Further,
γ (G)= 2k, and every γ -set of G is a packing. Each vertex v∈D either dominates its
own class, in which case the vertex v is the only vertex of that color, or dominates a
color class that is a subset of its neighborhood, N(v). Since the sets N[v]=N(v)∪{v}
are vertex-disjoint sets for all v∈D, this implies that at least |D| = γ (G) vertices
must receive a unique color. Since at least two additional colors are needed for the
remaining vertices of G, every dominator coloring of G uses at least γ (G)+ 2 colors.
Hence, χd(G)≥ γ (G)+ 2 in this case when n≡ 0 (mod 4). Analogous arguments
show that χd(G)≥ γ (G)+ 2 in the three other cases when n (mod 4)∈{1, 2, 3}. We

y1 y2 y3 y4 y5 y6 y7 y8
y9

x1
x2 x3 x4 x5 x6 x7 x8 x9

(a) χd(G) ≤ 7

y1 y2 y3 y5 y6 y7
y9

x1
x3 x4 x5 x7 x8 x9

(b) The graph G−S

Fig. 12 A circular ladder graph G= CL9
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omit the details. Therefore, χd(G)= γ (G)+ 2. The desired result now follows from
our earlier observation that γ (G)=�n/2�+ �n/4�−�n/4�. �

We remark that Chen [7] continued the study of dominator chromatic number of
Cartesian products of certain paths and cycles and considers the 3× n grid, P3�Pn,
the Cartesian product P3�Cn. Two vertices (g1, h1) and (g2, h2) in the direct product
graph G×H of graphs G and H are adjacent if g1g2 ∈E(G) and h1h2 ∈E(H). They
also consider the dominator chromatic number of the Cartesian product Km � Kn

for m, n≥ 2.
Paulraja and Handrasekar [33] determined the dominator chromatic number for

some classes of graphs, such as the direct product Km ×Kn for m, n≥ 2, and the
direct product (Km ◦K1)×Kr for m, n≥ 2. They also present results on the Cartesian
product Kn�Qr for r≥ 3, where Qr is the r-dimensional hypercube. We omit these
results here.

3.4 Dominator Partition Number

We discuss briefly in this section the dominator partition number of a graph. In
their introductory paper, Hedetniemi, Hedetniemi, Laskar, McRae, and Wallis [15]
define a dominator partition of a graph G as a coloring (not necessarily proper) with
the property that every vertex in G is adjacent to all other vertices in some color
class (including possibly its own). The dominator partition number of G, which
they denote by πd(G), is the minimum number of color classes in a dominator
partition of G. We note that every dominator coloring is a dominator partition,
but not conversely. Thus, πd(G)≤χd(G) for all graphs G. Hedetniemi et al. [15]
provide the following lower and upper bounds on the dominator partition number of
a graph in terms of the minimum and maximum degrees.

Theorem 30 ([15]) If G is a graph of order n, then

n

1 +�(G)
≤ πd(G) ≤ n− δ(G).

Hedetniemi et al. [15] showed that the dominator partition number of a graph is
surprisingly one of two possible values.

Theorem 31 ([15]) If G is a graph of order n, then πd(G)= γ (G) or
πd(T)= γ (G)+ 1.

Proof The proof of the lower bound πd(G)≥ γ (G) is identical to the proof we
presented earlier of Theorem 12. To prove the upper bound πd(G)≤ γ (G)+ 1, let
D={v1, . . . , vk} be a γ -set of G. Since the partition π ={V1, . . . , Vk+1} of V ,
where Vi ={vi} for i∈ [k] and where Vk+1 =V �D, is a dominator partition of G,
we have that πd(T)≤ γ (G)+ 1. �
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3.5 Algorithmic and Complexity Results

In this section, we consider the algorithmic complexity of the problem of computing
the dominator chromatic number of an arbitrary graph. Formally, we consider the
following decision problem:

GRAPH DOMINATOR k-COLORABILITY

Input: A graph G, and an integer k≥ 1.
Question: Does G have a dominator k-coloring?

Hedetniemi et al. [17] showed that to determine if a graph G has a dominator
3-coloring can be computed in polynomial time.

Theorem 32 ([17]) GRAPH DOMINATOR 3-COLORABILITY is solvable in polyno-
mial time.

To show that the GRAPH DOMINATOR k-COLORABILITY is NP-complete for
k≥ 4, we give a transformation from GRAPH k-COLORABILITY:

GRAPH k-COLORABILITY

Input: A graph G, and an integer k≥ 4.
Question: Does G have a k-coloring?

Theorem 33 ([13, 15]) Graph Dominator k-Colorability is NP-complete for
general graphs, for k≥ 4.

Proof Let k be an integer greater than 3. GRAPH DOMINATOR k-COLORABILITY

is clearly in the class NP since we can efficiently verify that an assignment of colors
to the vertices of G is both a proper coloring and that every vertex dominates some
color class.

Next we transform an instance of GRAPH (k− 1)-COLORABILITY to an instance
of GRAPH DOMINATOR k-COLORABILITY. Given an instance of GRAPH (k− 1)-
COLORABILITY, a graph G, and a k− 1 coloring of G, construct an instance of
GRAPH DOMINATOR k-COLORABILITY as follows. Let G′ be the graph obtained
from G by adding a new vertex v to G and adding all edges joining v to every
vertex of G. We now consider the instance given by the graph G′ and a dominator
k-coloring of G.

Let C be a (k− 1)-coloring of G, and let C′ be the k-coloring of G′ obtained
from the coloring C by assigning a new color to the vertex v. Thus, the color class
containing v consists only of the vertex v. Since {v} ⊆ NG′ [u] for every vertex in G′,
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every vertex in G′ dominates some color class. Thus, C′ is a dominator k-coloring
of G′.

Conversely, suppose that G′ has a dominator k-coloring C. Since v is adjacent to
every other vertex in G′, the vertex v is the only vertex in its color class. The removal
of v produces a (k− 1)-coloring of G.

It follows that G is (k− 1)-colorable if and only if G′ is dominator k-colorable.
�

By Theorem 33, it is NP-complete to decide if a graph admits a dominator
coloring with at most four colors. Chellali and Maffray [6] characterized the graphs
G such that χd(G)≤ 3 and showed that their characterization leads to a polynomial
time recognition algorithm for such graphs. A rough estimate of the complexity
of their algorithm is O(n8). We note that this result that the problem “χd(G)≤ 3”
can be solved in polynomial time is in contrast the problem “χ (G)≤ 3,” which in
NP-complete.

In 2009, Hedetniemi et al. [15] and in 2011 Arumugam, Raja Chandrasekar,
Misra, Philip, and Saurabh [2] studied algorithmic aspects of dominator colorings
in graphs. They established the following complexity result.

Theorem 34 ([2, 15]) For k≥ 4 an integer, GRAPH DOMINATOR k-COLORABILITY,
is NP-complete for bipartite, chordal, planar, or split graphs.

Arumugam et al. [2] complemented the above hardness results by showing that
the GRAPH DOMINATOR COLORABILITY is fixed-parameter tractable in certain
classes. Informally, a parameterization of a problem assigns an integer k to
each input instance, and a parameterized problem is fixed-parameter tractable,
abbreviated FPT, if there is an algorithm that solves the problem in time f (k) ·|I|O(1),
where |I| is the size of the input and f is an arbitrary computable function that
depends only on the parameter k. (For a discussion on parameterized complexity,
we refer the reader to the 2013 book by Downey and Fellows [10].)

A graph is an apex graph if there exists a vertex in G whose removal from G
yields a planar graph. A family F of graphs is apex minor-free if there is a specific
apex graph H such that no graph in F has H as a minor. As an example, planar
graphs are apex minor-free since no planar graph has K5 as a minor. Apex graphs
play an important role in aspects of graph minor theory and are closed under the
operation of taking minors, that is, contracting an edge or removing an edge or
vertex leads to another apex graph.

As remarked in [2], for k≥ 4 an integer, GRAPH DOMINATOR k-COLORABILITY,
is not fixed-parameter tractable in general graphs unless P=NP. However, the
problem is fixed-parameter tractable in apex minor-free graphs (which include
planar graphs) and chordal graphs.

Theorem 35 ([2]) For k≥ 4 an integer, Graph Dominator k-Colorability, is fixed-
parameter tractable on apex minor-free graphs and on chordal graphs.
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Arumugam et al. [2] show that for k≥ 4 an integer, GRAPH DOMINATOR k-
COLORABILITY, can be solved in “fast” fixed-parameter tractable time in split
graphs.

Theorem 36 ([2]) For k≥ 4 an integer, Graph Dominator k-Colorability, can be
solved in O(2k · n2) time on a split graph on n vertices.

Arumugam et al. [2] pose the problem of whether for k≥ 4 an integer, GRAPH

DOMINATOR k-COLORABILITY, can be solved in polynomial time on interval
graphs.

4 Total Dominator Colorings

The total version of dominator coloring in a graph was studied by several authors.
The concept of total dominator colorings in graphs was first defined in the
manuscript by Hedetniemi, Hedetniemi, McRae, Rall, and Hedetniemi [16] dated
July 9, 2009. Subsequently, Hedetniemi, Hedetniemi, Hedetniemi, McRae, and Rall
[17] continued the study of total dominator colorings in graphs in their manuscript
dated February 18, 2011. The first published papers on the topic appears to be the
2012 paper by Vijayalekshmi [36] and the 2015 paper by Kazemi [26].

Formally, a total dominator coloring, abbreviated TD-coloring, of a graph G
with no isolated vertex is a proper coloring of G in which each vertex of the graph
is adjacent to every vertex of some other color class (different from its own color
class). The total dominator chromatic number of G which we denote by χ td (and
denoted by χt

d(G) in [18, 26]) is the minimum integer k for which G has a TD-
coloring with k colors. A χ td-coloring of G is a coloring of G that uses χ td(G)
colors. Every total dominator coloring is a dominator coloring. Hence, we have the
following observation.

Observation 37 For every graph G without isolated vertices, we have
χd(G)≤χ td(G).

Consider an arbitrary χ td-coloring of G, and let S be a set consisting of one vertex
from each of the resulting χ td(G) color classes. Since every vertex in G is adjacent
to every vertex of some color class (different from its own color class), the set S
is a TD-set in G, implying that γ t(G)≤|S| =χ td(G). Hence we have the following
result, first observed by Vijayalekshmi [36] and Kazemi [26].

Observation 38 ([26, 36]) For every graph G without isolated vertices,
γ t(G)≤χ td(G).

Analogous results to Observation 8 and Theorem 9 hold for the total dominator
chromatic number.

Theorem 39 ([26, 36]) If G is a connected graph of order n≥ 2, then
2≤χ td(G)≤ n. Moreover, the following holds.
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1 2 3 1 4 5 4 6 7 6 1 8 9 1

Fig. 13 A χ td-coloring of a path P14

(a) χ td(G)= 2 if and only if G is a complete bipartite graph.
(b) χ td(G)= n if and only if G is a complete graph.

For disconnected graphs, we have the following upper and lower bounds on the
total dominator chromatic number.

Theorem 40 ([36]) If G is a disconnected graph with nontrivial components G1,
G2, . . . , Gk where k≥ 2, then

2k − 2 + max {χtd(Gi) | i ∈ [k]} ≤ χtd(G) ≤
k∑

i=1

χtd(Gi).

We remark that the total dominator chromatic number of a path and cycle is
incorrectly determined in [26]. To state the total dominator chromatic number of a
path Pn and a cycle Cn on n vertices, we shall need the following well-known result
(see [19]).

Observation 41 For n≥ 3, if G∈{Pn, Cn}, then we have

γt (G) =
⌊n

2

⌋
+
⌈n

4

⌉
−
⌊n

4

⌋
,

that is, γt (G) = n
2 if n≡ 0 (mod 4), γt (G) = n

2 + 1 if n≡ 2 (mod 4), and γt (G) =
n+1

2 for n odd.

Theorem 42 ([18]) For n≥ 2, we have

χtd(Pn) =
⎧
⎨

⎩

γt (Pn) for n ∈ {2, 3, 6}
γt (Pn)+ 1 for n ∈ {4, 5, 7, 9, 10, 11, 14}
γt (Pn)+ 2 otherwise.

For example, a χd-coloring of the path P14 (using γ t(P14)+ 1= 8+ 1= 9
colors) is illustrated in Figure 13.

Thus, by Observation 41 and Theorem 42, we have the following closed formula
for the total dominator chromatic number of a path of large order.

Theorem 43 ([18]) For n≥ 15, χtd(Pn) =
⌊
n
2

⌋+ ⌈
n
4

⌉− ⌊
n
4

⌋+ 2.

For n≥ 16, we define next a χ td(Pn)-coloring, C∗n , of a path Pn as follows. Let
G be the path v1v2 . . . vn, where n≥ 16. For each vertex vi where i≡ 2, 3 (mod 4),
assign a unique color. For each vertex vi where i≡ 1 (mod 4), assign a new additional
color, say 1. For each vertex vi where i≡ 0 (mod 4), assign a further additional
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1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 2 1 11 12

1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 2 11 12

1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 11 2

1 3 4 2 1 5 6 2 1 7 8 2 1 9 10 2

Fig. 14 A χ td-coloring of a paths P16, P17, P18, and P19

color, say 2. Let Cn denote the resulting coloring. We now define a coloring C∗n
as follows. If n≡ 0, 3 (mod 4), let C∗n = Cn. If n≡ 1 (mod 4), then recolor the
vertex vn−1 (currently colored with color 2) with a new distinct color, and let C∗n
denote the resulting modified coloring. If n≡ 2 (mod 4), then recolor the vertex
vn−1 (currently colored with color 1) with a new distinct color, and let C∗n denote the
resulting modified coloring. The coloring C∗n when n∈{16, 17, 18, 19}, for example,
is illustrated in Figure 14. The darkened vertices in this coloring of C∗n in Figure 14
form a γ t-set of the path. A new color is assigned to each darkened vertex in the
path.

Theorem 44 ([18]) χ td(C3)= 3, χ td(C4)= 2, and χ td(C11)= 8. For all other
values of n≥ 5, we have χ td(Cn)=χ td(Pn).

4.1 Bounds on the Total Dominator Chromatic Number

By definition of a total dominator coloring, we have the following observation.

Observation 45 If v is an arbitrary vertex in a graph G without isolated vertices,
then in every dominator coloring of G, the open neighborhood N(v) of v contains a
color class.

Theorem 46 If G is a graph without isolated vertices, then χ td(G)≥ ρo(G), with
strict inequality if there is no perfect packing in G.

Proof If S is an open packing in G, then by Observation 45, the open neighborhoods
of vertices in S contain at least |S| color classes, and so χ td(G)≥|S|. Choosing S to
be a maximum open packing, we have that χ td(G)≥ ρo(G). Further, if G does not
have a perfect open packing, then at least one additional color class is needed to
contain the vertices that do not belong to the open neighborhood of any vertex in S,
and so χ td(G)≥ ρo(G)+ 1. �

If H is any connected graph of order k≥ 1, then the 2-corona G=H ◦P2 satisfies
ρo(G)= 2k=χ td(G), illustrating the existence of graphs G that contain a perfect
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Fig. 15 The graph C4 ◦P2

open packing and satisfy ρo(G)=χ td(G). The graph C4 ◦P2, for example, is shown
in Figure 15 (here, H =C4).

If a graph G contains a perfect open packing, then it is not necessarily true
that ρo(G)=χ td(G). The simplest example illustrating this is a path G=P4, with
ρo(G)= 2 and χ td(G)= 3. More generally, if G=Pn where n≡ 0 (mod 4) and n≥ 8,
then G has a perfect open packing and ρo(G)= γ t(G). However in this case, by
Theorem 42, we have χ td(G)= γ t(G)+ 2= ρo(G)+ 2.

For a given graph G, let At (G) denote the set of all γ t-sets in G. We next present
an upper bound on the total dominator chromatic number of a graph.

Theorem 47 ([18, 26]) If G is a connected graph without isolated vertices, then

χtd(G) ≤ γt (G)+ min
S∈At (G)

{χ(G− S)},

and this bound is tight.

Proof Let S be an arbitrary γ t-set of G, and let C be a proper coloring of the graph
G− S using χ (G− S) colors. We now extend the coloring C to a coloring of the
vertices of G by assigning to each vertex in S a new and distinct color. Let C′ denote
the resulting coloring of G, and note that C′ uses γ t(G)+χ (G− S) colors. Since S
is a TD-set of G, every vertex in G is adjacent to at least one vertex of S. Since the
color class of C′ containing a given vertex of S consists only of that vertex, each
vertex in G is adjacent to every vertex of some (other) color class in the coloring
C′. Hence, C′ is a TD-coloring of G using γ t(G)+χ (G− S) colors. This is true for
every γ t-set of G. The desired upper bound now follows by choosing S to be a γ t-set
of G that minimizes χ (G− S). The bound is achieved, for example, by taking G to
be a complete graph. As shown in [18], the bound is also tight for infinitely many
trees. �

The proof of Theorem 47 yields the following more general result.

Theorem 48 If G is a connected graph without isolated vertices, and TD(G)
denotes the set of all total dominating sets of G, then

χtd(G) ≤ min
S∈TD(G)

{ |S| + χ(G− S) }.

We observe that χ (G− S)≤χ (G) for every proper subset S⊂V (G). This
observation, together with the results of Observations 37 and 38, gives us the
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following analogous result to Theorem 12, thereby establishing upper and lower
bounds on the total dominator chromatic number of an arbitrary graph in terms of
its total domination number and chromatic number.

Theorem 49 ([26, 36]) Every graph G without isolated vertices satisfies

max{γt (G), χ(G)} ≤ χtd(G) ≤ γt (G)+ χ(G).

4.2 Special Classes of Graphs

In this section, we consider the total dominator chromatic number of certain classes
of graphs.

4.2.1 Bipartite Graphs

As a special case of Theorem 49 when G is a bipartite graph, we have the following
result.

Theorem 50 ([26, 36]) If G is a bipartite graph, then γ t(G)≤χ td(G)≤ γ t(G)+ 2.

For each t∈{0, 1, 2}, an infinite family Gt of bipartite graphs such that each graph
G ∈ Gt satisfies χ td(G)= γ t(G)+ t is constructed in [18] as follows.

Let G0 be the family of graphs G without isolated vertices that contain a TD-set
S that is a perfect open packing in G and such that the neighborhood of each edge
e in G[S] induces a complete bipartite graph in G, that is, if e= uv is an edge in
G[S], then the subgraph of G induced by the neighborhood, N[e], of e is a complete
bipartite graph Kn1,n2 where d(u)= n1 and d(v)= n2. Let G ∈ G0. As an example,
if H is an arbitrary graph, then the graph G=H ◦P2 belongs to the family G0 since
the set S=V (G)�V (H) is a TD-set that is a perfect open packing in G and the
neighborhood of each edge e in G[S] induces a complete bipartite graph K1,2 in G.

Let G1 be the family of graphs that can be obtained from a graph H without
isolated vertices by attaching any number of pendant edges, but at least one, to each
vertex of H. For example, if H is an arbitrary isolate-free graph, then the corona
G=H ◦P1 of H belongs to the family G1.

Let G2 be the family of all paths Pn and cycles Cn, where n≡ 0 (mod 4) and
n≥ 8.

Theorem 51 ([18]) The following holds.

(a) If G ∈ G0, then χ td(G)= γ t(G).
(b) If G ∈ G1, then χ td(G)= γ t(G)+ 1.
(c) If G ∈ G2, then χ td(G)= γ t(G)+ 2.
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4.2.2 Trees

Recall that the dominator chromatic number of a tree is one of two values (see
Theorem 17). However, the total dominator chromatic number of a tree is one of
three values. By Theorem 50, if T is a tree, then γ t(T)≤χ td(T)≤ γ t(T)+ 2. Further,
there are infinitely many trees T for which χ td(T)= γ t(T)+ i for each i∈ [2]0 ={0,
1, 2}.
Theorem 52 ([26, 36]) If G is a tree, then γ t(T)≤χ td(T)≤ γ t(T)+ 2.

The following properties of χ td-colorings in a tree T are established in [18]. We
say that a color class C in a given TD-coloring C of G is free if each vertex of G is
adjacent to every vertex of some color class different from C.

Theorem 53 ([18]) If T is a nontrivial tree, then the following holds.

(a) If γ t(T)=χ td(T), then no χ td(T)-coloring contains a free color class.
(b) If χ td(T)= γ t(T)+ 1, then there exists a χ td(T)-coloring that contains a free

color class.
(c) If χ td(T)= γ t(T)+ 2, then there exists a χ td(T)-coloring that contains two free

color classes.

The trees T satisfying γ t(T)=χ td(T) are characterized in [18]. Let T be the
family of trees constructed as follows. Let T consist of the tree P2 and all trees that
can be obtained from a disjoint union of k≥ 1 stars each of order at least 3 by adding
k− 1 edges joining leaf vertices in such a way that the resulting graph is connected
and the center of each of the original k stars remains a support vertex.

Theorem 54 ([18]) If T is a nontrivial tree, then γ t(T)=χ td(T) if and only if T ∈
T .

In [18] a tight upper bound on the total dominator chromatic number of a tree
in terms of its order is established, and the trees with maximum possible total
dominator chromatic number are characterized. For this purpose, let F be the family
of all trees T that can be obtained from a tree H of order at least 2 by selecting
an arbitrary edge e= uv in H and attaching a path of length 2 to each vertex of
V (H)�{u, v} so that the resulting paths are vertex-disjoint. We call H the underlying
tree of T. A tree in the family F with underlying tree H =P5, for example, is
illustrated in Figure 16 (here the vertices of H are depicted by the darkened vertices).

Theorem 55 ([18]) If T is a tree or order n≥ 2, then χtd(T ) ≤ 2
3 (n + 1), with

equality if and only if T ∈ F .

Fig. 16 A tree in the family
F

u v
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4.2.3 Mycielskian of a Graph

Let G be a graph without isolated vertices and with V (G)={v1, v2, . . . , vn}. The
Mycielskian M(G) is the graph obtained from G by adding n new vertices u1, u2,
. . . , un and an additional vertex v and then adding the edges vui for all i∈ [n].
Further, for each edge vivj of G, we add the edges uivj and viuj to complete the
construction of M(G). For example, if G=K2, then M(G)=C5. If G=C5, then
M(G) is the Grötzsch graph. Kazemi [24] proved that the dominator chromatic
number of the Mycielskian of a graph is one of two values.

Theorem 56 ([24]) If G is a graph without isolated vertices, then

χtd(M(G)) = χtd(G)+ 1 or χtd(M(G)) = χtd(G)+ 2.

4.2.4 Circulants

Jalilolghadr, Kazemi, and Khodkar [20] studied total dominator colorings
of circulant graphs Cn(a, b) with two “jump sequences.” For n≥ 3, let
1≤ a1 < · · · ak ≤�n/2�, and let S={a1, . . . , ak}. The graph G with vertex set
V (G)= [n] and edge set

E(G) = {{i, j} : |i − j | ≡ ai (mod n) for some i ∈ [k]}

is called a circulant graph with jump sequence S and denoted Cn(S) or Cn(a1,
. . . , ak). We note that Cn(S) is a k-regular graph. Jalilolghadr et al. [20] prove the
following result.

Theorem 57 ([20]) If G is a circulant graph Cn(a, b) where n≥ 6, gcd(a, n) = 1
and a−1b≡ 3 (mod n), then

χtd(G) =
⎧
⎨

⎩

2�n
8 � for n ∈ {8, 9, 10}

2�n
8 � + 1 for n ≡ 1 (mod 8) or n = 11

2�n
8 � + 2 otherwise.

4.2.5 Central Graphs

Kazemi and Kazemnejad [28] studied the total dominator chromatic number of
central graphs, where they define the central graph C(G) of a graph G as the graph
obtained from G by subdividing every edge of G exactly once and adding all edges
joining two vertices that were not adjacent in G. Among other results, they proved
the following.

Theorem 58 ([28]) If G is a connected graph of order n≥ 4, then the following
holds.
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(a) χtd(C(G)) ≥ 2
3n+ 1.

(b) χtd(C(G)) ≤ n+ � k
2� where k is the order of a longest path in G.

(c) χ td(C(G))≤ n+ 1 if Δ(G)≤ n− 2.
(d) χtd(C(G)) ≤ n+ �n

2 �, with equality if and only if G∼=Kn.

4.3 Graph Products

In this section, we present some results due to Kazemi [25] on the total dominator
chromatic number in Cartesian products (�) and direct products (×) of two graphs.

Theorem 59 ([25]) If G and H are two graphs without isolated vertices, then

χtd(G×H) ≤ χtd(G) · χtd(H).

Theorem 60 ([25]) For q≥ p≥ 2, if G is a complete p-partite graph and H is a com-
plete q-partite graph, then χ td(G×H)= p+ 2. In particular, χ td(Kp ×Kq)= p+ 2.

Theorem 61 ([25]) If G and H are two graphs without isolated vertices, then

max{χtd(G), χtd(H)} ≤ χtd(G�H) ≤ min{χtd(G) · n(H), χtd(H) · n(G)}.

Theorem 62 ([25]) If G is a graph without isolated vertices, then χtd(G) ≤ χtd(G�

K2) ≤ 2χtd(G).

4.4 Algorithmic and Complexity Results

We consider in this section the problem of finding the total dominator coloring
number of an arbitrary graph. Formally, we consider the following decision
problem:

GRAPH TOTAL DOMINATOR k-COLORABILITY

Input: A graph G, and an integer k≥ 4.
Question: Does G have a total dominator k-coloring?
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An identical proof to that of Theorem 33 can be used to show that the GRAPH

TOTAL k-DOMINATOR COLORABILITY is NP-complete for general graphs by
transforming it from an instance of GRAPH DOMINATOR k-COLORABILITY.

Theorem 63 ([17, 26]) GRAPH TOTAL DOMINATOR k-COLORABILITY is
NP-complete for general graphs, for k≥ 4.

5 Concluding Comments

In this chapter, we have surveyed selected results on the dominator chromatic
number and total dominator chromatic number of a graph. Other results can be
found, for example, in [3, 21, 27]. We close with a small list of open problems.

Problem 1 Find graphs, or classes of graphs, G satisfying the following.

(a) χd(G)= γ (G).
(b) χd(G)=χ (G).
(c) χd(G)= γ (G)+χ (G).
(d) χ td(G)= γ t(G).
(e) χ td(G)=χ (G).
(f) χ td(G)= γ t(G)+χ (G).

Problem 2 Characterize the nontrivial trees T satisfying the following.

(a) γ t(T)=χ td(T)+ 1.
(b) γ t(T)=χ td(T)+ 2.

Problem 3 Characterize the graphs G satisfying χd(G)=χ td(G).

Problem 4 Determined the dominator chromatic number and the total dominator
chromatic number of the m× n grid graph, Pm � Pn, for all m, n≥ 2.

Problem 5 For any dominator (or total dominator) coloring, one can construct a
so-called dominator digraph (total dominator digraph, respectively) which is an
orientation of some of the edges of G such that for every vertex u, you orient the
edge uv from u to v if u dominates the color class of vertex v. We note that for
dominator colorings, this digraph will contain loops, if a vertex forms a singleton
color class. However, the total dominator digraph will have no loops. We also note
that these digraphs will have some unoriented edges which can be deleted. Study
the resulting dominator digraphs and total dominator digraphs.
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Irredundance

C. M. Mynhardt and A. Roux

The concept of irredundance in graphs was introduced in 1978 by Cockayne,
Hedetniemi and Miller [42] because of its relevance to dominating sets. Informally,
a set X of vertices in a graph G is irredundant if each vertex in X dominates a vertex
of G (perhaps itself) that is not dominated by any other vertex in X. More formally, in
terms of private neighbours, X is irredundant if pn(x,X) = N [x]−N [X−{x}] �= ∅

for each x∈X, that is, if each x∈X has an X-private neighbour (which could
be x itself). If a set X has a vertex x without private neighbours, that is, if
N[x]⊆N[X −{x}], we say that x is redundant in X (in which case X is not an
irredundant set).An irredundant set is maximal irredundant if it has no irredundant
proper superset. The lower and upper irredundant numbers ir(G) and IR(G) are,
respectively, the smallest and largest cardinalities of a maximal irredundant set of
G. If X is a maximal irredundant set of cardinality ir(G), we call X an ir(G)-set
or simply an ir-set, depending on circumstances. An IR(G)-set or IR-set is defined
similarly; the same holds for any other domination-type parameter.

This chapter is organised as follows. To begin, we consider the partition of V (G)
associated with an irredundant set in Section 1. Here, we discuss the concepts of
private neighbours, the private neighbour cube and generalised irredundance. The
chain of lower and upper domination, independence and irredundance numbers is
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presented in Section 2. We discuss equality of parameters in the domination chain
in Section 3, where we cover lower and upper irredundance perfect graphs, as well
as other cases of equality, such as graphs with ir = IR, ir = γ , α = IR or
� = IR. Bounds involving other graph parameters, including Nordhaus-Gaddum-
and Gallai-type results, can be found in Section 4. Differences between and ratios
of parameters in the domination chain are covered in Section 5 , criticality and
stability concepts in Section 6, irredundance on chessboards in Section 7 and
irredundant Ramsey numbers in Section 8. Finally, we discuss reconfiguration of
irredundant sets in Section 9 and complexity in Section 10. We state open problems
and conjectures throughout the text where appropriate.

1 Partition of V (G) Associated with an Irredundant Set

Let us examine the properties of an irredundant set more closely. As noted
by Cockayne, Grobler, Hedetniemi and McRae [41], we can associate a weak
partition1 of V (G) with each irredundant set X, namely,

V (G) = X ∪ Y ∪ C ∪ R, where

Y consists of vertices in V (G)−X that belong to private neighbourhoods of
vertices in X,

C consists of vertices in V (G)−X that have at least two neighbours in X, and
R is the set of vertices not dominated by X.

In Figure 1, the set X is indicated by coloured (red and yellow) discs, Y by blue
squares, C by white discs and R by green triangles. The set X is further partitioned
as

X = Z ∪ I,where

I is the set of vertices that are isolated in G[X], indicated by yellow discs, and
Z = X − I , indicated by red discs.

The blue private neighbours in Y and the observation that 5 ∈ pn(5, X) confirm
that X is irredundant. Closer scrutiny however reveals that X is not maximal
irredundant. For any y∈R, y is a private neighbour of itself in the set X ∪{y}, and
for any z adjacent to y, y is a private neighbour of z in X ∪{z}. Hence we must

1In a weak partition, some of the parts could be empty.
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also examine the private neighbourhood of each x∈X in these supersets of X to
determine whether or not X is maximal irredundant. Since pn(1, X) = {6, 7} ⊆
N(12), pn(1, X∪{12}) = ∅, which means that X ∪{12} is not irredundant. However,
pn(1, X∪{6}) = {7} and pn(6, X∪{6}) = {12}, and since all other vertices in X also
have X ∪{6}-private neighbours, X ∪{6} is irredundant. The set X ∪{14} is likewise
irredundant, as 4 ∈ pn(4, X ∪ {14}) and 14 ∈ pn(14, X ∪ {14}). The following
result, which was used implicitly in earlier work and first formalised in [41], and
which extends a result by Bollobás and Cockayne [10], provides a certificate for an
irredundant set to be maximal irredundant (or not).

Theorem 1.1 ([41]) An irredundant set X of a graph G is maximal irredundant if
and only if, for each u∈R=V (G)−N[X] and each v∈N[u], there exists a vertex
x∈X such that v dominates pn(x,X).

Proof. Assume that X is a maximal irredundant set of G for which the conclusion
in the statement of the theorem does not hold. Then there exist vertices u∈R and
v∈N[u] such that v does not dominate the private neighbourhood of any x∈X.
Consider the set X

′ =X ∪{v}. The stated property of v implies that pn(x,X′) �= ∅

for each x∈X. Moreover, since u is not dominated by any x∈X but u∈N[v], it
follows that u ∈ pn(v,X′). Therefore X

′
is irredundant, contrary to the maximality

of X.
Conversely, assume that X is an irredundant set of G for which the conclusion

of the statement holds. Consider any v∈V (G)−X. If v is undominated by X or
adjacent to a vertex u that is undominated by X, then, by assumption, there exists
a vertex x∈X such that v dominates pn(x,X). This implies that x is redundant in
X ∪{v}. On the other hand, if v and all its neighbours are dominated by X, then v is
redundant in X ∪{v}. In either case, it follows that X ∪{v} is not irredundant. Since v
is arbitrary, we conclude that X is maximal irredundant. �

6 7 8 109

141312

11

21 3 4 5

G

Z I

Y

R

C

X

Fig. 1 The partition of the vertex set of a graph associated with an irredundant set X
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If v∈V (G)−X and pn(x,X) ⊆ N [v], we say that v annihilates x. Let G
′

be the
graph obtained from G in Figure 1 by adding the edges 6 7 and 9 14. Then 12, 6 and
7 annihilate 1; 8 annihilates 2; 9, 13 and 14 annihilate 3; and 10 and 11 annihilate 4.
Therefore X is maximal irredundant (but not dominating) in G

′
.

1.1 Private Neighbours

The elements of an irredundant set X could have one or both of two types of private
neighbours: for x∈X, the vertex y is an

(i) X-self-private neighbour (X-spn) of x if y= x and x is isolated in G[X] (the
vertices 4, 5 in Figure 1),

(ii) X-external private neighbour (X-epn) of x if y∈V (G)−X and N(y)∩X ={x}.
The set of X-external private neighbours of x∈X is denoted by epn(x,X). In

Figure 1, pn(4, X) = {4} ∪ epn(4, X) = {4, 10, 11}. Bollobás and Cockayne [10]
proved the following fundamental result.

Theorem 1.2 ([10]) Every graph G without isolated vertices has a minimum
dominating set X in which each vertex has an X-epn.

Proof. Among all minimum dominating sets of G, let X be one that maximises the
number of edges in G[X]. We show that X has the desired property. Assume to the
contrary that epn(x,X) = ∅ for some x∈X. By the minimality of X, pn(x,X) �=
∅, and the only possibility is that x is isolated in G[X]. Since G is isolate-free,
x is adjacent to a vertex u∈V (G)−X. Since epn(x,X) = ∅, u is adjacent to a
vertex y∈X −{x}. Consider the set X

′ = (X −{x})∪{u}. Since x is adjacent to u, and
each neighbour of x in V (G)−X is adjacent to a vertex in X −{x}, X

′
dominates G.

However, u is adjacent to y∈X
′
, whereas x is nonadjacent to all vertices in X. Hence

X
′
, having the same cardinality as X, is a minimum dominating of G such that G[X

′
]

contains more edges than G[X], contradicting the choice of X. �
A third type of private neighbour of x∈X is considered in [76]: the vertex y is

an

(iii) X-internal private neighbour (X-ipn) of x if y∈X −{x} and N(y)∩X ={x}. In
Figure 1, vertex 3 is an X-ipn of 2.

1.2 The Private Neighbour Cube and Generalised
Irredundance

Using all combinations of the three types of private neighbours, Fellows, Fricke,
Hedetniemi and Jacobs [76] constructed the so-called private neighbour cube (illus-
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Fig. 2 The private neighbour
cube of Fellows, Fricke,
Hedetniemi and Jacobs [76]

111110
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OOIROIR
010 011

100

000 001

trated in Figure 2) and obtained six additional types of irredundance. Combining
the private neighbourhood types and their negations (e.g. each x∈X has an X-epn
but neither an X-spn nor an X-ipn), Cockayne [30] obtained further generalised
irredundance concepts which were investigated in greater depth by Finbow [77].
Most of these generalisations, as well as others obtained by, for example, imposing
structural requirements on X, are beyond the scope of this chapter, and we mainly
consider irredundance in undirected graphs as defined in [42]. Apart from brief
definitions to explain the private neighbour cube, we consider only two other
concepts of irredundance, open or OC-irredundance, introduced by Farley and
Shacham [62], and CO-irredundance, defined by Fellows et al. [76].

The vertices of the private neighbour cube are, simultaneously, types of sets
defined according to which types of private neighbours their vertices possess and the
maximum cardinality of such a set X in a graph G. The types of sets are represented
by binary strings of length 3 as described below.

Type 000: Each vertex in X has a private neighbour which is not an X-ipn, an X-
epn or an X-spn. Since we only consider these three types of private neighbours,
the only set of this type is the empty set.

Type 001: Each vertex in X has an X-ipn. This is only possible if the subgraph
G[X] of G induced by X consists of disjoint copies of K2. Following [76], we
call such a set X a strong matching set and denote the maximum cardinality of a
strong matching set in G by α∗ (G).

Type 010: Each vertex in X has an X-epn; that is, epn(x,X) = N(x) − N [X −
{x}] �= ∅ for each x∈X. Since this definition involves open and c losed
neighbourhoods, we obtain the concept of OC-irredundance, usually called
open irredundance. The lower and upper open irredundant numbers oir(G) and
OIR(G) of G are, respectively, the smallest and largest cardinalities of a maximal
open irredundant set of G. Open irredundant sets were studied by Farley and
Shacham [62].

Type 011: Each vertex in X has an X-ipn or an X-epn; that is, N(x) − N(X −
{x}) �= ∅ for each x∈X. Since this definition involves two open neighbourhoods,
we obtain the concept of open-open and OO-irredundance. The lower and upper
open irredundant numbers ooir(G) and OOIR(G) are defined in the obvious
manner. OO-irredundant sets were considered by Farley and Proskurowski [61]
and Farley and Shacham [62].
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Fig. 3 A CO-irredundant set
X

5 6 7 8

X
1 2 3 4

Type 100: Each vertex in X is an X-spn, that is, X is an independent set.
The associated parameters, namely, the independence number α(G) and the
independent domination number i(G), are well established in graph theory.

Type 101: Each vertex in X is an X-spn or has an X-ipn. For such a set X, known
as a 1-dependent set, �(G[X])≤ 1. The maximum cardinality of a 1-dependent
set of G is the 1-dependence number α1(G). These sets were studied by Fink and
Jacobson [80].

Type 110: Each vertex in X is an X-spn or has an X-epn, that is, X is an
irredundant set. Since we require that pn(x,X) = N [x] − N [X − {x}] �= ∅ for
each x∈X, the concept of closed neighbourhood occurs twice in this definition.
Thus, irredundance can also be called CC-irredundance.

Type 111: Each vertex in X is an X-spn or has an X-epn or X-ipn, that is, N [x] −
N(X − {x}) �= ∅ for each x∈X. Since this definition involves closed and o pen
neighbourhoods, we get the concept of CO-irredundance. That is, a set X is CO-
irredundant if each x∈X has a private neighbour of at least one of the three types
mentioned in Section 1.1. For example, the set X in Figure 3 is CO-irredundant:
1 is an X-spn, epn(2, X) = {6}, ipn(3, X) = {2, 4} and epn(4, X) = {8}. The
lower and upper CO-irredundant numbers coir(G) and COIR(G) are defined in
the obvious manner.

The partial order on the set of parameters (indicated by arrows, from large to
small) in the private neighbourhood cube is defined by the lexicographic order of
the binary strings that represent the respective sets.

2 The Domination Chain

The relationships between dominating, independent and irredundant sets of vertices
of a graph are well-known [92, Chapter 3], and, following [41], we summarise them
below.

maximal minimal
independent dominating

� (I )⇒ � (II )⇒ maximal irredundant
independent and dominating and

dominating irredundant

(1)
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It also follows from the definitions that any irredundant set is CO-irredundant,
and any open irredundant set is irredundant. Simmons [122] showed that a total
dominating set is minimal total dominating if and only if it is CO-irredundant. The
implications (I) and (II) in (1) lead to the domination chain (2), first mentioned in
[42]. For any graph G,

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G). (2)

For open and CO-irredundance the inequalities,

oir(G) ≤ γ (G) ≤ OIR(G) ≤ IR(G) for any graph G without isolated vertices,

and

IR(G) ≤ COIR(G) for any graph G

hold (see [92, pp. 91–92]). Farley and Shacham [62] and Favaron [66] gave
examples of graphs with OIR < i, � < OIR, ir < oir and oir < ir.

For the parameters in the domination chain (2), Allan and Laskar [1] and
Bollobás and Cockayne [10] further showed that γ (G) ≤ 2 ir(G)− 1 (see Theorem
2.1 below), but all the other ratios of parameters in (2) are unbounded for general
graphs: for i/γ , consider Kn,n; for α/i, consider K1,n; for �/α, consider K2�Kn; and
for IR /�, consider K2�Kn+1 and delete an edge between the two copies of Kn+1.

Theorem 2.1 ([1, 10]) For any graph G, γ (G) ≤ 2 ir(G)− 1.

Proof. We use the notation defined in Section 1 and illustrated in Figure 1. Let
X be an ir-set of G. If X dominates G, we are done; hence assume R = V (G) −
N [X] �= ∅. Let u∈R. By Theorem 1.1, there exists a vertex x∈X such that u
annihilates x. Since X does not dominate u, necessarily ∅ �= epn(x,X) ⊆ N(u).
Define XR = {x ∈ X : epn(x,X) �= ∅ and epn(x,X) ⊆ N(u) for some u∈R}. For
each x∈XR, choose a vertex x′ ∈ epn(x,X) and define YR ={x′

: x∈XR}. Note that
YR ⊆Y and |YR| = |XR|≤|X|. Moreover, X ∪YR dominates G. Since X � X ∪ YR ,
the maximality of X (as an irredundant set) implies that X ∪YR is not irredundant.
As stated in (1), this implies that X ∪YR is not a minimal dominating set. Therefore
γ (G) ≤ |X ∪ YR| − 1 = |X| + |YR| − 1 ≤ 2 ir(G)− 1. �

Subject to γ (G) ≤ 2 ir(G)−1 and two other obvious restrictions, the differences
between the parameters in (1) can be arbitrary in a connected graph, as proved in
[47].

Theorem 2.2 ([47]) For any positive integers k1 ≤· · · ≤ k6 such that (a)
k1 = 1⇒ k2 = k3 = 1, (b) k4 = 1⇒ k1 = · · · = k6 = 1 and (c) k2 ≤ 2k1 − 1, there
exists a connected graph G such that ir(G) = k1, γ (G) = k2, i(G) = k3, α(G) =
k4, �(G) = k5 and IR(G) = k6.
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Much work has been done to bound the ratios or prove equality of pairs of
the parameters in the domination chain for special graph classes, or bound the
parameters, their differences or their sums using other graph parameters. Except
for a few results on open and CO-irredundance, we only mention results involving
ir and IR.

3 Equality of Parameters in the Domination Chain

For graph parameters π , λ, we say that G is a (π , λ)-graph if π (G)= λ(G). Thus, the
(i, α)-graphs are precisely the well-covered graphs, and the (γ , �)-graphs are the
well-dominated graphs, terms which work well(!) for independence and domination,
but less well for irredundance and not at all if π and λ refer to different concepts.
Many instances of (ir, γ )- and (α, IR)-graphs are mentioned in [77, pp. 23–24] and
[92, pp. 77–84], and we do not repeat those results here. We write H � G (H � G)
if H is an induced (proper) subgraph of G.

More recent research focuses instead on (π , λ)-perfect graphs: a graph G is
(π , λ)-perfect if π (H)= λ(H) for every H � G. For a trivial example, note
that each component of a P3-free graph is complete; hence P3-free graphs are
(ir, IR)-perfect graphs. Graphs with maximum degree �≤ 2 are (ir, i)- and (α, IR)-
perfect graphs (but not (i, α)-graphs). Also, (χ , ω)-perfect graphs, where χ and
ω denote the chromatic and clique number, respectively, are the classical perfect
graphs. We discuss (ir, γ )-perfect and (�, IR)-perfect graphs in Sections 3.1 and 3.2,
respectively. In Sections 3.3–3.5, we consider equality results that do not involve (π ,
λ)-perfect graphs.

3.1 Lower Irredundance Perfect Graphs

A graph is (lower) irredundance perfect if it is (ir, γ )-perfect, and k-(ir, γ )-perfect
if ir(H) = γ (H) for each induced subgraph H with ir(H) ≤ k. A graph G is
minimally (ir, γ )-imperfect if G is not (ir, γ )-perfect and ir(H) = γ (H) for every
H � G. The (ir, i)-perfect graphs form a proper subset of the (ir, γ )-perfect graphs.
If G does not contain any of the graphs H1, . . . , Hk as induced subgraphs, we say
that G is (H1, . . . , Hk)-free. Eight graphs T1, G1, . . . , G7 are depicted in Figure 4,
and in the rest of this section, when we refer to T1 or Gi, i= 1, . . . , 7, we mean a
graph in this figure. A (generalised) spider Sp(�1, . . . , �k), �i ≥ 1, k≥ 2, is a tree
obtained from the star K1,k with centre u by subdividing the edge uvi �i − 1 times,
i= 1, . . . , k.

An early result on (ir, γ )-perfect graphs by Faudree, Favaron and Li [63]
concerns P4-free graphs, also known as cographs, a subclass of chordal graphs.
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Fig. 4 Graphs used in
Section 3.1

Slater tree

T1 G2 G3G1

G5G4 G7G6

We prove the first part of the following theorem as an illustration of how results of
this nature are obtained.

Theorem 3.1 ([63])

(i) Any P4-free graph, that is, any cograph, is (ir, γ )-perfect.
(ii) Any (P4, K3,3)-free or (K1,3, G1)-free graph is (ir, i)-perfect.

Proof of (i). Let G be a P4-free graph and consider an ir-set X of G. We show that X
is a dominating set of G. Suppose to the contrary that R = V (G)−N [X] �= ∅ and
consider u∈R. As in the proof of Theorem 2.1, there exists a vertex x∈X such that
u annihilates x; that is, x∈ Z (see Figure 1) and ∅ �= epn(x,X) ⊆ N(u). Let z be a
vertex in Z adjacent to x, and let w ∈ epn(x,X). Then G[{y, x, w, u}]∼=P4, contrary
to our hypothesis. It follows that X dominates G; hence γ (G) = ir(G). Since each
induced subgraph of a P4-free graph is P4-free, γ (H) = ir(H) for each H � G,
that is, G is (ir, γ )-perfect. �

Favaron [64] showed that graphs that contain none of six forbidden induced
subgraphs are (ir, γ )-perfect and conjectured that (P6, G2, G3)-free graphs are
(ir, γ )-perfect. This conjecture was proved by Puech [115], who also proved a
similar result which involves two forbidden subgraphs.

Theorem 3.2 ([115]) Every (P6, G2, G3)-free and every (P6, G4)-free graph is
(ir, γ )-perfect.

Since both P6 and G4 contain P5 as an induced subgraph, the class of P5-free
graphs is included in the class of (P6, G4)-free graphs. Therefore we obtain the
following corollary, first conjectured by Faudree et al. [63].

Corollary 3.3 ([115]) Every P5-free graph is (ir, γ )-perfect.
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Puech in turn conjectured that every (P6, G5, G6)-free graph is (ir, γ )-perfect,
a proof of which was given by Volkmann and Zverovich [127]. Note that Theorem
3.4 implies Theorem 3.2 and thus also the truth of the conjectures in [63, 64, 115].

Theorem 3.4 ([127]) Every (P6, G5, G6)-free graph is (ir, γ )-perfect.

Puech [117] determined all pairs of connected graphs (X, Y ) such that every
sufficiently large graph containing neither X nor Y as induced subgraph is (ir, γ )-
perfect.

Theorem 3.5 ([117]) Let (X, Y ) be a pair of connected graphs and let n0 be a given
positive integer. A graph G is (X, Y )-free implies that G is (ir, γ )-perfect for any
connected graph of order at least n0 if and only if one of the following statements
holds:

• X � P5 and Y is arbitrary
• X � P6 and Y � G4
• X � G1 and Y � Sp(1, 1, 2)
• X � G7 and Y � Sp(1, 1, 3).

Building on work by Bollobás and Cockayne [10], Favaron [64], and Laskar and
Pfaff [106], Henning [96] stated the following necessary and sufficient condition for
a chordal graph to be (ir, γ )-perfect.

Theorem 3.6 ([96, 106])

(i) A chordal graph is (ir, γ )-perfect if and only if it is (T1, G1)-free.
(ii) A tree is (ir, γ )-perfect if and only if it is T1-free.

Henning [96] characterised 2-(ir, γ )-perfect graphs in terms of 12 forbidden
induced subgraphs and also conjectured that a graph G is (ir, γ )-perfect if and only
if it is 4-(ir, γ )-perfect. However, Volkmann and Zverovich [128], in a paper that
contains an excellent summary of results on (ir, γ )-perfect graphs up to that point,
constructed a minimal irredundance imperfect counterexample F∗ (shown in Figure
5) to Henning’s conjecture; F∗ is 4-(ir, γ )-perfect but ir(F ∗) = 5 and γ (F∗)= 6.
The analytical proof that F∗ is 4-(ir, γ )-perfect is quite long, but this fact can be
verified by computer. The set {2, 4, 7, 9, 13, 15} (red vertices in Figure 5) is a
minimum dominating set of F∗ , while {3, 4, 8, 13, 14} (blue-circled vertices, with
one private neighbour each indicated by brown squares) is an ir-set. They, in turn,
formulated the following conjectures, which remain unresolved to date. (For what it
is worth, the authors of this survey surmise that both conjectures are false.)

Conjecture 3.7 Volkmann and Zverovich [128, 2002]

(i) A graph is (ir, γ )-perfect if and only if it is 5-(ir, γ )-perfect.
(ii) The number of minimally (ir, γ )-imperfect graphs is finite.
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Fig. 5 A 4-(ir, γ )-perfect graph F∗ with ir-set {3, 4, 8, 13, 14} and γ -set {2, 4, 7, 9, 13, 15} [128]

Cographs are (χ , ω)-perfect (i.e. perfect in the original sense) and (ir, γ )-perfect.
Not all perfect graphs are (ir, γ )-perfect, e.g. the Slater tree is perfect but not (ir, γ )-
perfect. On the other hand, C5 is (ir, γ )-perfect but not perfect.

Problem 3.8 Characterise the intersection of the two classes of (χ , ω)-perfect and
(ir, γ )-perfect graphs.

3.2 Upper Irredundance Perfect Graphs

Jacobson and Peters [102] defined a graph to be upper irredundance perfect if it is
(α, IR)-perfect. On the other hand, Gutin and Zverovich [90] and Zverovich and
Zverovich [133] defined a graph to be upper domination perfect if it is (α, �)-
perfect and upper irredundance perfect if it is (�, IR)-perfect. To be consistent with
the corresponding definition for the lower parameters, we prefer the latter definition.
Fortunately, the definition of (π , λ)-perfect graphs is unambiguous, and we use it
here. Moreover, Gutin and Zverovich [90] showed that any (α, �)-perfect graph is
also (�, IR)-perfect, from which it follows that the classes of (α, �)-perfect and
(α, IR)-perfect graphs are identical. We present the short proof here.

Theorem 3.9 ([90]) If G is a (α, Γ )-perfect graph, then it is (�, IR)-perfect.

Proof. Assume G is (α, �)-perfect and consider any H � G. Then H is also (α,
�)-perfect. Let X be an IR(H)-set and consider the subgraph F of H induced by
N[X]. Then X is a dominating set of F. Since X is an IR-set of H, pnH (x,X) �=
∅ for each x∈X. But pnH (x,X) ⊆ N [X] for each x∈X; hence pnH (x,X) =
pnF (x,X) �= ∅ for each x∈X. Therefore X is irredundant in F, and (see (1)) it
follows that X is a minimal dominating set of F. Hence �(F) ≥ |X| = IR(H).
Since H is (α, �)-perfect, α(H)= �(H) and α(F)= �(F). Thus

IR(H) ≤ �(F) = α(F ) ≤ α(H) = �(H) ≤ IR(H),

that is, �(H) = IR(H). Hence G is (�, IR)-perfect. �
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To see that a (�, IR)-perfect graph need not be (α, IR)-perfect, note that
α(K2�K3) = 2 and �(K2�K3) = IR(K2�K3) = 3. Therefore K2�K3 is not
(α, IR)-perfect. For any vertex v, �(K2�K3 − v) = IR(K2�K3 − v) = 2, and
it now follows easily that for each H � K2�K3, either �(H) = IR(H) = 2 or
�(H) = IR(H) = 1. Thus K2�K3 is (�, IR)-perfect. Not much is known about
(α, �)-imperfect (�, IR)-perfect graphs, but Cockayne, Favaron, Goddard, Grobler
and Mynhardt [36] showed that if IR(G) > α(G) = 2, then IR(G) = max{r :
Kr�K2 � G}.
Problem 3.10 Characterise (α, Γ )-imperfect (�, IR)-perfect graphs.

We next define a few classes of graphs that occur in the discussion below. A
Meyniel graph is a graph in which every odd cycle of length five or more has at least
two chords. A parity graph is a graph in which every two induced paths between
the same two vertices have the same parity; these graphs include distance-hereditary
graphs and bipartite graphs and can be shown to be Meyniel graphs. A vertex v of
a graph G is a simplicial vertex if N[v] induces a clique, and a clique is a simplex if
it contains a simplicial vertex. A vertex is v peripheral if v is simplicial either in G
or in G. A graph G is called a peripheral graph if every induced subgraph of G has
a peripheral vertex. This family contains all chordal graphs and co-chordal graphs
(graphs whose complements are chordal). A graph is perfectly orderable if its vertex
set admits a linear order < such that no induced P4 : (a, b, c, d) has a < b and d < c.
Let C be the collection of all maximal cliques of a graph G. A set S⊆V (G) such
that |S∩C| = 1 for each C ∈ C is called a stable transversal of G. (Note that a stable
transversal is a maximal independent set.) If each induced subgraph of G (including
G itself) has a stable transversal, then G is strongly perfect. A graph G is absorbently
perfect if every induced subgraph H of G contains a minimal dominating set that
has a nonempty intersection with each maximal clique of H. Since each maximal
independent set is minimal dominating, each strongly perfect graph is absorbently
perfect (but the converse is false), and each absorbently perfect graph is perfect (i.e.
(χ , ω)-perfect) [91].

Jacobson and Peters [102] characterised (α, IR)-perfect graphs, a result that
encompasses those obtained in several other articles, e.g. [27, 38, 84, 101]. We
provide a proof of this result because it illustrates the use of the partition of the
vertex set of a graph associated with an irredundant set, as given in Section 1.
Two sets of vertices X ={x1, . . . , xk} and Y ={y1, . . . , yk} of G are independently
matched if the only edges between X and Y are xiyi, i= 1, 2, . . . , k.

Property 1 A graph G has Property 1 if, for any pair of vertex subsets X and Y that
are independently matched, α(G[X ∪Y ])≥|X|. A graph with Property 1 is called a
Property 1 graph.

Theorem 3.11 ([102]) A graph is (α, IR)-perfect if and only if it is a Property 1
graph.

Proof. Suppose G is a Property 1 graph and consider any H � G. Let X be an IR-
set of H, I the set of vertices that are isolated in H[X], and Z =X − I. If Z = ∅, then
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α(H) ≥ |I | = IR(H) and thus α(H) = IR(H). Assume Z �= ∅. For each z∈Z,
let yz ∈ EPN(z,X) and Y

′ = {yz : z∈ Z}. By the private neighbour property, Z and Y
′

are independently matched in H and thus also in G. Since G is a Property 1 graph,
G[Z ∪Y

′
] has an independent set, say A, such that |A| = |Z|. Since each vertex in I

is nonadjacent to each vertex in Z (by the definition of I) and each vertex in Y
′

(by
the private neighbour property), A∪ I is the desired independent set of cardinality
|Z| + |I | = IR(H). Thus α(H) = IR(H), and it follows that G is (α, IR)-perfect.

Conversely, suppose that α(H) = IR(H) for each H � G. Suppose that for some
integer k≥ 1, there exist disjoint sets X, Y ⊆V (G) that are independently matched.
Let H =G[X ∪Y ]. Then each vertex in X has an X-external private neighbour in Y ;
hence IR(H) ≥ k. By assumption α(H)≥ k, hence G has Property 1. �

As shown in [102] and [90], respectively, strongly perfect graphs and absorbently
perfect graphs have Property 1 and therefore are (α, IR)-perfect. The following (not
necessarily disjoint) classes of graphs have been shown to be strongly perfect and
thus (α, IR)-perfect:

• comparability graphs, chordal graphs and complements of chordal graphs [6],
• perfectly orderable graphs [28],
• peripheral graphs [107],
• Meyniel graphs (and thus parity graphs) [119],
• graphs such that all odd cycles have a common vertex (Volkmann, as cited in

[90]),
• permutation graphs, cographs, bipartite graphs, grids (easy to verify).

It is easy to see that not all perfect graphs are (�, IR)-perfect: let G be the graph
obtained from K2�Kn, n ≥ 5, by deleting two nonadjacent vertices. Then G is
perfect by the strong perfect graph theorem, but �(G)= 2 and IR(G) = n− 2.

Other classes of (α, IR)-perfect graphs are P4-free graphs and (P5,K2�K3)-free
graphs [27, as cited in [102]]; the latter result is an improvement of one in [38]. In
addition, circular arc graphs have Property 1 and are therefore (α, IR)-perfect, as
was proved in [84].

Gutin and Zverovich [90] also proved the previously mentioned result on
(P5,K2�K3)-free graphs and gave a forbidden subgraph characterisation of
(α, IR)-perfect graphs (in terms of infinitely many forbidden subgraphs).

Dohmen, Rautenbach and Volkmann [56] generalised (α, �)- and (�, IR)-perfect
graphs as follows: For k≥ 0, a graph G is k-(α, �)-perfect (k-(�, IR)-perfect,
respectively) if �(H)−α(H)≤ k (IR(H) − �(H) ≤ k, respectively) for each
H � G. They showed that if G is k-(α, �)-perfect, it is also k-(�, IR)-perfect;
hence we refer to these graphs as k-(α, IR)-perfect. They generalised Property 1 to
Property A(k) and showed that G is k -(α, IR)-perfect if and only if it has Property
A(k).

Property A(k) A graph G has Property A(k) if, for any pair of vertex subsets X
and Y that are independently matched, α(G[X ∪Y ])≥|X|− k.
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3.3 (ir, IR)-Graphs

We begin with the characterisations of the classes of bipartite and chordal (ir, IR)-
graphs (a.k.a. well irredundant graphs) given by Topp and Vestergaard [125]. The
corona of K3 with an end-vertex deleted is known as the bull, usually denoted B.

Theorem 3.12 ([125]) Let G be a nontrivial connected graph.

(i) If G is bipartite, then G is an (ir, IR)-graph if and only if G is a (γ , Γ )-graph
if and only if G=C4 or G=H ◦K1 for some connected bipartite graph H.

(ii) If G is chordal, then G is an (ir, IR)-graph if and only if every vertex of G
belongs to exactly one simplex, and if G has the bull B as induced subgraph,
then the unique vertex of degree two in B is not a simplicial vertex of G.

(iii) (Corollary to (ii)) If G is a block graph, then G is an (ir, IR)-graph if and only
if G is a generalised corona H ◦{Hv : v∈V (H)}, where H is a connected block
graph and every graph of the family {Hv : v∈V (H)} is complete.

Topp and Vestergaard [125] also characterised the (ir, IR)-graphs belonging
to a class of graphs containing 5-cycles, while Finbow and van Bommel [79]
characterised the (ir, IR)-graphs belonging to a class of planar graphs containing
many copies of K4; these characterisations are quite lengthy, and we omit them
here.

3.4 (ir, γ )-Graphs

The inflated graph GI of a graph G is obtained by replacing every vertex xi of degree
di by a clique Xi of order di, and each edge xixj by an edge uv, where u∈V (Xi),
v∈V (Xj), and different edges of G are replaced by nonadjacent edges in GI . Dunbar
and Haynes [58] conjectured that inflated graphs are (ir, γ )-graphs, but Favaron [68]
(see Theorem 5.12) showed that in general the difference between the parameters
can be arbitrarily large. However, Puech [116] proved the conjecture for inflated
trees.

Theorem 3.13 ([116]) If T is a tree, then ir(TI ) = γ (TI ).

3.5 (α, IR)- and (Γ, IR)-Graphs

Let (P, ≤) be a poset. The upper bound graph G of P has V (G)=P, and xy∈E(G) if
and only if x �= y, and there exists z∈P such that x, y≤ z. Cheston, Hare, Hedetniemi
and Laskar [27, as cited in [102]] showed that if G is an upper bound graph,
then α(G) = IR(G). However, G is not necessarily (α, IR)-perfect; an illustrating
example is given in [102].
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Fig. 6 A flower with large
faces F1 and F2

F1 F2

Dunbar and Haynes [58] proved that inflated graphs of trees are (α, IR)-graphs,
while Favaron [69] characterised 2-connected graphs whose inflated graphs are
(α, IR)-graphs. A flower is a 2-connected planar graph with a plane representation
in which all edges lie on the boundary of one or both of two faces, called the large
faces. The f − 2 other faces are called the petals. See Figure 6 for an example of a
flower.

Theorem 3.14 Let G be a graph of order n≥ 2.

(i) [58] If T is a tree, then α(TI ) = IR(TI ) = n− 1.
(ii) [69] If G is 2-connected, then α(GI ) = IR(GI ) if and only if G is a subdivision

of K4 in which the boundaries of all four faces have odd length or a flower in
which the boundaries of all petals have odd length. (In either case α(GI ) =
IR(GI ) = n.)

Favaron [65] (see Proposition 4.4) showed that IR(G) ≤ n − δ(G) for any
n-vertex graph G. Cockayne and Mynhardt [51] characterised graphs for which
equality holds, and it turns out that these graphs are (�, IR)-graphs and sometimes
(α, IR)-graphs.

Proposition 3.15 ([51]) Let G be a connected graph of order n and minimum degree
δ.

(i) If IR(G) = n − δ, then �(G) = IR(G), and if, in addition, δ < n
2 , then

α(G) = IR(G).
(ii) If IR(G) = n/2, then �(G) = IR(G).

4 Bounds Involving Other Graph Parameters

As can be expected, there are many bounds for ir and IR in terms of other graph
parameters. We mention bounds for ir and IR separately and distinguish between
bounds involving only one of these parameters among those in the domination
chain, the sum of two parameters π (G) and λ(G) (called Gallai-type results after
Gallai’s Theorem [23, Theorem 12.11]) and the sum π(G) + π(G) and product
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π(G) · π(G) of a parameter π of a graph and its complement (called Nordhaus-
Gaddum-type results after the Nordhaus-Gaddum Theorem [23, Theorem 14.23]).
We first consider bounds that hold for general graphs (with perhaps some degree
restrictions) and then bounds for specific classes of graphs.

4.1 General Graphs

4.1.1 Bounds for ir

The upper bounds ir(G) ≤ n/2 and ir(G) ≤ n − � for any graph G of order n
follow directly from the classical bounds γ (G)≤ n/2 of Ore (see [92, Theorem 2.1])
and γ (G)≤ n−� of Berge (see [92, Theorem 2.11]).

Domke, Dunbar and Markus [57] showed that it is possible to find graphs for
which γ = n−� and ir < n − �. They construct an infinite class of such graphs,
the smallest of which is the graph G (depicted in Figure 7) obtained as follows:
begin with P7 : (v1, . . . , v7), join v3 and v5, join a new vertex x to v2, v3,v5, v6 and
another new vertex y to x. Then �(G)=deg(x)= 5, γ (G)= 4 (many γ -sets) and
ir(G) = 3 = |{y, v3, v5}|.

Topp and Vestergaard [125] characterised graphs with ir = n/2, obtaining the
same class of graphs as those for which γ = n/2, as determined in [113] and later
in [81], namely, graphs for which each component is either C4 or a corona H ◦K1,
where H is an arbitrary connected graph. Favaron and Mynhardt [74] gave a fairly
complicated characterisation of graphs for which ir = n−�.

y

v1 v2 v3 v4 v5 v6 v7

x

Fig. 7 A graph G satisfying γ (G)= n−�= 4 (the black vertices form a γ -set) and ir(G) = 3 =
|{y, v3, v5}|
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Blidia, Chellali and Maffray [9] improved Berge’s bound for ir(G). For any
vertex v of a graph G, let α′

v(G) denote the cardinality of a maximum matching
of G−N[v] and α′

�(G) = max{α′
v(G) : v ∈ V (G) and deg(v)= �}.

Theorem 4.1 ([9]) For any graph G and μ ∈ {ir, γ, i}, μ(G) ≤ n−�− α′
�.

Bollobás and Cockayne [11] obtained the lower bound ir(G) ≥ n/(2� − 1),
which is attained by paths Pn, n ≡ 0 (mod 3). This bound was improved by
Cockayne and Mynhardt [50].

Theorem 4.2 ([50]) If G has order n and maximum degree Δ≥ 2, then ir(G) ≥ 2n
3� .

The bound is sharp for each value of Δ≥ 2.

Burger, Henning and van Vuuren [17] found a lower bound for ir in terms of
the lower packing number ρL(G), which is the minimum cardinality of a maximal
2-packing of G.

Theorem 4.3 ([17]) If G is a connected graph such that ir(G) > 1, then ir(G) ≥
2
3 (1 + ρL(G)).

This bound is sharp (e.g. for the graph G1 in Figure 4). When � is large relative
to n, it can also be a better lower bound for ir than the bound in Theorem 4.2. For
example, the graph G1 can be generalised by replacing its triangle with F∼=Kr, where
r≥ 4, and appending a path of length 2 to each but one vertex of F. Denote this graph
by Hr. See Figure 8 for the case r= 6, where a ρL-set is shown in green and an ir-set
in blue. In general, ρL(Hr) = ir(Hr) = r − 1. Since Hr has order n= 3r− 2 and

maximum degree �= r, Theorem 4.2 gives ir(Hr) ≥
⌈

6r−4
3r

⌉
= 2, while Theorem

4.3 gives ir(Hr) ≥ 2
3 (1 + ρL(Hr)) = 2r

3 . On the other hand, the former bound is

better for, e.g. paths Pn, since
⌈

2n
3�

⌉
= ir(Pn) =

⌈
n
3

⌉
and ρL(Pn) =

⌈
n
5

⌉
.

Fig. 8 The graph H6 for
which ρL(H6) = ir(H6) = 5
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4.1.2 Bounds for coir and oir

Finbow [78] proved lower bounds for the CO-irredundant number. For any graph G
of order n and maximum degree �,

coir(G) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

2
if � = 2

4n

13
if � = 3

2n

3�− 3
if � ≥ 4.

The bounds are best possible and the extremal graphs are characterised. Lower
bounds for the open irredundance number were obtained in [35], and an extremal
graph in each case was exhibited. For any graph G of order n, maximum degree �

and without isolated vertices, if �= 1, then oir(G) = n
2 ; if �= 2, then oir(G) ≥ n

3 ,
otherwise

oir(G) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n

11
if � = 3

n

8
if � = 4

(3�− 1)n

2�3 − 5�2 + 8�− 1)
if � ≥ 5.

4.1.3 Bounds for IR

Since every vertex of a maximum independent set S of a graph G of order n has
at least δ neighbours in V (G)− S, α(G)≤ n− δ. Favaron [65] showed that the
same bound holds for IR(G) (which can also be deduced from results by [38]
mentioned below), while Henning and Slater [100] and Cockayne and Mynhardt
[51] bounded IR for regular graphs. Graphs for which equality holds in either case
were characterised in [51].

Proposition 4.4

(i) [65] For any graph G of order n, IR(G) ≤ n− δ.
(ii) [51] IR(G) = n− δ if and only if G is one of the following graphs:

G = Kn−δ ∨ H , where H is any graph of order δ(G) and minimum degree
at least 2δ(G)− n,

or δ≥ n/2 and G = (K2�Kn−δ) ∨ F , where F is any graph of order
2δ(G)− n and minimum degree at least 3δ− 2n.
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Proposition 4.5 ([51, 100]) For any r≥ 1, if G is an r-regular graph of order n,
then IR(G) ≤ n/2. Equality holds if and only if each component of G is either an
r-regular (hence balanced) bipartite graph or K2�H , where H is an r− 1-regular
graph.

Bacsó and Favaron [4] generalised the bound in Proposition 4.5 to non-regular
graphs. The bound is better than the bound IR ≤ n− δ in Proposition 4.4 for small
δ, namely, when δ+ �< n.

Proposition 4.6 ([4]) For any graph G, IR(G) ≤ n
1+δ/�

. Equality holds if and only
if G is a bipartite graph such that all vertices in the same partite set have the same
degree, or G is a regular graph described in Proposition 4.5.

Aouchiche, Favaron and Hansen [3] obtained further upper bounds as well as a
lower bound for IR in terms of order and maximum degree.

Proposition 4.7 ([3])

(i) For any graph G of order n, IR(G) ≤ n− ⌈
2
√
n− 1

⌉+�, and there exists a
graph that achieves equality in the bound.

(ii) For any connected graph G of order n, IR(G) ≤ 1
2� ·⌈n

2

⌉
, with equality if and

only if G is a path, an even cycle or a claw.
(iii) Let G be a connected graph of order n∈{4, 6} or n≥ 8. Then IR(G) ≥⌈

2
√
n
⌉−�. The bound can be reached for any n∈{4, 6} or n≥ 8.

Finally, Hedetniemi, Jacobs and Laskar [94] showed that IR(G) ≤ r(N(G)) and
OIR(G)≤ r(G), where r(G) denotes the rank of the adjacency matrix A(G) of G and
r(N(G)) the rank of the closed neighborhood matrix N(G)=A(G)+ I.

4.1.4 Nordhaus-Gaddum-Type Results

Cockayne and Mynhardt [45] showed that for every graph G of order n,

IR(G) · IR(G) ≤
⌈
n(n+ 2

4

⌉

.

The graph G attains the bound if and only if G or G consists of (i) a set X of⌊
n
2

⌋
independent vertices, (ii) a set Y of

⌈
n
2

⌉
vertices where G[Y ] is complete and

X ∩Y ={x} and (iii) an arbitrary set E of edges that join vertices in X −{x} to vertices
in Y −{x}.

For CO-irredundance, it was shown in [44] that for any graph G of order n,

COIR(G)+ COIR(G) ≤ n+ 2 and

COIR(G) · COIR(G) ≤
⌊
(n+ 2)2/4

⌋
,
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and that the bound can be attained for all even values of n. For open irredundance,
Cockayne [32] showed that for any graph G of order n≥ 16,

OIR(G)+ OIR(G) ≤ 3n/4 and

OIR(G) · OIR(G) < 9n2/64.

The bound for OIR(G) + OIR(G) can be attained if n ≡ 0(mod 4) and extremal
graphs were exhibited.

4.1.5 Gallai-Type Results for ir and IR

Cockayne et al. [38] proved that if G has no isolated vertices and X is an irredundant
set, then V (G)−X is dominating. They deduced that γ (G)+ IR(G) ≤ n and hence
ir(G)+ IR(G) ≤ n. If δ≥ 1 and γ (G)+ IR(G) = n, then α(G) = �(G) = IR(G)

(the converse is false). If δ≥ 2, then ir(G)+ IR(G) ≤ γ (G)+ IR(G) ≤ n− δ + 2.
They conjectured that i(G)+IR(G) ≤ 2(n+δ−√

2nδ). This conjecture was proved
by Wang [129] and by Favaron [65], who also presented graphs that attain equality.

Proposition 4.8 For any graph G of order n,

(i) [65, 129] i(G)+ IR(G) ≤ 2(n+ δ −√
2nδ),

(ii) [65] i(G)+ 2
√
δ IR(G) ≤ n+ δ.

Chellali and Volkmann [24] used Brooks’s Theorem on the chromatic number
χ and the result in Theorem 4.1 to bound χ (G)+μ(G) and μ(G) · χ(G), μ ∈
{ir, γ, i}. Recall that α′

v(G) denotes the cardinality of a maximum matching of
G−N[v] and α′

�(G) = max{α′
v(G) : v ∈ V (G) and deg(v)= �}.

Proposition 4.9 ([24]) For any graph G of order n and maximum degree Δ,
and μ ∈ {ir, γ, i},

χ(G)+ μ(G) ≤ n+ 1 − α′
�.

For μ ∈ {ir, γ }, equality holds if and only if

G = H ∪ (t1C4) ∪ (t2K1) ∪
⋃

i∈I
(Fi ◦K1),

where H∈{KΔ+1, C5, C7} and Δ(H)= Δ, ti is a nonnegative integer for i= 1, 2,
I is a (possibly empty) set of indices and Fi, i∈ I, is a connected graph.

Theorem 4.10 ([24]) Let G �=C5, C7 be a connected graph of order n≥ 4 and
μ ∈ {ir, γ, i}. Then
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μ(G)χ(G) ≤
⌊
(n− α′

�(G))2

4

⌋

.

Equality holds if and only if

• G∈{K4, C9, C11}, or
• χ (G)= Δ, μ(G) = n − � − α′

�(G) with either n − α′
�(G) − 2� = 0 when

n− α′
�(G) is even, or n− α′

�(G)− 2� = ±1 if n− α′
�(G) is odd.

If G is bipartite, then equality holds if and only if G∈{C4, P4, P5, P7}.
Corollary 4.11 ([24]) If G is a connected graph of order n≥ 4, then ir(G)χ(G) ≤
n2/4.

4.2 Specific Graph Classes

4.2.1 Trees

As mentioned above, ir(G) ≤ n−� for all graphs G. Domke et al. [57] showed that
equality holds for a tree T if and only if T =K1, K1,r, r≥ 1, P4 or a spider obtained
from K1,r by subdividing at most r− 1 edges.

The lower bound ir(G) ≥ 2n
3� given in Theorem 4.2 can be improved for trees, as

shown by Cockayne [33] and Poschen and Volkmann [114].

Theorem 4.12

(i) [114] For a tree T with order n and � leaves, ir(T ) ≥ n+2−�
3 . Equality holds if

and only if the distance between each pair of distinct leaves in T is congruent
to 2 (mod 3).

(ii) [33] If T �=K1,n−1 is a tree of order n and maximum degree Δ≥ 3, then ir(T ) ≥
2(n+1)
2�+3 .

The bound in Theorem 4.12(i) is better if there are relatively few leaves, while
the bound in Theorem 4.12(ii) is better if many non-leaf vertices have degree �.
The trees for which equality holds in (ii) in the case where ir is even were also
characterised in [33].

4.2.2 Claw-Free Graphs

Favaron [70] investigated upper bounds for IR in claw-free graphs, as well as graphs
which attain or nearly attain equality in the bounds.

Theorem 4.13 ([70]) Every connected claw-free graph G of order n satisfies
IR(G) ≤ n+1

2 . If IR(G) = n+1
2 , then α(G) = IR(G), and if IR(G) = n

2 , then
IR(G) = �(G).



156 C. M. Mynhardt and A. Roux

Corollary 4.14 If G is a claw-free graph of order n and δ(G)≥ 2, then IR(G) ≤⌊
n
2

⌋
.

Proof. As proved in [108], if G is a claw-free graph of order n and minimum degree
δ, then α(G)≤ 2n/(δ+ 2). Since δ≥ 2, α(G)≤ n/2. By Theorem 4.13, if IR(G) =
n+1

2 , then α(G) = n+1
2 , which is not the case. �

Favaron also described an infinite class F of claw-free graphs with IR(G) = n+1
2

and showed that this class characterises claw-free graphs with IR(G) = n+1
2 . She

then investigated claw-free graphs G such that IR(G) = ⌊
n
2

⌋
.

Theorem 4.15 ([70]) Let G be a connected claw-free graph of order n≥ 7.

(i) If n is even and IR(G) = n
2 , then δ(G) = n

2 or 1 ≤ δ(G) ≤ n
4 . Moreover,

for every integer r between 1 and n/4 or equal to n/2, there exists a connected
claw-free graph G of order n such that IR(G) = n/2 and δ(G)= r.

(ii) If n is odd and IR(G) = n−1
2 , then n−1

2 ≤ δ(G) ≤ n+1
2 or 1 ≤ δ(G) ≤ n+3

4 .

Moreover, for every integer r ∈ {1, . . . ,
⌊

n+3
4

⌋
} ∪ {n−1

2 , n+1
2 }, there exists a

connected claw-free graph G of order n such that IR(G) = n−1
2 and δ(G)= r.

4.2.3 Other Graphs

For inflated graphs, Dunbar and Haynes [58] stated it as an open problem to bound
IR(GI ). Favaron [68] proves that (i) IR(GI ) ≤ m(G) for every graph G of size m
without isolated vertices, where equality holds if G is bipartite, and (ii) IR(GI ) ≤⌊
n2(G)/4

⌋
.

Favaron and Puech [75] showed that the lower irredundance number ir of a plane,
cylindrical or toroidal grid of order m× n (i.e. G�H , where G∈{Pm, Cm} and
H ∈{Pn, Cn}) is at least mn/5 and is asymptotically equal to mn/5 when m and n
tend to infinity.

5 Differences Between Parameters in the Domination Chain

Many authors have obtained results on the differences between irredundance
numbers (usually IR) and other parameters in the domination chain, mostly in
terms of order, or order and maximum degree, and occasionally also involving the
chromatic number χ . Others have bounded the ratios of irredundance numbers to
domination and independence numbers, mostly for special graph classes.
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5.1 Differences Between Lower Parameters

Allan, Laskar and Hedetniemi [2] observed that the inequality 2 ir(G)− γ (G) ≥ 1
obtained in [1, 10] can be improved to 2 ir(G) − γ (G) ≥ (k + 1), where k is the
maximum number of isolated vertices in an ir-set. Zverovich [137] bounded γ − ir
in terms of order, and i − ir in terms of maximum degree and order.

Theorem 5.1 ([137])

(i) For any graph G of order n≥ 3, γ (G)− ir(G) ≤
⌊

n−3
4

⌋
.

(ii) For any graph G of order n with maximum degree Δ≥ 3,

i(G)− ir(G) ≤ min

{⌊
2�− 3

2�− 1
n

⌋

,

⌊
�− 1

�
n− �

2

⌋}

− 1.

5.2 Differences Between Upper Parameters

Henning and Slater [100] conjectured that �(G) = IR(G) if G is a cubic graph.
The conjecture is false (see Theorem 5.14), but generated considerable interest
in bounding the differences IR−α and IR−� for general graphs and the ratio
IR /� for special classes of graphs. Rautenbach [118] was the first to bound the
abovementioned differences in terms of order and to characterise the extremal
graphs.

Theorem 5.2 ([118])

(i) For any graph G of order n≥ 4, IR(G)− α(G) ≤
⌊

n−4
2

⌋
.

(ii) For any graph G of order n≥ 6, IR(G)− �(G) ≤
⌊

n−4
2

⌋
.

For even values of n≥ 6, equality holds in (i) if and only if G = Kn/2�K2. If
n≥ 7 and odd, equality holds in (i) if and only if G = K(n−1)/2�K2 together with
a vertex u which is either an isolated vertex, or u is adjacent to all vertices of one of
the copies of K(n−1)/2, or there is a pair of adjacent vertices x and y, one from each
copy of K(n−1)/2 such that u is adjacent to all vertices except x and y (and itself).

For even values of n≥ 8, equality holds in (ii) if and only if G is obtained from
K(n+2)/2�K2 by deleting two nonadjacent vertices. If n≥ 7 and odd, equality holds
in (ii) if and only if G is one of the following types of graphs: let H be the graph
obtained from K(n+1)/2�K2 by deleting two nonadjacent vertices and denote the
vertex sets of the two copies of K(n−1)/2 in H by V1 and V2. For i= 1, 2, let vi ∈Vi

be the vertex of degree n−3
2 , i.e. the vertex not adjacent to any vertex in Vj, j �= i.

Form the graph G by adding a new vertex w, where w is either (a) isolated, or (b)
adjacent precisely to all vertices in (say) V1, or (c) adjacent precisely to all, except
possibly one, vertices in (say) V1 −{v1}, or (d) there is a pair of adjacent vertices
x∈V1 and y∈V2 such that w is adjacent to all vertices except x and y (and itself).
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Rautenbach also bounded IR(G) − α(G) (and hence IR(G) − �(G) and
�(G)−α(G)) in terms of order and maximum degree and conjectured that if
�(G)≤ 3, then IR(G)− α(G) ≤ ⌊

n
6

⌋
.

Theorem 5.3 ([118]) For any graph G with maximum degree Δ, IR(G)− α(G) ≤⌊
(�−1)2

2�2 n
⌋

.

Bacsó and Favaron [4] and Zverovich [137] obtained Rautenbach’s conjecture as
a corollary to the following result.

Theorem 5.4 Let G be a connected graph of order n, chromatic number χ and
maximum degree Δ≥ 2. Then

(i) [4, 137] IR(G)− α(G) ≤
⌊

�−2
2� n

⌋
.

(ii) [4] Equality holds if and only if (a) G is a path or a cycle or (b) Δ≥ 3 and
G = Kn/2�K2, in which case IR = � = n/2, α = n/� and χ = Δ.

We see from Theorem 5.4(ii) that for fixed �≥ 3, there exist arbitrarily large
connected �-regular graphs that satisfy equality: for arbitrary r≥ 1, join one copy
of rKn/2 to another one by a perfect matching that ensures the graph is connected.
Favaron also mentioned that the stronger result IR(G) − α(G) ≤ χ−2

2χ n holds for
χ ≥ 2. When χ < n/2, this bound is better than Rautenbach’s bound IR(G)−α(G) ≤
n−4

2 (Theorem 5.2(i)).
The bound in Theorem 5.4(i), although asymptotically the same as Rautenbach’s

bound, is better for specific values of � and immediately proves Rautenbach’s
conjecture. (The conjecture was subsequently also proved in [109, 130].)

Corollary 5.5 ([4, 137]) If Δ(G)= 3, then IR(G)− α(G) ≤ ⌊
n
6

⌋
.

Zverovich also showed that this bound can be improved for triangle-free cubic
graphs. A generalised Petersen graph can be described as a cubic graph obtained
by joining the vertices of a regular polygon to the corresponding vertices of a star
polygon.

Theorem 5.6 ([137])

(i) If G is a triangle-free cubic graph of order n, then

IR(G)− α(G) ≤
⌊n

7

⌋
.

Equality is attained by any generalised Petersen graph of order 14.
(ii) If G contains no Kq (q≥ 3) and Δ≥ 1, then

IR(G)− α(G) ≤
⌊
�+ q − 4

2(�+ q)
n

⌋

.

Henning [97, p. 57] questioned whether there exists a cubic graph G such that
ir(G) < γ (G) < i(G) < α(G) < �(G) < IR(G). That this is indeed the case
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was proved by Zverovich and Zverovich [135]. The graph in their construction has
connectivity 2, and they asked whether there exists a 3-connected cubic graph with
the same property.

Theorem 5.7 ([135]) For any nonnegative integers k1, . . . , k5, there exists a cubic
graph G with connectivity 2 such that

γ (G)− ir(G) ≥ k1, i(G)− γ (G) ≥ k2, α(G)− i(G) ≥ k3,

�(G)− α(G) ≥ k4 and IR(G)− �(G) ≥ k5.

5.3 Ratios of Lower Parameters

As shown in [1, 10], γ (G)/ ir(G) < 2 for any graph G. To see that this ratio can
be arbitrarily close to 2, construct the graph Gk, k≥ 2, as follows. (See Figure 9
for k= 3.) Begin with the corona Kk ◦K1 and subdivide each pendant edge. Let
X ={x1, . . . , xk} be the vertex set of Kk, Y ={y1, . . . , yk} the vertices of degree 2
and R={r1, . . . , rk} the end-vertices; assume that each yi is adjacent to xi and ri.
For each pair of distinct integers i, j∈{1, . . . , k}, join a new vertex cij to xi and xj.
This is the graph Gk. Now X is a maximal irredundant set in which pn xi,X) = {yi}
for each i, and it is not difficult to see that X is an ir-set and ir(Gk) = k. Let D
be a dominating set of Gk. To dominate the end-vertices, {yi, ri} ∩ D �= ∅ for
each i; hence |D∩ (Y ∪R)|≥ k. To dominate cij, {xi, xj , cij } ∩ D �= ∅. After some
thought, this implies that |D∩ (X ∪{cij : i, j∈{1, . . . , k}})|≥ k− 1. Since X ∪Y −{xk}
dominates Gk, γ (Gk)= 2k− 1. Therefore limk→∞ γ (Gk)/ ir(Gk) = 2.

For many graph classes, though, the bound on the ratio can be improved.
We summarise the results below. The cyclomatic number μ(G) of G is given by
μ(G)= |E(G)|−|V (G)| + k(G), where k(G) denotes the number of components of

Fig. 9 The graph G3 with
ir(G3) = 3 and γ (G3)= 5

X

R

Y

C
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G. A claw-free block graph is a graph, all of whose blocks are claw-free. A block-
cactus graph is a graph whose blocks are either complete or induced cycles.

Theorem 5.8

(i) [55] For any tree T, γ (T )/ ir(T ) < 3
2 .

(ii) [126] For any block graph G and for any graph G with cyclomatic number
μ(G) ≤ 2, γ (G)/ ir(G) ≤ 3

2 . The bound 3
2 is best possible for block graphs

and does not hold if μ(G)≥ 3.
(iii) [73] If G is a claw-free graph, an inflated graph or the line graph of a triangle-

free or a bipartite graph, then γ (G)/ ir(G) ≤ 3
2 .

(iv) [72] If G is a claw-free block graph, then γ (G)/ ir(G) ≤ 7
4 .

(v) [136] If G is a block-cactus graph having π (G) induced cycles of length
2 (mod 4), then γ (G)/ ir(G) ≤ (8π(G)+ 6)/(5π(G)+ 4).

Volkmann [126] conjectured that γ (G)/ ir(G) < 8
5 for any cactus graph.

Theorem 5.8(v) implies this inequality.

Corollary 5.9 ([136]) If G is a block-cactus graph, then γ (G)/ ir(G) < 8
5 . The

bound is asymptotically best possible.

Henning and Slater [100] showed that the difference γ − ir can be arbitrary
for cubic graphs. For the graphs they constructed, γ / ir ≥ 15

13 . This suggests the
following problem. Denote the maximum ratio of two parameters π and λ by
max

{
π
λ

}
. Hence, by Corollary 5.9, max

{γ
ir

} → 8
5 for block-cactus graphs.

Problem 5.10 Determine or bound max
{γ

ir

}
for cubic graphs. By the abovemen-

tioned construction, max
{γ

ir

} ≥ 15
13 .

Since a tree is (ir, γ )-perfect if and only if it is T1-free, where T1 is the Slater
tree in Figure 4, and γ (T1)/ ir(T1) = 5

4 , we also have the following problem.

Problem 5.11 Determine max
{γ

ir

}
for trees. Is it true that max

{γ
ir

} = 5
4 for trees?

For inflated graphs, Dunbar and Haynes [58] conjectured that ir(GI ) = γ (GI )

for any graph G. Puech proved this conjecture if G is a tree (see Theorem 3.13),
but Favaron [68] gave a construction of 2-connected graphs G to show that
the difference can be arbitrarily large. For the graphs Gk constructed, the ratio
γ (Gk

I )/ ir(Gk
I ) ≥ limk→∞ 5k+2

4k+2 = 5
4 .

Theorem 5.12 ([68]) For every positive integer k, there exists a 2-connected graph
Gk such that γ (Gk

I )− ir(Gk
I ) ≥ k.

Problem 5.13 Determine max
{γ

ir

}
for inflated graphs.
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5.4 Ratios of Upper Parameters

Henning and Slater [100] conjectured that �(G) = IR(G) if G is cubic, but this was
proved to be false in [51] and [118].

Theorem 5.14

(i) [51] For any positive integer k, there exists a 2-connected cubic graph Hk such
that IR(Hk)− �(Hk) ≥ k.

(ii) [118] For any positive integer k and any integer r≥ 3, there exists a connected
r-regular graph Hr,k such that IR(Hr,k)− �(Hr,k) ≥ k.

The ratio IR /� for the cubic graphs Hk in Theorem 5.14(i) is IR /� = 7
6 , while

the ratios for the graphs constructed by Rautenbach in Theorem 5.14(ii) are

IR /� ≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

18
17 for cubic graphs,
16
15 for 4-regular graphs
3r

2r+4 for r-regular graphs where r ≥ 6 is even
4r

3r+4 for r-regular graphs where r ≥ 5 is odd.

We know the ratio IR /α is unbounded for regular graphs (K2�KIR), as is the ratio
IR /� for non-regular graphs (e.g. K2�KIR+1 − e, where e is an edge joining a
vertex of one copy of KIR+1 to another).

Cockayne and Mynhardt [49] exhibited an infinite class of triangle-free graphs
for which the difference between the upper irredundance and domination numbers
is arbitrarily large, thus answering a question of [63]. The ratio for the given graphs
Gk is

IR(Gk)/�(Gk) = 4k

3k + 2
.

Problem 5.15 Determine max
{IR
�

}
for (i) r-regular graphs and (ii) triangle-free

graphs.

6 Criticality and Stability

We next consider how the upper and lower irredundance numbers change with the
removal of a vertex or an edge or with the addition of an edge. For a graph parameter
π , a graph G is:

• π -critical (π+-critical) if π (G− v) <π (G) (π (G− v) >π (G)) for every vertex
v∈V (G),
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• π -edge-critical (π+-edge-critical) if π (G+ e) <π (G) (π (G+ e) >π (G)) for
every edge e ∈ E(G),

• π -edge-removal critical (π−-edge-removal critical), abbreviated to π -ER-
critical (π− -ER-critical), if π (G− e) >π (G) (π (G− e) <π (G)) for every edge
e∈E(G).

6.1 Criticality

All edgeless graphs with more than one vertex are π -critical and π -edge critical for
π ∈ {ir, IR}. Furthermore, the complete graph Kn, n≥ 2, is IR-ER-critical, while
the star K1,n, n≥ 1, is ir-ER-critical. Topp [124] and Grobler [85] showed that there
exist no π+-critical graphs for π ∈ {ir, IR}, no ir+-edge-critical graphs and no IR−-
ER-critical graphs.

Theorem 6.1 For any nontrivial graph G,

(i) [124] IR(G− v) ≤ IR(G) for all v∈V (G);
(ii) [85] ir(G− v) ≤ ir(G) for at least one v∈V (G);

(iii) [85] if G�Kn, then ir(G+ uv) ≤ ir(G) for at least one uv ∈ E(G);
(iv) [85] if G �∼= Kn, then IR(G− uv) ≤ IR(G) for at least one uv∈E(G).

Proof.

(i) An IR-set S of G− v is also irredundant in G and therefore IR(G) ≥ |S| ≥
IR(G− v).

(ii) Let S be an ir-set of G. If S is also dominating, then for v∈V (G)− S, the
set S is still dominating in G− v. From the domination chain, it follows that
ir(G− v) ≤ γ (G− v) ≤ |S| = ir(G).

If S is not dominating, then S is an irredundant set of G− v for
v∈R=V (G)−N[S]. If S is not a maximal irredundant set of G− v, then
there exists a vertex x∈V (G− v)− S such that S∪{x} is an irredundant set
of G− v. But then S∪{x} is also an irredundant set of G, contradicting the
maximality of S in G. Hence S is a maximal irredundant set of G− v and
ir(G− v) ≤ |S| = ir(G).

(iii) If ir(G) = γ (G), then let S be a dominating ir-set of G. Since S is also a
dominating set of G+ uv, it follows from the domination chain that ir(G +
uv) ≤ γ (G+ uv) ≤ |S| = ir(G).

If ir < γ (G), let S be an ir-set of G. Then there exists an edge uv ∈ E(G)

such that u, v∈R. If not, all vertices in R are adjacent and S′ = S∪{x}, with
x∈R, is a dominating set of G. Since S′ is not irredundant, S′ is not a
minimal dominating set and γ (G) < |S| + 1. That is, γ (G) ≤ |S| = ir(G), a
contradiction. From Theorem 1.1, it follows that S is a maximal irredundant set
of G+ uv and so ir(G+ uv) ≤ |S| = ir(G).
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(iv) Let S be an IR-set of G. If S is independent, then S is also an independent
irredundant set of G− uv for every uv∈E(G). Hence IR(G) = |S| ≤ IR(G −
v).

If S is not independent, then there exists an edge uv∈E(G) such that u, v∈ S.
Since S is an irredundant set of G− uv, IR(G) = |S| ≤ IR(G− uv). �

6.1.1 Criticality of ir

First consider how the deletion of a vertex influences the lower irredundance
number. While the deletion of a vertex can decrease the domination number by at
most one, Favaron [67] showed that this is not the case for the irredundance number
of a graph.

Theorem 6.2 ([67]) For every graph G and every vertex v of G such that ir(G−v) ≥
2, ir(G− v) ≥ (ir(G)+ 1)/2, and this bound is sharp.

To illustrate the sharpness of the bound, a graph G is constructed as follows.
Let A and A

′
be two copies of K1,n, with V (A)={x0, . . . , xn} and V (A′) =

{x′0, . . . , x′n} where x0 and x′0 are the centres. Add the edges xix
′
i for i= 0, . . . , n.

Let r≥ 2(n+ 1). For each each i= 0, . . . , n, add an independent set Yi ={yik : k= 1,
. . . , r}, and join each vertex in Yi to x′i . For each pair i, j with 0≤ i �= j≤ n, add
an independent set Zij ={zijk : k= 1, . . . , r}, and join each vertex in Zij to xi and
xj. Finally, add a pendant vertex v to x0. Then V (A) is an ir-set of G− v, so
ir(G− v) = n+ 1, and the set (V (A)−{xn})∪V (A

′
) is an ir-set of G (of cardinality

2n+ 1). The case where n= 2 is illustrated in Figure 10.
Since ir ≤ γ , it follows that if G is γ -critical and ir = γ , then G is also ir-

critical. However, the classes of γ -critical and ir-critical graphs do not coincide.
Grobler and Roux [89] constructed two classes of graphs that are γ -critical but not
ir-critical, while Roux [121] illustrated the existence of graphs that are ir-critical but
not γ -critical.

Y2

Y1

v

Z02

Y0

Z01

Z12

A′A

x1 x1
′

x0
′x0

x2 x2
′

Fig. 10 A graph G having ir(G)-set {x0, x1, x
′
0, x

′
1, x

′
2} and ir(G− v)-set {x0, x1, x2}
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Similar to ir-critical graphs, if graph G is γ -edge-critical and γ = ir, then G is
also ir-edge-critical. It is however still unknown whether there exist graphs which
are γ -edge-critical but not ir-edge-critical and vice versa.

Problem 6.3 Investigate the intersection of the classes of γ -edge-critical and ir-
edge-critical graphs.

As for γ and i, the disjoint union of stars are also ir-ER-critical. That these are
not the only ir-critical graphs was shown in [87] and [37] where connected ir-ER-
critical graphs for ir = 2 and ir = 3, respectively, were characterised. Whether
ir−-ER-critical graphs exist is still an open question.

Problem 6.4 Does there exist a graph G for which ir(G − e) < ir(G) for all
e∈E(G)?

6.1.2 Criticality of IR

Grobler and Mynhardt [86] showed that the classes of IR-critical and �-critical
graphs coincide and characterised these graphs as follows:

Theorem 6.5 ([86]) If G is a connected graph with n vertices, then the following
statements are equivalent.

(i) G is Γ -critical,
(ii) n > 2, and for each Γ -set S and T=V (G)− S, S and T are independently

matched,
(iii) Γ (G)= n/2 and no Γ -set has isolated vertices,
(iv) G is IR-critical.

IR-edge-critical graphs were independently characterised by Grobler and Myn-
hardt [88] and Dunbar, Monroe and Whitehead [59] as precisely the graphs
Ka ∨ bK1 or Ka ∨ (bK1 ∪ (Kc�K2)) for a, b≥ 0 and c≥ 3, where V (K0) = ∅.
Grobler and Mynhardt [88] also showed that the classes of IR-edge critical graphs
and �-edge-critical graphs coincide.

Dunbar et al. [59] conjectured that there do not exist any IR+-edge-critical
graphs. Cockayne, Favaron and Mynhardt [37] disproved this conjecture by exhibit-
ing an infinite class of IR+-edge-critical graphs for which IR = 2.

Theorem 6.6 ([37]) The graph Cm�Cn is IR+-edge-critical if and only if m, n�∈{3,
4, 6}.

Since Cm�Cn is also �+-edge-critical, we ask the following questions:

Problem 6.7

(i) Do there exist graphs that are IR+-edge-critical but not Γ +-edge-critical?
(ii) Find IR+-edge-critical graphs with IR > 2.
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Let S be an irredundant set of G and uv∈E(G). Then S is a uv-irredundant set
if u∈ S and v ∈ pn(u, S), and either u is an isolated vertex of S and v does not
annihilate any vertex in S−{u}, or there exists a vertex s∈N[v]− S that does not
annihilate any vertex in S. Graphs which are IR-ER-critical were characterised in
[87] as graphs for which there exists a uv -irredundant IR-set in G for each edge
uv∈E(G).

6.2 Stability

When considering the effect on IR(G) of the addition of edges from G, a graph G
is defined to be IR-insensitive if IR(G + e) = IR(G) for every e ∈ E(G). Dunbar
et al. [59] characterised IR-insensitive bipartite graphs without isolated vertices.

Theorem 6.8 ([59]) A bipartite graph G containing no isolated vertex is IR-
insensitive if and only if every independent set X⊂V (G) satisfies the condition that
|X|≤|N(X)|.

Wang and Hua [131] introduced the stability number of a graph G, denoted by
SN(G), as the maximum cardinality among all sets of edges E

′⊆E(G) such that
IR(G − E′) = IR(G). They showed that for any non-empty connected graph of
order n≥ 2, SN(G) ≤ n − 2, with equality when G is a star. In a more general
result, they showed that SN(G) ≤ �(IR(G)− 1)− 1 for any non-empty connected
graph G with IR(G) ≥ 2.

7 Chessboards

Although we have not discussed the exact determination of ir and IR for specific
classes of graphs (such as paths and cycles, for which this is easy), no survey on irre-
dundance can be complete without mentioning chessboard problems. Hedetniemi,
Hedetniemi and Reynolds [93] gave a complete survey of results on domination,
independence and irredundance on the different types of chessboards up to 1998.
Here we concentrate on the queens, kings and grid graphs, which, as far as we could
ascertain, are the only chessboard graphs for which new irredundance results have
appeared since then. We summarise the known exact values in Table 1 and present
bounds in Section 7.2.

7.1 Exact Values

We only provide the provenance of results in Table 1 that do not appear in [93].
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For all values of n for which ir(Qn) is known, namely, 1≤ n≤ 13, ir(Qn) =
γ (Qn). We do not surmise that equality holds for all n. The value IR(K8) = 17 is the
only known case for which IR(Kn) > α(Kn), as α(K8)= 16 and α(Kn) = IR(Kn)

for all n≤ 7.

Problem 7.1

(i) Find more values of ir(Qn). What is the smallest n such that ir(Qn) < γ (Qn)?
(ii) Find more values of Γ (Qn) and IR(Qn). What is the smallest n such that

�(Qn) < IR(Qn)?
(iii) What is the smallest n such that �(Kn) < IR(Kn)?

7.2 Bounds

7.2.1 Bounds for the Queens Graph

Apart from the exact values for ir(Qn) in Table 1 and the value ir(Q13) = γ (Q13) =
7 [103], not much is known about irredundance numbers of queens graphs. The best
bounds known are given by

⌈
n+ 1

4

⌉

≤ ir(Qn) ≤ γ (Qn) ≤ 200

393
n+O(1),

where the lower bound follows from the bound ir(G ≥ (γ (G)+ 1)/2 for all graphs
and Spencer’s bound γ (Qn)≥ (n− 1)/2 as cited in [29] and the upper bound (for
γ (Qn)) follows from a result in [20] and a suitable dominating configuration for
Q129 in [112]. For all known values of ir(Qn), ir(Qn) = γ (Qn), so the lower bound
above appears to be weak.

Burger, Cockayne and Mynhardt [15] showed that IR(Qn) ≥ �(Qn) ≥ 2n − 5
for odd n≥ 5, and IR(Qn) ≥ �(Qn) ≥ 2n − 6 for even n≥ 6. If n≥ 18, then
IR(Qn) ≥ �(Qn) ≥ 5n

2 − O(1). They also obtained the upper bound IR(Qn) ≤
⌊

6n+ 6 − 8
√
n+√

n+ 1
⌋

for n≥ 9, improving the previous bound in [31].

Hedetniemi et al. [93, Open Problem 7] stated that it seems very likely that
IR(Qn) ≤ 5n or possibly even IR(Qn) ≤ 4n. This statement was disproved by
Kearse and Gibbons [104], who obtained the bound IR(Qk3) ≥ 6k3 − 29k2 −O(k)

for every k≥ 6, which implies that IR(Qn) ≥ 6n − O(n2/3). They showed by
computer that for n = 17576 = 263, IR(Qn) > 5n, and concluded with the remark
that it seems likely that 6n−O(n2/3) is also an upper bound for IR(Qn).

To summarise, the best known bounds for IR(Qn), for n large enough, are

6n−O(n2/3) ≤ IR(Qn) ≤
⌊

6n+ 6 − 8
√

n+√
n+ 1

⌋

.
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We end this section by mentioning that domination and irredundance numbers for
queens on hexagonal boards were studied in [18].

7.2.2 Bounds for the Kings Graph

Favaron, Fricke, Pritikin and Puech [71] obtained the following lower and upper
bounds for ir(Kn) and IR(Kn):

⌈
n2

9

⌉

≤ ir(Kn) ≤
⌊
n+ 2

3

⌋2
(3)

and

⌈
(n− 1)2

3

⌉

≤ IR(Kn) ≤
⌊
n2

3

⌋

, (4)

where upper bound in (4) holds for n≥ 6 and all the other bounds hold for all n. For
n ≡ 0 (mod 3), the bounds in (3) are equal; hence ir(Kn) = n2/9 in this case. The

upper bound in (3) can be improved to ir(Kn) ≤
⌊

n+2
3

⌋2 − 1 if n ≡ 4 (mod 9).

7.2.3 Bounds for Grids

As mentioned in Section 4.2, Favaron and Puech [75] showed that ir(Gn) ≥ n2/5
and ir(Gn) is asymptotically equal to n2/5 when n tends to infinity. Since grids are
(α, IR)-perfect, all their upper parameters are equal (as given in [38]), namely,

α(Gn) = �(Gn) = IR(Gn) =

⎧
⎪⎨

⎪⎩

n2

2 if n is even

n2+1
2 if n is odd.

8 Irredundant Ramsey Numbers

In order to solve a problem in formal logic, Frank Plumpton Ramsey (22 February
1903–19 January 1930) proved, in passing, his now-famous theorem as a “minor
lemma”. This result led to an area in extremal graph theory known as Ramsey
Theory. A full version of the lemma, now known as Ramsey’s Theorem, can
be found in [23, Theorem 20.1]; we state the well-known special case for graphs
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here. (In almost all cases, the edge colourings referred to below are not proper edge
colourings.)

Theorem 8.1 (Ramsey’s Theorem for Graphs) For any k≥ 2 positive integers
n1, . . . , nk, there exists a positive integer N such that any k-edge colouring of KN

produces a monochromatic Kni
for some i (1≤ i≤ k).

For fixed integers n1, . . . , nk, the smallest integer N such that Ramsey’s Theorem
holds is called the Ramsey number r(n1, . . . , nk). Consider a k-edge colouring of KN

in the colours 1, . . . , k, and let Hi be the spanning subgraph of KN whose edges are
coloured i (1≤ i≤ k). We restate Ramsey’s Theorem in terms of the clique numbers
ω(Hi).

Ramsey’s Theorem in Terms of Clique Numbers For any k≥ 2 positive integers
n1, . . . , nk, there exists a positive integer N such that, for any edge-decomposition
of KN into spanning subgraphs H1, . . . , Hk, ω(Hi)≥ ni for some i (1≤ i≤ k).

Since the clique number of a graph equals the independence number of its com-
plement, we can rephrase Ramsey’s Theorem in terms of independence numbers.

Ramsey’s Theorem in Terms of Independence Numbers For any k≥ 2 positive
integers n1, . . . , nk, there exists a positive integer N such that, for any edge-
decomposition of KN into spanning subgraphs H1, . . . , Hk, α(Hi) ≥ ni for some i
(1≤ i≤ k).

Since any independent set is irredundant, we obtain the following result as a
corollary to Ramsey’s Theorem.

Corollary 8.2 (Ramsey’s Theorem for Irredundance) For any k≥ 2 positive
integers n1, . . . , nk, there exists a positive integer N such that, for any edge-
decomposition of KN into spanning subgraphs H1, . . . , Hk, IR(Hi) ≥ ni for some i
(1≤ i≤ k).

For fixed integers n1, . . . , nk, the smallest integer N such that Corollary 8.2 holds
is called the irredundant Ramsey number s(n1, . . . , nk). With the exception of s(3, 3,
3), irredundant Ramsey numbers have only been determined for cases where k= 2.
Note that s(m, n) is the smallest integer N such that any graph G of order N satisfies
IR(G) ≥ m or IR(G) ≥ n.

By “mixing” independence, upper domination and upper irredundance numbers
in the definition of s(m, n), we obtain four additional types of Ramsey numbers.
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The

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mixed

Ramsey numbert (m, n)

upper domination

Ramsey numberu(m, n)

mixed domination

Ramsey numberv(m, n)irredundant − domination

Ramsey numberw(m, n)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

is the
smallest
integer N
such that
any graph
G of order
N satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IR(G) ≥ m or

α(G) ≥ n

�(G) ≥ mor

�(G) ≥ n

�(G) ≥ m or

α(G) ≥ n

IR(G) ≥ m or

�(G) ≥ n.

Since α(G) ≤ �(G) ≤ IR(G), the following inequalities are immediate. For all
positive integers m and n,

s(m, n) ≤ w(m, n) ≤
{

t (m, n)

u(m, n) ≤ v(m, n)

}

≤ r(m, n).

Hence all the usual upper bounds for r(m, n) (see, e.g. [23, Chapter 20]) and lower
bounds for s(m, n) also hold for the other types of Ramsey numbers. The definitions
imply that, like r(m, n), s(m, n)= s(n, m) and u(m, n)= u(n, m) for all m and n, but
this is not true for t, v and w.

E. J. Cockayne conceived the concept of irredundant Ramsey numbers and
supervised R. C. Brewster’s Masters thesis [12] on the topic. Mixed Ramsey
numbers were introduced by Cockayne, Hattingh, Kok and Mynhardt [39]; upper
domination Ramsey numbers by Oellermann and Shreve, as cited in [98]; mixed
domination Ramsey numbers by Henning and Oellermann [99]; and irredundant-
domination Ramsey numbers by Burger and van Vuuren [21].

8.1 Exact Values

Exactly like the classical Ramsey numbers, it is easy to see that f (1, n)= f (n, 1)= 1
and f (2, n)= f (n, 2)= n for each n, where f ∈{r, s, t, u, v, w}, hence we are only
interested in f (m, n) where m, n≥ 3. We list the known values of these Ramsey
numbers in Table 2, where we only mention the provenance of the non-classical
numbers, as those of r(m, n) are freely available on the internet.

There is only one known Ramsey number r(n1, . . . , nk), k≥ 3, namely, r(3, 3,
3)= 17. There is similarly only one known irredundant Ramsey number s(n1, . . . ,
nk), k≥ 3, namely, s(3, 3, 3)= 13, determined by Cockayne and Mynhardt [46, 48].
The only other information we have on the numbers f (3, 3, 3) is the bounds 13≤ u(3,
3, 3)≤ 14, as shown by Henning and Oellermann [98].
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Table 2 Known Ramsey numbers f (m, n), f ∈{r, s, t, u, v, w}
n 3 4 5 6 7 8

s(3, n) 6 [13] 8 [13] 12 [13] 15 [14] 18 [40]1 21 [22]
w(3, n) 6 [21] 8 [21] 12 [21] 15 [21] 18 [16] 21 [22]
w(n, 3) 8 [21] 12 [21] 15 [21]
u(3, n) 6 [99] 8 [99] 12 [99] 15 [99]
v(3, n) 6 [99] 9 [99] 12 [99] 15 [99]
v(n, 3) 8 [21] 13 [21] 17 [21]
t(3, n) 6 [39] 8 [39] 13 [39] 15 [99] 18 [21] 22 [21]
t(n, 3) 9 [39] 12 [39] 17 [21]
r(3, n) 6 9 14 18 23 282

s(4, n) 13 [34]
w(4, n) 13 [21]
u(4, n) 13 [21]
v(4, n) 14 [21]
t(4, n) 14 [21]
r(4, n) 18 25
1Also [26], without a computer search (which was used in [40]).
2The Ramsey number r(3, 9)= 36 is also known.

Table 2 reveals obvious gaps in the literature on irredundant Ramsey numbers.
With increasing computing power, some missing results, stated below, should be
within reach.

Problem 8.3

(i) Determine w(7, 3), u(3, 7), v(3, 7), v(7, 3) and t(7, 3).
(ii) Determine or bound w(8, 3), u(3, 8), v(3, 8), v(8, 3) and t(8, 3).

(iii) Burger and van Vuuren [22] showed that 24≤ s(3, 9)≤ t(3, 9)≤ 27. Improve
these bounds or determine s(3, 9) and t(3, 9). Determine or bound f (3, 9) and
f (9, 3) for f∈{t, u, v, w}.

(iv) Determine f (3, 3, 3) for f∈{t, u, v, w}.
The CO-irredundant Ramsey number c(m, n) is the smallest integer N such that

every graph G of order N satisfies COIR(G) ≥ m or COIR(G) ≥ n. They were
defined in [122] and also studied in [43, 53]. Since IR(G) ≤ COIR(G) for all
graphs, c(m, n)≤ s(m, n) for all values of m and n. Hence c(1, n)= 1 for all n. Also,
since COIR(K2) = COIR(K2) = 2, c(2, n)= 2 for all n. The following non-trivial
numbers have been determined:

c(3, n) = n for all n ≥ 3,

c(4, 4) = 6, c(4, 5) = 8, c(4, 6) = 11 and c(4, 7) = 14.
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As far as we know, there has been no hybridisation between CO-irredundant and the
other types of Ramsey numbers mentioned above.

Problem 8.4 Determine more CO-irredundant Ramsey numbers.

8.2 Bounds

Analogies of bounds for r(m, n) hold for the other types of Ramsey numbers as
well. For any f ∈{r, s, t, u, v, w} and integers m, n, the growth property f (m, n) ≤
min{f (m+ 1, n), f (m, n+ 1)} holds, as does the following recursive upper bound.

Proposition 8.5 For any f∈{r, s, t, u, v, w} and integers m, n, f (m, n)≤ f (m− 1,
n)+ f (m, n− 1); this inequality is strict if f (m− 1, n) and f (m, n− 1) are both even.

Chen, Hattingh and Rousseau [25] obtained an asymptotic lower bound for t(m,
n) that was soon improved to a bound for s(m, n) by Erdös and Hattingh [60] and
Krivelevich [105].

Theorem 8.6 ([60, 105]) For every m≥ 3, there exists a positive constant cm such
that, for sufficiently large n,

s(m, n) > cm

(
n

log n

) (m2−m−1)
2(m−1)

.

Chen et al. [25] also obtained an upper bound for t(3, n), while Rousseau and
Speed [120] bounded t(3, n), t(4, n) and t(m, 3); their bound for t(3, n) is an
improvement of the bound in [25] for n large enough.

Theorem 8.7 For every positive integer n,

t (3, n) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
5

2
n

3
2 [25]

5n
3
2√

log n
[120]

t (4, n) ≤ C
5

n
2√

log n
[120].

Theorem 8.8 ([120]) For some positive constant c,

c

(
m

logm

)2

< t(m, 3) < (1 + o(1))
m2

logm
.
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Since there exist graphs G such that α(G)= 2 and IR(G) = k for arbitrary k≥ 2,
the following interesting result is, perhaps, not entirely a surprise.

Theorem 8.9 ([120]) limn→∞
t (3, n)

r(3, n)
= 0.

Problem 8.10 ([120]) Is it true that, for every m≥ 3, limn→∞
t (m, n)

r(m, n)
= 0?

We can ask the same question for other types of Ramsey numbers. Let

(f, g) ∈ {(c, s), (s, t), (s, w), (w, t), (w, u), (u, v), (w, r), (v, r)}.

Problem 8.11 Is it true that, for every m≥ 3, limn→∞
f (m, n)

g(m, n)
= 0?

9 Reconfiguration

Reconfiguration problems are concerned with determining conditions under which
a feasible solution to a given problem can be transformed into another such solution
via a sequence of feasible solutions in such a way that any two consecutive
solutions are adjacent according to a specified adjacency relation. Reconfiguration
problems model, for example, situations where we wish to implement a sequence
of predefined elementary changes in order to transform a given configuration to a
more desirable one while the intermediate steps are also feasible.

The reconfiguration of dominating sets was introduced by Subramanian and
Sridharan [123]. They defined the γ -graph γ ·G of the graph G to be the graph
whose vertex set consists of all the γ (G)-sets, where two sets D and D

′
are adjacent

if and only if |D∩D
′ | = |D|− 1; that is, there exist vertices v∈D, v

′∈D
′

such that
D

′ = (D−{v})∪{v′ }. Here, v and v
′

need not be adjacent in G. This version of the
γ -graph is also known as the “single vertex replacement adjacency model” or the
jump γ -graph. Fricke, Hedetniemi, Hedetniemi and Hutson [82] studied the “slide
adjacency model” or simply the slide γ -graph G(γ ), whose vertex set also consists
of all the γ (G)-sets, but two sets D and D

′
are adjacent in G(γ ) if and only if there

exist adjacent vertices v∈D, v
′∈D

′
such that D

′ = (D−{v})∪{v′ }.
An initial question of Fricke et al. was to determine exactly which graphs are

γ -graphs; they showed that every tree is the slide γ -graph of some graph and
conjectured that every graph is such a graph. Connelly, Hedetniemi and Hutson
[54] proved this conjecture. It is easy to see that if H is realisable as a γ -graph, then
it is the γ -graph of infinitely many graphs.

Irredundance graphs were first considered by Mynhardt and Teshima [111]. For
any parameter π ∈ {ir, i, α, �, IR} (and some other domination parameters), they
defined the slide π -graph G(π ) of G similar to the slide γ -graph G(γ ) and showed
that every graph is the (slide) π -graph of some graph, where π ∈ {ir, �}, while not
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every graph is an i-graph. The graph GH constructed to show that a given graph H
is the �-graph of GH satisfies �(GH) = IR(GH ), but has more IR-sets than �-sets;
hence H is not an IR-graph of GH . They left the problem of whether all graphs
are IR-graphs open. However, Mynhardt and Roux [110] showed that, although all
disconnected graphs can be realised as IR-graphs, this does not hold for connected
graphs.

Theorem 9.1 ([110]) Every disconnected graph is the IR-graph of infinitely many
graphs.

To find connected graphs that are not IR-graphs, Mynhardt and Roux used the
external private neighbours in a given IR-set to find more IR-sets. The result is of
interest in its own right, and we include the short proof. For an irredundant set X,
we weakly partition X into subsets Z and I (one of which may be empty), where
each vertex in I is isolated in G[X] and each vertex in Z has at least one external
private neighbour. (This partition is not necessarily unique. Isolated vertices of G[X]
with external private neighbours can be allocated arbitrarily to Z or I.) For each
z∈ Z, let z′ ∈ epn(z,X) and define Z

′ = {z′ : z∈ Z}. Let X
′ = (X −Z)∪{Z′ }; note that

|X| = |X′ |. The set X
′

is called a flip-set of X.

Proposition 9.2 If X is an IR-set of G, then so is any flip-set X
′

of X.

Proof. Consider any x∈X
′
. With notation as above, if x∈ I =X −Z =X

′−Z
′
, then

x is isolated in G[X]. Since each vertex in Z
′

is an X-external private neighbour of
some z∈Z, no vertex in Z

′
is adjacent to x. Therefore x is isolated in G[X

′
]. Hence

assume x∈ Z
′
. Then x= z

′
for some z∈ Z, so z

′
is adjacent to z∈V (G)−X

′
. Now

z is non-adjacent to all vertices in I because the latter vertices are isolated in G[X],
and z is nonadjacent to all vertices in Z

′−{z}, because each v
′∈ Z

′−{z′ } is an X-
external private neighbour of some v∈ Z −{z}. Therefore z ∈ epn(z′, X′), that is,
z ∈ epn(x,X′). It follows that X

′
is irredundant. Since |X′ | = |X|, X

′
is an IR-set of

G. �
Proposition 9.2 explains to some extent why a given connected graph H is not an

IR-graph: for a possible source graph G, an IR-set X and its flip-set X
′

often belong
to different components of G(IR) because G lacks the necessary IR-sets to form an
X −X

′
path in G(IR).

An IR-tree is a tree that is an IR-graph. All complete graphs are IR-graphs; hence
K1 and K2 are IR-trees. To formulate results on IR-trees, we define some classes of
trees. The (generalised) spider Sp(�1, . . . , �k), �i ≥ 1, k≥ 2, is a tree obtained from
the star K1,k with centre u by subdividing the edge uvi �i − 1 times, i= 1, . . . , k.
The double star S(k, n) is the tree obtained by joining the centres of the stars K1,k
and K1,n. The double spider Sp(�1, . . . , �k;m1, . . . , mn) is obtained from S(k, n) by
subdividing the edges of the K1,k-subgraph �i − 1 times, i= 1, . . . , k, and the edges
of the K1,n-subgraph mi − 1 times, i= 1, . . . , n.

Theorem 9.3 ([110])

(i) Stars K1,k, k≥ 2 (trees of diameter 2), are not IR-trees.
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(ii) The double star S(2, 2) is the unique smallest IR-tree with diameter three (and
the unique smallest non-complete IR-tree).

(iii) The double spider Sp(1, 1;1, 2) is the unique smallest IR-tree with diameter
four.

(iv) The cycles C5, C6, C7 and the paths P3, P4, P5 are not IR-graphs.
(v) The only connected IR-graphs of order four are K4 and C4.

As mentioned in [110], a direct proof that P5 is not an IR-graph is somewhat
simpler than the proof of Theorem 9.3(iii), but not simple enough to easily
generalise to a proof that Pn or Cn, n≥ 5, is not an IR-graph. The authors thus
stated the following conjecture and open problems.

Conjecture 9.4 ([110]) Paths Pn, n≥ 3, and cycles Cn, n≥ 5, are not IR-graphs.

Problem 9.5 ([110])

(i) Determine which spiders, double spiders and double stars are IR-trees.
(ii) Prove or disprove: Complete graphs and Km�Kn, where m, n≥ 2, are the only

connected claw-free IR-graphs.

10 Complexity

We conclude by briefly addressing complexity and algorithmic questions pertaining
to irredundance. The decision problems that correspond to determining the lower
and upper irredundance numbers of general graphs are NP-complete [76, 95].
Computing ir(G) remains NP-complete on the classes of bipartite graphs [95],
split (hence also chordal) graphs [106], partial k-trees [132], planar cubic graphs
[5] and irredundance perfect graphs [128]. It was however shown in [134] that
graphs belonging to a subclass of irredundant perfect graphs, the class of locally
well-dominated graphs, are polynomial-time solvable. A linear-time algorithm also
exists for determining the lower irredundance number of a tree [7].

The upper irredundance number coincides with the independence number for
bipartite and chordal graphs and can therefore be solved in polynomial time for
these graph classes [38, 102]. For planar cubic graphs [5] and k-regular graphs with
k≥ 6 [83], the problem of computing IR(G) remains NP-complete.

In [8] Binkele et al. considered both exact and parameterised algorithms and
showed that ir(G) can be computed in O∗(1.99914n) time and polynomial space.
Furthermore, an algorithm for determining IR(G) runs in O∗(1.9369n) time and
polynomial space, where the running time can be improved to O∗(1.8475n) for
exponential space.
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The Private Neighbor Concept

Stephen T. Hedetniemi, Alice A. McRae, and Raghuveer Mohan

1 Introduction

Let G= (V, E) be a graph of order n= |V | and size m= |E|, and consider the
family of all sets S⊆V of vertices having some desired property P . In graph
theory, there are, of course, many types of sets that are studied, for example, as a
function of the types of subgraphs G[S] induced by S, the degrees of the vertices in
S, and the relationships between the vertices in S and the vertices in V \ S = S.
But in particular, we would like to consider properties of sets which are called
superhereditary. A property P is called superhereditary if whenever a set S has
property P , so does every superset of S.

In a similar way, one defines a property P to be hereditary if whenever a set S
has property P , so does every proper subset of S. It is easy to see, for example, that
the property of being an independent set is hereditary.

Notice that if a set S⊆V has a superhereditary property P , then the entire vertex
set V has property P . Thus, the largest cardinality of a P-set is n= |V |. What is
interesting, in this case, is (i) the minimum cardinality of a P-set, (ii) the maximum
cardinality of a minimal P-set, and (iii) the nature of minimal P-sets. A P-set S
is called minimal if no proper subset S′⊂ S of S is a P-set. A P-set S is called 1-
minimal if for every vertex v∈ S, the set S−{v} is not a P-set. It is important to note
that for superhereditary properties P , a set S is a minimal P-set if and only if S is a
1-minimal P-set.
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In a 1-minimal P-set, every vertex contributes in some way to the set S having
property P , and this contribution is absolutely necessary, else the set S−{v} does
not have property P . It is the nature of this private contribution that leads to the
general concept of a private neighbor.

2 Private Neighbors

To introduce this general concept, we present four examples of superhereditary
properties P and for each, discuss the added property of being a minimal P-set.

1. A dominating set in a graph G= (V, E) is a set S⊆V of vertices having the
property that every vertex v ∈ S is adjacent to at least one vertex in S. This can also
be stated as follows:

dominating set : (∀v ∈ S)(∃u ∈ S)[u ∈ (N(v) ∩ S)].

In addition, a dominating set S is a minimal dominating set if every vertex v∈ S
dominates at least one vertex, either itself or a vertex in S, that no other vertex in S
dominates. This can also be stated as follows:

minimal dominating set : (∀u ∈ S)(∃v ∈ V )[N [v] ∩ S = {u}].

The vertex v in the minimal dominating set definition above is called a private
neighbor of vertex u.

The domination number γ (G) equals the minimum cardinality of a dominating
set in G, while the upper domination number �(G) equals the maximum cardinality
of a minimal dominating set in G.

2. A total dominating set in a graph G= (V, E) is a set S⊆V of vertices having
the property that every vertex v∈V is dominated by a vertex in S, other than itself.
This can also be stated as follows:

total dominating set : (∀v ∈ V )(∃u ∈ S − {v})[u ∈ (N(v) ∩ S)].

In addition, a total dominating set S is a minimal total dominating set if every
vertex u∈ S dominates at least one vertex in V , other than itself that no other vertex
in S dominates and vertex u has at least one neighbor in S. This can also be stated as
follows:

minimal total dominating set : (∀u∈S)(∃v∈V )[N(u) ∩ S �=∅ ∧ [N(v) ∩ S={u}].

The vertex v in the minimal total dominating set definition above is called a
private neighbor of vertex u.

3. A vertex cover in a graph G= (V, E) is a set S⊆V of vertices having the
property that for every edge uv∈E, either u or v (or both u and v) is a vertex in S. In



The Private Neighbor Concept 185

this case, we say that both vertices u and v cover edge uv. This can also be stated as
follows:

vertex cover : (∀uv ∈ E)[{u, v} ∩ S �= ∅].

In addition, a vertex cover S is a minimal vertex cover if every vertex v∈ S covers
at least one edge that is not covered by any other vertex in S. This can also be stated
as follows:

minimal vertex cover : (∀u ∈ S)(∃uv ∈ E)[{u, v} ∩ S = {u}].

The edge uv v in the minimal vertex cover definition above is called a private
edge of vertex u.

4. A resolving set in a graph G= (V, E) is a set S⊆V of vertices having the
property that for every pair of vertices u, v ∈ S, there is a vertex w∈ S such that d(u,
w) �= d(v, w). In this case, we say that vertex w resolves the vertex pair u and v and
denote this as w	 u, v. This can also be stated as follows:

resolving set : (∀u, v ∈ S)(∃w ∈ S)[w " u, v].

In addition, a resolving set S is a minimal resolving set if every vertex u∈ S
resolves at least one vertex pair v,w ∈ S that is not resolved by any other vertex in
S. This can also be stated as follows:

minimal resolving set : (∀w∈S)(∃u, v∈S)[w" u, v∧ ( � ∃x ∈ S)[x �=w∧ x " u, v].

The pair of vertices u and v in the minimal resolving set definition above is called
a private pair of vertex u.

3 Irredundant Sets

In 1978, Cockayne, Hedetniemi, and Miller [15] introduced the concept of private
neighbors, as defined above in the definition of a minimal dominating set, and
made the important distinction between a minimal dominating set and a set which
isn’t necessarily dominating, but nevertheless satisfies the added condition of being
minimal dominating set. They therefore introduced the concept called irredundance
in graphs as follows.

A set S⊂V is called irredundant if (∀u∈ S)(∃v∈V )[N[v]∩ S={u}]. Stated in
words, a set S is called irredundant if and only if every vertex u∈ S has at least
one private neighbor, either itself, if N[u]∩ S={u}, or a vertex v ∈ S such that
N(v)∩ S={u}; such a vertex v ∈ S is called an external private neighbor of u. An
irredundant set S is called maximal if no proper superset of S is also an irredundant
set.
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Fig. 1 The set {v2, v3} is irredundant, but not dominating

The minimum cardinality of a maximal irredundant set in a graph is called the
lower irredundance number and denoted ir(G). The maximum cardinality of an
irredundant set in a graph is called the upper irredundance number and denoted
IR(G).

It is important to note that even though the concept of irredundant sets arises from
the condition that defines a minimal dominating set, an irredundant set, and indeed
a maximal irredundant set, need not be a dominating set. Consider the example
shown in Figure 1, the path P5 with vertices labeled in order v1, v2, v3, v4, v5. The
set S={v2, v3} is both an irredundant set and a maximal irredundant set, but it is
not a dominating set. In this set, v2 is the only vertex in S that dominates v1, and
v3 is the only vertex in S that dominates v4. Thus, since both vertices in S have an
external private neighbor, S is an irredundant set, but S is not a dominating set, since
no vertex in S dominates v5.

The idea of irredundance, and the associated concept of private neighbors, applies
to the added conditions which hold if a set S having some property P is, in addition,
minimal with respect to property P. In general, irredundance answers the question:
why is a set minimal with respect to property P?

Suppose, for example, that a set has property P2 if the subgraph G[S] induced
by a set S has minimum degree δ(G[S])≥ 2. If S is 1-minimal with respect to this
property, then any vertex v∈ S, if removed, would result in a subgraph G[S−{v}]
having a vertex of degree less than 2. And this means that every vertex in S must
have a neighbor of degree 2 in G[S]. We could say, therefore, that a set S is P2-
irredundant if and only if every vertex v∈ S has a neighbor in S of degree 2 in G[S].
Notice that a set S, such that G[S] is a 2-regular graph (every vertex of which has
degree 2), for example, a cycle Ck, is both 1-minimal and minimal with respect
to property P2. However, a set S, such that G[S]=K3 ∪K3, is a P2-set that is 1-
minimal but is not minimal, since removing all three vertices in one K3 creates
another, smaller P2-set.

Thus, we can observe that the reason an independent set is a maximal indepen-
dent set is because it is also a dominating set. In fact, a set is maximal independent
if and only if it is both an independent and a minimal dominating set.

And in the same way, the reason that a dominating set is a minimal dominating
set is because it is also an irredundant set. In fact, a set is a minimal dominating set
if and only if it is a dominating set and an irredundant set.

Because of the generality of the notion of private neighbors, the corresponding
notion of irredundance is very general. Although we will discuss a variety of
different types of irredundance in this chapter, a very comprehensive and in-depth
study of the concept of irredundance in graphs can be found in the 2003 Ph.D. thesis
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of Stephen Finbow [32]. In addition, see also the comprehensive chapter on the
irredundance numbers ir(G) and IR(G) by Mynhardt and Roux [49] in this volume.

4 The Basic Private Neighbors and Corresponding
Irredundance Numbers

Given a vertex set S⊆V in a graph G= (V, E), we can define three kinds of private
neighbors of a vertex v∈ S. If vertex v is not adjacent to any vertex in S, which is
equivalent to saying that v is an isolated vertex in the subgraph G[S] induced by S,
or that N(v)∩ S=∅, then we say that v is its own private neighbor with respect to
the set S, or that v is a self-private neighbor or an spn.

If vertex v is adjacent to a vertex w∈V − S and w is not adjacent to any other
vertex in S, then we say that w is an external private neighbor, or an epn, of v. This
is equivalent to saying that N(w)∩ S={v}. The set of private neighbors of a vertex
v∈ S is the set pn[v]=N[v]−N[S−{v}].

If vertex v is adjacent to a vertex w∈ S and w is not adjacent to any other vertex
in S, then we say that w is an internal private neighbor, or an ipn, of v. This is
equivalent to saying that for some vertex w∈ S, N(w)∩ S={v}.
1. independence numbers i(G) and α(G), the minimum and maximum cardinal-

ities of a maximal independent set. Equivalently, the minimum and maximum
cardinalities of maximal sets S such that every vertex v∈ S is its own private
neighbor.

2. irredundance numbers ir(G) and IR(G), the minimum and maximum cardinali-
ties of a maximal irredundant set. A set S is an irredundant set if for every vertex
v∈ S, pn[v, S]=N[v]−N[S−{v}] �=∅, that is, every vertex v∈ S either is an spn
or has an epn with respect to the set S. Irredundant sets were first defined and
studied by Cockayne, Hedetniemi, and Miller in 1978 [15]. See also an early
survey paper by Hedetniemi, Laskar, and Pfaff [44] and a comprehensive paper
showing the full generality of irredundance in graphs by Cockayne and Finbow
[12].

3. open irredundance numbers oir(G) and OIR(G), the minimum and maximum
cardinalities of a maximal open irredundant set in G. A set S is open irredundant
if every vertex u∈ S has an external private neighbor. This is equivalent to saying
that for every vertex v∈ S, N(v)−N[S−{v}] �=∅. Open irredundance was first
studied by Farley and Schacham [28] in 1983; see also Farley and Proskurowski
[27] in 1984, Cockayne et al. [11] in 2003, and Cockayne et al. [22] in 2008.

4. open-open irredundance numbers ooir(G) and OOIR(G), the minimum and
maximum cardinalities of a maximal open-open irredundant set in G. A set
S is open-open irredundant if every vertex u∈ S has either an external or an
internal private neighbor. This is equivalent to saying that for every vertex v∈ S,
N(v)−N(S−{v}) �=∅. Open-open irredundance was introduced by Cockayne,
Finbow, and Swarts [23] in 2010.
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5. closed-open irredundance numbers coir(G) and COIR(G), the minimum and
maximum cardinalities of a maximal closed-open irredundant set in G. A set
S is closed-open irredundant if every vertex u∈ S has either itself as a private
neighbor, an external private neighbor, or an internal private neighbor. This is
equivalent to saying that for every v∈ S, N[v]−N(S−{v}) �=∅.

6. strong matching number α∗ (G), the maximum cardinality of a set S⊆V such
that every vertex in S has an internal private neighbor. For such a set S, the
induced subgraph G[S] consists of a disjoint union of complete graphs K2; the
set of edges in the subgraph induced by such sets are called strong or induced
matchings. These sets were introduced independently by Cameron [6] in 1989
and later by Golumbic and Laskar [41] in 1993.

7. 1-dependence number α1(G), the maximum cardinality of a set S⊆V such
that every vertex has either itself as a private neighbor or has an internal private
neighbor. For such a set S, the induced subgraph G[S] consists of a disjoint
collection of K1’s or K2’s, or equivalently, the subgraph G[S] has maximum
degree �= 1. These sets were introduced by Fink and Jacobson [33] in 1985,
who called these 1-dependent sets. In general, a k-dependent set is a set S such
that �(G[S])≤ k.

These seven types of irredundance numbers all fit into a natural cube of
inequalities, as was shown by Fellows, Fricke, Hedetniemi, and Jacobs [31] in
1994, cf. Figure 2, where an arrow u→ v indicates that the parameter associated
with vertex u is greater than or equal to the parameter associated with vertex
v. As the inequalities in Figure 2 also show, we have the following sequence,
which is called the Domination Chain, which was first observed by Cockayne,
Hedetniemi, and Miller in 1978 [15].

ir ≤ γ ≤ i ≤ α ≤ � ≤ IR

Fig. 2 The private neighbor cube
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5 Generalized Irredundance by Cockayne

In 1999, Cockayne [10] considerably generalized the private neighbor cube of
Fellows et al. [31]. He considered the 32 classes of sets S, which can be defined
in terms of the types of private neighbors that vertices in a set S may or may not
have.

Let p mean that a vertex v is its own private neighbor (an spn), meaning that v is
not adjacent to any vertex in S.

Let q mean that v has a private neighbor inside S (an ipn), meaning that v is
adjacent to a vertex u in S and no other vertex in S is adjacent to u.

Let r mean that v has an external private neighbor (an epn), meaning that it
has a neighbor u∈V − S and no other vertex in S is adjacent to u or, equivalently,
N(u)∩ S={v}.

Therefore, assuming that all vertices must have at least one type of private
neighbor, there are five types of vertices, as follows. Note that it is not possible
for a vertex to have both a self-private neighbor and an internal private neighbor;
thus, there are no vertices of types 1,1,0 or 1,1,1.

p q r

Type 1: 0 0 1 vertex v must have an epn, but has no spn or ipn.
Type 2: 0 1 0 vertex v must have an ipn but has no spn or epn.
Type 3: 0 1 1 vertex v must have both an ipn and an epn, but has no spn.
Type 4: 1 0 0 vertex v must have an spn but has no ipn or epn.
Type 5: 1 0 1 vertex v must have an spn and an epn, but has no ipn.

There are, therefore, 25 = 32 types of sets of vertices S (all possible subsets of
these five types), with prescribed private neighbor requirements for the vertices in
S, as given in the table below.

p q r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1. 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2. 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
3. 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
4. 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
5. 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

p q r 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1. 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2. 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
3. 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
4. 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
5. 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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Consider the types of sets that are defined by each column. We will mention just
a few.

Column 0 defines a set in which no vertex can have a private neighbor of any
kind. So, for example, the set of all vertices in a cycle Cn constitutes such a set,
since no vertex in a cycle has a private neighbor of any kind.

Column 2 defines a set in which every vertex must be an spn but can obviously
have no ipn and can have no epn either. We can call this a {4}-set, since all vertices
are of type 4. This is an independent set in which no vertex has an external private
neighbor.

Column 12 is a {2,3}-set, which defines an induced matching in which every
vertex must have an ipn and may or may not also have an epn.

Most of these sets have not been studied, but several are of particular interest.
Cockayne [13] shows that of these 32 types of sets, only 12 define sets that are
hereditary and therefore might warrant further study. They are the following:

Column 1 defines a set in which every vertex has both a self-private neighbor and
an external private neighbor. This is called a {5}-set. This is an independent set in
which every vertex has an external private neighbor.

Column 3 is a {4,5}-set, in which every vertex has an spn and may or may not
have an epn. This is a standard independent set.

Column 5 is a {3,5}-set, in which every vertex has an epn and either an spn or an
ipn.

Column 7 is a {3,4,5}-set, in which every vertex either has an spn, with or without
an epn, or does not have an spn, but has both an ipn and an epn.

Column 9 is a {2,5}-set, in which every vertex either has an ipn, but no spn or
epn, or has no ipn, but has both an spn and an epn.

Column 11 is a {2,4,5}-set, in which every vertex either has an spn, with or
without an epn, or has an ipn with no spn or epn.

Column 13 is a {2,3,5}-set, in which every vertex either has an ipn, and may or
may not have an epn, or has both an spn and an epn.

Column 15 is a {2,3,4,5}-set, which is a 1-dependent set, that is, a set in which
every vertex has either an spn or an ipn.

Column 21 is a {1,3,5}-set, which is an open irredundant set, in which every
vertex has an epn.

Column 23 is a {1,3,4,5}-set, which is an irredundant set, in which every vertex
has either an spn or an epn.

Column 29 is a {1,2,3,5}-set, which is an open-open irredundant set, in which
every vertex has either an ipn or an epn.

Column 31 is a {1,2,3,4,5}-set, which is a closed-open irredundant set, in which
every vertex has at least one type of private neighbor.



The Private Neighbor Concept 191

6 Total Irredundance Numbers

The Domination Chain, which follows from the definitions of independent sets,
dominating sets, and irredundant sets, raises the question of whether there is a type
of irredundance related to total dominating sets. Total irredundance was introduced
in 2002 by Favaron, Haynes, Hedetniemi, Henning, and Knisley [30]. See also
Hedetniemi, Hedetniemi, and Jacobs [45] in 1993.

A set S is total irredundant if and only if for every vertex v∈V ,
N[v]−N[S−{v}] �=∅. The total irredundance numbers, irt(G) and IRt(G), equal the
minimum and maximum cardinalities of a maximal total irredundant set. Notice that
the irredundance numbers ir(G) and IR(G) are defined in terms of two conditions,
at least one of which must hold for every vertex v∈ S. By contrast, the total
irredundance numbers irt(G) and IRt(G) are defined in terms of two conditions, at
least one of which must hold for every vertex v∈V .

We note in passing that other types of total irredundance can be defined in terms
of the conditions that must hold for every vertex v∈V instead of every vertex v∈ S.
Thus, for example, one can define:

total open irredundance: for every vertex v∈V , N(v)−N[S−{v}] �=∅.

This means that every vertex v, either in S or in V − S, is adjacent to some vertex
in V − S that no other vertex in S is adjacent to.

To the best of our knowledge, none of these types of total irredundance have been
defined and studied. Not only this, but one can define other types of irredundance
in terms of private neighbor conditions that hold only for vertices in V − S. For
example, one could define:

irredundance: for every v in S, N[v]−N[S−{v}] �=∅.
total irredundance: for every v in V, N[v]−N[S−{v}] �=∅.
external irredundance: for every v in V − S, N[v]−N[S−{v}] �=∅.

This means that for an external irredundant set S, every vertex in V − S either is
not adjacent to any vertex in S or is adjacent to some vertex in V − S that no vertex
in S is adjacent to. To the best of our knowledge, external irredundance has not been
studied.

7 The Covering Chain, a Dual of the Domination Chain

In 2015, Arumugam, Hedetniemi, Hedetniemi, Sathikala, and Sudha [3] showed that
there is an inequality chain that is complementary to the well-known Domination
Chain,

ir ≤ γ ≤ i ≤ α ≤ � ≤ IR
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This idea starts with the following well-known Theorem of Gallai [38], in which
α(G) denotes the maximum cardinality of an independent set of vertices and β(G)
denotes the minimum cardinality of a vertex cover.

Theorem 1 (Gallai) For any graph G of order n, α(G)+β(G)= n.

The idea introduced by Arumugam et al. is that if the Domination Chain begins
with the concept of independence and α(G), then there might be an inequality chain
that begins with the concept of a vertex cover and β(G). Notice that independence
is a hereditary property (every subset of an independent set is also an independent
set), while the property of being a vertex cover is superhereditary (every superset of
a vertex cover is also a vertex cover).

In order to develop this idea, we will need to quickly review a few definitions.

1. β(G), the vertex covering number, equals the minimum number of vertices in a
vertex cover, that is, a set S⊆V having the property that for every edge uv∈E,
either u∈ S or v∈ S, or both.

2. β+(G), the upper vertex covering number, equals the maximum number of
vertices in a minimal vertex cover of G.

3. β ′(G), the edge covering number, equals the minimum number of edges in an
edge cover, that is, a set F ⊆E having the property that every vertex v∈V is
incident to at least one edge in F.

4. β
′+(G), the upper edge covering number, equals the maximum number of edges

in a minimal edge cover of G.
5. α′(G), the matching number, equals the maximum number of edges in a

matching, that is, a set F ⊂E, no two edges in F have a vertex in common.
6. �(G), the upper enclaveless number, equals the maximum number of vertices in

a set S such that S has no enclave, that is, a vertex v∈ S such that N[v]⊆ S.
7. ψ(G), the lower enclaveless number, equals the minimum number of vertices in

a maximal enclaveless set S.

It can be observed that since the property of being a vertex cover is superheredi-
tary, it follows that a vertex cover S is minimal if and only if S is 1-minimal.

Before presenting the next several results, it is worthwhile pointing out that
if a set S is a (minimal) vertex cover, then the complement V − S must be a
(maximal) independent set. Conversely, if S is a (maximal) independent set, then
the complement V − S must be a (minimal) vertex cover.

Proposition 1 (Arumugan et al.) A vertex cover S of a graph G is a minimal vertex
cover if and only if S is a vertex cover and is enclaveless.

Proof. Let S be a minimal vertex cover of G. Then for every vertex v∈ S, S−{v}
is not a vertex cover of G, and this must mean that v has at least one neighbor, say
w∈V − S, so that the edge vw is not covered by S−{v}. Hence, N[v]�S. Thus, S is
an enclaveless set.

Conversely, let S be an enclaveless vertex cover. If S is not a minimal vertex
cover, then there exists a vertex v∈ S such that S−{v} is a vertex cover. Hence,
N[v]⊆ S, so that v is an enclave in S, which is a contradiction. Thus, S is a minimal
vertex cover. �
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Proposition 2 (Arumugam et al.) Every minimal vertex cover S in a graph G is a
maximal enclaveless set of G.

Proof Let S be a minimal vertex cover in G. It follows from Proposition 1 that S is
enclaveless. If S is not a maximal enclaveless set, then there exists a vertex u∈V − S
such that S∪{u} is enclaveless. Hence, there exists a vertex w∈N(u)∩ (V − S), and
the edge uw has both its ends in V − S, which is a contradiction. Thus, S is a maximal
enclaveless set. �
Corollary 1 For any graph G,

ψ ≤ β ≤ β+ ≤ �.

Since the property of being an enclaveless set is hereditary, an enclaveless set S
is maximal if and only if S is a 1-maximal enclaveless set.

Proposition 3 (Arumugam et al.) An enclaveless set S is maximal enclaveless if
and only if S is enclaveless and V− S is irredundant.

Proof Let S be a maximal enclaveless set. Then for any u∈V − S, S∪{u}
contains an enclave, say v. Hence, N[v]⊆ S∪{u}, but N[v]�S. If v �= u, then
N[v]∩ (V − S)={u}, and thus, v is an external private neighbor of u with respect to
the set V − S. However, if v= u, then N(u)⊆ S, and therefore u is not adjacent to
any vertex of V − S. Thus, in either case, u has a private neighbor, either external or
itself, with respect to the set V − S, and therefore, V − S is an irredundant set.

Conversely, let S be enclaveless and V − S be an irredundant set. Then for any
u∈V − S, there exists v∈N[u] such that N[v]∩ (V − S)={u}. If u= v, then u is an
enclave of S∪{u}. If v �= u, then v∈ S and v is an enclave of S∪{u}. Therefore, S is a
maximal enclaveless set. �

This gives rise to a new definition.

Definition 1 A subset S of V is called a co-irredundant set if V− S is an irredundant
set of G. The co-irredundance number cir(G) equals the minimum cardinality of
a co-irredundant set in G. The upper co-irredundance number CIR(G) equals the
maximum cardinality of a minimal co-irredundant set in G.

Note that the property of being a co-irredundant set is superhereditary, and thus
a set S is a minimal co-irredundant set if and only if it is a 1-minimal co-irredundant
set.

Proposition 4 (Arumugam et al.) Every maximal enclaveless set S in a graph G
is a minimal co-irredundant set.

Proof If S is a maximal enclaveness set, then it follows from Proposition 3 that
V − S is irredundant and hence, S is co-irredundant. If S is not a minimal co-
irredundant set, then there exists u∈ S such that S−{u} is co-irredundant. Hence,
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(V − S)∪{u} is an irredundant set. Let v be a private neighbor of u with respect to
(V − S)∪{u}. Clearly, v �= u, since then N[u]⊆ S is an enclave in S, a contradiction.
However, if v∈ S and N[v]⊆ S. Thus, v is an enclave in S, which is a contradiction.
Thus, S is a minimal co-irredundant set. �
Corollary 2 For any graph G,

cir ≤ ψ ≤ β ≤ β+ ≤ � ≤ CIR.

This inequality chain above is called the Covering Chain of a graph G. But much
more can be said about this, since it is closely related to the Domination Chain, as
follows.

Theorem 2 (Arumugam et al.) For any graph G,

(i) ir(G)+CIR(G)= n,
(ii) IR(G)+ cir(G)= n.

Thus, the Covering Chain of a graph G can also be written as follows.

n− IR ≤ n− � ≤ n− α ≤ n− i ≤ n− γ ≤ n− ir

Hence, the Covering Chain is the dual of the Domination Chain.

Proposition 5 (Arumugam et al.) For any graph G without isolated vertices,
γ (G)≤ cir(G).

Proposition 6 (Arumugam et al.) For any graph G without isolated vertices,
IR(G)≤Ψ (G).

Proof We know that

(i) cir(G)+ IR(G)= n,
(ii) γ (G)≤ cir(G),

(iii) γ (G)+ �(G)= n.

From this it follows that IR(G)≤�(G). �
We can combine the inequalities given in Propositions 5 and 6 into the Domi-

nation Chain and Covering Chain to get two larger chains, which we can call the
Extended Domination Chain and the Extended Covering Chain, respectively.

ir ≤ γ ≤ i ≤ α ≤ � ≤ IR ≤ � ≤ CIR

+ + + + + + + +
CIR ≥ � ≥ β+ ≥ β ≥ ψ ≥ cir ≥ γ ≥ ir

= = = = = = = =
n n n n n n n n
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Arumugam et al. also add the following interesting comparison of two inequality
chains:

γ ≤ i ≤ α ≤ � ≤ IR ≤ �

γ ≤ cir ≤ ψ ≤ β ≤ β+ ≤ �

ir ≤ γ ≤ cir ≤ ψ ≤ β ≤ β+ ≤ � ≤ CIR

CIR ≥ � ≥ IR ≥ � ≥ α ≥ i ≥ γ ≥ ir

8 Domination in Terms of Perfection in Graphs

To the definitions given above, of independent sets, dominating sets, and irredundant
sets, we now introduce several concepts and parameters having to do with what is
called perfection in graphs. These concepts were first introduced in 1999 by Fricke,
Haynes, Hedetniemi, Hedetniemi, and Henning [35] and later developed in detail
by J. T. Hedetniemi, S. M. Hedetniemi, and S. T. Hedetniemi in 2013 [47]. In the
remainder of this section, we review the results given in this 2013 paper.

In the notation that follows, a subscript (αS) refers to a parameter α having some
condition on the vertices in S, for example, the vertex independence number is
defined in terms of a condition on the vertices in S, that no two of them are adjacent.

Similarly, a superscript (αV −S) refers to a parameter having some condition on
the vertices in V − S, for example, the domination number is defined in terms of
a condition on the vertices in V − S, that every vertex in V − S has at least one
neighbor in S.

If a parameter α requires some condition on all vertices in V , no subscript or
superscript appears.

Definition 2 Given a set S⊆V in a graph G= (V, E), a vertex v∈V is said to be
S-perfect if |N[v]∩ S| = 1, that is, the closed neighborhood N[v] contains exactly
one vertex in S.

Notice that if a vertex v∈ S is S-perfect, then it has no neighbors in S, and if a
vertex v∈V − S is S-perfect, then it has exactly one neighbor in S.

Definition 3 Given a set S⊆V in a graph G, a vertex v is almost S-perfect if it is
either S-perfect or is adjacent to an S-perfect vertex.
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Fig. 3 A perfect
neighborhood set

When a set S has been given and is assumed, we simply say that a vertex is perfect
or almost perfect, without referring to the set S.

Definition 4 A set S⊂V is perfect if every vertex v∈ S is S-perfect and is almost
perfect if every vertex v∈ S is almost S-perfect; for brevity we say that an almost
perfect set is an ap-set. Let θap(G) and Θap(G) equal the minimum and maximum
cardinalities of a maximal ap-set in G.

Definition 5 A set S is externally perfect if every vertex in V− S is S-perfect and
is externally almost perfect if every vertex in V− S is either S-perfect or is adjacent
to an S-perfect vertex; for brevity we say that an externally almost perfect set is an
eap-set. Let θap(G) and Θap(G) equal the minimum and maximum cardinality of a
minimal eap-set in G.

In the graph in Figure 3, given in the paper by Hedetniemi et al., a vertex labeled
“p” is perfect, while a vertex labeled “ap” is almost perfect. The three shaded
vertices form a set S that is almost perfect (two vertices in S are almost perfect
and the third is perfect) and is externally almost perfect (every vertex in V − S is
either perfect or is adjacent to a perfect vertex).

Definition 6 A set S is a perfect neighborhood set if every vertex v∈V is either
perfect or is adjacent to a perfect vertex. Let θ (G) and Θ(G) equal the minimum
and maximum cardinalities of a perfect neighborhood set in G, and let θap

p (G) and
�

ap
p (G) equal the minimum and maximum cardinalities of an independent perfect

neighborhood set in G.

Notice that the three shaded vertices in Figure 2 form a perfect neighborhood set.

Definition 7 A set S is an eap irredundant, eap dominating, or eap independent
set if it is a maximal irredundant, minimal dominating, or maximal independent set
that is also eap. Thus, every vertex v∈V− S is either perfect or is adjacent to a
perfect vertex. Let irap(G), γ ap(G), iap(G), αap(G), Γ ap(G), and IRap(G) denote the
minimum and maximum cardinalities of such sets.
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Given these definitions, we can relate them to independent, dominating, and
irredundant sets, for example, the concept of a set S being perfect is equivalent
to the concept of a set being independent.

Proposition 7 A set S is perfect if and only if it is independent.

Corollary 3 For any graph G, θap
p (G) ≤ i(G) = iap(G).

Corollary 4 For any graph G, α(G) = αap(G) = �
ap
p (G).

Recall that a dominating set S is called perfect if every vertex v∈V − S has
exactly one neighbor in S and is called an efficient dominating set if S is independent,
dominating, and perfect.

Proposition 8 A set S is externally perfect if and only if S is a perfect dominating
set.

Proposition 9 A set S is completely perfect if and only if S is an efficient dominating
set (or a perfect code).

The concept of being almost perfect (ap) is equivalent to the concept of being
irredundant.

Proposition 10 A set S is almost perfect if and only if S is irredundant.

Proof If a set S is almost perfect, then every vertex u∈ S is either perfect or adjacent
to a perfect vertex. Either u is an isolated vertex in G[S], in which case it is perfect
and is its own private neighbor, or u is adjacent to a perfect vertex, say w. But
w cannot be in S. Thus, w∈V − S and w is perfect because |N[w]∩ S| = |{u}|= 1.
This means that w is an external private neighbor of u. Thus, every vertex u∈ S has
a private neighbor, and hence S is irredundant.

Conversely, if S is irredundant, then every vertex u∈ S either is its own private
neighbor, in which case it is perfect, or has an external private neighbor, say w. But
in this case w is perfect and therefore u is adjacent to a perfect vertex. Therefore, S
is almost perfect. �
Corollary 5 For any graph G,

ir = θap ≤ �ap = IR(G)

Distance-2 dominating sets are closely related to externally almost perfect sets.

Proposition 11 If a set S is eap, then it is a distance-2 dominating set.

The Domination Chain can now be considerably expanded in terms of the
concept of perfection.

Theorem 3 For any graph G, the following system of inequalities holds.
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θap ≤ θ ≤ θapp ≤ Θap
p ≤ Θ ≤ Θap

≤ ≤ = = =

θap = ir ≤ γ ≤ i ≤ α ≤ Γ ≤ IR

≤ ≤ = = ≥ ≥
θap ≤ irap ≤ γap ≤ iap ≤ αap ≤ Γap ≤ IRap

≥ ≥

γ≤2 θ

A similar pair of inequality chains holds when independent sets are considered.

Proposition 12 For any graph G, the following inequalities hold.

(i) γ≤2 ≤ γ
ap

≤2 ≤ i
ap

≤2 ≤ iap = i.

(ii) γ≤2 ≤ i≤2 ≤ i
ap

≤2 ≤ iap = i.

If we define γ
ap
d (G) to equal the minimum cardinality of a dominating set that

is externally almost perfect, as distinct from γ ap(G), which equals the minimum
cardinality of a minimal dominating set that is externally almost perfect, then we
get the following refinement.

Proposition 13 For any graph G,

γ ≤ γ
ap
d ≤ γ ap ≤ i.

As given in Hedetniemi et al., the fact that each of these inequalities can be strict
is illustrated by the unicyclic graph G in Figure 4. For this graph, the set S1 ={1, 3,
4, 6} shows that γ (G)= 4; for γ ap

d (G) = 6, let S2 ={1, 2, 3, 4, 5, 6}; for γ ap(G)= 8,
let S3 ={1, 6, 7, 8, 9, 10, 11, 12}; and for i(G)= 9, let S4 ={1, 7, 8, 9, 4, 13, 14, 15,
16}.

In summary, the concept of perfection in graphs provides a framework for
unifying the concepts of independent sets, dominating sets, irredundant sets, perfect
and efficient dominating sets, and perfect neighborhood sets. For example:

(i) A set is independent if and only if it is a perfect set.
(ii) The independence parameters i(G) and α(G) can be expressed as maximal

independent sets whose complements are almost perfect, that is, i(G)= iap(G)
and α(G)=αap(G).

(iii) A set is an irredundant set if and only if it is an almost perfect set.
(iv) The parameters ir(G) and IR(G) can be expressed in terms of almost perfect

sets, namely, ir(G)= θap(G) and IR(G)= �ap(G).
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Fig. 4 γ < γ
ap
d < γ ap < i

(v) The theorem in Fricke et al. [35], that �(G)= �(G), established an equality
between two seemingly unrelated parameters. This result is now clearer.
In particular, the inequality chain, α(G)≤�(G)≤ IR(G), can now be stated
equivalently as �

ap
p (G) ≤ �(G) ≤ �ap(G), since �

ap
p (G) = α(G),

�(G)= �(G), and �ap(G)= IR(G).
(vi) An expanded inequality chain exists between the domination and independence

parameters:

γ ≤ γ
ap
d ≤ γ ap ≤ i ≤ α ≤ �ap ≤ �.

Further papers on perfect neighborhood sets in graphs can be found by Cockayne,
Hedetniemi, Hedetniemi, and Mynhardt [20], by Favaron and Puech [29], and by
Hedetniemi, Hedetniemi, and Henning [46].

9 Partitions Involving Irredundant Sets

A (proper) coloring of a graph G is a vertex partition V ={V1, V2, . . . , Vk} such that
for every 1≤ i≤ k, Vi is an independent set. Since the property of being independent
is a hereditary property, one seeks the minimum order of a partition into independent
sets. For example, the chromatic number χ (G) equals the minimum order of a
partition of V into independent sets.

Continuing in the same manner, the property of being an irredundant set is
hereditary. Therefore, it would be natural to consider the minimum order of a
partition of V into irredundant sets.

As introduced by Haynes, Hedetniemi, Hedetniemi, McRae, and Slater in 2008
[43], the irratic number χ ir(G) equals the minimum order of a partition of V into
irredundant sets.

Clearly, since every independent set is irredundant, for any graph G,
χ ir(G)≤χ (G).
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This inequality immediately raises the question: can you prove that for any planar
graph G, χ ir(G)≤ 4, without appealing to the Four Color Theorem?

Haynes et al. show the following.

1. χ ir(G)= 1 if and only if G = Kn.
2. χ ir(G)= n if and only if G=Kn.
3. If χ (G)= 2, then χ ir(G)= 2.
4. χ ir(G ◦K1)= 2.
5. χir (G�K2) = 2.

The authors provide bounds for χ ir(G) in terms of other well-known graphical
parameters and take a closer look at graphs with χ ir(G)= 2, called bi-irratic graphs.
Although every nonempty bipartite graph is bi-irratic, the problem of characterizing
the class of bi-irratic graphs remains open. The authors also study complexity
questions and establish the NP-completeness of the problem of determining if a
given graph is bi-irratic.

In 2012, Arumugam and Chandrasekar [2] prove that the problem of deciding
if the vertices of a graph can be partitioned into two open irredundant sets, that is,
whether χoir(G)= 2, is NP-complete.

A complete coloring of a graph G is a proper vertex coloring of G having the
property that for every two distinct colors i and j, there exist adjacent vertices
colored i and j. The maximum positive integer k for which G has a complete k-
coloring is called the achromatic number �(G) of G. A Grundy coloring of a graph
G is a proper vertex coloring of G having the property that for every two colors
(positive integers) i and j with i < j, every vertex colored j has a neighbor colored
i. The maximum positive integer k for which a graph G has a Grundy k-coloring is
the Grundy number �r(G) of G. For every graph G, these four coloring parameters
satisfy the inequalities:

χ ir ≤ χ ≤ �r ≤ �.

For these four coloring numbers, Chartrand, Hedetniemi, Okamoto, and Zhang
[7] showed in 2011 that if a, b, c, and d are integers with 2≤ a≤ b≤ c≤ d, then
there exists a nontrivial connected graph G with χ ir(G)= a, χ (G)= b, �r(G)= c,
and �(G)= d if and only if d = 2 or c �= 2.

10 The Mystery of the Domination Chain:
??≤ ir(G)≤ γ (G)≤ i(G)≤ α(G)≤�(G)≤ IR(G)≤??

Notice that the parameters i(G) and α(G) are the min and max parameters associated
with the hereditary property, say P1, of being an independent set.
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Notice next that the parameters γ (G) and �(G) are the min and max parameters
associated with the superhereditary property, P2, of being a dominating set.

The third pair of parameters ir(G) and IR(G) are the min and max parameters
associated with the hereditary property P3 of being a maximal irredundant set.

This would lead one to think that there should exist a pair of parameters, call
them ψ(G) and �(G), that are associated with some superhereditary property, P4,
and we would have the following inequality chain.

ψ? ≤ ir ≤ γ ≤ i ≤ α ≤ � ≤ IR ≤ �?

. . . and maybe still another similar pair of parameters, call them φ and �, that
are associated with some hereditary property, P5, and we would have the following
inequality chain.

φ? ≤ ψ? ≤ ir ≤ γ ≤ i ≤ α ≤ � ≤ IR ≤ �? ≤ �?

Does this chain of inequalities continue indefinitely, alternating between heredi-
tary and superhereditary properties, or does it terminate?

Much of the discussion in this section, but not all, can be found in the 1997 paper
by Cockayne, Hattingh, Hedetniemi, Hedetniemi, and McRae [17].

As discussed in this paper, the domination chain starts with the concept of an
independent set, which is a hereditary property. Because of this, one can say that
an independent set S is maximal if and only if it is 1-maximal, which means that
for every vertex v∈V − S, the set S∪{v} is not an independent set. This, in turn, is
equivalent to saying that for every vertex v∈V − S, there exists at least one vertex
u∈ S such that v is adjacent to u. And this is the definition of a dominating set. So
we can say that the maximality condition for an independent set is the definition of
a dominating set.

In much the same way, the concept of a dominating set is a superhereditary
property. Because of this, we can say that a dominating set S is minimal if and
only if it is 1-minimal, which means that for every vertex v∈ S, the set S−{v} is not
a dominating set. This, in turn, is equivalent to saying that either vertex v has no
neighbor in S, and therefore is not dominated by any vertex in S−{v}, in which case
we say that v is its own self-private neighbor, or spn, or v is the only vertex that
dominates some vertex w∈V − S, in which case we say that w is an external private
neighbor or epn of v. This condition is the definition of an irredundant set.

Because of these three definitions, the Domination Chain emerges.
But now we come to the property of being an irredundant set. It is easy to see

that this, like the property of being an independent set, is a hereditary property, since
every subset of an irredundant set is also an irredundant set. Thus, one can say that
a set S is a maximal irredundant if and only if it is a 1-maximal irredundant set. And
this means that a set S is a maximal irredundant set if and only if for every vertex
v∈V − S, S∪{v} is not an irredundant set. This means that when you add v to the
set S, some vertex in S∪{v} does not have a private neighbor.
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This is equivalent to saying that a maximal irredundant set S is a set that is
irredundant and has the added property that for every vertex v∈V − S, either

Condition (i): v does not have a private neighbor in the set S∪{v} or
Condition (ii): v has a private neighbor in S∪{v}, but there exists some vertex u∈ S

that has a private neighbor with respect to S but does not have a private neighbor
with respect to S∪{v}.
Conditions (i) and (ii) give rise to the following type of sets.

Definition 8 A set S is called external redundant if for every vertex v∈V− S, either
(i) v does not have a private neighbor in the set S∪{v} or (ii) v has a private neighbor
in S∪{v}, but there exists some vertex u∈ S that has a private neighbor in S but does
not have a private neighbor in S∪{v}. Let er(G) and ER(G) equal the minimum and
maximum cardinality of a minimal external redundant set in G.

Notice that an external redundant set need not be irredundant, but, by definition,
every maximal irredundant set is external redundant.

Another way of thinking about the maximality condition of an irredundant set is
the following. For any set S⊆V , let pnc(S)= |{v∈ S : N[v]−N[S−{v}] �=∅}|; this
is called the private neighbor count of set S, which equals the number of vertices in S
having either an spn or an epn. Thus, a set S is irredundant if and only if pnc(S)= |S|.

We say that a set S is pnc-maximal if for every vertex v∈V − S, pnc(S∪{v})≤
pnc(S). Thus, an irredundant set is a maximal irredundant set if and only if
pnc(S)= |S| and S is pnc-maximal or adding a vertex in V − S to S cannot increase
the private neighbor count.

A concept closely related to external redundance was introduced in 1997 by
Cockayne, Grobler, Hedetniemi, and McRae [16] and later studied by Cockayne,
Favaron, Puech, and Mynhardt in 1998 [18] and [19], and by Puech in 2000 [50].

Given a set S⊂V , let R=V −N[S] be the set of vertices not dominated by any
vertex in S. Let u∈ S be a vertex for which pn[u, S]=N[u]−N[S−{u}] �=∅, that
is, vertex u has at least one private neighbor (spn or epn) with respect to S. A vertex
v∈V − S is said to annihilate u if v is adjacent to every vertex in pn[u, S]. This
means that u has a private neighbor with respect to the set S, but does not have a
private neighbor with respect to the set S∪{v}.

A set S is said to be R-annihilated, or an Ra-set, if every vertex in R annihilates
some vertex in S. This is a property satisfied by every maximal irredundant set. The
R-annihilated number ra(G) equals the minimum cardinality of an Ra-set in G.

Let A={v∈V − S|v annihilates some u∈ S}. For some subset U ⊂V − S, we say
that S is U-annihilated if U ⊆A.

Theorem 4 (Cockayne, Grobler et al.) A set S⊂V in a graph G= (V, E) is
maximal irredundant if and only if S is irredundant and N[R]-annihilated.

Notice that N[R]-annihilated sets are equivalent to eternal redundant sets.
Cockayne, Grobler et al. then define the following parameters:

γ≤2(G), minimum cardinality of a distance-2 dominating set;
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ra(G), the minimum cardinality of an R-annihilated set;
rai(G), the minimum cardinality of an irredundant R-annihilated set.
θ (G), the (lower) perfect neighborhood number.
θ i(G), the (lower) independent perfect neighborhood number.
ρL(G), the lower 2-packing number.
ρ(G), the upper 2-packing number.

Theorem 5 (Cockayne, Grobler et al.) For any connected graph G,

γ≤2 ≤
⎧
⎨

⎩

ra ≤
{
rai

er

}

≤ ir

θ ≤ θi ≤ ρL ≤ ρ

⎫
⎬

⎭
≤ γ ≤ i.

It so happens that the property of being external redundant, pnc-maximal, or
N[R]-annihilated is neither superhereditary nor hereditary.

Recall that the maximality condition of the hereditary property of being indepen-
dent is the definition of the superhereditary property of being a dominating set.

And the minimality condition of the superhereditary property of being a domi-
nating set is the definition of the hereditary property of being an irredundant set.

However, the maximality condition of the hereditary property of being an
irredundant set seems to be the property of being an external redundant set. Yet,
somewhat surprisingly, the property of being an external redundant set is not
superhereditary. In Figure 5 below, the set S={1, 3, 4, 5, 8, 11} is a 1-minimal
external redundant set, since removing any one of these vertices results in a set that
is no longer external redundant. However, you can remove both vertices 1 and 3 and
still have an external redundant set.

This is not expected. And we are puzzled. Why isn’t the maximality condition of
an irredundant set superhereditary? We don’t know.

Fig. 5 A 1-minimal external
redundant set
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Nevertheless, this has given rise to the definitions of er(G) and ER(G), and with
these two definitions, we get the following extended inequality chain:

er ≤ ir ≤ γ ≤ i ≤ α ≤ � ≤ IR ≤ ER.

Once again, we are led to ask: is there still another pair of parameters which
extend this inequality chain? As of now, none are known.

Here is still another thought about the sequence: independent set, dominating set,
irredundant set, and external redundant set.

The property of being an independent set is what could be called 1-local. In order
to decide if a set S is independent, all you have to do is to look at the neighbors N(v)
of every vertex v∈ S and see if another member of S appears.

In order to decide if a set S is a dominating set, all you have to do is to look
at every vertex w∈V − S and make sure that N(w)∩ S �=∅. This is also a 1-local
check.

But now, in order to decide if a set S is an irredundant set, you have to work a bit
harder. Once again, you have to look at every vertex in v∈ S and see if N(v)∩ S=∅.
If this is true, then vertex v is its own private neighbor. But if v is not its own private
neighbor, then you must see if v has at least one neighbor, say y∈N(v)∩ (V − S), for
which N(y)∩ S={v}. Such a vertex y is then an external private neighbor of v. This
then becomes a 2-local, or distance-2, check, in that you have to look the neighbors
of your neighbors.

But now, consider the problem of deciding if an irredundant set is a maximal
irredundant set, or an external redundant set, you must look at every vertex in V − S.
Here, it is possible that there could be a vertex z∈V − S, such that d(z, v)≥ 3 for all
vertices v∈ S, in which case the set S∪{z} would be an irredundant set. Thus, you
could say that the property of being a maximal irredundant set, or, equivalently, an
external redundant set, is 3-local.

And consider this. There is a very simple, greedy, linear algorithm for computing
the vertex independence number α(T) for any tree T (cf. Mitchell, Hedetniemi, and
Goodman in 1975 [48] and a more general algorithm for chordal graphs in 1972
by Gavril [39]). A second, slightly more complex, but still linear, algorithm exists
for computing the independent domination number i(T), for any tree T (cf. Beyer,
Proskurowski, Hedetniemi, and Mitchell in 1977 [5]). A third, more complex, but
still linear algorithm exists for computing the domination number γ (T), for any
tree T (cf. Cockayne, Goodman, and Hedetniemi in 1975 [14]). And finally, there
exists a much more complex, but still linear, algorithm for computing the lower
irredundance number ir(T), for any tree T (cf. Bern, Lawler, and Wong in 1985 [4]).
But this algorithm consists of a 20-by-20 table of some 400 possible combinations
of the irredundance states of a vertex v and its parent in a rooted tree T. In [40],
Goddard and Hedetniemi propose, without proof, an algorithm for computing er(T),
for any tree T, consisting of a 23-by-23 table of combinations of external redundant
states of a vertex v and its parent in a rooted tree T. The authors state, “We believe
that the table for external redundance is correct. For a proof of this, it would be
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sufficient to prove that none of the [23] classes needs to be divided. This is a lengthy
and tedious argument and is omitted.”

11 Broadcast Irredundance in Graphs

In 2015, Ahmadi, Fricke, Schroeder, Hedetniemi, and Laskar [1] introduced the
concept of broadcast irredundance in graphs. In this section, we review the basic
definitions and results of this model of irredundance in graphs.

The following concepts and definitions of broadcasts in graphs were introduced
by Erwin in 2004 [26] and developed further by Dunbar, Erwin, Haynes, Hedet-
niemi, and Hedetniemi in 2006 [25].

A function f : V →{0, 1, 2, . . . } defined on the vertex set V of a graph G= (V, E)
is called a broadcast if for every vertex v∈V , f (v)≤ ecc(v). Intuitively this means,
for example, that if a vertex v is assigned a broadcast power of 4, f (v)= 4, then all
vertices within distance 4 or less of v can hear a broadcast from vertex v. The cost
f (V ) of a broadcast f is defined as f (V )= �v ∈ Vf (v).

Given a broadcast function f, let V 0
f = {v | f (v)= 0} and V +

f = V − V 0
f = {u |

f (u) > 0}. The vertices in V +
f are called broadcast vertices.

Given a broadcast f and a broadcast vertex v, the broadcast neighborhood of
v is the set Nf [v]={u | d(u, v)≤ f (v)}. We say that every vertex in the broadcast
neighborhood Nf [v] can hear a broadcast from v or is broadcast dominated by v.

Thus, a vertex u with f (u)= 0 hears a broadcast if there exists a vertex v for which
d(u, v)≤ f (v). The set of vertices that a vertex u hears is the set H(u) = {v ∈ V +

f| d(u, v)≤ f (v)}. Define H(f )⊆V to equal the set of vertices that hear a broadcast
defined by f. Finally, we say that a broadcast g satisfies g≤ f, if for every vertex
v∈V , g(v)≤ f (v).

A broadcast f is called a dominating broadcast if for every vertex u∈V with
f (u)= 0, H(u) �=∅, or equivalently if H(f )=V . The broadcast domination number
γ b(G) of a graph G equals the minimum weight f (V ) of a dominating broadcast f
in G.

We say that a dominating broadcast f is minimal if there does not exist a
dominating broadcast g for which g≤ f.

The following characterization of minimal dominating broadcasts is due to Erwin
[26].

Theorem 6 (Erwin [26]) A dominating broadcast f on a graph G is minimal if and
only if the following two conditions are satisfied:

1. for every broadcast vertex v with f (v)≥ 2, there exists a vertex u ∈ V 0
f such that

H(u)={v} and d(u, v)= f (v),
2. for every broadcast vertex v with f (v)= 1, there exists a vertex u∈N[v] such that

H(u)={v}.
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Let S⊆V be a minimal dominating set in a graph G. The characteristic function
fS of S is the broadcast function defined as follows: fS(v)= 0 if v�∈S, and fS(v)= 1 if
v∈ S.

Proposition 14 (Erwin [26]) If S⊆V is a minimal dominating set in a graph G,
then the characteristic function fS is a minimal dominating broadcast.

Corollary 6 For any graph G, γ b(G)≤ γ (G).

It is worth noting that the broadcast domination number of a graph can be
considerably smaller than its domination number. For example, let S(K1,n) denote
a subdivided star, that is, a graph having one central vertex of degree n, to which are
attached n paths of length 2. It is easy to see that γ b(S(K1,n))= 2 < γ (S(K1,n))= n.

One can also speak of independent broadcasts.
A broadcast f is called independent if for every broadcast vertex v ∈ V +

f ,
|H(v)| = 1, that is, H(v)={v}. In other words, no broadcast vertex can hear a
broadcast from any other vertex. The broadcast independence number αb(G) of
a graph G equals the maximum cost f (V ) of an independent broadcast in G, while
the lower broadcast independence number, ib(G), equals the minimum cost of a
maximal independent broadcast in G.

Proposition 15 The characteristic function fS of every maximal independent set S is
(i) an independent broadcast, but not necessarily a maximal independent broadcast,
and (ii) a minimal dominating broadcast.

Note that for a path P4 with vertices labeled in order v1, v2, v3, v4, the
independent broadcast function f defined by f (v1)= f (v4)= 1 and f (v2)= f (v3)= 0
is the characteristic function of the maximum independent set S={v1, v4}. But this
is not a maximal independent broadcast, since the independent broadcast function
g(v1)= g(v4)= 2 and g(v2)= g(v3)= 0 satisfies g �= f and g≥ f. In fact, αb(P4)= 4.

Corollary 7 For any graph G, α(G)≤αb(G).

Corollary 8 For any graph G,

γb ≤ ib ≤ α ≤ αb ≤ �b.

It is interesting to note that the two parameters i(G) and ib(G) are not comparable.
Erwin’s characterization of minimal dominating broadcasts in effect defines irre-

dundant broadcasts, which were introduced in 2015 by Ahmadi, Fricke, Schroeder,
Hedetniemi, and Laskar [1] as follows.

Definition 9 A broadcast function f : V→{0, 1, . . . . . . } is called irredundant if it
satisfies the following two conditions:

(i) for every broadcast vertex v with f (v)≥ 2, there exists a vertex u ∈ V 0
f such that

H(u)={v} and d(u, v)= f (v),
(ii) for every broadcast vertex v with f (v)= 1, there exists a vertex u∈N[v] such

that H(u)={v}.
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Stated equivalently, a broadcast function f is irredundant if reducing the broad-
cast value assigned to any broadcast vertex strictly decreases the number of vertices
that hear a broadcast, that is, for any broadcast g≤ f, |H(g)|< |H(f )|. This is the
analog of saying that every vertex in an irredundant set S has a private neighbor or
that the number of vertices dominated by an irredundant set S is strictly greater than
the number of vertices dominated by any proper subset S′⊂ S.

Given an irredundant broadcast f, every vertex w∈Nf [v] for which H(w)={v}
is called a private broadcast neighbor of v or a private f-neighbor of v. Note that
a broadcast vertex v can be its own private f -neighbor, while any other private f -
neighbor of v must be a vertex w ∈ V 0

f .
An irredundant broadcast f is maximal if there does not exist an irredundant

broadcast g such that (i) g �= f and (ii) for every vertex v∈V , g(v)≥ f (v).

Definition 10 The broadcast irredundance number irb(G) equals the minimum
cost of a maximal irredundant broadcast in G. Similarly, the upper broadcast
irredundance number IRb(G) equals the maximum cost of an irredundant broadcast.

To this definition we can add the following. An irredundant broadcast f is
called 1-maximal if increasing the value of f (v) of any one vertex v∈V creates
a function f′ that is no longer an irredundant broadcast, either because it is no longer
a broadcast function or because some broadcast vertex no longer meets Condition
(i) or Condition (ii) of the definition of an irredundant broadcast.

To illustrate this definition, Ahmadi et al. consider the path P8, with ver-
tices labeled in order v1, . . . , v8. Let f be the irredundant broadcast function
defined by f (v4)= f (v5)= 2 and f (v1)= f (v2)= f (v3)= f (v6)= f (v7)= f (v8)= 0.
This broadcast function f is irredundant because broadcast vertex v4 has vertex
v2 as a private broadcast neighbor, while broadcast vertex v5 has vertex v7 as
a private broadcast neighbor. It can be seen that if the value of any of vertex
other than v4 and v5 is increased, then either vertex v4 or v5 will no longer
have a private broadcast neighbor. Similarly, if the value of either v4 or v5 is
increased, then vertex v5 or v4 will no longer have a private broadcast neighbor.
Thus, f is a 1-maximal irredundant broadcast function. However, f is not a
maximal irredundant broadcast, since the function g defined by g(v4)= g(v5)= 3
and g(v1)= g(v2)= g(v3)= g(v6)= g(v7)= g(v8)= 0 is an irredundant broadcast for
which g≥ f.

Proposition 16 An irredundant broadcast function can be 1-maximal but not
maximal, but every maximal irredundant broadcast is 1-maximal.

Consider the path P6, with vertices labeled v1, . . . , v6, the maximal irredundant
set S={v3, v4}, and the broadcast function fS defined by fS(v3)= fS(v4)= 1 and
fS(v1)= f (v2)= f (v5)= fS(v6)= 0. It is easy to see that fS is an irredundant broad-
cast. However, it is not a maximal irredundant broadcast. The function g defined by
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fS(v3)= fS(v4)= 2 and fS(v1)= f (v2)= f (v5)= fS(v6)= 0 is an irredundant broadcast
function for which g≥ fS.

Proposition 17 The characteristic function of every maximal irredundant set is
an irredundant broadcast, but is not necessarily a maximal irredundant broadcast
function.

Proposition 18 (Ahmadi et al.) Every γ b-broadcast function is a maximal irre-
dundant broadcast.

Proof Let f be a γ b-broadcast for an arbitrary graph G of order n. It follows that any
broadcast g �= f with g≤ f cannot be a dominating broadcast, since f is a minimal
dominating broadcast. This means that f is an irredundant broadcast since for any
such a broadcast g, with g≤ f, |H(g)|< |H(f )| = n. It follows that f is a maximal
irredundant broadcast since any broadcast h with h≥ f must have |H(h)| = n, and
therefore since f ≤ h, and |H(f )| = n= |H(h)|, h cannot be an irredundant broadcast.
�
Corollary 9 For any graph G,

irb ≤ γb ≤ �b ≤ IRb.

Finally, Ahmadi et al. establish the following Broadcast Domination Chain:

irb ≤ γb ≤ ib ≤ αb ≤ �b ≤ IRb.

In addition they show the following.

Proposition 19 (Ahmadi et al.) For any graph G, IR(G)≤ IRb(G).

At the end of their paper, Ahmadi et al. ask the following questions:

1. What is the relationship between ir(G) and irb(G)?
2. Can irb(T) and IRb(T) be computed in polynomial time for a tree T?
3. What is the complexity of the following decision problem?

MAXIMAL IRREDUNDANT BROADCAST
INSTANCE: Graph G= (V, E), function f : V →{0, 1, 2, . . . . . . }
QUESTION: Is f a maximal irredundant broadcast function?

12 Roman Irredundance in Graphs

In 2016 Chellali, Haynes, S.M. Hedetniemi, S. T. Hedetniemi, and McRae [8]
introduced a Roman Domination Chain, comparable in many respects to the
Domination Chain and the Broadcast Domination Chain. In this section, we present
the necessary definitions for this chain of inequalities.
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A function f : V →{0, 1, 2} is a Roman dominating function on a graph
G= (V, E) if for every vertex v∈V with f (v)= 0, there exists a neighbor u∈N(v)
with f (u)= 2. The weight of a Roman dominating function is f (V )=∑

v ∈ Vf (v).
The Roman domination number γ R(G) equals the minimum weight of a Roman
dominating function on G, and the upper Roman domination number �R(G) equals
the maximum weight of a minimal Roman dominating function on G. The graph
theoretical introduction of Roman domination was introduced in 2004 by Cockayne,
Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi [21].

Given any function of the form f : V →{0, 1, 2}, it is convenient to define the
following three sets, for i∈{0, 1, 2}, Vi ={v∈V : f (v)= i}. Thus, we can denote
such a function f by f ={V0, V1, V2}. And the weight of such a function is
f (V )= |V1| + 2|V2|.

A function f ={V0, V1, V2} is called irredundant if

1. V1 is an independent set,
2. no vertex in V1 is adjacent to a vertex in V2,
3. every vertex v∈V2 has a private neighbor in V0 with respect to the set V2, that is,

there exists a vertex w∈V0 such that N(w)∩V2 ={v}.
A Roman irredundant function is maximal if increasing the value assigned to

any vertex results in a function that is no longer irredundant. The (lower) Roman
irredundance number irR(G) equals the minimum weight of a maximal Roman
irredundant function on G. The upper Roman irredundance number IRR(G) equals
the maximum weight of an irredundant function on G.

This leaves us to define the Roman independence numbers.
A Roman dominating function is called independent if V1 ∪V2 is an independent

set. The independent Roman domination number iR(G) equals the minimum weight
of an independent Roman dominating function on G.

The Roman independence number αR(G) equals the maximum weight of an
irredundant, independent Roman dominating function on G.

With these definitions, Chellali et al. were able to prove the following theorem.

Theorem 7 (Chellali et al.) For any graph G,

irR ≤ γR ≤ iR ≤ αR ≤ �R ≤ IRR.

Proof Sketch.

1. iR(G)≤αR(G) follows from the definitions of iR(G) and αR(G) and the fact that
every iR-function on a graph G is a Roman irredundant function.

2. γ R(G)≤ iR(G) and αR(G)≤ �R(G) follow the fact that iR(G) and αR(G) are both
realized by Roman independent, irredundant dominating functions, while γ R(G)
and �R(G) are realized by Roman irredundant dominating functions.

3. �R(G)≤ IRR(G) follows from the definition of �R(G) that every �R-function is
an irredundant function.

4. irR(G)≤ γ R(G) follows, first of all, from the observation that every graph G has
a γ R-function that is irredundant. It only remains to show that every irredundant
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γ R-function is maximal irredundant. This follows from the observation that if
any vertex is assigned a larger value, then the resulting function will no longer
be an irredundant function: a. by definition no vertex in V2 can have its value
increased or it won’t be a Roman dominating function, b. no vertex in V0 can be
increased to 1 since it would be adjacent to a vertex in V2 and no longer be an
irredundant function, and c. no vertex in V0 or V1 can be increased to 2 since it
could not have a private neighbor in V0. �
Chellali et al. were also able to establish the following inequalities:

1. ir(G)≤ irR(G).
2. α(G)≤αR(G)≤ 2α(G).
3. �(G)≤ �R(G).
4. IR(G)≤ IRR(G).

13 Fractional Irredundance

Many discrete, or integer-valued, graph theory concepts have fractional counter-
parts, and irredundance is no exception. This can be explained as follows.

Let G= (V, E) be a graph and let Y be an arbitrary set of real numbers, finite
or infinite, positive or negative. A function f : V →Y is called a Y -dominating
function if for every v∈V , f (N[v])= �u ∈ N[v]f (u)≥ 1. In other words, the closed
neighborhood sum f (N[v]) of every vertex v∈V is at least one.

The weight of a Y -dominating function f is w(f )= f (V )= �u ∈ Vf (u). The Y -
domination number γ Y (G) equals the minimum weight of a Y -dominating function
f on G.

A Y -dominating function f is called minimal if there does not exist another
Y -dominating function g, f �= g, with g(v)≤ f (v) for every v∈V . The upper
Y -domination number �Y (G) equals the maximum weight w(f ) of a minimal Y -
dominating function f on G.

When Y ={0, 1}, γ {0,1}(G)= γ (G), the standard domination number of a graph
G, and �{0,1}(G)= �(G), the upper domination number of G.

When Y = [0, 1] is the closed unit interval, γ [0,1](G)= γ f (G), the fractional
domination number of a graph G, and �[0,1](G)= �f (G), the upper fractional
domination number of G.

In 2006 Fricke, Hedetniemi and Jacobs [36] introduced the following.
A function g : V → [0, 1] is called an irredundant function if for every vertex

v∈V with g(v) > 0, there exists a vertex w∈N[v] such that g(N[w])= 1.
An irredundant function f is called maximal if there does not exist an irredundant

function h, h �= g, with h(v)≥ g(v) for every v∈V .
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It is easy to see that the characteristic function χS of a (maximal) irredundant set
S is a (maximal) irredundant function.

Definition 11 The fractional irredundance number irf (G) is the infimum,
irf (G)= inf {g(V ) : g is a maximal irredundant function on G}, and the fractional
upper irredundance number IRf (G) is the supremum, IRf (G)= sup{g(V ) : g is a
maximal irredundant function on G}.

In 1988, Domke, Hedetniemi, and Laskar [24] point out that for the Hajós graph
G, γ f (G) < γ (G) (cf. Figure 6), where γ f (G)= 3/2 < γ (G)= 2.

In 1996, Fricke, Hedetniemi, and Jacobs [34] point out that for the path P7,
irf (P7)= 2 < ir(P7)= 3. They also note that while the infimum of g(P7)= 2 over
all maximal irredundant functions, no maximal irredundant function has this value
(cf. Figure 7).

In 1990, Cheston, Fricke, Hedetniemi, and Jacobs [9] present a graph G with
�(G) < �f (G) (cf. Figure 8).

Given that these strict inequalities can hold for some graphs G, γ f (G) < γ (G),
�(G) < �f (G), and irf (G) < ir(G), the following result due to Fricke, Hedetniemi,
and Jacobs [36] is somewhat surprising.

Theorem 8 For any graph G, IR(G)= IRf (G).

Fig. 6 γf = 3
2 < γ = 2

Fig. 7 (i) Irredundant but not maximal. (ii) Some maximal irredundant functions
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Fig. 8 An example where �(G) = 14 < �f (G) = 14 2
3
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To give the reader some idea of what is involved in proving this result, but without
providing the details, it depends on the following ten lemmas.

Let the real-valued functions defined on graphs G of order n be points in the
Euclidean metric space Rn, and recall that (i) a set X is closed if every convergent
sequence in X has its limit in X, (ii) any finite intersection of closed sets is closed,
and (iii) a set X is compact if every infinite sequence in X has a subsequence which
converges in X.

Lemma 1 (Heine-Borel) A set X ⊆ Rn is compact if and only if it is closed and
bounded.

Lemma 2 A continuous real-valued function on a compact metric space achieves
a maximum.

Lemma 3 In Rn, the set I of all irredundant functions is a compact set.

Lemma 4 The quantity f (V ) achieves a maximum on I.

As defined in [9], a function g : V → [0, 1] is called irreducible if for every vertex
v∈V with g(v) > 0, there exists a vertex w∈N[v] such that g(N[w])≤ 1. Note that
all irredundant functions are irreducible.

Lemma 5 Every maximal irreducible function is maximal irredundant.

Lemma 6 For any irreducible function g, there exists a maximal irreducible
function g′ for which g≤ g′.

Lemma 7 If g is irreducible and g(V )= IRf (G), then g is irredundant.

Lemma 8 The set M = {f ∈ I : f (V ) = IRf (G)} is closed.

For a function f on V , let z(f )={v∈V : f (v)= 0}, and let Z be the functions
f ∈ M which maximize z(f ). The objective is to show that the functions in Z are
0–1 functions.

Lemma 9 There exists a function g ∈ Z having the smallest positive value b over
all functions in Z .

Let g and b be as in the previous lemma, and let vb be a vertex for which g(vb)= b.

Lemma 10 For any vertex w �= vb with g(w) �= 0, there exists a vertex
x∈N[w]−N[vb] with g(N[x])= 1.

The proof of Theorem 8 follows by showing that a maximum irredundant
function g having smallest value g(vb)= b > 0 among the functions in Z is a 0–1
function.

A similar theorem was proved in 2016 by Fricke, O’Brien, Schroeder, and
Hedetniemi [37].

A real-valued function g : V → [0, 1] is called open irredundant if for every
vertex v∈V with g(v) > 0, there exists a vertex w adjacent to v such that g(N[w])= 1.



214 S. T. Hedetniemi et al.

An open irredundant function g is maximal if there does not exist an open
irredundant function h such that g �= h and g(v)≤ h(v), for every v∈V .

Definition 12 The fractional open irredundance number oirf (G) is the infimum,
oirf (G)= inf {g(V ) : g is a maximal open irredundant function on G}, and
the fractional upper open irredundance number OIRf (G) is the supremum,
OIRf (G)= sup{g(V ) : g is a maximal open irredundant function on G}.

Notice the slight distinction between open irredundant functions and irredundant
functions; for irredundant functions, there must be a vertex w∈N[v] (closed
neighborhood) with g(N[w])= 1, while for open irredundant functions, there must
be a such a vertex w∈N(v) (open neighborhood) with g(N[w])= 1, that is, w �= v.

Theorem 9 (Fricke et al.) For any graph G, OIR(G)=OIRf (G).

This result is proved roughly as follows.
A function g : V → [0, 1] is open irreducible or oiru if for every vertex v∈V with

g(v) > 0, there exists a vertex w∈N(v) (open neighborhood) such that g(N[w])≤ 1.
In the special case that for every v∈V with g(v) > 0, there exists a vertex w∈N(v)

such that g(N[w])= 1, we say that g is fractional open irredundant.
Furthermore, if g is a fractional open irredundant function such that g : V →{0,

1}, then g is open irredundant.
Examples of each type of function are shown by Fricke et al. [37] in Figure 9.
Thus,

OIRUf (G) = sup{g(V )|g is a fractional oiru function},
OIRf (G) = sup{g(V )|g is a fractional open irredundant function}
OIR(G) = sup{g(V )|g is an open irredundant function}.

Note that since all open irredundant functions are fractional open irredundant,
and all fractional open irredundant functions are oiru, we immediately have that

OIR(G) ≤ OIRf (G) ≤ OIRUf (G).

Fig. 9 (i) An oiru function. (ii) A fractional open irredundant function. (iii) An open irredundant
function
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Fricke et al. show that, in fact, equality holds, a key step of which is showing that
the supremum OIRUf (G) is a maximum, that is, there exists an oiru function g such
that g(V )=OIRUf (G).

14 Open Problems Involving Irredundance

The inequalities in the Domination Chain and Covering Chain suggest that these
parameters might have relationships to others that have been studied in the literature.
We mention just a few of these possibilities.

1. It has been shown that IR(G)≤ER(G), where ER(G) equals the maximum
cardinality of an external redundant set (cf. p. 97 of [42]). How does ER(G)
compare with �(G) and CIR(G)?

2. What can you say about the parameter cir(G)? We have observed that γ (G)≤
cir(G)≤ψ(G).

3. It has been observed that (i) γ (G)≤α1(G); (ii) γ (G)≤β1(G); (iii) γ (G)≤β2(G),
where β2(G) is the 2-maximal matching number (cf. p. 59 of [42]); and (iv)
γ (G)≤ 2ir(G)− 1. How do these bounds compare with either i(G) or cir(G)?

4. It has been observed that for many classes of graphs, including bipartite,
chordal, circular arc, cographs, and permutation graphs, just to name a few,
the upper three parameters are all equal, that is, α(G)= �(G)= IR(G) (cf. p.
81 of [42]). Can these equalities be extended for these classes of graphs to:
α(G)= �(G)= IR(G)= �(G)= CIR(G)?

5. The concept of irredundance is inherently about the concepts of private neigh-
bors. In searching for the next concept after independence, domination, and
irredundance, several authors proposed the study of external redundance, R-
annihilated sets, private neighbor counts, and pnc-maximal sets. With this in
mind, one can study the maximum number of private neighbors of a given type,
or of given types, in sets S, not the number of vertices in S which have at least
one private neighbor, but the total number of vertices in V which are a private
neighbor of some vertex in S. One can make the following definitions:

IR∗(S), the number of vertices in V that are a private neighbor (self or external)
of a vertex in S; IR(G)≤ IR∗ (G)=max{IR∗ (S) : S⊆V }.

OIR∗ (S), the number of vertices in V that are an external private neighbor of a
vertex in S; OIR(G)≤OIR∗ (G)=max{OIR∗ (S) : S⊆V }.

OOIR∗ (S), the number of vertices in V that are either an external or an internal
private neighbor of a vertex in S; OOIR(G)≤OOIR∗ (G)=max{OOIR∗ (S) :
S⊆V }.

COIR∗ (S), the number of vertices in V that are a private neighbor (self, external,
or internal) of a vertex in S; COIR(G)≤COIR∗ (G)=max{COIR∗ (S) : S⊆V }.
One can extend this to other parameters, such as the following:
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IR∗
α(S), the number of vertices in V that are a private neighbor (self or

external) of a vertex in an independent set S; IR∗
α(G) = max{IR∗

α(S) : S

an independent set in G}≥α(G).
IR∗

γ (S), the number of vertices in V that are a private neighbor (self or external)
of a vertex in a dominating set S; IR∗

γ (G) = max{IR∗
γ (S) : S a dominating

set in G}≥�(G).
IR∗

ir (S), the number of vertices in V that are a private neighbor (self or
external) of a vertex in an irredundant set S; IR∗

ir (G) = max{IR∗
ir (S) : S

an irredundant set in G}≥ IR(G).
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1 Introduction

Although competitive optimization graph games are well studied in the literature,
the domination game which we discuss in this chapter is relatively new and was
only formally birthed in 2010 by Brešar, Klavžar, and Rall [4]. We remark that this
domination game introduced in [4], which we formally define in Section 2.1, is very
different from the competition-enclaveless game introduced in 2001 by Philips and
Slater [46, 47] which is played by two players who take turns in constructing a
maximal enclaveless set in a graph. (Some of the significant differences between
these two games are explained in [24, Chapter 5].) We also remark that the
domination game introduced in [4] is very different from the domination game
introduced in 2002 by Alon, Balogh, Bollobas, and Szabo [1]. In [1], Alon et al.
define the oriented game domination number of a graph G for which two players
alternately orient an edge of G until all of the edges are oriented, their goals being
to minimize and maximize the domination number of the resulting oriented graph.

Since Brešar et al. [4] first studied the concept of the domination game in
graphs, it has subsequently attracted considerable interest. Our aim in this chapter
is to introduce and familiarize the reader with three domination-type games and to
present selected results on these games with the hope to encourage and stimulate
continued research of the topic.
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For a more comprehensive and thorough treatment of the domination game, we
refer the reader to the forthcoming book entitled “Domination Games Played in
Graphs” by Brešar, Henning, Klavžar, and Rall [11].

2 Domination-Type Games

In this section, we define three domination-type games, namely the domination
game, the total domination game, and the independent domination game. We remark
that many other domination-type games are studied in the literature, including
the connected domination game, the paired-domination game, the competition-
enclaveless game, the oriented domination game, the maker-breaker domination
game, the disjoint domination game, the fractional domination game, the Grundy
domination game, the Grundy total domination game, the Z-Grundy domination
game, the L-Grundy domination game, to name a few. A survey of these domination-
type games in graphs can be found in [11].

In this chapter we model the “Domination in Graphs: Core Concepts” book
by Haynes, Hedetniemi, and Henning [23] in the sense that we focus exclusively
on the three main domination parameters, namely the domination number, the
total domination number, and the independent domination number. That is, we
restrict our attention to the domination game, the total domination game, and the
independent domination game. We begin with a formal definition of the domination
game played in graphs.

2.1 The Domination Game

We recall that a vertex dominates itself and its neighbors. A dominating set of a
graph G is a set S of vertices of G such that every vertex in G is dominated by a
vertex in S. The domination number of G, denoted γ (G), is the minimum cardinality
of a dominating set in G.

The domination game on a graph G consists of two players, Dominator and
Staller, who take turns choosing a vertex from G. Each vertex chosen must dominate
at least one vertex not dominated by the vertices previously chosen. We call such
a vertex a playable vertex. A move in the game, sometimes referred to in the
literature as a legal move for emphasis, is a vertex chosen by a player. The game
ends when there are no more moves available. Upon completion of the game, the set
of chosen (played) vertices is a dominating set in G, but is not necessarily a minimal
dominating set. The goal of Dominator is to end the game with a minimum number
of vertices chosen, while Staller has the opposite goal and wishes to end the game
with as many vertices chosen as possible.

The Dominator-start domination game and the Staller-start domination game are
the domination game when Dominator and Staller, respectively, choose the first
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Fig. 1 A graph G with γ g(G)= 3 and γ ′
g(G) = 4

vertex. These games are called the D-game and S-game, respectively. The D-game
domination number, γ g(G), of G is the minimum possible number of moves in a D-
game when both players play according to the rules, while the S-game domination
number, γ ′

g(G), of G is defined analogously for the S-game. A sequence of moves
by Dominator that achieves the minimum possible number of moves is called an
optimal sequence for Dominator, while a sequence of moves by Staller that achieves
the maximum possible number of moves is called an optimal sequence for Staller.

We denote the sequence of moves played in the D-game by d1, s1, d2, s2, . . . ,
where di is the vertex chosen on Dominator’s ith move, and si is the vertex chosen
on Staller’s ith move in response to Dominator’s ith move. The sequence of moves
played in the S-game is denoted by s′1, d ′1, s′2, d ′2, . . ., where s′i is the vertex played
by Staller on her ith move and d ′i is the vertex played by Dominator on his ith move
in response to Staller’s ith move.

As an illustration, if G is the graph shown in Figure 1, then γ g(G)= 3 and
one optimal sequence in the D-game is given by d1, s1, d2 as shown in Figure
1a. Moreover, γ ′

g(G) = 4 and one optimal sequence in the S-game is given by
s′1, d ′1, s′2, d ′2 as shown in Figure 1b.

As remarked earlier, the domination game in graphs which we discuss in
the chapter was formally birthed in 2010 by Brešar, Klavžar, and Rall [4]. The
domination game has subsequently been extensively studied in [5–10, 12, 13, 15,
19, 20, 24, 26, 28, 35, 36, 38–45, 49, 50, 53–56] and other papers.

2.2 The Total Domination Game

A vertex totally dominates another vertex if they are neighbors. A total dominating
set of a graph G is a set S of vertices such that every vertex of G is totally dominated
by a vertex in S. The total domination number of G, denoted γ t(G), is the minimum
cardinality of a total dominating set in G.

The total domination game is defined analogously as the domination game,
except that in the total version each vertex chosen must totally dominate at least
one vertex not totally dominated by the set of vertices previously chosen. Such a
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Fig. 2 A graph G with γ tg(G)= 4 and γ ′
tg(G) = 4

chosen vertex is called a move (sometimes referred to as a legal move for emphasis)
in the total domination game. The game ends when there is no legal move available.
In this case, the set of vertices chosen is a total dominating set in G. Dominator’s
objective is to minimize the number of vertices chosen, while the goal of Staller is
just the opposite, namely to end the game with as many vertices chosen as possible.

The Dominator-start (resp., Staller-start) total domination game is the total
domination game when Dominator (resp., Staller) has the first move. As with the
domination game, we refer to these simply as the D-gama and S-game, respectively.
The D-game total domination number, γ tg(G), of G is the minimum number of
moves in the D-game when both players follow a strategy to achieve their goals,
while the S-game total domination number, γ ′

tg(G), is the maximum number of
moves in a S-game when both players play optimally.

We adopt the same notation as in the domination game, and denote the sequence
of moves played in the total version of the D-game by d1, s1, d2, s2, . . . , and the
sequence of moves played in the total version of the S-game by s′1, d ′1, s′2, d ′2, . . ..

As an illustration, if G is the graph shown in Figure 2, then γ tg(G)= 4 and
one optimal sequence in the D-game is given by d1, s1, d2, s2 as shown in Figure
2a. Moreover, γ ′

tg(G) = 4 and one optimal sequence in the S-game is given by
s′1, d ′1, s′2, d ′2 as shown in Figure 2b.

The total version of the domination game was first investigated in 2015 by
Henning, Klavžar, and Rall in [31], where it was demonstrated that these two
versions differ significantly. The total domination game has subsequently been
studied in [3, 14, 16–18, 27, 29–34, 37] and other papers.

2.3 The Independent Domination Game

An independent dominating set in G is a dominating set of G that is independent.
The independent domination number, denoted i(G), of G is the minimum cardinality
of an independent dominating set in G. An independent set of vertices in G is a
dominating set of G if and only if it is a maximal independent set. Thus, i(G) is
equivalently the minimum cardinality of a maximal independent set of vertices in
G.
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The independent domination game, called the competition-independence game
by Philips and Slater [46, 47], is defined analogously as the domination game, except
that in the independent version each vertex chosen must not be adjacent to any
vertex previously chosen. More formally, adopting the notation coined by Goddard
and Henning [22], the game is played by two players, Diminisher and Sweller, on
some graph G. They take turns in constructing a maximal independent set I of G.
That is, each turn a player chooses a vertex that is not adjacent to any of the vertices
already chosen until there is no such vertex. Such a chosen vertex is called a move
(or legal move, for emphasis) in the independent domination game. The game ends
when there is no legal move available. In this case, the set I of vertices chosen is an
independent dominating set in G. The goal of Diminisher is to make the final set I
as small as possible and for Sweller to make the final set I as large as possible.

The Diminisher-start independent domination game and the Sweller-start inde-
pendent domination game are the independent domination game when Diminisher
and Sweller, respectively, choose the first vertex. As with the domination and total
domination game, these games are called the D-game and S-game, respectively.
The D-game independent domination number, Id(G), of G is the minimum possible
number of moves in a D-game when both players follow a strategy to achieve their
goals, while the S-game independent domination number, Is(G), is the number of
moves in a S-game when both players play optimally.

As before, we denote the sequence of moves played in the independent domina-
tion version of the D-game by d1, s1, d2, s2, . . . , and the sequence of moves played
in the independent domination version of the S-game by s′1, d ′1, s′2, d ′2, . . ..

As an illustration, if G is the graph shown in Figure 3, then Id(G)= 5 and
one optimal sequence in the D-game is given by d1, s1, d2, s2, d3 as shown in
Figure 3a. Moreover, Is(G)= 5 and one optimal sequence in the S-game is given
by s′1, d ′1, s′2, d ′2, s′3 as shown in Figure 3b.

In 2001 Philips and Slater [46, 47] introduced the independent domination game,
which they called the competition-independence game. The independent domination
game has not attracted the same amount of interest as the domination and total
domination games, and has been studied in [22, 52] and other papers. The most
significant difference between the domination and total domination game compared
with the independent domination game (and the competition-enclaveless game
defined in [46, 47]) is that the so-called Continuation Principle, which we present
in Section 5, holds for both the domination game and total domination game, but
does not hold for the independent domination game. This makes it very difficult to
obtain general results on the independent domination game (and the competition-
enclaveless game).
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Fig. 3 A graph G with Id(G)= 5 and Is(G)= 5

3 Basic Properties

In their introductory paper on the domination game, Brešar, Klavžar, and Rall [4]
established the following relationship between the domination number and the game
domination number.

Theorem 1 ([4]) For every graph G, we have γ (G)≤ γ g(G)≤ 2γ (G)− 1.

An analogous relationship between the total domination number and the game
total domination number was established in the introductory paper by Henning,
Klavžar, and Rall in [31] on the total domination game. The proof of Theorems 1
and 2 are along similar lines. We therefore present here only the proof of Theorem 2.

Theorem 2 ([31]) If G is a graph with no isolated vertex, then γ t(G)≤ γ tg(G)≤
2γ t(G)− 1.

Proof. Upon completion of the Dominator-start total domination game played on
G, the vertices played by Dominator and Staller together form a total dominating set
of G, implying that γ t(G)≤ γ tg(G). To prove that γ tg(G)≤ 2γ t(G)− 1, Dominator
adopts the following strategy. He selects an arbitrary minimum total dominating set
D of G and orders the vertices of D. On each of his moves he plays a vertex from
the set D sequentially according to this ordering that has not yet been played and is
a legal move (and therefore totally dominates at least one vertex not totally by the
set of vertices previously played by the two players). We note that when Dominator
considers a vertex v in the ordered set D, either the vertex v is a legal move, in
which case he plays the vertex v, or the vertex v is not a legal move, in which case
he considers the next vertex in the ordering, if such a vertex exists. In both cases,
after Dominator has played his move, the vertex v can never be a legal move in the
remaining part of the game and Dominator therefore never considers the vertex v
again. Once Dominator has considered all vertices according to his ordering of the
set D, every vertex is totally dominated by the set of vertices previously played by
Dominator and Staller, and hence no more moves are legal. Thus, Dominator plays
at most |D| moves and Staller at most |D|− 1 moves. In this way, Dominator can
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guarantee that the game finishes in at most 2|D|− 1= 2γ t(G)− 1 moves, implying
that γ tg(G)≤ 2γ t(G)− 1. �

A significant difference between the domination game and the independent
domination game is that upon completion of the domination game, the set of played
vertices is a dominating set although not necessarily a minimal dominating set,
while upon completion of the independent domination game, the set of played ver-
tices is always a maximal independent set. Thus, the independent domination game
numbers of a graph G are always squeezed between the independent domination
number i(G) of G and the independence number α(G) of G, which is the maximum
cardinality of an independent set in G. We state this formally as follows.

Theorem 3 If G is a graph of order n, then

i(G) ≤ Id(G) ≤ α(G) and i(G) ≤ Is(G) ≤ α(G).

A graph G is well-covered if all of the maximal independent set in G have the
same cardinality. The problem of determining which graphs have the property that
every maximal independent set of vertices is also a maximum independent set was
proposed in 1970 by Plummer [48] and has subsequently been extensively studied in
the literature. As observed earlier, upon completion of the independent domination
game, the set of played vertices is always a maximal independent set. Hence, any
sequence of legal moves by Diminisher and Sweller (regardless of strategy) in the
independent domination game played in a well-covered graph of order n will always
lead to the game ending in α(G) moves. Thus as a consequence of Theorem 3,
we have the following interesting connection between the independent domination
game and the class of well-covered graphs.

Theorem 4 If G is a well-covered graph, then Id(G)= Is(G)=α(G).

The game domination number and the game total domination number are related
as follows.

Theorem 5 ([31]) If G is a graph on at least two vertices, then γ g(G)≤ 2γ tg(G)− 1.

Proof. By Theorem 1, we have γ g(G)≤ 2γ (G)− 1. Since every total domi-
nating set is by definition a dominating set of G, the inequality γ (G)≤ γ t(G)
holds. By Theorem 2, we have γ t(G)≤ γ tg(G). These observations imply that
γ g(G)≤ 2γ (G)− 1≤ 2γ t(G)− 1≤ 2γ tg(G)− 1. �

As observed in [31], to see that Theorem 5 is close to being optimal consider the
following examples. For any integer k≥ 2, let Gk be the graph obtained from the
complete graph on k vertices by attaching k leaves to each of its vertices. As shown
in [31], γ tg(Gk)= k+ 1 and γ g(Gk)= 2k− 1, and so γ g(Gk)= 2γ tg(Gk)− 3. Thus
we have the following result.

Theorem 6 ([31]) If n≥ 2 is an integer and Gn denotes the class of all isolate-free
graphs G of order n, then
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sup
n

γg(G)

γtg(G)
= 2,

where the supremum is taken over all graphs G ∈ Gn.

The game total domination number can be bounded by the domination number
as follows.

Theorem 7 ([31]) If G is a graph such that γ (G)≥ 2, then γ (G)≤ γ tg(G)
≤ 3γ (G)− 2.

Proof. The lower bound follows immediately from the inequality chain
γ (G)≤ γ t(G)≤ γ tg(G). To prove the upper bound, let D be an arbitrary γ -set of G.
Dominator adopts the following simple strategy in the total domination game. He
selects vertices in D sequentially whenever such a move is legal. Once Dominator
has played all allowable vertices in D, we note that at most 2|D|− 1= 2γ (G)− 1
moves have been made. At this point of the game all vertices that have a neighbor
in the set D are totally dominated. There are two possible cases to consider.

Case 1: No vertex in D is currently totally dominated. In this case, the set D is
an independent set and both Dominator and Staller only played vertices from D.
Thus, exactly |D| = γ (G) moves have been made at this point in the game. The only
remaining legal moves that can be played in the total domination game are those that
totally dominate vertices in D. There are therefore at most |D| additional moves that
are played in order to complete the game, implying that the total number of moves
played is at most 2|D| = 2γ (G)≤ 3γ (G)− 2 noting that γ (G)≥ 2.

Case 2: At least one vertex in D is currently totally dominated. In this case, the only
legal moves remaining in the total domination game are those that totally dominate
vertices in D, if any, are not yet totally dominated. This implies that at most |D|− 1
additional moves are required to complete the game. Therefore, the total number of
moves played is at most (2|D|− 1)+ (|D|− 1)= 3γ (G)− 2. �

As shown in [31], both the lower and upper bounds in Theorem 7 are tight. We
present here only an example illustrating the lower bound. For k≥ 3 and �≥ 1, let
G=Fk,� be obtained from a complete bipartite graph K2,k by selecting an arbitrary
vertex v of degree 2 in K2,k, and appending to it � vertex-disjoint paths of length
2. We note that γ (G)= �+ 2, and hence γ tg(G)≥ γ (G)= �+ 2. Let u and w be the
neighbors of v that belong to the complete bipartite graph K2,k. Suppose now that
Dominator plays as his first move in the total domination game the vertex v. The
only possible legal moves in the remainder of the game are the �+ 2 neighbors of
the vertex v in G. However, exactly one of u and w can be played in the game, while
every support vertex of v (of degree 2) in G must be played. Thus, exactly �+ 2
vertices are played in the game, namely the vertex v, exactly one of u and w, and all
� support vertices of G. This strategy of Dominator implies that γ tg(G)≤ �+ 2. As
observed earlier, γ tg(G)≥ �+ 2. Consequently γ (G)= γ tg(G)= �+ 2.
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4 Paths and Cycles

Determining exact values of the domination game parameters for even relatively
simple classes of graphs is relatively complex. The exact values of the game
domination number, the game total domination number, and the game independent
domination number for paths and cycles are known.

In 2017 Košmrlj [43] determined the formulas for the game domination number
for paths and cycles, and also gave optimal strategies for both players.

Theorem 8 ([43]) If n≥ 3, then

γg(Cn) =
⎧
⎨

⎩

⌈
n
2

⌉− 1; n ≡ 3 (mod 4) ,

⌈
n
2

⌉ ; otherwise ,

and

γ ′
g(Cn) =

⎧
⎪⎪⎨

⎪⎪⎩

⌈
n−1

2

⌉
− 1; n ≡ 2 (mod 4) ,

⌈
n−1

2

⌉
; otherwise .

Theorem 9 ([43]) If n≥ 1, then

γg(Pn) =
⎧
⎨

⎩

⌈
n
2

⌉− 1; n ≡ 3 (mod 4) ,

⌈
n
2

⌉ ; otherwise ,

and γ ′
g(Pn) =

⌈
n
2

⌉
.

For small n, the values of the game domination numbers for a cycle Cn and a path
Pn are shown in Table 1.

The game total domination numbers for cycles and paths were determined in
2016 by Dorbec and Henning [18].

Theorem 10 ([18]) If n≥ 3, then

γtg(Cn) =
⎧
⎨

⎩

� 2n+1
3 � − 1; n ≡ 4 (mod 6),

� 2n+1
3 �; otherwise,

Table 1 The game domination numbers for small cycles and paths

n 3 4 5 6 7 8 9

γ g(Cn) 1 2 3 3 3 4 5
γ ′
g(Cn) 1 2 2 2 3 4 4

n 3 4 5 6 7 8 9

γ g(Pn) 1 2 3 3 3 4 5
γ ′
g(Pn) 2 2 3 3 4 4 5
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and

γ ′
tg(Cn) =

⎧
⎨

⎩

� 2n
3 � − 1; n ≡ 2 (mod 6),

� 2n
3 �; otherwise.

Theorem 11 If n≥ 1, then

γtg(Pn) =
⎧
⎨

⎩

� 2n
3 �; n ≡ 5 (mod 6),

� 2n
3 �; otherwise,

and γ ′
tg(Pn) =

⌈
2n
3

⌉
.

For small n, the values of the game total domination numbers for a cycle Cn and
a path Pn are shown in Table 2.

We remark that these results for paths and cycles show that for some families
of graphs Dominator has an advantage (paths) and for some families of graphs
Staller has an advantage (cycles). And for still other families neither player has
an advantage by going first.

In 2002 Philips and Slater [47] determined the game independent domination
numbers of paths and cycles.

Theorem 12 ([47]) The following holds.

(a) For n≥ 1, Id(Pn) = � 3n+4
7 � and Is(Pn) = � 3n+6

7 �.
(b) For n≥ 3, Id(Cn) = � 3n+3

7 � and Is(Cn) = � 3n+2
7 �.

We note that the game independent domination numbers for a path immediately
provide the value for a cycle, since the first move in a cycle Cn on n≥ 3
vertices produces a path Pn−3 on n− 3 vertices. Thus, Id(Cn)= 1+ Is(Pn−3) and
Is(Cn)= 1+ Id(Pn−3).

For small n, the values of the game independent domination numbers for a cycle
Cn and a path Pn are shown in Table 3.

Table 2 The game total domination numbers for small cycles and paths

n 3 4 5 6 7 8 9

γ tg(Cn) 2 2 3 4 5 5 6
γ ′
tg(Cn) 2 2 3 4 4 4 6

n 3 4 5 6 7 8 9

γ tg(Pn) 2 3 3 4 5 6 6
γ ′
tg(Pn) 2 3 4 4 5 6 6

Table 3 The game independent domination numbers for small cycles and paths

n 3 4 5 6 7 8 9

Id(Cn) 1 2 2 2 3 3 4
Is(Cn) 1 2 2 3 3 3 4

n 3 4 5 6 7 8 9

Id(Pn) 1 2 2 3 3 4 4
Is(Pn) 2 2 3 3 3 4 4
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5 Continuation and Total Continuation Principles

A partially dominated graph is a graph together with a declaration that some vertices
are already dominated and need not be dominated in the rest of the game. More
formally, if G is a graph and S⊆V (G), then a partially dominated graph G|S is a
graph together with a declaration that the vertices from S are already dominated.
We use γ g(G|S) (resp. γ ′

g(G|S)) to denote the number of moves remaining in the
game on G|S under optimal play when Dominator (resp. Staller) has the next move.
In 2013 Kinnersley, West, and Zamani in [38] presented the following key lemma,
named the Continuation Principle.

Lemma 13 (Continuation Principle) If G is a graph and A, B⊆V (G) with B⊆A,
then γ g(G|A)≤ γ g(G|B) and γ ′

g(G|A) ≤ γ ′
g(G|B).

As a consequence of the Continuation Principle whenever x and y are legal moves
for Dominator in the domination game and N[x]⊆N[y], then Dominator will play
y instead of x, while Staller will play x instead of y. As a further consequence, we
have the fundamental property of the domination game that the number of moves in
the D-game and the S-game when played optimally can differ by at most 1.

Theorem 14 If G is a graph, then |γg(G)− γ ′
g(G)| ≤ 1.

There are graphs H1, H2, and H3 such that γg(H1) = γ ′
g(H1), γg(H2) =

γ ′
g(H2) + 1, and γg(H3) = γ ′

g(H3) − 1. For example, by Theorems 8 and 9 the
following holds where k≥ 1 is an arbitrary integer. If H1 =Cn where n= 4k, then
γg(H1) = γ ′

g(H1) = 2k. If H2 =Cn where n= 4k+ 2, then γtg(H2) = γ ′
tg(H2) +

1 = 2k + 1. If H3 =Pn where n= 4k+ 3, then γtg(H3) = γ ′
tg(H3)− 1 = 2k + 1.

A partially totally dominated graph is a graph together with a declaration that
some vertices are already totally dominated and need not be totally dominated in
the rest of the game. If G is a graph and S⊆V (G), then a partially dominated
graph G|S is a graph together with a declaration that the vertices from S are already
totally dominated. We use γ tg(G|S) (resp. γ ′

tg(G|S)) to denote the number of moves
remaining in the total domination game on G|S under optimal play when Dominator
(resp. Staller) has the next move.

The proof of the Continuation Principle can be modified to work for several
variants of the domination game. In their introductory paper on the total domination
game, the authors in [31] showed that the Continuation Principle also holds for the
total version of the game.

Lemma 15 (Total Continuation Principle) If G is a graph and A, B⊆V (G) with
B⊆A, then γ tg(G|A)≤ γ tg(G|B) and γ ′

tg(G|A) ≤ γ ′
tg(G|B).

Proof. Two games will be played in parallel, Game 1 on the partially totally
dominated graph G|A and Game 2 on the partially totally dominated graph G|B.
The first of these will be the real game, while Game 2 will only be imagined by
Dominator. In Game 1, Staller will play optimally while in Game 2, Dominator will
play optimally. In Game 2, Dominator will copy each move of Staller played in
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Game 1, imagine that Staller played this move in Game 2, and then reply with an
optimal move in Game 2. If this move is legal in Game 1, Dominator plays it in
Game 1 as well. Otherwise, if the game is not yet over, Dominator plays any other
legal move in Game 1. We prove next the following claim.

Claim 1 In each stage of the games, the set of vertices that are totally dominated in
Game 2 is a subset of the set of vertices that are totally dominated in Game 1.

Proof. We proceed by induction. Since B⊆A, this is true at the start of the games.
Suppose now that Staller has (optimally) selected a vertex u in Game 1. Applying
the induction assumption, the vertex u is a legal move in Game 2 because a new
vertex v that was totally dominated by u in Game 1 is not yet dominated in Game
2. According to his strategy, Dominator copies the move of Staller by playing the
vertex u in Game 2, and then replies with an optimal move in the imagined Game 2.
If this move is legal in Game 1, Dominator plays it in Game 1 as well. Otherwise, if
the game is not yet over, Dominator plays any other legal move in Game 1. In either
case the set of vertices that are dominated in Game 2 is a subset of the set of vertices
that are dominated in Game 1. By induction, this proves the desired claim. (�)

Claim 1 implies that Game 1 finishes no later than Game 2. Suppose that m2
moves are played Game 2. Since Dominator was playing optimally in Game 2,
we note that m2 ≤ γ tg(G|B). Since Staller was playing optimally in Game 1 and
Dominator has a strategy to finish Game 1 in m2 moves, we infer that γ tg(G|A)≤m2.
Therefore, γ tg(G|A)≤m2 ≤ γ tg(G|B). Hence if Dominator is the first to play, then
the desired result follows. In our earlier argument we made no assumption who
starts first. Thus in both cases, Game 1 will finish no later than Game 2. Hence the
conclusion holds for γ ′

tg as well; that is, γ ′
tg(G|A) ≤ γ ′

tg(G|B). �

As a consequence of the Total Continuation Principle whenever x and y are legal
moves for Dominator and N(x)⊆N(y), then Dominator will play y instead of x,
while Staller will play x instead of y. The following fundamental property of the total
domination game that the number of moves in the D-game and the S-game when
played optimally can differ by at most 1 follows readily from the Total Continuation
Principle. We present a proof of Theorem 16 along analogous lines to a proof of the
result in Theorem 14.

Theorem 16 If G is a graph with no isolated vertex, then |γtg(G)− γ ′
tg(G)| ≤ 1.

Proof. Consider the D-game and let v be the first move of Dominator. Let A=N(v)
and consider the partially totally dominated graph G|A. Further let B=∅ and note
that G|B=G. By our choice of the vertex v as an optimal first move of Dominator,
we have γtg(G) = 1 + γ ′

tg(G|A). By the Total Continuation Principle, γ ′
tg(G|A) ≤

γ ′
tg(G|B) = γ ′

tg(G). Therefore, γtg(G) ≤ γ ′
tg(G|A) + 1 ≤ γ ′

tg(G) + 1. Next we
consider the S-game and let v be the first move of Staller. As before, let A=N(v)
and B=∅, and consider the partially totally dominated graph G|A. By our choice
of the vertex v as an optimal first move of Staller, we have γ ′

tg(G) = 1 + γtg(G|A).
By the Total Continuation Principle, γ tg(G|A)≤ γ tg(G|B)= γ tg(G), implying that
γ ′

tg(G) ≤ γtg(G|A)+ 1 ≤ γtg(G)+ 1. �
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There are graphs G1, G2, and G3 such that γtg(G1) = γ ′
tg(G1), γtg(G2) =

γ ′
tg(G2) + 1, and γtg(G3) = γ ′

tg(G3) − 1. For example, by Theorems 10 and
11 the following holds where k≥ 1 is an arbitrary integer. If G1 =Cn where
n= 6k+ 3, then γtg(G1) = γ ′

tg(G1) = 4k + 2. If G2 =Cn where n= 6k+ 1,
then γtg(G2) = γ ′

tg(G2) + 1 = 4k + 1. If G3 =Pn where n= 6k+ 5, then
γtg(G3) = γ ′

tg(G3)− 1 = 4k + 3.
If the Continuation Principle holds for some variant of the domination game, then

the number of moves in the D-game and the S-game when played optimally on such
a game can differ by at most 1. Conversely, if for some variant of the domination
game the number of moves in the D-game and the S-game when played optimally
differ by more than 1, then the Continuation Principle does not hold for such a game.

There are several variants of the domination games for which the Continuation
Principle does not hold. One such variant is the independent domination game.
Indeed in the independent domination game, the number of moves in the D-game
and the S-game when played optimally can often differ by an arbitrarily large
constant. As a simple example, let G be a star K1,k where k is arbitrary large. In
the D-game, the first vertex played by Diminisher is the central vertex (of degree
k) and the game immediately ends. However, in the S-game, the first vertex played
by Sweller is a leaf, thereby forcing all k leaves to be played in the independent
domination game. Thus in this example, Id(G)= 1 and Is(G)= k.

Using the Continuation Principle, in 2013 Kinnersley, West, and Zamani in [38]
showed that the D-game in a partially dominated forest with no isolated vertex can
never exceed its S-game.

Theorem 17 ([38]) If F is a partially dominated forest with no isolated vertex, then
γg(F ) ≤ γ ′

g(F ).

Using the Total Continuation Principle, in 2017 Henning and Rall [29] showed
that the D-game in a partially total dominated forest with no isolated vertex can
never exceed its S-game.

Theorem 18 ([29]) If F is a partially totally dominated forest with no isolated
vertex, then γtg(F ) ≤ γ ′

tg(F ).

6 Upper Bounds and Conjectured Upper Bounds

In this section, we present selected upper bounds and conjectured upper bounds on
the game domination number and the game total domination number.
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6.1 Domination Game Bounds

In 2013 Kinnersley, West, and Zamani in [38] were the first to prove a general upper
bound on the game domination number of an isolate-free graph in terms of its order.

Theorem 19 ([38]) If G is an isolate-free graph G of order n, then γg(G) ≤ � 7
10n�.

The upper bound of Theorem 19 was subsequently improved by Bujtás [12]
and Henning and Kinnersley [26] using completely different proof techniques. The
ingenious approach adopted by Bujtás [12] colors the vertices of the graph with
three colors that reflect three different types of vertices and associates a weight
with each vertex, and analyses the weight decrease resulting from each played
vertex as the game unfolds. The proof method in [26] proves a strong inductive
statement in a partially dominated graph with a set of vertices predominated, and
from this they deduce the desired upper bound on the game domination number. As
a consequence of these results we have the following improved upper bound on the
game domination number of an isolate-free graph in terms of its order.

Theorem 20 ([12, 26]) If G is an isolate-free graph of order n, then

γg(G) ≤ 2

3
n and γ ′

g(G) ≤ 2

3
n.

Much of the interest in the domination game was generated by the so-called 3
5 -

Conjecture posed in 2013 by Kinnersley, West, and Zamani [38]. There are two
3
5 -Conjectures: one for isolate-free forests, and one for general isolate-free graphs.
We state both conjectures.

Conjecture 1 ([38]) If G is an isolate-free forest of order n, then γg(G) ≤ 3
5n.

Conjecture 2 ([38]) If G is an isolate-free graph of order n, then γg(G) ≤ 3
5n.

Conjecture 1 for isolate-free forests is referred to as the 3
5 -Forest Conjecture, and

Conjecture 2 for general isolate-free graphs as the 3
5 -Graph Conjecture. It is not

known whether the 3
5 -Forest Conjecture implies the 3

5 -Graph Conjecture.
If the above two 3

5 -Conjectures are true, then the upper bound is tight. The
simplest example is to take G∼=kP5 where k≥ 1 is an arbitrary integer. The graph
G has order n= 5k. By Theorem 9, we have γg(P5) = γ ′

g(P5) = 3. The optimal
strategy of Staller is whenever Dominator plays on a component of G, Staller
plays on that component if at least one vertex in that component has not yet been
dominated and adopts an optimal strategy on the component. If, however, Dominator
previous move played on a component of G results in all vertices of that component
dominated, then Staller plays in a component with at least one vertex not yet
dominated and adopts an optimal strategy on the component. In this way, Staller
can guarantee that three vertices are played from each component. This shows that
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γg(G) = 3k = 3
5n. In Section 7, we show that there exist forests G of arbitrarily

large order n satisfying γg(G) = γ ′
g(G) = 3

5n.

In 2016, Henning and Kinnersley [26] proved the 3
5 -Graph Conjecture for the

class of graphs of minimum degree at least 2.

Theorem 21 ([26]) If G is a graph of order n with δ(G)≥ 2, then

γg(G) ≤ 3n

5
and γ ′

g(G) ≤ 3n− 1

5
.

Bujtás [12] established the following improved upper bound on the game
domination number for the class of graphs of minimum degree at least 3.

Theorem 22 ([12]) If G is a graph of order n with δ(G)≥ 3, then

γg(G) ≤ 34

61
n and γ ′

g(G) ≤ 34n− 27

61
.

More generally, Bujtás [12] proved the following remarkable result for graphs
with large minimum degree.

Theorem 23 ([12]) If G is a graph of order n with minimum degree δ(G)= δ≥ 4,
then

γg(G) ≤
(

15δ4 − 28δ3 − 129δ2 + 354δ − 216

45δ4 − 195δ3 + 174δ2 + 174δ − 216

)

n.

As an immediate consequence of Theorem 23, we have the following upper
bound on the game domination number in terms of its order with given minimum
degree.

Corollary 24 ([12]) If G is a graph of order n with minimum degree δ(G), then the
following holds.

(a) If δ(G)= 4, then γg(G) ≤ 37
72n < 0.5139n.

(b) If δ(G)≥ 5, then γg(G) ≤ 2102
4377n < 0.4803n.

The 3
5 -Graph Conjecture has yet to be settled in general for graphs that contain

vertices of degree 1.

6.2 Total Domination Game Bounds

We now shift our attention to upper bounds on the game total domination number.
If G is a graph of order n that consists of a disjoint union of copies of K2, then
γ tg(G)= n. Hence it is only of interest to consider upper bounds on the game total
domination number of a graph in which every component has order at least 3. The
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first general upper bound on the game total domination number was given in 2017
by Henning, Klavžar, and Rall [32].

Theorem 25 ([32]) If G is a graph of order n in which every component contains
at least three vertices, then

γtg(G) ≤ 4

5
n and γ ′

tg(G) ≤ 4n+ 2

5
.

In 2018 Bujtás [14] obtained a new improved upper bound on the game total
domination number that improves the 4

5 -bound established in Theorem 25.

Theorem 26 ([14]) If G is a graph of order n in which every component contains
at least three vertices, then

γtg(G) ≤ 11

14
n and γ ′

tg(G) ≤ 11n+ 6

14
.

Bujtás’s bound in Theorem 26 is the best general upper bound on the game total
domination number to date. In 2016, Henning, Klavžar, and Rall [32] posed the
game total domination 3

4 -Conjecture.

Conjecture 3 ([32]) If G is a graph of order n in which every component contains
at least three vertices, then γtg(G) ≤ 3

4n.

As remarked in [32], if the game total domination 3
4 -Conjecture is true, then the

upper bound is best possible. The simplest example is to take G∼=kP8 where k≥ 1
is an arbitrary integer. The graph G has order n= 8k. By Theorem 11, we have
γtg(P8) = γ ′

tg(P8) = 6. The optimal strategy of Staller is whenever Dominator
starts playing on a component of G, Staller plays on that component and adopts her
optimal strategy on the component. Since γ tg(P8)= 6, which is even, Staller can
continue this strategy until the completion of the game. This shows that γtg(G) =
6k = 3

4n.
In 2016 Bujtás, Henning, and Tuza [16] studied upper bounds on the game total

domination number over the class of graphs with minimum degree at least 2. For
this purpose, they introduced a transversal game in hypergraphs, and establish a
tight upper bound on the game transversal number of a hypergraph with all edges
of size at least 2 in terms of its order and size. As an application of this result,
they established the following result which proves the game total domination 3

4 -
Conjecture for the class of graphs of minimum degree at least 2, noting that 8

11 < 3
4 .

Theorem 27 ([16]) If G is a graph of order n with δ(G)≥ 2, then γtg(G) < 8
11n.

In 2016 Henning and Rall [27] proved the game total domination 3
4 -Conjecture

holds in a general graph G (with no isolated vertex) if we remove the minimum
degree at least 2 condition, but impose the weaker condition that the degree sum of
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adjacent vertices in G is at least 4 and add the requirement that no two vertices of
degree 1 are at distance 4 apart in G.

Theorem 28 ([27]) The game total domination 3
4 -Conjecture is true over the class

of graphs G that satisfy both conditions (a) and (b) below:

(a) The degree sum of adjacent vertices in G is at least 4.
(b) No two vertices of degree 1 are at distance exactly 4 apart in G.

As a consequence of Theorem 28 and its proof, we have the game total
domination 3

4 -Conjecture is true over the class of graphs with minimum degree at
least 2 and, moreover, Dominator can complete the game total domination played
in at most 3n/4 moves by following a greedy strategy. Despite the pleasing progress
made over the past few years, the game total domination 3

4 -Conjecture has yet to be
settled in general for graphs that contain vertices of degree 1.

6.3 Independent Domination Game Bounds

We close this section with a discussion of bounds on the game independent
domination number. In 1982 Berge [2] proved that the independence number α(G)
of a well-covered graph G of order n without an isolated vertex is at most 1

2n, and
the extremal graphs for this result are known as the very well-covered graphs and
were characterized in 1982 by Favaron [21]. In the case of well-covered graphs, as a
consequence of Theorem 29 and Berge’s result we have the following upper bound
on the game independent domination number in the class of well-covered graphs.

Theorem 29 If G is a well-covered graph of order n, then Id(G) = Is(G) ≤ 1
2n.

However, for general graphs the situation is more complex for the independent
domination game compared with the domination game or the total domination game.
The upper bound proofs established earlier for the game domination number and
game total domination number rely heavily of the Continuation Principle and Total
Continuation Principle, respectively. As eluded to earlier, the Continuation Principle
does not hold for the independent domination game, and the known proof techniques
and methods used to date to establish upper bounds for the game domination
number and game total domination number cannot therefore be applied to the game
independent domination number. Without the Continuation Principle at our disposal,
general results on the independent domination game are difficult to obtain.

Although there are general upper bounds on the game domination number and
game total domination number given by Theorems 20 and 26, respectively, to date
no general upper bound on the game independent domination number is known,
except for the trivial upper bound of the order of the graph.
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For the class of trees, we have the following game independent domination 3
4 -

Conjecture posed in 2018 by Goddard and Henning [22] for the Diminisher-start
independent domination game.

Conjecture 4 ([22]) If T is a tree of order n≥ 2, then Id(T ) ≤ 3
4n.

If Conjecture 4 is true, then this conjecture is somewhat sharp, in the sense
that there are trees T with Id(T)≥ 3n/4−o(n). Such trees are constructed in [22]
as follows. For k a large odd integer, let Tk be a tree with diameter 5 where
the two central vertices and both have degree k+ 1 and all their neighbors have
degree k+ 1. The resulting tree has order n= 2(k2 + k+ 1). The first move of
Diminisher is a support vertex, and the first move of Sweller is one of the two
centers. Once a vertex is played in the independent domination game, that vertex
and all its neighbors are deleted from the graph since they are no longer playable.
Thus, after the first two moves, Sweller can ensure that the resulting reduced
graph has k2 isolated vertices, with the remaining non-isolated vertices belonging
to k− 1 stars K1,k. In these remaining stars, Sweller can then get to choose a leaf
in half of these stars. The final independent set has size 3

2 (k
2 + 1), implying that

Id(T ) = 3
2 (k

2 + 1) = 3
4n− 3

2k = 3
4n− o(n), noting that k = 1

2 (
√

2n− 3 − 1).
For the Sweller-start independent domination game, we have the following game

independent domination 3
7 -Conjecture posed in [24].

Conjecture 5 ([24]) If T is a tree of order n≥ 2, then Is(T ) ≥ 3
7n.

By Theorem 12, if T =Pn where n≡ 0 (mod 7), then Is(Pn) = 3
7n. Hence, if

Conjecture 4 is true, then the conjectured bound is sharp. Further, this would imply
that with Sweller playing first on a tree, the path is extremal in the S-game.

7 Trees

In this section, we present results on the game domination number, the game total
domination number, and the game independent domination number in trees.

7.1 The Domination Game in Trees

In 2015 Brešar, Klavžar, Košmrlj, and Rall [8] studied the domination game in trees
and obtained the following lower bound on the game domination number of a tree
in terms of its order and maximum degree.
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Theorem 30 ([8]) If T is a tree of order n and maximum degree Δ, then

γg(T ) ≥
⌈

2n

�+ 3

⌉

− 1,

and this bound is asymptotically best possible.

That the bound in Theorem 30 is asymptotically best possible may be seen by
considering the family of caterpillars constructed in [8]. For positive integers s and
t where s≥ t+ 1, let T =T(s, t) be the tree obtained from a path Pt by attaching
s− 1 leaves to each vertex of the path. The resulting tree is a caterpillar of order
n= st and maximum degree �= s+ 1 satisfying γ g(T)= 2t− 1. For a fixed t and
for s sufficiently large, the term �2n/(�+ 3)�− 1=�2st/(s+ 4)�− 1 can be made
arbitrarily close to 2t− 1.

Upper bounds on the game domination number of a tree have been studied
extensively in the literature. In 2015, Bujtás [13] proved that if G is an isolate-
free forest, then γg(G) ≤ 5

8n(G). Moreover, if no two leaves in the forest are at
distance 4 apart, then Bujtás [13] proved that 3

5 -Forest Conjecture holds. In 2016
Schmidt [50] extended her result and proved the 3/5-conjecture for weakly S(K1,3)-
free forests, where S(K1,3) is the graph obtained from a star K1,3 by subdividing
every edge once and where a weakly S(K1,3)-free forests is an isolate-free forest
without induced S(K1,3) whose leaves are leaves of the forest as well. On 3rd March
2016 Marcus and Peleg, announced they had proven the 3

5 -Forest Conjecture in an
unpublished manuscript [44].

Theorem 31 ([44]) The domination game 3
5 -Forest Conjecture is true; that is, if G

is an isolate-free forest of order n, then γg(G) ≤ 3
5n.

It remains an open problem to characterize the isolate-free forests that achieve
equality in the 3

5 -Forest Conjecture. In 2013 Brešar, Klavžar, Košmrlj, and Rall [5]
presented a construction that yields an infinite family of trees that attain the bound
in the 3

5 -Forest Conjecture. Motivated by their construction, in 2017 by Henning and
Löwenstein in [28] gave a larger construction of extremal trees. In order to explain
this construction, they defined the notion of a 2-wing as follows.

Definition 1 ([28]) A tree T is a 2-wing if T has maximum degree at most 4 with
no vertex of degree 3, and with the vertices of degree 2 in T precisely the support
vertices of T, except for one vertex of degree 2 in T. This exceptional vertex of
degree 2 in T that is not a support vertex, we call the gluing vertex of T.

The smallest 2-wing is a path on five vertices, with its central vertex as the gluing
vertex. A 2-wing with gluing vertex v is illustrated in Figure 4.

Definition 2 ([28]) A tree T belongs to the family T if T is obtained from k≥ 1
vertex-disjoint 2-wings by adding k− 1 edges between the gluing vertices.

Theorem 32 ([28]) If T ∈ T has order n, then γg(T ) = γ ′
g(T ) = 3

5n.
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Fig. 4 A 2-wing with gluing
vertex v v

In 2017 the following conjecture was posed in [28] and has yet to be resolved.

Conjecture 6 ([28]) If F is an isolate-free forest of order n satisfying γg(F ) = 3
5n,

then every component of F belongs to the family T .

7.2 The Total Domination Game in Trees

Despite the pleasing progress made to date, the game total domination 3
4 -Conjecture

has yet to be proven in the class of trees. Several partial results, however, have been
obtained. For example, as a consequence of Theorem 28, we have the following
result for the trees.

Theorem 33 ([27]) The game total domination 3
4 -Conjecture is true over the class

of trees T in which every support vertex of T has degree at least 3 and no two leaves
are at distance exactly 4 apart in T.

We close this section with the remark that a characterization of trees with equal
total domination and game total domination numbers is given by Henning and Rall
[29]. However, since this construction is relatively complex, we omit it here.

7.3 The Independent Domination Game in Trees

The independent domination game is very non-trivial even when played on trees
with maximum degree at most 3. In this highly restricted class of graphs, tight
bounds on the game independent domination number have yet to be determined.
The following bounds for subcubic graphs are given by Goddard and Henning [22].

Proposition 34 ([22]) If G is a connected graph of order n≥ 2 and maximum
degree at most 3, then

n

4
≤ Id(G) and Is(G) ≤ 3n

4
.

Proof. Let �= �(G), and so �≤ 3. The lower bound Id(G) ≥ 1
4n follows

immediately from Theorem 3, noting that n
4 ≤ n

�+1 ≤ γ (G) ≤ i(G) ≤ Id(G).

To prove the upper bound Is(G) ≤ 3
4n, let I be an α-set of G, and let I = V (G) \ I .

Let [I, I ] be the set of edges of G between I and I . Every vertex in I has at most
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three neighbors in I, while every vertex in I has at least one neighbor in I , implying
that |I | ≤ |[I, I ]| ≤ 3|I | = 3(n − |I |), and so α(T ) = |I | ≤ 3

4n. By Theorem 3,
we therefore have that Is(G) ≤ α(G) ≤ 3

4n. �

The best known bounds for the game independent domination number in the class
of trees with maximum degree at most 3 are given by Goddard and Henning [22].
We omit the proof.

Theorem 35 ([22]) If T is a tree of order n≥ 2 and maximum degree at most 3,
then the following holds.

(a) 1
4n ≤ Id(T ) ≤ 4

7n.
(b) 3

8n ≤ Is(T ) ≤ 3
4n.

We note that if T =K1,3, then n= 4, Id(T ) = 1 = 1
4n and Is(G) = 3 = 3

4n. Thus
the lower bound Id(T ) ≥ 1

4n and the upper bound Is(G) ≤ 3
4n cannot be improved.

However, it remains an open problem to determine tight upper bounds (that hold for
trees of sufficiently large order). Trees with maximum degree 3 and of large order n
with Id(T ) > 1

2n and Is(T ) > 1
2n are constructed in [22].

Proposition 36 ([22]) There exist trees T of maximum degree 3 and of arbitrarily
large order n such that

Id(T ) ≥
(

1

2
+ ε

)

n and Is(T ) ≥
(

1

2
+ ε

)

n

for some small ε.

8 Computational Complexity

The algorithmic complexity of determining the game domination number of a given
graph was studied by Brešar, Dorbec, Klavžar, Košmrlj, and Renault [9]. For this
purpose, they considered the following two game domination problems.

D-GAME DOMINATION PROBLEM

Input: A graph G, and an integer �.
Question: Is γ g(G)≤ � ?
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S-GAME DOMINATION PROBLEM

Input: A graph G, and an integer �.
Question: Is γ ′

g(G) ≤ � ?

Brešar et al. [9] presented a reduction to the Game Domination Problem from the
POS-CNF problem, which is known to be log-complete in PSPACE (see [51] for
the complexity result on this problem). Using this reduction and careful analysis,
they show that the complexity of both the D-GAME DOMINATION PROBLEM and
S-GAME DOMINATION PROBLEM is in the class of PSPACE-complete problems.

Theorem 37 ([9]) Both the D-Game Domination Problem and the S-Game Domi-
nation Problem are log-complete in PSPACE.

Hence the decision version of the game domination problem is computationally
harder than any NP-complete problem, unless NP=PSPACE. Klavžar, Košmrlj,
and Schmidt [40] studied the D-GAME DOMINATION PROBLEM and S-GAME

DOMINATION PROBLEM when the integer � is fixed. In this case, when � is not part
of the input, they were able to solve the game domination problems in polynomial
time.

Theorem 38 ([40]) If G is a graph of order n with maximum degree Δ and � is a
fixed integer, then the D-Game Domination Problem and the S-Game Domination
Problem can be solved in O(Δ · n�).

The algorithmic complexity of determining the game total domination number of
a given graph was studied by Brešar and Henning [3] who considered the following
game total domination problems.

D-GAME TOTAL DOMINATION PROBLEM

Input: A graph G, and an integer �.
Question: Is γ tg(G)≤ �?

S-GAME TOTAL DOMINATION PROBLEM

Input: A graph G, and an integer �.
Question: Is γ ′

tg(G) ≤ �?

Analogously as in the Game Domination Problem, a reduction to the Game
Total Domination Problem from the POS-CNF problem is presented, but using a
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different gadget graph. Using this reduction, they show that the complexity of both
the D-GAME TOTAL DOMINATION PROBLEM and S-GAME TOTAL DOMINATION

PROBLEM is in the class of PSPACE-complete problems.

Theorem 39 ([3]) Both the D-Game Total Domination Problem and the S-Game
Total Domination Problem are log-complete in PSPACE.
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Domination and Spectral Graph Theory

Carlos Hoppen, David P. Jacobs, and Vilmar Trevisan

1 Introduction

From the early days of graph theory within Mathematics and Computer Science,
matrices have played an important role as data structures to store graphs. Let G= (V,
E) be a graph of order n where V ={v1, . . . , vn} and E={e1, . . . , em}. A graph
may be naturally stored by recording adjacencies between vertices or by recording
the incidence structure between vertices and edges. Indeed, the adjacency matrix
A=A(G) of G is the n× n symmetric matrix where the entry Aij = 1 if {vi, vj}∈E,
and Aij = 0 otherwise, while the incidence matrix B=B(G) of G is the n×m matrix
such that Bij = 1 if vi ∈ ej, and Bij = 0 otherwise.

Much more recently, an entire branch of graph theory was born of the interest in
extracting properties of graphs from algebraic information about matrices associated
with them. For square matrices, the spectrum is one such piece of information. Given
a square matrix M of order n, a number λ is an eigenvalue of M if

Mx = λx (1)

for some nonzero column vector x, which is called an eigenvector for λ. Equation (1)
is satisfied if and only if λ is a root of the characteristic polynomial p(x) = det(M−
xI), which has degree n, so that any n× n real matrix has n complex eigenvalues,
although some can be repeated. The multiset of eigenvalues is called the spectrum
of the matrix and an eigenvalue’s multiplicity is the number of times it occurs in
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the spectrum. For symmetric matrices, it is well-known that the eigenvalues are real
numbers and that the eigenvectors associated with them produce an orthogonal basis
of Rn, that is, the inner product of two eigenvectors is zero.

Clearly, the adjacency matrix of a graph is such a symmetric matrix. Many other
symmetric matrices have been introduced. Given a graph G with vertex set V ={v1,
. . . , vn}, let D=D(G) be the diagonal matrix with entry Dii = d(vi), the degree of
vi. Then the Laplacian matrix of G is the matrix L(G)=D−A and the signless
Laplacian matrix is the matrix Q(G)=D+A. We observe that Q(G)=BBT , where
B is the incidence matrix defined above, and that L(G) may also be written in the
form CCT , where C is the incidence matrix of any orientation of G. This makes
L and Q positive semidefinite, so that their eigenvalues are all non-negative. Other
symmetric matrices associated with a graph G are its normalized Laplacian matrix
L (G) = D−1/2LD−1/2 and its distance matrix, D(G), for instance. The latter
is the matrix indexed by the vertex set of G such that the entry ij is given by the
distance between vi and vj.

The branch of graph theory that studies the properties of graphs through the
eigenvalues of the matrices associated with them is known as spectral graph theory.
Often these matrices are A(G), L(G), Q(G), or L (G) defined above, but many other
matrices have been considered in various contexts. Even if we restrict ourselves to
the adjacency and the Laplacian matrices, eigenvalues and eigenvectors have been
particularly useful for embedding graphs in the plane [4], for graph partitioning and
clustering [44], in the study of random walks on graphs [13] and in the geometric
description of data sets [15], just to mention a few examples. It has had a particularly
relevant influence in Chemistry, where spectral parameters are widely used as
molecular descriptors, to the point that some of the results are referred to as part
of chemical graph theory. See [22, 30] for more information.

We should point out that, even though graph matrices are defined with respect to
some labelling of the graph G, their spectrum does not depend on the labelling, so
that isomorphic graphs share the same spectrum with respect to any fixed matrix.
Given the important role of the isomorphism problem in graph theory, and the
nice fact that eigenvalues and eigenvectors can be computed efficiently, it is quite
natural that spectral approaches to the isomorphism problem have been a flourishing
research theme in this area. In an ideal world, we would be able to test graph
isomorphism by simply computing the eigenvalues of both graphs. However, it is
not true that two non-isomorphic graphs must have distinct spectra, and a graph G
may have a cospectral mate H, namely a graph that is not isomorphic to G, but
has the same spectrum as G. Figure 1, extracted from [9], shows two graphs that are
cospectral with respect to both the adjacency and the normalized Laplacian matrices.

More generally, the seminal work of Schwenk [49] showed that almost every
tree T has a mate T′ for which A(T) and A(T′) share the same spectrum, in the
sense that among all non-isomorphic trees on at most n vertices, the fraction that
has a cospectral mate tends to 1 as n tends to infinity. This property of trees was
shown to hold for other matrices, see, for instance, McKay [45] for the Laplacian
matrix. In sharp contrast with this, Haemers [31] conjectures that most graphs do
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Fig. 1 Cospectral graphs G
and H

not have cospectral mates with respect to the adjacency matrix. This is one of the
main conjectures in this area. We refer the interested reader to [7, 53].

Why so many different matrices to study graphs? A natural question related to
the previous paragraph is whether any particular matrix would distinguish more
graphs than other matrices. This has been one of the driving forces to proposing
new matrices. For instance, in 2009, Cvetković and Simić, in [16–18], established
many properties of the signless Laplacian matrix, and argued that this matrix
had less spectral uncertainty than other matrices, in the sense that more graphs
are determined by their signless Laplacian spectrum than by their adjacency and
Laplacian spectra. So far no definitive results have been obtained [54].

Moreover, as Butler and Chung point out in [10], each matrix has its advantages
and disadvantages. As one might expect, since graph properties are often hard to
compute, it would be unexpected that footprints in the spectrum of a matrix, which
is computable in polynomial-time, could fully capture these properties. For example,
a graph is bipartite if and only if the eigenvalues of A(G) are symmetric about the
origin. That is, for each eigenvalue λ in the spectrum, − λ is an eigenvalue of the
same multiplicity [7, Prop. 3.4.1]. On the other hand the multiplicity of the smallest
eigenvalue of L(G), which is 0, reveals how many connected components are in the
graph, and the multiplicity of 0 in Q(G) is the number of bipartite components in G
[16]. The normalized Laplacian, introduced by Butler and Chung, will not be used
in this chapter, but is closely connected to random walks in graphs. The focus of our
chapter is the matrices A(G), L(G), Q(G), and D(G).

Sometimes the relationship between the eigenvalue and graph parameter can be
startling. To illustrate, consider the result by Delsarte and Hoffman [20], obtained in
the 1970s, involving the independence number α(G), the cardinality of a maximum
independent set of vertices in G, of a regular graph G. The theorem relates α(G) to
the least eigenvalue of its adjacency matrix.

Theorem 1 Let n > d≥ 1 be integers. Let G= (V, E) be a d-regular graph on n
vertices whose adjacency matrix has least eigenvalue λn. If S⊆V is an independent
set of G, then

|S| ≤ −λn

d − λn

· n. (2)

Moreover, given an independent set S, let yS be the characteristic vector of S, that
is, the entry corresponding to vi is equal to 1 if vi ∈ S, and is equal to 0 otherwise.
Equality holds in (2) if and only if yS − |S|

n
1 is an eigenvector associated with λn.
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Since the size i(G) of a minimum independent dominating set in a graph G is the
minimum size of a maximal independent set, Theorem 1 immediately implies

i(G) ≤ −λn

d − λn

· n

for any d-regular graph G. To give an idea of the type of argument used for proving
bounds in this area, we sketch the proof for Theorem 1.

Proof. Let G be a d-regular graph with vertex set V ={v1, . . . , vn} whose adjacency
matrix has least eigenvalue λn. Since G is d-regular, λ1 = d is the largest eigenvalue
of G, and it is associated with the eigenvector 1. The maximality of λ1 relies on
the Perron–Frobenius Theorem (see Theorem 8.4.4 in [37]). Let x1 = 1√

n
1 and let

x2, . . . , xn be eigenvectors associated with the remaining eigenvalues λ2 ≥· · · ≥ λn,
respectively, with the property that {x1, . . . , xn} is an orthonormal basis of Rn, that
is, the basis is orthogonal and ||xi|| = 1, for each i.

Let S⊂V be an independent set and let xS be the vector whose entry correspond-
ing to vi is equal to 1√

n
if vi ∈ S, and is equal to 0 otherwise. Let a1, . . . , an ∈ R be

such that xS = a1x1 + · · · + anxn. In particular, we have

||xS ||2 =
n∑

i=1

a2
i = |S|

n
. (3)

The inner product xS ·x1 satisfies a1 = xS · x1 = |S|
n

. Since S is an independent set
the quadratic form xS ·AxS satisfies

xS · AxS = 1

n

∑

vi ,vj∈S
Ai,j = 2

n
|E(G[S])| = 0.

Now compute xS ·AxS by expressing the rightmost xS in terms of the basis, making
use of the linearity of A, and noticing that inner products distribute over vector sums:

0 = xS · AxS = xS ·
n∑

i=1

aiAxi =
n∑

i=1

xS · aiAxi .

Next replace each Axi with λixi, and write the other xS in terms of the basis. By
orthogonality, each xS ·xi = ai, and so the above equation becomes

0 =
n∑

i=1

λiaixS · xi =
n∑

i=1

λia
2
i .

Using the fact that λn is negative, writing d = λ1, and applying (3) we get
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0 ≥ λ1a
2
1 + λn

n∑

i=2

a2
i = da2

1 +
(
||xS ||2 − a2

1

)
λn = d|S|2

n2 +
( |S|

n
− |S|2

n2

)

λn.

(4)

Inequality (4) leads to

|S| ≤ −nλn

d − λn

,

as required.
This bound holds with equality if and only if the inequality in (4) holds with

equality, that is, if and only if ai �= 0 implies that i= 1 or λi = λn. This means the
vector xS − a1x1 = xS − |S|

n
x1 is a linear combination

a2x2 + . . .+ anxn,

where, for each i≥ 2, either ai = 0 or λi = λn. This implies that xS − a1x1 is a
linear combination of eigenvectors associated with λn, and is therefore such an
eigenvector. As a consequence,

yS −
|S|
n
1 =

(√
n xS − |S|

n

√
n x1

)

= √
n

(

xS − |S|
n
x1

)

is an eigenvector associated with λn. This completes the proof. �
In this chapter we will highlight some of the interesting and important results in

spectral graph theory involving domination parameters that have appeared in the last
25 years. These results usually involve the well-known domination number γ (G).
However, we will also give some results involving the total domination number
γ t(G), and the signed domination number γ s(G). Generally, there have been two
kinds of spectral results involving domination in the literature: results that compare
a specific eigenvalue to γ (G), and results that compare the number of eigenvalues in
an interval with γ (G).

A meta-problem in this direction is the following. Let fM be a spectral parameter
associated with a graph matrix M and let G be a class of graphs. The problem is to
determine the functions

max{fM(G) : |V (G)| = n,G ∈ G } and min{fM : |V (G)| = n,G ∈ G }, (5)

and characterize the n-vertex graphs that attain the extremal values. For instance, if
fA(G)= λk(G) is the k-th largest eigenvalue of the adjacency matrix of a graph G
and Gγ is the set of all graphs with domination number γ , solving (5) would lead to
upper and lower bounds on the value of λk(G) in terms of its domination number.
Bounds of this type may be often turned into upper and/or lower bounds on γ (G) in
terms of λk(G).
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The remainder of the chapter is organized as follows. Results involving domina-
tion and the adjacency matrix are in Section 2. This section includes a 1994 upper
bound on γ (G) by Rowlinson using the largest multiplicity in A(G), and a beautiful
inequality involving the index and γ (G). In Section 3 we give several bounds for the
largest and second smallest Laplacian eigenvalue using domination. We also exhibit
an early eigenvector partition due to Brand and Seifter for constructing disjoint
dominating sets, as well as results relating the number of Laplacian eigenvalues
in an interval to γ (G). In Section 4 we discuss the signless Laplacian matrix,
and give bounds for the largest and second smallest eigenvalue using domination.
Domination results involving the distance matrix are given in Section 5. We
conclude this chapter with a few open problems

2 Adjacency Matrix

For a graph G, we say the spectrum of G is the multiset given by the eigenvalues of
the adjacency matrix A(G). Since A(G) is a real symmetric matrix, its eigenvalues
are real and we enumerate them as

λ1 ≥ λ2 ≥ · · · ≥ λn.

It is well-known that the spectrum of G determines some structure of G as, for
example, the number of vertices, the number of edges, the number of triangles,
whether G is bipartite and regular, among other properties.

The adjacency matrix is by far the most studied matrix in spectral graph theory.
However, the literature relating the spectrum of the adjacency matrix of a graph and
domination seems to be rare. Perhaps the first result about domination and matrices
of a graph is the well-known fact that if G has no isolated vertices, then

γ (G) ≤ r,

where r is the rank of the adjacency matrix of G. This result is from 1982 and is due
to Van Nuffelen [55].

The first paper we found relating graph spectra to domination dates to 1994
by Rowlinson [48], and involves the notion of star partition of a graph G. A star
partition of a graph G whose distinct eigenvalues are λ1, . . . , λm is a partition
V (G)=X1 ∪· · · ∪Xm with the following two properties: the cardinality of each Xi

is equal to the multiplicity of λi as an eigenvalue; λi is not an eigenvalue of the
graph G−Xi obtained from G by deleting all vertices in Xi, namely the subgraph
of G induced by the complement Xi of G. It is known that every graph has a star
partition. Rowlinson showed that if X1 ∪· · · ∪Xm is a star partition of a graph G
with no isolated vertices, then Xi is a dominating set of G. Moreover, for such a
graph G, Rowlinson showed that
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γ (G) ≤ n− k,

where k is the largest multiplicity of an eigenvalue of A(G). We remark that this
improves on Van Nuffelen’s bound, since the RHS of the latter may be viewed as
n− k0, where k0 is the multiplicity of the eigenvalue 0.

2.1 Domination and Spectral Radius

The largest eigenvalue of the adjacency matrix A(G) of G, namely λ1, is called the
index of G, while the spectral radius ρ(G) of G is the maximum of the modulus of
the eigenvalues of A(G). By the Perron–Frobenius theory of matrices it is known that
ρ(G)= λ1. If G has at least two vertices and is connected, ρ(G) is always positive,
simple, and its associated eigenvector may be chosen with positive entries. By its
many applications (see, for example, the book by Stevanović [51]), the spectral
radius is likely to be the most studied spectral parameter of graphs.

Brualdi and Solheid [8] proposed the following general problem, which is a
subproblem of (5) and became one of the classic problems of spectral graph theory:

Given a set G of graphs, find min{ρ(G) : G ∈ G } and max{ρ(G) : G ∈ G }, and characterize
the graphs which achieve the minimum or maximum value.

In 2008, Stevanović, Aouchiche, and Hansen [52] studied this problem for the
class of graphs having domination number γ . They characterize the graphs with
n vertices having domination number γ with maximum spectral radius. The main
result of the paper is the following. In the statements hereafter, given graphs G and
H, and a positive integer m, G∪H denotes the disjoint union of G and H, mG denotes
the disjoint union of m copies of G, and G is the complement of G.

Theorem 2 If G is a graph on n vertices with domination number γ , then

ρ(G) ≤ n− γ.

Equality holds if and only if G∼=Kn−γ+1 ∪ (γ − 1)K1 or, when n− γ is even,

G ∼= n−γ+2
2 K2 ∪ (γ − 2)K1.

Of course we can restate the result above as an upper bound for domination
number in terms of the spectral radius of G.

In order to explain their result for graphs with no isolated vertices, we need
the following definition. The surjective split graph SSG(n, k;a1, . . . , ak), defined
for positive integers n, k, a1, . . . , ak, 3≤ k≤ n, satisfying a1 + · · · + ak = n− k,
a1 ≥· · · ≥ ak, is a split graph on n vertices formed from a clique Kn−k vertices and
an independent set I with k vertices, in such a way that the ith vertex of I is adjacent
to ai vertices of K, and that no two vertices of I have a common neighbor in K. It
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Fig. 2 SSG(8, 4;2, 2, 2, 2)

is easy to see that γ (SSG(n, k;a1, . . . , ak))= k. As an illustration see the graph of
Figure 2.

Theorem 3 If G is a graph on n vertices with no isolated vertices and domination
number n

2 ≥ γ ≥ 3, then

ρ(G) ≤ ρ(SSG(n, γ ; n− 2γ + 1, 1, 1, . . . , 1)),

with equality if and only if G∼=SSG(n, γ ;n− 2γ + 1, 1, 1, . . . , 1).

Moreover the authors also characterize the graphs with no isolated vertices and
maximum spectral radius having γ ∈{1, 2}. Precisely, they show that if γ = 1, then
ρ(G)≤ ρ(Kn), if γ = 2 and n is even, then ρ(G) ≤ ρ(n2K2) and if γ = 2 and n is

odd, then ρ(G) ≤ ρ((n−1
2 )K2 ∪ P3).

In the paper [61], B-X. Zhu also deals with a Brualdi–Solheid problem, but
restricting the set of candidates to bipartite graphs. Let B(n)

γ be the set of bipartite

graphs with n vertices and domination number γ . The author finds the graph of B(n)
γ

having maximum spectral radius:

Theorem 4 Let G ∈ B(n)
γ . If G has the maximum spectral radius, then

(i) G∼=K1,n−1 for γ = 1,
(ii) G ∼= K� n−γ+2

2 �,� n−γ+2
2 � ∪ (γ − 2)K1 for γ ≥ 2.

2.2 Domination and Energy

The energy E (G) of a graph G is defined as the sum of the absolute values of
all eigenvalues of the adjacency matrix of the graph. This concept, introduced by
Gutman in 1977 [29], has connections with theoretical Chemistry. Indeed, for the
vast majority of conjugated hydrocarbons, the energy E (G) of a graph that models
such a molecule is precisely the value of the total π -electron energy, calculated by
the simple Hückel tight-binding molecular orbital (HMO). This allows one to apply
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Fig. 3 Tree T(n, γ )

n − 2γ + 1

γ − 1

the energy E (G) to chemical and physical properties of organic molecules. Clearly,
the graph theoretical definition is not restricted to molecular graphs.

In the paper [35], He, Wu, and Yu present sharp lower bounds for the energy
of trees involving the domination number, determining also all extreme trees which
attain these lower bounds. To state their result, we need the following definition.

For two given natural numbers n > 2γ > 2, the wounded spider is the tree T(n, γ )
obtained by subdividing exactly γ − 1 edges of the edges of the star K1,n−γ . It is
easy to see that T(n, γ ) has n vertices and domination number γ (Figure 3).

Consider the class T (n)
γ of all trees having n vertices and domination γ . The

authors show that T(n, γ ) is the unique tree with minimum energy among all
elements of T (n)

γ .
By computing E (T (n, γ )), they show that if a tree T has n vertices and

domination number γ , then

E (T ) ≥ 2γ − 4 + 2
√

n− γ + 1 + 2
√
n− 2γ + 1.

In 2011, Xu and Feng [58] gave a shorter proof of the result about the minimum
energy of T(n, γ ) over T (n)

γ . Moreover the paper characterizes the trees in T (n)
γ

where n= kγ with maximal energy for k = 2, 3, n
4 ,

n
3 ,

n
2 . In 2012, J. Zhu [62]

shows that the tree with the second minimal energy is B(n, γ ) given in Figure 4.

2.3 Other Results

In the paper [61] that was mentioned above in relation with a Brualdi and Soldheid
problem, B-X Zhu characterizes the unique graph whose least eigenvalue achieves
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Fig. 4 Tree B(n, γ )

n − 2γ + 1

γ − 3

the minimum among all graphs with n vertices and domination number γ . The
precise statement is the following.

Theorem 5 Let G be a graph whose least eigenvalue λn is minimum among all
graphs with n vertices and domination number γ . Then

(i) G ∼= K1 ∨K� n−1
2 �,� n−1

2 � for γ = 1 and n≥ 6.

(ii) G ∼= K� n−γ+2
2 �,� n−γ+2

2 � ∪ (γ − 2)K1 for γ ≥ 2.

A dominating set S⊂V is an efficient dominating set if each vertex of G is
dominated by precisely one vertex of S or, equivalently, if the minimum length of a
path between any two vertices of S is at least three. Not every graph has an efficient
dominating set, for example, the cycle C4.

A subset S⊂V (G) is a (k, τ )-regular set in G if it induces a k-regular subgraph in
G and every vertex outside S has exactly τ neighbors in S. An efficient dominating
set can also be defined as follows: a set S of vertices of a graph G is an efficient
dominating set if G[S] is a regular graph of degree 0 (i.e., S is an independent set)
and every vertex of G outside S has precisely one neighbor in S. Thus an efficient
dominating set can be viewed as a (0, 1)-regular set.

The efficient dominating set problem is the problem of determining whether a
given graph has an efficient dominating set and finding such a set if it exists.

In the paper [11], Cardoso, Lozin, Luz, and Pacheco, using spectral results on
(k, τ )-regular sets, as well as the theory of star complements, present a simplex-
like algorithm for detecting a (0, 1)-regular set in an arbitrary graph. This particular
algorithm can be used to find an efficient dominating set in any given graph or to
conclude that such a set does not exist. The algorithm is not polynomial-time in
general, however, the authors show that if − 1 is not an eigenvalue of the adjacency
matrix of the graph, it works in polynomial-time.
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3 Laplacian Matrix

For a graph G of order n, its Laplacian eigenvalues always lie in the interval [0, n].
We number them

0 = μn ≤ μn−1 ≤ · · · ≤ μ1.

The multiplicity of 0 is the number of connected components in G. There is a
beautiful relationship between the Laplacian eigenvalues of G and of its complement
G. The eigenvalues of G are the following:

0 ≤ n− μ1 ≤ n− μ2 ≤ · · · ≤ n− μn−1.

In any graph, the average Laplacian eigenvalue is the average vertex degree. That
is,

∑n
1 μi = ∑n

1 di(vi). It is not surprising, then, that Laplacian eigenvalues reveal
information about other properties of a graph.

3.1 Largest Eigenvalue

The largest Laplacian eigenvalue μ1 is called the Laplacian spectral radius. We
will now give several bounds for μ1 using domination parameters. From what we
can tell, the earliest result relating Laplacian eigenvalues to the domination number
appears in the 1996 paper [6] by Brand and Seifter where they gave an upper bound
for the Laplacian spectral radius.

Theorem 6 Let G be a connected graph order n. If γ (G)≥ 3, then

μ1 < n−
⌈
γ (G)− 2

2

⌉

. (6)

If γ (G)= 1, then μ1 = n. If γ (G)= 2, then μ1 ≤ n, and no better bound exists.

Obviously inequality (6) tells us something about μ1 if we know γ (G). But
conversely, since Laplacian eigenvalues are always in [0, n] their result implies that
if μ1 is close to n then γ (G) is small. This is interesting because, unlike γ (G), it is
easy to compute μ1.

In 2015 in [57], the upper bound for μ1 in (6) was improved by Xing and Zhou
who showed

μ1 ≤ n− γ (G)+ 2, (7)
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when 2≤ γ (G)≤ n− 1, and characterized the structure of extremal graphs for fixed
n and γ (G), without assuming connectivity. This is also a strict improvement over
(6) when γ (G)≥ 4.

Let us now give some lower bounds on μ1 based on domination parameters.
In [46, Thr. 3] Nikiforov obtained the following lower bound on μ1, and also
characterized when equality occurs. A small domination number would imply a
large μ1.

Theorem 7 If G is a graph containing an edge, then � n
γ (G)

� ≤ μ1.

Proof. Let H = (V, F) be a spanning subgraph consisting of a minimal set of edges
such that γ (H)= γ (G). It is easy to see that H = ∪γ

i=1Si , a disjoint union of γ (G)
stars, whose centers form a minimum dominating set of G. The largest star S� must
have order at least � n

γ (G)
�. Since H is a subgraph of G,

μ1(G) ≥ μ1(H).

Since H is a disjoint union, μ1(H) will be the maximum eigenvalue of the
components. It is well-known that the largest Laplacian eigenvalue of a star S� is
precisely its order for �≥ 2. This happens for the largest S� since G is not edgeless.
Therefore

μ1(H) = μ1(S�) = � ≥
⌈

n

γ (G)

⌉

.

Combining the last two lines completes the proof. �
The vast majority of papers which relate domination to spectral properties of

graphs contain results on the domination number γ (G). The paper [50] by Shi, Kang,
and Wu contains a lower bound of μ1 using the signed domination number γ s. A
function f : V →{−1, 1} is called signed dominating if the sum of the values over
any closed neighborhood is positive. Recall that the closed neighborhood N[v] of v
is the set of neighbors of v together with v. The signed domination number γ s is the
minimum weight over all signed dominating functions [21].

Theorem 8 ([50]) Let G be a connected graph of order n. Then

4n

γs(G)+ n
≤ μ1,

with equality holding if and only if G=K3.
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3.2 Second Smallest Eigenvalue

The second smallest Laplacian eigenvalue μn−1 plays an important role in the
structure of a graph. It is called the algebraic connectivity of the graph. The graph
is connected if and only if μn−1 > 0. Much of our understanding of this eigenvalue
is due to Fiedler [24]. It plays an important role in isoperimetric parameters through
the so-called Cheeger inequalities (see [13]). As it turns out, the eigenvectors
associated with the algebraic connectivity and with other small eigenvalues of the
Laplacian matrix are widely used in graph partitioning [44].

We will now give some upper bounds on μn−1 using γ and γ t. An upper bound
for the algebraic connectivity first appeared in 2005 in the paper by Lu, Liu, and
Tian [43], who showed the following.

Theorem 9 If G is a connected graph, then μn−1 ≤ n (n−2γ (G)+1)
n−γ (G)

.

This is equivalent to

μn−1 ≤ n− n

n− γ (G)
(γ (G)− 1). (8)

Without assuming connectivity, in 2007 Nikiforov [46] showed that if n≥ 2, then

μn−1 ≤
{
n ifγ (G) = 1

n− γ (G) ifγ (G) ≥ 2
(9)

and also characterized when equality occurs.
As Har [33] showed in 2014 if one assumes no isolates, both results can be

improved. Interestingly, Har cites the paper [43] but does not cite [46].

Theorem 10 If G has no isolates then μn−1 ≤ n− 2(γ (G)− 1).

In the isolate-free case, clearly this improves upon (9). This theorem is also an
improvement over inequality (8) since, when G has no isolates, one has γ (G) ≤ n

2
and therefore n

n−γ (G)
≤ 2.

Upper bounds for the second Laplacian eigenvalue are also given in the 2010
paper [3] by Aouchiche, Hansen, and Stevanović using the domination number. Here
the authors assume the graph is connected.

The paper [50] also relates the total domination number γ t to μn−1. A vertex set
S is a total dominating set if every vertex in the graph is adjacent to some member
of S, or if for every v∈V , N(v)∩ S �=∅. In a graph G without isolates, the total
domination number γ t(G) is the minimum size of a total dominating set. The authors
of [50] give two upper bounds on μn−1 using γ t. One of them is the following.

Theorem 11 Let G be connected graph having n≥ 3 vertices, G �=Kn. Then

μn−1 ≤ n− γt (G),



258 C. Hoppen et al.

with equality holding if and only if G consists of a forest of K2’s or K2’s and
isolates.

This bound is clearly better than (9) above since γ (G)≤ γ t(G).

3.3 Disjoint Dominating Sets

A classic result of Ore [47, Thr. 13.1.5] states that in any graph without isolated
vertices, if D is a minimal dominating set, then there exists another minimal
dominating set disjoint from it.

Interestingly, Brand and Seifter’s paper has a simple construction [6, Prop. 3.5]
for also obtaining disjoint dominating sets. Their method uses a clever partition of an
eigenvector of L(G). However, it is not the usual partition formed by taking negative
and non-negative entries. The method requires choosing an eigenvalue larger than
Δ(G), the maximum degree. One might ask if this is always possible. The following
result by Grone and Merris [27, Cor. 2] guarantees it.

Theorem 12 If G has at least one edge, then μ1 ≥Δ(G)+ 1.

Let x be an eigenvector for G. Then let D0−, D0+, and D0
0 denote the vertices

whose entries in x are negative, positive, and zero, respectively. For i≥ 0 recursively
define

Di+1+ = Di+ ∪ {v ∈ Di
0 | {v,w} ∈ E(G) for some w ∈ Di−}

D
(i+1)′
0 = Di

0 −Di+1+
Di+1− = Di− ∪ {v ∈ D

(i+1)′
0 | {v,w} ∈ E(G) for some w ∈ Di+1+ }

Di+1
0 = Di

0 −Di+1+ .

The construction stops when Dm
0 = ∅. Now define D+ = Dm+ and D− = Dm− .

By construction, D− dominates the new vertices in D+, and D+ dominates the new
vertices in D−. Figure 5 shows the direction of the way vertices move from D0 in
the partition constructed above.

Positive and 0

D+

adjacent to D− adjacent to D+ Negative and 0

D−
D0

Fig. 5 Constructing disjoint domination sets
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We are now ready to state the result in [6].

Theorem 13 Let G= (V, E) be a connected graph, and μ be an eigenvalue of L(G),
where μ > Δ(G). Let x be an eigenvector for μ. Then D+ and D− are disjoint
dominating sets.

Proof. Clearly D+ ∪D− forms a partition of V . Since x is an eigenvector we have
L(G)x=μx, where L(G)=D−A(G). Considering the row corresponding to v, one
has

d(v)xv −
∑

{v,w}∈E
xw = μxv. (10)

Suppose v ∈ D0+. Then the right side of (10) is positive. Since μ>Δ(G)≥ d(v),
there must be a negative term xw in the summation, and v is dominated by w ∈ D0−.
Hence D0+ is dominated by D0−.

On the other hand, suppose v ∈ D0−. A similar argument shows that the
summation must contain a positive element. Therefore v is dominated by some
w ∈ D0+. This shows that D0− is dominated by D0+. If D0

0 = ∅, then both D0−
and D0+ are dominating sets.

Now suppose there is a v ∈ D0
0. By connectivity, at some point it will enter

either Di+ or Di−. Assume it enters Di+. This occurs because it is adjacent to some
w ∈ Di−1− . Thus v is dominated by Di−1− . The other case is similar. �

3.4 Laplacian Distribution

Here we are interested in results involving the number of Laplacian eigenvalues in
an interval. If G is a graph and I is an interval, we let mG(I) denote the number of
Laplacian eigenvalues of G in I, counting multiplicities.

In [28] the authors showed that in connected graphs G, mG[0, 1)≤α′(G), where
α′(G) is the matching number of G. In other words, the number of Laplacian
eigenvalues less than 1 is at most the matching number of G. In graphs without
isolates it is known that α′(G)+β ′(G)= n, where β ′(G) denotes the graph’s edge
cover number. This implies that mG[1, n]≥β ′(G).

The following theorem in 2016 by Hedetniemi, Jacobs, and Trevisan [36] is
an improvement on the result in [28] since γ (G)≤α′(G) for any graph. Also the
theorem holds for any graph regardless of its connectivity.

Theorem 14 For any graph G, mG[0, 1)≤ γ (G).

Corollary 1 For any graph G, mG[1, n]≥ n− γ (G).

Proof. Since there are n eigenvalues in [0, n] one has mG[1, n]= n−mG[0, 1). �
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Fig. 6 Tree with 24=mT [0, 1) < γ (T)= 25

For some simple classes of graphs one can have equality in Theorem 14.

Theorem 15 If Pn is the path on n vertices then mPn[0, 1) = γ (Pn) = �n
3 �.

Proof. In ascending order, the eigenvalues Pn are 2 − 2 cos ( iπ
n
), for i= 0, . . . ,

n− 1 (see [7, p. 9]). This implies that 0≤μ< 1 if and only if 1
2 < cos ( iπ

n
) ≤ 1.

Therefore, i < n
3 . The largest such i is �n

3 � − 1, so there are exactly �n
3 � such

numbers, mPn[0, 1) = �n
3 �. Since γ (Pn) = �n

3 �, the theorem follows. �
Using similar arguments one can show:

Theorem 16 If Cn is the cycle on n vertices, then mCn[0, 1) = 2�n
6 �−1. Moreover,

mCn [0, 1) =
{
γ (Cn) if n ≡ 1, 2, 3 mod 6
γ (Cn)− 1 if n ≡ 0, 4, 5 mod 6.

There exist trees for which the inequality is strict, and Figure 6 depicts such a
tree. To see this, we apply the algorithm in [5] which counts the number of Laplacian
eigenvalues in any interval for trees and obtain mT [0, 1)= 24. On the other hand,
a minimum dominating set for the tree can be obtained by taking the 24 support
vertices together with the root.

If we think of Theorem 14 as a lower bound of γ (G), the following result by
Cardoso, Jacobs, and Trevisan [12] gives an upper bound.

Theorem 17 If G has minimum degree 1, then γ (G)≤mG[2, n].

It should be noted that the result in Theorem 17 was obtained by Zhou, Zhou, and
Du for trees in [60, Cor. 3.2]. As in the case of Theorem 14, the ratio can become
arbitrarily large. However, for certain classes, the approximation ratio is small. The
following results can be found in [12].

Theorem 18 If T is a tree, 1 ≤ mT [2,n]
γ (T )

≤ 2.
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A connected graph of order n having n− 1+ c edges is called c-cyclic. A
generalization of Theorem 18 is the following.

Theorem 19 If G is a c-cyclic graph where c≥ 1, then 1 ≤ mG[2,n]
γ (G)

≤ c + 1.

3.5 A Spectral Nordhaus–Gaddum Result

A Nordhaus–Gaddum inequality is a bound on the sum or product of a graph
parameter for G and its complement G. A result of Jaeger and Payan [41] states
that

γ (G)+ γ (G) ≤ n+ 1. (11)

In [14] Cockayne and Hedetniemi proved the following.

Theorem 20 For any graph G, γ (G) + γ (G) ≤ n + 1 with equality if and only if
G=Kn or G = Kn.

Using the above results we can obtain a spectral Nordhaus–Gaddum inequality.

Theorem 21 For any graph G, mG[0, 1) + mG[0, 1) ≤ n + 1 with equality if and
only if G=Kn or G = Kn.

Proof. From Theorem 14 and (11) we get

mG[0, 1)+mG[0, 1) ≤ γ (G)+ γ (G) ≤ n+ 1 (12)

for any G, establishing the inequality. Now assume G=Kn or G = Kn. Since
mKn [0, 1) = 1 and mKn

[0, 1) = n, we have equality. Conversely assume that

mG[0, 1) + mG[0, 1) = n + 1. Then (12) implies that γ (G) + γ (G) = n + 1.
Applying Theorem 20 it follows that G=Kn or G = Kn. This completes the proof.
�

To conclude the section, we mention that, more generally, computing the number
of eigenvalues of a matrix M associated with a graph G that lie in a given real interval
I is a problem that has been intensively studied in the last few years. An algorithm
is said to locate eigenvalues for a graph class C if, for any graph G ∈ C and any
real interval I, it finds the number of eigenvalues of G in the interval I. In recent
years, efficient algorithms have been developed for the location of eigenvalues
of the adjacency matrix in trees [38], threshold graphs [39] (also called nested
split graphs), chain graphs [1] and cographs [40], for instance. Several of these
algorithms have been adapted to the Laplacian matrix. There are also algorithms
for general graphs that are very efficient when the graph admits a decomposition
with “low complexity” (with respect to measures such as the clique-width, see for
instance [25]).
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4 Signless Laplacian Matrix

For a given graph G= (V, E) of order n= |V | and size m= |E|, the signless
Laplacian spectrum of G is the multiset given by the eigenvalues of the matrix
Q(G)=D(G)+A(G). As Q is real symmetric and positive semidefinite, its eigen-
values are real and non-negative, and we order them as

q1 ≥ q2 ≥ · · · ≥ qn.

In 2009, Cvetković and Simić, in the beautiful series of papers [16–18], introduced
many properties of the signless Laplacian matrix for graphs and, in particular,
it is known that the multiplicity of 0 as a Q-eigenvalue is the number bipartite
components of G.

4.1 Bounds for the Index

The largest eigenvalue of the signless Laplacian matrix of G is called the signless
Laplacian index of G. The first record we found in the literature relating the
spectrum of the signless Laplacian matrix of a graph G and its domination number
is from 2010 and due to Hansen and Lucas [32]. They considered relations between
signless Laplacian eigenvalues and several graph parameters. In our context, the
relevant result is the following.

Theorem 22 Let G be a connected graph on n≥ 4 vertices with signless Laplacian
index q1 and domination number γ . Then

1. q1 + γ ≤ 2n− 1,
2. n≤ q1 · γ .

Equality is attained in (1) if and only G is the complete graph Kn.

The case of general graphs has been addressed by Xing and Zhou [57], who were
able to characterize all graphs for which the bound is tight.

Theorem 23 Let G be a graph on n≥ 4 vertices with signless Laplacian index q1
and domination number γ . Then

q1(G) ≤ 2(n− γ ),

with equality if and only if G∼=Kn−γ+1 ∪ (γ − 1)K1 or when γ ≥ 2 and n− γ is

even, G ∼= n−γ+2
2 K2 ∪ (γ − 2)K1.
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4.2 Bounds for the Smallest Signless Laplacian Eigenvalue

He and Zhou in 2014 [34] presented a sharp upper bound for the smallest signless
Laplacian eigenvalue of a graph involving its domination number. They also
determined extremal graphs which attain this bound. In order to state their result
we need the following definition.

Let H be a graph on n vertices v1, v2, . . . , vn. The corona G ◦K1 of a graph G is
the graph obtained from G by attaching a leaf to every vertex of G.

Theorem 24 Let G be a connected graph with even order n= 2k≥ 6, least signless
Laplacian eigenvalue qn and domination number γ ≥ 3. Then

qn ≤ 2k − 2γ + k −√
(k − 2)2 + 4

2
,

with equality if and only if G#Kk ◦K1.

For n odd, we consider the family F of graphs given in Figure 7. The result of
[34] is the following.

Theorem 25 Let G be a connected graph with odd order n= 2k+ 1≥ 7, smallest
signless Laplacian eigenvalue qn, minimum degree δ and domination number γ ≥ 3.
If G satisfies one of the following conditions:

1. δ is even and G �∈ F (see Figure 7),
2. δ= 1, n≥ 13,
3. δ= 3, n≥ 17,
4. δ= 5, n≥ 23,

then

qn ≤ 2k − 2γ + k + 1 −√
(k − 1)2 + 4

2
.

We notice that this result does not tell anything about graphs having odd
minimum degree δ > 5. This case is not discussed in [34].

It is well-known that the smallest signless Laplacian eigenvalue qn(G)= 0 if and
only if G has a bipartite component. Hence it is natural to study lower bounds for

Fig. 7 Family F of graphs
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g−1
2

n−1−g−k

k

Fig. 8 Graph Uk
n (g)

the qn(G) when a connected graph G is not bipartite. In 2014, Fan and Tan [23]
presented a lower bound for the least eigenvalue of the signless Laplacian of G in
terms of the domination number. For a more precise statement of his result, we use
the following notation.

Denote by Uk
n (g) the unicyclic graph of order n, which is obtained from an odd

cycle Cg(g < n) and a star S1,k by identifying the end vertices of a path P� to one
vertex of the cycle and the center of the star , where �= n+ 1− g− k (see Figure
8).

It is easy to see that if k≥ 2, then

γ (Uk
n (g)) ≤ γ (Uk−1

n (g)) ≤ · · · ≤ γ (U1
n (g)) := γn,g.

For fixed n and odd g∈ [3, n− 1], for each γ ∈ [� g
3 �, γn,g], there exists one or

more graphs Uk
n (g) with domination number γ . The unique one with minimum k

among those graphs is denoted by W
γ
n (g).

Theorem 26 Let G be a connected non-bipartite graph of order n with domination
number γ ≤ n+1

3 . Then

qn(G) ≤ qn(W
γ
n (3)),

with equality if and only if G = W
γ
n (3).

In an independent work in 2014 [59], Yu, Guo, Zhang, and Wu studied the
same problem. With the above terminology, they determined exactly the structure
of Wγ

n (3). The precise statement is as follows.

Theorem 27 Among all the non-bipartite graphs with both order n≥ 4 and
domination number γ ≤ n+1

3 , we have

(i) If n∈{3γ − 1, 3γ , 3γ + 1}, then W 1
n (3) is the unique graph with minimal qn up

to isomorphism;
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(ii) If n≥ 3γ + 2, then W
n−γ
n (3) is the unique graph with minimal qn up to

isomorphism.

4.3 k-Domination and Bounds for Q-Eigenvalues

In the work by Liu and Lu [42], there are bounds for q2(G) and qn(G) based on the
k-domination number. For an integer k≥ 1, a k-dominating set in G is a subset X
of V (G) such that each element of V (G)�X is adjacent to at least k vertices of X.
(This is sometimes called a k-fold-dominating set to distinguish the situation where
every vertex in the dominating set dominates all vertices at distance up to k.) The
least cardinality of a k-dominating set is the k-domination number of G, denoted by
γ k(G). The relevant results are as follows.

For a graph G, a partition V (G)=V1 ∪V2 is called (r, s)-local-regular if all
vertices in V1 have r neighbors in V2 and all vertices in V2 have s neighbors in
V1.

Theorem 28 Let G be a graph of order n≥ 2 with maximum degree Δ, minimum
degree δ, and average degree d. Let X be a minimum k-dominating set such that
|E(G[X])| is as large as possible. If δ≥ k and |N(x)∩X|≥ k− 1 for each vertex
x∈X, then

q2(G) ≤ 2δ − n(n− (1 + 1/k)|X| + 1)

n− |X| ,

with equality only if G is (k, 1)-local-regular graph. Moreover, if k= 1, then
equality holds if and only if G∼=K2,2.

Theorem 29 Let G be a graph of order n≥ 2 with maximum degree Δ. Then

qn(G) ≤ 2�− nk

γk(G)
,

where the equality holds only if G is a (k(n− γ k(G))/γ k(G), k)-local-regular
graph. Moreover, if G is connected and k= 1, then equality holds if and only if
G∼=Kn.

5 Distance Matrices

Let G be a connected graph with vertex set V (G) and edge set E(G). For u, v∈V (G),
the distance between u and v in G is the length of a shortest path connecting them,
denoted by d(u, v). The distance matrix of G is defined as
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D(G) = (d(u, v))u,v∈V (G).

The eigenvalues of D(G) are called the distance eigenvalues of G. As D(G) is
real and symmetric, the distance eigenvalues of G are real and ordered as

∂1 ≥ ∂2 ≥ · · · ≥ ∂n.

The distance spectral radius of G, ∂1, is the largest distance eigenvalue of G. If
|V (G)|≥ 2 and G is connected, then the matrix D(G) is irreducible and the Perron–
Frobenius theorem implies that ∂1 is positive, simple and there is a unique positive
unit eigenvector x(G) corresponding to ∂1, which is called the distance Perron vector
of G.

A remarkable property of the distance matrix given by Graham and Pollack [26]
is a formula of the determinant of the distance matrix of a tree depending only on
the order n. The determinant is given by

det(D) = (−1)n−1(n− 1)2n−2,

implying that any nontrivial tree has a single, positive distance eigenvalue and n− 1
negative eigenvalues.

The work by Wang and Zhou [56] relates the spectral radius of a tree with its
domination number. As we shall describe, the authors determine the unique tree of
given domination number with minimum distance spectral radius and the unique
tree of given domination number with maximum distance spectral radius.

Let A(n, m) be the tree obtained from the star Sn−m+1 by attaching a new leaf to
each of m− 1 chosen leaves of Sn−m+1, where 1 ≤ m ≤ �n

2 �. It is easy to see that
γ (A(n, m))=m.

Theorem 30 Let T be a tree on n vertices with domination number γ , where 1 ≤
γ ≤ �n

2 �. Then

∂1(T ) ≥ ∂1(A(n, γ )),

with equality if and only if T∼=A(n, γ ).

Let D(n, a, b) be the tree obtained from the path Pn−a−b by attaching a and b
leaves to the two end vertices, respectively, where a≥ b≥ 1 and a+ b≤ n− 1.

Theorem 31 Let T be a tree on n vertices with domination number γ , where 1 ≤
γ < �n

3 �. Then

∂1(T ) ≤ ∂1

(

D

(

n,

⌈
n− 3γ + 2

2

⌉

,

⌈
n− 3γ + 2

2

⌉))

,

with equality if and only if T ∼= D
(
n, �n−3γ+2

2 �, �n−3γ+2
2 �

)
.
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The transmission Du of a vertex u is the sum of the distances from u to all other
vertices of in G, that is,

Du =
∑

v∈G
d(u, v).

If DL is the diagonal matrix of the vertex transmissions, whose i-th entry is Dui
, the

distance Laplacian matrix of a graph G is the matrix

DL = DL − D,

whose eigenvalues are going to be denoted by

∂L
1 ≥ ∂L

2 ≥ · · · ≥ ∂L
n .

Among the properties given in [2] of the distance Laplacian matrix DL is that
the spectrum of an n-vertex connected graph G with diameter at most 2 is given by

∂L
1 (G) = 2n− μn−1 ≥ ∂L

2 (G) = 2n− μn−2 ≥ · · · ≥ ∂n−1(G) = 2n− μ1

> ∂L
n (G) = 0,

where the μi are the Laplacian eigenvalues.
In [19], the authors relate the distance Laplacian spectral radius ∂L

1 of a graph
G and its domination number. The main results are summarized in the following
theorem.

Theorem 32 Let G be a connected graph of order n≥ 2 with domination number
γ . Then the following hold:

(i) ∂L
1 (G) ≥ n+ γ − 1 with equality if and only if G∼=Kn.

(ii) If the diameter of G is d, then ∂L
1 (G) ≥ n+ γ + d − 2 with equality holding if

and only if G∼=Kn or, in the case n= 2p, G ∼= K2, 2, . . . , 2
︸ ︷︷ ︸

p

.

(iii) If ∂L
n−1(G) = n, then γ ≤ 2.

6 Final Remarks and Open Problems

In writing this chapter, our aim was to collect some of the main results in
spectral graph theory that involve domination parameters. As we have seen, many
such results provide bounds on domination parameters in terms of eigenvalues
or eigenvalue-based parameters. It also became clear that the connection between
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graph spectra and domination parameters is still not well understood. In this section,
we propose directions for further investigation.

In the last decade, there have been considerable advances in generalized Brualdi–
Solheid problems involving domination. Recall that these are problems where, for
a set G of graphs and a spectral parameter fM associated with a matrix M, one is
asked to find min{fM(G) : G ∈ G } and max{fM(G) : G ∈ G }, and to characterize
the graphs which achieve the minimum or maximum value. Two prime examples
are Theorems 2 and 3 in Section 2, which completely determine, respectively, the
n-vertex graphs with domination number γ and the n-vertex graphs with domination
number γ and no isolated vertices that maximize the spectral radius of the adjacency
matrix. The maximization part has also been solved for the signless Laplacian
matrix, as described in Section 4. However, the minimization part of the problem
is often not studied, and we leave it here as an open question.

Problem 1 Let γ be a positive integer and G (n)
γ = {G : |V (G)| = n, γ (G) = γ }.

Find the graphs G ∈ G (n)
γ with minimum spectral radius.

The Laplacian matrix is an example where both the maximization and minimiza-
tion part of the Brualdi–Solheid problem have been solved, but, for many other
matrices, both parts are still open. This happens for the distance matrices of Section
5.

More generally, it is natural to consider the Brualdi–Solheid problem for other
matrices and domination parameters.

Problem 2 Let γ be a positive integer, let γ ∗ (G) be a domination parameter
associated with a graph G and let M be a symmetric matrix associated with a graph
G. Define G ∗(n)

γ = {G : |V (G)| = n, γ ∗(G) = γ }. Find the graphs G ∈ G ∗(n)
γ with

maximum and minimum spectral radius (with respect to the matrix M).

Related to this problem, the result of Xing and Zhou in Section 3.1 describes
the structure of extremal graphs with respect to the index of the Laplacian matrix.
It turns out that these graphs contain isolated vertices for all γ ≥ 3. It would be
interesting to consider the case in which there are no isolates or where the graph is
assumed to be connected.

Problem 3 Let γ be a positive integer and let C (n)
γ be the set of n-vertex connected

graphs. Find the graphs G ∈ C (n)
γ with maximum and minimum index with respect

to the Laplacian matrix.

This problem would also be interesting with respect to the signless Laplacian
matrix, as the upper bound in Theorem 22 is tight if and only if γ = 1.

As we mentioned in Section 2.3, there has been interest in characterizing graphs
with a given domination number such that the least eigenvalue is maximum or
minimum. Another result in this direction, now in terms of the signless Laplacian
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matrix, is Theorem 27, which solves the problem of finding the smallest least Q-
eigenvalue for graphs of order n≥ 4 and domination number γ ≤ n+1

3 .

Problem 4 Determine which graph(s) among all non-bipartite graphs on n vertices
and domination number n+1

3 < γ ≤ n
2 has minimal least Q-eigenvalue.

In the same vein, there has been substantial interest in ordering the elements of
a graph class according to the value of some parameter. So, in addition to finding
the graph(s) that achieve the maximum or minimum value, one would be interested
in graphs with the second largest value and so on. In more restricted settings, it
may even be possible to completely order the elements in terms of this parameter.
This may be quite hard if we consider all graphs with domination number γ . A
particular question in this direction is stated in terms of the energy of trees with
fixed domination number.

Problem 5 Let γ be a positive integer and T (n)
γ = {T : T tree, |V (T )| = n, γ (G) =

γ }. Order the elements of T (n)
γ according to their energy.

As mentioned in Section 2.2, the trees with least energy and with second smallest
energy in T (n)

γ are already known, and the tree with maximum energy is known in
some cases.

The distribution of the eigenvalues of a graph, or of the elements of a graph
class, is a topic of great interest in spectral graph theory. In Section 3.4, we have
described results relating the domination number with the number of eigenvalues
in a given real interval. For instance, Theorem 14 determines that mG[0, 1)≤ γ (G),
where mG[0, 1) is the number of Laplacian eigenvalues of G in [0, 1). Even though
we may have equality for some simple graph classes, the ratio between mG[0, 1) and
γ (G) can be arbitrarily large [12]. An open question is when Theorem 14 achieves
equality.

Problem 6 Characterize graphs G for which mG[0, 1)= γ (G).

Another natural question is whether the ratio γ (G)
mG[0,1) is bounded for some

particular graph class. The following is a particular problem in this direction.

Problem 7 Is the ratio γ (T )
mT [0,1) bounded for trees T?

To conclude this section, we also include a problem that is purely spectral, but has
algorithmic consequences for efficient domination in light of the result of Cardoso,
Lozin, Luz, and Pacheco [11] described in Section 2.3.

Problem 8 Describe the family of graphs G such that λ=−1 is not an eigenvalue
of A(G).
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18. D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless
Laplacian. III. Appl. Anal. Discrete Math. 4(1), 156–166 (2010). http://dx.doi.org/10.2298/
AADM1000001C

19. K.C. Das, M. Aouchiche, P. Hansen, On distance Laplacian and distance signless Laplacian
eigenvalues of graphs. Linear Multilinear Algebra 0(0), 1–18 (2018). https://doi.org/10.1080/
03081087.2018.1491522

20. P. Delsarte, An algebraic approach to the association schemes of coding theory. Philips Res.
Repts. Suppl. 10, 1–54 (1973)

http://dx.doi.org/10.1016/j.laa.2016.04.030
https://doi.org/10.1016/j.laa.2013.02.030
http://www.sciencedirect.com/science/article/pii/S0024379513001614
https://doi.org/10.1016/j.laa.2009.12.031
http://doi.acm.org/10.1145/800070.802206
http://dx.doi.org/10.1016/j.disc.2013.06.017
https://doi.org/10.1137/0607030
https://doi.org/10.1080/03081080902722741
https://doi.org/10.1016/j.dam.2016.06.014
http://www.sciencedirect.com/science/article/pii/S0166218X16302931
https://doi.org/10.1007/s00373-017-1844-x
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://www.sciencedirect.com/science/article/pii/S1063520306000546
http://dx.doi.org/10.2298/PIM0999019C
http://dx.doi.org/10.1016/j.laa.2009.05.020
http://dx.doi.org/10.2298/AADM1000001C
https://doi.org/10.1080/03081087.2018.1491522


Domination and Spectral Graph Theory 271

21. J. Dunbar, S. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in Graph
Theory, Combinatorics, and Algorithms, vol. 1, 2 (Kalamazoo, MI, 1992) (Wiley, New York,
1995), pp. 311–321

22. S.N. Dusanka Janezic, Ante Milicevic, N. Trinajstic, Graph-Theoretical Matrices in Chemistry
(CRC Press, Boca Raton, 2015)

23. Y.Z. Fan, Y.Y. Tan, The least eigenvalue of signless Laplacian of non-bipartite graphs with
given domination number. Discrete Mathematics 334, 20–25 (2014). https://doi.org/10.1016/
j.disc.2014.06.021. http://www.sciencedirect.com/science/article/pii/S0012365X14002489

24. M. Fiedler, Algebraic connectivity of graphs. Czechoslovak Math. J. 23(98), 298–305 (1973)
25. M. Fürer, C. Hoppen, D.P. Jacobs, V. Trevisan, Eigenvalue location in graphs of small clique-

width. Linear Algebra Appl. 560, 56–85 (2019). https://doi.org/10.1016/j.laa.2018.09.015.
http://www.sciencedirect.com/science/article/pii/S0024379518304506

26. R.L. Graham, H.O. Pollak, On the addressing problem for loop switching. Bell Syst. Tech. J.
50(8), 2495–2519 (1971). https://doi.org/10.1002/j.1538-7305.1971.tb02618.x

27. R. Grone, R. Merris, The Laplacian spectrum of a graph. II. SIAM J. Discrete Math. 7(2),
221–229 (1994). https://doi.org/10.1137/S0895480191222653

28. J.M. Guo, X.L. Wu, J.M. Zhang, K.F. Fang, On the distribution of Laplacian eigenvalues of
a graph. Acta Math. Sin. (Engl. Ser.) 27(11), 2259–2268 (2011). http://dx.doi.org/10.1007/
s10114-011-8624-y

29. I. Gutman, Acyclic systems with extremal Hückel π -electron energy. Theoretica Chimica Acta
45, 79–87 (1977)

30. I. Gutman, X. Li, Energies of Graphs - Theory and Applications (University of Kragujevac and
Faculty of Science Kragujevac, Kragujevac, 2016), p. 293

31. W.H. Haemers, Are almost all graphs determined by their spectrum? Not. S. Afr. Math. Soc.
47(1), 42–45 (2016)

32. P. Hansen, C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs. Linear
Algebra Appl. 432(12), 3319–3336 (2010). https://doi.org/10.1016/j.laa.2010.01.027. http://
www.sciencedirect.com/science/article/pii/S0024379510000406

33. J. Har, A note on Laplacian eigenvalues and domination. Linear Algebra Appl. 449, 115–118
(2014). http://dx.doi.org/10.1016/j.laa.2014.02.025

34. C.X. He, M. Zhou, A sharp upper bound on the least signless Laplacian eigenvalue using
domination number. Graphs Comb. 30(5), 1183–1192 (2014). https://doi.org/10.1007/s00373-
013-1330-z

35. C.X. He, B.F. Wu, Z.S. Yu, Extremal energies of trees with a given domination number.
MATCH Commun. Math. Comput. Chem. 64(1), 169–180 (2010). http://match.pmf.kg.ac.rs/
electronic_versions/Match64/n1/match64n1_169-180.pdf

36. S.T. Hedetniemi, D.P. Jacobs, V. Trevisan, Domination number and Laplacian eigenvalue dis-
tribution. Eur. J. Combin. 53, 66–71 (2016). URL http://dx.doi.org/10.1016/j.ejc.2015.11.005

37. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, New York,
2012)

38. D.P. Jacobs, V. Trevisan, Locating the eigenvalues of trees. Linear Algebra Appl. 434(1), 81–88
(2011). http://dx.doi.org/10.1016/j.laa.2010.08.006

39. D.P. Jacobs, V. Trevisan, F. Tura, Eigenvalue location in threshold graphs. Linear Algebra Appl.
439(10), 2762–2773 (2013). http://dx.doi.org/10.1016/j.laa.2013.07.030

40. D.P. Jacobs, V. Trevisan, F.C. Tura, Eigenvalue location in cographs. Discrete Appl. Math. 245,
220–235 (2018). https://doi.org/10.1016/j.dam.2017.02.007. http://www.sciencedirect.com/
science/article/pii/S0166218X17300926

41. F. Jaeger, C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d’absorption d’un
graphe simple. C. R. Acad. Sci. Paris Sér. A-B 274, A728–A730 (1972)

42. H. Liu, M. Lu, Bounds of signless Laplacian spectrum of graphs based on the k-domination
number. Linear Algebra Appl. 440, 83–89 (2014). https://doi.org/10.1016/j.laa.2013.10.020.
http://www.sciencedirect.com/science/article/pii/S002437951300640X

43. M. Lu, H. Liu, F. Tian, Bounds of Laplacian spectrum of graphs based on the domination
number. Linear Algebra Appl. 402, 390–396 (2005). https://doi.org/10.1016/j.laa.2005.01.006

https://doi.org/10.1016/j.disc.2014.06.021
http://www.sciencedirect.com/science/article/pii/S0012365X14002489
https://doi.org/10.1016/j.laa.2018.09.015
http://www.sciencedirect.com/science/article/pii/S0024379518304506
https://doi.org/10.1002/j.1538-7305.1971.tb02618.x
https://doi.org/10.1137/S0895480191222653
http://dx.doi.org/10.1007/s10114-011-8624-y
https://doi.org/10.1016/j.laa.2010.01.027
http://www.sciencedirect.com/science/article/pii/S0024379510000406
http://dx.doi.org/10.1016/j.laa.2014.02.025
https://doi.org/10.1007/s00373-013-1330-z
http://match.pmf.kg.ac.rs/electronic_versions/Match64/n1/match64n1_169-180.pdf
http://dx.doi.org/10.1016/j.ejc.2015.11.005
http://dx.doi.org/10.1016/j.laa.2010.08.006
http://dx.doi.org/10.1016/j.laa.2013.07.030
https://doi.org/10.1016/j.dam.2017.02.007
http://www.sciencedirect.com/science/article/pii/S0166218X17300926
https://doi.org/10.1016/j.laa.2013.10.020
http://www.sciencedirect.com/science/article/pii/S002437951300640X
https://doi.org/10.1016/j.laa.2005.01.006


272 C. Hoppen et al.

44. U. Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). http://
dx.doi.org/10.1007/s11222-007-9033-z

45. B. McKay, On the spectral characterisation of trees. Ars Combin. 3, 219–232 (1979)
46. V. Nikiforov, Bounds of graph eigenvalues. I. Linear Algebra Appl. 420(2–3), 667–671 (2007).

http://dx.doi.org/10.1016/j.laa.2006.08.020
47. O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 1962)
48. P. Rowlinson, Dominating sets and eigenvalues of graphs. Bull. Lond. Math. Soc. 26(3), 248–

254 (1994). https://doi.org/10.1112/blms/26.3.248
49. A.J. Schwenk, Almost all trees are cospectral, in New Directions in the Theory of Graphs (Proc.

Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, MI, 1971), pp. 275–307 (Academic Press,
New York, 1973)

50. W. Shi, L. Kang, S. Wu, Bounds on Laplacian eigenvalues related to total and signed
domination of graphs. Czechoslov. Math. J. 60(2), 315–325 (2010). https://doi.org/10.1007/
s10587-010-0035-1
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Varieties of Roman Domination

M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, and L. Volkmann

1 Introduction

For a graph G= (V, E), a function f : V →{0, 1, 2} is a Roman dominating function,
or just an RDF, if every vertex u for which f (u)= 0 is adjacent to at least one vertex
v for which f (v)= 2. The weight of a function f is ω(f )=∑

v ∈ Vf (v). The Roman
domination number γ R(G) of a graph G is the minimum weight of an RDF of G.
Roman domination was introduced in 2004 by Cockayne, Dreyer, and Hedetniemi
[35] and is now well studied with over 200 papers published on it and its variations.
For more on Roman domination, we refer the reader to the chapter written by the
authors on Roman domination in [30]. In it, we covered the core results on Roman
domination. In this chapter, we continue that survey to include variations of Roman
domination. As of the time of this writing, there are at least twenty known Roman
domination-related parameters that we review nine of them, each in a separate
section. The remainder is surveyed in [31].
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For a positive integer k and a function f : V →{0, 1, . . . , k}, the weight of f is
w(f )=∑

v ∈ Vf (v), and for S⊆V we define f (S)=∑
v ∈ Sf (v). So w(f )= f (V ). For

every i∈ {0, 1, . . . , k}, let Vi be the set of vertices assigned the value i under
a function f. Note that there is a 1-to-1 correspondence between the functions
f : V →{0, 1, . . . , k} and the ordered partitions (V0, V1, . . . , Vk) of V , so we will
write f = (V0, V1, . . . , Vk).

For a graph G, we denote by γ (G) the domination number, γ t(G) the total
domination number, and i(G) the independent domination number.

2 Weak Roman Domination

In 2003, Henning and Hedetniemi [47] considered a less restrictive version of
Roman domination, which they called weak Roman domination,but still guarantee-
ing the defense of the Roman Empire from a single attack. Let f = (V0, V1, V2) be
a function on a graph G= (V, E). A vertex v with f (v)= 0 is said to be undefended
with respect to f if it is not adjacent to a vertex u with f (u) > 0. A function f is
called a weak Roman dominating function (WRDF) if each vertex v with f (v)= 0
is adjacent to a vertex u with f (u) > 0, such that the function f ′ = (V ′

0, V
′
1, V

′
2)

defined by f
′
(v)= 1, f

′
(u)= f (u)− 1, and f

′
(w)= f (w) for all w∈V �{v, u}, has no

undefended vertex. The weak Roman domination number γ r(G) is the minimum
weight of a WRDF in G. It should be noted that few papers have been published on
weak Roman domination.

Few exact values on the weak Roman domination number have been established.
For cycles and paths, Henning and Hedetniemi [47] obtained the following.

Proposition 2.1 ([47]) For every n≥ 4, γr(Cn) = γr(Pn) =
⌈

3n
7

⌉
.

Roushini Leely Pushpam and Malini Mai [76] extended the exact value on paths
to 2-by-n grid graphs G{2,n} (Figure 1).

Fig. 1 The construction for G{2,n}, where n= 5k+ i, 0≤ i≤ 4. Filled-in circles denote vertices in
V1
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Proposition 2.2 ([76]) For any 2-by-n grid graph G{2,n},

γr(G{2,n}) =
⎧
⎨

⎩

⌊
4n
5

⌋
if n ≡ 0 (mod 5),

⌊
4n
5

⌋
+ 1 otherwise.

Independently, Valveny and Rodríguez-Velázquez [81] and Zhu and Shao [84]
showed that for any connected nontrivial graph G of order n, γr(G) ≤ 2n

3 . Moreover,
Zhu and Shao [84] characterized the connected graphs achieving equality.

Theorem 2.3 ([84]) If G is a connected graph of order n, then γr(G) = 2n
3 if and

only if every vertex with degree at least 2 is adjacent to exactly two leaf neighbors.

2.1 Relationships with γ R and γ

Since for every WRDF f = (V0, V1, V2), V �V0 is a dominating set in G and every
Roman dominating function on G is a WRDF, we have the following inequality
chain which was observed in [47].

Theorem 2.4 ([47]) For every graph G,

γ (G) ≤ γr(G) ≤ γR(G) ≤ 2γ (G). (1)

Moreover, they provided a characterization of graphs G for which γ (G)= γ r(G)
and the forests G for which γ r(G)= 2γ (G)

Theorem 2.5 ([47]) For any graph G, γ (G)= γ r(G) if and only if there exists a
γ (G)-set S such that

(i) pn(v, S) induces a clique for every v∈ S;
(ii) for every vertex u∈V (G)� S that is not a private neighbor of any vertex of S,

there exists a vertex v∈ S such that v dominates u and pn(v, S)∪{u} induces a
clique.

For the purpose of characterizing the class of trees T for which γ (T)= γ r(T),
Roushini Leely Pushpam and Malini Mai [76] defined a family F of trees T
satisfying the following four conditions (Figure 2).

• No vertex of T is a strong support.
• If u∈V (T) is a non-support, which is adjacent to a support, then N(u) contains

exactly one vertex which is neither a support nor adjacent to a support, and all
other members of N(u) are either supports or adjacent to supports.

• For any vertex u of degree at least two, there exists at least one leaf v such that
dT (u, v)≤ 3.

• Two vertices which are neither supports nor adjacent to supports are not adjacent.
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u

Fig. 2 A tree T ∈ E

Theorem 2.6 ([76]) For any tree T, γ (T)= γ r(T) if and only if T ∈ F .

Split graphs G such that γ (G)= γ r(G) were also characterized in [76] as follows.

Theorem 2.7 ([76]) For any split graph G, γ (G)= γ r(G) if and only if G is the
corona of Kn

2
for some even integer n.

Clearly, if G is a graph with γ r(G)= γ R(G), then every γ R(G)-function is also a
γ r(G)-function. However, not every γ r(G)-function is a γ R(G)-function even when
γ r(G)= γ R(G). For example, the double star S(2, 2) has three γ r(S(2, 2))-functions
but only two γ r(S(2, 2))-functions are γ R(S(2, 2))-functions. Hence, we say that
γ r(G) and γ R(G) are strongly equal, denoted by γ r(G)≡ γ R(G), if every γ r(G)-
function is a γ R(G)-function. It is worth mentioning that Haynes and Slater in
[44] were the first to introduce strong equality between two parameters. Alvarado,
Dantas, and Rautenbach [10] characterized the trees T with γ r(T)≡ γ R(T). Never-
theless, a characterization of trees T with γ r(T)= γ R(T) was given in [84]. It was
also shown in [10] that the problem of deciding whether γ r(G)= γ R(G) for a given
graph G is NP-hard.

Chellali et al. [27] gave an upper bound on the weak Roman domination number
of connected claw-free graphs G in terms of their total domination number γ t(G).

Theorem 2.8 ([27]) Let G be a nontrivial, connected, claw-free graph. Then,

(i) γr(G) ≤ 3
2γt (G);

(ii) if further, G is {K1,3 + e}-free, then γ r(G)≤ γ t(G).

2.2 Nordhaus–Gaddum Type Bounds

Nordhaus–Gaddum type results on the weak Roman domination of a graph and its
complement were provided by Valveny and Rodríguez-Velázquez in [81].

Theorem 2.9 ([81]) The following statements hold for any graph G of order n.

(i) γr(G)+ γr(G) ≤ n+ 1.

(ii) γr(G)γr(G) ≤ (n+1)2

4 .

Furthermore, if G � C5 is a connected graph with δ(G)≥ 2 and
Δ(G)≤ n− 3, then the following two statements hold.
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(iii) γr(G)+ γr(G) ≤ n− 1 if n is odd, and γr(G)+ γr(G) ≤ n if n is even.

(iv) γr(G)γr(G) ≤ (n−1)2

4 if n is odd, and γr(G)γr(G) ≤ n2

4 if n is even.

The reader can find in [81] two examples of graphs showing the sharpness of all
inequalities in Theorem 2.9.

2.3 Algorithmic and Complexity Results

In [47], it is shown that the decision problem for the weak Roman domination
is NP-complete, even when restricted to bipartite or chordal graphs by describing
a polynomial transformation from the well-known NP-complete decision problem
corresponding to the problem of computing the domination number γ (G). Further-
more, Liu, Peng, and Tang [66] designed a linear-time algorithm for solving the
weak Roman domination problem on block graphs. In [23], the authors have proven
that the weak Roman domination problem can be solved in O∗ (2n) time needing
exponential space, and have described an O∗ (2.2279n) algorithm using polynomial
space. Moreover, they proved that the problem can be solved in linear time on
interval graphs.

3 Independent Roman Domination

Independent Roman dominating functions were defined in [35] by Cockayne et al.,
but Adabi et al. [7] were the first to study these functions. A Roman dominating
function f = (V0, V1, V2) is an independent Roman dominating function (IRDF) if
the set V1 ∪V2 is independent. The independent Roman domination number iR(G)
is the minimum weight of an IRDF on G. Independent Roman domination has been
studied in [7, 24, 38, 53, 57].

3.1 Bounds on iR

It was observed in [7] that for every graph G of order n, iR(G)≤ n, with equality
if and only if G # pK2 ∪ Kq , for any positive integers p and q with n= 2p+ q.
Other bounds on the independent Roman domination number have been established
by Ebrahimi et al. [38], which are summarized by the following result.

Proposition 3.1 ([38]) Let G be a graph of order n and girth g(G). Then,

(i) iR(G)≤ n−Δ(G)+ 1;

(ii) iR(G) ≤ n−
⌈

diam(G)−1
3

⌉
;

(iii)
⌊

2g(G)+2
3

⌋
≤ iR(G) ≤ n−

⌈
g(G)−2

3

⌉
.
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We note that it had been previously known that γ R(G)≤ n−�(G)+ 1. For the
class of trees T, Ebrahimi et al. [38] gave an upper bound on the independent
Roman domination number in terms of the order of T. Moreover, they provided
a characterization of trees attaining this upper bound.

Theorem 3.2 ([38]) For any tree T on n≥ 3 vertices, iR(T)≤ 4n/5, and equality
holds if and only if there exists a partition V (T)=X1 ∪ . . . ∪Xk of V (T) such that
each Xi induces a path P5 and the subgraph induced by the central vertices of these
paths is connected.

The first Nordhaus–Gaddum inequality for the independent Roman domination
number was given in [38].

Proposition 3.3 ([38]) For any graph G of order n≥ 3,

5 ≤ iR(G)+ iR(G) ≤ n+ 3.

Equality holds in the lower bound if and only if G or G is K3, or (δ(G), Δ(G))
or (δ(G),�(G)) = (1, n − 1), and in the upper bound if and only if G or G is C5
or n

2K2.

Proposition 3.4 ([38]) If G is a connected graph of order n with diam (G)≥ 3, then

6 ≤ iR(G)+ iR(G) ≤ n− δ(G)+ 4.

3.2 Relationships Between iR and γ R

The relationship between iR(G) and γ R(G) has been studied in [7, 24, 53, 57], where
some interesting results bounding iR(G) in terms of γ R(G) are given. By definition,
it is obvious that for any graph G, γ R(G)≤ iR(G). Adabi et al. [7] showed that for a
graph G, γ R(G)= iR(G) if and only if there exists a γ R(G)-function f = (V0, V1, V2)
such that V2 is independent. They also showed that the two parameters γ R(G) and
iR(G) are equal for any graph G with maximum degree at most three. Jafari Rad and
Volkmann [57] showed that iR(G)= γ R(G) for a large class of graphs G, by proving
the following result.

Theorem 3.5 ([57]) Let k≥ 2 be an integer. If a graph G does not contain the star
K1,k+1 as an induced subgraph, then

iR(G) ≤ (k − 1)γR(G)− 2(k − 2).

Corollary 3.6 ([57]) If G is a claw-free graph, then γ R(G)= iR(G).

In [7], Adabi et al. presented for any graph G with �(G)≥ 3 an upper bound for
iR(G) in terms of γ R(G) and �(G), by showing that
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iR(G) ≤ γR(G)+ (γR(G)− 2)

2
(�(G)− 3).

However, this bound has been improved by Jafari Rad [53] as follows. Let k≥ 4, and
let H be a bipartite graph with partite sets A and B each of cardinality k− 1 such
that iR(H)≥ k with the condition that if iR(H)= k, then for every iR(H)-function f,
either f (A)= 0 or f (B)= 0. Let Gk be the graph obtained from H by adding two new
vertices x and y, and adding edges xy, xu for all u∈A, and yv for all v∈B.

Theorem 3.7 ([53]) For any connected graph G with 4≤Δ(G)≤ 6, iR(G) ≤
�(G)+1

4 γR(G), with equality if and only if G is a double star S(Δ, Δ) or G=GΔ.

Theorem 3.8 ([53]) For any graph G with Δ(G)≥ 7,

iR(G) ≤
⌈

(�(G)− 18

5
)γR(G)

⌉

− 1.

The proof of Theorem 3.7 has allowed Jafari Rad to deduce also the following
result.

Corollary 3.9 ([53]) If G is a graph in which the vertices of degree at least 4 form
an independent set, then iR(G)= γ R(G).

In [57], Jafari Rad and Volkmann defined Roman domination perfect graphs
which is a concept closely related to domination perfect graphs introduced by Sum-
ner [80] in 1990. A graph G is called Roman domination perfect if γ R(H)= iR(H)
for any induced subgraph H of G. They showed that a graph is Roman domination
perfect if it does not contain eight forbidden induced subgraphs (the same as those
given in [39]). In particular, chordal graphs that do not contain a double star S(2, 2)
as an induced subgraph are Roman domination perfect.

We close this subsection by mentioning that a constructive characterization of
trees with strong equality between the Roman domination and independent Roman
domination numbers was given by Chellali and Jafari Rad in [24].

3.3 Relationships Between iR and i

It has been noticed in [7] that for any graph G, i(G)≤ iR(G)≤ 2i(G). Adabi et al.
[7] were interested in the characterization of all graphs G with iR(G)= i(G)+ k, for
0≤ k≤ i(G), and they obtained the following.
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Theorem 3.10 ([7]) Let G be any graph of order n. Then,

(i) iR(G)= i(G) if and only if G = Kn;
(ii) iR(G)= i(G)+ 1 if and only if G has a vertex of degree n− i(G);

(iii) for every integer k∈{2, . . . , i(G)}, iR(G)= i(G)+ k if and only if the following
holds.

– For any integer s with 1≤ s≤ k− 1, there is no independent set Ut of
cardinality t such that 1≤ t≤ s and

∣
∣⋃

v∈Ut
N [v]

∣
∣ = n− i(G)− s + 2t.

– There is an independent set Wl of cardinality l for some integer l∈{1, . . . ,

k} such that
∣
∣
∣
⋃

v∈Wl
N [v]

∣
∣
∣ = n− i(G)− k + 2l.

The lower bound i(G) has been improved by Chellali et al. [28] for all nontrivial
connected graphs G. Let G be the family of connected graphs G of order n such that
γ (G)= n/(1+ �(G)). Recall that sets that are both dominating sets and packings
are called efficient dominating sets and have been defined by Bange et al. [16]. Note
that every graph of G admits an efficient dominating set in which every vertex has
maximum degree. Let F be the family of graphs G such that G is the cycle C4 or
the corona of any connected H ∈ G.

Theorem 3.11 ([28]) Let G be a nontrivial connected graph with maximum degree
Δ. Then, iR(G)≥ i(G)+ γ (G)/Δ, with equality if and only if G ∈ F .

We note that for the class of trees, Chellali and Jafari Rad [25] gave a constructive
characterization of trees T with iR(T)= 2i(T), answering an open question in [38].

It should be noted that to our knowledge, the relationship between iR(G) and
the independence number α(G) has not been discussed before and could be an
interesting subject for future work.

3.4 Algorithmic and Complexity Results

It was mentioned in [35] that Alice McRae has also shown that the decision
problem corresponding to independent Roman domination is NP-complete, even
when restricted to bipartite graphs. However, this result was never published.
Liu and Chang [65] have studied the complexity and the algorithmic aspect of
the independent Roman domination problem in a more general context. For real
numbers b≥ a > 0, an independent (a, b)-Roman dominating function is an (a,
b)-Roman dominating function f such that the set of vertices assigned a non-
zero value is independent. Clearly, for b= 2 and a= 1, this is an independent
Roman dominating function. Liu and Chang showed that for any fixed (a, b), the
independent (a, b)-Roman domination problem is NP-complete for bipartite and
chordal graphs. Moreover, using the framework of linear programming and the
strong elimination ordering as a tool, they provided a linear-time algorithm for
the weighted independent (a, b)-Roman domination problem with 2a≥ b≥ a > 0
on strongly chordal graphs.
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4 Roman k-Domination

Kämmerling and Volkmann [59] studied a generalization of the Roman domi-
nating functions. A Roman k-dominating function (Rk-DF) on G is a function
f : V (G)→{0, 1, 2} such that every vertex u for which f (u)= 0 is adjacent to at least
k vertices v1, v2, . . . , vk with f (vi)= 2 for i= 1, 2, . . . , k. The minimum weight
of a Roman k-dominating function on a graph G is called the Roman k-domination
number γ kR(G). An Rk-DF of minimum weight is called a γ kR(G)-function. Clearly,
the Roman 1-domination number γ 1R corresponds to the Roman domination number
γ R. Note that if k≥�(G)+ 1, then γkR(G) = |V |. Hence, it is only interesting to
consider graphs G when k≤�(G). Roman k-domination has been further studied in
[18, 19, 59, 64, 69] and elsewhere.

Let k be a positive integer. A subset S⊆V (G) is a k -dominating set of G if
every vertex of V (G)− S is adjacent to at least k vertices of S. The k-domination
number γ k(G) is the minimum cardinality of a k-dominating set of G. Note that
the 1-domination number γ 1(G) is the classical domination number γ (G). Some
properties of minimum Roman dominating functions given in [35] are generalized
through the following result.

Proposition 4.1 ([59]) Let f= (V0, V1, V2) be any γ kR(G)-function of a graph G.
Then,

(i) The complete bipartite graph Kk,k+1 is not a subgraph of G[V1].
(ii) If w∈V1, then |NG(w) ∩ V2| ≤ k − 1.

(iii) If A={u1, . . . , uk}⊆V0, then |V1 ∩NG(u1) ∩ . . . ∩NG(uk)| ≤ 2k.
(iv) V2 is a minimum k-dominating set of G[V0 ∪V2].
(v) Let H=G[V0 ∪V2], and let v∈V2. Then, there exists a vertex u1 ∈NH(v)∩V0

such that u1 has exactly k− 1 neighbors in V2 −{v}. In addition, there
exists either a second vertex u2 ∈NH(v)∩V0 such that u2 has exactly k− 1
neighbors in V2 −{v} or v has at most k− 1 neighbors in V2 −{v}.

(vi) Let v∈V2 such that degG[V2](v) = k − 1 and v has precisely one neighbor in
V0, say w, with the property that w has exactly k− 1 neighbors in V2 −{v}. If
S1 ⊆V1 is a set such that each vertex of S1 has precisely k− 1 neighbors in
V2 −{v}, then NG(w)∩ S1 =∅.

(vii) Let S2 ⊆V2 be the set of vertices of degree at least k in G[V2], and let
C={x∈V0 : |NG(x) ∩ V2| ≥ k + 1}. Then

|V0| ≥ max

{

|V2| + |V2| + |S2|
2

+ |C|
}

.

4.1 Bounds on γ kR and Relationships with γ k

Proposition 4.2 ([59]) For any graph G,
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γk(G) ≤ γkR(G) ≤ 2γk(G).

Equality holds in the upper bound if and only if G has a γ kR(G)-function f= (V0,
V1, V2) with V1 =∅.

Proposition 4.3 ([59]) If G is a graph of order n, then the following conditions are
equivalent:

(i) γ kR(G)= γ k(G);
(ii) γ k(G)= n;

(iii) Δ(G)≤ k− 1.

An improvement of the upper bound in Proposition 4.2 was given by Bouchou
et al. in [18] for the class of graphs with at most one cycle. Moreover, the authors
characterized extremal graphs attaining the new upper bound.

Theorem 4.4 ([18]) Let T be a tree of order n≥ 3 with �(T ) ≥ k ≥ 2. Then,
γ kR(T)≤ 2γ k(T)− k+ 1, with equality if and only if

(i) k= 2 and T is the subdivision graph of another tree, or
(ii) k= n− 1 and T is a star.

Let K1,p + e denote the graph obtained from a star K1,p by adding an edge
between two leaves of K1,p. Let F be the graph obtained from a path P5 whose
vertices are labeled in order 1, 2, 3, 4, 5 by adding a new vertex x and edges x2 and
x4.

Theorem 4.5 ([18]) Let G be a unicyclic graph and �(G) ≥ k ≥ 3. Then,

γkR(G) ≤ 2γk(G)− k + 1,

with equality if and only if either k∈{3, 4, n− 1} and G=K1,k + e, or k= 3 and
G=F.

Theorem 4.6 ([59]) Let G be a graph of order n. Then,

(i) γkR(G) ≥ 2kn

k +�(G)
;

(ii) γkR(G) ≥ min{n, γk(G)+ k};
(iii) if n≤ 2k, then γ kR(G)= n;
(iv) if n≥ 2k+ 1, then γ kR(G)≥ 2k;
(v) if n≥ 2k+ 1 and γ k(G)= k, then γ kR(G)= γ k(G)+ k= 2k.

Proposition 4.7 ([59]) If G is a graph of order n with at most one cycle and k≥ 2
or a cactus graph with k≥ 3, then γ kR(G)= n.
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Jafari Rad [55] established a probabilistic upper bound on the Roman k-
domination number of a graph improving slightly the one obtained by Hansberg
and Volkmann [43].

Theorem 4.8 ([55]) Let G be a graph of order n, with minimum degree δ≥ 1 and
maximum degree Δ, and let k be a positive integer. If δ+1

ln(δ+1) ≥ 2k, then

γkR(G) ≤ 2n

δ + 1

(

k ln(δ + 1)− ln(2)+
k−1∑

i=0

δi

i!(δ + 1)k−1

)

− 2n

1 +�

(
k ln(δ + 1)− ln(2)

δ + 1

)1+�

.

A slight improvement of Theorem 4.8 is given in [51] by using the well-known
Brooks’ Theorem for vertex coloring. Kämmerling and Volkmann proved a lower
bound on γkR(G) + γkR(G), and characterized the extremal graphs attaining this
lower bound. However, a counterexample of the characterization was given by
Mojdeh and Moghaddam [69] and the result becomes as follows.

Theorem 4.9 ([59, 69]) If G is a graph of order n, then γkR(G) + γkR(G) ≥
min{2n, 4k + 1} and the equality holds if and only if one of the following holds:

(i) n≤ 2k;
(ii) n= 2k+ 1, and either γ k(G)= k or γk(G) = k;

(iii) k= 1, n≥ 4 and G or G has a vertex of degree n− 1 and its complement has a
vertex of degree n− 2.

4.2 Relationships Between γ kR and γ R

Lower bounds on the Roman k-domination in terms of the Roman domination
number have been obtained by Bouchou, Blidia, and Chellali in [19].

Proposition 4.10 ([19]) Let k≥ 2 be an integer and G a graph of order n such that
γ kR(G) < n. Then,

(i) γ kR(G)≥ γ R(G)+ 2k− 4;
(ii) if further G is C4-free, then γ kR(G)≥ γ R(G)+ 2k− 2.

Corollary 4.11 ([19]) If G is a C4-free graph of order n with γ 2R(G) < n, then
γ 2R(G)≥ γ R(G)+ 2.

The next result improves the lower bound of Proposition 4.10-(i) when k= 2.

Proposition 4.12 ([19]) If G is a graph of order n with γ 2R(G) < n, then

γ2R(G) ≥ γR(G)+ 1.
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For k= 3, a characterization of cubic graphs G attaining the lower bound of
Proposition 4.10-(i) has been given in [19] as follows.

Theorem 4.13 ([19]) Let G be a connected cubic graph of order n. Then
γ 3R(G)= γ R(G)+ 2 if and only if G=K4, K3,3 or G is the complement graph
of C6.

For k= 2, the following results have also been obtained in [19].

Theorem 4.14 ([19]) Let G be a connected graph of order n with at most one cycle.
Then γ 2R(G)= γ R(G)+ 1 if and only if G∈{P3, C3, P4, C4, P5, C5}.

A caterpillar is a tree T with the property that the removal of its leaves results
in a path u1, u2, . . . , us which is called the spine of T. A sequence of nonnegative
integers (t1, t2, . . . , ts), where ti is the number of leaves adjacent to ui for s≥ 1 is
associated with T that can be denoted by C(t1, t2, . . . , ts).

Let H = {H1,H2,H3,H4,H5} as illustrated in Figure 3, and let C be the family
of nine caterpillars illustrated in Figure 4.

Theorem 4.15 ([19]) Let T be a tree of order n. Then, γ 2R(T)= γ R(T)+ 2 if and
only if T ∈ {P6, P7, P8} ∪H ∪ C.

For {K1,3, K1,3 + e}-free graphs G, the authors of [19] provided a full characteri-
zation of graphs G such that γ kR(G)= γ R(G)+ t, where t ∈ {2k − 3, 2k − 2,

⌊
n
3

⌋}.
Let Rn denote the complete graph of an even order n minus a perfect matching.
Clearly, Rn is an (n− 2)-regular graph of an even order n.

Theorem 4.16 ([19]) Let G be a connected {K1,3, K1,3 + e}-free graph of order n
and k a positive integer with 2 ≤ k ≤ min

{
�(G) , n

2

}
. Then,

(i) γ kR(G)= γ R(G)+ 2k− 3 if and only if G∈{P3, C3, P4, C4, P5, C5} and k= 2
or G=Rn and k is even or n= 2k;

(ii) γ kR(G)= γ R(G)+ 2k− 2 if and only if G∈{P6, C6, P7, C7, P8, C8} and k= 2,
G=Kn, G=Rn and k is odd with n≥ 2k+ 1, or G=Kp +Rq with p≥ 1, q is
an even integer and n≥ 2k;

(iii) γ2R(G) = γR(G)+ ⌊
n
3

⌋
if and only if G=Pn or Cn for n≥ 9.

H1 H2 H3

H4 H5

Fig. 3 Five trees Hi with γ 2R(Hi)= γ R(Hi)+ 2
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C(3)

C(1, 2) C(2, 2) C(1, 1, 1)

C(2, 0, 1) C(1, 1, 2) C(1, 1, 0, 1)

C(1, 1, 1, 1) C(1, 0, 1, 0, 1)

Fig. 4 Nine caterpillars C with γ 2R(C)= γ R(C)+ 2

4.3 k-Roman Graphs

Generalizing the definition of Roman graphs given in [35], Kämmerling and
Volkmann defined a graph G to be a k-Roman graph if γ kR(G)= 2γ k(G). k-Roman
graphs have been studied mainly in [18], where the following necessary condition
for graphs to be k-Roman is given.

Theorem 4.17 ([18]) If G is a k-Roman graph with k≥ 2, then every vertex of G is
adjacent to at most k− 1 leaves.

For the case k= �, �-Roman graphs were characterized as follows.

Theorem 4.18 ([18]) A graph G is Δ-Roman if and only if G is a bipartite regular
graph.

For k≥ 2, it was shown in [18] that no tree is k-Roman, and for k≥ 3, no cactus
is k-Roman. For 2-Roman unicyclic graphs, the following is obtained.

Theorem 4.19 ([18]) A unicyclic graph G is a 2-Roman graph if and only if G is the
subdivided graph of another unicyclic graph (possibly with a cycle on two vertices).

4.4 Algorithmic and Complexity Results

It is shown in [64] that the decision problem corresponding to the problem of
computing γ kR(G) is NP-complete even when restricted to bipartite graphs and
chordal graphs. Moreover, for k= 2 the decision problem remains NP-complete for
planar graphs. As of this writing, a linear algorithm for computing the Roman k-
domination number for any tree has not yet been designed.
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5 Roman {2}-Domination

In 2016, Chellali, Haynes, Hedetniemi, and McRae [29] defined a new variant of
Roman dominating functions which they called Roman {2} -dominating functions.
A Roman {2}-dominating function f : V →{0, 1, 2} has the property that for every
vertex v∈V with f (v)= 0, f (N(v))≥ 2, that is, either there is a vertex u∈N(v), with
f (u)= 2, or at least two vertices x, y∈N(v) with f (x)= f (y)= 1. In terms of the
Roman Empire, this defense strategy requires that every location with no legion
has a neighboring location with two legions, or at least two neighboring locations
with one legion each. The minimum weight of a Roman {2}-dominating function of
G is the Roman {2}-domination number, denoted γ {R2}(G). It should be noted that
Roman {2}-dominating functions are closely related to {2} -dominating functions
defined in [37] as functions f : V →{0, 1, 2} having the property that for every vertex
u∈V , f (N[u])≥ 2. Observe that a Roman {2}-dominating function f relaxes the
restriction that for every vertex u∈V , f (N[u])=∑

v ∈ N[u]f (v)≥ 2 to only requiring
that this property holds for every vertex assigned 0 under f. Also, for a Roman {2}-
dominating function f, it is possible that f (N[v])= 1 for some vertex with f (v)= 1.
Moreover, it is worth noting that Roman {2}-domination was also studied in 2017
[48] and 2019 [62], where it was called Italian domination. The following property
of γ {R2}(G)-functions can be found in [29].

Proposition 5.1 ([29]) For every graph G, there exists a γ {R2}(G)-function f= (V0,
V1, V2) such that either V2 =∅ or every vertex of V2 has at least three private
neighbors in V0 with respect to the set V2.

In 2018, the independent version of Roman {2}-domination was initiated by
Rahmouni and Chellali [74]. A Roman {2}-dominating function f = (V0, V1, V2)
of G is an independent Roman {2}-dominating function (IR2DF) if the set V1 ∪V2
is independent. The independent Roman {2}-domination number i{R2}(G) is the
minimum weight of an IR2DF on G. One of the main results of [74] relates iR
and i{R2}.

Theorem 5.2 ([74]) For every connected graph G of order n, iR(G)−i{R2}(G) ≤ n
4 .

Note that the bound of Theorem 5.2 is sharp for cycles C4 and C8.

5.1 Bounds on γ {R2} and Relationships with γ , γ 2, γ r, and γ R

We begin by giving a lower bound and an upper bound on the Roman {2}-
domination number established in [29] and [62], respectively.

Theorem 5.3 ([29]) If G is a connected graph of order n and maximum degree Δ,
then γ{R2}(G) ≥ 2n/ (�+ 2).

Theorem 5.4 ([62]) For all connected graphs G with n≥ 3 vertices,
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γ{R2}(G) ≤ 3n

4
.

Proof. It suffices to show that γ{R2}(T ) ≤ 3
4n for an arbitrary spanning tree T of

G. We use an induction on the order n of T. Clearly, the result holds for n∈{3, 4},
establishing the base case. Next, choose an edge e of T and let T1 and T2 be the
components of T − e. If both T1 and T2 have at least three vertices, then the result
follows from induction. So we must only consider the case when there is no such
edge e, and thus T has diameter at most four. Clearly, if the diameter of T is two
or three, then γ{R2}(T ) ≤ 3

4n. Hence, we assume that the diameter of T is four. If
T =P5, then γ{R2}(T ) = 3 ≤ 3

4n. Thus, let T �=P5. Then, T has a vertex of degree at
least three and order n≥ 6. Let v be a vertex in T of minimum eccentricity. Then, v
has degree at least three, and every neighbor of v has degree at most two (otherwise,
the deletion of some edge incident with v provides two components each of order at
least three). In this case, let f (v)= 2, f (u)= 1 for each leaf u of T that is not adjacent
to v, and f (w)= 0 for each other vertex. This shows that γ{R2}(T ) ≤ 3

4n.

A characterization of connected extremal graphs attaining the upper bound in
Theorem 5.4 was provided by Haynes, Henning, and Volkmann [46]. Let F be an
arbitrary connected graph of order nF , and let G be the graph of order n= 4nF

obtained from F by adding to each vertex v of F three new vertices u, w and x and
the edges uv, vw, and wx. It can be seen that in any minimum Roman {2}-dominating
function f on such a graph G, f ({u, v, w, x})≥ 3. Let G be the family of all such
graphs G.

Theorem 5.5 ([46]) Let G be a connected graph of order n≥ 3. Then, γ{R2}(G) =
3
4n if and only if G ∈ G.

The parameters γ {R2}(G) and γ 2(G) for arbitrary graphs G are related as follows.

Proposition 5.6 ([29]) For every graph G, γ (G)≤ γ {R2}(G)≤ γ 2(G).

It is shown in [62] that for any graph G, γ {R2}(G)= γ 2(G) if and only if there is
a γ {R2}(G)-function f = (V0, V1, V2) such that V2 =∅. In particular, Klostermeyer
and MacGillivray showed that for cactus graphs G with δ(G)= 2, γ {R2}(G)= γ 2(G).
Hajibaba and Jafari Rad [41] were interested in graphs G such that γ (G)= γ {R2}(G)
and they proved the following result.

Theorem 5.7 ([41]) For any nontrivial graph G, γ (G)= γ {R2}(G) if and only if
γ (G)= γ 2(G).

Moreover, Hajibaba and Jafari Rad provided a constructive characterization
of all connected graphs G with γ (G)= γ {R2}(G) which solves the question of
characterizing all connected graphs G with γ (G)= γ 2(G) posed by Hansberg and
Volkmann in [42].

On the other hand, Caro and Rodity [21] showed that γ2(G) ≤ 2
3n for every

graph of order n with δ(G)≥ 2, while Chen and Zhou [33] showed that γ2(G) ≤ 1
2n

for every graph of order n with δ(G)≥ 3. As a consequence, Proposition 5.6 leads
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Fig. 5 Graph G with
γ (G) < γ r(G) < γ {R2}(G) < γ R(G) < 2γ (G)

v z c4 u

a c1 b

c6

c5

c2

c3

x

w y r

s

t

to the following corollary that improves the upper bound of Theorem 5.4 for graphs
G with δ(G) > 1.

Corollary 5.8 ([62]) Let G be a graph of order n. Then,

(i) if δ(G)≥ 2, then γ{R2}(G) ≤ 2
3n;

(ii) if δ(G)≥ 3, then γ{R2}(G) ≤ 1
2n.

Extremal connected graphs attaining the upper bound in Corollary 5.8-(i) have
been characterized by Haynes, Henning, and Volkmann [46]. For two graphs G and
H, the corona graph G ◦H is the graph obtained from one copy of G and |V (G)|
copies of H and joining the ith vertex of G to every vertex in ith copy of H. Let
G≥2 = {G ◦K2 | G is a connected graph}.
Theorem 5.9 ([46]) Let G be a connected graph of order n with δ(G)≥ 2. Then,
γ{R2}(G) = 2

3n if and only if G ∈ G≥2.

For graphs with maximum degree �≤ 2, any γ {R2}(G)-function f = (V0, V1, V2)
satisfying Proposition 5.1 must have V2 =∅, and so V1 is a 2-dominating set of G.
Because of this, γ{R2}(Pn) = �(n+ 1)/2� and γ{R2}(Cn) = �n/2� .

An interesting string of inequalities is established in [29] relating the parameters
γ , γ r, γ {R2}, and γ R. This string extends the inequality chain (1) given in Subsection
2.1 as follows.

Theorem 5.10 ([29]) For every graph G, γ (G)≤ γ r(G)≤ γ {R2}(G)≤ γ R(G)≤ 2γ (G).

Furthermore, the authors of [29] provided the graph G illustrated in Figure 5
showing the strictness of all inequalities in Theorem 5.10. Indeed, for such a graph
G, we have γ (G)= 6, γ r(G)= 8, γ {R2}(G)= 9, γ R(G)= 11, and 2γ (G)= 12.

In 2019, Martínez and Yero [68] gave a constructive characterization of trees
T with γ {R2}(T)= γ R(T). In [62], Klostermeyer and MacGillivray have shown
that γ {R2}(T)≥ γ (T)+ 1 for any nontrivial tree T, and in [48], Henning and
Klostermeyer characterized all trees T with γ {R2}(T)= γ (T)+ 1.

For positive integers r and s, let Fr,s be the tree obtained from a double star S(r,
s) by subdividing every edge exactly once. Let F be the family of all such trees Fr,s;
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that is, F = {Fr,s | r, s ≥ 1}. Also, let T be the family of trees Tk,j of order k≥ 2,
where k≥ 2j+ 1 and j≥ 0, obtained from a star by subdividing j edges exactly once.

Theorem 5.11 ([48]) Let T be a nontrivial tree. Then, γ {R2}(T)= γ (T)+ 1 if and
only if T ∈ F ∪ T .

Henning and Klostermeyer [48] gave also a constructive characterization of all
trees T with γ {R2}(T)= 2γ (T), which are called Italian trees.

5.2 Nordhaus–Gaddum Type Bounds

Nordhaus–Gaddum type results on the Roman {2}-domination of a graph and its
complement have been established by Haynes, Henning, and Volkmann [46].

Theorem 5.12 ([46]) If G is a graph of order n≥ 3, then 5 ≤ γ{R2}(G) +
γ{R2}(G) ≤ n+ 2. Further, if γ{R2}(G) ≤ γ{R2}(G), then γ{R2}(G)+ γ{R2}(G) = 5
if and only if there exists a vertex in G of degree n− 1 with a neighbor of degree 1
in G or with two adjacent neighbors of degree 2 in G.

The upper bound in Theorem 5.12 has been slightly improved for graphs with no
small components.

Theorem 5.13 ([46]) If G is a graph of order n≥ 16 and having no component with
fewer than three vertices, then γ{R2}(G)+ γ{R2}(G) ≤ n− 1.

5.3 Algorithmic and Complexity Results

In [29], it is shown that the decision problem corresponding to the problem
of computing γ {R2}(G) is NP-complete even when restricted to bipartite graphs.
Furthermore, Chen and Lu [34] showed that the problem remains NP-complete
even for split graphs, and designed a linear-time algorithm for computing the
value i{R2}(T) for any tree T, answering an open problem posed in [74]. Note
that Rahmouni and Chellali showed that the decision problem corresponding to
the problem of computing i{R2}(G) is NP-complete for bipartite graphs. Poureidi
et al. [71] showed that the decision problem for computing the independent
Roman {2}-domination number is NP-complete even when restricted to chordal
graphs. Furthermore, aiming to answer a problem in [26] on a parameter, namely,
independent 2-Rainbow domination number, they proposed a linear algorithm that
in particular can compute the independent Roman {2}-domination number of a given
tree, providing an answer to the open problem posed in [74].
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6 Double Roman Domination

In 2016, Beeler, Haynes, and Hedetniemi [17] defined a stronger version of Roman
domination which they called double Roman domination. This new strategy, where
three legions can be deployed at a given location, offers a high level of defense
ensuring that any attack can be defended by at least two legions.

A double Roman dominating function (DRDF) on a graph G is a function f = (V0,
V1, V2, V3) that satisfies the following conditions: (i) If f (v)= 0, then v must have
one neighbor in V3 or at least two neighbors in V2; (ii) If f (v)= 1, then v must have at
least one neighbor in V2 ∪V3. The double Roman domination number γ dR(G) equals
the minimum weight of a double Roman dominating function on G, and a DRDF of
G with weight γ dR(G) is called a γ dR-function of G. Double Roman domination has
been studied in [2, 3, 5, 13, 40, 56, 82, 83] and elsewhere. The following property
of γ dR-functions was given in [17].

Proposition 6.1 ([17]) For any double Roman dominating function f
′
, there exists a

double Roman dominating function f of no greater weight than f
′
for which no vertex

is assigned the value 1.

According to Proposition 6.1, double Roman dominating functions can be
assumed to be of the form f : V (G)→{0, 2, 3} such that if f (v)= 0, then either v
has a neighbor w with f (w)= 3 or v has two neighbors x and y with f (x)= f (y)= 2.
Therefore, in a very good sense, double Roman domination is equivalent to Roman
{2}-domination as follows. If S⊆V (G) is a solution to double Roman domination,
then by subtracting one from each vertex assigned the value 2 or 3 we get a solution
to Roman {2}-domination. Conversely, if S is a solution to Roman {2}-domination,
then by adding one to every vertex assigned the value 1 or 2 we get a solution to
double Roman domination.

The exact values on the double Roman domination number for paths and cycles
have been established in [2].

Proposition 6.2 ([2]) For n≥ 1,

γdR(Pn) =
{
n if n ≡ 0 (mod 3)
n+ 1 if n ≡ 1 or 2 (mod 3).

Proposition 6.3 ([2]) For n≥ 3,

γdR(Cn) =
{
n if n ≡ 0, 2, 3, 4 (mod 6)
n+ 1 if n ≡ 1, 5 (mod 6).
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6.1 Bounds on γ dR and Relationships with γ , γ R, γ {R2},
and γ 2

Various results relating γ dR(G) to γ (G) and γ R(G) are presented by Beeler et al.
[17]. We begin by the following result involving γ dR(G) and γ R(G) for connected
graphs G.

Proposition 6.4 ([17]) For any nontrivial connected graph G,

1 + γR(G) ≤ γdR(G) ≤ 2γR(G)− 1.

Recall that a wounded spider is the graph obtained by subdividing at most t− 1
of the edges of a star K1,t, for t > 0. The following result due to Zhang et al. [83]
provides a characterization of trees T with γ dR(T)= 2γ R(T)− 1.

Theorem 6.5 ([83]) Let T be a nontrivial tree. Then, γ dR(T)= 2γ R(T)− 1 if and
only if T is a wounded spider.

The domination and double Roman domination numbers are related as follows
for arbitrary graphs.

Theorem 6.6 ([17]) For any graph G, 2γ (G)≤ γ dR(G)≤ 3γ (G).

Both bounds of the previous theorem are sharp. Indeed, if G is a
nontrivial star K1,n−1, then γ dR(G)= 3γ (G)= 3, and if G=K2,k, for k≥ 2,
then γ dR(G)= 2γ (G)= 4. Moreover, Beeler et al. called a graph G having
γ dR(G)= 3γ (G) a double Roman graph. They raised the problem of characterizing
double Roman graphs, in particular the double Roman trees. These have been
independently characterized constructively by Abdollahzadeh Ahangar et al. [3]
and Henning and Jafari Rad [50]. For graphs G such that γ dR(G)= 2γ (G), the
following necessary and sufficient was given in [17].

Theorem 6.7 ([17]) For any graph G, γ dR(G)= 2γ (G) if and only if γ (G)= γ 2(G).

An improvement of the lower bound in Theorem 6.6 was given in [2] as follows.
Recall that γ {R2}(G)≥ γ (G) holds for every graph G.

Proposition 6.8 ([2]) For every connected graph G, γ dR(G)≥ γ {R2}(G)+ γ (G).

Proof. Clearly, the result is valid for graphs of order n∈{1, 2}. Hence, let n≥ 3.
According to Theorem 6.1, let f = (V0, V1, V2, V3) be a γ dR(G)-function with
V1 =∅. Note that V2 ∪V3 dominates V0 and so γ (G) ≤ |V2| + |V3| . Let V ′

0 be
the set of vertices of V0 having at least one neighbor in V3, and let V ′′

0 = V0 − V ′
0.

Now define the function g on G as follows: g(x)= f (x)− 1 for all x∈V2 ∪V3
and g(x)= f (x) for all x∈V0. Clearly, g is a Roman {2}-dominating function on
G, and so γ{R2}(G) ≤ |V2| + 2 |V3| . Therefore, γdR(G) = 2 |V2| + 3 |V3| =
|V2| + |V3| + |V2| + 2 |V3| ≥ γ (G)+ γ{R2}(G).
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As a consequence, the authors of [2] obtained the following result for the class
of trees.

Proposition 6.9 ([2]) Let T be a nontrivial tree. Then, γ dR(T)≥ 2γ (T)+ 1, with
equality if and only if T is a wounded spider.

We also note that a characterization of trees T with γ dR(T)= 2γ (T)+ 2 was
given in [5]. On the other hand, since γ {R2}(G)≤ 2γ (G) holds for any graph G,
Proposition 6.8 leads to γdR(G) ≥ 3

2γ{R2}(G), proved by Hajibaba and Jafari
Rad in [40] who gave further a constructive characterization of trees T with
γdR(T ) = 3

2γ{R2}(T ). Moreover, it was also shown in [40] that for every graph G,
γ dR(G)≤ 2γ {R2}(G). This result improves an earlier upper bound from [2], where is
proved that γ dR(G)≤ 2γ 2(G) for every graph G. Abdollahzadeh Ahangar et al. [2]
also gave a lower bound on the double Roman domination number of a graph G in
terms of the order, maximum degree, and the domination number.

Proposition 6.10 ([2]) For any graph G of order n with maximum degree Δ,

γdR(G) ≥ 2n

�
+ �− 2

�
γ (G).

This bound is sharp for even cycles and paths of order 3k.

It is well known that γ (G) ≥ n
�+1 for every graph G of order n with maximum

degree �. As an immediate consequence, Proposition 6.10 leads to the following
corollary.

Corollary 6.11 ([82]) If G is a graph of order n and maximum degree Δ≥ 1, then

γdR(G) ≥
⌈

3n
�+1

⌉
.

An upper bound on the double Roman domination number of connected graphs
in terms of their order was obtained by Beeler et al. [17], who also characterized
the graphs reaching this upper bound. Let H be the family of connected graphs G of
order n that can be built from n/4 copies of P4 by adding a connected subgraph on
the set of centers of n

4P4.

Theorem 6.12 ([17]) If G is a connected graph of order n≥ 3, then γdR(G) ≤ 5
4n,

with equality if and only if G ∈ H.

The authors [17] observed that every connected graph G having minimum degree
at least two satisfies the inequality γdR(G) ≤ 6n

5 and posed the question whether
this bound can be improved. This question has been settled by Amjadi et al. [13] by
proving that γdR(G) ≤ 8n

7 except when G is a cycle C5. However, this bound has
been improved by Khoeilar et al. [60] as follows, where an infinite family of graphs
attaining the new bound was also provided in [60].

Theorem 6.13 ([60]) Let G be a graph of order n, δ(G)≥ 2 and with no component
isomorphic to C5 or C7. Then, γdR(G) ≤ 11n

10 .
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Moreover, the authors in [17] also asked the question: which classes of graphs,
or trees satisfy γ dR(G)≤ n? This issue has been dealt in [2], where it is proved
that for every graph G with minimum degree at least three, γ dR(G)≤ n. Using the
probabilistic method, Jafari Rad and Rahbani obtained the following upper bound.

Theorem 6.14 ([56]) For a graph G of order n with minimum degree δ,

γdR(G) ≤ 3n
ln 2(1 + δ)− ln 3 + 1

1 + δ
.

6.2 Nordhaus–Gaddum Type Bounds

The first Nordhaus–Gaddum inequalities for the double Roman domination number
were given in [56].

Theorem 6.15 ([56]) If G is a graph of order n≥ 2, then 7 ≤ γdR(G)+ γdR(G) ≤
2n+ 3. Equality holds for the lower bound if and only if G or G is K2, and equality
holds for the upper bound if and only if G or G is a complete graph.

Theorem 6.16 ([56]) If G is a graph of order n≥ 3, then γdR(G)+γdR(G) = 2n+2
if and only if G or G is C5, P4, or a complete graph minus an edge.

Theorem 6.17 ([56]) Let G be a graph of order n. Then,

(i) if n≥ 240 and diam(G)= diam(G) = 2, then γdR(G)γdR(G) < 15
2 n;

(ii) if n≥ 4 and diam(G)≥ 3, then γdR(G)γdR(G) < 15
2 n;

(iii) if n≥ 3 and δ(G)= 1, then γdR(G)γdR(G) ≤ 25
4 n.

6.3 Algorithmic and Complexity Results

In [2], it is shown that the decision problem corresponding to the problem of
computing γ dR(G) is NP-complete even when restricted to bipartite and chordal
graphs. Furthermore, Zhang et al. [83] gave a linear-time algorithm to compute the
value of γ dR(G) for any tree T, answering an open problem posed in [17]. Poureidi
et al. [72] showed that the decision problem associated to double Roman domination
is NP-complete even when restricted to planar graphs. Then, they showed that the
problem of deciding whether a given graph is double Roman is NP-hard even when
restricted to bipartite or chordal graphs. They also gave a linear algorithm that
computes the double Roman domination number of a given unicyclic graph.
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7 Total Roman Domination

A total Roman dominating function (TRDF) of a graph G with no isolated vertex is
a Roman dominating function f = (V0, V1, V2) on G such that the subgraph induced
by V1 ∪V2 under f has no isolated vertex. The total Roman domination number
γ tR(G) is the minimum weight of a TRDF on G. A TRDF with minimum weight
γ tR(G) is called a γ tR(G)-function. The concept of total Roman dominating function
in graphs was introduced in 2016 by Liu and Chang [65], namely total (a, b)-Roman
domination for any given real numbers b≥ a > 0. Total Roman domination is studied
in [1, 4, 12] and elsewhere. The following observation giving some properties of
γ tR(G)-functions can be found in [1].

Observation 7.1 ([1]) Let G be a connected graph of order at least 3 and let
f= (V0, V1, V2) be a γ tR(G)-function. Then, the following hold.

(i) |V2| ≤ |V0| .
(ii) If x is a leaf and y a support vertex in G, then x �∈V2 and y�∈V0.

(iii) If z has at least three leaf neighbors, then f (z)= 2 and at most one leaf neighbor
of z belongs to V1.

The exact values of γ tR for grids G{2,n} and G{3,n} are determined in [6].

Proposition 7.2 ([6]) For n≥ 2, γtR(G{2,n}) =

⎧
⎪⎪⎨

⎪⎪⎩

4n
3 if n ≡ 0 (mod 3)

4n+2
3 if n ≡ 1 (mod 3)

4n+4
3 if n ≡ 2 (mod 3)

and

γ tR(G{3,n})= 2n.

Since the total Roman domination number of any nontrivial connected graph G
of order n is at most n (simply assign a 1 to each vertex of G), it is interesting
to characterize those graphs G for which γ tR(G)= n. This problem has been
considered in [1], where it was shown the following. Let G be the family of graphs
that can be obtained from a C4 : v1v2v3v4v1 by adding k1 + k2 ≥ 1 vertex-disjoint
paths P2 and joining v1 to the end of k1 such paths and joining v2 to the end of k2
such paths (possibly, k1 = 0 or k2 = 0). Let H be the family of graphs that can be
obtained from a double star by subdividing each pendant edge once and subdividing
the non-pendant edge r≥ 0 times.

Theorem 7.3 ([1]) Let G be a connected graph of order n≥ 2. Then, γ tR(G)= n if
and only if one of (i) G is a path or a cycle or (ii) G is a corona of some graph F or
(iii) G is a subdivided star or (iv) G ∈ G ∪H.
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7.1 Bounds and Relations with Some Domination Parameters

In what follows, we present the bounds on γ tR and some relationships with γ ,
γ t, and γ R. It is shown in [1] that for any graph G with no isolated vertex,
2γ (G)≤ γ tR(G)≤ 3γ (G). Amjadi et al. [15] provided a constructive characteriza-
tion of trees T with γ tR(T)= 2γ (T) or γ tR(T)= 3γ (T). Necessary conditions for
graphs G attaining each bound are also established [1].

Theorem 7.4 ([1]) Let G be a graph with no isolated vertex. If γ tR(G)= 2γ (G),
then γ (G)= γ t(G) or there exists a set S of vertices of G such that the following
hold.

(i) G[S]= kK2 for some k≥ 1.
(ii) γ (G− S)= γ t(G− S).

(iii) No neighbor of a vertex of S in G belongs to a γ t(G− S)-set.

Theorem 7.5 ([1]) Let G be a graph with no isolated vertex. If γ tR(G)= 3γ (G),
then every γ (G)-set is a packing in G.

As shown in [1], the converse of Theorem 7.5 is not true and can be seen by
considering the graph Gk, for k≥ 3, obtained from a star K1,k by subdividing k− 1
edges twice and subdividing the remaining edge exactly once. Then, γ (Gk)= k,
while γ tR(Gk)≤ 2(k+ 1) < 3k.

The total domination and total Roman domination numbers are related as follows
for arbitrary graphs.

Theorem 7.6 ([1]) If G is a graph with no isolated vertex, then γ t(G)≤ γ tR(G)≤ 2γ t(G).
Further, the following holds.

(i) γ t(G)= γ tR(G) if and only if G is the disjoint union of copies of K2.
(ii) If γ tR(G)= 2γ t(G) and S is an arbitrary γ t(G)-set, then epn(v, S) �=∅ for all

v∈ S.

According to Theorem 7.6, γ tR(G)≥ γ t(G)+ 1 for every connected graph of
order at least three. It is shown in [1] that connected graphs G of order n≥ 3 satisfy
γ tR(G)= γ t(G)+ 1 if and only if �(G)= n− 1.

By analogy with Roman graphs defined in [35], Abdollahzadeh Ahangar et al. [1]
called a total Roman graph any graph G satisfying γ tR(G)= 2γ t(G). Moreover, they
gave a necessary and sufficient condition for a graph to be a total Roman graph. It
should be noted that a constructive characterization of total Roman trees was given
by Amjadi et al. [12].

Proposition 7.7 ([1]) Let G be a graph without isolated vertices. Then G is a total
Roman graph if and only if there exists a γ tR(G)-function f= (V0, V1, V2) such that
V1 =∅.
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Obviously, for every graph G with no isolated vertex, γ R(G)≤ γ tR(G). An upper
bound relating the total Roman domination number to the Roman domination
number was given by Abdollahzadeh Ahangar et al. [1] as follows.

Theorem 7.8 ([1]) If G is a graph of order n with no isolated vertex, then
γ tR(G)≤ 2γ R(G)− 1. Further, γ tR(G)= 2γ R(G)− 1 if and only if Δ(G)= n− 1.

An upper bound on the total Roman domination number of connected graphs
different from stars in terms of their order, maximum degree, and matching number
was obtained by Abdollahzadeh Ahangar et al. [6] who characterized in addition
the graphs with girth at least 4 reaching this upper bound. Recall that the matching
number α

′
(G) is the size of a largest matching in G.

Theorem 7.9 ([6]) Let G be a graph of order n≥ 4, without isolated vertices,
different from a star. Then, γ tR(G)≤ n−Δ(G)+α

′
(G).

They also gave a lower bound on the double Roman domination number of a
graph G in terms of the order and maximum degree.

Theorem 7.10 ([6]) For any graph G of order n≥ 3 with maximum degree Δ,

γtR(G) ≥
⌈

2n
�

⌉
. This bound is sharp for stars and double stars S(p, p).

The following Nordhaus–Gaddum inequalities for the total Roman domination
are given in [14].

Theorem 7.11 ([14]) If G and G are graphs of order n without isolated vertices,
then

γtR(G)+ γtR(G) ≤ n+ 5.

Furthermore, this bound is sharp for a 5-cycle.

Theorem 7.12 ([14]) If G and G are graphs of order n without isolated vertices,
then

γtR(G)γtR(G) ≤ 6n− 5

with equality if and only if G is 5-cycle.

Campanelli and Kuziak [20] were interested in total Roman domination in the
lexicographic product of two graphs. Recall that the lexicographic product of two
graphs G and H is defined as the graph G ·H with vertex set V (G)×V (H) and edge
set E(G ·H)={(u, v)(u

′
, v

′
)|uu′∈E(G) or ((u= u

′
and vv

′∈E(H))}.
Theorem 7.13 ([20]) If G= (V, E) is a connected graph with a γ tR(G)-function
h= (V0, V1, V2), then for every graph H,

γtR(G) ≤ γtR(G ·H) ≤ γtR(G)+ |V1| .
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Clearly, if V1 =∅, then γ tR(G ·H)= γ tR(G). In particular, if G is a total Roman
graph, then γ tR(G ·H)= γ tR(G) for any graph H. As an immediate consequence of
Theorem 7.13, they obtained the following Vizing’s-like result.

Corollary 7.14 ([20]) If G and H are nontrivial connected graphs, then
γ tR(G ·H)≤ γ tR(G)γ tR(H).

The total Roman domination and total domination numbers are related for the
lexicographic product of graphs as follows.

Proposition 7.15 ([20]) If H is a graph and G is a graph without isolated vertices,
then γ tR(G ·H)≤ 2γ t(G).

If one of the graphs G or H is a path or a cycle, Campanelli and Kuziak [20]
established the following.

Theorem 7.16 ([20]) If H is a graph and G is a path or a cycle of order n, then

n ≤ γtR(G ·H) ≤
⎧
⎨

⎩

n if n ≡ 0 (mod 4),
n+ 1 if n ≡ 1, 3 (mod 4),
n+ 2 if n ≡ 2 (mod 4).

7.2 Algorithmic and Complexity Results

It is shown in [65] that the decision problem corresponding to the problem of
computing γ tR(G) is NP-complete for bipartite graphs. Moreover, as of this writing,
a linear algorithm for computing the total Roman domination number for any
tree has not yet designed. Poureidi et al. [70] studied the complexity issue for
problems of deciding whether for a graph G, γ tR(G)= 2γ (G), γ tR(G)= 2γ t(G), or
γ tR(G)= 3γ (G), and showed that the corresponding decision problems are NP-hard
even when restricted to bipartite graphs.

8 Perfect Roman Domination

As defined in Livingston and Stout in [67], a perfect dominating set (PDS) is
a dominating set S of G for which each vertex in V − S is adjacent to exactly
one vertex in S. The minimum cardinality of a PDS of a graph G is the perfect
domination number γ p(G). Note that every graph G has a PDS since V (G) is
trivially such a set. Perfect domination has been studied by several authors, and
for more details on this concept, the reader is referred to the survey in [61].

The study of the perfect Roman domination was initiated by Henning, Kloster-
meyer, and MacGillivray in [52]. A perfect Roman dominating function (PRDF) on
a graph G is a Roman dominating function f = (V0, V1, V2) on G such that every
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vertex of V0 is adjacent to exactly one vertex assigned in V2. The minimum weight
of a PRDF on G is the perfect Roman domination number γ

p
R (G). A PRDF on G

with weight γ p
R (G) is called a γ

p
R (G)-function.

8.1 Bounds

Note that every graph G has a PRDF since f = (∅, V (G), ∅) is trivially such a
function, and thus γ

p
R (G) ≤ n for all G of order n. One can easily see that this

bound is sharp if and only if �(G)≤ 1.
Henning et al. [52] focused on the class of trees by giving an upper bound

on the perfect Roman domination number in terms of the order. In addition, they
characterized extremal trees attaining this upper bound. Let T be the family of all
trees T whose vertex set can be partitioned into sets, each set inducing a path P5 on
five vertices, such that the subgraph induced by the central vertices of these P5’s is
connected.

Theorem 8.1 ([52]) If T is a tree of order n≥ 3, then γ
p
R (T ) ≤ 4

5n, with equality if
and only if T ∈ T .

The bound of Theorem 8.1 has been improved by Darkooti et al. [36] for trees
T with �(T)≥ 2s(T)− 2, where �(T) and s(T) are the number of leaves and support
vertices of T, respectively.

Theorem 8.2 ([36]) For any tree T of order n≥ 3, γ
p
R (T ) ≤ (4n−

�(T)+ 2s(T)− 2)/5.

Moreover, the same authors also showed that the decision problem associated
with γ

p
R (G) is NP-complete for bipartite graphs.

The question of whether the 4
5n upper bound on the perfect Roman domination

number for trees remains valid for any connected graph G of order n≥ 3 was posed
in [52]. This issue was addressed by Henning and Klostermeyer [49] for regular
graphs, where a positive answer was given to some cases. Other than the case of
cycles Cn for which γ

p
R (Cn) ≤ 4

5n, it is shown the following for k≥ 3.

Theorem 8.3 ([49]) Let G be k-regular graph of order n. Then,

(i) if k= 3, then γ
p
R (G) ≤ 3

4n;
(ii) if k≥ 4, then γ

p
R (G) ≤

(
k2+k+3
k2+3k+1

)
n;

(iii) if k≥ 3 and G has girth at least 7, then γ
p
R (G) ≤

(
k2−k+4
k2+k+2

)
n.

As an immediate consequence of Theorem 8.3, the following result is obtained.

Corollary 8.4 If G is 4-regular or k-regular with k∈{5, 6, 7} and with girth at least
7, then γ

p
R (G) ≤ 4

5n.



Varieties of Roman Domination 299

The relationship between the perfect Roman domination and perfect domination
numbers was raised in [32] and [79]. Obviously, if S is a minimum PDS of a graph
G, then clearly (V − S, ∅, S) is a PRDF of G, and thus γ

p
R (G) ≤ 2γ p(G). We say

that a graph G is a perfect Roman graph if γ p
R (G) = 2γ p(G). An open problem is

to characterize the perfect Roman graphs. A constructive characterization of perfect
Roman trees was given in [79], where 7 operations have been defined to build such
trees. Moreover, it is shown in [32] that γ p(G) may be larger or smaller than γ

p
R (G).

Clearly, for nontrivial stars G, we have γ
p
R (G) > γ p(G). To see the other situation,

consider the following example of graphs given in [32]. Let H be the graph obtained
from a double star S(p, p), (p≥ 3) with central vertices u, v by subdividing the edge
uv with vertex w, and adding 2k (k≥ 3) new vertices, where k vertices are attached
to both u and w and the remaining k vertices are attached to both v and w. Then,
γ p(H)= 2k+ 3 while γ

p
R (H) = 5 and so the difference γ p(H)−γ

p
R (H) can be even

very large. In addition, the following bound relating the perfect Roman domination
and perfect domination numbers for trees was proved in [32], and a constructive
characterization of extremal trees was also given.

Theorem 8.5 ([32]) For any tree T of order n≥ 2, γ p
R (T ) ≥ γ p(T )+ 1.

Haynes and Henning [45] extended the concept of perfect Roman domination
to Italian domination (equivalently Roman {2}-domination) by defining a perfect
Italian dominating function, abbreviated PIDF, on G as a function f : V (G)→{0, 1,
2} such that for every vertex u∈V with f (u)= 0, the total weight assigned by f to
the vertices of N(u) is 2, that is, all the neighbors of u are assigned the weight 0 by
f except for exactly one vertex v for which f (v)= 2 or for exactly two vertices v and
w for which f (v)= f (w)= 1. The perfect Italian domination number of G, denoted
γ
p
I (G), is the minimum weight of a PIDF of G. It was shown in [45] that if G is a

tree on n≥ 3 vertices, then γ
p
I (G) ≤ 4

5n. Haynes and Henning proposed in [45] the
problem of determining the best possible constants cG such that γ p

I (G) ≤ cG × n

for all graphs of order n when G is a planar or regular graph. This problem has been
dealt by Lauri and Mitillos in [63], by proving that cG = 1 when G is planar or split
and cG = 2/3 when G is cubic.

8.2 Algorithmic and Complexity Results

Lauri and Mitillos in [63] studied the complexity-theoretic questions for perfect
Italian domination number. They proved that deciding whether a given graph G
admits a perfect Italian dominating function of weight at most k is NP-complete,
even when G is restricted to the class of bipartite planar graphs. They also strengthen
the result of Chellali et al. [29] by showing that deciding whether G admits a Roman
{2}-dominating function of weight at most k is NP-complete, even when G is both
bipartite and planar.
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9 Strong Roman Domination

In [11], Álvarez-Ruiz et al. defined a new version of Roman domination ensuring
the defense of the Roman empire from multiple attacks, unlike with the strategy
of Roman domination which only guarantees the defense of the empire from a
single attack. Indeed, if several simultaneous attacks occur on weak places (places in
which no army is stationed), then a strong place (in which two legions are deployed)
may not be able to defend efficiently its neighbors. The new strategy suggested by
Álvarez-Ruiz et al. [11] considers that a strong place should be able to defend itself
and at least half of its weak neighbors.

For a given graph G of order n and maximum degree �, let f :
V (G) → {0, 1, . . . ,

⌈
�
2

⌉ + 1}. Let Bi ={v∈V : f (v)= i} for i∈{0, 1}, and
B2 =V (G)− (B0 ∪B1). Then f is called a strong Roman dominating function
(StRDF) for G, if every v∈B0 has a neighbor w, such that w∈B2 and f (w) ≥
1 +

⌈
1
2 |N(w) ∩ B0|

⌉
. The strong Roman domination number γ StR(G) is the

minimum weight of an StRDF on G.
Clearly, γ StR(G)= γ R(G) for all connected graphs G with �(G)≤ 2. In particu-

lar, if G is a path or a cycle of order n, then γStR(G) =
⌈

2n
3

⌉
. Various bounds on

the strong Roman domination number obtained in [11] are gathered in the following
proposition.

Proposition 9.1 ([11]) Let G be a graph of order n with maximum degree Δ. Then,

(i) γR(G) ≤ γStR(G) ≤ (
1 + ⌈

�
2

⌉)
γ (G);

(ii) γStR(G) ≤ n− ⌊
�
2

⌋ ;
(iii) γStR(G) ≥

⌈
n+1

2

⌉
;

(iv) γStR(G) ≤ n−
⌊

1+diam(G)
3

⌋
;

(v) if G has girth g(G)≥ 3, then γStR(G) ≤ n−
⌊

g(G)
3

⌋
.

The following result obtained by using a probabilistic approach is a generaliza-
tion in some sense of the one presented in [35].

Proposition 9.2 ([11]) Let G be a graph of order n, minimum degree δ, and
maximum degree Δ, such that

⌈
�
2

⌉
< δ. Then,

γStR(G) ≤ (1 + ⌈
�
2

⌉
)n

δ + 1

(

ln

(
δ + 1

1 + ⌈
�
2

⌉

)

+ 1

)

.

For the class of trees T, an upper bound on γ StR(T) in terms of the order is
presented. Let H be a tree obtained from a star K1,3 by subdividing each edge exactly
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once. Let Fp be the family of trees obtained from any tree T of order p by identifying
each vertex of T with the central vertex of H so that the H’s are vertex disjoint.

Theorem 9.3 ([11]) If T is a tree of order n, then γStR(T ) ≤ 6
7n, with equality if

and only if T ∈ Fp.

Álvarez-Ruiz et al. have wondered if the 6
7n upper bound on the strong Roman

domination number for trees remains valid for any connected graph G of order n≥ 3.
We close this section by mentioning some algorithmic and complexity results.

It is shown in [11] that the decision problem corresponding to the problem of
computing γ StR(G) is NP-complete for planar graphs. A problem of constructing a
polynomial algorithm for computing the value of γ StR(T) for any tree T is proposed
in [11]. This problem is answered by Poureidi et al. [73] who gave a linear algorithm
that computes the strong Roman domination number of trees.

10 Edge Roman Domination

The study of the edge version of Roman domination was initiated by Roushini
Leely Pushpam and Malini Mai in 2009 [75]. An edge Roman dominating function
(ERDF) of a graph G is a function f : E(G)→{0, 1, 2} such that every edge e
with f (e)= 0 is adjacent to some edge e

′
with f (e

′
)= 2. The weight of an ERDF

f is w(f )=∑
e ∈ E(G)f (e), and the edge Roman domination number of G, denoted

by γ ′
R(G), is the minimum weight of an ERDF of G. An ERDF f : E(G)→{0,

1, 2} can be represented by the ordered partition (E0, E1, E2) of E(G), where
Ei ={e∈E(G) : f (e)= i} for i∈{0, 1, 2}. It is worth mentioning that the edge Roman
domination number of G equals the Roman domination number of its line graph.
Edge Roman domination has been studied in [8, 9, 22, 54, 75, 77] and elsewhere. It
should be noted that as far as we know, no paper has dealt with either the complexity
or the algorithmic aspect of the edge Roman domination problem.

Several properties of edge Roman dominating functions can be obtained analo-
gously to Roman dominating functions given in [35]. Here are some summarized by
the following result.

Proposition 10.1 ([75]) Let f= (E0, E1, E2) be a minimum ERDF of an isolate-free
graph G, such that |E2| is maximum. Then,

(i) E1 is independent.
(ii) The edges of E0 dominate the edges of E1.

(iii) Each edge of E0 is adjacent to at most one edge of E1.
(iv) Let e∈ G[E2] have exactly two private edges e1 and e2 in E0 with respect to

E2. Then there do not exist edges h1, h2 ∈E1 such that (h1, e1, e, e2, h2) is the
edge sequence of a path P6.

Also, it is obvious that for every graph G, γ ′(G) ≤ γ ′
R(G) ≤ 2γ ′(G), where

γ
′
(G) is the edge domination number of G. A characterization of trees with edge
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Roman domination number twice the edge domination number was given by Jafari
Rad in [54].

In [75], it is shown that γ ′
R(Pn) =

⌊
2n
3

⌋
and γ ′

R(Cn) =
⌈

2n
3

⌉
. Akbari et al. [8]

extended the exact value on paths to 2-by-n and 3-by-n grid graphs and proved that

for n≥ 2, γ ′
R(G{2,n}) =

⌈
4n
3

⌉
and γ ′

R(G{3,n}) = 2n. The problem of determining

the edge Roman domination number for every m-by-n grid graph G{m,n} remains
open.

For bounds on the edge Roman domination number, we begin with the class of
trees T, where Akbari et al. [8] have bounded it in terms of the order and number of
leaves of T.

Theorem 10.2 ([8]) If T is a tree of order n with �(T) leaves, then

⌈
2(n− �(T )+ 1)

3

⌉

≤ γ ′
R(T ) ≤

⌈
2(n− 1)

3

⌉

.

For arbitrary graphs, two upper bounds on the edge Roman domination number
have been established by Akbari et al. [8].

Theorem 10.3 ([8]) Let G be a graph of order n with maximum degree Δ. Then,

(i) γ ′
R(G) ≤ 2�

2�+1n;
(ii) if G has a perfect matching, then γ ′

R(G) ≤ 2�−1
2� n.

Furthermore, the authors in [8] conjectured that γ ′
R(G) ≤

⌈
�

�+1n
⌉
. This

conjecture has been disproved by Chang, Chen, and Liu [22] who gave the following
counterexample. Let G(r, t) be the graph obtained from t copies of Kr,r+1 by
adding edges yi

r+1y
i+1
1 for 1≤ i≤ t with yt+1

1 = y1
1 , where the partite sets of

the i-th Kr,r+1 are Xi = {xi
1, . . . , x

i
r } and Yi = {yi

1, . . . , y
i
r+1}. Note that G(r,

t) has order n= (2r+ 1)t and maximum degree �= r+ 1. It was shown then that

γ ′
R(G(r, t)) = 2rt = 2�−2

2�−1n >
⌈

�
�+1n

⌉
when r≥ 2 and t a multiple of r+ 2.

For the class of planar graphs, it is shown in [9] that if G is outerplanar, then
γ ′
R(G) ≤ 4

5n and if G is planar claw-free, then γ ′
R(G) ≤ 6

7n. Furthermore, the
authors in [9] conjectured that γ ′

R(G) ≤ 6
7n for any planar graph G of order n. This

conjecture was proved by Chang, Chen, and Liu in [22]. Also, they obtained several
other bounds that we list below. Recall that a graph G is k -degenerate if for every
subgraph H of G, δ(H)≤ k.

Theorem 10.4 ([22]) If G is a k-degenerate graph of n vertices, then γ ′
R(G) ≤

2k
2k+1n.

Since any tree is 1-degenerate, the upper bound
⌊

2n
3

⌋
in Theorem 10.2 becomes a

simple consequence of Theorem 10.4. Moreover, since every graph is �-degenerate,
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the upper bound in Theorem 10.3 is also a straightforward consequence of Theorem
10.4.

Theorem 10.5 ([22]) If G is a connected graph of order n with maximum degree
Δ, then γ ′

R(G) ≤ 2�−2
2�−1n+ 2

2�−1 .

Theorem 10.6 ([22]) If G is a subcubic graph of order n which does not contain
K3,3 as a component, then γ ′

R(G) ≤ 4
5n.

Theorem 10.7 ([22]) If G is a graph of order n containing no subgraph isomorphic
to a subdivision of K2,3, then γ ′

R(G) ≤ 4
5n.

11 Open Problems

In this chapter, we have surveyed some results concerning nine Roman domination-
related parameters. There is much scope for further research, here are some
suggestions.

1. Determine the weak Roman domination number for every m-by-n grid graph
G{m,n}.

2. Since the problem of deciding whether γ r(G)= γ R(G) for a given graph G is
NP-hard, it is quite interesting to characterize other classes of graphs G, other
than trees, such that γ r(G)= γ R(G).

3. Design an algorithm for computing the Roman k-domination number for any tree
T.

4. [Álvarez-Ruiz et al. [11]] Is it true that for every connected graph G of order
n≥ 3, γStR(T ) ≤ 6

7n?
5. What are the algorithmic, complexity, and approximation properties of edge

Roman domination?
6. Determine the edge Roman domination number for every m-by-m grid graph

G{m,m}.
In [78], it was shown that the generalized Petersen graph P(n, 1) is a double

Roman graph for any n≡ 2 (mod 4), while in [58], it is shown that the generalized
Petersen graph P(n, 2) is not double Roman for all n≥ 3.

7. [Jiang et al. [58]] Find other generalized Petersen graphs that are double Roman.
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in Hypergraphs
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1 Introduction

Domination in hypergraphs has not been studied in as much depth as domination
in graphs. Although the theory of domination in graphs is well developed in the
literature, the theory of domination in hypergraphs is currently in its infant stages.
In this chapter, we give a survey of selected results on domination and total
domination in hypergraphs. We establish an essential connection in hypergraphs
between dominating sets and transversals, and between total dominating sets and
total transversals.

Hypergraphs are systems of sets, which are conceived as natural extensions
of graphs. More formally, a hypergraph H = (V (H), E(H)) is a finite set V (H)
of elements, called vertices, together with a finite multiset E(H) of subsets of
V (H), called hyperedges. If the hypergraph H is clear from the context, we simply
write V =V (H) and E=E(H). We shall use the notation n

H
= |V | (or n(H))

and m
H

= |E| (or m(H)), and sometimes simply n and m without subscripts if
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the hypergraph H is clear from the context, to denote the order and size of H,
respectively. A vertex v∈V is incident with a hyperedge e∈E in H if v∈ e, i.e.,
if the vertex v belongs to the edge e. A hypergraph H is linear if every two distinct
edges of H intersect in at most one vertex.

The edge set E in a hypergraph H = (V, E) is often allowed to be a multiset in the
literature, but in this chapter we exclude multiple edges without loss of generality.
We refer to the cardinality |e| of an edge e in H as its size. In the problems studied
here, we assume that every edge has size at least 2. Throughout this chapter, we
simply refer to a hyperedge as an edge. An isolated edge in H is an edge in H that
does not intersect any other edge in H.

A k-edge in H is an edge of size k. The rank of a hypergraph H is the maximum
size of an edge on H. Thus, H is of rank k if |e|≤ k holds for each edge e∈E in
H. The hypergraph H is k-uniform if every edge of H is a k-edge. Every (simple)
graph is a 2-uniform hypergraph. Thus, graphs are special hypergraphs. For i≥ 2,
we denote the number of edges in H of size i by ei(H). The degree of a vertex v in
H, denoted by dH(v) or d(v) if H is clear from the context, is the number of edges of
H, which contain v. A vertex of degree k is called a degree- k vertex. The minimum
degree among the vertices of H is denoted by δ(H) and the maximum degree by
�(H).

A subhypergraph of a hypergraph H = (V, E) is a hypergraph H′ = (V ′, E′)
satisfying V ′⊆V and E′⊆E (and where E′⊆V ′ by definition of a hypergraph H′).
Given a hypergraph H = (V, E) and a nonempty set X ⊆V , the subhypergraph of H
induced by X is the hypergraph H′ = (V ′, E′) where E′ = {e∈E : e⊆X} and where
V ′⊆X is the set of vertices of H contained in at least one edge e⊆X.

A 2-section graph, H2, of a hypergraph H is defined as a graph H2 with the same
vertex set as H and in which two vertices are adjacent in the graph H2 if and only if
they belong to a common edge in H.

Two vertices x and y in a hypergraph H are adjacent if there is an edge e of H
such that {x, y}⊆ e. The neighborhood of a vertex v in H, denoted by NH(v), is the set
of all vertices different from v that are adjacent to v, while the closed neighborhood
of v is the set NH[v]=NH(v)∪{v}. We call a vertex in NH(v) a neighbor of v in
H. For a subset X ⊆V (H), the neighborhood of X is the set NH(X)=∪x ∈ XNH(x),
while the closed neighborhood of X is the set NH[X]=NH(X)∪X.

Two vertices x and y are connected in the hypergraph H if there is a sequence
x= v0, v1, v2 . . . , vk = y of vertices of H in which vi−1 is adjacent to vi for i∈ [k]. A
connected hypergraph is a hypergraph in which every pair of vertices are connected.
A component of H is a maximal connected subhypergraph of H. Thus, no edge in H
contains vertices from different components.

A subset T ⊆V of vertices in a hypergraph H is a transversal (also called vertex
cover or hitting set in many papers) if for every e∈E, T ∩ e�=∅, that is, every edge
has a vertex in T. A transversal of cardinality τ (H) is called a τ -transversal of H.
A total transversal in H is a transversal T in H with the additional property that
every vertex in T has at least one neighbor in T. The total transversal number τ t(H)
of H is the minimum size of a total transversal in H. A total transversal in H of
cardinality τ t(H) is called a τ t-total transversal of H. Transversals in hypergraphs
are well-studied in the literature (see, for example [6, 11, 15, 23, 27–30, 38, 42]).
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For a subset X ⊂V of vertices in H, we define H −X to be the hypergraph
obtained from H by deleting the vertices in X and all edges incident with X, and
deleting all isolated vertices, if any, from the resulting hypergraph. We note that if
T′ is a transversal in H −X, then T′∪X is a transversal in H. If X ={x}, then we
write H −X simply as H − x.

A dominating set in a hypergraph H is a subset of vertices D⊆V such that for
every vertex v∈V �D, there exists an edge e∈E for which v∈ e and e∩D�=∅.
Equivalently, a set D is a dominating set in H if every vertex outside the set D has
a neighbor in D. The domination number γ (H) is the minimum cardinality of a
dominating set in H. A dominating set of H of cardinality γ (H) we call a γ -set
of H.

A total dominating set, abbreviated TD-set, in H is a subset of vertices D⊆V (H)
such that every vertex in H is adjacent with a vertex in D. Equivalently, a set D
is a total dominating set in H if D is a dominating set in H with the additional
property that for every vertex v∈D there exists an edge e∈E(H) for which v∈ e and
e∩ (D�{v}) �=∅. The total domination number γ t(H) is the minimum cardinality of
a TD-set in H.

We remark that a set is a (total) dominating set in H if and only if it is a
(total) dominating set in the 2-section graph H2. Domination in hypergraphs was
introduced in 2007 by Acharya [2] and studied in [4, 8, 22, 34, 35] and elsewhere,
and also in the Ph.D. thesis of Bibin Jose [33]. Total domination in hypergraphs was
introduced by Bujtás, Henning, Tuza, and Yeo in 2014 [9] and studied further by
Henning and Yeo in 2015 [32].

We use the standard notation [k]={1, . . . , k} and [k]0 ={0, 1, . . . , k}.

2 Domination in Hypergraphs

In this section, we focus on domination in hypergraphs. We proceed as follows. In
Section 2.1, we consider disjoint dominating sets in hypergraphs. In Section 2.2 we
discuss an interplay between domination and transversals in hypergraphs. As a con-
sequence of the results in Section 2.2, we establish in Section 2.3 upper bounds on
the domination numbers of uniform hypergraphs with minimum degree at least one.
In Sections 2.4, 2.5, 2.6, and 2.7, we present results on hypergraphs with specified
edge size having large domination numbers. In Section 2.8, we discuss a general
setting of upper bounds on the domination number in terms of its order and size
and present a general way to formulate the problem. In Section 2.9, we address the
problem of finding the minimum order of a connected, k-uniform hypergraph with
a given domination number. In Section 2.10, we present a Nordhaus–Gaddum-type
result for the sum of domination parameters in hypergraphs and their complements.
Hypergraphs with equality of the domination and transversal numbers are discussed
in Section 2.11. In Section 2.12, we discuss a relationship between domination and
matching in hypergraphs and present an upper bound on the domination number of
a uniform hypergraph in terms of its matching number.
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2.1 Disjoint Dominating Sets

The maximum number of vertex-disjoint dominating sets in a graph G is called the
domatic number of G denoted by dom(G). The domatic number of a graph was
introduced in 1975 by Cockayne and Hedetniemi [12]. The domatic number of a
hypergraph H, denoted by dom(H), is defined analogously as the maximum number
of vertex-disjoint dominating sets in H.

A fundamental result in domination theory in 1962 due to Ore [40] is the property
that every graph without isolated vertices contains two disjoint dominating sets.
Indeed as observed by Ore [40], if G= (V, E) is a graph without isolated vertices,
then the complement V �D of every minimal dominating set D in G is a dominating
set of G. Thus, every 2-uniform hypergraph H without isolated vertices contains
two vertex-disjoint dominating sets; that is, dom(H)≥ 2. This property holds for
k-uniform hypergraphs for all k≥ 2. To see this, recall that an independent set in a
hypergraph H = (V, E) is a set S⊆V such that no two vertices of S are adjacent; that
is, every edge of H intersects S in at most one vertex, and therefore no two vertices
of S belong to the same edge in H.

Proposition 1 For k≥ 2 an integer, every k-uniform hypergraph H without isolated
vertices satisfies dom(H)≥ 2.

Proof. Let S be a maximal independent set in the k-uniform hypergraph H = (V,
E). Thus, |e∩ S| = 1 for every edge e∈E. By the maximality of the set S, every
vertex in V � S is adjacent to at least one vertex in S; that is, if v∈V � S, then there
exists at least one edge ev such that |ev ∩ S| = 1. In particular, we note that the set
S is a dominating set in H. Since H is without isolated vertices, every vertex in S is
adjacent to at least one vertex outside S, implying that V � S is a dominating set of
H. Thus, H has at least two vertex-disjoint dominating sets, namely S and V � S. �

We note that the result of Proposition 1 also holds for hypergraphs without
isolated vertices and where every edge has size at least k. However it is not true that
for any given k≥ 3, every k-uniform hypergraph without isolated vertices contains
k vertex-disjoint dominating sets, as the following result shows.

Proposition 2 For k≥ 3 an integer, there exist k-uniform hypergraphs H without
isolated vertices satisfying dom(H)= 2.

Proof. For a given integer k≥ 3, we construct a k-uniform hypergraph as follows.
Let H′ = (V ′, E′) be a complete (k− 1)-uniform hypergraph on 3k− 5 vertices, that
is, every (k− 1)-element subset of V ′ forms an edge in H′. We now construct a k-
uniform hypergraph H from H′ by adding a new vertex v to each edge e′∈E′ in H′
and replacing the edge e′ with the edge e′∪{v} in such a way that all the new vertices
are distinct and therefore have degree 1 in H. We show that dom(H)= 2. Suppose,
to the contrary, that dom(H)≥ 3. Let D1, D2, D3 be three vertex-disjoint dominating
sets of H. We may assume that (D1, D2, D3) is a partition of V , since vertices not in
D1 ∪D2 ∪D3 can be assigned randomly to some set Di where i∈ [3]. We note that
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3k − 5 = |V ′| =
3∑

i=1

|Di ∩ V (H ′)|.

Renaming the dominating sets D1, D2, D3 if necessary, we may assume that
|D1 ∩V (H′)|≥ (3k− 5)/3, which implies that |D1 ∩V (H′)|≥ k− 1. Thus, there
exists an edge e′∈E′ of H′ such that e′⊆D1 ∩V (H′). Let v be the vertex added
to the edge e′ when constructing H from H′ to produce the edge e= e′∪{v}. At least
one of the two dominating sets D2 and D3 does not contain the vertex v. Such a
dominating set contains no vertex from the edge e and therefore does not dominate
the vertex v, a contradiction. Hence, dom(H)≤ 2. By Proposition 1, dom(H)≥ 2.
Consequently, dom(H)= 2. �

We remark that the hypergraph constructed in the proof of Proposition 2 is
nonlinear. Even if we restrict our attention to linear hypergraphs, it is not true that
for any given k≥ 3, every k-uniform linear hypergraph without isolated vertices
contains k vertex-disjoint dominating sets.

Proposition 3 For k≥ 3 an integer, there exist k-uniform linear hypergraphs H
without isolated vertices satisfying dom(H) < k.

Proof. For a given integer k≥ 3, we construct a k-uniform, linear hypergraph as
follows. Let Y ={y1, y2, . . . , yk+1} be a set of k+ 1 vertices. For each 2-element
subset {yi, yj} of Y where 1≤ i < j≤ k+ 1, let Xij be a set of k− 2 new vertices, and
let

X =
⋃

1≤i<j≤k+1

Xij .

We note that

|Y | = k + 1 and |X| = (k − 2) ·
(
k + 1

2

)

.

Let H = (V, E) be the k-uniform, linear hypergraph with vertex set V =X ∪Y
and with edge set E={eij : 1≤ i < j≤ k+ 1} where eij =Xij ∪{yi, yj}. We note that
each vertex in X has degree 1 in H, while each vertex in Y has degree k in H.

Suppose, to the contrary, that H contains k vertex-disjoint dominating sets, say
D1, D2, . . . , Dk. We may assume that (D1, D2, . . . , Dk) is a partition of V as vertices
not in D1 ∪D2 ∪· · · ∪Dk can be assigned randomly to some set Di where i∈ [k].
Since |Y | = k+ 1 and there are k dominating sets, two vertices of Y must belong
to the same dominating set. Renaming vertices and dominating sets, if necessary,
we may assume that {y1, y2}⊆D1. We now consider the k− 2 vertices that belong
to the set X12. Each such vertex has degree 1 in H and is contained in the unique
edge e12 =X12 ∪{y1, y2} of H. Since |X12| = k− 2 and there are k− 1 remaining
dominating sets D2, . . . , Dk, at least one of these dominating sets contains no vertex
from the edge e12. However such a set dominates no vertex in X12, a contradiction.
Hence, H contains at most k− 1 vertex-disjoint dominating sets. �
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2.2 The Relationship Between Domination and Transversal

In this section, we discuss an interplay between domination in hypergraphs and
transversals in hypergraphs established by Bujtás, Henning, and Tuza [8]. If H is
a 2-uniform hypergraph, that is, when H is a graph, then it is well-known that
every transversal in H is a dominating set of H, implying that γ (H)≤ τ (H). More
generally, every transversal in an arbitrary hypergraph H without isolated vertices is
a dominating set of H, implying that γ (H)≤ τ (H). We state this formally as follows.

Observation 4 If H is a hypergraph without isolated vertices, then γ (H)≤ τ (H).

We shall need the following definition and lemma from [8].

Definition 1 For k≥ 2 an integer, let Hk denote the class of all k-uniform hyper-
graphs H with δ(H)≥ 1. We note that if H ∈ Hk , then

∑

v∈V
dH (v) = k|E| = km

H
.

Lemma 5 ([8]) For k ∈ N and a, b ∈ R, the following hold:

(a) For every H ∈ Hk , for k≥ 2, an
H
+ bm

H
> 0 if and only if b≥ 0 and a > − b

k
.

(b) For every H ∈ Hk−1, for k≥ 3, an
H
+ (a + b)m

H
> 0 if and only if b≥ 0 and

a > − b
k

.

Proof. Suppose that an
H
+ bm

H
> 0 for some k≥ 2 and for every H ∈ Hk .

The k-uniform complete hypergraph H of order n
H
= � and size m

H
= (

�
k

)
gives

a�+ b
(
�
k

)
> 0, which implies that b≥ 0 as �→∞. The k-uniform hypergraph with

exactly one edge of order n
H
= k and m

H
= 1 gives a · k+ b · 1 > 0, and so a > − b

k
.

Hence, both conditions b≥ 0 and a > − b
k

are necessary in part (a).
To prove the sufficiency part in (a), suppose that b≥ 0 and − b

k
< a. We note

that for every hypergraph H ∈ Hk we have by definition that δ(H)≥ 1, and so
m

H
= 1

k

∑
v∈V (H) dH (v) ≥ 1

k
· n

H
, or, equivalently, that n

H
≤ km

H
holds. If

a≤ 0, this implies that an
H
+ bm

H
≥ (ak + b)m

H
> 0. If a > 0, then trivially

an
H
+ bm

H
> 0 holds noting that b≥ 0 by supposition. This proves part (a).

To prove part (b), suppose that k≥ 3, b≥ 0, and − b
k

< a. Similarly as before,
n

H
≤ (k − 1)m

H
holds for every hypergraph H ∈ Hk−1 with k≥ 3. If a≤ 0, this

implies that an
H
+ (a + b)m

H
≥ (a(k − 1) + (a + b))m

H
= (ak + b)m

H
> 0. If

a > 0, then trivially an
H
+ (a + b)m

H
> 0 holds noting that b≥ 0 by supposition.

This proves part (b). �

We are now in a position to prove the following key relationship between the
transversal number and the domination number of uniform hypergraphs.

Theorem 6 ([8]) For every integer k≥ 3 and for a, b ∈ R satisfying b≥ 0 and
a > − b

k
, the following equality holds:

sup
H∈Hk

γ (H)

an
H
+ bm

H

= sup
H∈Hk−1

τ(H)

an
H
+ (a + b)m

H

.
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Proof. Let the parameters a, b, and k be fixed, where k≥ 3 is an integer and a, b ∈
R satisfy b≥ 0 and a > − b

k
. We define

gk = sup
H∈Hk

γ (H)

an
H
+ bm

H

and tk−1 = sup
H∈Hk−1

τ(H)

an
H
+ (a + b)m

H

.

By Lemma 5, we have an
H
+bm

H
> 0 for every H ∈ Hk and an

H
+(a+b)m

H
>

0 for every H ∈ Hk−1. We show first that tk−1 ≤ gk. Let H be an arbitrary
hypergraph in the family Hk−1, and so H is a (k− 1)-uniform hypergraph and
δ(H)≥ 1. Let H have vertex set V (H)={v1, . . . , vn} and edge set E(H)={e1, . . . ,
em}. Let H ′ ∈ Hk be the k-uniform hypergraph constructed from H by adding to it
m new vertices u1, . . . , um and extending each edge ei to the edge e′i = ei ∪{ui} for
i∈ [m]; that is, V (H′)=V (H)∪{u1, . . . , um} and E(H ′) = {e′i : i ∈ [m]}. We note
that H′ has n′ = n+m vertices and m′ =m edges.

Every dominating set of H′ contains at least one vertex from every edge of H′ in
order to dominate the newly added vertices of degree 1, and so τ (H′)≤ γ (H′). By
Observation 4, γ (H′)≤ τ (H′). Consequently, γ (H′)= τ (H′) holds. We also note that
every transversal of H remains a transversal of H′, and so τ (H′)≤ τ (H). Further
we can always choose a τ -transversal T′ of H′ to contain no added vertices of
degree 1 since if T′ contains an added vertex ui for some i∈ [m], then we can
simply replace ui in T′ with a vertex in the edge ei. Thus, T′ is also a transversal
of H, and so τ (H)≤|T′| = τ (H′). Consequently, τ (H)= τ (H′). As observed earlier,
τ (H′)= γ (H′), and so τ (H)= γ (H′). By the definition of gk, we therefore have

τ(H)=γ (H ′) ≤ gk(an
′+bm′)=gk(an+(a+b)m)

and hence

τ(H)

an+ (a + b)m
≤ gk

holds for every hypergraph H ∈ Hk−1. Equivalently, tk−1 ≤ gk.
To prove the converse relation tk−1 ≥ gk, let F be an arbitrary hypergraph in the

family Hk , and so F is a k-uniform hypergraph and δ(F)≥ 1. Let F have order
n and size m. Let F′ be a hypergraph obtained from F by successively deleting
edges of F that do not contain any vertices of degree 1 in the resulting hypergraph
at each stage. We note that F′ is a k-uniform hypergraph with n′ = n vertices and
m′≤m edges. When F is transformed into F′, isolated vertices cannot arise, and so
F ′ ∈ Hk . Since removing edges cannot decrease the domination number, we note
that γ (F)≤ γ (F′). Moreover, every edge of F′ contains at least one vertex of degree
1 and hence τ (F′)= γ (F′). Consequently, τ (F′)≥ γ (F). Deleting exactly one vertex
of degree 1 from each edge of F′, we obtain a (k− 1)-uniform hypergraph F′′ of
order n′′ = n′−m′ and of size m′′ =m′ such that the transversal number remains
unchanged. Thus,

γ (F ) ≤ τ(F ′)=τ(F ′′) ≤ tk−1(an
′′+(a+b)m′′)=tk−1(an

′+bm′) ≤ tk−1(an+bm)
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and hence

γ (F )

an+ (a + b)m
≤ tk−1

holds for every hypergraph F ∈ Hk . Equivalently, gk ≤ tk−1. As shown earlier,
tk−1 ≤ gk. Consequently, gk = tk−1. �

We show next that the uniformity condition in Theorem 6 can be relaxed. For this
purpose, we shall need the following definition from [8].

Definition 2 For an integer k≥ 2, let H+
k ( H−

k ) denote the class of all hypergraphs
H with δ(H)≥ 1, in which every edge is of size at least k ( at most k, respectively) .

As shown in [8], every valid upper bound on the domination number of k-uniform
hypergraphs of the form γ (H) ≤ an

H
+ bm

H
can be extended to hypergraphs with

a less strict condition on edge sizes. The exact formulation will depend, however,
on the sign of a. For a≥ 0, the result of Proposition 7 applies, while for a≤ 0, the
result of Proposition 8 applies. We state these results without proof.

Proposition 7 ([8]) For any two nonnegative reals a and b (with a+ b > 0) and for
every integer k≥ 2, the following equality holds:

sup
H∈H+

k

γ (H)

an
H
+ bm

H

= sup
H∈Hk

γ (H)

an
H
+ bm

H

.

Proposition 8 ([8]) For every integer k≥ 2 and for any two reals a≤ 0 and b > 0, if
a > − b

k
, then the following equality holds:

sup
H∈H−

k

γ (H)

an
H
+ bm

H

= sup
H∈Hk

γ (H)

an
H
+ bm

H

.

2.3 Upper Bounds on the Domination Number

As a consequence of Theorem 6 and known results on the transversal number of a
hypergraph, we establish in this section upper bounds on the domination number of
a k-uniform hypergraph with minimum degree at least one. As remarked in [8], as a
consequence of Theorem 6 the following two-way correspondence is obtained.

• For k≥ 3, if we have a general bound on the transversal number of the form
τ(H) ≤ c1nH

+c2mH
with − c2

k−1 < c1 ≤ c2 for all (k− 1)-uniform hypergraphs
H ∈ Hk−1, then the inequality γ (H) ≤ c1nH

+ (c2 − c1)mH
on the domination

number necessarily holds for every k-uniform hypergraph H ∈ Hk . Moreover, if
the former bound is sharp, then the latter one is sharp, as well.
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• For k≥ 3, similarly from every valid upper bound on the domination number of
the form γ (H) ≤ an

H
+ bm

H
for all k-uniform hypergraphs H ∈ Hk with

real numbers b≥ 0, a > − b
k

, we can derive the upper bound on the transversal
number of the form τ(H) ≤ an

H
+(a+b)m

H
for all (k− 1)-uniform hypergraphs

H ∈ Hk−1. Moreover, if the former bound is sharp, then the latter one is sharp,
as well.

We next present the results on the transversal number. For k≥ 2 an integer, the
so-called Tuza constant ck is defined by

ck = sup
τ(H)

n
H
+m

H

,

where the supremum ranges over all k-uniform hypergraphs H. Erdős and Tuza
[16, p. 1180] showed that c2 = 1

3 . Chvátal and McDiarmid [11] and Tuza [43]
independently established that c3 = 1

4 , while Lai and Chang [38] showed that
c4 = 2

9 . We summarize these results below.

Theorem 9 The following hold:

(a) ([16, p. 1180]) c2 = 1
3 .

(b) ([11, 43]) c3 = 1
4 .

(c) ([38]) c4 = 2
9 .

The precise value of ck has yet to be determined for any values of k, with
k≥ 5, some 30 years after the Tuza constants ck were first introduced and studied.
Applying probabilistic arguments, Alon [6] determined the asymptotic behavior of
ck as k grows.

Theorem 10 (Alon [6]) ck = (1 + o(1))

(
ln(k)

k

)

as k→∞.

Chvátal and McDiarmid [11] established the following upper bound on the
transversal number of a uniform hypergraph in terms of its order and size.

Theorem 11 ([11]) For k≥ 2, if H is a k-uniform hypergraph, then

τ(H) ≤ n
H
+ ⌊

k
2

⌋
m

H⌊
3k
2

⌋ .

As a consequence of Alon’s result in Theorem 10 and the relation established in
Theorem 6 (with b= 0), we have the following asymptotic equality.

Theorem 12 ([8]) As k tends to infinity,

sup
H∈Hk

γ (H)

n
H

= (1 + o(1))

(
ln(k − 1)

k − 1

)

= (1 + o(1))

(
ln(k)

k

)

.
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Moreover, as an immediate consequence of the Chvátal–McDiarmid result in
Theorem 11 and the relation given in Theorem 6, we obtain the following upper
bound on the domination number of a uniform hypergraph without isolated edges.
Recall that for k≥ 2, we denote by Hk the class of all k-uniform hypergraphs H with
δ(H)≥ 1.

Theorem 13 ([8]) For k≥ 3, if H ∈ Hk , then

γ (H) ≤
n

H
+
⌊

k−3
2

⌋
m

H

⌊
3(k−1)

2

⌋ ,

and this bound is sharp.

We remark that the k-uniformity condition in Theorem 13 can be relaxed to edge
sizes at least k. We state this formally as follows.

Theorem 14 ([25]) For k≥ 3, if H is a hypergraph with all edges of size at least k
and with δ(H)≥ 1, then

γ (H) ≤
n

H
+
⌊

k−3
2

⌋
m

H

⌊
3(k−1)

2

⌋ .

As an immediate consequence of Theorem 9 and the relation given in Theorem
6, we obtain the following upper bounds on the domination number of a hypergraph
without isolated vertices and with edges sizes at least k where k∈{3, 4, 5}.
Theorem 15 If H is a hypergraph with all edges of size at least k and with δ(H)≥ 1,
then the following hold:

(a) If k= 3, then γ (H) ≤ 1
3nH

.

(b) If k= 4, then γ (H) ≤ 1
4nH

.

(c) If k= 5, then γ (H) ≤ 2
9nH

.

We remark that the result of Theorem 15(a) and 15(b) can also be deduced from
a result in [26], which states that for k∈{3, 4}, if every edge in a graph G without
isolated vertices and of order n is contained in a clique Kk, then γ (G) ≤ 1

k
n.

2.4 Edge Size at Least Three

In this section, we present a characterization, due to Henning and Löwenstein [22],
of the hypergraphs that achieve equality in the upper bound for the domination
number given in Theorem 15(a). For this purpose, let H1, H2, . . . , H15 be the fifteen
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H1 H2 H3

H4 H5 H6

H7 H8 H9

H10 H11 H12

H13 H14 H15

Fig. 1 The hypergraphs H1, H2, . . . , H15

hypergraphs shown in Figure 1. Let Hunder, standing for underlying hypergraph, be
a hypergraph every component of which is isomorphic to a hypergraph Hi for some
i∈ [15]. Each component of Hunder we call a unit of Hunder. In each unit, we 2-color
the vertices with the colors black and white as indicated in Figure 1, and we call the
white vertices the link vertices of the unit and the black vertices the nonlink vertices.
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We now add edges between the units as follows. Let H be a hypergraph obtained
from Hunder by adding edges of size at least three, called link edges, in such a way
that every added edge contains vertices from at least two units and contains only
link vertices. Possibly, H is disconnected or H =Hi for some i∈ [15]. We call the
hypergraph Hunder an underlying hypergraph of H, and we let U(Hunder) denote the
set of all units in Hunder. Let F≥3 denote the family of all such hypergraphs H.

We are now in a position to present the characterization due to Henning and
Löwenstein [22] of the hypergraphs, without isolated vertices and with all edges of
size at least three, whose domination number is one-third their order.

Theorem 16 ([22]) If H is a hypergraph with all edges of size at least three and
with δ(H)≥ 1, then γ (H) ≤ 1

3nH
with equality if and only if H ∈ F≥3.

2.5 Edge Size at Least Four

It remains an open problem (see Problem 7 in Chapter 4) to characterize the
hypergraphs that achieve equality in the upper bound for the domination number
given in Theorem 15(b). We remark that due to the interplay between domination
and transversals in hypergraphs discussed in Section 2.2, a characterization of
hypergraphs H ∈ H4 satisfying γ (H) = 1

4nH
builds on a characterization of the 3-

uniform hypergraphs H satisfying τ(H) = 1
4 (nH

+ m
H
). A characterization of the

extremal connected hypergraphs that achieve equality in the Chvátal–McDiarmid
Theorem 11 for k= 2 and for all k≥ 4 is a relatively simple task. As shown in [24],
there exist two such hypergraphs when k is even and one such hypergraph when
k is odd. Surprisingly the case for k= 3 is much more challenging. The infinite
extremal connected hypergraphs in this case were characterized by Henning and Yeo
[27]. However, it remains an open problem to deduce the hypergraphs that achieve
equality in Theorem 15(b) from the characterization in [27].

2.6 Edge Size at Least Five

In this section, we present a characterization due to Henning and Löwenstein [25] of
the hypergraphs that achieve equality in the upper bound of Theorem 15(c). For this
purpose, let H9 be the hypergraph shown in Figure 2. Let Hunder be a hypergraph

Fig. 2 The hypergraph H9
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every component of which is isomorphic to H9. Let H be a hypergraph obtained
from Hunder by adding edges of size at least five, called link edges, in such a way
that every added edge contains only vertices of degree 2 in Hunder. Possibly, H is
disconnected or H =H9. We call the hypergraph Hunder an underlying hypergraph
of H. Let F≥5 denote the family of all such hypergraphs H.

We are now in a position to present the characterization due to Henning and
Löwenstein [25] of the hypergraphs with no isolated edge and with all edges of size
at least five whose domination number is two-ninths their order.

Theorem 17 ([25]) If H is a hypergraph with all edges of size at least five and with
δ(H)≥ 1, then γ (H) ≤ 2

9nH
with equality if and only if H ∈ F≥5.

2.7 A Characterization of Hypergraphs Achieving Equality
in Theorem 14

In this section, we present a characterization due to Henning and Löwenstein [25] of
the hypergraphs that achieve equality in the upper bound for the domination number
given in Theorem 14. For this purpose, we first define some special hypergraphs.

For k≥ 4, let Ek denote the k-uniform hypergraph on k vertices with exactly
one edge. The hypergraph E4 is illustrated in Figure 3. For k≥ 4, the k-uniform
hypergraph Tk is defined in [25] as follows. Let A, B, C, and D be vertex-
disjoint sets of vertices with |A| = �k/2�, |B| = |C| = �k/2�, and |D| =
�k/2� − �k/2�. In particular, if k is even, the set D=∅, while if k is odd,
the set D consist of a singleton vertex. Let Tk denote the k-uniform hypergraph
with V (Tk)=A∪B∪C∪D and with E(Tk)={e1, e2, e3}, where V (e1)=A∪B,
V (e2)=A∪C, and V (e3)=B∪C∪D. The hypergraphs T4 and T5 are illustrated
in Figure 3.

For odd k≥ 5, the hypergraph T ∗
k is defined in [25] as follows. Let A, B, and C

be vertex-disjoint sets of vertices with |A| = |B| = (k+ 1)/2 and |C| = (k− 1)/2. Let
T ∗
k denote the hypergraph with V (T ∗

k ) = A∪B ∪C and with E(T ∗
k ) = {e1, e2, e3},

where V (e1)=A∪B, V (e2)=A∪C, and V (e3)=B∪C. The hypergraph T ∗
5 is

illustrated in Figure 3. We note that every edge in T ∗
k has size at least k.

E4 T4 T5 T5
∗

Fig. 3 The hypergraphs E4, T4, T5, and T ∗
5
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D5 D6 D6
∗

Fig. 4 The hypergraphs D5, D6, and D∗
6

The expanded hypergraph, abbreviated expa(H), of a hypergraph H is defined in
[25] as the hypergraph obtained from H by expanding every edge in H by adding to
it one new vertex, where all added vertices have degree 1 in expa(H). Thus for every
edge e∈E(H), if ve denotes the new vertex added to e, where ve �=vf for edges e�=f
in H, then expa(H) has edge set {e∪{ve} : e∈E(H)} and vertex set

V (H) ∪
⋃

e∈E(H)

{ve}.

For k≥ 5, let Dk = expa(Tk−1). The hypergraphs D5 and D6 are illustrated in
Figure 4. We note that Dk is k-uniform. For even k≥ 6, let D∗

k = expa(T ∗
k−1). The

hypergraph D∗
6 is illustrated in Figure 4. We note that every edge in D∗

k is of size at
least k.

The authors in [25] define a special family Dk of hypergraphs as follows. For
odd k≥ 5, they define Dk = {Ek,Dk}, and for even k≥ 6, they define Dk =
{Ek,Dk,D

∗
k }.

We are now in a position to present the characterization given in [25] of the
hypergraphs that achieve equality in the upper bound for the domination number
given in Theorem 14.

Theorem 18 ([25]) For k≥ 3, if H is a hypergraph with all edges of size at least k
and with δ(H)≥ 1, then

γ (H) ≤
n

H
+
⌊

k−3
2

⌋
m

H

⌊
3(k−1)

2

⌋ ,

with equality if and only if H ∈ Dk .

2.8 General Setting

In the previous sections, we determined upper bounds of the form an
H
+bm

H
on the

domination number of k-uniform hypergraphs. In particular, we proved in Lemma
5 that b≥ 0 and a > − b

k
must hold in every valid upper bound. In this setting,
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we next present a general way to formulate the problem as described by Bujtás,
Henning, and Tuza [8].

Problem 1 ([8]) Given an integer k≥ 2, determine the shape of the surface Γ k(x,
y, z), which is the subset of Dk = {(x, y, z) | y ≥ 0 ∧ x > −y/k} ⊂ R

3 defined
by the rule

z = sup
H∈Hk

γ (H)

xn
H
+ ym

H

.

In other words, for k given, determine z= z(x, y) as a function of x and y.

The hypergraph H with n
H
= k vertices and m

H
= 1 edge of size k has γ (H)= 1.

Hence, we have the following simple general lower bound first observed in [8].

Observation 19 ([8]) For every integer k≥ 2 and reals y≥ 0 and x >−y/k,

z(x, y) ≥ 1

kx + y
.

Bujtás, Henning, and Tuza [8] gave a complete solution for Problem 1 for k∈{2,
3}, showing that Observation 19 holds with equality in this case.

Theorem 20 ([8]) For k∈{2, 3}, the surface Γ k(x, y, z) is determined by

z(x, y) = 1

kx + y
.

An equivalent formulation of Theorem 20 gives us the following general upper
bound on the domination number of a k-uniform hypergraph for k∈{2, 3}.
Theorem 21 ([8]) For k= 2 and k= 3, the bound

γ (H) ≤ an
H
+ bm

H

is valid for every k-uniform hypergraph H, which does not contain isolated vertices,
if and only if both ka+ b≥ 1 and b≥ 0 hold.

For example, to illustrate Theorem 21, let H be a k-uniform hypergraph without
isolated vertices. For k∈{2, 3} and taking (a, b) = ( 1

k
, 0), we have that γ (H) ≤

1
k
m

H
. For k= 2, this yields the classical result due to Ore [40], while for k= 3, this

yields the result of Theorem 15(a).
As remarked in [8], the general description of �k(x, y, z) in Problem 1 appears

to be a rather hard problem, already for k= 4. Indeed it remains an open problem
to give a complete solution for Problem 1 for any value of k≥ 4. In particular, it
remains an open problem to determine whether the result of Theorem 21 also holds
for k= 4. We know that the result of Theorem 21 does not hold for k= 5. We pose
two open questions in these cases when k= 4 and k= 5 in Section 4.
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2.9 Hypergraphs with Given Domination Number

In this section, we address the problem of finding the minimum number of vertices
that a connected k-uniform hypergraph with high domination number must contain.
Since all isolated vertices always are contained in every dominating set, we can
simply delete them and restrict our attention to hypergraphs without isolates. Let
n(k, γ ) be the minimum number of vertices that a k-uniform hypergraph with no
isolated vertices must contain if its domination number is at least γ .

2.9.1 The Case γ = 1

We observe that the k-uniform hypergraph with exactly one edge, which we denoted
by Ek in Section 2.7, has order k and is the smallest such hypergraph with γ = 1.
We state this trivial case formally as follows.

Observation 22 For k≥ 2, we have n(k, 1)= k.

2.9.2 The Case γ = 2

By a classical result due to Ore [40], if H is 2-uniform hypergraph without isolated
vertices, then γ (H) ≤ 1

2nH
. By Theorem 15 for k∈{3, 4}, if H is a k-uniform

hypergraph without isolated vertices, then γ (H) ≤ 1
k
n

H
. In particular, if k∈{2, 3,

4} and γ (H)= 2, then n
H
≥ 2k. If k= 2, then let F2 be the 4-cycle, and let F3 and

F4 be the hypergraph shown in Figure 5(a) and 5(b), respectively. For k∈{2, 3, 4},
if H =Fk, then γ (H)= 2 and n

H
= 2k. Hence, we have the following result for

small k.

Observation 23 For k∈{2, 3, 4}, we have n(k, 2)= 2k.

The general case when γ = 2 was studied by Erdős, Henning, and Swart [17],
albeit in a graph theory setting. In order to state the result in [17], for each integer
r≥ 2, let Ir be the set of integers in the interval Ir = [r2 − r+ 2, r2 + r+ 1]. We
note further that if (r − 1)2 ≤ k≤ (r + 1)2, then either (r − 1)2 ≤ k≤ r2 − r+ 1,

Fig. 5 The hypergraphs F3
and F4

F3 F4
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Table 1 Values of n(k, 2) for
small k

k 4 5 6 7 8 9 10 11 12 13

n(k,2) 8 9 11 12 14 15 16 18 19 20

in which case k∈ Ir−1, or r2 − r+ 2≤ k≤ r2 + r+ 1, in which case k∈ Ir, or
r2 + r+ 2≤ k≤ (r + 1)2, in which case k∈ Ir+1. Hence, each integer k≥ 4 belongs
to a unique interval Ir for some r≥ 2. Recall that [r]={1, . . . , r} and [r]0 ={0,
1, . . . , r}. We note that if k∈ Ir, then either k= r2 + 1− i where i∈ [r − 1]0 or
k= r2 + 1+ i where i∈ [r]. We are now in a position to state the result in [17].

Theorem 24 ([17]) If k≥ 4 is an arbitrary integer, then k belongs to a unique
interval Ir for some r≥ 2, and the following holds:

n(k, 2) =
{
(r + 1)2 − i if k = r2 + 1 − i and i ∈ [r − 1]0
(r + 1)2 + 1 + i if k = r2 + 1 + i and i ∈ [r].

For example, in the special cases when k∈ I2 ={4, 5, 6, 7} and k∈ I3 ={8, 9,
. . . , 13} we summarize the results of Theorem 24 in Table 1 above.

For each integer k≥ 4, we next present an example of a k-uniform hypergraph
H with γ (H)= 2 and of order n

H
= n(k, 2) given by the expression in Theorem

24. Let k≥ 4 be fixed. By our earlier observations, the integer k belongs to a
unique interval Ir for some r≥ 2, and either k= r2 + 1− i where i∈ [r − 1]0 or
k= r2 + 1+ i where i∈ [r]. We consider the two cases in turn.

Case 1. k= r2 + 1− i where i∈ [r − 1]0. In this case, for j∈ [r+ 1], let Aj be a
set of vertices defined as follows. If i= 0, let |Aj| = r for j∈ [r+ 1]. If i∈ [r− 1], let

|Aj | =
{
r − 1 if j ∈ [i]
r if j ∈ [r + 1] \ [i].

Further, let the sets Aj be pairwise disjoint sets, and let

A =
r+1⋃

j=1

Aj and B = {v1, v2, . . . , vr+1},

where the vertices in B are r+ 1 additional vertices that do not belong to the set
A. Let v be an arbitrary vertex in Ar+1. Let H be the hypergraph with vertex set
V (H)=A∪B of order n

H
= |A|+|B| = (r+1)2− i and with edge set E(H)={e1,

e2, . . . , er+1} where the edge ej for j∈ [r+ 1] is defined as follows:

ej =
{
(A ∪ {vj }) \ (Aj ∪ {v}) if i ∈ [r − 1] and j ∈ [i]
(A ∪ {vj }) \ Aj if i = 0 or i ∈ [r − 1] and j ∈ [r + 1] \ [i].
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By construction, we note that |ej| = r2 + 1− i= k for all j∈ [r+ 1], and so H is
a k-uniform hypergraph. Since no vertex of H dominates the set B, we note that
γ (H)≥ 2. However, if ur ∈Ar and ur+1 ∈Ar+1 �{v}, then the set {ur, ur+1} is an
example of a dominating set of H, and so γ (H)≤ 2. Consequently, H is a k-uniform
hypergraph of order n

H
= (r+1)2− i without isolated vertices satisfying γ (H)= 2.

Case 2. k= r2 + 1+ i and i∈ [r]. In this case, for j∈ [r+ 1], let Aj be a set of
vertices defined as follows:

|Aj | =
{
r + 1 if j ∈ [i + 1]
r if i < r and j ∈ [r + 1] \ [i + 1].

Further, let the sets Aj be pairwise disjoint sets, and let

A =
r+1⋃

j=1

Aj and B = {v1, v2, . . . , vr+1},

where the vertices in B are r+ 1 additional vertices that do not belong to the set
A. Let v be an arbitrary vertex in A1. Let H be the hypergraph with vertex set
V (H)=A∪B of order n

H
= |A| + |B| = (r + 1)2 + 1 + i and with edge set

E(H)={e1, e2, . . . , er+1} where the edge ej for j∈ [r+ 1] is defined as follows:

ej =
{
(A ∪ {vj }) \ Aj if j ∈ [i + 1]
(A ∪ {vj }) \ (Aj ∪ {v}) if i < r and j ∈ [r + 1] \ [i + 1].

By construction, we note that |ej| = r2 + 1+ i= k for all j∈ [r+ 1], and so H
is a k-uniform hypergraph. Since no vertex of H dominates the set B, we note
that γ (H)≥ 2. However, if u1 ∈A1 �{v} and u2 ∈A2, then the set {u1, u2} is an
example of a dominating set of H, and so γ (H)≤ 2. Consequently, H is a k-uniform
hypergraph of order n

H
= (r + 1)2 + 1 + i without isolated vertices satisfying

γ (H)= 2.

2.9.3 The Case γ ≥ 3

The case when γ ≥ 3 was addressed by Bujtás, Patkós, Tuza, and Vizer [10] in
a more general setting. For an integer s≥ 1, they define an s-dominating set of
a hypergraph H as a dominating set D of H with the property that every vertex
outside the set D has at least s neighbors inside the set D; that is, |NH(v)∩D|≥ s
for all vertices v∈V (H)�D, where NH(v) denotes the open neighborhood of v.
The authors in [10] also define an s-tuple dominating set of H as a dominating
set D of H with the property that every vertex of H either belongs to D and has
at least s− 1 neighbors inside the set D or belongs outside the set D and has at
least s neighbors inside the set D; that is, |NH[v]∩D|≥ s for all vertices v∈V (H),
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where NH[v] denotes the closed neighborhood of v. We note that dominating sets
are precisely the 1-dominating sets and 1-tuple dominating sets.

The s-domination number γ (H, s) of a hypergraph H is the minimum size of
an s-dominating set in H, and the s-tuple domination number γ×(H, s) of H is
the minimum size of an s-tuple dominating set in H. By definition, we have γ (H,
s)≤ γ×(H, s). For every pair γ and s of integers with γ ≥ s, let n(k, γ , s) denote
the minimum number of vertices that a k-uniform hypergraph H with no isolated
vertices must have if γ (H, s)≥ γ holds, and let n×(k, γ , s) denote the minimum
number of vertices that a k-uniform hypergraph H with no isolated vertices must
have if γ×(H, s)≥ γ holds. As observed in [10], we have n×(k, γ , s)≤ n(k, γ , s)
and n(k, γ )= n×(k, γ , 1)= n(k, γ , 1).

We are now in a position to state the result due to Bujtás, Patkós, Tuza, and Vizer
[10].

Theorem 25 ([10]) For integers γ ≥ 2 and s≥ 1 with γ > s, we have

k + k1−1/(γ−s+1) ≤ n×(k, γ, s) ≤ n(k, γ, s) ≤ k + (4 + o(1))k1−1/(γ−s+1).

In the special case in Theorem 25 when s= 1, we have the following result.

Theorem 26 ([10]) For integers k≥ 2 and γ ≥ 2, we have

k + k
1− 1

γ ≤ n(k, γ ) ≤ k + (4 + o(1))k1− 1
γ .

2.10 Nordhaus–Gaddum-Type Results

In this section, we present a Nordhaus–Gaddum-type result for the sum of domina-
tion parameters in hypergraphs and their complements. Given a hypergraph H = (V,
E), the complement H of H is the hypergraph H = (V ,E) where E = {V \ e : e ∈
E}. In 2008, Hedetniemi et al. [20] defined the disjoint domination number γ γ (G)
of a graph G as the minimum sum of the cardinalities of two disjoint dominating
sets in G. The disjoint domination number γ γ (H) of a hypergraph H is defined
analogously as the minimum sum of the cardinalities of two disjoint dominating set
in H; that is,

γ γ (H)=min{|D1|+|D2| : D1,D2 are minimal dominating sets in H with D1 ∩D2=∅}.

Recall that a γ -set of a hypergraph H is a dominating set of H of cardinality γ (H).
An inverse dominating set with respect to a given γ -set D of H is a dominating set D′
of H such that D′⊆V (H)�D. The inverse domination number γ−1(H) is defined
as

γ−1(H) = min{|D′| : D′ is an inverse dominating set with respect to some γ -set D of H }.
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We remark that the inverse domination number of a graph was first defined
in 1991 by Kulli and Sigarkanti [37]. Acharya [4] posed the problem of finding
best possible lower and upper bounds for γ γ (H) + γ γ (H). This problem was
subsequently solved by Jose and Tuza [34], who proved an even stronger statement
for the upper bound.

Theorem 27 ([34]) For every integer n≥ 4, if H is a hypergraph of order n, then

4 ≤ γ γ (H)+ γ γ (H) ≤ γ (H)+ γ−1(H)+ γ (H)+ γ−1(H) ≤ max{8, n+ 2},

and the bounds are tight.

That the bounds of Theorem 27 are tight may be seen as follows. For the lower
bound, Jose and Tuza [34] constructed a hypergraph H = (V, E) with n vertices as
follows. Let V = (V1, V2, V3, V4) be a partition of the set V into four nonempty
sets, and let E={Vi ∪Vj : 1≤ i < j≤ 4}. We note that H and H are isomorphic
hypergraphs, and all the vertices are adjacent to each other in both H and H . Hence,
γ γ (H) = γ γ (H) = 2. Therefore the lower bound is attainable for all n≥ 4.

To prove tightness in the upper bound, suppose first that 4≤ n≤ 6. In this case,
Jose and Tuza [34] constructed a hypergraph H = (V, E) with n vertices by once
again taking a partition of the set V = (V1, V2, V3, V4) into four nonempty sets,
but now letting E={V1 ∪V2, V2 ∪V3, V3 ∪V4}. The edge set of H = (V ,E) is
E = {V1 ∪ V2, V1 ∪ V4, V3 ∪ V4}. Thus, γ γ (H) = γ γ (H) = 4.

Suppose next that n≥ 7. In this case, Jose and Tuza [34] let H be a double star
S(�(n− 2)/2�, �(n− 2)/2�), which is a tree with two (adjacent) nonleaf vertices one
of which has �(n− 2)/2� leaf neighbors and the other �(n− 2)/2�) leaf neighbors.
Let x and y be the two nonleaf vertices, and let X and Y be the set of leaf neighbors
of x and y, respectively. We note that there are exactly four minimal dominating
sets, namely D1 ={x}∪Y , D2 ={y}∪X, D3 ={x, y}, and D4 =X ∪Y , forming two
disjoint pairs, namely (D1, D2) and (D3, D4). Since both pairs partition V (H), we
note that γ γ (H)= n. Further, we note that γ γ (H) = 2. Thus, γ γ (H)+ γ γ (H) =
n+ 2.

2.11 Equality of Domination and Transversal Numbers

Every transversal in a hypergraph H without isolated vertices is a dominating set
in H, implying that γ (H)≤ τ (H) is valid for every such hypergraph H. Arumugam,
Jose, Bujtás, and Tuza [7] investigated the hypergraphs H without isolated vertices
satisfying γ (H)= τ (H).

We first consider the special case when H is a 2-uniform hypergraph, that is,
when H is a graph. A stem, also called a support vertex in the literature, is a
vertex in a graph G that is adjacent to a vertex of degree 1. Let Stem(G) denote
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the set of stems in G. Let S(G) denote the graph obtained from the graph G by
deleting all edges contained entirely in Stem(G). We note that the transformation S
does not create isolated vertices, unless G contains a component isomorphic to K2.
Arumugam et al. [7] provided the following characterization of connected graphs
satisfying γ (G)= τ (G).

Theorem 28 ([7]) For a connected graph G of order at least 3, γ (G)= τ (G) holds
if and only if there exists a bipartition (A, B) of S(G) such that Stem(G)⊆A, and
moreover, for every pair u, v∈A�Stem(G), if u and v have some common neighbor,
then they have at least two common neighbors of degree two.

As a consequence of the characterization given in Theorem 28, Arumugam et
al. [7] showed that graphs G without isolated vertices and with γ (G)= τ (G) can be
recognized in polynomial time.

Theorem 29 ([7]) It can be decided in time

O

⎛

⎝
∑

v∈V (G)

(dG(v))2

⎞

⎠

whether an arbitrary graph G without isolated vertices satisfies γ (G)= τ (G).

In contrast, Arumugam et al. [7] proved that the corresponding problem is NP-
hard for hypergraphs, even if edges of size greater than 3 are excluded.

Theorem 30 ([7]) It is NP-hard to decide whether a generic input linear hyper-
graph H of rank 3 and of minimum degree 1 satisfies γ (H)= τ (H).

As remarked in [7], “it is very likely that the problem of testing γ (H)= τ (H) is
harder than any problem in NP.”

Arumugam et al. [7] also present several structural results on hypergraphs
in which each subhypergraph H′ without isolated vertices fulfills the equality
γ (H′)= τ (H′). They also investigate hypergraphs for which the equality
γ (H)= τ (H) holds hereditarily. That is, the property is required not only for the
hypergraph H itself but also for all of its subhypergraphs or for all of its induced
subhypergraphs. For this purpose, they define the following notions:

(P1) For a hypergraph H, the equality γ = τ hereditarily holds if every subhyper-
graph H′ of H satisfies γ (H′)= τ (H′).

(P2) For a hypergraph H, the equality γ = τ induced-hereditarily holds if every
induced subhypergraph H′ of H satisfies γ (H′)= τ (H′).

By definition, property (P1) implies property (P2). Arumugam et al. [7] prove
that in fact properties (P1) and (P2) are equivalent.

Theorem 31 ([7]) For a hypergraph H, the equality γ = τ holds hereditarily if and
only if it holds induced-hereditarily.
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The following notions are also defined in [7]:

(P3) A hypergraph H is minimal for γ < τ if γ (H) < τ (H), but for every proper
subhypergraph H′ of H (without isolated vertices) the equality γ (H′)= τ (H′)
holds.

(P4) A hypergraph H is induced-minimal for γ < τ if γ (H) < τ (H), but for every
proper induced subhypergraph H′ of H (without isolated vertices) the equality
γ (H′)= τ (H′) holds.

By definition, property (P3) implies property (P4). However, properties (P3) and
(P4) are not equivalent since there exist hypergraphs, which are induced-minimal
but not minimal for γ < τ .

Arumugam et al. [7] prove that for any given integer k≥ 2, the number of
hypergraphs of rank k that are minimal or induced-minimal for γ < τ is bounded.

Theorem 32 ([7]) For every fixed k≥ 2, the following holds:

(a) There exist only finitely many hypergraphs of rank k, which are minimal for
γ < τ .

(b) There exist only finitely many hypergraphs of rank k, which are induced-minimal
for γ < τ .

2.12 The Relationship Between Domination and Matching

In this section, we present an upper bound on the domination number of a uniform
hypergraph in terms of its matching number. A matching in a hypergraph is a set of
disjoint edges. Thus, if M is a matching in a hypergraph H, then e∩ f =∅ for every
pair of edges e and f in M. The matching number, α′(H), of a hypergraph H is the
maximum size of a matching in H.

In order to cover every edge of a hypergraph H, we note that τ (H)≥α′(H) since
a transversal of H must contain at least one vertex from every edge in a maximum
matching in H. If H is a k-uniform hypergraph, then the union of the edges of a
maximum matching of H forms a transversal of H, implying that τ (H)≤ kα′(H).
We state this formally as follows.

Observation 33 If H is a k-uniform hypergraph, then τ (H)≤ kα′(H).

A hypergraph is k-partite if its vertex set can be partitioned into k sets such
that every edge contains exactly one vertex from each of these partite sets. In
particular, a k-partite hypergraph is a k-uniform hypergraph. A long-standing open
problem, known as Ryser’s conjecture, states that if H is a k-partite hypergraph,
then τ (H)≤ (k− 1)α′(H). When k= 2, this is the classical theorem of König. When
k= 3, Ryser’s conjecture was proven by Aharoni [5]. However, the conjecture
remains open for k≥ 4.

Motivated by Ryser’s conjecture, Kang, Li, Dong, and Shan [36] gave the
following Ryser-like relation between the domination number and matching number
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of a uniform hypergraph. The proof is based on the approach presented in the proof
of Theorem 6 by Bujtás et al. [9].

Theorem 34 ([36]) For k≥ 2, if H is a k-uniform hypergraph without isolated
vertices, then γ (H)≤ (k− 1)α′(H).

Proof. Let H′ be the hypergraph obtained from H by successively deleting edges
of H that do not contain any vertices of degree 1 in the resulting hypergraph at each
stage. We note that H′ is a k-uniform hypergraph with nH ′ = n

H
vertices and mH ′ ≤

m
H

edges. When H is transformed into H′, isolated vertices cannot arise. Since
removing edges cannot decrease the domination number, we note that γ (H)≤ γ (H′).
We also note that removing edges cannot increase the matching number, and so
α′(H′)≤α′(H). Moreover, every edge of H′ contains at least one vertex of degree 1,
and so τ (H′)= γ (H′). Consequently, τ (H′)≥ γ (H).

Deleting exactly one vertex of degree 1 from each edge of H′, we obtain
a (k− 1)-uniform hypergraph H′′ of order nH ′ − mH ′ and of size mH ′ . When
constructing H′′ from H′, the transversal number and the matching number of H′′
remains unchanged, that is, τ (H′′)= τ (H′) and α′(H′′)=α′(H′). These observations,
together with the result of Observation 33, imply that

γ (H) ≤ τ(H ′) = τ(H ′′) ≤ (k − 1)α′(H ′′) = (k − 1)α′(H ′) ≤ (k − 1)α′(H).

This establishes the desired upper bound, namely γ (H)≤ (k− 1)α′(H). �

To show that the upper bound is achievable, we recall the definition of a finite
projective plane. For q= pn ≥ 2, where some prime p and some integer n≥ 1, a
finite projective plane of order q, denoted by PG(q), consists of a set of q2 + q+ 1
points and the same number of lines, having the following properties:

• Every line contains q+ 1 points.
• Every point lies in q+ 1 lines.
• Any two distinct points lie on a unique line.
• Any two distinct lines intersect in exactly one point.
• There are four points such that no line is incident with more than two of them.

A finite projective plane may be considered as a hypergraph, whose vertex set is
the set of points and whose edge set is the set of lines of the plane. The hypergraph
associated with a finite projective plane PG(2, q) is a (q+ 1)-uniform hypergraph on
q2 + q+ 1 vertices in which every two edges intersect in exactly one vertex. Kang,
Li, Dong, and Shan [36] showed that when k− 2 is a prime power, the upper bound
in Theorem 34 on the domination number is tight.

Suppose that k− 2 is a prime power and consider the hypergraph H associated
with a finite projective plane PG(k− 2). By our earlier observations, H is a (k− 1)-
uniform hypergraph in which every two edges intersect in exactly one vertex. We
note that α′(H)= 1. Let H′ be the k-uniform hypergraph obtained from H by adding
to it m

H
new vertices of degree 1, one vertex for each edge in H. Thus, each edge

of H (of size k− 1) is extended to an edge of size k by adding to it one new
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vertex of degree 1. We note that H′ has nH ′ = n
H
+ m

H
vertices and mH ′ = m

H

edges. Further we note that τ (H′)= τ (H) and α′(H′)=α′(H). Since every edge of
H′ contains a vertex of degree 1, we have γ (H′)= τ (H′)= τ (H). Since H is the
hypergraph associated with a finite projective plane, the set of minimum transversals
in H consists precisely of the set of edges of H. Thus, since H is a (k− 1)-uniform
hypergraph, each τ -transversal in H is an edge of H, which has size k− 1, and
so τ (H)= k− 1. Hence, γ (H′)= τ (H)= k− 1= (k− 1) · 1= (k− 1)α′(H′). Thus,
when k− 2 is a prime power, the upper bound in Theorem 34 on the domination
number is tight.

Shan, Dong, Kang, and Li [41] observed that the inequality in Theorem 34 still
holds for arbitrary hypergraphs of rank k. We state this formally as follows.

Corollary 35 ([36]) For k≥ 2, if H is a hypergraph of rank k without isolated
vertices, then γ (H)≤ (k− 1)α′(H).

Shan, Dong, Kang, and Li [41] give a complete characterization of the extremal
hypergraphs H of rank 3 without isolated vertices satisfying γ (H)= 2α′(H).

As remarked in [36], for k≥ 4 a constructive characterization of hypergraphs
of rank k without isolated vertices satisfying γ (H)= (k− 1)α′(H) seems difficult
to obtain, even in the special case when H is an intersecting hypergraph, that is,
hypergraphs in which every two edges have a nonempty intersection. We note that
if H is an intersecting hypergraph, then α′(H)= 1.

Dong, Shan, Kang, and Li [14] present structural properties of intersecting
hypergraphs H with no isolated vertices and with rank k satisfying the equality
γ (H)= k− 1. Their main result is that all linear intersecting hypergraphs H with
no isolated vertices and with rank 4 such that γ (H)= 3 can be constructed from the
Fano plane, where a linear hypergraph is one in which every two edges intersect in at
most one vertex. It remains, however, an open problem to characterize the nonlinear
intersecting hypergraphs H with no isolated vertices and with rank 4 satisfying
γ (H)= 3.

Li, Kang, Shan, and Dong [39] show that all the 5-uniform linear intersecting
hypergraphs H with no isolated vertices satisfying γ (H)= 4 are generated by the
finite projective plane of order 3.

3 Total Domination in Hypergraphs

In this section, we focus on total domination in hypergraphs. We proceed as follows.
We first establish a relationship between the total transversal number and the
total domination number of uniform hypergraphs due to Bujtás, Henning, Tuza,
and Yeo [9]. Using this interplay between total transversals and total domination
in hypergraphs, we prove tight asymptotic upper bounds on the total transversal
number in terms of the number of vertices, the number of edges, and the edge size.
We shall need the following definitions given in [9].
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Definition 3 ([9]) For an integer k≥ 2, let Hk be the class of all k-uniform
hypergraphs containing no isolated vertices or isolated edges or multiple edges.
Further, for k≥ 3 let H∗

k consist of all hypergraphs in Hk that have no two edges
intersecting in k− 1 vertices. We note that H∗

k is a proper subclass of Hk .

Definition 4 ([9]) For an integer k≥ 2, let

bk = sup
H∈Hk

τt (H)

n
H
+m

H

.

We remark that it is not known if the supremum in Definition 4 is a maximum.
Bujtás, Henning, Tuza, and Yeo [9] proved the following upper bounds on the total
domination number of a uniform hypergraph in terms of its total transversal number,
order, and size.

Theorem 36 ([9]) For k≥ 3, if H ∈ Hk , then

γt (H) ≤
(

max

{
2

k + 1
, bk−1

})

n
H
.

In view of Theorem 36, it is of interest to determine the values of bk for k≥ 2.
The value of bk for small k was determined in [9].

Theorem 37 ([9]) The following hold:

(a) b2 = 2
5 and b3 = 1

3 .

(b) b4 ≤ 1
3 .

(c) bk ≤ 2
7 for all k≥ 5.

Henning and Yeo [32] continued the study of total transversals in hypergraphs
and proved the following result.

Theorem 38 ([32]) The following hold:

(a) b4 = 2
7 .

(b) b6 ≤ 1
4 .

(c) bk ≤ 2
9 for all k≥ 7.

By Theorems 37 and 38, we observe that

bk−1 ≤ 2

k + 1
for k ∈ {3, 4, 5, 6, 7, 8}.

Hence as a consequence of Theorem 36 and Theorem 37, and the well-known
fact (see, [13]) that if H ∈ H2, then γt (H) ≤ 2

3nH
, we have the following result.
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Theorem 39 ([9, 32]) For k∈ [8]� [1], if H ∈ Hk , then

γt (H) ≤
(

2

k + 1

)

n
H
,

and this bound is sharp.

That the upper bound in Theorem 39 is sharp may be seen as follows. Let Fk ⊂
Hk be the subfamily of hypergraphs in Hk that can be obtained as follows. Let F be
an arbitrary hypergraph in the family Hk . For each vertex v in F, add k new vertices
v1, v2, . . . , vk and two new k-edges ev ={v, v1, . . . , vk−1} and fv ={v1, v2, . . . , vk}.
Let H ∈ Hk denote the resulting k-uniform hypergraph. As observed in [9], every
total dominating set of H must contain at least two vertices from ev ∪ fv for every
vertex v∈V (F), implying that γt (H) ≥ 2n

F
. The set ∪v ∈ V (F){v, v1}, where the

union is taken over all vertices v∈V (F), forms a total dominating set of H, and so
γt (H) ≤ 2n

F
. Consequently, γt (H) = 2n

F
. Since n

H
= (k + 1)n

F
, this yield the

following result from [9], implying that the upper bound in Theorem 39 is tight.

Observation 40 ([9]) For k≥ 2, if H ∈ Fk , then γt (H) =
(

2
k+1

)
n

H
.

Bujtás et al. [9] proved the following result, which is a strengthening of the upper
bound of Theorem 36 if we restrict the edges to intersect in at most k− 2 vertices.

Theorem 41 ([9]) For k≥ 4, if H ∈ H∗
k , then

γt (H) ≤
(

max

{
2

k + 2
, bk−1

})

n
H
.

Corollary 42 ([9]) For k≥ 4, if H ∈ H∗
k , then γt (H) ≤ 1

3nH
.

Bujtás et al. [9] established the following tight asymptotic bound on bk for
sufficiently large k.

Theorem 43 ([9]) For all k≥ 2, bk = (1 + o(1))
ln(k)

k
.

Theorem 43 implies that the inequality bk−1 ≤ 2
k+1 is not true when k is large

enough.
By definition, γ t(H)≥ γ (H) for every hypergraph H without isolated vertices.

Hence as a consequence of Theorem 36, Theorem 43, and Corollary 12 (established
in Section 2.3), we have the following result.

Theorem 44 ([9]) For all k≥ 3,

sup
H∈Hk

γt (H)

n
H

= (1 + o(1))

(
ln(k)

k

)

.

We remark that Theorem 44 implies that Theorem 39 is not true for large k.
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In view of Theorem 36, it is of interest to determine the value of bk for k≥ 2. In
Theorems 37 and 38, we have that b2 = 2

5 , b3 = 1
3 , and b4 = 2

7 . Further, b5 ≤ 2
7 ,

b6 ≤ 1
4 , and bk ≤ 2

9 for all k≥ 7. Thus, bk−1 ≤ 2
k+1 for k∈{3, 4, 5, 6, 7, 8}.

4 Conjectures and Open Problems

This chapter presents an overview of research on domination and total domination
in hypergraphs. Results not presented in this chapter can be found, for example, in
[1, 2, 18, 19, 21, 31]. We close this chapter with a conjecture and a list of open
problems for future research.

Problem 2 Characterize the hypergraphs H with all edges of size at least 4 and
with δ(H)≥ 1 that achieve equality in the upper bound γ (H) ≤ 1

4nH
given in

Theorem 15.

Problem 3 ([8]) Given an integer k≥ 4, determine the shape of the surface Γ k(x,
y, z), which is the subset of Dk = {(x, y, z) | y ≥ 0 ∧ x > −y/k} ⊂ R

3 defined
by the rule

z = sup
H∈Hk

γ (H)

xn
H
+ ym

H

.

In other words, for k≥ 4 given, determine z= z(x, y) as a function of x and y.

Problem 4 Prove or disprove: The bound γ (H) ≤ an
H
+ bm

H
is valid for every

4-uniform hypergraph H without isolated vertices, if and only if both 4a+ b≥ 1 and
b≥ 0 hold.

Problem 5 Prove or disprove: The bound γ (H) ≤ an
H
+ bm

H
is valid for every

5-uniform hypergraph H without isolated vertices, if and only if both 9
2a + b ≥ 1

and b≥ 0 hold.

Problem 6 Determine the exact value of n(k, 3) for all k≥ 5. From our earlier
results, we note that for k∈{2, 3, 4}, we have n(k, 3)= 3k.

Conjecture 1 Prove Ryser’s conjecture when k≥ 4; that is, prove that if k≥ 4 and
H is a k-partite hypergraph, then τ (H)≤ (k− 1)α′(H).

Problem 7 Close the gap between the upper and lower bounds of Theorem 26.

Problem 8 ([9]) Determine the exact value of bk for k≥ 5.

Problem 9 ([9]) Determine the smallest value of k for which bk−1 > 2
k+1 .
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Domination in Chessboards

Jason T. Hedetniemi and Stephen T. Hedetniemi

1 Introduction

In this chapter we consider chessboards, which are finite, uniform (or regular)
tessellations of the plane into identical cells or squares.

With square cells, we consider either the more common n× n chessboards, with n
rows and n columns, or the rectangular m× n chessboards. But we briefly consider
these variations: (i) triangular, or diamond, shaped boards, (ii) sawtooth square
boards, (iii) torus (or circular) boards (where the leftmost squares are adjacent to
the corresponding rightmost squares and the topmost squares are adjacent to the
corresponding bottommost squares), and (iv) three-dimensional square boards.

For each type of board, we consider the following chess pieces: (i) queens, (ii)
kings, (iii) rooks, (iv) bishops, and (v) knights, each of which defines a graph, whose
vertices correspond one-to-one with the squares of the board, and two squares are
considered to be adjacent if and only if a piece of a given type can move from one
square to the other square in one (legal) move. Thus, we define:

(i) the queens graph Qn, where two squares are adjacent if and only if they lie on
a common row, column, or diagonal;

(ii) the kings graph Kn, where two squares are adjacent if and only if they are next
to each other on a common row, column, or diagonal;

(iii) the rooks graph Rn, where two squares are adjacent if and only if they lie on a
common row or column;
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(iv) the bishops graph Bn, where two squares are adjacent if and only if they lie on
a common diagonal; and

(v) the knights graph Nn, where two squares are adjacent if and only if you can
move from one square to the other by a two-step process of moving either one
square in one direction followed by two squares in a perpendicular direction,
or similarly, by moving two squares in one direction followed by one square
in a perpendicular direction.

Before continuing we should comment that the notation Kn is used throughout
graph theory to denote the complete graph of order n. Similarly, the notation Qn is
used throughout graph theory to denote the n-dimensional cube graph. However, in
the context of chessboards, Kn denotes the n× n kings graph and Qn denotes the
n× n queens graph.

For each chessboard graph, Qn, Kn, Rn, Bn, and Nn, we consider what is known
about the values of the following seven graph theory parameters, the first six of
which form what is known as the Domination Chain of inequalities:

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G),

and the seventh parameter is the total domination number, γ t(G). These parameters
are defined in the Glossary in this volume. But with respect to chessboard problems
these can be defined as follows:

(i) the lower irredundance number ir(G) equals the minimum number of pieces of
one type that can be placed on a set S of squares so that every piece attacks or
occupies a square that is not attacked by any other piece in S and no additional
piece can be added to S which preserves this property.

(ii) the domination number γ (G) equals the minimum number of pieces of one
type that can be placed on a set S of squares so that all other squares are
attacked by a piece in S.

(iii) the independent domination number i(G) equals the minimum number of
pieces of one type that can be placed on a set S of squares so that all other
squares are attacked by a square in S, and no two pieces in S attack each other.

(iv) the independence number α(G) equals the maximum number of pieces of one
type that can be placed on a set S of squares, so that no two pieces in S attack
each other.

(v) the upper domination number �(G) equals the maximum number of pieces of
one type that can be placed on a set S of squares so that all squares are attacked
by a piece in S, and every piece attacks or occupies a square not attacked by
another piece in S.

(vi) the upper irredundance number IR(G) equals the maximum number of pieces
of one type that can be placed on a set S of squares so that every piece attacks
or occupies a square that is not attacked by any other piece in S.

(vii) the total domination number γ t(G) equals the minimum number of pieces that
can be placed on a set S of squares so that all other squares are attacked by a
piece in S and every piece in S is attacked by another piece in S.
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The focus on these seven domination parameters is not to suggest that they are the
only four types of domination worth studying with respect to chessboards. Indeed,
more than 50 types of domination have been defined and studied. But when applied
to chessboards, these are the major types of domination that have been studied.

We add in closing this section that several papers have studied queens dom-
ination, when queens can only be placed on (i) the major diagonal, (ii) the
column nearest the center column, or (iii) the border, or outermost, squares of the
chessboard.

2 Historical Origins

The independence number α(G), the independent domination number i(G), the
domination number γ (G), and the total domination number γ t(G), although not
defined at the time as formal graph theory parameters, are all considered in the early
mathematical studies of chessboard problems. This is documented by W. W. Rouse
Ball in his book Mathematical Recreations and Problems of Past and Present Times
[81], published in 1892, and by P. J. Campbell in his 1977 paper entitled “Gauss
and the eight queens problem: a study in miniature of the propagation of historical
error” [30].

In the book by Rouse Ball and Coxeter, Mathematical Recreations and Essays
[79], we find the following passage on page 166:

“One of the classical problems connected with the chessboard is the determina-
tion of the number of ways in which eight queens can be placed on a chessboard (or,
more generally, in which n queens can be placed on a board of n2 cells) so that no
queen can take any other. This was proposed originally by Franz Nauck in 1850.”

Actually, Ball was in error here, as the problem was originally stated by a chess
player, Max Bezzel [5] in 1848 (this is discussed in Campbell’s paper, mentioned
above). But Dr. Franz Nauck [73] is given credit, by Campbell, for being the first
person to show that one can always place n non-attacking queens on an order n
board. Thus, Nauck can be given credit for showing that the vertex independence
number of the queens graph Qn is n, that is, α(Qn)= n.

On page 119 [79], we find the following:
“MAXIMUM PIECES PROBLEM. The Eight Queens Problem suggests the

somewhat analogous question of finding the maximum number of kings - or more
generally of pieces of one type - which can be put on a board so that no one can take
any other, and the number of solutions possible in each case.”

It is clear that Ball had in mind the general idea of independent sets in graphs
(non-attacking chess pieces of one type) and particularly of finding maximum
independent sets, hence α(G).

Ball notes the following values for 8× 8 chessboards:

α(Q8)= 8
α(R8)= 8
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α(B8)= 14
α(K8)= 16
α(N8)= 32.

On page 119 [79], Ball continues:
“MINIMUM PIECES PROBLEM. Another problem of a somewhat similar

character is the determination of the minimum number of kings - or more generally
pieces of one type - which can be put on a board so as to command or occupy all the
cells.”

It is clear that Ball had in mind the general idea of dominating sets in graphs, and
particularly of finding minimum dominating sets, hence γ (G).

Ball notes the following values (for example, cf. Figure 1 which shows a
minimum dominating set of 3 queens on Q6):

γ (Q8)= 5, γ (Q7)= 4, γ (Q6)= 3, γ (Q5)= 3, γ (Q4)= 2
γ (B8)= 8
γ (R8)= 8
γ (K8)= 9
γ (N8)= 12.

On page 120 [79], Ball continues:
“Jaenisch [43] proposed also the problem of the determination of the minimum

number of queens which can be placed on a board of n2 cells so as to command
all the unoccupied cells, subject to the restriction that no queen shall attack the cell
occupied by any other queen.”

Thus, de Jaenisch should be given credit for the idea of the independent
domination number i(G) in graphs.

Ball gives the following values of i(Qn) (for example, cf. Figure 1, which shows
a minimum independent dominating set of 4 queens on Q7):

Fig. 1 γ (Q6)= 3 and i(Q7)= 4
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Fig. 2 A minimum total
dominating set of 12 kings on
K8

i(Q4) = 3, i(Q5) = 3, i(Q6) = 4, i(Q7) = 4, i(Q8) = 5.

On p.120 [79], Ball continues:
“A problem of the same nature would be the determination of the minimum

number of queens (or other pieces) which can be placed on a board so as to protect
one another and command all the unoccupied cells.”

Thus, Ball effectively defines the concept of the total domination number of a
graph, something that would not be formally defined graph theoretically until 1980
by Cockayne, Dawes, and Hedetniemi [38].

Ball notes the following values for 8× 8 chessboards, where (i, j) indicates a
piece placed on the cell in row i and column j:

γ t(Q8)= 5: (2,4),(3,4),(4,4),(5,4),(8,4)
γ t(R8)= 8
γ t(B8)= 10: (2,4),(2,5),(3,4),(3,5),(4,4),(4,5),(6,4),(6,5),(7,4),(7,5)
γ t(N8)= 14: (3,2),(3,3),(3,6),(3,7),(4,3),(4,4),(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),

(7,3),(7,6)
γ t(K8)= 16.

It is interesting to note that Ball did not discuss the total domination numbers of
kings graphs. The kings total domination number of the 8× 8 chessboard was given
as 12 by Garnick and Nieuwejaar in 1995 [56]. Although the authors did not present
a solution, Figure 2 shows a simple solution.

3 Early Chessboard Domination

The literature on chessboard domination problems is far greater than can be reported
in this chapter. We therefore make no claims of being comprehensive in covering



346 J. T. Hedetniemi and S. T. Hedetniemi

Fig. 3 Dudeney [46] p. 84

this literature. But certain publications stand out as being significant sources of
information, either historically or in terms of key results, beginning with the book
originally published in 1892 by W. W. Rouse Ball [81], which is cited in the previous
section.

It should also be pointed out that the well-known English author and mathe-
matician, Henry Ernest Dudeney, created many puzzles around the turn of the 20th
century, which either directly or indirectly involve dominating sets of chess pieces
on varying sizes of chessboards. Some of these puzzles can be seen in his book
entitled The Canterbury Puzzles and Other Curious Problems [46], which is freely
available on the web.

On page 84 of this book [46] is Puzzle 69. The Frogs and Tumblers. It shows eight
frogs each sitting on a different tumbler in an 8× 8 array of tumblers (cf. Figure 3).
When viewed as queens, this set forms a maximum independent set on the queens
graph Q8 (cf. Figure 4). The puzzle is to move three queens to different squares in
order to form another maximum independent set of 8 queens. It also suggests that
there is only one such solution, up to isomorphism.

On page 108 of this book [46] is Puzzle 92. The Four Porkers. It shows four
pigs placed on the squares of a 6× 6 chessboard, which when viewed as queens,
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Fig. 4 A maximum
independent set of 8 queens
on Q8

Fig. 5 A minimum
independent dominating set
of 4 queens on Q6

form a set of 4 independent dominating queens of Q6 (cf. Figure 5). The puzzle is
to determine the number of different sets of 4 queens which form an independent
dominating set of Q6 (cf. Figure 5).

In 1910 Pauls proves the following well-known result.

Theorem 1 (Pauls [76, 77]) For queens graphs Qn,

(i) α(Q1)=α(Q2)= 1
(ii) α(Q3)= 2

(iii) for n≥ 4, α(Qn)= n.

The basic idea for proving this theorem for n≥ 4 is indicated in Figure 6.
Historically, the first true graph theory book, published by Dénes König in 1936

[67], is noteworthy in that essentially the (independent) domination number was
first formally defined as a graph theory concept, although not by this name; it was
called a punktbasis, or point basis. In his book [67], König presents the following
illustration that i(Q8)= γ (Q8)= 5 (cf. Figure 7).

In 1964 [96] the Yaglom brothers published the book Challenging Mathematical
Problems with Elementary Solutions. Vol. I: Combinatorial Analysis and Probability
Theory, which contains 9 chessboard domination problems. Notable among their
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Fig. 6 Ahrens’ maximum
independent set of 10 queens
on Q10

Fig. 7 A minimum
(independent) dominating set
of 5 queens on Q8

contributions were the following three theorems about the kings domination number
of square and rectangular chessboards, and the kings independent domination and
independence numbers of square chessboards.

Theorem 2 (Yaglom and Yaglom [96]) For kings graphs, γ (Kn) = �n+2
3 �2.

Theorem 3 (Yaglom and Yaglom [96]) For rectangular kings graphs,

γ (Km,n) = �m+ 2

3
��n+ 2

3
�.

Theorem 4 (Yaglom and Yaglom [96]) For kings graphs, i(Kn) = α(Kn) =
�n+1

2 �2.
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Chessboard domination problems often appeared in the many columns written
by Martin Gardner in Scientific American in the 1970s, cf. [53–55].

In 1995 [52] Fricke, Hedetniemi, Hedetniemi, McRae, Wallis, Jacobon, Martin,
and Weakley present the first comprehensive survey of chessboard domination
results. This was followed in 1998 by a survey by Hedetniemi, Hedetniemi, and
Reynolds [63] containing even more chessboard domination results.

In 2004 [90] Watkins, publishes the book Across the Board: The Mathematics
of Chessboard Problems, in which Chapter Seven Domination, Chapter Eight
Queens Domination, Chapter Nine Domination on Other Surfaces, and Chapter Ten
Independence discuss some of the results reviewed in this chapter.

In 2008 [3] Bell and Stevens present a comprehensive 32-page survey of
everything that is known about the n-queens problem, including the placement of
non-attacking queens on a wide variety of chessboards, including n-dimensional
boards, Möbius boards, and modular boards.

Finally, in 2018 [95] Weakley presents an excellent survey of research on the
queens domination number in the last 25 years.

We should also add that there is a huge amount of chess information at
http://www.kotesovec.cz.

4 Queens

In this section we focus on chessboard domination using only queens. In subsequent
sections we will focus on chessboard domination using the other pieces of bishops,
knights, kings, and rooks.

In 1977 [68] Larson shows that for primes of the form n= 4k+ 1, elegant
solutions can be constructed for the n-queens problem using the following simple
rule: place a queen on the center square and then place other queens by making
successive (2, 3) movements—two squares to the right and three squares upward,
where the top and bottom edges of the board are identified, as well as the right
and left edges of the board. The resulting queen placement for n= 13 is shown in
Figure 8.

Larson shows that whenever u and v are positive integers and u2 + v2 is an odd
prime p, then queens located at successive (u, v) movements from a queen on the
center square of the p× p chessboard give a solution to the p-queens problem, and
such solutions exist whenever p is a prime of the form 4k+ 1.

In 1984 [88] Wagner and Geist discuss the results of a programming assignment
given to students in a graduate computer science class: write a program to solve the
following variant of the 8-queens problem.

A crippled queen CQ is a chess queen that can move at most two squares at a
time in any direction (vertical, horizontal, or diagonal). Find the maximum number
α(CQn) of CQs that can be placed on an 8× 8 chessboard so that no two CQs can
attack one another. Find also the number of ways that this number of CQs can be so
placed. If possible, generalize the program to compute α(CQ8,n) or α(CQm,n).

http://www.kotesovec.cz
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Fig. 8 Thirteen
non-attacking queens in a
(2,3)-pattern on a 13× 13
chessboard

Fig. 9 Thirteen independent
crippled queens on an 8× 8
chessboard

Figure 9 illustrates a crippled queens solution for the 8× 8 board. Notice that in
this solution every CQ is a knight’s move away from at least one other CQ. Notice
also that a crippled queen is very much like a super king, which can move two
squares: one square in any direction, followed by a second square in any direction.

In 1986 [35] Cockayne and Hedetniemi introduce a variation of the standard
queens domination problem, in which you seek to find the minimum number of
queens which, when placed only on the main diagonal of an n× n chessboard,
dominate all squares. Let diag(n) denote this diagonal queens domination number;
this is also denoted by γ diag(Qn).

The authors show that the diagonal queens domination problem is equivalent to
the problem of finding a midpoint-free, even-sum set of integers up to n, which,
as well, is equivalent to that of finding a midpoint-free subset of [n/2]; this is a
collection of integers up to n/2 not containing a three-term arithmetic progression.

A subset K ⊂N is called midpoint-free if for all {i, j}⊆K, (i+ j)/2�∈K, and K is
called an even-sum subset if the sum of each pair of elements of K is even, i.e., its
elements are either all odd or all even.



Domination in Chessboards 351

Table 1 Values of diag(n) n diag(n) Minimum diagonal dominating set

7 4 {2, 4, 5, 6}
8 5 {2, 4, 5, 6, 8}
11 7 {1, 3, 5, 6, 7, 9, 11}
15 11 N −{2, 4, 8, 10}
20 15 N −{2, 4, 8, 10, 20}
24 18 N −{2, 4, 8, 10, 20, 22}
25 18 N −{1, 3, 7, 9, 19, 21, 25}
30 22 N −{1, 3, 7, 9, 19, 21, 25, 27}

The authors show that the diagonal queens domination number is related to the
number-theoretic function r3(n), which equals the smallest number of integers in a
subset of {1, 2, . . . , n} that must contain three terms in arithmetic progression.

Suppose that the squares of a chessboard are labeled (i, j), so that black and red
squares have (i+ j) even or odd, respectively. A subset K ⊂N ={1, 2, . . . , n} is
called a diagonal dominating set if queens placed in positions {(k, k) : k∈K} on the
black major diagonal dominate the entire board.

Theorem 5 (Cockayne, Hedetniemi [35]) A subset K is a diagonal dominating set
if and only if N−K is a midpoint-free, even-sum set.

Proof. Let K be a diagonal dominating set and let {i, j}⊆N −K. Then square (i,
j) is not covered by a queen along a row or column. Since only black squares are
covered diagonally, square (i, j) must be black, which implies that (i+ j) is even,
i.e., N −K is an even-sum set. Since square (i, j) is covered, by a queen at square
(k, k), for some k∈K, we have i+ j= 2k. Hence, (i+ j)/2�∈N −K and N −K are
midpoint-free.

Conversely, suppose N −K is a midpoint-free, even-sum set. Place queens at {(k,
k)|k∈K}. If (i, j) is a red square, i.e., i+ j is odd, then by the even-sum property,
either i or j is in K and (i, j) is covered by a queen along a row or column. If (i, j)
is a black square and is not covered by a row or a column, then (i, j)⊆N −K and
i+ 2j= 2l, for some l∈N. Since N −K is midpoint-free, l �∈N −K. Therefore, l∈K
and (i, j) are dominated by the queen at position (l, l). This completes the proof. �

Corollary 6 diag(n)= n−max{|K||K is a midpoint-free, even-sum subset of N}.
In Table 1, notice that the complements of the indicated minimum diagonal

dominating sets are midpoint-free; for example, for n= 25, {1, 3, 7, 9, 19, 21, 25} is
a midpoint-free set.

See Figure 10 for a minimum diagonal queens dominating set on Q8.
In 1985 [40] Cockayne, Gamble, and Shepherd consider another variation of the

standard queens domination problem.
Denote by col(n) the minimum number of queens on any single column that is

required to dominate the n× n chessboard. It is easy to see that a column nearest
the center is as good as any other. The authors show that like diag(n), col(n) is also
related to the number-theoretic function r3(n), as follows.
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Fig. 10 Diagonal minimum
dominating set for Q8

Let A(n)= n− r3(�n/3�).
Let B(n)= n−maxk+l=�n/2�{r3(�k/2�)+ r3(�l/2�)}.

Theorem 7 (Cockayne, Gamble, Shepherd [40]) For n≥ 2, col(n)=min{A(n),
B(n)}.
Corollary 8 For any n, diag(n)≤ col(n).

They also raised the following question.

Question 9 For all n, is A(n)≥B(n)?

In 1987 [78] Raghavan and Venkatesan prove the following bounds on the queens
domination number. The proof of this upper bound is essentially the same as the
proof attributed to Welch below.

Theorem 10 (Raghavan, Venkatesan [78]) For any n≥ 1, � 1
2n� ≤ γ (Qn) ≤

� 2
3n� + 2.

This upper bound shows up in several subsequent papers, and can be proved in
several different ways.

In 1988 [37] Cockayne and Spencer provide the following upper bound for the
independent queens domination number.

Theorem 11 (Cockayne, Spencer [37]) For any n≥ 1, i(Qn)≤ 0.705n+ 2.305.

In 1990 [34] Cockayne surveys results known at the time on domination
and independent domination numbers of the queens graph, the diagonal queens
domination problem, domination by queens in a single column and domination,
independent domination and total domination of the bishops graph. In this paper
he presents the following basic result, attributed to L. Welch in an undated private
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communication to Cockayne. This construction is very similar to the same upper
bound presented earlier by Raghavan and Venkatesan [78].

Theorem 12 (Welch [34]) For n= 3q+ r, where 0≤ r≤ 2, γ (Qn)≤ 2q+ r.

Proof Sketch. For the case n= 3q, divide the n× n chessboard into nine q× q
boards, where the top three boards are numbered B1, B2, and B3, the middle three
boards are numbered B4, B5, and B6, and the bottom three boards are numbered B7,
B8, and B9. Place q queens on the main (northwest down to southeast) diagonal of
board B3. Place q− 1 queens on the diagonal immediately above the main diagonal
of board B7, and place the last queen in the bottom left corner of board B7. It is
easy to see that the q queens on the main diagonal of board B3 dominate all squares
in boards B1, B2, B3, B6, and B9. Similarly, the q queens in board B7 dominate all
squares in boards B4, B7, and B8. It only remains to show that all squares in the
middle board B5 are dominated by these 2q queens.

If n= 3q+ 1 or n= 3q+ 2, it is easy to add one or two extra queens in squares
(3q+ 1, 3q+ 1) and (3q+ 2, 3q+ 2). �

It is worth noting that one can always add just one queen to the pattern suggested
in Welch’s proof to obtain an upper bound for the connected domination number of
the queens graph.

Cockayne also presents one of the most often quoted results in queens domi-
nation theory, attributed to P. H. Spencer, when he was an undergraduate research
student at the University of Victoria in the summer of 1984 (C.M. Mynhardt, Private
communication, 2020).

Theorem 13 (Spencer, 1984) For any n≥ 1, γ (Qn)≥ (n− 1)/2.

Proof. Since γ (Q1)= γ (Q2)= γ (Q3)= 1, we can assume that n≥ 4. It is easy to
see that the set of n− 2 queens placed on the main diagonal on every square (i, i)
except for (1, 1) and (3, 3) is a dominating set. Thus, for all n≥ 4, γ (Qn)≤ n− 2,
and therefore any minimum dominating set of queens on Qn will have at least two
rows and two columns with no queen on them.

Assume that the columns of Qn are numbered 1, 2, . . . , n from left to right,
and that the rows are similarly numbered from top to bottom. Let S be a minimum
dominating set of queens on Qn. Let a be the leftmost column, b the rightmost
column, c the lowest row, and d the highest row not containing a queen. By
symmetry, we may assume that δ2 = d − c≤ δ1 = b− a.

Consider the sets of squares Sa and Sb in columns a and b, respectively,
which lie between rows c and c+ δ1 − 1 inclusively, and let S= Sa ∪ Sb. Thus,
|Sa| = |Sb| = δ1 − 1.

Since δ2 ≤ δ1, no diagonal intersects both Sa and Sb. Therefore, every queen
diagonally dominates at most two squares of S, one in Sa and one in Sb. Furthermore,
all queens situated above row c or below row c+ δ1 − 1 do not dominate any squares
of S by row or column.

By the definition of c, there are at least c− 1 queens above row c and each row
below d is occupied by at least one queen, where d = c+ δ2 ≤ c+ δ1. Therefore,
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since all of the n− (c+ δ1) rows below row c+ δ1 are occupied, there are at least
n− (c+ δ1) queens below row c+ δ1 − 1.

It follows that at least (c− 1)+ (n− c− δ1)= n− δ1 − 1 queens dominate at
most 2 squares of S. The remaining queens, at most γ (Qn)− (n− δ1 − 1), may cover
at most 4 squares of S. Since all of the 2δ1 squares of S must be dominated, we must
have

2(n− δ1 − 1)+ 4(γ (Qn)− (n− δ1 − 1)) ≥ 2δ1,

which gives γ (Qn)≥ (n− 1)/2, as required. �

Note, by the way, that the bound γ (Qn)≥ (n− 1)/2 means that for even values
of n, γ (Qn)≥ n/2; this is noted in many papers dealing with queens domination
numbers. Thus, whenever for even n you can find a dominating set of n/2 queens,
you know it is best possible, and this happens quite often.

In 1991 Grinstead, Hahne, and Van Stone (see also Eisenstein, Grinstead, Hahne
and Van Stone [47]) prove the following two theorems, which were the best known
bounds at the time, the second of which is very much like the theorem of Welch and
the theorem of Raghavan and Venkatesen above.

Theorem 14 (Grinstead, Hahne, Van Stone [60]) For any n≥ 1,

γ (Qn) ≤ 14

23
n+O(1).

Theorem 15 (Grinstead, Hahne, Van Stone [60]) For any n≥ 1, i(Qn) ≤ 2
3n +

O(1).

One basic pattern of independent dominating queens which achieves the upper
bound in Theorem 15 is shown in Figure 11.

In 1991 Weakley studies �(Qn) and �t(Qn) and proves the following two lower
bounds.

Theorem 16 (W.D. Weakley, Private communication, July 26, 1991) For
n≥ 5,

(i) Γ (Qn)≥ 2n− 5.
(ii) Γ t(Qn)≥ 2n− 5.

He also shows that n= 6 is the smallest value for which �(Qn) > n.
Weakley then studies the value of �(Qm,n) and �t(Qm,n) for rectangular m× n

chessboards, and shows the following.

Theorem 17 (W.D. Weakley, Private communication, July 26, 1991) For any
n≥ 1,

(i) Γ (Q2,n)= IR(Q2,n)=�n/2�.
(ii) Γ t(Q2,n)= IRt(Q2,n)=�n/2� except for n= 1, 2, 5, 6, when Γ t(Q2,n)=

IRt(Q2,n)=�n/2�+ 1.
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Fig. 11 A set of 11 independent queens dominating Q17

(iii) Γ (Q3,n)≥�(n+ 1)/2�.
(iv) Γ (Q4,n)≥ n and Γ t(Q4,n)≥ n.

The tables below illustrate the bounds for �(Q3,n) and �t(Q4,n) (cf. Table 2),
where a private neighbor of queen Qk is the square numbered k. Notice that in Table
2 queen Q3 is its own private neighbor. Notice also that the set of queens in Table 2
is not a total dominating set of queens because of queen Q3.

In 1994 [19] and [20] Burger, in his master’s thesis and PhD dissertation, gives a
complete listing of all minimum queens dominating sets for Qn, for 5≤ n≤ 8.

In 1994 Burger, Mynhardt, and Cockayne provide the following four exact values
of γ (Qn) by exhibiting symmetric solutions.

Theorem 18 (Burger, Mynhardt, Cockayne [26]) For k= 9, 12, 13, 15,
γ (Q4k+1)= 2k+ 1.
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Table 2 �(Q3,n)≥�(n+ 1)/2� and �(Q4,n)≥ n

Q1 Q2 Q4 Q5

Q3

1 2 4 5

1 3 5

Q1 Q3 Q5

Q2 Q4

2 4

Table 3 Best known results as of 2020

Chess pieces ir γ i α � IR

Queens Qn n ≥ 2n− 5
Kings Kn (�(n + 2)/3�)2 (�(n + 2)/3�)2 (�(n + 1)/2�)2

Rooks Rn n n n n n 2n− 4
Bishops Bn n n n 2n− 2 2n− 2 4n− 14
Knights Nn [39] [39] [39]
Grid Gn Known [39] [39] [39]

Table 4 �(Q6)= 7 2 3 4
Q1 Q2

5 6 7
Q3 Q4

1 7
Q5 Q6 Q7

As we will see below, more results for γ (Q4k+1) were to follow.
In 1995 Weakley proves the following two results, which he presented at a

conference in 1992.

Theorem 19 (Weakley [92]) For all k, γ (Q4k+1)≥ 2k+ 1

Theorem 20 (Weakley [92]) For k≤ 6, and k= 8, γ (Q4k+1)= i(Q4k+1)= 2k+ 1.

He also proves that γ (Q7)= i(Q7)= 4, which was stated, but not proved, by W.
W Rouse Ball in 1892 [81].

In 1995 [52] Fricke et al. and in 1998 [63] Hedetniemi et al. publish two compre-
hensive surveys of the following 36 chessboard domination-related problems. (cf.
Table 3).

Space limitations do not permit us to discuss the state of knowledge of all 36
problems. Thus, we only highlight a few.

The result that α(Qn)= n is frequently attributed to Ahrens in 1910 [1], but
was first shown by Pauls in 1874 [76]. The inequality �(Qn)≥ 2n− 5 is due to
Weakley (private communication dated July 26, 1991). An illustration of Weakley’s
construction of a maximum cardinality, minimal dominating set of seven queens on
Q6 is given in Table 4, with seven numbered queens and squares with an integer k
indicating a private neighbor of queen Qk.

Notice in Table 3 that for the rooks graph, all formulas are known, since these
graphs have a simple clique structure. The results that γ (Rn)= i(Rn)=α(Rn)= n are
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Fig. 12 IR(Rn)= 2n− 4

Fig. 13 α(Bn)= �(Bn)= 2n− 2 and IR(Bn)= 4n− 14

due to Yaglom and Yaglom [96], as are the results that γ (Bn)= i(Bn)= n, and the
result that α(Bn)= 2n− 2.

The results, that ir(Rn)= n, �(Rn)= n and IR(Rn)= 2n− 4, are attributed to
Hedetniemi, Hedetniemi and Wallis, but are stated as unpublished in [52] (cf. Figure
12, where the rooks in column 2 all have a private neighbor in column 1, and the
rooks in row 2 all have a private neighbor in row 1).

The result that ir(Bn)= n is attributed to Wallis, but is stated as unpublished
in [52], and the results that �(Bn)= 2n− 2, and IR(Bn)= 4n− 14 are attributed to
Fricke, but are also stated as unpublished in [52]; cf. Figure 13 and for illustrations
of Fricke’s results.

Because of the following theorem, proved in 1981 by Cockayne, Favaron, Payan,
and Thomason, it becomes easy to establish the values of α, �, and IR for knights
graphs and grid graphs, since both of these are bipartite families of graphs.

Theorem 21 (Cockayne, Favaron, Payan, Thomason [39]) If G is a bipartite
graph, then α(G)= Γ (G)= IR(G).

Corollary 22 (Cockayne, Favaron, Payan, Thomason [39]) For all n≥ 1,
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α(Nn)= Γ (Nn)= IR(Nn)={n2/2 for even n; (n2 + 1)/2, for odd n}.
α(Gn)= Γ (Gn)= IR(Gn)={n2/2 for even n; (n2 + 1)/2, for odd n}.

Finally, the domination numbers of all grid graphs, that is, Cartesian products of
the form Pm�Pn, have been completely determined in a 2011 paper by Goncalves,
Pinlou, Rao, and Thomasse [59], who present 16 formulas for the domination
numbers of m-by-n grid graphs; 15 different formulas for γ (Gm,n) for 1≤m≤ 15,
and one final formula for γ (Gm,n), for all m≥ 16.

In 1995 [71] Messick, in his MS research paper, develops a genetic algorithm for
finding near-optimal solutions for IR(Qn). One of his maximal irredundant sets of
11 queens on Q8 is shown in Table 5, in which queen Qk has as a private neighbor
the square numbered k.

Messick’s genetic algorithm also established the following lower bounds for
IR(Qn), for 6≤ n≤ 18 (cf. Table 6).

In 1997 [27] Burger, Cockayne, and Mynhardt introduce the study of the upper
domination number �(Qn) and the upper irredundance number IR(Qn) of the queens
graph Qn and present the following three results.

Theorem 23 (Burger, Cockayne, Mynhardt) For all n≥ 1,

(i) γ (Qn)≤ 31n/54+O(1);
(ii) Γ (Qn)≥ 5n/2−O(1);

(iii) IR(Qn) ≤ �6n+ 6 − 8
√
n+√

n+ 1�.

They also mention that they have determined all 638 non-isomorphic indepen-
dent dominating sets of size 5 of Q8.

In 1997 [58] Gibbons and Webb, using simulated annealing and exhaustive
search techniques, extend the known values of γ (Qn) and i(Qn) as shown in Tables
7 and 8:

Table 5 IR(Q8)≥ 11 Q1 Q2 Q3 Q4

Q5 Q6 Q7

1 5
Q8 Q9

2 6
Q10 Q11

3 8 10
4 7 9 11

Table 6 Lower bounds for IR(Qn)

n 6 7 8 9 10 11 12 13 14 15 16 17 18

IR(Qn)≥ 7 9 11 13 15 17 19 21 24 26 28 29 31

Table 7 New values of
γ (Qn)

n 29 41 45 57

γ (Qn)≥ 15 21 23 29
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Table 8 New values of i(Qn) n 14 15 16

i(Qn)≥ 8 9 9

Fig. 14 γ (Q13)= 7

As a by-product, the number of non-equivalent ways of covering Qn with k
independent queens, for 1≤ n≤ 15 and 1≤ k≤ 8, as well as the case n= 16 and
k= 8, are determined. As an illustration, they present the following minimum
dominating set of seven queens on Q13 (cf. Figure 14); note that three queens lie
symmetrically on the main diagonal, the four queens on border are symmetrically
placed, and every other row and column contains exactly one queen. This is another
case when γ (Q4k+1)= 2k+ 1.

In 2000 [23] Burger and Mynhardt provide the following two queens domination
numbers:

γ (Q19) = 10, γ (Q31) = 16.

In 2000 [22] Burger and Mynhardt provide the following four queens domination
numbers:

γ (Q30) = 15, γ (Q69) = 35, γ (Q77) = 39, i(Q45) = 23.

They also provide the following tabulation of known values of γ (Q4k+1) (cf.
Table 9).

In 2000 [22] Burger and Mynhardt add the following two values for the lower
irredundance number of the queens graph:

ir(Q5) = γ (Q5) = 3, ir(Q6) = γ (Q6) = 3 (cf. Figure 1).
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Table 9 γ (Q4k+1) k 2 3 4 5 6 7 8 9 10

n 9 13 17 21 25 29 33 37 41
γ 5 7 9 11 13 15 17 19 21
k 11 12 13 14 15 16 17 18 19
n 45 49 53 57 61 65 69 73 77
γ 23 25 27 29 31 ≤35 35 39

Table 10 Toroidal queens
chessboard

• • Q • • • • •
a • 1

b • 2
• 3 c

• �
• e 5

6 • f

7 • g

In effect, they prove that there does not exist a maximal irredundant set of two
queens on either Q5 or Q6. Thus, the minimum dominating sets of cardinality three
for Q5 and Q6 are also minimum cardinality maximal irredundant sets on these two
chessboards.

They also state, but without proof, that

ir(Q7) = γ (Q7) = 4 (cf. Figure 1).

At the close of their paper, the authors offer the following interesting comment:
“The existence of a maximal irredundant set X of queens on Qn with |X|< γ (Qn)

for some n seems unlikely, as the (average) number of pns [private neighbors] per
queen seems to increase rapidly as n increases, as does the cardinality of R, the set
of open [undominated] squares, and hence the cardinality of N[R]. For every square
in N[R] to annihilate a queen in X (see Theorem 1) is a tall order.

“(Note: Harborth [private communication, January 2000] recently reported that
ir(Qn)= γ (Qn) for n≤ 10.)”

In 2001 [28] Burger, Cockayne, and Mynhardt introduce the study of domination
in queens graphs on the torus, denoted Qt

n, where the torus is the Cartesian product
Cn�Cn. In Qt

n a diagonal is no longer a path with a beginning and an end; instead,
it is a cycle, cf. Table 10, where the queen Q on the top row dominates toroidally
every square in its top row, every square in its column, and all of the labeled squares,
which form to diagonal cycles of length 8, where the black square � can be labeled
both 4 and d. Thus, in the toroidal queens graph, square b is adjacent to square c,
square 5 is adjacent to square 6, and squares 7 and g are both adjacent to the square
labeled Q, and to each other, since they are in the same row.

An example of four toroidal queens which dominate Qt
8 is shown in Figure 15;

note that it takes five queens to dominate Q8; this is the smallest value of n, for
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Fig. 15 Four minimum
toroidal queens for Q8

which γ (Qt
n) < γ (Qn). It is interesting to note that the authors have determined

that γ t(Q15)= 5 < γ (Q15)= 9.
The situation for i(Qn) when compared with i(Qt

n) is also interesting, since they
are not comparable. For example, the authors have shown that i(Q6) = 4 = i(Qt

6),
i(Q7) = 4 < i(Qt

7) = 5, yet i(Q8) = 5 < i(Qt
7) = 4.

The authors consider the independence, domination, and independent domination
numbers of graphs obtained from the moves of queens on chessboards drawn on the
torus, and determine exact values for each of these parameters in infinitely many
cases.

In 2001 Cockayne and Mynhardt study the lower irredundance number of the
queens graph, ir(Qn). The determination of ir(Qn) is no easy task. After some 15
pages of preliminary results and careful analysis, the authors prove the following
theorem.

Theorem 24 (Cockayne, Mynhardt [36]) For any n≥ 8, the queens graph Qn

does not have a maximal irredundant set of size three.

Theorem 25 (Cockayne, Mynhardt [36]) The queens graph Q7 does not have a
maximal irredundant set of size three.

Since it is known that γ (Q7)= 4 and ir(Qn)≤ γ (Qn), we can conclude the
following.

Corollary 26 (Cockayne, Mynhardt [36]) For the queens graph Q7, ir(Q7)= 4.

In 2001 [64] Kearse and Gibbons, using probabilistic and exhaustive search
techniques, such as backtracking with refinements and enhancements, reduction
methods, and local search techniques, establish the following queens domination
numbers:
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(i) γ (Q15)= γ (Q16)= 9,
(ii) γ (Q19)= 10,

(iii) γ (Q4k+1)= 2k+ 1, for k= 16, 18, 20 and 21,
(iv) i(Q18)= 10,
(v) 10≤ i(Q19)≤ 11, and

(vi) i(Q22)≤ 12.

Parameters closely related to γ and i are the irredundance numbers, ir and IR,
and the upper domination number �. Kearse and Gibbons also show that:

(vii) ir(Qn)= γ (Qn), for n≤ 13,
(viii) IR(Q9)= �(Q9)= 13,

(ix) IR(Q10)= �(Q10)= 15.

For the kings graphs Kn, to be discussed further below, the authors establish the
following results:

(x) IR(K8)= 17, IR(K9)= 25, IR(K10)= 27, and IR(K11)= 36.

Kearse and Gibbons also calculate the numbers of non-isomorphic, minimum
dominating sets and independent dominating sets in Qn, for n≤ 15 and n≤ 18,
respectively.

In 2001 [74] Östergard and Weakley publish what is arguably the most definitive
paper on queens domination to date. Using a combination of known theoretical
bounds for both γ (Qn) and i(Qn), along with advanced computer search algorithms,
the authors determine quite a few new values and bounds for these two queens
parameters, which we list here.

1. γ (Qn)=�n/2�, for 17 values of n.
2. i(Qn)=�n/2�, for 11 values of n.
3. One or both of γ (Qn) and i(Qn) is equal to one of {�n/2�, �n/2�+ 1}, for 85

additional values of n.
4. γ (Q4k+1)= 2k+ 1, for k≤ 32.
5. For n≤ 120, each of γ (Qn) and i(Qn) is either known, or known to have one of

only two consecutive values.
6. γ (Qn) ≤ 69n/133 + (1).
7. i(Qn) ≤ 61n/111 +O(1).
8. For all n, (n− 1)/2≤ γ (Qn)≤ i(Qn).

9. Conjecture 27 For all n, i(Qn)≤�n/2�+ 1.

10. If n < 143 and n �= 3, 11, then γ (Qn)≥ n/2.

The authors raise the question of whether γ (Qn)= (n− 1)/2 holds for any value
of n other than n= 3 and n= 11. This question was finally answered in 2007 by
Finozhenok and Weakley.

Theorem 28 (Finozhenok, Weakley [50]) The only integers n for which

γ (Qn) = (n− 1)/2 are n = 3, 11.
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In conclusion, Östergard and Weakley [74], together with the theorem of
Finozhenok and Weakley, provide the following summary results:

γ (Qn)= i(Qn)= (n− 1)/2, only for n= 3, 11.
γ (Qn)=�n/2�, for n= 1, 2, 4–7, 9, 10, 12, 13, 17− 19, 21, 23, 25, 27, 29–31,

33, 37, 39, 41, 45, 49, 53, 57, 61, 65, 69, 71, 73, 77, 81, 85, 89, 91, 93, 97, 101, 105,
109, 113, 115, 117, 121, 125, 129–131.

γ (Qn)=�n/2�+ 1, for n= 8, 14, 15, 16.
γ (Qn)∈{�n/2�, �n/2�+ 1}, for n= 20, 22, 24–26, 28, 32, 34, 35, 36, 38, 40, 42,

43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70,
72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 88, 90, 92, 94–96, 98–100, 102–104,
106–108, 110–112, 114, 116, 118–120, 122, 126, 132.

i(Qn)=�n/2�, for n= 1, 2, 5, 7, 9, 10, 13, 17, 21, 25, 33, 45, 57, 61, 69, 73, 77,
81, 85, 89, 93, 97, 105, 109.

i(Qn)=�n/2�+ 1, for n= 4, 6, 8, 12, 14− 16, 18.
i(Qn)∈{�n/2�, �n/2�+ 1}, for n= 19, 20, 22, 23, 24, 26–30, 31, 32, 34–44, 46–

56, 58–60, 62–68, 70–72, 74–76, 78–80, 82–84, 86–88, 90–92, 94–96, 98–104,
106–108, 110–120.

In 2002 Burger and Mynhardt prove the following.

Theorem 29 (Burger, Mynhardt [24]) For any n≥ 1, γ (Qn) ≤ 8
15n+O(1).

In 2002 Kearse and Gibbons provide the best known lower bounds for IR(Qn).

Theorem 30 (Kearse, Gibbons [65]) For Qn, 6n−O(n2/3)≤ IR(Qn).

Theorem 31 (Kearse, Gibbons [65]) For even k≥ 6, 6k3 − 29k2 − O(k) ≤
IR(Qk3).

The authors conclude their paper with the following comment: “Finally, it seems
likely, although not proven, that 6n−O(n2/3) is also an upper bound for IR(Qn).”

In 2002 Weakley establishes improved upper bounds for the queens domination
number and queens independent domination number.

Theorem 32 (Weakley [93], [94]) For all n≥ 1, γ (Qn) ≤ 34n/63 + O(1) <

0.54n+O(1).

Theorem 33 (Weakley [93], [94]) For all n≥ 1, i(Qn) ≤ 19n/33 + O(1) <

0.57n+O(1).

In 2003 Burger and Mynhardt provide improved upper bounds, in special cases,
for both γ (Qn) and γ (Qt

n), where Qt
n is the n× n queens graph on a torus. They

present a 10-page proof of the following theorem.

Theorem 34 (Burger, Mynhardt [25]) For all n large enough, γ (Qn) ≤ 101
195n +

O(1).

For queens on a torus, the authors provide the following summary of known
results:
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γ (Qt
3k) =

⎧
⎪⎪⎨

⎪⎪⎩

k if k ≡ 1, 5, 7, 11 (mod 12)

k + 1 if k ≡ 2, 10 (mod 12)

k + 2 if k ≡ 0, 3, 4, 6, 8, 9 (mod 12)

They also show that if n≡ 2, 4 (mod 6), then �n/3� ≤ γ (Qt
n) ≤ n

2 , and if n≡ 1,
5 (mod 6), then �n/3� ≤ γ (Qt

n) ≤ γ (Qn).
The authors show that if for some fixed k there is a dominating set of

Q4k+1 of a certain type with cardinality 2k+ 1, then for any n large enough,
γ (Qn)≤ [(3k+ 5)/(6k+ 3)]n+O(1). The same construction shows that for any
m≥ 1 and n= 2(6m− 1)(2k+ 1)− 1, γ (Qt

n) ≤ [(2k + 3)/(4k + 2)]n+O(1).
In 2003 Burger, Mynhardt, and Weakley prove the following for the queens

domination number on a torus.

Theorem 35 (Burger, Mynhardt, Weakley [29]) For all n≥ 1, γ (Qt
3n) = 2n −

α(Qt
n).

In 2003 [72] Mynhardt establishes improved upper bounds for γ (Qt
n) and i(Qt

n),
for queens on a torus.

In 2005 [2] Amirabadi, in his MS research paper, develops search algorithms for
approximating the total domination and connected domination numbers of queens
graphs. His search algorithm produces results that are within three of proven lower
bounds. It is known that for the first 130 values of n, γ (Qn) is either known or known
to be one of two consecutive numbers. As a result of the author’s computations, for
the first 30 values of n, γ t(Qn) and γ c(Qn) are either known or known to be one of
three consecutive numbers (cf. Table 11).

In 2006 [11] and later in 2016 [15] Burchett initiates the study of the paired dom-
ination number γ pr(Qn), the total domination number γ t(Qn), and the connected
domination number γ c(Qn) of queens graphs. Exact values for γ pr(Qn), γ t(Qn),
and γ c(Qn) are provided for the following values of n:

γ pr(Qn): 2≤ n≤ 10, n= 12, 13, and 15≤ n≤ 20.
γ t(Qn): 2≤ n≤ 10, n= 12, 15, 17, 18, 19.

Table 11 Values found for γ t(Qn) and γ c(Qn)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

γ t ≥ x 2 2 2 3 3 4 4 5 6 6 7 7 8 8
Found x 2 2 2 3 4 4 5 5 6 7 7 8 9 9
γ c ≥ 1 1 1 2 3 3 4 5 5 6 7 7 8 9 9
Found 1 1 1 2 3 4 4 5 5 6 7 8 8 9 10
n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
γ t ≥ 9 9 10 10 11 12 12 13 13 14 15 15 16 16 17
Found 10 10 11 12 12 13 14 14 15 15 16 17 17 18 19
γ c ≥ 10 10 11 11 12 13 13 14 15 15 16 16 17 18 18
Found 11 12 12 12 13 14 15 16 16 17 18 19 19 19 20
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γ c(Qn): 2≤ n≤ 11, n= 13, 14, 16, 17, 19, 20, 22, 23.

The following bounds are also provided:

4
7 (n− 1) ≤ γt (Qn) ≤ γpr(Qn).
γt (Qn) ≤ γpr(Qn) ≤ 2n/3 +O(1).
2n/3 − 1 ≤ γc(Qn) ≤ 2n/3 +O(1).

In 2008 [84] Sinko and Slater initiate the study of the border queens domination
problem, that is, determining how few queens are needed to cover all of the squares
of an n× n chessboard when the queens are restricted to squares on the border. We
denote this number by γ bor(Qn). In this paper the authors give the values of γ bor(Qn)
for 1≤ n≤ 13 shown in Table 12.

What is particularly interesting about this is the observation that γ bor(Q12)= 10
> γ bor(Q13)= 9. Thus, the border queens domination number is not monotonically
non-decreasing. It has long been conjectured that the queens domination number is
monotonically non-decreasing, that is, for all n≥ 1, γ (Qn)≤ γ (Qn+1).

The authors present solutions to the border queens domination number for
4≤ n≤ 10 as follows:

γbor (Qn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if n = 4:{(a, 2), (d, 2)}
3 if n = 5:{(b, 5), (c, 1), (d, 5)}
4 if n = 6:{(b, 6), (c, 1), (d, 1), (e, 6)}
5 if n = 7:{(b, 7), (c, 7), (d, 1), (e, 7), (f, 7)}
6 if n = 8:{(b, 8), (c, 8), (d, 1), (e, 1), (f, 8), (g, 8)}
6 if n = 9:{(a, 7), (c, 1), (e, 1), (g, 9), (i, 3), (i, 5)}
6 if n = 10:{(a, 1), (a, 7), (d, 1), (g, 10), (j, 1), (j, 4)}

They also establish by a computer search that 11≤ γ bor(Q14)≤ 12 and
9≤ γ bor(Q15)≤ 13.

We illustrate a solution for γ bor(Q10) in Figure 16. Note that the solutions
given for 4≤ n≤ 8 above, all have a symmetry about the center column, while the
solutions given for n= 9 and n= 10, although asymmetric, have a type of rotational
symmetry.

For the general case, they establish the following bounds.

Theorem 36 (Sinko, Slater [84]) For all n≥ 4,

Table 12 Values of γ bor(Qn)

k 1 2 3 4 5 6 7 8 9 10 11 12 13

γ (Qn) 1 1 1 2 3 3 4 5 5 5 5 6 7
γ bor(Qn) 1 1 2 2 3 4 5 6 6 6 9 10 9
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Fig. 16 γ bor(Q10)= 6

n(2 − 9/2n−
√

8n2 − 49n+ 49/2n) ≤ γbor (Qn) ≤ n− 2.

The authors note that limn→∞(2 − 9/2n−√
8n2 − 49n+ 49/2n) = 2 −√

2.
For n= 3t+ 1 they improve this upper bound to 2t+ 1 if 3t+ 1 is odd and 2t if

3t+ 1 is even.
In 2011 [12, 13] Burchett studies k-tuple domination in the rooks graph, in which

it is required that every square not in S be attacked at least k times with a minimum
number of rooks. He also continues the study of the border queens domination
problem.

In 2014 [10] Brown considers a variation on the queens domination problem
posed by Bell and Stevens [3] in their survey of the n queens problem. Bell and
Stevens asked: given an n× n chessboard on which one queen has been arbitrarily
placed, when is it possible to place n− 1 remaining queens to create an arrangement
of n non-attacking queens? In [10] Brown considers the possibility that a solution to
this Initial Placement Problem is always possible for n > 6, and proceeds to provide
solutions for n≡ 0 (mod 6) and n≡ 2 (mod 6). He then conjectures that the Initial
Placement Problem is solvable for all initial placements of two non-attacking queens
when n > 9.

In 2016 Burchett provides new upper bounds for paired, total, and connected
domination for the queens graph.

Theorem 37 (Burchett [14]) For all n≥ 1,

(i) � 2n
3 � − 1 ≤ γc(Qn) ≤ � 2n

3 �.
(ii) For n≥ 21 and n≡ 3, 4, 5 (mod 6), γt (Qn) ≤ � 2n

3 � − 1.
(iii) For n≥ 22 and n≡ 4 (mod 6), γpr(Qn) ≤ � 2n

3 � − 1.
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Fig. 17 Minimum queens connected dominating set for Q21

For an illustration of this theorem, cf. Figure 17.
In 2017 [6] William Bird, in his PhD thesis, adds considerably to what is known

about a variety of queens domination problems. Noteworthy are three new values of
γ (Qn):

γ (Q20) = 11, γ (Q22) = 12, and γ (Q24) = 13.

In each of these three cases the value was known to be one of two values,
this value shown or one less. Thus, in each of these three cases, the value is
γ (Qn)=�n/2�+ 1. In addition Bird’s sophisticated computer program was able
to establish the following five new values: i(Q19)= 11, i(Q20)= 11, i(Q22)= 12,
i(Q23)= 13, and i(Q24)= 13; again, in all of these five cases, i(Qn)=�n/2�+ 1.

Bird also adds many new values of the border queens domination number for
14≤ n≤ 24, given in boldface in the following Table 13.
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Table 13 Values of γ bor(Qn)

n 10 11 12 13 14 1 5 16 17 18 19 20 121 22 23 24

γ bor(Qn) 6 9 10 9 12 13 10 14 16 13 18 19 14 21 22

Table 14 Number of solutions to γ (Qn) and i(Qn)

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

γ (Qn) 1 2 3 3 4 5 5 5 5 6 7 8 9 9 9 9
Solutions 1 3 37 1 13 638 21 1 1 1 41 588 25,872 43 22 2
i(Qn) 1 3 3 4 4 5 5 5 5 7 7 8 9 9 9 10
Solutions 1 2 2 17 1 91 16 1 1 105 4 55 1314 16 2 28

It is interesting to note from Bird’s data how frequently γ bor(Qn) > γ bor(Qn+1),
that is, that this function fails to be monotonic non-decreasing. But these numbers
suggest the following conjecture.

Conjecture 38 For all n≥ 1, γ bor(Qn)≤ γ bor(Qn+2).

Of equal interest, Bird determines the number of minimum dominating sets and
minimum independent dominating sets for Qn, for 3≤ n≤ 18, as shown in Table 14.

We close this section on queens domination by referring to the 2010 paper [49] by
Fernau, in which he discusses three computational approaches to solving the queens
domination problem: (i) backtracking, (ii) dynamic programming on subsets, and
(iii) dynamic programming using treewidth, or path decompositions. He points out
that the determination of the γ (Qn) sequence of integers is listed as Problem C18 in
Richard Guy’s book entitled “Unsolved Problems in Number Theory.” [61].

At the end of this paper, Fernau discusses the perplexing problem that so little is
known about the complexity of the queens domination problem.

QUEENS DOMINATING SET
Instance: Positive integer n, positive integer k.
Question: Does Qn have a dominating set of cardinality at most k?

It is unknown if this problem is NP-hard. This would seem unlikely, since for
the first 130 values of n, γ (Qn) is either known exactly or is known to be one
of two consecutive integers. And yet no polynomial-time algorithm is known for
computing the value of γ (Qn). Fernau also points out that since all known upper
bounds for γ (Qn) are algorithmic in nature, except for additive O(1) constants,
γ (Qn) can be approximated up to a factor of 138

133 . For a related complexity question
involving n-queens, see Gent, Jefferson and Nightingale [57].
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5 Bishops

In this section we review results about domination in bishops graphs. The bishops
graph Bn is the graph whose vertices are the n2 squares of the n× n chessboard, and
two vertices are adjacent if and only if their corresponding squares lie on a common
diagonal, which corresponds to a move of a bishop.

In 1986 Cockayne, Gamble, and Shepherd prove the following two basic
theorems which determine the domination and total domination numbers of all
bishops graphs. The fact that γ (Bn)= n had previously been proved by Yaglom and
Yaglom [96].

Theorem 39 (Cockayne, Gamble, Shepherd [41]) For any n, γ (Bn)= i(Bn)= n.

Proof Sketch. The set of squares of a nearest column to the center is an indepen-
dent dominating set of the bishops graph; hence, γ (Bn)≤ i(Bn)≤ n. It remains to
show that γ (Bn)≥ n. Assume that γ (Bn) < n. Then there must be a diagonal not
having any bishop on it.

Assume that the northwest to southeast running diagonals are labeled sequen-
tially 1, 2, . . . , 2n− 1 starting in the southwest corner and proceeding to the
northeast corner. Notice that for 1≤ d ≤ n diagonal d has d squares, and for
n+ 1≤ d ≤ 2n− 1, diagonal d has 2n− d squares.

Let r (and b) be the labels of the red (black) diagonal closest to the main diagonal
which has no bishop. Without loss of generality, we may assume that {r, b}⊂{1, 2,
. . . , n}.

Diagonal r has r squares and these must be dominated. By the definition of r,
there are bishops on each diagonal strictly between r and 2n− r, else there is a row
closer to the main diagonal which has no bishop. Hence, the number of red bishops
in any dominating set satisfies

nr ≥ max{r, n− r − 1}.

Similarly,

nb ≥ max{b, n− b − 1}.

From these two inequalities we can deduce that γ (Bn)≥ n. �

Theorem 40 (Cockayne, Gamble, Shepherd [41]) For any n≥ 3,

γt (Bn) = 2�2

3
(n− 1)�.

Proof Sketch. The bishops graph Bn is the disjoint union of the red bishops graph
Rn and the black bishops graph, Bn. We summarize only the proof that γt (Bn) =
2� 2

3 (n− 1)� for n even.
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Fig. 18 Diamond-shaped chessboard

Notice that a bishops total dominating set of Bn is precisely a rook total
dominating set of the diamond-shaped chessboard Sn, which has n rows and n− 1
columns (cf. Figure 18). For ease of presentation, we use rooks, rows, and columns,
rather than bishops and diagonals.

Lemma 41 ([41]) For any n, Sn has a minimum rooks total dominating set with
rooks on consecutive rows and columns.

It follows from this lemma that some minimum rooks total dominating set of
Sn may be used to construct a rooks total dominating set of an m× p rectangular
board with property REL, i.e., a rook on every line (row or column). It is
shown that such a board satisfies m+ p≥ n− 1, and hence, if s(m, p) equals the
minimum number of rooks in an REL total dominating set of an m× p board, then
γ t(Bn)=minm+p≥n−1{s(m, p)}.
Lemma 42 ([41]) For p≤m≤ 2p+ 2, s(m, p) = � 2

3 (m+ p)�, and for m > 2p+ 2,
s(m, p)=m.

Proof.
By establishing and solving a recurrence for s(m, p). �

One may deduce from this that γt (Bn) ≥ � 2
3 (n− 1)�. The final part of the proof

exhibits a rooks total dominating set of Sn with � 2
3 (n− 1)� rooks. �

Figure 19 illustrates a minimum independent dominating set of bishops on B8
and a minimum total dominating set of bishops on B8.

In 1994 [66] Koehler, in his MS research paper, initiates the study of chessboard
domination problems in three-dimensional chessboards. For three-dimensional
bishops graphs B3

n , Koehler obtains the following results, cf. Table 15.
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Fig. 19 Minimum bishops independent and total dominating set for B8

Table 15 Values of γ (B3
n) n 1 2 3 4 5 6 7

γ (B3
n) 1 2 3 8 ≤13 ≤18 ≤27

Table 16 Minimal dominating set of 8 bishops on B3
4

Table 16 illustrates a minimum dominating set of 8 bishops on the three-
dimensional bishops graph B3

4 . Each level is a 4× 4 bishops graph, and there
are four levels from left to right. A bishop dominates every square in its two
diagonals on its level, and all squares above and below it on ascending or descending
diagonals.

In 2002 [51] Fisher and Thalos consider bishops graphs on rectangular k× n
boards, which we denote by Bk,n. They extend the result by Yaglom and Yaglom
[96], and independently by Cockayne, Gamble, and Shepherd [41], that γ (Bn,n)= n,
as follows.

Theorem 43 (Fisher, Thalos [51]) For Bk,n,

(i) If k < n, then γ (Bk,n)= 2�n/2�.
(ii) For 2 < 2k < n, γ (Bk,n)≤ 2�(k+ n)/3�.

The authors then make the following conjecture.

Conjecture 44 (Fisher, Thalos) For 2 < 2k < n, γ (Bk,n)= 2�(k+ n)/3�.

They show that this conjecture is true when k≤ 3 or n≤ 2k+ 5.
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In 2016 [14] Burchett introduces the study of the k-tuple domination number,
denoted γ×k(Bn), which equals the minimum number of bishops in a set S so that
every square not in S is attacked by at least k bishops, and every bishop is attacked by
at least k− 1 bishops. In this paper, for odd n, and k ≤ �n

2 �, the k-tuple domination
number of Bn is shown to equal one of two possible values, and for even n, the k-
tuple domination number is shown to be bounded between nk− k and nk for k ≤ n

2 .
In 2016 [16] Burchett and Buckley introduce the concept of the kth border

bishop’s domination number. When k= 1, the kth border is the set of outermost
squares on the board. For k= 2, the kth border consists of all squares adjacent
to first border squares and, in general, the set of kth border square equals the set
of square adjacent to the set of k− 1 border squares. Let γ bor,k(Bn) denote the
minimum number of bishops which can be placed only on kth border square in
order to dominate all squares not containing a bishop. The authors point out that as
k grows large with respect to n, kth border dominating sets might not exist. In fact,
they show that for k > �n/4�+ 1, no kth border dominating sets exist.

In this paper, they prove the following result.

Theorem 45 (Burchett, Buckley) If a kth border dominating sets exist for Bn,
then

(i) γ bor,k(Bn)= 2n− 4k+ 2, for n≡ 2, 3 (mod 4), and
(ii) γ bor,k(Bn)= 2n− 4k+ 2, for n≡ 0, 1 (mod 4), unless k=�n/4�+ 1, in which

case γ bor,k(Bn)= 2n− 4k+ 4, and γ bor,k(Bn)= 2n− 4k+ 3, respectively.

In 2017 [70] Low and Kapbasov introduce the study of the vertex independence
number of bishops α(Bm,n) and kings α(Km,n) on m× n rectangular and cylindrical
chessboards, where on a cylindrical chessboard the left and right edges of the board
are identified. The authors only consider narrow boards, 1× n, 2× n, and 3× n,
and for each of these they determine the number of non-attacking bishops or kings
positions.

6 Knights

The study of knights domination dates at least back to 1896, in L’Intermédiaire des
Mathématiciens, Gauthier-Villars, Paris, Tome III (1896), p. 58, Tome IV (1897), p.
15, and Tome V (1898), p. 87 (cf. Ball [80]).

In 1910 Ahrens [1] presents known results for this problem, giving a covering for
the 11× 11 chessboard using 22 knights, which was known since 1896. The value
γ (N11)≤ 21 was provided by Lemaire in 1973 [69] (cf. Figure 20).

In 1967, in his Scientific American column Mathematical Games, Martin Gardner
[53] discusses the knights covering problem for the n× n chessboard, and gives the
best known solutions for various values of n (cf. Table 17).
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Fig. 20 Lemaire’s
dominating set of 21 knights
on N11

Table 17 Values of γ (Nn)
and number of solutions

n 3 4 5 6 7 8 9 10

γ (Nn) 4 4 5 8 10 12 14 16
# solutions 2 3 8 22 3 1 1? 1?

Gardner gives solutions for γ (Nn), for 3≤ n≤ 8, suggesting that the readers find
solutions for n= 9, 10, stating that both of these solutions were thought to be unique.
Answers appeared in the following issue [54]. In the January, 1968 issue [55],
Gardner presents a second solution for γ (N10) that had been found by his readers.
Also in that issue, Gardner gives the best known solutions for γ (Nn) for n= 11, 12,
13, 14, 15, which use 22, 24, 28, 34, and 37 knights, respectively.

Proofs of the optimality of the values of γ (Nn) given in Table 17 by Gardner,
along with figures showing optimal solutions for 3≤ n≤ 10, due to Frank Rubin,
can be found at the website: http://www.contestcen.com/knight.htm. Figure 21
illustrates two solutions.

In 1987 [62] Hare and Hedetniemi present a dynamic programming algorithm for
computing the knights domination number γ (Nn) on rectangular m× n chessboards,
which is linear in n but exponential in m. Figure 22 illustrates a minimum
dominating set of knights on N8,10 that is the only minimum dominating set for
this knights graph.

The authors present the following values of γ (Nm,n) in Table 18.
The authors make the following conjectures.

Conjecture 46 (Hare, Hedetniemi [62]) For k= 3 and n > 8, γ (Nk,n) is given by
the following:

http://www.contestcen.com/knight.htm
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Fig. 21 Independent and total dominating knights for N6

Fig. 22 Unique knights
dominating set for N8,10

Table 18 Values of γ (Nm,n) γ (Nm,n) 3 4 5 6 7 8 9 10 11 12

3 4 4 4 4 6 8 8 8 8 8
4 4 4 4 6 8 8 8 8 8
5 5 6 7 8 8 9 10 10
6 8 8 8 10 12 12 12
7 10 11 12 14 15 16
8 12 13 14 16 16
9 14 15 17 18
10 16

γ (Nk,n) =

⎧
⎪⎪⎨

⎪⎪⎩

(2n+ 4)/3 for n ≡ 1 (mod 6)

(2n+ 5)/3 for n ≡ 2 (mod 6)

4�n/6� otherwise
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Conjecture 47 (Hare, Hedetniemi [62]) For k= 4 and n > 7, γ (Nk,n) is given by
the following:

γ (Nk,n) =
{
(2n+ 4)/3 for n ≡ 1 (mod 6)

4�n/6� otherwise

Conjecture 48 (Hare, Hedetniemi [62]) For k= 6 and n > 5, γ (Nk,n) is given by
the following:

γ (Nk,n) =

⎧
⎪⎪⎨

⎪⎪⎩

n+ 1 for n ≡ 1 (mod 4)

(2n+ 5)/3 for n ≡ 2 (mod 6)

4�n/4� otherwise

In 1994 Wallis, in his PhD thesis, introduces the study of domination in k-
dimensional chessboards and gives the following theorem.

Theorem 49 (Wallis [89]) For any n, α(Nk
n) = �(Nk

n) = IR(Nk
n) = �nk

2 �.

Proof Sketch. It is well known that the knights graph Nn is bipartite. Wallis shows
that for any k, the k-dimensional knights graph is still bipartite. The theorem then
follows from this well-known result.

Theorem 50 (Cockayne, Favaron, Payan, Thomason [39]) For any bipartite
graph G, α(G)= Γ (G)= IR(G).

In 1995 [56] Garnick and Nieuwejaar initiate the study of total domination on
rectangular chessboards by considering knights graphs and kings graphs. They
observe that Rouse Ball had the idea of total domination in 1892. It is easy to see
that for all n, γ t(Rn)= n for rooks graphs. And it is immediate that queens diagonal
domination provides an upper bound, that is, γ t(Qn)≤ γ diag(Qn).

For knights total domination they provide the following results.

Theorem 51 (Garnick, Nieuwejaar [56]) For all m, n > 4,

(i) mn/8 < γ t(Nm,n),
(ii) γ t(Nm,n)≤ (mn+ 5m+ 6n+ 56)/8, for m≡ n (mod 2),

(iii) γ t(Nm,n)≤ (mn+ 5m+ 5n+ 43)/8, for m odd and n even.

Using a backtracking search algorithm, the authors were able to determine the
following values of γ t(Nn) for square chessboards:
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γt (Nn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 if n = 4

7 if n = 5

8 if n = 6

10 if n = 7

14 if n = 8

18 if n = 9

They also provide improved upper bounds for γ t(Nn) as shown in Table 19.

7 Kings

As was mentioned in Section 3 Early Chessboard Domination, the following
formulas are known for the kings graph.

Theorem 52 (Yaglom and Yaglom [96]) For kings graphs, γ (Kn) = �n+2
3 �2.

Theorem 53 (Yaglom and Yaglom [96]) For rectangular kings graphs,

γ (Km,n) = �m+ 2

3
��n+ 2

3
�.

Theorem 54 (Yaglom and Yaglom [96]) For kings graphs, i(Kn) = α(Kn) =
�n+1

2 �2.

Notice that while for any graph G, we have γ (G)≤ γ t(G)≤ 2γ (G), for the kings
graph Kn, both of these bounds can be achieved, since γ (K4)= γ t(K4)= 4 and
γ (K7)= γ t(K7)= 9, but γ t(K6)= 2γ (K6)= 8 (cf. Figure 23).

In 1995 Garnick and Nieuwejaar initiate the study of total domination on
rectangular chessboards for kings graphs.

For narrow boards 1≤m≤ 4, it is easy to determine the kings total domination
number.

Theorem 55 (Garnick, Nieuwejaar [56]) For n > 1 and m≤ 3,

γt (Km,n) =

⎧
⎪⎪⎨

⎪⎪⎩

n/2 for n ≡ 0 (mod 4)

�n/2� + 1 for n ≡ 1, 2, 3 (mod 4)

2�n/3� for m = 4

Table 19 Upper bounds for γ (Nn)

n 13 14 15 16 17 18 19 20 21 22 23 24 25 30

γ t(Nn)≤ 32 39 44 48 57 61 66 75 80 86 94 101 109 152
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Fig. 23 Four dominating kings (left) and eight total dominating kings (right) on a 6× 6 chessboard

Table 20 Values of γ t(Kn)

n 2 3 4 5 6 7 8 9 10 11 12

γ t(Kn) 2 2 4 5 8 9 12 15 18 21 24

Table 21 Upper bounds for γ t(Kn)

n 13 14 15 16 17 18 19 20 21 22 23 24 25 30

γ (Kn)≤ 29 33 38 43 48 54 60 63 72 80 87 95 102 146

They provide the following general lower and upper bounds for γ t(Kn).

Theorem 56 (Garnick, Nieuwejaar [56]) For all m, n≥ 5, mn/7≤ γ t(Km,n)≤
(mn+ 2n+ 89)/7.

They provide both exact values and improved upper bounds for γ t(Kn), as shown
in Tables 20 and 21.

In 2002 [91] Watkins and Ricci initiate the study of kings domination on a torus.
In 2003 Favaron, Fricke, Pritikin, and Puech establish the following results

involving irredundant sets of kings.

Theorem 57 (Favaron, Fricke, Pritikin, Puech [48]) For n≥ 6, (n − 1)2/3≤
IR(Kn)≤ n2/3.

Theorem 58 (Favaron, Fricke, Pritikin, Puech [48]) For n≥ 6, �(n − 2)2/3�+
3≤Γ (Kn)≤ n2/3.

Theorem 59 (Favaron, Fricke, Pritikin, Puech [48]) For n≥ 1, �n2/9�≤ ir(Kn)
≤�(n + 2)/3�2, and ir(Kn)= n2/9 when n≡ 0 (mod 3).

In Table 22 the authors prove the first few values of ir(Kn), �(Kn), and IR(Kn),
cf. Figure 24 for a minimaximal irredundant set of kings on K7.
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Table 22 Values of ir(Kn),
γ (Kn), IR(Kn)

n 1 2 3 4 5 6 7 8 9

ir(Kn) 1 1 1 3 4 4 8 9 9
�(Kn) 1 1 4 4 9 9 16
IR(Kn) 1 1 4 4 9 9 16

Fig. 24 ir(K7)= 8

The authors also offer an intermediate value, or interpolation, theorem for the
cardinalities of maximal independent sets in kings graphs Kn.

Theorem 60 (Favaron, Fricke, Pritikin, Puech [48]) For any n≥ 1 and positive
integer t such that i(Kn)≤ t≤α(Kn), there exists a maximal independent set of t
kings on Kn.

8 Rooks

The structure of rooks graphs Rn is the simplest of all chessboard graphs. Therefore,
the values of all seven domination parameters are fairly easy to establish.

Theorem 61 (Yaglom and Yaglom Yaglom and Yaglom [96]) For n≥ 1,
γ (Rn)= i(Rn)=α(Rn)= n.

Corollary 62 For n≥ 2, γ (Rn)= γ t(Rn).

The following three results are given, but stated as unpublished, in [52].

Theorem 63 (Hedetniemi, Hedetniemi, Wallis) For n≥ 1, ir(Rn)= n.

Theorem 64 (Hedetniemi, Hedetniemi, Wallis) For n≥ 1, Γ (Rn)= n.

Theorem 65 (Hedetniemi, Jacobson, Wallis) For n≥ 4, IR(Rn)= 2n− 4,
IR(R1)= 1, IR(R2)= 2, and IR(R3)= 3.
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Table 23 Lower bound of 31 ≤ �(R3
5)

R R R
R R R
R R R R

R

R
R
R

R R R R

R
R
R

R R R

R
R
R

R R R

R

In 1994 Koehler, in his MS research paper, initiates the study of chessboard
domination problems in three-dimensional rooks graphs.

Theorem 66 (Koehler [66]) For n≥ 1, γ (R3
n) = i(R3

n) = n2

2 .

Theorem 67 (Koehler [66]) For n≥ 1, α(R3
n) = n2.

Theorem 68 (Koehler [66]) For n≥ 3, �(R3
n) ≥ 3(n− 2)2 + 4.

Table 23 illustrates a minimal dominating set of 31 rooks on the three-
dimensional rooks graph R3

5. Each level is a 5× 5 rooks graph, and there are
five levels. A rook dominates every vertex in its row and column on its level, and all
rooks above and below it.

In 2008 [33] Chen and Ho initiate the study of rooks domination on what are
called sawtoothed chessboards, or STC for short. These are chessboards whose
boundary forms two staircases from left down to right without any holes inside.
A rook at square (i, j) still dominates all squares in row i and column j. In this
paper, the authors represent an STC by two particular graphs: a rooks graph and a
board graph. They show that for an STC, the rooks graph is the line graph of the
board graph, and the board graph is a bipartite permutation graph. Thus, the rooks
domination problem on STCs can be solved by any algorithm for solving the edge
domination problem on bipartite permutation graphs.

9 Other Varieties of Chessboard Domination Problems

In this concluding section we briefly mention a variety of other types of chessboard
domination problems that have been considered in the literature; they are mixed and
quite varied.

1. In 2009 [32] Chatham, Doyle, Fricke, Reitmann, Skaggs, and Wolff consider
the general problem of placing a fixed number k of pawns on a chessboard in
such a way as to influence either the maximum number of independent pieces
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of one kind that can be placed on the board, or the minimum number of pieces
necessary to cover all squares. The main result in this paper is that for each
positive integer k and each n > max{87+ k, 25k}, it is possible to place k pawns
and n+ k independent queens on Qn. The authors consider the same problem
for bishops and rooks.

2. In 1998 [87] Theron and Geldenhuys consider queens domination in beehive
or hexagonal chessboards, in which each square is a hexagon. For example,
in square n× n hexagonal chessboards they show that the diagonal queens
domination number equals n− 1.

3. In 1999 [21] Burger and Mynhardt study queens domination on hexagonal
boards and show that on hexagonal boards with n≥ 1 rows and diagonals, for
n≡ 3 (mod 4), there are only two types of minimum dominating sets of queens.
The authors also study the queens irredundance numbers on 5× 7 hexagonal
boards.

4. In 2000 [7] Bode and Harborth study the independence numbers of chess-like
pieces on boards whose cells are either triangles or hexagons, and for many of
these pieces they determine the independence numbers.

5. In 2000 [86] Theron and Burger study queens domination on hexagonal boards.
6. In 2003 [9] Bode, Harborth, and Harborth study the kings independence

numbers on triangle-cell chessboards.
7. In 2003 [8] Bode and Harborth study three types of knights on triangle-cell and

hexagonal boards, and determine the independence numbers for two of these
types of knights, and for one residue class mod 4 for the third type.

8. In 2005 [82] Sinko and Slater introduce the study of several domination-related
parameters in chessboards, called influence parameters. The influence of a
vertex v in a graph G equals I(v)= |N[v]|, the number of vertices it dominates.
The influence of a set S equals the sum of the influences of its vertices, that is,
I(S)= �v ∈ SI(v)= �v ∈ S|N[v]|.

A vertex set S is called an efficient dominating set, or a perfect code if for
every vertex v∈V , |N[v]∩ S| = 1. Since not every graph G has an efficient
dominating set, one can instead consider the maximum number of vertices that
can be dominated by a set S subject to the restriction that no vertex is dominated
more than once; this is called the efficient domination number, denoted F(G).
This restriction means that the set S must be a packing, that is, for every u, v∈ S,
d(u, v)≥ 3. Thus, F(G)=max{I(S) : S is a packing }.

Similarly one might seek to minimize the total amount of domination, given
that every vertex must be dominated at least once. This gives rise to a parameter
called the total redundance R(G)=min{I(S) : S dominates V (G)}.

In this paper, the authors consider the values of these and several other
related parameters on rectangular rooks, kings, and knights graphs.

In 2006 [83] Sinko and Slater study the efficient domination number F(Nm,n)
on rectangular knights graphs Nm,n. They provide the following initial values in
Table 24.

In Table 25 we illustrate a set of three knights, labeled N, dominating a set
of 19 squares at most once, labeled X.
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Table 24 Small values of
F(Nm,n)

Nm,n N1,n N2,n N3,8t N3,3 N3,4 N4,4 N5,5

F(Nm,n) n 2n 20t 7 12 12 19

Table 25 F(N5,5)= 19 X X X X
X N X
X X N X
X X X X X
N X X

Table 26 Values of knights
γ (Nm,n) and number of
solutions

m/n 3 4 5 6 7 8

3 4/8 4/15 4/6 4/2 6/10 8/1192
4 4/9 4/3 4/1 6/1 8/579
5 5/47 6/46 7/47 7/1
6 8/127 8/4 8/1
7 10/10 11/2
8 12/2

9. In 2009 [18] Burchett, Lane, and Lachniet consider the problem of the
minimum number of rooks in set S such that every unoccupied square is covered
by at least k rooks in S (k-domination), or in such a way that every square,
including squares occupied by a rook, are covered at least k times (k-tuple
domination).

10. In 2010 [85] Steinbach and Posthoff develop a computation methodology based
on Boolean models to compute the domination, independent domination, and
vertex independence numbers of rectangular m× n bishops graphs.

11. In 2011 [12] Burchett continues the study of k-tuple domination in the rooks
graph, as well as the border queens domination problem.

12. In 2012 [4] Berghammer initiated the study of domination, independent domi-
nation, and total domination in rectangular m× n chessboards, by describing a
simple computing technique, based on relational modeling, which is applicable
to a variety of other chessboard problems. He presents tables for the domination
and independence numbers, and the number of solutions, for rooks, kings,
knights, and bishops, for 3≤m≤ 8 and 3≤ n≤ 8, a sample of which is given
in Table 26.

13. In 2013 [45] DeMaio and Tran study the domination number and vertex inde-
pendence number of triangular-shaped hexagonal boards, having n hexagons
on each of three exterior sides. We denote such boards by TRn for rooks, TRn

for bishops, TNn for knights, and TKn for rooks. They show the following: (i)
γ (TRn)= n, (ii) α(TRn)= n, (iii) α(TBn)= n, and (iv) γ (T Nn) ≤ �

�n/5�
i=1 (4i −

1).
14. In 2014 [42] Cooper, Pikhurko, Schmitt, and Warrington solve the following

problem posed by Martin Gardner: What is the smallest number of queens you
can put on Qn so that no additional queen can be added without creating three
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in a row, column, or diagonal? The authors prove that this number is at least n,
unless n≡ 3 (mod 4), in which case n− 1 may suffice.

15. In 2014 [44] DeMaio and Lightcap study kings total domination numbers on
square n× n hexagonal boards.

16. In 2018 [17] Burchett and Chatham study more chessboard separation prob-
lems, such as the maximum number of independent rooks and bishops that
can be placed on an n× n board containing k pawns, and all the values of
k for which there is a placement of k pawns that allows the placement of
n+ k independent rooks on an n× n board. They also study the same problem
for bishops. For queens, they find lower bounds on the queens domination-,
total domination-, paired domination-, and connected domination-separation
numbers.

17. In 2018 [31] Chatham considers the domination number, the independence
number, and the independent domination number of dragon king boards and
dragon horse boards. A dragon king moves like a rook and a king, while a
dragon horse moves like a bishop and a king. These are pieces from the chess-
like game called shogi.

18. In 2018 [75] Pahlavsay, Palezzato, and Torielli consider 3-tuple total domina-
tion in rectangular rooks graphs. The authors give a formula for the 3-tuple total
domination number of an m× n rooks graph.
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1 Introduction

Domination in digraphs is relatively unexplored if compared to its counterpart in
graphs. In this chapter, we present selected results on domination in digraphs and
give some background on the related topics of bases and kernels. The first two
Ph.D. dissertations devoted to the study of domination in digraphs were written by
Changwoo Lee [62] in 1994 and by Lisa Hansen [46] in 1997. A survey of results
prior to 1998 on domination in directed graphs by Ghoshal, Laskar, and Pillone [43]
is given in Chapter 15 of [54]. For completeness, many of these results are repeated
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here. We first present some terminology. For terminology and notation not found
here, we refer the reader to the glossary in chapter “Glossary of Common Terms” of
this volume.

1.1 Basic Terminology and Notation

Throughout this chapter, we let D= (V, A) be a finite directed graph, or digraph,
with a finite vertex set V =V (D) and an arc set A=A(D)⊆V ×V , which is a subset
of the Cartesian product V ×V , consisting of all ordered pairs of vertices in V ,
where neither loops (u, u) nor multiple arcs (u, v) and (u, v) are allowed, although
pairs of opposite arcs, such as (u, v) and (v, u), are allowed. Also, G= (V, E) stands
for a simple, finite, undirected graph with vertex set V (G) and edge set E(G), which
consists of a subset of the set of all unordered pairs uv= vu of distinct vertices in V .

For two vertices u, v∈V and an arc (u, v)∈A, we say that:

(i) (u, v) is an arc from u to v,
(ii) u is adjacent to v,

(iii) v is adjacent from u,
(iv) v is an out-neighbor of u,
(v) u is an in-neighbor of v,

(vi) v is a successor of u or the terminal vertex of the arc,
(vii) u is a predecessor of v or the initial vertex of the arc,

(viii) u and v are incident to arc (u, v), and
(ix) arc (v, u) is the reverse of arc (u, v).

We also denote an arc (u, v) by u→ v. If both arcs (u, v) and (v, u) are in A, we
denote this by u↔ v; and this is called a bidirected or symmetric arc. A digraph
D= (V, A) is called oriented or anti-symmetric if for every (u, v)∈A, we have (v,
u) �∈A, that is, D has no symmetric arcs. Equivalently, an oriented digraph can be
obtained from a graph G by assigning a direction, either u → v or v → u, to each
edge uv of G.

The outset or out-neighborhood of a vertex u∈V is the set of vertices N+
D(u) =

{v | u → v ∈ A}, while the inset or in-neighborhood of vertex u is the set N−
D(u) =

{v | u ← v ∈ A}. The outdegree of vertex u, denoted odD(u) or d+D(u) in the
literature, equals |N+

D(u)|, while the indegree of u, denoted idD(u) or d−D(u) in the
literature, equals |N−

D(u)|. The maximum indegree of a digraph D, denoted �−(D),
is the maximum indegree among the vertices in D. The maximum outdegree of D
is defined as expected and is denoted �+(D). Similarly, the minimum indegree and
minimum outdegree of D are denoted δ−(D) and δ+(D), respectively. The degree of
a vertex v in D is dD(v)= odD(v)+ idD(v). We note that

∑

v∈V (D)

odD(v) =
∑

v∈V (D)

idD(v).
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A digraph is r-regular if odD(v)= idD(v)= r for every vertex v of D. We also
define the closed out-neighborhood of a vertex v to equal N+

D [v] = N+
D(v) ∪ {v}

and similarly the closed in-neighborhood to equal N−
D [v] = N−

D(v) ∪ {v}. The
out-neighborhood of a set S of vertices is N+

D(S) = ∪v∈SN+
D(v), and the closed

out-neighborhood of S is N+
D [S] = ∪v∈SN+

D [v]. And finally, the in-neighborhood
of S is N−

D(S) = ∪v∈SN−
D(v), and the closed in-neighborhood of S is N−

D [S] =
∪v∈SN−

D [v].
Let S⊆V and u∈ S. A vertex v∈V \ S is called a private out-neighbor of u with

respect to S if N−
D(v)∩S = {u}, that is, v is an out-neighbor of u, u→ v, but is not an

out-neighbor of any other vertex in S. The set of all private out-neighbors of u with
respect to S is denoted by pn+D(u, S). Similarly, a vertex v∈V \ S is called a private
in-neighbor of u with respect to S if N+

D(v) ∩ S = {u}, that is, v is an in-neighbor
of u, u← v, but is not an in-neighbor of any other vertex in S. The set of all private
in-neighbors of u with respect to S is denoted by pn−D(u, S).

If the digraph D is clear from context, we omit the subscript D from the above
notational definitions. For example, we simply write id(u), od(u), N−(u), N+(u),
pn+(u, S), and pn−(u, S), rather than idD(u), odD(u), N−

D(u), N+
D(u), pn+D(u, S),

and pn−D(u, S), respectively. A vertex u is called:

(i) an isolated vertex if od(u)= id(u)= 0,
(ii) a source or transmitter if id(u)= 0 and od(u) > 0, and

(iii) a sink or receiver if od(u)= 0 and id(u) > 0.

Given two sets R, S⊆V , we let (R, S) denote the set of all arcs in A from R to S,
that is, (R, S)={(u, v)∈A | u∈R, v∈ S}.

For any integer k≥ 1, we use the standard notation [k]={1, . . . , k} and
[k]0 = [k]∪{0}= {0, 1, . . . , k}. A directed walk in a digraph D= (V, A) from a
vertex u to a vertex w, called a (u, w)-walk, is a sequence of vertices of the form
u= v0, v1, . . . , vk =w such that for every i∈ [k], we have (vi−1, vi)∈A. Such a
(u, w)-walk has length k. A directed walk having no repeated edges is called a
directed trail. A directed walk having no repeated vertices is called a directed path.
A directed walk in which v0 = vk is called a closed directed walk, and a closed walk
in which all vertices, except v0 and vk, are distinct is called a directed cycle or a
circuit. Let 'Cn denote the directed cycle on n vertices.

The distance dD(u, v) from a vertex u to a vertex v in a digraph D is the minimum
length of a directed (u, v)-path. If the digraph D is clear from the context, we write
d(u, v) rather than dD(u, v).

Given a digraph D= (V, A), the underlying graph of D is the undirected graph
G(D)= (V, E), where uv∈E if and only if u→ v∈A, u← v∈A, or u↔ v∈A.
A digraph D is connected or weakly connected if its underlying graph G(D) is
connected.

A digraph D is said to be strongly connected if for every u, w∈V , there exist
a directed (u, w)-path and a directed (w, u)-path. We note that one could consider
the class of digraphs having the property that for every u, w∈V either there is a
directed walk from u to w or there is a directed walk from w to u.

A digraph D= (V, A) is said to be transitive if (u, v), (v, w)∈A implies that the
arc (u, w)∈A. In other applications, a digraph D of order n is said to have a transitive
orientation if there is an ordering of the vertices v1, v2, . . . , vn such that for every
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i∈ [n− 1], we have (vi, vi+1)∈A. A digraph is complete if for every u, v∈V , either
(u, v), (v, u), or both arcs are in A. A tournament is an oriented complete graph.

We denote the degree of a vertex v in an undirected graph G by dG(v), or simply
by d(v) if the graph G is clear from context. The average degree in G is denoted by
dav(G). The minimum degree among the vertices of G is denoted by δ(G) and the
maximum degree by �(G).

1.2 Domination and Independence

In this section we define independence and the types of domination in digraphs that
will be discussed in this chapter. Let D= (V, A) be a digraph with vertex set V and
arc set A.

Definition 1 A set S of vertices in a digraph D is independent if no two vertices u,
v∈ S are joined by an arc, that is, (u, v) �∈A and (v, u) �∈A. The maximum cardinality
of an independent set in a digraph D is called the vertex independence number of D
and is denoted α(D), while the minimum cardinality of a maximal independent set
of vertices in a digraph is the lower vertex independence number, denoted αmin(D).

Definition 2 A set S of vertices in a digraph D is an out-dominating set, or just
a dominating set, if for every vertex v∈V \ S, there exists a vertex u∈ S such that
u→ v∈A, that is, every vertex in V \ S is adjacent from a vertex in S. In other words,
S is a dominating set of D if V \ S⊆N+[S]. The minimum cardinality of dominating
set in D is called the out-domination number, or simply the domination number, of
D and is denoted γ+(D), or just γ (D).

In general, we adopt the simplified terminology for out-dominating sets by
omitting “out” and simply referring to dominating sets, domination number, and
γ (D).

Definition 3 A set S of vertices in a digraph D is an in-dominating set (also called
a converse dominating set in the literature) if for every vertex v∈V \ S, there exists a
vertex u∈ S such that v→ u∈A, that is, every vertex in V \ S is adjacent to a vertex
in S. In other words, S is an in-dominating set of D if N+(v)∩ S �=∅. The minimum
cardinality of an in-dominating set in a directed graph D is called the in-domination
number of D and is denoted γ−(D).

Definition 4 A set S of vertices in a digraph D is a twin dominating set of D if it
is both an in-dominating set and out-dominating set of D. The minimum cardinality
of a twin dominating set is the twin domination number γ±(D) of D (also denoted
γ ∗ (D) in the literature).

To illustrate the above definitions, consider the digraph D shown in Figure 1.
The darkened vertices in Figure 1(a) and 1(b) form a dominating set and an in-
dominating set, respectively, of D, while the darkened vertices in Figure 1(c) form
a twin dominating set of D.
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(a)  γ(D) = 2 (b)  γ−(D) = 2 (c)  γ±(D) = 3

Fig. 1 A digraph D with γ (D)= γ−(D)= 2 and γ±(D)= 3

2 Background and History

In this section, we recognize and honor Dénes König for his pioneering work on
domination in digraphs. His work on the basis of a digraph, which we shall see
is an independent dominating set, comes some 30 years before any other mention
of domination in the literature. Since König was the originator of domination in
digraphs, we give several of his theorems along with their proofs. In the second part
of this section, we present a brief overview of kernels in digraphs, which we shall
see are independent in-dominating sets. We include some of Berge’s early results
on kernels with a sampling of proofs. We also give some results on the existence of
kernels in digraphs. A survey of the expansive literature on kernels is beyond the
scope of this chapter, so our brief overview is not meant to be complete. For more
information we refer the reader to surveys by Boros and Gurvich [12] and Frankel
[37], respectively.

2.1 Basis of the Second Kind

The concept of domination in digraphs was introduced as early as 1936 by König
[61]. We present his original ideas in what follows, as they form a foundation on
which many ideas for domination in digraphs can be built.

For any vertex a∈V in a digraph D= (V, A), let Va equal the set consisting of a
together with all vertices x for which there exists a directed path from a to x. If there
is no vertex b∈V such that Va ⊂Vb, then Va is called a basic set with source a.

Theorem 1 ([61]) Every vertex a∈V of a finite directed graph D= (V, A) is a
member of some basic set of D.

Proof Let a∈V . If Va is a basic set, then clearly a is a member of a basic set. By
definition, if Va is not a basic set, then there exists a vertex b∈V such that Va ⊂Vb,
which implies that there must exist a directed path from b to a. Thus, if Vb is a basic
set, then a is a member of the basic set Vb. Again, if Vb is not a basic set, then by
definition, there exists a vertex c∈V such that Va ⊂Vb ⊂Vc. If Vc is a basic set,
then a is a member of the basic set Vc. Since V is a finite set, this process must end
with a vertex x∈V , such that Vx is a basic set containing a. �
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König pointed out that this theorem does not hold for infinite directed graphs,
using the example of an infinite directed path v1, v2, v3, . . . , in which every arc has
the form (vi+1, vi). It is easy to see that this infinite directed path has no basic set.

Theorem 2 ([61]) No proper subset of a basic set is a basic set.

Proof Suppose, to the contrary, that a basic set Vb contains a basic set Va as a
proper subset. Since there is a directed path from b to a, and since Va is a basic
set, Va cannot be properly contained in another basic set. Thus, it follows that there
must be a directed path from a to b. From this it follows that Vb must be a subset
of Va and thus that Va =Vb. But this means that Va is not a proper subset of Vb, a
contradiction. �

We can now define a basis of a directed graph.

Definition 5 A basis of a directed graph D= (V, A) is a set B⊂V having the
following two properties:

(i) for every vertex v∈V \ B, there exist a vertex u∈B and a directed path from u
to v.

(ii) for every pair of vertices u, v∈B, there is no directed path from u to v.

Theorem 3 ([61]) Every finite directed graph D= (V, A) has a basis.

Proof Let V = {Va, Vb, . . . , Vk} be the set of all basic sets of a finite directed
graph D= (V, A), and let B={a, b, . . . , k} be sources for each of these basic sets.
We claim that the set B is a basis of D.

Note that Theorem 1 says that every vertex v∈V is a member of some basic set,
say v ∈ V ′ ∈ V . Assume that v∈V \ B. But V ′ =Vw for some Vw ∈ V and w∈B,
since V contains all basic sets. Thus, by definition there must be a directed path from
w to v, and property (i) in Definition 5 is satisfied.

In order to show that B satisfies property (ii) in Definition 5, suppose, to the
contrary, that for two sources a and b in B, where Va �=Vb, there is a directed path
from a to b. But in this case, it follows that Vb ⊆Va. However, if Vb ⊂Va, then
Vb cannot be a basic set, a contradiction. On the other hand, if Vb =Va, then we
contradict the supposition that Va �=Vb. �
Theorem 4 ([61]) If a vertex a∈V is contained in a basis B in a directed graph
D= (V, A), then Va is a basic set.

Proof Assume that a vertex a∈V is contained in a basis. Suppose, to the contrary,
that Va is not a basic set. Then there must exist a vertex b∈V not contained in
Va such that Va is a proper subset of Vb. Therefore, there must be a directed path
from b to a. But if this is the case, then b does not belong to the basis B, since by
property (ii) there can be no directed path between two vertices in a basis. Therefore,
there must be a directed path from a vertex c of B to b, where c�=a, for otherwise
b would belong to Va. The directed paths from c to b and from b to a imply, by
Theorem 1, that there exists a directed path from c to a, contradicting property (ii)
in the definition of a basis. �
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Theorem 5 ([61]) Every basis B in a digraph D= (V, A) consists of one source
from each basic set.

Proof By Theorem 4, every vertex of a basis B is a source of a basic set. In addition,
two distinct vertices in B are never sources of the same basic set, since by property
(ii) there can be no directed path between two vertices in B. It only remains to
show that every basic set has a source in B. Suppose there exists a basic set Va

with source a such that a �∈ B. By the definition of basis, there is a vertex b ∈ B

such that there is a directed path from b to a. But b is the source of a basic set
Vb, and so the basic set Va is a proper subset of the basic set Vb, contradicting
Theorem 2. �
Corollary 6 ([61]) Every basis of a digraph D has the same cardinality, which
equals the number of source vertices in D.

Proof By Theorem 5, since every basis has one source from each basic set, every
basis has a cardinality equal to the number of basic sets in D. �

In his book, König pointed out that if every edge of a digraph D is symmetric,
and the digraph D is basically an undirected graph, then the number of basic sets
equals the number of components. König then defined a basis of the second kind as
follows.

Definition 6 A basis of the second kind in a directed graph D= (V, A) is a set B⊂V
satisfying the following two conditions:

(i) if v is a vertex in V \ B, then there is an arc (u, v) from a vertex u∈B to v, and
(ii) there is no arc between two vertices in B.

Notice that by property (i) a basis of the second kind is a dominating set of D
and by (ii) a basis of the second kind is an independent set of D. König noted that
Corollary 6 is no longer true for bases of the second kind, i.e., for independent
dominating sets.

In the case where a digraph D is symmetric, König’s basis of the second kind
appears to be the first time in the literature where an independent dominating set is
defined in an undirected graph. It also, of course, defines an independent dominating
set in a digraph for the first time. To illustrate a minimum independent dominating
set in an undirected graph, König used as an example the classical problem of
covering an 8× 8 chessboard with the minimum number of queens. The Queen’s
graph consists of 64 vertices (one for each square on the chessboard), where two
vertices/squares are adjacent if and only if a queen placed on one square can occupy
the second square in 1 move. Thus, two vertices are adjacent if and only if they are
in the same row, column, or diagonal. The minimum number of queens needed to
cover the chessboard (the domination number of the Queen’s graph) is 5. König’s
example of five queens, placed at the locations shown in Figure 2, covers the board
with the added constraint that no two queens can attack each other, that is, this
placement of these five queens represents a minimum independent dominating set
of the Queen’s graph.
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Fig. 2 Minimum
independent dominating set
of queens

An independent dominating set of a digraph is also called a solution in the
literature. In the context of games, a solution is defined by Von Neumann and
Morgenstern in their now classic book [92]. We formally state the definition of
a solution in terms of digraphs and give notation for a minimum independent
dominating set.

Definition 7 A solution in a digraph D is an independent dominating set of D. The
solution number of D, denoted i+(D), equals the minimum cardinality of a solution
in D, that is, i+(D) = αmin(D).

Richardson [79] showed that every digraph with no odd cycles has at least one
solution.

2.2 Kernels in Digraphs

In 1958, Berge [6] defined an in-dominating set, which he called an absorbant set.
Although he called the in-domination number the absorption number and denoted
it by β(D), we shall continue with the terminology in-domination and denote the
in-domination number as γ−(D), as defined in Section 1.2.

Definition 8 A kernel in a digraph D is an independent, in-dominating (absorbant)
set of D. The kernel number of D equals the minimum cardinality of a kernel in D
and is denoted i−(D).

The topic of kernels in digraphs has its roots in game theory and was introduced
by Von Neumann and Morgenstern in 1944 [92]. Kernel applications have grown
from n-person games and Nim-type games to more recent applications in artificial
intelligence, combinatorics, and coding theory.
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Fig. 3 A graph with a
solution but no kernel

We note that not every digraph has a kernel; for example, a directed cycle 'C5
does not. Neither does 'C5 have a solution. The graph in Figure 3 has a solution,
consisting of the three vertices of indegree zero, but it has no kernel.

For digraphs with kernels, Berge [6] proved the following.

Theorem 7 ([6]) If S is a kernel, then S is both a maximal independent set and a
minimal in-dominating set.

Proof Let S⊆V be a kernel in a digraph D= (V, A). Since S is an in-dominating
set, for each vertex u∈V \ S, there is an arc (u, v)∈A where v∈ S. Hence, S∪{u} is
not an independent set, and so, S is a maximal independent set. Similarly, if u∈ S,
then S \{u} is not an in-dominating set since S is an independent set, and therefore
there is no arc (u, v) for any v∈ S \{u}. Thus, S is a minimal in-dominating set. �

Since not all digraphs have kernels, a natural question to ask is: What structural
properties of digraphs imply the existence of a kernel? The existence of a kernel in a
given digraph has been studied in many papers, including [5, 25, 26, 41, 79]. Berge
[7] gave a necessary and sufficient condition for a vertex set to be a kernel in terms
of its characteristic function. Recall that the characteristic function φS: V →{0, 1}
of a set S is defined as: φS(x)= 1 if x∈ S and φS(x)= 0 if x �∈S. We will assume that
if a vertex x has no out-neighbors, then max{φS(y) | y ∈ N+(x)} = 0.

Theorem 8 ([7]) A set S⊆V is a kernel of a digraph D= (V, A) if and only if for
every x∈V , φS(x) = 1 − max{φS(y) | y ∈ N+(x)}.
Proof Let S be a kernel in a digraph D, and assume that φS is the characteristic
function defined on it. If x∈ S, then φS(x)= 1. Since S is an independent set, no
out-neighbor of x is in S. Thus, max{φS(y) | y ∈ N+(x)} = 0, and therefore,
φS(x) = 1 = 1 − max{φS(y) | y ∈ N+(x)}.

If x �∈S, then φS(x)= 0. Since S is an in-dominating set, it follows that there must
be a vertex v∈ S and an arc (x, v)∈A. Thus, max{φS(y) | y ∈ N+(x)} = 1, and
therefore, φS(x) = 0 = 1 − max{φS(y) | y ∈ N+(x)}.

Conversely, let S be a set for which, for every x∈V , φS(x) = 1 − max{φS(y) |
y ∈ N+(x)}. If x∈ S, then φS(x)= 1. Thus, since φS(x) = 1 − max{φS(y) | y ∈
N+(x)}, it must follow that max{φS(y) | y ∈ N+(x)} = 0, but this means that
no out-neighbor of x is in S. If an in-neighbor of x, say y, is in S, then x is an out-
neighbor of y, and therefore, φS(y)= 1. But max{φS(x) | x ∈ N+(y)} = 1, and so,
1 − max{φS(x) | x ∈ N+(y)} = 0, a contradiction. Therefore, S is an independent
set.
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Similarly, if x �∈S, then φS(x)= 0. But since, for every x∈V , φS(x) = 1 −
max{φS(y) | y ∈ N+(x)}, this must mean that max{φS(y) | y ∈ N+(x)} = 1.
Hence, at least one neighbor of x, say y, is in S. Therefore, S is an in-dominating set.
�

As early as 1936, König [61] proved the following result. A digraph D= (V, A)
is called transitive if whenever (u, v)∈A and (v, w)∈A, then (u, w)∈A.

Theorem 9 ([61]) If D= (V, A) is a transitive digraph, then every minimal in-
dominating set has the same cardinality. Furthermore, a set S⊆V is a kernel if
and only if S is a minimal in-dominating set.

Corollary 10 Every transitive digraph has a kernel, and all of its kernels have the
same cardinality.

In 1990 De la Vega [29] showed that although not all digraphs have kernels,
probabilistically speaking, almost all digraphs do. Let D(n, p)= (V, A) denote a
random digraph of order n where for every u, v∈V , the arc (u, v) is chosen with
probability p.

Theorem 11 ([29]) For any probability p, where 0≤ p≤ 1, the probability that the
random digraph D(n, p) has a kernel goes to 1 as n→∞.

Algorithms for determining all the kernels of a digraph D have been presented
by Rudeanu [81] in 1966 and Roy [80] in 1970.

Many of the existence results for kernels are proved under an even stronger
condition that the digraph is kernel-perfect. A digraph D is said to be kernel-
perfect if D has a kernel and every induced subdigraph of D has a kernel. Meyniel
conjectured that if every circuit of a digraph D has at least two chords, then D is
kernel-perfect. Although Galeana-Sánchez [39] proved this conjecture to be false,
the searching for a proof motivated results on sufficient conditions for the existence
of a kernel in a digraph. The proof we present of the following result of Von
Neumann and Morgenstern [92] is due to Berge [7].

Theorem 12 ([92]) Every digraph D without directed cycles is kernel-perfect and
has a unique kernel.

Proof Given a digraph D having no directed cycles, define the set S0 as the
collection of sinks of D, and for each k≥ 1, define Sk as the set of all vertices u
such that a longest (directed) path from u to a vertex in S0 has length k. Thus,

S0 = {v ∈ V | N+(v) = ∅}.
S1 = {v ∈ V | N+(v) ⊆ S0}.
S2 = {v ∈ V | N+(v) ⊆ (S0 ∪ S1)}.

And in general, Sk ={v∈V | N+(v)⊆ (S0 ∪ S1 ∪ . . . ∪ Sk−1)}.
Since D contains no directed cycles, the sets Sk form a partition of V (D). One

can then define a characteristic function φS(x) = 1 − max{φS(y) | y ∈ N+(x)}
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iteratively, starting with the vertices u∈ S0 for each of which φS(u)= 1, and then
each vertex in S1 receives the value 0. After this, a vertex x can be assigned a value
φS(x) only after all of the vertices in N+(x) have been assigned a value, at which
point the value of max{φS(y) | y ∈ N+(x)} can be determined. By Theorem 8,
S={v∈V | φS(v)= 1} is a kernel of D.

Since every subdigraph of D is acyclic, it follows that D is kernel-perfect.
Moreover, the set S0 of sinks is nonempty and unique, and so by definition, Sk is
unique for each k≥ 1. The uniqueness of S follows from the fact that any kernel of
D must contain S0, and hence the vertices of Sk ∩ S. �

We next mention classical results due to Richardson [79] and Duchet [25].

Theorem 13 ([79]) Every digraph D without odd directed cycles is kernel-perfect.

Theorem 14 ([25]) If every circuit in a digraph D has at least one symmetric arc,
then D is kernel-perfect.

Recall that a kernel in a digraph D is an independent set S such that every vertex
not in S dominates some vertex in S, where as usual by “dominates” we mean “out-
dominates,” that is, a vertex u dominates a vertex v if there is an arc (u, v) from u to
v. We next define a semi-kernel in a digraph. Recall that the distance dD(u, v) from
a vertex u to a vertex v in a digraph D is the shortest directed path from u to v. We
note that dD(u, v) may be very different from dD(v, u).

Definition 9 A set S of vertices in a digraph D is a semi-kernel if S is an independent
set and every vertex not in S either dominates some vertex in S or dominates a vertex
which in turn dominates some vertex in S. Thus, S is a semi-kernel in D if S is an
independent set and for every vertex v∈V (D) \ S, there is a vertex u∈ S such that
dD(v, u)≤ 2.

As observed earlier, not all digraphs have kernels. However, every digraph has a
semi-kernel. This result is attributed to Chvátal and Lovász [24]. However, in this
paper they proved Theorem 16, which we state shortly. It is not clear if Theorem 16
immediately implies Theorem 15. The proof of the following result is due to Bondy
[11].

Theorem 15 ([11]) Every digraph has a semi-kernel.

Proof Let D be a digraph and let H be a maximal induced acyclic subdigraph of
D. By Theorem 12, the acyclic digraph H has a (unique) kernel. Let S be the kernel
of H. We claim that S is a semi-kernel of D. Since S is a kernel of H, every vertex
of H − S dominates some vertex of S. Let v be an arbitrary vertex outside H, and so
v∈V (D) \ V (H). By our choice of H, there is a directed cycle C in the subdigraph
of D induced by V (H)∪{v}. The vertex v therefore dominates its successor v+ on C.
Since v+ ∈V (H), either v+ ∈ S, in which case v dominates a vertex of S, or v+�∈S, in
which v+ dominates a vertex of S and therefore v dominates a vertex which in turn
dominates some vertex of S. Thus, S is a semi-kernel of D. �
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Definition 10 For any integer k≥ 2, a set S of vertices in a digraph D is a k-
dominating set if S is an independent set and every vertex not in S can be reached
from a vertex of S by a directed path of length at most k, that is, for every vertex
v∈V (D) \ S, there is a vertex u∈ S such that d(u, v)≤ k.

We note that a 1-dominating set of a digraph D is an independent, (out-)
dominating set of D. For k≥ 1, every k-dominating set is a (k+ 1)-dominating set.
In particular, every 1-dominating set is a 2-dominating set. Not every digraph has a
1-dominating set; for example, 'C5 does not. In 1974 Chvátal and Lovász [24] proved
that every digraph has a 2-dominating set.

Theorem 16 ([24]) Every digraph has a 2-dominating set.

Proof We proceed by induction on the order n of a digraph D. For n= 1 or n= 2, the
result is immediate. Let n≥ 3 and assume that every digraph of order less than n has
a 2-dominating set. Let w be an arbitrary vertex of D. If V (D) = N+

D(w), then the
set {w} is a 1-dominating set and therefore also a 2-dominating set. Hence, we may
assume that V (D) �= N+

D(w). Let D′ be the subdigraph of D induced by the set of
vertices at distance at least 2 from w in D. Thus, V (D′)={v∈V (D) | dD(w, v)≥ 2}.
Further, (x, y)∈A(D′) if and only if x, y∈V (D′) and (x, y)∈A(D). Applying the
inductive hypothesis, the digraph D′ contains a 2-dominating set S′. Suppose firstly
that there is an arc from u to w for some vertex u∈ S′. Therefore, dD(u, w)= 1, and
every vertex in N+

D(w) is reachable from u by a directed path of length at most 2,
that is, dD(u, x)≤ 2 for every vertex x ∈ N+

D [w]. In this case, let S= S′. Suppose
secondly that there is no arc from a vertex in S′ to the vertex w, and so dD(u, w)≥ 2
for all vertices u∈ S′. In this case, we let S= S′∪{w}. In both cases, the set S is a
2-dominating set of D. �

As observed earlier, not every digraph has a 1-dominating set. In 1996 Jacob and
Meyniel [59] proved that a digraph with no 1-dominating set contains at least three
2-dominating sets.

Theorem 17 ([59]) Every digraph with no 1-dominating set contains at least three
2-dominating sets.

Kernels have relations to Grundy functions in digraphs. We conclude this
subsection with some results relating the two.

Definition 11 A non-negative function g: V → [n]0 from the vertex set V of a
digraph D to the integers [n]0 is called a Grundy function if for every vertex u∈V,
g(u) is the smallest non-negative integer not belonging to {g(v) | v∈N+(u)}. It
follows, therefore, that if g is a Grundy function, then the following hold.

(1) g(u)= k implies that for each 0≤ j < k, there is a vertex v∈N+(u) with g(v)= j.
(2) g(u)= k implies that for every v∈N+(u), g(v) �=g(u).

Proposition 18 ([7]) If a digraph D has a Grundy function, then D has a kernel.
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Proof Let g: V → [n]0 be a Grundy function on a digraph D= (V, A), and let
S={u∈V | g(u)= 0}. From condition (2) in Definition 11, we know that g(u)= 0
implies that for every v∈N+(u), g(v) �=g(u)= 0, and therefore, S is an independent
set.

If a vertex v�∈S, then g(v)= k > 0. From condition (1) in Definition 11, we know
that g(u)= k > 0 implies that for each j < k, there is a vertex u∈N+(u) with g(u)= j,
and in particular there is a vertex w∈N+(u) with g(w)= 0. Thus, S is an in-
dominating set. Therefore, S is a kernel. �

While it can be verified that if a graph has a kernel, it need not have a Grundy
function, the following interesting connection to kernel-perfect digraphs was shown
by Berge [7].

Theorem 19 ([7]) Every kernel-perfect digraph has a Grundy function.

Proof Let D=D0 be a kernel-perfect digraph, and let S0 be a kernel of D0. It
follows from the definition of a kernel-perfect digraph that the digraph D1 =D0 − S0
is a kernel-perfect digraph. Therefore, let S1 be a kernel of D1. Let D2 =D1 − S1 and
let S2 be a kernel in D2. In general for k≥ 1, let Sk be a kernel of the subdigraph
Dk. The resulting sets S0, S1, . . . , Sk form a partition of V (D). Define a function
g: V → [k]0 by g(u)= j if and only if u∈ Sj. It follows that g is a Grundy function of
D.

If g(u)= j, then vertex u is a vertex in every digraph D0, D1, . . . , Dj−1. And
S0, S1, . . . , Sj−1 are in-dominating sets of these digraphs, respectively. Therefore,
for each i < j, there is a vertex w∈ Si where w∈N+(u). Thus, condition (1) of a
Grundy function (see Definition 11) is satisfied. If g(u)= j, then u∈ Sj, which is an
in-dominating set of the digraph Dj. This means that the set Sj is an independent set.
Therefore, if g(u)= j, then each v∈N+(u) satisfies g(v) �=j. Therefore, every kernel-
perfect digraph D has a Grundy function g. �

Fraenkel [36] has determined that deciding whether a finite digraph D has a
kernel or a Grundy function is NP-complete, even when restricted to cyclic planar
digraphs with od(x)≤ 2, id(x)≤ 2, and od(x)+ id(x)≤ 3, and these bounds are best
possible, since decreasing any of them results in a decision problem that can be
solved in polynomial time. The proof of this theorem uses a simple transformation
from 3-Satisfiability.

3 Bounds on In, Out, and Twin Domination Numbers

In this section, we present bounds on the domination, in-domination, and twin
domination numbers of digraphs.
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3.1 (Out)-Domination

We begin with some well-known results of Ore [75] on dominating sets of graphs.

Theorem 20 ([75]) If G is a graph having no isolated vertices, then the complement
V \ S of any minimal dominating set S is a dominating set of G.

Corollary 21 The vertices of any graph G having no isolated vertices can be
partitioned into two dominating sets.

Corollary 22 For any graph G of order n having no isolated vertices, γ (G) ≤ 1
2n.

Fu was interested in possible analogs of these results of Ore for digraphs. For
example, can the vertices of a digraph D without isolated vertices be partitioned
into two (directed) dominating sets? Fu [38] obtained the following results on
dominating sets of directed graphs.

Theorem 23 ([38]) A dominating set S in a digraph D is a minimal dominating set
if for each u∈ S, there is no arc (u, v) for any vertex v∈ S.

Proof Assume that S is a dominating set of a digraph D having the property that for
no two vertices u, v∈ S, (u, v)∈A, that is, S is an independent set. Then it follows
that for every u∈ S, S \{u} is a not a dominating set since there is no vertex in S \{u}
that dominates vertex u. Thus, S is a minimal dominating set of D. �

As observed by Fu [38], in order that a digraph D has a dominating set S such that
its complement V \ S is also a dominating set, it is necessary and sufficient that each
vertex u∈ S is dominated by a vertex in V \ S and each vertex in V \ S is dominated
by a vertex in S. Moreover, in order that a digraph D has a dominating set S whose
complement V \ S is an in-dominating set, it is necessary and sufficient that each
vertex in S dominates at least one vertex in V \ S.

Fu defined a digraph D to be cyclic or strongly connected if every pair of vertices
are contained in a directed cycle.

Theorem 24 ([38]) A strongly connected digraph D has a dominating set S whose
complement S = V \ S is also a dominating set if and only if D contains a directed
cycle of even length.

Proof For the necessity part, assume that D has a dominating set S whose
complement S = V \ S is also a dominating set. Assume that no vertices are
colored. Select an arbitrary vertex u∈ S. Color it blue. Since the complement S

is a dominating set, there must be a vertex v ∈ S and an arc (v, u). Color vertex
v red. Since S is a dominating set, there are a vertex w∈ S and an arc (w, v). If
w= u, then we have found a directed cycle of length 2. If w�=u, color vertex w
blue. There must be a vertex z ∈ S which dominates w. If z has been previously
colored, we have found a directed cycle beginning and ending in S and therefore
having even length. If z has not been colored, color it red. Continuing in this way,
all vertices encountered will either be in S and colored blue or in S and colored red.
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Sooner or later we will have to encounter a previously colored vertex and hence
have constructed a directed cycle of even length.

To prove the sufficiency, we assume that there is a directed cycle of even length,
and we need only show that there is a way to assign the vertices of D either to S
or S, in such a way that both sets are dominating sets. We begin with any directed
cycle C0 of even length and alternately assign its vertices to S and S. Thus, all of
the vertices on C0 are assigned to a dominating set of C0. If this includes all vertices
of D, then the theorem is proved. Thus, we may assume that there is an unassigned
vertex, say w. Since D is strongly connected, w and u are on a directed cycle for any
vertex u on C0. We may then find a directed path from u to w and continue until a
vertex is encountered which has already been assigned. The vertices on this directed
path can be alternately assigned to either S or S. This directed path may end with
two consecutive vertices assigned to the same set, but each vertex thus encountered
is always dominated by the vertex which precedes it on the directed path. Since w is
an arbitrary unassigned vertex, every vertex of D can be assigned to one of S and S.
�
Corollary 25 ([38]) A strongly connected digraph D has a dominating set S whose
complement S is also a dominating set, and furthermore both S and S are in-
dominating sets if and only if every vertex of V is in some directed cycle of even
length.

Corollary 26 ([38]) In order that a strongly connected digraph D has a dominating
set S whose complement S is an in-dominating set, it is sufficient that D contains a
directed cycle of even length.

Corollary 27 ([38]) If D is a strongly connected digraph of order n having a cycle
of even length, then γ (D) ≤ 1

2n.

We observe that if D is a Hamiltonian digraph of order n, then γ (D) ≤ ⌈
n
2

⌉
. In

1998 Lee [63] improved the result of Corollary 27 as follows.

Theorem 28 ([63]) If D is a strongly connected digraph of order n, then 1 ≤
γ (D) ≤ ⌈

n
2

⌉
.

In order to prove Theorem 28, Lee [63] proved that if D is a directed tree of
order n that contains a vertex u such that every vertex in D is reachable from u,
that is, for every v in D different from u, there is a directed path from u to v, then
1 ≤ γ (D) ≤ ⌈

n
2

⌉
. The proof of this result given in [63] is algorithmic in nature and

finds a dominating set S in such a directed tree D satisfying 1 ≤ |S| ≤ ⌈
n
2

⌉
. From

this result, we can readily deduce Theorem 28, noting that a strongly connected
digraph has as a subdigraph a directed spanning tree with the desired property.

Lee [62] proved the following upper bound on the domination number of a
digraph D in terms of its order and the minimum indegree δ−(D).

Theorem 29 ([62]) If D is a digraph of order n with δ−(D)= δ−≥ 1, then
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γ (D) ≤
(

δ− + 1

2δ− + 1

)

n.

As a consequence of Theorem 29, we have the following upper bound on the
domination number of a digraph in which every vertex has indegree at least 1.

Corollary 30 ([62]) If D is a digraph of order n with δ−(D)≥ 1, then γ (D) ≤ 2
3n.

Using standard probabilistic arguments, Lee [62] established the following upper
bound on the domination of a digraph.

Theorem 31 ([62]) If D is a digraph of order n with δ−(D)= δ−≥ 1, then

γ (D) ≤
⎛

⎝1 −
(

1

1 + δ−

) 1
δ− +

(
1

1 + δ−

) 1+δ−
δ−

⎞

⎠ n.

We remark that when the minimum indegree δ−(D) is small, namely, δ−(D)∈{1,
2}, then the upper bound given by Theorem 29 is better than that given by Theorem
31.

As before, let D(n, p)= (V, A) denote a random digraph of order n where for
every u, v∈V , the arc (u, v) is chosen with probability p. Let Q be a property of
digraphs. If A is the set of digraphs of order n with property Q and the probability
Pr(A) of A has limit 1 as n→∞, then we say almost all digraphs have property Q or
a random digraph has property Q almost surely. Lee [62] established the following
result for random digraphs.

Theorem 32 ([62]) For a fixed p with 0 < p < 1, a random digraph D∈D(n, p)
satisfies

γ (D) = �k∗� + 1 or γ (D) = �k∗� + 2

almost surely, where k∗ = log n− 2 log log n+ log log e and where log denotes the
logarithm with base 1/(1− p).

Ghoshal, Laskar, and Pillone [43] determined lower and upper bounds on the
domination number of a digraph in terms of its order and maximum outdegree.

Theorem 33 ([43]) If D is a digraph of order n, then

n

1 +�+(D)
≤ γ (D) ≤ n−�+(D).

Proof Let x∈V be any vertex having maximum outdegree in D, that is, od(x)=
�+(D). Let S=V \ N+(x). It follows that S is an out-dominating set. Thus,
γ (D)≤|S| = n− �+(D). This establishes the upper bound. To prove the lower
bound, let S⊆V be a minimum dominating set of D, that is, γ+(D)= |S|.
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Every vertex in S dominates at most �+(D) vertices outside S, implying that
n−|S| = |V \ S|≤|S|· �+(D), and so γ+(D)= |S|≥ 1/(1+ �+(D)). �

Hao and Qian [52] strengthened the lower bound of Theorem 33. The Slater
number sl(D) of a digraph D is the smallest integer t such that adding t to the sum
of the first t terms of the non-increasing outdegree sequence of D is at least as large
as the order of D.

Theorem 34 ([52]) If D is a digraph of order n, then

n

1 +�+(D)
≤ sl(D) ≤ γ (D).

Moreover, the authors [52] showed that the difference between sl(D) and⌈
n

1+�+(D)

⌉
can be arbitrarily large.

3.2 In-Domination

We turn our attention to bounds on the in-domination number of a digraph and give
the following classical 1973 results due to Berge [7].

Proposition 35 ([7]) If D is a digraph of order n and size m, then γ−(D)≥ n−m.

Proof Let S⊆V be a minimum in-dominating set, that is, γ−(D)= |S|. Since for
every vertex w∈V \ S, there exist a vertex v∈ S and an arc (w, v), it follows that
n−|S| = |V \ S|≤m, and so γ−(D)= |S|≥ n−m. �
Proposition 36 ([7]) For any digraph D of order n having maximum indegree
Δ−(D),

⌈
n

1 +�−(D)

⌉

≤ γ−(D) ≤ n−�−(D).

Proof Let x∈V be any vertex having maximum indegree in D, that is, id(x)=
�−(D). Let S=V \ N−(x). It follows that S is an in-dominating set. Thus,
γ−(D)≤|S| = n− �−(D). This establishes the upper bound. To prove the lower
bound, let S⊆V be a minimum in-dominating set of D, that is, γ−(D)= |S|.
Every vertex in S is dominated by at most �−(D) vertices outside S, implying that
n−|S| = |V \ S|≤|S|· �−(D), and so γ−(D)= |S|≥ 1/(1+ �−(D)). �

We note that both bounds of Proposition 36 are sharp for a digraph of order n
having �−(D)= n− 1.
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3.3 Domination and In-Domination

In 1999 Chartrand, Harary, and Yue [19] proved the following upper bound on the
sum of the domination number and the in-domination number of a digraph. Recall
that 'C3 denotes the directed cycle on three vertices and an endvertex is a vertex of
degree 1.

Theorem 37 ([19]) If D is a digraph of order n with δ−(D)≥ 1 and δ+(D)≥ 1, then

γ (D)+ γ−(D) ≤ 4

3
n.

Further, equality holds if and only if D = 'C3, or if every vertex of D is an endvertex
or is adjacent to exactly one endvertex and adjacent from exactly one endvertex.

In 2015 Hao and Qian [51] improved the upper bound of Theorem 37 as follows.

Theorem 38 ([51]) Let D be a digraph of order n with δ−(D)≥ 1 and δ+(D)≥ 1.
If 2k+ 1 is the length of a shortest odd circuit of D, then

γ (D)+ γ−(D) ≤
(

2k + 2

2k − 1

)

n.

As a consequence of Theorem 38, we have the following result.

Corollary 39 ([51]) If D is a digraph of order n with δ−(D)≥ 1 and δ+(D)≥ 1 with
no odd directed cycle, then γ (D)+ γ−(D)≤ n.

3.4 Twin Domination

In this section, we present results on the twin domination number of a digraph. We
first present the following key lemma. Recall that for r≥ 1 an integer, a graph G is
r-degenerate if every induced subgraph of G has minimum degree at most r. When
we say that digraph D is minimal with respect to some property P , we mean arc-
minimal, that is, removing any arc from D destroys property P .

Lemma 40 If a digraph D is minimal with respect to the property of every vertex
of D having indegree and outdegree at least k, then the underlying graph is 2k-
degenerate.

Proof Let D be a digraph that is minimal with respect to the property P that
every vertex of D has indegree and outdegree at least k. Let G be the underlying
(undirected) graph of D. We show that G is 2k-degenerate. Suppose, to the contrary,
that there is a set V ′ of vertices such that the subgraph, say G′, of G induced by
the set V ′ has minimum degree at least 2k+ 1. Let D′ be the subdigraph of D
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Fig. 4 A digraph D with
γ±(D) = 2

3n

induced by the set V ′, and so G′ is the underlying graph of the digraph D′. Each
vertex v∈V ′ has an excess of in- or out-arcs in D′, noting that dG′(v) ≥ 2k + 1.
Suppose there is an arc av whose removal from D′ destroys the property of v having
indegree and outdegree at least k. If odD′(v) ≥ k + 1, then av is an arc into v
and in this case idD′(v) = k. If idD′(v) ≥ k + 1, then av is an arc out of v and
in this case odD′(v) = k. Thus, the number of arcs incident to v whose removal
from D′ destroys property P is either zero or k. Hence, there are at most k|V ′| arcs
in D whose removal destroys property P . But every arc removal from D′ destroys
property P for some vertex of D′, implying that there are at most k|V ′| arcs in
D′. This in turn implies that every vertex has indegree and outdegree exactly k
in D′, and therefore G′ is a (2k)-regular graph, contradicting the supposition that
δ(G′)≥ 2k+ 1. �

In 2003 Chartrand, Dankelmann, Schultz, and Swart [20] established the follow-
ing upper bound on the twin domination number of a digraph. We present here a
simple proof of this result, using the key Lemma 40. Our proof is based on the fact
that a k-degenerate graph has chromatic number at most k+ 1, as shown by Szekeres
and Wilf [88] in 1968. Recall that a vertex and an edge cover each other in a graph
G if they are incident in G. A vertex cover in G is a set of vertices that covers all the
edges of G. The vertex cover number β(G) (also denoted by τ (G) or vc(G) in the
literature) is the minimum cardinality of a vertex cover in G.

Theorem 41 ([20]) If D is a digraph of order n with δ−(D)≥ 1 and δ+(D)≥ 1, then
γ±(D) ≤ 2

3n.

Proof We may assume the digraph D is minimal with respect to this property of
δ−(D)≥ 1 and δ+(D)≥ 1, since adding arcs cannot increase the twin domination
number. With this assumption, the underlying graph G of D is 2-degenerate by
Lemma 40 and hence 3-colorable. Thus, the independence number of G is at least
n/3, which means that the vertex cover number of G is at most 2n/3. But a vertex
cover of G is a twin dominating set in D since δ−(D)≥ 1 and δ+(D)≥ 1. Thus,
γ±(D) ≤ 2

3n. �
The simplest example of a digraph achieving equality in the upper bound of

Theorem 41 is 'C3. As a further small example, the digraph D shown in Figure 4
has order n= 6 and satisfies γ±(D) = 4 = 2

3n, where the darkened vertices form a
twin dominating set of D of cardinality 4.
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In 2013 Arumugam, Ebadi, and Sathikala [4] gave the following upper bound on
the twin domination number.

Theorem 42 ([4]) If D is a digraph of order n and �(D) is the length of a longest

directed path in D, then γ±(D) ≤ n−
⌊

�(D)
2

⌋
.

The bound of Theorem 42 is attained, for example, by directed paths and also
by any digraph D obtained from a directed path Pk: u1, u2, . . . , uk by adding a new
vertex u′i and arc (u′i , ui) for each ui for i∈ [k].

3.5 Reverse Domination

The digraph obtained from a digraph D by reversing all the arcs of D is called
the reverse digraph (also called the converse in the literature) of D, denoted D−.
We note that γ (D)= γ−(D−) for every digraph D. Thus by Theorem 37, if D is a
digraph of order n with δ−(D)≥ 1 and δ+(D)≥ 1, then γ (D)+ γ (D−) ≤ 4

3n.
For r≥ 1, let Dr be the class of r-regular strongly connected digraphs. We note

that the only 1-regular strongly connected digraphs are the directed cycles, and so
D1 = { 'Cn | n ≥ 3}. Since a directed cycle is isomorphic to its reverse, if D ∈ D1,
then γ (D−)− γ (D)= 0. For r≥ 2, the difference γ (D−)− γ (D) can be arbitrarily
large in the class Dr , as shown by Gyürki [45] in the case when r= 2 and by Niepel
and Knor [73] for all r≥ 3. However, for a fixed r≥ 2, it remains an open problem to
determine the greatest ratio γ (D−)/γ (D) of an r-regular strongly connected digraph.
The best known results to date are the following.

Theorem 43 ([45]) For digraph D ∈ D2, sup
D∈D2

γ (D−)
γ (D)

≥ 4

3
.

Theorem 44 ([45, 73]) For r≥ 3, we have sup
D∈Dr

γ (D−)
γ (D)

≥ 7

6
.

4 Domination in Digraph Products

Vizing’s conjecture [90] asserts that the domination number of the Cartesian product
of two graphs is at least as large as the Cartesian product of their domination
numbers. This conjecture was first stated in 1963 as a problem in [89] and later
in 1968 formally posed as a conjecture in [90]. It is considered by many to be the
main open problem in the area of domination in graphs. It is natural then that the
study of domination in digraphs considers results for Cartesian products of digraphs.

The Cartesian product of two digraphs G= (V (G), A(G)) and H = (V (H), A(H)),
denoted by G�H , is the digraph with vertex set V (G)×V (H), and there exists an
arc ((u1, v1), (u2, v2)) ∈ A(G�H) if and only if either (u1, u2)∈A(G) and v1 = v2
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or (v1, v2)∈A(H) and u1 = u2. Much of the work on Cartesian products in digraphs
considers directed cycles.

In 2009 Shaheen [84] and in 2010 Liu, Zhang, Chen, and Meng [64, 93]
independently determined the domination number of 'Cm � 'Cn for m≤ 6 and
arbitrary n≥ 2.

Theorem 45 ([64, 84, 93]) For n≥ 2, the following hold.

(a) γ ( 'C2 � 'Cn) = n.
(b) γ ( 'C3 � 'Cn) = n if n≡ 0 (mod 3); otherwise, γ ( 'C3 � 'Cn) = n+ 1.

(c) γ ( 'C4 � 'Cn) = 3
2n if n≡ 0 (mod 8); otherwise, γ ( 'C4 � 'Cn) = n+

⌈
n+1

2

⌉
.

(d) γ ( 'C5 � 'Cn) = 2n.
(e) γ ( 'C6 � 'Cn) = 2n+ 2.

Zhang et al. [93] also determined γ ( 'Cm � 'Cn) when both m and n are divisible
by 3.

Theorem 46 ([93]) If m≡ 0 (mod 3) and n≡ 0 (mod 3), then γ ( 'Cm � 'Cn) = 1
3mn.

In 2013, Mollard [71] determined the exact values of γ (Cm�Cn) for m congruent
to 2 modulo 3, with the exception of one subcase.

Theorem 47 ([71]) If m, n≥ 2, m≡ 2 (mod 3), k=�m/3�, and �=�n/3�, then

γ ( 'Cm � 'Cn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n(k + 1) if n = 3�

n(k + 1) if n = 3�+ 1 and 2� ≥ k

n(k + 1) if n = 3�+ 2 and n ≥ m

m(�+ 1) if n = 3�+ 2 and n ≤ m.

Furthermore, γ ( 'Cm � 'Cn) if n= 3�+ 1 and 2�< k.

Zhang et al. [93] conjectured that if k≥ 2 where k = �m
3 �, then γ ( 'Cm � 'Cn) =

k(n+1) for n�≡0 (mod 3), but Mollard [71] disproved this conjecture by showing that
it doesn’t always hold when n≡ 1 (mod 3). For example, they noted that γ ( 'C3k �

'C4) = γ ( 'C4� 'C3k) = 3k+
⌈

3k+1
2

⌉
when k �≡0 (mod 8), while the conjecture claims

that γ ( 'C4 � 'C3k) = 5k. These values are different for k≥ 3.
Mollard [71] also established the following bounds.

Theorem 48 ([71]) If m, n≥ 2 and k = �m
3 �, then

γ ( 'Cm � 'Cn) ≥

⎧
⎪⎪⎨

⎪⎪⎩

nk if m ≡ 0 (mod 3)

nk + n
2 if m ≡ 1 (mod 3)

nk + n if m ≡ 2 (mod 3).
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In 2013 Shao, Zhu, and Lang [86] determined upper and lower bounds on γ ( 'Cm�'Cn) for the case when m is congruent to 1 modulo 3.

Theorem 49 ([86]) If k≥ 1 and n≥ 3 are integers, then

⌈
(2k + 1)n

2

⌉

≤ γ ( 'C3k+1 � 'Cn) ≤
⌈
(2k + 1)n

2

⌉

+ k.

Based on the bounds of Theorem 49, Shao et al. [86] determined the exact values
of γ ( 'Cm � 'Cn) for m∈{7, 10}.

We conclude this section by noting that Liu, Zhang, and Meng [65] investigated
domination numbers of Cartesian products of directed paths in 2011, and Ma and
Liu [67] studied the twin domination number of the Cartesian products of directed
cycles in 2016. For domination and twin domination in other types of digraph
products, see [15, 66, 68, 69, 74].

5 Domination in Oriented Graphs

Recall that an oriented graph D is a digraph that can be obtained from a graph G by
assigning a direction to (i.e., orienting) each edge of G. The resulting digraph D is
called an orientation of G. Thus, if D is an oriented graph, then for every pair u and v
of distinct vertices of D, at most one of (u, v) and (v, u) is an arc of D. For example, a
tournament is an oriented complete graph. Recall also that the independence number
of a directed graph D is denoted by α(D). As before, unless otherwise stated, we
refer to an out-dominating set in a digraph simply as a dominating set.

5.1 Oriented Graphs

In 1996 Chartrand, Vanderjagt, and Yue [18] studied domination in oriented graphs.
They defined the lower orientable domination number of a graph G, which they
denoted as dom(G) (denoted by γ d(G) in [17]), to equal the minimum domination
number over all orientations of G. Further, they defined the upper orientable
domination number, or simply the orientable domination number, of a graph G,
which they denoted as DOM(G) (denoted by �d(G) in [17]), as the maximum
domination number over all orientations of G. Thus,

dom(G) = min{γ (D) | over all orientations D of G}
DOM(G) = max{γ (D) | over all orientations D of G}.

The orientable domination number of a complete graph was first studied by Erdős
in 1963 [28], albeit in disguised form. In 1962, Schütte [28] raised the question of
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given any positive integer k > 0, does there exist a tournament Tn(k) on n(k) vertices
in which for any set S of k vertices, there is a vertex u that dominates all vertices
in S. Erdős [28] showed, by probabilistic arguments, that such a tournament Tn(k)
does exist, for every positive integer k. The proof of the following bounds on the
orientable domination number of a complete graph is along identical lines to that
presented by Erdős [28]. This result can also be found in [78]. Here, log is to the
base 2.

Theorem 50 ([28]) For n≥ 2, log n− 2 log(log n) ≤ DOM(Kn) ≤ log(n+ 1).

This notion of orientable domination in a complete graph was subsequently
extended to orientable domination of all graphs by Chartrand et al. [18]. They
proved the following result.

Theorem 51 ([18]) For every graph G, dom(G)= γ (G).

In view of Theorem 51, it is not interesting to ask about the lower orientable
domination number, dom(G), of a graph G since this is precisely its domination
number, which is very well studied. We therefore focus our attention on the (upper)
orientable domination number of a graph. Chartrand et al. [18] determined DOM(G)
for special classes of graphs, including paths, cycles, complete bipartite graphs, and
regular complete tripartite graphs. They also proved the following result.

Theorem 52 ([18]) For every graph G and for every integer c with
dom(G)≤ c≤DOM(G), there exists an orientation D of G such that γ (D)= c.

In 2010 Blidia and Ould-Rabah [8] continued the study of domination in oriented
graphs. For an oriented graph D, let α′(D) denote the matching number of D and
let s(D) denote the number of support vertices in the underlying graph of D. The
authors in [8] proved the following result. In fact, they proved a slightly stronger
result involving the irredundance number of an oriented graph (which we do not
define here).

Theorem 53 ([8]) If D is an oriented graph of order n, then s(D)≤ γ (D)≤ n
−α′(D).

Blidia and Ould-Rabah [8] characterized the oriented trees T satisfy-
ing γ (T)−α′(T) and the oriented graphs D satisfying γ (D)= s(D) and
s(D)= n−α′(D).

In 2011 Caro and Henning [16] also studied domination in oriented graphs.
In this paper, they proved a Greedy Partition Lemma, which they used to present
an upper bound on the orientable domination number of a graph in terms of its
independence number. To state their result, let α≥ 1 be an integer and let Gα be the
class of all graphs G with α≥α(G).

Theorem 54 ([16]) For α≥ 1 an integer, if G ∈ Gα has order n≥α, then

DOM(G) ≤ α
(

1 + 2 ln
(n

α

))
.
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The next result follows as a consequence of Theorem 54, where χ (G) denotes
the chromatic number of G and dav(G) denotes the average degree in G.

Corollary 55 ([16]) If G is a graph of order n, then the following hold.

(a) DOM(G) ≤ α(G) (1 + 2 ln (χ(G))).
(b) DOM(G) ≤ α(G) (1 + 2 ln (dav(G)+ 1)).

For any integer d ≥ 1, let Fd be the class of all graphs G whose complement is
a d-degenerate graph. The property of being d-degenerate is a hereditary property
that is closed under induced subgraphs, as is the property of the complement of a
graph being d-degenerate. Applying their Greedy Partition Lemma for domination
in oriented graphs, the authors in [16] proved the following result.

Theorem 56 ([16]) For any integer d≥ 1, if G ∈ Fd has order n, then

DOM(G) ≤ 2d + 1 + 2 ln

(
n− 2d + 1

2

)

.

The following upper bound on the orientable domination number of a K1,m-free
graph is established in [16], where a graph is F-free if it does not contain F as an
induced subgraph.

Theorem 57 ([16]) For m≥ 3, if G is a K1,m-free graph of order n with δ(G)= δ,
then

DOM(G) < 2(m− 1)n ln

(
δ +m− 1

δ +m− 1

)

.

Let Gn denote the family of all graphs of order n. We define

NGmin(n) = min{DOM(G)+ DOM(G)}
NGmax(n) = max{DOM(G)+ DOM(G)}

where the minimum and maximum are taken over all graphs G ∈ Gn. The following
Nordhaus-Gaddum-type bounds for the orientable domination of a graph were
established in [16].

Theorem 58 ([16]) The following hold.

(a) c1 log n ≤ NGmin(n) ≤ c2(log n)2 for some constants c1 and c2.
(b) n+ log n− 2 log(log n) ≤ NGmax(n) ≤ n+ �n

2 �.

Caro and Henning continued their study of the orientable domination number in
[17]. They defined the maximum average degree in a graph G, denoted by mad(G),
as the maximum of the average degrees taken over all subgraphs H of G, that is,

mad(G) = max
H⊂G

{
2|E(H)|
|V (H)|

}

.
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Theorem 59 ([17]) If G is a graph of order n, then the following hold.

(a) DOM(G)≥α(G)≥ γ (G).
(b) DOM(G)≥ n/χ (G).
(c) DOM(G)≥�(diam(G)+ 1)/2)�.
(d) DOM(G)≥ n/(�mad(G)/2�+ 1).

Proof We present here only a proof of part (a). Let I be a maximum independent
set in G, and let D be the digraph obtained from G by orienting all arcs from I to
V \ I and orienting all arcs in G[V \ I], if any, arbitrarily. Every dominating set of D
contains the set I, and so γ (D)≥|I|. However, the set I itself is a dominating set of
D, and so γ (D)≤|I|. Consequently, DOM(G)≥ γ (D)= |I| =α(G)≥ γ (G). �

As remarked in [17], since mad(G)≤�(G) for every graph G, as an immediate
consequence of Theorem 59(d), we have that DOM(G)≥ n/(��(G)/2�+ 1). The
following lemma is useful when establishing upper bounds on the orientable
domination number of a graph.

Lemma 60 ([17]) Let G= (V, E) be a graph and let V1, V2, . . . , Vk be subsets of
V , not necessarily disjoint, such that ∪k

i=1Vi = V . If Gi =G[Vi] for i∈ [k], then

DOM(G) ≤
k∑

i=1

DOM(Gi).

Proof Consider an arbitrary orientation D of G. Let Di be the orientation of the
edges of Gi induced by D, and let Si be a γ -set of Di for each i∈ [k]. By Theorem
59(a), DOM(Gi)≥ γ (Di)= |Si| for each i∈ [k]. Since the set S = ∪k

i=1Si is a
dominating set of D, we have that

γ (D) ≤ |S| ≤
k∑

i=1

|Si | ≤
k∑

i=1

DOM(Gi).

Since this is true for every orientation D of G, the desired upper bound of DOM(G)
follows. �

As a consequence of Lemma 60, the authors in [17] proved the following upper
bounds on the orientable domination number of a graph.

Theorem 61 ([17]) If G is a graph of order n, then the following hold.

(a) DOM(G)≤ n−α′(G).
(b) If G has a perfect matching, then DOM(G)≤ n/2.
(c) DOM(G)≤ n with equality if and only if G = Kn.
(d) If G has minimum degree δ and n≥ 2δ, then DOM(G)≤ n− δ.
(e) DOM(G)= n− 1 if and only if every component of G is a K1-component, except

for one component which is either a star or a complete graph K3.
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Proof We present here only a proof of part (a). Let M ={u1v1, u2v2, . . . , utvt} be
a maximum matching in G, and so t=α′(G). Let Vi ={ui, vi} for i∈ [t]. If n > 2t, let
(Vt+1, . . . , Vn−2t) be a partition of the remaining vertices of G into n− 2t subsets
each consisting of a single vertex. By Lemma 60,

DOM(G) ≤
n−t∑

i=1

DOM(Gi) = t + (n− 2t) = n− t = n− α′(G). �

Applying results on the size of a maximum matching in a regular graph
established in [57], we have the following consequence of Theorem 61(a).

Theorem 62 ([17]) For r≥ 2, if G is a connected r-regular graph of order n, then

DOM(G) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max

{(
r2 + 2r

r2 + r + 2

)

× n

2
,
n+ 1

2

}

if r is even

(r3 + r2 − 6r + 2) n+ 2r − 2

2(r3 − 3r)
if r is odd.

The orientable domination number of a bipartite graph is precisely its inde-
pendence number. Recall that König [60] and Egerváry [27] showed that if G is
a bipartite graph, then α′(G)=β(G). Hence by Gallai’s Theorem [42], if G is a
bipartite graph of order n, then α(G)+α′(G)= n.

Theorem 63 ([17]) If G is a bipartite graph, then DOM(G)=α(G).

Proof Since G is a bipartite graph, we have that n−α′(G)=α(G). Thus, by The-
orem 59(a) and Theorem 61(a), we have that α(G)≤DOM(G)≤ n−α′(G)=α(G).
Consequently, we must have equality throughout this inequality chain. In particular,
DOM(G)=α(G). �

In 2018 Harutyunyan, Le, Newman, and Thomassé [53] observed that in general
there is no upper bound on the orientable domination number of a graph solely
in terms of its independence number. Nevertheless, they showed that these two
quantities can be related.

Theorem 64 ([53]) If G is a graph of order n, then DOM(G) ≤ α(G) · log n.

Theorem 64 implies that when the independence number of an oriented graph is
sufficiently large, it is possible to bound the orientable domination number of the
graph purely in terms of its independence number.

Theorem 65 ([53]) If D is a graph of order n and α(G) ≥ log n, then
DOM(D)≤ (α(D))2.
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Harutyunyan et al. [53] concluded their paper with the following conjecture.

Conjecture 1 There exists an integer k such that for any 'C3-free oriented graph D
with α(D)=α, we have γ (D)≤αk.

The following result establishes an upper bound on the orientable domination
number of a graph in terms of its independence number and chromatic number.

Theorem 66 ([17]) If G is a graph of order n, then the following hold.

(a) DOM(G)≤α(G) ·�χ (G)/2�.
(b) DOM(G)≤ n−�χ (G)/2�.
(c) DOM(G)≤ (n+α(G))/2.

The following result establishes an upper bound on the orientable domination of
a graph in terms of the chromatic number of its complement.

Theorem 67 ([17]) If G is a graph of order n, then

DOM(G) ≤ χ(G) · log

(⌈
n

χ(G)

⌉

+ 1

)

.

As a consequence of Theorem 67, we have the following result on the orientable
domination number of a graph with sufficiently large minimum degree.

Theorem 68 ([17]) If G is a graph of order n with minimum degree
δ(G)≥ (k− 1)n/k where k divides n, then DOM(G) ≤ n

k
log(k + 1).

Let Mop(n) = max{DOM(G)}, where the maximum is taken over all maximal
outerplanar graphs of order n.

Theorem 69 ([17]) For maximal outerplanar graphs of order n, Mop(n) = �n
2 �.

5.2 Tournaments

Since a tournament is an oriented complete graph, many applications interpret a
tournament as a competition graph. That is, a tournament on n vertices represents
a competition between n teams (each represented by a vertex) in which the teams
play each other once. No ties are allowed, and there is an arc from a vertex u to
a vertex v if and only if u defeats v. The score of a vertex v is its outdegree (the
number of teams it defeats). Hence, a dominating set S of a tournament represents a
collection of teams such that every team not in S is defeated by at least one team in S.
Tournaments are popular, in part, because of this pairwise comparison and ranking
of competitors.

The following result is attributed by Moon to Erdős (cf. Moon [72] p. 28). As
before, unless otherwise stated, log is to the base 2.

Theorem 70 (Erdős) If T is a tournament with n≥ 2 vertices, then γ (T ) ≤ �log n�.
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Proof The sum of the outdegrees of the vertices in a tournament T = (V, A) of order
n is the number of arcs in T, that is,

∑

u∈V
odT (u) = 1

2
n(n− 1).

Thus, there must be a vertex x∈V with odT (x) ≥ � 1
2 (n − 1)�. We remove this

vertex x and all out-neighbors of x, thereby removing at least half the vertices. We
now repeat this process on the remaining tournament, which has at most � 1

2 (n− 1)�
vertices, by again selecting a vertex which dominates at least half of the remaining
vertices and then deleting this second vertex and all of its out-neighbors. Repeating
this process will produce a dominating set with no more than �log n� vertices. �

A random tournament is obtained by orienting the edges of a complete graph
randomly, independently, with equal probabilities. Let Tn be the probability space
consisting of the random tournaments on n vertices. In 1997 Bollobás and Szabó [9]
showed that the domination number of a random tournament is one of two values,
where log is to the base 2. We remark that this result was obtained by Lee [62] in
1994.

Theorem 71 ([9, 62]) A random tournament T∈ Tn has domination number �k�+1
or �k� + 2, where k = log(n)− 2 log(log(n))+ log(log(e)).

By Theorem 71, there are tournaments having arbitrarily large domination
numbers. This leads to the question: Which tournaments have bounded domination
number (not dependent on the order n of the tournament)? To partially answer this
question, we first define a k-majority tournament.

Definition 12 As usual, by a linear order in a tournament, we mean with respect
to the transitive orientation of the tournament. A tournament T is a k-majority
tournament if there are 2k− 1 linear orders of V (T) such that for all distinct vertices
u and v in T, if u is adjacent to v, then u is before v in at least k of the 2k− 1 orders.
Let F(k) be the supremum of the size of a minimum dominating set in a k-majority
tournament, where the supremum is taken over all k-majority tournaments, with no
restriction on their size.

Trivially, F(1)= 1. In 2006 Alon, Brightwell, Kierstead, Kostochka, and Winkler
[2] proved that F(2)= 3. To do this, they first showed that every 2-majority
tournament has a dominating set of size at most 3, that is, F(2)≤ 3. We omit their
proof.

To show that F(2)≥ 3, Alon et al. [2] provided the following example. Recall that
if there is an integer x with 0 < x < p such that x2 ≡ q (mod p), then q is a quadratic
residue modulo p. In practice, it suffices to restrict the range of x to 0 < x≤�p/2�
because of the symmetry (p − x)2 ≡ x2 (mod p). For example, the quadratic residues
modulo 7 are given by 1, 2, 4 since 11 ≡ 1 (mod 7), 22 ≡ 4 (mod 7), and 32 ≡ 2 (mod
7). Let T be the quadratic residue tournament whose vertices are the elements of the
finite field GF(7) in which i→ j if and only if i− j is a quadratic residue modulo 7,
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Fig. 5 A 2-majority
tournament T′ with γ (T′)= 3

0

1

2

3

45

6

i.e., (i− j) mod 7∈{1, 2, 4}. Since the edges of T are preserved under translation, it
suffices for us to consider the subtournament T′ of T with vertex set {0, 1, . . . , 6} as
illustrated in Figure 5.

No two vertices dominate T′, while the set {0, 1, 2}, for example, is a dominating
set of T′, and so γ (T′)= 3. Further, T′ is a 2-majority tournament realized by the
orders P1, P2, and P3, where

P1 : 0 < 1 < 2 < 3 < 4 < 5 < 6,
P2 : 4 < 6 < 1 < 3 < 5 < 0 < 2,
P3 : 5 < 2 < 6 < 3 < 0 < 4 < 1.

Thus, T′ is a 2-majority tournament satisfying γ (T′)= 3. As observed earlier,
the edges of T are preserved under translation, implying that T is a 2-majority
tournament satisfying γ (T)= 3. This example shows that F(2)≥ 3. As observed
earlier, F(2)≤ 3. Consequently, F(2)= 3. We state this result formally as follows.

Theorem 72 ([2]) For 2-majority tournaments, F(2)= 3.

The value of F(k) has yet to be determined for any value of k≥ 3. The following
nontrivial result shows that F(3)≥ 4.

Theorem 73 ([2]) There exists a 3-majority tournament T with γ (T)= 4, that is,
F(3)≥ 4.

As observed earlier, there are tournaments having arbitrarily large domination
numbers. Kierstead and Trotter (see [2] for a discussion) conjectured that this is not
the case for k-majority tournaments for some fixed k. Alon et al. [2] proved this
conjecture and showed that F(k) is finite for each fixed k.

Theorem 74 ([2]) For an arbitrary fixed integer k≥ 1, if T is a k-majority
tournament, then

γ (T ) ≤ 20(2 + o(1))k log(k(2 log 2)) ≤ (80 + o(1))k log(k).
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We remark that their paper was the first to introduce the idea of using the VC
dimension to study domination in tournaments, where the VC dimension (Vapnik-
Chervonenkis dimension) of a hypergraph H is the largest cardinality of a vertex
subset X shattered by H, that is, for any Y ⊆X, the hypergraph H has an edge A such
that A∩X =Y . The upper bound in the following theorem follows as a consequence
of Theorem 74.

Theorem 75 ([2]) For an arbitrary fixed integer k≥ 1,

(
1

5
+ o(1)

)
k

log k
≤ F(k) ≤ (80 + o(1))k log(k).

A tournament is k-transitive if its edge set can be partitioned into k sets each of
which is transitively oriented. András Gyárfás made the conjecture that k-transitive
tournaments have bounded domination number, and this was explored in 2014 by
Pálvölgyi and Gyárfás [76].

Conjecture 2 (Gyárfás) For each positive integer k, there exists a (least) p(k) such
that every k-transitive tournament has a dominating set of at most p(k) vertices.

We proceed further with the following definitions.

Definition 13 A class C of tournaments has bounded domination if there exists a
constant c such that every tournament in C has domination number at most c. If S and
T are tournaments, then T is called S-free if no subtournament of T is isomorphic
to S. A tournament S is a rebel if the class of all S-free tournaments has bounded
domination.

In 2018 Chudnovsky, Ringi, Chun-Hung, Seymour, and Thomassé [23] investi-
gated the following conjecture posed by HeHui Wu.

Conjecture 3 (HeHui Wu) Every tournament is a rebel.

Chudnovsky et al. [23] disproved Conjecture 3. For this purpose, they defined
the notion of a poset tournament.

Definition 14 A tournament T is a poset tournament if its vertex set can be ordered
{v1, . . . , vn} such that for all 1≤ i < j < k≤ n, if vj is adjacent from vi and adjacent
to vk, then vi is adjacent to vk; that is, the “forward” edges under this linear order
form the comparability graph of a partial order.

Chudnovsky et al. [23] observed that not every tournament is a poset tournament.
Thereafter, they proved the following result, hence disproving Conjecture 3.

Theorem 76 ([23]) Every rebel is a poset tournament.

However, it remains an open problem to determine if every poset tournament is a
rebel. Since Wu’s Conjecture, that every tournament is a rebel, is false, it naturally
raises the question: Which tournaments are rebels? Theorem 76 provides a partial
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Fig. 6 The non-2-colorable
tournament T∗

v

T1 T2

answer to this question. To further answer this question, we need the definition of a
coloring of a tournament.

Definition 15 A k-coloring of a tournament T is a partition of V (T) into k transitive
sets, or, equivalently, into k acyclic sets. A tournament T with a k-coloring is called
k-colorable.

Chudnovsky et al. [23] proved that Conjecture 3 is true for 2-colorable tourna-
ments. Their proof followed from a direct application of VC dimension.

Theorem 77 ([23]) All 2-colorable tournaments are rebels.

A breakthrough in their paper [23] is that Chudnovsky et al. overcame the
unboundedness of the VC dimension by showing that large shattered sets in a
hypergraph are sparse, which turns out to be enough to carry over the proof of
Theorem 76. This enabled them to give a non-2-colorable tournament T∗ on seven
vertices that satisfies Conjecture 3. Such a tournament T∗ is constructed from a
cyclic triangle by substituting a copy of a cyclic triangle for two of the three vertices
of an original cyclic triangle. A sketch of the tournament T∗ is given in Figure 6,
where the arrow from v to the cyclic triangle T1 indicates that all three arcs from v
to T1 are arcs out of v while the arrow from the cyclic triangle T2 to v indicates that
all three arcs from T2 to v are arcs into v. Further, the arc from T1 to T2 indicates
that every vertex in T1 is adjacent to every vertex in T2.

Theorem 78 ([23]) The non-2-colorable tournament T∗ is a rebel.

Thus, Theorem 78 gives a counterexample to the converse of Theorem 77, that
all rebels are 2-colorable. As a consequence of Theorem 78, the following result
is proven, where the odd girth of a tournament T is the smallest k for which there
exists a subtournament of T with k vertices that is not 2-colorable (and is undefined
if T is 2-colorable).

Theorem 79 ([23]) For k≥ 8, the class of tournaments with odd girth at least k has
bounded domination.

We close this section on domination in tournaments, with a brief discussion on
what we define next as a domination graph of a digraph.

Definition 16 Two vertices x and y dominate an oriented graph D= (V, A) if the
set {x, y} is a dominating set of D, that is, every vertex z different from x and y is
adjacent from at least one of x and y, and so (x, z)∈A or (y, z)∈A. The domination
graph of an oriented graph D is the graph G with V (G)=V (D) and with an edge
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between two vertices x and y if x and y dominate T, that is, if every other vertex loses
to at least one of x and y.

Domination graphs were introduced and studied by Fisher et al. [30–35] and [21,
22], who largely considered the domination graphs of tournaments. In particular,
Fisher et al. showed that the domination graph of a tournament is either an odd
cycle with or without isolated and/or pendant vertices or a forest of caterpillars.
They also showed that any graph consisting of an odd cycle with or without isolated
and/or pendant vertices is the domination graph of some tournament.

6 Total Domination in Digraphs

There are several possibilities for defining the counterpart of a total dominating set
in a digraph D. We consider four such versions in the following subsections.

6.1 Total Domination: Version 1

In this version of total domination, we define a set S in a digraph D to be a total
in-dominating set if S is an in-dominating set in D with the added property that
the subdigraph induced by S has no isolated vertices. Here we define the total in-
domination number γ−

t i (D) of a digraph D to equal the minimum cardinality of
such a set S according to Version 1. We note that if the underlying graph of D has
no isolated vertices, then V (D) is vacuously a total in-domination set of D, and so
γ−
t i (D) is well-defined and γ−

t i (D) ≤ |V (D)|.

6.2 Total Domination: Version 2

In this version of total domination, a set S in a digraph D is a total dominating set
if S is a dominating set in D with the added property that the subdigraph induced
by S has no isolated vertices. This is a version defined by Arumugam, Jacob, and
Volkmann [3] in 2007 and Hao [49] in 2017. We define the total domination number
γ t(D) of a digraph D with no isolated vertices to equal the minimum cardinality of
such a set S according to Version 2. As with version 1 above, we note that γ t(D)
is well-defined and γ t(D)≤|V (D)|. Arumugam et al. [3] established the following
lower bound on the total domination number of a digraph.

Theorem 80 ([3]) If D is a digraph of order n, with maximum outdegree Δ+ and
without isolated vertices, then



Domination in Digraphs 419

γt (D) ≥
⌈

2n

2�+ + 1

⌉

.

Hao and Chen [50] improved the lower bound in Theorem 80. For this purpose,
they define the out-Slater number of a digraph D of order n as

sl+(D) = min{k : �k/2� + (d+1 + d+2 + · · · + d+k ) ≥ n},

where d+1 , d+2 , . . . , d+k are the first k largest outdegrees of D.

Theorem 81 ([50]) If D is a digraph of order n, with maximum outdegree Δ+ and
without isolated vertices, then

γt (D) ≥ sl+(D) ≥
⌈

2n

2�+ + 1

⌉

.

Further, the gap between the rightmost two numbers can be arbitrarily large.

The authors in [50] also determined the following lower bound on the total
domination number of an oriented tree in terms of its order and number of vertices
of outdegree 0.

Theorem 82 ([50]) If T is an oriented tree of order n≥ 2, with n0 vertices of
outdegree 0 and with non-increasing outdegree sequence d+1 , d+2 , . . . , d+n , then

γt (T ) ≥ sl+(D) ≥ 2

3
(n− n0 + 1),

with equality if and only if n− n0 ≡ 2 (mod 3) and d+k+1 ≤ 1, where k = 2
3 (n−n0 +

1).

6.3 Total Domination: Version 3

In this version of total domination, a set S in a digraph D= (V, E) is a total in-
dominating set if every vertex in V is adjacent to a vertex in S, that is, N−(S)=V .
This is equivalent to saying that S is an in-dominating set and the subdigraph induced
by S has no isolated vertices and no sources. The minimum cardinality of such a set
could be called the total absorption number, denoted γ−

t (D). We note that every
digraph D with δ−(D)≥ 1 has a total dominating set according to this definition
since V (D) is such a set. For example, the digraph D shown in Figure 7 satisfies
γ−
t (D) = 3, where the darkened vertices form a total dominating set of D of

cardinality 3.
For a digraph D= (V, E) and for a real-valued function f : V → R, the weight of

f is w(f )=∑
v ∈ Vf (v). Further, for S⊆V , we define f (S)=∑

v ∈ Sf (v); in particular,
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Fig. 7 A digraph D with
γ−
t (D) = 3

this means that w(f )= f (V ). Let f : V →{0, 1} be a function which assigns to each
vertex of a graph an element of the set {0, 1}. We say f is a total dominating function
if for every v∈V , the sum of the function values under f in every out-neighborhood
of a vertex is at least 1, that is, for every vertex v∈V , we have

∑

u∈N+(v)

f (u) ≥ 1.

The total absorption number of D can be defined as

γ−
t (D) = min{w(f ) | f is a total dominating function on D}.

In order to present a lower bound on the total absorption number of a digraph,
St-Louis, Gendron, and Hertz [87] in 2012 considered the fractional version of a
total dominating set where vertices have fractional weights in the range [0, 1]. A
real-valued function f : V → [0, 1] is called a fractional total dominating function
of a digraph D if

∑
u∈N+(v) f (u) ≥ 1 for each v∈V . The minimum weight of a

fractional total dominating function of D is the fractional total domination number,
which we denote here by γ−

tf (D). Thus,

γ−
tf (D) = min {w(f ) | f is a fractional total dominating function for D}.

We remark that the fractional total domination number is readily viewed as a
linear program. Thus we can talk of minimum, rather than infimum in the above
definition. By definition, γ−

t (D) ≥ γ−
tf (D), and so the fractional version provides a

lower bound on the total absorption number of D. The girth g(D) of a digraph D is
the number of vertices of the smallest directed cycle in D. St-Louis et al. [87] posed
two conjectures, one of which is the following.

Conjecture 4 ([87]) If D is a digraph with δ+(D)≥ 1, then γ−
tf (D) > g(D)− 1.

St-Louis et al. [87] proved that Conjecture 4 is equivalent to the 1978 Caccetta-
Häggkvist Conjecture which we state below.

Conjecture 5 ([14]) If D is a digraph of order n with δ+(D)≥ r≥ 1, then g(D) ≤
�n
r
�.



Domination in Digraphs 421

Fig. 8 A digraph D with
γ+
to (D) = 3

6.4 Total Domination: Version 4

In this version of total domination, a set S in a digraph D= (V, E) is a total
dominating set if every vertex in V is adjacent from a vertex in S, that is, N+(S)=V .
This is equivalent to saying that S is a dominating set and the subdigraph induced
by S has no isolated vertices and no sinks. This is a version defined by Hansen,
Lai, and Yue [47] in 1999 and by Schaudt [83] in 2012. We shall call this type of
total dominating set a total open dominating set and let γ+

to (D) equal the minimum
cardinality of a total open dominating set in a digraph D. For example, the digraph
D shown in Figure 8 satisfies γ+

to (D) = 3, where the darkened vertices form a total
open dominating set of D of cardinality 3.

In 1999 Hansen et al. [47] defined the lower orientable open domination number
dom1(G) of a graph G as the minimum total open domination number among all
orientations of G. The upper orientable total open domination number DOM1(G)
equals the maximum such total open domination number.

Theorem 83 ([47]) For a connected graph G, dom1(G) and DOM1(G) exist if and
only if G is not a tree.

Hansen et al. [47] also investigated the function DOM1(Kn). They showed this
to be a non-decreasing function and unbounded and determined specific values.
Analogous to Theorem 52, they proved the following result.

Theorem 84 ([47]) For every integer c with dom1(Kn)≤ c≤DOM1(Kn), there
exists an orientation D of Kn such that γ+

to (D) = c.

In 2012 Schaudt [83] studied efficient total domination in digraphs, where an
efficient total dominating set of a digraph D is a total open dominating set S with the
property that for each vertex v of D, there is a unique vertex u∈ S that is adjacent to
v. Graphs that permit an orientation having such a set were studied in [83]. Further,
complexity results and characterizations were given.

6.5 Fractional Domination in Digraphs

In Section 6.3, we considered the fractional version of total domination in digraphs.
In this section, we present results on the fractional version of domination in
digraphs. Adopting our earlier notation, a real-valued function f : V → R in a
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digraph D is a dominating function if for every v∈V , the sum of the function values
under f in every closed out-neighborhood of a vertex is at least 1, that is, for every
vertex v∈V , we have

∑

u∈N+[v]
f (u) ≥ 1.

The domination number of D can be defined as

γ (D) = min{w(f ) | f is a dominating function on D}.

A real-valued function f : V → [0, 1] is called a fractional dominating function
of a digraph D if

∑
u∈N+[v] f (u) ≥ 1 for each v∈V . The minimum weight of a

fractional dominating function of D is the fractional domination number, which we
denote here by γ f (D). Thus,

γf (D) = min {w(f ) | f is a fractional dominating function for D}.

In 1982 Sands, Sauer, and Woodrow [82] (also due to Erdős) posed the following
conjecture.

Conjecture 6 ([82]) For each n, there is a (least) positive integer f (n) so that every
finite tournament whose edges are colored with n colors contains a set S of f (n)
vertices with the property that for every vertex u not in S, there is a monochromatic
directed path from u to a vertex of S.

A complete multidigraph is a directed graph in which multiple arcs and circuits
of length 2 are allowed and such that there always exists an arc between two distinct
vertices. A tournament, for example, is a complete multidigraph in the special case
when the directed graph is simple (and contains no multiple arcs or circuits of length
2). As remarked in [13], the transitive closure of each color class is a quasi-order
(i.e., a transitive digraph); hence, the Erdős-Sands-Sauer-Woodrow conjecture can
be restated as follows.

Conjecture 7 ([82]) For every k, there exists an integer f (k) such that if T is a
complete multidigraph whose arcs are the union of k quasi-orders, then γ (T)≤ f (k).

In 2019 Bousquet, Lochet, and Thomassé [13] succeeded in proving this long-
standing 1982 Erdős-Sands-Sauer-Woodrow conjecture. The main ingredient in
their proof is that the fractional domination number of complete multidigraphs (and
therefore of tournaments) is bounded.

Theorem 85 ([13]) For every k, if T is a complete multidigraph whose arcs are the
union of k quasi-orders, then

γ (T ) = O(ln(2k) · kk+2).
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Harutyunyan, Le, Newman, and Thomassé [53] continued the study of fractional
domination in digraphs. Recall that in general there is no upper bound on the
domination number of an oriented graph solely in terms of its independence number.
However, by Theorem 64, if G is a graph of order n, then DOM(G) ≤ α(G) · log n.
In contrast to this result, Harutyunyan et al. [53] showed that for any digraph, its
fractional domination number is at most twice its independence number.

Theorem 86 ([53]) For every digraph D, we have γ f (D)≤ 2α(D), and this bound
is sharp.

The authors in [53] presented two proofs of Theorem 86. The first proof uses
the duality of linear programming, while the second proof is by induction. To show
sharpness of the bound, given an arbitrary small real number ε > 0, for any integer
k≥ 1, they constructed a digraph D such that α(G)= k and γ f (D) > 2k− ε. Further,
they showed that almost surely a random tournament has fractional domination
number close to the upper bound of 2.

7 The Oriented Version of the Domination Game

In 2002 Alon, Balogh, Bollobás, and Szabó [1] introduced and first studied the
oriented domination game, which belongs to the growing family of competitive
optimization graph games. The oriented domination game describes a process in
which two players with conflicting goals alternately orient an edge of a graph G
until all of the edges are oriented. One player’s goal is to minimize the domination
number of the resulting oriented graph, while the other player wants to maximize it.

Formally, the oriented domination game on a graph G consists of two players,
Minimizer and Maximizer (called Dominator and Avoider in [1]), who take turns
orienting an unoriented edge of a graph G, until all edges are oriented. The goal
of Minimizer is to minimize the domination number of the resulting digraph, while
the goal of Maximizer is to maximize the domination number. The Minimizer-start
oriented domination game is the oriented domination game when Minimizer plays
first. The oriented game domination number γ og(G) of G is the minimum possible
domination number of the resulting digraph when both players play according to the
rule that on each move a player may only orient an unoriented edge. To illustrate
the game, Alon et al. [1] determined the oriented game domination number of a
complete graph.

Proposition 87 ([1]) For a complete graph Kn of order n≥ 4, we have γ og(Kn)= 2.

Proof Minimizer’s strategy is to pick two arbitrary vertices, say u and v. On each
of his turns, Minimizer orients an edge from u or v to a vertex w different from
u and v. His strategy is to orient these edges in such a way that at least one of u
and v is oriented towards w. He can always achieve his goal as follows. Whenever
Maximizer orients the edge uw from w to u, then Minimizer immediately replies
by orienting the edge vw from v to w, if it is not already oriented. Analogously,
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whenever Maximizer orients the edge vw from w to v, then Minimizer immediately
replies by orienting the edge uw from u to w, if it is not already oriented. In this
way, he ensures that the set {u, v} is a dominating set in the resulting oriented graph.
Thus, γ og(Kn)≤ 2.

To show that γ og(Kn)≥ 2, Maximizer adopts the following strategy. Maximizer
can clearly prevent a source in the oriented graph resulting when n= 4. In the
case when n≥ 5, there exists a collection of n edge-disjoint paths of length 2, one
centered at each of the n vertices of Kn (see [10]). Maximizer’s strategy is whenever
Minimizer orients one of these edges from a central vertex on one of these paths,
Maximizer responds by orienting the other edge of the corresponding path towards
the central vertex. In this way, Maximizer guarantees that the indegree of each
vertex in the resulting oriented graph becomes at least 1, implying that γ og(Kn)≥ 2.
Consequently, γ og(Kn)≥ 2. �

In [1], the authors obtained a sharp lower bound for the oriented game domination
number of trees.

Theorem 88 ([1]) If G is a tree of order n, then 1
2n ≤ γog(G) ≤ 2

3n.

The proof of Theorem 88 implies that the upper bound holds for any connected
graph G, as Minimizer can concentrate his attention on a spanning tree T of G and
play according to his strategy in the tree T. Whenever Maximizer orients an edge
not in T, Minimizer continues to orient edges according to his strategy in the tree.
As shown in [1], both bounds in Theorem 88 are sharp. For graphs with minimum
degree at least 2, the following improved upper bound was given in [1].

Theorem 89 ([1]) If G is a graph of order n with δ(G)≥ 2, then γog(G) ≤ 1
2n.

If G is a graph of order n with maximum degree �, then a trivial lower bound on
the domination number is γ (G)≥ n/�. In the oriented domination game, Maximizer
orients half of the edges. As observed by Alon et al. [1], Maximizer might succeed
in decreasing the outdegree of each vertex to about �/2, in which case the resulting
domination number is at least 2n/�. This prompted them to pose the following
conjecture.

Conjecture 8 ([1]) If G is a graph of order n with maximum degree Δ, then

γog(G) ≥
(

2

(1 + o(1))�

)

n.

Conjecture 8 has yet to be settled. The best general lower bound to date on the
oriented game domination number in terms of the maximum degree and order of the
graph is the following result in [1].

Theorem 90 ([1]) If G is a graph of order n with maximum degree Δ, then

γog(G) ≥
(

4

3�+ 7

)

n.
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Nordhaus-Gaddum-type inequalities for the oriented domination game are given
in [1]. Here, G denotes the complement of a graph G.

Theorem 91 ([1]) If G is a graph of order n, then γog(G) + γog(G) ≤ n + 2, and
this bound is sharp.

We note that if G is the complete graph Kn where n≥ 4, then γog(G) = n and, by
Proposition 87, γ og(G)= 2. Thus, if G=Kn, then γog(G)+γog(G) = n+2, showing
sharpness of the bound in Theorem 91. We close this section with the following
conjecture posed in [1], that the inequality in Theorem 91 can be strengthened for
connected graphs.

Conjecture 9 ([1]) If both G and its complement G are connected graphs of order
n, then

γog(G)+ γog(G) ≤ 2

3
n+ 3.

8 Concluding Comments

In this chapter, we have surveyed selected results on domination in digraphs. Many
results have been omitted to prevent the chapter from growing too large. For exam-
ple, topics such as signed domination in digraphs, efficient domination in digraphs,
packing in digraphs, reinforcement numbers of digraphs, rainbow domination in
digraphs, and Roman domination in digraphs, to name a few, are omitted. Additional
references on domination in digraphs can be found in [40, 44, 48, 55, 56, 58,
70, 77, 85, 91]. Due to space limitations, we have also omitted proofs of many
important results on domination in digraphs presented in this chapter, including the
proofs of results due to Alon, Brightwell, Kierstead, Kostochka, and Winkler [2];
Chudnovsky, Ringi, Chun-Hung, Seymour, and Thomassé [23]; Harutyunyan, Le,
Newman, and Thomassé [53]; and Bousquet, Lochet, and Thomassé [13] which
have significantly impacted the latest developments in the field of domination in
digraphs and tournaments. We apologize for these omissions.
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Algorithms and Complexity



Algorithms and Complexity of Signed,
Minus, and Majority Domination

Stephen T. Hedetniemi, Alice A. McRae, and Raghuveer Mohan

1 Introduction to Y -Dominating Functions

In this chapter, we discuss the algorithmic and complexity results for several types
of domination, which can be formulated as follows.

Let G= (V, E) be a graph and let Y be an arbitrary set of real numbers, finite
or infinite, positive or negative. A function f : V → Y is called a Y-dominating
function if for every v∈V , f (N[v])= �u ∈ N[v]f (u)≥ 1. In other words, the closed
neighborhood sum f (N[v]) of every vertex v∈V is at least one.

The weight of a dominating function f is w(f )= f (V )= �u ∈ Vf (u). The Y-
domination number γ Y (G) equals the minimum weight of a Y -dominating function
f on G.

A Y -dominating function f is called minimal if there does not exist another
Y -dominating function g, f �= g, with g(u)≤ f (u) for every v∈V . The upper
Y-domination number �Y (G) equals the maximum weight w(f ) of a minimal Y -
dominating function f on G.

We say that a Y -dominating function is efficient if f (N[v])= 1 for every vertex
v∈V . As we will see below, depending on the set Y of real numbers, a graph G
may or may not have an efficient Y -dominating function.

By changing closed neighborhoods to open neighborhoods, we can define the
following. A function g : V →Y is called a Y-total dominating function if for every
v∈V , g(N(v))= �u ∈ N(v)g(u)≥ 1. In other words, the open neighborhood sum
g(N(v)) of every vertex v∈V is at least one. The weight of a total dominating
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function g is w(g)= g(V )= �u ∈ Vg(u). The Y-total domination number γ Yt(G)
equals the minimum weight of a Y -total dominating function g on G.

A Y -total dominating function g is called minimal if there does not exist another
Y -total dominating function h, h �= g, with h(v)≤ g(v) for every v∈V . The upper
Y-total domination number �Yt(G) equals the maximum weight w(g) of a minimal
Y -dominating function g on G.

We say that a Y -total dominating function is total, or open, efficient if f (N(v))= 1
for every vertex v∈V .

By varying the set Y of real numbers, we produce different types of dominating
functions, those involving closed neighborhood sums, f (N[v])= �u ∈ N[v]f (u)≥ 1,
and those involving open neighborhood sums, g(N(v))= �u ∈ N(v)g(u)≥ 1.

The first four below use closed neighborhood sums.

1.1 Y={0, 1} with f(N[v])≥ 1

When Y ={0, 1}, γ {0,1}(G)= γ (G), the standard domination number of a graph G,
and �{0,1}(G)= �(G), the upper domination number of G.

1.2 Y= [0, 1] with f(N[v])≥ 1

When Y = [0, 1], γ [0,1](G)= γ f (G), the fractional domination number of a graph
G, and �[0,1](G)= �f (G), the upper fractional domination number of G.

1.3 Y={−1, 1} with f(N[v])≥ 1

When Y ={−1, 1}, γ {−1,1}(G)= γ s(G), the signed domination number of a graph
G, and �{−1,1}(G)= �s(G), the upper signed domination number of G.

1.4 Y={−1, 0, 1}with f(N[v])≥ 1

When Y ={−1, 0, 1}, γ {−1,0,1}(G)= γ−(G), the minus domination number of a
graph G, and �{−1,0,1}(G)= �−(G), the upper minus domination number of G.

The next four types of domination use open neighborhood sums.
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1.5 Y={0, 1} with f(N(v))≥ 1

When Y ={0, 1}, γ {0,1}t(G)= γ t(G), the standard total domination number of a
graph G, and �{0,1}t(G)= �t(G), the upper total domination number of G.

1.6 Y= [0, 1] with f(N(v))≥ 1

When Y = [0, 1], γ [0,1]t(G)= γ ft(G), the fractional total domination number of a
graph G, and �[0,1]t(G)= �ft(G), the upper fractional total domination number of
G.

1.7 Y={−1, 1} with f(N(v))≥ 1

When Y ={−1, 1}, γ {−1,1}t(G)= γ st(G), the signed total domination number of a
graph G, and �{−1,1}t(G)= �st(G), the upper signed total domination number of G.

1.8 Y={−1, 0, 1} with f(N(v))≥ 1

When Y ={−1, 0, 1}, γ{−1,0,1}t (G) = γ−
t (G), the minus total domination number

of a graph G, and �{−1,0,1}t (G) = �−
t (G), the upper minus total domination number

of G.

1.9 Y={−1, 1}with f(N[v])≥ 1 for at least half of the vertices
v∈V

When Y ={−1, 1}, γ maj(G), the majority domination number of a graph G, and
�maj(G)= �s(G), the upper majority domination number of G.

An excellent discussion of properties of Y -dominating functions, as of 1998,
can be found in a chapter by Henning, entitled “Dominating Functions in Graphs”
in [19]. This same volume contains a chapter entitled “Majority Domination and
Its Generalizations,” by Hattingh [17]. A comprehensive presentation of signed
and minus domination appears in a chapter by Kang and Shan, entitled “Signed
and Minus Dominating Functions in Graphs in [22]. In this chapter, we will
focus primarily on algorithms and complexity of signed domination and minus
domination. Later in the chapter, we will focus on majority domination in graphs.
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Figures 1, 2, 3, 4, 5, 6, 7, 8, and 9 illustrate the above dominating functions. To
avoid clutter in the figures, we adopt the following colors – red for an assigned value
of − 1, yellow for 0 or absence, green for + 1 or presence, and shades of blue for
fractional values. We indicate within the respective diagrams what fractional values
are used.

Fig. 1 Domination

Fig. 2 Fractional domination

Fig. 3 Signed domination.

Fig. 4 Minus domination

Fig. 5 Total domination
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Fig. 6 Fractional total
domination

Fig. 7 Signed total
domination

Fig. 8 Minus total
domination

Fig. 9 Signed majority
domination
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2 Signed Domination

At the Seventh Quadrennial International Conference on the Theory and Appli-
cations of Graphs (Kalamazoo, MI, 1992), Dunbar, Hedetniemi, Henning, and
Slater [10] introduced the signed domination number γ s(G), where Y ={−1, 1},
motivated by preferences and voting applications in social networks. In this paper,
they observed that even though the closed neighborhoods of all vertices can have
positive sums, meaning that a majority of vertices in every neighborhood have
the value + 1, the total sum of all values f (V ) can be considerably negative. An
excellent example of this is the left graph G in Figure 3, obtained from a complete
graph Kn with vertices V (Kn)={v1, v2, . . . , vn} to which are added

(
n
2

)
vertices

as follows: for every vi and vj, add a vertex vij of degree 2 that is adjacent only
to vertices vi and vj. Now construct the signed dominating function f in which
f (v)= 1 (color green) for every v∈V (Kn) and f (vij)=−1 (color red), for every
1≤ i < j≤ n. It can be seen that for every vertex w∈V (G), f (N[w])= 1, and thus,
this is an efficient signed dominating function, yet f (V (G))= n− (

n
2

)
.

In this paper, the authors present the following characterization of a minimal
signed dominating function.

Proposition 1 (Dunbar et al. [10]) A signed dominating function f : V→{−1, 1}
on a graph G= (V, E) is minimal if and only if for every vertex v∈V with f (v)= 1,
there exists a vertex u∈N[v] with 1≤ f (N[u])≤ 2.

The authors point out that while for any negative integer k, there exist bipartite
graphs, chordal graphs, and outerplanar graphs G with γ s(G)≤ k; for other classes
of graphs, the signed domination number cannot be negative.

The decision problem for signed domination is the following.

SIGNED DOMINATING FUNCTION (SDF)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a signed dominating function f of weight f (V )≤ k?

UPPER SIGNED DOMINATING FUNCTION (USDF)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a minimal signed dominating function f of weight f (V )≥ k?

The first paper to address the complexity of signed domination and upper signed
domination was by Hattingh, Henning, and Slater in 1995 [18] who showed the
following.

Theorem 2 (Hatting, Henning, Slater [18]) SDF is NP-complete for bipartite and
chordal graphs.

Proof Sketch. Use a transformation from the following, well-known NP-complete
problem.

DOMINATING SET (DOMSET)
Instance: Graph G= (V, E), integer k.
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Question: Does G have a dominating set of cardinality at most k?

Given an instance of DOMSET, a graph G= (V, E) and a positive inte-
ger k, construct a graph H by attaching to each vertex v∈V (G), deg(v)+ 1
paths of length two. Thus, if n= |V (G)| and m= |E(G)|, then |V (H)| = n+ 2
�v ∈ V (deg(v)+ 1)= 3n+ 4m, and |E(H)| =m+ 2 �v ∈ V (deg(v)+ 1)= 2n+ 5m.
Thus, H can be constructed in polynomial time.

It is easy to see that any signed dominating function defined on the constructed
graph H must assign the value + 1 to the two vertices on all attached paths of length
two and can assign the value − 1 to all vertices not in a dominating set of G and
+ 1 to all vertices in a dominating set of G. Based on this observation, one can then
prove that γ (G)≤ k if and only if γ s(H)≤ 3n+ 4m− 2(n− k)= 4m+ n+ 2k.

Notice that if G is either bipartite or chordal, so is the constructed graph H. �

If an instance G of DOMSET is planar, then the constructed graph H in the above
proof is also planar. Since DOMSET is known to be NP-complete for planar graphs
[15], we can conclude the following as well.

Corollary 3 (Hatting, Henning, Slater [18]) SDF is NP-complete for planar
graphs.

Theorem 4 (Hatting, Henning, Slater [18]) USDF is NP-complete for bipartite
and chordal graphs.

Proof Sketch. Use a transformation from One-in-Three 3SAT.

ONE-IN-THREE 3SAT
Instance: Set U of variables, a collection C of 3-variable clauses over U, no clause

containing a negated variable.
Question: Is there a truth assignment for U such that each clause c∈C has exactly

one true variable?

Given an instance U ={u1, u2, . . . , un} and C={c1, c2, . . . , cm} of ONE-IN-
THREE 3SAT, construct the following bipartite graph H. Let H1, H2, . . . , Hn be
n copies of the path P5 with vertices labeled u, v1, v2, v3, v4, where the vertices in
copy Hi are labeled ui, vi,1, vi,2, vi,3, vi,4.

Corresponding to each 3-variable clause cj, say u2 ∨ u3 ∨ u5, associate a path P4,
one end vertex of which is labeled cj, and add edges between cj and each of the
vertices labeled u2, u3, and u5.

It can be shown that the instance (U, C) of ONE-IN-THREE 3SAT has a
one-in-three satisfying truth assignment if and only if G has a minimal signed
dominating function of weight at least k, where k= 3n+ 4m. For example, given
a ONE-IN-THREE 3SAT satisfying truth assignment, assign the value f (ui)= 1 and
f (vi,1)=−1 if ui is assigned the value TRUE, and assign the value f (ui)=−1 and
f (vi,1)=+1 if ui is assigned the value FALSE; then assign the value + 1 to all
remaining vertices. This can be seen to be a minimal signed dominating function
of weight k= 3n+ 4m. �
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Fig. 10 The graph L
(reproduced with from [18])

Although DOMSET can be solved in polynomial time for the fixed parameter k,
simply by checking all

(
n
k

)
sets of size k, SDF does not have this property. Consider

the following decision problem.

ZERO SIGNED DOMINATING FUNCTION (ZSDF)
Instance: Graph G= (V, E)
Question: Does G have a signed dominating function of weight at most k= 0?

Theorem 5 (Hatting, Henning, Slater [18]) ZSDF is NP-complete for bipartite or
chordal graphs.

Proof Sketch. Show that a polynomial algorithm for solving ZSDF can be used to
solve SDF. Given an instance G= (V, E) of SDF, construct the graph H = G ∪
⋃j

i=1 Li , where the graph Li is a copy of the graph shown in Figure 10.
Note that if G is chordal, then so is H, since the graphs Li are chordal. Note

also that γ s(L)=−1, as shown. One can then show that γ s(G)≤ j if and only if
γ s(H)≤ 0. �

Hattingh, Henning, and Slater present a linear algorithm for computing the value
of γ s(T) for any tree T; since it is quite simple, we present it here.

Algorithm Tree SDF (Hattingh et al. [18]).
Input:
array parent[1, . . . , n] representing the vertices of a tree T rooted at vertex vn,

with vertices labeled v1, v2, . . . , vn in such a way that the parent of vertex vj is a
vertex vk with j < k, that is, if parent[j]= k then j < k

array deg[1, . . . , n], where deg[i]= deg(vi) in T
array sum[1, . . . , n]
array f [1, . . . , n]

Output: a signed dominating function f : V →{−1, 1} of minimum weight.
begin
for i= 1 to n do

1. if i= n then
if deg(1) is odd
then minsum= 2
else minsum= 1

2. if i < n then
if deg(i) is odd
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then minsum= 1
else minsum= 0

3. if i < n and deg(i)= 1 [vertex vi is a leaf]
then childsum= 0
else childsum= �j:parent[j]=if (j)

4. if childsum < minsum
then
while childsum < minsum− 1 do

for a vertex j with parent[j]= i and f (j)=−1, set f (j)= 1
od

f (i)= 1
else if ∃j parent[j]= i and 0≤ sum(j)≤ 1
then f (i)= 1
else f (i)=−1

5. sum(i)= childsum+ f (i)
od

end

We note in passing that the authors did not present an algorithm for computing
the value of �s(T) for a tree T.

In 2001 [6] Damaschke provides the following three complexity results for
signed domination.

Theorem 6 (Damaschke [6]) SDF is NP-hard for planar graphs G with Δ(G)≤ 3.

Theorem 7 (Damaschke [6]) For some ε > 0 and for graphs G with Δ(G) ≤
3, γs(G) cannot be approximated in polynomial time within a factor of 1+ ε unless
P=NP.

Proposition 8 (Damaschke [6]) For every fixed k, there is a polynomial algorithm
for deciding whether a graph G with Δ(G)≤ 5 satisfies γ s(G)≤ k.

Damaschke points out that a simple algorithm can be constructed that runs in
O(n2k) time for deciding whether a graph G with �(G)≤ 5 satisfies γ s(G)≤ k.

In 2008 [26] Lee and Chang study variations of Y -domination such as {k}-
domination, k-tuple domination, signed domination, and minus domination on a
wide variety of graphs, including strongly chordal graphs, a class which includes as
subclasses trees, block graphs, interval graphs, and directed path graphs. This paper
also gives NP-completeness results for these problems on doubly chordal graphs,
dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar
graphs. Some definitions of these classes of graphs might be helpful here.

A graph G is an undirected path graph if it is the intersection graph of paths in a
tree.

A graph G is a directed path graph if it is the intersection graph of directed paths
in a rooted directed tree.
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Recall that:

interval ⊂ directedpath ⊂ undirectedpath ⊂ chordal

A chord uv in a cycle C of even length 2k is called an odd chord if the shortest
distance d(u, v) between u and v in the cycle C is odd.

A graph G is strongly chordal if it is chordal and every even cycle in G of length
at least 6 contains an odd chord.

A graph G is chordal bipartite if it is bipartite and every cycle of length at least
6 has a chord.

A vertex u∈N[v] is called a maximum neighbor of v if for all vertices w∈N[v],
N[w]⊆N[u], that is, the closed neighborhood of every neighbor of v is contained in
the closed neighborhood of u.

Let v1, v2, . . . , vn be an ordering of the vertex set V , and for 1≤ i≤ n, let Gi be
the subgraph of G induced by the vertices vi, vi+1, . . . , vn.

A vertex ordering is called a maximum neighborhood ordering if for all
1≤ i≤ n, vertex vi has a maximum neighbor ui in Gi, that is, for every w∈Ni[vi],
Ni[w]⊆Ni[ui].

A graph G is dually chordal if it has a maximum neighborhood ordering. It is
worth noting that γ (G) can be computed for dually chordal graphs in linear time
[4].

A graph G is doubly chordal if it is both chordal and dually chordal.
In this paper, Lee and Chang [26] introduce the following variant of signed

domination.
A signed zero dominating function f : V →{−1, 1} satisfies the condition that

for all v∈V , f (N[v])≥ 0. The signed zero domination number γ s0(G) equals the
minimum weight of a signed zero dominating function on G.

SIGNED ZERO DOMINATING FUNCTION (SZDF))
Instance: Graph G= (V, E), integer k.
Question: Does G have a signed zero dominating function of weight at most k?

Theorem 9 (Lee, Chang [26]) SZDF is NP-complete for chordal graphs.

Proof Sketch. Use a transformation from DOMINATING SET for chordal
graphs. Given a chordal graph G, construct another chordal graph H by attaching
to each vertex v∈V (G), d(v) paths of length three. One can then show that
γ s0(H)= 2m− n+ 2γ (G), where n= |V |, m= |E|, and |V (H)| = n+ 6m. Thus,
γ (G)≤ k if and only if γ s0(H)≤ 2m− n+ 2k. �

Theorem 10 (Lee, Chang [26]) SDF is NP-complete on doubly chordal graphs.

Proof Sketch. Use a transformation from SZDF for chordal graphs above. Given
a chordal graph G= (V, E) of order n, construct a graph H by adding a new vertex
x adjacent to all vertices in G. Then add n new vertices as leaves attached to x.
The graph H so constructed can be seen to be a doubly chordal graph, since it
is chordal and the newly added vertex x serves as a maximum neighbor for all
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vertices. One can show that γ s(H)= γ s0(G)+ (n+ 1). Thus, γ s0(G)≤ k if and only
if γ s(H)≤ k+ (n+ 1). �

In 2015 [28], Lin, Liu, and Poon show that SDF is W[2]-hard and that for graphs
with �(G)≤ 6, SDF is contained in APX-hard, the class of problems which can be
approximated within some constant ratio.

This statement warrants some discussion for those readers not familiar with this
terminology. For a basic discussion of W[2]-hardness, the reader is referred to [7]
and [8] by Downey and Fellows. Most domination-related problems fall within one
of the following complexity classes:

FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] . . .

The class of problems in FPT are called Fixed Parameter Tractable. These are
problems like the following:

SPANNING TREE
Instance: Connected graph G= (V, E).
Parameter: k.
Question: Does G have a spanning tree with at least k leaves?

Theorem 11 (Bodlaender [3]) For every fixed k, it can be determined in O(n) time
whether a connected graph G of order n has a spanning tree with at least k leaves.

Another example is the following:

K-CYCLE
Instance: Graph G= (V, E).
Parameter: k.
Question: Does G have a cycle of length at least k?

Theorem 12 (Fellows, Langston [14]) For every fixed k, it can be determined in
O(n) time whether a graph G of order n has a cycle of length at least k.

For our purposes we can say that a problem with a parameter k is fixed parameter
tractable if there exists a constant α and an algorithm which can solve any
instance of size n in time f (k)nα . Problems which are not thought to be fixed
parameter tractable are organized hierarchically in increasing classes of hardness.
The computational problem used to define the class W[1] is the following.

WEIGHTED 3CNF SATISFIABILITY
Instance: A Boolean expression X in conjunctive normal form with 3-literals per

clause.
Parameter: k.
Question: Is there a satisfying truth assignment of weight at least k, that is, k literals

are assigned the value true?

The following problem is an example of a problem in W[1] [7].
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IRREDUNDANT SET
Instance: Graph G= (V, E).
Parameter: k.
Question: Does G have an irredundant set of cardinality at least k?

DOMINATING SET is known to be W[2]-hard, which means, in effect, that no
algorithm is known that can do any better than try all possible sets of size k and then
check each such set in O(n) time to see if it is a dominating set; thus, no algorithm
better than O(n1+k) is known for DOMINATING SET for fixed k.

Examples of dominating problems which are W[2]-hard include TOTAL DOMI-
NATING SET, CONNECTED DOMINATING SET, DOMINATING CLIQUE, and
MAXIMAL IRREDUNDANT SET. DOMINATING SET and INDEPENDENT
DOMINATING SET are, in fact, W[2]-complete, in the same way that decision
problems can be shown to be NP-hard or NP-complete.

A problem that appears to be even more difficult than DOMINATING SET is the
following which has been shown to be in W[3].

DOMINATING THRESHOLD SET
Instance: Graph G= (V, E).
PARAMETER: Positive integers k and r.
Question: Does there exist a subset V ′⊆V with |V ′|≤ k such that for every v∈V ,

|N[v]∩V ′|≥ r?

In 2015 [27] Lin and Poon present constant factor approximation algorithms for
SDF on subgraphs of cubic graphs, graphs of maximum degree four, and graphs
of maximum degree five. In addition, they prove the NP-completeness of SDF
on sub-cubic, planar bipartite graphs. They also present an O∗(5.1957γs )-time
FPT-algorithm for SDF on sub-cubic graphs. It follows that SDF on graphs with
maximum degree three is NP-complete.

3 Minus Domination

The minus domination number, where Y ={−1, 0, 1} and γ Y (G)= γ−(G), was
introduced in 1996 by Dunbar, Goddard, Hedetniemi, Henning, and McRae [9] and
[11] and in 1999 by Dunbar, Hedetniemi, Henning, and McRae [12].

In [12], Dunbar et al. briefly discuss the possible applications of minus dom-
inating functions, including assigning positive or negative electrical charges, or
positive or negative spins to electrons, or positive, negative or neutral votes or
preferences to people in a social network. The minus domination number indicates
the minimum number of people whose positive votes can assure that all local
(closed) neighborhoods have more positive than negative voters, even though the
entire network (graph) has far more negative voters than positive voters. Similarly,
the upper signed domination number indicates the largest number of positive voters
necessary to offset a few negative voters so that all local neighborhoods have
positive vote totals.
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In [11] Dunbar et al. show that the following two decision problems are NP-
complete, even when restricted to bipartite or chordal graphs.

MINUS DOMINATING FUNCTION (MDF)
Instance: Graph G= (V, E), integer k.
Question: Does G have a minus dominating function of weight at most k?

UPPER MINUS DOMINATING FUNCTION (UMDF)
Instance: Graph G= (V, E), integer k.
Question: Does G have a minimal minus dominating function of weight at least k?

Theorem 13 (Dunbar et al. [11]) MDF is NP-complete for bipartite and chordal
graphs.

Proof Sketch. Use a transformation from DOMSET.
Given either a bipartite or a chordal instance G= (V, E) of DOMSET, to each

vertex v∈V , attach a path of length three, and denote the resulting graph by H. One
can show that γ−(H)= γ (H)= γ (G)+ |V (G)|. Therefore, γ (G)≤ k if and only if
γ−(H)≤ k+ |V (G)|. Notice as well that if G is either bipartite or chordal, so is the
constructed graph H. �

Theorem 14 (Dunbar et al. [11]) UMDF is NP-complete for bipartite graphs.

Proof Sketch. Use a transformation from ONE-IN-THREE 3SAT.

ONE-IN-THREE 3SAT
Instance: Set U ={u1, u2, . . . , un} of n variables, a collection C={c1, c2, . . . , cm}

of 3-variable clauses over U, where no clause contains a negated variable.
Question: Is there a truth assignment for U such that each clause c∈C has exactly

one true variable?

Given an instance of ONE-IN-THREE 3SAT, with variables U ={u1, u2, . . . ,
un}, and clauses C={c1, c2, . . . , cm}, construct a bipartite graph in which each
ui ∈U is a vertex in an associated 4-cycle, and to each clause cj ∈C there is a path
of length two, the middle vertex of which is labeled cj. Three edges are then added
from each clause vertex cj = (vj1 ∨ vj2 ∨ vj3) to the three vertices vj1, vj2, and vj3.
One then shows that U, C has a One-in-Three 3SAT truth assignment if and only
if the bipartite graph so constructed has a minimal minus dominating function of
weight at least k= 2n+ 3m.

For example, if the instance (U, C) of ONE-IN-THREE 3SAT in Figure 11
has a solution, e.g., u1 = u5 =True and u2 = u3 = u4 =False, then as indicated in
Figure 11:

Assign 0 to vertices u1 and v1,2 and + 1 to v1,1 and v1,3.
Assign 0 to vertices u5 and v5,2 and + 1 to v5,1 and v5,3.
Assign − 1 to vertices u2 and + 1 to v2,1, v2,2, and v2,3.
Assign − 1 to vertices u3 and + 1 to v3,1, v3,2, and v3,3.
Assign − 1 to vertices u4 and + 1 to v4,1, v4,2, and v4,3.
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Fig. 11 The Graph G1 for (u1 ∨ u3 ∨ u4)∧ (u1 ∨ u2 ∨ u4)∧ (u2 ∨ u3 ∨ u5) (figure reproduced from
[11])

Then assign + 1 to each of the nine vertices in F1, F2, and F3.
It can be seen that this is a minimal minus dominating function of the bipartite

graph G(U, C) of weight 2n+ 3m. �

The authors also prove the following.

Theorem 15 (Dunbar et al. [11]) UMDF is NP-complete for chordal graphs.

Proof Sketch. Use a transformation from ONE-IN-THREE 3SAT.
Given an instance of ONE-IN-THREE 3SAT, with variables U ={u1, u2, . . . , un}

and clauses C={c1, c2, . . . , cm}, construct a chordal graph in which each ui ∈U is
a single vertex labeled ui, and to each clause cj ∈C, there is a path of length two,
the middle vertex of which is labeled cj. Three edges are then added from each
clause vertex cj = (vj1 ∨ vj2 ∨ vj3) to the three vertices vj1, vj2, and vj3. Finally, add n
additional vertices and form a clique of size 2n with the n vertices U ={u1, u2, . . . ,
un}.

One then shows that (U, C) has a One-in-Three 3SAT truth assignment if and
only if the chordal graph so constructed has a minimal minus dominating function
of weight at least k= 3m+ 1. �

The authors also present the following simple linear algorithm for computing
γ−(T) for any tree T, in which minsum(i) denotes the minimum possible sum of
values that may be assigned to vertex i (f (i)) and its children f (j), i.e., vertices j with
parent[j]= i.
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Algorithm Tree MDF (Dunbar et al. [11]).
Input:

array parent[1, . . . , n] representing the vertices of a tree T rooted at vertex vn,
with vertices labeled v1, v2, . . . , vn in such a way that the parent of vertex vj is a
vertex vi with i > j, that is, if parent[j]= i, then i > j

array deg[1, . . . , n], where deg[i]= deg(vi) in T
array minsum[1, . . . , n]
array childsum[1, . . . , n]
array sum[1, . . . , n]
array f [1, . . . , n]

Output: a minus dominating function f : V →{−1, 0, 1} of minimum weight.

begin
for i= 1 to n do

1. if i= n
then minsum(i)= 1
else minsum(i)= 0

2. if i < n and deg(i)= 1
then childsum(i)= 0
else childsum(i)= �j:parent[j]=if (j)

3. if childsum(i) < minsum(i)
then
3.1 while childsum(i) < minsum(i)− 1 do

for a vertex j with parent[j]= i and f (j) < 1, set f (j)= f (j)+ 1
od

3.2 f (i)= 1
3.3 childsum(i)=minsum(i)− 1

4. if childsum(i)≥minsum(i) then
4.1 if (∃j)(parent[j]= i and sum(j)= 0)

then f (i)= 1
4.2 else if (∃j)(parent[j]= i and sum(j)= 1)

then f (i)= 0
4.3 else if childsum(i)=minsum(i)

then f (i)= 0
4.4 else f (i)=−1

5. sum(i)= childsum(i)+ f (i)
od

end

Dunbar et al. conclude by noting that they have not constructed a linear algorithm
for computing �−(T) for any tree T.

In 2001, Damaschke [6] established several algorithm and complexity results for
minus domination in graphs with small maximum degrees. Among other things, he
noted that in any graph G, there will always exist minus dominating functions f
where w(f ) can be any value, γ−(G)≤w(f )≤ n.
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Damaschke observed, as did Dunbar et al. [11], that if you construct a graph
H from a graph G of order n by attaching a path of length three to every vertex
v∈V (G), say with vertices labeled v, x, y, z, then you can observe that without loss
of generality, there is always a minus dominating function f of H of weight γ−(H)
which assigns the values f (z)= 0, f (y)= 1, f (x)= 0, and in particular f (v)≥ 0. From
this, it follows that γ−(H)= n+ γ (G). Therefore, many NP-completeness results
for domination apply equally to minus domination.

Damaschke shows that in graphs G with �(G)≤ 4, γ−(G) can be approximated
within some constant ratio, and a simple algorithm achieves an approximation ratio
of 15. (However, the analysis is not very easy.)

Damaschke gives a simple proof of the following result, in which α(G) denotes
the maximum cardinality of an independent set in a graph G.

Theorem 16 (Damaschke [6]) MDF is NP-hard for planar graphs having maxi-
mum degree Δ≤ 4.

Proof. Construct a transformation from the following NP-complete problem (cf.
Garey and Johnson [15]).

INDEPENDENT SET �≤ 3
Instance: Planar graph G= (V, E) with �(G)≤ 3, positive integer k.
Question: Does G have an independent set of size at least k?

Let G= (V, E) be a planar graph of order n= |V |, size m= |E| and �(G)≤ 3.
We may assume without loss of generality that no vertex v∈V has degree 1.

Construct a planar graph H with �(H)≤ 4 by subdividing every edge uv∈E(G)
with a vertex w and attaching to w a leaf x and a path w, y, z of length two.

Let f : V →{−1, 0, 1} be a minus dominating function of H with w(f )= γ−(H).
One can show that, without loss of generality, f (x)= f (z)= 0, and f (y)= f (w)= 1.
It follows therefore, that even if a vertex u∈V (G) has f (u)=−1, it will still be the
case that f (N[u])≥ 1; since we are assuming that there are no vertices of degree
1, every vertex u∈V (G) will have either two or three w-neighbors with f (w)= 1.
It only remains to show that f (N[w])≥ 1, for every subdivision vertex w. This
means that both f (u)=−1 and f (v)=−1 cannot hold, and thus, the set of vertices
v with f (v)=−1 must form an independent set in G. From this it follows that
γ−(H)= 2m−α(G). �

Damaschke shows that you can use the same transformation above (but without
planarity) to show the following. The class MaxSNP (for strict NP) is a subclass
of NP optimization problems consisting solely of constant factor approximable
problems, for example, MAX-3SAT, in which you want to find a truth assignment
satisfying as many 3-literal clauses as possible. Since there is a fixed-ratio approx-
imation algorithm for solving any problem in MaxSNP, MaxSNP is contained in
APX, the class of problems which can be approximated within some constant ratio.

Theorem 17 (Damaschke [6]) For some ε > 0, γ−(G) in graphs with Δ(G)≤ 4
cannot be approximated in polynomial time within a factor of 1 + εunless P=NP.
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Proof. It has been shown by Berman and Fujito [2] that INDEPENDENT SET for
graphs with �(G)≤ 3 is MAX SNP-complete. So there exists a constant ε > 0 such
that in the graph H constructed above, α(H) cannot be approximated for such G in
polynomial time within, say, 1+ 12ε, unless P=NP. If we assume that in graphs G
with �(G)≤ 4 γ−(G) can be approximated within factor 1 + ε, then since 2e≤ 3n
in G and α(H)≥ n/4, this could be used to approximate α(H)= 2e− γ−(G) within
1+ 12, a contradiction. �

Damaschke then shows the following.

Theorem 18 (Damaschke [6]) In graphs G with Δ(G)≤ 4, γ−(G) can be approx-
imated in linear time within some constant ratio, at least 15.

Theorem 19 (Damaschke [6]) For every fixed k, there is a polynomial algorithm
deciding whether a graph G with Δ(G)≤ 4 satisfies γ−(G)≤ k.

In 2008 [26] Lee and Chang establish the NP-completeness of the minus
domination problem MDF on the following two classes of graphs using the exact
same transformation as used in 1996 by Dunbar et al. [11] and in 2001 by
Damaschke [6].

Theorem 20 (Lee, Chang [26]) MDF is NP-complete for chordal bipartite graphs
and bipartite planar graphs.

Proof Sketch. Use a transformation from DOMSET for chordal bipartite graphs
and bipartite planar graphs. Given such a graph G, construct a graph H by adding
a path of length 3 to each vertex of G. Then show that γ−(H)= γ (H)= γ (G)+ n.
Thus, γ (G)≤ k if and only if γ−(H)≤ k+ n. �

Lee and Chang also present an O(|V | + |E|) algorithm for computing γ−(G) for
strongly chordal graphs. They also raise the question of the NP-completeness of
minus domination on doubly chordal graphs.

In 2015 [28] Lin, Liu, and Poon show that MDF is W[2]-hard for general graphs
and is NP-complete for sub-cubic, bipartite planar graphs. They also show that
MDF is APX-hard for graphs of maximum degree seven and present the first fixed-
parameter algorithm for MDF on sub-cubic graphs, which runs in O∗ (2.37615k)
time, where k= γ−(G).

In 2016 [13] Faria, Hon, Kloks, Liu, Wang, and Wang establish the following
theorems.

Theorem 21 (Faria et al. [13]) MDF is fixed-parameter tractable, that is, there
exists a linear algorithm for finding a minus dominating function of size at most k
(at most k vertices are assigned the value + 1) in d-degenerate graphs, the class of
graphs each of whose induced subgraphs have a vertex of degree at most d.

The authors note that since minus domination of bounded size can be formulated
in monadic second-order logic, without quantification over subsets of edges, there
is a linear algorithm for solving MDF on graphs of bounded treewidth or rankwidth
or cliquewidth.
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Cographs (complement reducible graphs) can be defined as the class of graphs
that can be constructed recursively as follows: (i) K1 is a cograph; (ii) if G and H are
cographs, so are G∪H and G+H, where the join of graphs G and H is the graph
G+H = (V (G)∪V (H), E(G)∪E(H)∪{uv : u∈V (G), v∈V (H)}).
Theorem 22 (Faria et al. [13]) There exists a polynomial algorithm for computing
γ−(G) for any cograph G.

Distance-hereditary graphs are graphs having the property that for every pair u,
v of nonadjacent vertices, all chordless u-v paths have the same length.

Theorem 23 (Faria et al. [13]) There exists a polynomial algorithm for computing
γ−(G) for any distance-hereditary graph G.

Theorem 24 (Faria et al. [13]) For any fixed k, there exists a polynomial algorithm
for computing γ−(G) for any graph of rankwidth k.

A strongly chordal graph G is a graph in which every cycle C of even length at
least 6 has an odd chord, that is, an edge between two non-consecutive vertices u
and v on C, whose minimum distance dC(u, v) on the cycle is odd.

Theorem 25 (Faria et al. [13]) There exists a polynomial algorithm for computing
γ−(G) for any strongly chordal graph G.

Corollary 26 (Faria et al. [13]) There exists a linear algorithm for computing
γ−(G) for any interval graph G.

A split graph is a graph G= (V, E) whose vertices can be partitioned V ={V1,
V2} such that V1 is an independent set and the induced graph G[V2] is a complete
subgraph, where either of V1 or V2 can be empty.

Theorem 27 (Faria et al. [13]) MDF is NP-complete for split graphs.

Proof Sketch. Use a transformation from the following NP-complete problem.

(3, 2)-HITTING SET
Instance: A set U ={u1, u2, . . . , un}, a collection C={c1, c2, . . . , cm} of 3-element

subsets of U and a positive integer k.
Question: Does there exist a subset U′⊆U with |U′|≤ k such that for each ci ∈C,

|ci ∩U′|≥ 2?

Given an instance (U, C) of (3, 2)-HITTING SET, construct the following split
graph G(U, C)(V1, V2, E): into the independent set V1, place one vertex for each
ci ∈C; into the clique V2, place one vertex for each uj ∈U. Add to the clique
V2 a set X ={x0, x1, x2, . . . , xn+m}, and add to the independent set V1 a set
X′ = {x′0, x′1, x′2, . . . , x′n+m}. The edges in E(G) consist of (i) the edges in the clique
V2 of order n+ n+m+ 1, (ii) the edges of a matching between the vertices in X′
and the vertices in X, and (iii) three edges from each vertex ci to the three vertices
corresponding to the 3-elements of ci in U.

It remains then to show that a smallest (3, 2)-HITTING SET of U, C corresponds
to a minimum minus dominating function on the graph G(U, C). �
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Faria et al. then present the following variant of MDF, attributed to Hattingh,
Henning, and Slater [18].

ZERO MINUS DOMINATING FUNCTION (ZMDF)
Instance: Graph G= (V, E).
Question: Does G have a minus dominating function of weight at most 0?

They show that even for this fixed value of 0, ZMDF is NP-complete, as a result
of which they conclude that MDF is not Fixed Parameter Tractable.

4 Signed and Minus Total Domination

Recall from Section 1 the following definitions:

4.1 Y={−1, 1} with f(N(v))≥ 1

When Y ={−1, 1}, γ {−1,1}t(G)= γ st(G), the signed total domination number of a
graph G, and �{−1,1}t(G)= �st(G), the upper signed total domination number of G.

4.2 Y={−1, 0, 1} with f(N(v))≥ 1

When Y ={−1, 0, 1}, γ{−1,0,1}t (G) = γ−
t (G), the minus total domination number

of a graph G, and �{−1,0,1}t (G) = �−
t (G), the upper minus total domination number

of G.
Signed total domination was first introduced and studied by Zelinka in 2001

[35]. In 2004, Henning [20] was among the first to offer NP-completeness results
for SIGNED TOTAL DOMINATING FUNCTION, using a transformation from
TOTAL DOMINATING SET.

TOTAL DOMINATING SET (TDS)
Instance: Graph G= (V, E), integer k.
Question: Does G have a total dominating set of cardinality at most k?

SIGNED TOTAL DOMINATING FUNCTION (STDF)
Instance: Graph G= (V, E), integer k.
Question: Does G have a signed total dominating function of weight at most k?

Theorem 28 (Henning [20]) STDF is NP-complete, even when restricted to
bipartite or chordal graphs.

Proof Outline. Use a transformation from TDS. Given an instance of TDS, a
graph G= (V, E) and a positive integer k, construct a graph H by adding, for
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each vertex v∈V , deg(v) paths P5 and joining v to the middle vertex of each
of these deg(v) paths. Note that if n= |V (G)| and m= |E|, then |V (H)| = n+ 5
�v ∈ VdegG(v)= n+ 10m, and |E(H)| =m+ 5 �v ∈ VdegG(v)=m+ 10m= 11m.

It is easy to see that if the original graph G is either bipartite or chordal, then so
is the constructed graph H.

It only remains to show the following;

γst (H) = |V (H)| + 2γt (G)− 2n.

This follows essentially because all of the vertices in V (H)�V (G) must be
assigned the value + 1 in any signed total dominating function f of H, and from
this it follows that every vertex in V (G) must have at least one neighbor in V (G)
which is also assigned the value + 1. Thus, the vertices in V (G) which are assigned
the value + 1 form a total dominating set of G.

Thus, one can show that γ t(G)≤ k if and only if γ st(G)≤ j= |V (H)| + 2k− 2n.�

Also in 2004, Harris and Hattingh [16] show that the decision problems STDF
and MTDF are NP-complete when restricted to bipartite graphs or chordal graphs.
They also present linear algorithms for computing γ−

t (G) and γ st(T) for an arbitrary
tree T.

We next present the Harris-Hattingh linear algorithm for computing γ−
t (T ) of

any tree T.

Algorithm: Minus Total Domination (MTD) (Harris, Hattingh [16]).
Input A rooted tree T = (V, E) with vertices V ={1, 2, . . . , n}, where the root
is vertex n, and (i)an array parent[1, . . . , n], such that i < parent[i], (ii) an array
deg[1, . . . , n] of the degrees of the vertices, and (iii) a listing N(1, . . . , n) of the
vertices in the open neighborhood N(i) of i in T.
Output A minimum weight minus total dominating function f : V →{−1, 0, +1}
begin
for j= 1 to n do f (j)=−1 od
for j= 1 to n do

1. if vertex j is a leaf and j < n
then

OpenSum= 1
f (parent[j])= 1

else
OpenSum= f (N(j))

2. if j < n
then while OpenSum < 1 and f (parent[j]) < 1 do

f (parent[j])= f (parent[j])+ 1
OpenSum=OpenSum+ 1
od

3. while OpenSum < 1 do
Choose a child i of j, e.g. parent[i]= j, with f (i) < 1
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while Opensum < 1 and f (i) < 1 do
f (i)= f (i)+ 1
OpenSum=OpenSum+ 1
od

od
end

Page limitations will not permit a detailed and complete proof of the correctness
of this linear algorithm. But it is easy to see that when the algorithm is finished, the
function f : V →{−1, +1} is a minus total dominating function. Note that initially
all values are set to − 1 and at no time in the algorithm is the value assigned to
any vertex decreased. In addition, after every vertex j has been considered, either
the value assigned to its parent[j] or the values assigned to its children have been
altered so that f (N(i))≥ 1. It only remains, then, to show that the function f has
minimum weight among all total minus dominating functions; this is found in [16].

For completeness, we next present the Harris and Hattingh, linear algorithm for
computing the signed total domination number γ st(T) for any tree T, which is very
similar to that above for computing γ−

t (T ). It is based in part on the observation
that in a signed total domination function f : V →{−1, 1}, the minimum sum such
that f (N(i))≥ 1 if the degree of a vertex i is even is f (N(i))= 2.

Algorithm: Signed Total Domination (TMD)(Harris, Hattingh [16]).
Input A rooted tree T = (V, E) with vertices V ={1, 2, . . . , n}, where the root is
vertex n, (i) an array parent[1, . . . , n], such that i < parent(i), (ii) a listing
N(1, . . . , n) of the children of i in T, and array deg[1, . . . , n] of the degrees
of the vertices in T.
Output A minimum weight signed total dominating function f : V →{−1, +1}
begin
for j= 1 to n do f (j)=−1 od
for j= 1 to n do

1. if deg[j] is odd
then MinSum= 1
else MinSum= 2

2. if deg[j]= 1 and j < n
then

OpenSum= 1
f (parent(j))= 1

else
OpenSum= f (N(j))

3. if OpenSum < MinSum
then
if j < n and f (parent[j])=−1
then

f (parent[j])= 1
OpenSum=OpenSum+ 2
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while OpenSum < MinSum do
Choose a child i of j, parent[i]= j, with f (i) < 1
f (i)= f (i)+ 2
OpenSum=OpenSum+ 2

end

In 2009 [23] Lee presents unified methods to compute γ−
t (G) in O(n2) time

for chordal bipartite graphs – a class of graphs that includes bipartite permutation
graphs, biconvex bipartite graphs, and convex bipartite graphs – and γ st(G) in
O(n+m) time for trees. Lee also proves that STDF is NP-complete for doubly
chordal graphs.

Lee defines a signed total zero-dominating function f : V →{−1, 1} such that for
every vertex v∈V , f (N(v))≥ 0. The signed total zero-domination number γ 0

st (G)

equals the minimum weight of a signed total zero-dominating function on G.

SIGNED TOTAL ZERO-DOMINATING FUNCTION (STZDF)
Instance: Graph G= (V, E), integer k.
Question: Does G have a signed total zero-dominating function of weight at most

k?

Theorem 29 ([23]) STZDF is NP-complete for chordal graphs.

Proof Sketch. Use a transformation from TOTAL DOMINATING SET for chordal
graphs. Given a chordal graph G= (V, E) with n= |V | and m= |E|, construct a
chordal graph H by adding to each vertex v∈V (G) a set of deg(v)− 1 paths, each
of length three. One can show that γ 0

st (G) = 2m− 2n+ 2γt (G). Thus, γ t(G)≤ k if
and only if γ 0

st (G) ≤ 2m− 2n+ 2k. �

Theorem 30 ([23]) STDF is NP-complete for doubly chordal graphs.

Proof Sketch. Use a transformation from STZDF for chordal graphs. Given a
chordal graph G= (V, E) with n= |V |, construct a doubly chordal graph H by
adding a new vertex x adjacent to every vertex v∈V (G) and attaching to vertex
x a set of n+ 1 paths of length two. One can show that γst (H) = γ 0

st (G)+ 2n+ 3.
Thus, γ 0

st (G) ≤ k if and only if γ st(H)≤ 2n+ 3+ k. �

Lee [25] introduces the concept of R-total domination in an effort to develop a
unified approach to the signed and minus total domination problems. Let

P = {I1, I1+d , I1+2d , . . . , I1+(l−1)d},

where l, d, I1 are fixed integers and l, d > 0. Let G= (V, E) be a graph and R a
labeling function which assigns an integer R(v) to each v∈V . An R-total dominating
function of G is a function f : V →P such that �u ∈ N(v)f (u)≥R(v) for all vertices
v∈V . The R-total domination number γ t,R(G) equals the minimum weight of an
R-total dominating function on G. By design, R-total domination includes total
domination, signed total domination and minus total domination as special cases.
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Lee points out that this R-domination labeling is very similar to labeled domination
of Lee and Chang in [26].

In 2011 [24] Lee studies the signed and minus total domination problems STDF
and MTDF for two subclasses of bipartite graphs: biconvex bipartite graphs and
planar bipartite graphs. He presents algorithms for computing γ−

t (G) and γ st(G)
for biconvex bipartite graphs in O(n+m) time, and in 2012 [25] Lee shows that the
R-total domination problem can also be solved in O(n+m) time for convex bipartite
graphs. He also proves the following.

Theorem 31 (Lee [24]) STDF is NP-complete for planar bipartite graphs of
maximum degree 3.

Theorem 32 (Lee [24]) MTDF is NP-complete for planar bipartite graphs of
maximum degree 4.

In 2012 [31] Pradhan considers total domination, signed total domination and
minus total domination on chordal bipartite graphs. He shows that given a chordal
bipartite graph G= (V, E) of order n= |V | and size m= |E| with a weak elimination
ordering, γ t(G) can be computed in O(n+m) time. This reduces the complexity of
computing γ t(G) for chordal bipartite graphs from O(n2) to O(n+m) time. He then
shows that both γ−

t (G) and γ st(G) can be computed for chordal bipartite graphs in
O(n+m) time.

5 Majority Domination

An excellent discussion of properties of majority dominating functions discussed in
this section, as of 1998, can be found in a chapter by Hattingh, entitled “Majority
Domination and Its Generalizations” in [19].

In 1995 [5], Broere, Hattingh, Henning, and McRae modified the definition
of signed domination as follows: a function f : V →{−1, 1} is called a majority
dominating function if f (N[v])≥ 1 for at least half of the vertices v∈V . The
majority domination number γ maj(G) equals the minimum value of f (V ) overall
majority dominating functions on G. In applications, a majority of all closed
neighborhoods could vote in favor of some proposition, even though the population
of all people might be overwhelmingly opposed to it. In this paper, the authors
attribute the following interesting theorem and proof to N. Alon. A bipartition of
a graph G= (V, E) is a vertex partition π ={V1, V2}. A bipartition of a graph
G of order n is called balanced if |V1| = |V2| = k when n= 2k, and |V1| = k and
|V2| = k+ 1 when n= 2k+ 1.

Theorem 33 (Alon) For any connected graph G of order n≥ 2, γ maj(G)≤ 2.

Proof. Let G= (V, E) be a graph of odd order 2k+ 1. Among all balanced
bipartitions π ={V1, V2}, where |V1| = k and |V2| = k+ 1, let π ∗ have a minimum
number of edges between V1 and V2. In such a partition, every vertex v∈V2 must
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have at least as many neighbors in V2 as it has in V1; if a vertex v∈V2 has more
neighbors in V1 than it has in V2, then moving v to set V1 will produce another
balanced bipartition π ′ having even fewer edges between V1 and V2, a contradiction.

Therefore, if we assign the value + 1 to all vertices in V2 and the value − 1 to
all vertices in V1, we will produce a majority dominating function. Every vertex in
V2 will have f (N[v])≥ 1 and the majority of vertices in G are in V2. In this case,
f (V )= 1.

If the graph G has even order, then delete an arbitrary vertex x from G. Let π ∗ be
a balanced bipartition of G− x having a minimum number of vertices between V1
and V2 as in the argument above when a graph G has odd order. Once again, assign
the value + 1 to all vertices in V2, − 1 to all vertices in V1 and + 1 to vertex x. In
this case, f (V )= 2. �

The proof of this theorem raises the following question: given a connected graph
G of order n≥ 2, can one construct a majority dominating function of weight at
most 2 in polynomial time? Such a polynomial algorithm is indeed possible, since
constructing a balanced bipartition with a minimum number of edges between V1
and V2 is not necessary. Assume that the graph G has odd order, as in Alon’s proof,
and in O(n) time, construct an arbitrary balanced bipartition π ={V1, V2} of V (G).
Repeat the following step:

While the larger set of V1 and V2 contains a vertex v having more neighbors in
the smaller set than in the larger set,

do move vertex v to the smaller set od
Since every execution of this step decreases the number of edges between V1 and

V2, at most O(m) steps can be executed, where m= |E|.
Using a polynomial transformation from DOMINATING SET for 4-regular

planar graphs, the authors show that MAJORITY DOMINATING FUNCTION is
NP-complete.

MAJORITY DOMINATING FUNCTION (MDF)
Instance: Graph G= (V, E), integer k.
Question: Does G have a majority dominating function of weight at most k?

Theorem 34 (Broere, Hattingh, Henning, McRae [5]) MDF is NP-complete.

Proof Sketch. Use a transformation from DOMINATING SET for planar 4-regular
graphs [15]. Given an instance of this problem, a 4-regular planar graph G= (V, E)
of order n and a positive integer k, construct the following graph H. Let Kn+8 be
a complete graph of order n+ 8, and let K8 be the graph consisting of 8 isolated
vertices. Let H be formed from the disjoint union G ∪Kn+8 ∪K8, by adding edges
as follows: (i) from every vertex in K8 add an edge to every vertex of G, (ii) from
each of four of the vertices in Kn+8 add an edge to every vertex in G. Let this set of
four vertices in Kn+8 be denoted by K4. Note that |V (H)| = 2n+ 16.

One can then show that if S⊆V (G) is a dominating set of G of cardinality at
most k, then H has a majority dominating function f : V →{−1, 1} of weight at most
2k− 2n− 8. This function can be defined as follows: Let S be a dominating set of
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G of cardinality at most k. For each vertex v∈ S, let f (v)= 1. For each vertex x∈K4,
let f (x)= 1. And for all other vertices w∈V (H), let f (w)=−1.

Since each vertex v ∈ K8 has degree 4, having four neighbors in the set K4, it
follows that f (N[v])= 3≥ 1. Each vertex v∈ S has degree 8, four neighbors in V (G)
and four neighbors in K4. Thus, f (N[v])≥ 1, since f (v)= 1 and all four neighbors
w∈K4 have f (w)= 1. Finally, every vertex u∈V (G)− S has four neighbors in V (G)
and four neighbors in K4, but one neighbor of u in V (G) is in S which is assigned the
value 1. Thus, f (N[u])≥ 1. Thus, in all, at least n+ 8 vertices have f (N[v])≥ 1 which
is at least half of the total of 2n+ 16 vertices. This function assigns the value 1 to
k+ 4 vertices, and the value − 1 to the remaining n− k+ n+ 8− 4+ 8= 2n− k− 4
vertices, for a total weight of 2k− 2n− 8.

We will not provide the details of the converse: given a majority dominating
function of weight at most 2k− 2n− 8 show that there must exist a dominating set
of G of size at most k. It is based on the following. Among all minimum majority
dominating functions of H, let f be one that assigns the value + 1 to the maximum
number of vertices. Let P denote the set of vertices assigned the value + 1. Claim 1.
|P|≤ k+ 4. Claim 2. f (N[v])≤ 0 for all v∈Kn+8. Claim 3. f (K4)= 4. �

The authors close by asking: is MDF NP-complete when restricted to trees?
A similar question can be asked for the parameter �−

maj (G), which can be defined
as the maximum weight of a minimal majority dominating function. To the best of
our knowledge, this parameter has not been studied.

In 1997, Yeh and Chang [34] extend the NP-completeness result of Broere et al.
for general graphs by showing that MAJORITY DOMINATING FUNCTION can
be solved in O(n2)=O(n �v ∈ Vdeg(v)) time for trees, O(n3) time for cographs, and
polynomial time for k-trees for any fixed k.

The class of k-trees is the class of graphs that can be defined recursively by: (i)
the complete graph Kk is a k-tree, and (ii) any graph H obtained from a k-tree G by
adding a new vertex joined to all vertices of a complete subgraph of order k in G is
a k-tree.

The authors note that since it is possible to embed a partial k-tree (a subgraph of
a k-tree) into a k-tree in polynomial time, there is also a polynomial-time algorithm
for computing the majority domination number of a partial k-tree for any fixed k.

In 2001 [21] Holm proves the NP-completeness of the following restriction of
MDF.

MAJORITY DOMINATING FOR COMPLETE GRAPH UNIONS
Instance: A disjoint union G of complete graphs G = Kn1 ∪Kn2 ∪ . . . ∪Knm and a

positive integer k.
Question: Does G have a majority dominating function f of weight f (V )≤ k?

The NP-completeness of this decision problem is shown using a transformation
from the following well-known NP-complete problem.

PARTITION
Instance: A finite set A and a size s(a)∈ Z+, for all a∈A.
Question: Does there exist a subset A′⊂A for which
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∑

a∈A′
s(a) =

∑

a∈A−A′
s(a)?

At the end of this paper, Holm asks if the following decision problem is NP-
complete:

MAJORITY FOR COMPLETE MULTIPARTITE GRAPHS
Instance: A complete multipartite graph G = Kn1,n2,...,nm , a positive integer k.
Question: Does G have a majority dominating function f of weight w(f )≤ k?

6 Efficient Y -Domination

In 1996 [1] Bange, Barkauskas, Host, and Slater generalize the definitions of
signed and minus dominating functions to Y -valued dominating functions, as given
in Section 1 above. They also introduce the generalized notion of Y -efficient
domination for functions f : V →Y . If the closed neighborhood sum f (N[v])= 1
for every v∈V , then f is called an efficient Y-dominating function of G. The authors
point out, however, that there are graphs that do not have efficient Y -dominating
functions for any subset Y of real numbers.

They showed that if the closed neighborhood matrix of G is invertible, then G has
an efficient Y -dominating function for some set Y , since if the closed neighborhood
matrix N is invertible, then the matrix equation NX = 1 has a unique solution X,
which determines the efficient Y-dominating function.

Two Y -dominating functions are equivalent if they have the same closed
neighborhood sum at every vertex of G. Illustrations of this are given in Figure
12, with the following three equivalent functions defined on the vertices of the cycle
C6: (i) (0, 1, 0, 0, 1, 0), (ii) (1/3, 1/3, 1/3, 1/3, 1/3, 1/3), and (iii) (1, -1, 1, 1, -
1, 1). It is proved that G has an efficient Y -dominating function if and only if all
equivalent Y -dominating functions have the same weight or, equivalently, that if f1
and f2 are any two efficient Y -dominating functions, then they have the same weight,
f1(V )= f2(V ).

Moreover, the problem of the existence of an efficient signed dominating
function f : V →{−1, 1} is shown to be NP-complete for general graphs using a
transformation from ONE-IN-THREE 3SAT given earlier.

EFFICIENT SIGNED DOMINATING FUNCTION (ESDF)
Instance: Graph G= (V, E).
Question: Does G have an efficient signed dominating function?

The corresponding decision problem for efficient minus domination is the
following.

EFFICIENT MINUS DOMINATING FUNCTION (EMDF)
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Fig. 12 Efficient
y-dominating functions
f1(V )= f2(V )= f3(V )= 2

Instance: Graph G= (V, E).
Question: Does G have an efficient minus dominating function?

EFFICIENT DOMINATING FUNCTION (EDF)
Instance: Graph G= (V, E).
Question: Does G have an efficient dominating function?

In 2000 [29] and 2003 [30] Lu, Peng and Tang showed that EMDF is NP-
complete for (i) chordal graphs, (ii) chordal bipartite graphs (in which every cycle
of length greater than 4 has a chord), (iii) planar bipartite graphs, and (iv) planar
graphs of maximum degree 4 and that ESDF is NP-complete for chordal graphs.

The NP-completeness of EMDF on these four classes of graphs follows from the
fact that (i) EDF is NP-complete on chordal, chordal bipartite, and planar bipartite
graphs, and the class of planar graphs of maximum degree 3 and (ii) the construction
given by Dunbar et al. [11], whereby to a graph in any of these classes you can add
to each vertex a path of length three and create a graph that is still chordal, chordal
bipartite or planar bipartite, or planar of maximum degree 4.

The NP-completeness of ESDF for chordal graphs is shown using a transforma-
tion from One-in-Three 3SAT.

With regard to the class of trees, the authors show that if tree T has an
efficient minus dominating function f, then it must be that for every vertex v∈V ,
f (v)≥ 0. Thus, the efficient minus domination problem is equivalent to the efficient
domination problem on trees.

7 Signed Star Domination

In 2001 [32] and 2005 [33] Xu introduces the following variation of signed
dominating functions. For a graph G= (V, E) without isolated vertices, for every
vertex v∈V , let E(v)={uv∈E : u∈N(v)} be the set of edges incident with v. A
function f : E(G)→{−1, 1} is said to be a signed star dominating function of G if
for every v∈V , �e ∈ E(v)f (e)≥ 1. The minimum value of �e ∈ Ef (e), taken over all
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Fig. 13 Efficient signed star
domination

signed star dominating functions f of G is called the signed star domination number
of G and is denoted by γ ss(G). The cubic graph in Figure 13 illustrates a signed star
dominating function in which �e ∈ E(v)f (e)= 1 for every vertex; two of the three
edges incident with every vertex are assigned the value + 1 (green), and the third
is assigned the value − 1 (red). Indeed, this is always possible for any cubic graph
having a perfect matching, for the set of red edges is a perfect matching in Figure 13.

In 2019 [36] Zhao, Shan, Miao, and Liang study bounds for the signed
star domination numbers in arbitrary graphs, e.g., for any graph G of order n,
�n/2�≤ γ ss(G)≤ 2n− 4. They also present a linear algorithm for computing γ ss(T)
for any tree T.

8 Open Problems

1. In [18] Hattingh, Henning, and Slater presented a linear algorithm for computing
γ s(T) for any tree T, but did not present a linear algorithm for computing �s(T)
for any tree T.

2. In [11] Dunbar, Hedetniemi, Henning, and McRae presented a linear algorithm
for computing γ−(T) for any tree T, but did not present a linear algorithm for
computing �−(T) for any tree T.

3. Can you show that the decision problem for upper majority domination is NP-
complete?

4. Is the Minimum Minus Domination Problem NP-complete on doubly chordal
graphs? Recall that a graph is doubly chordal if it is both chordal and dually
chordal. Dually chordal graphs are the clique graphs of chordal graphs.

5. The minus variant of majority dominating functions has apparently not been
investigated. In this case you seek a minimum weight function f : V →{−1,
0, 1} such that the number of closed neighborhoods voting “yes,” i.e., with
f (N[i])≥ 1, is greater than the number of closed neighborhoods voting “no,” with
f (N[j])≤−1. In applications, this permits voters to abstain from voting. In this
model the number of neighborhoods voting “yes” need not be a majority of all
closed neighborhoods, as in majority domination, it only needs to be greater in
number than those neighborhoods voting “no.” Recall that γ maj(G) is designed
for signed functions f : V →{−1, 1}.

6. Is MAJORITY DOMINATING FUNCTION NP-complete when restricted to
complete multipartite graphs?

7. What can you say about upper signed star domination, �ss(G)?
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Algorithms and Complexity of Power
Domination in Graphs

Stephen T. Hedetniemi, Alice A. McRae, and Raghuveer Mohan

1 Power Domination in Graphs

Based on the early research of Baldwin, Mili, Boisen and Adapa in 1993 [6], Brueni
in 1993 [13] and Boisen, Baldwin and Mili in 2000 [10], Haynes, Hedetniemi,
Hedetniemi and Henning introduced the concept of power domination in graphs
in 2002 [24], as follows. Electric power companies continuously monitor the state
of their electrical power lines with the use of phasor measurement units or PMUs,
which estimate the magnitude and phase angles of electrical phasor quantities such
as voltage or current. These are placed at substation buses where transmission
lines, loads, and generators are connected and transmission lines connecting two
electrical nodes are represented by edges in a graph G. For more information on
power domination, please see the excellent chapter by Dorbec in [17].

In the corresponding graph theoretical model, a set S of vertices is initially
selected, at which PMUs are to be located.

A set S is said to be a power dominating set of a graph G= (V, E) if every vertex
and every edge in the system are monitored by S in accordance with the following
rules:

R1. If a vertex v is in the set S, then both v and all edges incident to v are called
observed.

R2. Every vertex incident with an observed edge is observed.
R3. If both vertices u and v of an edge uv are observed, so is the edge uv.
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R4. If all of the edges but one incident to an observed vertex v are observed, then
the one final edge incident to v is observed.

A power dominating set of a graph G= (V, E) is a set S⊆V having the property
that all vertices v∈V and all edges uv∈E are observed by the vertices in S.

The minimum cardinality of a power dominating set of a graph is called the
power domination number, denoted γ P(G).

This definition immediately gives rise to the following decision problem.

POWER DOMINATING SET (PDS)
Instance: Graph G= (V, E), positive integer k > 1
Question: Does G have a power dominating set of cardinality at most k?

In 2002 this was solved as follows.

Theorem 1 (Haynes et al.) PDS is NP-complete when restricted to bipartite or
chordal graphs.

Proof Sketch. For the bipartite case, use a transformation from the well-known
NP-complete problem 3-SAT.

3-SAT
Instance: A set U ={u1, u2, . . . , un} of Boolean variables and a set C={C1, C2,

. . . , Cm} of three-variable clauses, where each clause contains three distinct
occurrences of either a variable ui or its complement ui .

Question: Does C have a satisfying truth assignment, that is, an assignment of
TRUE or FALSE to each Boolean variable, such that in each clause Ci at least
one variable (or its complement) is assigned the value TRUE?

Given an instance (U, C) of 3-SAT, construct a bipartite graph G(U, C) instance
of PDS, as follows. For each variable ui, construct a 4-cycle C4, with two non-
adjacent, variable vertices, labeled ui and ui .

For each clause, for example, Ci = {ui, uj , uk}, create two non-adjacent vertices
Ci,1 and Ci,2, and join both of these two vertices to the three vertices in the 4-cycles
corresponding to ui, uj , and uk. Thus, each of the two vertices Ci,1 and Ci,2 will
have degree 3 in the bipartite graph G(U, C) so constructed (cf. Figure 1).

One can then show that (U, C) has a satisfying truth assignment if and only if
the constructed bipartite graph G(U, C) has a power dominating set S of cardinality
at most k= n. Note that if S contains one vertex in a 4-cycle, either ui or ui , then
all four vertices and all four edges in the 4-cycle will be observed, using rules R1,
R2, R4, and then R2. Thus, from a satisfying truth assignment, one can choose one
variable vertex from each 4-cycle and observe all vertices and all edges in all 4-
cycles. This will also suffice to observe all edges between a 4-cycle and a clause
vertex, and all clause vertices, using rules R1, R2, and R3.

Conversely, any power dominating set S for the constructed graph G must contain
at least one vertex from each 4-cycle. One vertex per 4-cycle accounts for all
k vertices in S. Since every clause vertex is duplicated, rule R4 cannot be used
to observe clause vertices. Every clause vertex is observed through R1 by being
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Fig. 1 Example of a constructed bipartite graph for proof of Theorem 1. The clauses are
C1 = (u1 ∪ u2 ∪ u4), C2 = (ū1 ∪ ū2 ∪ u3), and C3 = (ū1 ∪ u2 ∪ ū4)

adjacent to vertices in S. A truth assignment for U exists by assigning a true value
to the literals corresponding to the U vertices in S.

The fact that PDS remains NP-complete for chordal graphs can be shown by
creating a clique of cardinality 2n among the 2n variable vertices, which creates a
chordal graph. �

Although Haynes et al. did not point this out, this same clique construction
creates a split graph, that is, a graph whose vertices can be partitioned into two
sets, V ={V1, V2}, such that V1 induces a clique and V2 is an independent set. Thus,
we have as a corollary the following.

Corollary 1 PDS is NP-complete when restricted to split graphs.

When restricted to the family of trees, Haynes et al. develop a noteworthy result,
as follows. Let T be a tree obtained from a single vertex x by attaching to x any
number of paths, of any finite length. Such a tree is called a spider. The spider
number sp(T) of a tree T equals the minimum order k of a vertex partition V ={V1,
V2, . . . , Vk} such that each subset Vi induces a spider.

For spiders the authors present the following two results.

Proposition 1 (Haynes et al.) For any tree T, γ P(T)= 1 if and only if T is a spider.

Proof Sketch. Let S={x}. Then by rules R1, R2, and R4, all vertices and edges of
T will be observed. �

Theorem 2 (Haynes et al.) For any tree T, γ P(T)= sp(T).

On the basis of these two results, Haynes et al. present a linear algorithm to
compute the value γ P(T) for any tree T.

In 2005, [14] Brueni and Heath, following on the earlier master’s thesis of Brueni
[13], offered the following simpler vertex definition of power domination in graphs,
which they prove is equivalent to the vertex-edge definition.
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Rule B1. If a vertex v∈ S, then v and all vertices in N(v) are observed.
Rule B2. (Kirchhoff’s Rule) If a vertex v is observed and there is a vertex u∈N(v)

that is the only unobserved vertex in N(v), then vertex u is observed.

These two rules appear in several other papers in the following form.
For a connected graph G and a vertex set S⊆V , the set M(S) of vertices

monitored by S is defined recursively as follows:

(1) M(S)← S∪N(S) (for every v∈ S, v and all of its neighbors in N(v) are
monitored),

(2) While there is a vertex v∈M(S) having exactly one unmonitored neighbor w,
that is, N(v)∩ (V (G)−M(S))={w}, set M(S)←M(S)∪{w}.

A set S is called a power dominating set of G if M(S)=V (G). The power
domination number γ p(G) is the minimum cardinality of a power dominating set
of G. This contrasts with dominating sets S, which can only observe, or dominate,
vertices at distance 1 from vertices in S. Power dominating sets are not “local” in
that they can monitor or observe vertices arbitrarily far from vertices in S.

Brueni and Heath provide an O(|V | + |E|) algorithm for computing the set of
vertices observed by any set S⊆V in any graph G.

In [14] Brueni and Heath prove the following results.

Theorem 3 (Brueni-Heath) For any connected graph G of order n= |V |,
γ P(G)≤ n/3, and this bound is tight.

Theorem 4 (Brueni and Heath) PDS is NP-complete for planar bipartite graphs.

Proof Sketch. Use a transformation from what is called PLANAR 3-SAT. To
each Boolean variable U ={u1, u2, . . . , un}, construct a 4-cycle, two non-adjacent
vertices of which are labeled ui and ui . From each of these two variable vertices,
attach a leaf. For each clause Cj in C={C1, C2, . . . , Cm}, construct a K2, one vertex
of which is labeled cj. Then add an edge between cj and the three variable vertices
the clause contains. It is assumed in PLANAR 3-SAT that this graph is always planar
and it is by construction bipartite. One can then show that U, C has a satisfying truth
assignment if and only if the planar bipartite graph G(U, C) has a power dominating
set of size at most n. �

In 2005 [23] and again in 2008 [24], Guo, Niedermeier, and Raible show that the
power dominating set (PDS) problem can be solved by a dynamic programming
algorithm for graphs of bounded treewidth. Moreover, they simplify and extend
several NP-completeness results, by showing that PDS remains NP-complete for
planar graphs, circle graphs (intersection graphs of chords of a circle, where two
vertices are adjacent if and only if the corresponding chords cross each other), and
split graphs.

Guo et al. show that PDS, when parameterized by |S| = k, the size of a power
dominating set, is W[2]-hard for general graphs and, like DOMINATING SET, is
only �(log n)-approximable, meaning that it cannot be approximated any better
than DOMINATING SET.
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7

7

Fig. 2 Interval graphs

DOMINATING SET (DOMSET)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a dominating set of size at most k?

Guo et al. were perhaps the first to discuss the non-locality of power domination.
Whereas a dominating set can be verified by examining the neighborhoods of all
vertices in a graph, the same check is not sufficient for verifying that a set is a
connected dominating set. In this case one must verify that the subgraph induced by
a dominating set is connected. However, verification that a set is a power dominating
set is neither 1-local, as in the case of domination, nor a question of the subgraph
induced by a power dominating set; rather, it is a question of the effect that a power
dominating set has at arbitrary distances from vertices in the power dominating set.

In [23] Guo et al. present a linear algorithm for computing γ P(T) for any tree T
that is simpler than the one given by Haynes et al. [25].

In 2008 [24] Guo, Niedermeier, and Raible construct a dynamic programming
algorithm for computing γ P(G) for graphs of treewidth k. The running time of their
algorithm is O(ck

2
n), where c is a constant.

In 2005 [33] Liao and Lee show that the PDS decision problem is NP-complete
for split graphs, which are a subclass of chordal graphs. In [33] the authors present
a linear algorithm for computing γ P(G) for interval graphs G (cf. Figure 2),
provided the interval ordering of the graph is provided, and they show that if the
interval ordering is not given, the algorithm with O(n log n) time complexity is
asymptotically optimal, where n is the number of intervals. They also show that
the same results hold for the class of proper circular arc graphs, where circular arc
graphs are the intersection graphs of sets of arcs of a circle, and a circular arc graph
is proper if no arc properly contains another arc (cf. Figure 3).
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44

Fig. 3 Circular arc graphs

In 2006 [30] Kneis, Molle, Richter and Rossmanith present a linear-time
algorithm for computing γ P(G) in graphs having bounded treewidth. They also
prove the following.

Theorem 5 (Kneis et al.) POWER DOMINATING SET is W[2]-hard for the
parameter k, the number of PMUs, or the size of the power dominating set S.

Proof. Use a reduction from DOMINATING SET, where the parameter is the
size k of the dominating set. DOMINATING SET has been shown to be W[2]-
complete by Downey and Fellows [20]. Given an instance of DOMINATING SET,
a graph G= (V, E) and a positive integer k, construct the corona G′ =G ◦K1 of
G, by attaching a leaf v′ to every vertex v∈V . Show that γ (G)≤ k if and only if
γ P(G′)≤ k.

We note at this point that the same corona reduction was independently used by
Guo, Niedermeier, and Raible in [23] and in [24].

Let S⊂V be a dominating set of G with |S|≤ k. Clearly, S dominates all vertices
in G′ except possibly some leaves v′ attached to vertices v. Since all neighbors of any
such vertex v except v′ are power dominated by S, it follows that vertex v′ is power
dominated by S using Kirchhoff’s Rule. Thus, the same set S is a power dominating
set of G′ with |S|≤ k.

Let S⊆V ′ be a power dominating set of G′ with |S|≤ k. If a leaf v′∈ S, then
S′ = S−{v′}∪{v} is also a power dominating set of G′ with |S′| = |S|≤ k. Thus, we
may assume, without loss of generality, that S⊆V and contains no leaves of G′.
It remains to show that Kirchhoff’s Rule never applies to any vertex v∈V , which
means that S is also a dominating set of G.

Let M(S)=N[S] be the set of vertices initially observed by the power dominating
set S; thus, all vertices initially in M(S) are either in S or are dominated by a vertex
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in S. Let U =V (G′)−M(S) be the set of vertices that are unobserved, and assume
that U �=∅.

The claim is that the only vertices in U are leaves of G′. The only vertices that
can be added to the set M(S) of observed vertices are those which are observed using
Kirchhoff’s Rule. If there is a vertex v∈V that is not in M(S), then it has no neighbor
in S. This means that vertex v has at least two unobserved neighbors, at least one
unobserved neighbor in V and its leaf neighbor in G′, since we are assuming
that S contains no leaves of G′. Thus, v can never be observed, contradicting the
assumption that S is a power dominating set of G′. �

As observed by Guo et al., the corona operation preserves bipartiteness, planarity,
and the property of being a circle graph (an intersection graph of chords of a circle).
The corona operation also preserves the property of being a chordal bipartite graph.
DOMINATING SET has been shown to be NP-complete for chordal bipartite graphs
by H. Müller and A. Brandstädt in 1987 [36].

Corollary 2 PDS is NP-complete for bipartite, planar, circle, and chordal bipartite
graphs.

Earlier we observed that a minor modification of the proof of Haynes et al.
suffices to show that PDS is NP-complete for both chordal graphs and split graphs.

Guo, Niedermeier, and Raible have used a transformation from VERTEX
COVER to show that PDS is NP-complete for split graphs [24].

In 2006, Xu, Kang, Shan, and Zhao [42] construct a linear algorithm for
computing γ P(G) for any connected block graph G. A block of a graph G is a
maximal 2-connected subgraph of G. A graph G is a block graph if and only if
every block of G is a complete subgraph. Their algorithm is based in part on the
following result.

Theorem 6 (Xu et al.) If G is a block graph having at least one cut vertex, then G
has a γ P(G)-set in which every vertex is a cut vertex.

The algorithm works by first constructing a decomposition tree of a block graph
called the refined cut tree, as shown in Figure 4. This tree has one vertex for every
block and one vertex for every cut vertex of G. An edge exists between a block
vertex and a cut vertex if and only if the cut vertex is contained in that block. The
refined cut tree is formed by re-labeling the blocks of the graph as block vertices.
This tree can be constructed in linear time. The algorithm then roots the tree at a
cut vertex and processes the cut vertices from the leaves up to the root. At each
level, a power dominating set is constructed for that level by modifying the power
dominating set constructed for the lower level.

Xu et al. also prove that the power domination number of a block graph of order
n is no more than n/3, with equality if and only if the graph is the corona G ◦K2 or
G ◦ K2 for some block graph G. Power domination in block graphs is also studied
by Atkins, Haynes and Henning in 2006 [5].

In 2006 [43] Zhao, Kang, and Chang show that γ P(G)≤ n/3 for any connected
graph G of order n≥ 3 and γ P(G)≤ n/4 for any connected claw-free cubic graph G
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Fig. 4 Block graph cut trees (figure reproduced from [42])

of order n. It is interesting to note how many authors have noted the n/3 upper bound
for various classes of graphs, for example, for trees [25] or block graphs [42].

In 2007 [26] Hon, Liu, Peng, and Tang present a linear algorithm for computing
the power domination number of block-cactus graphs, which are defined as follows.

A cut vertex in a graph G is a vertex whose removal increases the number of
connected components. A cactus is a graph in which every edge is a member of
at most one cycle. Finally, a block-cactus graph is a graph in which every block
is either a complete graph or a cycle. A linear algorithm for computing the power
domination number of a block-cactus graph is based on the following observation.

Theorem 7 (Hon, Liu, Peng, Tang) In any block-cactus graph, there exists a
minimum power dominating set that contains only cut vertices.

In 2006 [19] Dorfling and Henning determine the power domination numbers of
n×m grid graphs.

Theorem 8 (Dorfling, Henning) If G = Pn�Pm is an m× n grid graph, where
1≤m≤ n, then

(i) γP (G) = �m+1
4 � if m≡ 4 mod 8, and

(ii) γP (G) = �m
4 � otherwise.

The authors show how to construct a minimum power dominating set S of a grid
graph G = Pm�Pn, as follows: let m= 8k+ j, where 0≤ j≤ 7 and vertices are
represented by their row and column numbers, such as the vertex v= (2, 3) in row
2, column 3.

If k= 0, let S′ =∅; otherwise let S′ = {(8i+ 3, 2), (8i+ 5, 3) : 0≤ i≤ k− 1}.
Then,

if j= 0, let S= S′.
if j∈{1, 2}, let S= S′∪{(m, 1)}.
if j= 3 let S= S′∪{(m− 1, 1)}.
if j= 4 let S= S′∪{(m− 2, 1), (m− 1, 1)}.
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Fig. 5 A minimum power
dominating set of an 8× 10
grid graph

if j∈{5, 6, 7} let S= S′∪{(m+ 3− j, 2), (m+ 5− j, 3)}.
Thus, for example, a minimum power dominating set of an 8× 10 grid graph

needs only two vertices, such as v= (2, 3) and w= (3, 5) (cf. Figure 5).
In 2007 [37] Pai, Chang and Wang provide a somewhat simpler algorithm for

placing a minimum power dominating set in a grid graph than that given above by
Dorfling and Henning.

In 2008 [39] and in 2012 [9] Raible and Fernau show that PDS is NP-hard on
planar cubic graphs and design an O∗ (1.7548n) algorithm for computing γ P(G) for
arbitrary graphs. Their NP-completeness result can be briefly described as follows.

Theorem 9 (Binkele-Raible, Fernau) PDS is NP-hard on planar cubic graphs.

Proof Sketch. Use a reduction from PLANAR CUBIC VERTEX COVER, as
follows:

VERTEX COVER
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a vertex cover of cardinality at most k, that is, a set S⊆V

such that for every edge uv∈E, either u∈ S or v∈ S, that is, |{u, v}∩ S|≥ 1?

Given a planar cubic instance of VERTEX COVER, with V ={v1, v2, . . . , vn},
replace each vertex v∈V with the graph in Figure 6. Notice that if G is planar and
cubic, then the constructed graph G′ is planar and cubic. One can then show that G
has a vertex cover of cardinality at most k if and only if G′ has a power dominating
set of cardinality at most k. In the gadget in Figure 6, if a set S is a vertex cover, then
all edges incident to a vertex v will have a vertex in S. This means that the vertices
in S, when viewed as a power dominating set, will observe vertices q1, cv1, q2, cv2,
q3, cv3. Once these have been observed, then all remaining vertices av1, zv, av2, av3
will be observed. Thus, γ P(G′)≤ k.

It only remains to show that starting with a power dominating set S′ of G′ of
cardinality at most k, there will be a vertex cover of G of cardinality at most k. This
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Fig. 6 Gadget for cubic
planar graphs (figure
reproduced from Binkele [9])

is based on the observations that (i) any minimum power dominating set of G′ will
contain at most one vertex from any gadget; (ii) if a gadget contains a vertex, then
it must be the zv vertex; and (iii) if a gadget Tv contains no vertices in S′, then the
avi vertices are indirectly observed by all three of the cvi vertices and the zv vertex
is indirectly observed by the av1 vertex. �

Binkele-Raible and Fernau conclude their paper by presenting an 11-page, highly
technical, exact algorithm, for computing the value of γ P(G) for any graph G, whose
running time is O∗ (1.7548n) and which when applied to cubic graphs has a running
time of O∗ (1.6212n). We refer the interested reader to [9] for the details.

In 2009 [3] Aazami and Stilp present several approximation results for PDS, in
particular demonstrating for the first time a “gap” in the approximation guarantees
between DOMINATING SET and PDS, especially since it has been shown that
DOMINATING SET has an O(log n) approximation guarantee, and it has been
shown that no polynomial algorithm can give a better approximation guarantee.
Indeed, Feige [21] has shown that DOMINATING SET is even hard to approximate
within a ratio of (1− ε) n. Notable as well is their introduction of power domination
applied to directed graphs.

Aazami and Stilp present a transformation from the MIN-REP decision problem
to PDS which shows that PDS cannot be approximated within a factor of 2log1−εn,
unless NP⊆DTIME(npolylog(n)), since the same result holds for the MIN-REP
problem, which can be stated as follows.

MIN-REP
Instance: (i) Bipartite graph G= (A, B, E); (ii) a partition of the two partite sets

A={A1, A2, . . . , Aj} and B={B1, B2, . . . , Bj} into sets of equal size, that is,
the sets Ai and Bj all have the same size, say N; and (iii) a positive integer k.

Question: Does there exist a set C⊂A∪B, with |C|≤ k, such that whenever there
exist vertices u∈Ai and v∈Bj where uv∈E, there exist a vertex a∈C∩Ai and
a vertex b∈C∩Bj with ab∈E?
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For undirected graphs, the authors introduce the notion of strong regions, meaning
sets of vertices which contain vertices which must appear in a γ P(G)-set, as a means
of obtaining lower bounds on the size of an optimum solution for PDS. Using this
idea, they develop an algorithm for finding power dominating sets that have an
approximation guarantee of O(k) for graphs of treewidth k. The algorithm requires
as input the partial-k tree decomposition and runs in time O(n3), independent of k.

Since it is known that planar graphs have treewidth O(
√
n), the Aazami-Stilp

algorithm provides an O(
√
n) approximation for PDS. The authors then show that

their methods cannot improve on this O(
√
n) approximation guarantee.

Aazami and Stilp also describe a simple algorithm with an approximation
guarantee of O( n

log n
) for the PDS problem. Their algorithm can be described as

follows. Partition the vertices of a graph G into k = log n equal-sized sets {V1, V2,
. . . , Vk}. Then consider all possible ways of selecting some nonempty collection
of these k sets. For each nonempty collection of these k sets, form the union of all
vertices contained in these sets, and then, in polynomial time, check to see if this
union is a power dominating set. Among all of these different collections of k sets,
output one that power dominates G and has the minimum total number of vertices.
Note that in this algorithm, we can consider at most 2k = 2log n = n different
collections of the k sets V1, V2, . . . , Vk. Clearly, this algorithm runs in polynomial
time, since it can be tested in O(|V | + |E|) time whether any set of vertices is a
power dominating set. Let S∗ be a minimum power dominating set, of cardinality
γ P(G)= |S∗ |. It is easy to see that the union of the subsets in V1, V2, . . . , Vk that
intersect S∗ is a power dominating set of G and that the number of vertices in this
union of sets is at most n

log n
|S∗|. This establishes the approximation guarantee of

O( n
log n

).
In 2010 [2] Aazami introduces a variation of the power domination problem

[also introduced by Liao, but as yet unpublished in his 2009 PhD Thesis [32]],
which involves an integer, which we will denote r, for the number of rounds of
propagation permitted before all vertices must be observed. Thus, for a graph of
order n, 1≤ r≤ n− 1. The DOMINATING SET problem corresponds to r= 1,
while the POWER DOMINATING SET (PDS) problem corresponds to r= n− 1. In
PDS the goal is to find a minimum cardinality set of vertices S that power dominates
all vertices v∈V , where a node v is power dominated if (1) v∈ S or it has a neighbor
in S or (2) v has a neighbor u such that u and all of its neighbors except v are
power dominated. Rule (1) is the DOMINATING SET problem, and Rule (2) is a
propagation rule that applies iteratively. The r-round PDS problem, or rPDS, has the
same set of rules as PDS, except that Rule (2) is applied in parallel to all vertices
that are newly observed in the current round. The requirement is to find a minimum
cardinality set S such that all vertices can be observed in at most r rounds. The
r-round power domination number γ rP(G) equals the minimum cardinality of an
r-round power dominating set in G.

The parameter γ rP(G) is a power dominating version of the distance-r domina-
tion number, denoted γ≤r(G), which equals the minimum cardinality of a set S⊆V
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such that for every vertex w∈V − S, d(w, S)≤ r, that is, every vertex w∈V − S is at
distance at most r from at least one vertex in S.

Aazami provides a proof that rPDS is NP-hard by means of a simple modification
of the NP-hardness proof of PDS provided by both Guo et al. [23] and Kneis et al.
[30], in which they attach a single leaf vertex to every vertex in a planar graph G.

Theorem 10 (Aazami) For any r≥ 1, rPDS is NP-hard for planar graphs.

Proof Sketch. Use a transformation from PLANAR DOMINATING SET. Given
a planar graph G= (V, E), construct a planar graph G′ by attaching a path of
length r− 1 to every vertex v∈V (G). One can show that G has a dominating set
of cardinality at most k if and only if G′ has an r-round power dominating set of
cardinality at most k.

Given a dominating set S⊆V (G) of cardinality at most k, after the first round, S
will dominate, or observe, all vertices in V (G). Then, in the next r− 1 rounds, all
vertices on all paths attached to the vertices v∈V (G) will be observed. Thus, the
same set S is an r-round power dominating set of G′ of cardinality at most k.

Conversely, if S′ is an r-round power dominating set of G′, it is easy to see that
there is another r-round power dominating set S′′ of the same cardinality as S′ which
contains no vertices on any path attached to the vertices v∈V (G). Assume that this
set S′′ is not a dominating set of G, and let w∈V (G) be any vertex not dominated
by S′′ in the first round. This means that at best v is power dominated in the second
round. But this implies that it will take at least r+ 1 rounds to power dominate the
last vertex on the path of length r− 1 attached to vertex w, a contradiction. �

As shown previously with the Guo et al. [23] construction for power dominating
set, the above construction holds for bipartite graphs, circular graphs, chordal
graphs, and chordal bipartite graphs. Therefore we have the following corollary.

Corollary 3 For any r≥ 1, rPDS is NP-hard for bipartite, circular, chordal, and
chordal bipartite graphs.

Aazami shows that rPDS, or γ rP(G), cannot be approximated better than 2log1−εn

even for r= 4 in general graphs. He provides a dynamic programming algorithm to
compute the value γ rP(G) in polynomial time for graphs of bounded treewidth. He
also presents a PTAS (polynomial time approximation scheme) for rPDS on planar
graphs for r = O(

log n
log log n

). Finally, he gives an integer programming formulation
of r-round PDS.

In 2011 [7] Barrera and Ferrero provide upper bounds for the power domination
numbers of cylinders Pm�Cn, and exact values of the power domination numbers
of toroidal grid graphs Cm�Cn and some generalized Petersen graphs.

In 2016 [31] Liao continues the development of r-round power domination by
presenting linear algorithms for computing γ rP(G) for trees and for block graphs.

In 2010 [38] Pai, Chang, and Wang consider a variation of power domination in
which PMUs may only be placed within a restricted subset of the vertices V of a
graph, called a forbidden zone Z. Thus, the parameter γ P(G, Z) equals the minimum
cardinality of a power dominating set S such that S∩Z =∅. This leaves open the
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possibility, of course, that for some restricted sets Z, no restricted power dominating
set may exist. As an illustration, they present algorithms to solve this restricted type
of power domination on grids, under the restriction that only certain consecutive
rows or columns form a forbidden zone.

Pai et al. [38] also introduce another variation of power domination, as follows.
Given a graph G= (V, E) and an integer k, with 0≤ k≤|V |, a set S⊆V is called a
k-fault-tolerant power dominating set, or kFPDS, of G if S−F is still a PDS of G
for any subset F ⊂ S with |F|≤ k. The k-fault-tolerant power domination number of
G, denoted γ kFP(G), equals the minimum cardinality of a kFPDS of G. Notice that
from this definition, it follows that:

(i) for any k≥ 0, γ kFP(G)≤ γ k+1FP(G),
(ii) γ 0FP(G)= γ P(G),

(iii) γ P(G)+ k≤ γ kFP(G), and
(iv) if G contains k+ 1 mutually disjoint γ P(G)-sets, then the union of these k+ 1

sets can form a kFPDS, which implies that γ kFP(G)≤ (k+ 1)γ P(G).

Pai et al. establish the following results for 1× n, 2× n, and 3× n grid graphs.

Proposition 2 (Pai, Chang, Wang) For G1,n, G2,n, G3,n, G4,n, and G5,n,

(1) γ 1FP(G1,n)= 2; let S={(1, 1), (1, n)},
(2) γ 1FP(G2,n)= 2; let S={(1, 1), (1, n)},
(3) γ 1FP(G3,n)= 2; let S={(2, 1), (2, n)},
(4) γ 1FP(G4,n)= 3; let S={(2, 1), (3, 3), (4, 1)},
(5) γ 1FP(G5,)n= 3; let S={(2, 1), (3, 3), (4, 1)}.

Pai et al. conclude by presenting placement algorithms that do the following:

(i) approximate γ 1FP(Gm,n) within a factor of 1.60 for 6≤m≤ n,
(ii) approximate γ 2FP(Gm,n) within a factor of 2.34 for 7≤mn,

(iii) approximate γ 3FP(Gm,n) within a factor of 3.34 for 11≤m≤ n.

Figure 7 presents two examples of one-fault power dominating sets, one in a
15× n grid graph and the other in a 17× n grid graph.

In 2012 [15] Chang, Dorbec, Montassier, and Raspaud introduce the concept of
k-power domination, a direct generalization of power domination, by changing in a

Fig. 7 One-fault power dominating sets (figure reproduced from [38])
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natural way Rule 2 (Kirchhoff’s Rule), sometimes called the propagation rule, as
follows, for some fixed nonnegative integer k:

Rule B1. If a vertex v∈ S, then v and all vertices in N(v) are observed.
Rule B2. (Kirchhoff’s Rule) If a vertex v is observed and there is a vertex u∈N(v)

that is the only unobserved vertex in N(v), then vertex u is observed.
Rule B3. (Chang, Dorbec, Montassier, Raspaud) If a vertex v is observed and there

are at most k vertices in N(v) that are unobserved, then all vertices in N(v) are
observed.

This can also be stated as follows:
For a connected graph G and a vertex set S⊆V , the set Mk(S) of vertices k-

observed, or k-monitored, by S is defined recursively as follows:

(1) Mk(S)← S∪N(S) (v and all of its neighbors in N(v) are k-monitored),
(2) While there is a vertex v∈Mk(S) having at most k unmonitored neighbors, that

is, |N(v)∩ (V (G)−M(S))|≤ k, set Mk(S)←Mk(S)∪N(v).

A set S is called a k-power dominating set of G if Mk(S)=V (G). The k-power
domination number γ kP(G) is the minimum cardinality of a k-power dominating set
of G.

One can observe that when k= 0, γ 0P(G)= γ (G), and when k= 1,
γ 1P(G)= γ P(G).

The authors quickly establish an upper bound for γ kP(G) which generalizes
known results for k= 0 and k= 1.

Theorem 11 (Chang, Dorbec, Montassier, Raspaud) For any connected graph G
of order n≥ k+ 2,

γkP (G) ≤ n/(k + 2)

and this bound is best possible.

Chang et al. provide one complexity result and one algorithm.

KPDS
Instance: Graph G= (V, E), positive integer t.
Question: Does G have a k-power dominating set of cardinality at most t?

Theorem 12 (Chang, Dorbec, Montassier, Raspaud) KPDS is NP-complete for
chordal graphs and bipartite graphs.

Proof Sketch. For any graph G and any nonnegative integer k, let Gk be the graph
obtained from G by attaching k leaves to every vertex v∈V (G). It is easy to show
that γ kP(Gk)= γ (G). Furthermore, if G is chordal or bipartite, so is Gk. �
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Theorem 13 (Chang, Dorbec, Montassier, Raspaud) There is a linear algorithm
for computing the value γ kP(T) for any tree T.

Proof Sketch. The algorithm is based on the method used to compute the value
of γ (T) for any tree T given by Mitchell, Cockayne, and Hedetniemi in [35] and
Cockayne, Goodman, and Hedetniemi in [16]. Assign two values L(v)= (av, bv)
to each vertex v in a rooted tree T, where av ∈{B, F, R} and bv ∈{0, 1, . . . , k}.
The value av =R (required) means that the vertex will be a vertex in the minimum
k-power dominating set; the value av =F (free) means that the vertex has been
monitored/observed; and the value av =B (bound) means that the vertex has not
been monitored. The second label bv is only applied to vertices labeled F or B and
records the number of neighbors of v, which is at most k, that may yet be monitored
once v is monitored. The algorithm works on a rooted tree from the leaves up to the
root and is based on the following five rules for a leaf vertex x and its parent vertex
y, where T′ =T − x is the tree remaining after leaf x has been deleted and where
initially all vertices v are assigned the label L(v)= (B, k).

(1) if ax =R, then γ kP(T)= 1+ γ kP(T′) and change ay =F if ay =B.
(2) if (ay =R) or (ax =F and bx = 0), then γ kP(T)= γ kP(T′).
(3) if ax =B and by > 0, then γ kP(T)= γ kP(T′), where by = by − 1 in T′.
(4) if ax =B and by = 0, then γ kP(T)= γ kP(T′), where ay =R in T′.
(5) otherwise, if ax =F, bx > 0 and ay �=R, then γ kP(T)= γ kP(T′), where ay =F

in T′.

Chang et al. illustrate their algorithm with the example in Figure 8.

In 2013 [18] Dorbec, Henning, Löwenstein, Montassier, and Raspaud continue
the development of k-power domination by applying it to the consideration of

Fig. 8 2-power domination in trees (figure reproduced from [15])
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regular graphs. The main result of their paper is a 12-page proof of the following
theorem.

Theorem 14 (Dorbec, Henning, Löwenstein, Montassier, Raspaud) For k≥ 1
and G a connected (k+ 2)-regular graph of order n, if G �=Kk+2,k+2, then
γ kP(G)≤ n

(k+3) , and this bound is tight.

They conclude with the following conjecture.

Conjecture 1 (Dorbec, Henning, Löwenstein, Montassier and Raspaud) For
k≥ 1 and r≥ 3, if G �=Kr,r is a connected r-regular graph of order n, then
γ kP(G)≤ n

(r+1) .

In 2016 [41] Wang, Chen, and Lu generalize the linear, k-power domination
algorithm by Chang, Dorbec, Montassier, and Raspaud [15] for computing γ kP(G)
for trees, to an O(|V | + |E|) algorithm for computing γ kP(G) for block graphs.

In 2013 [34] Liao and Lee give an 11-page presentation of a linear algorithm
for computing γ P(G) for interval graphs, if the interval ordering of the graph is
provided as input. In addition, they show that if the interval ordering is not given,
their algorithm runs in θ(n log n) time, where n is the number of intervals, and is
asymptotically optimal.

Liao and Lee also give a 7-page presentation in which they extend their methods
to the class of circular arc graphs. They construct a linear algorithm for computing
γ P(G), first for proper circular arc graphs, in which no arc is properly contained
within another arc, and then for general circular arc graphs, provided the circular
arc endpoints are sorted.

In 2015 [40] Stephen, Rajan, Ryan, Grigorious, and William apply power
domination to the graphs of the chemical compounds of polyphenylene, dendrimers
(cf. Figure 9), rhenium trioxide (cf. Figure 10), and silicate networks (cf. Figure 11).
The rhenium trioxide (ReO3) graphs, cf. Figure 8, are essentially subdivision graphs
of three-dimensional grid graphs, that is, the graphs S(Pp�Pq�Pr), but denoted by
the authors as RO(p, q, r), where the subdivision vertices, the vertices of degree 2,
represent oxygen atoms and the vertices of degree 3 represent rhenium atoms.

Although the authors do not solve the problem of computing the power dom-
ination number of rhenium trioxide lattices, they do provide several interesting
observations.

Theorem 15 (Stephen, Rajan, Ryan, Gregorious, William) For any rhenium
trioxide graph RO(p, q, r), the following must hold:

(i) Each unit cell in RO(p, q, r) must contain at least three vertices of any power
dominating set.

(ii) The three vertices in every unit cell of RO(p, q, r) belonging to a power
dominating set cannot all lie on the same face.

(iii) Every face in each unit cell must have at least one vertex in any power
dominating set.

(iv) In any power dominating set of RO(p, q, r), every unit cell must contain at least
two rhenium atoms (vertices of degree 3).
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Fig. 9 Polyphenylene
dendrimers (figure
reproduced from Stephen et
al. [40])

Fig. 10 Rhenium trioxide
(figure reproduced from
Stephen at el. [40])

The graphs of silicate networks SL(n) are obtained from the graphs of honey-
comb networks HC(n) as follows. The graphs HC(n) are defined recursively: (i)
HC(1)=C6, (ii) HC(2) is obtained from HC(1) by attaching a layer of six hexagons
to the outer edges of HC(1), and (iii) HC(n) is obtained from HC(n− 1) by attaching
hexagons to the outer edges of HC(n− 1).

We should interject here that the power domination number of these honeycomb
networks HC(n) were determined by Ferrero and Varghese in 2011 [22] to be:
γP (HC(n)) = � 2n

3 �.
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Fig. 11 Silicate networks (figure reproduced from Stephen et al. [40])

In order to construct a silicate network SL(n), to each vertex in HC(n), assign
a silicon ion. Then subdivide every edge of HC(n), and assign to each of these
subdivision vertices an oxygen ion. To each of the 6n degree-2 vertices on the
outer face of HC(n), attach a leaf and assign an oxygen atom to these 6n leaves.
Finally, add edges to form a triangle of oxygen ions surrounding each silicon ion,
thereby creating a tetrahedron, the center of which is a silicate ion, cf. Figure 11.
The resulting graph is the silicate network SL(n), which has 15n2 + 3n vertices, 36n2

edges, and diameter 4n.
The algorithm for constructing a minimum power dominating set of a silicate

network SL(n) becomes very simple, as follows:

Step 1. In each bounding cycle of HC(i), for 1≤ i≤ n, choose alternate edges. [In
HC(1) choose 3 alternating edges; in HC(2) choose 12 alternating edges; etc.]

Step 2. For every 1≤ i≤ n, choose the oxygen ion vertices in SL(i) that subdivide
the edges chosen in the bounding cycle of HC(i).

The authors then show that the 3n2 vertices so chosen form a minimum
cardinality power dominating set of SL(n).

Theorem 16 (Stephen et al.) For every silicate network SL(n), γ P(SL(n))= 3n2.

In 2017 [28] Kang and Wormald present two heuristics for finding a small power
dominating set in a random cubic graph. They analyze the performance of these
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heuristics on random cubic graphs using differential equations. In this way, they
prove that the proportion of vertices in a minimum power dominating set of a
random cubic graph is asymptotically almost surely at most 0.067801. They also
provide a corresponding lower bound of 1/29.7, which is approximately 0.03367,
using known results on bisection width.

In this paper, lower and upper bounds for γ P(G) are given for a random cubic
graph G.

For the lower bound, Kang and Wormald first prove that γ P(G)≥ bw(G)− 13 for
any cubic graph G, where bw(G) denotes the bisection width of G, which is defined
as min{|∂S| : S⊂V (G)}, |S| = |V (G)|/2}. Coupled with a result of Kostochka and
Melnikov [29], this gives γ p(G) > 0.03367n asymptotically almost surely for an n-
vertex random cubic graph G, as n→∞.

For upper bounds, Kang and Wormald present two greedy algorithms that find
power dominating sets and analyze them, again using the differential equation
method. The analysis of the second algorithm gives the main upper bound:
asymptotically almost surely, γ p(G)≤ 0.067801n for a random cubic graph G of
order n.

In 2018 [8] Benson, Ferrero, Flagg, Furst, Hogben, Vasilevska, and Wissman
discuss the close connection between the power domination number, what is called
the zero forcing number Z(G) of a graph G, and the maximum nullity of G. We will
need a few definitions.

The concept of zero forcing can be explained in terms of a process of coloring the
vertices of a graph G. Initially some subset S⊆V of vertices are colored, say blue,
and all vertices in V − S are colored white. Then, just as in the power domination
propagation rule, if u is a blue vertex and exactly one neighbor v∈N(u) is white,
then the color of v changes to blue. In this way vertex u forces vertex v to change
color. This can be denoted by u→ v and is called a zero forcing rule. A set S is called
a zero forcing set of G if after coloring all vertices in S blue, repeated applications
of the zero forcing rule result in all vertices being colored blue. The zero forcing
number, Z(G), equals the cardinality of a zero forcing set in G.

It is easy to see that the power domination process in a graph G can be described
as choosing a set S⊆V and applying the zero forcing process to the closed
neighborhood N[S] of S. Thus, as first observed by Aazami [1], a set S is a power
dominating set of a graph G if and only if N[S] is a zero forcing set of G.

Notice also that for any graph G with minimum degree δ(G), δ(G)≤ Z(G).
Next, let Sn(R) denote the set of all n× n real symmetric matrices. For A =

[aij ] ∈ Sn(R), the graph of A, denoted by G(A), is the graph with vertices V ={v1,
v2, . . . , vn} and edges {vivj : aij �= 0, 1≤ i < j≤ n}. Note that the diagonal of A is
ignored in defining G(A).

The set of symmetric matrices described by a graph G of order n is defined
as S(G) = {A ∈ Sn(R) : G(A) = G}. The maximum nullity of G is
M(G)=max{nullA : A∈ S(G)}, where nullA is the dimension of the null space of
A, and the minimum rank of G is mr(G)=min{rankA : A∈ S(G)}, where rankA is
the dimension of the column space of A. By definition, M(G)+mr(G)= |V (G)|.
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The term zero forcing comes from the process of forcing zeros in a null vector of a
matrix A∈ S(G). Thus, we have the basic inequality, as observed in [4]:

Proposition 3 (AIM) For any graph G, M(G)≤Z(G).

Starting from this basic inequality, Benson et al. prove the following.

Theorem 17 (Benson et al.) For any non-empty graph G, Z(G)
�(G)

≤ γP (G).

Having established a connection between the power domination number and the
zero forcing number, the authors mention an interesting variation of the power
domination propagation rule, or the zero forcing rule, called a skew zero forcing
rule, first introduced in [27] by the IMA-ISU research group on minimum rank.

In the skew zero forcing rule, a vertex u can force a neighbor v∈N(u) to change
color from white to blue if v is the only neighbor of u colored white. But it is
permitted that the color of blue itself can be white, whereas in the zero forcing
rule, the color of vertex u must be blue. This modified forcing rule then gives rise
to the skew zero forcing number, Z−(G), which equals the minimum cardinality of a
skew zero forcing set, that is, a set S of vertices that can force all vertices v∈V to be
colored blue using the skew zero forcing rule. This variation, essentially in power
domination, seems worth studying.

In 2019 [11] Bozeman, Brimkov, Erickson, Ferrero, Flagg, and Hogben consider
the problem of determining the minimum number of additional PMUs needed to
observe a power network when the network is expanded, but the existing devices
S remain in place. They also study the related problem of finding the smallest zero
forcing set that must contain a given set of vertices S. The sizes of such sets in a
graph G are, respectively, called the restricted power domination number and the
restricted zero forcing number of G subject to S, which can be denoted γ P(G, S)
and Z(G, S).

Bozeman et al. present a linear algorithm for computing γ P(G, S) on graphs with
bounded treewidth.

Theorem 18 For any graph G= (V, E) of order n and bounded treewidth, and any
set S⊆V , a minimum power dominating set of G containing S can be computed in
O(n) time.

In 2019 [12] Brimkov, Mikesell, and Smith consider the problem of finding a
minimum power dominating set in which the subgraph G[S] induced by the initial
set S of vertices is connected. The minimum cardinality of such a power dominating
set is called the connected power domination number, denoted γ cP(G). They show
that the connected power domination problem (CPDS) is NP-hard for arbitrary
graphs, but can be computed in linear time for trees, cactus graphs, and block
graphs.

Tables 1 and 2 and Figure 12 summarize the complexity results for power
domination and the several variations of power domination discussed in this
chapter.
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Table 1 Complexity results for power dominating set

NP-complete Polynomial

Bipartite graphs Trees
Haynes et al. 2002 [25], Guo et al.
2005, 2008 [23, 24]

Haynes et al. 2002 [25], Guo et al. 2005 [23]

Chordal graphs Graphs with bounded treewidth
Haynes et al. 2002 [25] Guo et al. 2008 [24], Kneis et al. 2006 [30]
Split graphs Interval graphs
Guo et al. 2005, 2008 [23, 24], Liao
and Lee 2005 [33]

Liao and Lee 2005, 2013 [33, 34]

Planar graphs Proper circular arc graphs
Guo et al. 2005, 2008 [23, 24] Liao and Lee 2005, 2013 [33, 34]
Planar bipartite graphs Circular arc graphs
Brueni and Heath 2005 [14] Liao and Lee 2013 [34]
Circle graphs Block graphs
Guo et al. 2005, 2008 [23, 24] Xu et al. 2006 [42]
Planar cubic graphs Block-cactus graphs
Raible and Fernau 2008, 2012 [9, 39] Hon et al. 2007 [26]

Grid graphs
Dorfling and Henning 2006 [19]
Silicate networks
Stephen et al. 2015 [40]

Table 2 Complexity results for variations of power domination

NP-complete Polynomial

r-PDS Planar, bipartite, chordal,
circle graphs

Bounded treewidth, trees,
block graphs

Aazami 2010 [2] Liao 2016 [31]
k-PDS Chordal, bipartite, circle,

planar, chordal bipartite
graphs

Trees

Chang et al. 2012 [15] Chang et al. 2012 [15]
Block graphs
Wang et al. 2016 [41]

PDS with forbidden zone Bounded treewidth
Bozeman et al. 2019 [11]

c-PDS Arbitrary graphs Trees
Brimkov et al. 2019 [12] Bozeman et al. 2019 [11]

Cactus, block graphs
Brimkov et al. 2019 [12]
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Fig. 12 Summary of power domination results
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Self-Stabilizing Domination Algorithms

Stephen T. Hedetniemi

1 Introduction

In this chapter, we introduce the elegantly simple, self-stabilizing algorithm model
to researchers having an interest in domination in graphs. In 1974 [12, 13], Dijkstra
introduced the algorithm paradigm called self-stabilizing algorithms as a special
case of distributed algorithms. But algorithms of this type were not studied and
developed until the late 1980s, and it was not until the early 2000s that self-
stabilizing domination algorithms began to appear.

In this chapter, we present the basic framework and definitions of self-stabilizing
algorithms. An in-depth treatment of self-stabilizing algorithms is given in the
book by Dolev [16]. We then present self-stabilizing algorithms for finding in an
arbitrary connected graph: (i) a maximal independent set, (ii) a maximal matching,
(iii) a minimal dominating set, (iv) a minimal total dominating set, and (v) two
disjoint minimal dominating sets. It is important to note at the outset that these
algorithms are not designed to find either minimum or maximum sets having some
domination property, only minimal or maximal sets. We then discuss a variety
of other domination-related, self-stabilizing algorithms that have been published.
Finally, we present a list of domination-related self-stabilizing algorithms that have
yet to be designed.
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2 Self-Stabilizing Framework

In the self-stabilizing algorithm paradigm, we assume that a distributed computing
system or computer network is modeled by a connected, undirected graph G= (V,
E), of order n= |V | nodes or processors, and size m= |E| edges or bidirectional
communication links {u, v} between pairs of nodes. If {u, v}∈E, we say that u and
v are neighbors, and N(u)={v : {u, v}∈E} is the set of neighbors of node u, or the
open neighborhood of u, while N[u]=N(u)∪{v} is the closed neighborhood of u. If
S⊆V is a set of vertices in a graph G, we let S (sometimes denoted V − S or V � S)
denote the vertices not in set S.

2.1 Program and Computation

Every node, at all times, continues to execute the same program or self-stabilizing
algorithm and in doing so maintains a set of variables common to all nodes. A node
can only change the value of its own variables. The state of a node is defined by the
vector of current values of all of its variables. The union of the states of all nodes in
the graph/system defines the global state and constitutes the current configuration
of the whole system.

The algorithm, which is being executed independently and simultaneously at
every node of the system, consists of the same finite list of rules, called guarded
commands, of the form,

Rule : Guard → Action

or

Rule : if.. Guard ..then.. Action,

where Guard is a Boolean expression involving some or all of the variables of the
nodes in the closed neighborhood of a node u; this is called the shared-variable
model. If this expression (Guard) is evaluated to be true, then node u is said
to be enabled or privileged to execute the corresponding Action. This gives rise
to two types of execution. In what is sometimes called coarse scheduling, both
reading/expression evaluation and writing/making a move are done in one step,
while in what is called read/write atomicity, two steps are required. A move by node
u consists of the execution of the designated Action, which consists of changing the
values of the variables at node u as specified by the Action.

Normally at most one rule at a node will be enabled at any moment, but if several
rules are simultaneously enabled, only the Action in the first enabled rule in the list
will be executed.
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2.2 Distance-k Knowledge

In 2004 [19], Gairing, Goddard, Hedetniemi, Kristiansen, and McRae introduce the
idea that self-stabilizing algorithms can be designed in which the rules have guards
whose Boolean expressions involve some or all of the variables of the nodes within
distance-k of the given node. It is shown in 2004 [19] and subsequently in 2008
[28] by Goddard, Hedetniemi, Jacobs, and Trevisan how to convert a distance-k
algorithm to one in the distance-1 model, but it comes with an increased cost in
running time, for example, a self-stabilizing algorithm, which stabilizes in O(n2)
moves in the distance-2 model, will stabilize in O(n5) moves in the distance-1
model; see also Turau in 2012 [64].

2.3 Anonymous Systems

In an anonymous system, or network, nodes do not have unique identifiers, e.g.,
ID(u)= ID(v), for all v∈N(u), which means that the same rule applies equally to all
nodes. By contrast, in non-anonymous networks, a rule can compare the identifier of
a node u with the identifiers of nodes in its neighborhood N(u), in order to determine
if node u is enabled, for example, if ID(u) > ID(v), then the node u may become
enabled, otherwise node v may become enabled.

2.4 Schedulers

If, at any time, several nodes are enabled to make a move, a mechanism, called a
scheduler, or an adversarial daemon, is assumed to determine, decide, or choose
which node or nodes make the next move(s). In the central scheduler model, also
called the serial model, one node is adversarially selected to make its move. In
the distributed model, any number of enabled nodes can be adversarially selected
to make their moves simultaneously, while in the synchronous model, all enabled
nodes must make their moves simultaneously.

A further distinction can also be made between fair and unfair schedulers. With
a fair scheduler, every node that is continuously enabled is eventually selected to
make a move. With an unfair scheduler, there is no such condition.
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2.5 Self-Stabilization

A computation c is a finite sequence of global configurations c= c0, c1, . . . ,
ck, where configuration ci results from configuration ci−1 after all enabled nodes
selected by the scheduler have made their next moves.

A configuration is said to be stable if no node is enabled. A self-stabilizing
algorithm is said to be stabilizing if, regardless of any initial configuration c0, the
system always reaches a stable state ck after a finite number of moves.

The major objective of self-stabilization is for a system to always achieve a
desired or legitimate stable state. An algorithm is called self-stabilizing if (i) when
started in any initial illegitimate state, it always reaches a legitimate state after a
finite number of moves, and (ii) for any legitimate state and for any move enabled
by that state, the next state is always a legitimate state.

2.6 Running Times

The (worst-case) running time of a self-stabilizing algorithm under a central
scheduler is defined to equal the maximum possible number of moves from any
initial configuration to a stable configuration.

The running time of an algorithm under the distributed scheduler can be
measured by the total number of moves, or the number of time steps, or rounds. A
round as discussed by Dolev in [16] is a minimal sequence of time steps where every
enabled node at the start of the round either makes a move or has its move disabled
by the move of a neighbor; if the scheduler is fair, every round is guaranteed to
finish.

For the synchronous scheduler, the number of time steps and the number of
rounds are identical. In general, the number of moves is an upper bound on the
number of time steps.

2.7 Rationale for Self-Stabilizing Algorithms

One of the most important requirements of modern distributed systems is that they
should be fault tolerant, which means that a system should be able to function
correctly in spite of intermittent or infrequent faults. Ideally, the global state of the
system should be legitimate and should remain legitimate. But often enough, system
malfunctions can put the system in some arbitrary illegitimate state. It is desirable,
therefore, that some mechanism, other than a system-wide reset or external agent, is
in place, which can automatically bring the system back to a legitimate global state.

The traditional approach to this type of fault tolerance is to assume worst-
case scenarios and make significant efforts to protect the system against such



Self-Stabilizing Domination Algorithms 489

eventualities at the cost of additional hardware and software. Such additional costs
may not be an economic option, especially in cases when faults are only transient,
subsequent repairs can be made, and short-term unavailability of system service can
be tolerated while the system re-establishes a legitimate state.

Since the stabilization time must be small with respect to the frequency of faults,
the speed of self-stabilization is important. A self-stabilizing system cannot guar-
antee that the system is able to operate properly when a node or link continuously
injects faults into the system or when communication errors occur so frequently
that a new legitimate state cannot be reached. But once the offending fault is
removed or corrected, the system can once again provide its necessary services after
a reasonable amount of self-stabilizing time.

3 Self-Stabilizing Maximal Independent Set Algorithms

In this section, we present what may well be the simplest and most elegant of all
self-stabilizing algorithms, due to Skukla, Rosenkrantz, and Ravi in 1995 [59].
This algorithm only has two rules and in O(n) time finds a maximal independent
set of nodes, which of course is also a minimal dominating set. This algorithm
assumes that there is a central scheduler, whereby only one, adversarially chosen
node can make a move at a time. All nodes are anonymous and make no use of
identifier information. Notice, before we get started, that this algorithm does not find
either a minimum cardinality maximal independent set or a maximum cardinality
independent set, only a maximal independent set, which is all that is required in
many distributed system applications.

Recall that a set S⊂V is independent if no two nodes in S are neighbors.
In this self-stabilizing algorithm, each node maintains only one Boolean variable

x, such that x(i)= 1 if node i is in the maximal independent set S and x(i)= 0 if node
i is not in S. Algorithm MIC in Figure 1 only has the following two, very simple
rules.

Rule C1 says that if node i is not in S and has no neighbor in S, then it is enabled
to enter S.

Rule C2 says that if node i is in S and has a neighbor in S, then it is enabled to
leave the set S.

Given this algorithm, one must prove each of the following:

Algorithm MIC: Maximal Independent - Central
C1: if (x(i) = 0) ∧ (� ∃j ∈ N(i) : x(j) = 1)

then x(i ]tesretne[1=:)

C2: if (x(i) = 1) ∧ (∃j ∈ N(i) : x(j) = 1)
then x(i ]tesevael[0=:)

Fig. 1 Algorithm MIC: Central Model [59]
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(i) Under the central scheduler, regardless of the initial global state, and regardless
of the sequence of moves made, a stable state must be reached after a finite
number of moves.

(ii) In every stable state, the set of nodes S, for which x(i)= 1, must always define
a maximal independent set.

It is also important to ascertain the running time, i.e., worst-case performance,
of this algorithm. We will show that it stabilizes after at most O(n) moves for any
graph of order n.

In order to prove that this algorithm stabilizes, we will use the following lemmas.

Lemma 1 After a node executes Rule C1, it can never make another move.

Proof After a node i executes Rule C1, x(i)= 1 and all of its neighbors j∈N(i) have
x(j)= 0. As long as x(i)= 1, node i cannot execute Rule C1, and it can only execute
Rule C2 if x(i)= 1 and a neighbor j∈N(i) has x(j)= 1. But as long as x(i)= 1, no
neighbor j∈N(i) can execute Rule C1, and therefore every neighbor j must remain
in state x(j)= 0. �
Lemma 2 After a node executes Rule C2, it can only execute Rule C1.

Proof After a node executes Rule C2, its value has changed from x(i)= 1 to
x(i)= 0, and therefore it is no longer able to execute Rule C2, which requires
x(i)= 1. �
Theorem 1 (Shukla et al.) Algorithm MIC stabilizes in at most 2n moves.

Proof A node can only execute four possible move sequences: (i) no move at all,
(ii) Rule C1, (iii) Rule C2, and (iv) Rule C2 followed by Rule C1. Thus, if there are
n nodes, at most 2n moves can ever be executed. �
Lemma 3 If Algorithm MIC is stable, the set S={i | x(i)= 1} is an independent
set.

Proof Assume that Algorithm MIC is in a stable set and S is not an independent
set. Then, by definition, there must be two adjacent nodes i and j, both of which have
x(i)= 1 and x(j)= 1. But in this case both node i and node j are enabled to execute
Rule C2, and hence Algorithm MIC is not stable: a contradiction. �
Lemma 4 If Algorithm MIC is stable, then the set S is a maximal independent set.

Proof Assume that Algorithm MIC is in a stable state and S is an independent set
but is not a maximal independent set. Then, by definition, there must exist a node i
that is not in S and has no neighbors in S, which means that x(i)= 0 and for every
j∈N(i), x(j)= 0. But in this case node i is enabled to execute Rule C1 and, therefore,
Algorithm MIC is not stable. �

Thus, as desired, Algorithm MIC stabilizes and finds a maximal independent set
in O(n) time, in fact, in at most 2n moves. This is arguably the simplest of all self-
stabilizing graph algorithms. It is worth pointing out that Algorithm MIC is general,
in that it can stabilize with any possible maximal independent set, and can do so
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starting from the initial All-Zero configuration in which x(i)= 0, for all nodes i. For
example, let S={v1, v2, . . . , vk} be any maximal independent set. Starting in the
All-Zero configuration, Algorithm MIC, under the central scheduler, could select
each of these nodes, in order, to execute Rule 1; at the end of k moves, the maximal
independent set will be determined and the algorithm will be stable.

3.1 Distributed Model Maximal Independent Set Algorithm

While Algorithm MIC is designed to run under a central scheduler, Algorithm MID,
shown in Figure 2, due to Ikeda, Kamei and Kakugama in 2002 [41], is designed to
find a maximal independent set under a distributed scheduler. This means that at any
time, any adversarially chosen subset of enabled nodes can simultaneously make a
move. Such a set of moves constitutes one round.

We show here that Algorithm MID stabilizes in O(n) rounds.
Again, each node maintains only one Boolean variable x such that x(i)= 1 if

node i is in S and x(i)= 0 if node i is not in S. But notice the key difference between
Algorithms MIC and MID; Algorithm MID, under the distributed scheduler, uses
the ID, which is the integer index i of a node, to determine its eligibility to make a
move, where we assume that all nodes have a unique ID. In fact, we only need to
assume that no two nodes in any closed neighborhood have the same ID.

Note that while Rule D1 is the same as Rule C1 in Algorithm MIC, Rule D2 is
slightly different than Rule C2 and asserts that a node in the set S can only be forced
to leave S if it has a neighbor in S whose ID is larger.

Theorem 2 (Ikeda, Kamei, Kakugawa) Starting from an arbitrary state,
Algorithm MID stabilizes in at most O(n2) moves, and when stable, the set
S={i : x(i)= 1} is a maximal independent set.

In [41], Ikeda et al. construct an example where Algorithm MID takes �(n2) time
steps. In 2008 [26], Goddard, Hedetniemi, Jacobs, Srimani, and Xu determine the
running time of Algorithm MID in terms of rounds, as follows.

Theorem 3 (Goddard et al.) Starting from an arbitrary state, Algorithm MID
stabilizes in at most n rounds.

Proof We prove this by showing that in every round R there is a node vR, which
moves and, having moved, never moves again.

Algorithm MID: Maximal Independent - Distributed
D1: if (x(i) = 0) ∧ (� ∃j ∈ N(i) : x(j) = 1)

then x(i ]tesretne[1=:)

D2: if (x(i) = 1) ∧ (∃j ∈ N(i) : j > i ∧ x(j) = 1)
then x(i ]tesevael[0=:)

Fig. 2 Algorithm MID: Distributed Model [41]
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Case 1. Assume that some node executes Rule D1 in round R. Since no two nodes
have the same ID value, let vR be a node with maximum ID that executes Rule
D1 in round R and sets x(vR)= 1. Since vR executed Rule D1, before this time
step none of its neighbors were in S. By the choice of vR, any neighbor of vR

that also executes Rule D1 in round R has a smaller ID value than node vR.
After this round, no other neighbor of vR can execute Rule D1, since x(vR)= 1.
Furthermore, vR will never leave the set S by executing Rule D2, since it has a
larger ID than any of its neighbors also in S. Hence, vR will never move again.

Case 2. If no node executes Rule D1 in round R, let vR be a node in S, with
x(vR)= 1, that executes Rule D2 during this round, because it has a neighbor,
say wR with x(wR)= 1 and wR > vR. Assume furthermore that over all such pairs
of neighbors, vR and wR, where vR executes Rule D2, wR has the maximum ID.

By the choice of vR and wR, wR is not enabled to execute Rule D2 in round R.
Hence, wR stays in S for the rest of the round. It follows that all neighbors vR of wR

in S that execute Rule D2 in round R will ever move again.
Because of Cases 1 and 2, it follows that the number of rounds is at most the

number of nodes. �
As with Algorithm MIC, it is possible for Algorithm MID to stabilize with any

possible maximal independent set and can do so starting from the initial All-Zero
configuration.

3.2 Synchronous Model Maximal Independent Set Algorithm

In this section, we present a synchronous model, self-stabilizing Algorithm MIS,
in Figure 3, for finding a maximal independent set, due to Goddard, Hedetniemi,
Jacobs, and Srimani in 2003 [22].

We again assume that no two neighbors have the same ID and that every node
can compare its ID with the IDs of all of its neighbors.

Rule S1 says that a node not in S may enter S provided it does not have a neighbor
with larger ID already in S. If it enters S with a neighbor with smaller ID already in
S, then subsequently that neighbor with a smaller ID will be forced to leave S.

Similarly, Rule S2 says that a node must leave set S if it has a neighbor in S,
which has a larger ID.

Algorithm MIS: Maximal Independent - Synchronous
S1: if (x(i) = 0)(� ∃j ∈ N(i) : j > i ∧ x(j) = 1)

then x(i ]tesretne[1=:)

S2: if (x(i) = 1) ∧ (∃j ∈ N(i) : j > i ∧ x(j) = 1)
then x(i ]tesevael[0=:)

Fig. 3 Algorithm MIS: Synchronous Model [22]



Self-Stabilizing Domination Algorithms 493

The proofs of correctness and the running time of this algorithm are given by
Goddard et al. [22] as follows.

Lemma 5 If at any time t, the set S of nodes with x(i)= 1 does not form an
independent set, then at least one node will execute Rule S2 during the next round.

Proof Assume that at some time t there exists at least one pair of adjacent nodes,
both of which are in S, that is, the set S is not independent. Among all nodes in S,
which have neighbors also in S, let node vR have the smallest ID. It follows that this
node is enabled to execute Rule S2 and must do so during the next round. �
Lemma 6 If at any time t, the set S of nodes with x(i)= 1 forms an independent set
but does not form a maximal independent set, then at least one node will execute
Rule S1 during the next round.

Proof Assume that at some time t the set S of nodes with x(i)= 1 forms an
independent set but does not form a maximal independent set. Then there must exist
a node vR for which x(vR)= 0 and all neighbors wR ∈N(vR) have x(wR)= 0. Clearly,
node vR is enabled to execute Rule S1 during the next round. �
Theorem 4 If Algorithm MIS stabilizes, then the set S of nodes with x(i)= 1 forms
a maximal independent set.

Proof From Lemma 5, we know that if Algorithm MIS stabilizes then S must be
an independent set, and from Lemma 6, we know that if S stabilizes then S must be
a maximal independent set. �
Theorem 5 Algorithm MIS stabilizes in O(n) rounds.

Proof At time t= 1, after the first round, we know that all nodes v whose ID
is larger than the IDs of all of their neighbors will have value x(v)= 1. If they
have x(v)= 1 at time t= 0, then they are not enabled to execute Rule S2 and will
remain after the first round with x(v)= 1. If they have x(v)= 0 at time t= 0 and
will be enabled to execute Rule S1, then they have x(v)= 1 after the first round.
Furthermore, none of these largest ID nodes will ever be enabled to execute rule S2.
Since there is one largest ID node, call it v1, it will be permanently set to x(v1)= 1
after round one, and every neighbor w∈N(v1) will be permanently set to x(w)= 0
after round two.

By time t= 3, after the third round, the node, say v3, with the largest ID among
the nodes in V −N[v1] will be permanently set to x(v3)= 1, and after time t= 4, all
neighbors of v3 will have their x-values set permanently to zero.

This process will continue until all nodes are stable after at most n rounds. �
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3.3 Other Self-Stabilizing Independent Set Algorithms

Several other self-stabilizing algorithms have appeared for finding maximal inde-
pendent sets. For example, in 2007 [63] Turau presents such an algorithm using an
unfair distributed scheduler, which stabilizes in at most max{3n− 5, 2n} moves.

In 2013 [35], Hedetniemi, Jacobs, and Kennedy present several self-stabilizing
algorithms for finding disjoint independent sets S1 and S2, where S1 is a maximal
independent set, and S2 is a maximal independent set in the graph G[S1] induced by
S1.

Maximal k-Packings
An equivalent definition of an independent set is a set S of nodes having the property
that for any i, j∈ S, d(i, j) > 1, that is, no two nodes are adjacent. This immediately
generalizes to a k-packing, which is a set S of nodes having the property that for
any i, j∈ S, d(i, j) > k. It should be noted that a maximal k-packing is also a minimal
distance-k dominating set, which means that every node i ∈ S is within distance-k
of at least one node in S.

Note, in this regard, that every maximal independent set is a minimal distance-1
dominating set. Self-stabilizing maximal k-packing algorithms have been developed
by Kristiansen in his 2002 PhD thesis [49], by Gairing, Geist, Hedetniemi, and
Kristiansen in 2004 [17], Goddard, Hedetniemi, Jacobs, and Srimani in 2005 [25],
by Shi in 2012 [58], and by Trejo-Sánchez, Fernández-Zepeda, and Ramírez-
Pacheco in 2017 [62].

Maximal k-Dependent Sets
Still another equivalent definition of an independent set is that it is a set S of nodes
having the property that the maximum degree of a node in the subgraph G[S] of
G induced by S is zero. A k-dependent set is a set S of nodes having the property
that the maximum degree of a node in the induced subgraph G[S] is at most k, or
equivalently if for every i∈ S, |N(i)∩ S|≤ k.

In 2004 [18], Gairing, Goddard, Hedetniemi, and Jacobs present the following
simple, two-rule, self-stabilizing Algorithm MKD, in Figure 4, for finding a
maximal k-dependent set, using a central scheduler; it stabilizes in at most 2kn+ 3n
moves. This algorithm uses only one, non-negative integer variable f (i)∈{0, 1},
where f (i)= 1 if node i∈ S, f (i)= 0 if node i �∈S, and f (N(vi))= �j ∈ N(i)f (j).

Algorithm MKD: Maximal k-Dependent
KD1: if (f(i) = 0) ∧ (f(N(i)) ≤ k)

then f(i) := 1

KD2: if (f(i) = 1) ∧ (f(N(i)) > k)
then f(i) := 0

Fig. 4 Algorithm MKD: Central Model [18]
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Minimal Vertex Covers
A vertex cover is a set S of nodes having the property that every edge e= uv contains
a vertex in S, that is, either u∈ S or v∈ S or both. It is well known and easily
proved that the complement S of every (maximal) independent set S is a (minimal)
vertex cover, and conversely, the complement of every (minimal) vertex cover is a
(maximal) independent set. Given this, every self-stabilizing algorithm for finding
a maximal independent set S also finds a minimal vertex cover S, that is the nodes i
with x(i)= 0.

Several papers have focused on finding minimal vertex covers within a constant
factor of optimality, such as Turau in 2010 [65], Turau and Hauck in 2011 [69], and
Delbot, Laforest, and Rovedakis in 2014 [11].

4 Self-Stabilizing Maximal Matching Algorithms

Given an undirected graph G= (V, E), a matching is defined to be a set M ⊆E of
pairwise disjoint edges. That is, no two edges in M are incident with the same node.
A matching M is maximal if there does not exist another matching M′ such that
M′⊃M.

4.1 Central Model Maximal Matching Algorithm

In 1992 [38], Hsu and Huang present the first self-stabilizing algorithm for finding
a maximal matching in a distributed network G= (V, E) under a central scheduler.
They show that their algorithm stabilizes in O(n3) moves. A further running time
analysis of their algorithm is given in by Tel in 1994 [61], who shows that Algorithm
Hsu–Huang stabilizes in O(n2) moves. A subsequent paper by Hedetniemi, Jacobs,
and Srimani in 2001 [37] shows that, in fact, Algorithm Hsu–Huang, in Figure 5,
stabilizes in O(m) moves, where m= |E| is the number of edges. We present next
the Hsu–Huang algorithm.

Algorithm Hsu-Huang

M1: if (i → null) ∧ (∃j ∈ N(i) : j → i)
then i → j [accept proposal]

M2: if (i → null) ∧ (∀k ∈ N(i) : ¬(k → i)) ∧ (∃j ∈ N(i) : j → null)
then i → j [make proposal]

M3: if (i → j) ∧ (j → k) ∧ (k �= i)
then i → ]lasoporpwardhtiw[llun

Fig. 5 Algorithm Hsu–Huang, Central scheduler [38]
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Each node maintains just one variable, a pointer, which is either null, denoted
i→ null, or points to a neighbor j∈N(i), denoted i→ j. The algorithm has just three
rules.

Rule M1 allows a node i to accept a proposed match with another node j, which
is pointing to node i, provided i→ null.

Rule M2 allows a node i to propose matching with a neighbor j, which currently
is not matched (j→ null), provided no other node k is currently proposing a match
with node i by pointing to i.

Rule M3 allows a node i to withdraw a proposal if the node j to which it is
pointing is currently pointing to some other node k.

An edge between two adjacent nodes i and j becomes a permanent edge of a
maximal matching when each is pointing to the other, i→ j and j→ i, in which case
we say that nodes i and j are matched. The maximal matching M produced by the
Algorithm Hsu–Huang is the set of edges e={i, j} such that i↔ j.

We present the proof given in [37] that this algorithm stabilizes in at most 2m+ n
moves.

For every move made by a node i, there is a corresponding node j that enables
the move; we will denote such a move by (i, j, Mk), for 1≤ k≤ 3, and say that it is
an (i, j)-move. Let c(i, j) denote the number of (i, j)-moves that has been executed,
and let c(e) denote the number c(e)= c(i, j)+ c(j, i).

After a move (i, j, M1) or (j, i, M1) has been executed, we will say that i and j are
matched.

Lemma 7 After nodes i and j have been matched, neither node can make another
move.

Proof After an (i, j, M1) move, neither node i nor node j will have a null pointer
and are therefore not enabled to make move M1 nor M2. Furthermore, since i↔ j,
neither node is enabled to execute Rule M3. �
Lemma 8 After an (i, j, M2)-move, at most one more (i, j)-move is possible, namely
(i, j, M3).

Proof Let m= (i, j, M2) be a move on the edge (i, j), and let m′ = (i, j, Mk) be the
next move on the same edge. Clearly, it can only be (i, j, M3). It then suffices to
show that no further (i, j)-move can occur.

After move m, we must have i→ j and j→ null, and prior to move m′, we must
have i→ j and j→ k for some k �= i. Thus, sometime after move m and before move
m′, there must have been a move m” of the form m”= (j, k, M1), which implies that
node j is permanently matched with node k. Being permanently matched, there can
be no more (i, j)-moves. �
Lemma 9 Following a move (i, j, M2), there can be only one more move on the
edge (i, j), either (j, i, M1) or (i, j, M3).

Proof Once a proposal has been made with an (i, j, M2) move, node j is enabled
to make move M1. It must either accept a proposal from node i or another node k.
If it chooses node i and makes the move (j, i, M1), then it will become permanently
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matched with node i and no further move can be made on this edge. But if node j
chooses another node k, it will become permanently matched with node k, forcing
node i to execute M3, after which no further move can be made on edge (i, j). �
Lemma 10 Following a move (i, j, M3), there are at most two more moves on the
edge e= (i, j).

Proof If there is to be another move on edge (i, j) following a move (i, j, M3), then
node j will have to reset its pointer to null by executing M3. With both pointers set
to null, the next move on the edge can only be a proposal, (i, j, M2) or (j, i, M2). But
by Lemma 9, there can only be one more move on this edge. �

Consider an arbitrary initial state of the system, and if initially i→ j, let edge (i,
j) be called an initial edge. Let I denote the set of all initial edges. Note that initially
there can only at most n initial edges, one for each node i, thus, |I|≤ n. Recall that
we have defined c(e)= c(i, j)+ c(j, i) to count the number of moves made on the
undirected edge e= (i, j).

Lemma 11 For each edge e∈E, c(e)≤ 3 and for at most n edges, c(e)= 3.

Proof If c(e) > 0, then there is a first move m on this edge e= (i, j), either m= (i, j,
M1), or m= (i, j, M2) or m= (i, j, M3). Lemmas 7, 9 and 10 prove that c(e)≤ 3.

In order to prove that for at most n edges, c(e)= 3, let C3 ={e|c(e)= 3}. If some
edge e∈C3, then the first move on this edge must be of the form (i, j, M3). But this
implies that the initial state of node i is i→ j, and this means that e∈ I and so C3 ⊆ I,
and therefore |C3|≤ n. �
Theorem 6 For any graph G= (V, E) having order n= |V | and size m= |E|,
Algorithm Hsu–Huang stabilizes in at most 2m+ n moves under the central
scheduler.

Proof This follows from Lemma 11. �

4.2 Synchronous and Distributed Model Maximal Matching
Algorithm

In 2003 [22], Goddard, Hedetniemi, Jacobs, and Srimani show that the following
Algorithm MMDS, in Figure 6, finds a maximal matching and stabilizes for any
graph of order n in at most n+ 1 rounds, under the synchronous scheduler. Notice
that in Rule DM2, a node i having a null pointer and no node k pointing to it may
point to a neighbor j whose pointer is null, and thereby make a proposal of a match,
provided that j has the minimum ID among the neighbors of node i whose pointer in
null. The proof of correctness of this algorithm and its running time is considerably
longer than that of Algorithm Hsu–Huang and is omitted.

In 2008 [26], Goddard, Hedetniemi, Jacobs, Srimani, and Xu proved that
Algorithm MMDS also finds a maximal matching and stabilizes in at most O(n)
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Algorithm MMDS: Maximal Matching - Distributed or Syn-
chronous
DM1: if (i → null) ∧ (∃j ∈ N(i) : j → i)

then i → j [accept proposal]

DM2: if (i → null) ∧ (∀k ∈ N(i) : k �→ i) ∧ (∃j ∈ N(i) : j → null)
then i → min{j ∈ N(i) : j → null} [make proposal]

DM3: if (i → j) ∧ (j → k where k �= i)
then i → null [withdraw proposal]

Fig. 6 Algorithm MMDS: Maximal matching, distributed, and synchronous scheduler

rounds and at most O(n3) time steps under a distributed scheduler. We provide their
proof here, as it is instructive. At any point in the execution of Algorithm MMDS,
under the distributed scheduler, let M ={{i, j} : i↔ j} denote the set of matched
edges.

Recall that a round, as discussed by Dolev in [16], is a minimal sequence of time
steps where every enabled node at the start of the round either makes a move or has
its move disabled by the move of a neighbor; if the scheduler is fair, every round is
guaranteed to finish.

Theorem 7 If Algorithm MMDS stabilizes, then the set M is a maximal matching
in the graph G.

Proof It is clear that the set M is a matching since a node can only be matched
with one other node; thus, no two edges can have a node in common. Assume
that Algorithm MMDS has stabilized but M is not a maximal matching. Since
Algorithm MMDS is stable, no node is enabled to execute Rule DM3. Therefore,
every node either has a null pointer or is matched. Since M is not maximal, there
must be two adjacent nodes, both of which have null pointers. But in this case, both
nodes are enabled to execute Rule DM2, and the algorithm is not stable, which is a
contradiction. �
Lemma 12 After nodes i and j have been matched, neither node can make another
move.

Proof After nodes i and j have been matched, neither node i nor node j will
have a null pointer and are therefore not enabled to execute Rule DM1 or DM2.
Furthermore, since i↔ j, neither node is enabled to execute Rule DM3. �
Lemma 13 Consider a time step where at least one node executes Rule DM2 and
makes a proposal, but no new match occurs. Then there exists some node that is
proposed to but does not make a move.

Proof Suppose that during a time step no new match occurs, and some node i
executes DM2 and proposes to node j. If during this time step, node j does not
make a move, then the lemma is true. Suppose, therefore, that node j makes a move.
Since no match occurs, it must execute DM2 and propose to some node k. If node
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k does not make a move, the lemma is proved. One can then follow the sequence of
proposals: node i proposes to node j, which proposes to node k, which proposes to
still some other node, etc. Since the graph is finite, either a node is reached which
does not make move or there must exist a cycle of proposals.

But consider the node in the cycle having the largest ID, say u. Some node, say
v, must propose to u in this cycle. But, in turn, some node w must have proposed to
node v and node w must have a smaller ID than node u. Therefore, node v should
have proposed to w, a contradiction.

Therefore, if during some time step, no match occurs but some node proposes to
some other node, then there must be a node that receives a proposal but does not
make a move. �
Lemma 14 In the execution of Algorithm MMDS, there cannot be two consecutive
rounds without a new match.

Proof Let R be a round in which no new match occurs. If no more rounds are
executed, then the algorithm is stable and the lemma is true, so assume that there is
another round R′. We will show that a new match must occur.

Case 1. Assume that during round R no new match occurs, that is, no node executes
DM1, but some node executes DM2. Then, by Lemma 13, at that time step, some
node x is proposed, which does not make a move. It follows that x is enabled at
the end of round R to execute DM1 by the end of the following round, creating
a new match after round R′, since every node pointed to must execute DM1 for
some node pointing to it in any given round.

Case 2. Assume that during round R no node executes DM1 or DM2. That is, all
moves in R are DM3. It follows that by the end of round R, every node is either
matched, has a null pointer, or points to a neighbor that has a null pointer.

So, the first time step of the next round R′ is an execution of DM1 or DM2.
If a DM1 move is executed, then the lemma is proved. If no new match occurs, a
DM2 move must be executed during R′. Then, by Lemma 13, some node x must be
proposed to. But x was privileged at the start of the round and so must accept by the
end of the round, creating a new match. �
Theorem 8 Starting from an arbitrary state, Algorithm MMDS stabilizes in at most
n rounds.

Proof By Lemma 12, all matched nodes remain matched. By Lemma 14, there
cannot be two consecutive rounds without a new match. Since every new match
matches two nodes, the theorem follows. �

The following result shows that the number of time steps is a bit larger than for
previous algorithms:

Lemma 15 Algorithm MMDS stabilizes in at most O(n3) time steps under a
distributed scheduler.

Proof We know there are at most O(n) time steps where a new match occurs.
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We claim that there are at most n2 time steps in which some node executes DM2
but no new match occurs. By Lemma 13, in each such time step there is some node
that is pointed to but does not make a move. Each node can be pointed to only n− 1
times. Thus, the claim follows.

In between the above time steps, each node can execute DM3 at most once. Thus
the total number of time steps between two matches is at most O(n2). Since there
can be at most n/2 matches, it follows that the total number of time steps is at most
O(n3). �

4.3 Other Self-Stabilizing Matching Algorithms

In 2001 [4] Blair, Hedetniemi, Hedetniemi and Jacobs present a self-stabilizing
algorithm for finding a maximum, rather than the typical maximal, matching in an
arbitrary tree.

In 2006 [29] Goddard, Hedetniemi and Shi present an anonymous self-stabilizing
algorithm for finding a 1-maximal matching in a tree, and ring of length not divisible
by 3. Their algorithm converges in O(n4) moves under a central daemon.

In 2007 [52], Manne, Mjelde, Pilard, and Tixeuil present a self-stabilizing
algorithm for finding a maximal matching, using a distributed scheduler, which
stabilizes in O(|E|) rounds, improving on previous bounds of O(n2) and O(�|E|).
Their algorithm also has the same running time as previous self-stabilizing, maximal
matching algorithms, using central, distributed, and synchronous schedulers.

In 2009 [53], Manne, Mjelde, Pilard, and Tixeuil present a self-stabilizing
algorithm for the maximal matching problem that improves the running time of
the previous best algorithm for a distributed scheduler and at the same time meets
the bounds of the previous best algorithms for the sequential and distributed fair
schedulers. Their algorithm requires unique IDs at distance two and uses a Boolean
variable at each node, which enables neighbors to communicate whether this node
is already matched.

In 2015 [2], Asada and Inoue present a self-stabilizing algorithm for finding a
1-maximal matching, which is guaranteed to stabilize, under the anonymous model,
with a fair central scheduler, but only when restricted to graphs having no cycles of
lengths a multiple of 3; this includes all bipartite graphs, including grid graphs and
trees. Since it stabilizes in O(|E|) moves, it stabilizes in O(n) moves for trees and
cycles Cn, for n not a multiple of 3.

In 2016 [8], Cohen, Lefévre, Maâmra, Pilard, and Sohier present a self-
stabilizing algorithm for finding a maximal matching in an anonymous network. The
running time is O(n2) moves with high probability, under the adversarial distributed
scheduler. Among all self-stabilizing algorithms using a distributed scheduler and
the anonymous model, their algorithm provides the best known running time.
Moreover, the previous best known algorithm working under the same scheduler
and using IDs has an O(m) running time, leading to the same order of growth than
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their anonymous algorithm. Although their algorithm does not make the assumption
that a node can determine whether one of its neighbors points to it or to another
node, it still has the same asymptotic behavior.

In 2016 [42], Inoue, Ooshita, and Tixeil present a self-stabilizing 1-maximal
matching algorithm, using the unfair distributed scheduler. Their algorithm is
restricted to graphs having no cycles of length a multiple of 3 and stabilizes in
O(|E|) moves. It also provides a 2/3-approximation of a maximum matching in
these graphs, which improves on the 1/2-approximation guaranteed by any maximal
matching.

Generalized b-Matchings
Given a graph G= (V, E), let Ei ={(i, j)∈E} denote the set of edges incident to a
node i and let d(i)= |Ei| denote the degree of node i.

Let b : V →{0, 1, . . . , n− 1} define a bound b(i) on the number of edges that
can be incident to node i. A subset M ⊆E is called a b-matching if for all 1≤ i≤ n,
b(i)≤ d(i). A b-matching M is called maximal if there does not exist a b-matching
M′ such that M ⊂M′.

In 2003 [23], Goddard, Hedetniemi, Jacobs, and Srimani present a self-
stabilizing maximal b-matching algorithm that stabilizes in O(m) moves under
an unfair central scheduler, independently of the particular b-values b(i).

Self-Stabilizing Matching Approximation Algorithms
In 2011 [54], Manne, Mjelde, Pilard, and Tixeuil present the first self-stabilizing
algorithm for finding a 2/3-approximation of a maximum matching in an arbitrary
graph. Their algorithm stabilizes in at most O(n2) rounds, under a distributed
scheduler. However, it might make an exponential number of moves.

In 2011 [68], Turau and Hauck present a more refined analysis of the running
time of the first self-stabilizing algorithm for computing a 2-approximation of a
maximum matching by Manne and Mjelde [51], who showed that their algorithm
stabilizes in O(2n) moves under a central scheduler, and in O(3n) moves under a
distributed scheduler. Turau and Hauck show that the Manne–Mjelde algorithm, in
fact, stabilizes in O(mn) moves under a central scheduler and, when modified, can
stabilize in O(mn) moves under a distributed scheduler.

In 2016 [10], Datta, Larmore, and Masuzawa present an anonymous-model,
silent self-stabilizing algorithm for computing the maximum matching number of
any tree. Their algorithm stabilizes in O(n · diam) moves, where diam is the diameter
of the tree.

In 2017 [9], Cohen, Maâmra, Manoussakis, and Pilard present the first poly-
nomial, self-stabilizing algorithm for finding a 2/3-approximation of a maximum
matching in an arbitrary graph. The previous best known algorithm, by Manne et
al. in 2011 [54], has a sub-exponential time running time under the distributed
scheduler. The algorithm by Cohen et al. is an adaptation of the Manne et al.
algorithm, works under the same scheduler, but stabilizes in O(n3) moves.

In 2017 [43], Inoue, Ooshita, and Tixeuil present an ID-based, self-stabilizing,
1-maximal matching algorithm that works under the distributed unfair scheduler for
arbitrary graphs. It finds a 2/3-approximation of a maximum matching and stabilizes
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in O(|E|) moves. The algorithm assumes that node IDs are distinct up to distance
three.

The proposed algorithm closes the running time gap between two recent results:
in 2016 [42], Inoue et al. present a 1-maximal matching algorithm that stabilizes in
O(|E|) moves but requires that the graph not contain a cycle of length a multiple of
three; the algorithm of Cohen et al. in 2017 [9] stabilizes on arbitrary graphs but
makes O(n3) moves. The Inoue–Ooshita–Tixeuil algorithm makes the same O(|E|)
moves but stabilizes on arbitrary graphs.

Strong Matchings
The definition of a maximal matching can be generalized to distance-k matchings.
In particular, a strong matching is a matching M ⊆E having the property that no
two edges in M are connected by an edge. This is equivalent to saying that for any
two edges e1, e2 ∈M, d(e1, e2) > 1. In 2005 [25], Goddard, Hedetniemi, Jacobs, and
Srimani present an exponential running time, self-stabilizing algorithm for finding
a maximal strong matching; this algorithm has only one rule; see also [24] in 2003
by the same authors.

5 Self-Stabilizing Dominating Set Algorithms

In this section, we present self-stabilizing algorithms for finding minimal dominat-
ing sets in arbitrary connected graphs G= (V, E), first under a central scheduler, then
under a synchronous scheduler, and finally under an unfair distributed scheduler. We
conclude this section by presenting the first self-stabilizing algorithm for finding a
minimal total dominating set.

A dominating set is a subset S of nodes such that ∀i∈V : N[i]∩ S �=∅, that is,
every node i is either a member of S or is adjacent to a node j in S. A dominating set
S is minimal if it does not contain a proper subset that is also a dominating set. It is
important to know that a dominating set S is minimal if and only if every node i∈ S
is either (i) not adjacent to any other vertex in S, in which case we say that node i
is its own private neighbor or (ii) node i is the only vertex in S, which dominates
some vertex j not in S, j ∈ S, in which case we say that node j is an external private
neighbor of node i.

5.1 Central Model Minimal Dominating Set Algorithm

The following Algorithm MDC, in Figure 7, is the first self-stabilizing algorithm
for finding a minimal dominating set in an arbitrary graph, due to Hedetniemi,
Hedetniemi, Jacobs, and Srimani in 2003 [32]; it assumes a central scheduler.
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Algorithm MDC: Minimal Dominating - Central
D1: if (x(i) = 0) ∧ (∀j ∈ N(i))(x(j) = 0)

then x(i ]tesretne[1=:)
D2: if (x(i) = 1) ∧ (� ∃j ∈ N(i))(j → i) ∧ (∃k ∈ N(i))(x(k) = 1)

then x(i ]tesevael[0=:)

P1: if (x(i) = 1) ∧ (i �→ null)
then i → null [no private neighbor]

P2: if (x(i) = 0) ∧ (∃ unique j ∈ N(i))((x(j) = 1) ∧ (i �→ j))
then i → j [point to private neighbor]

P3: if (x(i) = 0) ∧ (∃ more than one j ∈ N(i))((x(j) = 1) ∧ (i �→ null))
then i → null [no private neighbor]

Fig. 7 Algorithm MDC: Central Model [32]

The first rule D1 says that if a node i is currently not a member of the dominating
set S (x(i)= 0) and no neighbor is in S, then it is enabled to enter S (by setting
x(i)= 1).

Rule D2 says that if a node i is currently in S (x(i)= 1) but is not a private
neighbor of any vertex (no node is pointing to i) and node i has a neighbor in S,
then node i can leave the set S (by setting x(i)= 0).

Algorithm MDC has three kinds of pointer moves.
Rule P1 says that if node i is in S, its pointer should be null.
Rule P2 says that if node i is not in S and has a private neighbor j in S, then it

should point to j.
Rule P3 says that if node i is not in S and has two or more neighbors in S, then

its pointer should be null.
The proof of correctness of Algorithm MDC proceeds as follows. We will omit

some of the details. Let St denote the set of nodes i having x(i)= 1 at time t.

Lemma 16 If at any time t, St is not a minimal dominating set, then Algorithm
MDC is not stable.

Proof Suppose that Algorithm MDC is stable but the set S is not a dominating set.
If S is not a dominating set, then there exists a node i not in S (x(i)= 0) and no
neighbor of i is in S. This means that node i is enabled to execute D1, and thus,
Algorithm MDC is not stable.

Assume therefore that S is a dominating set but is not a minimal dominating set.
Thus, there exists a node i in S such that S−{i} is a dominating set. This implies that
node i must have a neighbor, say k in S, since it is not its own private neighbor, and
node i does not have an external private neighbor.

There must also be a neighbor of i, say j, with j→ i, for if not, then node i is
enabled to execute D2. Furthermore, j �∈S, else node j is enabled to execute P1. In
addition, node j must not have another neighbor than i in S, else it is enabled to
execute P3. Therefore, j is not in S, has exactly one neighbor in S, namely i, and
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therefore, node i has a private neighbor, contradicting our assumption that it has no
private neighbor. �
Lemma 17 If a node i executes D1, then it will never again make move D1 or D2.

Proof If a node i executes D1 at some time t, then none of its neighbors are in St,
meaning that for all neighbors j∈N(i), x(j)= 0. As long as x(i)= 1, it could only
execute D2, but it can only execute D2 if it has a neighbor j with x(j)= 1. �
Lemma 18 A node i can execute at most two D1 or D2 moves.

Proof If a node i makes its first move D1, then by Lemma 17, it will never make
another D1 or D2 move. If node i makes its first move D2, then it can only make
move D1, after which it can make no further D1 or D2 moves. �
Lemma 19 There can be at most n consecutive pointer moves, P1, P2, or P3.

Proof If a node i executes a pointer move P1, P2, or P3, and subsequently, there
are no moves D1 or D2 made by any node, then node i is not enabled to execute P1,
P2, or P3. Therefore, in any sequence of consecutive pointer moves, each node can
only execute one pointer move. �
Lemma 20 Algorithm MDC can make at most n2 + n moves.

Proof By Lemma 18, there can be at most 2n moves D1 and D2. By Lemma 19,
there can be at most n consecutive pointer moves between successive D1 or D2
moves. �
Theorem 9 Algorithm MDC finds a minimal dominating set and stabilizes in O(n2)
moves.

Proof This follows from Lemmas 16 and 20. �

Algorithm MDS: Minimal Dominating - Synchronous
S ≡ { i : x(i) = 1 }
SD1: if (x(i) = 0) ∧ c(i) �= |{j ∈ N(i) : x(j) = 1}|

then c(i) = |{j ∈ N(i) : x(j) = 1}| [correct S-neighbor count]

SD2: if (x(i) = 0) ∧ (|N(i) ∩ S| = 0) ∧ (c(i) = 0) ∧ (� ∃j ∈ N(i)((j <

i) ∧ (c(j) = 0))
then x(i ]Stesretne[1=:)

SD3: if(x(i) = 1)∧(|N(i)∩S| > 0)∧(∀j ∈ N(i)(if x(j) = 0 then c(j) :=
2)

then x(i) := 0 and

c(i) :=
{

1 if |N(i) ∩ S| = 1
2 otherwise [leave set S]

Fig. 8 Algorithm MDS: Synchronous Model [26]
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5.2 Synchronous Model Minimal Dominating Set Algorithm

We next present Algorithm MDS, in Figure 8, which is the first, synchronous model,
self-stabilizing algorithm for finding a minimal dominating set, due to Goddard,
Hedetniemi, Jacobs, Srimani, and Xu in 2008 [26]; an earlier 2003 version of
this algorithm, by Xu, Hedetniemi, Goddard, and Srimani [71]. As with previous
synchronous model algorithms, this algorithm assumes that all nodes have unique
ID values. Again, x(i)= 0 means that node i is not in the dominating set S, and
x(i)= 1 means that node i is in S. The variable c(i)∈{0, 1, 2} keeps count of the
number of neighbors of node i in the set S, where c(i)= 2 means that node i has 2
or more neighbors in S. Thus, if |{j∈N(i) : x(j)= 1}|≥ 2, then we set c(i)= 2. The
value of c(i) is not used if node i is a member of S.

Rule SD1 makes sure that a node i not in S has the correct value of c(i).
Rule SD2 says that a node i can enter S if it has no neighbor in S, its current value

c(i)= 0 is correct, and its ID is smaller than any neighbor j with c(j)= 0.
Rule SD3 says that a node i is enabled to leave S, by setting x(i)= 0 and setting

a correct value of c(i), if it has at least one neighbor in S, and according to the
c(j)-values of its neighbors, it has no private neighbors in S.

We first show the correctness.

Theorem 10 If Algorithm MDS stabilizes, then the set S={i : x(i)= 1} is a minimal
dominating set.

Proof Suppose that Algorithm MDS is stable but S is not a dominating set. Thus,
there is a node i such that S∩N[i]=∅. Among all such undominated nodes, let i
have the minimum ID. Then, x(i)= 0. Further, since Algorithm MDS is stable, node
i is not enabled to execute Rule SD1, and therefore, c(i)= 0 is correct.

Consider any neighbor j∈N(i) whose ID j is smaller than i, j < i. Then, x(j)= 0,
but by the choice of i, j must be dominated by a node in S. So, since node j is not
enabled to execute Rule SD1, c(j) > 0 must be true. It follows then that node i is
enabled to execute Rule SD2, a contradiction. Therefore, S is dominating.

Suppose that S is a dominating set but is not minimal. Then there is a node
i∈ S such that S−{i} is a dominating set. It follows that, for each j∈N[i], we
have |N[j]∩ S|> 1. If j∈N(i)− S, then by Rule SD1, since x(j)= 0, c(j)= 2. Hence,
node i must be enabled to execute Rule SD3, a contradiction. Thus, S is a minimal
dominating set. �

We next show that Algorithm MDS stabilizes.

Lemma 21 If x(i) changes from 0 to 1, then x(i) will never again change.

Proof If x(i) changes from 0 to 1, then by Rule SD2, all nodes j in the neighborhood
N(i) must have x(j)= 0. By Rule SD2, only the node of i and j with smaller ID is
enabled to execute Rule SD2 in the same time step according to the synchronous
model, so x(j) does not change in the same time step. Therefore, after this time step
no neighbor of i is in S. After that, no neighbor j of i can enter S since there is at least
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one node (namely i) in S∩N(j), and i will not leave S since none of its neighbors
are in S. �
Theorem 11 Starting from any arbitrary state, Algorithm MDS stabilizes in at most
4n+ 1 time steps under the synchronous scheduler.

Proof By Lemma 21, each node can change its x-value at most twice. Therefore,
there can be at most 2n changes of x-values on all n nodes. If there is no change in the
x-value of any node during a time step, then the time step only involves corrections
of c-values. The change in a c-value is determined only by x-values. Since we are
working with the synchronous scheduler, there cannot be two consecutive time steps
without a change in x-value. Therefore, the upper bound of execution time is 4n+ 1
time steps. �

One can also show that Algorithm MDS converges under the distributed sched-
uler.

Theorem 12 Algorithm MDS stabilizes with a minimal dominating set in at most
5n moves under the distributed scheduler.

Proof We claim that every node can make at most 5 moves under a distributed
scheduler.

Case 1. Assume that for a node i, c(i) never changes to 0. By Lemma 21, if i
executes Rule SD2 and changes from x(i)= 0 to x(i)= 1, then x(i) will never
change again. Thus, we may assume that after its first move, x(i)= 0. So, apart
from possibly its first move being Rule SD3, node i makes only Rule SD1 moves.
Each such move changes the value of c(i), which must oscillate between 1 and
2. Each 1-to-2 move is due to a neighbor entering S; once two neighbors have
entered, i has two neighbors in S until the end of the algorithm, and so cannot
move again. It follows that the longest possible sequence of changes for c(i) is
?–2–1–2–1–2.

Case 2. Assume that c(i) changes to 0 at some point. No neighbor enters before
c(i) goes to 0. So before the move c(i)= 0, node i may make at most two moves
(a leave move or a c(i)= 2 move, perhaps followed by a c(i)= 1 move). After
c(i) becomes 0, i may make either an enter move, or a c(i)= 1 move, perhaps
followed by a c(i)= 2 move.

�

5.3 Distributed Model Minimal Dominating Set Algorithm

We next present a 4n-move, self-stabilizing Algorithm MDD, in Figure 9, for finding
a minimal dominating set using an unfair distributed scheduler, by Chiu, Chen,
and Tsai in 2014 [7]. An earlier 2013 version of this algorithm by Chiu and Chen
appears in [6]. For reasons of consistency with the notation used in our previous
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Algorithm MDD: Minimal Dominating - Distributed
R1: if (x(i) = 00) ∧ |N(i) ∩ S| = 0 ∧ (� ∃j ∈ N(i))(x(j) = 00) ∧ (j < i))

then x(i retne[1=:) S]

R2: if (x(i) = 1) ∧ |N(i) ∩ S| = 1 ∧ (� ∃j ∈ N(i))(x(j) = 01)
then x(i) := 01 [leave with unique private neighbor]

R3: if (x(i) = 1) ∧ |N(i) ∩ S| > 1 ∧ (� ∃j ∈ N(i))(x(j) = 01)
then x(i) := 02 [leave with private neighbors]

R4: if (x(i) = 00) ∧ |N(i) ∩ S| = 1
then x(i) := 01 [ stay out with unique private neighbor]

R5: if (x(i) = 01 ∨ 00) ∧ |N(i) ∩ S| > 1
then x(i) := 02 [stay out with private neighbors]

R6: if (x(i) = 01 ∨ 02) ∧ |N(i) ∩ S| = 0
then x(i) := 00 [stay out with no S-neighbors]

Fig. 9 Algorithm MDD: Distributed Model [7]

self-stabilizing algorithms, we will change the notation used by Chiu, Chen, and
Tsai to be similar to that used in this chapter.

Algorithm MDD assigns to each node i a four-valued variable x(i), which defines
the local state of node i, such that x(i)∈{1, 00, 01, 02}. As before, at any time,
S={i : x(i)= 1} and all such nodes are called S-nodes. All other nodes, those in
states 00, 01, or 02, are called Out nodes, nodes in S.

A node in state 1 is a member of S.
A node in state 00 is not in S and has no neighbor in S.
A node in state 01 is not in S but has a unique neighbor in S.
A node in state 02 is not is S but has at least two neighbors in S
The correctness of Algorithm MDD can be proved as follows: we omit the

details.

Lemma 22 If Algorithm MDD is stable, then S is a minimal dominating set.

Lemma 23 If a node executes R1, it will never make another move.

Lemma 24 A node can execute R6 at most once.

Theorem 13 Algorithm MDD stabilizes under an unfair distributed scheduler in at
most 4n− 2 moves.

5.4 Minimal Total Dominating Set Algorithm

In this section, we present Algorithm MTDC, in Figure 10, which is the first self-
stabilizing, minimal total dominating set algorithm, due to Goddard, Hedetniemi,
Jacobs, and Srimani in 2005 [25]; it assumes the central scheduler model (see also
[21] in 2003 by the same authors). Recall that a total dominating set of a graph
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Algorithm MTDC: Minimal Total Dominating - Central
R1: if (x(i) �= pointedto(i)) ∨ (p(i) �= q(i))

then x(i) := pointedto(i) and p(i) = q(i)

Fig. 10 Algorithm MTDC: Central Model [25]

G= (V, E) is a set S⊆V having the property that N(S)=V , which means that
every node in S is adjacent to at least one node in S, and every node v∈ S is adjacent
to another node w∈ S, where v �=w. This means that a graph G does not have a
total dominating set if it has an isolated node. Therefore, we assume that G is a
nontrivial connected graph. This algorithm is based on the fact that in any minimal
total dominating set S, every node v∈ S has an external private neighbor.

In this algorithm, each node i has two variables:

(i) a Boolean x, where x(i)= true if node i is in the minimal total dominating set S,
and x(i)= false if node i is not in S;

(ii) a pointer variable p(i) such that if p(i)= j then i→ j.

We need the following three definitions:

Definition 1 minbr(i)=min{j : j∈N(i)}, the neighbor of i having the smallest ID.

Definition 2 Boolean: pointedto(i)= (∃j∈N(i))(j→ i)

Definition 3 q(i) is the following pointer expression:

q(i) :=
⎧
⎨

⎩

minbr(i) ifN(i) ∩ S = ∅
j ifN(i) ∩ S = {j}
null if|N(i) ∩ S| ≥ 2

The minimal total dominating set algorithm has but one rule.
This one rule says that if there is a node i pointing to a node j, then node j should

become a member of the minimal total dominating set by setting x(j)= true. It also
says that if a node i is in S (x(i)= true) and has no neighbors in S, then it should
point to that node j in its neighborhood having the smallest ID, in which case node
j must become a member of S by setting node(j)= true. A node having two or more
neighbors in S sets its pointer to null, and if it has exactly one neighbor i in S, then
it must point to that node, informing it that node i must remain in S.

The correctness of this algorithm can be shown as follows.

Lemma 25 If Algorithm MTDC stabilizes, then the set S={i : x(i)= true} is a
minimal total dominating set.

Proof We first show that if Algorithm MTDC is stable, then S is a total dom-
inating set. If S is not a total dominating set, then there must exist a node
i such that N(i)∩ S=∅. Since the algorithm is stable, it must be true that
p(i)= q(i)=minbr(i) and minbr(i) �∈S. But this implies that pointedto(minbr(i)) is
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true but x(minbr(i))= false so minbr(i) is enabled to execute Rule R1, a contradic-
tion.

Next, we must show that S is a minimal total dominating set. Assume that there
is some node j such that S−{j} is a total dominating set. Since j∈ S, x(j)= true and
there must be some node i∈N(j) for which p(i)= j. But since the algorithm is stable,
it must be the case that since p(i)= q(i), node j must be the unique neighbor of i in
S. Thus, the removal of j from S will leave node i undominated, a contradiction. �

We say that node i invites node j if at some time t, node i has no neighbor in S
and then executes Rule R1, causing p(i)= q(i)= j. In order for a node j to become a
member of S, it must either be pointed to from an initial erroneous state or be invited
to be a member by being pointed to by a node i in S.

In order to show that Algorithm MTDC stabilizes, we note that if the set S
does not change its membership, then every node can only execute at most once,
to correct its pointer value. We say that an in-move is a move that causes x(i) to
become true.

Lemma 26 If during some time interval, there is no in-move by a node having a
larger ID than some node i, then during this time interval node i can make at most
two moves.

Proof The first in-move made by a node i maybe have been because a neighbor
j∈N(i) happened to be pointing to i. A second in-move made by node i must be by
invitation. So suppose that node i is invited by a neighbor, node j. Then j must be
the smallest node in N(i) since minbr(j)= i and at the time of the invitation, all other
nodes in N(i) are not in S.

By our assumption that during some time interval there is no in-move by a node
having a larger ID than node i, their membership in S does not change, so node j
remains pointing to i throughout the time interval, and node i remains in S for the
remainder of the time interval. �
Theorem 14 Algorithm MTDC always stabilizes and finds a minimal total domi-
nating set.

Proof It suffices to show that every node makes only a finite number of in-moves.
By Lemma 26, node n, which has the largest ID, makes at most two in-moves.
During each of the three time intervals between such in-moves, using Lemma 26
again, node n− 1 can make at most two in-moves. By repeating this argument, it
is easy to show that each node can make only finitely many in-moves during the
intervals in which larger nodes are inactive. �

It can be shown, although we will not do so here, that in the worst case, Algorithm
MTDC can make an exponential number of moves. This is our first example of a
worst-case exponential time self-stabilizing algorithm. In the field of self-stabilizing
algorithms, this is often acceptable, since on average, these algorithms can stabilize
fairly quickly.

In 2014 [3], Belhoul, Yahiaoui, and Kheddouci present the first polynomial, self-
stabilizing algorithm for finding a minimal total dominating set in an arbitrary graph.
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They also generalize their algorithm to find a minimal total k-dominating set. Both
of their algorithms stabilize in O(mn) moves.

6 Other Self-Stabilizing Domination Algorithms

The reader is referred to an excellent 2010 survey by Guellati and Kheddouci [31]
on self-stabilizing algorithms for finding maximal independent sets and minimal
dominating sets. Several other papers have been published, which present self-
stabilizing, minimal dominating set algorithms.

In 2003 [71], Xu, Hedetniemi, Goddard, and Srimani present a synchronous,
self-stabilizing algorithm for finding a minimal dominating set, which stabilizes
in 4n rounds, starting from any arbitrary global state. A round is defined as the
period of time during which every node receives messages from all of its neighbors.
The algorithm is general in the sense that it can stabilize with every possible
minimal dominating set, as distinct from other self-stabilizing minimal dominating
set algorithms, which stabilize only with independent dominating sets.

In 2015 [15], Ding, Wang, and Srimani present a synchronous model, self-
stabilizing algorithm for finding a minimal dominating set, which finds a dominating
set in just two rounds, but then takes additional n rounds to obtain a minimal
dominating set.

Distance-k Dominating Sets
A dominating set S⊆V is called a distance-k dominating set if for every node j ∈ S

there exists a node i∈ S such that d(i, j)≤ k.
In 2008 [50], Lin, Huang, Wang, and Chen present a self-stabilizing algorithm

for finding a minimal distance-2 dominating set in an arbitrary graph.

Distance-k Independent Dominating Sets
Given a graph G= (V, E), a distance-k independent dominating set, also called
a maximal distance-k independent set, is both a distance-k independent set and a
distance-k dominating set. That is, given any node v∈ S, no other node u∈ S is at
distance k or less from v, and any node w ∈ S is at distance k or less from some
node in S.

In 2014 [44], Johnen presents a self-stabilizing algorithm for finding a distance-k
independent dominating set, under the unfair distributed scheduler, which stabilizes
in at most 4n+ k rounds. This is further discussed in a subsequent paper by the
author in 2015 [45].

Disjoint Dominating Sets
A well-known theorem of Ore [56] states that in any graph having no isolated

nodes, the complement S of every minimal dominating set is a dominating set. This
means that any self-stabilizing algorithm for finding a minimal dominating set in
effect finds two disjoint dominating sets, although the complement S need not be a
minimal dominating set.
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Algorithm 2DSC: 2 Dominating Sets - Central
S1: if (x(i) = 0)(∀j ∈ N(i))(x(j) = 0)

then x(i tesretne[1=:) V1]

S2: if (x(i) = 1) ∧ (∀j ∈ N(i))(x(j) = 1)
then x(i tesretne[0=:) V0]

Fig. 11 Algorithm 2DS: Central Model [32]

Algorithm Unfriendly - Central
S1: if (C(i) = Blue) ∧ (B(i) > R(i))

then C(i) = Red

S2: if (C(i) = Red) ∧ (R(i) > B(i))
then C(i) = Blue

Fig. 12 Algorithm Unfriendly: Central Model [34]

A dominating bipartition is a bipartition V =V0 ∪V1 into two disjoint dominat-
ing sets, neither of which needs to be a minimal dominating set.

In 2003 [32], Hedetniemi, Hedetniemi, Jacobs, and Srimani present the following
very simple, self-stabilizing Algorithm 2DSC, in Figure 11, under the central
scheduler, for creating a dominating bipartition.

This algorithm stabilizes in at most n− 1 moves.
An unfriendly partition is a two-coloring of the nodes of a graph, say with colors

Red and Blue, having the property that every node colored Red has at least as many
Blue neighbors as it has Red neighbors, and every node colored Blue has at least
as many Red neighbors as Blue neighbors. These partitions were originally defined
and studied by Borodin and Koshtochka in 1977 [5], Aharoni, Milner, and Prikry in
1990 [1] and Shelah and Milner in 1990 [57]. They observed the following simple
result.

Theorem 15 Every finite connected graph G of order n≥ 2 has an unfriendly
partition.

It is immediate from the definition that every unfriendly partition V =R∪B
is a bipartition into two dominating sets. In 2013 [34], Hedetniemi, Hedetniemi,
Kennedy, and McRae present three self-stabilizing algorithms for finding an
unfriendly partition, all using the central scheduler model. The first and simplest
of these is Algorithm Unfriendly—Central, in Figure 12, where C(i)∈{Blue, Red},
B(i)= |{j : j∈N(i)∧C(j)=Blue}| equals the number of Blue neighbors of node i
and R(i)= |{j : j∈N(i)∧C(j)=Red}| equals the number of Red neighbors of node i.

This algorithm stabilizes with an unfriendly partition in at most m= |E| moves.
In 2015 [36], Hedetniemi, Jacobs, and Kennedy, using the distance-2 model, in

which nodes can utilize state information of all nodes within distance-2 in making a
move, present a self-stabilizing algorithm for finding one maximal independent set,
and a second disjoint minimal dominating set. This algorithm stabilizes in O(n2)
moves, which can be converted to a distance-1 model algorithm that makes O(n5)
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Algorithm Optimally Efficient - Central
S1: if (x(i) = 0) ∧ (|N0(i)| > |N1(i)| + 1SNbr(i)

then x(i) = 1

S2: if (x(i) = 1) ∧ (|N2(i)| ≥ |N1(i)| − 1SNbr(i))
then x(i) = 0

Fig. 13 Algorithm Optimally Efficient: Central Model [66]

moves. They also present a distance-2, self-stabilizing algorithm for finding two
disjoint minimal dominating sets, which also stabilizes in O(n2) moves. Two other
self-stabilizing, unfriendly partition algorithms are also given, using the distance-
2 model, where the objective is to increase the number of bicolored edges in the
resulting unfriendly partition.

Optimally Efficient Sets
The efficiency of a set S⊆V is defined as ε(S) = |{v ∈ S : |N(v)∩S| = 1}|, which
equals the number of nodes not in S that are adjacent to exactly one node in S, or
are dominated exactly once by the nodes in S. The efficiency of a graph G is defined
to be ε(G)=max{ε(S) : S⊆V }. A set S is called optimally efficient if adding nodes
cannot increase its efficiency, but deleting a node decreases its efficiency.

In 2012 [33], Hedetniemi, Hedetniemi, Jiang, Kennedy, and McRae present a
self-stabilizing algorithm, under the central scheduler and the distance-2 model,
to find a maximal optimally efficient set S in O(n2) distance-2 moves, or O(n5)
distance-1 moves.

In 2013 [66], Turau presents two self-stabilizing algorithms, the first of which
considerably improves on the algorithm mentioned above, by Hedetniemi et al.
[33], for finding an optimally efficient set, and which stabilizes in O(n5) moves.
Algorithm Optimally Efficient—Central, in Figure 13, by Turau, operating under
the unfair distributed scheduler, stabilizes in just O(nm) moves. Since this algorithm
has just two rules, we present this algorithm. Once again we change the notation
to be similar to that used throughout this chapter. This algorithm is designed for a
central scheduler.

Let Nk(i)={j∈N(i) : x(j)= 0∧NS(j)= k} denote the neighbors of node i having
x(j)= 0 and exactly k neighbors in S. Let 1SNbr(i)= 1 if node i has exactly one
neighbor in S, and 1SNbr(i)= 0 otherwise.

The second algorithm in [66] is the first self-stabilizing algorithm, sequential or
otherwise, which computes the exact value of the efficiency ε(T) of a tree T.

7 Avenues for Further Study

As indicated in the introduction to this chapter, research on self-stabilizing dom-
ination algorithms has only been going on for about 20 years. Furthermore,
researchers who design self-stabilizing, domination-related algorithms are relatively
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few in number. But given the relative ease of designing self-stabilizing domination
algorithms, and their usefulness, it may be a fruitful area for both graph theorists
and algorithms researchers.

In this closing section, we will list a number of areas of domination in
graphs in which self-stabilizing algorithms have either not yet been designed or
in which relatively little has been done. Keep in mind that for any one type of
domination listed below, self-stabilizing algorithms can be designed with three
types of schedulers: central, synchronous, and distributed; they can be ID-based or
anonymous; and they can use distance-k knowledge for varying values of k. Thus,
one always has a lot of design options. The reader is challenged to see if you can
design a self-stabilizing algorithm for finding a minimal dominating set of any of
the following types.

1. Paired domination. A dominating set S⊆V is called a paired dominating set
if the induced subgraph G[S] has a perfect matching.

2. Restrained domination. A dominating set S⊆V is called a restrained domi-
nating set if the subgraph G[S] induced by S contains no isolated vertices, that
is, every vertex in S has at least one neighbor in S.

3. Signed domination. A function f : V →{−1, 1} is called a signed dominating
function if for every vertex v∈V , f (N[v])= �w ∈ N[v]f (w)≥ 1.

4. Minus domination. A function f : V →{−1, 0, 1} is called a minus dominating
function if for every vertex v∈V , f (N[v])= �w ∈ N[v]f (w)≥ 1.

5. Odd domination. A dominating set S is called an odd dominating set if for
every vertex v∈V , |N[v]∩ S| is an odd number.

6. Secure domination. A dominating set S is called a secure dominating set if for
every vertex v ∈ S there exists an adjacent vertex u∈ S such that S−{u}∪{v} is
a dominating set.

7. Roman domination. A function f : V →{0, 1, 2} is called a Roman dominating
function if every vertex v∈V with f (v)= 0 is adjacent to at least one vertex
w∈N(v) with f (w)= 2.

8. Cost-effective domination. A dominating set S⊆V is called a cost-effective
dominating set if every vertex v∈ S has at least as many neighbors in S as it has
in S.

9. Capacity-k domination. A dominating set S={v1, v2, . . . , vr}⊆V is called a
capacity-k dominating set if there exists a partition V ={V1, V2, . . . , Vr} such
that for every 1≤ i≤ r, (i) vi ∈Vi, (ii) Vi ⊆N[vi], and (iii) |Vi|≤ k.

10. Connected domination. This deserves some discussion. Given a graph G= (V,
E), a dominating set S is a connected dominating set if the subgraph G[S]
induced by S is connected. The problem of finding a minimal connected
dominating set in a graph has been quite a challenge using the self-stabilizing
paradigm. Indeed, is such an algorithm even possible, given that each node only
has local knowledge of the graph?

In 2010 [46], Kamei and Kakugawa present a self-stabilizing algorithm that
approximates the connected domination number γ c(G) within a factor of at
most 7.6γ c(G)+ 1.4. Their algorithm stabilizes in O(k) rounds, where k is the
depth of an input breadth-first-search spanning tree of G.
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In 2010 [30], Goddard and Srimani present two self-stabilizing algorithms
for finding reasonably minimal connected dominating sets, but not guaranteed
to be minimal, the second of which constructs a breadth-first spanning tree and
then discards the leaves. Their algorithms run with anonymous nodes and with
a distributed scheduler.

In 2012 [47], Kamei and Kakugama improve on their previous result by
presenting a self-stabilizing algorithm, which approximates the connected
domination number within a factor of 6, when restricted to unit-disk graphs.

In 2013 [48], Kamei, Kakugawa, Devismes, and Tixeuil present a self-
stabilizing algorithm that approximates the maximum number of leaves in any
spanning tree of a graph G within a factor of 1/3, meaning that it is guaranteed
to have at least 1/3 of the maximum possible number of leaves. Their algorithm
stabilizes in at most O(n2) rounds.

11. Weakly connected domination. Given a graph G= (V, E), a dominating set S
is called weakly connected if the subgraph induced by the edges having at least
one node in S is connected. While the problem of designing a self-stabilizing
algorithm for finding a minimal connected dominating set has proven to be
difficult, in 2009 [67] Turau and Hauck present a self-stabilizing algorithm
for finding a weakly connected dominating set. In 2015 [14], Ding, Wang,
and Srimani present another self-stabilizing algorithm for finding a weakly
connected dominating set.

12. {k}-domination. Given a graph G= (V, E), let f : V →{0, 1, . . . , k} be a
function from the node set V to the set of integers {0, 1, . . . , k}. For any subset
S⊂V , define f (S)= �v ∈ Sf (v). Such a function f is called a {k}-dominating
function if for every node i∈V , f (N[i])≥ k.

In 2003 [20], Gairing, Hedetniemi, Kristiansen, and McRae present a five-
rule, self-stabilizing algorithm for finding a minimal {k}-dominating function,
which stabilizes in at most (2n+ 1)(n+ 1)2n+2 moves. They also present a self-
stabilizing algorithm for finding a {2}-dominating function, which stabilizes
in at most 3n+ 2m moves. This in turn provides a self-stabilizing algorithm,
which stabilizes in O(n) moves when restricted to planar graphs. A version of
this self-stabilizing algorithm for k= 2 can be found in the 2002 PhD thesis of
Kristiansen [49].

13. Strong and weak domination. Given a graph G= (V, E), a dominating set S
is called strong if for every node j ∈ S there exists a node i∈N(j)∩ S whose
degree d(i) satisfies d(i)≥ d(j). Similarly, a dominating set S is called weak if
for every node j ∈ S there exists a node i∈N(j)∩ S with d(i)≤ d(j).

In 2015, Neggazi, Guellati, Haddad, and Kheddouci [55] present a self-
stabilizing algorithm for finding an independent strong dominating set, which
operates under the unfair distributed scheduler and stabilizes in at most n+ 1
rounds. The authors show that using rules that choose nodes having larger
degrees than their neighbors (strong domination) results empirically in smaller
dominating sets than the maximal independent sets and minimal dominating
sets found by previous self-stabilizing algorithms.
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Algorithm Maximal Irredundant - Central
ENTER: if (x(i) = 0) ∧ (i is safe)

then x(i) = 1

LEAVE: if (x(i) = 1) ∧ (i has no private neighbor)
then x(i) = 0

Fig. 14 Algorithm Maximal Irredundant: Central Model [28]

14. k-domination. Given a graph G= (V, E), a k-dominating set is a set S⊆V
having the property that for every node j ∈ S, |N(j)∩ S|≥ k, that is, every
node in S is dominated at least k-times. Self-stabilizing algorithms for finding
a minimal 2-dominating set have been designed in 2007 [40] by Huang, Lin,
Chen, and Wang, using a distributed scheduler, and in 2008 [39] by Huang,
Chen, and Wang, using a central scheduler.

15. Maximal irredundant sets. Given a graph G= (V, E), a set S⊆V is called
irredundant if for every node i∈ S, either (i) there exists a node j ∈ S such that
N(j)∩ S={i}, in which case we say that node j is an external private neighbor
of node i, with respect to the set S, or (ii) node i is not adjacent to any node in
S, in which case we say that node i is its own private neighbor. An irredundant
set S is maximal if for every node j ∈ S, the set S∪{j} is not irredundant. This
means that either node j does not have a private neighbor with respect to the set
S∪{j} or there exists a node i∈ S such that i has a private neighbor with respect
to S but does not have a private neighbor with respect to S∪{j}. In this latter
case, we say that adding node j to S destroys node i. We say that a node j ∈ S

is safe with respect to a set S if adding it to S does not destroy any node in S
and j has a private neighbor with respect to the set S∪{j}.

It is well known that every minimal dominating set is maximal irredundant.
Thus, every self-stabilizing algorithm for finding a minimal dominating set
also finds a maximal irredundant set. But since there are maximal irredundant
sets that are not dominating sets, a true self-stabilizing, maximal irredundant
algorithm had not been designed until 2008, when Goddard, Hedetniemi,
Jacobs, and Trevisan [28] found a way to design such an algorithm using
distance-4 knowledge. Their Algorithm Maximal Irredundant—Central, in
Figure 14, has only two rules.

The authors show that this algorithm finds a maximal irredundant set in
O(n7) moves.

16. Alliances in graphs. Given a graph G= (V, E), a set S⊂V is a global offensive
alliance if each node i ∈ S has |N [i] ∩ S| ≥ |N [i] ∩ S|, that is, every node
in S has at least as many neighbors in S as it has in S plus itself. Similarly,
a set S⊂V is a global defensive alliance if each node i∈ S has |N [i] ∩ S| ≥
|N [i] ∩ S|, that is, every node in S has at least as many neighbors in S plus
itself as it has in S. A set S is a global powerful alliance if it is both a global
defensive and global offensive alliance. Self-stabilizing global algorithms have
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been designed in 2006 [70] by Xu, in 2013 [72] by Yahiaoui, Belhoul, Haddad,
and Kheddouci, and in 2014 [60] by Srimani.

17. Dominating sets with external private neighbors. According to a well-known
theorem of Bollobás and Cockayne, every graph G without isolated vertices
has a minimum dominating set in which every vertex has an external private
neighbor. So far, no self-stabilizing algorithm has appeared for a minimal
dominating set having this property.

18. Self-stabilizing algorithms on special classes of graphs. In general, self-
stabilizing algorithms are designed for arbitrary graphs. But it may well be
possible to design algorithms that stabilize even faster on special classes of
graphs, such as grid graphs, n-cubes, planar graphs, trees, and chordal graphs.

19. Relative performance of self-stabilizing algorithms. The algorithms we have
presented in this chapter always have rules, whereby a node i enters the set S in
question. But these in-moves can be modified in ways other than by comparing
the IDs of nodes in the neighborhood of a node i, for example, you could give
preference to allowing a node to make an in-move if its degree is either greater
than or less than the degrees of nodes in its neighborhood. This would allow
preference to be given to nodes of larger degree, or nodes of smaller degree.
And this then means that you can get empirical data on the relative speeds and
relative performance of self-stabilizing algorithms, namely, on average which
algorithms stabilize more quickly, and when they stabilize, on average how
large or how small are the maximal independent sets or minimal dominating
sets that are found.

20. Distance-k self-stabilizing algorithms. Recent research has expanded the
assumption that a node can only “see” the values of the variables of the nodes
in its neighborhood N(i); this is called the shared-variable model. But what if
a node could see not only the values of the variables of its neighbors, but the
neighbors of its neighbors? Several papers have been published on distance-
k knowledge and how it is possible to convert a distance-k self-stabilizing
algorithm to a standard distance-1 model algorithm, albeit at an increased
cost in running time. These algorithms quickly become more sophisticated
but enable other types minimal and maximal sets to be found, like maximal
irredundant sets or k-packings (cf. Gairing et al. in 2004 [19], Goddard et al. in
2006 [27] and Goddard et al. in 2008 [28]).
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Algorithms and Complexity of Alliances
in Graphs

Stephen T. Hedetniemi

1 Introduction

Throughout this chapter we will use the following terminology and notation. Given
a graph G= (V, E) of order n= |V | and size m= |E|, let N(v)={u|uv∈E} be the
set of neighbors of vertex v and let d(v)= |N(v)| be the degree of v. For a set S⊆V
of vertices, let N(S)=∪v ∈ SN(v) and let S denote the set of vertices not in S. If
dS(v)= |N(v)∩ S| denotes the number of neighbors of v that are in S and dS(v) =
|N(v) ∩ S| denotes the number of neighbors of v in S, then d(v) = dS(v)+ dS(v).
The boundary of a set S of vertices is the set ∂(S) = N(S) ∩ S.

A set S of vertices in a graph G= (V, E) is called a defensive alliance if for every
vertex in v∈ S, dS(v) + 1 ≥ dS(v), that is, every vertex in S has at least as many
neighbors in S, including itself, as it has neighbors in S. A defensive alliance S is
called strong if the degree inequality is strict, dS(v) + 1 > dS(v). The defensive
alliance number a(G) equals the minimum cardinality of a defensive alliance in G,
while the strong defensive alliance number â(G) equals the minimum cardinality of
a strong defensive alliance in G.

For a vertex-weighted graph G, where each vertex v∈V has a non-negative
weight w(v), a set S is called a weighted defensive alliance if for every vertex v∈ S,
�u∈N [v]∩Sw(v) ≥ �u∈N(v)∩Sw(u).

This is generalized as follows: a set S is a defensive k-alliance if for every vertex
v∈ S, dS(v) ≥ dS(v) + k. A defensive k-alliance S is called a global defensive
alliance if S is a dominating set, or equivalently, if for every vertex w ∈ S,
N(w)∩ S �=∅, every vertex in S has at least one neighbor in S.
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A set S of vertices in a graph G= (V, E) is called an offensive alliance if for every
vertex in v∈ ∂(S), dS(v) ≥ dS(v) + 1. That is, every vertex in ∂(S) has at least as
many neighbors in S as it has neighbors in S + 1. This is generalized as follows: a
set S is an offensive k-alliance if for every vertex v∈ ∂(S), dS(v) ≥ dS(v) + k. An
offensive k-alliance S is called a global offensive alliance if S is a dominating set, or
equivalently, if for every vertex w ∈ S, N(w)∩ S �=∅, every vertex in S has at least
one neighbor in S. An offensive alliance S is called strong if the degree inequality is
strict, dS(v) > dS(v)+1. The offensive alliance number ao(G) equals the minimum
cardinality of an offensive alliance in G, while the strong offensive alliance number
âo(G) equals the minimum cardinality of a strong offensive alliance in G.

Finally, a set S is called a (global) powerful k-alliance if S is both a (global)
defensive k-alliance and a (global) offensive k-alliance.

2 Algorithms and Complexity of Alliances in Graphs

With respect to defensive, offensive, powerful, and global alliances, there are six
basic decision problems as follows:

DEFENSIVE ALLIANCE (DA)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a defensive alliance of cardinality at most k?

OFFENSIVE ALLIANCE (OA)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have an offensive alliance of cardinality at most k?

POWERFUL ALLIANCE (PA)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a powerful alliance of cardinality at most k?

GLOBAL DEFENSIVE ALLIANCE (GDA)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a global defensive alliance of cardinality at most k?

GLOBAL OFFENSIVE ALLIANCE (GOA)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a global offensive alliance of cardinality at most k?

GLOBAL POWERFUL ALLIANCE (GPA)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a global powerful alliance of cardinality at most k?

However, another six decision problems arise if one seeks strong alliances, in
which the degree inequalities are strict. Even more, there are corresponding decision
problems for defensive and offensive k-alliances.
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The complexity of each of these basic six decision problems has been settled; all
of these problems are NP-complete.

In his 2001 Ph.D. thesis, Shafique [18] proves that (STRONG) POWERFUL
ALLIANCE is NP-complete.

In 2002 Favaron, Fricke, Goddard, Hedetniemi, Hedetniemi, Kristiansen, Laskar,
and Skaggs [6] prove the following, where β(G) is the vertex covering number of a
graph G, that is, the minimum cardinality of a set S of vertices such that for every
edge uv∈E, {u, v}∩ S �=∅.

Theorem 1 (Favaron et al. [6]) If G is a cubic graph, then every vertex cover is a
strong offensive alliance, and vice versa. Therefore, âo(G) = β(G).

Proof Let S be a vertex cover of a cubic graph G. Then the complement S of S is an
independent set of vertices. Therefore, S is a strong offensive alliance. Conversely,
let S be a strong offensive alliance in G, and let w ∈ S. If w ∈ ∂(S), then all
neighbors of w must be in S. �

Assume w �∈ ∂(S). Let u ∈ S be a vertex at the shortest distance from w that has
a neighbor in S, and let (w = u1, u2, . . . , uk = u) be a shortest u-w-path. Note that
u2 could be u. But by our previous argument, every neighbor, including uk−1, of u
is in S, contradicting our choice of u.

Since VERTEX COVER is known to be NP-hard, even for cubic graphs, it
follows that (STRONG) OFFENSIVE ALLIANCE is NP-hard for cubic graphs.

In 2006 Cami, Balakrishnan, Deo, and Dutton [3] show that the decision
problems for global defensive alliances (GDA), global offensive alliances (GOA),
and global powerful alliances (GPA) are all NP-complete for general graphs, and
thus, it follows that these problems are also NP-complete for weighted graphs. In
proving these NP-completeness results, they use transformations from the following
well-known NP-complete problem.

DOMINATING SET (DOMSET)
Instance: Graph G= (V, E), positive integer k.
Question: Does G have a set of cardinality at most k?
We present one simple NP-completeness proof.

Theorem 2 (Cami, Balakrishnan, Deo, Dutton [3]) GLOBAL DEFENSIVE
ALLIANCE is NP-complete.

Proof Sketch. Given an instance of DOMSET, that is, a graph G= (V, E) and a
positive integer k, construct a graph G′ = (V ′, E′) by attaching to each non-isolated
vertex v∈V , d(v)− 1 paths of length 2. Let A denote the set of all vertices of degree
2 on the paths of length 2 added to G to form G′. One can then show that if G has a
dominating set S of cardinality at most k, then the set S′ = S∪A is a global defensive
alliance of G′ of cardinality at most k′ = k+ 2|E|−|V |. Similarly, one can show that
if the constructed graph G′ has a global defensive alliance of cardinality at most
k′ = k+ 2|E|−|V |, then G has a dominating set of cardinality at most k. �
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In 2007 Fernau and Raible [7] show that OFFENSIVE ALLIANCE is NP-
complete, as follows.

Theorem 3 (Fernau, Raible [7]) OFFENSIVE ALLIANCE is NP-complete.

Proof Sketch. Use a transformation from STRONG OFFENSIVE ALLIANCE,
which is shown to be NP-complete by Favaron et al. [6] above. Given an instance
of STRONG OFFENSIVE ALLIANCE, namely, a graph G= (V, E) and a positive
integer k, construct a graph G′ = (V ′, E′) as follows. Let G1 = (V1, E1) and G2 = (V2,
E2) be two copies of G. Thus, for every vertex v∈V , there are now two copies
v1 ∈V1 and v2 ∈V2. For every vertex v∈V , create a vertex v′ which is adjacent to
v1 and v2. Finally create a clique C of order 2k+ 1, and let x be an arbitrary vertex
in C. Join x to each of the |V | vertices v′. This, then, is the graph G′.

One can then show that G has a strong offensive alliance of cardinality at most k
if and only if G′ has an offensive alliance of cardinality at most 2k. �

Fernau and Raible also show that all of these alliance decision problems are
fixed-parameter tractable (FPT) when parameterized by the size k of the alliance
set. We illustrate these results with one of their theorems.

Theorem 4 (Fernau, Raible [7]) DEFENSIVE ALLIANCE is in FPT .

Proof Given an instance (G, k) of DEFENSIVE ALLIANCE, consisting of a graph
G and the parameter k, we show fixed-parameter tractability by constructing at most
n search trees, whose sizes are exponential in the fixed parameter k.

Note that in any minimal defensive alliance S, we can assume that G[S] is
connected, since if not, then any connected component would necessarily be a
smaller defensive alliance.

Let V ={v1, v2, . . . , vn}. Starting with v1 ∈V , assume that v1 is a member of
a defensive alliance S, with |S|≤ k, and assume that G[S] is connected. Then, since
G[S] is connected, every other vertex in S can be reached from vertex v1 in at most
k steps. Therefore, we can branch at v1 as follows: first, if S={v1} is already a
defensive alliance, then we are done. Otherwise, we have to add some neighbor of
v1 to our potential defensive alliance S. This leads to an initial branching of at most
2k− 1, because if S is a defensive alliance of size at most k, then any vertex v∈ S has
at most k− 1 neighbors in S. This means that vertex v can have at most k neighbors
not in S. Thus, d(v)≤ 2k− 1, and if S is a defensive alliance of order at most k, then
for all v∈ S, d(v)≤ 2k− 1.

Now, after the first branching from vertex v1, say to neighbor v2 of v1, we have a
potential defensive alliance of order 2, from which we can branch over the union of
the two neighborhoods of v1 and v2, resulting in a branch of size at most 2(2k− 1). If
we continue in this way, we obtain a search tree of size bounded by !k

j=1j (2k−1) =
(2k − 1)k!

Checking if we have found a defensive alliance can be done in O(k2) time. If we
encounter a vertex v∗ of degree greater than 2k− 1, it cannot be part of the search for
a defensive alliance of order at most k. And because we assume that S is connected,
for any two vertices w1, w2, there is a path P connecting w1 and w2 with the property



Algorithms and Complexity of Alliances in Graphs 525

that P⊆ S. This means that we do not have to branch over v∗ , because we encounter
every vertex of S by branching only over vertices with degree ≤ 2k− 1.

Because our first assumption, that v1 must be in a defensive alliance, does not
have to be true, we might have to do an initial branch over all v∈V . Hence, we can
decide DEFENSIVE ALLIANCE in O(k3k!n) time. �

In 2007 and 2009 Jamieson, Hedetniemi, and McRae [13, 14] prove that
DEFENSIVE ALLIANCE is NP-complete, even when restricted to split graphs,
chordal graphs, or bipartite graphs.

In 2007 Jamieson and Dean [12] consider weighted versions of alliance prob-
lems. Given a graph G= (V, E), a non-negative integer weighting function w : V →
N , and a set S, define w(S)= �v ∈ Sw(v).

A set S⊂V is called a weighted defensive alliance if for all v∈ S, w(N [v]∩S) ≥
w(N [v] ∩ S), or equivalently if the ratio ρ(v)=w(N[v]∩ S)/w(N[v])≥ 1/2.

They show that the problem of finding a minimum-cost, weighted alliance of any
type (defensive, offensive, or powerful) is NP-hard, even on a star, that is, a tree of
the form K1,n. We present one of their results; the other results and their proofs are
very similar.

Theorem 5 (Jamieson, Dean [12]) The problem of computing a (global) minimum-
cost, weighted powerful alliance is NP-hard, even when restricted to stars.

Proof Use a transformation from the following, well-known NP-complete prob-
lem.

SUBSET SUM
Instance: Finite set A, integer weight w(a) > 0 for each a∈A, integer B > 0.
Question: Is there a subset A′⊂A such that w(A′)=B?

Consider an n-element instance (A, w, B) of SUBSET SUM, and assume that
B > w(A)/2. Let G=K1,n+1, where the central vertex x has w(x)=w(A), one leaf y
has w(y)=w(A), and the remaining n leaves have weight w(a), for each a∈A.

Show that G has a weighted powerful alliance of cost w(A)+B if and only if (A,
w, B) is a “yes” instance of SUBSET SUM.

Assume that there exists a subset A′⊆A with w(A′)=B. Form a powerful alliance
S by taking the center vertex x along with the leaves corresponding to A′. We must
show that S is both a weighted defensive alliance and a weighted offensive alliance.

It is easy to see that the ratio ρ(x)=w(N[x]∩ S)/w(N[x])= (w(A)+B)/3w(A)
≥ 1/2, and ρ(v)= 1 for all leaves v∈ S. Thus, S is a weighted defensive alliance.
Similarly, for every leaf w ∈ S, ρ(w)≥ 1/2. Thus, S is a weighted offensive alliance.

Conversely, let S be a minimum-cost powerful alliance of G with cost w(A)+B.
Clearly S must contain the center vertex x, or else S cannot be a weighted powerful
alliance. But in this case, S cannot include the leaf y with w(y)=w(A), or else
w(S) > w(A)+B. Therefore, S includes vertex x together with leaves whose weight
sums to exactly B. This gives a solution to the instance of SUBSET SUM. Since S
is actually a global powerful alliance, this argument applies to both the global and
non-global minimum-cost, weighted powerful alliance problems. �
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Using very similar arguments, Jamieson and Dean prove the following.

Theorem 6 (Jamieson, Dean [12]) The problem of computing a (global) minimum-
cost, weighted defensive alliance is NP-hard, even when restricted to stars.

Theorem 7 (Jamieson, Dean [12]) The problem of computing a minimum-cost,
weighted offensive alliance is NP-hard, even when restricted to stars.

The authors point out that it is trivial to compute a global minimum-cost
weighted offensive alliance on a star, since an optimal solution must either consist
of all leaves and not the center or the center vertex plus every leaf having weight
greater than the center. But this global weighted problem remains NP-hard for trees.

Theorem 8 (Jamieson, Dean [12]) The problem of computing a minimum-cost,
global weighted offensive alliance is NP-hard, even when restricted to trees.

The authors conclude their paper by presenting an O(|V |3) algorithm for
computing a minimum cardinality weighted defensive alliance on a tree. Using
similar approaches, one can also find a minimum cardinality weighted global
defensive alliance, (global) offensive alliance, and (global) powerful alliance in a
tree.

In 2008 Araujo-Pardo and Barrière [1] study defensive alliances in �-regular
graphs and show that for �≤ 5, there are simple algorithms for finding a minimum
defensive alliance in any �-regular graph.

In 2009 Fernau, Rodriquez, and Sigarreta [8] study the complexity of offensive r-
alliances in graphs. The global offensive r-alliance number γ or(G) is the minimum
cardinality of a global offensive r-alliance in G. The authors show that the problem
of finding a minimum cardinality (global) offensive r-alliance is NP-complete.

Since Cami et al. [3] had previously proved the NP-completeness for r= 1,
Fernau et al. were able to modify their proof to show NP-completeness of GLOBAL
OFFENSIVE r-ALLIANCE for any fixed r.

GLOBAL OFFENSIVE r-ALLIANCE (GOr-A)
Instance: Graph G= (V, E), positive integer k≤|V |.
Question: Does G have a global offensive r-alliance of size at most k?

Theorem 9 (Fernau et al. [8]) For every r, GOr-A is NP-complete.

Proof Sketch. We present only the proof for r≤ 1, although the construction in
Cami et al. [3] can be modified to work for any r≥ 1.

Let (G, k) be an instance of DOMSET with G having minimum degree r+ 1. In
order to create an instance of GOr-A, to every vertex v∈V , attach dG(v)+ r− 1≥ 0
paths P3 of length 2, yielding a new graph G′ = (V ′, E′), having G as an induced
subgraph. Let A denote the new neighbors of vertices in V , and let B denote the set
of leaves of all of the attached paths.

If D⊆V is a dominating set in G, then S=D∪A is a global offensive r-alliance.
Clearly, S is a dominating set in G′. Now, consider a vertex v∈B. Obviously,
N(v)⊆A, and therefore |NG′(v)∩S| ≥ |NG′(v)∩S|+r . Since any vertex v∈V −D
has at least one neighbor in D, it follows that |NG′(v) ∩ S| ≤ dG(v) − 1, while
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|NG′(v) ∩ S| ≥ (dG(v) + r − 1) + 1 = dG(v) + r . Therefore, S is a valid global
offensive r-alliance.

Conversely, let S be a global offensive r-alliance of G′. Since S is a dominating
set, for each P3 attached to G, either the corresponding A-vertex or the correspond-
ing B-vertex must be in S.

Consider some v ∈ S. It must be dominated. If no neighbor of v∈V is in S,
then |NG′(v) ∩ S| ≤ dG(v)+ r − 1, while |NG′(v) ∩ S| ≥ dG(v), which leads to a
contradiction. Hence, S∩V is a dominating set in G.

Combining these arguments, one can conclude that G= (V, E) has a dominating
set of size at most k if G′ = (V ′, E′) has a global offensive r-alliance of size k+
�v(dG(v)+ r− 1)= k+ (r− 1)|V | + 2|E|. �

In 2012 Chang, Chia, Hsu, Kuo, Lai, and Wang [4] present an O(nlog�)
algorithm to determine the global defensive alliance number of a tree.

In 2014, Dourado, Faria, Pizaña, Rautenbach, and Szwarcfiter [5] prove that it is
NP-complete to decide for a given 6-regular graph G and a given integer k whether
G contains a defensive alliance of order at most k. This completes the results of
Araujo-Pardo and Barriére [1] for r≤ 5 regular graphs. They also prove that the
problem of computing the strong, global offensive alliance number γô(G) is APX-
hard, even for cubic graphs, and is NP-complete for chordal graphs.

Theorem 10 (Dourado, Faria, Pizaña, Rautenbach, Swarcfiter [5]) DEFEN-
SIVE ALLIANCE is NP-complete for 6-regular graphs.

The authors’ proof of this theorem uses a transformation from ONE-IN-THREE
3SAT, having only positive literals. Given an instance of this NP-complete problem,
they construct a 6-regular graph G and a positive integer k such that the instance
of ONE-IN-THREE 3SAT has a solution if and only if the 6-regular graph G has a
defensive alliance of cardinality at most k. The details of this proof are too numerous
to be included here.

Theorem 11 (Dourado, Faria, Pizaña, Rautenbach, Swarcfiter [5]) GLOBAL
STRONG OFFENSIVE ALLIANCE is NP-complete for chordal graphs.

Proof Use a transformation from DOMSET, which is known to be NP-complete
for chordal graphs. Let G= (V, E) be a chordal graph of size m= |E|. Construct
another chordal graph G′ = (V ′, E′) by attaching d(v) leaves to every vertex v∈V .
Thus, the total number of added leaves is 2m. Let L denote this set of added leaves.
Furthermore, every global strong offensive alliance of G′ must contain all leaves
in L.

If S is a dominating set of G, let S′ = S∪L. Then clearly every vertex v ∈ S′ has
at least dG(v)+ 1 neighbors in S′. Therefore, S′ is a global strong offensive alliance.

Conversely, if S′ is a global strong offensive alliance of G′, then L⊆ S′. Let
S= S′−L. Since every vertex u ∈ S has at least dG(u)+ 1 neighbors in S′, every
such vertex has at least one neighbor in S, that is, S is a dominating set of G. Since
|S′|−|S| = 2m(G) in both cases, the desired result follows. �
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Since it is known that DOMINATING SET can be solved in polynomial time for
strongly chordal graphs, it is natural to ask the following question:

Question 1 Is GLOBAL STRONG OFFENSIVE ALLIANCE NP-complete for
strongly chordal graphs?

Theorem 12 (Dourado, Faria, Pizaña, Rautenbach, Swarcfiter [5]) There is
some ε > 0 such that approximating GLOBAL STRONG OFFENSIVE ALLIANCE
within a factor of (1+ ε) is NP-hard for cubic graphs.

In 2015 [9] Fernau, Rodriguez, and Sigarreta show that the problem of computing
the minimum cardinality of a powerful r-alliance is NP-hard.

In 2015 [10] Harutyunyan and Legay present linear algorithms for computing
the global offensive alliance number and the global powerful alliance number of
a weighted tree. Recall that earlier Jamieson and Dean [12] presented O(|V |3)
algorithms for computing these alliance numbers of trees. We present here the
Harutyunyan-Legay algorithm for computing the global weighted offensive alliance
number of a tree. In this algorithm, L(v) denotes the set of leaves adjacent to vertex
v; the parent of a leaf is called a support vertex; S(T) denotes the set of support
vertices in a rooted tree T; r(T) denotes the root vertex of T; p(v) denotes the parent
of vertex v; w(S) denotes the sum of the weights of all vertices in S; d denotes the
depth of T with respect to the root r; and a vertex labeled “–” is not included in the
global offensive alliance S.

Note that for a leaf v and its parent p(v), if the weight of v is greater than the
weight of p(v), then v must be in every minimum weight global offensive alliance
S. But if the weight of v is less than or equal to the weight of p(v), then we can be
guaranteed that we can put p(v) into S.

Algorithm 1 Global weighted offensive alliance number in trees

1: for v∈ S(T) do
2: for �∈ L(v) do
3: if w(�) > w(v) then
4: put � in S.
5: else
6: Label � with “–”
7: if there exists �∈L(v) such that w(�)≤w(v) then
8: put v in S.
9: for vertices v at depth d − i, i= 1 to d do
10: if v�∈S and v is not labeled “–” and all of v’s children are labeled “–” then
11: if w(p(v))≥w(N[v]− p(v)) then
12: put p(v) in S (if it already is not) and label v with “–”.
13: else
14: put v in S.
15: else if v�∈S and v is not labeled “–” and v has at least one neighbor u

already in S then
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16: if w(N(v)∩ S)≥w(N[v]− S) then
17: label v with “–”.
18: else if w((N(v)∩ S)∪ p(v))≥w(N[v]− S− p(v)) then
19: put p(v) in S and label v with “–”.
20: else
21: put v in S.

In 2016 Lewoń, Malafiejska and Malafiejski [16] introduce the concept of a
defensive set in a graph G, as follows. Recall that a defensive alliance is a set S
having the property that for every v∈ S, |N [v] ∩ S| ≥ |N [v] ∩ S|. A set S is a
defensive set if for every vertex v∈ S, either |N [v] ∩ S| ≥ |N [v] ∩ S|, or there is
a neighbor u∈ S of v, such that |N [{u, v}] ∩ S| ≥ |N [{u, v}] ∩ S|. Equivalently,
a defensive set is a set S, such that every vertex v∈ S either satisfies the boundary
condition by itself, or it has a neighbor u in S such that {u, v} together satisfy the
boundary condition.

A defensive alliance or a defensive set S is total if S is a total dominating set.
This paper presents (i) an O(nlog�) algorithm for finding a minimum total

defensive alliance, (ii) an O(n �2log�)-time algorithm for finding a minimum
global defensive set, and (iii) an O(n �2log�)-time algorithm for finding a
minimum total defensive set, all in trees.

The authors also establish the NP-completeness of the decision problems for (i)
global defensive alliances, (ii) global defensive sets, (iii) total defensive alliances,
and (iv) total defensive sets, even when restricted to planar bipartite, subcubic
graphs. It is known that TOTAL DOMINATING SET is NP-complete for subcubic,
bipartite planar graphs [15].

Proposition 1 (Lewoń et al. [16]) If G is a subcubic graph, then S is a total
dominating set if and only if S is a total defensive alliance.

Proposition 2 (Lewoń et al. [16]) If G is a subcubic graph, then S is a defensive
alliance if and only if S is a defensive set.

Theorem 13 (Lewoń et al. [16]) The problems TOTAL DEFENSIVE ALLIANCE
and TOTAL DEFENSIVE SET are NP-complete for subcubic, bipartite planar
graphs.

In 2018 [2] Bliem and Woltran consider the question of whether DEFENSIVE
ALLIANCE is fixed-parameter tractable when parameterized by the treewidth tw(G)
of G.

The authors show that DEFENSIVE ALLIANCE is W[1]-hard when parame-
terized by the treewidth tw(G) of G. Thus, under a standard complexity-theoretic
assumption, this problem has no (f (tw(G))|V |O(1))-time algorithm for any function
f : Z+ → Z+.

For the parameter of treewidth, the question of whether DEFENSIVE
ALLIANCE is FPT had remained open. This W[1]-hard result is surprising
since subset problems which are fixed-parameter tractable when parameterized
by solution size k usually are fixed-parameter tractable for treewidth as well.
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2.1 Self-Stabilizing Alliance Algorithms

In 2006 Xu [20], in his Ph.D. thesis, and in 2007 Srimani and Xu [19] initiate
the study of self-stabilizing alliance algorithms. They design two self-stabilizing
algorithms for finding (i) a minimal global offensive alliance and (ii) a minimal
global defensive alliance. It is important to note at the outset that alliances found
with self-stabilizing algorithms are only required to be minimal in cardinality, not
necessarily of minimum cardinality.

A global offensive (or defensive) alliance S is called minimal if no proper subset
of S is also a global offensive (or defensive) alliance.

A global offensive (or defensive) alliance S is called 1-minimal if there does not
exist a vertex v∈ S such that S′ = S−{v} is also a global offensive (or defensive)
alliance.

It is easy to see that a global offensive alliance is minimal if and only if it is
1-minimal. However, it is possible that a 1-minimal global defensive alliance may
not be minimal.

To those readers unfamiliar with self-stabilizing algorithms, we present this
simple algorithm below, along with some explanation.

Algorithm MGOA: Minimal global offensive alliance
v.diff := |{x∈N[v] : x.state= IN}|−|{x∈N[v] : x.state=OUT}|
R1:ifv.state=OUT ∧ (v.diff < 0) thenv.state := IN

R2:ifv.state= IN ∧ (v.diff ≥ 1) thenv.state :=OUT

Each vertex v∈V in a graph G maintains at all times two variables. Its state
v.state= IN means that v is a member of the minimal global offensive alliance S
being formed, that is, v∈ S, while v.state=OUT means that v ∈ S.

The second variable maintained by vertex v is v.diff, which at any time records
the difference between |N[v]∩ S| and |N [v] ∩ S|. It simply counts the number of its
neighbors u (including itself) with u.state= IN and the number of neighbors with
u.state=OUT and computes the difference v.diff.

At any time t while the self-stabilizing algorithm is executing, all vertices v know
their current v.state and v.diff values.

Rule R1, above, says that if a vertex v currently has v.state=OUT and has a
negative difference (v.diff < 0), then vertex v is enabled to make a move, which
means set v.state= IN, that is, enter the set S.

Rule R2 says that if vertex v is currently in the set S (v.state= IN) and has a
positive difference of at least 1 (v.diff ≥ 1), then vertex v is enabled to make a move,
which means set v.state=OUT, that is, go into S.

At any time t, only one of the vertices which are currently enabled to make a
move, according to either Rule 1 or Rule 2, is chosen by what is called a central
scheduler, or sometimes called an adversarial daemon, to execute their move and
change the value of its v.state.
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A scheduler is said to be fair if a continuously enabled vertex will be eventually
chosen to make a move. Otherwise, it is called unfair.

A fundamental idea in self-stabilizing algorithms is that the algorithm can be
started when the system (the vertices in the graph G) may be started in any random
global state. But after a finite amount of time, the system must reach a correct
global state and one which is stable, meaning that after that, it does not change
state. Such an algorithm is self-stabilizing if (i) regardless of the initial global state
in which the algorithm is started, it always reaches a correct global state after a
finite number of moves (local state changes) and (ii) once a correct global state has
been achieved, any subsequent states must also be correct global states. Such a self-
stabilizing algorithm is called silent if whenever a correct global state is reached, no
vertices are enabled to make another move.

One has then to show that no matter what sequence of enabled vertices the central
scheduler chooses to make a move, sooner or later, a state must be reached in which
no vertex is enabled to make a move, at which point the algorithm has stabilized.
When stable, one must then be able to prove that if no vertex is eligible to make a
move, then the set S must be a minimal global offensive alliance, as desired.

Algorithm MGOA must be proved to be correct. This is usually done by a series
of lemmas, such as the following.

Lemma 1 (Xu [20]) If Algorithm MGOA stabilizes, then the set S={v∈V : v.state
:= IN} is a global offensive alliance.

Proof If Algorithm MGOA stabilizes, any vertex v not in S must have v.diff ≥ 0;
otherwise, it would be enabled to make move Rule 1; hence, Algorithm MGOA
would not be stable, a contradiction. Thus, S must be a global offensive alliance. �
Lemma 2 (Xu [20]) If at any time the set S is a global offensive alliance, but not a
minimal global offensive alliance, then there must exist a vertex v which is enabled
to make move Rule 2.

Proof Suppose that at any time during the execution of Algorithm MGOA there is
a subset S′⊂ S which is a global offensive alliance. Let v be a vertex in S but not in
S′. By the definition of a global offensive alliance, |N(v) ∩ S′| ≥ |N [v] ∩ S′|. This
can be restated as |N(v) ∩ S′| ≥ |N(v) ∩ S′| + 1.

But since S′⊂ S, we have |N(v)∩ S|≥|N(v)∩ S′| and |N(v) ∩ S| ≤ |N(v) ∩ S′|.
Thus, |N(v) ∩ S| ≥ |N(v) ∩ S| + 1. Thus, vertex v is enabled to make move
Rule 2. �
Theorem 14 (Xu [20]) When Algorithm MGOA stabilizes, the set S is a minimal
global offensive alliance.

Proof By Lemma 1, when MGOA stabilizes, S is a global offensive alliance. If S is
not a minimal global offensive alliance, by Lemma 2 there must be a vertex which
is enabled to execute Rule 2. Thus, if Algorithm MGOA has stabilized, there can be
no such vertex, and S must be a minimal global offensive alliance. �
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Theorem 15 (Xu [20]) Algorithm MGOA stabilizes in at most 2|E| + |V | = 2m+ n
moves.

Proof At any time during the execution of Algorithm MGOA, let X ={uv : u.state
:= IN and v.state :=OUT}. Thus, X defines the set of edges whose two vertices u
and v are neither both IN nor both OUT of S.

If Rule 1 is executed on vertex v, then before the move, there are |N(v)∩ S| edges
in X incident to v, and after the move, there are |N(v) ∩ S| edges in X incident to
v. Since |N(v) ∩ S| < |N(v) ∩ S| before vertex v makes this move, the number of
edges in X cannot decrease after a Rule 1 move.

Similarly, if vertex v executes Rule 2, there are N(v) ∩ S edges in X incident to
v before the move and N(v)∩ S edges in X incident to v after the move. But since
|N(v) ∩ S| ≥ |N(v) ∩ S| + 1, executing Rule 2 will always increase the number of
X edges.

Since 0≤|X|≤m, Rule 2 can be executed at most m times.
Each execution of Rule 2 will decrease |S| by 1, and each execution of Rule 1 will

increase S by 1. Since 0≤|S|≤ n, there can be at most m+ n executions of Rule 1.
Therefore, the total number of moves on all vertices is at most 2m+ n. �
In addition to the self-stabilizing Algorithm MGOA, Xu [20] also constructs

a much more complex, self-stabilizing algorithm for finding a 1-minimal global
defensive alliance.

In 2013 Yahiaoui, Belhoul, Haddad, and Kheddouci [21] present a very simple
self-stabilizing algorithm for finding a minimal global powerful alliance in an
arbitrary graph, using what is called a distributed scheduler. Unlike a central
scheduler, which can only select one enabled vertex to make a move at a time, a
distributed scheduler is permitted to select any subset of currently enabled vertices
to execute their moves simultaneously at any given time. The authors also present
self-stabilizing algorithms for some generalizations of this problem. Using an unfair
distributed scheduler, their proposed algorithms converge in O(mn) moves starting
from an arbitrary state. We next present their self-stabilizing, global powerful
alliance algorithm, which still uses the central scheduler.

In this algorithm a vertex is said to be satisfied (satisfies the powerful alliance
property that for every vertex v∈V , |N [v] ∩ S| ≥ |N [v] ∩ S|) if its closed
neighborhood has at least as many neighbors in S as it has in S. Thus, a vertex
is satisfied if v.diff ≥ 0. In addition, v.diff ≥ 2 means that v remains satisfied even if
a neighbor of v leaves the set S. The value 0≤ v.diff < 2 means that v is satisfied but
will not remain satisfied if a neighbor leaves S.

Algorithm MGPA: Minimal global powerful alliance (expression model)
ε={diff := |{x∈N[v] : x.state= IN}|−|{x∈N[v] : x.state=OUT}|}
R1:v.state=OUT ∧(v.diff < 0∨(∃u∈N(v) : u.state= IN ∧u.diff < 0))→ v.state := IN

R2:v.state= IN ∧ v.diff ≥ 2∧ (∀u∈N(v) : u.diff ≥ 2)→ v.state :=OUT
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For this algorithm the authors prove each of the following lemmas.

Lemma 3 When no vertex is enabled to make a move using MGPA, then the set S
forms a minimal powerful alliance in G.

Lemma 4 Once a vertex has v.diff≥ 0, it will always have v.diff≥ 0.

Lemma 5 Once a vertex executes Rule 2, it will never execute another move.

Lemma 6 Algorithm MGPA stabilizes after at most 2n moves using the unfair
central scheduler.

Theorem 16 (Yahiaoui, Belhoul, Haddad, Kheddouci [21]) Algorithm MGPA is
a silent, self-stabilizing algorithm in the expression model using the unfair central
scheduler and stabilizes after O(n) moves with a minimal global powerful alliance
set S.

In 2013 Hedetniemi, Hedetniemi, Kennedy, and McRae [11] present three
self-stabilizing algorithms for producing an unfriendly partition of vertices of a
graph. An unfriendly partition is a partition V ={V1, V2}, such that the vertices
in each set have at least as many neighbors in the set they are not in as in the
set they are in. This is equivalent to saying that V ={V1, V2} is a partition into
two disjoint global offensive alliances. The simplest of these three self-stabilizing
algorithms uses the central scheduler. Associated with each vertex v∈V are
three variables: (i) a color C(v)∈{Red, Blue}, the current color of vertex v; (ii)
B(v)= |{u∈N(v) : C(u)=Blue}|, the number of neighbors of v whose color is Blue;
and (iii) R(v)= |{u∈N(v) : C(u)=Red}, the number of neighbors of v whose color
is Red.

Algorithm Unfriendly
R1:ifC(v)=Blue∧B(v) > R(v) thenC(v)=Red.

R2:ifC(v)=Red ∧R(v) > B(v) thenC(v)=Blue

Theorem 17 (Hedetniemi, Hedetniemi, Kennedy, McRae [11]) Algorithm
UNFRIENDLY stabilizes to an unfriendly partition V={R, B} in at most m= |E|
moves.

Proof It is easy to see that each execution of either Rule 1 or Rule 2 strictly
increases the number of bicolored edges. Thus, at most m rules can be executed,
since the maximum number of bicolored edges is m. When Algorithm Unfriendly
stabilizes, any vertex not meeting the unfriendly condition, that it have at least as
many neighbors with the opposite color as its own color, will be enabled to make a
move. Thus, the algorithm could not be stable. �

Algorithm Unfriendly assumes that every vertex can see the current color of all of
its neighbors. Since a vertex cannot see the colors of the neighbors of its neighbors,
this algorithm runs under what is called the distance-1 model. More sophisticated
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self-stabilizing algorithms can be designed if one can assume that all vertices can
see the current states of all vertices at distance-2. In this paper the authors present
two more self-stabilizing unfriendly partition algorithms, Algorithm Unfriendlier
and Algorithm More Unfriendly, using the distance-2 model. The motivation for
these two algorithms was to make decisions, based on greater local knowledge, that
would increase, on average, the number of bicolored edges when the algorithms
stabilize. We leave the details of these two algorithms to the interested reader.

3 Open Problems

Along with the concepts of defensive, offensive, powerful, and global alliances,
the existence of variations of alliances like the following suggest that many
combinations of the four basic types of alliances with these variations have yet to
be studied:

(i) strong alliances, in which the degree inequality, dS(v)+ 1 > dS(v), is strict;
(ii) k-alliances, in which dS(v) ≥ dS(v)+ k;

(iii) weighted alliances, in which for every vertex v∈ S, �u∈N [v]∩Sw(v) ≥
�u∈N(v)∩Sw(u);

(iv) minimum-cost weight alliances, in which the cost w(S)= �v ∈ Sw(v) is
minimized;

(v) α-alliances, in which the ratio ρ(v) = w(N [v]∩S)
w(N [v]) ≥ α must be satisfied for

some 0 <α≤ 1; this variation is proposed by Jamieson and Dean in [12];
(vi) defensive sets, in which for every vertex v∈ S either |N [v] ∩ S| ≥ |N [v] ∩ S|,

or there is a neighbor u∈ S of v, such that |N [{u, v}] ∩ S| ≥ |N [{u, v}] ∩ S|;
this variation is proposed by Lewoń, Malafiejska, and Malafiejski in [16];

(vii) total alliances, which are global alliances, but the set S in addition to being
a dominating set is a total dominating set; this was also proposed by Lewoń,
Malafiejska, and Malafiejski in [16].

In [13] Jamieson makes the following statement, which suggests that more
polynomial alliance algorithms can be constructed.

“Using straightforward dynamic programming techniques, we can also construct
a polynomial-time (in fact, linear-time) algorithm for computing a minimum-
cost (global) weighted alliance on a cycle, a tree of bounded degree, or a graph
of bounded path-width. On trees, since a straightforward dynamic programming
algorithm runs in pseudo-polynomial time, we can obtain a polynomial running
time for the special case where vertex weights are bounded by a polynomial function
of n.”

In [5] Dourado, Faria, Pizaña, Rautenbach, and Swarcfiter note that DOMINAT-
ING SET can be solved in polynomial time for strongly chordal graphs. Given the
NP-completeness result for GLOBAL STRONG OFFENSIVE ALLIANCE, using a
transformation from DOMINATING SET, it is natural to ask if GLOBAL STRONG
OFFENSIVE ALLIANCE can be solved in polynomial time for strongly chordal
graphs.
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Finally, the following theorem is well-known in the theory of domination in
graphs.

Theorem 18 (Ore [17]) For any graph G having no isolated vertices, the comple-
ment S of every minimal dominating set S is a dominating set.

Corollary 1 The vertices of any graph G having no isolated vertices can be
partitioned into two dominating sets.

Ore’s Theorem raises the following general question: Under which conditions
can the vertices of a graph G be partitioned into two sets, V ={V1, V2}, such that
V1 and V2 are alliances of some given type(s)? As noted above by Hedetniemi,
Hedetniemi, Kennedy, and McRae in [11], the vertices of every nontrivial connected
graph can be partitioned into two global offensive alliances.
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