®

Check for
updates

Materialized View Selection Using
Discrete Quantum Based Differential
Evolution Algorithm

Raouf Mayata(®™) and Abdelmadjid Boukra

Faculty of Electronics and Computer Science Laboratory LSI, USTHB BP 32,
16111 El Alia, Bab-Ezzouar, Algiers, Algeria
mayataraouf@gmail.com, aboukraQusthb.dz

Abstract. A Data warehouse is a structure that stores big amount of
data. This data is exploited in the best possible ways in order to improve
the efficiency of decision-making. The huge volume of data makes answer-
ing queries complex and time-consuming. Therefore, materialized views
are used in order to reduce the query processing time. Since materializing
all views is not possible, due to space and maintenance constraints, mate-
rialized view selection became one of the crucial decisions in designing
a data warehouse for optimal efficiency. In this paper, we propose a dis-
crete - quantum based - version of Differential Evolution DE algorithm
named QDE algorithm to solve the materialized view selection (MVS)
problem with space constraint. This algorithm is a merging of the origi-
nal DE with Quantum Evolutionary (QEA) algorithm. The experimental
results show the efficiency of the proposed algorithm compared to well
known algorithms used to solve MV'S problem with space constraint such
as HRUA and GEA.

Keywords: Data warehouse - Materialized view selection - Differential
Evolution - Metaheuristic - Quantum Evolutionary

1 Introduction

Data warehouses is a repository of data integrated from multiple sources and
delivered to decision makers supporting their complex OLAP queries and help-
ing them to make proper strategic decisions. Due to their huge volume, data
warehouses’ response time to complex OLAP queries is considered as a problem.
To shorten that response time, several optimization methods exist in different
phases of building a data warehouse. We mention Indexing for the physical
phase, and both fragmentation and views materialization for the logical phase.
Unlike regular views, a materialized view store the result of queries physically in
a table. The queries executed on these tables are significantly faster than those
executed on the whole raw data. However, every materialized view will occupy
additional storage space, and need to be maintained (updated) from the raw
© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2021

S. Chikhi et al. (Eds.): MISC 2020, LNNS 156, pp. 203-216, 2021.
https://doi.org/10.1007/978-3-030-58861-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58861-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-58861-8_15

204 R. Mayata and A. Boukra

data periodically. In a data warehouse context, one always has to deal with lim-
ited resources. Therefore, all possible views can not be materialized due storage
space and maintenance constraints. Materialized View Selection (MVS) is the
problem of choosing among the views’ universe, the set of ones that minimizes
the Total Processing Cost (TPC) when materialized with respect to space or
maintenance constraints. In this paper, authors will focus on the MVS problem
with storage space constraint.

The MVS problem is proven to be NP-Hard. Therefore, several approaches
using heuristics and meta-heuristics were proposed so far in literature.

2 Related Work

When talking about MVS problem, one has to mention the first paper deal-
ing with it, which is [5]. At that time, they considered only the storage space
constrained MVS problem. Authors proposed a greedy algorithm named HRU,
this algorithm selects views to materialize in every iteration in the following
way: for every view not yet chosen for materialization, the algorithm calculates
its total benefit when materialized, and the view having the maximum benefit
is then materialized. This step is repeated until there is not enough space to
materialize further views. An extension was proposed in [1] to the selection of
both views and indices. [3] also proposed heuristics based on greedy algorithm,
the difference between these heuristics and HRU is that they select the view
with maximum benefit per unit space. [6] compared between different greedy
based algorithms for large problem instances (>10 dimensions), after proposing
a search space reduction algorithm based on the observation that some hierarchi-
cally related views may have the same size. There have been several evolutionary
based approaches proposed for the storage space constrained MVS problem such
as [9] in which the authors proposed a Genetic Greedy Algorithm; they used
the greedy concept in the repairing function. The MVS problem with mainte-
nance constraint was first considered in [2], after noticing that storage space
causes fewer problems as a constraint. They propose an inverted tree and A-star
algorithms. [14] applied a hybrid evolutionary algorithm consisting of two lev-
els of algorithm processing. The higher-level algorithm searches for good global
processing plan from local processing plans based on queries. The lower level
algorithm selects the best set of materialized views with the minimal total cost
for a particular global processing plan. [8] proposed a genetic algorithm with
a penalty function. [13] proposed an extension of [8] by replacing the penalty
function with stochastic ranking procedure. In all of the aforementioned works
the authors used one of three frameworks to represent all possible views. The
first one is lattice framework introduced in [5]. We also find the Multiple View
Processing Plan(MVPP) and AND-OR graph.

Materialized View Selection Using Discrete Quantum 205

3 Background

3.1 Lattice Framework

V. Harinarayan et al. [5] Introduced an oriented acyclic graph G = (V, E) called
lattice to represent the dependencies between all possible views of a star schema,
where each view is characterized by a group-by clause. The Vertices V(G) of this
graph represents the set of views or queries, while the Edges E(G) represents
the relation between those queries. For a pair of vertices (z,y) we say that z
depends on y (z < y) if the query z can be answered using the result of y. An
edge (v;,v;) between two views v; and v; exists only if v; is the “immediate
proper ancestor” of v;, which means that (v; <v;) and Avg (v; < v Avi < v;)
for every three distinct v;,v; and vg. Fig. 1 is the lattice representation of the
views dependencies of the star schema given in the same figure.

FACT @
ItemID

MID
cip
ITEM CLIENT ”‘

TotalSales

ItemID o) a c
Designation MALL Name

Qte MID Adress

Price Region

City @

Fig. 1. Example of a lattice framework representing dependencies between views of a
star schema

3.2 Space-Constrained MVS Problem
The vertices and edges of the lattice are weighted in the following way:

— Every vertex v € V(@) has three weights :

e r,: the initial data scan cost.

e f,: query frequency.

e |v|: the storage space needed to materialize the view v itself.
— Every edge (v,u) € E(G) has one weight:

e w,(v,u): processing cost of query u using v.

An additional vertex v, is added to the graph, this vertex represents the raw
data from which every query can be calculated. For every pair of queries (u,v),
we call q(u,v) the query processing cost of u using v. ¢(u,v) is the sum of the
query processing costs of every edge in the shortest path between u and v, added
to the initial data scan cost of v(r,). If no path links u to v, the vertex vy is
used. Let M be the set of views to be materialized, (v, M) be the minimum
query processing cost of v in presence of M. The space-constrained materialized
view selection (MVS) problem can be formulated as follows :

206 R. Mayata and A. Boukra

Select a set of views M to materialize which minimizes T(G, M), where:

T(GvM): Z fv-Q(va) (1)

veV(G)

Under the constraint H(G, M) < S, where:

H(G,M)=) |v] (2)

veEM

S is the storage threshold not to be exceeded by the views of M.

3.3 Quantum Inspired Evolutionary Algorithm Overview

The smallest unit of information in quantum computing is called g-bit, and each
g-bit is defined by two complex numbers « and f verifying: |a|? + |B]? = 1.
|o|? represents the probability of the g-bit to be in the state ‘0’, as for |3|?,
it represents the probability of the g-bit to be in the state ‘1’. In QEA, each
individual q is represented by a quantum vector of length m (m being the length
of solutions). Each column is represented by a single g-bit, which means: |a;|? +
1Bi? =1,i=1,2,3,..m.

g-bit representation of solutions has the advantage of being able to repre-
sent a linear superposition of states, i.e: a single quantum vector can refer to
multiple solution states with different probabilities [4], which gives the QEA
a better population diversity characteristic. Like any independent evolutionary
algorithm, QEA has his own operators. We mention Measurement, Quantum
interference and Mutation. Measurement is the name of the operation allowing
QEA to generate a solution vector using a quantum vector. As for Quantum
interference, it intensifies the research around the best self/global solution. It
consists in moving the state of each g-bit in the direction of the corresponding
bit’s value of the best solution in progress, and this is accomplished by making
a rotation whose angle is a function of the amplitudes «; and [3;. Like the evo-
lutionary mutation, quantum Mutation is used to inspect some of the current
solution’s neighbors with some defined probability.

3.4 Differential Evolution

The differential Evolution (DE) algorithm was first introduced not as a separate
evolutionary algorithm but as a genetic algorithm variation [12]. It is considered
as a unique EA because it is not biologically motivated. DE is a population-based
algorithm that is designed to optimize functions in an n-dimensional continuous
domain [12]. Each individual in the population is an n-dimensional vector that
represents a candidate solution to the problem. The basic idea of DE algorithm
is described as follows:

Like every EA algorithm we first generate randomly a set of individuals
X =ux1,29,23,...,x,. Then we proceed in the following way:

Materialized View Selection Using Discrete Quantum 207

1. Mutant vector generation:
For each individual z;, a mutant vector v; is generated using three different
random individuals .1, .2 and z,3 other than x;, following the formula (3):

‘/i =+ F(.Z‘,-g - 1‘7-3) (3)

Where z,.1,x.9 and x,.3 are three distinct vectors, and F' is a real number
used to scale the difference between z,2 and z,.3.

2. Trial vector generation:
The mutant vector v; is then combined (crossed over) with the individual z;
itself to generate a trial vector u;. Crossover is done as follows (formula (4)):

v, if(rand < c)or (j = Jr)
i = {xij, otherwise (4)

For every j in [1,n]|, where n is the problem size and is also the size of
Ug, V; and T;; U4 is the 4" component of u;, vy is the 4" component of v;, Tij
is the j** component of the individual z;, rand is a random number taken
from the uniform distribution in [0, 1]; ¢ is the constant crossover rate (in
[0,1]); and Jr is a random integer taken from the uniform distribution in
[1, n].

3. Best fit choice:
After the trial vector ui is created, it is compared to the individual xi, and
the fittest vector in each pair (x;,u;) is kept to the next generation of DE
algorithm. The least fit is discarded.

z;, otherwise

4 QDE Algorithm

In this paper we propose a new hybrid algorithm (QDE) using both QEA and
DE algorithms. In QDE, the population is a set of quantum vectors. Each quan-
tum vector @); is considered as a vector. After measurement, a set of solutions
X, is generated from every); vector. Then, mutant vectors generation and trial
vectors gemeration are applied on every vector (); like in the original DE algo-
rithm. The best fit choice is also applied on both the original @); population and
the new trial vectors based on the fitness of their corresponding solutions after
applying measurement. After that, the Quantum interference operator of QEA
is used on the new @; generation to improve it by rotating towards the global
best solution. The above steps are repeated until some stop criteria are satisfied.

The main idea of the QDE is outlined in the Fig.2 and its pseudo code is
given in Algorithm 1.

208 R. Mayata and A. Boukra

. Init quantum
vectors Q;

Generate No
solutions X; using
measurement

l

Mutant/Trial
vectors
generation

l

Generate
solutions X;* from
Trial vectors

l

Best fit choice Improve
based on uantum vectors Stop criteria Yes
i s aua > P —)@
solutions X; and using Quantum reached

X; interference

Fig. 2. Main steps of QDE Algorithm

4.1 Solution Representation

In this work, the authors represent every solution by a binary vector Xi =
(x1,x2,23,...,2N), where N is the total number of views. A case z; takes the
value 1 if the view v; is materialized, 0 otherwise. As shown in Fig. 3, the binary
vector X is the representation of the solution given by the lattice L (the lattice
structure of a star model with 3 dimensions), in which the materialized views
are painted in grey. In this example the views vy and v3 are materialized, which
corresponds to the value 1 in the second and third position of the vector X.
Whereas, the rest of the views are not materialized, hence the value 0 of the
remaining positions.

Materialized View Selection Using Discrete Quantum 209

Algorithm 1: QDE Pseudo Code

N: population size;
n: number of views;
f: stepsize parameter € [0.4,0.9];
c: crossover rate € [0.1,1];
t: the maintenance constraint threshold € [0.1, 1];
Cinaz: the max space-cost when all vertices are materialized;
ra: rotation angle € [0.017,0.17];
begin
Initialize a population of quantums @; where i € [1, NJ;
foreach Q; (i € [1,N]) do
X;= measurement(Q;);
if (H(X;) > Cpax *t) then Repair X;;
end
repeat
foreach Q; (i € [1,N]) do
ry = random int € [1, N] : 7y # 4;
ro = random int € [1,N]: 7y & {2 r1};
r3 = random int € [1, N]:r3 & {i,71,72};
=Qr1+ [(Qr2 — QT3), /* v; . mutant vector */
J = random integer € [1,n];
foreach Q; (i € [1,N]) do
/* wu; : trial vector */
if (rand < c)or(j = J,) then u;; = v;;;
else Uij = Qij;
end
nd
oreach i € [1, N] do
X/= measurement(u;);
if H(X]) > Ciaz *t then Repair X/;
if T(X]) < T(X;) then Q; = u;;
apply Quantum interference on Q;;
end
if no update on global best for 100 iterations then Apply reset
operator;

= 0

until stop criteria;

end

4.2 Q-Bit Representation

Since |a|?+|B]? = 1, it basically represents the equation of a unit circle and each
point on its perimeter can be represented by a single variable § with the Cartesian
co-ordinates given by cosg and sing where @ is defined in [0, 27]. Therefore,
instead of using o and 3 to represent a g-bit like QEA, we use the variable 6,

210 R. Mayata and A. Boukra

Lattice “L”

o
&f

oqofcse
OR0

Solution Vector “X”

1 2 3 4 5 6 7 8
0 1 i

o
o
o
o
o

Fig. 3. Example of solution representation

from which the values a and 3 can be inferred. This, not only will allow us to
gain space, but also will make the use of quantum interference operator easier,
because the rotation angle will be added directly to the quantum itself.

4.3 Quantum Interference Application

As mentioned in the above section, quantum interference is applied by adding
the rotation angle v to the quantum directly. In order to apply this operator, we
use the same look-up table used in [7] described in Table 1.

Table 1. Look up table from [7]

a | B | Best solution bit value | Angle
>0/>01 +y
>0[>0]0 —y
>0/<0/1 —y
>0{<0]0 +y
<0/>0]1 —
<0|>0]0 +y
<0/<0|1 +
<0|<0]0 —

The choice of the rotation angle’s value v is very important. A badly chosen
value can lead to premature or very late convergence or divergence.

Materialized View Selection Using Discrete Quantum 211

4.4 Discrete Vs Continuous Search Space

Both QEA and DE algorithms are dedicated to solve continuous problems. In
those algorithms, solution vectors move around the search space which is within
a continuous real domain. However, MVS problem deals with a binary discrete
search space. Some adaptation of those algorithms to solve binary discrete prob-
lems is needed. Several works like [10,11] use transfer functions. Those functions
consider the continuous search space as a probability of being at the values 0 or 1.
In this work the authors follow a similar approach. Instead of having solution
vectors, the Vector population is a set of quantum vectors. Those vectors gener-
ate solutions using the measurement operator mentioned earlier. So, instead of
manipulating the actual position of each solution, the probability of the position
being at 0 or 1 is manipulated. This way one can use any continuous search space
dedicated algorithm to solve a problem having a binary discrete search space.

4.5 Dealing with Unfeasible Solutions

Since the MVS is a constrained combinatorial optimization problem, several solu-
tions during the algorithm’s application will not respect the constraint forming
what is called unfeasible solutions. One of the most commonly used methods to
deal with this problem is to implement a penalty function penalizing those unfea-
sible solutions, and ensuring that even if they have good fitness, they will not be
highly evaluated among other solutions. In our work, we do not use any penalty
function. Instead of that, we use a repairing function. We keep dematerializ-
ing the smallest view in every iteration, until the constraint is not violated any
more. Doing that will ensure that after measurement, there will be no unfeasible
solutions.

4.6 The “Reset” Operator

As in most swarm algorithms, every single particle seeks the best solution. With
lack of diversity and after some iterations, the particles stagnate at the same
position (around the best solution). Consequently, the population prematurely
converges to local optima. To deal with this issue, the authors have introduced
the reset operator (known as reseeding or extinction) to ensure the escape from
the local optima case. If the best global solution does not change for a certain
number of iterations, reset operator is applied by replacing all the quantum
vectors with new ones. By doing that, and keeping the best global solution
found so far, one can ensure that those vectors will seek the best solution from
a different starting points, covering new areas in the search space, and ensuring
diversity for the whole population. In QDE the number of iteration needed to
apply the reset operator is set to 100 iterations.

5 Experimental Results

In this section we will prove the effectiveness of the proposed QDE algorithm
against the well-known HRU algorithm of [5]. Also, we test it against the Genetic

212 R. Mayata and A. Boukra

Algorithm which is one of the most commonly used evolutionary algorithms used
to solve MVS problem both with space and maintenance constraints. The tests
were conducted on an Intel based i-5 2.4 GHz PC having 8 GB RAM. Due to
several tests, the parameters were set as shown in Table 2.

Table 2. Parameters used for QDE/GEA implementation

Parameters QDE values GEA values
Population size 100 100
Nb of generations | 1000 1000

Query frequencies

following Zipf distribution

Scale factor

0.5

Cross Over rate | 0.3 0.5
Rotation angle v |0.027 -
Mutation Pb - 0.001

We chose to compare QDE to HRU for 5 and 6 dimensions’ lattices. Table 3
shows the solution’s fitness (TPC) given by HRU, compared to the average of
30 independent runs of QDE for 1000 iterations. For 5-dimension lattice, QDE
outperforms HRU for almost all space thresholds. They provide same TPC for
the space threshold 0.7, 0.2 and 0.1. this is due to small search area for this
lattice. As for 6-dimension lattice, QDE provide better solutions for all space

thresholds.

Table 3. QDE vs HRU for 5-dimension and 6-dimension lattices

5-Dimension

6-Dimension

t |HRU QDE HRU QDE

0.9]4943892 | 4939772 | 5091526 | 5090352
0.8 14967327 | 4967200 | 5114865 | 5113931
0.7 1 5000283 | 5000283 | 5156049 | 5143236
0.6 | 5052126 | 5051514 | 5186824 | 5180342
0.5 15106501 | 5099592 | 5245149 | 5231102
0.4 5228176 |5190686 | 5311518 | 5296674
0.3 15337020 | 5299322 | 5429357 | 5385871

0.2 5479742 | 5479742 | 5554820 | 5552887

0.1|5864309 | 5864309 | 5890921 | 5866430

Table 4, Table 5 and Table 6 contain the results of 30 independent runs of
QDE and GEA on a 5, 6 and 7-dimension lattices respectively. We kept track of
the mean, min and max TPC found during these runs.

Materialized View Selection Using Discrete Quantum 213

Table 4. QDE vs GEA for 5-dimension lattice

t 0.1 0.2

mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE | 5864309 |5864309 5864309 | 5479742 |5479742 5479742
GEA | 5895203 5864309 | 6178534 | 5499864 5479742 | 5580018

t 0.3 0.4
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE | 5299322 | 5299322 | 5299322 | 5190686 | 5190686 | 5190686
GEA | 5312721 5299322 | 5354626 | 5203998 5190686 | 5236239

t 0.5 0.6
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE 5099592 | 5099592 5099592 | 5051514 | 5051328 | 5052126
GEA 5106157 5099592 | 5127608 | 5077674 5064453 | 5092808

t 0.7 0.8
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE | 5000283 | 5000283 5000283 | 4967200 | 4967200 | 4967200
GEA 5064873 5000283 | 5014292 | 4969717 4967200 | 4975976

By observing Table 4, one can notice that QDE outperforms GEA, for all
thresholds. What seems to be the best solution found by GEA (min TPC) is
almost always the mean TPC of QDE. i.e QDE found that solution for every
single run since mean = min = max for all thresholds except 0.6 as shown in
Table 4.

As for 6-dimesion lattice, Table 5 shows that QDE finds better solutions since
its mean, min and max TPC are better than GEA, except for thresholds 0.1 and
0.3 where GEA finds a similar min TPC.

Finally for 7-dimension lattice (Table 6), the supremacy of QDE over GEA
becomes very clear since QDE outperforms GEA for all the statistical indicators
(min,max and mean) TPC and that is for all the thresholds with no exception.
This proves the scalability of QDE’s solutions quality.

214 R. Mayata and A. Boukra
Table 5. QDE vs GEA for 6-dimension lattice
t 0.1 0.2
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE | 5866430 |5866430 | 5866430 | 5552887 |5552444 |5554820
GEA |5903295 5866430 | 6005452 | 5584828 5555631 | 5662251
t 0.3 0.4
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE |5385871 |5385457 |5388109 5296674 |5295998 | 5301854
GEA | 5415317 5385457 | 5463672 | 5309944 5301737 | 5327368
textbit | 0.5 0.6
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE |5231102 |5229696 | 5234680 5180342 |5179914 |5181307
GEA | 5241880 5233912 | 5251542 | 5186114 5181298 | 5194346
t 0.7 0.8
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE |5143236 |5142962 5144289 5113931 |5113650 5116112
GEA | 5146883 5143262 |5152941 | 5115813 5113974 | 5118915
Table 6. QDE vs GEA for 7-dimension lattice
t 0.1 0.2
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE 5866197 | 5864225 5878000 | 5589373 | 5585840 5598541
GEA | 5920038 5873451 | 6009651 | 5619766 5591987 | 5692837
t 0.3 0.4
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE | 5454278 | 5451819 5459491 | 5366446 | 5364286 | 5369022
GEA | 5474363 5460181 | 5505542 | 5380534 5369855 | 5397451
t 0.5 0.6
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE | 5303783 | 5301315 |5306194 | 5259941 |5258691 | 5261597
GEA | 5310349 5303681 | 5319140 | 5265795 5261428 | 5274166
t 0.7 0.8
mean TPC | min TPC | max TPC | mean TPC | min TPC | max TPC
QDE | 5226450 | 5225031 | 5228281 | 5200795 | 5200095 | 5201447
GEA | 5229828 5226855 | 5233312 | 5202571 5200888 | 5205480

Materialized View Selection Using Discrete Quantum 215

6 Conclusion

In this paper, we adapted a binary version of Differential Evolution (DE) Algo-
rithm to solve MVS problem with space constraint. We used the lattice structure
of [5] to represent hierarchy between different views. Also, adaptation of the DE
algorithm to the discrete binary case was done through merging DE algorithm
with the QEA algorithm instead of the use of transformation functions such as
Sigmoid or V-shaped. The Experimental results show the efficiency of the pro-
posed QDE algorithm in comparison with HRU and GEA algorithms. That is
shown through the TPC values of QDE, HRU and GEA which is significantly
better in QDE. As perspective, we want to investigate the use QEA alongside
with other evolutionary algorithms. That is, to study further the efficiency of
QEA when use instead of transformation functions.

References

1. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index selection for
OLAP. In: 13th International Conference on Data Engineering, 1997. Proceedings.
pp- 208-219 (1997). https://doi.org/10.1109/ICDE.1997.581755

2. Gupta, H., Mumick, I.S.: Selection of views to materialize under a maintenance cost
constraint. In: Proceedings of the 7th International Conference on Database The-
ory, vol. 13, pp. 453-470 (1999).https://doi.org/10.1007/3-540-49257-7-28, http://
dl.acm.org/citation.cfm?id=645503.656261

3. Gupta, H., Mumick, I.S.: Selection of views to materialize in a data warehouse.
IEEE Trans. Knowl. Data Eng. 17(1), 24-43 (2005). https://doi.org/10.1109/
TKDE.2005.16

4. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of com-
binatorial optimization. IEEE Trans. Evol. Comput. 6(6), 580-593 (2002). https://
doi.org/10.1109/TEVC.2002.804320

5. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. ACM SIGMOD Record 25(2), 205-216 (1996). https://doi.org/10.1145/
235968.233333. http://portal.acm.org/citation.cfm?doid=235968.233333

6. Latuszko, M., Pytlak, R.: Methods for solving the mean query execution time
minimization problem. Eur. J. Oper. Res. 246(2), 582-596 (2015). https://doi.
org/10.1016/j.ejor.2015.04.041

7. Layeb, A.: A novel quantum inspired cuckoo search for knapsack problems. Int. J.
Bio-Inspl. Comput. 3(5), 297 (2011)

8. Lee, M., Hammer, J.: speeding up materialized view selection in data warehouses
using a randomized algorithm. Int. J. Coop. Inf. Syst. 10(03), 327-353 (2001).
https://doi.org/10.1142/S0218843001000370

9. Lin, W.Y., Kuo, I.C.: A Genetic Selection Algorithm for OLAP Data
Cubes.Knowledge and Information Systems 6(1), 83-102 (2004).
https://doi.org/10.1007/s10115-003-0093-x, http://www.springerlink.com/
openurl.asp?genre=article&id=doi:10.1007/s10115-003-0093-x

10. Mirjalili, S., Mirjalili, S.M., Yang, X.S.: Binary bat algorithm. Neural Comput.
Appl. 25(3-4), 663-681 (2014). https://doi.org/10.1007/s00521-013-1525-5

11. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: BGSA: binary gravitational search
algorithm (2010). https://doi.org/10.1007/s11047-009-9175-3

https://doi.org/10.1109/ICDE.1997.581755
https://doi.org/10.1007/3-540-49257-7-28
http://dl.acm.org/citation.cfm?id=645503.656261
http://dl.acm.org/citation.cfm?id=645503.656261
https://doi.org/10.1109/TKDE.2005.16
https://doi.org/10.1109/TKDE.2005.16
https://doi.org/10.1109/TEVC.2002.804320
https://doi.org/10.1109/TEVC.2002.804320
https://doi.org/10.1145/235968.233333
https://doi.org/10.1145/235968.233333
http://portal.acm.org/citation.cfm?doid=235968.233333
https://doi.org/10.1016/j.ejor.2015.04.041
https://doi.org/10.1016/j.ejor.2015.04.041
https://doi.org/10.1142/S0218843001000370
https://doi.org/10.1007/s10115-003-0093-x
https://doi.org/10.1007/s00521-013-1525-5
https://doi.org/10.1007/s11047-009-9175-3

216 R. Mayata and A. Boukra

12. Simon, D.: Evolutionary Optimization Algorithms. Wiley (2013). https://books.
google.dz/books?id=gwUwIEPqk30C

13. Yu, J.X., Yao, X., Choi, C.H., Gou, G.: Materialized view selection as constrained
evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
33(4), 458—-467 (2003). https://doi.org/10.1109/TSMCC.2003.818494

14. Zhang, C., Yao, X., Yang, J.: An evolutionary approach to materialized views
selection in a data warehouse environment. IEEE Trans. Syst. Man Cybern. Part
C: Appl. Rev. 31(3), 282-294 (2001). https://doi.org/10.1109/5326.971656

https://books.google.dz/books?id=gwUwIEPqk30C
https://books.google.dz/books?id=gwUwIEPqk30C
https://doi.org/10.1109/TSMCC.2003.818494
https://doi.org/10.1109/5326.971656

	Materialized View Selection Using Discrete Quantum Based Differential Evolution Algorithm
	1 Introduction
	2 Related Work
	3 Background
	3.1 Lattice Framework
	3.2 Space-Constrained MVS Problem
	3.3 Quantum Inspired Evolutionary Algorithm Overview
	3.4 Differential Evolution

	4 QDE Algorithm
	4.1 Solution Representation
	4.2 Q-Bit Representation
	4.3 Quantum Interference Application
	4.4 Discrete Vs Continuous Search Space
	4.5 Dealing with Unfeasible Solutions
	4.6 The ``Reset'' Operator

	5 Experimental Results
	6 Conclusion
	References

