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Abstract. The paper considers the possibility of thunderstorm forecasting
using only dynamical and microphysical parameters of the cloud, simulated by
the 1.5D model with further processing by machine learning methods. The
problem of feature selection is discussed in two aspects: selection of the optimal
values of time and height when and where the output model data are fixed and
selection of fixed set of the most representative cloud parameters (features)
among all output cloud characteristics. Five machine learning methods are
considered: Support Vector Machine (SVM), Logistic Regression, Ridge
Regression, boosted k-nearest neighbour algorithm and neural networks. It is
shown that forecast accuracy of all five methods reaches values exceeding 90%.
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1 Introduction

In recent decades mathematicians and programmers are working hard to improve
existing numerical weather forecasting models. Nowadays machine learning methods
are considered to be one of the most promising tool of such improvement.

Machine learning (ML) is a class of artificial intelligence methods which do not try
to solve a problem directly, but by training corresponding algorithms in the process of
solution of many similar tasks.

Machine learning is used when:

• it is too complicated to compose system of the equations for a problem solution;
• the solution must be adapted to a new dataset;
• the solution needs to be scaled.
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Machine learning algorithms are divided into two groups: supervised and unsu-
pervised learning algorithms. Classification and regression belongs to the first group,
clustering to the second one.

Clustering (or cluster analysis) is the task of breaking down multiple objects into
groups called clusters. Inside each group there should be “similar” objects, and objects
of different groups should be as different as possible. The main difference between
clustering and classification is that the list of groups is not clearly defined and is
determined during the operation of the algorithm.

The classification problem is the task of assigning a sample to one of several
pairwise disjoint sets.

Regression or regression analysis is a statistical method for studying the influence
of one or more independent variables on a dependent variable.

The use of machine learning methods in meteorology is twofold. On the one hand,
“pure” machine learning models are being developed, where certain atmospheric
parameters are predicted on the basis of observational data obtained at meteorological
stations, weather centers, etc. [1–3]. On the other hand, machine learning methods are
used to verify models by establishing relationships between model forecasts and the
actual meteorological situation [4, 5].

In our work, we used the so-called “hybrid” approach [6, 7], combining numerical
simulation and machine learning methods to identify the dependence of dynamic,
microphysical and electrical parameters of convective clouds. This kind of identifica-
tion is quite important for forecasting thunderstorm with the help of the models which
do not have the block describing electrical processes. It should be noted that Semi-
empirical methods of Peskov, Yagudin, Reshetov, Lebedeva and others [8] are still
used for operational forecasting of such dangerous phenomena as thunderstorms. These
methods are based on the calculation of complex coefficients, which are functions of
some cloud parameters, determined either using a synoptic map or using the aerological
diagram. The use of modern numerical cloud models for the purpose of forecasting is
limited, on the one hand, by the lack of computational resources that are required to
implement, for example, modern three-dimensional models with a detailed description
of the microphysical and electrical characteristics of the cloud. Such models describe
with the greatest degree of detail the dynamic, microphysical and electrical processes in
the clouds in all the complexity of their interaction and, therefore, should ensure the
best quality of forecasts. However, their use is impossible for operational forecasting in
small meteorological centers, due to the lack of the necessary computing power there.
On the other hand, the use of models of lower dimensionality and lower functionality
sets the problem of determining the likelihood of thunderstorm development only by
analyzing the calculated values of the dynamic and microphysical characteristics of the
cloud, which are the output of the models, as the latter do not have the block describing
electrical processes.

Usage of the machine learning methods for establishing relationship between the
output of the numerical model and the probability of thunderstorm, hail, heavy rain will
provide effective tool for forecasting most dangerous convective phenomena.

Dangerous meteorological events are in the focus of research in the works [9, 10].
The authors suggested using neural networks to simulate the movement of typhoons,
which are the developed tropical cyclones, usually formed in the northwestern Pacific
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Ocean. Tropical cyclone intensity changes in the western North Pacific was predicted
in [9] using the back-propagation neural network. In [10] a generative adversarial
network (GAN) was used for prediction the tracks of typhoons using satellite images as
inputs. The neural network was trained with the help of time series of satellite images
of typhoons which occurred in the Korea Peninsula in the past.

We concentrate on forecasting only dangerous convective phenomena, mainly
thunderstorms, using different machine learning algorithms. Discussion is provided of
the most effective method for selection of model output data subsequently used as input
for machine learning (features selection).

2 Convective Cloud Model

Modelling of a convective cloud has been conducted by using time dependent, one and
a half dimensional (1.5-D) hydrodynamic model with a detailed description of
microphysical processes. A cloud shape is simulated by two nested cylinders following
the approach suggested by Asai and Kasahara [11]. Cloudy region is represented by the
inner cylinder while the downdraft flow outside the cloud is represented by the outer
cylinder.

Evolution of dynamical cloud characteristics is simulated by numerical solution of
the system of partial differential equations. Buoyancy force, gravity, turbulence are
taken into account as well as heat generation/consumption ejected during
condensation/evaporation of water vapor and freezing/melting of cloud droplets.
A vertical component of the velocity, temperature excess in the cloud, relative
humidity, mixing ratio of water vapour, mixing ratio of water drops and cloud thick-
ness are the main dynamical cloud characteristics simulated by the model.

Evolution of microphysical cloud characteristics in time and height is simulated by
a numerical solution of the set of stochastic equations for mass distribution functions of
cloud drops, columnar crystals, plate crystals, dendrites, snowflakes, graupel and frozen
drops. The influence of the following processes is taken into account: nucleation,
condensation, sublimation, coalescence, freezing, melting and breakup. Spectra of
liquid and solid hydrometeors as well as liquid and ice content of a cloud are calculated
with the help of distribution functions obtained earlier.

Transition from the continuous partial differential equations to the finite difference
equations is conducted using forward-upstream scheme. Averaged value of the vertical
velocity is obtained over two mesh points depending upon the sign of the vertical
velocity value (positive or negative).

Though dynamical and microphysical processes develop simultaneously, it is not
possible to calculate them in a single time step. The only solution is to split them in
time using time-splitting method. Dynamical processes are calculated in the first half of
the time step, and microphysical processes in the second half of the time step.

Radiosonde sounding data are used as an input or initial conditions for the model.
Radiosonde soundings provide vertical distributions of environmental temperature and
relative humidity. It is considered that all cloud characteristics with the exception of
temperature and mixing ration of water vapour are equal to zero at the top and at the
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bottom boundaries of the cylinders. Impulses of temperature and velocity are set at the
initial time moment to push the evolution of the simulated cloud.

The model is able to reproduce the whole cycle of cloud evolution if the conditions
in the outer atmosphere is suitable for convection development. Besides, calculated
values of cloud parameters allow predicting the probability of the development of such
dangerous meteorological phenomena as thunderstorms, hails and rain storms.

Detailed description of the model can be found in [12–15].
Input data are collected with the help of integrated information system [16–18]. We

need a significant amount of radiosonde soundings for obtaining sufficient training and
test data set collections. This task is not a trivial one, as we have to integrate the data
about the dangerous phenomenon occurrence and radiosonde data obtained in the place
and at the time of the phenomenon observation. It should be mentioned that the
problem has not been solved completely, as the collected test data sets appeared to be
small enough for such machine learning algorithm as neural networks that resulted in
changing of the structure to perceptron complex.

480 radiosonde soundings with and 196 soundings without phenomena have been
collected. 220 soundings related to thunderstorms, 174 ones to heavy rains and 86
soundings to light rains. Different machine learning algorithms use different number of
data as test and training data sets. For example, 416 records have been formed for
neural networks, where 220 samples correspond to the presence of a dangerous con-
vective phenomenon and 196 samples to its absence. The training set contains 333
samples and the test one contains 83 ones.

3 Algorithms for Data Formation and Preprocessing

Solution of machine learning problems require to find an unknown relationship
between a known set of objects and a set of answers. In our case the fact of dangerous
phenomenon occurrence can be considered as an answer, and the results of numerical
modeling, can be considered as an object. Radiosonde sounding data are used as the
model input.

The numerical parameters of the simulated clouds are chosen as object features.
The numerical model of convective cloud simulates the whole cycle of natural cloud
evolution consisting of three stages: stage of development, mature stage and dissipation
stage. Moreover, the output results are produced on every time step of simulation and
presents the data on every space step, that is on every 200 m. So the problem is what
time step and what height should be chosen for taking the data for future use as object
features.

We use three approaches for feature selection. The first one, described in detail in
[4, 5, 19, 20] is used for the following machine learning algorithms: Support Vector
Machine (SVM), Logistic Regression, Ridge Regression and boosted k-nearest
neighbour algorithm.

The first approach assumes fixing the numerical parameters at the moment of
maximum cloud development and at the height, where the maximum ratio of water
droplets is observed. These time moment and height correspond to the mature stage of
cloud evolution. Feature selection has been provided by using recursive feature
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elimination algorithm with automatic tuning of the number of features selected with
cross-validation. As a result, the following 6 simulated cloud parameters have been
chosen as the optimal features to be used for subsequent machine learning processing.
These parameters are: the vertical component of the velocity, temperature excess in the
cloud, relative humidity, mixing ratio of water vapor, mixing ratio of water drops and
cloud thickness.

The second approach is used in the works [4, 5] to refine the results obtained with
Support Vector Machine (SVM), Logistic Regression and Ridge Regression
algorithms.

The second approach suggests:

• to use individual sets of features for each case of chosen time and height;
• to use the parameters obtained at the stages of cloud development and dissipation

(time); and at the lower and the higher levels of maximum ratio of water droplets
• to use features, obtained during the whole cloud evolution in a single set of

parameters.

Feature selection has been realized using the L1 regularization method (LASSO) to
overcome model overfitting.

Five cases with the different values of time and height have been considered.
Case 1 corresponds to the same height and time (mature stage of cloud develop-

ment, height of maximum ratio of water droplets). L1 regularization method provides
the following cloud parameters, to be used as optimal features: vertical component of
the velocity, horizontal velocity, temperature excess in the cloud, mixing ratio of water
vapor, mixing ratio of water drops, overall density, pressure and cloud thickness.

Case 2 also corresponds by time to the mature stage of cloud development but the
height is chosen to be 300 m lower than that chosen for the first case. In this case
optimal features differ slightly from the first case. They are: horizontal velocity, tem-
perature excess in the cloud, mixing ratio of water vapor, mixing ratio of water drops,
overall density, pressure, maximum horizontal velocity that was achieved during the
whole simulated cloud evolution.

Case 3 is similar to the case 2 but the height was chosen to be 300 m higher than
that chosen for the Case 1. Obtained optimal features are as follows: vertical compo-
nent of the velocity, temperature excess in the cloud, mixing ratio of water drops.

Case 4 corresponds to the stage of development, that is 5 min earlier than the time
of the Cases 1–3. The height is the same as in the Case 1. Obtained optimal features are
the same as in the Case 3 plus overall density and pressure.

Case 5 corresponds to the stage of dissipation, that is 15 min later than the time of
the Cases 1–3. The height is the same as in the Case 1. Obtained optimal features are as
follows: vertical component of the velocity, temperature excess in the cloud, mixing
ratio of water drops, relative humidity, pressure, overall density, mixing ratio of water
drops, hail and graupel.

The third approach for feature selection is used for neural network algorithm. The
numerical parameters are fixed, similar to the first approach, at the moment of maxi-
mum cloud development and at the height, where the maximum ratio of water droplets
is observed. The most significant features have been selected using the Recursive
Feature Elimination method from the scikit-learn library [21] with Random Forest
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algorithm as an estimator. As a result, the following eight features have been chosen:
mixing ratio of vapor and aerosol particles, relative humidity, density, temperature
excess in the cloud over the temperature in the environment atmosphere, pressure, the
vertical component of the velocity, temperature inside the cloud.

4 Forecast Accuracy Using Support Vector Machine (SVM),
Logistic Regression and Ridge Regression Algorithms

Forecast accuracy amounts to 97.7%, 98.6% and 98.1% for Support Vector Machine,
Logistic Regression and Ridge Regression correspondingly while using the first
approach of data formation and preprocessing [4, 5]. Though looking very promising
these results need to be checked and clarified.

For this purpose, the second approach is used for data formation and preprocessing
with the same machine learning algorithms. It allows to investigate the influence of a
cloud evolution stage upon the choice of cloud parameters and to check the accuracy of
application of feature elimination method.

The results have been obtained using the Scikit-learn library [21]. They are pre-
sented in the Tables 1 and 2.

The analyses of the presented results shows that Logistic regression produces the
lowest forecast accuracy in all Cases in comparison with the two other methods. SVM
and Ridge Regression show approximately the same accuracy. Maximum accuracy has
been obtained by SVM method in Case 2.

The choice of the time moment of cloud evolution does not influence much upon
the forecast accuracy of the three methods. We may use the cloud parameters at any
stage of its development. Influence of the height is more noticeable The best results
have been achieved at the height which was 300 m lower than the height of the
maximum mixing ratio of cloud droplets.

5 Forecast Accuracy Using Neural Network Algorithm

As it is written above the third approach of data formation and preprocessing is used for
neural network algorithm. The data are normalized using the Standard Scaler method
from the scikit-learn library, which converts the data to the standard normal
distribution.

Table 1. Forecast accuracy of machine learning methods

Method Case 1 Case 2 Case 3

Logistic Regression 93,7 94,6 93,2
Support Vector Machine 94,1 96,1 95,0
Ridge Regression 94,1 95,0 94,6
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We consider the only one type of the convective phenomenon, namely thunder-
storm. The data set contains 416 records, including 220 samples corresponding to
thunderstorm presence and 196 samples to its absence. Training data set contains 333
samples and the test one contained 83. Due to the small amount of data test set is used
for validation.

We also create labels for each sample in the data set. Since there are only two cases,
the presence and absence of the phenomenon, we can create one label per sample. But
we decide to use two labels per sample, one for each case, mainly because we will need
to divide the output variables of the neural network at some point. So there are two
types of labels: “target 1” and “target 2”. “Target 1” is equal to 1 and “target 2” is
equal to zero in a case of a thunderstorm occurrence. “Target 1” is equal to 0 and
“target 2” is equal to 1 in a case of a thunderstorm absence.

We investigate 3 types of perceptron structure: classical multi-layer perceptron
(Fig. 1) and two types of complexes, consisting of single layer perceptron structures.
The use of different perceptron structures is due to a small amount of data used as a
training data set. In this case the use of the algorithms based on classical neural
networks may be inefficient [22]. To avoid this the method described in [23] is used for
increasing the efficiency of our neural network. The method involves separation of the
set of input and output variables into several perceptrons (Fig. 2 and 3) with a simpler
structure and then their combination into a single perceptron complex.

Table 2. Forecast accuracy of machine learning methods

Method Case 4 Case 5

Logistic Regression 93,7 93,7
Support Vector Machine 94,1 93,7
Ridge Regression 93,7 94,6

Fig. 1. Classical multi-layer perceptron
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The network shown in Fig. 1 gives the highest accuracy value on the test data for a
classical layer perceptron. This structure has been found experimentally and showed
the accuracy of the trained network of 89.1%.

Perceptron complexes presented in Fig. 2 and 3 show the accuracy of 90.0% and
91.6% correspondingly.

Network design and all calculation are provided using Keras deep learning
framework [24]. Networks are trained using Backpropagation. The hyperbolic tangent
represents the activation function for all layers, Softmax is used as the output function.

The training algorithms for the perceptron complexes (Fig. 2 and 3) are different for
the first level perceptrons and the resulting ones. The training and test data sets for the

Fig. 2. Fist structure of the perceptron complex

Fig. 3. Second structure of the perceptron complex
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first level perceptron are constructed on the base of the initial data taking into account
the input and output variables for each current perceptron. All the outputs are stored.
The training and test data sets for the resulting perceptron have been constructed on the
base of the initial data and the calculated output values of the first level perceptrons
taking into account the input and output variables of the perceptron.

We also try to solve the problem of small data set using the approach proposed in
[25]. The author suggests a cross-variation method for the problem solution. All the
data are used as a training data set, except for one sample, which is used to test the
network after training. Then this procedure is repeated so every sample is sequentially
excluded from the initial data set. Thus, each sample can be considered as both training
and test one. After receiving the loss values for all test samples, they are averaged and
an assessment is got of the neural network testing. The disadvantages of this method
are the need to repeat the training many times, which takes a considerable amount of
time, as well as the possible inaccuracy of the estimates of individual sample losses due
to the influence of the stochastic component of the learning process. As a result of
applying this method the estimated accuracy of network is equal to 89.9%.

6 Discussion

In the paper we continue to examine the effectiveness of using various machine
learning methods for forecasting dangerous convective phenomena. Table 3 illustrates
the results obtained both in the previous works [4, 5, 20] and present paper. We have
considered five machine learning methods: Support Vector Machine (SVM), Logistic
Regression, Ridge Regression, boosted k-nearest neighbour algorithm and neural
networks. The table contains the best accuracy which could be possible achieved
independently of the feature selection methods and approaches of data formation.

The table does not contain the results described in Sect. 4 of the present paper and
shown in Tables 1 and 3 as the accuracy achieved with second approach of data
formation and preprocessing is lower than the accuracy obtained with the help of the
first approach. That means that the stage of cloud evolution is not crucial for the choice
of the most representative cloud parameters (features).

Table 3. Maximum forecast accuracy of the five machine learning methods

Method Forecast accuracy

Logistic Regression [4, 5] 98.6%
Support Vector Machine [4, 5] 97.7%
Ridge Regression [4, 5] 98.1%
Boosted k-nearest neighbour algorithm [20] 99.0%
Neural networks 91.6%
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As it can be seen from the Table 3 the best results are achieved using Boosted k-
nearest neighbour algorithm [20], the worst results were achieved with the neural
networks algorithms.

But all the obtained values of forecast accuracy should be treated as preliminary
ones, as the data sets used are relatively small for machine learning methods.

In future the research should be focused on obtaining sufficient number of radio-
sonde soundings with the corresponding model simulations for formation relevant data
sets for training and testing.

For correct comparison, forecast accuracy of the different machine learning
methods should be obtained by the same feature selection methods and the same
approaches to data formation.

Besides the forecast accuracy all machine learning methods should be compared by
their numerical performance. The method which will show the optimal combination of
precision and performance should be recommended for the operational forecasting of
the dangerous convective phenomena.

7 Conclusions

The possibility of thunderstorm forecasting is considered, based upon numerical
modelling with the subsequent processing of the output data by machine learning
methods.

The problem of feature selection is discussed in two aspects: selection of the
optimal values of time and height when and where the output model data are fixed and
selection of the most representative cloud parameters (features). The results obtained
with the help of Support Vector Machine (SVM), Logistic Regression and Ridge
Regression show low dependence of forecast accuracy upon the height and the time
moment of the output data selection.

The possibility of using neural networks for forecasting dangerous convective
phenomena is analysed. Neural networks with three different structures are considered.
The best achieved accuracy equals to 91.6%.

Comparison of different machine learning methods is provided. It is shown that
forecast accuracy of all five methods reaches values exceeding 90%.

The choice of the most effective method should be based upon the investigation of
the performance of machine learning method on the training and testing data sets of a
larger volume.
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