
SMOTE-Based Homogeneous Ensemble
Methods for Software Defect Prediction

Abdullateef O. Balogun1, Fatimah B. Lafenwa-Balogun1,
Hammed A. Mojeed1, Victor E. Adeyemo2,

Oluwatobi N. Akande3(&), Abimbola G. Akintola1, Amos O. Bajeh1,
and Fatimah E. Usman-Hamza1

1 Department of Computer Science, University of Ilorin, Ilorin 1515, Nigeria
{balogun.ao1,raji.fb,mojeed.ha,akintola.ag,bajehamos,

usman-hamza.fe}@unilorin.edu.ng
2 School of Built Environment, Engineering and Computing, Leeds Beckett

University, Headingley Campus, Leeds LS6 3QS, UK
v.adeyemo5225@student.leedsbeckett.ac.uk

3 Department of Computer Science, Landmark University, Omu-Aran,
Kwara State, Nigeria

akande.noah@lmu.edu.ng

Abstract. Class imbalance is a prevalent problem in machine learning which
affects the prediction performance of classification algorithms. Software Defect
Prediction (SDP) is no exception to this latent problem. Solutions such as data
sampling and ensemble methods have been proposed to address the class
imbalance problem in SDP. This study proposes a combination of Synthetic
Minority Oversampling Technique (SMOTE) and homogeneous ensemble
(Bagging and Boosting) methods for predicting software defects. The proposed
approach was implemented using Decision Tree (DT) and Bayesian Network
(BN) as base classifiers on defects datasets acquired from NASA software
corpus. The experimental results showed that the proposed approach outper-
formed other experimental methods. High accuracy of 86.8% and area under
operating receiver characteristics curve value of 0.93% achieved by the pro-
posed technique affirmed its ability to differentiate between the defective and
non-defective labels without bias.

Keywords: Software Defect Prediction � Class imbalance � Data sampling �
Ensemble methods

1 Introduction

The rapid and continuous influence of software systems on human activities cannot be
over-emphasized. This influence can be attributed to the comfort and pleasure derived
from using these software systems [1, 2]. Developing quality and reliable software
systems become imperative as the adverse effect of defective software systems may be
disastrous. Aside from end-users’ dissatisfaction, high over-head cost (human and
capital) are some of the implications of defective software systems [3–6]. However,
software quality assurance, a conventional process of ensuring quality software

© Springer Nature Switzerland AG 2020
O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12254, pp. 615–631, 2020.
https://doi.org/10.1007/978-3-030-58817-5_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58817-5_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58817-5_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58817-5_45&domain=pdf
https://doi.org/10.1007/978-3-030-58817-5_45

systems, is not adequate as modern software systems are implicitly large and inter-
dependent as a result of periodic and continuous updates and upgrades [7–10]. Hence,
sophisticated approaches such as software defect prediction are needed to complement
conventional methods of software testing in building quality software systems.

Software Defect Prediction (SDP) is the deployment of Machine Learning
(ML) methods for identifying defective software modules or components. SDP can
assist software engineers to judiciously utilize available resources in software testing or
maintenance by focusing on defective software modules or components before software
release [11–14]. SDP models are built on details from software features such as source
code complexity, software development history, software cohesion and coupling to
predict defective modules in software systems. These software features are numerically
quantified to determine the level of software systems quality and reliability [15–18].

Machine learning techniques are deployed for building SDP models using software
features. Both supervised and unsupervised ML techniques have been used in building
SDP models [3, 19–21]. The goal is to build an SDP model with high accuracy and
precision on predicting defects in software systems. Nonetheless, the prediction per-
formance of SDP models depends on the quality of software metric datasets used for
developing the models. That is, software features used for building SDP models
influence the prediction performance of SDP models [4, 9, 22, 23]. These software
features are convoluted and distorted which can be traced to class imbalance problem.
Class imbalance in SDP occurs when there is an unequal representation of class labels
with non-defective instances as the majority and defective instances as a minority. It is
a latent problem that occurs naturally in the software features and impedes the pre-
dictive performances of SDP models [21, 24].

Handling class imbalance has raised concerns and attention from researchers as
many studies and methods have been proposed to address the imbalance problem [8,
11, 12, 21, 24–26]. From existing studies, it was observed that SDP models built with
imbalanced datasets produces inaccurate results as the ensuing SDP models tend to
over-fit. That is, SDP models built on imbalanced datasets recognize the majority class
label more than the minority class label [12, 21, 24–26]. It is crucial to note that
accurate prediction of the minority class label (defective class) is of utmost importance
as a failure to predict a defective class may be detrimental. Consequently, researchers
have employed methods such as data sampling, cost-sensitive learning and ensemble
methods to address class imbalance problem in SDP [19, 25–28]. These methods had a
good impact on SDP models; however, there is still a need for more solutions to
address the class imbalance in SDP. Data sampling methods have been known to
address class imbalance problem by increasing the minority class label (over-sampling)
or decreasing the majority class label (under-sampling) [21, 24, 25]. Also, it has been
established that class imbalance has little or no effect of ensemble methods [19, 26, 27].
Instigated by the preceding findings, this study proposes the combination of data
sampling and ensemble methods to address class imbalance problem in SDP.

This study proposes a novel framework based on Synthetic Minority Oversampling
Technique (SMOTE) and homogeneous (Bagging and Boosting) ensemble methods for
SDP. SMOTE was used to balance the datasets while homogenous ensemble methods
were used to amplify the prediction performances of SDP models. Bayesian Network
(BN) and Decision Tree (DT) algorithms were implemented on the new preprocessed

616 A. O. Balogun et al.

datasets to develop classifiers and the prediction performances of the proposed tech-
niques were evaluated using accuracy, Area Under the Receiver Operating Charac-
teristics (ROC) Curve (AUC) and f-measure.

In summary, the main contributions of this study are:

i. A novel software defect prediction framework based on homogeneous ensemble
and SMOTE methods were presented.

ii. The effect of combining homogeneous ensemble and SMOTE data sampling
methods on the prediction performances of SDP models was empirically validated.

The rest of the paper is outlined as follows. Section 2 presents a review of related
works on class imbalance and high dimensionality in SDP. Section 3 describes the
research approach employed in this study. Experimental results and analyses are dis-
cussed in Sect. 4. Section 5 concludes the study.

2 Related Work

Researchers have pointed out that the class imbalance problem negatively affects the
prediction performance of SDP models. In most cases, class imbalance makes SDP
models over-fits which make these models unreliable. Methods such as data sampling,
ensemble methods and cost-sensitive analysis are the primary methods proposed by
researchers to address class imbalance problem in

Singh, Misra and Sharma [29] conducted a study on the automation of bug (defect)
severity prediction using summary extracted from bug metrics. Ensemble methods
(voting and Bagging) were deployed to deal with the latent class imbalance problem
from the generated bug dataset. Their results showed that ensemble methods had
improved performance over single classifiers. This shows that ensemble methods work
well with class imbalance.

El-Shorbagy, El-Gammal and Abdelmoez [30] in their study, combined SMOTE
with a heterogeneous ensemble (stacking) method. They aimed to maximize the
advantage of addressing the minority class labels by aggregating the performance of
selected base classifiers. Their proposed method showed better prediction performance
and outperformed other existing methods used on minority class labels. However, it is
pertinent to note that stacking ensemble method consumes time in building models and
requires several combinations of base classifiers to be effective [31, 32].

Balogun, Basri, Abdulkadir, Adeyemo, Imam and Bajeh [24] empirically validated
the prediction performance stability of SDP models using data sampling methods. Both
undersampling (Random Under-Sampling: RUS) and oversampling (SMOTE) were
studied with varying imbalance ratio (IR). From their experimental results, it was
observed that the presence of the class imbalance problem in SDP datasets affects the
prediction performance of SDP models. Besides, they recommend the use of SMOTE
technique for addressing the class imbalance problem in SDP. The findings from their
study correlate positively with that of Yu, Jiang and Zhang [21].

Laradji, Alshayeb and Ghouti [33] investigated the effect of combining feature
selection with ensemble methods for SDP. They aimed at addressing class imbalance
problem with ensemble method and reduce feature redundancy via feature selection

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 617

methods. Their results showed that carefully selected features improve the prediction
performances of SDP models. Nonetheless, the effect of using ensemble methods to
address class imbalance may not be as effective as using both data sampling and
ensemble methods together.

Furthermore, Song, Guo and Shepperd [26] conducted an extensive empirical
analysis on the effect of class imbalance on SDP models. Their experimental results
showed that class imbalance affects the prediction performance of SDP models. Also,
they opined that the right combination of data sampling methods and classifiers can
yield good prediction performance. Goel, Sharma, Khatri and Damodaran [11] in their
study also supported the claim of using the right data sampling technique for class
imbalance problem in SDP.

Malhotra and Jain [34] empirically compared the prediction performances of seven
(7) (boosting) ensemble methods. Their results indicated that data sampling technique
should be applied before performing the boosting ensemble technique.

Similarly, Wang and Yao [35] carried out a comparative performance analysis of
selected class imbalance problem solutions in SDP. They concluded that ensemble
methods are superior to other methods such as data sampling and cost-sensitive
methods. Findings from the preliminary studies of Rodriguez, Herraiz, Harrison,
Dolado and Riquelme [25] also arrived at the same conclusion. Invariably, the com-
bination of these methods may produce results better than any of the individual
methods.

Kumar, Misra and Rath [36] used correlation analysis and multivariate linear
regression feature selection method to select important source codes metrics for defect
prediction. The culled datasets were trained by variants of neural network and ensemble
methods. Their experimental results showed the effectiveness of ensemble methods in
SDP specifically with feature selection.

Based on the preceding analysis, this study proposes the combination of data
sampling (SMOTE) and homogeneous ensemble (Bagging and Boosting) to address
class imbalance problem and subsequently improve the prediction performance of SDP
models.

3 Methodology

In this section, the classification algorithms, data sampling method (SMOTE), homo-
geneous ensembles methods (Bagging & Boosting), and software defect datasets.

3.1 Classification Algorithms

Decision Tree (DT) and Bayesian Network (BN) algorithms are used as base-line
prediction models in this study. DT and BN algorithms have been widely implemented
in numerous SDP studies with good prediction performance. Besides, DT and BN have
been reported to be stable with imbalance datasets [21, 24]. Table 1 presents DT and
BN algorithms with their parameter setting as used in this study

618 A. O. Balogun et al.

3.2 Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE is a statistical technique used for generating instances. Ideally, its imple-
mentation on a given dataset leads to the generation of synthetic instances belonging to
the minority instances of the population without increasing the majority instances. This,
therefore, increase the total population of the dataset by reducing the imbalance ratio
between the minority and the majority class such that there exists no significant dif-
ference between the majority and minority instances. Software defect data are known to
suffer from significant class imbalance [8, 21, 24, 35]. As SDP intends to predict
defective instances, the developed classification model must be able to significantly
discriminate between defective and non-defective instances without bias.

3.3 Homogeneous Ensemble Methods

Bagging Ensemble: Bagging is a homogeneous ensemble method used for amplifying
the prediction performance of classification algorithms. The base classifiers of a bag-
ging ensemble learn from a given dataset using different samples extracted from the
original dataset. An aggregation of the classifiers’ output is then carried out at pre-
diction time [37]. Thus, this aggregation technique ensures that the variance of each
classifier is reduced and each classifier bias does not also increase. In simple words,
bagging algorithm randomly resamples the original datasets, trains multiple base
classifiers using the resampled subsets, and finally makes a prediction by using the
resulting classifications of multiple base learners [38]. Bagging ensemble is outlined in
Algorithm 1.

Boosting Ensemble: Boosting ensemble method deploys a weak classifier in
sequence, to train the re-weighted training data. In the end, it uses a majority vote

Table 1. Classification algorithms

Classifier Parameter setting

Decision Tree (DT) ConfidenceFactor = 0.25; MinObj = 2
Bayesian Network
(BN)

SimpleEstimator = alpha(0.25); SearchMethod = hillClimbing;
MaxNoParents = 1

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 619

mechanism for its final decision by integrating all weak hypotheses created by the weak
classifiers into the final hypothesis [39]. Boosting uses weighted averages to transform
weak classifiers into stronger classifiers with each model deciding what features the
next iteration focuses on.

In this study, the AdaBoost.M1 algorithm [40] outlined in Algorithm 2 was
implemented.

Similarly, Table 2 presents the homogeneous ensemble methods and their respective
parameters as used in the experimentation stage of this study.

3.4 Software Defect Datasets

In this study, software defect datasets from NASA repository were used for training and
testing the SDP models. Shepperd, Song, Sun and Mair [41] cleaned version of NASA
datasets was used in the experimentation. Table 3 presents a description of the selected

Table 2. Homogeneous ensemble

Homogeneous
ensembles

Parameter setting

Bagging Classifier = {BN, DT}, bagSizePercent = 100; numIteration = 10;
seed = 1; calcOutOfBag = False; batchSize = 100

Boosting Classifier = {BN, DT}, weightThreshold = 100; numIteration = 10;
seed = 1; useResampling = True; batchSize = 100

620 A. O. Balogun et al.

datasets with their respective number of features, number of instances and imbalance
ratio (IR). The IR is based on the ratio of defective instances to non-defective instances
in each defect dataset. The diverse IR values of NASA datasets make it appropriate for
this study. Also, NASA datasets have been widely used in existing related SDP studies
[21, 24].

3.5 Performance Evaluation Metrics

Existing studies have reported that the choice and selection of performance evaluation
metrics is crucial in SDP [42, 43]. Using only accuracy value may be inaccurate due to
the imbalance nature of the datasets used for training and testing the SDP models.
Accuracy, F-Measure, and Area under Curve (AUC) were used to evaluate the pre-
diction performances of the ensuing SDP models. These evaluation metrics have been
widely used and proven to be reliable in SDP studies [4, 18, 21, 22, 27, 33].

i. Accuracy is the number or percentage of correctly classified instances to the total
sum of instances.

Accuracy ¼ TPþ TN
TPþFN þ TN

ð1Þ

ii. F-Measure is defined as the weighted harmonic mean of the test’s precision and
recall

F �Measure ¼ 2X PrecisionXRecallð Þ=PrecisionþRecallð Þ ð2Þ

iii. The Area under Curve (AUC) shows the trade-off between TP and FP. It provides
an aggregate measure of performance across all possible classification thresholds.

Where Precision ¼ TP
TPþFP, Recall ¼ TP

TPþFN, TP = Correct Classification,
FP = Incorrect Classification, TN = Correct Misclassification, and FN = Incorrect
Misclassification.

3.6 Experimental Framework

Figure 1 presents the experimental framework developed in this study. To empirically
assess the efficacy of the proposed method on SDP models, the experimental

Table 3. Description of selected NASA software defect datasets

Datasets # of Features # of Modules Imbalance Ratio (IR)

KC1 22 1162 3
KC3 40 194 4
MC2 40 124 2
PC3 38 1053 7
PC4 38 1270 6

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 621

framework is used on 5 defect datasets (See Table 3) with the base classifiers (DT and
BN) (See Table 1) and homogeneous ensemble (Boosting and Bagging) (See Table 2).
K-fold (where k = 10) cross-validation technique is used for the evaluation of the SDP
models in this study. Our choice of 10-fold CV is in line with existing studies and its
ability to build SDP models with low bias and variance [21, 22, 42, 43].

From the experimental framework, the majority and minority classes in each dataset
are balanced using the SMOTE sampling technique. The balanced representation of the
classes was based on 50% defective class and 50% non-defective class as used in
existing studies [21, 24]. The essence of this is to ensure the resulting SDP models were
trained with each class labels and to give credibility to the ensuing SDP models in
predicting the appropriate class labels (defective or non-defective). Our choice of
SMOTE as sampling technique is based on its performance and relevance in existing
studies [11, 12, 24, 25, 30].

Thereafter, the homogeneous ensembles and the base classifiers are then applied on
the original and balanced datasets based on 10-fold cross-validation (CV) technique.
CV technique will ensure better usage of the datasets as each instance will be used for
training and testing iteratively. Details on how CV works are reported and can be

Fig. 1. Experimental framework

622 A. O. Balogun et al.

referenced in [44, 45]. Consequently, the prediction performance of the ensuing models
will be evaluated using accuracy, f-measure and AUC.

Also, SDP models based on BN and DT classification algorithm with and without
SMOTE and homogeneous ensemble (–i- BN, –ii- BN and SMOTE (BN + SMOTE),
iii- Bagged BN, -iv- Boosted BN, -v- DT, -vi- DT and SMOTE (DT + SMOTE), -vii-
Bagged DT, -viii- Boosted DT) were developed to create unprejudiced comparison and
to measure the effect of SMOTE and ensemble on the prediction performance of the
base classifiers. All experiments were carried out using the WEKA machine learning
tool [46].

4 Results

The results obtained after evaluating the various developed models are presented and
discussed in this section. It is important to showcase the significant impact of SMOTE
sampling technique on SDP model development. More so, the efficacy of the ensemble
methods over the base-line classifier is another focal point of this study. Thus, the
results will be presented to reflect these impacts concerning each base-line classifiers.

Table 4 presents the prediction performances of base classifiers (BN and DT) on
the original SDP datasets. The BN classifier, as seen in Table 4, yielded an average
accuracy of 71.35%, average AUC of 0.69 and average F-measure of 0.73. Its accuracy
scores range from 67.61% to 77.83%. Likewise, AUC scores ranged from 0.584 to
0.81, and F-measure scores from 0.693 to 0.775. The DT classifier also had good
prediction performances with an average accuracy of 77.14%, average AUC of 0.65
and an average F-measure of 0.76. DT lowest (60.5%) and highest (86.93%) accuracy
scores were from MC2 and PC4 datasets respectively.

From the experimental results in Table 4, it is evident that the base classifiers (BN
and DT) have good prediction performance on the original datasets (with class
imbalance problem) with their respective average accuracy (BN:71.35%; DT:77.14%)
and f-measure (BN:73%; DT:76%) values greater than 70% while there AUC
(BN:69%; DT:65%) values are very close to 70%. The relative average prediction

Table 4. Prediction performance of BN and DT on the original datasets

Datasets Original datasets

Accuracy
(%)

AUC F-Measure

BN DT BN DT BN DT

KC1 68.33 74.18 0.681 0.604 0.698 0.717
KC3 77.83 79.4 0.584 0.653 0.775 0.783
MC2 70.16 60.5 0.614 0.589 0.693 0.608
PC3 67.61 84.71 0.779 0.591 0.731 0.839
PC4 72.83 86.93 0.81 0.789 0.767 0.869
Average 71.35 77.14 0.69 0.65 0.73 0.76

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 623

performances of BN and DT in this case although acceptable can be attributed to the
occurrence of the latent class imbalance in the SDP datasets. Hence, the removal of the
class imbalance problem by balancing the class labels may generate a better prediction
performance for the base classifiers (BN and DT) [21, 24].

Furthermore, Table 5 shows the prediction performances of BN and DT classifiers
on the balanced datasets. This is to reveal the effect of data sampling (in this case
SMOTE technique) on the prediction performance of SDP models. That is, to empir-
ically validate if the removal of class-imbalance via SMOTE data sampling technique
will positively improve the prediction performance of BN and DT classifiers.

It was observed that when BN was applied on the balanced datasets, an average
accuracy of 78.63%, average AUC of 0.82 and an average f-measure of 0.76 was
recorded. Besides, BN had its highest accuracy value (88.29%) on PC3 and its lowest
accuracy value (70.44%) on MC2. On the other hand, when DT was applied on the
balanced datasets, an average accuracy of 81.08%, average AUC of 0.83 and an
average f-measure score of 0.81 was recorded. Also, DT had its peak (91.31%) and
lowest accuracy (64.2%) values on PC4 and MC2 datasets respectively. It can be seen
that both classifiers had their lowest accuracy values on MC2. This may be due to the
high number of features in MC2 (40 features) (See Table 3).

Comparatively, the prediction performances of BN and DT on balanced datasets
(See Table 5) were improved and better than their prediction performance with original
datasets (See Table 4). Specifically, BN with balanced datasets (BN + SMOTE) had
+10.2% increment in average accuracy, +18.8% increment in average AUC and +4%
increment in f-measure values over BN with original datasets. The same trend was
observed in DT on balanced datasets (DT +SMOTE). There was a percentage increase
of +5.1% in the average accuracy, +27.7% in the average AUC and +6.6% in the
average f-measure values of DT + SMOTE over DT. Consequently, the percentage
increase observed in the prediction performance of BN + SMOTE and DT + SMOTE
indicates that balancing via SMOTE technique has a positive effect on the prediction
performances of BN and DT. Thus, our findings revealed that class imbalance impedes
the performance of SDP models and can be resolved using data sampling technique (in
this case SMOTE) [12, 21, 24, 25, 30, 34].

Table 5. Prediction performance of BN and DT on the balanced datasets

Datasets Balanced datasets

Accuracy (%) AUC F-Measure

BN + SMOTE DT + SMOTE BN + SMOTE DT + SMOTE BN + SMOTE DT + SMOTE

KC1 72.45 79.70 0.800 0.807 0.724 0.797

KC3 75.87 82.20 0.849 0.858 0.756 0.821

MC2 70.44 64.20 0.729 0.657 0.700 0.641

PC3 88.29 88.00 0.781 0.902 0.734 0.880

PC4 86.10 91.31 0.954 0.915 0.861 0.913

Average 78.63 81.08 0.820 0.830 0.760 0.810

624 A. O. Balogun et al.

Tables 6 and 7 present the prediction performance of the homogeneous ensembles
(Bagging and Boosting) respectively on the original SDP datasets. From Table 6,
BaggedBN on the original datasets had an average accuracy of 71.50%, an average
AUC of 0.73 and an average f-measure value of 0.74. Also, Bagged DT recorded an
average accuracy of 80.66%, average AUC of 0.78 and average f-measure of 0.79
value across the studied datasets.

As presented in Table 7, BoostedBN had an average accuracy of 79.58%, average
AUC of 0.7 and average f-measure 0.77 while BoostedDT had 78.68% average
accuracy, 0.76 average AUC and 0.78 average f-measure value. From both tables
(Table 6 and Table 7), there are no clear cut superior ensemble methods. That is, the
prediction performance of both boosting and bagging ensemble methods depends on
the choice of datasets and base classifiers. However, when compared with experimental
results of the base classifiers on original datasets (See Table 4), the ensemble methods
are superior in prediction performance.

BaggedDT had a +4.56% increase of average accuracy values when compared with
DT on original datasets. On the other hand, BaggedBN had an insignificant increment
(+0.02) in its average accuracy value over BN on the original datasets. Also, Boos-
tedBN had +11.4% increments in its average accuracy value over BN on the original

Table 6. Prediction performance of bagging ensemble on original datasets

Datasets Original datasets

Accuracy (%) AUC F-Measure
Bagged BN Bagged DT Bagged BN Bagged DT Bagged BN Bagged DT

KC1 67.73 77.54 0.687 0.719 0.692 0.752
KC3 76.29 84.54 0.688 0.729 0.768 0.827
MC2 71.77 66.13 0.663 0.736 0.711 0.639
PC3 68.00 85.94 0.781 0.789 0.734 0.835
PC4 73.70 89.13 0.810 0.914 0.773 0.886
Average 71.50 80.66 0.730 0.780 0.740 0.790

Table 7. Prediction performance boosting ensemble on original datasets

Datasets Original datasets

Accuracy (%) AUC F-Measure
Boosted BN Boosted DT Boosted BN Boosted DT Boosted BN Boosted DT

KC1 74.01 73.24 0.670 0.691 0.680 0.721
KC3 81.44 79.38 0.590 0.712 0.799 0.777
MC2 70.16 66.94 0.596 0.701 0.693 0.668
PC3 85.66 85.66 0.785 0.788 0.820 0.846
PC4 86.61 88.19 0.868 0.893 0.855 0.879
Average 79.58 78.68 0.700 0.760 0.770 0.780

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 625

datasets while BoostedDT had approximately +2% increments. The homogeneous
(Bagging and Boosting) ensemble methods amplified the respective prediction per-
formances of base classifiers BN and DT. Furthermore, the superiority of the homo-
geneous ensemble methods over the base classifiers can be attributed to its ability to
cope with class imbalance. However, the prediction performances of the base classifiers
(BN and DT) on the balanced datasets (BN + SMOTE and DT + SMOTE) were
superior to the prediction performances of the homogeneous ensemble methods on
original datasets. Hence, this study concludes that ensemble methods can amplify the
prediction performances of base classifiers and accommodates class imbalance but
ensemble methods are not as effective as data sampling methods in addressing the class
imbalance in SDP.

The prediction performances of the homogeneous ensemble (Bagging and Boost-
ing) methods on the balanced SDP datasets are presented in Table 8 and Table 9
respectively. BaggedBN + SMOTE had an average accuracy of 80.09%, an average
AUC of 0.86 and an average f-measure value of 0.79. Also, BaggedDT + SMOTE
recorded an average accuracy of 85.12%, average AUC of 0.79 and an average f-
measure of 0.85 across the studied datasets.

Also, as presented in Table 9, BoostedBN + SMOTE had an average accuracy of
81.94%, average AUC of 0.88 and average f-measure of 0.82 while BoostedDT +
SMOTE had had an average accuracy of 86.8%, an average AUC of 0.93 and an
average f-measure value of 0.87. The results recorded revealed that BoostedBN +
SMOTE and BoostedDT + SMOTE were superior to BaggedBN + SMOTE and
BaggedDT + SMOTE. This may be due to boosting ensemble iterative nature of model
building against the independent model building of the bagging method [31, 47].

As presented in Table 10, the prediction performances of the proposed approaches
(BaggedBN + SMOTE, BaggedDT + SMOTE, BoostedBN + SMOTE and Boos-
tedDT + SMOTE) were superior to the experimented methods (BN, BN + SMOTE,
DT, DT + SMOTE, BaggedBN, BaggedDT, BoostedDT, BoostedBN). Specifically,
BaggedBN + SMOTE recorded a significant positive increment of 12%, 17.8%, and
6.7% in average accuracy, average AUC and average f-measure values respectively

Table 8. Prediction performance of bagging ensemble on balanced datasets

Datasets Balanced datasets

Accuracy (%) AUC F-Measure

BaggedBN +
SMOTE

BaggedDT +
SMOTE

BaggedBN +
SMOTE

BaggedDT +
SMOTE

BaggedBN +
SMOTE

BaggedDT +
SMOTE

KC1 73.95 82.65 0.807 0.896 0.739 0.826
KC3 78.73 85.40 0.855 0.898 0.787 0.854

MC2 71.77 74.21 0.716 0.831 0.653 0.742
PC3 88.56 89.86 0.965 0.967 0.886 0.899

PC4 87.43 93.46 0.959 0.979 0.874 0.935
Average 80.09 85.12 0.860 0.910 0.790 0.850

626 A. O. Balogun et al.

while BaggedDT + SMOTE also recorded a significant positive increment of 5.5%,
16.67%, and 7.6% in average accuracy, average AUC and average f-measure values
respectively over the prediction performance of BaggedBN and BaggedDT. Boos-
tedBN + SMOTE achieved an increment of 2.96%, 25.7%, 6.49% in average accuracy,
average AUC and average f-measure compared to an increment of 10.32%, 22.37% and
11.54% recorded by BoostedDT + SMOTE. From these analyses, it could be con-
cluded that the prediction performances of homogeneous ensemble methods can also be
amplified using the appropriate data sampling technique (in this case SMOTE
technique).

Table 9. Prediction performance boosting ensemble on balanced datasets

Datasets Balanced datasets

Accuracy (%) AUC F-Measure

Boosted
BN + SMOTE

Boosted
DT + SMOTE

Boosted
BN + SMOTE

Boosted
DT + SMOTE

Boosted
BN + SMOTE

Boosted
DT + SMOTE

KC1 74.41 80.46 0.816 0.880 0.744 0.805

KC3 82.22 86.35 0.904 0.926 0.822 0.863

MC2 70.44 80.50 0.732 0.877 0.700 0.805

PC3 91.38 91.65 0.965 0.970 0.914 0.917

PC4 91.27 95.02 0.976 0.985 0.913 0.950

Average 81.94 86.80 0.880 0.930 0.820 0.870

Table 10. Prediction performance comparison of the implemented SDP models

Prediction models Average accuracy (%) Average AUC Average F-measure

BN 71.35 0.69 0.73
DT 77.14 0.65 0.76
BN + SMOTE 78.63 0.82 0.76
DT + SMOTE 81.08 0.83 0.81
BaggedBN 71.50 0.73 0.74
BoostedBN 79.58 0.70 0.77
BaggedDT 80.66 0.78 0.79
BoostedDT 78.68 0.76 0.78
*BaggedBN + SMOTE 80.09 0.86 0.79
*BoostedBN + SMOTE 81.94 0.88 0.82
*BaggedDT + SMOTE 85.12 0.91 0.85
*BoostedDT + SMOTE 86.80 0.93 0.87

(* indicates proposed methods)

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 627

5 Conclusions

This study has exhaustively discussed an SDP approach based on the combination of a
homogeneous ensemble (Bagging and Boosting) and data sampling (SMOTE). The
effects of data sampling and homogeneous ensemble methods are empirically validated.
The experimental results showed that the SMOTE technique can improve the predic-
tion performance of not only the base classifier (BN and DT) but the homogeneous
ensemble methods inclusive. Also, the proposed approaches (BaggedBN + SMOTE,
BaggedDT + SMOTE, BoostedBN + SMOTE and BoostedDT + SMOTE) signifi-
cantly outperformed the base classifiers (BN and DT). This indicates that the combi-
nation of SMOTE and homogeneous ensemble does not only address the class
imbalance problem but also positively increase the prediction performance of the base
classifiers. Future work will attempt to optimize ensemble parameters and degree of
data sampling on SDP approaches.

References

1. Basri, S., Almomani, M.A., Imam, A.A., Thangiah, M., Gilal, A.R., Balogun, A.O.: The
organisational factors of software process improvement in small software industry:
comparative study. In: Saeed, F., Mohammed, F., Gazem, N. (eds.) IRICT 2019. AISC,
vol. 1073, pp. 1132–1143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
33582-3_106

2. Mojeed, H.A., Bajeh, A.O., Balogun, A.O., Adeleke, H.O.: Memetic approach for multi-
objective overtime planning in software engineering projects. J. Eng. Sci. Technol. 14,
3213–3233 (2019)

3. Balogun, A., Oladele, R., Mojeed, H., Amin-Balogun, B., Adeyemo, V.E., Aro, T.O.:
Performance analysis of selected clustering techniques for software defects prediction. Afr.
J. Comput. ICT 12, 30–42 (2019)

4. Balogun, A.O., Basri, S., Abdulkadir, S.J., Hashim, A.S.: Performance analysis of feature
selection methods in software defect prediction: a search method approach. Appl. Sci. 9,
2764 (2019)

5. Bajeh, A.O., Oluwatosin, O.-J., Basri, S., Akintola, A.G., Balogun, A.O.: Object-oriented
measures as testability indicators: an empirical study. J. Eng. Sci. Technol. 15, 1092–1108
(2020)

6. Gupta, A., Suri, B., Kumar, V., Misra, S., Blažauskas, T., Damaševičius, R.: Software code
smell prediction model using Shannon, Rényi and Tsallis entropies. Entropy 20, 372 (2018)

7. Bashir, K., Li, T., Yohannese, C.W., Mahama, Y.: Enhancing software defect prediction
using a supervised-learning based framework. In: 2017 12th International Conference on
Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–6. IEEE (2017)

8. Chen, L., Fang, B., Shang, Z., Tang, Y.: Tackling class overlap and imbalance problems in
software defect prediction. Softw. Qual. J. 26(1), 97–125 (2016). https://doi.org/10.1007/
s11219-016-9342-6

9. Ghotra, B., McIntosh, S., Hassan, A.E.: A large-scale study of the impact of feature selection
techniques on defect classification models. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pp. 146–157. IEEE (2017)

628 A. O. Balogun et al.

https://doi.org/10.1007/978-3-030-33582-3_106
https://doi.org/10.1007/978-3-030-33582-3_106
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.1007/s11219-016-9342-6

10. Chaturvedi, K., Bedi, P., Misra, S., Singh, V.: An empirical validation of the complexity of
code changes and bugs in predicting the release time of open-source software. In: 2013 IEEE
16th International Conference on Computational Science and Engineering, pp. 1201–1206.
IEEE (2013)

11. Goel, L., Sharma, M., Khatri, S.K., Damodaran, D.: Implementation of data sampling in
class imbalance learning for cross project defect prediction: an empirical study. In: 2018
Fifth International Symposium on Innovation in Information and Communication Technol-
ogy (ISIICT), pp. 1–6. IEEE (2018)

12. Hamdy, A., El-Laithy, A.: SMOTE and Feature Selection for More Effective Bug Severity
Prediction. Int. J. Softw. Eng. Knowl. Eng. 29, 897–919 (2019)

13. Iqbal, A., Aftab, S.: A classification framework for software defect prediction using multi-
filter feature selection technique and MLP. Int. J. Mod. Educ. Comput. Sci. 12(1), 18–25
(2020). https://doi.org/10.5815/ijmecs.2020.01.03

14. Oluwagbemiga, B.A., Shuib, B., Abdulkadir, S.J., Sobri, A.: A hybrid multi-filter wrapper
feature selection method for software defect predictors. Int. J Supply Chain Manag. 8, 9–16
(2019)

15. Kamei, Y., Shihab, E.: Defect prediction: accomplishments and future challenges. In: IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 5, pp. 33–45. IEEE (2016)

16. Kondo, M., Bezemer, C.-P., Kamei, Y., Hassan, A.E., Mizuno, O.: The impact of feature
reduction techniques on defect prediction models. Empir. Softw. Eng. 24(4), 1925–1963
(2019). https://doi.org/10.1007/s10664-018-9679-5

17. Li, Z., Jing, X.-Y., Zhu, X.: Progress on approaches to software defect prediction. IET
Softw. 12, 161–175 (2018)

18. Mabayoje, M.A., Balogun, A.O., Jibril, H.A., Atoyebi, J.O., Mojeed, H.A., Adeyemo, V.E.:
Parameter tuning in KNN for software defect prediction: an empirical analysis. Jurnal
Teknologi dan Sistem Komputer 7, 121–126 (2019)

19. Tong, H., Liu, B., Wang, S.: Software defect prediction using stacked denoising
autoencoders and two-stage ensemble learning. Inf. Softw. Technol. 96, 94–111 (2018)

20. Usman-Hamza, F.E., Atte, A.F., Balogun, A.O., Mojeed, H.A., Bajeh, A.O., Adeyemo, V.
E.: Impact of feature selection on classification via clustering techniques in software defect
prediction. J. Comput. Sci. Appl. 26(1), 73–88 (2019). https://doi.org/10.4314/jcsia.v26i1.8

21. Yu, Q., Jiang, S., Zhang, Y.: The performance stability of defect prediction models with
class imbalance: An empirical study. IEICE Trans. Inf. Syst. 100, 265–272 (2017)

22. Xu, Z., Liu, J., Yang, Z., An, G., Jia, X.: The impact of feature selection on defect prediction
performance: an empirical comparison. In: 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), pp. 309–320. IEEE (2016)

23. Gupta, A., Suri, B., Misra, S.: A systematic literature review: code bad smells in java source
code. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 665–682. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_49

24. Balogun, A.O., Basri, S., Abdulkadir, S.J., Adeyemo, V.E., Imam, A.A., Bajeh, A.O.:
Software defect prediction: analysis of class imbalance and performance stability. J. Eng.
Sci. Technol. 14, 3294–3308 (2019)

25. Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J., Riquelme, J.C.: Preliminary comparison
of techniques for dealing with imbalance in software defect prediction. In: Proceedings of the
18th International Conference on Evaluation and Assessment in Software Engineering,
pp. 1–10 (2014)

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 629

https://doi.org/10.5815/ijmecs.2020.01.03
https://doi.org/10.1007/s10664-018-9679-5
https://doi.org/10.4314/jcsia.v26i1.8
https://doi.org/10.1007/978-3-319-62404-4_49

26. Song, Q., Guo, Y., Shepperd, M.: A comprehensive investigation of the role of imbalanced
learning for software defect prediction. IEEE Trans. Softw. Eng. 45, 1253–1269 (2018)

27. Yang, X., Lo, D., Xia, X., Sun, J.: TLEL: a two-layer ensemble learning approach for just-
in-time defect prediction. Inf. Softw. Technol. 87, 206–220 (2017)

28. Yohannese, C.W., Li, T.: A combined-learning based framework for improved software fault
prediction. Int. J. Comput. Intell. Syst. 10, 647–662 (2017)

29. Singh, V., Misra, S., Sharma, M.: Bug severity assessment in cross-project context and
identifying training candidates. J. Inf. Knowl. Manag. 16, 1750005 (2017)

30. El-Shorbagy, S.A., El-Gammal, W.M., Abdelmoez, W.M.: Using SMOTE and heteroge-
neous stacking in ensemble learning for software defect prediction. In: Proceedings of the
7th International Conference on Software and Information Engineering, pp. 44–47 (2018)

31. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton
(2012)

32. Ardabili, S., Mosavi, A., Várkonyi-Kóczy, A.R.: Advances in machine learning modeling
reviewing hybrid and ensemble methods. In: Várkonyi-Kóczy, A.R. (ed.) INTER-
ACADEMIA 2019. LNNS, vol. 101, pp. 215–227. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-36841-8_21

33. Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect prediction using ensemble learning
on selected features. Inf. Softw. Technol. 58, 388–402 (2015)

34. Malhotra, R., Jain, J.: Handling imbalanced data using ensemble learning in software defect
prediction. In: 2020 10th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), pp. 300–304. IEEE (2020)

35. Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE
Trans. Reliab. 62, 434–443 (2013)

36. Kumar, L., Misra, S., Rath, S.K.: An empirical analysis of the effectiveness of software
metrics and fault prediction model for identifying faulty classes. Comput. Stand. Interfaces
53, 1–32 (2017)

37. Collell, G., Prelec, D., Patil, K.R.: A simple plug-in bagging ensemble based on threshold
moving for classifying binary and multiclass imbalanced data. Neurocomputing 275, 330340
(2018)

38. Lee, S.-J., Xu, Z., Li, T., Yang, Y.: A novel bagging C4. 5 algorithm based on wrapper
feature selection for supporting wise clinical decision making. J. Biomed. Inform. 78, 144–
155 (2018)

39. Sun, B., Chen, S., Wang, J., Chen, H.: A robust multi-class AdaBoost algorithm for
mislabeled noisy data. Knowl.-Based Syst. 102, 87–102 (2016)

40. Yijing, L., Haixiang, G., Xiao, L., Yanan, L., Jinling, L.: Adapted ensemble classification
algorithm based on multiple classifier systems and feature selection for classifying multiclass
imbalanced data. Knowl.-Based Syst. 94, 88–104 (2016)

41. Shepperd, M., Song, Q., Sun, Z., Mair, C.: Data quality: some comments on the NASA
software defect datasets. IEEE Trans. Softw. Eng. 39, 1208–1215 (2013)

42. Balogun, A.O., Bajeh, A.O., Orie, V.A., Yusuf-Asaju, W.A.: Software defect prediction
using ensemble learning: an ANP based evaluation method. FUOYE J. Eng. Technol. 3, 50–
55 (2018)

43. Jimoh, R., Balogun, A., Bajeh, A., Ajayi, S.: A PROMETHEE based evaluation of software
defect predictors. J. Comput. Sci. Appl. 25, 106–119 (2018)

630 A. O. Balogun et al.

https://doi.org/10.1007/978-3-030-36841-8_21
https://doi.org/10.1007/978-3-030-36841-8_21

44. Yadav, S., Shukla, S.: Analysis of k-fold cross-validation over hold-out validation on
colossal datasets for quality classification. In: 2016 IEEE 6th International Conference on
Advanced Computing (IACC), pp. 78–83. IEEE (2016)

45. Arlot, S., Lerasle, M.: Choice of V for V-fold cross-validation in least-squares density
estimation. J. Mach. Learn. Res. 17, 7256–7305 (2016)

46. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
data mining software: an update. ACM Sig. Exp. 11, 10–18 (2009)

47. Singhal, Y., Jain, A., Batra, S., Varshney, Y., Rathi, M.: Review of bagging and boosting
classification performance on unbalanced binary classification. In: 2018 IEEE 8th
International Advance Computing Conference (IACC), pp. 338–343. IEEE (2018)

SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction 631

	SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Classification Algorithms
	3.2 Synthetic Minority Over-Sampling Technique (SMOTE)
	3.3 Homogeneous Ensemble Methods
	3.4 Software Defect Datasets
	3.5 Performance Evaluation Metrics
	3.6 Experimental Framework

	4 Results
	5 Conclusions
	References

