
Collecting HPC Applications Processing
Characteristics to Facilitate

Co-scheduling

Ruslan Kuchumov(B) and Vladimir Korkhov

Saint Petersburg State University, 7/9 Universitetskaya nab.,
St. Petersburg 199034, Russia

kuchumovri@gmail.com, v.korkhov@spbu.ru

Abstract. In this paper we describe typical HPC workloads in terms of
scheduling theory models. In particular, we cover machine environments
that are common for high performance computing (HPC) field, possible
objective functions and available jobs characteristics. We also describe
resources that are required by HPC applications and how to monitor and
control their usage rates. We provide the basis for defining mathematical
model for application resource usage and validate it on experimental
data.

Keywords: High performance computing · Co-scheduling · Scheduling
theory

1 Introduction

The broader goal of this research is to reduce queue wait time of high per-
formance computing (HPC) applications in cluster schedulers by applying co-
scheduling strategy. Co-scheduling allows to assign multiple applications that
have different requirements for resources to a single cluster node that have
enough resources to execute them simultaneously and without interference. For
example, some applications that are only disk IO-intensive can be executed
simultaneously with applications that only network-intensive as they are using
completely different resources.

This strategy allows to improve resources utilization of a cluster and reduce
wait of jobs in the queue as compared to the commonly used scheduling strategies
where a node can execute a single application at a time. Now, a lot of attention
in the scientific community is focused on the feasibility of this strategy, and in
particular on practical aspects [11].

Since co-scheduling requires more information about jobs resource require-
ments that is used in a common scheduler (e.g. number of cores and time of
computation) it’s important to find out these jobs parameters and metrics and
to collect them together in a mathematical model that can later be used for
making scheduling decisions.
c© Springer Nature Switzerland AG 2020
O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12254, pp. 168–182, 2020.
https://doi.org/10.1007/978-3-030-58817-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58817-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-58817-5_14


Collecting HPC Applications Processing Characteristics 169

Scheduling theory has emerged long before HPC field. Its main focus is to
formalize scheduling problems and to apply different mathematical methods for
creating schedules that are subject to certain constraints and the same time
optimize the objective function.

In scheduling theory, models are distinguished by their notation, which con-
sists of three fields usually denoted as α, β and γ. Each field may be a comma-
separated list of words. The first field describes the machine environment, the
second describes the task characteristics and constraints, and the last one –
objective function. Later in this paper we will use term “job” as a model for HPC
applications and “machine” as a modeling term for cluster computing node.

In classical theory, there are important assumptions [4] that may limit its
applicability to the co-scheduling problem. At first, each job can be processed by
at most one machine and each machine can process at most one job (operation).
Second, job execution time does not change in time. Third, job execution time
is known in advance. In the latest development of the scheduling theory at least
one of these assumptions is changed.

In the problem of co-scheduling all of the propositions of classical scheduling
theory are changed, which makes the problem of defining the model challenging.
Moreover, from a practical point of view, there are also a lot of open questions.

Sharing a common resource between multiple applications without intro-
ducing some sort of contentions is not always possible. Additional information
regarding job’s resources consumption has to be collected and taken into account
during scheduling. What makes matter worse is that required information is not
easily available, it can not be provided by the user at the job submission stage,
and it is not easy to obtain it by monitoring jobs behavior during its execu-
tion. There is a lot of work done already by scientific community on collecting
such information by interpreting available metrics, such as hardware counters or
operating system events.

In this paper we will focus instead on collecting and abstracting this infor-
mation for defining a formal model.

The rest of this paper is organized as follows. In Sect. 2 we describe pos-
sible ways and their rationale for defining machine environment. In Sect. 3 we
describe possible objective functions for the model. In Sect. 4 we describe which
job characteristics from the scheduling theory are common in HPC. In Sect. 5 we
expand on job resources characteristics that are relevant for co-scheduling and
propose an abstraction for describing these resources. In Sect. 6 we validate our
hypotheses from the previous section using benchmarks in cluster environments.

2 Machine Environments

Scheduling theory defines multiple different machine environments [10].
Machines are considered to process a single job or stay idle at any point in
time.

There are three commonly used environments with parallel machines that are
distinguished by job processing speed. The first one is identical machines, where



170 R. Kuchumov and V. Korkhov

all jobs are executed at the same rate. The second one is uniform machines, where
machines have different processing speeds. The third one is the environment with
unrelated machines, that is, the speed of processing of each job depends on the
machine where it is being processed.

There are also environments with dedicated machines. In this case it is
assumed that a job consists of multiple stages or operations which are performed
on different machines. Each job must be executed on every machine. There are
flow shop, open shop and job shop environments and their variation. In the flow
shop each job must be processed in a specific order. In job shop each job may
have a specific route for processing. In open shop there is no constrains to jobs
processing routes.

In the environments above, it is assumed that machines are available contin-
uously and do not have downtime. However, there are also environments that
consider machines’ non-availability periods.

In HPC systems, there are clusters with computational nodes that can process
any job. These nodes are not dedicated and they can process any eligible job.
Each node of a cluster consists of multiple CPU cores. Typical HPC job is a
hierarchy of processes and threads, some processes can be executed on different
nodes and may use cluster interconnect for its communications. Threads, on the
other hand, are spawned by a process and can only be executed within a single
node, as they share a common memory. Threads are assigned for execution at
CPU cores by operating system scheduler. Usually, this scheduler implements
some sort of fair-scheduling policy.

In order to model scheduling in HPC environment, we need to define machine
environment and decide what to use as a machine. If we assume that cluster nodes
can not be overcommitted with jobs, that is, each node can execute a single job
at a time, then nodes can be used as machines in scheduling theory. This model
can be applied to the commonly used cluster schedulers, that do not allow node
overcommitting.

Since co-scheduling in HPC implies overcommiting nodes with multiple jobs,
then they can not be represented by machine models in classical scheduling
theory. As an alternative, CPU cores in each node can be modeled as machines,
since they can not execute multiple threads simultaneously. But, this would
introduce multiple layers of complexity. At first, CPU cores should be grouped
into sets that represent each node. Then, jobs have to be defined as a hierarchy
of processes and threads, where processes can be executed on different nodes and
threads can only be within the CPU cores of the same node. Lastly, scheduling
problems also become hierarchical: there is scheduling of processes between nodes
and there is scheduling of threads between CPU cores. The last one is done by
the operating system, but in this model definition its scheduling policy has to
be considered.

Another alternative is to deviate from the classical scheduling theory and
to model cluster nodes as machines but allow for execution of multiple jobs at
any point in time. In this case, CPU cores can be modeled later as one of the
resources.



Collecting HPC Applications Processing Characteristics 171

If the cluster nodes are heterogeneous, then they can be modeled as a set of
parallel machines. In a more general case, computing nodes may have different
hardware, which results in different job execution speeds, so the model would
be with uniform machines. In even more general case, hardware may have a
different effect on each job (e.g. there can be different kinds of accelerators that
are utilized by some jobs and not by others) which requires a more general model
with unrelated machines.

In some cases, the network interconnect between computing nodes should be
taken into account. For example, there can be different bandwidth and latency
between nodes in the cluster depending on the relative position of nodes in
the cluster. As a result, the job processing speed may depend on the position
of assigned nodes within the network topology. Some models consider different
network topologies in their machine environments [2].

3 Objective Functions

In scheduling theory there is a large variety of objective functions. For example,
the makespan – completion time of the last job in the schedule, flowtime – the
sum of completion times of all jobs, there are many due-dates related objective
functions (e.g. lateness or tardiness). Sometimes job parameters in objective
functions can be weighed (e.g. weighted completion times), weights can also be
functions of job completion times. Some objective functions may not be regular.
In some models multiple objective functions are used.

In HPC commonly considered objective functions can be classified into com-
pletion time related functions (makespan and flowtime), fairness objective func-
tions and resource utilization objective function (e.g. cost of computation, power
consumption).

4 Job Processing Characteristics

In the scheduling theory, each model may define multiple processing character-
istics. These characteristics affect the set of feasible schedules and the process of
decision making for constructing an optimal schedule. Below we discuss some of
these characteristics that are relevant for describing applications in HPC field.

Precedence constraint is one of those characteristics. It implies that there is
predecessor/successor constraint defined for each job forming a decency graph
defined for a set of jobs. In the scheduling theory different special cases of these
graphs are usually considered such as in-tree, out-tree and chain trees. In HPC
it is common to have dependencies between applications, for example, when one
application may require data files created by another application.

Sequence-dependent setup-time defines the amount of time the job has to
wait before it can start its processing. This required time may be different for
each job and for each machine where the job is being processed. In some models
there may be setup-times families that do not require waiting time between
jobs from the same families. In HPC applications may require transmission of



172 R. Kuchumov and V. Korkhov

large data files to the local disk storage or may require compilation for the
local hardware architectures. These activities may take a long time and can be
modeled as sequence-dependent setup-time.

Machine feasibility requires for each job to have a set of machines where it
can be processed. There are usually special cases considered where feasibility
sets are non-intersecting or nested. This requirement may appear in HPC when
applications have specific requirements for the hardware environment where they
are being processed. For example, some applications may require computing
nodes with specific accelerators such as GPGPUs or FPGAs that may be located
only on some nodes in the cluster.

When multiprocessor job characteristic is present in the model definition, it
means that each job may require multiple machines at the same time for its pro-
cessing. The number of machines is fixed. In HPC it is very common to have this
requirement for distributed applications. Sometimes the special case of power of
two number of machines is considered in the scheduling theory literature, which
is also very common in HPC.

The alternative to having multiprocessor jobs is to have moldable and mal-
leable jobs. Moldable jobs utilize as many machines as specified when the job
is started and the set of these machines does not change during job processing.
Malleable jobs allow to change the number of machines they are using during
their processing. Similar to multiprocessor jobs moldable are common in HPC
among distributed applications. Malleable jobs, on the other hand, are rare as
implementing them would require additional scheduler-job negotiation protocol
or would require jobs to be fault-tolerant.

There is also a large number of models which define resources and con-
sider how applications may use them during their processing. For example,
there are renewable resources (when usage in every time is constrained),
non-renewable resources (when total consumption is constrained) and double-
constrained resources (when both usage and consumption are constrained). In
HPC applications also require resources, such as main memory, licenses, disk
space, computation cost and so on. These resources may also be categorized into
renewable, non-renewable and double-constrained categories. Below in the paper
we describe some of the resources and provide some basis for the defined model.

5 Resource Usage Metrics

In this section we describe some resources that are commonly required by appli-
cations in HPC field. Some of these resources, like the number of computing
nodes, do not change during application execution, others are constant and may
change during the runtime. For the latest, we describe how to monitor those
requirements in real time. Rates of usage of some of the resources can be changed
either directly or indirectly affecting the application’s execution time.



Collecting HPC Applications Processing Characteristics 173

5.1 Required Number of Nodes

Applications that are commonly used in HPC are moldable and not malleable.
When started they take in some form a list of nodes; processes can be started
and after that, the number of nodes does not change. Some applications may be
moldable, but they may require the number of nodes to be a power of two.

For MPI-based applications, that are very common in HPC, there are exten-
sion interfaces, such as PMIx [3] or MPI-FT [8], that allow to scale up or down
the working application. There are also possibilities to migrate working MPI
processes between nodes, such as BLCR [5] and CRIU [9]. It may change the
number of nodes used by the application, but it would not change the number
of MPI processes. As a result of migration, some nodes may be overcommitted
with processes, but scaling up would not be possible.

Another option for scaling applications that support checkpoint restarts is
to simply restart an application with a new number of nodes. In this case the
application would continue from the latest checkpoint on a new nodes configu-
ration.

In order for the application to be malleable for the number of nodes, it
would have to be completely fault-tolerant. Some application-level HPC sched-
ulers provide fault-tolerance: any node can be turned off and the application
would continue working with the remaining nodes, when a new node is added
the application would be using it as well.

Since all of these solutions require support from the application and are not
completely transparent, they can not be taken into account for the general case.

Usually processing time of each application depends on the number of nodes.
Some scheduling models take that into account and define some functional depen-
dency. There are a lot of models of dependency between processing time and the
number of nodes, usually linear and convex models are defined, some are more
complicated and consider the diminishing returns on the number of nodes.

5.2 CPU Cores

Similar to the number of nodes, the number of threads in a running application
can not be changed from the outside. Otherwise, it would require some sort of
negotiation protocol between the application and the scheduler.

But unlike the number of nodes, the number of threads may change in the
runtime. The application may spawn and terminate its threads, some threads
may become idle for some time. This number of threads of the application can
be observed as a function of time during application execution. In order to do
so, it is sufficient to monitor the number of threads of the application and their
states. Then, to count the number of required threads it is sufficient to count all
active (runnable) threads.

Linux’s procfs pseudo-filesystem provides information about the states of all
threads. The thread, for example, maybe in the runnable state, indicating that it
is waiting for its turn in the runqueue, it may be in interruptable sleeping state
when it executes sleep instruction or waits for a lock or another event, it may



174 R. Kuchumov and V. Korkhov

in an uninterruptible sleep state when it is performing disk I/O operations or
in any other state. To find out which threads belong to the same application we
have placed its parent process before starting an application in a control group,
this way the kernel reports children threads and processes identifiers when they
are spawned.

This number of the running threads can be used as the required number
of CPU cores in every time point. If this number is larger than the number of
available CPU cores, then it means that some threads are ready to run, but they
are waiting in run-queues for their turn. This number may also decrease when
threads enter sleeping states, for example, when the are waiting on a lock or
performing disk I/O operations.

In the ideal case, all of the runnable threads should run in parallel. For
example, if they are performing inter-thread communications through the shared
memory and they are assigned to the same CPU core, then the round trip time of
these communications would include wait time in the queue. Besides that, over-
committing would cause frequent context switching and possible cache invalida-
tions, if threads are using different memory domains. Although it may introduce
significant delays, changing the number of available CPU cores in runtime is
possible.

Another metric related to the usage of CPU cores by the application is the
number of executed instructions. This metrics depends on application behav-
ior (i.e. which instruction applications execute), the hardware as different CPU
architectures may have different speeds for the same instructions and on the way
the application was compiled. There is also no simple way to control it directly
on per-application basis. Nevertheless, we have found a use for it in our exper-
iments as a measure of how application execution speed is affected by limits in
other resources.

5.3 Memory Bus Bandwidth

Access to the main memory is shared between all CPU cores. In a simple case,
each CPU core assesses memory through the same memory controller which
communicates over the sequential bus with memory modules. Memory band-
width of the bus is limited, and, in general, the communication frequency of the
bus is lower than the clock frequency of CPU cores. As a result, a single CPU
core may fully saturate memory bandwidth if it does not work with CPU caches
effectively.

Because of that, memory bandwidth can be considered as a shared resource
for the applications running on different CPU cores within the same computing
node. When, for example, two applications that are capable of utilizing full
memory bandwidth are scheduled together, they would interfere with each other
and it would lead to the slowdown of their execution time.

For our purposes, we estimated memory throughput of the application
with the number of cache misses at the last cache level. When cache miss
happens at the last level, the memory controller accesses the main mem-
ory through the memory bus. The number of cache misses is provided by



Collecting HPC Applications Processing Characteristics 175

CPU hardware counters and it can be periodically monitored by Linux kernel
(PERF COUNT HW CACHE MISSES perf event). Clearly, this metric depends
on cache configuration, and can not be reproduced on different hardware.

Estimating the required memory bandwidth of an application in a portable,
hardware-independent way is not trivial. The reason for that is multiple levels
of memory caches. Some regions of the memory may be cached, and when an
application is accessing these regions, the memory accesses may be satisfied from
the cache without reaching the memory bus. Associative cache, memory prefetch
and the fact that some caches are shared between CPU cores make estimation
even harder. There are many research papers on this topic, e.g. [6].

The maximum memory bus bandwidth available to an application can not
be controlled directly. Having bandwidth requirements for each application,
the decision maker may schedule for simultaneous execution applications that
together do not consume all available bandwidth. In case combined memory bus
utilization of all applications reaches the maximum value, the performance of all
applications would degrade, as memory accesses would take more time.

5.4 Network Bandwidth

For distributed applications that require multiple computation nodes and an
interconnect network between them for communication, network bandwidth can
be considered as another shared resource. Network bandwidth may be shared
between applications not only when they are running on the same set of nodes,
but also when their sets of nodes do not intersect and they are connected to the
same switch with limited bandwidth. When all available bandwidth is utilized
communication time between nodes would increase so as the total execution time
of an application.

There are multiple ways to measure network throughput of each application.
For example, network packets coming from the application may be marked, using
control groups or iptables rules, and then counted by network filters. Another
possible way is to create virtual network interfaces using network namespaces
for each application and count the number received and transmitted bytes on
these interfaces. For our purposes and as we work in an isolated environment, it
was sufficient to count the number of bytes transmitted by the physical network
interface.

Network bandwidth available to each application can be controlled directly
using Linux kernel traffic control policies. Several different queuing disciplines
allow to shape network traffic and change network bandwidth. For our purposes
and environment it was sufficient to use HTB (Hierarchical Token Bucket) queu-
ing discipline.

Network bandwidth can also be shared equally between all running applica-
tions using SFQ (Stochastic Fairness Queue). In this case, all available band-
width would be shared between all applications that require network access. So,
for example, when at some time point there is only one application that trans-
mits data, it would receive all available bandwidth. We have described that in
more detail in our previous paper [7].



176 R. Kuchumov and V. Korkhov

5.5 Resource Usage Model

Assume that the aforementioned metrics of resource consumption are measured
for each application in ideal conditions when no other application was running at
the same time and interfering with the one being measured. Having these metrics
along with application execution time is not sufficient for making decisions for
co-scheduling. The reason for that is that when an application is sharing common
resources with another application, its resource usage metrics may change from
the one measured in the ideal conditions. They are likely to decrease in this case
in co-scheduling conditions which would affect total execution time.

Regardless of available resource shares and other applications that are run-
ning simultaneously, the total amount of work performed by the application
should not change from the ideal conditions. This total amount of work can be
represented by the total amount of CPU instructions, the total number of bytes
written and read from the memory and the total number of bytes transmitted
and received through the network card.

Another characteristic of the application that is invariant to the changes of
available rates is the sequence of instructions. For example, for every 10 executed
instructions application may issue 1 instruction that causes LLC cache miss,
or for every 10 Kb of received data, the application may execute 300 million
instructions. As a result, ratios between resource rates stay constant regardless
of resource limits. This assumption is applicable only to the time intervals when
resource rates are constant or periodical with a very small period.

On a larger scale, an application may consist of multiple stages that have
different resource rates and amounts of work. For example, these stages may
include initialization, a loop of computation and data synchronizations followed
by the output stage. In each of these stages application may perform a different
amount of work at different rates, so resource rate limitations may have different
effects of the duration of each stage.

Because of all of these features, we propose to describe resource consumption
of an application as a sequence of low-resolution stages, where each stage is
defined by the total amount of work that needs to be done and a function
describing dependencies between resource usage rates. Using these parameters it
is possible to estimate the total execution time of the application and its required
resource rates depending of the resource limits.

Since during a single stage application may require multiple resources, its
execution time may not depend linearly on resource limits, according to the
Amdahl’s law. For example, an application may perform 1 unit of work with
one resource and another 1 unit of work with another resource per single time
interval. If we increase the rate for one of the resources two times, the total
amount of work during this interval would increase 1.5 times. Linear dependency
is only possible when all of the resource rates are scaled at the same time, which
is not feasible in real world as it would require controlling all of the activities of
the application.



Collecting HPC Applications Processing Characteristics 177

6 Experiments

To validate our resource model we have used benchmark applications from NAS
Parallel Benchmarks suite [1], executed it with different resource constraints and
monitored how they affect application behavior. There are two goals for perform-
ing these experiments. The first one is to show that an application performs a
constant amount of work regardless of the limits on resource rates. The second
one to show that dependencies between resource rates do not depend on resource
limits.

0 10 20 30 40

0
20

0
40

0
60

0
80

0

LU.A Instructions

Seconds

M
IP

S

0 10 20 30 40

0
1

2
3

4
5

6
LU.A Cache misses

Seconds

C
ac

he
 m

is
se

s,
 m

illi
on

s 
pe

r s
ec

on
d

0 10 20 30 40

0
5

10
15

20
25

LU.A Network throughput

Seconds

N
et

w
or

k 
th

ro
ug

hp
ut

, M
bi

ts

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

FT.B Instructions

Seconds

M
IP

S

0 20 40 60 80 100

0
5

10
15

20
25

30

FT.B Cache misses

Seconds

C
ac

he
 m

is
se

s,
 m

illi
on

s 
pe

r s
ec

on
d

0 20 40 60 80 100

0
50

10
0

15
0

20
0

FT.B Network throughput

Seconds

N
et

w
or

k 
th

ro
ug

hp
ut

, M
bi

ts

0 20 40 60 80

0
20

0
40

0
60

0
80

0

MG.C Instructions

Seconds

M
IP

S

0 20 40 60 80

0
5

10
15

20

MG.C Cache misses

Seconds

C
ac

he
 m

is
se

s,
 m

illi
on

s 
pe

r s
ec

on
d

0 20 40 60 80

0
5

10
20

30

MG.C Network throughput

Seconds

N
et

w
or

k 
th

ro
ug

hp
ut

, M
bi

ts

Fig. 1. Resource usage rates in every second of application run-time. For these appli-
cations resource rates are almost constant (LU) or periodical with a small period (FT
and MG)

We have implemented a program for monitoring resource usage rates peri-
odically (every 0.5 s). We have monitored the number of instructions per second



178 R. Kuchumov and V. Korkhov

(in millions per second), the memory bus throughput (in millions cache misses
per second) and the network throughput (number of transmitted and received
megabits per second). The technique for measuring these resources was described
in the previous sections. Example of observed resource usage rates for some appli-
cations are shown in Fig. 1.

Applications in NAS Parallel Benchmark (NPB) suite solve mathematical
problems that are commonly used in HPC applications. Among these tests are
the following: CG (conjugate gradient), MG (Multi-Grid), FT (discrete 3D fast
Fourier Transform), BT (Block Tri-diagonal solver), LU (Lower-Upper Gauss-
Seidel solver) and UA (Unstructured Adaptive mesh). Sizes of these problems
are distinguished by so-called classes and they are denoted by the last letter in
the benchmark name (“A”, “B”, “C” and so on).

0 5 10 15 20 25

0
10

00
30

00
50

00

IS.C Instructions per second

Seconds

M
IP

S

0 5 10 15 20 25

0
20

40
60

80

IS.C Cache misses per second

Seconds

C
ac

he
 m

is
se

s,
 m

illi
on

s 
pe

r s
ec

on
d

Fig. 2. In IS.C benchmark three stages can be noticed. The first one ends at 10th
second, the second one ends at 22nd second.

For our goals, we have selected only the applications that have either constant
resource usage rates or periodical rates with a small period. Some applications
in NPB, have multiple stages with different rates (for example, IS.C in Fig. 2).
As each stage would require a separate model, we have omitted such tests.

We have executed MPI versions of NPB on the 4-node cluster with 4 cores
and have measured resource rates on one of them (the one that does not have
MPI master process). For controlling memory bandwidth we have used HTB
queening discipline in Linux traffic control.

In Table 1 and Fig. 3 you can see that for all tests there are linear depen-
dencies between network transmission rates and the number of instructions and
caches misses per second. R2 values of linear regression for these parameters are
close to 1. The total amount of transmitted (and received) bytes is constant and
is not affected by the changes in network bandwidth.

The total number of instructions and cache misses is affected by the changes
in network transmission rates. The possible explanation for that is when the



Collecting HPC Applications Processing Characteristics 179

50 100 150

40
0

50
0

60
0

70
0

80
0

FT.B Instructions vs Network Throughput

Network Throughput, Mbit/s

M
IP

S

50 100 150

10
15

20

FT.B Cache misses vs Network Throughput

Network Throughput, Mbit/s

M
illi

on
s 

ca
ch

e 
m

is
se

s 
pe

r s
ec

on
d

10 20 30 40 50

50
0

55
0

60
0

65
0

CG.B Instructions vs Network Throughput

Network Throughput, Mbit/s

M
IP

S

10 20 30 40 50

10
20

30
40

50

CG.B Cache misses vs Network Throughput

Network Throughput, Mbit/s

M
illi

on
s 

ca
ch

e 
m

is
se

s 
pe

r s
ec

on
d

10 15 20 25 30 35 40

70
0

90
0

11
00

13
00

MG.C Instructions vs Network Throughput

Network Throughput, Mbit/s

M
IP

S

10 15 20 25 30 35 40

7
8

9
10

11
12

MG.C Cache misses vs Network Throughput

Network Throughput, Mbit/s

M
illi

on
s 

ca
ch

e 
m

is
se

s 
pe

r s
ec

on
d

Fig. 3. An average number of instructions per second and cache misses per second as
a function of the network throughput of an application.

Table 1. Per-benchmark results for MPI NPB tests. First two columns contains R2

values for the number of instructions per second and memory bus throughput versus
application’s network throughput linear regression models. In the next columns there
are absolute deviation from the mean value (in percents) of the number of transmitted
bytes, executed instructions and cache misses.

MIPS vs TP, R2 Misses vs TP, R2 TX Data, % Instr., % Misses., %

CG.B 0.9956 0.9985 0.3305 56.3411 10.8913

LU.A 0.9998 0.9620 0.2474 23.9812 24.9657

BT.A 0.9999 0.9789 0.6518 32.4141 39.5725

FT.B 0.9992 0.9955 0.5180 59.9892 47.1960

MG.C 0.9968 0.9929 0.4928 23.6905 10.0647



180 R. Kuchumov and V. Korkhov

application is waiting for network data to be received or transmitted, it performs
instructions in user-space which are counted in the total number. This may
happen when a single thread waits for data on the socket in the system space
and other threads wait for notification from this thread in the user-space.

In order to show that the total number of executed instructions and cache
misses is also constant regardless of the constraints, we have executed OpenMP
version of NPB applications. We have executed it on a single node with 4
cores. 2 cores of this node were used for running and measuring the test itself,
other 2 cores were used to run workloads that differ in their intensity of memory
bus communications. The reason for this approach is that memory bus band-
width can not be controlled directly as, for example, network bandwidth, and
we can affect it only by interacting with it.

For controlling memory bus bandwidth indirectly, we have used a synthetic
test that allocates 512 Mb of memory in a loop, then accesses every 64th or
4096th byte of this memory and after that frees this memory. Such access pattern
causes an allocation of physical memory pages and populating cache levels with
cache lines from this memory, as the result available bandwidth for the test
application decreases. We have also run multiple copies of this synthetic test to
have a different effect on memory bus bandwidth of the application.

Table 2. Per-benchmark results for OpenMP NPB tests. First columns contains R2

values for the number of instructions per second versus LLC cache misses linear regres-
sion model. In the next column there are absolute deviation from the mean value (in
percents) of the number of executed instructions and cache misses.

MIPS vs Cache misses, R2 Instr., % Misses., %

CG.B 0.9999403 0.1745595 0.0883977

FT.B 0.9988642 0.0023119 0.7274650

LU.A 0.9554370 0.4167756 2.1089845

MG.B 0.6842153 0.0574678 8.9376413

UA.A 0.9879625 0.9258455 1.7547919

In Table 2 you can see that similar to the MPI version, in OpenMP version
of NPB benchmarks there is a linear dependency between the number of cache
misses and the number of executed instructions per second and R2 values are
close to 1 for all tests. Also, the total number of executed instruction and cache
misses does not depend on the memory bus throughput of the application.

As mentioned previously, execution time has non-linear dependency from
the resource usage rates. You can see in Fig. 4 that for network throughput the
dependency is not linear, although for memory bus throughput this dependency
is close to linear.



Collecting HPC Applications Processing Characteristics 181

10 20 30 40 50

20
0

60
0

10
00

CG.B Execution time vs Network Throughput

Network Throughput, Mbit/s

Ex
ec

ut
io

n 
tim

e,
 s

ec
on

ds

70 80 90 100 110 120 130

25
0

35
0

45
0

CG.B Execution time vs Memory Throughput

Memory Throughput, millions cache misses per second

Ex
ec

ut
io

n 
tim

e,
 s

ec
on

ds
10 15 20 25 30 35 40

50
10

0
15

0
20

0

LU.A Execution time vs Network Throughput

Network Throughput, Mbit/s

Ex
ec

ut
io

n 
tim

e,
 s

ec
on

ds

45 50 55

65
75

85

LU.A Execution time vs Memory Throughput

Memory Throughput, millions cache misses per second
Ex

ec
ut

io
n 

tim
e,

 s
ec

on
ds

50 100 150

50
0

10
00

FT.B Execution time vs Network Throughput

Network Throughput, Mbit/s

Ex
ec

ut
io

n 
tim

e,
 s

ec
on

ds

25 30 35 40 45 50

15
0

20
0

25
0

FT.B Execution time vs Memory Throughput

Memory Throughput, millions cache misses per second

Ex
ec

ut
io

n 
tim

e,
 s

ec
on

ds

Fig. 4. Benchmark execution time as a function of the number of last level cache misses
and network throughput

7 Conclusion

In this paper, we have described typical HPC workloads in terms of scheduling
theory models. In particular, we have covered possible ways of defining machine
environments in scheduling theory model to represent cluster environments in
HPC field. We have also described which job processing characteristics from the
scheduling theory can be applied for describing HPC applications.

We have covered different application’s resource requirements such as the
number of computing nodes, CPU cores, memory bandwidth and network band-
width. We have described how to monitor them during application execution,
how to control them when it is possible.

For these resources we have provided an abstraction based on the following
propositions. The first one is that the total amount of consumed resource does
not change regardless of resources usage rates. The second one is that relations
between resource usage rates are linear and also do not change regardless of
resource usage rates. Using these propositions it possible to describe application



182 R. Kuchumov and V. Korkhov

usage rate as a sequence of stages where each stage would be defined by the
amount of consumed resources and relations between resource usage rates.

We have tested these propositions using NAS Parallel Benchmark tests in
4-node cluster and we have found these propositions are valid. For different
resource constraints the total amount of consumed resources does not deviate
from the mean value more than 1% and coefficient of determination for the linear
model of resource rates is very close to 1.

Using this approach it is possible now to estimate application execution time
as a function of resource constraints. This later would allow to make decisions by
how much the applications may be constrained when they are scheduled together
in a co-scheduling strategy.

Acknowledgements. Research has been supported by the RFBR grant No. 19-37-
90138.

References

1. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl.
5(3), 63–73 (1991)

2. B�lażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Sterna, M., Weglarz, J.:
Handbook on Scheduling: From Theory to Practice. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-319-99849-7

3. Castain, R.H., Hursey, J., Bouteiller, A., Solt, D.: Pmix: process management for
exascale environments. Parallel Comput. 79, 9–29 (2018)

4. Gawiejnowicz, S.: Time-Dependent Scheduling. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69446-5

5. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux
clusters. In: Journal of Physics: Conference Series, vol. 46, p. 494. IOP Publishing
(2006)

6. Haritatos, A.H., Papadopoulou, N., Nikas, K., Goumas, G., Koziris, N.:
Contention-aware scheduling policies for fairness and throughput. Co-Sched. HPC
Appl. 28, 22 (2017)

7. Kuchumov, R., Korkhov, V.: Fair resource allocation for running HPC workloads
simultaneously. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp.
740–751. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0 55

8. Louca, S., Neophytou, N., Lachanas, A., Evripidou, P.: MPI-FT: Portable fault
tolerance scheme for MPI. Parallel Process. Lett. 10(04), 371–382 (2000)

9. Pickartz, S., Eiling, N., Lankes, S., Razik, L., Monti, A.: Migrating LinuX contain-
ers using CRIU. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Perfor-
mance 2016. LNCS, vol. 9945, pp. 674–684. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46079-6 47

10. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, vol. 5. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-1-4614-2361-4

11. Trinitis, C., Weidendorfer, J.: Co-scheduling of HPC Applications, vol. 28. IOS
Press (2017)

https://doi.org/10.1007/978-3-319-99849-7
https://doi.org/10.1007/978-3-540-69446-5
https://doi.org/10.1007/978-3-030-24305-0_55
https://doi.org/10.1007/978-3-319-46079-6_47
https://doi.org/10.1007/978-3-319-46079-6_47
https://doi.org/10.1007/978-1-4614-2361-4

	Collecting HPC Applications Processing Characteristics to Facilitate Co-scheduling
	1 Introduction
	2 Machine Environments
	3 Objective Functions
	4 Job Processing Characteristics
	5 Resource Usage Metrics
	5.1 Required Number of Nodes
	5.2 CPU Cores
	5.3 Memory Bus Bandwidth
	5.4 Network Bandwidth
	5.5 Resource Usage Model

	6 Experiments
	7 Conclusion
	References




