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Abstract. Given a configuration involving some objects in an environ-
ment, the planning problem, considered in this paper, is to find a plan
that rearranges these objects so as to place a new object. The chal-
lenging aspect here involves deciding when an object can be placed on
top of another object. Here only defining standard planning operators
would not suffice. For instance, using these operators we can come up
with actions that may be performed at a state but it should not be per-
formed. So we introduce the notion of safe actions whose outcomes are
consistent with the laws of physics, commonsense, and common prac-
tice. A safe action can be performed if a robot performing the action
knows the knowledge of the situation. We developed a knowledge engine
using a supervised learning technique. However, unlike the common task
of learning functions, our approach is to learn predicates–that evaluate
to binary values. By learning such a predicate a robot would be able
to decide whether or not an object A can be placed on top of another
object B. We give a method to handle new objects for which the pred-
icates have not been learned. We suggest a nondeterministic planning
algorithm to synthesize plans that contain only safe actions. Experimen-
tal results show the efficacy of our approach.
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1 Introduction and Motivation

Service robots are used to manipulate objects to achieve goal directed activities
in automated/smart environments (e.g., home, cafeteria, office) [1–4]. In order
to accomplish goals, a robot should possess the following skills: (i) perceptual
skills which refer to the ability to acquire information from the environment, (ii)
motor skills which refer to the ability to actuate in the environment, and (iii)
cognitive skills which refer to the ability to synthesize plans to achieve a goal [5].
Planning is the reasoning side of acting [6]. In order to perform a simple action
like pick-and-place, a robot should apply commonsense, physics knowledge, and
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take into account the current situation or context [7]. For certain tasks, in order
for planning to be successful, the agent should learn some relationships of the
objects.

Consider a table, in a kitchen, that is divided into four locations where each
location is occupied with a plate; assume for simplicity that all the plates are
identical and only one object can occupy each location. There is no other free
space available. If a human is asked to place a cup on the table, she would
possibly do any one of the following: (i) place the cup on any plate, (ii) pick any
plate and place it on top of an adjacent plate, or make a tower of all the plates
and then place the cup in a vacant location. There are different perspectives for
looking at this task. These are, for instance, grasping which is concerned with
how to hold the cup (by the handle of the cup or by one side); placing which
refers to how the hand should move between the objects to place the cup, and if
both the cup and plate are made of glass then care should be taken to place the
cup softly on the plate; and capability of picking the cup (a weak hand may not
be able to pick the cup properly). In this paper we take a different perspective
which is not about these physical abilities required for placing an object; rather
it is about reasoning when an object can be placed on top of another object.
Humans have acquired this cognitive skill from their experience with handling
objects of different types, observation, and/or learning from situations.

When a human asks the home robot to place the cup on the table, she expects
the robot not just to place it somewhere on the table, but to first tidy up the
table and then keep the cup. The goal states would be to place the cup on top
of either plate A, plate B, plate C, or plate D. Such goal states correspond to
the above mentioned point (i). Let us reconsider the kitchen situation described
above but now all the locations are occupied by a cup and the task is to place
another cup on the table. In this case none of the goal states (place the cup on
top of either cup A, cup B, cup C, or cup D) is feasible since it is not a common
practice of keeping a cup on top of another cup.

If a robot can place a cup on a plate, it can as well place a cup on another
cup; nothing precludes this from happening. A robot is expected to perform
safe actions. Informally, a safe action does not violate the laws of physics, com-
monsense, or common practice. For instance, the action of placing a cup on top
of another cup is not a safe action, whereas placing a cup on a plate is a safe
action. Thus if we wish to make the robots act like humans, it becomes impera-
tive that they are embedded with adequate knowledge base that enables them to
act autonomously and not just merely perform actions. This requires the robot
to know (by learning) the commonsense knowledge of the situation (e.g., Do not
put a cup on a cup or Clean the table before placing cups) and also physical
knowledge (e.g., If you place a laptop on a cup then it will fall). Anyone who
is used to a kitchen environment would first tidy up the table and then place
the cup. This is the intent of the request and this corresponds to the goal state
discussed above for point (ii). Here again if we replace the plates with cups, since
a cup is normally not placed on top of another cup, a vacant location cannot be
created and thus the request cannot be fulfilled.
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For the planning scenarios described above, a precondition may hold, but an
action should not be performed. We emphasize here that it is not the case that an
action cannot be performed; rather it is the case where an action should not be
performed. Here, only an operator definition will not suffice. So we introduce the
notion of safe actions whose outcomes are consistent with physics, commonsense,
and common practice. A safe action can be performed if a robot performing
the action knows the knowledge of the situation. We developed a knowledge
engine using a supervised learning technique. However, unlike the common task
of learning functions, our approach is to learn predicates–that evaluate to binary
values. By learning such a predicate a robot would be able to decide whether
or not an object A can be placed on top of another object B. Once the robot
learns the predicate, planning can be carried out and the plans contain only safe
actions.

The remaining part of the paper is organized as follows. The preliminaries
are given in Sect. 2. Predicate learning is given in Sect. 3. The proposed planning
algorithm is given in Sect. 4 and the experimental results are given in Sect. 5.
Related work is given in Sect. 6. The conclusions are given in Sect. 7.

2 Preliminaries

Definition 1 (Planning domain). A planning domain can be formally defined
as D = 〈S,A, s0, δ, F 〉 where S is a nonempty finite set of states S ⊆ 2AP where
AP is a nonempty finite set of atomic propositions or ground predicates for a
domain, A is a nonempty finite set of executable actions, s0 is the initial state,
δ is a transition function δ : S × A → S, F is a set of final states F ⊆ S.

Definition 2 (Planning problem). Given a planning domain D, a planning prob-
lem is to find a plan (a sequence of actions) which when executed at an initial
state would lead to a final state.

2.1 Planning Operator

A planning operator O is defined using preconditions pre(O) and postconditions
post(O). The semantics of a planning operator O is given as follows: O is appli-
cable at a state s if pre(O) holds at s, and post(O) holds in the resulting state
s′. Thus a planning operator transforms one state to another. An action is a
ground instance of an operator.

In the standard Blocks-world domain, the blocks are assumed to be identical
in shape and size. An operator to put an object x on top of another object y (say,
by a robot hand) can be defined as follows where clear(y) means that nothing
is on top of y and handempty means that the robot is not holding any object.

put-on-top(x, y)
precondition : holding(x) ∧ clear(y) ∧ x �= y
postcondition : on(x, y) ∧ handempty ∧ not(clear(y))
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Consider a simple situation in this domain where the blocks B are C are placed
on a table, and a robot is holding block A. By performing put-on-top(A,B), A is
placed on top of B; similarly by performing put-on-top(A,C), A is placed on top
of C. In this domain there is no additional constraint for placing one block on
top of another block, and so any block can be placed on top of another subject
to satisfying the preconditions. Let us consider an instance of the operator say
put-on-top(laptop, cup). If the precondition holds in a state, this action can be
performed at the state and in the resulting state the laptop would be on top of
the cup. Although an action can be performed at a state if the preconditions hold
in the state, it should not be performed at the state in this case; the resulting
configuration is unstable and the laptop may fall. Thus when arbitrary objects
are considered, the above operator definition will not be suitable since an agent
performing the action should know or decide whether it would be appropriate
to place one object on top of another. In the following we suggest variants of
the put-on-top operator to see if such reasoning can be captured at the syntactic
level.

2.2 Limitations of Planning Operators

Situation I: An operator that would allow placing an object on top of another
object when both the objects are of the same type.

put-on-top-same-type(x, y)
precondition : (type(x) = type(y)) ∧ holding(x) ∧ clear(y) ∧ x �= y
postcondition : on(x, y) ∧ handempty ∧ not(clear(y))

For example, when both the objects are, say, plate or book, the operator
would be applicable at a state where the precondition holds. However, when
both the objects are cup then this operator should not be performed.

Situation II: An operator that would allow placing an object on top of another
object when both the objects are of different type.

put-on-top-diff-type(x, y)
precondition : (type(x) �= type(y)) ∧ holding(x) ∧ clear(y) ∧ x �= y
postcondition : on(x, y) ∧ handempty ∧ not(clear(y))

This operator should not be performed when x = laptop and y = cup.
Thus, operator definition alone is not sufficient for the problem under con-

sideration.

Safe Action: An action a, applicable at state s (pre(a) holds at s), is considered
safe if post(a) is consistent with physics, commonsense, and common practice.

Safe Plan: A safe plan is a plan that consists of only safe actions.
The problems with the operators defined in Situations I and II are that they

are not safe. Thus in order to define an operator for placing one object on top
of another object we first define a predicate CAN PLACE(A,B) which is true
if A can be placed on B, false otherwise.

put-on-top-safe(x, y)
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precondition : CAN PLACE(x, y) ∧ holding(x) ∧ clear(y) ∧ x �= y
postcondition : on(x, y) ∧ handempty ∧ not(clear(y))

Thus in order for a robot to perform safe actions, it should know or learn the
truth/falsity of the CAN PLACE predicate. We suggest an approach for learning
this predicate in the next section.

3 Predicate Learning

The predicate CAN PLACE(A,B) is true if A can be placed on B, false oth-
erwise. An important property of the predicate is that it is not symmetric
in general, CAN PLACE(A,B) does not imply CAN PLACE(A,B). From
the truth/falsity of the CAN PLACE(A,B) predicate, no conclusion be made
about the predicate CAN PLACE(A,B) since these two predicates are not
logically connected at all, in general.

The CAN PLACE predicate instances are to be learned for all the pairs
of objects. For instance, CAN PLACE(cup, cup), CAN PLACE(cup, plate),
CAN PLACE(cup, stapler), etc. Thus, if there are n objects, the total number
of instances of the predicate would be n2 and this many predicates should be
learned.

The robot has to decided if an object A can be placed on top of another
object B based solely on 2D images of the objects. An image in RGB format
is first converted to gray scale. This is done since two images of an object with
different colors would be classified into its unique category (denoted by an integer
identifier ID). An existing object recognition techniques is used for the purpose.
We have taken 10 categories of objects and for each category around 60 images
are taken from Caltech vision, Bing image search, and Google image search.

A neural network (NN) is used for learning the predicate. The network struc-
ture will consist of an initial layer of size 2 (corresponding to a pair of objects),
followed by a variable number of hidden layers, and a final output layer of size
1. The training of the NN is done by taking input pairs (e.g., ID A, ID B) and
providing the output which is the associated truth value of the predicate instance
CAN PLACE(A,B). The predicates learned for a set of objects are shown in
the Table 1, where A is an object from a column, B is an object from a row in
CAN PLACE(A,B). Any object in the set can be placed on a ‘book’. A ‘cup’
can also be placed on a ‘plate’, so the cell CAN PLACE(cup,plate) is 1.

3.1 Handling a New Object

Once a robot has learned the CAN PLACE predicate it can decide if an object
A can be placed on another object B. If a robot is faced with new object(s)
for which the predicates have not been learned, the robot would get stuck and
the goals cannot be accomplished. At some point of time a robot would always
encounter a new object. So it is not possible to anticipate all such objects in
advance and learn the corresponding predicates. Thus we suggest a method for
mapping a new object to some known object (for which a predicate has already
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Table 1. Learned predicate instances.

CAN PLACE(A,B) Cup Plate Stapler Laptop Book

Cup 0 0 0 0 0

Plate 1 1 0 0 0

Stapler 0 0 0 0 0

Laptop 0 0 1 0 1

Book 1 1 1 1 1

been learned) based on some physical properties (Table 2) of the object which
are easily observable. These properties are:

1. Overall shape: The overall shape of an object can be either simple or complex.
Examples of objects with simple shapes are book, plate. Examples of objects
with complex shapes are stapler, cup. There are some objects (e.g., laptop)
that can be both simple and complex depending on its state. The numbers 1,
2 are used to represent complex shape and simple shape respectively.

2. Base shape: It can be either simple or complex. Simple shapes are circle
(characterized by the top view of a cup), rectangle (characterized by book,
laptop). Stapler is an example of a complex shape. The numbers 1, 2, 3 are
used to represent circle, rectangle, and complex shape respectively.

3. Base area: It is calculated in sq. cm.

Table 2. Sample data set of objects of different category.

Overall shape Base shape Base area Category

2 2 153 Book

1 2 600 Laptop

1 3 500 Stapler

Whenever a robot picks an object, it can easily identify these properties of
the object. Supervised learning (SVM) is used to learn these properties corre-
sponding to given categories. The testing data set consists of 20 vectors for each
category. The results of learning the properties corresponding to each category
are shown in Table 3. For example, out of the 20 vectors for ‘laptop’, 15 are
correctly classified as ‘laptop’ and 5 are incorrectly classified as ‘book’.

When a new object (other than these five categories) is encountered, these
three properties of the object are identified. Based on these properties, the new
object is mapped to an object in the closest category for which the predicate is
known, i.e., book, laptop, cup, plate, and stapler. Now the new object is treated
as the object in the category. If the new object is a “newspaper” the properties
are identified as:
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Table 3. Learning the physical properties of each category.

True class\predicted class Cup Plate Stapler Laptop Book

Cup 20 0 0 0 0

Plate 0 19 1 0 0

Stapler 0 1 19 0 0

Laptop 0 0 0 15 5

Book 0 0 0 5 15

1. Overall Shape is simple, so the value is 2.
2. Base Shape is rectangle, so the value is 2.
3. Base area of a newspaper can be calculated by measuring its length and width.

For a normal newspaper which is half folded, its length is 42 cm and width is
33 cm. So the area is 42 × 33 i.e., 1386 sq.cm.

The newspaper with properties represented as a vector [2, 2, 1386] is mapped
to a laptop. So for deciding if a newspaper can be placed on a cup reduces to
deciding if a laptop can be placed on top of a cup for which the predicate
CAN PLACE(laptop, cup) is already known.

4 Proposed Planning Approach

Definition 3 (Planning problem with safe actions). Given a planning domain
D, a configuration involving some objects in an environment, the planning prob-
lem is to find a safe plan that rearranges these objects so as to place a new
object.

We assume that all objects can be placed on the table: ∀x.CAN PLACE
(x, table) holds. Let TOWERy denote a tower of objects with y at the bottom
of the tower, and putdown(TOWERy) be an action that removes all the objects
on top of y including y.

Planning algorithm:
Plan-to-place-object
Input: an object x to be placed in an Environment E
Output: PLAN -that consists of safe actions or failure
begin
while there exists an object x to be placed in E do
PLAN := ∅

Case 1: Place x in E without rearrangement.
if there exists an object y in E such that

(CAN PLACE(x, y) ∧ clear(y)) hold
then report success with PLAN := put-on-top-safe(x, y)

else report failure
Case 2: Place x in E by rearranging only top objects.
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if there exists objects y′, y, z in E such that
(CAN PLACE(y, z) ∧ clear(z) ∧ on(y, y′) ∧ CAN PLACE(x, y′)) hold

then report success with
PLAN := put-on-top-safe(y, z);put-on-top-safe(x, y′)

else report failure
Case 3: Place x within a tower of objects in E.
if there exists objects y, y′ in the tower such that
(on(y, y′) ∧ CAN PLACE(x, y′) ∧ CAN PLACE(y, x)) hold

then report success with
PLAN := putdown(TOWERy);put-on-top-safe(x, y′);

put-on-top-safe(TOWERy, x)
else report failure

od
end

Features of the Algorithm: The algorithm is nondeterministic since for a
given initial configuration different plans are possible for placing a particular
object. For instance, if every region has only one plate and the goal is to place
a cup, then both Case 1 and Case 2 holds. In this scenario any one of the cases
would be considered nondeterministically and the corresponding plan would be
returned. Similarly, if every region has a tower of k > 1 plates, and the goal is
to place another plate, then all the three cases hold. Thus for the design of the
algorithm, the nondeterminism is necessary (and not based on choice) since we
only want to achieve the goal and moreover no goal configuration is given as
input. This aspect differentiates the planning problem considered in this paper
with conventional planning problems where an initial and goal configuration is
given as input. Finally, the order of execution of the Cases is irrelevant.

4.1 Illustration of the Algorithm

We illustrate the working of the algorithm by taking different situations. The
environment E consists of n-regions. In the following examples there are 4 regions
that are named R1 (top left), R2 (top right), R3 (bottom right), R4 (bottom
left).

1. Goal: place a stapler. There is no space available in any region and the stapler
cannot be placed on top of any object. This is an instance of Case 2. So the
steps involved are: first, remove the plate from R1 and place it on top of the
plate in R2; now place the stapler in R1 (Fig. 1).

2. Goal: place a plate. There is no space available in any region and the stapler
cannot be placed on top of any object. This is an instance of Case 3. So the
steps involved are: first, remove the cup from R4; then place the plate on top
of the book in R4; now place the cup on top of plate in R4 (Fig. 2).

3. Goal: place a cup. There is no space available in any region and a cup cannot
be placed on top of a cup. Neither Case 2 nor Case 3 is applicable. So the
object cannot be placed in any region (Fig. 3).
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Fig. 1. Planning using Case 2.

Fig. 2. Planning using Case 3.

Fig. 3. No rearrangement is possible.

4.2 Placing a New Object for Which the Predicate has Not Been
Learned

1. Goal: place a cellphone. Since no predicate is learned for cellphone, so overall
shape, base shape, and base area are identified for cellphone and the final
vector is [2, 2, 150] which is closest to a book. Thus the problem reduces to
placing a book. This is an instance of Case 2. The steps involved are: first,
remove plate on top of R1; then place it on top of plate in R4; now cellphone
is placed in R1 (Fig. 4).

2. Goal: place a newspaper. Since no predicate is learned for newspaper, so,
overall shape, base shape, base area are identified for newspaper and the final
vector is [2, 2, 550], which is closest to a book. Thus the problem reduces to
placing a book. This is an instance of Case 3. The steps involved are: first,
remove cup from R1; then place newspaper on top of book already present in
R1; now place cup on top of R1 (Fig. 5).
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Fig. 4. Placing a new object: cellphone.

Fig. 5. Placing a new object: newspaper.

5 Experimental Results

All the experiments are performed using MATLAB on a personal computer
having the configuration–Intel core i5 @ 2.5 GHz with 4 GB RAM.

I) We considered different initial configurations and for each configuration, dif-
ferent objects were selected for placing by fixing the number of regions. The
average planning time taken for different instances is shown in Fig. 6. The
time taken increases almost linearly with the number of objects.

II) We took different initial configurations and for each configuration, the number
of regions was varied for a fixed number of objects to be placed in the con-
figuration. The average planning time taken for different instances is shown
in Fig. 7a and 7b. The time taken decreases almost logarithmically with the
number of regions.
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Fig. 6. Planning time versus number of objects.

(a)

(b)

Fig. 7. (a) Planning time versus number of regions for #objects 10, 19. (b) Planning
time versus number of regions for #objects 15, 25.
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6 Related Work

The problem of placing an object properly has been considered in [8,9]. How to
place an object depends on the shape of the object and the placing environment.
For example, a plate has to be placed vertically in the slots of a dish rack but
horizontally on a table. A supervised learning approach is suggested for find-
ing good placements given point-clouds of the object and the placing area. The
methods [8,9] combine the features that capture support, stability and preferred
configurations, and use a shared sparsity structure in the parameters. A rear-
rangement planning problem is considered in [10] where a robot is expected to
work in a clutter by interacting with multiple objects to achieve its goal. For
this the robot may either try to avoid other objects and find a path to reach
the desired object (goal) or it may remove some objects on its path to reach the
goal. In [11] the problem of placing an object on cluttered table surfaces is con-
sidered. If enough space is not available for placing an object for directly placing
an object, the planning algorithm suggested in [11] tries to find a sequence of
linear push actions so as to obtain the necessary space. However, none of these
works [8–11] consider the reasoning required for placing one object on top of
another object.

7 Conclusions

In this paper we considered a goal directed object manipulation task that requires
cognitive skills like planning and learning. We showed that by learning a predi-
cate CAN PLACE(A,B), using a simple neural network, a robot can determine
whether to place an object A on top of another object B, which in turn allows the
robot to perform safe actions. We have suggested a method by which a robot can
handle a new object for which the predicate has not been learned. We proposed
a nondeterministic planning algorithm to place an object. We have implemented
our approach and the experimental results are quite promising. Our ongoing
work aims to develop a robotic system that can function in a real world scenario
using the concepts developed in this paper.
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