
Acceleration of Boltzmann Equation for
Core-Collapse Supernova Simulations on

PEZY-SC Processors

Hideo Matsufuru1(B) and Kohsuke Sumiyoshi2

1 High Energy Accelerator Research Organization (KEK),
1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

hideo.matsufuru@kek.jp
2 National Institute of Technology, Numazu College,

3600 Ooka, Numazu, Shizuoka 410-8501, Japan
sumi@numazu-ct.ac.jp

Abstract. Performing large scale numerical simulations is essential to
understand the explosion mechanism of core-collapse supernovae. It
is mandatory to solve a multi-physics system described by coupled
equations of hydrodynamics and neutrino-radiation transfer in multi-
dimensions. Since the neutrino transfer is in principle governed by the
Boltzmann equation in six-dimensional coordinates, numerical simula-
tions require large computational resources. In this work, we focus on
the acceleration of the Boltzmann equation by exploiting the PEZY-SC
processors. The PEZY-SC processor possesses many-core MIMD cores
on each chip, and works as an accelerator device similarly to GPUs. We
examine two simulation codes for the neutrino transport in the supernova
simulations. One is a radiation-hydrodynamics code under the spherical
symmetry. The second is a 6D Boltzmann equation solver applied to
two-dimensional space. We examine the bottlenecks of these codes and
offload them to the PEZY-SC devices. The performance is measured on
the Suiren Blue and Suiren2 systems at KEK.

Keywords: Many-core accelerator · PEZY-SC · Boltzmann equation ·
Supernova explosion · Radiation-hydrodynamics

1 Introduction

Core-collapse supernova explosions are phenomena that occurs at the end of
stellar life whose mass is larger than 10 times the solar mass. The gravitational
compression of Fe core and the subsequent core bounce launches the shock wave
that leads to the explosion. Despite the long history of investigations based on
this general idea, the detailed mechanism of the core-collapse supernova explo-
sion is still elusive, because only prohibitively large-scale numerical simulations
can explore the multi-dimensional mechanism with multi-physics in multi-scale
[1,2]. Precise understanding of the supernova explosion is one of the essential
c© Springer Nature Switzerland AG 2020
O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12253, pp. 177–192, 2020.
https://doi.org/10.1007/978-3-030-58814-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58814-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-58814-4_13

178 H. Matsufuru and K. Sumiyoshi

issues in astrophysics in order to reveal the origin of heavy elements, the for-
mation of compact objects (neutron stars or black holes), and observation of
neutrino bursts and gravitational waves.

Among the ingredients of this multi-physics system, the Boltzmann equation
for the neutrino radiation regulates the scale of numerical simulations, since its
time evolution is described by a six-dimensional (space and neutrino momentum)
distribution function. Increasing the resolution of space and neutrino momentum,
the numerical cost rapidly increases. Fully six-dimensional computation of the
Boltzmann equation has become feasible only recently. To provide quantitative
theoretical prediction at the level demanded for comparison with observational
data, however, it is essential to systematically study variety of massive stars and
the effect of many components of microphysics, such as the equation of state for
the dense matter and the neutrino reaction processes.

Recent supercomputers are categorized into two types. One is massively par-
allel clusters whose nodes are composed of multi-cores and shared memory, such
as the K-computer and the forthcoming Fugaku supercomputer in Japan. The
other type makes use of the arithmetic accelerators, such as GPUs, and are
becoming popular for its high cost performance. Most of supernova simula-
tions have been performed on the former, presumably because the latter requires
involved implementation of code to offload the tasks to the accelerator devices.
In our previous work, we offloaded the bottlenecks of the Boltzmann equation
in supernova simulations to GPUs and achieved substantial acceleration [3,4].

In this work we investigate another accelerator architecture, the PEZY-SC
processors. The PEZY-SC processors are novel many-core architecture that share
several advantages with GPUs while also have distinct features, such as the
threads working as MIMD processing elements. To exploit their potentially high
arithmetic performance, understanding of their characteristic structure is impor-
tant. It is worth establishing the knowledge; which kinds of applications are
suitable to this architecture and how to optimize the codes.

We examine two types of the Boltzmann equation solvers. One is the
radiation-hydrodynamics code under the spherically symmetry, i.e., on one-
dimensional spatial coordinate [5,6]. This code was also used in our previous
studies on GPUs [3,4]. The second code is a multi-dimensional Boltzmann equa-
tion solver [7], which is a basis of recent large-scale simulations.

From a numerical point of view, three types of problems are examined: (1)
A linear equation solver for a block tridiagonal matrix whose block matrices
are dense, (2) Determination of the inverse of dense block matrices, and (3)
Computation of neutrino reaction processes which are represented as integration
of reaction rates over the energy and angles of neutrinos. We examine whether
these bottlenecks can be accelerated by offloading to the PEZY-SC processors.
As shown below, although effect of offloading is restricted by the bandwidth
of device memory, one needs to employ optimization techniques to properly
exploit the potential performance of hardware under this limitation. Establishing
such recipes is also useful to prepare for future architecture including the next
generation of the PEZY-SC processor.

Acceleration of Boltzmann Equation 179

This paper is organized as follows. Next section summarizes the formulation
to investigate the supernova explosion focusing on the structure as computational
problems. In Sect. 3 we summarize the features of PEZY-SC processors and
the programming environment. The implementation of codes and the results
of performance measurement are described in Sects. 4 and 5 for one- and two-
dimensional simulations, respectively. Section 6 is devoted to our conclusion.

2 Formulation

2.1 Boltzmann Equation

For numerical simulations of supernovae, one needs to solve the evolution of the
stellar matter at high temperature and density and the radiation transfer of neu-
trinos generated by the weak interaction simultaneously. The former is described
by hydrodynamics under the gravitational effect governed by the general rela-
tivity. The latter is described by the Boltzmann equation, since the neutrinos
are not always in statistical equilibrium and thus their distribution is not always
isotropic and equilibrium values, therefore, a function of spatial coordinates and
their momentum. Leaving the details of these formulation to literature [5–8],
here we briefly summarize the costly parts in numerical simulations.

The general relativistic Boltzmann equation for the neutrino distribution
function is written as

dxμ

dτ

∂fν

∂xμ
+

dpi

dτ

∂fν

dpi
=

(
δfν

δτ

)
coll

(1)

where xμ are the space-time coordinates and pi the momentum coordinates, τ
the affine parameter (specific time). This equation describes the conservation of
the neutrino distribution function, and thus rewritten as an evolution equation.
The left hand side describes the time derivative of fν and advection terms. The
collision term, the right hand side, represents the change of the neutrino number
caused by the weak interaction with matter. This term is composed of several
reaction processes [9], and computationally demanding.

To solve the Boltzmann equation, the discrete ordinate (SN) method is
adopted through finite differencing the spatial and momentum coordinates. We
adopt a fully implicit differencing for time advance since the equation is stiff
with largely different time scales due to energy dependence of the interaction. In
contrast to the explicit scheme where the time step is constrained by the Courant
number, it is advantageous to increase the step size to follow the time evolution
in a long time scale. However, it is numerically expensive to solve a linear equa-
tion with a large sparse matrix at each time step for time advancing. This linear
equation solver tends to be the primary bottleneck of our simulations.

2.2 Spherically Symmetric (1D) Simulation

For one-dimensional simulation, i.e. under the spherical symmetry, coupled equa-
tions of hydrodynamics and neutrino transfer under general relativistic geometry

180 H. Matsufuru and K. Sumiyoshi

can be solved [5,6]. In this case the evolution equation contains both the degrees
of freedom of the neutrino radiation and hydrodynamics. Under the spherical
symmetry, the neutrino distribution function is a function of the radial coordi-
nate r, the neutrino energy Eν , and the angle of neutrino momentum against the
radial direction θν . Four neutrino species are treated (Nν = 4): electron neutrino
νe and μ-neutrino νμ, and their anti-neutrinos ν̄e and ν̄μ. In addition to the dis-
tribution function fν(r, Eν , θν) for each neutrino species, eleven hydrodynamical
variables, such as the temperature and entropy, are evolved simultaneously in
the time evolution equation. We discretize radial coordinate, neutrino angle, and
energy to Nr, Nang, and NEν

grids, respectively. Thus at each radial point there
are NEν

· Nang · Nν neutrino degrees of freedom and Nhyd = 11 hydrodynamical
variables. Typically Nr = O(100), Nang = O(10), NEν

= O(10) are adopted cur-
rently, while ten times higher resolutions are demanded for more quantitative
investigation.

In the implicit scheme, the most costly part of numerical simulation is a
linear equation solver for the coefficient matrix of the time evolution equation.
From the above equation, the coefficient matrix results in a tri-diagonal form,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B1 C1 0 . . .
A2 B2 C2 0
0 A3 B3 C3

...
. . .

. . .
. . . 0

0 An−1 Bn−1 Cn−1

0 . . . 0 An Bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where n = Nr is the number of radial grids. At each radial point, i, the block
matrices Ai, Bi, Ci are dense matrices of rank Nmax = NEν

NangNν + Nhyd.
In the case of one-dimensional simulations, direct methods for the linear

equation are also applicable [10]. We instead adopt an iterative solver algorithm
based on the Krylov subspace method as a preparation to the multi-dimensional
simulations. We employ the BiCGStab algorithm with the weighted Jacobi-type
preconditioner [11]. The preconditioning is represented as

xk+1 = ω[−M−1
D (M − MD)xk + M−1

D b] + (1 − ω)xk (3)

where ω is the weight parameter, MD the block-diagonal part of M in Eq. (2).
Since M−1

D is also in a block diagonal form, it can be determined preceding
to the solver algorithm. The procedure to determine the weight parameter ω
is described in Ref. [11]. Here we just note that it suffices to determine sev-
eral small eigenvalues approximately by applying the Arnoldi algorithms to
a Krylov subspace of degree around 20. The preconditioning is performed by
repeatedly applying the operation (3), NJacobi times, which is practically deter-
mined. NJacobi = 25 sufficiently works in the present case.

2.3 Multi-dimensional Simulation

In our multidimensional simulations, the hydrodynamics of stellar matter and
the Boltzmann equation of neutrinos are solved not in parallel but sequentially

Acceleration of Boltzmann Equation 181

at each substep of the time evolution. Thus we focus on the Boltzmann equation
for the neutrino radiation transfer [7], as a benchmark code of the coupled system
with the hydrodynamics under the gravity [12]. The neutrino distribution is a
function of spatial coordinate x = (r, θ, φ) and neutrino energy and two angles,
(Eν , θν , φν). Applying the discrete ordinate method and employ the implicit
differencing scheme for the time advancing, the structure of numerical problem
is similar to that of the spherically symmetric case. The coefficient matrix of the
time evolution equation takes a similar form to Eq. (2), while the subdiagonal
blocks exist in not only r-direction but also θ- and φ-directions. These subdiago-
nal block matrices, A

(r)
x , A

(θ)
x , A

(φ)
x and C

(r)
x , C

(θ)
x , C

(φ)
x represent the advection

of neutrinos. Contrary to the 1D case, these subdiagonal block matrices are not
dense but just diagonal in the neutrino energy and angles. As a linear equa-
tion solver for this coefficient matrix, we currently adopt an iterative algorithm
without preconditioning, while its application is straightforward.

2.4 Related Works

Use of GPUs in the simulations of core-collapse supernovae has been progressed
mainly for application to the hydrodynamics. As for the simulation code includ-
ing the neutrino transport, the VERTEX code was ported to GPUs by employing
CUDA of NVIDIA [13]. Its most time consuming part was one reaction term in
the collision term of the Boltzmann equation and offloaded to GPUs. On the
Kepler architecture, the target kernel was accelerated by factor of 54 which
resulted in 1.8 times acceleration of the whole simulation time compared to the
execution on the host processors.

In our previous work [3,4], we offloaded the bottlenecks of the supernova
simulations under the spherical symmetry to GPUs and demonstrated their effi-
ciency. In Ref. [3] the iterative linear equation solver was offloaded by imple-
menting with OpenACC and exploiting cuBLAS library provided by NVIDIA.
In successive work [4] the other time consuming parts, the computation of the
collision term and the inversion of the block matrices, were also offloaded by
using CUDA framework. The present work is based on these results.

3 Pezy-SC Processor

3.1 Architecture

The PEZY-SC processors are novel many-core architecture provided by Pezy
Computing K.K. The processor is hierarchically composed of PEs (Processing
Elements) each launches eight MIMD threads. Being equipped in a liquid immer-
sion cooling system “ZettaScaler” provided by ExaScaler Inc., it achieves high
power efficiency as awarded in the Green500 list several times [14]. Currently
two generations of the PEZY-SC processors are available: PEZY-SC and PEZY-
SC2. Hereafter we call the former as PEZY-SC1 for distinction. We develop our
simulation codes for PEZY-SCs on the Suiren Blue and Suiren2 systems at KEK
whose features are summarized in Table 1.

182 H. Matsufuru and K. Sumiyoshi

Table 1. Specification of the Suiren Blue and Suiren2 systems at KEK.

System Suiren Blue (64 nodes) Suiren2 (48 nodes)

Accelerator PEZY-SC1 PEZY-SC2 (700MHz)

Peak DP performance/device 1.5 TFlops 2.8 TFlops

Number of PE/device 1024 1984

Number of threads per PE 8 8

Number of PE per City 16 16

Size of local memory/PE 16 KB 20 KB

L1 cache 2 KB/2PE 2 KB/PE

L2 cache 64 KB/City 64 KB/City

L3/Last Level cache 2 MB/Prefecture 40 MB/device

Device memory size 16 GB 64 GB

Device memory bandwidth 102 GB/s 76.8 GB/s

Host-device network/device PCIe Gen3 ×8 PCIe Gen3 ×8

Each node of the Suiren Blue system is composed of an Intel Xeon E5-
2618Lv3 host processor and four PEZY-SC1 processors connected by the PCIe
Gen3 with 8 lanes. The PEZY-SC1 device possesses 1024 PEs that are hierarchi-
cally installed in units of Village (four PEs), City (four Villages), Prefecture (16
Cities) so that four Prefectures compose one device. Each PE launches 8 threads
that share the local memory of PE. The peak performance of one PEZY-SC
processor is 1.5 and 3 TFlops for double and single precision arithmetics, respec-
tively. The device memory bandwidth is 102 GB/s. The L1 cache is shared by
2PEs, L2 by 16 PEs in a City, and L3 by 16 Cities in a Prefecture.

Each node of the Suiren2 system is composed of an Intel Xeon D1571 host
processor and eight PEZY-SC2 processors connected by the PCIe Gen3 with 8
lanes. While the number of cores is 2048 in the architecture design, current prod-
ucts disable 64 PEs to increase the yield of the processor chip. Furthermore the
clock cycle is reduced from 1 GHz in the design to 700 MHz for stable operation.
The structure of PEZY-SC2 device is similar to that of PEZY-SC. The last level
cache assigns 32 MB for access from PEs and 8 MB for PCIe.

Although the arithmetic performance of the PEZY-SC2 processor is higher
than that of PEZY-SC1, the latter has better memory bandwidth. The primary
bottleneck of our application is regulated by the device memory bandwidth. Thus
we mainly use the PEZY-SC1 processor for developing the code, and at the last
stage measure the performance on the PEZY-SC2 processors for comparison.

3.2 Programming Environment

As the programming environment, Pezy Computing provides PZCL SDK which
is a subset of the OpenCL framework while includes extensions to exploit the
PEZY-SC architecture. We use the PZCL SDK 4.1 on Suiren Blue and 5.0 on
Suiren2. For PEZY-SC1 there are two addressing modes in PZCL, 32-bit and
64-bit. In this work we use the latter considering our target size of simulations.

Acceleration of Boltzmann Equation 183

There are several functions added to the OpenCL standard to make use of the
hierarchical structure of the PEZY-SC architecture. It is essential to understand
such structure and corresponding functions to achieve desired performance. Here
we summarize the several such features and techniques.

Hierarchical Synchronization. PZCL provides functions to synchronize the
threads at several levels. Synchronization of threads in the Village, City, and
the whole device are performed by calling built-in functions. Synchroniza-
tion at other levels, such as in PE or Prefecture, is provided as assembly
commands. Since the threads of PEZY-SC work as MIMD processes, mem-
ory access timing may differ thread by thread. Explicit synchronization of
threads before memory access may increase the memory access performance
by inducing coalesced access.

Hierarchical Cache. In the PEZY-SC architecture, the cache coherence is
assured on user’s responsibility. Thus flushing the cached data must explicitly
be done by function calls. Similarly to the synchronization, there is a built-in
function to flush the data at each level of the cache.

Changing Threads. Eight threads within PE execute the commands in turn
in two bunches each containing four threads. These execution bunches are
explicitly exchanged by a built-in function of PZCL, chgthread(). Putting
this function after the device memory access may partially hide the memory
access latency.

Local Memory. Each PE has a local memory shared by the threads in that PE.
Usually this local memory is used as stack areas of the threads. It is possible
to use this memory area as a shared memory of the threads by changing the
size of stack area before launching the kernel using an API function in PZCL.
The freed memory area can be accessed by directly referring the memory
address.

3.3 Related Works

There have been several published works on utilizing the PEZY-SC proces-
sors including the porting and performance evaluation of libraries and simu-
lation codes [15–18] as well as application to scientific studies [19,20]. Among
these works, the problem of lattice QCD simulations [15] has similarity to this
work and gives insights on the optimization of our code. In a viewpoint of effi-
ciency in porting a codes to new architecture, Ref. [21] designs the OpenACC on
PEZY-SC as an alternative programming framework to the currently available
PZCL/OpenCL. In addition to these works, several projects to make use of the
PEZY-SC processors are in progress.

4 Results of 1D Simulation

4.1 Implementation and Numerical Setup

Our base code is described in Fortran and parallelized with MPI. In our previ-
ous works on GPUs [3,4], we employed OpenACC or CUDA after porting the

184 H. Matsufuru and K. Sumiyoshi

bottleneck parts into the C language. For PEZY-SC processors we can make
use of these C codes as the starting point to develop the code in PZCL. Since
there is almost direct correspondence between the CUDA and PZCL kernels,
the first step of porting to the latter is rather straightforward, while thereafter
optimization specific to the PEZY-SC architecture is required.

The scale of 1D simulation is determined by the parameters Nr, NEν
, and

Nang. While currently typical values of these parameters are (Nr, NEν
, Nang)

= (256, 14, 6), we aim at increasing them up to (1024, 16, 8) or (1024, 24,
12) within acceptable cost. In Table 2, we summarize the elapsed time budget
for ingredients of one Newton-Raphson iteration, that is repeated a few times
within each time step, executed at Nr = 256 and with four MPI processes.
The first part of Table 2 shows the result of execution on the host processor
of Suiren Blue. As already mentioned in Sect. 1, there are three bottlenecks in
our numerical simulation: (1) Iterative linear equation solver for the coefficient
matrix of the time evolution equation, (2) Inversion of the block dense matrices
of the coefficient matrix used in the weighted Jacobi-type preconditioning for
the iterative solver, and (3) Calculation of the collision term of the Boltzmann
equation. In the same way as the GPU case [3,4], we offload these parts to the
Pezy-SC processors and optimize the corresponding kernel codes. Result for the
PEZY-SC processor is also summarized in Table 2. In the following subsections,
we explain the details of implementation and discuss these results.

Table 2. Time budget of one Newton-Raphson iteration on Suiren Blue system with
four MPI processes.

(NEν , Nang) Elapsed time [sec]

(14, 6) (16, 8) (24, 12) (32, 16)

Host (Suiren Blue)

Hydrodynamics 0.0024 0.0037 0.0086 0.013

Advection term 0.022 0.029 0.069 0.12

Collision term 1.93 4.32 27.0 104

Matrix setup (inverse) 5.63 19.3 219 1217

Matrix setup (Arnoldi) 0.51 0.93 4.59 15.6

Iterative solver 9.37 14.9 71.9 213

PEZY-SC (Suiren Blue)

Collision term 2.49 7.00 36.28 148

Matrix setup (inverse) 0.28 0.89 8.87 47.3

Matrix setup (Arnoldi) 0.16 0.24 0.89 2.57

Iterative solver 2.00 2.57 11.52 32.5

Matrix data conversion 0.44 0.95 6.72 21.2

Acceleration of Boltzmann Equation 185

4.2 Linear Equation Solver

Matrix-vector multiplication. The primary bottleneck of our numerical simu-
lation is the linear equation solver for the coefficient matrix of the evolution
equation. As noted in Subsect. 2.2, M in Eq. (2), M − MD, and M−1

D are the
matrices in the preconditioned iterative solver. Since the determination of M−1

D

is the subject of Subsect. 4.3, here we regard M−1
D as already determined explic-

itly. In the following we summarize the implementation of the matrix-vector
multiplication, y = Mx, and optimization techniques applied.

Task Assignment. Since the MPI parallelization is done in the radial coordi-
nate, each device processes them in units of the block in Eq. (2). We assign
one block (one values of r) of vector y to one City, i.e. the 16 PEs sharing
the L2 cache. For our present setup, Nr = 256 and four MPI processes, this
is a practical choice, since each device processes the number of vector blocks
equal to the number of Cities in the case of PEZY-SC1.

Boundary Communication. The boundary data of the vector x must be
exchanged before the matrix is multiplied. Although this communication can
be overlapped with the bulk part of the matrix-vector operation, we currently
adopt the blocking communication since this overhead is relatively small as
comparing the performance of M−1

D and M − MD.
Padding. The rank of the block matrices is Nmax = NangNEν

Nν + Nhyd, and
Nhyd = 11 is always fractional with respect to the number of threads. Such
an alignment may affect the memory access performance. We thus extend the
arrays to Ñhyd = 16 by padding the matrices with unity and the vectors with
zero.

Coalesced Access. The layout of the components of the block matrices is impor-
tant for memory access performance. Representing the index of matrix com-
ponent Aij as an inline function index(i,j), index=i+Nmax*j is a standard
layout. Assigning computation of the component yi to each thread, this lay-
out corresponds to the coalesced access. However, this implies the access in
j-loop is not continuous. Better performance is achieved with modified index-
ing, expressing in the C language,

index = (i%nth) + nth ∗ (j + Nmax ∗ (i/nth)), (4)

where nth = 8 is the number of threads in PE.
Unrolling. The loaded value of xj is reused by unrolling the i-loop. Considering

the size of Nmax, Nunroll = 3, 5, and 10 seem appropriate for (NEν
, Nang)

= (14, 6), (16, 8), and (24, 12), respectively. We implemented the code with
these three values of Nunroll, and found that Nunroll = 3 always shows the
best performance. Since the number of rows processed in each thread may
be different, the MIMD feature of the PEZY-SC thread is efficient in this
implementation.

The performance of the matrix-vector multiplication for these matrices is dis-
played in Fig. 1. As already noted, no sizable effect of communication is observed

186 H. Matsufuru and K. Sumiyoshi

0 500 1000 1500 2000
N

max

0

5

10

15

20

Pe
rf

or
m

an
ce

/d
ev

ic
e

[G
Fl

op
s]

M
D

-1

M-M
D

M

Matrix-vector multiplication on PEZY-SC

Fig. 1. The performance of the matrix-vector multiplication on PEZY-SC processor.

in the performance of M−1
D and other two matrices. There is a tendency that

M acquires better performance than M−1
D in spite of the communication over-

head. This can be explained as the effect of cached data of the right hand side
vector x. Assuming complete reuse of cached data, the byte-per-flop of the bulk
part of these matrices is about 4. Considering the device memory bandwidth,
about 25 GFlops is the performance limit of the matrix multiplication. Ref. [15]
estimated the sustained bandwidth of the device memory for the ‘axpy’ oper-
ation (y = a*x+y) which results in about 50 GB/s, half the peak bandwidth.
We therefore realize that our code is sufficiently optimized. Compared to the
result for NVIDIA Tesla P100 GPU (4.7 TFlops FP64 peak performance and
720 GB/s device memory B/W) in our previous work [3], the performance of the
matrix-vector multiplication on PEZY-SC is about 10% of that on P100. This
is explained by the less memory bandwidth of PEZY-SC than the latter.

The elapsed time of the whole iterative solver is shown in Table 2. For two
small matrix sizes, acceleration is substantial even considering the overhead of
matrix data conversion that includes the change of matrix layout and data trans-
fer from the host to device. The latter is performed once before the iterative
solver and takes 10% of the quoted time. This is reasonable considering about 8
GB/s of PCIe bandwidth. For larger sizes, this overhead becomes sizable, even
considering that number of iteration until the convergence strongly depends on
the parameters and the stage of time evolution. One needs to appropriately
choose the number of MPI processes and devices so that this overhead becomes
negligibly small compared to the iteration time.

Arnoldi Method. As a by-product of acceleration of matrix-vector multiplication,
the Arnoldi method used to determine the weight parameter ω in Eq. (3) is also
accelerated, since the consumed time is dominated by construction of the Krylov
subspace rather than the Arnoldi algorithm itself. The former part is offloaded to

Acceleration of Boltzmann Equation 187

the accelerator devices and the resultant Hessenberg matrix is transferred to the
host processor. The Arnoldi algorithms is performed at the host by calling the
DGEEV routine of the LAPACK library with negligible numerical cost. The time
budget of this part is denoted as ‘matrix setup (Arnoldi)’ in Table 2. Comparing
to the results on the host processor, sufficient acceleration is achieved.

Result for PEZY-SC2 Processor. Finally we briefly summarize the performance
result on the Suiren2 system. We do not quote the measured values of perfor-
mance explicitly, since our code is not optimized for the PEZY-SC2 processor.
We rather observe the qualitative difference of the performance on these two gen-
erations without changing the code. Among the parameter sets in Table 2, the
largest size does not run presumably due to the required memory size exceeding
that of the system. For the matrix-vector multiplication, we assigned one block
on each r to one City. With this setup and present parameter values, not all the
PEs of PEZY-SC2 are used. The performance of the matrix-vector multiplication
on PEZY-SC2 becomes about 60% of those on PEZY-SC1. This is explained with
the difference of the device memory bandwidth displayed in Table 1 and that the
PEs are not saturated by the launched threads. Accordingly the values of elapsed
time for the linear solver, the Arnoldi method, and the matrix data conversion
increase several tens of percent from those on PEZY-SC1.

4.3 Inversion of Dense Block Matrices

The block diagonal matrix M−1
D is repeatedly applied in the preconditioning and

thus it needs to be efficient to determine preceding to the iterative solver. To
determine M−1

D = {B−1
i |i = 1, . . . , n} from MD = {Bi|i = 1, . . . , n}, the origi-

nal code adopts the LU decomposition by calling the DGETRF and DGETRS
routines in the LAPACK library. As shown in Table 2, this computation rapidly
becomes costly as the matrix size increases, and thus worth to offload. It is how-
ever nontrivial to parallelize the LU decomposition efficiently on many-core pro-
cessors. We instead employ an alternative algorithm, the blocked Gauss-Jordan
elimination method [22]. The algorithm is represented as follows.

(B||A) =

⎛
⎝

B00 A01 A02

B10 A11 A12

B20 A21 A22

⎞
⎠ →

⎛
⎝

B00 0 A02

0 0 0

B20 0 A22

⎞
⎠+

⎛
⎝

−A01A
−1
11

A−1
11

−A21A
−1
11

⎞
⎠ (B10|I||A12), (5)

where Bij and Aij are block matrices. Setting the size of A11 to be b × b, each
application of Eq. (5) extends the size of B part by b columns and rows. Starting
from the original matrix A, i.e. B = 0, repeated application of Eq. (5) finally
arrives at B = A−1. A−1

11 can be determined by unblocked Gauss-Jordan method.
While the Gauss-Jordan elimination is nothing but a rearrangement of the

LU decomposition, its blocked form can be parallelized to threads in units of
the block size b. Only A−1

11 must be solved on a single thread. Thus the value
of b is a tunable parameter. In this work, we set b = 8 considering the number
of threads per PE. On each PE, A11 is loaded from the device memory to the
local memory, and one thread solve A−1

11 with the unblocked Gauss-Jordan algo-
rithm. After obtaining A−1

11 , remaining computation in each step of Eq. (5) can

188 H. Matsufuru and K. Sumiyoshi

be performed in parallel. We assign them so that each City (16 PEs) inverts one
block matrix Bi. As shown in Table 2, adopting the Gauss-Jordan algorithm and
offloading to the PEZY-SC processor achieve sufficient acceleration of computa-
tional time. However, as the matrix size increases, elapsed time of this process
rapidly increases. For (NEν

, Nang) larger than (24, 12), rearrangement of the
number of devices and the number of PEs to solve each block matrix is desir-
able. Comparing these results to those for NVIDIA Tesla P100 GPU [4], the
elapsed time of the matrix inversion is just about 40% larger than the latter.
This implies the optimization on PEZY-SC works better than on P100, and is
worth to feed back to the latter.

Result for PEZY-SC2 Processor. In the same way as for the matrix-vector mul-
tiplication, in our setup the launched threads do not saturate all the PEs of
PEZY-SC2. Presumably this explains that the measured values of elapsed time
for the blocked Gauss-Jordan algorithm on PEZY-SC2 are almost the same as
those on PEZY-SC1.

4.4 Collision Term

Calculation of the collision term of the Boltzmann equation (1) is composed of
several physical processes [9]. Table 3 summarizes the neutrino reaction processes
included in this work. The first column is abbreviation of the physical process
described in the second column. The third column shows the elapsed time mea-
sured on the host processors of Suiren Blue with four MPI processes. The last
four processes, esc, pap, plp, nbr, are dominant, and thus the target of offloading.
Indeed on GPUs sufficient acceleration has been achieved [4].

At the radial point r, the reaction rate of neutrino species ν is represented
as Rν

int(E
′
ν , θ′

ν , Eν , θν , r), where (θν , Eν) and (θ′
ν , E′

ν) are neutrino momentum
angle and energy before and after the interaction, respectively. The contributions
to the coefficient matrix and the source vector of the linear equation are obtained
by multiplying Rint with the kinematic factors, neutrino distribution function
under the matter environment, and integrating it over θ′

ν and E′
ν . Thus the

calculation is performed in two steps: (a) Determination of the reaction rate
Rν

int, and (b) Calculation of the contribution to the collision term. In each step,
each thread undertakes a contribution to each (r, Eν , θν) point of Rν

int or the
collision term. These tasks are flatly assigned to the threads of device using all
the resources, in contrary to the matrix-vector operations. This is mainly for
simplicity of porting, since the calculation of the reaction rate is much more
involved than the latter.

Table 3 shows the elapsed time on PEZY-SC1 and PEZY-SC2 for the param-
eter set (Nr, NEν

, Nang) = (256, 14, 6). The data calculated on the devices are
transferred to the host and changed to the data layout on the host, at the cost
of the time quoted as ‘data conversion’ in Table 3. The result of Table 3 indicates
that in spite of substantial acceleration in the esc process, there is almost no
advantage in total by offloading these processes to PEZY-SC1. This is the case
also for the larger matrix sizes as listed in Table 2.

Acceleration of Boltzmann Equation 189

Table 3. Elapsed time budget in the calculation of collision term at (Nr, NEν , Nang) =
(256, 14, 6), with four MPI processes on the host processor of Suiren Blue, PEZY-SC1,
and PEZY-SC2.

Abbrev. Physics process Elapsed time [sec]

Host PEZY-SC1 PEZY-SC2

ecp Absorption/emission of νe on nucleons 0.06

aecp Absorption/emission of ν̄e on nucleons 0.06

nsc Neutrino scattering on nucleons 0.10

csc Coherent scattering of neutrino on nuclei 0.02

ecpa Absorption/emission of νe on nuclei 0.06

esc Scattering with electrons 0.94 0.37 0.04

pap Neutrino pair creation/annihilation 0.25 0.42 0.04

plp Plasmon process 0.28 0.42 0.04

nbr Bremsstrahrung 0.22 0.42 0.04

Data conversion − 0.21 0.25

On the other hand, for the PEZY-SC2 processors, computation is much more
accelerated than PEZY-SC1. On PEZY-SC2, the memory access performance is
improved for non-coalesced access compared to PEZY-SC1. This explains the
results displayed in Table 3 and implies the potential improvement on PEZY-
SC1 by rearranging the data layout and task assignment. Thus considering the
data conversion overhead, there is a substantial gain in offloading to the PEZY-
SC2 processors. For larger two sizes, we observe the acceleration slightly less
than a factor of two.

5 Results of 2D Simulation

5.1 Implementation and Numerical Setup

Our base code of the multi-dimensional Boltzmann solver is described in Fortran
and parallelized with MPI. Applying the same strategy as the 1D code, we first
convert the bottleneck parts of the code into the C language and then modify
them to the kernels working on the PEZY-SC processors. The codes to setup
the device environment, transfer the data, and launch the kernels in the 1D
simulation are almost directly reused. Although the code is applicable to all the
one, two, and three dimensional spaces, here we examine the performance of the
code in two-dimensional space as a prototype of practical application.

As a benchmark setup, we adopt the numbers of grids in spatial coordinates,
Nr = 256 and Nθ = 128 (and Nφ = 1). For the numbers of neutrino’s momentum
grids, (Nθν

, Nφν
, NEν

), we consider two sets (6, 12, 14) and (8, 16, 16) as values
practically feasible. We measure the performance of the code with four MPI
processes each handles one PEZY-SC device. As noted in Subsect. 2.3, we employ
an iterative solver without preconditioning. Thus the inversion of the dense block
matrices is not the subject of present consideration. For the collision term, we
offloaded the processes ecp, nsc, csc, ecpa, and pap in Table 3. However, the

190 H. Matsufuru and K. Sumiyoshi

observed elapsed time for these processes on the Suiren Blue system exhibits no
advantage of offloading. The situation is similar to the 1D case, and we do not
discuss further the offloading of the collision term in multi-dimensional code,
considering the effort of implementation not deserving the gain. Thus we focus
on the matrix-vector multiplication in the iterative linear equation solver.

5.2 Matrix-Vector Multiplication

The structure of the matrix M of the form Eq. (2) implies that the multiplication
of block diagonal part, MD = {Bi|i = 1, . . . , n} where n = Nr × Nθ × Nφ, to
a vector is the dominant arithmetic operations, since Bi are dense matrices
while the block matrices Ai and Ci are diagonal in the present case. Thus the
byte-per-flop of yi = Bixi, about 4 for the double precision arithmetics, is the
representative of the matrix M multiplied to a vector x. Considering the device
memory bandwidth of the PEZY-SC processor, about 25 GFlops is a guideline
of the performance limit.

We apply the same prescription described in Subsect. 4.2 except for padding.
Nunroll = 8 provides the best performance for the present case. The sustained
performance of the matrix-vector multiplication on the PEZY-SC1 processors is
14.2 GFlops and 13.4 GFlops for (Nθν

, Nφν
, NEν

) = (6, 12, 14) and (8, 16, 16),
respectively. These values of performance are slightly less than the correspond-
ing results of one-dimensional setup displayed in Fig. 1, presumably due to the
structure of present matrix. The offloading substantially improve the elapsed
time of the linear equation solver. For example, for (Nθν

, Nφν
, NEν

) = (6, 12,
14), the time for 22 BiCGStab iterations is improved from 25.2 s to 7.0 s (iter-
ation) + 1.5 s (data conversion). The more the number of iteration is required,
the more acceleration is acquired.

For the PEZY-SC2 processors, we execute the same code as on the PEZY-
SC1 changing only the total number of PEs from 1024 to 1984, since the number
of spatial grids is enough larger than the number of Cities. We obtain the sus-
tained performance 14.4 and 15.4 GFlops for (Nθν

, Nφν
, NEν

) = (6, 12, 14)
and (8, 16, 16), respectively. The better values of performance than those on
PEZY-SC1 may imply that the memory access pattern of the present matrix is
more suitable to the PEZY-SC2 architecture. We realize that our optimization
prescriptions effectively apply also to the linear equation solver in the multi-
dimensional Boltzmann equation code.

6 Conclusion

In this work, we examined viability of the PEZY-SC processors applied to the
Boltzmann equation solver in the core-collapse supernova simulations. For one-
dimensional code, we offloaded three bottlenecks to the PEZY-SC devices. For
the iterative linear equation solver and inversion of dense block matrices, we
achieved sufficient acceleration by offloading, while for the former the sustained
performance is restricted by the device memory bandwidth. For the compu-
tation of the collision term, however, we judged it is not practical to extend

Acceleration of Boltzmann Equation 191

application because the achieved acceleration seems not to deserve large effort
of porting and optimizing the code of this part. The good performance exhibited
by the PEZY-SC2 processor seems to indicate the architecture is developing in
promising direction. For the multi-dimensional Boltzmann equation solver, we
demonstrated that the linear equation solver is offloaded efficiently by applying
the prescriptions learnt in developing the one-dimensional code.

In conclusion, the PEZY-SC processors are attractive many-core architecture
which potentially accelerates some kinds of applications. There are commonly
applicable prescriptions to improve the performance, as examined in Sect. 4. For
extensive application, however, two issues are to be settled. One is the device
memory bandwidth worse than recent GPUs. This would be much improved
in the next generation of the PEZY-SC processor. The other is the porting
efficiency, which is crucial for application to wide area of researches. Efficient
libraries and frameworks such as the OpenACC [21] are strongly desired.

Acknowledgment. The authors are grateful to A. Imakura, H. Okawa, T. Takiwaki
and S. Yamada for HPC researches on core-collapse supernovae, to T. Aoyama, K-
I. Ishikawa, T. Ishikawa, N. Kurosawa, R. Sakamoto, Y. Yamaura for development of
code on PEZY-SC processors and for maintaining the Suiren Blue and Suiren2 systems.
This work was supported by the Large Scale Computational Sciences with Heteroge-
neous Many-Core Computers in grant-in-aid for High Performance Computing with
General Purpose Computers in MEXT, Grant-in-Aid for the Scientific Research from
the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
(15K05093, 17H06357, 17H06365, 19K03837, 20H01905), HPCI Strategic Program of
Japanese MEXT, research programs at K-computer of the RIKEN AICS and Post-K
project (Project ID: hp180111, hp180179, hp180239, hp190100, hp190160, hp200102,
hp200124), the Particle, Nuclear and Astro Physics Simulation Program (Nos. 2019-
002, 2020-004) of Institute of Particle and Nuclear Studies, KEK.

References

1. Kotake, K., et al.: Core-collapse supernovae as supercomputing science: a status
report toward 6D simulations with exact Boltzmann neutrino transport in full
general relativity. Prog. Theor. Exp. Phys. 2012, 01A301 (2012). https://doi.org/
10.1093/ptep/pts009

2. Janka, H.-T., Melson, T., Summa, A.: Physics of core-collapse supernovae in three
dimensions: a sneak preview. Ann. Rev. Nucl. Part. Sci. 66, 341–375 (2016).
https://doi.org/10.1146/annurev-nucl-102115-044747

3. Matsufuru, H., Sumiyoshi, K.: Simulation of supernova explosion accelerated on
GPU: spherically symmetric neutrino-radiation hydrodynamics. In: Gervasi, O.,
et al. (eds.) ICCSA 2018. LNCS, vol. 10962, pp. 440–455. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95168-3 30

4. Matsufuru, H., Sumiyoshi, K.: Accelerating numerical simulations of supernovae
with GPUs. In: 2018 Sixth International Symposium on Computing and Network-
ing Workshops (CANDARW) (2018). https://doi.org/10.1109/CANDARW.2018.
00056

5. Yamada, S.: An Implicit Lagrangian code for spherically symmetric general rela-
tivistic hydrodynamics with an approximate Riemann solver. Astrophys. J. 475,
720–739 (1997). https://doi.org/10.1086/303548

https://doi.org/10.1093/ptep/pts009
https://doi.org/10.1093/ptep/pts009
https://doi.org/10.1146/annurev-nucl-102115-044747
https://doi.org/10.1007/978-3-319-95168-3_30
https://doi.org/10.1109/CANDARW.2018.00056
https://doi.org/10.1109/CANDARW.2018.00056
https://doi.org/10.1086/303548

192 H. Matsufuru and K. Sumiyoshi

6. Yamada, S., Janka, H.-T., Suzuki, H.: Neutrino transport in type II supernovae:
Boltzmann solver vs. Monte Carlo method. Astron. Astrophys. 344, 1468–1470
(1999). arXiv:astro-ph/9809009

7. Sumiyoshi, K., Yamada, S.: Neutrino transfer in three dimensions for core-collapse
supernovae I. static configurations. Astrophys. J. Suppl. 199, 17 (2012). https://
doi.org/10.1088/0067-0049/199/1/17

8. Shibata, M., Nagakura, H., Sekiguchi, Y., Yamada, S.: Conservative form of Boltz-
mann’s equation in general relativity. Phys. Rev. D 89, 084073 (2014). https://
doi.org/10.1103/PhysRevD.89.084073

9. Bruenn, S.W.: Stellar core collapse: numerical model and infall epoch. Astrophys.
J. Suppl. 58, 771–841 (1985). https://doi.org/10.1086/191056

10. Sumiyoshi, K., Ebisuzaki, T.: Performance of parallel solution of a block-tridiagonal
linear system on Fujitsu VPP500. Parallel Comput. 24, 287–304 (1998). https://
doi.org/10.1016/S0167-8191(98)00007-6

11. Imakura, A., Sakurai, T., Sumiyoshi, K., Matsufuru, H.: A parameter optimization
technique for a weighted Jacobi-type preconditioner. JSIAM Lett. 4, 41–44 (2012).
https://doi.org/10.14495/jsiaml.4.41

12. Nagakura, H., et al.: Simulations of core-collapse supernovae in spatial axisymme-
try with full Boltzmann neutrino transport. Astrophys. J. 854, 136 (2018). https://
doi.org/10.3847/1538-4357/aaac29

13. Dannert, T., Marek, A., Rampp, M.: Porting large HPC applications to GPU clus-
ters: the codes GENE and VERTEX. Adv. Parallel Comput. 25, 305–314 (2014).
https://doi.org/10.3233/978-1-61499-381-0-305

14. The Green500 site. https://www.top500.org/green500/
15. Aoyama, T., et al.: First application of lattice QCD to pezy-SC processor. Procedia

Comput. Sci. 80, 1418–1427 (2016). https://doi.org/10.1016/j.procs.2016.05.457
16. Yoshifuji, N., Sakamoto, R., Nitadori, K., Makino, J.: Implementation and eval-

uation of data-compression algorithms for irregular-grid iterative methods on the
PEZY-SC processor. In: 2016 6th Workshop on Irregular Applications: Architec-
ture and Algorithms (IA3), pp. 58–61 (2016)

17. Haribara, Y., Ishikawa, H., Utsunomiya, S., Aihara, K., Yamamoto, Y.: Perfor-
mance evaluation of coherent Ising machines against classical neural networks.
Quantum Sci. Technol. 2, 044002 (2017). https://doi.org/10.1088/2058-9565/
aa8190

18. Hishinuma, T., Nakata, M.: pzqd: PEZY-SC2 acceleration of double-double preci-
sion arithmetic library for high-precision BLAS. In: Okada, H., Atluri, S.N. (eds.)
ICCES 2019. MMS, vol. 75, pp. 717–736. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-27053-7 61

19. Yamazaki, T., Igarashi, J., Makino, J., Ebisuzaki, T.: Real-time simulation of a cat-
scale artificial cerebellum on PEZY-SC processors. Int. J. High Perform. Comput.
Appl. 33, 155–168 (2017). https://doi.org/10.1177/1094342017710705

20. Sasaki, T., Hosono, N.: Particle number dependence of the n-body simulations of
moon formation. Astrophys. J. 856, 175(14pp) (2018). https://doi.org/10.3847/
1538-4357/aab369

21. Tabuchi, A., et al.: Design and preliminary evaluation of omni OpenACC compiler
for massive MIMD processor PEZY-SC. In: Maruyama, N., de Supinski, B.R.,
Wahib, M. (eds.) IWOMP 2016. LNCS, vol. 9903, pp. 293–305. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45550-1 21

22. Quintana, E.S., Quintana, G., Sun, X., van de Geijn, R.: A note on parallel matrix
inversion. SIAM J. Sci. Comput. 22, 1762–1771 (2001). https://doi.org/10.1137/
S1064827598345679

http://arxiv.org/abs/astro-ph/9809009
https://doi.org/10.1088/0067-0049/199/1/17
https://doi.org/10.1088/0067-0049/199/1/17
https://doi.org/10.1103/PhysRevD.89.084073
https://doi.org/10.1103/PhysRevD.89.084073
https://doi.org/10.1086/191056
https://doi.org/10.1016/S0167-8191(98)00007-6
https://doi.org/10.1016/S0167-8191(98)00007-6
https://doi.org/10.14495/jsiaml.4.41
https://doi.org/10.3847/1538-4357/aaac29
https://doi.org/10.3847/1538-4357/aaac29
https://doi.org/10.3233/978-1-61499-381-0-305
https://www.top500.org/green500/
https://doi.org/10.1016/j.procs.2016.05.457
https://doi.org/10.1088/2058-9565/aa8190
https://doi.org/10.1088/2058-9565/aa8190
https://doi.org/10.1007/978-3-030-27053-7_61
https://doi.org/10.1007/978-3-030-27053-7_61
https://doi.org/10.1177/1094342017710705
https://doi.org/10.3847/1538-4357/aab369
https://doi.org/10.3847/1538-4357/aab369
https://doi.org/10.1007/978-3-319-45550-1_21
https://doi.org/10.1137/S1064827598345679
https://doi.org/10.1137/S1064827598345679

	Acceleration of Boltzmann Equation for Core-Collapse Supernova Simulations on PEZY-SC Processors
	1 Introduction
	2 Formulation
	2.1 Boltzmann Equation
	2.2 Spherically Symmetric (1D) Simulation
	2.3 Multi-dimensional Simulation
	2.4 Related Works

	3 Pezy-SC Processor
	3.1 Architecture
	3.2 Programming Environment
	3.3 Related Works

	4 Results of 1D Simulation
	4.1 Implementation and Numerical Setup
	4.2 Linear Equation Solver
	4.3 Inversion of Dense Block Matrices
	4.4 Collision Term

	5 Results of 2D Simulation
	5.1 Implementation and Numerical Setup
	5.2 Matrix-Vector Multiplication

	6 Conclusion
	References

