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Abstract. Three-dimensional networks-on-chip appear as a new on-
chip communication solution in many-core based systems. An appli-
cation is implemented by a set of collaborative intellectual property
blocks. The mapping of the pre-selected sets of these blocks on three-
dimensional networks-on-chip is a NP-complete problem. In this work,
we use Differential Evolution to deal with the blocks mapping problem in
order to implement efficiently a given application on a three-dimensional
network-on-chip. In this sense, Differential Evolution is extended to
multi-objective optimization in order to minimize hardware area, exe-
cution time and power consumption of the final implementation .

Keywords: Three-dimensional networks-on-chip · Intellectual
property mapping · Multi-objective optimization · Differential evolution

1 Introduction

A critical problem in the design of Multi-Processor Systems-on-Chip (MPSoCs)
is the on-chip communication, where a Network-on-Chip (NoC) [15] can offer a
scalable infrastructure to accelerate the design process. A MPSoC is designed
to run a specific application, based on Intellectual Property (IP) blocks. A NoC
consists of a set of resources (R) and switches (S), forming a tile [1]. Each resource
of the NoC is an IP block, such as processor, memory, Digital Signal Processor
(DSP), connected to one switch. Each switch of the NoC implements routing
and arbitration, connected by links.

The way switches are connected defines the topology, such as the two-dimen-
sional (2D) mesh topology [16]. However, the 2D NoC fails to meet the require-
ments of SoCs design in performance and area. Three-dimensional (3D) NoCs [2]
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have proved to be an effective solution to the problem of interconnection com-
plexity in large scale SoCs by using integrated circuit stacking technology. A
3D mesh is implemented by stacking several layers of 2D mesh on top of each
other and providing vertical links for interlayer communication, called Through
Silicon Vias (TSV) [2]. Each switch is connected to up to six other neighbouring
switches through channels, in the same way as 2D mesh does. Figure 1 shows
the architecture of a 3D mesh-based NoC.

Fig. 1. 3D Mesh-based NoC with 27 resources

Different optimization criteria can be pursued depending on the detailed
information of the application and IP blocks. The application is viewed as a
graph of tasks called Task Graph (TG) [4]. The features of an IP block can be
determined from its companion library [3]. The objectives involved in IP task
assignment and IP mapping are multiple and have to be optimized simultane-
ously. Some of these objectives are conflicting because of their nature. So, IP
assignment and IP mapping are classified as NP-hard problems [4]. Therefore,
it is mandatory to use a multi-objetive optimization strategy, such as Multi-
Objective Evolutionary Algorithms (MOEAs), with specific objective functions.

We use Differential Evolution (DE) as the MOEA [9], modified to suit the
specificities of the assignment and mapping problems in a NoC with mesh topol-
ogy, and also to guarantee the NoC designer’s constraints. In previous work
[12], we applied this strategy to the assignment problem in NoCs. In this paper,
we describe the use of DE to the subsequent problem of mapping onto a 3D
mesh-based NoC.

In Sect. 2, we present some related works, where a multi-objective strategy is
applied in order to optimize some aspects of the design. In Sect. 3, we introduce
the problems of IP assignment and mapping, concerning a SoC design over a
NoC platform. In Sect. 4, we concentrate our attention on IPs mapping using
DE for multi-objective optimization. In Sect. 5, we describe the objective func-
tions for area, power consumption and execution time. In Sect. 6, we show some
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performance results, based on the E3S benchmarks suite. In Sect. 7, we draw
some conclusions and future work, based on our experiments.

2 Related Work

In some works, the assignment and mapping steps are treated as a single NP-
hard problem. The multi-objective nature of these steps is also not taken into
account, addressing the problem as a single objective. Since we choose to treat
the problem using a multi-objective optimization process, we present here some
works that followed the same strategy when dealing with the mapping step.

In [5], the mapping step is treated as a two conflicting objective optimization
problem, attempting to minimize the average number of hops and achieve a
thermal balance. Every time data cross a switch, before reaching its target, the
number of hops is incremented. To deal with this process, they used the multi-
objective evolutionary algorithm NSGA.

The problem of mapping IPs/cores onto a mesh-based NoC is addressed by
[6] in two systematic steps using NSGA-II. The key problem was to obtain a
solution that minimizes energy consumption, considering both computation and
communication activities, and also minimizes the link bandwidth requirements.

SPEA-II and NSGA-II are used in [8] for mapping, with some changes in
crossover and mutation operators. Energy consumption and thermal balance
were the main optimization objectives.

In [17], task mapping on a 3D mesh-based NoC is implemented using fuzzy
logic in order to minimize thermal and power consumption.

In [18], the authors propose a multi-objective rank-based genetic algorithm
for 3D mesh-based NoCs. Two different models are used for packet latency: under
no congestion and with congestion situations.

In [19], a multi-objective immune algorithm is used, where latency and power
consumption are considered as the objective functions, constrained by the heat-
ing function.

In [20], a centralized 3D mapping (C3Map) is proposed using a new octahe-
dral traversal technology. Combining the C3Map and attractive/repulsive parti-
cle swarm optimization, they attempted to reduce energy and latency.

3 IP Assignment and Mapping Problems

The NoC design methodology for SoCs encourages the reuse of components to
reduce costs and to reduce the time-to-market of new designs. The designer
faces two main problems: selecting the adequate set of IPs (assignment step)
and finding the best physical mapping of these IPs (mapping step) onto the
NoC infrastructure.

The objective of IP assignment [4,10] is to select, from an IP library (IP
repository), a set of IPs, exploiting re-usability and optimizing the implemen-
tation of a given application in terms of time, power and area requirements.
During this step, no information about physical location of IPs onto the NoC is
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given. The optimization process must be done based on the Task Graph (TG)
and IP features only. Each one of the nodes in the TG is associated with a task
type, which corresponds to a processor instruction or a set of instructions. If
a given processor is able to execute a given type of instruction, that processor
is a candidate to be mapped onto a resource in the NoC structure and will be
responsible for the execution of one or more tasks of the TG. The result of this
step is a set of IPs that should maximize the NoC performance, i.e. minimize
power consumption, hardware resources as well as the total execution time of the
application. An Application Characterization Graph (ACG) is generated, based
on the application’s task graph, wherein each task has an IP associated with it.

We structured the used application repository, based on the E3S benchmark
suite [21], using XML, both for the TG and the IP repository. Figure 2(a) shows
the XML representation of a simple TG of ES3 and Fig. 2(b) shows a simplified
XML representation of an IP repository. In previous work [12], we used DE
during the assignment step in order to optimize area required, execution time
and power consumption.

Given an application, the problem that we are concerned with here is to
determine how to topologically map the selected IPs onto the network structure,
such that the objectives of interest are optimized [4]. At this stage, a more accu-
rate evaluation can be done taking into account the distance between resources
and the number of switches and channels crossed by a data package during a
communication session. The result of this process should be an optimal allo-
cation of the prescribed IP assignment to execute the application on the NoC.
Figure 3 shows the assignment and the mapping steps.

4 IPs Mapping Using Differential Evolution
for Multi-objective Optimization

DE [11] is a simple and efficient Evolutionary Algorithm (EA). It was, initially,
used to solve single-objective optimization problems [9]. DE is a population-
based global optimization algorithm, starting with a population of NP indi-
viduals, of dimension D. Each individual encodes a candidate solution, i.e
Xi,G = {X1

i,G, ...,X
D
i,G}, i = 1, ..., NP , where G denotes the generation to which

the population belongs [12]. The initial population is generated randomly from
the entire search space. The main operations of the DE algorithm are: mutation,
crossover and selection.

4.1 Mutation

This operation changes the population with the mutant vector Vi,G for each
individual Xi,G in the population at generation G. The mutation operation can
be generated using a specific strategy. In this work, three strategies are used:
Rand (Eq. 1); Best (Eq. 2); Current-to-Best (Eq. 3):

Vi,G = Xr1,G + F.(Xr2,G − Xr3,G), (1)
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(a) Example of a TG

(b) Example of an IP repository

Fig. 2. XML codes

Vi,G = Xbest,G + F.(Xr1,G − Xr2,G), (2)

Vi,G = Xi,G + F.(Xbest,G − Xr1,G) + F.(Xr2,G − Xr3,G), (3)

where Vi,G is the mutant vector to be produced; r1, r2, r3 are integer constants
generated randomly in the range of [1, NP ], at each iteration; Xbest,G is the
best individual at generation G; F is a scaling factor, which is a real constant
usually chosen in the range of [0, 1], controlling the amplification of the difference
variation.
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Fig. 3. IP assignment and mapping problems

4.2 Crossover

This operation improves the diversity of the population, being applied after the
mutation operation. The crossover operation uses the mutation of the mutant
vector Vi,G to exchange its components with the target vector Xi,G, in order to
form the trial vector Ui,G. The crossover operation is defined by Eq. 4:

U j
i,G =

⎧
⎨

⎩

V j
i,G if(randj [0, 1] ≤ CR)or(j = jrand)

Xj
i,G otherwise,

(4)

where j = 1, 2, ...,D; randj is the jth evaluation of an uniform random number
generator within [0, 1] [11]; the crossover rate CR is an user-specified constant
within the range [0, 1]; jrand is a randomly chosen integer within the range
[1,D] [9].

4.3 Selection

In order to keep the population size constant over subsequent generations, the
selection operation is performed. The trial vector is evaluated according to the
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objective function and compared with its corresponding target vector in the
current generation. If the trial vector is better than the target one, the trial
vector will replace the target one, otherwise the target vector will remain in the
population. The selection operation is represented by Eq. 5:

Xi,G+1 =

⎧
⎨

⎩

Ui,G iff(Ui,G) ≤ f(Xi,G)

Xi,G otherwise.
(5)

The mutation, crossover and selection operations are applied for each generation
until a termination criterion.

In order to extend the DE algorithm to solve multi-objective optimization
problems, we should use the Pareto concept to deal with multiple objectives in
order to select the best solution. If the newly generated trial vector dominates
the parent vector, then the trial vector will replace the parent one. If the parent
dominates the trial, the trial vector will be discarded. Otherwise, when the trial
and the parent vectors are not related to each other, the trial vector will be
added to the current population for later sorting. Algorithm 1 shows the main
steps of the modified DE Multi-Objective (DEMO) algorithm.

Algorithm 1. Modified DEMO
initialize the individuals of the population
initialize best solutions in archive of leaders
iteration := 0
while iteration < max iteration do

for each individual do
generate a mutated vector using a mutation operation
generate a trial vector using crossover operation
evaluate the trial vector
if the trial vector dominates the individual then

replace individual by the trial vector
else if the individual dominates the trial vector then

discard the trial vector
else

add trial vector to population
end if

end for
update the leaders archive
iteration := iteration + 1

end while
return result from the archive of leaders

5 Objective Functions

In this work, we adopted a multi-objective optimization strategy in order to min-
imize three parameters: area, power consumption and execution time. Here, we
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describe how to compute each of these parameters in terms of the characteristics
of the application and those of the NoC.

5.1 Area

In order to compute the area required by a given mapping, it is necessary to
know the area needed for the selected IPs and that required by the used links
and switches. The total number of links and switches can be obtained by taking
into account all the communication paths between the exploited tiles.

Each communication path between the tiles is stored in the routing table.
We adopted an XYZ fixed routing strategy, in which data coming from tile i are
sent first to the West or East of the current switch side depending on the target
tile position, say j, with respect to i in the 3D mesh NoC, until it reaches the
column of tile j. Then, it is sent to the South or North side, depending on the
position of tile j with respect to tile i. Finally, it is sent to the Top or Bottom
side until it reaches the target tile. The number of links in the described route
represents the distance between tiles i and j, corresponding to the Manhattan
distance [13] as defined by Eq. 6:

nLinks(i, j) = |xi − xj | + |yi − yj | + |zi − zj |, (6)

wherein (xi, yi, zi) and (xj , yj , zj) are the coordinates of tiles i and j, respec-
tively.

In order to compute efficiently the area required by all used links and
switches, the ACG is associated to a routing table, in which the links and
switches necessary interconnect tiles are described. The number of hops between
tiles, along a given path, leads to the number of traversal switches. The area
is, then, computed summing up the areas required by processors, switches and
links involved.

Equation 7 describes the computation involved to obtain the total area for
the implementation of a given IP mapping M :

Area(M) =
∑

p∈Proc(ACGM )

areap + (Al + As) × Links(ACGM ) + As, (7)

wherein function Proc(.) provides the set of distinct processors used in ACGM

and areap is the required area for processor p; function Links(.) gives the number
of distinct links used in ACGM ; Al is the area of any given link; and As is the
area of any given switch.

5.2 Power Consumption

The total power consumption of an application NoC-based implementation con-
sists of the power consumption of the processors, while processing the compu-
tation performed by each IP, and that due to the data transportation between
the tiles, as presented in Eq. 8:

Power(M) = Powerp(M) + Powerc(M), (8)
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wherein Powerp(M) and Powerc(M) are the power consumption of processing
and communication, respectively, as detailed in [13].

The power consumption due to processing is simply obtained summing up
attribute taskPower of all nodes in the ACG and is as described in Eq. 9:

Powerp(M) =
∑

t∈ACGM

powert. (9)

The total power consumption of sending one bit of data from tile i to tile j
can be calculated considering the number of switches and links each bit passes
through on its way along the path. It can be estimated as shown in Eq. 10:

Ei,j
bit = nLinks(i, j) × ELbit

+ (nLinks(i, j) + 1) × ESbit
, (10)

wherein ESbit
and ELbit

represent the energy consumed by the switch and link
tying the two neighboring tiles, respectively [22]. Function nLinks(.), defined by
Eq. 6, provides the number of traversed links (and switches too) considering the
routing strategy used in this work and described earlier in this section.

The communication volume (V (dt,t′)) is provided by the TG in terms of
number of bits sent from the task t to task t′ passing through a direct arc dt,t′ . Let
us assume that the tasks t and t′ have been mapped onto tiles i and j respectively.
Equation 11 defines the total network communication power consumption for a
given mapping M :

Powerc(M) =
∑

t∈ACGM ,∀t′∈Targetst

V (dt,t′) × Ebit,
Tilet,T ilet′ , (11)

wherin Targetst provides all tasks that have a direct dependency on data
resulted from task t and Tilet yields the tile number into which task t is mapped.

5.3 Execution Time

The execution time for a given mapping takes into account the execution time
of each task, its schedule and the additional time due to data transportation
through links and switches along the communication path. taskTime attribute
in TG provides the execution time of each task. Each task of the TG needs
to be scheduled into its own cycle. Therefore, we used the As-Soon-As-Possible
(ASAP) scheduling strategy [10], scheduling tasks in the earliest possible control
step.

The routing table allows us to count the number of links and switches
required. Two scenarios can lead to the increase in the execution time of the
application: (1) when a task in a tile needs to send data to parallel tasks in
different tiles through the same initial link, data cannot be sent to both tiles at
the same time; (2) when several tasks need to send data to a shared target task,
one or more shared links would be needed simultaneously along the partially
shared path, which means that the data from both tasks must be pipelined and
will not arrive to the target task at the same time.
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The overall application execution time takes into account the execution time
regarding the underlying task computation and communication for the applied
mapping M . It is also necessary to take into account the delay concerning the
two aforementioned situations, regarding task scheduling. Therefore, the overall
application execution time can be modelled according to Eq. 12:

Time(M) = Timep + Timec + tl × (F1(M) + F2(M)) , (12)

wherein Timep returns the time necessary to execute the tasks of the TG; Timec
the time spent due to communication among tasks; function F1 computes the
delay caused by the first scenario; function F2 computes the delay caused the
second scenario.

Function F1 computes the additional time due to parallel tasks that have
data dependencies on tasks mapped in the same source tile and yet these share
a common initial link in the communication path. Function F2 computes the
additional time due to the fact that parallel tasks producing data for the same
target task need to use simultaneously at least a common link along the commu-
nication path. Equation 13 defines the time spent with communication between
tasks t and t′, based on [23]:

Timec =
∑

t∈APGM ,∀t′∈Targetst

⌈
V (dt,t′)
phit

⌉

∗ T t,
phit, (13)

wherein V (dt,t′) is the volume of bits transmitted from task t to task t′.
Equation 14 defines the time spent transferring a phit:

T t,t′
phit = nLinks(t, t′) × Tlphit

+ (nLinks(t, t′) + 1) × Tpphit
, (14)

wherein Tlphit
is the link transmission time and Tpphit

is the switch processing
time used to transfer one phit between two neighboring tiles. A phit represents
the physical unit given by the channel width and a flit represents the flow unit,
which is a multiple of the phit.

6 Results

In order to evaluate the performance of the DEMO algorithm for the mapping
step and compare it to that obtained using MOPSO (Multi-Objective Particle
Swarm Optimization) algorithm [13], we used the same benchmarks. These are
provided by the E3S benchmarks suite, constituted of the characteristics of 17
embedded processors. These characteristics are based on execution times of 16
different tasks, power consumption based on data-sheets, area required based on
die size, price and clock frequency. We use 5 random task graphs used in [13],
generated by Task Graph For Free (TGFF) [14] to perform experiments and
evaluate the performance.

We exploit a population size of 100, with F set to 0.5 and CR set to 0.9.
These parameters were set based on simulations. The algorithm was run for
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500 iterations. It is noteworthy to emphasize that the same objective functions
are used in both works. Besides comparing the algorithms, two topologies are
used in the test: 2D mesh with 5 × 5 and 3D mesh with 3× 3 × 3. Also, we used
As-Soon-As-Possible (ASAP) as the schedulling strategy.

Figure 4 shows the power consumption for the mapping yield by the compared
strategies, regarding best results. We can see that the three mutation variants
adopted for DEMO offer better results than MOPSO. Among these three, Best
shows the best performance.

TG0 TG1 TG2 TG3 TG4 TG0 TG1 TG2 TG3 TG4
102.4

102.6

102.8

103

Benchmarks in 2D NoCs Benchmarks in 3D NoCs

P
ow

er
(w

a
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s)

MOPSO DEMORand DEMOBest DEMOCurrenttoBest

Fig. 4. Comparison of power consumption obtained for each mapping strategy

Also, Fig. 5 provides a comparison of the results regarding execution time,
considering the best quality mapping. As can be seen, the performance of DEMO,
based on Best mutation strategy, is better than those obtained by MOPSO and
the other mutation strategies for DEMO.

Finally, Fig. 6 shows the comparison of the required hardware area related to
the mapping obtained by the compared strategies. Here, also, the performance

TG0 TG1 TG2 TG3 TG4 TG0 TG1 TG2 TG3 TG4

101
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Benchmarks in 2D NoCs Benchmarks in 3D NoCs

T
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3
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MOPSO DEMORand DEMOBest DEMOCurrenttoBest

Fig. 5. Comparison of execution time obtained for each mapping strategy
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of DEMO is better than that of MOPSO. Among the mutation strategies for
DEMO, we can see that Best proves to be the best option.

TG0 TG1 TG2 TG3 TG4 TG0 TG1 TG2 TG3 TG4

101.5

102

Benchmarks in 2D NoCs Benchmarks in 3D NoCs

A
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a(
.1
0−

6
m

2
)

MOPSO DEMORand DEMOBest DEMOCurrenttoBest

Fig. 6. Comparison of area requirements obtained for each mapping strategy

7 Conclusion

The problem of assigning and mapping IPs into a NoC platform is NP-hard.
There are three objectives to be optimized: area required, execution time and
power consumption. In this paper, we propose a Multi-Objective algorithm based
on Differential Evolution (DEMO) to help NoC designers during the mapping
step onto a 3D mesh-based NoC platform, based on pre-selected set of IPs.

We use the same objective functions and the same TGs used in [13], where
we applied a Multi-Objective algorithm based on Particle Swarm Optimization
(MOPSO), to evaluate the performance of the proposed algorithm. Besides this,
the DEMO algorithm offers three strategies, related to variations of the mutation
operation: Rand, Best, Current-to-Best. The strategy based on Best presents
better performance than the other strategies. We also compare the results
obtained by the DEMO algorithm to those obtained by MOPSO algorithm,
where DEMO proves to be better than MOPSO. It is interesting to highlight
that DEMO requires only two parameters to be set, while MOPSO requires three
parameters.

For future work, we plan to experiment with other strategies in the DEMO
algorithm and also to use other scheduling algorithms, such as List Schedulling
and As Late as Possible.
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