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Abstract. The problem of scheduling surgeries consists of allocating
patients and resources to each surgical stage, considering the patient’s
needs, as well as sequencing and timing constraints. This problem is clas-
sified as NP-hard and has been widely discussed in the literature for the
past 60 years. Nevertheless, many authors do not take into account the
multiple stages and resources required to address the complex aspects of
operating room management. The general goal of this paper is to pro-
pose a mathematical model to represent and solve this problem. Compu-
tational tests were also performed to compare the proposed model with
a similar model from the literature, with a 64% average reduction in
computational time.
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1 Introduction

The aging population, a higher incidence of chronic diseases and reduced health
care budgets are some of the reasons why hospitals need to improve their produc-
tivity [1,2]. In a hospital, the surgery department accounts for the highest rev-
enue (around 70%), although it also represents the highest costs (approximately
40%) [3]. A survey conducted by the Brazilian Federal Council of Medicine
and Data Folha Institute [4] on the Brazilian public health care system (SUS)
revealed that 45% of patients wait longer than six months to book a surgery.
Thus, it is extremely important that public and private hospitals have an efficient
management system to reduce patients’ waiting time and earn good profits.

Higher productivity in surgery departments depends on some factors, like effi-
cient scheduling of activities, fast setups, and punctuality [5]. Operation research
tools used in other service sectors like hotels or restaurants can be used in hos-
pitals to find good results [6]. In this paper, we propose a mixed integer linear
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programming (MILP) model to solve the Problem of Scheduling Multiple Surgery
Resources.

1.1 Problem Definition

The surgery scheduling problem consists of allocating resources to meet patients’
needs, when and where these resources are required [7]. This work focuses on the
offline operational hierarchical level, because its goal is to define the scheduling
of known patients, considering all the necessary resources and the sequence of
activities.

Surgical processes addressed in this paper include three stages: preoperative,
perioperative, and postoperative. Many resources may be required to perform
each stage and a resource can only be used by one patient at a time. The resource
is released when the patient moves to the next stage; this constraint is called
a blocking constraint [9]. Figure 1 shows a Gantt chart with an example of
scheduling involving three patients. The first column shows patient stages, while
the second presents the resources required for each stage. After determining
which resources will be used by each patient at each stage, the start and end
times of each stage are established, taking into account time constraints.

Fig. 1. Gantt chart: example with three patients.

This paper encompasses four sections. Section 1.1 brings a literature review
on surgery scheduling at the offline hierarchical level. Section 2 presents two
models - one from the literature and the proposed model. Section 3 reports
computational experiments to validate and evaluate our model. Final remarks
are given in Sect. 4.

1.2 Literature Review

This section consists of a brief literature review of the procedures used to sched-
ule elective surgeries at the offline operational level. These papers have various
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degrees of complexity, ranging from one single operation and resource to mul-
tiple operations and resources. Different solution strategies were found, such as
mathematical modeling, exact methods, heuristic approaches, and simulation.
Furthermore, distinct objective functions can be defined for the surgery schedul-
ing problem. A literature review shows that 78% of the papers published between
2000 and 2017 use objective functions to efficiently manage resources [8]. Wein-
broum, Ekstein and Ezri [9] investigated the reasons that lead to low efficiency in
operating rooms and those authors concluded that the unavailability of operating
rooms and staff accounts for approximately 66% of delays, while other causes
are related to activities that take place in the operating room before or after
the surgery, such as the cleaning activities and preoperative and postoperative
stages.

Conforti, Guerriero and Guido [10] presented a multi objective model that
determines how medical specialties are distributed in surgical rooms and sched-
ules surgeries for elective patients; therefore, it simultaneously addresses prob-
lems at the tactical and offline operational levels. Surgery scheduling is based
on patients’ clinical priorities and considers one stage and one resource. In order
to minimize total costs, Fei et al. [11] presented a branch-and-price approach
to solve a surgery scheduling problem with just one stage and one resource. In
a subsequent publication [12], those authors developed a heuristic to define the
tactical plan for the surgery department and an exact algorithm to define the
patients’ schedule. Two resources and just one stage were considered in [12].

Testi and Tafani [13] developed an MILP model that not only schedules
surgeries at the operational level but also determines the tactical distribution
of specialties. The model works with two stages - perioperative and postopera-
tive -, and a single resource is used in each stage. The objective function seeks
to maximize patients’ well-being, based on waiting time indicators. Cardoen,
Demeulemeester and Beliën [14] developed a model to solve a multiple-objective
surgery sequencing problem, where two stages (perioperative and postoperative)
are considered with one resource each. The same authors [15] proposed a branch-
and-price approach model to solve a day-care scheduling problem. In addition
to the perioperative and postoperative stages, the cleaning procedure was also
considered. Both studies used data from a Belgian hospital. Perdomo, Augusto
and Xie [16] formulated a surgery scheduling problem model that uses two stages
(perioperative and postoperative) and two resources (operating room and PACU
(Post-Anesthesia Care Unit)). In a subsequent work [17], those authors consider
the same stages and resources, but allow a fraction of the postoperative stage to
be performed in an operating room, if necessary.

To maximize the marginal financial contribution of each patient, Gartner and
Kolisch [18] developed a model to solve the surgery scheduling problem. They
described the problem in a Flexible Job Shop machine environment and took
into account several stages. Riise, Mannino and Burke [19] also proposed a multi-
resource, multi-stage model. The multi-objective function has four terms that
are normalized and weighted according to the hospital’s needs, therefore being
a priority multi-objective optimization method. As pointed out by T’Kindt and
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Billaut [20], this method is sensitive and can lead to different results depending
on the weighting values used. Pham and Klinkert [21] introduced an MILP model
which, in addition to preoperative, perioperative and postoperative stages, also
considers cleaning and setup stages, thus addressing around 88% of the causes
of delay (see [9]). The model also allows the inclusion of several resources in each
stage to better represent an actual hospital setting.

It can be observed from the literature review presented previously in this
paper that several surgery scheduling research studies do not consider multiple
stages and multiple resources. This paper analyzes the model of Pham and Klink-
ert [21] and presents suggestions for improvements. This paper also proposes an
alternative MILP model for the problem.

2 Mixed Integer Linear Programming Models

This section presents and discusses two MILP models. The first one was devel-
oped by Pham and Klinkert [21] and uses the concept of resource modules to
simplify resource allocation. The second model was developed by the authors of
this paper and aims to improve and expand Pham and Klinkert’s model.

2.1 Model Proposed by Pham and Klinkert (2008)

The model presented in [21] for the elective surgery scheduling problem is called
Multi-Mode Blocking Job Shop (MMBJS). The authors described the problem as
a Flexible Job Shop machine environment, where multiple resources are required
to process each task (job). The Job Shop is an environment with m machines
and n tasks, where each task has its own route (sequence of operations) to
follow. When an operation can be performed by more than one machine, this
environment is called the Flexible Job Shop (FJS).

For the problem at hand, patients are equivalent to tasks in the FJS problem
and operations correspond to stages in a surgical process. For the execution of each
stage, a set of different resources is needed and they are grouped into modules, sim-
ilarly to machines in the FJS environment. Once a stage is started, all the resources
that make up the module cannot be allocated to another patient until the stage is
completed and the patient is transferred to the next stage or leaves the system.This
restriction is called blocking constraint and aims to eliminate patient waiting time
between two stages of the surgical process without being allocated to any module.
The MMBJS model and the notations used (Table 1) will be presented next.

Set � contains all patients. For each patient J ∈ � there is a set of processing
stages (operations); the present work defines three stages for each patient: pre-
operative, perioperative, postoperative. The set of operations for all patients is
called I. The set of two consecutive operations for the same patient J is defined
as OJ . The patient to which operation i belongs is called Ji. Set M represents all
the resources available in the system. Each operation requires a different set of
resources for its execution. A module is a set of resources that meet the require-
ments for an operation and are available in the same period of time. Modules
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Table 1. Notation of the MMBJS.

Sets

� Patients

I Operations

Oj Consecutive pairs of operations of patient J ∈ �
M Resources

Mr
i Resources contained in module r that serves operation i ∈ I, r ∈ Ri, Mr

i ⊆ M

R Module indexes, R = ∪i∈IRi

Ri Possible module indexes for operation i ∈ I

Parameters

pr
i Processing time of operation i in module r, i ∈ I, r ∈ Ri

psu
i Setup time before operation i ∈ I

pcl
i Cleanup time after operation i ∈ I

bi Maximum waiting time allowed for operation i ∈ I before the patient is moved to the next stage

er Start time of the availability range of module r ∈ R

fr End time of the availability range of module r ∈ R

H Big number: H =
∑

i∈I maxr∈Ri
{pr

i } + maxr∈Ri,i∈I{pr
i } + maxi∈I{psui} + maxi∈I{pcli}

α Small weight factor

Ji Patient which operation i ∈ I belongs to

Decision variables

zr
i 1, if module r is assigned to operation i ∈ I; 0, otherwise

yij 1, if operation j is processed after operation i; 0, otherwise i, j ∈ I, i < j

xi Start time of operation i ∈ I

li End time of operation i ∈ I

τ Makespan

that share the same resource cannot be used by two patients simultaneously.
The set of resources that can process operation i is defined as Mr

i ∈ M , where
r belongs to the set of indexes of the modules that can process operation i. A
fictional module is available at the end of the time horizon. Unscheduled patients
are assigned to an artificial module that does not consume any system resources,
which is called fictitious module. The set of all indexes of the modules is defined
by R. Each operation i ∈ I has the following parameters: processing time (pri ),
which is dependent on the module to be used, setup time (psui ), cleaning (pcli ),
and maximum waiting time (bi). Modules are available in an interval indicated
by [er, fr], in which 0 ≤ er ≤ fr. Parameters H and alpha are a large number
and a small number, respectively.

Decision binary variables zri and yij indicate whether module r will execute
operation i and determine the precedence between two operations, respectively.
Integer variables xi and li determine the beginning and end of each operation.
The makespan is represented by τ and indicates the moment when the last
patient leaves the system.

MMBJS model:
min τ + α

∑

i∈I

xi (1)
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subject to:
∑

r∈Ri

zri = 1 i ∈ I (2)

li − xi − pri z
r
i ≥ 0 i ∈ I, r ∈ Ri (3)

li − xi −
∑

r∈Ri

pri z
r
i ≤ bi i ∈ I (4)

li − xj = 0 (i, j) ∈ Oj , J ∈ � (5)

xj − li + H(2 − zri − zsj ) + H(1 − yij) ≥ pcli + psuj i, j ∈ I, i < j, J i �= Jj , (6)

r ∈ Ri, s ∈ Rj ,M
r
i ∩ Ms

j �= 0

xi − lj + H(2 − zri − zsj ) + Hyij ≥ pclj + psui i, j ∈ I, i < j, J i �= Jj , (7)

r ∈ Ri, s ∈ Rj ,M
r
i ∩ Ms

j �= 0

xi − erzri ≥ psui i ∈ I, r ∈ Ri (8)
∑

r∈Ri

frzri − li ≥ pcli i ∈ I (9)

τ − li ≥ pcli i ∈ I
(10)

xi, li, τ ≥ 0 i ∈ I
(11)

yij ∈ {0, 1} i, j ∈ I, i < j
(12)

zri ∈ {0, 1} i ∈ I, r ∈ Ri

(13)

The objective function (1) minimizes the makespan, and then the sum of all
start times, weighted by factor alpha. Constraints (2) assign a single module to
each operation. Restrictions (3) and (4) determine the time of entry and exit of an
operation. Restrictions (5) determine that there is no time interval between two
subsequent operations. Restrictions (6) and (7) prevent two modules that share
the same resource from being scheduled simultaneously. Restrictions (8) and (9)
guarantee that setup and cleaning times will be carried out within the module’s
availability interval. Constraints (10) define the makespan value. Restrictions
(11), (12) and (13) indicate the domain of decision variables.

Objective Function Analysis. The makespan is defined as max(C1, C2, ..., Ck

, ..., Cn), where Ck indicates the end time of operation k, that is, the makespan
is when the last operation leaves the system. In the model analyzed in this
paper, the makespan is calculated based on the set of restrictions (10) and (11)
and on the minimization of the objective function. Restrictions (10) indicate
that all operations are considered for the evaluation of the makespan, including
those that are in the fictional module which does not represent real resources.
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Therefore, patients allocated to this module should not be considered in the
calculation of the makespan. Moreover, as the fictitious module is at the end of
the time horizon, whenever an operation is rejected, the makespan is associated
with an unscheduled patient. The following set of constraints can calculate the
actual makespan value:

τ ≥ li + pcli − G
∑

r∈Rr
i

zri i ∈ I (14)

where Rr
i is the set of all non-fictitious modules and G is a sufficiently large

number.
The sum of start times of operations aims to reduce the number of patients

allocated in the fictitious module. The definition of α is a fundamental task,
since it is intended to weigh the values of the two terms of the objective func-
tion and guarantee an optimal schedule. By analyzing the objective function,
it can be noted that, when the value of α is large, the generated solution can
anticipate the beginning of operations without worrying about finishing them as
early as possible, worsening the makespan. On the other hand, considering that
the makespan calculation is performed in the operations allocated in the real
modules, when the α factor is very small, many patients may not be scheduled,
i.e. they are allocated in the fictitious module.

Constraint Analysis. The set of constraints (3) and (4) determines the start
and end times of operations. Although both constraints have similar functions,
they have different structures. Note that the device used in the second expres-
sion reduces the number of restrictions. The same occurs for the set of restric-
tions (8) and (9) that defines that the activities must be performed within the
time window of the module. Thus, restrictions (3) and (8) can be replaced with
restrictions (15) and (16), respectively.

li − xi −
∑

r∈Ri

pri z
r
i ≥ 0 i ∈ I (15)

xi −
∑

r∈Ri

erzri ≥ psui i ∈ I (16)

These alternative constraints may lead to a gain in computational time while
solving this problem.

Additional Remarks. By analyzing the objective function (1), it can be seen
that there is no prioritization rule for patients. This fact can benefit patient
scheduling with shorter processing times. In a hospital environment, the lack of
a patient prioritization rule may be undesirable, since patients who require more
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complicated and therefore longer procedures may not be scheduled. Pham and
Klinkert [21] presented a solution to this problem by establishing patient priori-
ties i by fixing variable yij = 1 for all j. By predetermining these variables, it is
possible to schedule priority patientswhen they competewith other patients for the
same resource, ensuring that they are scheduled. However, previously determining
the sequence of patients reduces the search space and can exclude solutions that
include priority patients and have better makespan.

2.2 Proposed Model

The proposed model considers all the analyses presented in the previous section
to improve the MMBJS model. First, in order to guarantee the correct makespan
evaluation, the dummy module was excluded from the model and an alternative
strategy to select the patients was implemented. Furthermore, considering that
the definition of the parameter α is not a trivial task and has a great influence on
the quality of the solution, a new objective function is proposed. This function
also minimizes the number of unscheduled patients but does not use parameter
α. A weighting factor associated with each patient was also included in the
objective function to consider priority patients.

The set of constraints (3) and (8) can be reduced if replaced with restrictions
(15) and (16), respectively. As observed in preliminary tests, fewer restrictions
reduced the model’s execution time to find an optimal solution. Therefore, this
replacement was carried out in the proposed model.

Table 1 and Table 2 show all the notations used in the proposed model. Table 2
presents notations that are exclusive to the proposed model. The makespan value
is indicated by mkp to differentiate it from the makespan value of the MMBJS
model.

Proposed model:
min mkp − G

∑

i∈I

∑

r∈Ri

wiz
r
i (17)

Table 2. Notation of the proposed model.

Parameters

G Big number used in the objective function G = maxr∈R{fr}
wi Weighted priority factor for operation i ∈ I

Decision variables

mkp Makespan
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subject to:
∑

r∈Ri

zri ≤ 1 i ∈ I

(18)

li − xi −
∑

r∈Ri

pri z
r
i ≥ 0 i ∈ I

(19)

li − xi −
∑

r∈Ri

pri z
r
i ≤ bi i ∈ I

(20)

li − xj = 0 (i, j) ∈ Oj , J ∈ �
(21)

xj − li + H(2 − zri − zsj ) + H(1 − yij) ≥ pcli + psuj i, j ∈ I, i < j, J i �= Jj ,

(22)

r ∈ Ri, s ∈ Rj ,M
r
i ∩ Ms

j �= 0

xi − lj + H(2 − zri − zsj ) + Hyij ≥ pclj + psui i, j ∈ I, i < j, J i �= Jj ,

(23)

r ∈ Ri, s ∈ Rj ,M
r
i ∩ Ms

j �= 0

xi −
∑

r∈Ri

erzri ≥ psui
∑

r∈Ri

zri i ∈ I

(24)
∑

r∈Ri

frzri − li ≥ pcli
∑

r∈Ri

zri i ∈ I

(25)

mkp − li ≥ pcli i ∈ I
(26)

xi, li,mkp ≥ 0 i ∈ I
(27)

yij ∈ {0, 1} i, j ∈ I, i < j
(28)

zri ∈ {0, 1} i ∈ I, r ∈ Ri

(29)

In the objective function (17), the number of scheduled patient activities,
weighted by the priority factor, is calculated by the term

∑
i∈I

∑
r∈Ri

wiz
r
i . This

part is multiplied by constant G to ensure that this term will be the problem
at the top level, while makespan remains at the bottom level. Note that, in
the proposed model, patients’ priority is established through factor (wi). Thus,
it is possible to schedule a higher priority patient in the time horizon without
necessarily getting this patient to be the first to be scheduled.
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Observe that the set of constraints (18) was converted into inequalities when
compared with an analogous set of constraints of the MMBJS model. Given the
absence of the fictitious module, these restrictions guarantee that each opera-
tion should only be scheduled by no more than one module. Constraints (19) and
(20) determine the time at which an operation starts and ends, respecting the
maximum allowed waiting time. As previously discussed, the set of restrictions
(19) was reduced in relation to the MMBJS model. The set of constraints (21)
guarantees that there will be no waiting time for the patient between two con-
secutive operations. Constraints (22) and (23) ensure that modules that share
the same resource are not scheduled simultaneously. Restriction sets (24) and
(25) ensure that activities will be allocated to modules within their availability
range. Two changes were made to these sets with respect to the MMBJS model.
The set of restrictions (24) was reduced and the term

∑
r∈Ri

zri added to the
end of the restrictions, thus eliminating the fictitious module of the model. Con-
straints (26) determine that the makespan is the longest time to end all system
activities. These restrictions do not need require any changes in relation to the
MMBJS model since there is no longer a fictitious module at the end of the
time horizon. Finally, restrictions (27), (28) and (29) determine the domain of
decision variables.

Objective Function Analysis. The objective function of the proposed model
maximizes the number of scheduled patients and, among those solutions with the
largest number of patients, it chooses one that minimizes makespan. It is worth
noticing that the modeled problem is not equivalent to the problem of finding
a single schedule that maximizes the number of scheduled patients while, in a
second stage and preserving the same sequence, minimizes the makespan.

Here is an example to illustrate the reason to use this function. Two situa-
tions are analyzed: (i) using the proposed model to maximize only the number
of scheduled patients and, subsequently, making an adjustment to reduce the
makespan and (ii) analyzing the problem in two levels using the objective func-
tion (17). In the example, there are five patients available at the beginning of
the horizon and five modules: 1 preoperative, 2 perioperative, and 2 postoper-
ative modules. Figure 2(a) shows the Gantt chart that represents the solution
obtained by solving the proposed model to maximize only the number of sched-
uled patients. In this solution, four patients are scheduled and the makespan
value is 1050. Figure 2(b) presents the same sequence of patients’ activities
adjusted to reduce idle times and, consequently, the makespan. The value of the
makespan of this schedule is 980 units of time. Figure 2(c) shows the solution
obtained through the resolution of the complete proposed model. The number
of scheduled patients remains four, as expected, and the makespan value is 940
units of time. The makespan value is reduced because this solution was found
using the proposed MILP model which, among all schedules for 4 patients, seeks
one that minimizes makespan.
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Fig. 2. Gantt charts: (a) optimal solution that only minimizes the number of rejected
patients, (b) solution with the same sequence presented in a Gantt chart of (a) without
idle times, and (c) optimal solution found by solving the proposed MILP model.
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3 Numerical Experiments

The MILP models were implemented in CPLEX ILOG version 12.6. The default
configuration parameters have not been changed, except for a CPU time limit
of two hours per instance and a suboptimality tolerance level of 0.005%. The
experiments were carried out with an Intel (R) Xeon (R) processor, 6 cores, 4.20
20 GHz, 512 GB of RAM, and on a Linux operating system.

Since the problem of scheduling elective surgeries with multiple resources and
multiple stages has not yet been widely studied in the literature, new instance
sets were generated for this problem based on instances from the literature.
Ozkarahan [22] proposed instances with surgery processing time divided by spe-
cialty. Pham and Klinkert [21] completed the data from Ozkarahan [22], adding
the processing times of preoperative and postoperative stages, maximum wait-
ing time, and setup and cleaning times. Since full instances have not been made
available, the present work also includes similar instances that were randomly
generated. The proposed set of instances considers three medical specialties in
which patients are distributed. The random number generator and the seeds
proposed by Taillard [23] were used to generate processing, setup, cleaning, and
maximum waiting times, as well as a weighted priority factor for patients using a
discrete uniform distribution. The resources required for each stage were deter-
mined as suggested by Pham and Klinkert [21] and the time horizon considered
was five days.

In the first part of the numerical experiments, a small set of instances was
generated to conduct a comparative assessment of the models. Next, a sensitivity
analysis was carried out to investigate the performance of the proposed model
in different scenarios. With this purpose, 245 instances were generated and the
obtained results will be briefly discussed in Sect. 3.2.

3.1 Comparative Evaluation

In this section, numerical experiments were carried out to compare the proposed
model and the MMBJS model. Since the MMBJS model cannot properly calcu-
late the makespan value if a patient is rejected, instances with enough resources
were generated to avoid unscheduled patients. Moreover, in the experiments with
this model, each instance was tested several times in order to find the appropriate
value of α.

Table 3 shows the results obtained using the MILP models presented in the
previous section. In the instances considered, there are 10 patients, 16 resources,
and 47 modules distributed in 5 days. The MMBJS* model corresponds to the
MMBJS model with the replacement of constraints (3) and (8) with constraints
(15) and (16), respectively. The first column identifies the instance. The following
columns show the running time required to solve each instance and the column
named GAP (%) indicates the percentage difference between the incumbent
solution and the lower bound determined by CPLEX.

Figures in the table show that the solver execution time using the MMBJS
model is greater than the corresponding time of the proposed model for all
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instances. The use of the proposed model led to a 64% reduction in the aver-
age computational time. Furthermore, the proposed model was able to find the
optimal solution for all instances, while with the MMBJS model, three opti-
mal solutions could not be found within the limit time, with an average gap of
22.34%. By comparing models MMBJS* and MMBJS, it can be seen that, in
most instances, the computational time of CPLEX is shorter using the MMBJS*
model. The average reduction in computational time was 54%, indicating that
a reduction in the restriction set size was beneficial. On the other hand, when
comparing this model with the proposed model, it can be noted that, in general,
the proposed model is solved in less time and, unlike the MMBJS* model, all
the optimal solutions were found.

Table 3. Performance of the analysed models.

Instance MMBJS MMBJS* Proposed

Time (s) GAP (%) Time (s) GAP (%) Time (s) GAP (%)

1 247.97 00.00 196.59 00.00 169.19 00.00

2 338.99 00.00 90.38 00.00 256.82 00.00

3 7214.19 29.90 7200.37 21.25 144.08 00.00

4 7206.98 13.25 1200.00 00.00 120.19 00.00

5 146.58 00.00 117.15 00.00 84.03 00.00

6 922.54 00.00 1188.33 00.00 407.17 00.00

7 7238.41 23.88 749.04 00.00 154.46 00.00

3.2 Sensitivity Analysis

In this section, numerical experiments were performed to analyze the results
obtained by CPLEX when using the proposed model for the resolution of
instances with different characteristics. Three characteristics of the base group
of instances (ID = 0 ) were modified: availability interval of modules, except for
the ICU modules, number of ICU postoperative modules, and number of preop-
erative modules. For each characteristic, two groups of instances were created. In
the first group, modules were added or the availability of modules was increased
in relation to the base problem configuration, making the system more flexible.
In the second group, the availability of modules was reduced or modules were
excluded, consequently, the system became more restricted. In each group, five
different amounts of available patients were considered (5, 7, 10, 12, 15). For
each combination of characteristic, group, and number of patients, 7 instances
were generated, i.e, 3 × 2 × 5 × 7 = 210 instances were solved. Additionally, 35
instances (5 sets of patients × 7 instances) were generated to compose the base
group.

The solver was able to achieve the optimal solution within the allowed exe-
cution time in approximately 86% of instances. In the remaining instances, the
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average gap was around 9%. As expected, the solutions found by the solver for
more restricted instances contain results (number of scheduled patients) equal to
or worse than the results of the base group. Conversely, in instances where idle-
ness was added to the proposed model, the solver found similar or better results.
This pattern was verified in the 210 instances tested. In order to illustrate the
solver’s behavior using the proposed model, results obtained for instances with
10 patients and different features are detailed in Table 4. In this table, the first
column (ID) identifies the instance and its attributes (characteristic and group),
while the column named GAP (%) indicates the percentage difference between
the incumbent solution and the lower bound determined by CPLEX. Details
about the numerical experiment described in this section can be found in [24].

Table 4. Results for an instance with 10 patients.

ID Makespan # scheduled
patients

Unscheduled
patients

GAP (%) CPU time (s)

0 3 d 13 h 43 min 8 6, 9 0.0* 203.40

1.1 4 d 16 h 41 min 10 – 0.0* 169.19

1.2 4 d 13 h 25 min 8 6, 9 0.0* 144.30

2.1 4 d 13 h 25 min 10 – 0.0* 2369.01

2.2 3 d 14 h 52 min 6 1, 6, 9, 10 0.0 85.61

3.1 3 d 13 h 43 min 8 6, 9 0.0* 176.45

3.2 4 d 13 h 16 min 8 6, 9 0.0* 238.49

*indicates that the suboptimality tolerance level has been reached

4 Final Remarks

This research addressed the scheduling of elective surgical procedures with mul-
tiple stages and limited resources. According to the literature review, it was
possible to observe that most prior studies have not considered multiple stages
and resources in their mathematical models. The present work aimed to study
and improve the MILP model presented in [21], called Multi-Mode Blocking
Job Shop. First, the MMBJS model was analyzed and modifications were sug-
gested to improve the addressed model, such as a reduction in the number of
constraints and an effective way to evaluate the makespan of the final sched-
ule. Then, a mixed integer linear programming model based on MMBJS was
proposed. The benefits of this objective function were discussed through the
analysis of an example.

Numerical experiments were performed. A comparison between the MMBJS
model and the proposed model showed a significant improvement in execution
time. A sensitivity analysis was then performed to interpret the model’s behav-
ior. As a suggestion for future work, heuristics and metaheuristics should be
developed to solve large instances seeking to reduce the computational effort.
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