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Abstract. This paper proposes a simplified version of the tabu search
algorithm that solely uses randomly generated direction vectors in the
exploration and intensification search procedures, in order to define a set
of trial points while searching in the neighborhood of a given point. In
the diversification procedure, points that are inside any already visited
region with a relative small visited frequency may be accepted, apart
from those that are outside the visited regions.

The produced numerical results show the robustness of the proposed
method. Its efficiency when compared to other known metaheuristics
available in the literature is encouraging.
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1 Introduction

This paper aims to present a simplified tabu search algorithm, in line of the
Directed Tabu Search (DTS) [1], that uses random exploration and intensifica-
tion local search procedures. This means that the exploration in the neighbor-
hood of a current solution, as well as the final local intensification search are
based only on randomly generated vectors. This proposal aims to contribute to
the research area of nonlinear bound constrained global optimization (BCGO).
The problem is formulated as follows:

min f(x)
subject to x ∈ Ω,

(1)

where f : Rn → R is a nonlinear function and Ω = {x ∈ R
n : −∞ < li ≤ xi ≤

ui < ∞, i = 1, . . . , n} is a bounded feasible region. We do not assume that the
objective function f is differentiable and convex and many local minima may
exist in Ω. The optimal set X∗ of the problem (1) is assumed to be nonempty
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and bounded. The global minimizer is represented by x∗ and the global optimal
value by f∗.

Solution methods for global optimization can be classified into two classes:
the exact methods and the approximate methods [2,3]. Exact methods for global
optimization are guaranteed to find an optimal solution within a finite run time
that is problem-dependent. Thus, they solve a problem with a required accuracy
in a finite number of steps. With approximate methods, it is not possible to guar-
antee an optimal solution. However, very good solutions can be obtained within
a reasonable run time. Most of the approximate methods are stochastic. These
methods differ from the deterministic ones in that they rely on random variables
and random searches that use selected heuristics to search for good solutions.
Metaheuristics are heuristics that can be applied to any general and complex
optimization problem. Their search capabilities are not problem-dependent [4].

The Tabu Search (TS) is a trajectory-based metaheuristic that was primary
developed in 1986 for combinatorial problems [5], and later on extended to solve
continuous optimization problems, e.g., [6–8]. TS for continuous optimization
guides the search out of local optima and continues the exploration of new regions
for the global optimum. Important aspects of the TS are the definition of a
neighborhood of the current solution and the management of a tabu list (a list
of the already computed solutions). Along the iterative process, TS maintains a
list of the most recent movements, which is used to avoid subsequent movements
that may lead to solutions that have already been visited.

To overcome the slow convergence of TS, a local search strategy has been
applied to the promising areas found by the TS algorithm, e.g., the simplex
method of Nelder-Mead [9] or the Hooke-and-Jeeves [10]. Details can be seen
in [1,11–13]. In general, this type of hybridization occurs in the final stage of
the iterative process when the current solution is in the vicinity of the global
optimum. The DTS method proposed in [1] bases its searches for the global
optimum on three main procedures:

– the “neighborhood search procedure” - that aims to generate trial points -
is based on local search strategies, like the Nelder-Mead [9] or the adaptive
pattern search strategy [14], it generates a tabu list (TL) of already visited
solutions and defines tabu regions (TRg) to prevent anti-cycling;

– the “diversification search procedure” goals the random generation of new
points outside the already visited regions (VRg) and it also stores a list of
the VRg, with their visited frequencies (VRf);

– the “intensification search procedure” aims to refine the best solution found
so far and is applied at the final stage of the process.

Hybrid strategies that incorporate other popular metaheuristics into the TS
have been proposed so far, but they are mostly applied in solving combinato-
rial problems. The diversity of TS applications - mostly in the combinatorial
optimization area - are illustrated in [15]. The work also gives a detailed descrip-
tion of some of the TS structures and attributes, e.g., tabu list, neighborhood,
move, threshold value, short-term memory, recency-based memory, frequency-
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based memory. For continuous problems, the paper [16] presents a hybrid by the
integration of the Scatter Search into the TS.

1.1 The Contribution

The herein presented simplification of the TS algorithm, to solve bound con-
strained global optimization problems, is denoted by “Simplified Tabu Search
(with random-based searches)” (S-TS), and focuses on the random generation
of direction vectors to search in the neighborhood of a central point x. These
random searches of trial points are implemented in the “exploration search pro-
cedure” and in the ‘intensification search procedure”:

– in the “exploration search procedure”, n trial points around the central point
x are computed, where each point is obtained by adding a randomly generated
number to each component of x;

– In the “intensification search procedure”, n normalized direction vectors are
randomly generated, one different vector for each trial point computed around
the central x.

Furthermore, during the “diversification procedure”, our proposal allows the
acceptance of a randomly generated point in [l, u] that is inside an already VRg
as long as its correspondent VRf is relatively small, apart from the acceptance
of a point that is outside all the already VRg.

1.2 Notation

For quick reference, a summary of the notation used in this paper follows:

– L: set of indices of points in the TL,
– |L|: cardinal of L,
– Ledge: basic edge length,
– RTRg: radius of the TRg (fixed, for all TRg),
– NTLmax: maximum number of points in the TL,
– NV Rg: number of VRg,
– V Ri: the center point of the VRg i, where i = 1, . . . , NV Rg,
– V Rf i: the frequency of the VRg i (number of generated points that are inside

the VRg i, including the center),
– RV Rg: radius of the VRg (fixed, for all VRg),
– Perc: percentage that allows that a point inside at least one of the already

VRg is accepted as a new diversification point,
– NnoImax: allowed maximum number of consecutive iterations where an

improved point is not found,
– δ: step size of the search along each random direction,
– ε: tolerance to analyze vicinity of f∗ (the best known global minimum),
– rand: random number uniformly distributed in [0, 1].
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1.3 Organization

This paper is organized as follows. In Sect. 2, the most important parts of the
new algorithm are presented, namely the new “exploration search procedures”,
“diversification procedure”, “neighborhood search procedure” and the “intensi-
fication search procedure”. The comparative experiments are shown in Sect. 3
and the paper is concluded in Sect. 4.

2 Simplified Tabu Search

This section describes the S-TS method. We remark that the bound constraints
of the problem are always satisfied by projecting any component i of a com-
puted trial point that lies outside the interval [li, ui] to the bound li or ui or,
alternatively, randomly projecting into the interval [li, ui] (as it is shown in (2)).

Initially, this variant of the TS algorithm randomly generates a point x ∈ [l, u]

xj = lj + rand (uj − lj) , j = 1, . . . , n, (2)

and the TL is initialized with x. Using x, the “exploration search procedure”
explores randomly in the neighborhood of x to find a set of n trial points, denoted
by si, i = 1, . . . , n, using randomly generated numbers in [−1, 1] and a positive
step size δ ∈ R

+,
sij = xj + δ rand

[−1,1]
j , j = 1, . . . , n (3)

for i = 1, . . . , n, where rand
[−1,1]
j = −1 + 2 rand represents a random number in

[−1, 1] generated from a uniform distribution. (See Algorithm1 below.) The best
of the trial solutions (the one with least objective function value, fmin) is saved
at xmin. If this point has not improved relative to x, the step size δ is reduced and
a new set of points si, i = 1, . . . , n are randomly generated centered at x (in line
of (3)). If there is an improvement relative to x, all the points si, i = 1, . . . , n are
shifted by the same amount. The amount is xmin −2x if the number of improved
iterations so far exceeds n, otherwise is xmin − x. This exploration algorithm
terminates when the number of iterations exceeds Itmax, δ falls under 1E − 06,
or the difference between the worst and the best of the trial points is considered
small. See Algorithm 2 below.

Algorithm 1. Random exploration trial points algorithm
Require: n, x, l, u, δ;
1: for i = 1, . . . , n do
2: for j = 1, . . . , n do
3: Compute sij = xj + δ rand

[−1,1]
j ;

4: end for
5: Project si componentwise into [l, u];
6: end for
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Algorithm 2. Exploration search algorithm
Require: n, x, f , l, u, δ, ε, Itmax;
1: Set Nfexp = 0, It = 1, NImpr = 0;
2: Based on x and δ, generate si , i = 1, . . . , n using Algorithm 1;
3: repeat
4: Compute f(si), i = 1, . . . , n, identify xmin, fmin and xmax; Update Nfexp;
5: if fmin < f then
6: Set NImpr = NImpr + 1;
7: if NImpr > n then
8: Set dmin = xmin − 2x;
9: else

10: Set dmin = xmin − x;
11: end if
12: Set x = xmin, f = fmin;
13: Compute si = si + dmin, project si componentwise into [l, u], i = 1, . . . , n;
14: else
15: Set δ = 0.5δ;
16: Based on x and δ, generate si, i = 1, . . . , n using Algorithm 1;
17: Set xmin = x, fmin = f ;
18: end if
19: Set It = It + 1;
20: until ‖xmax − xmin‖ ≤ 102ε or It > Itmax or δ ≤ 1E − 06

The formal description of the implemented S-TS algorithm for solving the
BCGO problem (1), based on random searches to define a set of trial points in
the neighborhood of a specified point is presented in Algorithm3.

This S-TS algorithm aims to find a global optimal solution of a BCGO prob-
lem, f(xbetter), within an error of 100 ε% relative to f∗, i.e., the algorithm stops
if the following condition holds:

|f(xbetter) − f∗| ≤ εmax{1, |f∗|}, (4)

where ε is a small positive tolerance. However, if the above condition is not
satisfied and the number of function evaluations required by the algorithm to
reach the current approximation, Nfe, exceeds the target Nfemax, the algorithm
also stops.

2.1 Diversification Procedure

The main loop of the S-TS algorithm (from line 9 to 23 in Algorithm 3) invokes
a “diversification procedure” (see line 12 of the algorithm). Here, a randomly
generated point y that is not inside any of the already VRg is accepted. Each
VRg is defined by its center V Ri, the radius RV Rg and its frequency V Rf i,
i = 1, . . . , NV Rg, being NV Rg the number of visited regions defined so far. In
this case, a new VRg is created centered at V Rj = y, V Rf j is set to 1 and
NV Rg is updated. However, a point y that is inside any of the VRg may also be
accepted. Let k be the index of the VRg that has its center V Rk closest to y,
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Algorithm 3. Simplified Tabu Search algorithm
Require: n, l, u, Ledge, ε, f∗, Nfemax, εTS , NfeTS , NnoImax;
1: Set NnoI = 0, L = ∅,
2: Randomly generate x ∈ [l, u] according to (2), compute f = f(x);
3: Set xbetter = x, fbetter = f , Nfe = 1, δ = 2Ledge, success = No;
4: Based on x, use Algorithm 2 to provide xmin (after Nfexp function evaluations);
5: Set Nfe = Nfe + Nfexp;
6: Set xbetter = xmin, fbetter = f(xmin);
7: Initialize TL, z1 = x (L = {1}), set V R1 = z1, V Rf1 = 1, NV Rg = 1;
8: Set xold = x = xmin, fold = f = f(xmin);
9: repeat

10: Using x and Algorithm 5, provide xmin (after Nfnei function evaluations);
11: Set Nfe = Nfe + Nfnei;
12: Generate y using Algorithm 4;
13: Set x = y, compute f = f(x), Nfe = Nfe + 1; Identify zW in TL;
14: Update TL: set zW = x, fW = f ;
15: if f(xmin) < fold then
16: Set NnoI = 0, xold = xmin, fold = f(xmin);
17: else
18: Set NnoI = NnoI + 1;
19: end if
20: if f(xmin) < fbetter then
21: Set xbetter = xmin, fbetter = f(xmin);
22: end if
23: until NnoI ≥ NnoImax or Nfe ≥ NfeTS or |fbetter − f∗| ≤ εTS max{1, |f∗|}
24: Set δ = 2Ledge, Nf int

max = Nfemax − Nfe;
25: Using xbetter and Algorithm 6, provide xmin (after Nfint function evaluations);
26: Set Nfe = Nfe + Nfint;
27: Set xbetter = xmin, fbetter = f(xmin);
28: if |fbetter − f∗| ≤ ε max{1, |f∗|} then
29: Set success = Y es;
30: end if

among all VRg that contain y. If its frequency V Rfk is small (relative to all the
frequencies of the other VRg), i.e., if

V Rfk

∑NV Rg

i=1 V Rf i
< Perc,

the point is accepted, where Perc is the percentage for the acceptance of a point
y inside an already VRg. In this case the corresponding frequency is updated.
The details concerning the acceptance issue and the updating of VRg are shown
in Algorithm 4.

The main loop terminates when the number of consecutive iterations with
non-improved points exceeds NnoImax, the number of function evaluations
exceeds a target value, NfeTS , or the best function value in the TL has an
error of 100 εTS% relative to f∗.
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Algorithm 4. Diversification search algorithm
Require: V Ri, V Rf i, i = 1, . . . , NV Rg, RV Rg, Perc;
1: Set accept = 0;
2: while accept = 0 do
3: Randomly generate y ∈ [l, u] according to (2);
4: Compute dmin = mini=1,...,NV Rg{‖y − V Ri‖/RV Rg}; Set k = arg mini{‖y −

V Ri‖/RV Rg};
5: if dmin > 1 then
6: Set accept = 1, NV Rg = NV Rg +1, V Rj = y with V Rf j = 1 where j = NV Rg;
7: else
8: if (V Rfk/

∑
i V Rf i) < Perc then

9: Set accept = 1, V Rfk = V Rfk + 1;
10: end if
11: end if
12: end while

2.2 Neighborhood Search Procedure

Based on a starting point x, each iteration of the main loop of the S-TS algorithm
also tries to compute a point better than the x, by invoking the “neighborhood
search procedure” (see line 10 of the Algorithm 3). Firstly, the randomly gener-
ated set of trial points should be preferentially far away from the other points
already in the TL. This is accomplished by selecting a specific value for the step
size δ. The points in the TL, zi, i ∈ L, are the centers of the TRg, and the
radius, RTRg, is a fraction of Ledge. This means that if x is inside any of the
TRg, δ is chosen to be a value greater than the maximum distance from x to the
centers of those TRg that contain x, i.e., ‖x − zi‖ ≤ RTRg (for those i) holds.
Otherwise, δ is greater than Ledge. The trial points around x are generated by
the “exploration search procedure” that provides xmin.

The point x is then added to the TL if the number of points in the TL is
smaller than the threshold value NTLmax. Otherwise, our proposal here is to
replace the worst point in the TL, zW , by x. Parallel to that, the frequencies of
the VRg that contain x are updated or, a new VRg is defined centered at x with
frequency set to 1, if none of the VRg contains x.

The point xmin is compared to x. If an improvement has been obtained (in
terms of f), the counter for consecutive iterations with no improvement is set to
0, otherwise, the counter is updated. This iterative procedure terminates when
the number of iterations exceeds a target, ItNmax, or the number of consecu-
tive iterations with no improvement computed points reaches a threshold value
NnoImax. For the output of the procedure, xmin is identified as the best point
(with least objective function value) among the points in TL. See the details in
Algorithm 5.
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Algorithm 5. Neighborhood search procedure
Require: n, x, f , Ledge, zi, i ∈ L (points in the TL), V Ri, V Rf i, i = 1, . . . , NV Rg,

NnoImax, ItNmax, NTLmax, RTRg, RV Rg;
1: Set NnoI = 0, Nfnei = 0, It = 0;
2: repeat
3: Set It = It + 1, L< = ∅, flagV Rg = 0;
4: for all i ∈ L such that ‖x − zi‖ ≤ RTRg do
5: Set L< = L< ∪ {i};
6: end for
7: if L< �= ∅ then
8: Compute dmax = max{‖x − zi‖} for all i ∈ L<;
9: δ = (1 + rand)dmax;

10: else
11: δ = (1 + rand)Ledge;
12: end if
13: Using x and Algorithm 2, provide xmin (after Nfexp function evaluations);
14: Set Nfnei = Nfnei + Nfexp;
15: if |L| < NTLmax then
16: Update TL: set |L| = |L| + 1, zi = x, f i = f where i = |L|;
17: else
18: Update TL: set zW = x, fW = f ;
19: end if
20: for all i such that ‖x − V Ri‖ < RV Rg do
21: Set V Rf i = V Rf i + 1; Set flagV Rg = 1;
22: end for
23: if flagV Rg = 0 then
24: Set NV Rg = NV Rg + 1, V Rj = x and V Rf j = 1 where j = NV Rg;
25: end if
26: if f(xmin) < f then
27: Set NnoI = 0;
28: else
29: Set NnoI = NnoI + 1;
30: end if
31: Set x = xmin, f = f(xmin);
32: until NnoI ≥ NnoImax or It ≥ ItNmax

33: Identify xmin, fmin in TL;

2.3 Intensification Search Procedure

Finally, the “intensification search procedure” is used to intensify the search
around the best point found from the main loop of S-TS algorithm (see line 25
in Algorithm 3). It is simple to implement and it does not require any derivative
information. Details of this procedure are shown in the Algorithm6.

The search begins with a central point x (which on entry is the best point
found so far, xbetter) and a set of n trial approximations

si = x + δ vi, (5)
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where vi ∈ R
n is a normalized vector with random components in [−1, 1], for

each i = 1, . . . , n.
This procedure follows a strategy similar to the “exploration search proce-

dure” although with important differences. For each point si a random direction
vector vi is generated and the reduction of the step size (when the best of the
trial points has not improved over the central point x) is more moderate and δ
is not allowed to fall below 1E − 06. We remark that when the best of the trial
points improves relative to x, the algorithm resets δ to a fraction of the value
on entry only if there was no improvement in the previous iteration. Further-
more, the termination of the algorithm is activated only when the best of the n
trial approximations, denoted by xmin, satisfies the stopping conditions as shown
in (4), or when the number of function evaluations required by the algorithm
exceeds the target Nf int

max = Nfemax −Nfe (the remaining function evaluations
until the maximum Nfemax is attained, where Nfe is the function evaluations
required until “intensification search procedure” is invoked).

Algorithm 6. Intensification search algorithm
Require: n, x, f , l, u, δ, Nf int

max, ε, f∗;
1: Set Nfint = 0, δ0 = δ, flagnoMove = 0;
2: Based on x and δ, generate si, i = 1, . . . , n using Algorithm 7;
3: repeat
4: Compute f(si), i = 1, . . . , n; Update Nfint; Identify xmin, fmin;
5: if fmin < f then
6: Set dmin = xmin − x, x = xmin, f = fmin;
7: Compute si = si + dmin, project si componentwise into [l, u], i = 1, . . . , n;
8: if flagnoMove = 1 then
9: Set δ = 0.95δ0, δ0 = δ, flagnoMove = 0;

10: end if
11: else
12: Set δ = max{0.75δ, 1E − 06}, flagnoMove = 1;
13: Based on x and δ, generate si, i = 1, . . . , n using Algorithm 7;
14: Set xmin = x, fmin = f ;
15: end if
16: until |fmin − f∗| ≤ ε max {1, |f∗|} or Nfint ≥ Nf int

max

Algorithm 7. Random intensification trial points algorithm
Require: n, x, l, u, δ;
1: for i = 1, . . . , n do
2: Generate vi ∈ R

n with random components in [−1, 1] and ‖vi‖ = 1;
3: Compute si = x + δ vi; Project si componentwise into [l, u];
4: end for
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3 Numerical Results

To analyze the performance of our Algorithm 3, we use two sets of benchmark
problems. The first set contains 9 problems and is known as Jones set: Branin
(BR) with n = 2, Camel Six-Hump (C6) with n = 2, Goldstein & Price (GP)
with n = 2, Hartman 3 (H3) with n = 3, Hartman 6 (H6) with n = 6, Shekel 5
(S5) with n = 4, Shekel 7 (S7) with n = 4, Shekel 10 (S10) with n = 4, Schubert
(SHU) with n = 2 (see the full description in [1]).

The second set contains sixteen problems: Booth (BO) with n = 2, Branin
(BR) with n = 2, Camel Six-Hump (C6) with n = 2, Dekkers & Aarts (DA) with
n = 2, Goldstein & Price (GP) with n = 2, Hosaki (HSK) with n = 2 Matyas
(MT) with n = 2, McCormick (MC) with n = 2, Modified Himmelblau (MHB)
with n = 2, Neumaier2 (NF2) with n = 4, Powell Quadratic (PWQ) with n = 4,
Rastrigin with n = 2, n = 5, n = 10 (RG-2, RG-5, RG-10), Rosenbrock (RB)
with n = 2 and Wood (WF) with n = 4, see the full description in [17].

The MATLAB� (MATLAB is a registered trademark of the MathWorks,
Inc.) programming language is used to code the algorithm and the tested prob-
lems.

The values for the parameters are set as follows: Ledge = 0.1mini=1,...,n(ui −
li), RV Rg = 2Ledge, RTRg = 0.2Ledge, NnoImax = 2n. Unless otherwise stated,
in the stopping condition (4), the tolerance is set to ε = 1E −04, and Nfemax =
50000. We also set εTS = 1E + 02 ε, NfeTS = 0.2Nfemax and Perc = 0.25.
In the “neighborhood search procedure”, we set the number of iterations with
consecutive no improvement points NnoImax = 2n, and ItNmax = 3n, NTLmax =
5n. The parameter for the “exploration search procedure” is Itmax = 2n.

Because there are elements of randomness in the algorithm, each problem
was solved several times (100 and 30 depending on the set of problems) by the
algorithm using different starting seed for the pseudo-random number generator.

The subsequent tables report the average number of function evaluations
required to achieve the stopping condition (4). To test the robustness of the
algorithm, the rate of success, i.e., the percentage of runs in which the algorithm
obtains a solution satisfying (4), is also shown (inside parentheses). The average
number of the objective function evaluations is evaluated only in relation to the
successful runs.

With the Tables 1 and 2, we aim to compare our results to those of the
Enhanced Continuous TS (ECTS) in [7], the DTS method [1], the Continuous
greedy randomized adaptive search procedure (C-GRASP) [18], the Hybrid Scat-
ter TS (H-STS) [16], a simulated annealing hybridized with a heuristic pattern
search (SAHPS) [14], a mutation-based artificial fish swarm algorithm (m-AFS)
[19], and an improved TS with the Nelder-Mead local search (iTS-NM) avail-
able in [12]. The results obtained from our algorithm emanate from the two
implemented scenarios when a component of a point lies outside [lj , uj ]:

Case 1 - projecting randomly into [lj , uj ];
Case 2 - projecting to the bound lj or uj .
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A comparison with the results of the opposition-based differential evolution
(ODE) [20], where the error tolerance in (4) is reduced to ε = 1E − 08 and
Nfemax = 1E + 06 (only for the Case 1 scenario) is also shown. The results of
the listed algorithms are taken from the original papers.

Table 1. Average number of function evaluations and rate of success over 100 runs

Algorithm 3† ECTS †,a DTS †,b C-GRASP †,c H-STS †,d

Case 1

BR 242 (100) 245 (100) 212 (100) 10090 (100) 1248 (100)

C6 199 (100) – – – –

GP 338 (100) 231 (100) 230 (100) 53 (100) 809 (100)

H3 708 (100) 548 (100) 438 (100) 1719 (100) 298 (100)

H6 1015 (100) 1520 (100) 1787 (83) 29894 (100) 1263 (100)

S5 1445 (99) – 819 (75) 9274 (100) 9524 (100)

S7 1586 (97) – 812 (65) 11766 (100) 3818 (100)

S10 1742 (96) – 828 (52) 17612 (100) 3917 (100)

SHU 456 (100) 370 (100) 274 (92) 18608 (100) 1245 (100)
† Results based on ε = 1E − 04 in (4) and Nfemax = 50000.
a Results reported in [7]; b results reported in [1];
c Results reported in [18]; d results reported in [16] (25 runs).
“–” Information not available.

First, when the results of Case 1 are compared to those of Case 2, it is possible
to conclude that Case 1 is slightly more robust and efficient in general. The first
comparison is with the results of DTS. Our S-TS algorithm wins clearly as far as
robustness is concerned. When we compare our results to those of C-GRASP and
H-STS - algorithms with similar robustness level - we conclude that Algorithm 3
wins on efficiency. From Table 2, it is possible to conclude that Algorithm 3 wins
on robustness - although requires more function evaluations - when compared
to SAHPS and iTS-NM. The comparison with ODE is also favourable to our
algorithm.

Table 3 contains the results obtained with the second set of problems and
aims to compare our Algorithm 3 to the stochastic coordinate descent method
(St-CS) available in [21]. A comparison with the results of the ODE [20], where
the error tolerance is reduced to ε = 1E−08 and Nfemax = 1E+06 (only for the
Case 1 scenario) is also shown. We note that Case 2 is now slightly more efficient
than Case 1. The comparison with St-CS is favourable to the Algorithm3 as far
as robustness and efficiency are concerned. From the comparison with ODE, we
may conclude that Algorithm 3 was not able to converge to the solution, with
the required accuracy, on 4 of the 16 tested problems, but produced very good
results (in terms of robustness and efficiency) to the other problems.
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Table 2. More comparisons of function evaluations and rate of success over 100 runs

Algorithm 3† SAHPS †,a m-AFS †,b iTS-NM †,c Algorithm 3§ ODE §,d

Case 2 Case 1

BR 255 (100) 318 (100) 475 (–) 178 (100) 656 (100) 2804 (100)

C6 192 (100) – 247 (–) – n.a. (0) 2366 (100)

GP 354 (100) 311 (100) 417 (–) 165 (100) 871 (100) 2370 (100)

H3 751 (100) 517 (95) 1891 (–) 212 (100) 1573 (100) 1796 (100)

H6 1143 (100) 997 (72) 2580 (–) 880 (66) 3276 (100) n.a. (0)

S5 1940 (84) 1073 (48) 1183 (–) 777 (75) 3067 (100) n.a. (0)

S7 1686 (94) 1059 (57) 1103 (–) 751 (89) 2594 (97) n.a. (0)

S10 1778 (82) 1031 (48) 1586 (–) 751 (89) 2841 (93) 2316 (100)

SHU 504 (100) 450 (86) 523 (–) 402 (100) 908 (100) –
† Results based on ε = 1E − 04 in (4) and Nfemax = 50000;
§ results based on ε = 1E − 08 in (4) and Nfemax = 1E + 06.
a Results reported in [14]; b results reported in [19] (30 runs);
c results reported in [12]; d results reported in [20] (50 runs).
“–” Information not available; “n.a.” not applicable.

Table 3. Average number of function evaluations and rate of success over 30 runs

Algorithm 3† St-CS †,a Algorithm 3§ ODE §,b

Case 1 Case 2 Case 1

BO 201 (100) 244 (100) 1555 (100) 686 (100) –

BR 244 (100) 232 (100) 239 (100) 650 (100) 2804 (100)

C6 175 (100) 224 (100) 512 (100) n.a. (0) 2366 (100)

DA 518 (100) 485 (100) 1020 (100) n.a. (0) 1116 (100)

GP 326 (100) 353 (100) 1564 (100) 790 (100) 2370 (100)

HSK 134 (100) 175 (100) 110 (100) n.a. (0) 1654 (100)

MT 128 (100) 120 (100) 2159 (100) 436 (100) 1782 (100)

MC 134 (100) 128 (100) 172 (100) n.a. (0) 1528 (100)

MHB 450 (100) 449 (93) 1450 (100) 937 (83) –

NF2 10236 (33) 8962 (40) n.a. (0) 13497 (3) 364300 (8)

PWQ 1230 (100) 1130 (100) n.a. (0) 52084 (100) 3998 (100)

RG-2 544 (97) 515 (87) 2074 (100) 1023 (93) –

RG-5 1532 (100) 1356 (100) 6981 (100) 4080 (100) –

RG-10 4241 (100) 4107 (100) 20202 (100) 12068 (100) 170200 (24)

RB 905 (100) 939 (100) n.a. (0) 2324 (100) –

WF 13034 (100) 11856 (100) n.a. (0) 23305 (100) 54136 (84)
† Results based on ε = 1E − 04 in (4) and Nfemax = 50000;
§ results based on ε = 1E − 08 in (4) and Nfemax = 1E + 06.
a Results reported in [21]; b results reported in [20] (50 runs).
“–” Information not available; “n.a.” not applicable.
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4 Conclusions

A simplified version of the TS metaheuristic, denoted by S-TS, is presented.
The simplifications are concerned mainly with the diversification, exploration
and intensification procedures. When searching in the neighborhood of a given
central point, both “exploration search procedure” and “intensification search
procedure” rely solely on randomly direction vectors. In the “diversification pro-
cedure”, our S-TS algorithm also allows the acceptance of a randomly generated
point that falls inside any already visited region, as long as its visited frequency
is small. The new algorithm has been tested and compared to other well-known
metaheuristics in the literature.

The testified robustness and efficiency when solving BCGO problems are
encouraging and induce us to extend this simplified TS algorithm to solving
general nonlinear constrained global optimization problems. The idea is to handle
constraint violation and objective function values separately although giving
priority to trial points that are feasible with respect to the general constraints.
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