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Abstract. Many industrial optimization problems are sparse and can
be formulated as block-separable mixed-integer nonlinear programming
(MINLP) problems, where low-dimensional sub-problems are linked by
a (linear) knapsack-like coupling constraint. This paper investigates
exploiting this structure using decomposition and a resource constraint
formulation of the problem. The idea is that one outer approximation
master problem handles sub-problems that can be solved in parallel. The
steps of the algorithm are illustrated with numerical examples which
shows that convergence to the optimal solution requires a few steps of
solving sub-problems in lower dimension.

Keywords: Decomposition · Parallel computing · Column generation ·
Global optimization · Mixed-integer nonlinear programming

1 Introduction

Mixed Integer Nonlinear Programming (MINLP) is a paradigm to optimize sys-
tems with both discrete variables and nonlinear constraints. Many real-world
problems are large-scale, coming from areas like machine learning, computer
vision, supply chain and manufacturing problems, etc. A large collection of real-
world MINLP problems can be found in MINLPLib [13].

In general, the problems are hard to solve. Many approaches have been
implemented over the last decades. Most of the nonconvex MINLP deterministic
solvers apply one global branch-and-bound (BB) search tree [3,4], and compute
a lower bound by a polyhedral relaxation, like ANTIGONE [8], BARON [11],
Couenne [1], Lindo API [7] and SCIP [12]. The challenge for these methods is to
handle a rapidly growing global search tree, which fills up the computer mem-
ory. An alternative to BB is successive approximation. Such methods solve an
optimization problem without handling a single global search tree. The Outer-
Approximation (OA) method [5,6,9,15] and the Extended Cutting Plane method
[14] solve convex MINLPs by successive linearization of nonlinear constraints.
One of the challenges we are dealing with is how to handle this for nonconvex
MINLP problems.
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In this paper, we focus on practical potentially high dimension problems,
which in fact consist of sub-problems that are linked by one coupling constraint.
This opens the opportunity to reformulate the problem as a resource constraint
bi-objective problem similar to the multi-objective view used in [2] for integer
programming problems. We investigate the potential of this approach combining
it with Decomposition-based Inner- and Outer-Refinement (DIOR), see [10].

To investigate the question, we first write the general problem formulation
with one global constraint and show that this can be approached by a resource
constrained formulation in Sect. 2. Section 3 presents a possible algorithm to
solve such problems aiming at a guaranteed accuracy. The procedure is illus-
trated stepwise in Sect. 4. Section 5 summarizes our findings.

2 Problem Formulation and Resource Constraint
Formulation

We consider block-separable (or quasi-separable) MINLP problems where the set
of decision variables x ∈ R

n is partitioned into |K| blocks

min cT x s. t. aT x ≤ b, xk ∈ Xk, k ∈ K (1)

with
Xk := {y ∈ [xk, xk] ⊂ R

nk |yj ∈ Z, j ∈ Jk, gki(y) ≤ 0, i ∈ Ik}. (2)

The dimension of the variables xk ∈ R
nk in block k is nk such that n =

∑

k∈K

nk.

The vectors x, x ∈ R
n denote lower and upper bounds on the variables. The linear

constraint aT x ≤ b is called the resource constraint and is the only global link
between the sub-problems. We assume that the part ak corresponding to block k
has ak �= 0, otherwise the corresponding block can be solved independently. The
constraints defining feasible set Xk are called local. Set Xk is defined by linear
and nonlinear local constraint functions, gki : R

nk → R, which are assumed
to be bounded on the set [xk, xk]. The linear objective function is defined by
cT x :=

∑

k∈K

cT
k xk, ck ∈ R

nk . Furthermore, we define set X :=
∏

k∈K

Xk.

The Multi-objective approach of [2] is based on focusing on the lower dimen-
sional space of the global constraints of the sub-problems rather than on the
full n−dimensional space. We will outline how they relate to the so-called Bi-
Objective Programming (BOP) sub-problems based on a resource-constrained
reformulation of the MINLP.

2.1 Resource-Constrained Reformulation

If the MINLP (1) has a huge number of variables, it can be difficult to solve
it in reasonable time. In particular, if the MINLP is defined by discretization
of some infinitely dimensional variables, like in stochastic programming or in
differential equations. For such problems, a resource-constrained perspective can
be promising.
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The idea is to view the original problem (1) in n–dimensional space from two
objectives; the objective function and the global resource constraint. Define the
2 × nk matrix Ck by

Ck =
[

cT
k

aT
k

]

(3)

and consider the transformed feasible set:

Vk := {vk := Ckxk : xk ∈ Xk} ⊂ R
2. (4)

The resource-constrained formulation of (1) is

min
∑

k∈K

vk0 s. t.
∑

k∈K

vk1 ≤ b,

vk ∈ Vk, k ∈ K.

(5)

The approach to be developed uses the following property.

Proposition 1. Problem (5) is equivalent to the two-level program

min
∑

k∈K

v∗
k0

s. t.
∑

k∈K

vk1 ≤ b,
(6)

of finding the appropriate values of vk1 where v∗
k0 is the optimal value of sub-

problem RCPk given by

v∗
k0 := min cT

k xk s. t. xk ∈ Xk, Ck1xk ≤ vk1. (7)

Proof. From the definition it follows that the optimum of (6) coincides with

min cT x s. t. x ∈ X, aT x ≤ b.

��
This illustrates the idea, that by looking for the right assignment vk1 of the
resource, we can solve the lower dimensional sub-problems in order to obtain
the complete solution. This provokes considering the problem as a potentially
continuous knapsack problem. Approaching the problem as such would lead hav-
ing to solve the sub-problems many times to fill a grid of state values with a value
function and using interpolation. Instead, we investigate the idea of considering
the problem as a bi-objective one, where we minimize both, vk0 and vk1.

2.2 Bi-objective Approach

A bi-objective consideration of (5) changes the focus from the complete image
set Vk to the relevant set of Pareto optimal points. Consider the sub-problem
BOPk of block k as

min Ck xk s. t. xk ∈ Xk. (8)
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The Pareto front of BOPk (8) is defined by a set of vectors, vk = Ckxk with
xk ∈ Xk with the property that there does not exist another feasible solution
w = Ckyk with yk ∈ Xk, which dominates vk, i.e., for which wi ≤ vki for i = 0, 1,
and wi < vki for i = 0 or i = 1. We will call an element of the Pareto front a
nondominated point (NDP). In other words, a NDP is a feasible objective vector
for which none of its components can be improved without making at least one
of its other components worse. A feasible solution xk ∈ Xk is called efficient (or
Pareto optimal) if its image vk = Ckxk is a NDP, i.e. it is nondominated. Let us
denote the Pareto front of NDPs of (8) as

V ∗
k := {v ∈ Vk : v is a NDP of (8)}.

Proposition 2. The solution of problem (5) is attained at v∗ ∈ V ∗.

min
∑

k∈K

vk0 s. t.
∑

k∈K

vk1 ≤ b,

vk ∈ V ∗
k , k ∈ K.

(9)

Proof. Assume there exist parts of v̂∗
k /∈ V ∗ of an optimal solution v∗, i.e the

parts are dominated. This implies ∃wk ∈ V ∗
k which dominates v∗

k, i.e. wki ≤ v∗
ki

for i = 0, 1. Consider v̂ the corresponding solution where in v∗ the parts v∗
k are

replaced by wk. Then v̂ is feasible for RCP given
∑

k∈K v̂k1 ≤ ∑
k∈K v∗

k1 ≤ b
and its objective value is at least as good,

∑
k∈K v̂k0 ≤ ∑

k∈K v∗
k0, which means

that the optimum is attained at NDP point v̂ ∈ V ∗. ��
In bi-objective optimization, a NDP can be computed by optimizing a

weighted sum of the objectives

min dT Ckxk s. t. xk ∈ Xk. (10)

For a positive weight vector d ∈ R
2, an optimal solution of (10) is an efficient

solution of (8), i.e., its image is nondominated. Such a solution and its image are
called a supported efficient solution and a supported NDP, respectively. Thus, an
efficient solution xk is supported if there exists a positive vector d for which xk

is an optimal solution of (10), otherwise xk is called unsupported.

Example 1. To illustrate the concepts, we use a simple numerical example which
can be used as well to follow the steps of the algorithms to be introduced.
Consider n = 4, K = {1, 2}, c = (−1,−2,−1,−1), a = (2, 1, 2, 1), b = 10,
x = (0, 0, 2, 1) and x = (5, 1.5, 5, 3). Integer variables are J1 = {1}, J2 = {3}
and the local constraints are given by g11(x1, x2) = 3x2 − x3

1 + 6x2
1 − 8x1 − 3

and g21(x3, x4) = x4 − 5
x3

− 5. The optimal solution is x = (1, 1.5, 2, 2.5)
with objective value −8.5. The corresponding points in the resource space are
v1 = (−4, 3.5) and v2 = (−4.5, 6.5).

Figure 1 sketches the resource spaces V1 and V2 with the corresponding Pareto
front. In blue, now the dominated part of Vk not covered by the Pareto front V ∗

k

is visible. The number of supported Pareto points is limited.
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The example suggests that we should look for an optimal resource vk in a two-
dimensional space, which seems more attractive than solving an n-dimensional
problem. Meanwhile, sub-problems should be solved as few times as possible.

Fig. 1. Resource constraint spaces V1 and V2 in blue with extreme points as circles.
The Pareto front is in black. Supported NDPs are marked with a green square. The
red squares represent the Ideal vk (left under) and the Nadir point vk (right-up).

3 Algorithmic Approach

The optimization of problem (1) according to Proposition 1 reduces to finding
v∗

k in the search space which according to Proposition 2 can be found in the box
Wk = [vk, vk]. First of all, if the global constraint is not binding, dual variable
μ = 0 and the sub-problems can be solved individually. However, usually μ > 0
gives us a lead of where to look for v∗

k. Notice that if v∗
k is a supported NDP, it

can be found by optimizing sub-problem

yk(β) ∈ argmin{cT
k x + βaT

k x, x ∈ Xk}, (11)

for β = μ. In that case, v∗
k = CT

k yk. However, we do not know the dual value
μ beforehand and moreover, v∗

k can be a nonsupported NDP. Notice that the
resulting solution yk is an efficient point and Ckyk is a supported NDP for β ≥ 0.
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To look for the optimum, we first create an outer approximation (OA) Wk of
V ∗ by adding cuts using an LP master problem to estimate the dual value and
iteratively solving 11. Second, we will use the refinement of Wk in a MIP OA,
which may also generate nonsupported NDPs.

3.1 LP Outer Approximation

Initially, we compute the Ideal and Nadir point vk and vk for each block k. This
is done by solving (11) with β = ε, β = 1

ε respectively. Let r1 = Ckyk(ε) and
r2 = Ckyk( 1ε ), then vk = (r1,0, r2,1)T and vk = (r2,0, r1,1)T . These vectors bound
the search space for each block and initiate a set Pk of outer cuts. We use set
Rk = {(r, β)} of supported NDPs with a corresponding weight β, to define local
cut sets

Pk = {v ∈ [vk, vk](1, β)v ≥ (1, β)r,∀(r, β) ∈ Rk}.

An initial cut is generated using the orthogonal vector of the plane between r1
and r2, i.e. find yk(βk0) in (11) with

βk0 =
vk0 − vk0

vk1 − vk1

. (12)

Notice that if r1 is also a solution of the problem, then apparently there does
not exist a (supported) NDP v at the left side of the line through r1 and r2,
i.e. (1, β)v < (1, β)r1. The hyperplane is the lower left part of the convex hull of
the Pareto front. Basically, we can stop the search for supported NDPs for the
corresponding block.

An LP outer approximation of (5) is given by

w = argmin
∑

k∈K

vk0 s. t.
∑

k∈K

vk1 ≤ b,

vk ∈ Pk, k ∈ K.

(13)

It generates a relaxed solution w and an estimate β of the optimal dual μ.
Then β is used to generate more support points by solving problem (11). Notice
that for several values of β the same support point Ckyk(β) may be generated.
However, each value leads to another cut in Pk. Moreover, the solution w of (13)
will be used later for refinement of the outer approximation. A sketch of the
algorithm is given in Algorithm 1.

3.2 MIP Outer Approximation

An outer approximation Wk of the Pareto front V ∗
k is given by the observation

that the cone {v ∈ R
2, v ≥ v} contains the Pareto front. Basically, we refine

this set as a union of cones based on all found NDPs. We keep a list Pk =
{pk0, pk1, . . . , pk|Pk|} of NDPs of what we will define as the extended Pareto
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Algorithm 1. Generate OA
1: function initOA(ε, qmax)
2: for k ∈ K do
3: stopk ← false

4: Use (8) to determine vk and vk via r1 and r2
5: Determine βk0 of (12). Solve (11) with βk0

6: if r1 ∈ argmin of (11) then
7: stopk ← true, stop searching for supported NDPs
8: else Rk ← {(Ckyk(βk0), βk0)}
9: q ← 1

10: (w, βq) ← (primal, dual) solution (13)
11: repeat
12: for k ∈ K do
13: if not stopk and βq �= βk0 then
14: yk(βq) ← solution (11), Store (Ckyk(βq), βq) in Rk

15: q ← q + 1, (w, βq) ← (prima, dual) solution (13) using Rk to define Pk

16: until (∃j = 1, . . . , q − 1, |βq − βj | < ε) or (q = qmax) or (∀k ∈ K, stopk)
17: return Rk, w, stopk

front ordered according to the objective value pk00 < pk10 < . . . < pk|Pk|0.
Initially, the list Pk has the supported NDPs we found in Rk. However, we will
generate more potentially not supported NDPs in a second phase. Using list Pk,
the front V ∗

k is (outer) approximated by Wk = ∪Wki with

Wki = {v ∈ R
2|v0 ≥ pk(i−1)0, v1 ≥ pki1}.

We solve a MIP master problem (starting with the last solution found by the
LP-OA) to generate a solution w, for which potentially not for all blocks k we
have wk ∈ V ∗

k . Based on the found points, we generate new NDPs vk to refine set
Wk, up to convergence takes place. Moreover, we check whether vk is supported
NDP, or generate a new supported NDP in order to add a cut to Pk.

The master MIP problem is given by

w = argmin
∑

k∈K

vk0 s. t.
∑

k∈K

vk1 ≤ b,

vk ∈ Pk ∩ Wk, k ∈ K,

(14)
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which can be implemented as

w = argmin
∑

k∈K

vk0

s. t.
∑

k∈K

vk1 ≤ b,

vk ∈ Pk, k ∈ K,

vk0 ≥ vk0 +
|Pk|∑

i=1

(pk(i−1)0 − v0)δki, k ∈ K,

vk1 ≥ vk1 +
|Pk|∑

i=1

(pi0 − vk1)δki, k ∈ K

|Pk|∑

i=1

δki = 1, k ∈ K,

δki ∈ {0, 1}, i = 1, . . . , |Pk|, k ∈ K.

(15)

Basically, if the solution w of (14) corresponds to NDPs, i.e. wk ∈ V ∗
k for all

blocks k, we are ready and solved the problem according to Proposition 2. If
wk /∈ V ∗

k , we refine Wk such that wk is excluded in the next iteration. In order
to obtain refinement points p, we introduce the extended Pareto front, which
also covers the gaps. Define the extended search area as

V k = [vk, vk] \ {w ∈ R
2|∃v ∈ V ∗

k , w < v}. (16)

Then the extended Pareto front is given by

V
∗
k = {v ∈ R

2|v is NDP of min v s. t. v ∈ V k}. (17)

To eliminate wk in the refinement, we perform line-search v = wk +λ(1, β)T , λ ≥
0 in the direction (1, β)T , with

β =
v1 − w1

v0 − w0
. (18)

A possible MINLP sub-problem line search is the following:

λk = argmin λ

s. t. Cx ≤ wk + λ(1, β)T ,

λ ≥ 0, x ∈ Xk

(19)

and taking vk = wk + λk(1, β)T as NDP of the (extended) Pareto front. Notice
that if λk = 0, apparently wk ∈ V ∗

k .
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Algorithm 2. MIPOA decomposition
1: function OAsubs(ε)
2: Take the results from Algorithm 1
3: For all k, initiate list Pk with the NDPs in Rk

4: w ← solution LP OA master (13)
5: repeat
6: for k ∈ K do
7: if wk /∈ Pk then
8: find vk solving (19)
9: Insert vk in list Pk and update Wk

10: if (wk �= vk) and (not stopk) then
11: β ← vk1−wk1

vk0−wk0

12: Solve (11) and add (Ckyk(β), β) to Rk, update Pk

13: w ← solution MIP master (14)
14: until ∀k ∈ K, ∃p ∈ Pk, ‖wk − p‖ < ε

Moreover, we try to generate an additional cut by having a supported NDP.
The complete idea of the algorithm is sketched in Algorithm 2. Let zk = wk0, if
wk ∈ Pk and zk = vk0 else. Then

∑
zk provides an upper bound on the optimal

function value. In this way, an implementation can trace the convergence towards
the optimum. Based on the concept that in each iteration the MIP-OA iterate
w is cut out due to the refinement in vk, it can be proven that the algorithm
converges to an optimal resource allocation v∗.

4 Numerical Illustration

In this section, we use several instances to illustrate the steps of the presented
algorithms. All instances use an accuracy ε = 0.001 and we focus on the num-
ber of times OA-MIP (14) is solved and sub-problem (11) and line-search sub-
problem (19). First we go stepwise through example problem. Second, we focus
on a concave optimization problem known as ex 2 1 1 of the MINLPlib [13]. At
last, we go through the convex and relatively easy version of ex 2 1 1 in order
to illustrate the difference in behaviour.
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4.1 Behaviour for the Example Problem

Fig. 2. Generated cuts (green) and refinement (mangenta) define the outer approxi-
mation after one iteration for both search areas. (Color figure online)

First of all, we build OA Wk of the Pareto front following Algorithm 1.

Ideal and Nadir point for each block, W1 =
[(−8

0

)

,

(
0

11.5

)]

and W2 =
[(−6

5

)

,

(−3
11

)]

are found by minimizing cost and resource. Based on these

extreme values, we run sub-problem (11) for step 8 in Algorithm 1 using direc-
tion vectors β1,0 = 0.6957 and β2,0 = 0.5 according to (12). For this specific
example, we reach the optimal solution corresponding to (v1,0, v1,1, v2,0, v2,1) =
(−4, 3.5,−4.5, 6.5)T which still has to be proven to be optimal.

One can observe the first corresponding cuts in Fig. 2. We run the LP OA
which generates a dual value of βk1 = 0.6957, which corresponds to the angle of
the first cut in the V1 space. This means that sub-problem (11) does not have
to be run for the first block, as it will generate the same cut. For the second
block, it finds the same support point v2 = (−4.5, 6.5)T , but adds a cut with a
different angle to P2, as can be observed in the figure.

Algorithm 2 first stores the found extreme points and optimal sub-problem
solutions in point sets Pk. The used matlab script provides an LP-OA solution of
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Fig. 3. Outer approximation of the Pareto front given by generated cuts (green) and
refinement (mangenta) after convergence of the algorithm to the optimal resource allo-
cation. (Color figure online)

w = (−4.0138, 3.5198,−4.4862, 6.4802), which is similar to the optimal solution
with rounding errors. Solving the line search (19) provides a small step into the
feasible area of λ1 = 0.014 and λ2 = 0.0015 in the direction of the Nadir point.

Due to the errors, both blocks do not consider vk = wk and add a cut
according to step 12 in the algorithm. Interesting enough is that the MIP OA
in the space as drawn in Fig. 2 reaches an infeasible point w, i.e. wk ∈ Wk, but
wk /∈ Vk further away from the optimum. This provides the incentive for the
second block to find v1 in the extended Pareto set as sketched in Fig. 3. This
helps to reach the optimum with an exact accuracy.

For this instance, the MIP OA was solved twice and in the end contains 6
binary variables. Both blocks solve two sub-problems to reach the Ideal and 2
times the line search problem (19). The first block solves sub-problem (11) 3
times and the second block once more to generate an additional cut. In general,
in each iteration at most two sub-problems are solved for each block. The idea
is that this can be done in parallel. Notice that the refinement causes the MIP
OA to have in each iteration at most |K| additional binary variables.
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4.2 Behaviour for ex 2 1 1

r1 

r2 r2 

v1 

w1 

Fig. 4. At the left, the Pareto front of all sub-problems combined. The minimum
resource point r2 = (0, 0)T is common for all sub-problems and the minimum cost
solution is given by a blue circle. The only cut (line between r1 and r2) is sketched
in green. At the right, OA for V1 after one iteration. The line search between w1 and
Nadir point providing v1 and first refinement of the OA (mangenta) are sketched.
(Color figure online)

This instance can be characterised as a worst-case type of knapsack problem,
where the usual heuristic to select the items with the best benefit-weight ratio
first provides the wrong solution. As we will observe, a similar behaviour can be
found using the OA relaxations. All variables are continuous and we are implic-
itly minimizing a concave quadratic function. In our description n = 10, c =
(0, 1, 0, 1, 0, 1, 0, 1, 0, 1), a = (20, 0, 12, 0, 11, 0, 7, 0, 4, 0), b = 40, K = {1, 2, 3, 4, 5}
and divides vector x into 5 equal blocks xk = (x2k−1, x2k), k ∈ K. The local con-
straints are given by gk(y, z) = qky − 50y2 − z, where q = (42, 44, 45, 47, 47.5).
The bounds on the variables are given by [xk1, xk1] = [0, 1] and [xk2, xk2] =
[qk − 50, 0], k ∈ K.
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r1

r2

v1

w1

Fig. 5. Final refinement to reach the accuracy of ε = 0.001 of the approximation w
of the optimal solution; w1 given by a black star. In each iteration a new refinement
point v1 is generated, indicated by a black triangle.

The optimal solution is x = (1,−8, 1,−6, 0, 0, 1,−3, 0, 0) with objective value
−17. However, the LP OA relaxation provides a first underestimate of the objec-
tive of −18.9, where all subproblems take point r1 apart from the first one, where
w1 = (−2.4, 6). The solution and its consequence for the first iteration is sketched
in Fig. 4. One can also observe the resulting line-search to find the first solution
v1 to come to the first refinement. The bad approximation of the first solution
corresponds to a result of a greedy knapsack algorithm. For this instance, an
iterative refinement is necessary that generates the points vk up to convergence
is reached.

Another typical characteristic is the concave shape of the Pareto front. This
implies that the first cut is in fact the green line between r1 and r2. This is
detected in step 6 of Algorithm 1 and implies that there are no more supported
NDPs than r1 and r2, so that one does not have run sub-problem (11) anymore.
However, the algorithm requires to solve for more and more sub-problems the
line search problem (19) in each MIP OA iteration.

In total, the algorithm requires 9 steps of the MIP OA algorithm to reach
the accuracy. In the end, the problem contains 26 binary variables δ over all
subproblems. The intensity is best depicted by the refinement of W1 in Fig. 5.
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The algorithm requires 3 times solving sub-problem (11) to generate r1, r2 and
to find the cut for each block. In total it solved the line search (19) 21 times.

4.3 Behaviour for a Convex Variant of ex 2 1 1

Fig. 6. At the left, the Pareto front of all sub-problems combined. The minimum
resource point r2 = (0, 0)T is common for all sub-problems and the minimum cost
solution is given by a blue circle. The first cut is illustrated by a green line. At the
right, OA for V1 after one iteration. Actually, it stays the same during future iterations,
as w1 coincides numerically with a found NDP. (Color figure online)

Convex problems are usually considered easy to solve. The idea of having a
so-called zero duality gap is captured by solving the problem already by the LP
OA using the dual value to generate cuts. We use the data of the former instance,
but are now implicitly minimizing a convex quadratic function. Again n = 10,
c = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1), a = (20, 0, 12, 0, 11, 0, 7, 0, 4, 0), but now taking b =
15 in order to have a binding global constraint. The local constraints are given
by gk(y, z) = −qky + 50y2 − z, where q = (42, 44, 45, 47, 47.5). The bounds on
the variables are given by [xk1, xk1] = [0, 1] and [xk2, xk2] = [0,− q2

k

200 ], k ∈ K.
The optimal objective function value is −45.62. The Pareto fronts do not

exhibit gaps, but are smooth quadratic curves. This means that solving the
weighted problem with different values of β provides different optima. In Fig. 6,
all Pareto fronts are depicted together with the first generated cut. However, the
LP OA relaxation of Algorithm 1 provides a first relatively sharp underestimate
of the objective of −45.7. This illustrates the idea of decomposition for convex
problems where a good value for the dual provides the optimum for the primal
problem.

The big difference with the concave case is that now in each iteration in
principle new cuts can be generated. Considering the first block V1, this does
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not really happen, as the optimum w1 coincides with a point v1 on the Pareto
front found by the line search. Figure 6 illustrates at the right the MIP OA
based on the points in set P1 on the Pareto front. Further refinement does not
improve the bound, as the optimum has already been approximated in the first
iteration.

5 Conclusions

Mixed Integer Nonlinear Programming (MINLP) is a strong concept for formu-
lating practical optimization problems. Solvers based on the branch and bound
concept, usually suffer from the number of variables n of the problem. For
instances having one global inequality, we investigated the potential of using
decomposition requiring sub-problems of a smaller size nk, k ∈ K to be solved
using a MIP master problem exploiting the concept of resource constraint pro-
gramming and a Pareto front.

The result of our investigation is a decomposition algorithm aiming at con-
vergence up to a guaranteed accuracy. In each iteration, a MIP master problem
is solved and at most 2|K| sub-problems, that can be solved in parallel. The pro-
cess is illustrated with graphical examples which are solved up to an accuracy
of ε = 0.001 after a few iterations.

At the moment, we are working on designing algorithms for instances with
more than one global constraint, resulting in a Pareto set in higher dimension.
The approach presented here can be extended and proven to converge. However,
to obtain an algorithm with reasonable practical performance requires rethinking
the cut generation in a resource space of higher dimension. We will report on
this topic in future papers.
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