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Abstract. This paper is concerned with an extension of the heuris-
tic DIRECT method, presented in [8], to solve nonlinear constrained
global optimization (CGO) problems. Using a penalty strategy based on
a penalty auxiliary function, the CGO problem is transformed into a
bound constrained problem. We have analyzed the performance of the
proposed algorithm using fixed values of the penalty parameter, and
we may conclude that the algorithm competes favourably with other
DIRECT-type algorithms in the literature.
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1 Introduction

In this paper, we aim to find the global solution of a non-smooth and non-convex
constrained optimization problem using a non-differentiable penalty function and
the DIRECT method [1]. The constrained global optimization (CGO) problem
has the form:

min
x∈Ω

f(x)

subject to h(x) = 0
g(x) ≤ 0,

(1)

where f : Rn → R, h : Rn → R
m and g : Rn → R

p are nonlinear continuous
functions and Ω = {x ∈ R

n : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n}. Denoting
the feasible set of problem (1) by F = {x ∈ Ω : h(x) = 0, g(x) ≤ 0}, we define a
non-negative function

θ(x) =
m∑

i=1

|hj(x)| +
p∑

i=1

max{gi(x), 0}, (2)
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where θ(x) = 0 if x ∈ F . Since convexity is not assumed, many local min-
ima may exist in the feasible region, although we require only a global solution.
For non-smooth problems, the derivative-free methods are the most appropriate.
Deterministic and stochastic methods have been proposed to solve CGO prob-
lems [2,3]. Using deterministic methods, the convergence to a global optimal
solution can be guaranteed and a solution with a required accuracy is obtained
in a finite number of steps. On the other hand, stochastic methods are not guar-
anteed to find a global optimal solution although they are often able to find very
good solutions after a (moderate) large number of steps. Stochastic convergence
may be established using probability theory.

From the class of deterministic methods, the DIRECT method [1] has proven
to be quite effective in converging to the global solution while avoiding to be
trapped in a local solution, as far as bound constrained global optimization
problems are concerned. The method has attracted considerable interest from the
research community and several strategies have been incorporated into DIRECT,
including the local search reinforcement [4,5], the improvement of the global
search [6], new ideas for the selection of potentially optimal hyperrectangles
[7,8] and new partition schemes [9–11].

The most popular methods to solve the problem (1) combine the objective
function with a penalty term that aims to penalize constraint violation. Penalty
functions within a DIRECT-type framework are proposed in [12–14]. An aux-
iliary function that combines in a special manner information on the objective
and constraints is presented in [15]. Other techniques that involve the handling
of the objective function and constraints violation separately can be found in
[5,16,17].

The main contribution of this paper is the following. The two-phase heuristic
DIRECT algorithm, proposed by the authors in [8], is extended to solve CGO
problems using an auxiliary penalty function. The auxiliary function proposed
in [15] is redefined to transform the CGO problem (1) into a bound constrained
global optimization (BCGO) problem.

The paper is organized as follows. Section 2 briefly presents some ideas and
the main steps of the DIRECT method. Section 3 describes a heuristic incorpo-
rated into the DIRECT algorithm to reduce the number of identified potentially
optimal hyperrectangle, and the corresponding proposed extension to handle
CGO problems, in particular, the use of a non-differentiable auxiliary penalty
function. Finally, Sect. 4 contains the results of our preliminary numerical exper-
iments and we conclude the paper with the Sect. 5.

2 DIRECT Method

The DIRECT (DIviding RECTangles) algorithm [1], originally proposed to solve
BCGO problems of the form

min
x∈Ω

f(x), (3)

assumes that the objective function f is a continuous function, and iteratively
produces finer and finer partitions of the hyperrectangles generated from Ω (see
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also [18]). The algorithm is a modification of the standard Lipschitzian approach,
where f is assumed to satisfy the Lipschitz condition,

|f(x1) − f(x2)| ≤ K‖x1 − x2‖ for all x1, x2 ∈ Ω,

and the Lipschitz constant K > 0 is viewed as a weighting parameter that
indicates how much emphasis to place on global versus local search. DIRECT
is a deterministic method that does not require any analytical or numerical
derivative information and searches (locally and globally) the feasible region Ω
for hyperrectangles that are known as potentially optimal hyperrectangle (POH).
These POH satisfy the two conditions established in the following definition:

Definition 1. Given the partition {Hi : i ∈ H} of Ω, let ε be a positive constant,
and let fmin be the current best function value. A hyperrectangle j is said to be
potentially optimal if there exists some rate-of-change constant K̂j > 0 such that

f(cj) − K̂j

2
‖uj − lj‖ ≤ f(ci) − K̂i

2
‖ui − li‖, for all i ∈ H

f(cj) − K̂j

2
‖uj − lj‖ ≤ fmin − ε|fmin|

(4)

where cj (resp. ci) is the center and ‖uj − lj‖/2 (resp. ‖ui − li‖/2) represents
the size of hyperrectangle j ∈ H (resp. i), and H is the set of indices of the
hyperrectangles at the current iteration [1,15].

The use of K̂j in the definition intends to show that it is not the Lipschitz
constant. The second condition in (4) aims to prevent the algorithm from iden-
tifying as POH the hyperrectangle with center that corresponds to fmin. This
way, small hyperrectangles where very small improvements may be obtained are
skipped to be further divided.

The most important step in the DIRECT algorithm is the identification of
POH since it determines the search along the feasible set. Each identified hyper-
rectangle is trisected along its longest sides and two new points in the hyper-
rectangle are sampled and remain center points of the other hyperrectangles (of
the trisection).

A global search driven strategy would identify POH from the biggest hyper-
rectangles. On the other hand, a local search driven strategy would identify POH
whose center point corresponds to fmin. Good solutions are found rather quick
but the hyperrectangle that contains the global solution may be missed if its
center point has a bad function value. The main steps of the DIRECT algorithm
are shown in Algorithm 1.
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Algorithm 1. DIRECT algorithm
Require: η, f∗, Nfemax;
1: Set Nfe = 0;
2: repeat
3: Identification procedure for POH (Selection) according to Definition 1;
4: Selection procedure for division along dimensions (Sampling);
5: Division procedure;
6: Update index sets; Update Nfe;
7: until Nfe ≥ Nfemax or |fmin − f∗| ≤ ηmax{1, |f∗|}

3 Heuristic DIRECT Method Based on Penalties

This section presents the extension of a heuristic DIRECT algorithm [8] to han-
dle nonlinear equality and inequality constraints.

3.1 Heuristic DIRECT Method

Firstly, we briefly describe a heuristic that can be incorporated into the DIRECT
algorithm [8] aiming

– to divide a promising search region into three subregions, so that the number
of hyperrectangles that are candidate to be potentially optimal is reduced;

– to choose between a global search driven phase or a local search driven phase.

Since avoiding the identification of POH that were mostly divided can enhance
the global search capabilities of DIRECT [6] and identifying POH that are close
to the hyperrectangle which corresponds to fmin may improve the local search
process, the heuristic incorporated into the DIRECT method divides the region
of the hyperrectangles with least function values in each size group - denoted by
candidate hyperrectangles - into three subregions.

Each subregion is defined by the indices based on size of the hyperrectan-
gles. The larger the size the smaller the index. The leftmost subregion includes
hyperrectangles whose indices are larger than il = �2/3imin�, where imin is the
index of the hyperrectangle that corresponds to fmin. The rightmost subregion
contains the hyperrectangles with indices that are smaller than iu = �1/3imin�
and the middle subregion contains hyperrectangles with indices between il and
iu (including these limits).

To be able to guarantee convergence to the global solution while avoiding
the stagnation in a local solution, the algorithm cycles between global and local
search phases. It starts with a global driven search, where Gmax iterations are
performed using all candidate hyperrectangles from the rightmost subregion, 50%
of the candidate hyperrectangles from the middle subregion (randomly selected)
and 10% of the candidate hyperrectangles from the leftmost subregion (randomly
selected). This choice of percentages is hereinafter denoted by (10/50/100)%. At
each iteration, the set of POH are identified among these selected hyperrect-
angles. Afterwards, a local driven search is implemented for Lmax iterations
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with the percentages of selected candidate hyperrectangles in the leftmost and
rightmost subregions changed, denoted by (100/50/10)%. This cycling process
is repeated until convergence.

3.2 Penalty Auxiliary Function

We now extend this heuristic DIRECT method to handle nonlinear equality
and inequality constraints. We use an auxiliary function that takes into consid-
eration the violation of inequality constraints by combining information of the
objective and constraint functions [15]. This function penalizes any deviation of
the function value at the center cj of a hyperrectangle above the global optimal
value f∗:

P (cj) = max{f(cj) − f∗, 0} +
p∑

i=1

μi max{gi(cj), 0} (5)

where μi are positive weighting coefficients. Note that when the hyperrectangle
has a feasible center point cj , the second term is zero, and when it is infeasible,
the second term is positive and the first term only counts for the cases where
f(cj) is above f∗. Since f∗ is unknown in general, but satisfies f∗ ≤ fmin − ε,
for a small tolerance ε > 0, we redefine the following variant of the auxiliary
function

P (x;μ) = max{f(x) − (fmin − ε), 0} + μ

(
m∑

i=1

|hi(x)| +
p∑

i=1

max{gi(x), 0}
)

(6)

where fmin is the current best function value found so far among all feasible cen-
ter points. Although different weights might prove to be useful for some problems,
we consider only one constant weighting coefficient for all the constraints, and
extend the penalized constraint violation term to the equality constraints, since
in our formulation they are treated separately from the inequality constraints.
We remark that if no feasible point has been found so far, the function P (x;μ)
is reduced to the second term alone in (6).

The definition of POH (recall Definition 1 above) is now adapted to the
strategy that aims to find a global minimum solution of the problem

min
x∈Ω

P (x;μ) (7)

for a fixed μ > 0 value, in the sense that the sequence of approximations xk
min

(resp. fk
min) converges to x∗ (resp. f∗), the global optimal solution of problem (1),

as k increases. In this context, the new algorithm searches (locally and globally)
the feasible region Ω to identify hyperrectangles that are known as POH with
respect to P (x;μ) and satisfy:

Definition 2. Given the partition {Hi : i ∈ H} of Ω, let ε > 0 and μ > 0 be
constants and let fmin be the current best function value among feasible center
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points. A hyperrectangle j is said to be potentially optimal with respect to P (x;μ)
if there exists some rate-of-change constant K̂j > 0 such that

P (cj ;μ) − K̂j

2
‖uj − lj‖ ≤ P (ci;μ) − K̂i

2
‖ui − li‖, for all i ∈ H

P (cj ;μ) − K̂j

2
‖uj − lj‖ ≤ Pmin − ε|Pmin|

(8)

where Pmin is the current best penalty function value and H is the set of indices
of the selected candidate hyperrectangles at the current iteration.

The main steps of the proposed penalty-based heuristic DIRECT algorithm
are presented in Algorithm 2.

Algorithm 2. Penalty-based heuristic DIRECT algorithm
Require: η1, η2, Gmax, Lmax, f∗, Nfemax;
1: Set Nfe = 0, flag = G, it = 0;
2: repeat
3: Set it = it + 1;
4: if flag = G then
5: Based on imin and function P , randomly select the candidate hyperrectangles

from the 3 subregions of indices based on the percentages (10/50/100)%;
6: else
7: Based on imin and function P , randomly select the candidate hyperrectangles

from the 3 subregions of indices based on the percentages (100/50/10)%;
8: end if
9: Identification procedure for POH according to Definition 2, among those selected

candidate hyperrectangles (Selection);
10: Selection procedure for division along dimensions (Sampling);
11: Division procedure;
12: Update index sets; Update Nfe;
13: if flag = L and it ≥ Lmax then
14: Set flag = G, it = 0;
15: end if
16: if flag = G and it ≥ Gmax then
17: Set flag = L, it = 0;
18: end if
19: until Nfe ≥ Nfemax or (θ(xmin) ≤ η1 and |fmin − f∗| ≤ η2 max{1, |f∗|} )

Unless otherwise stated, the stopping conditions for the algorithm are the
following. We consider that a good approximate solution xk, at iteration k, is
found, if the conditions

θ(xk
min) ≤ η1 and

∣∣fk
min − f∗∣∣

max{1, |f∗|} ≤ η2 (9)

are satisfied, for sufficiently small tolerances η1, η2 > 0, where xk
min is the best

computed solution to the problem, i.e., is the feasible center point of the hyper-
rectangle that has the least function value fk

min. However, if conditions (9) are not
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satisfied, the algorithm runs until a maximum number of function evaluations,
Nfemax, is reached.

4 Numerical Experiments

In these preliminary numerical experiments, a set of seven benchmark problems
with n ≤ 5 is used. The MATLAB R© (MATLAB is a registered trademark of
the MathWorks, Inc.) programming language is used to code the algorithm and
the tested problems. The parameter values for the algorithm are set as follows:
ε = 1E-04, Gmax = 10, Lmax = 10, ε = 1E−06, η1 = 1E-04, η2 = 1E−04 and
Nfemax = 1E+05. Due to the random issue present in the algorithm, namely the
selection of the candidate hyperrectangles, each problem is run five times. The
reported results in the subsequent tables correspond to average values obtained
in the five runs.

First, we consider two problems, one has 2 variables and 2 inequality con-
straints and the other 3 variables and 3 equality constraints, to show the effec-
tiveness of the proposed strategy based on the penalty auxiliary function (6)
when compared to the more usual L1 penalty-based technique.

Problem 1. (Problem 8 in [19])

min
x∈Ω

x4
1 − 14x2

1 + 24x1 − x2
2

s. t. x2 − x2
1 − 2x1 ≤ −2

−x1 + x2 ≤ 8

with Ω = {x ∈ R
2 : −8 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10} and f∗ = −118.70.

Problem 2. (Problem 5 in [19])

min
x∈Ω

x3

s. t. 30x1 − 6x2
1 − x3 = −250

20x2 − 12x2
2 − x3 = −300

0.5(x1 + x2)2 − x3 = −150

with Ω = {x ∈ R
3 : 0 ≤ x1 ≤ 9.422, 0 ≤ x2 ≤ 5.903, 0 ≤ x3 ≤ 267.42} and

f∗ = 201.16.

To analyze the gain in efficiency of Algorithm 2, we report in Table 1 the
average values of f (fmin), θ (θ(xmin)), number of iterations (k) and number of
function evaluations (Nfe) obtained after the 5 runs using the stopping con-
ditions in (9) (or a maximum of 1E+05 function evaluations is reached). The
standard deviation of the obtained f values (St.D.) is also reported. From the
results in Table 1 we can conclude that the algorithm with the penalty (6) gives
significantly better results than with the penalty L1. Similarly, from Table 2 we
conclude that penalty (6) performs much better compared to L1. The algorithm
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Table 1. Comparison between penalty functions, when solving Problem 1.

Algorithm 2 μ fmin St.D. θ(xmin) k Nfe

Penalty (6) 0.5 −118.691829 2.26E−03 0.00E+00 109 2175

1 −118.692153 2.01E−03 0.00E+00 86 1457

10 −118.688994 2.65E−04 0.00E+00 44 526

100 −118.688657 1.69E−04 0.00E+00 77 1121

L1 penalty 0.5 (−217) (6.15E−05) (4.5E+00) (4848) >1E+05

1 (−217) (6.15E−05) (4.5E+00) (4852) >1E+05

10 (−215) (5.02E−05) (4.0E+00) (4828) >1E+05

100 −118.689247 6.48E−04 0.00E+00 72 865
In parentheses, achieved values when the algorithm stops due to Nfe > 1E+05.

Table 2. Comparison between penalty functions, when solving Problem 2.

Algorithm 2 μ fmin St.D. θ(xmin) k Nfe

Penalty (6) 0.5 201.159343 0.00E+00 7.83E−05 43 577

1 201.159343 0.00E+00 7.83E−05 43 543

10 201.159343 0.00E+00 7.83E−05 45 624

100 201.159343 0.00E+00 7.83E−05 41 531

Penalty L1 0.5 (201) (0.00E+00) (7.6E−04) (8803) >1E+05

1 (201) (0.00E+00) (1.4E−04) (7612) >1E+05

10 201.159343 0.00E+00 7.83E−05 320 5864

100 201.159343 0.00E+00 7.83E−05 45 577
In parentheses, achieved values when the algorithm stops due to Nfe > 1E+05.

with the penalty L1 works better with the larger values of the weighing param-
eter while the performance of the algorithm with penalty (6) is not too much
affected by the value of μ.

In Table 3 we compare the results obtained by Algorithm 2 based on the
penalty auxiliary function (6) for two values of the weighting parameter (that
provide the best results among the four tested) with those obtained by previous
DIRECT-type strategies that rely on the filter methodology to reduce both the
constraint violation and objective function [8,17]. The results are also compared
to those obtained by variants DIRECT-GL and DIRECT-GLce reported in [14].
We note that the reported fmin, θ(xmin), k and Nfe selected from [8] correspond
also to average values, while the values from the other papers in comparison
correspond to just a single solution (one run of deterministic methods). A slight
gain in efficiency of the proposed penalty-based heuristic DIRECT algorithm
has been detected.

To analyze the performance of the Algorithm 2 when compared to the strat-
egy proposed in [15] and two filter-based DIRECT algorithms (in [8,17]), we
consider the problem Gomez #3 (available in [15]):



546 M. F. P. Costa et al.

Table 3. Comparative results for Problems 1 and 2.

μ fmin θ(xmin) k Nfe f∗

Problem 1

Algorithm 2 (penalty (6)) 10 −118.688994 0.00E+00 44 526 −118.70

100 −118.688657 0.00E+00 77 1121

DIRECT-typea [8] −118.700976 0.00E+00 19 823

DIRECT-typeb [8] −118.700976 0.00E+00 19 797

DIRECT-typec [8] −118.692210 0.00E+00 23 689

filter-based DIRECT [17] −118.700976 0.00E+00 23 881

DIRECT-GLc in [14] −118.6892 – – 1197

DIRECT-GLce in [14] −118.6898 – – 1947

Problem 2

Algorithm 2 (penalty (6)) 1 201.159343 7.83E−05 43 543 201.16

100 201.159343 7.83E−05 41 531

DIRECT-typea [8] 201.159343 7.83E−05 30 1015

DIRECT-typeb [8] 201.159343 7.83E−05 30 883

DIRECT-typec [8] 201.159343 7.83E−05 30 769

filter-based DIRECT [17] 201.159343 7.83E−05 30 1009

DIRECT-GLc in [14] 201.1593 – – 819

DIRECT-GLce in [14] 201.1593 – – 819
awith filter; bwith filter and upper bounds on f and θ;
cwith filter and upper bounds on f and θ as well as a heuristic.
“–” information not available.

Problem 3.

min
x∈Ω

(
4 − 2.1x2

1 + x4
1
3

)
x2
1 + x1x2 + (−4 + 4x2

2)x
2
2

s. t. − sin(4πx1) + 2 sin2(2πx2) ≤ 0

with Ω = {x ∈ R
2 : −1 ≤ xi ≤ 1, i = 1, 2}.

Table 4 compares the performance of the tested algorithms. Our Algorithm 2
was tested with four different values of the fixed weighting parameter. When
solving the Problem 3, our algorithm reports a considerable sensitivity to the
selected μ value, with a better performance achieved when small values are used.

The following problem, known as T1 is tested with 3 different values of n.

Problem 4.
min
x∈Ω

∑n
i=1 xi

s. t.
∑n

i=1 x2
i ≤ 6

with Ω = {x ∈ R
n : −1 ≤ xi ≤ 1, i = 1, . . . , n}.
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Table 4. Comparison results when solving Problem 3.

μ fmin θ(xmin) k Nfe f∗

Algorithm 2 (penalty (6)) 0.5 −0.971021 2.45E−05 51 606 −0.9711

1 −0.971018 1.34E−05 74 983

10 −0.971018 1.34E−05 455 12952

100 (−0.97) (4.4E−05) (2625) >1E+05

DIRECT-typea [8] −0.971006 6.00E−05 17 615

DIRECT-typeb [8] −0.971006 6.00E−05 17 683

DIRECT-typec [8] −0.971041 3.17E−05 18 555

filter-based DIRECT [17] – – 18 733

DIRECT in [15] – – – 513

In parentheses, the achieved values when the algorithm stops due to Nfe > 1E+05.
awith filter; bwith filter and upper bounds on f and θ;
cwith filter and upper bounds on f and θ as well as a heuristic.
“–” information not available.

The results obtained by Algorithm 2, and those in [14] (variants DIRECT-
GLc and DIRECT-GLce), as well as the results obtained by the variant
DIRECT-GL and the original DIRECT (when they are implemented in a
penalty-based strategy with penalty function L1) are shown in Table 5 for com-
parison. Our algorithm with the penalty (6) works much better with the smaller
values of the fixed weighting parameter and those results outperform in general
the other results in comparison, for the same solution quality accuracy, as far as
function evaluations are concerned.

Finally, the last 3 problems, known as g04, g06 and g08 in [16], have inequality
constraints.

Problem 5.

min
x∈Ω

5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

s. t. 0 ≤ 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 ≤ 92
90 ≤ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3 ≤ 110
20 ≤ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 25

with Ω = {x ∈ R
5 : 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45, i = 3, 4, 5}.

Problem 6.
min
x∈Ω

(x1 − 10)3 + (x2 − 20)3

s. t. −(x1 − 5)2 − (x2 − 5)2 ≤ −100
(x1 − 6)2 + (x2 − 5)2 ≤ 82.81

with Ω = {x ∈ R
2 : 13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100}.
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Table 5. Comparison results when solving Problem 4.

μ fmin θ(xmin) k Nfe f∗

n = 2

Algorithm 2 (penalty (6)) 0.5 −3.464079 3.60E−05 26 383 −3.4641

1 −3.464052 3.30E−05 26 370

10 −3.464106 9.29E−05 40 723

100 −3.464106 7.68E−05 85 3927

DIRECT-typea [8] −3.464106 9.29E−05 14 1395

DIRECT-typeb [8] −3.464106 9.29E−05 14 893

DIRECT-typec [8] −3.464106 5.72E−05 13 335

DIRECT-L1 in [14] 10 – – – 3345

100 – – – 8229

DIRECT-GL-L1 in [14] 10 – – – 1221

100 – – – 1921

DIRECT-GLc in [14] – – – 1373

DIRECT-GLce in [14] – – – 2933

n = 3

Algorithm 2 (penalty (6)) 0.5 −4.242687 7.25E−05 266 29187 −4.2426

1 −4.242443 4.38E−05 104 6989

10 −4.242443 0.00E+00 110 8577

100d −4.242443 2.30E−05 260 85472

DIRECT-typea [8] −4.242443 0.00E+00 28 16885

DIRECT-typeb [8] −4.242443 0.00E+00 35 37977

DIRECT-typec [8] −4.242443 9.17E−05 29 3233

DIRECT-L1 in [14] 10 – – – 66137

100 – – – >1E+06

DIRECT-GL-L1 in [14] 10 – – – 75105

100 – – – 16625

DIRECT-GLc in [14] – – – 26643

DIRECT-GLce in [14] – – – 8297

n = 4

Algorithm 2 (penalty (6)) 0.5 −4.898440 0.00E+00 74 9514 −4.899

1 −4.898440 0.00E+00 62 6201

10e −4.898440 3.42E−05 133 54981

100d −4.898440 5.80E−05 98 31440

DIRECT-typea [8] −4.898847 0.00E+00 42 151753

DIRECT-typeb [8] −4.898847 3.42E−05 39 78859

DIRECT-typec [8] −4.898440 3.30E−05 51 36219

DIRECT-L1 in [14] 10 – – – 127087

100 – – – >1E+06

DIRECT-GL-L1 in [14] 10 – – – 180383

100 – – – 189595

DIRECT-GLc in [14] – – – 192951

DIRECT-GLce in [14] – – – 47431
awith filter; bwith filter and upper bounds on f and θ;
cwith filter and upper bounds on f and θ as well as a heuristic.
d80% successful runs; e60% successful runs.

“–” information not available.
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Problem 7.

min
x∈Ω

− sin3(2πx1) sin(2πx2)
x3
1(x1 + x2)

s. t. x2
1 − x2 + 1 ≤ 0

1 − x1 − (x2 − 4)2 ≤ 0

with Ω = {x ∈ R
2 : 0 ≤ xi ≤ 10, i = 1, 2}.

Table 6. Comparison results when solving Problems 5, 6 and 7.

μ fmin θ(xmin) k Nfe f∗

Problem 5a

Algorithm 2 (penalty (6)) 0.5b −30665.2339 9.99E−05 387 36277 −30665.53867

1c −30665.4237 9.99E−05 377 40331

10 −30665.2450 9.96E−05 132 5119

100 −30665.2329 9.79E−05 133 5247

1000 −30665.2329 9.79E−05 135 5746

DIRECT-GL-L1 in [14] 1000 – – – 1799

DIRECT-GLc in [14] – – – 5907

DIRECT-GLce in [14] −30663.5708 – – 21355

eDIRECT-C in [16] −30665.5385 – – 65

Problem 6a

Algorithm 2 (penalty (6)) 0.5 −6961.9092 6.86E−05 120 2815 −6961.81387558

1 −6961.8763 4.80E−05 118 2699

10 −6961.8088 2.18E−05 114 2758

100 −6961.7868 1.66E−05 121 2939

1000 −6961.8150 2.77E−05 186 4941

DIRECT-GL-L1 in [14] 1000d – – – 289

DIRECT-GLc in [14] – – – 3461

DIRECT-GLce in [14] −6961.1798 – – 6017

eDIRECT-C in [16] −6961.8137 – – 35

Problem 7

Algorithm 2 (penalty (6)) 0.5 −0.095825 0.00E+00 18 174 −0.095825

1 −0.095825 0.00E+00 16 158

10 −0.095825 0.00E+00 16 152

100 −0.095825 0.00E+00 16 164

1000 −0.095825 0.00E+00 15 153

DIRECT-GL-L1 in [14] 1000 – – – 471

DIRECT-GLc in [14] – – – 471

DIRECT-GLce in [14] −0.0958 – – 1507

eDIRECT-C in [16] −0.0958 – – 154
aresults for η2 = 1E−05; b20% successful runs;
c80% successful runs; dfinal solution outside the feasible region.

“–” information not available.

The results obtained by our Algorithm 2 for five values of μ are compared to
those of the variants DIRECT-GL-L1, DIRECT-GLc and DIRECT-GLce in [14],
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and eDIRECT-C from [16]. We remark that eDIRECT-C incorporates a local
minimization search (MATLAB fmincon). From the results in Table 6, we may
conclude that contrary to Problem 5 which presents significantly better results
with the larger fixed μ values, the other two problems report reasonable good
performances with all the tested μ values, competing with the other algorithms
is comparison.

5 Conclusions

In this paper, we present an extension of the heuristic DIRECT method (avail-
able in [8]) to solve nonlinear CGO problems. The herein proposed extension
transforms the CGO problem (1) into a BCGO one, using a penalty strategy
based on the penalty auxiliary function (6). We have analyzed the performance of
the penalty-based heuristic DIRECT algorithm for a set of fixed penalty param-
eter values, using well-known benchmark CGO problems. Neither too small nor
too large parameter values (1, 10 and 100) have produced results that show the
robustness and efficiency of proposed algorithm hereby competing favourably
with other available DIRECT-type algorithms.

Although, for now, we have considered a fixed value for the parameter ε (in
the definition of the penalty (6)), we feel that a sequence of decreased values
may further improve the efficiency of the algorithm. This will be an issue for
future research.
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