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Abstract. State Estimation (SE) is one of the main tools in the opera-
tion of power systems. Its primary role is to filter statistically small errors
and to eliminate spurious measurements. SE requires an adequate num-
ber of measurements, varied, and strategically distributed in the power
grid. Criticality analysis consists of identifying which combinations of
measurements, forming tuples of different cardinalities, are essential for
observing the power network as a whole. If a tuple of measurements
becomes unavailable and, consequently, unobservable, the tuple is con-
sidered critical. The observability condition is verified by the factoriza-
tion of the residual covariance matrix, which usually is a time-consuming
computation task. Also, the search for criticalities is costly, being a com-
binatorial based problem. This paper proposes a parallel approach of the
criticality analysis in the SE realm, through multi-threads execution on
CPU and GPU environments. To date, no publication reporting the use
of GPU for computing critical elements of the SE process is found in the
specialized literature. Numerical results from simulations performed on
the IEEE 14- and 30-bus test systems showed speed-ups close to 25×,
when compared with parallel CPU architectures.

Keywords: High performance computing · Supercomputing · Critical
analysis · Power system state estimation

1 Introduction

The Energy Management System (EMS) found in control centers encompasses
computational tools to monitor, control, and optimize the operation of power
networks. Among these tools, the State Estimation (SE) is responsible for pro-
cessing a set of measurements to obtain the system operating state [1,12]. The
SE process depends on the number, type, and distribution of measurements
throughout the grid. The observability/criticality analysis reveals the vulnera-
bility of the measuring system to feed SE adequately. This analysis aims to dis-
cover the strengths and weaknesses of measurement plans, allowing preventive
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actions against possible cyber-attacks, and offering different choices of measure-
ment reinforcements. However, due to its combinatorial characteristics, criticality
analysis is computationally very expensive.

The word critical is used in the paper to denote extremely important or
essential elements of the measuring system devoted to SE. In this sense, the
following definitions are stated:

– Critical Measurement (Cmeas): when not available, it makes the complete
system unobservable.

– Critical k-Tuple (Ck): the set of k measurements that, when simultaneously
unavailable, leads the system to an unobservable state;

Besides the remarked unobservability cases, the presence of Cks compromises the
SE credibility as a function capable of providing a dataset free of gross errors
[3]. When there are one or more Cmeas in the available measurement set, it is
impossible to detect any error in the value of these measurements coming from
the SE residual analysis. On the other hand, if (k − 2) measurements with gross
errors belong to a Ck, they can be detected/identified, but if (k − 1) or (k)
spurious measurements are present in this Ck, they can only be detected.

The criticality analysis becomes computationally costly, particularly when
the cardinality of critical tuples k increases, as the consequence of the factorial
number of possible combinations to analyze.

This paper presents a parallel programming approach to speed up the process
of searching for criticalities (of single measurements or when they are considered
forming groups), in which diverse combinations of measurements are simultane-
ously analyzed. Based on the best knowledge existing so far, there is no publica-
tion concerning the use of GPU for identifying critical elements of the SE process
is found in the specialized literature. The results (obtained in a multi-core GPU
environment) of simulations performed on the IEEE 14- and 30-bus test systems
validate the proposed approach.

This paper is organized as follows: Sect. 2 presents some previous works
related to criticality analysis. Section 3 presents the residual covariance matrix
and its respective application to solve the problem. Section 4 presents our pro-
posed algorithm and it’s adaptations to parallel computing. Section 5 shows the
results of the implementations in CPU and GPU environments. Finally, Sect. 6
concludes this work.

2 Related Works

One of the first studies on criticality analysis and its relation with the detection/
identification of gross measurement errors can be found in [6]. As the identifi-
cation of all Cks present in a measurement system is a difficult optimization
problem [14], most of the published works were limited to study small cardinal-
ities (k ≤ 3). This paper adopts the method based on the residual covariance
matrix to identify Cks [3].



GPU-Based Criticality Analysis Applied to Power System State Estimation 123

Criticality analysis is a useful tool to evaluate the robustness of measurement
schemes [5,7], as well as to prevent possible cyber-attacks of false data injections,
as described in [10,15]. In this type of attack, a malicious attacker intentionally
adds gross errors to the available measurements. Based on previous knowledge
of the measurement criticalities, it is possible to take preventive actions (e.g., to
reinforce the metering plan), so that the effect of an attack can be mitigated.

Few studies have been conducted to address the general problem of searching
for Cks. Reference [2] tackles this hard combinatorial problem via the Branch-
and-Bound (B&B) approach. B&B is a tree-based exploratory tool for finding
implicitly exact solutions.

Parallel programming has been used to speed up the estimation filtering
process [9,10]. B&B algorithms in GPUs [4] have also been implemented. The
GPU approach to deal with criticality analysis in SE using the residual covariance
matrix method can be considered the main contribution of the present paper.

3 The Residual Covariance Matrix Method

The entries of the residual covariance matrix (Ω) represent the degree of interac-
tion between measurements, which can be explored in the criticality analysis [3].
Also, using the definition of a Ck previously introduced, the following properties
are useful [6]:

1. The columns of matrix Ω associated with the measurements that form a Ck

are linearly dependent.
2. A Ck does not contain a Cj , for ∀k > j.

Null elements in Ω indicate the presence of entirely uncorrelated measurements.
Therefore, null rows/columns in Ω are associated with Cmeas.

Now, consider Ω̃ denoting a submatrix of Ω, composed of the columns/rows
associated with a group of k measurements. If Ω̃ has linearly dependent
columns/rows, then the measurements associated with those form a Ck. Gauss
elimination can be used to factorize Ω̃ to check whether there are linearly depen-
dent rows/columns in the matrix.

To gain insight into criticalities, for instance, consider the six-bus system
represented in Fig. 1, measured by five power flows and four power injections,
for which all Cks present in the set of measurements will be identified.

Fig. 1. Six bus system, with its Measurement set
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Symmetric matrix Ω, obtained with the decoupled model for the adopted test
system and usually adopted in the classical observability analysis [1] is presented
in Table 1.

Table 1. Covariance matrix Ω, obtained from six bus system depicted in Fig. 1

Meas. # 1 2 3 4 5 6 7 8 9

P1−2 P2−3 P4−5 P4−6 P5−4 P1 P3 P5 P6

P1−2 0.57 0.38 -0.07 0.00 0.07 -0.23 0.05 -0.19 0.00

P2−3 0.53 0.16 0.00 -0.16 -0.02 0.17 0.15 0.00

P4−5 0.66 0.00 0.34 0.13 0.10 0.23 0.00

P4−6 0.50 0.00 0.00 0.00 0.00 0.50

P5−4 0.66 -0.13 -0.10 -0.23 0.00

P1 0.17 0.05 0.21 0.00

P3 0.07 0.12 0.00

P5 0.34 0.00

P6 0.50

As one can observe, there is no null columns/rows in Ω; thus, the set of
measurements is free from Cmeas. Now, concerning, for instance, the tuples of
cardinality two, a C2 is identified, involving the measurements #4 and #9, i.e.,
branch 4 − 6 power flow (P4,6) and the power injection at bus 6 (P6). The
submatrix Ω̃4,9 is built with the entries related to the respective rows/columns:

(Ω̃4,9) =
[
0.50 0.50
0.50 0.50

]
(1)

(Ω̃4,9) =
[
0.50 0.50
0.00 0.00

]
(2)

For tuples of cardinality 3, for instance, rows #2, #7, and #8 are associated
with measurements (P2−3, P3, P5) that form a C3. Submatrices Ω2,7,8 in (3) and
its equivalent triangular form in (4), support this conclusion.

(Ω̃2,7,8) =

⎡
⎣0.53 0.17 0.15

0.17 0.07 0.12
0.15 0.12 0.33

⎤
⎦ (3)

(Ω̃2,7,8) =

⎡
⎣0.53 0.06 0.15

0.00 −0.05 0.22
0.00 0.00 0.00

⎤
⎦ (4)
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Together with (P2−3, P3, P5) nine more C3 are identified. They are: (P1−2, P2−3,
P1), (P1−2, P2−3, P3), (P1−2, P2−3, P5), (P1−2, P1, P3), (P1−2, P1, P5), (P1−2,
P3, P5), (P2−3, P1, P3), (P2−3, P1, P5), (P1, P3, P5). Table 2 summarizes the
results achieved for all Cks. There is an upper limit (klim) for the cardinality
of Cks, which is dependent of the difference between m (number of available
measurements) and n (number of state variables), given by: klim = m − n + 1.
Thus, for the system under analysis, klim = 9 − 6 + 1 = 4.

Table 2. Number of visited combinations of measurements and Cks identified in the
6-bus system depicted in Fig. 1

Cardinality k No. of visited combinations of measurements No. of Cks identified

1 9 0

2 36 1

3 84 10

4 126 10

5 126 0

6 84 0

7 36 0

8 9 0

9 1 0

Total 511 21

4 Proposed Algorithm

The proposed algorithm receives as input Ω, m, and kmax and returns as output
the solution set (solSet) containing all criticalities Cks in the measurement set.
The solution set contains binary vectors, in which the elements that correspond
measurements removed from the set are represented by 1. Figure 2 depicts the
Cks that were found in the illustrative example of Sect. 4 stored in the solSet.
As the number of Ck is previously unknown, solSet was implemented as a stack.

P1−2 P2−3 P4−5 P4−6 P5−4 P1 P3 P5 P6

0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 1 0

Fig. 2. Examples of output representation for criticalities
{
P4−6; P6} and {P2−3;

P3; P5

}

The main algorithm adaptation to parallel programming considers the possibil-
ity to evaluate all possible k combinations of m measurements simultaneously.
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Algorithm 1 shows that each cardinality is analyzed separately within a loop
until the adopted kmax is reached. Furthermore, each loop consists of four steps,
as shown in Algorithm 1. The following subsections detail each one of these steps.

The first step creates a combination matrix (combMat) ((km) × m) to store
all possible combinations of m measurements taken from k at a time. Steps 2
and 3 are the main focus of the present work, in which CPU and GPU parallel
computing are adopted. Step 2 identifies combinations of measurements whose
removal compromises the system observability. The third step checks whether or
not the solution of the second step is indeed a Ck. Finally, step 4 updates the
solution set (solSet).

Algorithm 1: Parallel Critcality Analysis
input : Ω, m, kmax

output: ConjSol
for k ← 1 to kmax do

Step 1: Build Combinaton Matrix
Step 2: Find out Possible Cks
Step 3: Confirm Cks
Step 4: Update Solution Set

end

4.1 Step 1 : Combination Matrix

The construction of combMat is an adaptation of the algorithm presented in
[13]. The original algorithm allocates the measurement combinations in a stack
so that they can be further successively accessed. However, to allow a parallel
implementation, the combinations are represented by rows in a matrix data
structure, enabling concurrent access to them.

4.2 Step 2 : Searching for Cks

At this step, the algorithm builds a submatrix Ω̃ for each row in combMat.
Then, the invertibility of each Ω̃ is tested by using Gauss Elimination, identifying
possible Cks.

As can be seen in Algorithm 2, there is an auxiliary binary array isCrit in
which each element corresponds to a row in combMat. If the algorithm finds
a possible Ck, it assigns 1 to its corresponding element in isCrit; otherwise, it
assigns 0.

The multi-thread computing runs each loop in Algorithm 2 simultaneously.
The array isCrit enables threads to record which row of combMat is a possible
Ck concurrently. Distinctly, in GPU implementation, this step requires Ω and
combMat to be transferred to GPU global memory.
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Algorithm 2: Step 2: Searching for Cks

for i ← 0 to (km) do

build Ω̃(Ω, k, combMat);

if Ω̃ is invertible then
isCrit[i]=0;

else
isCrit[i]=1;

end

end

4.3 Step 3 : Confirmation

Considering Cj (j < k) a criticality solution previously stored in solSet, the
algorithm compares all Cj with all rows in combMat. If a row has its corre-
sponding isCrit = 1 and contains any Cj , then the measurement combination
found in step 2 is not a Ck. Consequently, the algorithm updates its related value
in isCrit to 0.

The algorithm uses an element-wise subtraction to verify if an array is a sub-
set of another. For instance, considering C2 = {1001} as a critical set previously-
stored in solSet and C3 = {1011} as possible criticality found in step two. Sub-
tracting each element of those arrays, (C3 −C2) = {0010}, then, since there was
no element equal to −1 in such operation, one can conclude that C2 ⊂ C3. So
C3 is not considered critical, and its related element in isCrit is set to 0.

Algorithm 3: Confirmation
for j in solSet do

for i=0 : (km) do
if isCrit[i]==1 then

if solSet[j] ⊂ matComb[i] then
isCrit[i]==0;

end

end

end

end

The multi-thread approach executes the inner loop in Algorithm 3 simultane-
ously. Also, for this implementation on GPU, solSet must be initially transferred
to the GPU global memory.

4.4 Step 4 : Solution Set

In this last step, all the rows of combMat with the corresponding isCrit = 1 are
added to solSet, as shown in Algorithm 4.
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Algorithm 4: Solution Set
for i =0 : (km) do

if isCrit[i]==1 then
add(combs[i], solSet)

end

end

5 Results

This section presents the comparative results between the sequential steps two
and three and its parallel implementations in multi-core CPU and GPU envi-
ronments. For GPU computing, such comparison also considered the data man-
agement between host and device.

Simulations carried out on a computer with 8 GB RAM, Intel Core i5-9300H
processor, and NVIDIA GeForce GTX 1650 graphics card. The original single-
threaded algorithm was implemented in C++. Furthermore, the CPU multi-
threading was performed by OpenMP, using 8 threads and GPU computing in
NVIDIA CUDA, using 512 threads in each kernel call.

From the performed simulations it could be noted that the use of parallelism
did not prove to be advantageous in systems with a few measurements and
for small values of k, which resulted in almost any combinations to be analyzed.
Therefore, results for k > 6 using the IEEE 14-bus and IEEE 30-bus test systems
will be presented.

Also, some values of k resulted in a large number of combinations that could
not be stored at once in the combination matrix. Then, the k-value analysis
(with more than 220 combinations) was partitioned.

5.1 IEEE 14-Bus System

The IEEE 14-bus test case adopts the measuring system presented in [3], in which
there are 33 measurements available. Table 3 shows the search space covered by
the proposed algorithm and the number of Cks found and confirmed up to k = 10.

As can be seen in Figs. 3 and 4, for both steps, better performance has been
achieved with the GPU implementation, reaching in Step 2 an average speed-up
of 13x when compared to the original serial implementation, as it can be seen
in Table 4. Besides, as it is shown in Table 5, in Step 3 we achieved speed-ups
of 25x.

5.2 IEEE 30-Bus System

Tests were also performed with the IEEE 30-bus system with a low redundant
measurement set, adapted from [2]. Table 6 confirms that the lack of redun-
dant measurements results in more Cks of lower cardinalities. Therefore, Step 3
becomes more expensive, as those Cks are added early to the solution set and
are always compared to every possible Ck found in Step 2.
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Table 3. IEEE 14-bus system visited combinations and Cks confirmed

Cardinality k No. of visited combinations of measures No. of Cks identified

1 33 0

2 528 13

3 5456 0

4 40920 1

5 237336 1

6 1107568 1

7 4272048 13

8 13884156 9

9 13884156 13

10 38567100 11
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Fig. 3. Performance for Step 2, 14-bus
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Table 4. Speed-ups achieved for Step 2 in the IEEE 14-bus system

Cardinality k Speed-up Average

6 7 8 9 10

CPU Single-Thread × CPU Multi-Thread 4.31 4.32 3.83 4.23 4.16 4.17

CPU Single-Thread × GPU 10.39 13.33 13.69 14.81 14.70 13.37

Multi-Thread × GPU 2.41 3.09 3.56 3.50 3.54 3.22

Figures 5 and 6 show that GPU implementation again presented the best
performance. As it is shown in Table 7 and 8, the speedups observed in Steps
2 and 3 were 13x and 18x, respectively. The decrease of the speedup in Step 3,
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Table 5. Speed-ups achieved for Step 3 in the IEEE 14-bus system

Cardinality k Speed-up Average

6 7 8 9 10

CPU Single-Thread × CPU Multi-Thread 2.01 2.40 2.44 2.71 2.72 2.46

CPU Single-Thread × GPU 20.33 25.48 26.50 27.61 26.21 25.23

Multi-Thread × GPU 10.11 10.6 10.83 10.17 9.625 10.27

Table 6. IEEE 30-bus visited combinations and Cks confirmed.

Cardinality k No. of visited combinations of measurements No. of Cks identified

1 42 4

2 861 11

3 11480 19

4 111930 96

5 850668 345

6 5245786 1297

7 26978328 2911

8 118030185 8335

9 445891810 39336

concerning the one obtained with the IEEE 14-bus system, occurs because of a
larger solSet is transferred to GPU global memory in each loop.

The analysis for k= 9 became too expensive for the single thread CPU imple-
mentation. In GPU it took around 23 min to perform Step 3.

As mentioned in the introduction section, the specialized literature is sparse
in studies related to the problem of searching for critical elements is state
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Table 7. Speed-ups achieved for Step 2 in IEEE 30-bus system

Cardinality k Speed-up Average

6 7 8

CPU Single-Thread × CPU Multi-Thread 3.41 3.75 3.31 3.51

CPU Single-Thread × GPU 11.60 12.92 13.11 12.55

Multi-Thread × GPU 3.05 3.18 3.64 3.29

Table 8. Speed-ups achieved for Step 3 in IEEE 30-bus system

Cardinality k Speed-up Average

6 7 8

CPU Single-Thread × CPU Multi-Thread 1.32 2.75 2.83 2.30

CPU Single-Thread × GPU 8.12 18.22 18.07 18.03

Multi-Thread × GPU 6.15 5.53 6.38 6.35

estimation. In [2], one can find results of a B&B algorithm implemented in a
CPU environment to identify Cks of cardinalities up to five in the IEEE 30-bus
system. However, no information on the estimated computing time to perform
this task is provided, which could enable comparative studies on the subject. At
this point, it is opportune to comment that the results obtained in the paper
point to a successful novel application of GPUs to perform the criticality analysis
task in power system state estimation studies. As such, the proposed use of GPUs
can be seen as a reference implementation, to demonstrate (proof of concept)
that it is a feasible option when compared with its CPU counterparts, acting
as a starting point for more elaborated (optimized) implementations. Thus, the
results obtained here serve as benchmarks for future correlated research works.

6 Conclusion

In this work we developed a novel parallel approach for identification of mea-
surement criticalities. Our solution may affect the quality of power system state
estimation, due to its high increase of performance. The use of GPUs proved to
be useful to address this difficult combinatorial problem, allowing the determina-
tion of cardinalities that would be very costly to achieve in a single-thread CPU.
Different test systems and measurement redundancies were tested and the pro-
posed implementation lead to speedups up to 28×, showing its potential for the
identification of measurement criticalities, particularly those of high cardinality,
whose determination is usually more challenging.

Since managing data transfer between host and device is a bottleneck for all
the solutions, in future works, we intend to include steps 1 and 4 at the GPU
level. However, adapt those steps to parallel implementation is not a trivial task.
In step 1, it is challenging to build the combination matrix in GPU, because it is



132 A. N. da Silva Junior et al.

not straightforward to correlate each combination to each thread identification,
according to [11]. In step 4, since we implemented the solution set in a stack,
it is not possible to add elements concurrently to set. We believe that exists
a better data structure that ensures performance improvements in this imple-
mentation. Important improvements in the parallel code are also possible to be
made, such as the usage of GPU streams in order to assist large-scale combi-
nation arrays. We also believe that we can better explore parallel approaches
to assist the Branch and Bound heuristic that were already implemented for
criticality analysis solution.
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