
Computer-Aided Geomorphic Seabed
Classification and Habitat Mapping at Punta

Licosa MPA, Southern Italy

Crescenzo Violante(&)

Institute of Heritage Science, CNR, Via G. San Felice, 8, Naples, Italy
Crescenzo.violante@cnr.it

Abstract. Accurate seafloor maps serve as a critical component for under-
standing marine ecosystems and are essential for marine spatial planning,
management of submerged cultural heritage and hazard risk assessments. In
September 2001 the Marine Protected Area (MPA) of Punta Licosa has been
mapped using a multibeam echosounder (MBES) and a side scan sonar
(SSS) system in support of the Geosed project. Such seabed investigations has
allowed for high-resolution bathymetric measurements and acoustic seafloor
characterization through backscatter imagery.
Based on visual interpretation of the data, the present study utilized a

computer-aided seabed classification approach to map marine landform features
and seabed composition of the study area. The results were then translated into a
complete coverage geomorphologic map of the area to define benthic habitats.
Offshore shelf plain make up more than half of the region (52.2%), with the
terraces making up another 10.2% of the total area. Slopes make up a cumulative
30.1% of the study area. Scarp features comprise 4.3% while ridge features
reach only 3.2% of the total study area. Benefits of the computer-aided seabed
classification approach used in this study consisted in a fairly accurate geo-
morphic classification, while the effectiveness of a semi-automated approach for
identifying substrate composition from backscatter data mostly relied on the
level of acoustic artefacts present within the survey area.
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1 Introduction

The mapping of seabed habitats is now recognized as an important tool for both marine
resource management and scientific study. Many government organizations managing
coastal resources are developing standards for seafloor and benthic habitat character-
ization and mapping [1–4]. These studies mainly rely on marine geophysical surveys
[5–8] that enable to map the spatial distribution and the physical aspects (such as
sediment characteristics, water depth and morphology) of benthic habitats (potential
benthic habitat), while providing a means of estimating the occurrence of biota that
commonly utilize that habitat type [9–11].
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Among the physical attributes mapped and measured in detail in recent times using
multibeam sonar equipment is the geomorphology of the seafloor. Seafloor geomor-
phology is a first order descriptor containing information such as relief, geology, geo-
logic history, and formative processes that provides a synthesis of attributes and
information relevant for characterizing physical habitats [12–14]. Bathymetry data and
seafloor intensity data (backscatter) can be integrated with ground-truthing data to
produce categorical maps of geomorphic features and biotopes that predict distributions
of biota and substrates across broad spatial scales [15, 16]. Evaluating the usefulness of
seafloor geomorphology as a proxy for characterization of complex benthic biological
communities is an active area of global marine research effort [13, 17].

The applications of automated techniques to geomorphic seabed classification may
provide essential information to benthic habitat mapping [18–20]. As the volume of
high-resolution seabed data increases globally, there is a growing interest in automated
approaches to seabed terrain analysis based on gridded bathymetric data (DEMs) [21,
22]. These approaches typically involves segmentation of the seafloor into more or less
homogeneous classes that exhibit a defined variation in size, scale and shape of geo-
morphic features such as landforms and their sub-components (landform elements) [23,
24]. While automated approaches offer promising benefits of repeatability, the appli-
cation of these classification techniques to seabed mapping remains a developing field
of study.

In Italy, the Ministry of Environment endorsed the European Directives Natura
2000 and Marine Strategy (2008/56/CE) that establish habitats of priority importance
and a framework of necessary measures to achieve or maintain good environmental
status in the marine environment. Nevertheless, no action has been taken at national

Fig. 1. Location of the study area (dashed box) with the indication of the shelf break (red dashed
line) (Color figure online)
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level for developing a methodology that includes geomorphic features. This led to the
production of maps that identify the structure of biotic communities on the base sub-
strate features (bionomic maps) without defining other physical components that affect
the abundance and distribution of benthic organisms on the seabed [25].

The study area is located within the official boundary of the Cilento, Vallo di
Diano, and Alburni Geopark in southern Italy and covers an area of about 140 km2

down to a depth of – 135 m (Fig. 1). It is characterized by minor embayment with soft
sediments, which alternates with rocky shore and cliffed coast and headlands, to which
associates a diversity of habitats both along the coast and on the seabed. The marine
coastal areas are actively colonized by phanerogams (Posidonia oceanica) and domi-
nated by coarse biogenic sediments and carbonate buildups made by encrusting
organisms (bioconstructions). Since 2009 it is part of the “Santa Maria di Castellabate”
Marine Protected Area (MPA) which has been established on the bases of marine
species and habitats of priority importance for the European Union.

The morphological features of the seabed off the Santa Maria di Castellabate marine
coastal area are dominated by the Licosa Bank (LB) which represents the seaward

Fig. 2. Geologic sketch map of the study area.
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prosecution of the Punta Licosa promontory (Fig. 2). The LB extends in an east-west
direction up to 13 km from the coast, with a relief ranging from 40 to 125 m above the
seabed. Rocky substrates, past sea level oscillations, and slope instability phenomena
affecting the LB resulted in a very complex morphologic pattern fostering benthic
environments that are characterized by a very high biological productivity. On the LB,
wave-cut platforms occur at two main depth levels: - 20 and - 50 m.

The aim of this paper is to characterize and map the seafloor off Punta Licosa
promontory in the Cilento coast using a computer-aided geomorphic seabed classifi-
cation. Automated segmentation of DEM surface obtained from multibeam bathymetry

Fig. 3. Shaded relief map of the Punta Licosa marine area. Dashed box is the location of Fig. 4.
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of the study area allowed for the identification of marine landforms and landform
elements that were translated into classified geomorphic features by visual interpreta-
tion of the data. Following this approach, benthic maps that include seabed geomor-
phology and composition were obtained from bathymetry and backscatter data aided by
seafloor sedimentological data. The results were then compared with previous seabed
classifications in the Punta Licosa MPA [26, 27] to examine the relative ability of semi-
automated and manual techniques for identifying and mapping sea-floor geomorphic
features.

2 Materials and Methods

2.1 MBES and SSS Data Acquisitions and Processing

In July 2001 the seabed off Punta Licosa was mapped by IAMC-CNR_Napoli using the
CNR research vessel Tethys. Swath bathymetry and backscatter data were collected
using a 100 kHz Reson Seabat 8111 Tx/Rx multibeam (MBES) and 100 kHz Klein
Side Scan Sonar (SSS) systems. Surveys were operated at speeds of 3 to 6 knots with
distances between adjacent transects run to achieve 20%–50% overlap. Sound velocity
data were collected daily as water column profiles to correct for variability in through-
water sound speeds associated with changing densities within the water mass. Vessel
motion and position were logged using a MAHRS inertial navigation system, produced
by Teledyne with DGPS corrections in real-time. Bathymetric soundings were pro-
cessed edited and cleaned using PDS 2000. Cleaned soundings were then gridded using
weighted averaging to produce 5 m cell size digital elevation models (DEM; Fig. 3).

The SSS system was equipped with ultra-short baseline positioning (USBL) to
accurately locate the tow-fish position relative to the vessel. The collected backscatter
data were corrected for navigation and slant range distortion. Mosaicking of the
sidescan sonar records resulted in backscatter maps with sub-meter resolution (Fig. 4).

2.2 Ground-Truthing Data Collection and Processing

Sediment grab samples were collected within the study area to characterize the seabed
substrates and ground-truth the SSS backscatter data. Sediment samples were collected
from R/V Tethys in September 2008. A total of 20 sediment samples were recovered
between 18 m and 77 m water depth, using Van-Veen grab samplers deployed via the
rear-A crane. Sediment texture and composition was described onboard to determine
the character of the samples. Additionally, towed video inspections by Remote
Operated Vehicle (ROV) were carried out in 2014 from aboard the CNR research
vessel Urania using a Pollux III equipped with HD color camera [28].

Grain size properties of the sediment samples were determined by sieve separation
of the gravel, sand, and mud fractions and by laser granulometry on the combined mud
and sand fractions, using a Sympatec analyzer. Sandy biogenic sediments constitute the
dominant sediment fraction in the survey area (78.41%), composed mostly of skeletal
grains and bioclastic material (87%). Nine of the collected samples were classified as
coarse sand with gravels, four as coarse sand, three as muddy sand, one as fine sand,
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and two as sandy mud. The overall mud fraction is 22.6%. Gravel-dominated sediment
occurs mostly along the coast at the base of rocky cliffs. However, very coarse sand and
gravel are very common up to a depth 100 m.

3 Interpretation of Seafloor Landforms

Landforms were classified adapting a free stand-alone application (BRESS) [29, 30].
The BRESS algorithm performs a bathymetry-derived segmentation, that is, a seg-
mentation of the DEM surface, through the identification of its seafloor geomorpho-
logical elements, and provides statistical layers that characterize the identified
segments. This application implements principles of topographic openness and pattern
recognition to identify terrain features from bathymetric DEMs that can be classified
into easily recognizable landform types such as valleys, slopes, ridges, and flats
(“bathy-morphon” architypes) [31].

“Bathymorphon” architypes represent the relative landscape relationships between
a single DEM grid node and surrounding grid nodes as assessed in eight directions
around the node (the four cardinal directions and the four main inter-cardinal direc-
tions). The position of a grid node relative to others in the terrain are determined via a
line-of-sight method looking out in each direction by a user defined search annulus
specified by an inner and outer search radius. The search annulus units are grid nodes,
so the length of this is dependent directly on the resolution of the input raster grid.

The line-of-sight principle is implemented by using a user-defined parametric
angular flatness threshold and the difference between the zenith and the nadir angles of
a grid node. Based on angular flatness and the above defined angular difference, each

Fig. 4. Detail of the backscatter map obtained from Side Scan Sonar data. Location in Fig. 2.
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node is assigned to a bathymorphon class that expresses the degree of dominance or
enclosure of a node location on an irregular surface (i.e., the openness) [32] at the user-
identified scale (i.e., the search annulus). Reasonable values for angular flatness and
search annulus are obtained by extensive testing aimed to outline landform features that
are more comparable to visual interpretation [33].

The bathymorphons can be grouped into a relatively small (from ten to four)
number of landform classes that capture most of the relevant morphologic relationships
related to landform description. In the study area testing of the key parameters (i.e.
search annulus and flatness) resulted in landform classes that were systematically
evaluated within 3D visualization software to assess if the prominent landform features
of interest were correctly identified (Fig. 5). Outcomes for an effective spatial

Fig. 5. Landscape classes obtained from bathymetric data
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segmentation of the DEM surface off Punta Licosa were found mostly associated with
flatness parameter of 1.0°, and inner and outer radius of 5 and 20 grid nodes respec-
tively, which identified flats, ridges and slopes classes. However, flatness parameter of
5.0°, an inner radius of 1grid nodes and an outer radius of 10 was used to characterize
steep and narrow seafloor areas (scarp features).

3.1 Geomorphic Classification

The semi-automated procedure discussed above allowed the segmentation of the study
area into homogeneous classes of landforms that, based on their size, scale and shape,
were directly translated into classified geomorphic features or processed as landform
elements of larger geomorphic units (e.g. shelf plain, terrace and shoreface). Following
this approach, the polygons defining landform classes were renamed as appropriate for
the geomorphic feature (geoforms) they represent throughout the extent of the Punta
Licosa MPA (Table 1). Five geoforms were associated with flat landform class, one
with slope, one with scarp and one with ridge class. As no valley/channel classes occur
in the study area, this feature was considered as slope class.

The geoform terms used for classifying the investigated seabed area were sourced
from several classification schemes including the coastal and marine ecological clas-
sification standard [4], hydrographic dictionary [34] and the standardization of
undersea feature names [35].

Table 1. Benthic habitats identified off Punta Licosa.

Landform Geoform Substrate Dominant biota Habitat

Flat Shelf
plain

Sandy mud Fossorious
organisms

Shelf muddy
plain

Shoreface Muddy sand Fossorious
organisms

Sandy shoreface

Terrace Rock with detritic
(coarse biogenic)

Posidonia
oceanica

Rocky detritic
terrace

Terrace Muddy detritic Fossorious
organisms

Muddy detritic
terrace

Terrace Detritic (coarse
biogenic)

Coralligenous Detritic terrace

Slope Slope Rock with detritic
(coarse biogenic)

Coralligenous Detritic slope

Scarp Scarp Rock with detritic
(coarse biogenic)

Coralligenous Scarp with
coralligenous

Ridge Ridge Rock with detritic
(coarse biogenic)

Coralligenous Ridge with
coralligenous

– Boulder
field

Rock Coralligenous or
hydroids

Boulder
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4 Classification of Seabed Composition

The substrate classification was derived from the backscatter data supported by the
ground-truthing results from sediment grab sampling. Representative areas of distinct
backscatter intensity (classes) were selected as training areas with a Sea floor Classi-
fication utility (SeaClass) produced by Triton ElicsTM. Using these samples, a map of
the sea floor depicting the defined classes was created (see Fig. 4).

The user-defined categories recognized 11 acoustic facies in the survey area. Five
acoustic facies are associated with sediment grain size, one corresponds to hard sub-
strata, two relate to biological features (carbonate buildups and seafloor vegetation),
one is associated with landslide blocks and one correspond to sediment remobilization.

The substrate map shows that the flat areas are variably comprised of muddy, fine
and coarse sand facies, which are irregularly distributed between the offshore shelf
plain and the Licosa bank.

Sandy muds represent the most dominant soft-substrate class (58% of the mapped
area), comprising the majority of the offshore shelf plain and foot slope areas. Coarse
sands, identified by consistently high and irregular backscatter intensity, are the second
most dominant substrate type (38% of the mapped area) and comprise the majority of
slope areas. Fine sands are associated with consistently low backscatter reflectance and
occur in shoreface areas, while rocks mostly form bathymetric highs, and locally occur
along slopes and terraces.

5 Geomorphic Features and Benthic Habitats

Substrate features aided by benthic community data from video and scuba inspections
were combined with geomorphic features by Geographic Information System
(GIS) overlay analysis to discriminate benthic habitats of the study area that are
described below (Fig. 6 and Table 1).

Plains: These cover 81.6 km2 in water depth ranging from 30 to 130 m with average
gradients nearly reaching 1°. Plains composed of sandy mud in water depths of more
than 30 m (offshore plains) mostly occupy the northern sector of the survey area
(70.8 km2). This sector is also occupied by plains that are characterized by muddy sand
in water depths of less than 30 m (sandy shoreface).

Slopes: Gentle slopes cover 39.7 km2 of the survey area, from the top of the LB up to
a depth of *120 m. In this area gradients range from 5° near the top of the LB to 3° in
the distal areas. Seabed composition is characterized by coarse biogenic sand with a
fine gravel fraction locally reaching 25%, with a higher mud fraction in water depths of
more than 80 m. In its middle and lower parts, the slope is characterized by several
mounds ranging from a few to 65 m in diameter corresponding to coralligenous bio-
constructions while sediment remobilization from the top of the LB occur the upper
parts of the slope.
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Scarps: These are steeply sloping narrow areas ranging from 5 to 15° mostly com-
posed of hard bottoms that cover 4.2 km2 along slopes in water depth ranging from
−25 to −120 m.

Terraces: Two main wave-cut terraces with slightly convex slopes are present at the top
of the LB at depth levels of - 20 and - 50 m on average. These structures cover 3.6 km2

and are characterized by sediment covers of gravel and very coarse organogenic sand
colonized by Posidonia oceanica meadows. Nearly flat, slightly concave, terraces also
occupy 4.7 km2 in 44–85 m water depth. Here the seabed is composed of muddy detritic
sediments with sparse mound-shaped bioconstructions reaching 30 m in diameter.

Fig. 6. Map of the benthic habitats of the Punta Licosa MPA
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Ridges: These are elongated narrow elevations with steep sides mostly composed of
hard bottoms that cover 3.1 km2 in water depth ranging from 15 to 120 m. They occur
on top of shallow seabed reliefs and along slope as well as isolated structures in shelf
areas. In these areas seabed composition is characterized by sandy mud with elongated
coralligenous bioconstructions.

Boulder fields: Metric and plurimetric rocky boulders resulting from slope recession
are scattered on the seabed up to distances of several hundred meters from the base of
the LB. They cover 2.4 km2 in water depth ranging from 80 to 130 m and are mostly
colonized by small coralligenous bioconstructions.

6 Discussion

The methodological approach presented in this study was mainly aimed to discuss the
use of relatively simply and freely available tools for semi-automated seabed classi-
fication in the frame of the geophysical methodologies that are currently applied to
benthic habitat mapping. The free stand-alone application BRESS has offered the
opportunity to test this approach in the Punta Licosa MPA. The automatic seafloor
segmentation resulting from BRESS algorithm applied to bathymetry-based DEM
surface of the study area allowed identifying terrain features that were classified into

Fig. 7. Punta Licosa habitat map. (1) Spur of coralligenous bioconstruction. (2) Wave-cut
terrace with mixed organogenic cover. (3) Slope with mixed organogenic sediments.
(4) Depositional terrace. (5) Rock. (6) Deep terrace with bioclastic cover. (7) Ledge with
coralligenous. (8) Shelf muddy plain. (9) Sandy fringe with bioclast. (10) Offshore transition.
Redrawn from [27]
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easily recognizable landform. Landform classes were then translated into classified
geomorphic features on base of their size, scale and shape, using several classification
schemes reported in literature [4, 34, 35].

Both stages of seafloor segmentation and geomorphic interpretation required sig-
nificant user inputs and visual inspections. Expert knowledge of feature identification
has resulted to be particularly important in the stage of geomorphic interpretation to
include landforms within the context of the surrounding seascape and ensuring the
features identified match the geoform definitions. On the other hand, adopting a semi-
automated approach for the surface elements classification significantly reduced the
time to digitize manually feature boundaries.

Overall, the level of bathymetric artefacts present within a survey area affected only
to a lesser extent the effectiveness of the surface elements classification. A higher
number of artefacts was associated with Side Scan Sonar survey, which required a
greater time investment to edit manually the acoustic facies derived from backscatter
data.

6.1 Comparison with Manually Digitized Seabed Habitat Map

The map of benthic habitats of the Punta Licosa MPA presented in this paper (Fig. 6)
was compared with a previous manually digitized seafloor mapping of the study area
(Fig. 7) [23, 24]. The comparison indicates that the automated method (BRESS)
applied in the present study is most effective at capturing the boundaries of prominent
features, which subsequently formed the boundaries of the mapped geoforms.
Although this method was mostly designed for broad scale bathymetric features, it
allowed the spatial extent of the recognized geomorphic features and related benthic
habitats to be quite comparable to the extents of those manually digitized. Furthermore,
the semi-automated seafloor classification introduced a landscape type referred to the
ridge class, which was not included in the manually digitized maps. This resulted in a
benthic habitat characterization of the study area which differ to some extent from that
proposed by previous manual techniques.

7 Conclusion

The approach developed through this work provides clues on how to consistently
classify geomorphic units that are relevant to benthic habitat mapping by using a
relatively simple and freely available tools for semi-automated seabed segmentation
(BRESS). Habitat mapping of the study area utilized several complementary geo-
physical technologies including multibeam and Side Scan Sonar systems and Remote
Operated Vehicle (ROV). These surveys has allowed for high-resolution bathymetric
measurements and acoustic seafloor characterization that resulted in backscatter map of
the seabed and production of bathymetric DEMs.

The BRESS terrain analysis algorithm used in this work was effective at generating
meaningful landform maps through a segmentation of the DEM surface, which were
used to identify geomorphic units. This tool allowed for high speed classification of
terrain over complex morphology that characterize the study area and proved to be
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effective at classifying small scale geomorphic features. Integration of landform and
substrate classifications to produce seabed character and geomorphology maps still
required significant subjective expert interpretation to generally delineate among the
different landscape classes and to quality control of the landform classification output.
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