
Approach to the Search for Software
Projects Similar in Structure and
Semantics Based on the Knowledge
Extracted from Existed Projects

Filippov Aleksey Alekundrovich , Guskov Gleb Yurevich(B) ,
Namestnikov Aleksey Michailovich , and Yarushkina Nudezhda Glebovna

Ulyanovsk State Technical University,
32, Severny Venetz Street, 432027 Ulyanovsk, Russia

{al.filippov,jng@ulstu.ru}, guskovgleb@gmail.com,

am.namestnikov@gmail.com

http://www.ulstu.ru/?design=english

Abstract. This article presents a new effective model, algorithms, and
methods for representing the subject area of an information system. The
subject area is presented in the form of fragments of the knowledge base
of the design support system. The knowledge base is formed in the pro-
cess of analyzing class diagrams in UML notation and project source
code. The proposed approaches can reduce the time of the design pro-
cess and increase the quality of the obtained information system through
the use of successful information system design solutions used in other
projects. Search for successful design solutions is carried out using the
developed metrics for determining the similarity of software systems
projects. The metrics allow calculating the match of pattern in OWL
ontology format with the source code of the project.

Keywords: Knowledge base · Information system · Class diagram ·
Information systems design

1 Introduction

The modern approach to the development of information systems involves the use
of intelligent automated tools to support the design process, allowing to search
for and reuse successful architectural solutions based on a common semantic
representation of subject and design knowledge. The knowledge in such auto-
mated tools is currently usually presented in the form of ontologies. Ontology
development is a long and resource-intensive process that requires the involve-
ment of specialists with competencies in ontological engineering and software
development.

This work was supported in part by the Russian Foundation for Basic Research
(Projects No. 19-47-730003, No. 18-47-730019, 19-47-730006, 19-47-730005).

c© Springer Nature Switzerland AG 2020
O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12249, pp. 718–733, 2020.
https://doi.org/10.1007/978-3-030-58799-4_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58799-4_52&domain=pdf
http://orcid.org/0000-0003-0008-5035
http://orcid.org/0000-0002-3616-4440
http://orcid.org/0000-0003-2912-7278
http://orcid.org/0000-0002-5718-8732
https://doi.org/10.1007/978-3-030-58799-4_52

Approach to the Search for Software Projects 719

Developers of information systems as a rule do not have sufficient knowledge
about the subject area of the project. The documents governing the subject
area do not always record all the accepted semantic meanings of entities and
relationships. Creating a knowledge base that allows take into account and reuse
successful design solutions will reduce the time of design and development, as
well as the number of semantic errors. The main problem of using ontologies
in the process of developing information systems is the high requirements for
knowledge of the internal structure of ontologies.

The importance of formalizing concepts of the subject area for the devel-
opment of an information system has led to the emergence of special design
languages, which include the formalization of domain concepts (entities). The
most common design tools are based on the Unified Modeling Language (UML)
[1].

Class diagrams in UML notation and Java source code are used as input data
for the design support system. UML diagrams are applicable to the description
of specific features of information systems, for example:

– classes that make up the architecture of the information system;
– tables and relationships of database schema ;
– properties and characteristics of user’s computer servers to create a physical

deployment, etc.

The implementation and use of knowledge-based intelligent systems are relevant
in all problem areas nowadays [9,10]. At the moment, a lot of researchers use
the ontological approach for the organization of the knowledge bases of expert
and intelligent systems: M. Gao, C. Liu [11], D. Bianchini [12], N. Guarino [3],
G. Guizzardi [13], R.A. Falbo [14], G. Stumme [15], N.G. Yarushkina [18], T.R.
Gruber [16], A. Maedche [17].

Fernando Bobillo Umberto Straccia proposed a fuzzy ontology description
format [2]. At this stage in the development of information technology, a large
number of open source software systems have been created in various subject
areas. Reuse of modules of open software systems will significantly reduce the
time spent on software development.

Currently, the strong influence of the characteristics of the problem area,
within which the development of software systems is carried out, leads to the
frequent use of domain-based development methodology (Domain Driven Devel-
opment — DDD). This methodology is based on an object-oriented programming
paradigm and involves various types of testing that allow performing the func-
tion of checking the quality of the source code. But this methodology does not
take into account the correctness of the model from the point of view of the
features of the subject area. This type of error control is carried out by project
managers and leading developers.The formation of the ontological representa-
tion of the model allows detecting errors in the perception of the subject area.
Knowledge is captured in the ontology in the OWL (Web Ontology Language)
[4] format with a predefined TBox.

720 F. Aleksey Alekundrovich et al.

As input to the design support system, class diagrams in UML notation and
Java source code are used. The solution a problem of design support information
systems consists of executing the following tasks:

1. build a model for representing information system design as the content of a
knowledge base;

2. method of ontological indexing of class diagrams in UML notation and project
by source code;

3. search methods for effective design solutions in the content of the knowledge
base.

2 Software Product Design Model for Representation in
the Knowledge Base

Project documentation includes diagrams formalized in UML notations. To solve
the problem of the intellectual analysis of design diagrams, it is necessary to
formalize the rules of notation in the knowledge base. Such knowledges allow
the identification of design patterns and architecture software solutions used in
various projects. This allows to search for projects with similar architectural
solutions and approaches to the implementation of modules of information sys-
tems.

An ontology in OWL format is used as the basis of the knowledge base of
the design process support system. The W3C consortium recommends using the
SHOINF(D) formalism [5–7] for the OWL language group (OWL Light, OWL
DL, OWL Full) as the logical basis of the ontology description language.

In the context of the SHOINF(D) description logic, the ontology is a knowl-
edge base of the following form [8]:

KB = {TBox,ABox}, (1)

where TBox — a set of terminological axioms representing general knowledge
about the concepts of the knowledge base and their relationships;
ABox — a set of statements (facts) about individuals.

2.1 Tbox Axioms of Information Systems Design Ontology

The terminology of project diagrams is divided into the logical representation of
the UML notation and the logical representation of design patterns.

Relationship � �;
Dependency � Relationship;
Association � Relationship;
Generalization � Relationship;
Realization � Relationship � ∃
startWith.Class � ∃ endWith.Interface;

(2)

Approach to the Search for Software Projects 721

where startWith endWith — name of roles comes from and coming to,
respectively.

The main classes can be represented:

Thing � �∀hasAName.String;
StructThing � Thing;
AnnotThing � Thing;
Note � AnnotThing � ∃ connectedTo.Association;
Class � StructThing;
Object � StructThing � ∃
isObjectOf.Class � ∀ isObjectOf.Class;
Interface � StructThing;
SimpleClass � Class;
AbstractClass � Class;

(3)

where hasAName,isObjectOf , connectedTo — roles in relationship;
String — concrete domain.

Class attributes and methods are represented as follows:

Attribute � � � ∃
hasAAttrName.String � ∃ isAPartOf.Class
Method � � � ∃
hasAMethName.String � ∃ isAPartOf.Class,

(4)

where hasAAttrName and hasAMethName — relationships “has
attribute/method name”.

Consider the terminology of design patterns associated with the logical rep-
resentation of design diagram notation (using the UML class diagram as an
example):

Template � � � ∃
hasATempName.String � ∃hasAExpV alue.Double

SomeTemplate � Template,
(5)

where hasATempName — role “has a design pattern name”;
hasAExpV alue — role “has value of expression”;
Double — concrete domain.

Each design pattern in each specific project has a certain degree of expression.
The hierarchy of concepts of the developed ontology is presented in the Fig. 1.
Hierarchy of properties (DataTypeProperty and ObjectProperty) in devel-

oped ontology is presented in the Fig. 2.

722 F. Aleksey Alekundrovich et al.

Fig. 1. The hierarchy of concepts of the developed ontology in the editor Protege

2.2 Abox Axioms of Information Systems Design Ontology

The Fig. 3 shows an example of the design pattern “Delegate”, which in the form
of a set of ABox facts:

class1: SimpleClass
class2: SimpleClass;
attribute1: Attribute

object1: Object;
method1: Method
method2: Method;

relation1: Association;
(method1, name1: String) : hasAMethName;
(method2, name2: String) : hasAMethName;

(attribute1, class1) : iaAPartOf
(object1, class2) : isObjectOf ;

(object1, attribute1) : owl : sameAs
(method1, class1) : iaAPartOf ;
(method2, class2) : iaAPartOf

(relation1, class1) : startWith
(relation1, class2) : endWith.

(6)

In the knowledge base ontology, the ABox fact set includes all the facts about
the design patterns used. Then, in the indexing process, the facts from ABox
are compared with the facts extracted from the design diagrams and the degree
of expression for each ontology template is determined.

Approach to the Search for Software Projects 723

Fig. 2. Hierarchy of DataTypeProperty and ObjectProperty f the developed ontology
in the editor Protege

3 Ontological Representation of Design Patterns

Formally, the ontological representation of the design pattern can be represented
as follows:

OV tmp
i = {C,D,Rsame as}, (7)

where C — set of individuals in knowledge base;
D — set of relationship between elements of i− th design patterns, presented as
knowledge base individuals;
R — set of equivalence relationships knowledge base individuals.

Design pattern “Builder” is one of the most commonly used patterns in
industrial software development. “Builder” is a generic design pattern and allows
to create complex composite objects. Figure 4 shows the UML class diagram of
the Builder design pattern in the Visual Paradigm.

Representation of the “Builder” design pattern as a fragment of a knowledge
base ontology is defined by the following concept instances:

724 F. Aleksey Alekundrovich et al.

Fig. 3. Ontology structure (including design pattern example)

Builder.Client : SimpleClass
Builder.Director : SimpleClass

Builder.ConcreteBuilder : SimpleClass
Builder.Product : SimpleClass

Builder.AbstractBuilder : AbstractClass
Builder.Client AbstractBuilder : Association

Builder.Client Director : Association
Builder.Client IProduct : Association

Builder.ConcreteBuilder Product : Association
Builder.ConcreteBuilder AbstractBuilder : Generalization

Builder.Product IProduct : Realization

(8)

The ontology fragment presented above has the form shown in the Fig. 5.

Approach to the Search for Software Projects 725

Fig. 4. Class diagram of design pattern “Builder”.

Realization of the similar project search function in the knowledge base use
the metric to calculate the similarity between designed (in UML notation) and
already implemented software projects.

4 Determining the Design Pattern Expression
in the Information System Project

To calculate the similarity measure of software projects, the following method
is proposed for calculating the measure of expression the design pattern in a
software project:

µprj (tmpi) =

∣
∣Cprj ∩ Ctmpi

∣
∣ +

∣
∣Rprj ∩ Rtmpi

∣
∣

|Ctmpi | + |Rtmpi | , (9)

where
∣
∣Cprj ∩ Ctmpi

∣
∣ — number of matching individuals in an ontological

representation i− th knowledge base design pattern and ontological representa-
tion of a software project;
∣
∣Rprj ∩ Rtmpi

∣
∣ — number of matching relationships in an ontological represen-

tation i − th knowledge base design pattern and ontological representation of a
software project;
|Ctmpi | — number of individuals in an ontological representation i − th knowl-
edge base design pattern and ontological representation of a software project;
|Rtmpi | — number of relationships in an ontological representation −th knowl-
edge base design pattern and ontological representation of a software project.

If the number of facts (|Ctmpi | and |Rtmpi |) ontological representation i− th
design pattern tmpi determined by summing up the number of facts. To calculate
number of facts (

∣
∣Cprj

∣
∣
∣
∣Rprj

∣
∣) in ontological representation of a software project

it is necessary to use the following developed algorithm:

726 F. Aleksey Alekundrovich et al.

Fig. 5. An example of an ontological representation of a design pattern Builder

Step 1. Convert UML class diagram project projj to set of facts ABoxprj :

elemprj
k : Concept

(

elemprj
k , elemprj

s

)

: Role,

where Concept — concept of the knowledge base, defined at TBox;
Role — role, defined at TBox;
elemproj

k — k − th individual of ontology concept, extracted from diagram.
Step 2. Defining a set of main classes from ABoxprj regarding i − th design

pattern tmpi.
The base class will be such an individual elemprj

k of the concept Class (or
its child concept Subclass) of ABoxprj , which corresponds to some individual
elemtmp

k : Class from ABoxtmpi for which a number of facts coinciding with the
tmpi pattern are maximum:

elemprj
k : Concept

(

elemprj
k , ∗

)

: Role
(

∗, elemprj
k

)

: Role. (10)

Step 3. Calculation of the number of true facts. The fact is true if there is a
correspondence between i − th class individuals of the design pattern tmpi and
class diagrams of the project prjj :

∀ k : elemtmp
k ↔ elemprj

k .

Approach to the Search for Software Projects 727

This algorithm of the class diagram indexing is performed for each design
pattern available in the knowledge base ontology.

After calculating the measure of the expression of each selected design pattern
in each of the considered software projects, it becomes possible to calculate the
measure of similarity between software projects using one of three metrics.

5 Metrics Measures Architectural and Semantic
Similarity of Software Projects

The first metric allows to calculate the measure of similarity by the most
expressed pronounced design pattern in each of the projects:

µ1 (prji, prjj) =
∨

tmpk∈(prji∩prjj)

µprj (tmpk) , (11)

where prji, prjj — UML class diagram ontological representation i− th and
j − th projects respectively;
µprj (tmpk) — measure of expression k−th design pattern in project (expression
9).

This metric demonstrates good results for a relatively small number of com-
plex combined design patterns. Such design patterns are based on the subject
area and, to a lesser extent, correspond to design patterns in the usual sense of
industrial programming.

The second metric extends the first (the expression 11) and takes into account
the degree of expression of design patterns that exceeds a certain threshold
value. A threshold value of 0.3 was chosen experimentally. If the measure of the
expression of the design pattern is less than 0.3, we can conclude that there is
no design pattern in the software project, and as a result, such a design pattern
should be excluded from consideration:

µ2 (prji, prjj)

∨

tmpk∈(prji∩prjj)≥0.3 µ
prj (tmpk)

N
, (12)

where N — number of design patterns with expression measure more than 0.3
for each project.

The third metric is similar to the second metric (expression 12), but imposes
an additional condition on the contribution of the measure of expressiveness of
the design pattern (µ̃prj) to the measure of architectural similarity of projects:

µ3 (prji, prjj)

∨

tmpk∈(prji∩prjj)≥0.3 µ̃
prj (tmpk)

N
, (13)

where µ̃prj (tmpk) — the weighted measure of expression design pattern tmpk
in software project prj.

The weighted measure of expression µ̃prj (tmpk) k − th design pattern tmpk
in project prj is measure of expression (expression 9), normalized by number of
elements, included in design pattern with maximum set of element:

728 F. Aleksey Alekundrovich et al.

µ̃prj (tmpi) =

∣
∣Cprj ∩ Ctmpi

∣
∣ +

∣
∣Rprj ∩ Rtmpi

∣
∣

∨

tmpk∈ABox (|Ctmpk | + |Rtmpk |) , (14)

This modification allows taking into account the complexity of the inter-
nal structure of the design pattern when calculating the similarity measures of
software projects.

Design pattern consist from 20 elements that has full expression by
µ3 (prji, prjj) in projects proji and projj , will have 4 times more weight than the
design pattern, consisting of 5 elements and also having a degree of expression
equal to 1.

6 Experiment in Finding Design Patterns in Public
Projects from Github

To test the proposed approach to highlighting design patterns in projects, an
experiment was conducted, the purpose of which was to search for design pat-
terns in projects located in the GitHub repository. To conduct the experiment,
information on 10 design patterns was added to the ontology: Delegation, Inter-
face, Abstract superclass, Builder, Adapter, Singleton, Bridge, Faade, Decorator,
Observer.

As a result of the “vk api” request, 108 projects were received related to the
set of projects working with the social network API “VKontakte”. VKontakte
is the most common social network in Russia.

The query by “design patterns” resulted in a sample of 6516 projects. This
experiment is necessary to verify the operation of the system in conditions of
increased content of design patterns in projects.

For testing, the sample was limited to the first 100 projects for both requests.
Search results for design patterns are presented as bar graphs in the Figs. 6 and 7.

Selected design patterns differ in the number of elements and the relationships
between them. The number of elements varies from 3 to 20.

In this experiment, only projects developed using the Java programming
language were also considered.

Since the total number of projects in the GitHub repository developed in the
Java language is very large, it is necessary to limit the selection of projects for
the experiment. As a result, the following results were obtained: high frequency
of use of the Delegation, Interface, Abstract superclass and Facade templates.
This result is explained by the simple structure of these patterns — a relatively
small number of structural elements and, as a result, relationships. These design
patterns may have been used unconsciously by developers, or they may coincide
in structure with part of a more complex pattern.

There were relatively few design patterns for Builder, Adapter, Bridge, Deco-
rator, and Observer in the control group of projects. The rarity of these patterns
is due to their complex structure — the content of a large number of elements.

Approach to the Search for Software Projects 729

Fig. 6. Search results for templates among projects received by request “vk api”

Fig. 7. Search results for templates among projects received by request “design pat-
terns”

7 Search Experiments Results for Structurally Similar
Software Projects

To determine the measure of structural similarity between two projects, it is
necessary to calculate the measure of severity of each design pattern in both
projects (expressions 9 and 14).

In this experiment, all projects were downloaded from the GitHub open
repository. All projects were selected by the following keywords: “public API”,

730 F. Aleksey Alekundrovich et al.

“social network”, “vkontakte”, which allows to determine whether the projects
belong to the subject area — work with the social network API “VKon-
takte”: Android-MVP, cordova- social-vk, cvk,DroidFM, VK-Small-API, VKon-
takteAPI, VK TEST.

The Table 1 shows the severity of each considered design pattern in all
projects of the experimental sample. The similarity score ratings are normal-
ized from 0 to 1. The estimates of the similarity measure for the first metric

Table 1. The expression measure of design patterns in projects

Project name Delegator Adapter Builder Abstract superclass Interface

Android-MVP 1.0 0.875 0.83 1.0 1.0

cordova-social-vk 1.0 0.875 0.83 1.0 0.8

cvk 1.0 0.875 0.92 1.0 1.0

DroidFM 1.0 0.875 0.92 1.0 1.0

VK-Small-API 1.0 0.42 0.92 0.33 0.6

VKontakteAPI 1.0 0.83 0.92 1.0 0.8

VK TEST 1.0 0.75 0.58 0.66 0.6

(expression 11) are always equal to 1, because this metric selects a design pattern
with the maximum measure of expression for each of the two compared projects.
And since, for example, the Abstract superclass, Interface, and Delegator design
pattern consists of a relatively small number of elements, this leads to a high
degree of expression of such patterns in a large number of projects.

The estimates of the projects similarity measure by second (expression 12)
and third (expression 13) metric presented at 2 and 3 tables respectively.

Table 2. Measures of structural similarity of software products in the second metric

Projects Android-
MVP

cordova-
social-vk

cvk Droid-
FM

VK-
Small-
API

VKonta-
kteAPI

VK
TEST

Android-MVP − 0.96 0.96 0.98 0.78 0.96 0.78

cordova-social-vk 0.96 − 1 0.94 0.85 1 0.83

cvk 0.96 1 − 0.94 0.85 1 0.83

DroidFM 0.98 0.94 0.94 − 0.78 0.94 0.78

VK-Small-API 0.78 0.85 0.85 0.78 − 0.85 0.96

VKontakteAPI 0.96 1 1 0.94 0.85 − 0.83

VK TEST 0.79 0.83 0.83 0.78 0.95 0.83 −

Approach to the Search for Software Projects 731

Table 3. Measures of structural similarity of software products in the third metric

Projects Android-
MVP

cordova-
social-vk

cvk Droid-
FM

VK-
Small-
API

VKonta-
kteAPI

VK
TEST

Android-MVP − 0.96 0.96 0.96 0.64 0.96 0.77

cordova-social-vk 0.96 − 0.99 0.93 0.67 0.99 0.80

cvk 0.97 0.99 − 0.93 0.67 0.99 0.80

DroidFM 0.97 0.93 0.93 − 0.61 0.93 0.74

VK-Small-API 0.64 0.67 0.68 0.61 − 0.67 0.87

VKontakteAPI 0.97 0.99 0.99 0.93 0.67 − 0.80

VK TEST 0.77 0.80 0.80 0.74 0.87 0.80 −

The degree of similarity of the projects obtained in these experiments are
very high, which can be explained by two features of this experiment. Design
patterns with a severity measure of less than 0.3 were excluded in at least one
of the compared projects. In this experiment, it is assumed that the design
pattern, expressed with a measure of expression less than 0.3, is not found in
the project. Accounting design patterns with a small degree of severity will lead
to a significant decrease in the value of the similarity indicator of any projects
with an increase in the number of design patterns.

The considered metrics for calculating project similarity are based on a sin-
gle computational principle and represent its consistent development. The third
metric is the most universal for projects and design patterns of different sizes
but much more parametrized.

Design patterns can be implemented in projects in various ways. This prob-
lem can be solved in two ways:

1. Using the corporate standard of the company
2. To use projects from open sources, it is worthwhile to form two or more

alternative representations of the design pattern in an ontology and consider
them equivalent

8 Conclusion

In the course of this research, the following results were obtained:

1. Ontologically-oriented model of the UML diagram language and ontological
model of the design pattern.

2. Architectural similarity measures for software projects; measures of expres-
siveness of the design pattern in the considered software products.

3. An algorithm for transforming a class diagram in UML notation into an
ontology of the OWL format.

4. An algorithm for transforming source code in the Java programming language
into an ontology of the OWL format.

732 F. Aleksey Alekundrovich et al.

Thus, the proposed approach to supporting the design process allows the use
of successful design solutions in the development of new software project, thereby
reducing the design process time and increasing the quality of the resulting
solutions.

References

1. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,
2nd edn. Addison-Wesley Object Technology Series, p. 496, New York (2005)

2. Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Approximate
Reasoning 52(7), 1073–1094 (2010)

3. Guarino, N., Musen, M.A.: Ten years of applied ontology. Appl. Ontol. 10, 169–170
(2015)

4. OWL 2 Web Ontology Language. https://www.w3.org/TR/owl2-overview/
5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, Peter

F: The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

6. Bonatti, P.A., Tettamanzi, A.G.B.: Some complexity results on fuzzy descrip-
tion logics. In: Di Gesú, V., Masulli, F., Petrosino, A. (eds.) WILF 2003. LNCS
(LNAI), vol. 2955, pp. 19–24. Springer, Heidelberg (2006). https://doi.org/10.
1007/10983652 3

7. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

8. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining
logic programs with description logics. In: Proceedings of WWW 2003, Budapest,
Hungary, pp. 48–57. ACM, May 2003

9. Golenkov, V., Guliakina, N., Davydenko, I.: Methods and tools for ensuring com-
patibility of computer systems. Open Semant. Technol. Intell. Syst. 3, 25–53 (2019)

10. Golenkov, V., Shunkevich, D., Davydenko, I.: Principles of organization and
automation of the semantic computer systems development. Open Semant. Tech-
nol. Intell. Syst. 3, 53–91 (2019)

11. Gao, M., Liu, C.: Extending OWL by fuzzy description logic. In: Proceedings of the
17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2005), pp. 562–567 (2005)

12. Bianchini, D., de Antonellis, V., Pernici, B., Plebani, P.: Ontologybased method-
ology for e-service discovery. Inf. Syst. 31, 361–380 (2005)

13. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the
representation of events and Endurants in business models. In: International Con-
ference on Business Process Management, pp. 20–36 (2016)

14. Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino,
N.: An ontology pattern language for service modeling. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pp. 321–326 (2016)

15. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering
data mining. ICDM 2003, 541–544 (2003)

https://www.w3.org/TR/owl2-overview/
https://doi.org/10.1007/10983652_3
https://doi.org/10.1007/10983652_3

Approach to the Search for Software Projects 733

16. Gruber, T.: Ontology. http://tomgruber.org/writing/ontology-in-encyclopedia-of-
dbs.pdf. Accessed Dec 2019

17. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. https://www.
csee.umbc.edu/courses/771/papers/ieeeIntelligentSystems/ontologyLearning.pdf.
Accessed Dec 2019

18. Guskov, G., Namestnikov, A., Yarushkina, N.: Approach to the search for simi-
lar software projects based on the UML ontology. In: Abraham, A., Kovalev, S.,
Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol.
680, pp. 3–10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68324-
9 1

http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf
http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf
https://www.csee.umbc.edu/courses/771/papers/ieeeIntelligentSystems/ontologyLearning.pdf
https://www.csee.umbc.edu/courses/771/papers/ieeeIntelligentSystems/ontologyLearning.pdf
https://doi.org/10.1007/978-3-319-68324-9_1
https://doi.org/10.1007/978-3-319-68324-9_1

	Approach to the Search for Software Projects Similar in Structure and Semantics Based on the Knowledge Extracted from Existed Projects
	1 Introduction
	2 Software Product Design Model for Representation in the Knowledge Base
	2.1 Tbox Axioms of Information Systems Design Ontology
	2.2 Abox Axioms of Information Systems Design Ontology

	3 Ontological Representation of Design Patterns
	4 Determining the Design Pattern Expression in the Information System Project
	5 Metrics Measures Architectural and Semantic Similarity of Software Projects
	6 Experiment in Finding Design Patterns in Public Projects from Github
	7 Search Experiments Results for Structurally Similar Software Projects
	8 Conclusion
	References

