
Is Complexity of Re-test a Reason
Why Some Refactorings Are Buggy?

an Empirical Perspective

Steve Counsell(B), Steve Swift, Mahir Arzoky, and Giuseppe Destefanis

Department of Computer Science, Brunel University, London, UK
steve.counsell@brunel.ac.uk

Abstract. In this short paper, we explore one simple, yet unexplored
question about the relationship between refactoring and bugs. Is the
complexity of re-testing code immediately after refactoring a reason why
some refactorings are buggy? To facilitate our analysis, we use a set of
over four thousand refactorings mined from three open-source systems
and decomposed into the four test categories of van Deursen and Moo-
nen. Preliminary results showed that, compared with non-buggy classes,
buggy classes had been subjected to more refactorings where a large
re-test commitment was required; extent of re-test may therefore be a
significant factor in determining whether refactoring creates bugs. Our
finding supports that of Bavota et al. - that more and better testing
after certain refactoring practices could reduce the harm that refactor-
ings cause.

1 Introduction

Since the 1990’s and the seminal texts on refactoring were published by Opdyke
[8] and Fowler et al. [5], refactoring has been the subject of hundreds of empiri-
cal studies and become a vital tool in the daily work of a developer. Refactoring
can be defined as the process of: “Changing a software system in such a way
that it does not alter the external behavior of the code yet improves its inter-
nal structure” [5]. Despite this multitude of prior studies, there are still a range
unanswered research questions. One of these is the link between refactoring and
bugs. So, does refactoring cause bugs and if it does, then which types of refac-
torings cause bugs the most often? Every refactoring requires the developer to
re-test the affected code to ensure that program behaviour has been preserved.
So, an equally relevant research question to ask is whether the extent of re-test
required post-refactoring influences the level of bugs in a system. To assess the
level of post-test necessary, we use a taxonomy developed by van Deursen and
Moonen [9]. The taxonomy categorizes each of 72 refactorings according to how
difficult it is to unit post-test and it thus indicates the level of effort required
to ensure that the refactoring has been successfully applied. Results from our
analysis showed a tendency for buggy classes to have a higher number of refac-
torings with extensive re-test (compared to non-buggy classes). This implies that
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 83–90, 2020.
https://doi.org/10.1007/978-3-030-58793-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_7


84 S. Counsell et al.

if we do complex and lengthy refactorings, then we should take every step to
ensure that program behaviour has been preserved. The remainder of the paper
is organized as follows. In Sect. 2, we describe information on the systems studied
and taxonomies/data. We then present results through an analysis of the three
systems (Sect. 3), before discussing results in Sect. 4. Finally, we conclude and
point to further work in Sect. 5.

2 Preliminaries

2.1 Taxonomy of van Deursen and Moonen

To assess the extent of unit, post-refactoring testing required for every refactor-
ing, we use the taxonomy developed by van Deursen and Moonen (V&M) [9].
The purpose of the taxonomy is to allocate each of Fowler’s 72 refactorings [5]
to a category, depending on the complexity and extent of the post-test required
after that refactoring had taken place. The taxonomy is motivated by V&M as
follows: “One of the dangers of refactoring is that a programmer unintentionally
changes the systems’ behavior. Ideally, it can be verified that this did not happen
by checking that all the tests pass after refactoring. In practice however, there are
refactorings that will invalidate tests (e.g., when a method is moved to another
class and the test still expects it in the original class)”. In short, the categories
represent an increasingly complex post-refactoring test effort commitment on
the part of the developer and the taxonomy reflects the fact that some refactor-
ings restructure the code in such a way that unit tests can only pass after the
refactoring once those tests have been modified. The four categories identified
by V&M are as follows:

1. Compatible: Refactorings that do not change the original interface. In the
compatible refactoring category, we can use existing tests to check the refac-
toring. One example is the Extract method refactoring [5], which takes a
section of code from a method and forms a new method (or methods) with
that code. However, since this refactoring creates at least one new method,
we need to add tests that document and verify that the new method has
actually preserved behaviour.

2. Backwards compatible: Refactorings that change the original interface and
are inherently backwards compatible since they extend the interface. In the
case of this set of refactorings, according to V&M, “... the tests keep running
via the original interface and will pass if the refactoring preserves tested behav-
ior. Depending on the refactoring, we might need to add more tests covering
the extensions”. One example of this refactoring type is Consolidate Condi-
tional Expression, which re-arranges a conditional statement into a simpler
and less complex format. The conditions in the statement do not change and
it might be possible to use the same test on the changed code.

3. Make backwards compatible: This applies to refactorings that change
the original interface and can be made backwards compatible by adapting
the old interface. For example, the Move method [5] refactoring physically



Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? 85

moves a method from one class to another class and can be made backwards
compatible by adding a wrapper method to retain the old interface.

4. Incompatible: This applies to refactorings that change the original interface
and are not backwards compatible because they may, for example, change the
types of classes that are involved. This makes it difficult to wrap the changes.
The refactoring destroys the original interface and, as such, all tests that rely
on the old interface need to be adjusted.

In theory, Compatible refactorings require less post refactoring test effort than
those in the Backwards compatible category, which in turn require less effort than
refactoring in the Make backwards Compatible category etc. In line with this,
we adopt the stance that Compatible refactorings are the most straightforward
to re-test and Incompatible refactorings the most complex; this is essentially the
message that V&M convey in their work.

2.2 Systems Analysed

Our analysis in this paper is facilitated by the earlier work of Bavota et al.
[2]. In their analysis, they describe how some refactorings were more likely to
induce a bug than others, using the set of Fowler’s refactoring activities as the
vehicle. Results indicated that, while some kinds of refactorings were not likely
to be harmful, others tended to induce bugs frequently (i.e., were harmful).
In their study, they used refactoring and bug data extracted from three open-
source systems and made that data available. We use that same data in this
paper to explore refactorings but from a purely re-test perspective. The systems
studied were: Xerces, ApacheAnt and ArgoUML. Xerces is a Java XML parser,
ApacheAnt a build tool and library primarily designed for Java applications and
ArgoUML a UML modelling tool1. Table 1 shows summary statistics for the
three systems including: the period of time over which the system was studied,
the releases analysed, the number of releases and, finally, the number of classes.
The summary statistics in Table 1 are reproduced from the paper by Bavota
et al.

Table 1. Three systems studied (summary data)

System Period Analyzed Rel. No. classes

Xerces Nov ‘99–Nov ‘10 1.0.4-2.9.1 33 181-776

ApacheAnt Jan ‘00–Dec ‘10 1.2-1.8.2 17 87-1191

ArgoUML Oct ‘02–Dec ‘11 0.12-0.34 13 777-1519

1 http://ant.apache.org/, http://argouml.tigris.org/, http://xerces.apache.org/xerce
s-j/.

http://ant.apache.org/
http://argouml.tigris.org/
http://xerces.apache.org/xerces-j/
http://xerces.apache.org/xerces-j/


86 S. Counsell et al.

2.3 V&M Decomposition

Table 2 shows the number of refactorings across each system and the number of
refactorings in each of V&M’s categories; here, Comp. or comp denotes Compat-
ible, b/comp. denotes Backwards compatible and Incomp. represents Incompat-
ible. The refactorings were collected in the original study of Bavota et al. by the
Ref-Finder tool [6] and we use exactly the same set of refactorings. In the Xerces
system for example, there were 1528 refactorings in total; of that total, 668 were
“Compatible”, 218 “Backwards compatible”, 510 “Make backwards compatible”
and 132 “Incompatible”.

Table 2. Categories of V&M across the three systems

System Comp. Backwards comp. Make b/comp. Incomp. Total

Xer. 668 218 510 132 1528

Apac. 290 67 142 21 520

Argo. 788 194 837 194 2013

Total 1746 479 1489 347 4061

From Table 2, we also see that the Compatible category forms the largest
number (1746) and that ArgoUML has the highest number of overall refactor-
ings (2013) across the four categories. Significant numbers of Make backwards
compatible refactorings can also be seen; Incompatible refactorings were rela-
tively small in number (just 347 from 4061 (8.54%)). The numbers in the table
thereby give a mixed picture in terms of a developer’s propensity to choose refac-
torings with a less complex required post-refactoring test. It seems that they are
as likely to undertake complex refactorings (with long re-test requirements) as
they are simpler ones. The numbers of Incompatible refactorings are comparable
with the numbers of Backwards compatible refactoring, even though the former
represents the lengthiest post refactoring test required. Based on the evidence
from Table 2, it appears that developers do not necessarily choose refactorings
with a low post-refactoring test burden according to the taxonomy of V&M.

3 Data Analysis

3.1 Buggy Classes

To further our analysis, we looked at the type of refactorings in each system for
classes where at least one bug had been recorded due to a refactoring and the
V&M categories of those refactorings. Table 3 lists the name of the refactorings
and, for each of the three systems abbreviated to Xer,. Apa., and Arg., the
number of refactorings, total and the V&M category of that refactoring. In
the Xerces system, there were 26 Add parameter refactorings made to classes



Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? 87

with at least one bug and across all three systems there were 68 Add parameter
refactorings in total. Add parameter falls into the “Make backwards compatible”
category of refactoring. We note that for space in the paper (there were in
excess of 35 types of refactoring), we have left out any refactoring where, across
the three systems, there were less than ten refactorings of that type - we do
include these in reported analyses, however. We have also abbreviated some
refactorings in Table 3 for space purposes. In full and in the order of the table,
these are: Consolidate conditional expression, Consolidate duplicate conditional
fragments, Introduce explaining variable, Remove assignments to parameters,
Replace method with method object, Replace nested conditional with guard
clauses and Replace magic number with symbolic constant.

Table 3. V&M categories (buggy classes)

Refactoring Xer. Apa. Arg. Total V& M category

Add parameter 26 10 32 68 Make b/comp.

Cons. cond. expression 11 5 3 19 Backwards comp.

Cons. dup. cond. frag. 16 11 13 40 Comp.

Extract method 11 11 19 41 Backwards comp.

Inline method 6 2 2 10 Incomp.

Intr. explaining variable 5 7 14 26 Comp.

Intr. null object 9 8 13 30 Comp.

Inline method 2 0 10 12 Comp.

Move field 11 3 63 77 Incomp.

Move method 7 8 40 55 Make b/comp.

Remove ass. parameters 8 4 9 21 Comp.

Remove control flag 3 5 11 19 Comp.

Remove parameter 24 7 31 62 Make b/comp.

Rename method 19 9 17 45 Make b/comp.

Rep. meth. w meth. o. 16 0 80 96 Comp.

Rep. nest. cond. w g. 12 0 8 20 Comp.

Rep. mag. no. w sym. c. 16 13 7 36 Comp

In terms of the totals and including 13 refactorings left out of the table for the
Compatible category, there were 313 (43.84%) refactorings. For the Backwards
compatible category and including 8 refactorings left out of the table, there were
68 refactorings in the category (9.52%). For the Make backwards compatible
category and including 9 refactorings not in the table, there were 239 refactorings
in that category (33.47%). Finally, for the Incompatible category, including 7
not in the table, there were 94 refactorings (13.17%). Overall, this means that
53.36% of all refactorings with at least one bug were drawn from the Compatible



88 S. Counsell et al.

and Backwards compatible categories. Most notable from the data, however, is
that 46.64% of refactorings in classes with at least one bug were in the Make
backwards compatible and Incompatible categories (i.e., those requiring the most
post-test effort).

3.2 Non-buggy Classes

Table 4 shows the corresponding data for classes where no bug was recorded.
So, for the Xerces system, 581 refactorings had been applied to classes with
no recorded bug in the Compatible category. Similarly, 115 refactorings in the
Incompatible category had been applied to classes with no yet recorded bugs. It
also shows the total in each category and the percent that those totals reflect of
the total number of refactorings. For comparison, we also include the percent for
the buggy refactorings from Table 3. For example, there were 1311 Compatible
refactorings across the three systems and this represents 42.57% of the total. For
the buggy total in Table reftbl3, the corresponding percent was 43.84.

Table 4. V&M categories (non-buggy classes)

System Comp. Backwards comp. Make b/comp. Incomp.

Xerces 581 196 434 115

ApacheAnt 242 51 108 16

ArgoUML 488 134 607 107

Total 1311 381 1149 238

% non-buggy 42.58 12.37 37.32 7.73

(% buggy) (43.84) (9.52) (33.47) (13.17)

The most notable feature of Table 4 is the contrast between the number
of Make backwards compatible and Incompatible refactorings compared with
the set of data from Table 3. From the set of non-buggy classes totalling 3079
refactorings, we see that the Compatible category accounted for 42.58% the
Back compatible category accounted for 12.37%, the Make backwards compatible
category 37.32% and the Incompatible category just 7.73%. In total therefore,
54.94% were drawn from the Compatible and Backwards compatible categories
and 45.06% from the Make backwards compatible and Incompatible categories.

From this data, the percentages are similar across buggy and non-buggy
classes for three of the four categories. It is the relatively larger number of
Incompatible refactorings (13.17%) in buggy classes compared with non-buggy
classes - the corresponding value in non-buggy was almost half. We posit that
the cause of bugs in the buggy classes was due directly to the extra number
of Incompatible buggy refactorings. In particular, we single out the Move field
refactoring in the ArgoUML system with 66 individual instances of this refactor-
ing. As its name suggests, this refactoring should be applied when: “A method is



Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? 89

used more in another class than in its own class”. The solution is to move that
method to the class where it is being used most. Move method is a refactoring
whose key purpose is to reduce coupling, a feature of systems that is widely
acknowledged (when in excess) as contributing to the code buggyness [1,3]. So,
while the Move method may well solve one problem, it may cause others due to
the re-test required and the bug potential as a result.

We carried out Chi-square test to determine statistical significance of buggy-
ness and its influence on the different categories [4]. We used a 2 ∗ 4 contingency
table, with buggy and non-buggy representing the two rows in the table and the
four columns representing the categories of refactoring and totals. The contin-
gency table is therefore an amalgamation of the results found in Tables 3 and 4,
representing buggy and non-buggy sets of refactorings and the numbers of refac-
torings in each, respectively. The Chi-square analysis gave a p-value of 0.00001
(degrees of freedom = 3). This value is less than <0.01 and we therefore fail to
accept the null hypothesis of independence between buggyness and refactoring
category. The buggyness of a class is dependent on the category of refactoring.

4 Discussion

Our short paper precludes a full treatment of the literature in the area. However,
our analysis is heavily informed by the work of Bavota et al. [2]. They explored
the buggyness of Fowler’s set of 72 refactorings. Their conclusion was that more
accurate code inspection and testing activities needed to be in place to prevent
refactorings causing harm to code and seeding bugs. Our analysis has shown the
same rule applies, but that it may be the extent of post-refactoring test that may
be a contributory factor to bugs. We would qualify this by saying that if you
undertake refactorings in the Incompatible category according to V&M, then
extra care and attention should be invested in the testing process to make sure
it is done properly. The refactoring literature on trends and traits in refactorings
and the closely linked topic of code smells is well-documented [5]; however, the
issue of the damage that post-refactoring can do is still largely undocumented.
In this paper, we take the first steps in that research direction.

We also need to consider the threats to the validity of our study. Firstly,
we have only examined three systems, which is a small sample. There is no
guarantee that, were we to study more systems, the same results would be found.
Secondly, the taxonomy of V&M studied in this paper is theoretical only and,
unlike the study of Bavota et al. [2], is not empirically-based. This could be
criticised since it is an untried taxonomy “in the field”. Thirdly, we have studied
only open-source code; industrial code may show altogether different features.
Fourthly, the message that this work has conveyed is that refactorings with
high post-test may cause bug-related problems. But there may be multiple other
factors to consider in the development process. For example, the experience of
the developer, the age of the system or the refactoring strategy adopted by
the organization. Finally, we cannot be sure of the proportion of automated
refactorings used in this study vis-a-vis those carried out manually; we assume a



90 S. Counsell et al.

manual approach to refactoring. However, there is empirical evidence suggesting
that a high proportion of developers prefer manual refactoring anyway [7].

5 Conclusions and Future Work

In this paper, we explored a single research question related to refactoring. The
question asked whether the harm that refactoring can do was related to the
amount of re-test necessary after applying a refactoring. The taxonomy of van
Deursen and Moonen was used to support our analysis and this placed every
refactoring into one of four categories in ascending difficulty of testing. Pre-
liminary results showed that, compared with non-buggy classes, buggy classes
had been subjected to more refactorings where a large re-test commitment was
required. This implies that refactorings causing bugs may be simply down to the
test load and human errors that may arise from that; for larger, more complex
refactorings there is more room for human error than for smaller, less complex
ones. Future work will focus on experiments with industrial developers to see
if refactorings with low post requirements are, experimentally, more likely to
induce a bug. This will take the form of a replication of Bavota’s study. Finally,
it would be interesting to extend our study to other open-source systems and to
multiple application domains.

References

1. Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics as
quality indicators. IEEE Trans. Soft. Eng. 22(10), 751–761 (1996)

2. Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R., Strollo, O.:
When does a refactoring induce bugs? An empirical study. In: 12th IEEE Conference
on Source Code Analysis and Manipulation, SCAM 2012, Italy, 2012, pp. 104–113
(2012)

3. Briand, L., Devanbu, P., Melo, W.: An investigation into coupling measures for
C++. In: International Conference on Software Engineering, vol. 12 (1999)

4. Field, A.: Discovering Statistics Using IBM SPSS Statistics, 4th edn. Sage Publica-
tions Ltd., Thousand Oaks (2013)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co. Inc., Boston (1999)

6. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-finder: a refactoring reconstruc-
tion tool based on logic query templates, pp. 371–372 (January 2010)

7. Negara, S., Chen, N., Vakilian, M., Johnson, R.E., Dig, D.: A comparative study of
manual and automated refactorings. In: Castagna, G. (ed.) ECOOP 2013. LNCS,
vol. 7920, pp. 552–576. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39038-8 23

8. Opdyke, W.: Refactoring: a program restructuring aid in designing object-oriented
application frameworks. Ph.D. thesis, Univ. of Illinois (1992)

9. van Deursen, A., Moonen, L.: The video store revisited - thoughts on refactoring
and testing. In: Proceedings - XP 2002, Sardinia, Italy (2002)

https://doi.org/10.1007/978-3-642-39038-8_23
https://doi.org/10.1007/978-3-642-39038-8_23

	Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? an Empirical Perspective
	1 Introduction
	2 Preliminaries
	2.1 Taxonomy of van Deursen and Moonen
	2.2 Systems Analysed
	2.3 V&M Decomposition

	3 Data Analysis
	3.1 Buggy Classes
	3.2 Non-buggy Classes

	4 Discussion
	5 Conclusions and Future Work
	References




