
Martin Shepperd
Fernando Brito e Abreu
Alberto Rodrigues da Silva
Ricardo Pérez-Castillo (Eds.)

13th International Conference, QUATIC 2020
Faro, Portugal, September 9–11, 2020
Proceedings

Quality of Information
and Communications
Technology

Communications in Computer and Information Science 1266

Communications
in Computer and Information Science 1266

Commenced Publication in 2007
Founding and Former Series Editors:
Simone Diniz Junqueira Barbosa, Phoebe Chen, Alfredo Cuzzocrea,
Xiaoyong Du, Orhun Kara, Igor Kotenko, Ting Liu, Krishna M. Sivalingam,
Dominik Ślęzak, Takashi Washio, Xiaokang Yang, and Junsong Yuan

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Martin Shepperd • Fernando Brito e Abreu •

Alberto Rodrigues da Silva •

Ricardo Pérez-Castillo (Eds.)

Quality of Information
and Communications
Technology
13th International Conference, QUATIC 2020
Faro, Portugal, September 9–11, 2020
Proceedings

123

Editors
Martin Shepperd
Brunel University
London, UK

Fernando Brito e Abreu
Lisbon University Institute
Lisbon, Portugal

Alberto Rodrigues da Silva
University of Lisbon
Lisbon, Portugal

Ricardo Pérez-Castillo
University of Castilla-La Mancha
Talavera de la Reina, Spain

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-58792-5 ISBN 978-3-030-58793-2 (eBook)
https://doi.org/10.1007/978-3-030-58793-2

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1874-6145
https://orcid.org/0000-0002-9086-4122
https://orcid.org/0000-0002-7900-9846
https://orcid.org/0000-0002-9271-3184
https://doi.org/10.1007/978-3-030-58793-2

Preface

The International Conference on the Quality of Information and Communications
Technology (QUATIC) serves as a forum for disseminating advanced methods, tech-
niques, and tools in support of quality approaches to ICT engineering and management.
Practitioners and researchers are encouraged to exchange ideas and approaches on how
to adopt a quality culture in ICT process and product improvement and to provide
practical studies in varying contexts.

QUATIC 2020 was led by Martin Shepperd (Brunel University London, UK) and
Fernando Brito e Abreu (University Institute of Lisbon, Portugal) as program chairs.
The organizing chair of this 13th edition of QUATIC was Alberto Rodrigues da Silva
(University of Lisbon, Portugal) and was locally organized by the University of
Algarve, Portugal, with Paula Ventura Martins and Marielba Zacarias. QUATIC 2020
was planned to be held on September 9–11, 2020, in Faro, Algarve, Portugal.
Unfortunately, due to the effects of the COVID-19 pandemic, QUATIC 2020 was
conducted as a fully online conference.

This volume is a collection of high-quality peer-reviewed research papers received
from all over the world. QUATIC 2020 attracted a good number of submissions from
different areas spanning over several thematic tracks, proposed in the call for papers, in
various cutting-edge technologies of specialized focus, organized and chaired by
eminent experts of each field. The following eight of those thematic tracks correspond,
on a one-to-one basis, to QUATIC 2020 sessions:

• Quality Aspects in Machine Learning, AI and Data Analytics (Leandro Minku,
UBir, UK)

• Evidence-Based Software Quality Engineering (Tracy Hall, LU, UK)
• Human and Artificial Intelligences for Software Evolution (Nicolas Anquetil, Inria,

University of Lille1, France)
• Process Modeling, Improvement and Assessment (Karol Frühauf, Infogem AG,

Switzerland)
• Software Quality Education and Training (Claudia Werner, UFRJ, Brazil)
• Quality Aspects in Quantum Computing (Manuel Serrano, UCLM, Spain)
• Safety, Security and Privacy (Ana Rosa Cavalli, IPPs, Télécom SudParis, France)
• ICT Verification and Validation (Antonia Bertolino, ISTI-CNR, Italy)

Three additional thematic tracks were proposed in the call for papers, but due to the
lesser number of submissions and the exigent review process, they had to be merged in
a joint session named RE, MDD and Agile. The original tracks were:

– ICT Requirements Engineering (Luis Olsina, UNLPam, Argentina)
– Agile Methods (Kai Petersen, FUAS, Germany, and Blekinge Institute of Tech-

nology, Sweden)
– Model-Driven Methods (Manuel Wimmer, JKU Linz, Austria)

Technical Papers Summary

The Technical Program Committee of QUATIC 2020 was made up of 153 international
academic and industrial domain experts, from organizations in 29 different countries on
5 continents. Based on a rigorous peer-review process by the Technical Program
Committee members along with external experts as reviewers, the best quality papers
were identified for presentation and publication.

The review was carried out in a double-blind process with a minimum of three
reviews per submission. Submitted papers came from more than 20 countries and
accepted papers originated in organizations from Spain (8), Italy (6), France (5),
Portugal (4), Brazil, Germany, the UK (3), among others. Out of the submission pool of
81 papers, 27 (33.3%) were accepted as full papers for inclusion in the proceedings and
12 (14.8%) as short papers.

Invited Talks

QUATIC 2020 was fortunate to have three invited talks presented by outstanding
keynote speakers. The first keynote was by Tom Mens at the University of Mons,
Belgium, where he has directed the Software Engineering Lab for over 15 years. He co-
edited two Springer books Software Evolution and Evolving Software Systems, and
published numerous highly-cited software engineering articles in peer-reviewed
international software engineering conferences and journals. His talk was titled: “Is my
software ecosystem healthy? It depends!”

The second keynote speaker was Letizia Jaccheri from the Department of Computer
Science of the Norwegian University of Science and Technology, Norway, where she
was the head of the department from 2013 to 2017. Besides having published numerous
highly-cited software engineering articles in peer-reviewed international software
engineering conferences and journals, she is an ACM Distinguished Speaker. Her talk
was titled: “From software through art to social entrepreneurship.”

The third talk was given co-jointly by João Paulo Carvalho and João Nunes from
Quidgest SA, a very active voice from the Portuguese IT industry. João Paulo Carvalho
is Founder and Senior Partner of Quidgest, and João Nunes is a technology enthusiast,
business savvy problem-solver, and white-hat hacker. Quidgest is a global technology
company, headquartered in Lisbon, Portugal. With over 30 years of experience,
Quidgest has been a pioneer and a leader in the modeling and automatic generation of
software, with two main resources: the Genio platform and an R&D team exclusively
dedicated to the development of new features and technologies. Their talk was titled:
“Built-In Quality in Software Development Automation with Models and Artificial
Intelligence.”

vi Preface

SEDES Doctoral Symposium

In addition, there was a co-located doctoral student symposium, chaired by Vasco
Amaral (Universidade Nova de Lisboa, Portugal), with proceedings published as a
standalone volume of the CEURWorkshop Proceedings series. CEUR-WS.org is a free
open-access publication service operated by Aachen University, Germany. We are
particularly pleased to support this event, as the doctoral students represent much of the
future for our community.

September 2020 Martin Shepperd
Fernando Brito e Abreu

Alberto Rodrigues da Silva
Ricardo Pérez-Castillo

Preface vii

Acknowledgments

As proceedings editors, we wish to thank all the people and organizations that directly
or indirectly supported this event. Thanks to the thematic track and PhD symposium
chairs and all other members of the Scientific Committee for their many contributions
and reviews that guarantee the overall quality of the QUATIC 2020 conference.

Thanks to our colleagues from the University of Algarve for all the organizational
details required for hosting the conference, despite the fact that the constraints and
difficulties associated with the pandemic obliged us to do it fully online. Thanks to our
colleagues that participate at different levels in the organization of the conference.
Thanks to the QUATIC’s Steering Committee members for their guidance and support
throughout the whole process.

Also, a special thanks to all the organizations involved in this conference, including
promoters (IPQ and CS03), supporters (University of Algarve, Brunel University,
ISCTE-IUL, IST-UL, UCLM, FCT-UNL, FE-UP, University of Minho, CNR, and
University of Coimbra), sponsors (ACM, Quidgest, and ATOS), and partners (NEEI/
UALG and APQ).

Finally, but not least, special thanks to all the authors and participants at the con-
ference. Without their efforts, there would be no conference or proceedings. Thank you
for contributing to the critical mass of researchers who keep this conference alive for
what we expect to be many years to come.

Organization

Program Committee Chairs

Martin Shepperd Brunel University London, UK
Fernando Brito e Abreu Instituto Universitário de Lisboa, Portugal

Thematic Track Chairs

ICT Verification and Validation

Antonia Bertolino National Research Council (CNR), Italy

Process Modeling, Improvement and Assessment

Karol Frühauf NFOGEM AG, Switzerland

Human and Artificial Intelligences for Software Evolution

Nicolas Anquetil Inria, University of Lille 1, France

Evidence-Based Software Quality Engineering

Tracy Hall Lancaster University, UK

Safety, Security and Privacy

Ana Cavalli Institut Polytechnique De Paris, Télécom SudParis,
France

Quality Aspects in Quantum Computing

Manuel Serrano Universidad de Castilla-La-Mancha, Spain

Quality Aspects in Machine Learning, AI and Data Analytics

Leandro Minku University of Birmingham, UK

Software Quality Education and Training

Claudia Werner Universidade Federal do Rio de Janeiro, Brazil

Requirements Engineering, Model-Driven and Agile Development1

Luis Olsina Universidad Nacional de La Pampa, Argentina
Manuel Wimmer Johannes Kepler University Linz, Austria
Kai Petersen Blekinge Institute of Technology, Sweden

PhD Symposium (SEDES)2

Vasco Amaral Universidade Nova de Lisboa, Portugal

Program Committee Members

Abdelhak-Djamel Seriai University of Montpellier, France
Agnieszka Jakóbik Cracow University of Technology, Poland
Alberto Silva Universidade de Lisboa, Portugal
Alejandro Maté University of Alicante, Spain
Alessandra Bagnato Softeam, France
Alexandros Chatzigeorgiou University of Macedonia, Greece
Ambrosio Toval Universidad de Murcia, Spain
Ana Respício Universidade de Lisboa, Portugal
Ana Paiva University of Porto, Portugal
Ana Regina Rocha COPPE/UFRJ, Brazil
Andrea Janes Free University of Bozen-Bolzano, Italy
Andreas Ulrich Siemens AG, Germany
Andreas Nehfort Nehfort IT-Consulting KG, Austria
Andreas Wortmann RWTH Aachen University, Germany
Andres Diaz-Pace UNICEN University, Argentina
Antonino Sabetta SAP Labs, Germany
Antonio Cicchetti Mälardalen University, Sweden
Antonio Vallecillo Universidad de Málaga, Spain
Apostolos Ampatzoglou University of Macedonia, Greece
Ayşe Tosun Istanbul Technical University (ITU), Turkey
Bartosz Walter Poznań University of Technology, Poland
Beatriz Marín Universidad Diego Portales, Chile
Benoit Combemale University of Toulouse, Inria, France
Breno Miranda Università di Pisa, Brazil
Christelle Urtado Ecole des Mines d’Alès, France
Christopher Fuhrman École de Technologie Supérieure, Canada
Chun Wai Chiu University of Birmingham, UK
Claudia Raibulet University of Milano-Bicocca, Italy
Daniel Strüber Radboud University, The Netherlands
Denis Silveira Universidade Federal de Pernambunco, Brazil
Diego Perez-Palacin Linnaeus University, Spain

1 Merge of three proposed tracks (in the CFP), due to the number of accepted submissions.
2 SEDES has separate proceedings, published as a CEUR volume.

xii Organization

Edgardo Montes de Oca Montimage, France
Eduardo Figueiredo Federal University of Minas Gerais, Brazil
Eduardo Spinosa Federal University of Paraná, Brazil
Elena-María

Navarro-Martínez
Universidad de Castilla-La-Mancha, Spain

Emilia Mendes Blekinge Institute of Technology, Sweden
Emilio Insfran Universitat Politècnica de València, Spain
Emily Navarro University of California, Irvine, USA
Erkuden Rios Velasco Tecnalia, Spain
Eugene Syriani University of Montreal, Canada
Fabio Calefato University of Bari, Mexico
Fabio Palomba University of Salerno, Italy
Fatiha Zaidi Université Paris-Sud XI, France
Fayola Peters West Virginia University, USA
Ferdinand Gramsamer INFOGEM AG, Switzerland
Flavio Oquendo Université Bretagne-Sud (UBS), France
Francesca Lonetti CNR-ISTI, Italy
Francisco Gortázar Universidad Rey Juan Carlos, Spain
Frank Phillipson TNO, The Netherlands
Frédéric Cuppens Polytechnique Montreal, Canada
Gabriel García-Mireles Universidad de Sonora, Mexico
Gerhard Fessler Fessler Sprenger und Partner GmbH, Switzerland
Geylani Kardas Ege University, Turkey
Gordana Rakic University of Novi Sad, Serbia
Gregory Kapfhammer Allegheny College, USA
Grischa Liebel Reykjavik University, Iceland
Guido Peterssen Nodarse Alhambra-Eidos, Spain
Guillermo Hernandez aQuantum, Spain
Gul Calikli The Open University, UK
Gustavo Rossi LIFIA, UNLP, Argentina
Hector Menendez Middlesex University London, UK
Honghui Du University of Leicester, UK
Ignacio Rodríguez de

Guzmán
Universidad de Castilla-La-Mancha, Spain

Ioannis Parissis Université Grenoble Alpes, France
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Isabel Sofia Sousa Brito Instituto Politécnico de Beja, Portugal
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Jaejoon Lee University of East Anglia, UK
Javier Troya University of Seville, Spain
Jean Petric Lancaster University, UK
Jefferson Seide Molléri Simula Metropolitan Center for Digital Engineering,

Norway
Jesús Morán University of Oviedo, Spain
João Gama University of Porto, Portugal
João Araújo Universidade NOVA de Lisboa, Portugal

Organization xiii

João Pascoal Faria University of Porto, INESC TEC, Portugal
Joaquin Garcia-Alfaro Institut Polytechnique De Paris, Télécom SudParis,

France
Johnny Marques Instituto Tecnológico de Aeronáutica (ITA), Brazil
Jordi Tura Max-Planck-Institut für Quantenoptik, Germany
Jorge Casillas University of Granada, Spain
Jose Luis de la Vara Universidad de Castilla-La-Mancha, Spain
José Luis Hevia Alhambra-Eidos, Spain
Jose Manuel Molina Lopez Universidad Carlos III de Madrid, Spain
Juan De Lara Universidad Autonoma de Madrid, Spain
Juan Manuel Murillo Universidad de Extremadura, Spain
Juan Manuel Vara Universidad Rey Juan Carlos, Spain
Juan Pablo Carvallo Universidad del Azuay, Ecuador
Kathia Marcal de Oliveira LAMIH, CNRS, UMR 8201, France
Ken Power Independent Consultant, Ireland
Lavazza Luigi Università degli Studi dell’Insubria, Italy
Lech Madeyski Wroclaw University of Science and Technology,

Poland
Lerina Aversano Università degli Studi del Sannio, Italy
Lidia Lopez Universitat Politècnica de Catalunya, Spain
Loli Burgueño Open University of Catalonia, Spain
Luiz Marcio Cysneiros York University, Canada
M.J. Escalona University of Seville, Spain
Macario Polo Universidad de Castilla-La-Mancha, Spain
Man Zhang Kristiania University College, Norway
Marcello Thiry Univali, Brazil
Marcos Didonet Del Fabro Universidade Federal do Paraná, Brazil
Maria Lencastre Universidade de Pernambuco, Brazil
Mario Piattini Universidad de Castilla-La-Mancha, Spain
Michael Felderer University of Innsbruck, Austria
Miguel Goulão Universidade NOVA de Lisboa, Portugal
Miguel Ehécatl Morales

Trujillo
University of Canterbury, New Zealand

Moises Rodríguez AQCLab, Spain
Nathan Baddoo University of Hertfordshire, UK
Nelly Condori-Fernández Universidade da Coruña, Spain
Nemitari Ajienka Nottingham Trent University, UK
Nora Cuppens Polytechnique Montreal, Canada
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Patricia Mcquaid California Polytechnic State University, USA
Patrizio Pelliccione Chalmers University of Technology, Sweden
Pedro Guerreiro Universidade do Algarve, Portugal
Rachel Harrison Oxford Brookes University, UK
Rafael Capilla-Sevilla Universidad Rey Juan Carlos, Spain
Ralf Kneuper IUBH Internationale Hochschule, Germany
Ricardo Perez-Castillo Universidad de Castilla-La-Mancha, Spain

xiv Organization

Robert Clarisó Open University of Catalonia, Spain
Roberto Pietrantuono University of Naples Federico II, Italy
Sandro Morasca Università degli Studi dell’Insubria, Italy
Shuo Wang University of Birmingham, UK
Sigrid Eldh Ericsson AB, Sweden
Stefan Klikovits National Institute of Informatics, Japan
Stephen MacDonell University of Otago, New Zealand
Steve Counsell Brunel University, UK
Sven Casteleyn Universitat Jaume I, Spain
Sylvia Ilieva Sofia University, Bulgaria
Timo Kehrer Humboldt-Universität zu Berlin, Germany
Toacy Oliveira COPPE/UFRJ, Brazil
Vahid Garousi Queen’s University Belfast, UK
Valentina Casola University of Napoli Federico II, Italy
Valter Camargo Federal University of São Carlos, Brazil
Vânia Neves Universidade Federal Fluminense, Brazil
Wissam Mallouli Montimage, France
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Yania Crespo University of Valladolid, Spain

Organizing Committee

General Chair

Alberto Silva Universidade de Lisboa, Portugal

Local Co-chairs

Paula Ventura Martins Universidade do Algarve, Portugal
Marielba Zacarias Universidade do Algarve, Portugal

Proceedings Chair

Ricardo Perez del Castillo Universidad de Castilla-La-Mancha, Spain

Publicity Chair

Américo Rio ISCTE-IUL and UNL, Portugal

Web Chair

José Pereira dos Reis ISCTE-IUL, Portugal

Sponsors Chair

Margarida Madeira Universidade do Algarve, Portugal

Industrial Day Co-chairs

Hugo Barros CRIA, Universidade do Algarve, Portugal
Miguel Fernandes Dengun and Algarve Tech Hub, Portugal

Organization xv

Additional Reviewers

Huu Nghia Nguyen
Sónia Teixeira
Rita Nogueira
Vinh Hoa La

Contributing Organizations

Promoters

Supporters

xvi Organization

Sponsors

Partners

Organization xvii

Contents

Quality Aspects in Machine Learning, AI and Data Analytics

Perceived Quality of Artificial Intelligence in Smart Service Systems:
A Structured Approach . 3

Jens Neuhüttler, Rudolf Fischer, Walter Ganz, and Florian Urmetzer

Towards Guidelines for Assessing Qualities of Machine Learning Systems. . . 17
Julien Siebert, Lisa Joeckel, Jens Heidrich, Koji Nakamichi,
Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and Mikio Aoyama

Data Cleaning: A Case Study with OpenRefine and Trifacta Wrangler. 32
Dessislava Petrova-Antonova and Rumyana Tancheva

NSP Dataset and Offline Signature Verification . 41
Dmitry V. Bakhteev and Roman Sudarikov

Evidence-Based Software Quality Engineering

Applying Machine Learning in Technical Debt Management: Future
Opportunities and Challenges . 53

Angeliki-Agathi Tsintzira, Elvira-Maria Arvanitou,
Apostolos Ampatzoglou, and Alexander Chatzigeorgiou

On the Temporality of Introducing Code Technical Debt 68
Georgios Digkas, Apostolos Ampatzoglou, Alexander Chatzigeorgiou,
and Paris Avgeriou

Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy?
an Empirical Perspective . 83

Steve Counsell, Steve Swift, Mahir Arzoky, and Giuseppe Destefanis

Human and Artificial Intelligences for Software Evolution

Suggesting Descriptive Method Names: An Exploratory Study of Two
Machine Learning Approaches . 93

Oleksandr Zaitsev, Stephane Ducasse, Alexandre Bergel,
and Mathieu Eveillard

Challenges for Layout Validation: Lessons Learned. 107
Santiago Bragagnolo, Benoît Verhaeghe,
Abderrahmane Seriai, Mustapha Derras, and Anne Etien

Towards Automated Taxonomy Generation for Grouping App Reviews:
A Preliminary Empirical Study . 120

Saurabh Malgaonkar, Sherlock A. Licorish,
and Bastin Tony Roy Savarimuthu

Zones of Pain: Visualising the Relationship Between Software Architecture
and Defects . 135

Jean Petrić, Tracy Hall, and David Bowes

An Empirical Study on the Persistence of SpotBugs Issues in Open-Source
Software Evolution . 144

Luigi Lavazza, Davide Tosi, and Sandro Morasca

Process Modeling, Improvement and Assessment

Applying Continual Service Improvement Practices to Study
Quality of Healthcare Information System Services: A Case Study 155

Sanna Heikkinen, Marko Jäntti, and Kaija Saranto

A Personal Opinion Survey on Process Compliance Checking
in the Safety Context . 169

Julieth Patricia Castellanos Ardila and Barbara Gallina

Systematic Literature Review of DevOps Models . 184
Monika Gasparaite, Kristina Naudziunaite, and Saulius Ragaisis

Measuring the Maturity of BizDevOps. 199
Eduardo Sanjurjo, Oscar Pedreira, Felix García, and Mario Piattini

Process Compliance Re-Certification Efficiency Enabled
by EPF-C � BVR-T: A Case Study . 211

Barbara Gallina, Aleksandër Pulla, Antonela Bregu,
and Julieth Patricia Castellanos Ardila

Software Quality Education and Training

Design of Secure Coding Challenges for Cybersecurity Education
in the Industry . 223

Tiago Gasiba, Ulrike Lechner, Maria Pinto-Albuquerque,
and Alae Zouitni

Q-Scrum: A Framework for Quality in Safety-Critical Development 238
Johnny Cardoso Marques, Adilson Marques da Cunha,
and Luiz Alberto Vieira Dias

xx Contents

Quality Aspects in Quantum Computing

Reverse Engineering of Quantum Programs Toward KDM Models 249
Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini

Math and Physics Tools for Quality Quantum Programming. 263
Ezequiel Murina

Adapting COBIT for Quantum Computing Governance 274
Miguel Ángel Blanco and Mario Piattini

Quantum Agile Development Framework. 284
Guillermo José Hernández González and Claudio Andrés Paradela

On the Source Code Structure of Quantum Code: Insights
from Q# and QDK . 292

Miguel-Angel Sicilia, Salvador Sánchez-Alonso,
Marçal Mora-Cantallops, and Elena García-Barriocanal

Safety, Security and Privacy

Towards a Framework for Improving Experiments on DoS Attacks 303
Marta Catillo, Antonio Pecchia, and Umberto Villano

A Cloud SecDevOps Methodology: From Design to Testing 317
Valentina Casola, Alessandra De Benedictis, Massimiliano Rak,
and Giovanni Salzillo

Accountability in the A Posteriori Access Control: A Requirement
and a Mechanism . 332

Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens,
and Olivier Raynaud

Secure Agile Software Development: Policies and Practices
for Agile Teams . 343

Carlos Magnum M. Bezerra, Suzana C. B. Sampaio,
and Marcelo L. M. Marinho

A Privacy-By-Design Architecture for Indoor Localization Systems. 358
Paolo Barsocchi, Antonello Calabrò, Antonino Crivello,
Said Daoudagh, Francesco Furfari, Michele Girolami,
and Eda Marchetti

ICT Verification and Validation

Reverse Engineering of Android Applications: REiMPAcT 369
Marco Gonçalves and Ana C. R. Paiva

Contents xxi

An Approach and a Prototype Tool for Generating Executable IoT System
Test Cases . 383

Dario Olianas, Maurizio Leotta, and Filippo Ricca

Applied Statistical Model Checking for a Sensor Behavior Analysis 399
Salim Chehida, Abdelhakim Baouya, Saddek Bensalem,
and Marius Bozga

Preliminary Experiences in Requirements-Based Security Testing 412
João Miranda, Ana C. R. Paiva, and Alberto Rodrigues da Silva

Testing Chatbots with CHARM . 426
Sergio Bravo-Santos, Esther Guerra, and Juan de Lara

A Dataset of Regressions in Web Applications Detected
by End-to-End Tests . 439

Óscar Soto-Sánchez, Michel Maes-Bermejo, Micael Gallego,
and Francisco Gortázar

Towards Failure Prediction in Scientific Workflows Using Stochastic
Petri Nets and Dynamic Logic . 449

Bruno Lopes and Daniel de Oliveira

RE, MDD and Agile

From Rigorous Requirements and User Interfaces Specifications into
Software Business Applications . 459

Ivo Gamito and Alberto Rodrigues da Silva

The Human Factors of the Agile Software Tester . 474
Lucas Paruch, Viktoria Stray, and Raluca Florea

An Experience with the Application of Three NLP Tools for the Analysis
of Natural Language Requirements . 488

Monica Arrabito, Alessandro Fantechi, Stefania Gnesi,
and Laura Semini

Author Index . 499

xxii Contents

Quality Aspects in Machine Learning,
AI and Data Analytics

Perceived Quality of Artificial Intelligence
in Smart Service Systems: A Structured

Approach

Jens Neuhüttler1(B) , Rudolf Fischer1, Walter Ganz1, and Florian Urmetzer2

1 Fraunhofer IAO, Nobelstr. 12, 70569 Stuttgart, Germany
{Jens.Neuhuettler,Walter.Ganz}@iao.fraunhofer.de

2 University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, UK
ftu20@cam.ac

Abstract. Smart Service Systems are becoming increasingly important in almost
all industries and areas of life. In order to make use of data from the Internet of
Things for individualizing and automatizing service offerings, Artificial intelli-
gence (AI) is a key technology. However, only little is known about how users
and potential customers perceive quality of these AI-based Smart Services and
how companies can develop them accordingly. To this end, our paper presents a
framework concept for addressing quality of Smart Services systematically. The
framework integrates known and novel quality aspects and thus supports a system-
atic and quality-focused development. In addition, our paper presents exemplary
AI-relevant quality aspects in more detail. First of all, AI-based Smart Service
Systems will be characterized in more detail and existing quality concepts will be
presented in order to enable a holistic quality assessment.

Keywords: Smart services · Artificial intelligence · Quality

1 Introduction

The progressive developments in digitalization and, in particular, the increasing inte-
gration of physical objects with sensor technology and communication capability are
changing the existing service systems in nearly all industries and areas of life [1]. The
data collected on the Internet of Things permit comprehensive conclusions about the
condition of the physical objects, their utilization and their application-specific context.
This information provides the basis for offering individualized and sometimes auto-
mated smart services, which constitute individually configurable bundles of bundles of
products, digital services and physically delivered services [2]. The development and
provision of such service packages require an orchestration of physical objects, technolo-
gies, data, persons and organizations – thus smart services are understood as complex
service systems [3]. Methods of artificial intelligence (AI) play a key role in tapping the
potentials of individualization and automation within such systems [4]. For example, AI
is used for autonomous extraction of the information required for individualization from

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-58793-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_1&domain=pdf
http://orcid.org/0000-0001-8403-5451
https://doi.org/10.1007/978-3-030-58793-2_1

4 J. Neuhüttler et al.

a large pool of data, some of which are not structured at all, or for a more automated
or even autonomous provision of smart services, for example, by the use of physical or
digital robots [5].

Notwithstanding the undeniable opportunities, many enterprises face a number of
challenges in the development of smart services [6]. Among other issues, the question
arises of how smart service systems can be designed in such a way that the added value
perceived by potential customers outweighs the risks involved, such as poor protection
of sensitive data or loss of control [7]. The design of the AI elements plays a significant
role in this regard as well: On the one hand, self-learning algorithms and autonomous
systems can add value by way of individualized provision of services. On the other hand,
the loss of personal relationships and the use of complex and therefore non-transparent
algorithms have a negative impact on the risk perceived. Research on smart service sys-
tems and the use of artificial intelligence is still in its early stages in this regard and
provides hardly any knowledge about the expectations of potential customers [8]. There
is also a lack of suitable concepts, methods and tools to develop smart services system-
atically [9]. In this context, one of the key issues is to better understand the perception
of quality by potential customers of smart services and thereby support business in the
development of successful and accepted solutions [10]. Even though established con-
cepts exist already regarding quality perceptions of individual elements of smart services
(e.g. digital services), knowledge about the perceptions of data-based bundling or the
use of AI methods and tools is scarce to date.

2 AI-Based Smart Service Systems

2.1 Characterization of Smart Service Systems

With a view to providing a systematic view of the quality of AI-based smart service
systems, these are characterized first. Despite their increasing significance, a distinct
definition of smart services has not yet evolved in the scientific literature. Neverthe-
less, it is possible to identify in the existing conceptual publications some common
characteristics that are relevant for our article [3, 11]:

• Smart services are based on physical objects equipped with sensor technology and
with networking capability, referred to as intelligent products [12], which collect
status, utilization, and environment data [13].

• The provision of smart services is based on intensive utilization of data, where sensor
data, user-generated data as well as data from external sources are used [14].

• The data available are collected on digital platforms, analysed and interpreted by
algorithms and transformed to application-specific information [15].

• Based on the information acquired, smart services represent service packages
customized to the specific context and individual needs of customers [2].

• Depending on the type of smart service, they can comprise digital and physically
delivered service elements in varying proportions [16].

These characteristics of smart service systems are highly significant for the devel-
opment of an integrative framework for quality assessment. The relationship between
AI and smart service systems is described in more detail in the next section.

Perceived Quality of Artificial Intelligence in Smart Service Systems 5

2.2 Artificial Intelligence in Smart Service Systems

The concept of artificial intelligence refers to IT solutions and methods completing tasks
autonomously, where the underlying rules for processing are not explicitly predefined by
humans [17]. The umbrella term of AI combines different concepts for model forming,
various learning methods and algorithms [18]. The superiority of AI in comparison with
conventional analytical methods stems from its capability to process and structure large
amounts of data autonomously. Some of the main reasons for the growing significance
of AI are, on the one hand, the existence of large amounts of data produced by the
increase in physical product networking, which constitute an essential basis for the
application ofAI and, on the other hand, the decreasing cost of processing power required
for data processing [4]. Machine learning methods are the technological core of AI.
These algorithms extract information autonomously, recognize regular patterns in data,
adaptively respond to a changing environment and predict future events. The typical
domain of AI is wherever highly complex and very large volumes of data exist that are
unmanageable for humans. Mastering this complexity generates value, for example, in
form of new customer insights for an individual adaption [19].

The possibilities of gathering information by pattern recognition and the prediction
of future events by the use of AI have a high impact on smart service systems since the
use of these methods offers numerous opportunities: The development of new services,
raising the degree of individualization or automatic performance of activities of service
employees. At the same time, AI also changes the nature of the encounter and interaction
between provider and user. The potential for individualization and automation of an AI-
based service depends on the extent to which the algorithm supports the personnel or
should intervene in the activities in a way which is transparent to the customer or may
perform them completely autonomously with the customer [8]. The application of AI in
smart service systems is illustrated in Fig. 1, using the well-known layer model.

Fig. 1. Sample application of AI in smart service systems (Source: [2] and [4])

The model comprises three layers, where the networked physical layer is used as the
basis for data acquisition. The next higher layer is a software-defined layer, where data

6 J. Neuhüttler et al.

processing occurs. The findings gathered from this layer are utilized at the service layer
to develop and deliver individualized and to some extent, automated solutions. Tasks
can be efficiently supported or even performed autonomously by AI applications at each
of these layers. Sensing technology used for acquiring and transmitting the data may
be susceptible to errors and, for example, produce spikes or fail completely for certain
periods. The loss of data quality thereby incurred can be compensated byAI by detecting
implausible or missing values and replacing these by estimated values. Frequently this
often involves not only individual sensors but entire infrastructures andwide networks of
devices, the collective data of which need to be arranged in an intelligent way.Moreover,
usually data fromoutside sources are used for contextualization and also require curation.
At the software-defined layer, information and findings are extracted from the data and
the advantages of machine-based learning methods can unfold here. Once the model
calculations have revealed regular patterns and which characteristics are interrelated
when certain events occur, the personnel at the service layer can be supported in their
work by AI systems or it is even possible to develop self-learning and autonomously
acting smart services (e.g. chatbots). In this way, AI knowledge can be used to extract
knowledge about situations, personal habits and preferences of customers to produce an
individual adaptation which improves the resulting quality of the solution.

However, this involves some challenges. On the one hand, the technology must be
capable of reading different formats of unstructured data, process and analyse large
amounts of these in real time, solve problems autonomously and improve itself contin-
uously. On the other hand, the design of AI-based smart service systems accepted by
users involves a number of questions: How and on which basis are decisions made? Do
users want to interact with a machine at all and do they want to know that their contact
is a chatbot and not a person? How can such interaction be designed in an empathetic
way? How much decision-making power is automated? How deep should AI intervene
in the personal actions of personnel and customers? The following chapters aim at pro-
viding initial reference points for the design of smart service systems that are perceived
as high-quality service systems and thus accepted by customers.

3 Quality Aspects for Smart Service Systems

3.1 Relevance and Requirements

Safeguarding a high quality is one of the core issues in the development of smart service
systems. The challenge is, on the one hand, to include different service elements into
the quality view: intelligent technologies, data, digital services and physical services
as well as their interrelations. On the other hand, systematic collection and analysis
of possibly sensitive personal or operational data involves new risks and insecurities
perceived, for example, with regard to data security, the ethics of algorithms or perceived
surveillance by sensors [7]. These factors influence the perception of the quality of
smart services on the part of the users and for this reason, the conceptualization of
perceptions of quality is a core subject of research [10]. The identification of useful
quality categories and the criteria to beused for evaluationmay support solutionproviders
in their endeavour to meet customers’ needs better, create added value and thus establish
services successfully in the market. Quality categories and criteria can be used in this

Perceived Quality of Artificial Intelligence in Smart Service Systems 7

context as some kind of development guideline to reduce uncertainties and be applied
in different phases of smart service development. For example, quality categories can
be used to identify and analyse the requirements of potential customers in a structured
way. Specifically in early phases of development of complex service systems, users
often find it difficult to express expectations and needs precisely and comprehensively
without having predefined categories at hand. Furthermore, the categories and criteria
may already be used at an early stage in iterative test cycles to evaluate concepts and
prototypes with users and thereby prevent undesirable developments [20]. However, to
offer added value to service providers, a quality view should meet some requirements
resulting from the characteristics outlined in the characterization of smart service systems
[21]:

• It should include all smart service elements perceived by customers.
• A concept should permit an assessment of different design variants of smart services,
ranging from entirely digital ones to data-based interactions between people.

• It should be compatible with other models and methods in smart service engineering.
• Specific characteristics of AI-based Smart Services should be considered.

The following section gives a brief overview of existing concepts of perceived quality
in the individual areas of smart service systems.

3.2 Existing Quality Concepts in the Context of Smart Service Systems

For simple products, objective criteria such as, for example, durability or consumption
of resources are suitable for a quality assessment from the perspectives of provider and
user. However, since smart service systems are complex solutions, users in particular
lack the technical knowledge to make an objective assessment. Moreover, many service
elements of smart service systems have a high degree of intangibility (e.g. digital process
activities, algorithms anddata),whichmakes an objective assessment evenmore difficult.
Objective quality criteria are therefore substituted by the subjective construct of service
quality. This describes the ability of a provider to produce the quality of a primarily
intangible service that requires the participation of the user in accordance with the
user’s expectations at a certain level of requirements [22]. Hence, the quality of the
smart service system should attain a specific performance level, which in turn is defined
from the perspective of the users. With a view to making perceived quality measurable,
numerous constructs have evolved in science, which permit assessment on the part of
users by means of quality categories and criteria [23].

Probably the most widely used quality model for services provided by persons is
the SERVQUAL model of [23]. The model comprises five different quality dimensions
(tangibles, reliability, responsiveness, assurance and empathy) that are used by customers
to evaluate service quality. There are also other models and approaches in scientific
literature, which make service quality measurable either in other industries or with other
or specific focuses of research. Numerous different quality models also exist for digital
services offered on the Internet. For example, [24] have transferred the SERVQUAL

8 J. Neuhüttler et al.

model to digital services and highlighted the categories of efficiency, system availability,
fulfillment and privacy as generally applicable quality criteria in the E-S-QUAL model.

In addition to monolithic quality models, there are also approaches that consider the
quality assessment of combined smart service elements [25]. E.g. [26] address hybrid
service packages with a combination of the quality dimensions from SERVQUAL and
E-S-QUAL, [27] combine dimensions from SERVQUAL and Technology-Acceptance-
Model (TAM) for quality assessment of product/service systems. However, there is no
model known to the authors that address all elements of a smart service.

Furthermore, there is no distinct and specific model for the perceived quality assess-
ment of AI-based services to date. Nevertheless there are indeed related publications
addressing the design of AI applications, which therefore fit the objective mentioned in
previous section. For example, with regard to the acceptance of AI, one of the questions
is how to design the interaction between users and machines in a meaningful way that is
compatible with human needs. This implies that major ethical and social issues about the
use of artificial intelligence get into focus in addition to the technological development.
However, with regard to such discussions it should be noted that social compatibility is
not determined directly by technology but rather how it is used in the first instance. It
is necessary to find and define an appropriate framework for this. For quality assurance
of AI-based decisions, there are already some principles available which can be used
in designing the framework of use. In the first place, it is important to establish trans-
parency and traceability. This is true for both the calculations and the decisions taken on
this basis. As a consequence of the complexity of the processes, traceability is ensured
only to a limited extent, however, efforts should be made to achieve it as far as possible.
Moreover, such decisions and their formation have to be documented. This is the only
way how information can be given about the parameters used for the decision, which in
turn generates transparency. In addition, the consequences of the use of AI have to be
revisable if certain decisions should be obviously wrong and human intervention and
correction becomes necessary. One criterion associated with this addresses the users’
wish to remain the final decision-making instance in case of doubt. This is true at least
until the outcome quality of AI reaches a level which is generally accepted by the stake-
holders involved [28]. The framework for explaining the acceptance of AI in customer
contact situations proposed by [8] is a key contribution to the identification of quality
aspects of AI-based smart service systems. In this context, the self-service technology
model according to [29] serves as a basis involving various influence factors regard-
ing the open-mindedness towards and long-term adoption of new technologies. On this
basis, [8] supplement another three factors for the acceptance ofAI applications: Security
concerns, trust, and perceived discomfort. The first two factors appear to be intuitively
plausible as prerequisites for the acceptance of AI applications. Customers recognize
the added value of AI-based services such as, for example, speed or convenience, and
want to benefit from these. However, this requires sharing personal information which
is basically worth to be protected. This loss in privacy requires advance trust in the ser-
vice provider; otherwise the advantages of AI-based applications cannot be utilized. The
aspect of perceived discomfort requires a more detailed explanation: this relates to any
suggestions of the algorithm which ignore social norms and may therefore cause dis-
comfort. In summary, the use of AI enables the customer to utilize individually tailored

Perceived Quality of Artificial Intelligence in Smart Service Systems 9

services, save time and generate more comfort. However, these advantages involve the
risk of severe failures of service delivery, loss of control and curtailment of privacy.

3.3 Assessment of Existing Approaches

The approaches identified in literature provide a suitable basis for a concept of quality
perceptions in smart service systems and initial reference points for relevant quality
categories and criteria. However, none of the approaches identified includes all service
elements of a smart service system or allows a comparative view of different design
variants. Those approaches which address more than one service element usually com-
bine existing quality models, however, are not conceived for the specific characteristics
of AI-based smart service systems or address only partial aspects of perceived quality.
Moreover, the quality models are not geared to the systematic development of inte-
grated service packages and therefore their structures are not mutually compatible. For
this reason, the next chapter of the present article proposes an integrative conceptual
framework which incorporates the existing quality categories and criteria but also sup-
plements these with additional aspects and, hence, accommodates the specific character
of AI-based smart service systems.

4 Integrative Conceptual Framework for Quality Assessment
of AI-Based Smart Service Systems

4.1 Structure of the Integrative Conceptual Framework

The integrative conceptual framework, which was first introduced by [30], is structured
as a matrix and comprises 12 design fields of smart service systems. They can be eval-
uated using the predefined quality categories and criteria (cf. Fig. 2). Structuring the
horizontal axis was done using the design dimensions of resource, process and outcome
to achieve compatibilitywith existing tools andmodels of smart service engineering [31].
Structuring along these dimensions is also frequently applied in current service research,
for example, for smart service system structuring or assessing the effects of digitaliza-
tion [32]. The resources dimension comprises resources required for the smart service
system, i.e. technical infrastructures, products, algorithms, technologies and competen-
cies of individuals. The process dimension describes the delivery of the smart service
as a sequence of activities of the stakeholders of the ecosystem and is characterized by
interactions between people (customer and provider), information systems (e.g. digital
services) and physical objects (e.g. intelligent technologies and sensors). The outcome
dimension addresses the perception of the usefulness of the various service elements as
well as the overall solution from the customer perspective. Evaluating the various dimen-
sions enables developers to obtain more precise information about potential causes of
negative perceptions of quality and address these more specifically in subsequent devel-
opment cycles. A negative overall perception may be attributable either to the delivery
process or to the resources employed; the related measures for improvement derived
therefrom differ accordingly.

The vertical axis of the integrative conceptual framework comprises the perceivable
elements of an AI-based smart service system: Technology and data, digital services

10 J. Neuhüttler et al.

Fig. 2. Conceptual framework for quality assessment of smart service systems (Source: [30])

and services delivered physically. These are derived from the layer model of smart ser-
vice systems (cf. Fig. 1) and were adjusted to the perspective of users and the elements
perceivable to them. The “Technology and data” service element comprises the basis
of data acquisition and transmission, i.e. physical objects with networking capability,
which collect status, usage and context data. While field 1 of the conceptual frame-
work considers the fundamental equipment as well as aesthetic aspects of the intelligent
technologies, field 2 addresses the perceived quality of the technologies in the delivery
process. Among other items, this also involves AI techniques which make it possible
to integrate and pre-condition the various sensor data. Field 3 holds quality categories
which make it possible to evaluate the data basis acquired by means of the intelligent
technologies from the user’s perspective. The data basis produced is used as a structure
factor in the “Digital services” service element together with ready-made content and
algorithms created by the provider (field 4). These are translated into different forms of
added value in a digital process, utilizing also other information, user activities or net-
worked objects (field 5). New insights about the current condition or the usage process
emerge (e.g. of a physical object, of one’s own body, of public infrastructures). They
already constitute per se an added value of the digital service within the smart service
system and are evaluated in field 6. Furthermore, however, it is also possible to create
digital value-added services from the data basis generated such as, automated forward-
looking route planning or other personalized recommendation systems. Aspects like the
design of standardized interfaces, real-time data availability as well as the development
of transparent algorithms are key success factors of AI-based service systems. In addi-
tion, working out privacy and security concepts for the data, part of which are highly
sensitive, plays a key role in the design of digital services. Frequently there is some
conflict between the necessary anonymization of the data and the creation of appropriate
added value by the individualization of data [33]. Moreover, the use of AI techniques
leads to new and automated forms of interaction in the digital process. In addition to

Perceived Quality of Artificial Intelligence in Smart Service Systems 11

digital services, services delivered physically will continue to play a key role in AI-
based service systems also in the future [16]. In this context, two different forms can
be distinguished. On the one hand, these are personal services, the resources of which
are the capacities and competencies of personnel as well as physical infrastructures of
the provider (field 8). On the other hand, services delivered physically may also be pro-
vided by automated or autonomously acting systems made available by the provider as
a structure. Both forms are characterized by an interactive process between providing
and requesting units which requires physical activities (field 8). A parcel delivery ser-
vice is an example of the two forms. Parcel delivery may be performed by a person
using suitable equipment (vehicle, digital assistant, etc.) or by an autonomously acting
service robot (e.g. a vehicle or a drone). The perceived benefit of the solution or the
physical intervention is addressed in field 9 of the conceptual framework. In the short
and medium term, the processes of services provided by persons will particularly com-
prise activities for solving complex tasks that require creative, intuitive or empathetic
abilities of personnel or physical interventions on persons themselves or in their close
personal environment [34]. On the other hand, repetitive knowledge-based routine tasks
will increasingly be provided with the aid of AI-based digital services and are therefore
addressed in the fields 4 to 6.

Distinguishing between the perceptions of quality of digital and personal services
makes it possible for enterprises to apply the same conceptual framework within the
smart service system for the development of various types of service offerings and take
their specific characteristics into account: From digital information services (e.g. data
visualization) through digital value-added services (e.g. digital parking lot booking) to
digitally supported and physically delivered services (e.g. demand-driven waste col-
lection). The “Integration” service element was added to the conceptual framework as
another core element because synchronization of the above described service elements
and safeguarding a constant quality level across all service types and activities between
the various parties involved should be regarded as essential drivers for the development
of high-quality smart service systems [35]. In addition to the integration of structure
factors (field 10), particularly the integration of digital and physical process elements
(field 11) and the perception of the overall benefit of the smart service system (field 12)
are key items to be assessed.

4.2 Quality Aspects for AI-Based Smart Service Systems

The preceding section presented the structure of the integrative conceptual framework
that is used for structuring categories and criteria for the quality assessment of smart
service systems. In addition to numerous well-known criteria, also some data-specific
andAI-specific quality criteria were identified and included in the conceptual framework
from the expert interviews and a follow-up search in literature. Table 1 shows a selection
of these criteria along the 12 fields of the integrative conceptual framework that can be
utilized together with other categories and criteria for the assessment of the perceived
quality of AI-based smart service systems.

12 J. Neuhüttler et al.

Table 1. Summary of sample quality criteria with relevance for AI

No. Description of quality field Exemplary quality aspect with regard to AI or data

1 Perception of the intelligent technologies used for data
acquisition as well as external data sources

• Appropriateness of sensor measurement intervals for
use case

• Perceived relation between required data and promised
value

• Selection of external data sources for the application
• Perceived surveillance or discomfort using smart
technologies

• Transparency and understandability of a privacy
concept

2 Perceived quality of the use of intelligent technologies
(e.g. wearables) and data curation

• Convenience of the use of smart technology in
customer journey

• Intuitive and low-error operation of technology
• Perceived control over data acquisition process
• Trustworthiness of technology
• Intrusiveness in personal space and domains

3 Perception of the data basis generated and the
contribution of the technologies and data to the overall
benefit

• Reliability of connectivity and data transfer
• Trouble-free data transmission to back-end
• Up-to-dateness, precision and completeness of the data
• Perceived credibility of the results
• Relevance of the data for use case
• Realization of innovation potentials due to use of data

4 Perception of the predefined content of digital
applications and algorithms used

• Up-to-dateness, transparency of the analysis methods
used

• Perceived barriers for integrating user-generated data
• Compatibility of interfaces with application
environment

• Protection of the system against unauthorized access

5 Perception of the interactive usage process of the
digital service adapted to individual requirements

• Intuitive use of digital tools (e.g. for data analysis)
• Naturalness of AI-based interaction forms (e.g.
chatbots or voice control)

• Quick & adaptive system interaction
• Adaptability of digital processes to real-time data
• Ex-post documentation of automated activities

6 Perception of the data visualization and the benefit
created from value-added services

• Perceived support by digital assistants
• Constant degree of fulfillment of the service
• Added value from use of information
• Clarity of data visualization
• Reduction of complexity for users
• Perceived increase in process efficiency

7 Perception of the personnel required for delivery, the
equipment used and the physical environment

• Credibility and relevance of personnel competencies in
handling AI applications

• Up-to-dateness and capability of personnel equipment
• Safety precautions when using physical service robots
• Functional scope of physical service robots

8 Perception of the interactive process, where persons or
physical objects are brought in by provider and user

• Unobstructed access to (real-time) data of users by
personnel

• Transparent and plausible course of action of the
personnel

• Short-term and quick adaptation to customer’s wishes
and real-time data

• Contentment despite AI-based extension of personnel
skills and knowledge

(continued)

Perceived Quality of Artificial Intelligence in Smart Service Systems 13

Table 1. (continued)

No. Description of quality field Exemplary quality aspect with regard to AI or data

9 Perception service result and contribution to the overall
benefit and to the personal relationship

• More efficient delivery with the support of digital
assistants and physical service robots

• No deterioration of social interactions by digital
support

• Familiarity because of personal interaction

10 Perception of the integrative quality of the resources
used and the stakeholders of the ecosystem

• Balanced involvement of physical, digital and personal
components and functions

• Trustworthiness of the stakeholders involved in the
ecosystem

• Absence of dependence on individual partners or
technologies

11 Perception of the integrative quality and allocation of
tasks among the stakeholders

• Coordinated process logic between digital and personal
services

• Reasonable assignment of activities among users,
providers and technical systems

• Clear role and task description for user activities

12 Perceived overall benefit of the smart service system • Improved match of solution with the individual
customer issue

• Higher emotional and social added value by the use of
AI

• Enabling of service-oriented business model variants
(e.g. subscription)

The sample list of quality criteria with relevance for AI shows already that numer-
ous different aspects need to be considered for the assessment of smart service systems.
Depending on the design of the smart service system, not all of the criteria in the con-
ceptual framework are of interest, because either the service elements do not play a role
or the prototype defined at the development level cannot yet be evaluated with respect
to the criteria. A useful application in the development of smart services occurs, for
example, in the testing phase. For an assessment of a specific smart service prototype
in a specific phase of development, the quality categories and criteria included in the
integrative conceptual framework need to be selected individually for the specific test
groups addressed.

5 Summary and Outlook

The article presents an integrative framework for the quality assessment of smart service
systems which includes quality aspects of existing approaches and methods. Moreover,
specific quality criteriawere supplementedwhich address the use of artificial intelligence
in smart service systems. Arranged in 12 design fields, the conceptual framework is
structured in such a way that either all service elements perceived by customers or
only those parts that are relevant for development can be explored. In this way, our
research contributes to the current discussion about an increasingly collaborative and
interdisciplinary development of smart service systems [6] and the distributed value
creation on smart service platforms [33]. The integrative conceptual framework can
be used, for example, by enterprises to extend quality assessment to service elements

14 J. Neuhüttler et al.

provided by third parties (e.g. AI tools), structure quality-related requirements or assess
integration activities as a key element of smart service systems. Structuring along the
service dimensions of structure, process and outcome additionally permits a technical-
logical compatibility with existing methods and tools of service engineering.

The large number of quality categories and criteria identified for the assessment of a
smart service system suggests that the conceptual framework is not a suitable measuring
instrument for customer surveys like SERVQUAL. Rather, the conceptual framework is
addressed to organizations that want to consider relevant quality aspects in the system-
atic development of AI-based smart service systems and test their fulfillment. Which
categories and criteria from the conceptual framework are actually relevant depends on
the service elements to be integrated, the development phase and the maturity of proto-
types of service elements created. Deliberate focusing on quality perceptions in smart
service systems and considering various forms of interaction (human-to-human, human-
to-machine and machine-to-machine) makes it possible that the integrative conceptual
framework gives a first impression of newmethods and approaches that attempt tomerge
a humanistic and technology-centric service paradigm [36]. Even though the influence
of intelligent technologies and data on service delivery is continuously increasing, the
subjective perception of potential users and personnel in the development of high-quality
smart service systems should continue to play a key role.

However, apart from the potential outlined it is necessary to highlight some limi-
tations of the integrative conceptual framework. To some extent, the quality categories
and criteria were adopted from empirically validated quality models and some were sup-
plemented based on expert interviews and workshops. Even though the assessment of
smart service systems using the conceptual framework has already proven to be highly
useful in several projects in practice, a large-scale validation of the interaction among the
criteria and/or categories does not yet exist. It is true that a generally applicable valida-
tion can hardly be realized because of the application-specific selection of design fields,
categories and criteria and this should be taken into account when utilizing the con-
ceptual framework in practice. Furthermore, particularly the AI-specific quality criteria
should be regularly reviewed and adapted because of the rapidly progressing technolog-
ical options. With regard to the significance and weighting of the individual assessment
categories, it is also necessary to consider potential differences between applications,
industries addressed and the relevant culture area [37]. For evaluating the significance
of different elements and criteria, decision techniques, such as the Analytical Hierarchy
Process (AHP) could be applied.

References

1. Bruhn, M., Hadwich, K.: Dienstleistungen 4.0 – Erscheinungsformen, Transformation-
sprozesse und Managementimplikationen. In: Bruhn, M., Hadwich, K. (eds.) Forum Dien-
stleistungsmanagement: Dienstleistungen 4.0, vol. 1, pp. 1–39. Springer, Wiesbaden (2017).
https://doi.org/10.1007/978-3-658-17550-4_1

2. Bullinger, H.-J., Ganz, W., Neuhüttler, J.: Smart Services – Chancen und Herausforderun-
gen digitalisierter Dienstleistungssysteme für Unternehmen. In: Bruhn, M., Hadwich, K.
(eds.) ForumDienstleistungsmanagement: Dienstleistungen 4.0, vol. 1, pp. 97–120. Springer,
Wiesbaden (2017). https://doi.org/10.1007/978-3-658-17550-4_4

https://doi.org/10.1007/978-3-658-17550-4_1
https://doi.org/10.1007/978-3-658-17550-4_4

Perceived Quality of Artificial Intelligence in Smart Service Systems 15

3. Lim, C., Maglio, P.P.: Clarifying the concept of smart service system. In: Maglio, P.P.,
Kieliszewski, C.A., Spohrer, J.C., Lyons, K., Patrício, L., Sawatani, Y. (eds.) Handbook of
Service Science. SSRISE, vol. 2, pp. 349–376. Springer, Cham (2019). https://doi.org/10.
1007/978-3-319-98512-1_16

4. Wahlster, W.: Künstliche Intelligenz als Treiber der zweiten Digitalisierungswelle, IM+ IO,
vol. 2 (2017)

5. Wirtz, J., et al.: Brave new world - service robots in the frontline. J. Serv. Manag. 29(5),
907–931 (2018)

6. Anke, J., Meyer, K., Alt, R., Holze, J., Kahlert, E.: Lernen aus Anwendung: Transfer-
orientierte Entwicklung von Methoden für das Smart Service Engineering. In: Meyer, K.,
Klingner, S., Zinke, C. (eds.) Service Engineering, pp. 91–107. Springer, Wiesbaden (2018).
https://doi.org/10.1007/978-3-658-20905-6_7

7. Wünderlich, N.V., et al.: “Futurizing” smart service - implications for service researchers and
managers. J. Serv. Manag. 29(6), 442–447 (2015)

8. Ostrom, A.L., Fotheringham, D., Bitner, M.J.: Customer acceptance of AI in service encoun-
ters: understanding antecedents and consequences. In: Maglio, P.P., Kieliszewski, C.A.,
Spohrer, J.C., Lyons, K., Patrício, L., Sawatani, Y. (eds.) Handbook of Service Science.
SSRISE, vol. 2, pp. 77–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-985
12-1_5

9. Meiren, T., Neuhüttler, J.: Smart Services im Maschinenbau - Systematische Entwicklung
digital unterstützter Dienstleistungen. wt-online 7(8), 555–557 (2019)

10. Maglio, P.P., Lim, C.H.: Innovation and big data in smart service systems. J. Innov. Manag.
4(1), 11–21 (2016)

11. Beverungen, D., Müller, O., Matzner, M., Mendling, J., vom Brocke, J.: Conceptualizing
smart service systems. Electron. Mark. 29(1), 7–18 (2017). https://doi.org/10.1007/s12525-
017-0270-5

12. Allmendinger, G., Lombreglia, R.: Four strategies for the age of smart services. Harvard Bus.
Rev. 83(10), 131–145 (2005)

13. Porter,M.E.,Heppelmann, J.E.:Howsmart, connectedproducts are transforming competition.
Harvard Bus. Rev. 92(11), 64–88 (2014)

14. Lim, C., Kim, M.-J., Kim, K.-H., Kim, H.-J., Maglio, P.P.: Using data to advance service:
managerial issues and theoretical implications from action research. J. Serv. Theory Pract.
28(1), 99–128 (2018)

15. Stich, V., Hoffmann, J., Heimes, P.: Software-definierte Plattformen - Eigenschaften, Inte-
grationsanforderungen und Praxiserfahrungen in produzierenden Unternehmen. HMD – Prax
Wi.-Inf. 55(1), 25–43 (2018)

16. Wünderlich, N.V., von Wangenheim, F., Bitner, M.J.: High tech and high touch: a framework
for understanding user attitudes and behaviors related to smart interactive services. J. Serv.
Res. 16(1), 3–20 (2012)

17. Tombeil, A.-S., Kremer, D., Neuhüttler, J., Dukino, C., Ganz, W.: Potenziale von Kün-
stlicher Intelligenz in der Dienstleistungsarbeit. In: Bruhn, M., Hadwich, K. (eds.) Forum
Dienstleistungsmanagement: Automatisierung und Personalisierung von Dienstleistungen,
pp. 135–154. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-30168-2_5

18. Kreutzer, R.T., Sirrenberg, M.: Künstliche Intelligenz verstehen - Grundlagen – Use-Cases
– unternehmenseigene KI-Journey. Springer,Wiesbaden (2019). https://doi.org/10.1007/978-
3-658-25561-9

19. McColl-Kennedy, J.R., Zaki, M., Lemon, K.N., Urmetzer, F., Neely, A.: Gaining customer
experience insights that matter. J. Serv. Res. 22(1), 8–26 (2019)

20. Spath, D., Ganz, W., Meiren, T.: Dienstleistungen in der digitalen Gesellschaft - Chan-
cen und Herausforderungen der Digitalisierung für Lösungsanbieter. In: Boes, A. (ed.)
Dienstleistungen in der digitalen Gesellschaft, pp. 25–34. Campus, Frankfurt Main (2014)

https://doi.org/10.1007/978-3-319-98512-1_16
https://doi.org/10.1007/978-3-658-20905-6_7
https://doi.org/10.1007/978-3-319-98512-1_5
https://doi.org/10.1007/s12525-017-0270-5
https://doi.org/10.1007/978-3-658-30168-2_5
https://doi.org/10.1007/978-3-658-25561-9

16 J. Neuhüttler et al.

21. Neuhüttler, J.,Woyke, I.,Ganz,W., Spath,D.:Anapproach for a quality-based test of industrial
smart service concepts. In: Ahram, T.Z. (ed.) AHFE 2018. AISC, vol. 787, pp. 171–182.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94229-2_17

22. Bruhn,M.: Qualitätsmanagement für Dienstleistungen - Grundlagen – Konzepte –Methoden.
Springer Gabler, Berlin (2016)

23. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: SERVQUAL: a multiple-item scale for
measuring consumer perceptions of service quality. J. Retail. 64(1), 12–40 (1988)

24. Parasuraman, A., Zeithaml, V.A., Malhotra, A.: E-S-QUAL - a multiple-item scale for
assessing electronic service quality. J. Serv. Res. 7(5), 1–21 (2005)

25. Neuhuettler, J., Ganz,W., Liu, J.: An integrated approach for measuring andmanaging quality
of smart senior care services. In: Ahram, T.Z., Karwowski, W. (eds.) Advances in The Human
Side of Service Engineering. AISC, vol. 494, pp. 309–318. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-41947-3_29

26. Wang, T., Yeh, R., Yen, D.C., Nugroho, C.A.: Electronic and in-person service quality of
hybrid services. Serv. Ind. J. 36(13–14), 638–657 (2016)

27. Böhm, M., Sczudlek, A., Knebel, U., Leimeister, J.M., Krcmar, H.: Qualitätsmanagement bei
hybriden Produkten: Ein Ansatz zur Messung der Leistungsqualität hybrider Produkte. In:
Leimeister, J.M., Krcmar, H., Halle, M., Möslein, K. (eds.) Hybride Wertschöpfung in der
Gesundheitsförderung. Innovation - Dienstleistung - IT, pp. 155–172. Eul Verlag, Lohmar
(2010)

28. Weber,M., Burchardt, A.:Künstliche Intelligenz. https://www.dfki.de.Accessed 29Aug 2019
29. Meuter, M.L., Bitner, M.J., Ostrom, A.L., Brown, S.W.: Choosing among alternative service

delivery modes - an investigation of customer trial of self-service technologies. J. Market.
69(2), 61–83 (2005)

30. Neuhüttler, J., Ganz,W., Spath, D.: An integrative quality framework for developing industrial
smart services. Serv. Sci. 11(3), 157–171 (2019)

31. Bullinger, H.-J., Fähnrich, K.-P., Meiren, T.: Service engineering - methodical development
of new service products. Int. J. Prod. Econ. 85(3), 275–287 (2003)

32. Falter, M., Bürkin, B., Hadwich, K.: Ausprägungen der Digitalisierung im Arbeitsumfeld
und deren Auswirkungen auf das Mitarbeiterwohlbefinden. In: Arnold, C., Knödler, H. (eds.)
Die informatisierte Service-Ökonomie - Veränderungen im privaten und öffentlichen Sektor,
pp. 65–92. Springer, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-21528-6_4

33. Moser, B., Jussen, P., Rösner, C.: Smart-Service-Plattformen - Gestaltungsempfehlungen am
Beispiel der digitalisierten Landwirtschaft. In: Stich, V., Schumann, J.H., Beverungen, D.,
Gudergan, G., Jussen, P. (eds.) Digitale Dienstleistungsinnovationen - Smart Services agil
und kundenorientiert entwickeln, pp. 601–624. Springer, Berlin (2019). https://doi.org/10.
1007/978-3-662-59517-6_29

34. Huang, M.-H., Rust, R.T.: Artificial intelligence in service. J. Serv. Res. 21(2), 155–172
(2018)

35. Geigenmüller, A., Leischnig,A.: ZurRelevanz vonAllianzmanagementfähigkeit bei koopera-
tivenDienstleistungen. In:Bruhn,M.,Hadwich,K. (eds.) ForumDienstleistungsmanagement:
Kooperative Dienstleistungen - Spannungsfelder zwischen Service Cooperation und Service
Coopetition. FD, pp. 57–69. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-
26389-8_3

36. Keating, B.W., McColl-Kennedy, J.R., Solnet, D.: Theorizing beyond the horizon - service
research in 2050. J Serv. Man. 29(5), 766–775 (2018)

37. Zhang, W., Neuhüttler, J., Chen, M., Ganz, W.: Smart services conditions and preferences
– an analysis of chinese and german manufacturing markets. In: Ahram, T.Z. (ed.) AHFE
2018. AISC, vol. 787, pp. 183–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-
319-94229-2_18

https://doi.org/10.1007/978-3-319-94229-2_17
https://doi.org/10.1007/978-3-319-41947-3_29
https://www.dfki.de
https://doi.org/10.1007/978-3-658-21528-6_4
https://doi.org/10.1007/978-3-662-59517-6_29
https://doi.org/10.1007/978-3-658-26389-8_3
https://doi.org/10.1007/978-3-319-94229-2_18

Towards Guidelines for Assessing Qualities
of Machine Learning Systems

Julien Siebert1(B), Lisa Joeckel1, Jens Heidrich1, Koji Nakamichi2, Kyoko Ohashi2,
Isao Namba2, Rieko Yamamoto2, and Mikio Aoyama3

1 Fraunhofer IESE, Kaiserslautern, Germany
{julien.siebert,lisa.joeckel,jens.heidrich}@iese.fraunhofer.de

2 Fujitsu Laboratories Ltd., Kawasaki, Japan
{nakamichi,ohashi.kyoko,namba,r.yamamoto}@fujitsu.com

3 Nanzan University, Nagoya, Japan
mikio.aoyama@nifty.com

Abstract. Nowadays, systems containing components based onmachine learning
(ML) methods are becoming more widespread. In order to ensure the intended
behavior of a software system, there are standards that define necessary quality
aspects of the system and its components (such as ISO/IEC 25010). Due to the
different nature of ML, we have to adjust quality aspects or add additional ones
(such as trustworthiness) and be very precise about which aspect is really relevant
for which object of interest (such as completeness of training data), and how to
objectively assess adherence to quality requirements. In this article, we present
the construction of a quality model (i.e., evaluation objects, quality aspects, and
metrics) for an ML system based on an industrial use case. This quality model
enables practitioners to specify and assess quality requirements for such kinds of
ML systems objectively. In the future, wewant to learn how the term quality differs
between different types of ML systems and come up with general guidelines for
specifying and assessing qualities of ML systems.

Keywords: Machine learning · Software quality · Quality evaluation

1 Introduction

The digital transformation enables digital products and services that are based on data or
on models derived from data. The construction of these models for algorithmic decision-
making is increasingly based on artificial intelligence (AI) methods, which enable inno-
vative solutions such as automated driving or predictive maintenance. Our research
focuses onML systems, i.e., software-intensive systems containing one or more compo-
nents that use models built with ML methods. The functionality of these components is
not defined by the programmer in the classical way, but is learned from data. Developing
and operating ML systems raises new challenges in comparison to “classical” software
engineering [1, 2]. First, the behavior is fundamentally different from traditional soft-
ware: The relationship between the input and the outcome of the model is only defined

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 17–31, 2020.
https://doi.org/10.1007/978-3-030-58793-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_2

18 J. Siebert et al.

for a subset of the data, which leads to uncertainty in model outcomes for previously
unseen data. Second, common development principles from software engineering, such
as encapsulation and modularity, have to be rethought, e.g., neural networks cannot
simply be cut into smaller sub-nets and reused as modules. Third, the development and
integration of ML components is a multi-disciplinary approach: It requires knowledge
about the application domain, knowledge about how to constructMLmodels, and finally,
knowledge about software engineering. Fourth, quality assurance, and specifically test-
ing, works differently than in traditional software. This is because ML targets problems
where the expected solution is inherently difficult to formalize [3].

In order to ensure the intended quality of a software system, there are standards
that define necessary quality aspects of the system and its components. For instance,
ISO/IEC 25010 [4] defines quality models for software and systems; i.e., a hierarchy
of quality aspects of interest and how to quantify and assess them. Due to the different
nature of ML, these quality models cannot be applied directly as they are. Some have
to be adjusted in their definition (e.g., reusability of ML systems) and some need to
be added (e.g., trustworthiness). We also have to be very precise about which quality
aspect is relevant for which part of the overall system. For instance, in an ML system,
the algorithms executing the model play a far less significant role than the data used
for training and testing. For developing meaningful quality models, it is necessary to
understand the application context of the use case and what kind of ML method is used.

In this article, we present the construction of a concrete quality model for an ML
system based on an industrial use case. In this paper, we will first discuss related work
and summarize the gaps that we would like to close with our contribution. Second, we
will define the different views one can take on an ML system and relevant measurement
objects, which will have to be evaluated for a specific use case and application con-
text. Third, we will describe our general methodological approach for quality modeling
of ML systems based on an industrial use case. This includes specifically the quality
model containing all relevant quality aspects and concrete metrics for each measurement
object of interest. This quality model enables practitioners to specify and assess quality
requirements for such kinds of ML systems. Fourth, we will discuss the usefulness of
the identified quality aspects based on an evaluation together with experts from industry.
Last, wewill present major lessons learned and give an outlook on future research, where
we want to find out how the term quality differs between different types of ML systems
(e.g., based on the ML method used or the way the ML component is integrated into the
overall system). This will helps us come up with more general guidelines for specifying
and assessing qualities of ML systems.

2 Related Work

To build a quality model, it is first necessary to define quality attributes. In the literature,
some quite generic quality models for software and systems, such as ISO/IEC 25010 [4]
or ISO/IEC 8000 [5], can be found. These standards propose different quality attribute
definitions grouped into several categories with a decomposition structure (e.g., Prod-
uct quality is decomposed into eight attributes, such as Functional Suitability, which
is decomposed into sub-attributes, such as Functional Correctness). With the advance

Towards Guidelines for Assessing Qualities of Machine Learning Systems 19

and the widespread adoption of ML methods, new and more specific quality proposals
have emerged (such as the EU Ethics Guidelines for Trustworthy AI [6], the German
DIN SPEC 92001 [7], or the Japanese QA4AI consortium [8]) as well as certification
guidelines [9, 10].

Some of the new quality attributes are rather generic, so they cover not only ML but
also other AI disciplines. These include:

• Transparency and accountability (e.g., reproducibility, interpretability and explain-
ability, auditability, minimization, and reporting of negative impact)

• Diversity, non-discrimination, fairness, aswell as societal and environmentalwell-
being (e.g., avoidance of unfair bias, accessibility and universal design, stakeholder
participation, sustainability, and environmental friendliness)

• Security, safety, data protection (e.g., respect for privacy, quality and integrity
of data, access to data, and ability to cope with erroneous, noisy, unknown, and
adversarial input data)

• Technical robustness, reliability, dependability (e.g., correctness of output, estima-
tion of model uncertainty, robustness against harmful inputs, errors, or unexpected
situations)

• Human agency and oversight, legal and ethical aspects (e.g., possibility of human
agency and human oversight, respect for fundamental rights)

Some quality attributes are more specific to interactive and embodied AI (like assis-
tants or robots), such as intelligent behavior and personality [8, 11, 12]. The quality
attributes are applied to measurement objects. These objects can represent processes,
products, impacted users, or external objects.

It is not uncommon to describe the system under study in terms of different views
and measurement objects and to group the different quality attributes under these
views/objects. For example, in [3], the authors define a set of quality attributes, such
as correctness (i.e., goodness of fit), robustness, efficiency, etc. They also relate these
quality attributes to different views/objects: data, learning program, and framework (e.g.,
Weka, TensorFlow). In [13], the authors distinguish between three main quality aspects,
namely service quality, product quality, and platform quality. They also describe dif-
ferent views/objects on the system: the training dataset, the neural network, the hyper
parameters, “the inference in vivo” (corresponding to the decision outputted by the
ML component at runtime) and the machine learning platform. DIN-SPEC 92001 also
provides a description in terms of views/objects: data, model, platform, and environ-
ment. As a last example, the authors in [8] provide five main quality aspects related to
views/objects, namely data integrity, model robustness, system quality, process agility,
and customer expectation, including a total of 49 quality sub-attributes.

In the literature, we see that a consensus exists around what quality aspects need
to be measured. However, the naming of the quality attributes and the naming of the
measurement objects (or the views) has not yet stabilized.

The same conclusion can be reached for quality attributes related to the process.
Process models related to data analysis methods (such as knowledge engineering, data
mining, ML, etc.) have been around for decades [14, 15]. In the last years, more case
studies and literature reviews have been conducted to assess the challenges perceived

20 J. Siebert et al.

by developers of ML components, as well as their processes and best practices [1, 3,
16, 17]. We see that there is a consensus on the definition of tasks, roles, and how the
process should be organized for developing and operating ML components. However,
it is less clear how the ML process impacts quality. Implementing quality improvement
actions requires a good understanding of the process: which steps are performed, which
people/roles are involved, which measurement objects are affected, etc.

We also see that, because the field of ML is large, the importance of certain quality
attributes and metrics for quantifying them depend on the concrete context and use case
and have to be addressed in different tasks of the process model used. For instance, the
availability of a ground truth is one important factor (see Fig. 1): (a) If the full ground
truth exists (as in the case of reinforcement learning, for example), then test oracles exist.
Consequently, the quality mainly depends on the test oracle itself, and the quality can
be safely measured using the available ground truth. (b) If only a partial ground truth
exists (as in the case of semi-supervised or supervised learning), data quality and its
representativeness have to be analyzed carefully. (c) If no ground truth exists (as in the
case of unsupervised learning), the assumptions made by the learning algorithms and
thosemade during themodel evaluation play a significant rolewith respect to quality. The
type of ML tasks that is performed (such as regression, classification, clustering, outlier
detection, dimensionality reduction, etc.) also has an impact on the quality assessment.
Each type of task is accompanied by corresponding quality metrics. For example, for
classification tasks, the goodness of fit can be measured by accuracy, precision, recall,
f-score, etc. [18], but for clustering, other measures are needed [19]. The metrics chosen
will depend on the use case. For example, in the case of binary classification tasks,
the cost of a false-positive may not be the same as the cost of a false-negative. Some
metricsmight not be compatible with one another, as is the case, for example, for fairness
measures [20, 21].

Impact on quality

Data generation process,
Simulation environment

Data quality,
Data representativity

Analysis and evaluation
hypotheses

Not available Completely available
(e.g., games, simulation)

Partially available
(e.g., proxy or labeled data)

Ground truth availability

Unsupervised
learning

Semi-supervised
learning

Reinforcement
learning

Supervised
learning

Training methods

Fig. 1. The availability of ground truth data (labels) has a direct impact on the analysis or training
methods used as well as on the definition of quality metrics and their assessment.

The literature provides a solid basis of relevant quality attributes, measurement
objects, processmodels, etc. However, we see different gaps that have not been addressed
so far: (1) There is a lack of unique and clear definitions of views on ML systems (e.g.,
what is the definition of a platform view in [7], or should hyper-parameters be included
as a separate view). (2) Existing quality models are often too abstract to be of value

Towards Guidelines for Assessing Qualities of Machine Learning Systems 21

for practitioners (e.g., in terms of proposed metrics) and require guidelines for tailor-
ing to be applicable [22]. (3) The combination of and the relationship between quality
attributes and relatedmetrics have not been sufficiently investigated yet, and it is not clear
whether they can be satisfied altogether. (4) Comprehensive development guidelines for
quality-awareML systems, which would bring together the differentML quality models,
processes, and views, are largely missing or not made explicit.

In the remainder of this article, we will contribute mainly to closing the first two
gaps. However, our overall research goal is aimed at coming up with comprehensive
development guidelines for quality-aware ML systems.

3 Views on ML Systems

Many factors can influence the quality of a software system (code, hardware, develop-
ment process, usage scenarios, etc.). In our approach, we tried to systematically identify
groups of factors belonging together. We propose different “views” that would be help-
ful in categorizing quality attributes and corresponding quality metrics together with the
objects to be measured. These views are: model view, data view, system view, infras-
tructure view, and environment view (see Fig. 2 for an illustrative overview). Note that
a given quality model may or may not use all the views, as the relevant ones are selected
according to the use case.

Environment
Users, society, scope

System / Infrastructure
Output / scope supervision, infrastructure, training / execution algorithm

ML component

Data
Development / runtime data

Model
Model type, trained model

Other
system components

ML Supervision
Component

Fig. 2. Overview of the different views on the software system and measurement objects that
influence the system’s quality.

Model View. The model view is concerned with quality aspects belonging to what is
called a model in machine learning. The model is the part that is trained on data in order
to perform a given task (e.g., a classification, regression, dimensionality reduction, etc.).
Note that an ML component normally does not contain only a single model but may be
composed of several models, usually organized in a directed acyclic graph (also called
a pipeline) [17]. The specificity of an ML component is the way it is built. We have to
distinguish between the development phase (where the training and the evaluation of
the pipeline is done) and the operation phase (where the artifacts created in the previous
phase are deployed and used in production, i.e., at runtime), because these two phases

22 J. Siebert et al.

may be implemented with different technologies (e.g., R/Python for learning, Web/Java
on the application side) or have different quality demands (e.g., using a large quantity
of data, operating under short latency, etc.).

In the model view, we have made a distinction between what we call a model type
(e.g., decision trees, neural networks, etc.) and a trained model (e.g., a specific instance
of a neural network trained on a specific dataset using a specific training algorithm).
Again, the goal of this distinction is to separate quality aspects related to a specific
object instance from those related to the object type. For example, the appropriateness
of a given model applies to a model type (like the family of decision trees), whereas the
goodness of fit applies to a specific trained instance. Note that we also separate the model
from its training algorithm (i.e., the algorithm that takes training data and a model type
as input and outputs a trained model) and its execution algorithm (i.e., the algorithm
that takes runtime data and a trained model as input and outputs a decision, for instance
a classification of inputted runtime data). The argumentation is that the training and
execution algorithms are pieces of “classical” software whose quality aspects can be
described and measured using existing standards.

Data View. The data view is concerned with the quality aspects related to the data. The
term data here describes the data that is used as input for a model. We further distinguish
between the development data, i.e., data used during the development phase to train the
ML component, and runtime data, i.e., the dataset used during the operation phase. The
distinction is made because these can be different physical objects, stored in different
databases, potentially preprocessed or accessed differently during the development and
operation phases. Therefore, different quality aspects apply either to each dataset sepa-
rately or to both (for example, by comparing the representativeness of the development
data with regard to the runtime data). We pushed the distinction even further concern-
ing the development data. Indeed, the process of training an ML component requires
splitting the development data into different subsets: the so-called training, validation,
and test subsets. The training subset is used to determine the model parameters during
training. The validation subset is used for hyper-parameter tuning (e.g., maximum depth
of a decision tree). Finally, to provide an unbiased evaluation of the trained model, a test
subset is used. Note that the test subset is supposed to be independent of the training and
validation subsets. The way the training, validation, and test subsets are chosen have an
impact on the quality of the evaluation of the trained model.

System View. First, anMLcomponent is usually organized in a pipeline of tasks. Devel-
oping such a pipeline is by nature experimental. A given pipeline may be trained several
times with different model types, training algorithms, or datasets. The way these sub-
components are connected have an impact on quality (see, for example, the problem of
data leakage [23]). Second, theML component is part of a larger system, i.e., it consumes
data from one or several sources and interacts with other ML or non-ML components.
Since, a decision outputted by an ML component is always subject to uncertainty, and
since wrong decisions might impact the system’s overall quality, considering the flow
of information from the system input through all components to the system output is
important in order to understand the impact of the ML components’ quality on the over-
all system behavior. Typical quality aspects related to the system view include, among

Towards Guidelines for Assessing Qualities of Machine Learning Systems 23

others, data dependencies and feedback loops [2]. In our use case, the output of the ML
component is monitored in order to detect and correct wrong decisions. This monitor-
ing also has its own quality aspects that may be relevant for the use case at stake (e.g.,
monitoring effectiveness and efficiency).

Infrastructure View. What we call the infrastructure view is closely related to the
system view. However, the view is here more focused on the quality aspects related to
how the system is concretely implemented (e.g., hardware, training libraries).Wedecided
to separate both views in order to highlight some specificities of ML components. For
example, the efficiency of the training and execution algorithms is a quality attribute that
belongs to this view. The same applies to the suitability of the infrastructure either for
training or for executing ML components. For example, current trained deep learning
models used for natural language processing are several gigabytes in size, and require
several days (or weeks) of training on dedicated hardware machines (GPU clusters).
The trained model cannot be executed on embedded devices due to computational and
storage limitations.

Environment View. The environment consists of elements that (1) are external to the
system under consideration, and (2) interact either directly or indirectly with the system.
This includes the users. For ML systems, several environmental aspects may have a
direct influence on the quality. These are, for example, aspects causing quality deficits in
the data. This is strongly related to the notion of concept drift. Since an ML component
is built for and tested in a given context of use (or target application scope), its quality
will decrease when this context changes [24]. A self-adapting ML component depen-
dent on the environment also raises further quality-related challenges (see, for example,
the problems faced by the Microsoft chatbot Tay). Viceversa, an ML component can
also have an impact on its environment, e.g., in terms of resource usage or societal
discrimination [6].

4 Quality Modeling for ML Systems

Many aspects can influence the quality of a software component using ML and deriving
a quality model for a specific use case may not be trivial. In this section, we will illustrate
the approach we used to derive a quality model. The use case and the resulting quality
model will be presented as well.

Our approach can be summarized as follows. We started by defining the relevant
use case. This is usually done through interviews with the appropriate stakeholders.
During these interviews, we made it clear what type of problem the ML component
was supposed to solve (e.g., classification), what the intended application scope was
(i.e., in which context the ML component should be used, what could change and how
often), and whether some ground truth is available. We then used the views defined in
the previous section to select pertinent measurement objects for the use case. From that
point on, we selected quality attributes of interest and derived corresponding metrics
(see Fig. 3).

24 J. Siebert et al.

Measurement
Objects

Quality
Attributes

Quality Metrics

m-object 1.1 q-attribute 1.1.1 q-metric 1.1.1.1, …

q-attribute 1.1.2 q-metric 1.1.2.1, …

… …

m-object 1.2 q-attribute 1.2.1 q-metric 1.2.1.1, …

… …

2) Identify views on the software system and
measurement objects (m-object) with influence

on the system‘s quality 3) Define quality attributes (q-attribute) and
metrics (q-metric) for measurement objects

View 1
m-object 1.1, …

View 2
m-object 2.1, …

View 3
m-object 3.1, …

View 4
m-object 4.1, …

View 5
m-object 5.1, …

View 6
m-object 6.1, …

1) Understand the use case:
ï Problem type,
ï Intended application scope,
ï Ground truth availability,
ï etc.

Fig. 3. Overview of the approach used to derive a specific quality model.

The industrial use casewas as follows. Fujitsu’sAccountingCenter receives purchase
order requests (POR) in digital form that need to be categorized for further treatment.
This task was traditionally done by human operators and is now performed by an ML
component. This component is trained with labeled examples of POR that used to be
categorized in the past by human operators. The goal of the ML system is to reduce
operating cost at an acceptable level of classification accuracy (comparable to humans).
During the interviews, some quality issues were mentioned. First, the development and
operation of ML components are complex and associated with high cost and risks.
Several areas of expertise come into play when developing and operating anML system.
This may lead to potential communication and coordination problems. Furthermore, if
wrong classifications do occur, finding the root cause of such a failure is not trivial.
In order to deal with this, a monitoring system was implemented in conjunction with
a correction engine based on expert rules. The ML component was re-trained when
too many categorization failures were detected. This use case illustrates some of the
quality issues encountered while developing and operating software systems using ML
components.

Table 1 presents the quality model we derived for the use case described above.
For each view on the ML system, we defined a set of relevant quality attributes and
corresponding measurement objects. For each attribute, we either give examples of
concrete metrics for objectively evaluating the quality, or, if this is not possible, define
examples for items one would have to check in order to address the respective quality.
The quality model was designed to be specific enough to address the described use case
appropriately (including supervision- and classification-related quality attributes), but
also contains generic elements to allow it to be applied to other (similar) use cases (such
as most attributes related to data and model).

How these measures could be aggregated in order to get an overall evaluation of the
ML system and how to define quality improvement strategies for the use case are issues
beyond the scope of this article.

5 Discussion

In this article, we first proposed a categorization of quality attributes as well as mea-
surement objects in the form of different views/objects. This classification is the result

Towards Guidelines for Assessing Qualities of Machine Learning Systems 25

Table 1. Overview of the derived quality model

View Measurement
object

Quality attribute Example quality
metrics and
checklists

Model Model type Appropriateness: Degree to
which the model type is
appropriate for the current task
(e.g., classification, etc.) and can
deal with the current data type
(e.g., numerical, categorical)

Prerequisites for
model type

Trained model Development correctness
(Goodness of Fit): Ability of the
model to perform the current task
measured on the development
dataset

Precision, Recall,
F-score, etc. for
training

Runtime correctness (Goodness
of Fit): Same as above measured
on the runtime dataset

Precision, Recall,
F-score, etc. at
runtime

Relevance (Bias-Variance
tradeoff): Degree to which the
model achieves a good
bias-variance trade-off (neither
underfitting nor overfitting the
data)

Variance of
cross-validation
goodness of fit

Robustness: Ability of the model
to handle noise or data with
missing values and still make
correct predictions

Equalized Loss of
Accuracy (ELA)

Stability: Degree to which a
trained model generates repeatable
results when it is trained on
different subsets of the training
dataset

Leave-one-out
cross-validation
stability.

Fairness: Ability of the model to
output fair decisions

Equalized odds

Interpretability: Degree to which
the trained model can be
interpreted by humans

Complexity metrics
(e.g., no. of
parameters, depth)

Resource utilization: Resources
used by the model when it is
already trained

Required storage
space

(continued)

26 J. Siebert et al.

Table 1. (continued)

View Measurement
object

Quality attribute Example quality
metrics and
checklists

Data Development data Representativeness: Degree to
which the data is representative of
the statistical population

Statistical tests (e.g.,
two-sample t-test,
etc.)

Correctness: Degree to which the
data is free from errors

Outlier detection
metrics (e.g.,
Z-score).

Completeness: Degree to which
the data is free from missing
values

No. of missing
values

Currentness: Degree to which the
data is up to date w.r.t. the current
task

Age of data

Intra-Consistency: Consistency
of the data within a dataset, e.g.,
the data does not contradict itself
or the formatting is consistent

Value ranges, word
counts

Train/Test Independence:
Degree to which the training and
test subsets are independent of one
another

Statistical tests (e.g.,
two-sample t-test,
etc.)

Balancedness: Degree to which
all classes (labels) are equally
represented in the dataset

Ratio of classes

Absence of Bias: Degree to which
the data is free from bias against a
given group

Ratios of groups

Development and
runtime data

Inter-Consistency: Consistency
between different datasets, e.g.,
formatting, sampling methods
used

Value ranges,
crosswise outlier
detection metrics

Environment Training process Environmental Impact: Degree
to which the training process
impacts the environment.

Energy
consumption.

Society Social Impact: Degree to which
the ML component impacts
society

Impact on
employees

(continued)

Towards Guidelines for Assessing Qualities of Machine Learning Systems 27

Table 1. (continued)

View Measurement
object

Quality attribute Example quality
metrics and
checklists

Scope Scope Compliance: Degree to
which the application of the ML
component respects its intended
scope of use

Value ranges,
novelty detection
metrics

System Output
supervision

Effectiveness: Degree to which
the output supervision algorithm
detects false outcomes of the ML
component

False
positive/negative
detection rate

Supervision
Overhead/Efficiency: Resources
used for monitoring a given ML
component

Time, memory used,
etc.

Scope supervision Effectiveness: Degree to which
the scope supervision algorithm
detects context changes

No. of out-of-scope
cases

Supervision
Overhead/Efficiency: Resources
used for monitoring the
application scope

Time memory used,
etc.

Other non-ML
components

Here we refer to the relevant
subset of the quality attributes of
the standard ISO/IEC 25010,
which are not listed here for space
reasons

Infrastructure Infrastructure Infrastructure Suitability:
Degree to which the infrastructure
matches the ML component needs
(e.g., in terms of hardware type,
computation capability,
bandwidth, memory, etc.)

Computational and
storage capabilities

Training algorithm Training Efficiency: Resources
used for training a given model

Time, memory used,
etc.

Execution
algorithm

Execution Efficiency: Resources
used for executing a given trained
model

Time, memory used,
etc.

of a literature-based review, discussions with industrial partners, and our own experi-
ence in ML component development. To scientifically assess and consolidate a useful
and systematic grouping of quality attributes for ML systems (as well as measurement

28 J. Siebert et al.

objects), several iterationswill be necessary (e.g., case study, systematic literature review,
mapping study).

We also derived a quality model specifically tailored for a given use case. The defini-
tion and relevance of the quality attributes were first discussed internally in a workshop
with experts. Later, three case studies with a focus on requirements engineering for ML
systems were conducted by Fujitsu Laboratories [25]. In this paper, the authors present
the overall requirements engineering process, but do not go into the details of the qual-
ity model presented. The performed case studies confirmed that the quality attributes
identified were valid and meaningful for ML developers, especially in the context of
requirements specification.

In terms of limitations, we see three main aspects:

1. We did not address process-related aspects yet, i.e., what qualities have to be
assured in which activity and handled by which role. We believe that the proposed
views/objects can help to establish a mapping between roles (e.g., Data Scientist,
Data Engineer, etc.) and quality attributes or metrics. For example, Data Scien-
tists are usually in charge of building models, and are in direct line when it comes
to measuring the impact of data quality on the models’ outcomes. However, Data
Engineers are the ones that can usually implement new data quality improvement
actions. Architects with a good understanding ofMLwill be needed in order to solve
problems on the system level.

2. The identified views may be incomplete and currently focus more on the later stages
ofCRISP-DM,missing the stages ofBusinessUnderstanding (i.e.,ML requirements)
and Data Understanding, and their related measurement objects. For example, Data
Understanding is by nature rather experimental and the artifacts produced at this
stage usually consist of a set of decisions (e.g., which data preparation algorithm to
choose) andmay be accompanied by code snippets or visualizations (e.g., notebooks,
reports). An open question is whether the views should be augmented with new
measurement objects (such as specific ML requirements documents, experiment
reports or notebooks, etc.) or whether another classification direction based upon
processes is needed.

3. Finally, our viewpoint for defining the quality model was more from the data science
perspective. Integration with classical software/system engineering qualities (such
as those defined by ISO/IEC 25010) is missing. There is as yet no consensus on
the naming of ML-related quality attributes. Furthermore, whereas some of the pro-
posed attributes can be easily classified under existing ISO/IEC 25010 ones (e.g.,
the model’s Goodness of Fit could potentially belong to Functional Correctness),
others may be more difficult to classify (such as Scope Compliance). Whether the
ISO/IEC 25010 is the right framework for ML components is still an open issue.

6 Lessons Learned and Conclusions

This article presented how we constructed a concrete quality model for an ML system
based on an industrial use case. We are completely aware that the model we developed
is quite specific to the case and that other use cases may require different quality aspects

Towards Guidelines for Assessing Qualities of Machine Learning Systems 29

and, in consequence, different metrics. However, we would like to share an excerpt from
the lessons we learned from following the described methodological approach. Even
though some of these are known from other fields, we nonetheless think it is worth
mentioning them in the context of developing ML systems:

1. Context and use casemust be clear. As pointed out before, there aremany application
fields and potential ML-based solutions available. It is very important to be as clear
as possible about the general application context. ML models should never ever
be used just for the sake of being fancy, but always because there is the profound
assumption that they will add concrete value for the application context. The quality
aspects that are important mainly depend on this.

2. Iterative approach: TheMLmodel, its application context, and its use case have to be
adjusted over time and some initial assumptions will turn out to be false. Therefore,
it is important to follow an iterative approach when developing theML system and to
be able to quickly identify dead ends and take different paths. Having a clear picture
of what quality aspects are important and how to quantify them is crucial for this, as
it allows us to immediately see whether we can fulfill them with our solution path.

3. Multidisciplinary work: As we stated at the beginning of this article, different kinds
of knowledge must come together for developing quality-aware ML systems. For
instance, a data scientist knows how to measure the fairness or stability of the trained
model, a software/system engineer knows how to assure the quality of the overall
system, and a domain expert knowswhether theML system really solves the problem
better than a traditional software system.

4. The devil is in the details: We learned that it is easy to talk about abstract generic
quality aspects, such as those defined by ISO/IEC 25010, on a high level. To define
meaningful quality aspects, we had to break them down into concrete qualities of
measurement objects and define how to operationalize these aspects with metrics.

5. Quality-aware process/guidelines: Even though there are defined processes for ML
model building (such as CRISP-DM) and for software engineering (such as rich
and agile processes) with elaborate practices for improvement (such as DevOps
approaches), an integrated process is missing, nor do guidelines exist on how to
bring everything together with a clear focus on the quality of ML systems.

Regarding future work, we first plan to perform more case studies to empirically
validate the different quality aspects in more detail, specifically their relevance for prac-
titioners and how to deal with them in different process stages. Second, we want to apply
this method to other ML problems (like regression, or unsupervised problems) and learn
about the impact on the quality model. Third, we intend to package our insights into
development guidelines for quality-aware ML systems.

References

1. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change software
development practices? IEEE Trans. Softw. Eng. 1 (2019)

30 J. Siebert et al.

2. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Proceedings of the
28th International Conference on Neural Information Processing Systems, pp. 2503–2511
(2015)

3. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, landscapes and
horizons. IEEE Trans. Softw. Eng. 1 (2020)

4. ISO/IEC 25010:2011: Systems and software engineering—Systems and software Quality
Requirements and Evaluation (SQuaRE)—System and software quality models

5. ISO/TS 8000:2011: Data Quality
6. High-Level Expert Group on Artificial Intelligence: Ethics Guidelines for Trustworthy AI.

European Commission (2019)
7. DIN SPEC 92001-01: Künstliche Intelligenz - Life Cycle Prozesse und Qualitätsanforderun-

gen. Teil 1: Qualitäts-Meta-Modell. Beuth Verlag GmbH, Berlin
8. Hamada, K., Ishikawa, F., Masuda, S., Matsuya, M., Ujita, Y.: Guidelines for quality assur-

ance of machine learning-based artificial intelligence. In: SEKE2020: the 32nd International
Conference on Software Engineering & Knowledge Engineering, pp. 335–341 (2020)

9. Trustworthy Use of Artificial Intelligence. Priorities from a Philosophical, Ethical, Legal, and
Technological Viewpoint as a Basis for Certification of Artificial Intelligence. Fraunhofer
Institute for Intelligent Analysis and Information Systems IAIS Schloss Birlinghoven (2019)

10. FromPrinciples to Practice. An interdisciplinary framework to operationalise AI ethics. VDE,
Bertelsmann Stiftung (2020)

11. Marselis, R., Shaukat, H., Gansel, T.: Testing of Artificial Intelligence. Sogeti, Paris (2017)
12. Marselis, R., Shaukat, H.: Machine Intelligence Quality Characteristics. How to Measure the

Quality of Artificial Intelligence and Robotics. Sogeti, Paris (2018)
13. Nakajima, S.: Quality assurance of machine learning software. In: 2018 IEEE 7th Global

Conference on Consumer Electronics (GCCE), 9–12 October 2018, pp. 601–604. IEEE,
Piscataway (2018)

14. Mariscal, G., Marbán, Ó., Fernández, C.: A survey of data mining and knowledge discovery
process models and methodologies. Knowl. Eng. Rev. 25, 137–166 (2010)

15. Martinez-Plumed, F., et al.: CRISP-DM twenty years later: from data mining processes to
data science trajectories. IEEE Trans. Knowl. Data Eng. 1 (2020)

16. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H., Crnkovic, I.: A taxonomy of software engi-
neering challenges for machine learning systems: an empirical investigation. In: Kruchten, P.,
Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 227–243. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19034-7_14

17. Amershi, S., et al.: Software engineering for machine learning: a case study. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), pp. 291–300 (2019)

18. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification
evaluations. IJDKP 5, 1–11 (2015)

19. Emmons, S., Kobourov, S., Gallant,M., Börner, K.: Analysis of network clustering algorithms
and cluster quality metrics at scale. PLoS ONE 11, e0159161 (2016)

20. Barocas, S., Boyd, D.: Engaging the ethics of data science in practice. Commun. ACM 60,
23–25 (2017)

21. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent Trade-Offs in the Fair Determination
of Risk Scores. arXiv.org (2016)

22. Wagner, S., et al.: Operationalised product quality models and assessment: the Quamoco
approach. Inf. Softw. Technol. 62, 101–123 (2015)

23. Kaufman, S., Rosset, S., Perlich, C.: Leakage in data mining. In: Apte, C., Ghosh, J., Smyth,
P. (eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Diego, Ca, USA, 21–24 August 2011, p. 556. ACM, New
York (2011)

https://doi.org/10.1007/978-3-030-19034-7_14

Towards Guidelines for Assessing Qualities of Machine Learning Systems 31

24. Kläs, M., Vollmer, A.M.: Uncertainty in machine learning applications: a practice-driven
classification of uncertainty. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 431–438. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99229-7_36

25. Nakamichi, K., et al.: Requirements-driven method to determine quality characteristics and
measurements for machine learning software and its evaluation. In: 28th IEEE International
Requirements Engineering Conference (RE’20)

https://doi.org/10.1007/978-3-319-99229-7_36

Data Cleaning: A Case Study with OpenRefine
and Trifacta Wrangler

Dessislava Petrova-Antonova(B) and Rumyana Tancheva

GATE Institute, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
d.petrova@fmi.uni-sofia.bg, rumy.tancheva@gmail.com

Abstract. Data cleaning is the most time-consuming activity in data science
projects aimed at delivery high-quality datasets to provide accuracy of the corre-
sponding trained models. Due to variability of the data types and formats, data
origin and acquisition, different data quality problems arise leading to develop-
ment of variety cleaning techniques and tools. This paper provides a mapping
between nature, scope and dimension of data quality problems and a compara-
tive analysis of widely used tools dealing with those problems. The existing data
cleaning techniques serve as a basis for comparing the cleaning capabilities of
the tools. Furthermore, a cases study addressing the presented data quality prob-
lems and cleaning techniques is presented utilizing one of the commonly used
software products OpenRefine and TrifactaWrangler. Although the application of
the similar data cleaning techniques on the same dataset, the results show that the
performance of the tools is different.

Keywords: Data cleaning · Data quality · Data cleaning techniques and tools

1 Introduction

According to IDC, the collective sum of the world’s data will grow to a 175ZB by 2025,
[1]. Themanagement and analysis of such unprecedented amount of data is a key success
factor to exploit benefits of it. It has estimated that up to 80%of the effort of data scientists
is spent on preparing the data for the analytics, where data cleaning constitutes up to 60%
[2], which is often neglected. Since data acquisition methods often cause problems such
as out-of-range values, missing values and impossible data combinations, analyzing data
without cleaning produces inaccurate and undesirable results. Data cleaning is one of the
most critical steps in AI projects, removing data violations and providing data quality.

This paper provides an insight into data anomalies. The current software tools and
platforms for data cleaning are analyzed based on the supported data preparation meth-
ods, including data cleaning. The main research question is how effective are currently
available tools in preparation of the data for analytics. In order to answer it, two software
tools are selected from the analyzed ones to complete a particular scenario.

The rest of the paper is structured as follows. Section 2 outlines data quality problems
and presents a comparison analysis of the most commonly used data cleaning tools.
Section 3 describes a case study by using the software tools OpenRefine and Trifacta

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 32–40, 2020.
https://doi.org/10.1007/978-3-030-58793-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_3

Data Cleaning: A Case Study with OpenRefine and Trifacta Wrangler 33

Wrangler to show a practical application of data cleaning techniques. Section 4 discusses
the obtained results. Finally, Sect. 5 summarizes the paper.

2 Data Quality and Cleaning

Producing high quality datasets require data problems to be identified and cleaned using
different data cleaning techniques. Although there are different taxonomies and method-
ologies of data anomalies [3–6], to the best of our knowledge a command accepted def-
inition does not exists. This is due to the diversity of data quality violations data types,
formats and domains. Thus, a lot of methods for detection of data quality problems are
proposed, but neither of them fit in all situations. The dimension of data quality is a
feature of the data that can be used to assess the quality of data. The state-of-the-art liter-
ature includes various definitions of data quality dimensions [7, 8] such as Consistency,
Completeness, Uniqueness, Accuracy, Validity and Timeless. Regarding the scope, the
data quality problems occur in cell values, column headers, rows or in cell values and
column headers at the same time [9]. In order to speed-up the process of data preparation

Table 1. Data preparation and cleaning tools.

Data cleaning
techniques

Clean & match Rapid
miner

TIBCO
clarity

Data
ladder

OpenRefine Trifacta DataCleaner

Data profiling ● ● ● ● ● ● ●

Missing values ● ● ● ● ● ● ●

Fuzzy
matching

● ● ● ● ● ● ●

Outliers ◯ ● ● ◯ ● ● ●

Spelling
variations

● ◯ ◯ ◯ ● ● ●

Email address
validation

● ◯ ● ◯ ◯ ● ●

Data
standardization

● ◯ ● ● ◯ ● ●

Phone number
validation

◯ ◯ ● ◯ ● ● ●

Data
aggregation

◯ ● ● ◯ ◯ ● ●

Clustering ◯ ● ●
(cells)

◯ ● ◯ ◯

Data
enrichment

◯ ● ◯ ● ● ● ◯

De-duplication ● ● ● ● ● ● ●

Language N/A R,
Groovy

GREL N/A GREL Wrangler JavaScript

34 D. Petrova-Antonova and R. Tancheva

and cleaning, an automation is needed. One of the most commonly used tools are Win-
Pure Clean & Match, RapidMiner, TIBCO Clarity, Data Ladder, OpenRefine, Trifacta
and Data Cleaner, which comparison is shown in Table 1.

The tools differ in supported data formats, techniques for data filtering, enrichment,
clustering, etc. For example, WinPure Clean & Match and Data Ladder adopt the fuzzy
matching technique to match keying errors and transpositions and reading errors or to
visually score matches, assign weights, and group non-exact matches. The fuzzy logic
is also used by Data Cleaner to customize cleansing rules and compose them into sev-
eral scenarios. TIBCO Clarity and Openefine supports the General Refine Expression
Language (GREL) for data manipulation, including transformation and normalization,
while RapidMiner and Trifacta are based on Groovy and Wrangler languages respec-
tively. Data Ladder and Trifacta implement advanced functionality for data enrichment,
ensuring that the new data is also cleaned.

3 Case Study

This section presents a case study showing the application of the existing data cleaning
techniques on a sample dataset using OpenRefine and Trifacta tools. A sample dataset
including information about scientific journals is downloaded [10]. The dataset contains
11 377 rows with information for scholarship journals. The journals are described in 5
columns: ISSN, journal_name, pub_name, is_hybrid, category and url.

3.1 Data Cleaning with OpenRefine

This section presents the implementation of data cleaning with OpenRefine.

Cleaning of Structural Errors. The cleaning of structural errors is started with the
ISSN column by removing leading and trailing whitespaces as well as the consecutive
whitespaces. Next, the data format of the values of the ISSN column is checked. 1 row
is found, where the values of the ISSN and “journal_name” columns are switched. In
addition, an ASCII table is used to check the ISSNs for invalid characters. During the
cleaning of the “journal_name” column, clusters of similar string values are identified
and for each one the right journal title is selected based on the title corresponding to the
ISSN in web. The fast and simple clustering method is “Fingerprint”, shown in Fig. 1.

“N-Gram Fingerprint” is an alternative method of “Fingerprint”. The only difference
is that it uses n-grams instead of tokens. The “N-Gram Fingerprint” method doesn’t have
advantages over the “Fingerprint” method, when big values for n-grams are used. When
1-grams and 2-grams are used the method finds clusters that the previous method cannot
discover. The “Phonetic Fingerprint” is amethod that transforms tokens into theway they
are pronounced. It is appliable when there are errors caused by people misunderstanding
or bad spelling.

Some of the cells of the “journal_name” column store multiple values, namely the
journal title and additional information related to the open access of the journal or journal
URL. A new column “Comments” are created to store the additional information, which
is not part of the journal title. The data in the “pub_name”, “category” and “url” columns
are processed in a similar way. The results are presented in Table 2.

Data Cleaning: A Case Study with OpenRefine and Trifacta Wrangler 35

Fig. 1. Application of the “Fingerprint” method with OpenRefine.

Table 2. Processed fields with OpenRefine.

Clustering method journal_name pub_name Category Url

“n-gram fingerprint” 22 207 132 4

“fingerprint” 21 2 0 0

“phonetic fingerprint” 3 22 0 0

Total number of processed fields 46 231 132 4

Duplicate Rows Removal. The searching for duplicate rows is performed on the ISSN
column of the dataset by using the Duplicates facet command of OpenRefine. 3 duplicate
ISSNs are found. The rows with ISSN “0001-527X” and those with ISSNs “0024-4937”
are identical and 1 row from each pair id removed. The information of the second
pair of rows with ISSN “0004-1254” matches only by the ISSN, which indicates data
inconsistency. The ISSN value is corrected by manual checking in the web.

Outliers Removal. The allowed values for the column “is_hybrid” can be either 0 or 1
and any other value is interpreted as outlier. In order to identify whether the journal is
with open or closed access, a manual search in the web is performed.

Identification of Missing Values. In order to identify missing values, all cells contain-
ing “nan”, “NULL” or whitespaces are found (see Table 3).

The “pub_name” column contains 1470 missing values, which is 12.96% from the
total number of records. Thus, it is not recommended to delete them, because a lot of
data will be lost. The missing values are filled with a string value “missing” to indicate
that the corresponding cells does not contain valuable information.

36 D. Petrova-Antonova and R. Tancheva

Table 3. Identification of missing values with OpenRefine.

Missing values Issn journal_name pub_name is_hybrid Category Url

Whitespaces 0 0 553 0 205 4289

“nan” 0 0 917 0 42 21

“NULL” 0 0 0 2 5856 2238

Total (%) 0 (0%) 0 (0%) 1470
(12.96%)

2 (0.02%) 6103
(53.65%)

6548
(57.55%)

3.2 Data Cleaning with Trifacta Wrangler

This section presents the data cleaning with Trifacta. One of its advantages is the option
to record the applied data processing steps as a “Recipe” procedure. This allows for
application the same procedure to different datasets with similar problems.

Cleaning of Structural Errors. SinceTrifacta enables the sameoperation to be applied
tomultiple columns, the leading and trailingwhitespaces and quotes are quickly removed
from all columns, except the “is_hybrid” column. Next, the values in the ISSN column
are processed. There is 1 record, which ISSN exceeds the maximum allowed length (9
characters). The values of the ISSN and “journal_name” columns are switched for that
record. In order to check the exact format of the values in the ISSN column a regular
expression is defined using the Wrangler language. Additional column, called “ISSN1”
is created, where all valued that match the regular expression are copied and the rest are
represented with whitespaces. The records with the last character of the ISSN written
with a lowercase “x” are found and corrected. The values in the “journal_name” column
are unified by using the “N-Gram Fingerprint” method. In addition, “Fingerprint” and
“Pronunciation” methods are applied to achieve more precise results. The “Pronuncia-
tion” method identifies clusters based on the language pronunciation using the “Double
Metaphone“algorithm. The results are summarized in Table 4.

Table 4. Processed fields with Trifacta Wragler.

Clustering method journal_name pub_name Category Url

“n-gram fingerprint” 21 206 132 4

“fingerprint” 21 5 0 0

“phonetic fingerprint” 1 8 0 0

Total number of processed fields 43 219 132 4

The “journal_name” column has cells with additional to the journal title information,
which should bemoved to a separate column. All values, which length is between 91 and
119 characters are kept in their initial state. The remain values are manually processed
and redundant information is moved to a new “Comments” column.

Data Cleaning: A Case Study with OpenRefine and Trifacta Wrangler 37

Duplicate Rows Removal. Trifacta gives a quick overview for the current status of a
given column. Figure 2 shows a summary for the ISSN column. The duplicated records
with ISSN 0001-527X and 0024-4937 are deleted. The records with ISSN 0004-1254
have different values in the “journal_name” column.After checking, it was found that the
ISSN of the Journal “Arquivos De Neuro-Psiquiatria” is wrong. Unfortunately, Trifacta
does not provide an easy way for modification of single values. Its functionality is
oriented towards modification of multiple fields that meet a given criterion.

Fig. 2. ISSN summary report by Trifacta Wrangler.

Outliers Removal. TrifactaWrangler foundonly one outlier for the “is_hybrid” column
with value 2. Based on the experiment with OpenRefine, this value is changed to 1.

Identification of Missing Values. Themissing values are those representedwith “nan”,
“NULL” or whitespaces. Unfortunately, Trifacta identifies only the whitespaces and
marks them with “NULL”. Therefore, additional operations are applied in order to be
identified all missing values, including those represented with “nan” and “NULL”. A
summary of the identified missing values is presented in Table 5. Again, the missing
values are filled with a string value “missing” for the purpose of analysis.

Table 5. Identification of missing values with Trifacta Wrangler.

Missing values Issn journal_name pub_name is_hybrid Category Url

Whitespaces 0 0 553 0 205 4289

“nan” 0 0 917 0 42 21

“NULL” 0 0 0 2 5856 2238

Total (%) 0 (0%) 0 (0%) 1470
(12.96%)

2 (0.02%) 6103
(53.65%)

6548
(57.55%)

38 D. Petrova-Antonova and R. Tancheva

4 Result Analysis

Although the same data cleaning techniques are applied, the performance of each tool
is different (see Table 6) and each one has different advantages and disadvantages (see
Table 7). Trifacta does not catch all duplicate rows, since it does not allow editing of
single field, if there are several fields suitable for processing. The result obtained by
the Trifacta for number of fields with removed whitespaces is based on an assumption,
because the tool does not provide information about the number of changed records
after execution of particular command. Due to this limitation, the corrected records are
counted manually. Since the same result is obtained for that column with OpenRefine,
an assumption is made that the results are identical for the other columns.

Table 6. Summary of results.

Technique Results (number) OpenRefine Trifacta

Duplicate rows removal Existing duplicate rows 3 3

Removed duplicate
rows

3 (100%) 2 (66.66%)

Cleaning of structural errors Fields with removed
whitespaces

413 413

Fields with incorrect
format

6 6

Fields with corrected
format

6 (100%) 6 (100%)

Clustering of text facets Unified fields 413 98

Outliers Existing outliers 1 1

Removed outliers 1 (100%) 1 (100%)

Missing values Existing missing
values

14123 14123

Identified missing
values

14123 (100%) 14123 (100%)

There is also a difference in the results for the number of unified fields. This is due to
the differences in the implementation of “Fingerprint” and “N-Gram Fingerprint” meth-
ods. The tools use different techniques to split the strings into tokens. OpenRefine clears
the punctuation and control characters first, and then the strings are split into sections
using blank spaces. Trifacta uses empty spaces or punctuation and control characters as
delimiters, which are not removed in advance. This leads to differences in the proposed
groups for unification, although both tools use the samemethods. For example, the group,
including “Parkinson’s Disease” and “Parkinsons Disease”, is not treated in the same
way. OpenRefine detects it based on the “Fingerprint” method, while Trifacta detects
it only if the “Pronunciation” method is applied. The differences in the results are also

Data Cleaning: A Case Study with OpenRefine and Trifacta Wrangler 39

Table 7. Tools’ advantages and disadvantages.

Advantages Disadvantages

OpenRefine (1) Easy modification of a single field;
(2) The field is not necessary to
satisfy a given criterion to be
changed; (3) Multiple records
processing; (4) Statistics on the
number of records processed with a
given operation

(1) Doesn’t support processing of large
datasets

Trifacta (1) Record the applied data processing
steps as a “Recipe” procedure; (2)
Non-blocking processing of large
datasets; (3) Supports easier to use
functions; (4) Different method for
filling the missing values

(1) Single field cannot be modified; (2)
Allows only modification of
multiple fields that meet a given
criterion; (3) Missing information
for the number of records
processed with a given operation

due to the third method of clustering. Trifacta uses the “Double Metaphone” method,
while OpenRefine uses the “Phonetic Fingerprint” method (“Metaphone 3” and “Co-
longe Phonetic”). The application of the “Metaphone 3” method is thought to increase
the accuracy of results from 89% to 98% in comparison to the “Double Metaphone”
method for the most common English words [11]. The number of removed outliers and
missing values are the same for both tools.

5 Conclusions

Data preparation and especially data cleaning is the most time and effort consuming
task of the most data science projects. This leads to development of a broad range
of data cleaning techniques and tools that handle variety data quality problems. This
paper outlines data quality problems providing a mapping between its nature, scope and
dimension. The most commonly used tools and platforms for data cleaning are studied
and compared according to the supported data cleaning techniques. In order to provide
more deep understanding of data quality issues, a sample case study is performed using
two different data cleaning tools, namely OpenRefine and TrifactaWrangler. The results
show that the performance of the tools is different although the application of the similar
data cleaning techniques on the same dataset.

Acknowledgements. This research work has been supported by GATE project, funded by the
Horizon 2020WIDESPREAD-2018-2020 TEAMINGPhase 2 programme under grant agreement
no. 857155 and Big4Smart and ITDGate projects, funded by the Bulgarian National Science fund,
under agreement no. DN12/9 and agreement no. DN 02/11.

40 D. Petrova-Antonova and R. Tancheva

References

1. Reinsel, D., Gantz, J., Rydning, J.: The Digitization of the World. IDC White Paper (2018)
2. CrowdFlower, Data Science, Report (2016). https://visit.figure-eight.com/rs/416-ZBE-142/

images/CrowdFlower_DataScienceReport_2016.pdf. Accessed 17 Mar 2020
3. Sebestyen, G., Hangan, A., Czako, Z., Kovacs, G.: A taxonomy and platform for anomaly

detection. In: International Conference onAutomation, Quality and Testing, Robotics, pp. 1–6
(2018)

4. Batini, C., Barone, D., Mastrella, M., Maurino, A., Ruffini, C.: A framework and a methodol-
ogy for data quality assessment and monitoring. In: International Conference on Information
Quality, pp. 333–346 (2007)

5. Kim, W., Choi, B., Kim, S., Lee, D.: A taxonomy of dirty data. Data Min. Knowl. Disc. 7,
81–99 (2003)

6. Josko, J.M.B., Oikawa, M.K., Ferreira, J.E.: A formal taxonomy to improve data defect
description. In: Gao, H., Kim, J., Sakurai, Y. (eds.) DASFAA2016. LNCS, vol. 9645, pp. 307–
320. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32055-7_25

7. Sidi, F., Panahy, P.H.S., Affendey, L.S., Jabar, M., Ibrahim, H., Mustapha, A.: Data quality: a
survey of data quality dimensions. In: International Conference on Information Retrieval &
Knowledge Management. IEEE (2012)

8. Laranjeiro, N., Soydemir, S.N., Bernardino, J.: A survey on data quality: classifying poor
data. In: 21st Pacific Rim International Symposium on Dependable Computing (PRDC),
IEEE (2015)

9. Sukhobok, D., Nikolov, N., Roman, D.: Tabular data anomaly patterns. In: International
Conference on Big Data Innovations and Applications (Innovate-Data), IEEE (2017)

10. https://github.com/FlourishOA/Data. Accessed 03 Feb 2020
11. Chan, K., Vasardani, M., Winter, S.: Getting lost in cities: spatial patterns of phonetically

confusing street names. Trans. GIS 19(4), 535–562 (2014)

https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://doi.org/10.1007/978-3-319-32055-7_25
https://github.com/FlourishOA/Data

NSP Dataset and Offline Signature
Verification

Dmitry V. Bakhteev1(B) and Roman Sudarikov2

1 Department of Criminalistics,
Ural State Law University, Yekaterinburg, Russian Federation

ae@crimlib.info
2 Institute of Formal and Applied Linguistics,

Charles University, Prague, Czech Republic
sudarikov@ufal.mff.cuni.cz

Abstract. Offline signature verification is a challenging task for both
computer science and forensics. Skilled forgeries often cannot be recog-
nized by humans, which leads to the need to develop automated forged
signatures recognition methods, which in turn requires the creation of
different datasets for training models, which include the NSP – the first
dataset with Cyrillic offline signatures, including genuine signatures with
their skilled and simple forgeries. The process of collecting data for this
dataset is described in detail. In the process of collecting samples we
reformulated the forensic classification of signatures by criterion of their
structure and forgery vulnerability. Gathered database was evaluated
using a Siamese neural network model and the results are compared
with the same model trained on CEDAR dataset.

Keywords: Offline signature verification · Signature forensics ·
Siamese neural networks

1 Introduction

In the history of mankind, dozens of different methods of remote identification
of person have been created, introduced and lost. Handwritten signatures turned
out to be the most stable and suitable for use as props for documents used in
economic and law enforcement activities, mainly due to their comparative ease of
execution and non-invasive methods of receipt. In forensics, the signature carries
an identification and diagnostic value. Identification allows to establish a specific
performer of signature, determine whether it is genuine or forged. Two objects
are always involved in the identification process, the authenticity of one of which
is always precisely known. Diagnostics of the signature allows to establish the
characteristics of its performer: both their identity and some personality traits.

Forgeries from the point of view of the method of their performing can be
divided into three types: auto-forgery, simple and skilled forgeries. In the case
of auto-forgery, the performer is the owner of the signature, the purpose of such

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 41–49, 2020.
https://doi.org/10.1007/978-3-030-58793-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_4&domain=pdf
http://orcid.org/0000-0002-0869-601X
http://orcid.org/0000-0002-0276-3568
https://doi.org/10.1007/978-3-030-58793-2_4

42 D. V. Bakhteev and R. Sudarikov

an action is the alleged future refusal to recognize the document as properly
signed. In the case of simple forgeries within the framework of this study, we
understand forgeries, for the creation of which forger had knowledge about the
signer’s name and examples of his handwritten signatures. We do not recognize as
such signatures made without an images of the signer’s signature [3]. Of course,
in cases of law enforcement, such cases do occur, but their resolving is not a
big problem due to the low similarity between existing genuine documents and
forged ones. Skilled forgeries are performed not only in the presence of examples
of genuine signatures, but also with the help of special skills of the forger.

Whole signature verification field can be divided into two main categories
by acquisition type: online and offline verification. Online signature verification
deals with analysis of the signatures while they are captured using a digitizing
device and takes into the account sequence of the strokes over time, pen position,
pen pressure, etc. Offline verification on the other hand acquires the signature
after the process is finished, most commonly in a form of a digital image.

The practical scope of combining forensic methods with the possibilities of
offline signature recognition expands the possibilities of identification processes
in civil, commercial and law enforcement activities and expands communication
between academic disciplines and practice.

The outline of the paper is the following: Sect. 2 is devoted to the review of
related works in the field of signature verification, Sect. 3 describes the process
of collecting NSP dataset and processing done around it. Section 4 discusses
some of the forensic discoveries made during the dataset collection, and Sect. 5
details the assessment experiments carried out using collected dataset. Finally,
Sect. 6 concludes the paper with future work.

2 Related Works

Most of the recent advancements in the field of offline signature verification
including the researches of Deep Learning methods are described by [3]. The
work reviewed both most commonly used datasets (CEDAR [4], MCYT [5] and
GPDS [8]) and different approaches to offline signature verification, starting from
classic Machine Learning algorithms such as Support Vector Machines (SVM)
and Hidden Markov Models, followed by Deep Neural Networks and classifiers
ensembles. Here it is also appropriate to mention two different types of verifica-
tion models, which are writer-independent and writer-dependent. As it is clear
from the names, the former models can be applied to any signature verifica-
tion task, independently of whether or not they saw the subject’s signatures in
the training set. The latter models though need to be exposed to the subject’s
signatures during the training.

There are also different approaches in feature extraction and Convolutional
Neural Networks (CNN) composition, as presented by [1] and [7]. The former
introduced SigNet – convolutional Siamese neural network, which learns writer
independent features and shows good performance on cross domain datasets. The
latter showed performance improvements by combining CNN feature extraction
with SVM writer-independent classifier.

NSP Dataset and Offline Signature Verification 43

As it was mentioned previously currently there are several benchmark
datasets in the field of signature verification: CEDAR [4], MCYT[5], GPDS
[8] and BHSig260 [6]. Characteristics of NSP dataset in comparison with some
other existing datasets are presented in Table 1.

Table 1. Comparison of offline signature datasets

Handwriting system Signers Signatures (genuine/forged)

NSP Cyrillic 224 40 562 (12 596/28 056)

CEDAR Latin 55 2640 (1320/1320)

MCYT Latin 330 16 500 (8250/8250)

GPDS-960 Latin 960 51 849 (23 049/28 800)

BHSig260 Bangla, Hindi 260 14 040 (6240/7800)

3 NSP Dataset Collection

The NSP handwritten signature dataset contains 56 genuine signatures and from
112 to 224 corresponding forgeries for one signer. The genuine signatures were
taken from signers in two-sheets form, each including 28 boxes for signatures
and fields for some information about signer (name, age, dominant hand). Such a
quantity is explained by the fact that, in order to obtain reliable knowledge about
the degree of variational changes in the signature of one person, it is necessary to
consistently receive at least 50 signatures according to the methods of production
of handwriting examinations. In the end of this process, most signers lose focus,
their hand gets tired, then control over the accuracy of movements decreases
and the signature becomes more automatic, so we receive an almost full space
of possible signatures variations. Smaller amounts of signatures may not give
reliable results.

Table 2. Distribution of the NSP signature dataset.

Signers Avg
age

Right-/Left-
handedness

Genuine Forgeries
(skilled/simple)

Male 100 28 76/6 5 600 12 383 (6 212/6 171)

Female 123 29 92/6 6 940 15 561 (7 784/7 777)

Total 224 29 168/12 12 596 28 056 (14 052/14 004)

It should be noted that the signatures of the residents of the Russian Fed-
eration are usually Cyrillic (with rare exceptions), which distinguishes the NSP
dataset from those described earlier in Sect. 2.

44 D. V. Bakhteev and R. Sudarikov

Fig. 1. Left signature (genuine) has a
vertical stroke (marked), while the left
one (unskilled forgery) lacks it.

Fig. 2. Example of signature, crossing
both signature line and vertical lines of
the box.

Forgeries were made in both skilled and unskilled (simple) forms. Skilled forg-
eries were done by group of 12 people, each of them with an experience either
in artistry or forensic examination of handwritten documents. Our hypothesis
was that such skills will allow forger to make an almost exact copy of given
signature, either on the basis of its graphical appearance – in case of artists, or
by understanding forensic features of signature – for forensic experts. Unskilled
(simple) forgeries were done by people with no experience in handwriting exam-
ination and/or signature forgery, so forgers often lost sight of one or another
characteristic of the forged signature (see example on Fig. 1).

Every forger (in both skilled and unskilled situations) was provided by two
sheets of genuine signatures, so they knew name of signer, his age, so they have
an ability to transcript questioned symbols in a signature correctly. Signatures of
left-handed signers were forged only by left-handed forgers; then both left-handed
and right-handed forgers were involved in making forgeries for right-handed sig-
natures. Forgers independently chose which exact signatures they would copy.
This decision was made as a simulation of the situation of a real document
forgery when it is not known exactly which signatures are used as a sample for
forgery.

Forgeries were also done on the forms of 28 boxes, so the resulting set of
signatures for one person contains 2 sheets of genuine signatures and from 4
to 8 sheets with forgeries. Forgeries were prepared without the use of special
technical means, such as use of a plotter, transfer paper, wet copying, source of
background lighting, etc.

After that, the resulting sheets with genuine signatures and forgeries were
scanned at a resolution of 600 DPI; the digital images were divided into sepa-
rate images with one signature per image. Individual images of signatures were
obtained by automatically cutting the image of the sheet along the lines of the
form and then manually trimming each signature to the borders of the rectangle
at the extreme points of the signature. If the signature strokes cross the line
of the box, such signature was left in the dataset. Additionally, in forms with
later samples, we used imitation of the signature line in the bottom four rows
of the form. Accordingly, both horizontal and vertical lines can be found on the
obtained images (see an example in Fig. 2). In any case, offline signature verifi-
cation technologies are practice-oriented, and signatures in practice are usually

NSP Dataset and Offline Signature Verification 45

Fig. 3. Examples of signatures of
type 1, containing several letters.

Fig. 4. Examples of signatures of
type 2, containing some of the first let-
ters of the last name of the signer with
possible initials.

combined with other details of the document, like seals’ imprints and lines of
the form of the document.

Statistical data about the composition of NSP dataset are summarized in
Table 2. Some signers did not provide information about themselves, this explains
the inconsistencies in the Table 2.

The whole process of gathering genuine signatures was accomplished under
the supervision of a project team member. Forgers (both categories) were given
instructions, and the results of their work were carefully checked. All participants
in the experiment were instructed on the rules for working with personal data,
the corresponding confirmation was taken from them.

4 Types of Signatures

According to the design and composition of signatures of residents of the Russian
Federation such signatures can be conditionally differentiated into four types:

1. Signatures based on the performance of several letters (usually from 1 to 3),
which have low readability and low resistance to forgery methods (Fig. 3).

2. Signatures containing some initials and the first few letters of the surname,
most characters are readable. This archetype is dominant in Russia, because
it combines the speed of execution and the overall complexity sufficient to
counter simple forgery methods, expressed in a significant number of private
features displayed in the signature. Usually such signatures are stretched hor-
izontally (Fig. 4).

3. Signatures, which are the spelling of a last name (often together with the
name and patronymic) without complicating or simplifying elements, the
usual handwriting for the performer (Fig. 5). Those signatures are usually
not well defended against forgery due to their slower pace of performance,
while other types of signatures are performed with an increased pace com-
pared to regular writing of the signer.

4. Signatures-drawings of complex design, consisting of conditional elements
that do not form letters and having mainly superscript-subscript elegant,

46 D. V. Bakhteev and R. Sudarikov

Fig. 5. Examples of signatures of
type 3, containing full last name of the
signer.

Fig. 6. Examples of letterless signa-
tures of type 4.

Table 3. Experiment datasets

Signers Genuine (per signer) Forgeries (per Genuine) Total pairs

CEDAR

Train 40 24 24 34 080

Validation 10 24 24 8 520

Test 5 24 24 4 260

NSP

Train 138 56 30 444 360

Validation 40 56 30 128 800

Test 10 56 30 32 200

elaborate strokes of a complex structure. They are complex systems of mul-
tidirectional movements overlapping each other, movements of a complicated
structure, usually with continuous connectivity. Their resistance to forging
methods varies (Fig. 6).

5 Experiments

To demonstrate the relative complexity of the dataset, it was decided to take
one of the best performing models, namely convolutional Siamese neural network
model [1] and show it’s performance on NSP dataset as well as CEDAR [4]
dataset.

For the experiments, we have separated NSP dataset described above into 3
parts: training, validation and test. Distribution was the following - 138 signers
used in the training, 40 – in validation and 10 in test. Signers were assigned
randomly at the beginning of each experiment run, to provide more consistent
and reliable results. For each signer we have used 56 genuine signatures and for
each genuine signature we have picked 30 forgeries at random to have a balanced
number of genuine-genuine and genuine-forged samples.

An experiment was carried out using CEDAR [4] dataset, to serve as a ref-
erence point for the used model. For CEDAR dataset we have used 40 signers

NSP Dataset and Offline Signature Verification 47

for training, 10 for validation and 5 for test. For each signer we have used all 24
available genuine signatures and 24 available forgeries

Final setup for experiments on both NSP and CEDAR datasets is shown
in Table 3. For both experiments, signature samples were resized to 220× 155
pixels to normalize signature sizes and keep the input vector space reasonably
small.

Models setup followed [1] approach with similar layer configuration with
implementation done using Keras framework with Tensorflow as backend. To
show that trained model is comparable with the results in [1], it was evaluated
first on CEDAR [4] dataset and then on NSP dataset.

Both experiments were following the same evaluation steps. The best epoch
was selected based on contrastive loss function [2] value on the validation set.
The output of a model is a distance metric, which doesn’t directly predicts the
class of images, but rather the distance between them. Thus a threshold is needed
to be determined to decide if the input images belong to the same class or not,
i.e. if both signatures are genuine or one is forged. In the experiments the same
validation set was used to estimate the best threshold to map output distance
value to binary classes. This estimated threshold was then used to translate the
output of the model on the test set samples into the binary classes.

Table 4. Experiment results

Dataset FAR FRR Accuracy

CEDAR 8.33 0.00 94.37

NSP (9-runs mean) 17.80 ± 2.22 20.56 ± 2.60 80.87 ± 1.39

5.1 Experiment Results

The results for both NSP and CEDAR datasets are presented in the Table 4, with
the following metrics: False Rejection Rate (FRR), False Acceptance Rate (FAR)
and accuracy. FRR is computed as a ratio of false negative samples divided by
the total number of positive samples. FAR is computed as a ratio of false positive
samples divided by the total number of negative samples. Accuracy is computed
as a ratio between a sum of all true positive and true negative predicted pairs
and a sum of all number of pairs examined.

For CEDAR experiment, FRR is the same as in the results by [1], but FAR
and accuracy differ, which can be attributed to the way loss function threshold
is estimated in current experiment, since validation set is specifically used to
estimate the threshold value for output separation. Table 5 shows resulting con-
fusion matrix with the exact numbers. The results show that the model performs
on a comparable level to the similar works.

48 D. V. Bakhteev and R. Sudarikov

Table 5. CEDAR confusion matrix

True

Genuine Forged

Predicted Genuine 1 380 240

Forged 0 2 640

Table 6. NSP confusion matrix

True

Genuine Forged

Predicted Genuine 12 995 3 496

Forged 2 405 13 304

NSP experiment was run nine times and the mean results with 95% confi-
dence interval were reported in the Table 4. For NSP experiment, the results
are lower than CEDAR ones, which could be attributed to higher complexity
and diversity of the signatures in NSP dataset. Confusion matrix presented in
Table 6 shows the results for one of the experiment runs just to give an idea of
the predictions distribution.

6 Conclusion/Discussion

Siamese neural network model showed promising results as well as left the room
for potential improvements.

In out future work on the models we are planning to evaluate different model
architectures on NSP dataset as well as work more on cross-dataset experiments
where models would be trained on NSP dataset and then tested on GPDS and
MCYT datasets to see how well the model can generalize features which could
be transferred between different script.

The collection of signature samples for the dataset is not completed (and,
hopefully, will not be), several hundred new signatures are included in it weekly,
which allows increasing both the size and variety of data.

Acknowledgements. The reported study was funded by RFBR according to the
research project № 18-29-16001.

References

1. Dey, S., Dutta, A., Toledo, J.I., Ghosh, S.K., Lladós, J., Pal, U.: Signet: convolu-
tional siamese network for writer independent offline signature verification. arXiv
preprint arXiv:1707.02131 (2017)

2. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

3. Hafemann, L.G., Sabourin, R., Oliveira, L.S.: Offline handwritten signature
verification–literature review. In: 2017 Seventh International Conference on Image
Processing Theory, Tools and Applications (IPTA), pp. 1–8. IEEE (2017)

4. Kalera, M.K., Srihari, S., Xu, A.: Offline signature verification and identification
using distance statistics. Int. J. Pattern Recogn. Artif. Intell. 18(07), 1339–1360
(2004)

http://arxiv.org/abs/1707.02131

NSP Dataset and Offline Signature Verification 49

5. Ortega-Garcia, J., et al.: MCYT baseline corpus: a bimodal biometric database. IEE
Proc.-Vision Image Signal Process. 150(6), 395–401 (2003)

6. Pal, S., Alaei, A., Pal, U., Blumenstein, M.: Performance of an off-line signature ver-
ification method based on texture features on a large indic-script signature dataset.
In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 72–77
(2016)

7. Souza, V.L., Oliveira, A.L., Sabourin, R.: A writer-independent approach for offline
signature verification using deep convolutional neural networks features. In: 2018 7th
Brazilian Conference on Intelligent Systems (BRACIS), pp. 212–217. IEEE (2018)

8. Vargas, F., Ferrer, M., Travieso, C., Alonso, J.: Off-line handwritten signature
GPDS-960 corpus. In: Ninth International Conference on Document Analysis and
Recognition (ICDAR 2007), vol. 2, pp. 764–768. IEEE (2007)

Evidence-Based Software Quality
Engineering

Applying Machine Learning in Technical Debt
Management: Future Opportunities

and Challenges

Angeliki-Agathi Tsintzira, Elvira-Maria Arvanitou(B), Apostolos Ampatzoglou,
and Alexander Chatzigeorgiou

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
angeliki.agathi.tsintzira@gmail.com,

{e.arvanitou,a.ampatzoglou}@uom.edu.gr, achat@uom.gr

Abstract. Technical Debt Management (TDM) is a fast-growing field that in the
last years has attracted the attention of both academia and industry. TDM is a com-
plex process, in the sense that it relies on multiple and heterogeneous data sources
(e.g., source code, feature requests, bugs, developers’ activity, etc.), which cannot
be straightforwardly synthesized; leading the community to using mostly qualita-
tive empirical methods. However, empirical studies that involve expert judgement
are inherently biased, compared to automated or semi-automated approaches. To
overcome this limitation, the broader (not TDM) software engineering community
has started to employ machine learning (ML) technologies. Our goal is to investi-
gate the opportunity of applyingML technologies for TDM, through a Systematic
Literature Review (SLR) on the application of ML to software engineering prob-
lems (since ML applications on TDM are limited). Thus, we have performed a
broader scope study, i.e., on machine learning for software engineering, and then
synthesize the results so as to achieve our high-level goal (i.e., possible application
of ML in TDM). Therefore, we have conducted a literature review, by browsing
the research corpus published in five high-quality SE journals, with the goal of
cataloging: (a) the software engineering practices in which ML is used; (b) the
machine learning technologies that are used for solving them; and (c) the inter-
section of the two: developing a problem-solution mapping. The results are useful
to both academics and industry, since the former can identify possible gaps, and
interesting future research directions, whereas the latter can obtain benefits by
adopting ML technologies.

Keywords: Machine learning · Software quality · Literature review · Technical
Debt · Technical Debt Management

1 Introduction

Software quality is a multidisciplinary topic, in the sense that quality is about: (a) how
well software meets users’ needs, (b) how well software conforms to its specifications
from the developers’ point of view, (c) how well inherent, structural characteristics of

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 53–67, 2020.
https://doi.org/10.1007/978-3-030-58793-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_5

54 A.-A. Tsintzira et al.

the software are achieved from the product point of view, and (d) howmuch the end-user
is willing to pay for it from the value point of view [20]. In recent years, the structural
view of software quality is discussed through a metaphor, termed Technical Debt (TD),
which valuates poor software quality and the incurred maintainability problems [21].
Technical Debt Management (TDM) refers to all activities that can be performed for
guaranteeing the efficient handling of TD, e.g., identifying, measuring, prioritizing,
repaying, etc. A significant portion of TDM research is nowadays performed through
qualitative empirical studies. However, inherently qualitative studies are subject to bias,
in the sense that they heavily rely on expert judgement.

To alleviate such subjectivity, in traditional software quality research, researchers
are nowadays exploiting the large amount of data that are available through software
repositories. Such data enable researchers to perform large-scale quantitative studies, and
adopt modern techniques, such as machine learning to effectively carry out a specific
task without relying on explicit instructions or rules. For example, supervised machine
learning techniques have been used to buildmodels that can predict the number of defects
in software systems. Based on the aforementioned applicability of ML technologies,
we believe that there is an opportunity to apply ML in technical debt management.
Nevertheless, to the best of our knowledge in the current TDM state-of-the-art there are
limited studies that propose the use of ML explicitly for TDM (e.g., [6, 26]). Despite
the fact that for some constituents of TD, e.g., code smell detection or change proneness
assessment, some unsupervised or supervised ML approaches have been applied (e.g.,
[10]) these studies do not focus on the financial perspective of TD (e.g., economics of
code smells, refactorings, changes), but only on the technical view of the phenomenon.

The goal of this study is to investigate howML can be applied for TDM, by studying
existing literature. Since, the state-of-the-art lacks a substantial amount of studies, we
conducted a broader secondary study, i.e., on how machine learning approaches have
been used in software engineering (SE) practices, by conducting a systematic literature
review (SLR). Next, we interpret these findings in the context of TDM. We note that the
nature of this study is exploratory, in the sense that it aims at providing a panorama of
the intersection of the two fields (ML and SE), without going into details. For instance,
we do not aim to provide trend analysis, or explore the benefits obtained by the use of
ML (this would require an explanatory research setting). The reasons for this decision
is the fact that ML and SE are quite broad and a single study would not be able to cover
both goals: therefore we believe that an exploratory study is first required so as to setup
the research scene. Thus, the main outcome of this study is the provision of:

c1: The current status of research on combining ML and software engineering. In
particular, we investigate which software engineering practices are approached
through ML technologies.

c2: The opportunities of applying ML in TDM. To achieve this goal, we map software
engineering practices, in which ML has already been applied, to TDM activities
and concepts.

c3: The challenges for the adoption of ML in TDM research.

Section 2 presents related work (i.e., secondary studies on ML and SE) and back-
ground concepts of TDM. Next, Sect. 3 provides the literature review protocol, whereas,

Applying Machine Learning in Technical Debt Management 55

Sect. 4 presents the results of the study. Section 5 discusses the status, opportunities and
challenges of applyingML to TDM research, whereas Sect. 6 displays threats to validity.
Finally, Sect. 7 concludes the paper, and provides the implications to researchers and
software development industry.

2 Related Work and Background Information

Related Work. In the literature we have been able to identify only one secondary study
that summarizes the use of machine learning in software engineering. In particular,
Zhang et al. [28] have surveyed the literature to identify the most commonly used ML
technologies that havebeen applied in software engineering, andprovide someguidelines
on how to perform ML in software engineering. The main differences of this study
compared to ours are: (a) we use amore systematic approach for obtaining and analyzing
studies—i.e., a survey instead of a SLR; and (b) that our study is mapping the obtained
results in the context of TDM. In addition to that, we have identified secondary studies
that focus on specific software engineering practices, and underline the importance of
using ML technologies. More specifically, Sharma and Spinellis [25] and Azeem et al.
[5] performed secondary studies on code smell detection technologies and acknowledged
that many modern approaches employ machine learning algorithms. In a similar context
Heckman et al. [11] performed a SLR on approaches for providing bad design alerts,
through static analysis. Finally, various studies that de-livered overviews of cost/effort
estimation approaches emphasize the popularity of ML technologies for providing more
accurate estimates [13, 24, 27].

Background Information. The TD metaphor relies on two concepts borrowed from
economics: namely principal and interest. TD principal refers to the effort required to
eliminate all inefficiencies that are identified in the current version of the software [2].
Whereas, TD interest refers to the extra maintenance effort required to modify the soft-
ware, due to the presence of debt. For example, when an artifact needs to be maintained
for the introduction of a new feature, additional effort needs to be spent in resolving it,
due to inferior design quality [7]. Another concept related to TDM is interest probability.
In TD literature, instability (i.e., the susceptibility of an artifact to change) is considered
as a proxy of interest probability. In particular, artifacts of high instability are more
probable to accumulate interest, since it manifests only during maintenance activities
[4]. According to Li et al. [22], TDM can be decomposed to eight activities, synthesized
as follows to four categories: (a) Visualizing TD—TD representation, communication
that reflect the way that TD can be presented among stakeholders, and monitoring which
follows the evolution of TD; (b) Quantifying TD—TD identification (i.e., finding which
artifacts suffer from TD) and measurement (i.e., mapping the extent of the problem
to some numerical value); (c) Prioritizing TD—The process of TD prioritization ranks
identified TD items, according to certain predefined rules to support deciding which TD
items should be repaid first and which TD items can be tolerated until later releases;
and (d) Reducing TD—To reduce TD, two activities can be performed, namely TD
prevention and TD repayment.

56 A.-A. Tsintzira et al.

3 Study Design

This section presents the design of the systematic literature review. A protocol is a pre-
determined plan that describes research questions and how the study will be conducted.
In the next sub-sections, we present the decisions taken in each study design phase [19].

Research Objectives and Research Questions. The goal of this study can be
described as follows: “Analyze existing software engineering literature for the purpose
of understanding the application of machine learning technologies for solving software
engineering practices, with respect to: (a) the targeted software engineering practices;
(b) the proposed machine learning solutions; and (c) the mapping between them”. To
systematically explore the aforementioned goal, our study is built around three RQs:

RQ1: Which SE problems are solved with machine learning technologies?

RQ1.1: Which SE practices are targeted by ML approaches?
RQ1.2: Which quality attributes are benefited by the ML technologies?

RQ2: Which machine learning technologies have been used for approaching software
engineering problems?

RQ2.1: Which are the most common learning styles (i.e., unsupervised, supervised,
or semi-supervised) used in SE?
RQ2.2: Which are the most common ML algorithms used in SE?

RQ3: What is the mapping between SE problems and ML solutions?

Software engineering is a mature science field, which, however, strives for new solu-
tions to its well-known problems.With the rise of artificial intelligence and the increment
of the volume of data produced during software development, many researchers have
tried to investigate how artificial intelligence (specifically machine learning) can aid
in improving analysis and predictions problems. On the one hand, RQ1 tries to cata-
logue the software engineering practices that are approached through machine learning,
placing special emphasis on the practices that are attempted to be improved and the tar-
geted quality attributes (QA) of interest. On the other hand, RQ2 investigates machine
learning technologies that aim at satisfactorily solving software engineering problems,
compared to more traditional approaches. Special emphasis is placed on machine learn-
ing algorithms, learning styles, challenges, and success indicators. Finally, RQ3 attempts
to synthesize the findings of the previous research questions with the goal of mapping
solutions to practices in which machine learning is used.

Search Process. The search procedure aims at the identification of candidate primary
studies. The search plan involved automated search into five top-quality publication
venues. Narrowing the search space of the primary studies to specific top-quality venues
is acknowledged as a well-known practice [19] for broad studies, in the sense that it
guarantees the quality and relevance of primary studies [1]. Venue selection was based

Applying Machine Learning in Technical Debt Management 57

on the process applied byKaranatsiou et al. [15], in thewell-known series of bibliometric
studies for top-scholars and institutes in software engineering, being published for more
than two decades by JSS. The venue selection process is based on four criteria: (a) venues
classified as “Computer Software” by the Australian Research Council; (b) evaluation
higher than or equal to level “B” in the same schema; (c) on averagemore than 1 citation
per month per published article; and (d) general-scope journals, not restricted to phases
or activities. Next, based on the above, we retained the top-5 journals (excluding mag-
azines). In particular, we searched the articles identified in Information and Software
Technology, IEEE Transactions on Software Engineering, ACM Transactions on Soft-
ware Engineering and Methodology, Journal of Systems and Software, and Empirical
Software Engineering. In particular, in Fig. 1 we present an overview of the process
along with the number of studies at each step. Finally, we retrieved 90 primary studies.
The oldest publication is from 1995 and the newsiest from 2019: 82% of the publications
are from 2010 and on.

Fig. 1. Overview of search process

Since all publication venues are strictly on the software engineering field, the search
string needed to be focused only on ML technologies. As keywords for the search string
we have chosen to use simple and generic terms, which may yield as many meaningful
results as possible without any bias or preference to a certainmachine learningmethod or
technique. Thus, apart from the term “machine learning” per se, we used the most com-
mon learning styles, i.e., “supervised”, “unsupervised”, and “semi-supervised” learn-
ing [3]. The search string has been applied to the abstract and title of the manuscripts
of all selected venues, without any time constraints. The search has been conducted
automatically through the DLs of each venue. The final search string was:

58 A.-A. Tsintzira et al.

“machine learning” OR “supervised learning” OR “unsupervised learning” OR
“semi-supervised learning”

Articles Filtering Phase. The papers that were selected as candidate primary studies in
the review should be relevant to applications ofmachine learning in software engineering.
In line with Dybå and Dingsøyr [8], an important element of the systematic mapping
planning is to define the Inclusion Criteria (IC) and Exclusion Criteria (EC). A primary
study is included if it satisfies one or more ICs, and it is excluded if it satisfies one or
more ECs. The inclusion criteria of our systematic mapping are: IC1: The study applies
one or more ML technologies to a SE practice; and IC2: The study defines one or more
ways to evaluate quality with ML. The exclusion criteria of our systematic mapping are:
EC1: Study is an editorial, keynote, opinion, tutorial, workshop summary report, poster,
or panel; EC2: Study’s full text is not available; and EC3: Study mentions ML only in
introduction or related work section.

The identified articles went through these inclusion/exclusion criteria, by taking
into account the full text of the articles. Article inclusion and exclusion was performed
independently from the first and second author, and conflicts have been resolved through
discussion among the first three authors. During this process 24 conflicts have been
identified and resolved either through an unanimous inclusion or exclusion of the article
under consideration.

Quality Assessment. We omitted the step of quality assessment for two reasons: (a)
since all papers have been obtained from top-quality venues in software engineering,
their quality is (to some extent) ensured by the rigorous review process of the selected
venues; and (b)we have set no research questions on the quality of research in the domain
under study.

Data Collection. During the data collection phase, we collected data on a set of vari-
ables that describe each primary study. Similarly to article inclusion/exclusion, the data
collection process, has also been handled independently by the first author and the sec-
ond author. If both reviewers assigned the same value to one variable, this value would
be assigned to the variable without further discussion. Conflicts have been resolved at
two levels, first the two authors discussed internally, if no consensus was reached, then
the discussion was extended to the third author. First level conflicts have been found in
18 studies, whereas second level conflicts were resolved in 6 studies. For every study,
we have extracted the following data: [V1] Year; [V2] Title; [V3] Publication Venue;
[V4] SE practice (e.g., cost estimation, refactoring); [V5] Targeted QA (business [17]
or product qualities [14]); [V6] Learning Styles (i.e., un-, semi-, or supervised); [V7]
ML Algorithm; [V8] Challenges (challenges of applying ML to SE data); and [V9]
Evaluation Metrics (for ML).

Data Analysis. From the aforementioned variables [V1], [V2] and [V3] have been used
for documentation purposes only. The analysis strategy for the research questions is as
follows: to answer RQ1 and RQ2, we provide frequencies on variables [V4]–[V5] and

Applying Machine Learning in Technical Debt Management 59

[V6]-[V9], respectively. To answer RQ3, we perform crosstabulation of the same vari-
ables. We note that due to a lack of quantitative data, no hypothesis testing or statistical
analysis has been conducted.

4 Results

In this section we present the results of data analysis, organized by RQ. We note that the
synthesized view of the results (i.e., the transfer of the obtained results in TDM context)
is provided in Sect. 5.

Table 1. Software engineering problems approached with ML

SE practice # SE problems

Defect management 21 Fault proneness prediction and prioritization, Defect
prediction, Fault localization

Cost/Effort estimation 17 Development cost/effort estimation, Software maintenance
effort prediction, Maintenance type classification

Design-time QAs 14 Change proneness prediction, User interface design,
Software product and process quality assessment, Code
smells, Patterns and tactics detection, API instability
detection, Refactoring of test suites, Refactoring
recommendations

Project management 12 Bug report and change requests assignment
recommendations and prioritization, classification of
software bugs, Commit log recommendations, Code review
prioritization, Configuration management recommendation,
Development activity detection, Software upgrades
recommendation

Security 11 Malware, Malicious Code and Intrusion
Classification/Detection, Fault Injection Detection, Software
Vulnerabilities Detection

Requirements engineering 9 Functional requirements recommendations, Non-functional
requirements detection, Requirements prioritization,
Requirements assessment, Software SPL configurations
detection, Application domain classification

Run-time QAs 3 Performance Prediction, Energy Efficiency
Recommendations

Reuse 2 API usage recommendation, Code examples prioritization
for reuse

Program comprehension 2 Trace recovery, Reverse engineering

60 A.-A. Tsintzira et al.

Software Engineering Applications. In Table 1 we present the frequency of software
engineering practices that are approached withML. Through the analysis, we have iden-
tified 9 high-level (HL) software engineering practices. For each HL practice, we present
their frequency, and SE problems which are solved through ML. By acknowledging the
inherent relationship of TDM to maintainability, in Table 2, we provide an overview of
the QAs that are targeted in each application of ML. From the obtained results we can
observe that: (a) maintainability and its sub-characteristics (namely: testability, reusabil-
ity, modifiability and analyzability) are a common target for ML technologies—i.e., ML
technologies are relevant to TDM; and (b) business quality attributes are also targeted
by ML—rendering them relevant to TDM, in the sense that optimizing business QAs is
a main root for the accumulation of TD [18].

Table 2. Targeted quality attributes

HL QA Freq. Low Level QA

Maintainability 29 Testability, Reusability, Modifiability, Analyzability

Functional suitability 24 Functional correctness

Security 12 –

Business goals 10 Improve market position, Reduce cost of development

Performance efficiency 5 Resource utilization

Usability 1 –

Reliability 1 –

Machine Learning Technologies. To solve the aforementioned problems a variety of
ML algorithms and learning styles have been used. The dominant learning style is super-
vised learning algorithms (89%), followed by unsupervised (6%) and semi-supervised
learning (5%). In Table 3 we present the most frequently used algorithms (i.e., used in
more than 10 studies). Apart from the algorithm name and the frequency of its appear-
ance, we also provide the generic category in which it can be classified. We note in cases
when the authors have not specified a concrete algorithm (e.g., neural networks) the term
Generic has been used as the ML algorithm. To evaluate an ML solution there are many
performance measures. Performance measures are typically specialized to the class of
the problem: e.g., classification, regression, clustering etc. For problems with discrete
output such as classification/clustering, researchers use metrics that compare the actual
with the predicted values such as precision, recall, etc. For problems with continuous
output, such as regression they prefer metrics that capture error rate of predictions—e.g.,
MMRE, pred(0.25), etc.

Mapping of SE practices to ML Approaches. As a next step, having presented the
results originating from each discipline independently; we present a classification
schema, in which we map the most common HL software engineering practices to
the ML algorithms that have been used for solving them (see Fig. 2). To investigate if a

Applying Machine Learning in Technical Debt Management 61

Table 3. Machine learning algorithms

ML algorithm Freq. Generic category

Bayesian networks 35 Probabilistic analysis

ID3, C4.5, CART 33 Decision trees

SVM 31 Kernel methods

Neural networks 18 Biologically-inspired computation

Random forest 15 Ensemble learner

Ripper 14 Rule system

Regression 13 Statistical analysis

K-Means 13 Clustering

KNN 12 Nearest neighbor

relation between specific ML algorithms and software engineering practices exists, we
have performed a chi-square test. The results suggested that the two variables are associ-
ated (alpha< 0.01). Therefore, according to the findings of the SLR, specific algorithms
appear to be more appropriate for specific practices and vice-versa.

Fig. 2. Mapping of ML to software engineering practices

62 A.-A. Tsintzira et al.

5 TDM Through Machine Learning

In this sectionwe discuss themain findings of thiswork, i.e., the current status of research
on using ML for SE problems, the identified opportunities for the TD community, and
the challenges that might exist when applying ML in TDM research.

Current Status. We have observed that machine learning technologies have been
applied to resolve multiple and quite diverse research problems; however, some of them
appear to be prevalent. In particular, we observed that defect management, cost/effort
estimation, management of design-time quality attributes, recommendations for efficient
project management, and detection of security threats are the most common SE prac-
tices that have been investigated. We note that as management we refer to cases that we
predict (future state), assess, classify, or detect a phenomenon of interest. In terms of
quality attributes, the most relevant ones appeared to be the improvement of maintain-
ability and functional suitability (i.e., correctness), followed by security and business
quality attributes. In terms of ML algorithms, we suggest that Bayesian Networks, var-
ious Decision Trees, and SVM are the most frequently used ones. Finally, we identified
that Neural Network Analysis appears to be fitting for Cost/Effort Estimation practices,
Bayesian Networks for Defect and Project Management practices, and Random Forrest
algorithms appear to be appropriate forManaging Design-Time QAs. On the other hand,
Clustering and Decision Trees appear to be equally fitting for various SE practices.

TDM Opportunities. Based on the above results, it is evident that many of the studied
practices and QAs of interest are related to TDM, and therefore can drive to interesting
future research implications.On the one hand, regarding the results of Table 1 on themost
frequently studied SE practices, we can observe that the vast majority can be mapped
to TDM activities, as presented by Li et al. [22]. The only exceptions are Security and
Management of Run-time quality attributes, whose inefficiencies, by definition are not
categorized as TD. In particular, the following practices can be mapped to TD activities.
For each TDM activity, we present the SE practices to which they map, and next how
the SE practice can be used in the context of TDM research and practice.

• TD Identification deals with recognizing the software artifacts that suffer from TD
and the particular problems that they contain. Therefore, studies that focus on Code
Smells, Patterns and Tactics Detection (e.g., [9]) throughML approaches for Improv-
ing Design-Time Quality Attributes are considered as fitting for elaborate TD Identifi-
cation. Based on the above, researchers should try to improve the detection accuracy
of such approaches, whereas practitioners can use accompanying tools to identify
design hot-spots, i.e., parts of the system that yield quality improvements.

• TD Quantification: Monetization is a key concept in the TD metaphor: to perform
TDM, both principal and interest need to be quantified in some currency form. To this
end, Cost/Effort Estimationmethods (e.g., [10, 23]) are highly relevant. However, in
these studies, the authors donot discuss thefindings in the context ofTDquantification.
On the one hand, researchers are encouraged to introduce cost or effort estimation
approaches (e.g., based on past data) to predict the cost of applying refactoring (i.e.,
related to TD principal quantification) or to predict the cost of future maintenance

Applying Machine Learning in Technical Debt Management 63

effort (i.e., related to TD interest quantification). On the other hand, practitioners can
use existing (or novel) such approaches, for getting monetary estimations of their TD,
to improve the communication of poor software quality cost to higher non-technical
management.

• TD Prioritization: In the literature, three ways of TD prioritization have been pro-
posed, i.e., based on principal, interest, and interest probability. In that sense, studies
that focus on Change- [16] and Fault-proneness [29] assessment are relevant to TD
prioritization, since these concepts are closely related to interest probability: changes
and faults lead to maintenance activities that can accumulate interest. Based on this,
researchers can introduce algorithms that predict which software modules are more
prone to changes and faults; providing practitioners with tool support for identifying
modules that need special attention in their TDM. Finally, regarding cases in which
a monetization of TD interest is not of primary importance for prioritization, ranking
in terms of maintainability (i.e., a proxy of interest) is a satisfactory compromise of
accuracy and ease of use. Therefore, any method that is used for assessing or charac-
terizing the levels of QAs (e.g., maintainability [12]) can be useful for prioritization
based on interest.

• TD Repayment/Prevention: Regarding TD repayment, currently there are various
approaches that propose the identification of refactoring opportunities, or the order-
ing with which such refactorings shall be performed. Additionally, the adoption of
reuse strategies, as well as the creation of traces along artifacts are expected to be
beneficial for preventing the accumulation of new TD principal. Based on the above,
on the one hand, researchers are expected to propose ML-based refactoring iden-
tification strategies by optimizing TD principal and interest minimization; allowing
practitioners to performmore informed TD repayment. On the other hand, researchers
are encouraged to first explore the relation between specific practices (e.g., traceabil-
ity and reuse) to TD prevention, and if the relation is positive to provide mechanisms
to practitioners for applying them into their system.

On the other hand, by considering the targeted quality attributes (see Table 2), we
can also identify some connection to TDM. First, since the most frequently targeted
quality attribute is maintainability, we can easily assume that all technologies used to
improve maintainability are relevant to TD (see Sect. 2). Additionally, in many studies
ML approaches are used to apply practices that aid in terms of the improvement of the
market position of the product, or to reduce the development costs (e.g., by shrinking
product time-to-market). In general, the satisfaction of business goals is roots of accu-
mulating TD principal, e.g., bring the product to the market faster. Additionally, the
improvement of the market position of a product can be considered as a by-product of
TDM, especially in cases when combined through TD prioritization.

Challenges in Applying ML to TDM. As part of the analysis, we have identified spe-
cific challenges in applying ML to TDM practices. Among the most important ones we
acknowledge the following. First, there is a need of a substantial pre-processing in the
used datasets, so as to eliminate cases of imbalanced datasets, handling of duplicate val-
ues, multicollinearity of predictor variables, etc. Additionally, specifically in TDM it is

64 A.-A. Tsintzira et al.

expected to face many difficulties in creating a solid dataset, since the methods for quan-
tifying TD are highly diverse and no state-of-practice techniques exist. Furthermore, for
supervised learning algorithms labelling of training data (e.g. software modules) can be
challenging as no universal approach for measuring TD exists. In contrast to other fields
(e.g., cost estimation) there is a lack of benchmarks that can be used for training and
testing of algorithms (e.g., COCOMO or ISBSG). Furthermore, a common challenge
in applying ML in software engineering is the curse of dimensionality, in which the
researcher shall limit the variables that shall be fed into the model. This challenge is
also highly relevant to TDM, in the sense that TD is a multi-dimensional concept, whose
assessment requires the consideration of multiple aspects (e.g., code smell, improper
architectural decisions, etc.) but also people’s habits and employed processes. There-
fore, since the application of ML approaches requires a small subset of input variables
to obtain a time-efficient, accurate, and noiseless model, it is of paramount importance
to effectively perform data reduction.

6 Threats to Validity

In this section, we present the threats to validity that have been identified andmitigated as
part of the study design. The threats are organized based on the guidelines for identifying,
mitigating, and reporting threats to validity for secondary studies in software engineering
proposed by Ampatzoglou et al. [1].

Study Selection Validity. To guarantee that all studies relevant to the topic have been
identified, we systematically developed a search string, based on the types of existing
machine learning approaches. However, it is possible that we have missed studies that
mention in the title specific ML methods, such as deep learning, neutral networks, etc.
To guarantee the relevance to software engineering, we have selected five journals that
publish only SE articles. The full-texts of all articles were available through the used
Digital Library, and were all written in English. Since our goal was to target high quality
research only, we have excluded grey literature. To adequately filter articles, we have
predefined a list of inclusion/exclusion criteria, which were discussed among others and
piloted, with random screening, and authors voting.

Data Validity. Although we have limited our search to five publication venues, we have
retrieved 90 papers for inclusion in the study and data collection, which constitutes our
sample size as large enough for analysis. The selection of variables has been based on
the set of research questions, and therefore is adequate for answering them. Although
our results come from only five venues, we believe that there is no publication bias,
since the articles in the top journals come from various communities. The quality of the
primary studies is guaranteed by the quality of selected venues. To avoid data extraction
bias, more than one author has been involved in the process: one has double-checked the
results of the other, and agreement rates have been captured. In case of disagreement,
open discussions have been performed.

Applying Machine Learning in Technical Debt Management 65

Research Validity. To increase the reliability and replicability of the study, we involved
more than one researcher to all steps of the process, and all data have beenmade available.
Finally, we ensured that the correct research method has been used, i.e., an SLR since
a synthesis was required to achieve the high-level goal. However, we acknowledge that
the lack of direct related work has not allowed comparison of results; however, the
experience of the authors on TDM research allowed interpretation of results, increasing
generalisability.

7 Discussion/Conclusions

This study investigates how machine learning (ML) technologies can be applied in
TechnicalDebtManagement (TDM): to the best of our knowledge, there is no Systematic
Literature Review study that focuses on how ML is applied to TDM. To achieve this
goal, we have performed a broad literature review, i.e., on how ML technologies have
been applied to solve SE practices in general. The results of the analysis suggest that:
(a) the most common SE practices that have been approached through ML technologies
are defect management and cost/effort estimation; (b) the target of these technologies is
to improve both product (e.g., maintainability) and business (e.g., reduce development
time) qualities; and (c) that some ML technologies better map to specific SE practices;
however, others are so widespread that can be applicable to various cases.

The results of the study can provide multiple implications to researchers and soft-
ware development industries. Regarding software development industries, the relevance
of ML in resolving software engineering practices can highlight the potential benefits
of hiring personnel (e.g., data scientists) that are dedicated in data analysis and inter-
pretation. The outputs of the provided analysis can be proved useful in many aspects
of the development, as presented in Table 2. Additionally, software practitioners are
encouraged to incorporate into their daily processes tools (or research prototypes) that
are based on ML, and make use of the provided recommendations, or assessments (e.g.,
predictions, detections, etc.). On the other hand, we suggest TDM researchers to start
exploring the possibility of applying machine learning technologies in their research
endeavours. More specifically, we prompt them to migrate solutions from traditional
SE practices (e.g., cost estimation, smell detection, etc.) to the context of technical debt
management, since they are considered as very relevant. Additionally, the existence of
various and non-trivial challenges in the adoption of ML in TDM research, strength-
ens the aforementioned argumentation, in the sense that high-quality research outcomes
shall be produced to resolve them.

Acknowledgements. Work reported in this paper has received funding from theEuropeanUnion’s
Horizon 2020 research and innovation programme under grant agreement No 871177 (project:
SmartCLIDE).

References

1. Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A.: Identifying, cat-
egorizing and mitigating threats to validity in software engineering secondary studies. Inf.
Softw. Technol. 106(2), 201–230 (2019)

66 A.-A. Tsintzira et al.

2. Ampatzoglou, Ar., Ampatzoglou, Ap., Chatzigeorgiou, A., Avgeriou, P.: The financial aspect
of managing technical debt: a systematic literature review. Inf. Soft. Technol. 64(8), 52–73
(2015)

3. Aroussi, S., Mellouk, A.: Survey on machine learning-based QoE-QoS correlation mod-
els. In: International Conference on Computing, Management and Telecommunications
(ComManTel’), Da Nang, Vietnam, 27–29 April 2014

4. Arvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: Introducing a rip-
ple effect measure: a theoretical and empirical validation. In: International Symposium on
Empirical Software Engineering andMeasurement (ESEM2015). IEEE,China,October 2015

5. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for code smell
detection: a systematic literature review and meta-analysis. Inf. Softw. Technol. 108(4), 115–
138 (2019)

6. Codabux, Z., Williams, B.J.: Technical debt prioritization using predictive analytics. In: 38th
International Conference on Software Engineering Companion (ICSE 2016). ACM (2016)

7. Chatzigeorgiou, A., Ampatzoglou, Ap., Ampatzoglou, Ar., Amanatidis, T.: Estimating the
breaking point for technical debt. In: 7th International Workshop on Managing Technical
Debt (MTD 2015), 2 October 2015, pp. 53–56. IEEE, Germany (2015)

8. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9–10), 833–859 (2008)

9. Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and experimenting
machine learning techniques for code smell detection. Empir. Softw. Eng. 21(3), 1143–1191
(2015). https://doi.org/10.1007/s10664-015-9378-4

10. Hamill,M., Goseva-Popstojanova, K.: Analyzing and predicting effort associatedwith finding
and fixing software faults. Inf. Softw. Technol. 87(7), 1–18 (2017)

11. Heckman, S., Williams, L.: A systematic literature review of actionable alert identification
techniques for automated static code analysis. Inf. Softw. Technol. 53(4), 363–387 (2011)

12. Herbold, S., Grabowski, J., Waack, S.: Calculation and optimisation of thresholds for sets
of software metrics. Empir. Softw. Eng. 16(6), 812–841 (2011). https://doi.org/10.1007/s10
664-011-9162-z

13. Idri, A., Hosni, M., Abran, A.: Systematic literature review of ensemble effort estimation. J.
Syst. Softw. 118(8), 151–175 (2016)

14. ISO/IEC 25010:2011, Systems and software engineering—Systems and software Quality
Requirements and Evaluation (SQuaRE)—System and software quality models, Geneva,
Switzerland (2011)

15. Karanatsiou, D., Li, Y., Arvanitou, E.M.,Misirlis, N.,Wong,W.E.: A bibliometric assessment
of software engineering scholars and institutions (2010–2017). J. Syst. Softw.147(1), 246–261
(2019)

16. Kaur, L., Mishra, A.: Cognitive complexity as a quantifier of version to version Java-based
source code change: an empirical probe. Inf. Softw. Technol. 102 (2019)

17. Kazman, R., Bass, L.: Categorizing Business Goals for Software Architectures. CMU/SEI-
2005-TR-021 (2005)

18. Kazman, R., et al.: A case study in locating the architectural roots of technical debt. In: 37th
International Conference on Software Engineering, 16–24 May 2015. IEEE, Florence (2015)

19. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic
literature reviews in software engineering – a systematic literature review. Inf. Softw. Technol.
51(1), 7–15 (2009)

20. Kitchenham, B., Pfleeger, S.L.: Software quality: the elusive target. IEEE Softw. 13(1), 12–21
(1996)

21. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29(6), 18–21 (2006)

https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-011-9162-z

Applying Machine Learning in Technical Debt Management 67

22. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101(3), 193–220 (2015)

23. Mair, C., et al.: An investigation of machine learning based prediction systems. J. Syst. Softw.
53(1), 23–29 (2000)

24. Myrtveit, I., Stensrud, E., Shepperd, M.: Reliability and validity in comparative studies of
software prediction models. IEEE Trans. Softw. Eng. 31(5), 380–391 (2005)

25. Sharma, T., Spinellis, D.: A survey on software smells. J. Syst. Softw. 138(4), 158–173 (2018)
26. Skourletopoulos, G., Mavromoustakis, C., Bahsoon, R., Masotrakis, G., Pallis, E.: Predict-

ing and quantifying the technical debt in cloud software engineering. In: 19th International
Workshop on Computer-AidedModeling and Design of Communication Links and Networks
(CAMAD). IEEE Computer Society (2014)

27. Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine learning
based software development effort estimation models. Inf. Softw. Technol. 54(1), 41–59
(2012)

28. Zhang,D., Tsai, J.J.P.:Machine learning and software engineering. In: 14th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2002), 4–6 November 2002 (2002)

29. Zhou, Y., Leung, H.: Empirical analysis of object-oriented design metrics for predicting high
and low severity faults. Trans. Softw. Eng. 32(10), 771–789 (2006)

On the Temporality of Introducing Code
Technical Debt

Georgios Digkas1,2(B) , Apostolos Ampatzoglou2 ,
Alexander Chatzigeorgiou2 , and Paris Avgeriou1

1 Institute of Mathematics and Computer Science, University of Groningen,
Groningen, Netherlands

g.digkas@rug.nl, paris@cs.rug.nl
2 Department of Applied Informatics, University of Macedonia,

Thessaloniki, Greece
{a.ampatzoglou,achat}@uom.edu.gr

Abstract. Code Technical Debt (TD) is intentionally or unintentionally
created when developers introduce inefficiencies in the codebase. This can
be attributed to various reasons such as heavy work-load, tight delivery
schedule, unawareness of good practices, etc. To shed light into the con-
text that leads to technical debt accumulation, in this paper we inves-
tigate: (a) the temporality of code technical debt introduction in new
methods, i.e., whether the introduction of technical debt is stable across
the lifespan of the project, or if its evolution presents spikes; and (b)
the relation of technical debt introduction and the development team’s
workload in a given period. To answer these questions, we perform a case
study on twenty-seven Apache projects, and inspect the number of Tech-
nical Debt Items introduced in 6-month sliding temporal windows. The
results of the study suggest that: (a) overall, the number of Technical
Debt Items introduced through new code is a stable metric, although it
presents some spikes; and (b) the number of commits performed is not
strongly correlated to the number of introduced Technical Debt Items.

Keywords: Technical debt temporality · Case study · New code
debt · Metrics fluctuation

1 Introduction

Technical debt (TD) at the code level refers to inefficiencies introduced in the
source code of an application during the implementation or the maintenance
phase [1]. These inefficiencies manifest themselves as violations of coding stan-
dards, complex and hard to understand code, code duplicates, etc. [2]. According
to Alves et al. [3] code TD is the most studied type of technical debt, and based
on Ampatzoglou et al. [4] it is one of the most important in industry.

There has been significant work on how code TD evolves and how it accu-
mulates over time. However, existing studies have looked at TD evolution as a
whole, without distinguishing between technical debt that is added as new code,
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 68–82, 2020.
https://doi.org/10.1007/978-3-030-58793-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_6&domain=pdf
http://orcid.org/0000-0003-0590-5477
http://orcid.org/0000-0002-5764-7302
http://orcid.org/0000-0002-5381-8418
http://orcid.org/0000-0002-7101-0754
https://doi.org/10.1007/978-3-030-58793-2_6

On the Temporality of Introducing Code Technical Debt 69

and technical debt that is added or modified in existing code. In this paper, we
focus only on the introduction of new code TD, i.e. TD inserted in the system in
the form of new Technical Debt Items (TDIs). More specifically we study new
methods (our scope is object-oriented systems) that contain TD and we look at
the introduction of this type of new TD as a temporal phenomenon.

Focusing on TD that is introduced by new code, as opposed to TD that is
introduced by modifying existing code, can provide a unique insight. Specifically,
the new TDIs introduced by new methods at each commit (either new methods
in existing classes or new methods in entirely new classes) reflect more accurately
the type of problems and the timepoint at which they are introduced. In other
words, new methods are more representative of the developers’ practices and
knowledge level, compared to method modifications whose type and timeliness
is often dictated by the need to fix a bug or to extend an already existing
functionality. Thus, we study the temporality of TD through a clearer source.

In particular, we explore: (1) if the number of introduced TDIs is uniformly
spread across evolution, or whether there are time windows in which more TDIs
are inserted; and (2) if the number of TDIs that is introduced along evolution is
related to the activity (intensity of commits) of developers in different time win-
dows. Projects could exhibit either a stability in the introduction of code TDIs
across evolution or experience fluctuations with isolated or repeating spikes of
introduced code TDIs. In the former case one could assume that accumulation
of TD is most probably due to factors that are constantly present in the entire
lifetime of the project, such as employees’ skills, used methodologies, tools, man-
agement practices, etc. In the latter case, one could postulate that the insertion
of new code TDIs is a highly temporal phenomenon depending on volatile factors
such as feature requests, changing schedules, pressure to fix bugs, etc.

To achieve this goal, we explore the evolution of twenty-seven projects by
the Apache Software Foundation (ASF), and we track the number of new TDIs
inserted in each commit. Next, we create a 6-month sliding window, and we
calculate the cumulative number of inserted TDIs for each window, as well as
the number of commits in the same time period. To answer the first question, we
use a metric property (termed SMF—see Sect. 3.2) that is able to assess metrics
fluctuation along time and characterize them as either stable or sensitive. To
answer the second question we correlate the number of commits for each window
to the number of inserted TDIs. The reporting and interpretation of the results
is performed at the project level.

The rest of the paper is organized as follows: in Sect. 2 we present related work
and in Sect. 3 background information important for understanding the study.
In Sect. 4, we present the design of the case study, while Sect. 5 elaborates on the
results. Section 6 interprets the results and provides implications for researchers
and practitioners. Finally, in Sect. 7 we present threats to validity and in Sect. 8,
we conclude the paper.

70 G. Digkas et al.

2 Related Work

Many studies have explored the evolution of code quality, and the reasons for
its degradation. Since this paper focuses on the introduction of TD over time,
we organize this sub-section into causes of TD introduction and TD evolution.

Causes of Technical Debt Introduction: Tufano et al. [5] studied the evolution of
code smells with the goal of understanding when and why code smells are intro-
duced and observed the life cycle of five code smells. The results indicate that:
(a) in the majority of the cases code smells are introduced with the creation
of the corresponding classes or files; (b) while projects evolve, “smelly” code
artifacts tend to become more problematic; (c) new code smells are introduced
when software engineers implement new features or when they extend the func-
tionality of the existing ones; (d) the developers who introduce new code smells,
are the ones who work under pressure and not necessarily the newcomers; and
(e) the majority of the smells are not removed during the project’s evolution and
few of them are removed as a direct consequence of refactoring operations.

According to Kazman et al. [6] who conducted a case study on the roots
of architecture debt, Architectural Technical Debt (ATD) is extremely common
and probably the most important type of TD because it consumes the largest
percentage of maintenance effort. Their findings suggest that architectural debt
is extremely easy to introduce: programmers typically want to introduce new
features or fix bugs; however, by changing the code they often undermine the
architectural structure leading to the accumulation of ATD.

Martini et al. [7] conducted a case study on five software companies to under-
stand the causes that introduce ATD. Large software companies try to deliver as
fast as possible in order to satisfy their customers’ needs, usually taking short-
cuts, thereby introducing ATD. If the debt is not paid-off, it starts to accumulate
and this makes feature development more difficult.

Evolution of Technical Debt: Although TD is a multifaceted concept, one of the
key constituents of code TD is the presence of code smells. One of the first studies
that investigate the evolution of code smells was conducted by Olbrich et al. [8].
They investigated the evolution of two code smells, God Class and Shotgun
Surgery, on two OSS projects. The results show that along software development,
there are phases where the number of code smells can either increase or decrease
and those phases are not affected by the size of the systems. Chatzigeorgiou and
Manakos [9] have investigated the evolution of the Long Method, Feature Envy,
State Checking, and God Class smells in two open-source software projects. The
results suggested that as projects evolve the number of smells tends to increase.
Another interesting finding is that a significant percentage of smells was not due
to software ageing, since some smells were present right from the first version of
the code in which they reside. Peters and Zaidman [10] studied the lifespan of the
God Class, Feature Envy, Data Class, Message Chain Class, and Long Parameter
List smells. The analysis of eight open-source software projects, confirmed that
the number of smells increases, as projects evolve.

On the Temporality of Introducing Code Technical Debt 71

Digkas et al. [11] tracked the evolution of TD in sixty-six open-source Java
projects by the ASF, over a period of 5 years. In order to detect issues that incur
TD, they relied on SonarQube. The results show that on the one hand, there
is a significant increasing trend on the size, complexity, number of TDIs, and
the total TD over time, which seems to confirm the software aging phenomenon.
But on the other hand, when TD is normalized over the non-commented lines of
code, an evident decreasing trend over time is present for many of the projects.
This could possibly be attributed to: (a) developers that perform refactoring
activities and fix some of the open TDIs; or (b) developers that introduce better
quality code in each commit (compared to the project’s existing code base).

Despite the fact that code TD introduction has been widely explored, we lack
evidence on: (a) the way in which TD is introduced, i.e. whether there is stable
increase, or large fluctuations exist, and (b) if such fluctuations coincide with
large-scale changes in the codebase.

3 Background Information

In this section we present information that is necessary for understanding the
paper.

3.1 Identifying New TD Items Along Evolution

To analyze software systems and measure TD throughout their evolution, we
have used SonarQube 7.9.2 LTS. SQ relies on a set of rules which are checked
by static source code analysis; every time a piece of code breaks one of those
coding or design rules, a Technical Debt Issue is raised. SQ estimates the effort
(in minutes) required to eliminate the identified TDIs. This effort is obtained by
assigning a time estimate for fixing each type of problem and by multiplying the
number of all TDIs of that type with that estimate.

Considering that software systems evolve through a number of revisions and
that in each revision several types of changes may occur simultaneously, we
look at the three major types of code changes: the introduction of new code,
the deletion and the modification of existing code. In this paper we work at
the method level, that is, we aggregate all TDIs reported by SQ for individual
lines to the method in which they belong. The reason for this decision is that
monitoring changes at the instruction level would be more complex and less
accurate considering that several types of changes can simultaneously occur in
some statements (e.g., modification and introduction of new code). Furthermore,
tracking changes at the instruction level is challenging, as one would have to map
each instruction (in a particular revision) to the corresponding instruction in the
previous revision. This process is complicated by the insertion of new statements,
comments, blank lines, etc. Therefore, to be certain about the classification of
changes, we monitor changes at the method level.

At each revision a class can be added, deleted, modified, renamed or remain
unchanged. The same applies for the methods. As explained above, we only

72 G. Digkas et al.

focus on the introduced TDIs in the newly inserted methods. A new method
can be added either in an existing class or upon the creation of a new class.
To distinguish the newly inserted methods for each commit from the deleted,
modified, renamed, and unchanged ones, we rely on the Gumtree Spoon AST
Diff tool [12]. For each revision, first, we detect all changes that occurred in
the corresponding commit at the file-level, i.e. we identify the added, modified,
renamed, and deleted files. Then, we exclude the deleted files which do not
exist anymore in the examined commit. For the added files/classes, we consider
all methods as new code; in other words we consider them as newly inserted
methods in new classes. For the modified and renamed files we compare their
AST with the AST in the previous revision (using the Gumtree Spoon tool). By
this comparison we identify the newly inserted methods in existing classes.

After identifying which methods have been inserted into the project (in the
commit under study) and their span (starting/ending line in the file), we can
further identify TDIs. For this step we analyze the project using SQ. Then, we
retrieve all the TDIs (via SQ’s API) and keep only the ones that can be mapped
to the newly inserted methods. This is performed by matching the line in which
each TDI is reported by SQ with the method containing that line.

3.2 Fluctuation of Software Metrics

Software Metrics Fluctuation (SMF) is a property of metrics, defined as “the
degree to which a metric score changes from one version of the system to the
other” [13]. Using SMF, metrics can be characterized as sensitive (changes
induce high variation on the metric score) or stable (changes induce low varia-
tion). To capture the SMF property of a metric, that property should:
– Take into account the order of measurements in a metric time series. This is

the main characteristic that a fluctuation property should hold, in the sense
that it should quantify the extent to which a score changes between two
subsequent time points.

– Yield values that can be intuitively interpreted, especially for border cases.
Therefore, if a score does not change at all, its fluctuation should be evalu-
ated to zero. Any other change pattern should result in a non-zero fluctuation
value. Finally, the highest value should be obtained for time series that con-
stantly change and fluctuate between the two ends of their range, for every
pair of successive versions of the software.

To assess SMF, in this paper, we use a measure proposed by Arvanitou et
al. [13], namely mf. The measure is defined as: “the average deviation from zero of
the difference ratios between every pair of successive versions”, as shown below.

mf =

√
√
√
√

∑n
i=2

(
scorei−scorei−1

scorei−1

)2

n− 1
(1)

In the study that introduced SMF [13], the authors also explored various
alternatives (such as coefficient of variance, and auto-correlation-of-lag-one),
which however, were not able to capture the aforementioned properties of SMF.

On the Temporality of Introducing Code Technical Debt 73

4 Case Study Design

In this section, we present the design of the case study which was based on the
linear-analytic structure as described by Runeson et al. [14].

4.1 Research Questions

As already mentioned in the Introduction Section, we ask two research questions.

RQ1: Does the number of introduced technical debt items by new code fluctuate
along evolution?

The answer to this research question will unveil if in different time periods,
different amounts of TD are introduced. The answer reflects the main goal of this
study, i.e., to investigate the temporality of the TD phenomenon. Specifically,
this answer will enable us to characterize TDIs introduction as either stable, or
sensitive to temporal influence. In addition, we will study any possible spikes in
the evolution on new code TD, which might be indicators of “extra-ordinary”
events along evolution. The frequency and the timing (early, middle, or late in
the project) of such spikes will also be explored and reported.

RQ2: Does the amount of introduced technical debt items by new code, correlate
to the activity of developers?

To increase the confidence in the results of the previous research question,
we study a potentially important confounding factor for this empirical setup:
developers’ activity. Considering that we are not analyzing at the individual
commit level, but over periods of time, there is a non-negligible chance that
in these periods the developers’ activity (number of commits) is not stable;
therefore, spikes in new code TDIs could be due to more intense programming
activity in the corresponding periods.

4.2 Cases and Units of Analysis

This study is characterized as a multiple, embedded case study [14], in which
the cases are open-source software (OSS) projects, while the units of analysis are
the source code commits (per project) over different time periods. Specifically,
for each project, we analyse the amount of code TDIs added over 6-month time
periods across the project history (see Sect. 4.3 for more details). The reason for
selecting to perform this study on OSS systems is the vast amount of data that is
available in terms of revisions and classes. The long history that is available for
each project enables researchers to observe overall trends in the evolution of their
quality. To retrieve data from only high-quality projects that evolve over a period
of time, we looked into ASF projects and investigated the projects presented in
Table 1. The selection of projects was based on the following criteria:

– The software is actively maintained. To ensure this, we sorted projects based
on the date of their last commit.

74 G. Digkas et al.

Table 1. Selected Projects

Project Classes NCLOC Analyzed

revisions

Project Classes NCLOC Analyzed

revisions

Atlas 932 87637 1454 Knox 1083 51429 1033

Beam 3757 176663 2780 Kylin 1658 128531 3205

Calcite 2606 186633 1448 Metron 1433 72579 548

Cayenne 2615 164170 2116 MyFaces 1843 174158 1211

Commons IO 132 10500 1059 NiFi 4256 371031 1490

CXF 4111 353085 5079 oozie 1082 97597 587

DeltaSpike 951 46182 513 OpenWebBeans 561 44299 1583

Drill 4655 316552 1316 PDFBox 1279 136916 3758

Dubbo 943 61865 728 Pulsar 1837 147182 1503

Flink 5632 341149 5329 SIS 1948 181588 828

Flume 790 51897 789 Storm 3958 243574 738

Giraph 1414 72972 668 TinkerPop 1698 95652 5178

Jackrabbit 2883 273574 4260 Zeppelin 1209 89193 1562

jclouds 5687 227459 4323

– The software is written in Java and uses Maven as a build tool. This ensures
that the project can be built and allows the retrieval of the project’s language
version from the corresponding pom.xml file.

– The software contains more than 100 classes to ensure the inclusion of systems
with a substantial size, functionality and complexity.

– The software has more than 1000 commits. We have included this criterion
for similar reasons to the previous criterion and to be able to observe trends
in the evolution of their quality. Moreover, this number of revisions provides
an adequate set of repeated measures as input to the statistical analysis.

4.3 Data Collection

To build the dataset for our analysis, we relied on the process described in
Section 3.1. In particular, for each project, we have been able to build a dataset
containing: (a) the commit SHA; (b) the commit timestamp; and (c) the number
of introduced TDIs by the new code of this commit. Next, starting from the
first commit timestamp, we created a 6-month time-window that slides monthly,
along the evolution of the project. Based on these time-windows, we have created
our units of analysis, as shown in Fig. 1. For example, by considering a project
that spans across 22 months (M1-M22), we are able to create 16 units of analysis.

For each period captured by the time-window, we summed the number of
TDIs that were introduced in all commits included in the timeframe. Therefore,
the final dataset consists of three variables: [V1] time-window (in months/year);
[V2] number of commits in the time-window; and [V3] number of TDIs introduced
by new code in the time-window. A replication package is available online1.

1 https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P.

https://github.com/apache/atlas
https://github.com/apache/knox
https://github.com/apache/beam
https://github.com/apache/kylin
https://github.com/apache/calcite
https://github.com/apache/metron
https://github.com/apache/cayenne
https://github.com/apache/myfaces
https://github.com/apache/commons-io
https://github.com/apache/nifi
https://github.com/apache/cxf
https://github.com/apache/oozie
https://github.com/apache/deltaspike
https://github.com/apache/openwebbeans
https://github.com/apache/drill
https://github.com/apache/pdfbox
https://github.com/apache/incubator-dubbo
https://github.com/apache/pulsar
https://github.com/apache/flink
https://github.com/apache/sis
https://github.com/apache/flume
https://github.com/apache/storm
https://github.com/apache/giraph
https://github.com/apache/tinkerpop
https://github.com/apache/jackrabbit
https://github.com/apache/zeppelin
https://github.com/apache/jclouds
https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P
https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P

On the Temporality of Introducing Code Technical Debt 75

Fig. 1. Demarcating Units of Analysis (sliding temporal windows)

4.4 Data Analysis

Data analysis was performed on the aforementioned raw dataset. To answer
RQ1, for each project, we first assess fluctuation by calculating SMF and basic
descriptive statistics of the dependent variable [V3]. Next, to visualize extreme
projects (the most stable and most sensitive), we use a line chart representing
the evolution of TDIs introduced by new code. By inspecting the line chart, we
highlight spikes in the introduction of TDIs, and discuss, if they seemed more
concentrated in the beginning, middle, or end of the project. To answer RQ2, we
performed Pearson correlation analyses, and for extreme cases we visualize the
relation through scatterplots, and present the co-evolution of number of commits
and the number of TDIs in a single line chart.

5 Results

5.1 Fluctuation Analysis (RQ1)

In Table 2, we observe the results of the fluctuation analysis for the number of
TDIs introduced by new code, in the 27 cases of the study, based on the value
of the SMF metric. We can observe that for 16 out of 27 projects the number
of TDIs introduced by new code can be considered as stable, whereas in the
rest 11 projects as sensitive (dark and light grey cell shading in column SMF
respectively).

To provide a visual insight on the discussed fluctuations, in Fig. 2, we present
the evolution of one extremely stable project, namely Metron, and a sensitive
one, namely SIS. We note that even for the most “stable” projects, some spikes
still exist; however, the spikes are small in height. A visual analysis of fluctua-
tions in all projects (figures are available in the online material) revealed that

76 G. Digkas et al.

Table 2. TD Fluctuation per Project

Project SMF Corr.

Coef.

Sig. Level Spk Project SMF Corr.

Coef.

Sig. Level Spk

Atlas 0.538 0.500 0.000 1 Knox 0.301 0.361 0.002 2

Beam 0.509 0.502 0.002 3 Kylin 0.343 0.598 0.000 3

Calcite 11.902 0.150 0.195 Metron 0.162 0.551 0.002 0

Cayenne 1.019 0.584 0.000 MyFaces 2.992 0.355 0.000

Commons IO 1.344 0.661 0.000 NiFi 0.024 0.302 0.073 1

CXF 0.762 0.363 0.000 3 oozie 0.451 0.198 0.075 1

DeltaSpike 1.396 0.791 0.000 jclouds 0.467 0.890 0.000 1

Drill 0.335 0.519 0.001 1 PDFBox 3.505 −0.066 0.493

Dubbo 1.900 0.929 0.000 Pulsar 0.456 0.768 0.000 1

Flink 4.080 0.353 0.001 SIS 9.558 0.482 0.000

Flume 0.340 0.922 0.000 1 Storm 0.389 0.071 0.611 2

Giraph 1.174 0.463 0.000 TinkerPop 0.156 0.802 0.000 1

Jackrabbit 1.639 0.453 0.000 Zeppelin 0.320 0.161 0.220 2

OpenWebBeans 0.492 0.436 0.000 1

Spk = Spikes

fluctuations of TD are distributed across the entire project lifetime. This obser-
vation is a first indication that these spikes might be irrelevant to the time period
that they appeared, questioning a relation between TD introduction and project
maturity. Nevertheless, this finding needs further investigation.

5.2 Correlation Analysis: Fluctuation vs. Activity (RQ2)

To investigate if the fluctuation of the number of TDIs that is inserted by new
code is due to some temporal phenomenon that occurs in the given time period,
we need to exclude the most obvious confounding factor, i.e., developers’ activity.

(a) Metron - “Stable” (b) SIS - “Sensitive”

Fig. 2. Indicative project evolution

https://github.com/apache/atlas
https://github.com/apache/knox
https://github.com/apache/beam
https://github.com/apache/kylin
https://github.com/apache/calcite
https://github.com/apache/metron
https://github.com/apache/cayenne
https://github.com/apache/myfaces
https://github.com/apache/commons-io
https://github.com/apache/nifi
https://github.com/apache/cxf
https://github.com/apache/oozie
https://github.com/apache/deltaspike
https://github.com/apache/jclouds
https://github.com/apache/drill
https://github.com/apache/pdfbox
https://github.com/apache/incubator-dubbo
https://github.com/apache/pulsar
https://github.com/apache/flink
https://github.com/apache/sis
https://github.com/apache/flume
https://github.com/apache/storm
https://github.com/apache/giraph
https://github.com/apache/tinkerpop
https://github.com/apache/jackrabbit
https://github.com/apache/zeppelin
https://github.com/apache/openwebbeans

On the Temporality of Introducing Code Technical Debt 77

One of the first tentative interpretations on the existence of high spikes as those
presented in Fig. 2(b), would be that in the corresponding time windows, lots of
code has been committed. To explore the existence of this confounding factor, in
Table 2 we highlight with light-gray cell shading (in column Corr. Coef.) the cases
in which the correlation is strong (>0.7 [15]) and at the same time statistically
significant (p<0.001). The findings suggest that only in 22% of the projects this
correlation is strong. So only in these cases, the commit activity could explain the
fluctuations in the number of TDIs that is added by new code. To visualize this
result, we present the scatter plot and the evolution of both variables in a single
line chart, in Figs. 3a–b for Dubbo (the project with the highest correlation),
and in Figs. 4a–b for PDFBox (the project with the lowest correlation). In the
scatter plots, each dot represents a 6-month period, mapping the values of the
two variables for which we seek correlation. For strong correlations, dots are
expected to concentrate around the central diagonal.

(a) Scatter plot (b) Line chart of co-evolution

Fig. 3. Correlation analysis for Dubbo: fluctuation related to developers’ activity

(a) Scatter plot (b) Line chart of co-evolution

Fig. 4. Correlation analysis for PDFBox: fluctuation NOT related to developers’ activity

78 G. Digkas et al.

6 Discussion

6.1 Interpretation of Results

The high-level goal of this study was to investigate if the introduction of TDIs
(by adding new code) is a temporal phenomenon, that diverges over time. Based
on the findings, some temporality can be claimed only for a number of projects.
In particular, based on the fluctuation of TDIs due to the introduction of new
code (see Sect. 5.1), we can classify the projects in three categories through visual
inspection of the evolution graphs: (a) stable projects without any temporality—
i.e., negligible fluctuations (0–1 spike, 10 projects); (b) stable projects that are
not sensitive, but some “extra-ordinary” spikes occur (>1 spikes, 6 projects);
and (c) sensitive projects (many spikes, 11 projects). The number of spikes of
each project is reported in Table 2 (column ‘Spk’); note that we only provide the
number of spikes for the stable projects, since sensitive projects have multiple
ones.

Based on the findings of Table 2, we can claim that the introduction of TDIs
due to the insertion of new code is, in the majority of the projects, independent
of time. This can be interpreted as an indication of project maturity, in the sense
that consistent quality is achieved throughout evolution. However, even for these
projects, the absence of fluctuations does not necessarily imply the absence of
any trend. For example, in Fig.2 we can see that the evolution of project Metron
does not exhibit any spikes; however, its trend is clearly a decreasing one. On
the other hand, for a subset of the analyzed projects, the introduction of new
code TDIs is a temporal phenomenon, since many spikes exist in their evolution.
For these projects, the number of introduced TDIs in each period is not stable,
and it is reasonable to assume that it is influenced by some external parameters.
This observation renders important the study of potential external factors that
drive the accumulation of TDIs along the evolution of a software project.

The second research question that we have explored led to a rather unex-
pected finding: i.e., the number of commits, made in a time period, is (for the
majority of the cases) not correlated to the number of introduced TDIs into the
system. Intuitively, one would expect that these variables would be related, in
the sense that the more code is added, the more TDIs are expected to be intro-
duced. However, this might not be the case for several reasons, i.e., TD might
be more strongly related to: (a) the maturity of the project; (b) the developers’
habits; or (c) the specific type of tasks performed in each time period. Therefore,
this issue needs further investigation, as discussed in Sect. 6.2.

6.2 Implications to Researchers and Practitioners

Based on the results we are able to provide some first implications to both
researchers and practitioners. Regarding researchers, we can claim that the
accumulation of new code TDIs reflects (at least to some extent) the character-
istics of the development process: by being stable in most cases, the introduction

On the Temporality of Introducing Code Technical Debt 79

of new code TD is probably less related to external factors, and primarily depen-
dent on the capabilities of the team. However, for a non-negligible number of
projects, timing seems to be an important factor for studying the accumulation
of technical debt: TDIs do not seem to be uniformly introduced along evolution,
but rather behave as a temporal phenomenon, with multiple and (in some cases)
large fluctuations. Therefore, we propose that researchers:

– For stable projects, investigate further the relation between the constant rate
of introduction of new code TDIs with the practices followed by the develop-
ers. It would also be valuable to compare stable projects, but with different
trends (increasing vs. decreasing), with respect to their key properties.

– For sensitive projects, perform explanatory studies to unveil the reasons
for which spikes occur in the evolution of the introduced TD. Such stud-
ies could identify possible reasons (e.g., changes in the programming team,
changes in used libraries or frameworks, impact of business goals) that lead
teams/projects with a rather stable accumulation of TD, to perform worse
under certain circumstances.

– Based on the output of the above, researchers should work on more accurate
TD prevention methodologies that will attack the heart of the problem, based
on the particular conditions of each project. For example, a project that
is expected to undergo staff turnover, or will face tight deadlines, should
calibrate its quality gates to ensure TD does not grow beyond thresholds.

Regarding practitioners, we suggest the following implications:

– We encourage them to perform fluctuation analysis and investigate the rea-
sons for the existence of high or frequent peaks in the evolution of introduced
TDIs. Understanding the consequences of their way of working in certain peri-
ods (which might lead to excessive accumulation of TD) can prove beneficial
for process improvement purposes and quality control.

– We advise them to classify their project in the categories mentioned in
Sect. 6.1. If their project is sensitive or if the observed trend is a steadily
increasing one, then they need to perform a root cause analysis regarding the
parameters that affect the accumulation of new code TD. Some of them may
be mitigated, for example moving certain developers to different teams, or
reprioritizing the backlog to include more refactoring.

7 Threats to Validity

In this section, we discuss threats to the validity of the study, including threats to
construct, external validity and reliability. The study does not aim at establishing
cause-and-effect relations; thus it is not concerned with internal validity.

Construct Validity reflects how far the examined phenomenon is connected
to the intended objectives. The main threat is related to the accuracy by which
TD can be captured by static analysis tools such as SQ. Rule violations reported

80 G. Digkas et al.

as TDIs are only one manifestation of actual code and design inefficiencies. Fur-
thermore, it is known that such tools are not capable of identifying architectural
problems or other types of TD such as requirements, test or build debt. In addi-
tion, we consider only TD that can be mapped to methods, thus ignoring changes
which might occur at the level of files. However, while SQ is by far not perfect
in identifying TD, other static analysis tools suffer from similar limitations.

Another construct validity threat is related to the use of the number of com-
mits as a surrogate of the workload that has been carried out by the project
participants. Since in open-source projects, voluntary contribution is interleaved
with the rest of the developers’ activities, we acknowledge that a ‘busy’ or
‘relaxed’ period in terms of commits, does not necessarily reflect the actual
work conditions of the developers. Moreover, commits differ in the amount of
work that they carry: some commits might be accompanied by many changes
in several files while other are related to only a few changes. Further research
is required to derive the actual workload of developers committing to an OSS
project.

Reliability reflects whether the study has been conducted and reported in
a way that others can replicate it and reach the same results. To mitigate this
threat, the study protocol is explicitly described listing all data collection and
analysis steps. The only subjective data interpretation concerns the identifica-
tion of spikes (which however is of secondary importance); therefore, to a large
extent, researcher bias has been avoided. A replication package (see footnote 1)
is available with all available data to allow for an independent replication of the
investigation.

External Validity examines the applicability of the findings in other settings,
e.g., other software projects, other programming languages and possibly other
TD tools. We have focused only on Java Apache projects that use Maven as a
build tool. This limits the ability to generalize the findings to other projects. The
fact that the study focuses on 27 projects of the ASF, which are highly active and
popular among software developers partially mitigates threats to generalization.
Nevertheless, replication studies on the effect of new code on the evolution of
TD are needed to strengthen the validity of the derived conclusions.

8 Conclusions

Studying the phenomenon of introducing code TDIs is a research direction that
is important for building tools aimed at preventing the accumulation of TD. In
this study, we focus on code technical debt, and in particular, we explore the
temporality of the TD introduction phenomenon. To this end, we explore if the
introduction of TDIs changes in different time periods, and if these changes can
be attributes to the developers’ activity in the corresponding period. To explore
these two questions, we have performed a case study on the complete evolution
of twenty-seven projects from the ASF.

The results of the study suggested that for the majority of the projects
the evolution on TD introduction is stable, i.e., there are not many (at max-
imum 2) high fluctuations in TDIs introduction, due to new code. However, a

https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P

On the Temporality of Introducing Code Technical Debt 81

non-negligible part of projects (approx. 40%) present high and frequent fluctu-
ations. This result suggest that TD introduction is only partially a temporal
phenomenon, with more TD being introduced in some time periods. The addi-
tional exploration of the phenomenon led to the conclusion that the spikes in the
evolution of TD introduction are not correlated with spikes in the development
activity, suggesting that the number of commits in the examined period is not
the main factor affecting the existence of ‘excessive TD introduction.

Acknowledgement. Work reported in this paper has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 780572 (project SDK4ED) and under grant agreement No 801015 (project
EXA2PRO).

References

1. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Soft. 101, 193–220 (2015)

2. Letouzey, J.-L.: The SQALE method for evaluating technical debt. In: 2012 Third
International Workshop on Managing Technical Debt (MTD), pp.31–36. IEEE
(2012)

3. Alves, V., Niu, N., Alves, C., Valença, G.: Requirements engineering for software
product lines: a systematic literature review. Inf. Soft. Technol. 52(8), 806–820
(2010)

4. Ampatzoglou, A., et al.: The perception of technical debt in the embedded systems
domain: an industrial case study. In: 2016 IEEE 8th International Workshop on
Managing Technical Debt (MTD), pp. 9–16. IEEE (2016)

5. Tufano, M., et al.: When and why your code starts to smell bad (and whether the
smells go away). IEEE Trans. Softw. Eng. 43(11), 1063–1088 (2017)

6. Kazman, R., et al.: A case study in locating the architectural roots of technical
debt. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, vol. 2, pp. 179–188. IEEE (2015)

7. Martini, A., Bosch, J., Chaudron, M.: Investigating architectural technical debt
accumulation and refactoring over time: a multiple-case study. Inf. Softw. Technol.
67, 237–253 (2015)

8. Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N.: The evolution and impact of
code smells: A case study of two open source systems. In: 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pp. 390–400.
IEEE (2009)

9. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of code smells in
object-oriented systems. Innov. Syst. Softw. Eng. 10(1), 3–18 (2013). https://doi.
org/10.1007/s11334-013-0205-z

10. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software
repository mining. In: 2012 16th European Conference on Software Maintenance
and Reengineering, pp. 411–416. IEEE (2012)

11. Digkas, G., Lungu, M., Chatzigeorgiou, A., Avgeriou, P.: The evolution of technical
debt in the apache ecosystem. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS,
vol. 10475, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65831-5 4

https://doi.org/10.1007/s11334-013-0205-z
https://doi.org/10.1007/s11334-013-0205-z
https://doi.org/10.1007/978-3-319-65831-5_4
https://doi.org/10.1007/978-3-319-65831-5_4

82 G. Digkas et al.

12. Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, pp. 313–324. ACM
(2014)

13. Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: Software
metrics fluctuation: a property for assisting the metric selection process. Inf. Softw.
Technol. 72, 110–124 (2016)

14. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

15. Field, A.: Discovering Statistics Using IBM SPSS Statistics. Sage Publications Ltd.
(2013)

Is Complexity of Re-test a Reason
Why Some Refactorings Are Buggy?

an Empirical Perspective

Steve Counsell(B), Steve Swift, Mahir Arzoky, and Giuseppe Destefanis

Department of Computer Science, Brunel University, London, UK
steve.counsell@brunel.ac.uk

Abstract. In this short paper, we explore one simple, yet unexplored
question about the relationship between refactoring and bugs. Is the
complexity of re-testing code immediately after refactoring a reason why
some refactorings are buggy? To facilitate our analysis, we use a set of
over four thousand refactorings mined from three open-source systems
and decomposed into the four test categories of van Deursen and Moo-
nen. Preliminary results showed that, compared with non-buggy classes,
buggy classes had been subjected to more refactorings where a large
re-test commitment was required; extent of re-test may therefore be a
significant factor in determining whether refactoring creates bugs. Our
finding supports that of Bavota et al. - that more and better testing
after certain refactoring practices could reduce the harm that refactor-
ings cause.

1 Introduction

Since the 1990’s and the seminal texts on refactoring were published by Opdyke
[8] and Fowler et al. [5], refactoring has been the subject of hundreds of empiri-
cal studies and become a vital tool in the daily work of a developer. Refactoring
can be defined as the process of: “Changing a software system in such a way
that it does not alter the external behavior of the code yet improves its inter-
nal structure” [5]. Despite this multitude of prior studies, there are still a range
unanswered research questions. One of these is the link between refactoring and
bugs. So, does refactoring cause bugs and if it does, then which types of refac-
torings cause bugs the most often? Every refactoring requires the developer to
re-test the affected code to ensure that program behaviour has been preserved.
So, an equally relevant research question to ask is whether the extent of re-test
required post-refactoring influences the level of bugs in a system. To assess the
level of post-test necessary, we use a taxonomy developed by van Deursen and
Moonen [9]. The taxonomy categorizes each of 72 refactorings according to how
difficult it is to unit post-test and it thus indicates the level of effort required
to ensure that the refactoring has been successfully applied. Results from our
analysis showed a tendency for buggy classes to have a higher number of refac-
torings with extensive re-test (compared to non-buggy classes). This implies that
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 83–90, 2020.
https://doi.org/10.1007/978-3-030-58793-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_7

84 S. Counsell et al.

if we do complex and lengthy refactorings, then we should take every step to
ensure that program behaviour has been preserved. The remainder of the paper
is organized as follows. In Sect. 2, we describe information on the systems studied
and taxonomies/data. We then present results through an analysis of the three
systems (Sect. 3), before discussing results in Sect. 4. Finally, we conclude and
point to further work in Sect. 5.

2 Preliminaries

2.1 Taxonomy of van Deursen and Moonen

To assess the extent of unit, post-refactoring testing required for every refactor-
ing, we use the taxonomy developed by van Deursen and Moonen (V&M) [9].
The purpose of the taxonomy is to allocate each of Fowler’s 72 refactorings [5]
to a category, depending on the complexity and extent of the post-test required
after that refactoring had taken place. The taxonomy is motivated by V&M as
follows: “One of the dangers of refactoring is that a programmer unintentionally
changes the systems’ behavior. Ideally, it can be verified that this did not happen
by checking that all the tests pass after refactoring. In practice however, there are
refactorings that will invalidate tests (e.g., when a method is moved to another
class and the test still expects it in the original class)”. In short, the categories
represent an increasingly complex post-refactoring test effort commitment on
the part of the developer and the taxonomy reflects the fact that some refactor-
ings restructure the code in such a way that unit tests can only pass after the
refactoring once those tests have been modified. The four categories identified
by V&M are as follows:

1. Compatible: Refactorings that do not change the original interface. In the
compatible refactoring category, we can use existing tests to check the refac-
toring. One example is the Extract method refactoring [5], which takes a
section of code from a method and forms a new method (or methods) with
that code. However, since this refactoring creates at least one new method,
we need to add tests that document and verify that the new method has
actually preserved behaviour.

2. Backwards compatible: Refactorings that change the original interface and
are inherently backwards compatible since they extend the interface. In the
case of this set of refactorings, according to V&M, “... the tests keep running
via the original interface and will pass if the refactoring preserves tested behav-
ior. Depending on the refactoring, we might need to add more tests covering
the extensions”. One example of this refactoring type is Consolidate Condi-
tional Expression, which re-arranges a conditional statement into a simpler
and less complex format. The conditions in the statement do not change and
it might be possible to use the same test on the changed code.

3. Make backwards compatible: This applies to refactorings that change
the original interface and can be made backwards compatible by adapting
the old interface. For example, the Move method [5] refactoring physically

Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? 85

moves a method from one class to another class and can be made backwards
compatible by adding a wrapper method to retain the old interface.

4. Incompatible: This applies to refactorings that change the original interface
and are not backwards compatible because they may, for example, change the
types of classes that are involved. This makes it difficult to wrap the changes.
The refactoring destroys the original interface and, as such, all tests that rely
on the old interface need to be adjusted.

In theory, Compatible refactorings require less post refactoring test effort than
those in the Backwards compatible category, which in turn require less effort than
refactoring in the Make backwards Compatible category etc. In line with this,
we adopt the stance that Compatible refactorings are the most straightforward
to re-test and Incompatible refactorings the most complex; this is essentially the
message that V&M convey in their work.

2.2 Systems Analysed

Our analysis in this paper is facilitated by the earlier work of Bavota et al.
[2]. In their analysis, they describe how some refactorings were more likely to
induce a bug than others, using the set of Fowler’s refactoring activities as the
vehicle. Results indicated that, while some kinds of refactorings were not likely
to be harmful, others tended to induce bugs frequently (i.e., were harmful).
In their study, they used refactoring and bug data extracted from three open-
source systems and made that data available. We use that same data in this
paper to explore refactorings but from a purely re-test perspective. The systems
studied were: Xerces, ApacheAnt and ArgoUML. Xerces is a Java XML parser,
ApacheAnt a build tool and library primarily designed for Java applications and
ArgoUML a UML modelling tool1. Table 1 shows summary statistics for the
three systems including: the period of time over which the system was studied,
the releases analysed, the number of releases and, finally, the number of classes.
The summary statistics in Table 1 are reproduced from the paper by Bavota
et al.

Table 1. Three systems studied (summary data)

System Period Analyzed Rel. No. classes

Xerces Nov ‘99–Nov ‘10 1.0.4-2.9.1 33 181-776

ApacheAnt Jan ‘00–Dec ‘10 1.2-1.8.2 17 87-1191

ArgoUML Oct ‘02–Dec ‘11 0.12-0.34 13 777-1519

1 http://ant.apache.org/, http://argouml.tigris.org/, http://xerces.apache.org/xerce
s-j/.

http://ant.apache.org/
http://argouml.tigris.org/
http://xerces.apache.org/xerces-j/
http://xerces.apache.org/xerces-j/

86 S. Counsell et al.

2.3 V&M Decomposition

Table 2 shows the number of refactorings across each system and the number of
refactorings in each of V&M’s categories; here, Comp. or comp denotes Compat-
ible, b/comp. denotes Backwards compatible and Incomp. represents Incompat-
ible. The refactorings were collected in the original study of Bavota et al. by the
Ref-Finder tool [6] and we use exactly the same set of refactorings. In the Xerces
system for example, there were 1528 refactorings in total; of that total, 668 were
“Compatible”, 218 “Backwards compatible”, 510 “Make backwards compatible”
and 132 “Incompatible”.

Table 2. Categories of V&M across the three systems

System Comp. Backwards comp. Make b/comp. Incomp. Total

Xer. 668 218 510 132 1528

Apac. 290 67 142 21 520

Argo. 788 194 837 194 2013

Total 1746 479 1489 347 4061

From Table 2, we also see that the Compatible category forms the largest
number (1746) and that ArgoUML has the highest number of overall refactor-
ings (2013) across the four categories. Significant numbers of Make backwards
compatible refactorings can also be seen; Incompatible refactorings were rela-
tively small in number (just 347 from 4061 (8.54%)). The numbers in the table
thereby give a mixed picture in terms of a developer’s propensity to choose refac-
torings with a less complex required post-refactoring test. It seems that they are
as likely to undertake complex refactorings (with long re-test requirements) as
they are simpler ones. The numbers of Incompatible refactorings are comparable
with the numbers of Backwards compatible refactoring, even though the former
represents the lengthiest post refactoring test required. Based on the evidence
from Table 2, it appears that developers do not necessarily choose refactorings
with a low post-refactoring test burden according to the taxonomy of V&M.

3 Data Analysis

3.1 Buggy Classes

To further our analysis, we looked at the type of refactorings in each system for
classes where at least one bug had been recorded due to a refactoring and the
V&M categories of those refactorings. Table 3 lists the name of the refactorings
and, for each of the three systems abbreviated to Xer,. Apa., and Arg., the
number of refactorings, total and the V&M category of that refactoring. In
the Xerces system, there were 26 Add parameter refactorings made to classes

Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? 87

with at least one bug and across all three systems there were 68 Add parameter
refactorings in total. Add parameter falls into the “Make backwards compatible”
category of refactoring. We note that for space in the paper (there were in
excess of 35 types of refactoring), we have left out any refactoring where, across
the three systems, there were less than ten refactorings of that type - we do
include these in reported analyses, however. We have also abbreviated some
refactorings in Table 3 for space purposes. In full and in the order of the table,
these are: Consolidate conditional expression, Consolidate duplicate conditional
fragments, Introduce explaining variable, Remove assignments to parameters,
Replace method with method object, Replace nested conditional with guard
clauses and Replace magic number with symbolic constant.

Table 3. V&M categories (buggy classes)

Refactoring Xer. Apa. Arg. Total V& M category

Add parameter 26 10 32 68 Make b/comp.

Cons. cond. expression 11 5 3 19 Backwards comp.

Cons. dup. cond. frag. 16 11 13 40 Comp.

Extract method 11 11 19 41 Backwards comp.

Inline method 6 2 2 10 Incomp.

Intr. explaining variable 5 7 14 26 Comp.

Intr. null object 9 8 13 30 Comp.

Inline method 2 0 10 12 Comp.

Move field 11 3 63 77 Incomp.

Move method 7 8 40 55 Make b/comp.

Remove ass. parameters 8 4 9 21 Comp.

Remove control flag 3 5 11 19 Comp.

Remove parameter 24 7 31 62 Make b/comp.

Rename method 19 9 17 45 Make b/comp.

Rep. meth. w meth. o. 16 0 80 96 Comp.

Rep. nest. cond. w g. 12 0 8 20 Comp.

Rep. mag. no. w sym. c. 16 13 7 36 Comp

In terms of the totals and including 13 refactorings left out of the table for the
Compatible category, there were 313 (43.84%) refactorings. For the Backwards
compatible category and including 8 refactorings left out of the table, there were
68 refactorings in the category (9.52%). For the Make backwards compatible
category and including 9 refactorings not in the table, there were 239 refactorings
in that category (33.47%). Finally, for the Incompatible category, including 7
not in the table, there were 94 refactorings (13.17%). Overall, this means that
53.36% of all refactorings with at least one bug were drawn from the Compatible

88 S. Counsell et al.

and Backwards compatible categories. Most notable from the data, however, is
that 46.64% of refactorings in classes with at least one bug were in the Make
backwards compatible and Incompatible categories (i.e., those requiring the most
post-test effort).

3.2 Non-buggy Classes

Table 4 shows the corresponding data for classes where no bug was recorded.
So, for the Xerces system, 581 refactorings had been applied to classes with
no recorded bug in the Compatible category. Similarly, 115 refactorings in the
Incompatible category had been applied to classes with no yet recorded bugs. It
also shows the total in each category and the percent that those totals reflect of
the total number of refactorings. For comparison, we also include the percent for
the buggy refactorings from Table 3. For example, there were 1311 Compatible
refactorings across the three systems and this represents 42.57% of the total. For
the buggy total in Table reftbl3, the corresponding percent was 43.84.

Table 4. V&M categories (non-buggy classes)

System Comp. Backwards comp. Make b/comp. Incomp.

Xerces 581 196 434 115

ApacheAnt 242 51 108 16

ArgoUML 488 134 607 107

Total 1311 381 1149 238

% non-buggy 42.58 12.37 37.32 7.73

(% buggy) (43.84) (9.52) (33.47) (13.17)

The most notable feature of Table 4 is the contrast between the number
of Make backwards compatible and Incompatible refactorings compared with
the set of data from Table 3. From the set of non-buggy classes totalling 3079
refactorings, we see that the Compatible category accounted for 42.58% the
Back compatible category accounted for 12.37%, the Make backwards compatible
category 37.32% and the Incompatible category just 7.73%. In total therefore,
54.94% were drawn from the Compatible and Backwards compatible categories
and 45.06% from the Make backwards compatible and Incompatible categories.

From this data, the percentages are similar across buggy and non-buggy
classes for three of the four categories. It is the relatively larger number of
Incompatible refactorings (13.17%) in buggy classes compared with non-buggy
classes - the corresponding value in non-buggy was almost half. We posit that
the cause of bugs in the buggy classes was due directly to the extra number
of Incompatible buggy refactorings. In particular, we single out the Move field
refactoring in the ArgoUML system with 66 individual instances of this refactor-
ing. As its name suggests, this refactoring should be applied when: “A method is

Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? 89

used more in another class than in its own class”. The solution is to move that
method to the class where it is being used most. Move method is a refactoring
whose key purpose is to reduce coupling, a feature of systems that is widely
acknowledged (when in excess) as contributing to the code buggyness [1,3]. So,
while the Move method may well solve one problem, it may cause others due to
the re-test required and the bug potential as a result.

We carried out Chi-square test to determine statistical significance of buggy-
ness and its influence on the different categories [4]. We used a 2 ∗ 4 contingency
table, with buggy and non-buggy representing the two rows in the table and the
four columns representing the categories of refactoring and totals. The contin-
gency table is therefore an amalgamation of the results found in Tables 3 and 4,
representing buggy and non-buggy sets of refactorings and the numbers of refac-
torings in each, respectively. The Chi-square analysis gave a p-value of 0.00001
(degrees of freedom = 3). This value is less than <0.01 and we therefore fail to
accept the null hypothesis of independence between buggyness and refactoring
category. The buggyness of a class is dependent on the category of refactoring.

4 Discussion

Our short paper precludes a full treatment of the literature in the area. However,
our analysis is heavily informed by the work of Bavota et al. [2]. They explored
the buggyness of Fowler’s set of 72 refactorings. Their conclusion was that more
accurate code inspection and testing activities needed to be in place to prevent
refactorings causing harm to code and seeding bugs. Our analysis has shown the
same rule applies, but that it may be the extent of post-refactoring test that may
be a contributory factor to bugs. We would qualify this by saying that if you
undertake refactorings in the Incompatible category according to V&M, then
extra care and attention should be invested in the testing process to make sure
it is done properly. The refactoring literature on trends and traits in refactorings
and the closely linked topic of code smells is well-documented [5]; however, the
issue of the damage that post-refactoring can do is still largely undocumented.
In this paper, we take the first steps in that research direction.

We also need to consider the threats to the validity of our study. Firstly,
we have only examined three systems, which is a small sample. There is no
guarantee that, were we to study more systems, the same results would be found.
Secondly, the taxonomy of V&M studied in this paper is theoretical only and,
unlike the study of Bavota et al. [2], is not empirically-based. This could be
criticised since it is an untried taxonomy “in the field”. Thirdly, we have studied
only open-source code; industrial code may show altogether different features.
Fourthly, the message that this work has conveyed is that refactorings with
high post-test may cause bug-related problems. But there may be multiple other
factors to consider in the development process. For example, the experience of
the developer, the age of the system or the refactoring strategy adopted by
the organization. Finally, we cannot be sure of the proportion of automated
refactorings used in this study vis-a-vis those carried out manually; we assume a

90 S. Counsell et al.

manual approach to refactoring. However, there is empirical evidence suggesting
that a high proportion of developers prefer manual refactoring anyway [7].

5 Conclusions and Future Work

In this paper, we explored a single research question related to refactoring. The
question asked whether the harm that refactoring can do was related to the
amount of re-test necessary after applying a refactoring. The taxonomy of van
Deursen and Moonen was used to support our analysis and this placed every
refactoring into one of four categories in ascending difficulty of testing. Pre-
liminary results showed that, compared with non-buggy classes, buggy classes
had been subjected to more refactorings where a large re-test commitment was
required. This implies that refactorings causing bugs may be simply down to the
test load and human errors that may arise from that; for larger, more complex
refactorings there is more room for human error than for smaller, less complex
ones. Future work will focus on experiments with industrial developers to see
if refactorings with low post requirements are, experimentally, more likely to
induce a bug. This will take the form of a replication of Bavota’s study. Finally,
it would be interesting to extend our study to other open-source systems and to
multiple application domains.

References

1. Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics as
quality indicators. IEEE Trans. Soft. Eng. 22(10), 751–761 (1996)

2. Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R., Strollo, O.:
When does a refactoring induce bugs? An empirical study. In: 12th IEEE Conference
on Source Code Analysis and Manipulation, SCAM 2012, Italy, 2012, pp. 104–113
(2012)

3. Briand, L., Devanbu, P., Melo, W.: An investigation into coupling measures for
C++. In: International Conference on Software Engineering, vol. 12 (1999)

4. Field, A.: Discovering Statistics Using IBM SPSS Statistics, 4th edn. Sage Publica-
tions Ltd., Thousand Oaks (2013)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co. Inc., Boston (1999)

6. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-finder: a refactoring reconstruc-
tion tool based on logic query templates, pp. 371–372 (January 2010)

7. Negara, S., Chen, N., Vakilian, M., Johnson, R.E., Dig, D.: A comparative study of
manual and automated refactorings. In: Castagna, G. (ed.) ECOOP 2013. LNCS,
vol. 7920, pp. 552–576. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39038-8 23

8. Opdyke, W.: Refactoring: a program restructuring aid in designing object-oriented
application frameworks. Ph.D. thesis, Univ. of Illinois (1992)

9. van Deursen, A., Moonen, L.: The video store revisited - thoughts on refactoring
and testing. In: Proceedings - XP 2002, Sardinia, Italy (2002)

https://doi.org/10.1007/978-3-642-39038-8_23
https://doi.org/10.1007/978-3-642-39038-8_23

Human and Artificial Intelligences
for Software Evolution

Suggesting Descriptive Method Names:
An Exploratory Study of Two Machine

Learning Approaches

Oleksandr Zaitsev1,2(B), Stephane Ducasse1, Alexandre Bergel3,
and Mathieu Eveillard2

1 Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Lille, France
{oleksandr.zaitsev,stephane.ducasse}@inria.fr

2 Arolla, Paris, France
mathieu.eveillard@arolla.fr

3 ISCLab, Department of Computer Science (DCC), University of Chile,
Santiago, Chile

abergel@dcc.uchile.cl

Abstract. Programming is a form of communication between the per-
son who is writing code and the one reading it. Nevertheless, very often
developers neglect readability, and even well-written code becomes less
understandable as software evolves. Together with the growing complex-
ity of software systems, this creates an increasing need for automated
tools for improving the readability of source code. In this work, we focus
on method names and study how a descriptive name can be automatically
generated from a method’s body. We experiment with two approaches
from the field of text summarization: One based on TF-IDF and the
other on deep recurrent neural network. We collect a dataset of methods
from 50 real world projects. We evaluate our approaches by comparing
the generated names to the actual ones and report the result using Pre-
cision and Recall metrics. For TF-IDF, we get results as good as 28%
precision and 45% recall; and for deep neural network, 46% precision and
32% recall.

Keywords: Software evolution · Machine learning · Method names

1 Introduction

The approach to programming has significantly changed in the past few decades.
Instructions written by programmers are not solely meant for a computer to exe-
cute. Source code must be read by humans in many critical situations (e.g., bug
fixing, maintenance) [15]. Developers spend most of their time reading the source
code. According to Kent Beck and Robert Martin [6,18], the ratio of time spent
reading versus writing is well over 10 to 1. Making source code easier to read
decreases the cost of software development and maintenance. In practice, the

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 93–106, 2020.
https://doi.org/10.1007/978-3-030-58793-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_8

94 O. Zaitsev et al.

readability of source code is often overlooked. Despite understanding the impor-
tance of clean code, developers choose poor names for their entities, create long
functions and God classes (a well known code smell), fail to write documentation
comments [9,16]. But even good development ethics can not ensure that the sys-
tem remains clean and comprehensive over time. Software evolves [8], code gets
refactored and modified, which often changes the purpose of variables, functions,
and classes, as well as the relations between them. Good identifier names will
degrade over time, bad ones will become even more misleading. Improving and
updating identifier names is one of the key aspects of maintaining an evolving
software system. This is a complicated task that requires a profound understand-
ing of the entire system at all times. In the context of large software systems
that continue growing in size and complexity [17], such understanding is virtu-
ally impossible without the assistance of automated tools. We need tools that
will support developers in maintaining the consistency and understandability of
the codebase. In this paper, we focus on the quality of method names and study
how a descriptive name can be generated from a method’s body. We approach
this problem as a problem of text summarization and explore two approaches:
one based on TF-IDF [19] and the other one using a deep recurrent neural net-
work [23]. These methods were chosen because the first one is a most widely
used extractive approach, meaning that it generates the summary by extracting
the words from the text it is given; and the second one is a state of the art
abstractive approach, meaning that it can produce words that were not present
in the original text. In our case, the summary to generate is the method name,
and the original text is the method body. We collected a dataset of 132,046
methods from 50 of real world projects. We cleaned and tokenized this code and
used it to train the two models to suggest descriptive names for methods. We
evaluate the approaches by comparing method names proposed by our models
to the actual names of these methods. Those actual names were given by the
programmers so they can be considered the ground truth. After training the
models on 70% of methods and evaluating their suggestions on other 20% of
methods, we achieved 28% precision, 45% recall with TF-IDF model and 46%
precision, 32% recall with a deep learning model. The contribution of this paper
are: (i) we argue that programming languages syntax and conventions influence
the preprocessing of source code and names, and we propose a methodology for
the Pharo programming language; and (ii) we give and compare first results for
two text summarization approaches, one abstractive and one extractive.

The rest of this paper is structured as follow: In Sect. 2 we present the two
machine learning models that we considered. In Sect. 3, we describe the col-
lection, tokenization and filtering of source code and method names. Then, in
Sect. 4 we present the experiment setup used to test the two approaches. We
present and discuss the results in Sect. 5. We close the paper with discussion of
related work, Sect. 6 and the conclusion 7.

Suggesting Descriptive Method Names 95

2 Two Approaches for Text Summarization

Source code written by programmers has statistical properties similar to the
natural languages such as English or Chinese. In fact, code is even more repetitive
and predictable than natural languages [12]. Which means natural language
processing approaches should be applicable to it. In this context, method names
can be seen as summaries of their method bodies in the same way as title is
a summary of an article. Therefore, the problem of generating method names
can be seen as a problem of summarizing the source code in method’s body
with a couple of English words. We will just extract all identifiers in a method
body, then we split them into words either by CamelCase or on underscores.
That way, a method body becomes a document that we want to summarize.
This preparation step is described in Sect. 3. Text summarization is divided into
extractive approaches and abstractive ones. We selected one approach from each
for our experiment: extractive is done with TF-IDF combined with an n-gram
language model; abstractive is done with an attention based sequence to sequence
neural network.

2.1 Extractive Model: TF-IDF with N-Grams

This approach is based on two steps: first extract the important words with
TF-IDF, and then order them with n-gram language model. TF-IDF stands for
Term Frequency-Inverse Document Frequency, a measure of word importance
that works by determining the relative frequency of a word in a specific doc-
ument compared to the inverse proportion of that word over the entire corpus
of documents [19]. Intuitively, this means that the high TF-IDF scores will be
assigned to words that are frequent in a given document and rare in all other
ones. It allows one to find the most representative words (keywords) in a docu-
ment and therefore can be used to summarize the given document. TF-IDF score
is low for words that frequently occur in the language—such as “and”, “the”,
etc. for English—and high for words that are frequent only in a given document.
The word scores are also used to decide how many words there will be in the
summary, the naive solution being to fix a threshold score above which words
will make up the summary. However, to get a human readable summary of a
document, the keywords also need to be ordered in a “natural” way. For this we
use the n-gram language model, a probabilistic model that learns the probability
distribution of n-grams (sequences of n words) which can be used to compute
the joint probability of any given sequence of words. For summarization, a sim-
ple solution consists in generating all possible permutations of the keywords
extracted by TF-IDF, and then find the most likely one. TF-IDF, as used in
Information Retrieval, is trained and applied on the same data. To use it on pre-
viously unseen data (summarizing new documents) it must be slightly adapted.
IDF is computed on the initial dataset, that can be called training dataset. This
allows to compute a measure of “surpriseness” of each word within the domain
of the training dataset. Then TF is computed on a, possibly new, document to
be summarized. This can raise a problem if the new document contains words

96 O. Zaitsev et al.

never appearing in the training dataset. In this case, IDF would be a division by
0. A simple solution is to remove such new words. To avoid a similar problem
with n-gram model, words that do not appear both in documents and summaries
are removed. If they appeared in the documents but not the summaries, they
could be extracted by TF-IDF, but not ordered by the n-gram model.

2.2 Abstractive Model: Sequence to Sequence Neural Network
Encod

ed

Vector

the cat is black

Encod
ed

Vector

<s> le chat

estchatle

est

noir

Decoder:

Encoder:

noir

<s>

Fig. 1. Using sequence to sequence recurrent neural network to translate an English
sentence “the cat is black” to a French sentence “le chat est noir”. Encoder takes a
sequence of English words as input and encodes it with a fixed sized vector of numbers.
Decoder takes this vector as input and produces the sequence of French words. (Color
figure online)

Recently [21] argued that abstractive summarization could be seen as a transla-
tion problem from text to summary. Automated text translation is a very prolific
research domain. Among the numerous approaches, we wanted one that made as
little assumption as possible on the problem to solve. We chose a neural network
approach that maps an input sequence (the document) to an output sequence
(the summary) and is commonly used for neural machine translation. It can
also be applied to the summarization problem additional knowledge about the
nature of the sequences other than the list of words they are made of. Specif-
ically, we use a sequence to sequence recurrent neural network with GRU cells
and attention-based decoder [7,13,23]. The fact that the neural network is recur-
rent allows one to have an input sequence of any length. In Fig. 1, it means
that each cell (green or yellow boxes) is actually the same in the network that
links to itself. The figure itself shows an hypothetical unrolled network where
each word is processed by one cell. The Sequence to sequence neural network
(aka encoder decoder neural network) means that we join two recurrent neural

Suggesting Descriptive Method Names 97

networks, where the first learns to encode the input sequence into a fixed sized
vector (see Figure) and the second learns to decode that vector into an output
sequence. Notice that this encoded vector is actually the (hidden) state of the
cell at the end of the input sequence. In the encoder, the output of the cell
(vertical arrow) is ignored, thus not represented in the Figure. In the decoder,
the output is plugged back as the input for the next step. The decoder gener-
ates the output sequence word by word including the special “end of sequence”
word (<s> in the Figure). This way, the decoder decides by itself the length of
the output sequence. The fact that both are recurrent neural networks, means
that the size of the input and output sequences can be decorrelated which is
important for the purpose of summarization. Finally such networks tend to give
more importance to the latest words and possibly forget the first ones. This is
an issue for us because, if on average, English sentences have around 20 words,
in our experiments, the average size of methods exceeds 130 words [26]. The
common approach to fight against this problem is the attention mechanism (not
illustrated in the Figure) that ensures that the position of a word in the input
sequence does not affect the output. It takes the form of an additional layer that
decides independently what attention to give to each input word.

In Fig. 1, we give two examples of the process, on top, of the translation from
English to French, and on bottom, of the translation of a tokenized source code
sentence into a tokenized method name.

3 Applying the Learning Models to Source Code

In this section, we first give some specificities of the Pharo language that influ-
ence how we applied the model. Then we describe how to prepare the methods
to train and apply the models described in the previous section.

Each method translates into two sequences of words:

– The words extracted by splitting all identifiers in the method’s body. This
will form a “document” that the models must summarize.

– The words extracted by splitting the method’s name. This will be used to
train the models on body summarization.

3.1 Pharo Language Specificities

As stated in the Introduction, the language syntax and conventions have an
impact on how we can apply the model. Pharo1 has a number of specificities
that illustrate this point:

1. Variables are not statically typed, a model could learn from the information
about the types of variables, but it is not available in Pharo.

1 pharo.org/.

https://pharo.org/

98 O. Zaitsev et al.

2. Pharo has in-place argument in method names. Unlike C like language where
arguments are grouped in parentheses at the end of a function call, in Pharo,
arguments are inserted between the parts of a method name. This way,
for example, the Java statement “ bob.send(email ,emma);” translates to “
bob send: email to : emma.” in Pharo. The consequences are that method
names are longer, their vocabulary larger and they must be split at the right
place to introduce the parameters. Longer names are not a problem per se,
this is part of the model training process to learn the right length for a name.
Splitting names at the correct place to introduce parameter is out of the
scope of this paper. We generate method names as a list of words without
the colons.

3. Because of the in-place arguments, method names in Pharo contain many
stop words such as on, with, and, to, etc. Method names in languages like
Java, Python, or C contain mostly nouns, verbs, and adjectives that are
highly representative of method’s purpose, for example, print (string , stream)
or add(element, array). Method names in Pharo use stop words to sepa-
rate and describe those arguments, for example, print : string on: stream or
add: element to: array . It can be harder for extractive model to generate stop
words because they do not necessarily appear in source code, and will most
likely be discarded as too generic. We will explore the issue of stop words in
Sect. 5.1.

4. Programming conventions dictate that methods should be very short in
Pharo. In our experiment, the median length was three lines of code (mean
around six) [26]. This means that documents are short with few words which
may influence the models.

5. Some meta information about the methods is specified by calling certain
methods from the body of the given method. For example an abstract method
is a method that calls self subclassResponsibility . This obviously affects the
model because the body of an abstract method has no relation with its name.

3.2 Data Preparation: Extracting Words from Source Code

To extract words from the methods body we: (1) only keep the identifiers in
the method’s body; (2) split the identifiers into alphabetic words; (3) convert
words to lowercase. Only keeping identifiers means that we remove comments,
symbols, numbers, strings, and characters. Note that in Pharo, true, false , and
nil are not reserved words but variable containing predefined objects. As such
we keep them as identifiers. Local variable declarations (see below, |n|) and
block arguments (see below, : char) are also ignored. Because there is no type
associated to them and they, normally, appear elsewhere in the source code,
they bring very little information. After splitting the identifiers, we may end up
with numbers that were part of the identifier, these are discarded as they are
not alphabetical words (we also ignore the underscores and/or colons that were

Suggesting Descriptive Method Names 99

parts of the identifiers). So for example, the following hypothetical method body
that computes the length of a string2:

"Computes the length of aString"

| n |

n := 1.

self do: [:char | n := n + 1].

↑ n

will result in the “document”: “n self do n n n”. This is a perfect example of the
issue that short methods raise. It is impossible to abstract a correct name for this
method from the sequence of words we extract. Fortunately, many methods are
more informative. Method names are decomposed in the same way. For example,
the name printOn: delimiter : last : becomes: “print on delimiter last”

3.3 Data Preparation: Filtering the Dataset

Furthermore, to apply the model, some methods need to be discarded:

– Methods with names from which no words could be extracted. Overloaded
operators (e.g. +) or strangely named methods (e.g. 42) would produce no
words at the tokenization step described in Sect. 3.2;

– Methods with empty body after preparation. Similarly, some very short meth-
ods, for example returning only a constant, or empty hooks, would have an
empty body after preparation;

– Fully duplicated methods, with same name and implementation, are reduced
to only one instance so as not to bias the model. Note that duplicated method
names with different bodies (e.g. toString in Java) are kept;

– Too long methods, more than 500 words in the body, are rejected for practical
reasons. Training the model with such methods becomes too long to be prac-
tical. This problem comes from the attention mechanism (see Sect. 2.2) that
requires to know the maximum input length and becomes very slow because
of that, even for the shorter methods;

– Getters and setters are very easy to generate (most IDEs can actually do it),
yet probabilistic models could fail on them. Therefore it seems better to leave
them out of the scope of a method name generation model;

– Test methods name can also be easily generated, but this is done from a
completely different source of information, usually the name of a method
or class that is being tested, not their own body. Test method naming also
follows different conventions that would require a specific model to learn;

– We said that abstract methods in Pharo were implemented with only a call
to subclassResponsibility . It makes sense to remove them from the training
set as it is impossible to learn anything from their body and this would just
introduce noise in the model. The same goes for methods consisting of the

2 The actual meaning of the code is not important, but, double quotes delimit com-
ments, pipes delimit local variables declaration, square brackets delimit lambda func-
tions, and caret is a return.

100 O. Zaitsev et al.

sole call to shouldNotImplement call, that allows to “remove” an unwanted
inherited method.

– Methods whose body would consist only of the words super, self 3, true, false ,
nil are also filtered out. Such bodies only add noise and are akin to empty
bodies.

3.4 Finetuning the Models

Training the probabilistic models involves hyperparameter tuning. This is done
by training them on a (large) subset of the dataset and validating them on a
disjoint (smaller) subset. By fine tuning the parameters, one tries to achieve
the best possible results. Assuming the dataset used is large and representative
enough, this needs to be done only once for a given programming language.
For training set, we used 70% of the whole dataset, and for validating, we used
another 10%. The remaining 20% were required for the study and comparison of
the two models and will be discussed in the next section. The Extractive model
(TF-IDF), unlike the abstractive one, cannot automatically decide how many
words it should generate. Therefore we used the following heuristics: We keep
only those words with TF-IDF score above a certain threshold. There is a lower
and upper boundaries on the number of words that can be kept. If no words
pass the threshold, we keep the one with the highest TF-IDF score. If too many
words pass the threshold, we keep only the highest TF-IDF scores. The TF-IDF
threshold was fixed to the one that gave the best F1 score (see Sect. 4.1) on the
validation dataset. The value is 2.5 for Pharo. The upper bound value was set
to 5 words, so that the n-gram model would not take too much time to find
the most meaningful order of those words. For the Abstractive model (Sequence
to Sequence Neural Network) one needs to tune parameters such as the size of
the hidden state vector, the learning rate, and the teacher forcing ratio4. These
parameters were selected to give the highest F1 score on the validation dataset.
The quality measures are discussed in Sect. 4.1). For Pharo, we recommend to set
hidden state vector = 256; learning rate = 0.01; and teacher forcing ratio = 0.5.

4 Experiment Setup

To compare the two models, we set up an experiment on some real world Pharo
projects. We shuffled and split our data into three non-intersecting subsets. The
first two were already presented in the previous section: training set (70%) and
validation set (10%). For comparing the models, we also need a third independent
set—test set (20%)—it is used to evaluate the final trained model on data not
seen during the training itself so that the training and parameter tunning are
not biased towards the test.

3 this.
4 The probability that during training the word generated by the model is substituted
by the word from a real name. It is used to make the training smoother.

Suggesting Descriptive Method Names 101

4.1 Quality Metrics

A given method name can be considered good by one developer and bad by
another. In this study, we adopt a simplified approach for automatic evaluation
which assumes that most methods in our dataset are well named, and therefore
can be used as ground truth to evaluate our models. The actual name is called
reference name, the ones generated by the models are the candidate names. We
report four different metrics of similarity between candidate and reference names:
exact match, average precision, average recall, and average F1 score. Exact match
score is the simplest and the strictest metric. It is the percentage of candidate
names that match exactly the reference names. This is our only metric that
takes into account the order of words. Exact match score is easy to interpret,
but very restrictive. Candidate name that is similar to the reference but does not
match it exactly, will receive the score of 0, as if it was completely different. We
used precision, recall, and their derived metric F1. These three metrics consider
every name as a set of words. Precision counts the percentage of words from
the candidate name that also appear in a reference name. Recall counts the
percentage of words from the reference name that also appear in a candidate
name. F1 Score is the harmonic mean5 of precision and recall [22]. We compute
these three metrics for each method and report the average of those values.

4.2 Random Baseline

Because of the limited vocabulary [26] and the fact that source code is highly
repetitive [12], we can get good results just by selecting the words randomly.
Therefore we will also compare our models to a random model as a baseline:
The random extractive model generates name for a given method by selecting K
random words from its source code. A random abstractive model, selecting K
random words from all method names in our training set, would make little sense
as it would have close to 0% chance of finding the right word (in our dataset,
there are 8,211 words [26]). We set K equal to 3, which is the average number
of words in the method names from out training set.

5 Results

In this section, we present and discuss the results of our experiment evaluation.
We experimented on 50 projects selected from Pharo ecosystem. The list of
projects, some information about them, and how they were selected, is available
in our technical report [26]. We collected 132,046 methods out of which we kept
92,127 (61%) after the filtering process described in Sect. 3. The three datasets
described in Sect. 4 have: 64,488 methods in the training set; 9,212 methods in
the validation set; and 18,425 methods in the test set. Table 1 contains several
examples of method names that were generated by our abstractive model.
5 Harmonic mean is more intuitive than the arithmetic mean when computing a mean
of ratios.

102 O. Zaitsev et al.

Table 1. Examples of method names generated with the abstractive model. The first
column contains the source code of a method which was used as input, the second
column contains the real method name which was unknown to the model, and the
third column contains the generated name.

Source code Real name Generated name

self assert : self newNode isComment. testIsCommenttestIsComment

r := aColor red. g := aColor green. b := aColor blue . color color

aVisitor visitDraggableInteraction : self with: args acceptWith accept

aPackage isPackage ifFalse : [ˆ self]. self addElement: aPackage in : self packages.addPackage addPackage

5.1 Evaluation Results

We present the results of the experiment in Table 2. As could be expected, the
random model gives bad results for exact match (0%). Its results for precision
(20%), recall (26%), and F1 score (21%) are not so bad. This is caused by the
small vocabulary.

Table 2. Evaluation results calculated on the test set for three models: the random
model that selects three random words from source code, extractive model based on
TF-IDF and n-gram model, and the abstractive model based on a sequence to sequence
deep neural network.

Model Exact match Precision Recall F1 score

Random 0% 20% 26% 21%

Extractive 2% 28% 45% 33%

Abstractive 11% 46% 32% 36%

The extractive model shows an improvement over these results, with 2%
exact match, precision of 28%, recall of 45%, and F1 score of 33%. The extractive
model cannot propose new words that did not appear in the method body, this
should reflect on a low recall which is not the case. Many methods in Pharo call
another one with a similar name (to add a default parameter for example) which
could be an explanation here. Further studies are needed to better understand
this issue. The abstractive model has the best results, with 11% exact match,
precision of 46%, recall of 32%, and F1 score of 36%. The high exact match is
surprising and may be as good as what a human would achieve. Additionally,
in Fig. 2, we plot the intermediary results of the abstractive model, one data
point every 1,000 iterations. The scores are evaluated against the validation set,
not the test set. This is what we used to finetune the parameters of the model.
For comparison, we also draw the performance of the extractive model (dashed
lines) evaluated on the validation set. F1 scores of the extractive and abstractive
models are almost the same. However, extractive model performs worse based
on the exact match score. We can try to explain this by the presence of many
stop words (e.g. with, on, to) in the names of Pharo methods (see Sect. 3.1).
One might argue that a language like Java, that usually does not exhibit such
stop words in method names, could have better score here. To validate this
hypothesis, we have identified 127 generic words such as on, with, and, etc. that

Suggesting Descriptive Method Names 103

0.0%

10.0%

20.0%

30.0%

40.0%

0 25000 50000 75000 100000

Iteration

Sc
or
e

Metrics
Exact match
F1
Precision
Recall

Models
Abstractive
Extractive

Fig. 2. Training of the abstractive model (measurements were taken once every 1000
iterations). The dashed lines are the scores achieved by the extractive model

are considered stop words in English6. We removed every occurrence of those
words in the method names of training, validation, and test sets. Then we rerun
the experiments and evaluated our three models on the new data to observe
the effect that stop words have on the generation of method names. Against our
hypothesis, the exact match of the extractive model was not affected by removing
the stop words, it remained 2%. As for the abstractive model, its exact match
score increased by 2% giving us 13% of exactly matched method names. The
changes of precision, recall, and F1 score for random, extractive, and abstractive
models are inconclusive and seem to be purely mechanical.

6 Related Work

Following the work of Gabel et al. [10] who performed the first study of the
uniqueness of code and found that source code is highly repetitive, Hindle et
al. [11,12] explored the predictability of code, and claimed that source code
is even more repetitive and predictable than natural languages. They claimed
that this predictability allows us to model code with statistical language models,
proposed the notion of software naturalness and pioneered the applications of
natural language processing (NLP) to the source code. Deep learning proved to
be very effective in modelling source code—in recent years, deep learning models
for source code found many applications for code completion [2,20,24]. Bavi
et al. [5] used auto-encoder network together with a recurrent neural network

6 The complete list of stop words that we used in this study can be found here: https://
gist.github.com/olekscode/125804150f2a559a171bf695c0a3f809.

https://gist.github.com/olekscode/125804150f2a559a171bf695c0a3f809
https://gist.github.com/olekscode/125804150f2a559a171bf695c0a3f809

104 O. Zaitsev et al.

to reverse the minification of JavaScript and generate names for local variables.
Allamanis et al. [1] introduced the first neural probabilistic language model for
source code and used it to suggest method names. This model required a large
set of hard-coded features, such as features from the containing class and the
method signature. In the later study, Allamanis et al. [3] proposed an end-to-
end (meaning that it does not require manual feature selection) convolutional
neural network with attention for method name generation. Alon et al. [4] also
attempted to predict method names form their bodies by representing source
code as a collection of paths in its abstract syntax tree and aggregating these
paths into a single fixed-length code vector. Iyer et al. [14] proposed an LSTM
network with attention to generate sentences that describe C# code snippets and
SQL queries. Their model was trained to translate between the titles of questions
posted on StackOverflow and code snippets from the accepted answers.

7 Conclusion

In this work, we explored and compared two machine learning models for text
summarization when applied to the problem of generating descriptive method
names from method bodies and thus improving the readability of source code.
The first model is based on TF-IDF and n-gram language model, it performs
the extractive text summarization by selecting important words from the source
code of a method and putting them into a meaningful order. Second model
is an attention-based sequence to sequence neural network which performs an
abstractive summarization—it can generate method names from words that have
never appeared in source code. After applying and evaluating our models on the
dataset of methods collected from 50 real-life projects written in Pharo, we have
reported the average precision score of 28% for extractive and 46% for abstractive
models, as well as the average recall of 45% for extractive and 32% for abstractive
model. 11% of method names generated by our abstractive model for methods
from an independent test set are exactly the same as the real names given to
those methods by developers.

Threats to Validity. The method names generated with our abstractive app-
roach are only as good as the names on which the model was trained. The project
that we have included into our dataset were handpicked by experts as the ones
that follow good coding practices. However, we did not manually validate each
one of the 64,488 method names in the training set, so this can be a threat to
validity. A similar threat is the validity of evaluation. We have considered the
real method names from our dataset as ground truth and used them to evaluate
the generated names. Such approach is based on the assumption that the original
names are good. In the follow-up study, we plan to perform a manual qualitative
evaluation of the generated names.

Future Work. The evaluation technique could be enhanced by supporting
the four automatic metrics of exact match, precision, recall, and F1 score with

Suggesting Descriptive Method Names 105

a human evaluation performed on a small subset of methods. For example, a
model that generates a name, “on” for a method whose real name is “printOn:”,
will be awarded with 100% precision and 50% recall. Alternatively, if the real
method name is “sumOfIntegers”, a reasonably good name such as “addAllInte-
gerNumbers” will be scored with 0 by all metrics. Those cases would be easily
spotted by a human evaluator. The same experiment should be tried with other
programming languages as we saw that Pharo methods are typically small (a
few lines of code) which limits the vocabulary available for both approaches.
This can have good or adverse consequences on the results. In this work, we
removed code comments and string literals because our study was focused on
generating method names by summarizing source code. However, as we discussed
in Sect. 3.2, many methods are very short and do not contain enough valuable
information in their source code to generate a meaningful method name. A good
extension for our study would be to utilize the natural language method descrip-
tions provided in code comments. As it was mentioned in Sect. 1 where we dis-
cussed the motivation, the automatic suggestion of method names can be used
to improve the readability of source code, which eventually would improve bug
fixing and feature request incorporation times. We plan to target this problem
through a controlled experiment or a longitudinal case study in the follow-up
journal paper. Another interesting follow-up study would be to do cross project
(or cross domain) training. In this paper, we trained on all projects (domains)
mixed but it seems reasonable to assume that different projects would have dif-
ferent naming convention and vocabulary. Again, this could impact the results.

Acknowledgements. This work is based on the Master’s thesis of Oleksandr Zaitsev
defended at the Ukrainian Catholic University [25]. Oleksandr would like to thank the
University of Chile, Inria Lille, Pharo Association, and Arolla for financial support.
Alexandre Bergel thanks the financial sponsor of Lam Research and project FONDE-
CYT Regular 1200067.

References

1. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Suggesting accurate method and
class names. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pp. 38–49. ACM (2015)

2. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning
for big code and naturalness. ACM Comput. Surv. (CSUR) 51(4), 81 (2018)

3. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme
summarization of source code. In: International Conference on Machine Learning,
pp. 2091–2100 (2016)

4. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: learning distributed rep-
resentations of code. arXiv preprint arXiv:1803.09473 (2018)

5. Bavishi, R., Pradel, M., Sen, K.: Context2name: a deep learning-based approach to
infer natural variable names from usage contexts. arXiv preprint arXiv:1809.05193
(2018)

6. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman (2002)

http://arxiv.org/abs/1803.09473
http://arxiv.org/abs/1809.05193

106 O. Zaitsev et al.

7. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

8. Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns.
Morgan Kaufmann, Burlington (2002)

9. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison Wesley, Boston (1999)

10. Gabel, M., Su, Z.: A study of the uniqueness of source code. In: Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 147–156. ACM (2010)

11. Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P.: On the naturalness of
software. Commun. ACM 59(5), 122–131 (2016)

12. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of
software. In: 2012 34th International Conference on Software Engineering (ICSE),
pp. 837–847. IEEE (2012)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

14. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a
neural attention model. In: Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 2073–2083
(2016)

15. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)
16. Koenig, A.: Patterns and antipatterns. J. Object-Oriented Program. 8(1), 46–48

(1995)
17. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. Lon-

don Academic Press, London (1985). ftp://ftp.umh.ac.be/pub/ftp infofs/1985/
ProgramEvolution.pdf

18. Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship. Pearson
Education, London (2009)

19. Ramos, J.: Using TF-IDF to determine word relevance in document queries. In:
Proceedings of the First Instructional Conference on Machine Learning, vol. 242,
pp. 133–142 (2003)

20. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical language
models. In: ACM SIGPLAN Notices, vol. 49, pp. 419–428. ACM (2014)

21. Rush, A.M., Harvard, S., Chopra, S., Weston, J.: A neural attention model for sen-
tence summarization. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, ACLWeb (2017)

22. Sasaki, Y., et al.: The truth of the F-measure. Teach Tutor Mater 1(5), 1–5 (2007)
23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural

networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

24. White, M., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D.: Toward deep learn-
ing software repositories. In: Proceedings of the 12th Working Conference on Min-
ing Software Repositories, pp. 334–345. IEEE Press (2015)

25. Zaitsev, O.: Aspects of software naturalness through the generation of identifier
names. Master’s thesis, Ukrainian Catholic University, Faculty of Applied Sciences,
Department of Computer Sciences, Lviv, Ukraine (January 2019). http://er.ucu.
edu.ua/handle/1/1338. under sup. of Stéphane Ducasse and Alexandre Bergel

26. Zaitsev, O., Ducasse, S., Anquetil, N.: Characterizing pharo code: a technical
report. Technical report, Inria Lille Nord Europe - Laboratoire CRIStAL - Univer-
sité de Lille; Arolla (January 2020). https://hal.inria.fr/hal-02440055

http://arxiv.org/abs/1409.1259
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
http://er.ucu.edu.ua/handle/1/1338
http://er.ucu.edu.ua/handle/1/1338
https://hal.inria.fr/hal-02440055

Challenges for Layout Validation: Lessons
Learned

Santiago Bragagnolo1,2(B), Benôıt Verhaeghe1,2, Abderrahmane Seriai1,
Mustapha Derras1, and Anne Etien2

1 Berger-Levrault, Montpellier, France
{santiago.bragagnolo,benoit.verhaeghe,

abderrahmane.seriai,mustapha.derras}@berger-levrault.com
2 Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL,

Lille, France
{santiago.bragagnolo,benoit.verhaeghe,anne.etien}@inria.fr

Abstract. Companies are migrating their software systems. The migra-
tion process contemplates many steps, UI migration is one of them. To
validate the UI migration, most existing approaches rely on visual struc-
ture (DOM) comparison. However, in previous work, we experimented
such validation and reported that it is not sufficient to ensure a result
that is equivalent or even identical to the visual structure of the interface
to be migrated. Indeed, two similar DOM may be rendered completely
differently. So, we decide to focus on the layout migration validation.
We propose a first visual comparison approach for migrated layout val-
idation and experiment it on an industrial case. Hence, from this first
experiment and already existing studies on image comparison field, we
highlight challenges for layout comparison. For each challenge, we pro-
pose possible solutions, and we detail the three main features we need
to create a good layout validation approach.

Keywords: GUI migration · Challenges · Comparison · Validation

1 Introduction

With the fast evolution of programming languages and frameworks, companies
tend to update their software more and more. This evolution may imply the
migration of their application GUI [15]. To ensure the proper software operation
after the update, one needs to validate and ensure the correct the migration of
GUI. Whereas manual validation is always possible, it is tedious, error-prone,
time-consuming, and is expensive for the companies. So we look for automatic
validation approaches.

While approaches base their validation on DOM1 comparison [4], few discute
the validation of the rendered UI. The visual aspect of an application is mostly
neglected, although it is essential for the end-user of the application [11], and thus
1 Document Object Model.

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 107–119, 2020.
https://doi.org/10.1007/978-3-030-58793-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_9

108 S. Bragagnolo et al.

to the acceptance of the new software. Since the software may also be accepted
or rejected by its look and feel, we consider that UI validation is extremely
important for the success of the migration.

A migration process has one of two different objectives in relation to the
migration of the UI: such process is rather visually constant, or layout con-
stant. In the case where a migration process is visually constant, it aims to
produce a migrated version with identical UI, from the layout of the widgets, to
the look and feel of the widgets. In the other hand, when the migration process is
layout constant, it aims to produce an enriched migrated version with the same
layout, but possibly visually different widgets. In both cases, the validation of
the migrated layout is a first step to the UI validation.

Inspired by other research fields [3,13,14], we propose an approach to com-
pare the layout of migrated applications with the original layouts. We exper-
imented with this approach on a real industrial migration project. From this
experience, we report a list of challenges for layout validation and provide some
solutions.

In the further sections, we discuss the need for validation in general and
particularly about layout validation (Sect. 2). We present the different existing
approaches to tackle down this problematics (Sect. 3), to explain the position
of our solution. We draft our validation process (Sect. 4), and give place to the
core of this article, the report of challenges (Sect. 5), where we describe each of
the problematics we found on the development of our method. We identify the
features that can help to solve those challenges (Sect. 6), and after a conclusion,
we present the middle term goals of our work (Sect. 7).

2 UI Validation

Our work takes place in collaboration with Berger-Levrault2, a major IT com-
pany selling Web applications developed in GWT. Unfortunately, GWT is no
longer maintained and the last update was made in 2015. As a consequence,
Berger-Levrault decided to migrate its applications to Angular 6. This migra-
tion is crucial since Berger-Levrault has more than 8 applications in GWT each
including more than 500 web pages.

In preceding work [15], we proposed an approach to migrate the front-end of
applications. We implemented this approach to migrate the GWT applications
of Berger-Levrault to Angular. Once the migration is performed, we need to
validate that the applications are correctly migrated.

Migration and validation are part of the same process. Once the validation
is done, the results are going to be used for enhancing the migration and fixing
errors. This new migration has to be validated once again, triggering a new
process of migration. This loop recurs again until the process of migration is
finished. In this context, manual validation for each iteration of the migration
process is expensive in terms of money and time. Hence, we propose to rely on
automatic validation.
2 https://www.berger-levrault.com.

https://www.berger-levrault.com

Challenges for Layout Validation: Lessons Learned 109

In this section we present the main migration validation approach we tried
from the literature and detail why it is not sufficient (Sect. 2.1). Then we detail
what is a layout validation (Sect. 2.2).

2.1 Current Migration Validation Approach

In the experimentations of validation of UI we started trying to use the com-
mon means proposed by the literature. [5,7] and [11] defined metrics to verify
the success of the migration process. They checked that all the widgets and
attributes are detected by their tools. Each widget and attribute must be iden-
tified and reachable, which means the entity type must be discovered, migrated,
and present in the target applications. Each widget should also belong to the
right container and its attributes created with the right value.

(a) GWT original
(b) Angular migration

Fig. 1. Migration of a page without considering the layout

We experimented with the above validation on the case of Berger-Levrault.
Despite that, it reported good results according to the proposed metrics, the ori-
gin and generated UIs were completely different. Figure 1 presents the migration
of one web page of a Berger-Levrault application. On the left-hand side (Fig. 1a),
it shows the original page, and on the right-hand side (Fig. 1b) the page after
the migration.

The traditional DOM proposes a tree as containing structure, where we can
have elements composed by other elements, defining a strong relation of con-
tainment and scoping. Like this we can define a document with header, body
and footer. Each of these parts can hold internal divisions, sections as well as
widgets and components, recursively contained. Comparing DOM expecting to
have a direct implication on the page rendering is the first solution. Two pages
(the original and the migrated ones) may have equivalent DOM and thus plainly
satisfy the proposed metrics. However, the migrated UI (Fig. 1b) and the original
version (Fig. 1a) do not have much in common to the human eye.

Comparing DOM might be a good starting point to compare pages but it is,
now-a-days, certainly not sufficient. In modern applications, the layout and style
are managed orthogonally to the DOM composition. Thus, these approaches are
not suitable for validating modern applications.

110 S. Bragagnolo et al.

This is why we propose to add another dimension to the validation of the UI
migration: the layout.

2.2 Layout Validation

From Merriam&Webster dictionary3 a Layout is the plan or design or arrange-
ment of something laid out.

From this definition, we consider that the layout is the position of the UI
elements the one against the others. In a UI, we have two main kinds of compo-
nents. Those that contain other components, for defining groups of components,
and those that are contained. The components containing others, such as field
set, card, panels, etc., are responsible for defining the main disposition of the
contained elements in the page. For this reason we call those UI elements: “struc-
tural layout elements”.

(a) Page (b) Page’s structural layout elements

Fig. 2. A layout example

In Fig. 2, we present the relationship between the UI and its layout. Figure 2a
shows the page as interpreted by the browser. And, in Fig. 2b we highlighted the
structural layout elements of the showed content. By highlighting these structural
layout elements we are thus revealing the layout. The empty layout boxes belong
to adds that have been silenced by the usage of ad-blocking plugins.

As we pointed out previously in Sect. 1, the migration may be required to be
visually constant or layout constant. To validate that the migrated UI complies
with the UI expectations we must take into account at least the layout.

3 https://www.merriam-webster.com/dictionary/layout.

https://www.merriam-webster.com/dictionary/layout

Challenges for Layout Validation: Lessons Learned 111

3 State of the Art

To compare the rendered UI after performing a migration, several solutions
can be considered regarding the approaches existing in the literature. First, in
Sect. 3.1, we expose existing validation approaches used to compare the visual
aspect of two software systems. Second, in Sect. 3.2, we present approaches from
other research fields that are related to image comparisons and which we think
we can use in our domain.

3.1 Applications Comparison

Moran et al. [9] compared the UI of android applications. They proposed an
approach to detect GUI changes in evolving mobile applications (e.g., between
two versions of the same application). Their approach has two main concerns:
mapping the screens between the applications version (i.e., which previous screen
corresponds to which actual screen), and detecting the GUI changes. For the
change detection, they rely on a pixel by pixel comparison of the screenshots of
the previous and current applications.

Sánchez Ramón et al. [12] proposed an approach to infer a hierarchical layout
from a UI with hardcoded widgets positions. To retrieve this layout, they use
the closeness metric between two widgets. This metric allows them to compute
the visual proximity of two elements in a UI. By grouping widgets together, they
create the new layout definition.

Cao et al. [3] migrated web archives from HTML4 to HTML5. To validate
the migration they proposed to segment the original and the migrated pages in
blocks using the DOM. Then, they took screenshots of the original and migrated
applications with blocks and computed the differences between the two pages.

Sanoja and Gançarski [13] proposed a segmentation method for web page
analysis. Their method consists on dividing a web page into blocks. To retrieve
the blocks, CSS and HTML provide them the position of all widgets on the web
page, and they use background space to separate two blocks. For example, if
there is no space between two elements, they are considered in the same block.

Alpuente and Romero [1] proposed UI comparison based on DOM analysis.
Since the observation that two different DOM may render the same UI, they
proposed to infer the visual structure (i.e., tree) of a web application from its
DOM. To do so, they classified the HTML tags into four categories, the group,
the row, the col, and the text. Then, they translated the HTML DOM using their
terminology, and they compressed the new UI tree. The compression corresponds
to a simplification of the new tree, for example, by grouping two groups together.
They considered two different pages having the same visual tree as visually
similar.

The authors proposed different ways to represents layouts, infer them, and
compare them. Some approaches rely on DOM information and DOM compari-
son while others rely on screenshot comparison. Except [9] and [1], comparison
approaches use blocks as a way to simplify the comparison problem and focus
on the layout aspect. The blocks were created from DOM information.

112 S. Bragagnolo et al.

3.2 Images Comparison

Another strategy to compare images is to take inspiration from the work on
image retrieval. This field is focused on determining if an image is similar to or
contains another one.

Van Beusekom et al. [14] proposed an approach to retrieve images based on
their layouts. To do so, they extracted from each image its layout. The struc-
tural layout elements are represented by blocks. Then, to compute the distance
between two images, the authors compute the distance between the layouts, and
so between the blocks. To improve their result, they also match each block of an
image with the other block of the compared image.

Finally, the image comparison approaches [6,10] are used to identify image
similarity. This approach allows one to compare two images and find if an image
is present in the other. It can be used to determine if two images are originally
identical even after distortion or rotation, or to determine if part of an image is
present in another one.

The proposed approaches might be used to compare two screenshots. How-
ever, since those approaches have been designed to retrieve an image inside
another it is different from our problem. So, further work must be done to verify
if their results are relevant in our context.

4 First Sketch of Solution

To validate the migration of the layout, i.e., the identical positioning of UI ele-
ments the ones against the others, we proposed and implemented an approach4.

Our approach aims to highlight the structural layout elements. It is inspired
by the definition of blocks proposed by Sanoja and Gançarski [13], Cao et al. [3]
and Van Beusekom et al. [14] The approach is divided into five steps.

First step: detecting pages to validate. The first step concerns the original
and the target applications. For each of them, this step consists in detecting
all the pages for which we have to validate the migration. By detection, we
mean being able to reach given pages if the list is known or crawling the full
application in the opposite case. Reaching a page is rather trivial, in tradi-
tional web development approaches; by precising the related URL. However,
it becomes complex, for example in modern single page applications (from
now on, SPA)5, where different components are accessed not by using URL,
but by applying specific flows of user interactions, e.g.,click, double click,
hover, etc. The output of this step is a list of pages of the source applica-
tion to validate, the way to access them, their corresponding pages in the
migrated application as well as the way to access these latter. There are dif-
ferent techniques of crawling and discovery that suit this case. In the context

4 https://github.com/badetitou/Pasino.
5 A Single page application is a web application or website that interacts with the web

browser by dynamically rewriting the current web page.

https://github.com/badetitou/Pasino

Challenges for Layout Validation: Lessons Learned 113

of Berger-Levrault, we rely on the migration tool that provides us this infor-
mation gathered during the process of migration.

The four next steps are iteratively repeated for each couple of pages (one of
the source application and its corresponding one in the migrated application).
We describe the next step for a couple of source and migrated pages.
Second step: browsing original and migrated pages. The two pages are browsed
by using a browser (i.e., Firefox, Chrome, Edge, Safari, etc.). The same issues
are faced concerning SPA applications what is the case for Berger-Levrault
applications. In that cases, we use Selenium6 to navigate through pages by
simulating user interactions and access to the page to analyze.
Third step: creating blocks. Each browsed page must be prepared and nor-
malized for further comparisons, i.e., the size of the pages must be the same
before taking screenshots to ease future image comparison. In this step, we
choose and extract the elements to compare. Since we are validating layouts,
we must emphasize the structural layout elements with their inner structural
layout elements. Since we are not validating the look of the components, such
as buttons, labels, text boxes, etc., we must underemphasize or silence the
content for ignoring the comparison of these details. Concretely, we create
blocks corresponding to each of the structural layout elements. In the context
of Berger-Levrault, we apply a new CSS on the pages. The CSS converts all
fieldset widgets into blocks with transparency. Thus, we can look at blocks
composition.
Fourth step: taking screenshot. Our approach relies on a visual validation.
Consequently, after creating the blocks, we take snapshot of the result as a
visual mean of comparison. So we get an image with only structural layout
elements.
Fifth step: comparing. We compare, pixel by pixel, the screenshots of the
source application and the ones of the migrated application.

We applied our tool on the migration project of Berger-Levrault from GWT
to Angular. Figure 3 shows the screenshots created by our approach using blocks.
On the left-hand side, it shows the original page screenshot and its corresponding
screenshot after applying the creation of blocks. On the right-hand side, it shows
the equivalent screenshots for the migrated page.

Although it looks visually equivalent, and there are no differences between
the two, the distance between the blocks and the size of the blocks are slightly
different. Figure 4 shows the difference pixel by pixel of the blocks screenshots.
Red pixels represent positions where there are differences between the source and
the migrated pages. Even though there are few perceptual differences between
the two images, the comparison of the blocks reports 9% of the exported image
incorrectly migrated.

This 9% may look like a small number. In our context, this is not true.
Indeed, Fig. 5 shows pixel by pixel comparison, between the original page and

6 https://www.selenium.dev/.

https://www.selenium.dev/

114 S. Bragagnolo et al.

(a) GWT original page (b) Angular migrated page

(c) Blocks GWT page (d) Blocks Angular page

Fig. 3. Apply approach on GWT to Angular migration

Fig. 4. Diff between pages (Color figure online)

(a) Blocks GWT page (b) Angular Grey box

Fig. 5. Difference in between original and a full grey block

a full grey block of the same size. As can be seen in Fig. 6, following the same
strategy to measure the difference between the two screenshots, it was reported
5% of the image bad exported. So, our strategy reports that a full grey block
layout is better than the one created from a real migration. But, it is completely
false. Thus, it confirms that we need a smarter way to validate layout migration.

Challenges for Layout Validation: Lessons Learned 115

Fig. 6. Diff between original and a full grey block

5 Challenges of Layout Validation

From our experiment and the state of the art, we identified several challenges for
the layout validation. Those challenges have to be considered for future layout
validation tools. We identified 6 challenges: structural layout elements (Sect. 5.1),
Ajax-based architecture (Sect. 5.2), successive shifting (Sect. 5.3), dynamic con-
tent (Sect. 5.4), interactive widget (Sect. 5.5), and overlap (Sect. 5.6).

5.1 Structural Layout Elements

Problem: One major problem is how to identify the structural layout elements
in a page. In our experiment, we considered that fieldsets are the structural
layout elements of all pages. However, layout also exists in pages where the DOM
does not contain any fieldsets. So, one challenge is to define how the layout is
expressed.

Solution: We identified two ways to solve this problem. One is to rely on DOM
and CSS information. For each source language, we need to manually define what
are the structural elements. For example, it can be CSS classes in modern web
applications; or table nesting in legacy systems, as GWT. The other solution is
to extract the structural layout by analyzing the screenshots [13].

5.2 Ajax-Based Architecture

Problem: One requirement to validate the UI migration is to be able to browse
each couple of source and migrated UI pages. One can think, for a web applica-
tion, of using URL of each page as a reference. However, recent web applications
are developed using the Ajax framework. Ajax allows developers to modify the
UI of a page without properly navigating, e.g., changing the URL. It is the case
of SPA promoted by recent UI frameworks: Angular, React, etc. So to browse a
page, a tool can not simply get the URL content but need to perform actions on
the UI.

116 S. Bragagnolo et al.

Solution: To browse each page, the validation tool needs to know the suite of
actions to perform, and a way to execute them. The suite of actions can be
extracted using a crawler [2], however, crawling SPA application is complex [8].
Then, to perform the actions, we propose to use already developed tools used
in GUI testing such as Selenium. Those tools allow one to programs interaction
with a UI.

5.3 Successive Shifting

Problem: As identified by [13], the shifting of one block (because it is rendered
with an incorrect size or position) may cause shifting of other blocks. Moreover,
a slight error repeated on each block (for example each block is larger by only
a few pixels) may create important differences in a screenshot but impact only
slightly the layout.

Solution: Instead of comparing an image pixel by pixel or block position by
block position, one can compare the position of blocks relative to visually near
blocks. Thus, the validation approach will report minimal differences and not
completely different pages. This comparison is more complex because it requires
block identification, i.e., recognizing the same blocks in source and migrated
applications.

5.4 Dynamic Content

Problem: Some widgets, such as a table, can display information coming from
an external server. If the received data changed, or if the component does not
receive the data, the widget does not fill the same space in the original and
migrated UI. While missing data does not impact the layout definition (in terms
of relationships), it impacts the pixel to pixel comparison.

Solution: We found two ways to solve this problem. One is to identify the blocks
in the original and migrated UI, then to compute the relationship between blocks.
If the relationships are the same in the original and migrated UI, then the UI have
the same layout. The other is to empty out the dynamic components applying
some javascript routines, and thus do not consider data but still the default size
of the component.

5.5 Interactive Widget

Problem: Some widgets are interactive. It is the case of the expandable panel, a
panel that can be opened or closed by the user. The state of such components
does not impact the layout but can change the size of the blocks. Thus, in block
to block or pixel to pixel comparison, the validation tool reports bad migration
whereas for example, states are not the same, by default in both applications.

Challenges for Layout Validation: Lessons Learned 117

Solution: One solution is to collect the state of the widgets in the original appli-
cation, and then to set the state of the widgets in the migrated application before
taking the screenshot. To set the states, one can use a tool such as Selenium.

5.6 Overlap

Problem: User interfaces are composed of multiple structural layout elements,
i.e., panel, fieldset, card. Proposed approaches, like ours, validate the layout
migration by comparing layout composing blocks. Such approaches must consider
that some layout elements overlap other layout elements. So, the z-index, i.e.,
defining which widget is rendered on top of which one, must be extracted to
validate correctly the interface.

Solution: One solution to handle the overlap is to use transparency when dis-
playing the blocks. This solves the problem of a block inside another, but it does
not provide much information about which block is on top of which one. One
could use the DOM structure and CSS to extract this missing information.

6 Validation Helping Feature

Additionally to the identified challenges, we propose three important next fea-
tures for validation approach that would help solving the challenges: block iden-
tification (Sect. 6.1), traceability (Section 6.2), and comparing the relationship
between elements (Sect. 6.3).

6.1 Block Identification

Currently, our approach is based on the comparison pixel by pixel of two screen-
shots. Those screenshots are divided into blocks, but those blocks are not con-
sidered during the comparison. However, identifying the block in the screenshot
would enable one to perform more precise analyses. For example, one can count
the number of blocks or compare the pixels of a source block with the rest of
the migrated UI.

At the same time, such a feature will ease the traceability feature (see next
subsection) and allows one to compute blocks relationship, which is the main
concept of what layouts are.

6.2 Traceability

The traceability is the ability to identify blocks couple, i.e., which block in the
source application corresponds to which one in the migrated application. We
identified two ways to trace blocks: by analyzing the source code of the UI, or
by comparing blocks position between source and migrated UI.

For the source code, one can use DOM information to retrieve the block
couples. Indeed, DOM elements may have a unique id that can be migrated and

118 S. Bragagnolo et al.

so used to retrieve the block. One can also think of using XPath to retrieve the
same element in the UI.

In case the source code of the migrated or the source application does not
contain enough information, and if it is not editable, one can rely on compar-
ing blocks position if the block identification (see preceding section) is enabled.
Indeed, if the blocks are identified, one can recreate part of the blocks couples
by comparing the position of blocks in the source and migrated application.
Two blocks with approximately the same position in the source and migrated
applications are likely to represent the same UI element.

Having the traceability will allow more precise analyses. Instead of comparing
the UI of source application with the migrated one, one will be able to perform
the analysis block by block.

6.3 Block Relationship

The block identification should enable the block relationship analysis. Instead
of comparing pixel by pixel or block by block, the approach can compare the
relationships between the blocks. Indeed, relationships are what define layout.

To do so, we need to extract from source and migrated screenshots the rela-
tionship between blocks, and compare them. Such an extraction might be diffi-
cult because of the preceding identified challenges. However, dealing with block
relationship would be the final step in layout migration validation.

7 Conclusion and Future Work

From a previous experiment, we identified the lack of approach to test the layout
of migrated GUI. Moreover, many validation techniques proposed in the liter-
ature are getting obsolete with modern frameworks and architectures. In this
paper, we explored the state of the art and proposed a new simple approach
based on other research fields. Thus, we identified future challenges in layout
migration validation.

Finally, we proposed three main future work projects we will study: the block
identification in an image, the traceability between source and migrated GUI,
and the relationship between the blocks.

References

1. Alpuente, M., Romero, D.: A visual technique for web pages comparison. Electron.
Notes Theor. Comput. Sci. 235, 3–18 (2009)

2. Amalfitano, D., Fasolino, A.R., Tramontana, P.: A GUI crawling-based technique
for android mobile application testing. In: 2011 IEEE Fourth International Con-
ference on Software Testing, Verification and Validation Workshops, pp. 252–261.
IEEE (2011). ISBN 978-1-4577-0019-4. https://doi.org/10.1109/ICSTW.2011.77.
http://ieeexplore.ieee.org/document/5954416/

https://doi.org/10.1109/ICSTW.2011.77
http://ieeexplore.ieee.org/document/5954416/

Challenges for Layout Validation: Lessons Learned 119

3. Cao, J., Mao, B., Luo, J.: A segmentation method for web page analysis using
shrinking and dividing. Int. J. Parallel Emergent Distrib. Syst. 25(2), 93–104
(2010)

4. Hayakawa, T., Hasegawa, S., Yoshika, S., Hikita, T.: Maintaining web applications
by translating among different RIA technologies. GSTF J. Comput. 2(1), 250–256
(2012)

5. Joorabchi, M.E., Mesbah, A.: Reverse engineering iOS mobile applications.
In: 2012 19th Working Conference on Reverse Engineering, pp. 177–186.
IEEE (2012). ISBN 978-0-7695-4891-3, 978-1-4673-4536-1. https://doi.org/10.
1109/WCRE.2012.27. http://ieeexplore.ieee.org/document/6385113/

6. Karami, E., Prasad, S., Shehata, M.: Image matching using sift, surf, brief and
orb: performance comparison for distorted images. arXiv preprint arXiv:1710.02726
(2017)

7. Memon, A., Banerjee, I., Nagarajan, A.: GUI ripping: reverse engineering of graph-
ical user interfaces for testing. In: Proceedings of the IEEE Working Conference on
Reverse Engineering (WCRE 2003), pp. 260–269. IEEE Computer Society Press,
Los Alamitos, November 2003

8. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Trans. Web 6(1),
1–30 (2012). ISSN 15591131. https://doi.org/10.1145/2109205.2109208. http://dl.
acm.org/citation.cfm?doid=2109205.2109208

9. Moran, K., Watson, C., Hoskins, J., Purnell, G., Poshyvanyk, D.: Detecting and
summarizing GUI changes in evolving mobile apps. arXiv:1807.09440 [cs], July
2018

10. Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image
comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)

11. Sánchez Ramón, O., Sánchez Cuadrado, J., Garćıa Molina, J.: Model-driven reverse
engineering of legacy graphical user interfaces. Autom. Softw. Eng. 21(2), 147–186
(2014). ISSN 0928-8910, 1573-7535. https://doi.org/10.1007/s10515-013-0130-2

12. Sánchez Ramón, Ó., Sánchez Cuadrado, J., Garćıa Molina, J., Vanderdonckt, J.:
A layout inference algorithm for graphical user interfaces. Inf. Softw. Technol. 70,
155–175 (2016)

13. Sanoja, A., Gançarski, S.: Migrating web archives from HTML4 to HTML5: a
block-based approach and its evaluation. In: Kirikova, M., Nørv̊ag, K., Papadopou-
los, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 375–393. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66917-5 25. ISBN 978-3-319-66917-5

14. Van Beusekom, J., Keysers, D., Shafait, F., Breuel, T.M.: Distance measures for
layout-based document image retrieval. In: Second International Conference on
Document Image Analysis for Libraries (DIAL 2006). IEEE (2006)

15. Verhaeghe, B., et al.: GUI migration using MDE from GWT to angular 6: an
industrial case. In: 2019 IEEE 26th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), Hangzhou, China (2019). https://hal.
inria.fr/hal-02019015

https://doi.org/10.1109/WCRE.2012.27
https://doi.org/10.1109/WCRE.2012.27
http://ieeexplore.ieee.org/document/6385113/
http://arxiv.org/abs/1710.02726
https://doi.org/10.1145/2109205.2109208
http://dl.acm.org/citation.cfm?doid=2109205.2109208
http://dl.acm.org/citation.cfm?doid=2109205.2109208
http://arxiv.org/abs/1807.09440
https://doi.org/10.1007/s10515-013-0130-2
https://doi.org/10.1007/978-3-319-66917-5_25
https://hal.inria.fr/hal-02019015
https://hal.inria.fr/hal-02019015

Towards Automated Taxonomy Generation
for Grouping App Reviews: A Preliminary

Empirical Study

Saurabh Malgaonkar(B), Sherlock A. Licorish, and Bastin Tony Roy Savarimuthu

Department of Information Science, University of Otago, Dunedin, New Zealand
{saurabh.malgaonkar,sherlock.licorish,

tony.savarimuthu}@otago.ac.nz

Abstract. App reviews often reflect end-users’ requests, issues or suggestions
for supporting app maintenance and evolution. Hence, researchers have evalu-
ated several classification approaches for identifying and classifying such app
reviews. However, these classification approaches are driven by manually derived
taxonomies. This is a limitation given the burden of human involvement, numerous
app reviews and dependency on the availability of domain knowledge to perform
classification. In this pilot study,we develop and evaluate a novel approach towards
the automatic generation of a dynamic taxonomy that groups related app reviews.
Our approach uses natural language processing, feature engineering and word
sense disambiguation to automatically generate the taxonomy. We validated the
proposed approach with app reviews extracted from the popular My Tracks app,
where outcomes revealed a 72% match with a manual taxonomy generated from
domain knowledge provided by humans. Our approach shows promise for rapidly
supporting software maintenance and evolution.

Keywords: App reviews · Natural language processing · Contextual semantic
similarity · Taxonomy · Classification

1 Introduction

Informative reviews expressed in natural language pertaining to apps contain valu-
able information reflecting requests for app features, specific issues (encountered bugs)
related to the app or suggestions for improvements [21]. App developers are thus always
on the lookout for efficient methods to classify and analyse such app reviews to convert
them into actionable knowledge [21]. This knowledge contributes significantly towards
softwaremaintenance and evolution [17]. In the past, researchers have employed classifi-
cation approaches as oneof themethods to obtain actionable knowledge fromapp reviews
[17]. Such classification approaches group together app reviews having common char-
acteristics into specific categories based on a taxonomy derived manually from domain
knowledge. This domain knowledge is made available by domain experts (humans) [17],
which is burdensome, especially when there are numerous app reviews. In this study, we

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 120–134, 2020.
https://doi.org/10.1007/978-3-030-58793-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_10

Towards Automated Taxonomy Generation for Grouping App Reviews 121

address the above-mentioned challenges by proposing and evaluating a novel classifica-
tion approach which groups app reviews based on an automatically generated taxonomy.
The automatic generation of the taxonomy is inspired by multiple knowledge domains
such as natural language processing, feature engineering and word sense disambiguation
based on contextual semantic similarity [11]. In the development of our novel approach
we first extract informative reviews from a vast pool of app reviews using an automated
rule-based filtering approach [6]. Next, we utilise natural language processing to perform
necessary text pre-processing operations [1], and later tag the nouns as app features that
are being reported, and the associated adjectives and verbs as the descriptors explaining
the complaints about issues or requests/suggestion pertaining to those app features [13,
16]. These are modelled as the basis for representing the categories of the taxonomy.
Finally, the categories of the taxonomy are used for grouping the informative reviews,
which are then evaluated. To the best of our knowledge, our proposed classification
approach offers a unique contribution to the app reviews mining and software mainte-
nance domains. Our prime contributions are: (1) an approach for automatic generation
of app reviews taxonomies, (2) empirical evidence pointing to the effectiveness of our
approach, and (3) a set of recommendations for how the approach should be used.

The following two research questions motivated our enquiry:

RQ1. How can an approach be developed to automatically generate a taxonomy to
classify app reviews into groups?
RQ2. How will the automated taxonomy compare to one developed manually?

We review related work in Sect. 2, evaluate multiple domains in view of combining
various methods to answer RQ1 in Sect. 3, and further evaluate these methods in Sect. 4.
Section5provides our results to answerRQ2.Wediscuss outcomes and their implications
in Sect. 6, and consider threats to validity in Sect. 7. Section 8 presents concluding
remarks and future work.

2 Research Gaps and Related Studies

A review of the literature reveals that all classification approaches for grouping app
reviews are driven by domain knowledge made available manually by experts. For
instance, Maalej et al. [17] manually created four specific categories to classify app
reviews using basic keyword lookup grouping mechanism, Naïve Bayes, Decision Tress
or Maximum Entropy. Panichella et al. [22] have created a taxonomy to classify app
reviews using the J48 machine learning method. Ciurumelea et al. [7] have used a tax-
onomy comprising of five set of customised categories to classify app reviews using
the Gradient Boosted Trees classifier. In the study, a set of random app reviews are
manually labelled into categories by a domain expert. Later, the performance of a set
of classifiers such as Naïve Bayes, SVM and logistic regression were evaluated towards
the automation of the classification task. Di Sorbo et al. [8] have developed a more fine-
grained taxonomy where app developers are required to manually check each grouped
app review for context subsequently. Such studies raise the question ‘What if under cer-
tain circumstances the domain knowledge required for classification is unavailable?’.

122 S. Malgaonkar et al.

Furthermore, the need to manually analyse app reviews seems to be unavoidable in most
of the previously generated solutions. For instance, Maalej et al. [17] group app reviews
into one of four categories: ‘bug reports’, ‘feature requests’, ‘user experience’, and ‘rat-
ings’. Of note here is that the taxonomy does not identify specific details (e.g., which
feature is buggy), thus requiring app developers to analyse each app review for the nec-
essary information after classification is performed. This challenge remains for the other
taxonomies reviewed above as well. A critical evaluation of the abovementioned studies
and others is presented here1. Here it is observed that there is no universal manually
derived taxonomy made available for classifying app reviews, so that the classification
process could be independent of the availability of domain knowledge. Another major
drawback of manually created taxonomies which use knowledge from domain experts
is the necessity to update the taxonomy as the software product evolves. To address
such drawbacks, we were motivated to develop and evaluate an automated taxonomy
generation approach for classifying app reviews.

3 Automatically Generating Taxonomy (RQ1)

In this section we explore the concepts and methods that lead to the design of an
automated taxonomy from a corpus of app reviews.

3.1 Feature Engineering

The identification of product features is a crucial step during any product engineering
(or re-engineering) process [4]. However, feature identification could be challenging
due to variations in the way product reviews are specified, and thus domain knowledge
becomes necessary.With the possession of domain knowledge, featuresmaybe identified
by analysing the grammar structure of product reviews, where identifiers may be evident
[13, 16]. To date, researchers have used parts of speech (POS) tagging for this purpose
[13, 16]. Thus, we take inspiration from this approach for developing our taxonomy.
We assume that nouns mentioned in app reviews are app features, and adjectives and
verbs are issues, suggestions or requests related to the particular app feature [13, 16].
For example, consider the app review, “GPS (noun - app feature) is inaccurate (adjective
- issue) and has to be improved (verb - request/suggestion)” [13, 16]. In the example,
GPS is the app feature, inaccurate depicts the issue associated with the app feature,
and improved reflects the request pertaining to the app feature [13, 16]. These patterns
may form the core of a potential taxonomy generated through feature engineering, as
depicted in Fig. 1, where an example is illustrated. Such a taxonomy would aid towards
the grouping of similar app reviews. We next consider our investigation of suitable
semantic similarity methods.

3.2 Semantic Similarity Methods

Corpus-based methods are often used to determine the semantic similarity between
words [20]. These methods operate on the principle of word sense disambiguation by

1 https://tinyurl.com/wy8tc39.

https://tinyurl.com/wy8tc39

Towards Automated Taxonomy Generation for Grouping App Reviews 123

examining word pairs and their context of use [20]. Word pairs are awarded a score
given the strength of their association [20]. Such analyses may take multiple forms: (1)
similarity measures based on features, (2) similarity measures based on graphical edges,
(3) similarity measures based on information theory, or (4) similarity measures based
on knowledge distribution [25]. These methods use dictionaries which provide formal
descriptions of the words that can be compared for semantic similarity purposes (e.g.,
medical knowledge on genes).

Fig. 1. An example of a generated taxonomy through feature engineering

Therefore, these knowledge sources (dictionaries) need to be created before com-
puting necessary semantic measures [20]. Thus, the major disadvantage of semantic
similarity methods that use dictionaries is that they are entirely dependent on the exis-
tence of domain knowledge. There may also be variations in the way words are used in
different contexts by humans [20], which poses a challenge. This challenge lies at the
heart of our proposal to automatically generate taxonomy from app reviews.We contend
that the need to involve domain experts required for previously proposed taxonomies is
problematic. In fact, even if such curated knowledge were available, differences in the
waywords are used by software users would pose a challenge. For example, the meaning
of the word ‘draining’ in a dictionary is ‘making a particular liquid run out of a particular
space’. However, in terms of app reviews, ‘draining’ is associated with the consump-
tion of a device’s battery power. That said, given the nature of app reviews, most often,
the words that are in close proximity of each other are often contextually similar [17].
This is because, app reviews often contain semantically similar words in close vicinity
of each other [26]. For instance, consider the app review: ‘not possible to accurately
track time and distance’. This app review indicates that the particular app is not able to
accurately track time and distance. Of note here is that ‘accurately’, ‘track’, ‘time’, and
‘distance’ are in close proximity to each other, potentially indicating their contextual
semantic similarities. This pattern is repeated for many app reviews, suggesting that in
vector space representation of words (from app reviews), semantically similar words in
terms of their contextual application are often close to each other, while the extraneous
words are distant [26]. This forms the basis for the generation of our taxonomy which
identifies the verbs and adjectives that are semantically closer to a particular noun based
on their context of usage. Hence, we investigated three methods (COALS, PPMI and
GloVe) that measure semantic similarities between words, and evaluated these methods

124 S. Malgaonkar et al.

in view of selecting the best performing one for our taxonomy generation. We selected
thesemethods because they have been evaluated against other methods showing superior
performance [5, 23, 24].

3.2.1 COALS

CorrelatedOccurrenceAnalogue toLexical Semantic (COALS) is aword vector distance
proximity method that addresses the drawbacks of its predecessor Hyperspace Analogue
to Language (HAL) and the well-known method Latent Semantic Analysis (LSA) [24].
Initially, COALS creates a word-word co-occurrence matrix from the text corpus, using
a ramped window of size four. For each word w1, COALS counts the number of times
every other wordw2 occurs in proximity tow1, and stores the weighted count of the total
occurrences of the relevant word pairs (w1 with w2) in the respective cell of the word-
word (w1 − w2) matrix. The ramped window of size four is responsible for generating
the appropriate word counts. For instance, if w2 occurs adjacent to w1, the window
assigns a count of four, if w2 is separated from w1 by one word, the window generates a
count of three, and so forth, down to a count of one for a distance of three words. Finally,
the word-word co-occurrence matrix portrays the weighted sum of all occurrences ofw2
in proximity to w1. In the next stage, the Pearson’s correlation coefficient is calculated
between the weighted vector counts of the occurrence of words w1 and w2. This, in
general, provides further insights into the vicinity of w2 with w1. Furthermore, with
this context in the background, COALS converts all the negative correlation values in
the matrix to zero, and computes the square roots of the positive ones. The square root
operation further normalizes the matrix, thus making COALS unbiased towards larger
positive values. The positive values of the matrix correspond to the word-word pairs that
convey a substantial amount of information. Finally, the semantic similarity score S of
word pair (w1 andw2) is calculated using the data present in the normalizedmatrix. Since
COALS operates only on positive values, the correlation distance measure is known to
provide accurate results than the cosine measure, as correlations tend to be subtler than
cosines [24].

3.2.2 PPMI

PointwiseMutual Information (PMI) calculates the degree of co-occurrence between two
words (w1 and w2), as defined by PMI (w1, w2)= log2 (p(w1, w2)/(p(w1) * p(w2))) [5].
This formula, in general, considers the probability of co-occurrence of two words given
their joint distribution (occurring together), and their individual distribution (separate
individual counts). However, the PPMI determines the co-occurrence of two words by
considering only the positive PMI values, and the formula is stated as PPMI (w1, w2)
= max(log2 (p(w1, w2)/(p(w1)* p(w2))), 0) [5]. Both methods create the word-word
occurrence matrix to utilise the counts of the particular word-word pair along with the
individual counts of each word present in that pair. PPMI first prepares the word-word
co-occurrence matrix. Then, the PPMI formula is applied on each word-word pair entry
in the matrix, i.e., PPMI is computed on the word-word co-occurrence matrix. Finally,
cosine distance is used to determine the semantic similarity score of any word pair (w1
and w2).

Towards Automated Taxonomy Generation for Grouping App Reviews 125

3.2.3 GloVe

Global Vectors for Word Representation (GloVe) is a global logarithmic based bilin-
ear regression method that inherits the strengths of the co-occurrence matrix and the
application of context window [23]. Initially, it generates a word-word co-occurrence
matrix that stores the count of the number of times a particular word (w1) occurs in
the context of another word (w2). Furthermore, this method considers only the nonzero
counts generated in the word-word co-occurrence matrix for further processing. After
the generation of the word-word co-occurrence matrix, the method provides insights
on the semantics of words from the perspective of the word-word co-occurrence matrix
using probabilistic operations and highlights the contextual similarity between the words
through the resulting vectors. For each word in the matrix, the method creates a func-

tion f
(
Vw1, Vw2, Ṽw

)
by calculating the probability of word (w1) that appears in

the context of the other word (w2) with reference (context) to another word (w). The
V in the function indicates the particular word vector and V˜ is the representation of
the vector space of the contextual word w, which is used to determine the degree of
contextual semantic similarity between w1 and w2. The relationship between the words
w1 and w2 is determined by processing the ratio of the words’ co-occurrence probabil-
ities with reference to a contextual word w. The authors use a weighted least squares
(WLS) regression approach to deal with fewer counts of word-word pairs occurring in
the matrix, thus preventing any bias and avoiding noisy information. Finally, the method
returns the semantic similarity score S of word pair (w1 and w2).

3.3 Pareto Distribution Law

Irrespective of the best performingmethod being shortlisted for generating the necessary
taxonomy for grouping informative reviews, we still face the challenge of determining
the number of relevant categories for the taxonomy. The question is, do we model all
individual nouns (app features) and their associated adjectives and verbs (requests,
issues or suggestions) as categories? We address this challenge with the assistance
of Pareto distribution law which provides the 80–20 rule that states that 80% of the
contribution towards a cause is given by 20% of its specific participating entities [12].
The application of this law is common in the software engineering field. For instance,
Archak et al. [2] have applied the law to identify 20% of the crucial product features that
had an impact on 80% of sales. We take inspiration from this study and utilise the Pareto
distribution law to shortlist entries (noun-adjectives/verbs) to generate our taxonomy in
which we identify 20% of the categories reflecting 80% of the app features along with
their associated issues, requests or suggestions. All other app features are then grouped
in a neutral “Others” category. It is to be noted that the particular app feature in the
taxonomy represents the name of the particular group.

3.4 Keyword Lookup Grouping Mechanism

After finalising the suitable semantic similarity method and determining the number of
categories based on the Pareto distribution law, we utilise the keyword lookup (string
matching) grouping mechanism to group informative reviews into relevant groups [17].

126 S. Malgaonkar et al.

An informative review from the corpus gets categorised into a particular group if a word
from the informative review matches with any word of a particular group present in
the taxonomy (app features, issues, suggestions, or requests). That said, as noted above,
if any informative review does not get categorised in any group, it is grouped in the
‘Others’ group to prevent the loss of information.

4 Experimental Setup and Evaluation

This section provides details regarding the procedures employed to drive our experiment
and validate the primary outcomes of this study. First, we provide a brief introduction to
the dataset that was used for experimentation purpose (Sect. 4.1).We then provide details
on the text pre-processing operations that were performed (Sect. 4.2). Thereafter, we
provide details regarding the three methods (COALS, PPMI, and GloVe) that were used
to generate the required entries (noun-adjectives/verbs) and evaluations of the subsequent
outcomes (Sect. 4.3). We next provide details of evaluations setup for our automatically
generated taxonomy (Sects. 4.4). Our experiments were conducted using Python2.

4.1 Dataset

In order to demonstrate and evaluate our approach to automatically generate taxonomies
for grouping informative reviewsweutilise theMyTracks3 datasetwhich consist of 4,440
app reviews. My Tracks Android app assists its end-users to automatically or manually
set and track feasible routes for their outdoor activities such as jogging, walking, skiing,
biking, and so on. The app also allows end-users to check statistics of their activities in
terms of the distance travelled, speed, ground elevation levels or calories burned. Further,
this app allows end-users to save summary statistics on their computer, or share the same
data with other similar apps, thus exhibiting a wide spectrum of functionalities to make it
highly eligible for evaluation purpose. In addition, theMy Tracks dataset was selected in
this study as we have previously provided software maintenance insights for the devel-
opers of this app, and thus this software (app) provides a good baseline for evaluating our
preliminary outcomes in this study. We extracted 1,628 informative app reviews using
the automated filtering approach mentioned in [6]. Using this approach, 35% of the app
reviews were manually labelled as either informative (app feature requests, issues, sug-
gestions for improvements) or non-informative (useless content, e.g., baseless criticisms
or praises). Thereafter, Expectation Maximization of Multinomial Naïve Bayes is used
to predict the labels of the remaining 65% of the app reviews [6].

4.2 Text Pre-processing

Initially, we performed the basic text pre-processing operations on the extracted infor-
mative reviews such as removal of special characters, punctuations, whitespaces and
numbers. Thereafter, we converted the pre-processed informative reviews into lower

2 https://www.python.org/.
3 https://tinyurl.com/w4azwge.

https://www.python.org/
https://tinyurl.com/w4azwge

Towards Automated Taxonomy Generation for Grouping App Reviews 127

characters, eliminate stop-words and perform lemmatization [1]. That said, the initial
task of the experiment is to identify nouns, adjectives, and verbs from the pre-processed
informative reviews (refer to Sects. 3.1 and 3.2 for examples). To achieve this outcome,
we use the average perceptron POS tagger as it outperforms the other types of POS
taggers and is known to scale across domains [10]. After tagging the necessary nouns,
adjectives, and verbs in the pre-processed informative reviews, we provide the tagged
informative reviews (e.g., GPS – NOUN, inaccurate – ADJECTIVE, drain – VERB) as
input to each of the semantic similarity methods (COALS, PPMI, and GloVe) for their
evaluation. We provide details regarding this process next.

4.3 Evaluation of COALS, PPMI and GloVe

The objective of the evaluation process is to shortlist the best performing semantic sim-
ilarity method based on its accuracy in determining the contextual semantic similarity
between nouns and adjectives or verbs occurring in informative reviews. Initially the
semantic scores generated by the methods (COALS, PPMI, and GloVe) for each word
pair are compared with those assigned manually by the three authors, and later through
Pearson correlation analysis, the accuracy of the method is determined [18]. The higher
the degree of correlation between the authors’ scores, and those generated by the partic-
ular method for each word pair, the greater is the accuracy of the method. To accomplish
the objective of assigning the semantic scores to each word pair using a compatible
range, we map the semantic similarity numerical scale (0–1) onto the interval scale
(Low-Medium-High) in conforming to convention [3]. Thus, we map the 10 numerical
semantic scores produced by COALS, PPMI, and GloVe (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1) onto 3 interval scales (Low, Medium, and High) using the class interval
method [3]. Based on the computed class interval scale range, we map numerical scales
in range 0–0.3 as the Low interval scale, numerical scales in the range 0.4–0.6 as the
Medium interval scale, and finally numerical scales in the range 0.7–1.0 as the High
interval scale. Table 1 illustrates the rationale behind the assignment of semantic scores
with the support of relevant entries as an example.

We use the guidelines in Table 1 to evaluate the results generated by the COALS,
PPMI, and GloVe methods. Each method generated results that consisted of several
entries wherein each entry represents a noun and the adjectives and verbs semantically
similar to the particular noun. For example, consider that ‘phone’ is returned as a noun,
and COALS identified a semantically similar verb as ‘scrolling’ (0.9 - High), with other
adjectives and verbs having varying scores. The average semantic score is then computed
for entries associated with the ‘phone’ noun. These outcomes are then evaluated against
manually assigned pairs, where Fleiss’s Kappa statistics are then computed to assess
reliability [9].

4.4 Evaluation of Generated Taxonomy

We validate the automatically generated taxonomy using a qualitative content analysis
approach [19]. For this process, initially the first noun entry from the automatically gen-
erated taxonomy is selected. We then check for the presence of the noun in the pool of
informative reviews. Next, we manually analyse each informative review to determine

128 S. Malgaonkar et al.

Table 1. Protocol for manual assignment of semantic scores

Range and label Justification for the semantic score
assignment

Word pair and example

0–0.3 low Word pair entries falling in this range
represent a low semantic score, as
there is an irrational relationship
observed between the word pair.
Such word pairs lack word sense
disambiguation

“I got it on my ‘phone’ and tried it
but ‘imy’ was like half a mile but
said 2000 ft, please fix”

0.4–0.6 medium Word pair entries falling in this range
reflect a moderate level of contextual
semantic similarity. The relationship
between the word pair is rational

“I did a 3-mile straight line flat ‘trip’
which my tracks recorded as a
completely ‘jagged’ 4.6-mile
distance…”

0.7–1.0 high There is a firm agreement with the
semantic similarity between the word
pair entries falling in this interval
range. This is supported by previous
evidence of the features’ defect

“‘battery’ ‘drain’ 9000, I never
launched this app and it was
‘draining’ my ‘battery’.”

the set of adjectives and verbs that are associated with the noun in question. After every
informative review is analysed, we extend the list of adjectives and verbs (in the reviews)
that are relevant to the noun under scrutiny. Finally, the list of manually finalised adjec-
tives and verbs pertaining to the specific noun entry are compared against those present
in the automatically generated taxonomy, to compute accuracy. Accuracy indicates the
percentage of adjectives and verbs that are common to both the automatically generated
taxonomy andmanual taxonomy (i.e., final list ofmanually finalised adjectives and verbs
pertaining to the noun entries). The entire process is repeated for all the noun entries
present in the automatically generated taxonomyuntil no noun entry is left for evaluation.
An overall average accuracy percentage is then computed, reflecting the overall accuracy
of the automatically generated taxonomy. Finally, we repeat the reliability checks for
the manual analysis as explained in Sect. 4.3.

5 Results and Generated Taxonomy Validity (RQ2)

In this section, we compare the outcomes of the automated taxonomy against a manually
developed taxonomy for a unique case (My Tracks). These outcomes provide context
for answering RQ2, and also provide triangulations for RQ1.

5.1 COALS, PPMI and GloVe

We ranCOALS, PPMI andGloVe individually on theMyTracks corpus of pre-processed
informative reviews to identify adjectives and verbs that are semantically similar to
relevant nouns. Each method generated results that highlighted entries indicating nouns,

Towards Automated Taxonomy Generation for Grouping App Reviews 129

and their respective associated semantically similar adjectives and verbs. The result
generated by each method consisted of 2,095 entries (i.e., 2095 app features and their
associated issues, requests or suggestions). In ensuring reliable outcomes, the G*Power
tool4 was used for sampling an appropriate number of records formanual analysis, where
it was recommended that 325 entries comprised a representative sample (95%confidence
level, 5% error). These checks helped us to determine the accuracy of the three methods
(COALS, PPMI, andGloVe), and support the validation process (refer to Sect. 4.3). First,
we record the semantic scores generated by COALS, PPMI, and GloVe for each noun-
adjective and noun-verb pair. Next, the three authors independently assigned a semantic
score in the range of 0 to 1 (Low-Medium-High) based on the defined numerical interval
scale for each noun-verb, or noun-adjective word pair (refer to Table 1). Later, we
checked the entries present in the COALS, PPMI, and GloVe results, and assessed these
against the manual scores that were assigned (comparing averages). Finally, we run the
Pearson’s correlation test to check the accuracy of PPMI, GloVe, and COALS against
the manually assigned score, where results showed that the semantic scores generated
by GloVe and COALS positively correlated with those assigned manually (r = 0.54
and r = 0.62 respectively). This indicates a substantial level of agreement between the
automated and manual process [18]. However, a negative correlation was observed for
PPMI (r = −0.21), indicating significant disagreement between the scores generated
by PPMI and the manual analysis. COALS recorded the highest degree of convergence
between the automated and manual analysis.

Formal reliability assessments done between the three authors for each of the 325
entries (total: 975 entries) using the Fleiss’s Kappa coefficient returned 0.67, which is
interpreted as substantial agreement between coders [9]. Hence, based on these out-
comes, we shortlisted COALS for automatic taxonomy generation. We next applied the
Pareto distribution law on the results generated by COALS to identify the necessary
entries (categories) required for grouping informative reviews. This returned 199 entries
that depicted respective nouns along with their associated adjectives and verbs (as cat-
egories). A subset of this outcome is visualised in Fig. 2 as an undirected graph, where
ten prominent nouns (app features) and their adjectives or verbs (issues, requests or sug-
gestions) are depicted. For example, it is shows that the ‘stats’ (statistics) of the workout
and the ‘map’ selected for the workout are ‘unreadable’ to the end-user.

5.2 Generated Taxonomy Validity

We evaluated the accuracy of the automatically generated taxonomy by analysing the
199 entries as mentioned in Sect. 4.4. The overall accuracy was found to be 72%,
which indicates a substantial match between the manual taxonomy generated by domain
experts and the automatically generated taxonomy [15]. In addition, with regards to the
reliability assessment pertaining to assignment of manual semantic scores, there was
general agreement observed as all authors were able to manually develop the taxonomy
from the informative reviews. When we validated the informative reviews grouping
results generated by the keyword lookup grouping mechanism (refer to Sect. 3.4) the
accuracy was 98.3%. The slight imperfection was due to misspelled words.

4 https://tinyurl.com/y4ny72jy.

https://tinyurl.com/y4ny72jy

130 S. Malgaonkar et al.

Fig. 2. Partial taxonomy showing interdependencies among app features and associated
issues/requests/suggestions

6 Discussion and Implications

RQ1. How can an approach be developed to automatically generate a taxonomy to
classify app reviews into groups? The findings reported in this study show that
it is possible to develop an approach that automatically generates a taxonomy
to classify app reviews into groups. This approach is able to directly extract app
features-issues/requests/suggestions from a corpus of app reviews, without requiring
human involvement. This has implication for effective software evolution and main-
tenance where limited software developers are available to manually analyse numer-
ous software product reviews. While text mining involving POS is popular and has
been used previously, the level of human participation that is involved with labelling
app reviews in support of manually generating taxonomies could be a challenge [17].
Feature engineering approaches assisted in building a suitable taxonomy frame-
work for grouping similar app reviews, thereby solving a significant problem that
is evident for manually generated taxonomies. Our primary objective was to deter-
mine the issues/requests/suggestions (verbs/adjectives) that were semantically similar to
app features (nouns) for which we evaluated COALS, PPMI, and GloVe, with COALS
outperforming the other methods. Here we see that probabilistic methods (PPMI and
GloVe) performed less favourably than the word vector distance approximation method
(COALS).While our primary goal was not to investigate the performance of these meth-
ods that are used for measuring semantic similarity, the differences in outcomes noted
may be due to the way COALS directly operates on the distances of vector data belong-
ing to respective word pairs. This is held to be notable in determining word relations
based on the principle of word sense disambiguation [11]. This is in contrast to PPMI
which tends to be biased towards infrequent word pairs, and GloVe which operates
on word embeddings. Further scrutiny of these methods would benefit future research

Towards Automated Taxonomy Generation for Grouping App Reviews 131

on automatic taxonomy generation. The application of a reliable contextual seman-
tic similarity method addresses another drawback that is observed for manually
generated taxonomies - the appropriate data for the categories of a taxonomy [17].
Human-generated taxonomies provide a limited number of categories, and thus, clas-
sification approaches often provide a holistic view of grouped app reviews which is
unsuitable if there are numerous app reviews. This issue is addressed in our approach,
however, a new problem created relates to the automatic generation of a taxonomy that
is large. The application of the Pareto distribution law seems useful in determin-
ing the prominent categories as the Pareto distribution law appropriately priori-
tises the most significant categories while still retaining an “Others” category [12].
The fundamental string matching then provides a near perfect approach for assigning
informative reviews to created groups [17], in completing the automatically generated
taxonomy which software engineering research focused on app store mining may learn
from.

RQ2. How will the automated taxonomy compare to one developed manually? Our
automatically generated taxonomy compared favourably to the one that was developed
manually. We observed 72% overlap in the two taxonomies, suggesting that the
appropriate combination of concepts andmethods frommultiple domains provided
an intuitive solution that closely aligned with human thinking. This is noteworthy in
that our investigation is preliminary, and the semantic similarity methods (e.g., COALS)
have not been refined and tuned for optimization (including the threshold settings), which
are known to lead to improvements [27]. In addition, it is to be noted that we utilised the
best performing automated app reviews filtering approach to extract informative reviews.
However, this approach is not 100% accurate based on the reported F-measure of 0.89
for the app reviews of My Tracks. Hence, there may be non-informative reviews in our
sample, which could possibly compromise the accuracy of the automatically generated
taxonomy. To this end, the outcomes reported in this work are conservative. That said,
other research studies have benefited from optimization improvements. For example,
COALS was integrated with SVD and subjected to specific SVD parameters (careful
tuning) to generate optimal data required towards named entity recognition through
means of latent semantics [14]. We believe that the wider evaluated taxonomy that
was created for app developers provides an explicit view of the prominent app
features and their associated issues, requests or suggestions expressed in the app
reviews.Thus, app developers may directly generate taxonomies from app reviewswith-
out the need for classification to identify issues, requests or suggestions pertaining to
app features, reducing the manually demanding tasks. Additionally, such a taxonomy
indirectly represents prioritised app features along with their associated requests,
issues or suggestions requiring immediate remedial action, as the groups (nouns) are
modelled in descending order of prominence [16]. In fact, the partial taxonomy presented
reveals that the app features share some common set of issues, requests or suggestions.
This finding could be crucial to app developers, as it would significantly assist them
in discovering dependencies among the app features that could be important in
identifying the impact of one app feature on another or the common characteris-
tics (related issues, requests, suggestions) that are shared among app features [16].
Aspects of the software architecture may also be detected from this visualization (e.g.,

132 S. Malgaonkar et al.

speed and distance modules are related). Furthermore, based on the observed hierarchi-
cal dependencies among app features, resolving certain issues, requests or suggestions
associated with specific app features will reduce the burden of defects on other related
app features. Beyond these unintended benefits, our proposed approach requires limited
human involvement and automatically extracts a wide spread of categories organically.
In addition, our empirical evaluations revealed satisfactory outcomes when our approach
is assessed against one that is manually derived, albeit we have used a single case study.
Thus, we believe that our automated taxonomy generation approach may be useful for
the software engineering practitioner community.

7 Threats to Validity

Internal Validity: Coming out of the text pre-processing and POS tagging pipeline, it was
not feasible to evaluate the nouns, adjectives and verbs that do not reflect app features,
issues, suggestions or requests, or those that were misclassified due to the overhead
involvedwithmanual evaluations. In addition, investigations done usingmanual analysis
are always criticized for subjectivity. External Validity: We have used a single dataset
in this study, which may affect the generalizability of this study. Construct Validity:
The Pareto distribution law returned 199 entries (categories) for the taxonomy, which
may seem excessive. That said, our manual evaluation confirmed that these entries were
largely relevant.We have worked to remove this threat by performing rigorous reliability
assessments where concrete agreements were observed.

8 Conclusion and Future Work

Previous work has attempted to address the challenge of classifying and analysing app
reviews in support of software evolution and maintenance. Typically, the developed
classification approaches group together app reviews having common characteristics
into specific categories based on a taxonomy which is derived manually from domain
knowledge. However, such domain knowledge may not be readily available, and when
app reviews increase in number, scalability challenges are encountered for manually
derived taxonomies. We addressed these limitations in this study, and developed a novel
approach for automatically generating a taxonomy to group app reviews, without the
need for the availability of domain knowledge from domain experts. Based on empirical
evaluations reported in this study, the outcome of our approach compares favourably
to one that was manually generated, and thus seems useful for grouping app reviews.
We intend to validate our approach using a larger sample of apps in future work and
investigate various optimizationmethods for improving theperformanceof our approach.
Beyond app reviews, the feasibility of this proposed approach can also be investigated
on issue and request trackers (e.g., Jira).

References

1. Aggarwal, C., Zhai, C.: Mining Text Data. Springer, Boston (2012). https://doi.org/10.1007/
978-1-4614-3223-4

https://doi.org/10.1007/978-1-4614-3223-4

Towards Automated Taxonomy Generation for Grouping App Reviews 133

2. Archak, N., Ghose, A., Ipeirotis, P.G.: Show me the money! Deriving the pricing power
of product features by mining consumer reviews. In: Proceedings of the 13th SIGKDD,
pp. 56–65. ACM (2007)

3. Boehm, B., Port, D.: Educating software engineering students to manage risk. In: Proceedings
of the 23rd ICSE, pp. 591–600. IEEE Computer Society (2001)

4. Boutkova, E.: Experience with variability management in requirement specifications. In: 15th
SPLC, pp. 303–312. IEEE (2011)

5. Bullinaria, J.A., Levy, J.P.: Extracting semantic representations from word co-occurrence
statistics: a computational study. Behav. Res. Methods 39, 510–526 (2007). https://doi.org/
10.3758/BF03193020

6. Chen, N., Lin, J., Hoi, S.C.H., et al.: AR-miner: mining informative reviews for develop-
ers from mobile app marketplace. In: Proceedings of the 36th ICSE, pp. 767–778. ACM,
Hyderabad (2014)

7. Ciurumelea, A., Panichella, S., Gall, H.C.: Automated user reviews analyser. In: ICSE,
pp. 317–318 (2018)

8. Di Sorbo, A., Panichella, S., Alexandru, C.V., et al.: What would users change in my app?
Summarizing app reviews for recommending software changes. In: Proceedings of the 24th
SIGSOFT, pp. 499–510. ACM (2016)

9. Fleiss, J.L., Cohen, J.: The equivalence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educ. Psychol. Measur. 33, 613–619 (1973)

10. Hajič, J., Raab, J., Spousta,M.: Semi-supervised training for the averaged perceptron POS tag-
ger. In: Proceedings of the 12thACL, pp. 763–771. Association for Computational Linguistics
(2009)

11. Karov, Y., Edelman, S.: Similarity-based word sense disambiguation. Comput. Linguist. 24,
41–59 (1998)

12. Kiremire, A.R.: The application of the pareto principle in software engineering, 13 January
(2011)

13. Ko, Y., Park, S., Seo, J.: Web-based requirements elicitation supporting system using require-
ments categorization. In: Proceedings of the 12th SEKE 2000, Chicago, USA, pp. 344–351
(2000)

14. Konkol, M., Brychcín, T., Konopík, M.: Latent semantics in named entity recognition. Expert
Syst. Appl. 42, 3470–3479 (2015)

15. Kropp, R.P., Stoker, H.W., Bashaw, W.: The validation of the taxonomy of educational
objectives. J. Exp. Educ. 34, 69–76 (1966)

16. Licorish, S.A., Savarimuthu, B.T.R., Keertipati, S.: Attributes that predict which features to
fix: lessons for app store mining. In: Proceedings of the 21st EASE, pp. 108–117. ACM,
Karlskrona (2017)

17. Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic classification of app
reviews. Requirements Eng. 21(3), 311–331 (2016). https://doi.org/10.1007/s00766-016-
0251-9

18. Martinez-Gil, J.: An overview of textual semantic similarity measures based on web
intelligence. Artif. Intell. Rev. 42(4), 935–943 (2012). https://doi.org/10.1007/s10462-012-
9349-8

19. Mayring, P.: Qualitative content analysis. A Companion Qual. Res. 1, 159–176 (2004)
20. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of

text semantic similarity. In: AAAI, pp. 775–780 (2006)
21. Pagano, D., Maalej, W.: User feedback in the appstore: an empirical study. In: 2013 21st

Requirements Engineering, pp. 125–134. IEEE (2013)
22. Panichella, S., Di Sorbo, A., Guzman, E., et al.: ARdoc: app reviews development oriented

classifier. In: Proceedings of the 24th SIGSOFT, pp. 1023–1027. ACM (2016)

https://doi.org/10.3758/BF03193020
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s10462-012-9349-8

134 S. Malgaonkar et al.

23. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In:
Proceedings of the EMNLP, pp. 1532–1543 (2014)

24. Rohde, D.L., Gonnerman, L.M., Plaut, D.C.: An improvedmodel of semantic similarity based
on lexical co-occurrence. Commun. ACM 8, 116 (2006)

25. Sánchez, D., Batet, M., Isern, D.: Ontology-based information content computation. Knowl.-
Based Syst. 24, 297–303 (2011)

26. Snijders, R., Dalpiaz, F., Hosseini, M., et al.: Crowd-centric requirements engineering. In:
UCC, pp. 614–615 (2014)

27. Zhang,M., Palade, V.,Wang,Y., et al.:Word representationwith salient features. IEEEAccess
7, 30157–30173 (2019)

Zones of Pain: Visualising
the Relationship Between Software

Architecture and Defects

Jean Petrić(B), Tracy Hall(B), and David Bowes(B)

Lancaster University, Lancaster, UK
{j.petric,tracy.hall,d.h.bowes}@lancaster.ac.uk

Abstract. Substantial development time is devoted to software mainte-
nance and testing. As development resources are usually finite, there is a
risk that some components receive insufficient effort for thorough testing.
Architectural complexity (e.g. tight coupling) can make effective testing
particularly challenging. Software components with high architectural
complexity are more likely be defect–prone. The aim of this study is to
investigate the relationship between established architectural attributes
and defect–proneness. We used the architectural attributes: abstract-
ness, instability and distance to measure the architectural complexity
of software components. We investigated the ability of these attributes
to discriminate between defective and non-defective components on four
open source systems. We visualised defect–proneness by plotting archi-
tectural complexity and defectiveness using Martin’s ‘Zones of Pain’.
Our results show that architecture has an inconsistent impact on defect–
proneness. Some architecturally complex components seem immune to
defects in some projects. In other projects architecturally complex com-
ponents significantly suffer from defects. Where architectural complex-
ity does increase defect–proneness the impact is strong. We recommend
practitioners monitor the architectural complexity of their software com-
ponents over time by visualising potential defect–proneness using Mar-
tin’s Zones of Pain.

Keywords: Software defects · Software architecture · Software
evolution

1 Introduction

We aim to investigate the effect of architecture on defect–proneness. We build on
previous work which looked at the relationship between some aspects of architec-
ture and defects. Elish et al. compared the ability of three metric suites, which
capture various static features of code, to predict pre– and post–defects [8].
Elish et al. demonstrated that Martin’s suite of metrics [14] significantly outper-
formed the other two metric suites analysed. Jaafar et al. examined the impact of

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 135–143, 2020.
https://doi.org/10.1007/978-3-030-58793-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_11

136 J. Petrić et al.

design patterns on defect–proneness and reported that components with anti–
patterns are more defect–prone than others [12]. Jaafar et al. further demon-
strated that components with anti–patterns are also those most involved in struc-
tural changes. However, it remains unclear if a complex architecture increases
the likelihood of defect–proneness. To the best of our knowledge, no study has
investigated the impact of architectural complexity on defect–proneness.

We used three metrics from Martin’s [14] suite of metrics to measure the
architectural complexity of software components. These are abstractness, insta-
bility and distance from the main sequence (short, distance). Abstractness (A)
is defined as the ratio of interfaces and abstract classes in a component to the
total number of classes in the component. Instability (I) is defined as the ratio
between outward dependencies of a component and the total number of depen-
dencies entering the component. Finally, distance (D) is defined as the absolute
value of A and I which represent the distance from the main sequence in the
‘tension plot ’ (i.e. Fig. 1). We also used Martin’s notions of the “zone of pain”
and “zone of uselessness”, collectively called the “zone of exclusion”, to cate-
gorise components by their architectural complexity. We investigated whether
defect–proneness is more likely to occur in the zone of exclusion. We further
investigated the likelihood of defect–proneness for components in the zone of
exclusion compared to other components.

We set out to answer to research questions: RQ1. What is the effect of
architectural attributes on the defect-proneness of software components for the
investigated open source systems? ; RQ2. What is the proportion of defective
components in the zone of exclusion for the investigated open source systems?
Our contributions are three–fold. Firstly, we show that architectural complex-
ity is a promising indicator of defect–proneness. Architectural complexity may
give complementary information with the addition of other metrics to defect
prediction models. Secondly, we show that the relationship between architec-
tural complexity and defect–proneness is not simple. Future studies are needed
to understand which factors affect the relationship between architecture and
defect–proneness. Thirdly, we provide all tools and data to the community for
future analysis and replication.

The rest of this paper is structured as follows. The next section discusses the
background to this work which is followed by a detailed methodology section.
Section 4 then presents and discusses the results. Section 5 outlines related work,
followed by the conclusions in Sect. 5.

2 Background

Many code design approaches to building reusable, maintainable and testable
software have been proposed over the years. For example, Gamma et al. [9] doc-
umented over 20 reusable solutions for object–oriented systems, whilst Jaafar
et al. conducted an empirical study to investigate the impact of design pat-
terns on software maintenance and defectiveness [12]. Other work has focused
on investigating problematic coding approaches that may hamper reusability,

Visualising the Relationship Between Software Architecture and Defects 137

maintainability and testability. For example, Khomh et al. showed that classes
containing anti–patterns are more frequently changed and more defect–prone
than others in almost all releases of the four systems they analysed [13]. Hall
et al. demonstrated that some code smells have a small but significantly nega-
tive effect on software defects [10]. Bavota et al. demonstrated that test smells
impede the maintainability of software tests [6].

Many static code metrics have been used as a means to assess their impact
on defect–proneness. For example, the CK suite [7], the MOOD suite [1], and
Martin’s suite [14] are amongst frequently used ones. Elish et al. showed that
prediction models based on Martin’s suite of metrics performed best amongst
the three suites [8]. Almugrin et al. modified Martin’s suite based on the concept
of responsibility [3] and later showed that the modified suite yielded high corre-
lation with respect to maintainability and testability [4]. In this study we focus
on the architectural attributes of software. We use three architectural attributes
defined by Martin [14] to explore their relationship with defect–proneness of
software components.

3 Methodology

3.1 Architectural Metrics

Equations 1 depict abstractness (A), instability (I) and distance from the main
sequence (D), respectively. In A, Na is the number of abstract classes and inter-
faces in the component, whilst Nc is the number of concrete classes in the com-
ponent. A is in the range of 0 and 1, where A = 0 indicates the component
contains no abstract classes or interfaces. On the other hand, A = 1 indicates
that the component contains nothing but abstract classes or interfaces. In I,
Fanin represents the number of inward, whilst Fanout the number of outward
dependencies. I value also spans from 0 to 1, where 0 indicates maximally sta-
ble component and 1 maximally unstable component. Finally, D calculates the
euclidean distance from the main sequence. D also ranges between 0 and 1, where
0 indicates that the component is on the main sequence, whilst 1 indicates that
the component is as far away from the main sequence as possible. When D ≈ 1
the component is inside the zone of exclusion, either in the ZoP or ZoU. Figure
1 shows the relationship between the three metrics. We anticipate that compo-
nents on and close to the MS should be less affected by defects compared to
components in the ZoE. We use tension plots to visualise defective components
across different snapshots of software evolution.

A =
Na

Nc
I =

Fanout

Fanout + Fanin
D = |A + I − 1| (1)

3.2 Experiment

We used four open source projects shown in Table 1. All projects come from the
apache community. We selected these projects because they use similar devel-
opment standards which reduces issues that arise from analysing different open

138 J. Petrić et al.

Fig. 1. The tension plot showing the relationship between A, I and D. Extreme values
of A and I are driving components towards the zones of exclusion (also called, ‘zones
of pain’).

source projects. In addition, these projects generally belong to the same domain,
i.e. Java libraries, are of reasonable size and widely used in the community.
Table 1 summarises the chosen projects. The # defects and # analysed com-
mits columns are the total numbers of defective files and commits, respectively,
throughout the project’s history. The last two columns represent the average
numbers of packages and classes for all analysed commits (these are the num-
bers per commit across the software history).

We collected two sets of data. The first set of data is a collection of defects
for each project in Table 1. We used the SZZ algorithm to extract defective files
for each commit throughout the project’s history [15]. The second set of data
contains the architectural metrics (A, I and D) for each of the four projects. Due
to the lack of existing static metric tools that work on the latest Java versions,
we developed JavaMetrics1 to collect A, I and D metrics. For each project,
we collected the metrics against all git commits. Finally, we amalgamated the
information from the first and second set of data to get a list of metrics for all
defective and non-defective components throughout each project’s history. We
also cleaned the datasets which scripts are available online2.

To answer RQ1 we investigated whether complex components are likely to
be more defective compared to their simpler counterparts. To reduce the bias
we compared only components of similar size. We removed non–defective com-
ponents which are 30% smaller or bigger than the defective components. Larger
thresholds would include more components but would also defeat the purpose of
comparing similar sizes. Smaller thresholds leave few components to compare.
1 https://github.com/lancsunise/JavaMetrics.
2 https://github.com/lancsunise/quatic20 replication.

https://github.com/lancsunise/JavaMetrics
https://github.com/lancsunise/quatic20_replication

Visualising the Relationship Between Software Architecture and Defects 139

Table 1. Open source projects used in this paper

Project # defects # analysed commits # avg. package # avg. class

hadoop-common 1617 10509 428 8362

camel 10501 44609 2081 14681

derby 5130 8269 230 2790

hive 11122 14377 621 12703

30% threshold resulted in the right balance for further statistical analysis. To
answer RQ2 we used an approach similar to binary testedness previously reported
by Ahmed et al. [2] and Bach et al. [5]. Binary testedness separates source code
in two (binary) groups. In its original form, one binary group is code covered
with tests whilst another group is code with no associated tests. It is then pos-
sible, for a given snapshot, to count the occurrences of defective components
for covered and uncovered code. If fewer defects end up in the covered com-
pared to the uncovered group, we establish that testing is effective. Note that
defects should initially be extracted via some form of defect prediction, rather
than exposed by tests (i.e. tests would not be able to uncover any defects in
uncovered code). We undertook a similar experiment to validate whether some
architectural attributes lead to more defect–prone components. We defined Eq. 2
to calculate the defect–proneness of components with D ≈ 0 and D ≈ 1. We
used three thresholds, 0.2, 0.4 and 0.6 to calculate the ratios defined in Eq. 2.

RD≈0 =
Nd0

Nd0 + Nnd0
, RD≈1 =

Nd1

Nd1 + Nnd1
(2)

Each equation represents the ratio of defective components over the total
number of components for a particular region of the tension plot. RD≈0 are
components similar to the green components, whilst RD≈1 are components sim-
ilar to the red components in Fig. 1. Nd and Nnd are the counts of defective and
non–defective components for the specific region of the tension plot, respectively.

4 Results and Analysis

Our RQ1 investigates whether architecturally complex components are likely to
be more defect–prone compared to architecturally simpler components. If archi-
tecturally complex components were more defective on average, we would expect
them to be farther away from the MS. To test the hypothesis whether defective
components tend to have a greater distance, we used a one–sided non–parametric
Mann–Whitney U test. We used the Mann–Whitney U test because of different
numbers of instances between defective and non–defective components. For all
projects except derby the p−values were at least 5.596E−3 or lower confirming
that there is a statistical significance to conclude that architecturally complex
components are more likely to be defective than their simpler counterparts.

140 J. Petrić et al.

Given that there is a significant difference between distance and defectiveness
in most cases, we investigated the magnitude of this difference. To estimate the
magnitude we used the ratios defined in Eq. 2 for three different thresholds: 0.2,
0.4 and 0.6. These thresholds represent the maximum “shift” from the MS that
divides the tension plot into two groups, as previously explained in Sect. 3.2. The
expectation is to see RD≈1 > RD≈0 for the thresholds approaching closer to 1.
In other words, defectiveness of components increase as they are approaching
closer to the ZoE. By calculating RD≈1

RD≈0
it is possible to estimate the magnitude

(scale) of the difference between the two groups. Table 2 reports these details.

Table 2. Ratios of defective and non-defective components based on the distance from
the Main Sequence

Project Shift rdef rnondef Scale p–val

hadoop-common 0.2 0.129 (±0.129) 0.105 (±0.199) 1.223 0.266

hadoop-common 0.4 0.208 (±0.233) 0.140 (±0.206) 1.492 0.303

hadoop-common 0.6 0.405 (±0.45) 0.074 (±0.13) 5.449 0.102

derby 0.2 0.036 (±0.115) 0.103 (±0.119) 0.345 1.000

derby 0.4 0.022 (±0.078) 0.075 (±0.074) 0.288 1.000

derby 0.6 0.018 (±0.107) 0.054 (±0.035) 0.33 1.000

camel 0.2 0.060 (±0.099) 0.021 (±0.061) 2.838 0.000

camel 0.4 0.070 (±0.139) 0.028 (±0.078) 2.529 1.000

camel 0.6 0.119 (±0.315) 0.047 (±0.084) 2.54 1.000

hive 0.2 0.082 (±0.152) 0.083 (±0.157) 0.987 0.839

hive 0.4 0.033 (±0.129) 0.088 (±0.094) 0.373 1.000

hive 0.6 0.020 (±0.088) 0.030 (±0.02) 0.657 1.000

Table 2 presents the ratios and scale of the two groups of components for all
four projects and the different thresholds. The first column is the project name,
shift corresponds to the distance from the MS, rdef and rnondef are RD≈1 and
RD≈0, respectively. The scale represents the magnitude RD≈1

RD≈0
. scale > 1 means

that architecturally complex components are indeed more likely to be defect–
prone, whilst scale < 0 shows the opposite. In addition, scale = 2 shows that
there are two times more defective components in the ZoE than around the
MS. Finally, p-val shows whether the differences between RD≈1 and RD≈0 are
significant. From Table 2, for camel, the scale is close to 3 for all the thresholds
which indicates that an architecturally complex component is almost 3 times
more likely to be defect–prone. On the other hand, derby shows very similar
results with the scale close to 0.3 indicating that simpler components are 3
times more likely to be defect–prone. Figure 2 is an example of using the tension
plot for a real–world project. The figure shows the arrangement of defective and
non–defective components for 11 commits of hadoop-common. Each subplot in

Visualising the Relationship Between Software Architecture and Defects 141

Fig. 2 represents the state of defective and non–defective components for one git
commit. Figure 2 clearly shows that for four commits, 0d5ed9, 382ec9, 46a7e0
and f3a5d1 the most architecturally complex components are defective.

Fig. 2. Abstractness vs Instability for the top defective hadoop-common snapshots

5 Conclusions

Our findings suggest that architectural complexity of a component, as defined
by Martin [14], does not always increase its likelihood to be defect–prone. There
could be multiple reasons why this is the case. One reason is that complex
components in some projects are more thoroughly tested compared to complex
components in other projects. We suspect this to be unlikely in our analysis,
given that we used the projects from the same community which follows the
same protocol. Another, more likely reason, could be the difference in respon-
sibilities of components in the ZoE compared to components close to the MS.
As other studies have shown, practitioners spend more time maintaining and
testing complex components (e.g. [3,11]), which may leave more opportunity for
defects to slip unnoticed in simpler components.

Overall, our analysis showed that for three out of the four considered sys-
tems architectural complexity has a strong relationship with defects. A strategic
refactoring of components in the zones of exclusion by introducing abstraction
is likely to reduce architectural complexity of components and decrease overall

142 J. Petrić et al.

defect–proneness of the system. Visualisation techniques, such as the tension
plot, as well as the Martin metrics can be an effective way for practitioners
to determine which components require more attention. However, even though
the magnitude of defect–proneness in the zones of exclusion can be three times
higher, the effect is not consistent across all the systems. This suggests that there
are more factors that affect defect–proneness. For example, components in the
ZoE may be disproportionally more tested compared to components close to the
MS. Accounting for the level of testing could be a promising factor to explore in
the future.

Acknowledgements. This work was partly funded by a grant from the UK’s Engi-
neering and Physical Sciences Research Council under grant number: EP/S005730/1.

References

1. Abreu, F.B.: The mood metrics set. In: proceedings of ECOOP, vol. 95, p. 267
(1995)

2. Ahmed, I., Gopinath, R., Brindescu, C., Groce, A., Jensen, C.: Can testedness be
effectively measured? In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 547–558 (2016)

3. Almugrin, S., Albattah, W., Alaql, O., Alzahrani, M., Melton, A.: Instability and
abstractness metrics based on responsibility. In: 2014 IEEE 38th Annual Computer
Software and Applications Conference, pp. 364–373. IEEE (2014)

4. Almugrin, S., Albattah, W., Melton, A.: Using indirect coupling metrics to predict
package maintainability and testability. J. Syst. Softw. 121, 298–310 (2016)

5. Bach, T., Andrzejak, A., Pannemans, R., Lo, D.: The impact of coverage on bug
density in a large industrial software project. In: Empirical Software Engineering
and Measurement (ESEM), pp. 307–313. IEEE (2017)

6. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: Are test smells really
harmful? An empirical study. Empirical Softw. Eng. 20(4), 1052–1094 (2015)

7. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

8. Elish, M.O., Al-Yafei, A.H., Al-Mulhem, M.: Empirical comparison of three metrics
suites for fault prediction in packages of object-oriented systems: A case study of
eclipse. Adv. Eng. Softw. 42(10), 852–859 (2011)

9. Gamma, E.: Design Patterns: Elements of Reusable Object-oriented Software.
Pearson Education, India (1995)

10. Hall, T., Zhang, M., Bowes, D., Sun, Y.: Some code smells have a significant but
small effect on faults. ACM Trans. Softw. Eng. Methodol. (TOSEM) 23(4), 1–39
(2014)

11. Izurieta, C., Bieman, J.M.: Testing consequences of grime buildup in object ori-
ented design patterns. In: 2008 1st International Conference on Software Testing,
Verification, and Validation, pp. 171–179 (2008)

12. Jaafar, F., Guéhéneuc, Y.-G., Hamel, S., Khomh, F., Zulkernine, M.: Evaluating
the impact of design pattern and anti-pattern dependencies on changes and faults.
Empirical Softw. Eng. 21(3), 896–931 (2015). https://doi.org/10.1007/s10664-015-
9361-0

https://doi.org/10.1007/s10664-015-9361-0
https://doi.org/10.1007/s10664-015-9361-0

Visualising the Relationship Between Software Architecture and Defects 143

13. Khomh, F., Di Penta, M., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of
the impact of antipatterns on class change-and fault-proneness. Empirical Softw.
Eng. 17(3), 243–275 (2012)

14. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, Upper Saddle River (2003)

15. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: Pro-
ceedings of the 2005 International Workshop on Mining Software Repositories,
MSR 2005, pp. 1–5. ACM, New York (2005)

An Empirical Study on the Persistence
of SpotBugs Issues in Open-Source

Software Evolution

Luigi Lavazza(B) , Davide Tosi , and Sandro Morasca

Università degli Studi dell’Insubria, Varese, Italy
{luigi.lavazza,davide.tosi,sandro.morasca}@uninsubria.it

Abstract. Background. Static analyzers can be useful to software devel-
opers in detecting and locating code issues and, in addition, classifying
their nature. The main problem of static analyzers, however, is that they
may signal too many false alarms. Objective. In this paper, we investigate
whether code issues that are detected by SpotBugs persist in software
code, or if they get removed. We chose SpotBugs because it is one of
the best-known and most used static analyzers. Method. We carried out
an empirical study on five open-source Java programs and took into
account two versions of each of them, to check whether the issues sig-
naled by SpotBugs on the older version had been removed by the time
the newer version was released. A total of 1,006 issues were signaled by
SpotBugs. Results. Our results show that about half of the issues sig-
naled disappeared between the two versions, but the correction rate was
uneven across projects. Issues about the correctness of software code
were more likely to be no longer present in the newer version than other
types of warnings. Conclusions. Further investigations are required, to
understand why some projects appear more active than others in cor-
recting SpotBugs issues, and why very few high-severity warnings were
observed in the analyzed code. Nonetheless, the fact that about half of
the issues flagged by SpotBugs were removed indicates that the tool is
effective in detecting incorrect or otherwise problematic code.

Keywords: Static analyzers · Bugs · Bug persistence · SpotBugs ·
Bad code patterns

1 Introduction

To reduce Quality Assurance (QA) times and costs, a number of techniques have
been devised and a number of tools have been built to automate QA activities.

Specifically, defect detectors based on static code analysis can help improve
software quality and decrease QA times and costs, because of several reasons:

– Analysis is very quick and is practically free of charge. For instance, SpotBugs
is open-source code and it can be installed very easily. The only configuration
needed to analyze a project is the indication of which folders contain the

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 144–151, 2020.
https://doi.org/10.1007/978-3-030-58793-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_12&domain=pdf
http://orcid.org/0000-0002-5226-4337
http://orcid.org/0000-0003-3815-2512
http://orcid.org/0000-0003-4598-7024
https://doi.org/10.1007/978-3-030-58793-2_12

An Empirical Study on the Persistence of SpotBugs Issues 145

target code. Analysis is quite fast: for instance, we analyzed 1097 classes
from log4j with SpotBugs with a recent laptop PC in about 30 s.

– The issues found are of types that are difficult to find via testing. Moreover,
testing can detect a failure, but usually it does not provide indications about
the kind of defect that caused the failure and its location. On the contrary,
most of the warnings issued by the static analyzers point to very specific types
of defect and locations in the code.

– Even though static analyzers issue warnings that are sometimes false alarms,
manually inspecting the code flagged as possibly defective by static analyzers
is generally easy. In this sense, static analyzers can be seen as a way to guide
manual inspections.

– Warnings are classified in defect types. This allows developers to compile
catalogs of frequent defect types and identify and adopt techniques to avoid
such types of defects.

However, tools based on static analysis identify code patterns that are
usually—but not always—associated with problematic code. As a result, most
tools provide warnings concerning possible defects, i.e., it is not certain that a
warning actually corresponds to defective code. This is a typical characteristic
of these tools, which can reduce their appeal to software developers, who may
get frustrated by the high degree of uncertainty about the warnings and the
possibly excessive rate of false alarms, which leads to spending a good deal of
time and effort on inspecting code that turns out to be correct. This may totally
defeat the purpose of using defect detectors, by further delaying product delivery
and increasing costs. In practice, using SpotBugs or similar tools is useful if the
number of false positives is reasonably small.

Therefore, practitioners are mostly interested in the effectiveness of static
analyzers, i.e., they need to know how many actual defects can be found, of
what types, if these defects are worth any correction effort, etc.

In this paper, we focus on SpotBugs (formerly known as FindBugs [6]), which
is a very popular tool for defect detection via static code analysis. Specifically,
we investigate whether the issues found by SpotBugs on a small set of open-
source products are actually relevant in practice. To this end, we analyzed two
versions of each of these products. We then evaluated how many issues that
were reported by SpotBugs in the first release no longer appeared in the second
release. We interpret that the disappearance of an issue is generally due to a
voluntary action of improving the code. The code may have been changed for
other reasons, but the fact that an issue disappears is typically an indication
that it was worth modifying the code in a way that got rid of the issue.

2 SpotBugs

SpotBugs [3] is a static analysis tool that looks for bugs in Java source code. The
tool is free software, distributed under the GNU Lesser General Public License.
SpotBugs inherits all of the features of its predecessor FindBugs [1,6] and adds
new analyses to check more than 400 bug patterns. SpotBugs checks for bug

146 L. Lavazza et al.

patterns such as null pointer dereferencing, infinite recursive loops, bad uses of
the Java libraries and deadlocks. SpotBugs is available as an Eclipse plugin or
as a standalone program and can be downloaded from [3].

In SpotBugs, bug patterns are classified by means of several variables, such
as: the type of violation, its category, the rank of the bug, and the confidence of
the discovery process.

Ten categories are identified [2], such as “Bad Practice” (i.e., violations of
recommended and essential coding practice, like hash code and equals problems,
cloneable idiom, dropped exceptions, Serializable problems, and misuse of final-
ize), “Correctness” (i.e., probable bug - an apparent coding mistake resulting in
code that was probably not what the developer intended), or “Multithreaded cor-
rectness” (i.e., code flaw issues having to do with threads, locks, and volatiles).
The complete list of bug descriptions can be found in [2].

The rank of each warning concerns the severity of the potential bug, and
spans from 1 (most severe) to 20 (least severe). Four rank levels are also defined:
“scariest” (1 ≤ rank ≤ 4), “scary” (5 ≤ rank ≤ 9), “worrying” (10 ≤ rank ≤
14), “of concern” (15 ≤ rank ≤ 20).

Moreover, a “confidence” (named “priority” in early releases) is associated
to each warning: high confidence (1), normal confidence (2) and low confidence
(3), to highlight the quality of the detection process.

3 The Empirical Study

There are in principle several ways to address the objectives described in the
Introduction. We decided to base our evaluations on objective—though possibly
indirect—observations.

We considered that, if an issue was observed in a given release and disap-
peared in a following release, developers had deemed it useful to remove the
issue. We are not interested in understanding if the issue was removed in the
context of an activity specifically aimed at removing the issue or in the context
of an activity having another purpose. Rewriting the code in a way that solves a
potential problem is proof that modifying the problematic code was preferable.
We are also not interested in understanding if the removed issue was connected
to a defect that could cause failures or if it was just a piece of poorly written
code, which could possibly cause maintenance problems in the future.

Accordingly, we selected a few open-source programs and analyzed two ver-
sions of each program. The sets of SpotBugs warnings concerning the two releases
were compared, to identify issues that were present in the earlier release and had
been removed in the following release.

Since we are interested in deriving evidence that is practically useful to devel-
opers, we selected a set of open-source software products that are used in real-life
projects. These programs were used in a proprietary web portal that had been
previously analyzed by one of the authors.

Data about the analyzed open-source programs are summarized in Table 1.

An Empirical Study on the Persistence of SpotBugs Issues 147

Table 1. The analyzed programs.

Program Initial version Final version

Release Date #classes Release Date #classes

hibernate-search 5.8.0 Sept 2017 951 5.11.5 Feb 2020 962 (+1%)

jcaptcha 1.0-RC6 May 2007 310 1.0 Feb 2009 270 (−13%)

log4j 2.12.1 Aug 2019 1097 2.13.1 Feb 2020 1112 (+1%)

openSymphony 2.2.1 July 2003 60 2.2.2 Jan 2004 51 (−15%)

pdfbox 1.8.16 Oct 2018 710 2.0.14 Feb 2019 846 (+19%)

The rightmost column gives also the percentage variation in the number of
classes between the two versions of the same product. The most relevant variation
occurs for pdfbox, in which the newer version contained 19% more classes than
the older one. The first four projects in Table 1 have the same number of version
and only change the specific release, so they may not have introduced substantial
modifications in their functionalities.

SpotBugs classifies warnings by rank (i.e., severity) and confidence. There-
fore, it can be expected that the issues with the highest rank and confidence are
the ones that are most frequently corrected.

However, out of over one thousand total warnings, only 2 belong to the
“scariest” level (of these, none was corrected), and 17 belong to the “scary” level
(of these, only 8 were corrected). Of 54 “worrying” warnings, 35 were corrected,
and of the remaining 933 “of concern” warnings, 442 were corrected.

As for confidence, Figure 1 shows the distribution of corrected issues by con-
fidence. It can be observed that the percentage of corrected issues increases with
confidence. This behavior is consistent with the definition of confidence: we can
expect that a greater fraction of the low-confidence warnings are false positives,
hence a smaller fraction of low-confidence warnings is corrected. Nonetheless, it
can also be noted that the differences are quite small: this phenomenon is possi-
bly due to SpotBugs not being very accurate in evaluating the level of confidence
to be assigned to warnings.

Fig. 1. Percentage of corrected issues by warning confidence (left), and percentage of
corrected issues by warning type (right). The dashed line indicates the mean.

148 L. Lavazza et al.

SpotBugs also classifies warnings by category. It is thus interesting to
check whether some issue categories receive greater attentions from developers.
Figure 1 shows that most categories get around 50% corrections; exceptions are
“experimental” issues, with over 80% corrections, and multithreaded correctness
(“MT correctness”) issues, with around 30% corrections. According to SpotBugs
documentation, experimental issues are those concerning not fully vetted bug
patterns: the fact that so many get cleared seems to indicate that these patterns
actually detect some type of undesirable situation, hence SpotBugs developers
should promote these bugs to a consolidated category.

Another observation concerning the corrected issues is that different open-
source projects appear to behave differently with respect to correcting SpotBugs
issues. Table 2 shows that while log4j and hibernate-search corrected less
than 10% of SpotBugs issues, the other projects corrected many more issues,
with pdfbox correcting 90% of the reported issues.

The differences noted among products persist if the rank level is also consid-
ered, as shown in Table 2.

Table 2. Corrected issues by software product and rank level.

Product Corrected - issued

Scariest Scary Worrying of concern Total

pdfbox-1.8.16 0 1 6 6 23 23 313 350 342 380

jcaptcha-1.0-RC6 0 0 2 2 8 9 62 167 72 178

log4j-2.12.1 0 1 0 1 3 14 13 235 16 251

hibernate-search-5.8.0 0 0 0 3 1 7 9 98 10 108

openSymphony-2.2.1 0 0 0 5 0 1 45 83 45 89

Eleven warnings at the “scariest” and “scary” levels were not treated. This
is somewhat surprising, since we expect that most serious issues receive the
most attention and are therefore removed. To better understand these cases, we
manually investigated the concerned code. Manual inspections revealed that:

– both warnings concerning log4j (one scariest and one scary) are false posi-
tives;

– all three scary warnings concerning hibernate-search are false positives;
– the scariest warning concerning pdfbox that did not get corrected is a true

positive, but it is in the test code, not in the code to be released;
– of the five scary warnings concerning openSymphony, one was recognized as a

true positive, one as a false positive, while the remaining three were recognized
as possible problems (we were not able to evaluate whether problems will
actually occur, not having a deep enough knowledge of the code).

In conclusion, the majority of scary and scariest warnings turned out to be false
positives.

An Empirical Study on the Persistence of SpotBugs Issues 149

4 Discussion

The following observations can be made, based on the results of the empirical
study.

– Overall, 485 issues—out of 1006 warnings—disappeared. This seems to indi-
cate that about half of SpotBugs warnings concerned code that was worth
revising.

– Some projects corrected many issues, while others did not. This is a phe-
nomenon worth pointing out, even though our analysis does not provide any
explanation for this.

– SpotBugs produced few high-level rank warnings. This fact supports the
hypothesis that SpotBugs’s ranking is correct and the considered open-source
software projects put great attention in preventing the occurrence of most
serious issues in released code. However, given the very small number of
highest-level rank warnings, we can hardly evaluate their corrections, because
the data set is too small for a thorough statistical analysis. In addition, most
warnings at the highest ranks turned out to be false positives, which seem to
provide more evidence for the high quality of the considered projects.

– Higher confidence warnings are corrected more frequently than lower confi-
dence ones. This fact indicates that lower-confidence warnings include more
false positives than higher-confidence warnings.

– Warnings of type “correctness” were corrected more frequently than all other
types, except for “experimental” warnings. This fact seems to indicate that
the warnings concerning correctness, which are likely the most interesting
ones for developers, include more true positives, therefore they are definitely
worth considering.

In conclusion, our analysis indicates that the usage of static analyzers can
help developers detect weak points and defects in their code. Overall, about half
the warnings concern code that needs to be modified, or at least can benefit from
being modified. It is also worth noting that the warnings provided by SpotBugs
indicate very specific types of problems and also indicate where the problem is
located in the code. Therefore, developers know where to look and what to look
for: this makes manual verification of warnings fairly straightforward. Accord-
ingly, the fact that half of the manual verification results in finding no real
problem does not involve wasting much effort. On the contrary, the verification
activities that highlight real issues drive correction actions that are generally
straightforward.

5 Related Work

A great deal of effort has been dedicated to understanding the accuracy of static
analysis tools. Rahman et al. [8] compared the defect prediction capabilities of
FindBugs, PMD and Jlint against statistical defect prediction based on histori-
cal data. Vetrò et al. [12,13] evaluated the accuracy of FindBugs by inspecting

150 L. Lavazza et al.

manually the source code highlighted by FindBugs as buggy code. Ayewah et
al. evaluated the issues found by FindBugs in production software developed by
Sun and Google [4], while Vestola applied FindBugs to Valuatum’s system to
understand the proportion of real bugs and false positives [11]. Tomassi con-
sidered 320 real Java bugs from the BugSwarm dataset to determine which of
these bugs are actually detected by SpotBugs [10]. Jingyue et al. evaluated five
open-source static analysis IDE plugins to compare how many categories of soft-
ware vulnerabilities the plugins can detect, and how accurate they are [7]. All
these papers focus on the accuracy of static analysis tools without investigating
any deeper on how much software developers take into account the identified
potential bugs. On the contrary, in this paper we take into consideration what
happens after bug detection, based on the idea that practically relevant issues
are more likely to be treated.

Some research has focused on understanding corrective maintenance activi-
ties to evaluate bug survival time. For instance, Canfora et al. [5] found corre-
lations between the bug classification/severity with high (low) survival times as
the change to fix the code could be more (less) obvious to be performed, or the
bug might manifest itself only under certain conditions.

Other studies focus on the characterization of bugs in different releases of the
same software product. For instance, the authors of a recent paper [9] analyzed
37 Java projects and concluded that post-release bugs are different from pre-
release bugs because they are more complex to fix (requiring developers to modify
several source code files), and because they involve code additions.

In [14], Zhou et al. focus specifically on differences in bugs and bug-fixing
processes between desktop and smartphone software. They analyzed 444,129
bug reports in 88 open source projects on Desktop, Android, and iOS systems
to discover similarities and differences in the bug processing. They find that iOS
bugs were fixed three times faster compared to Android and Desktop systems.

The studies [5,9,14] used more detailed information than we did. Collecting
and analyzing richer information is among our future objectives.

6 Conclusions

Tools that detect possibly problematic code patterns based on static code anal-
ysis can be very beneficial for software quality assurance.

In this paper, we focused on SpotBugs [3], which is a very popular tool for
defect detection via static code analysis. Specifically, we investigated whether
the issues found by SpotBugs are actually relevant in practice. To this end, we
analyzed two versions of five open-source software products via SpotBugs. We
consider that issues that were reported by SpotBugs in the first release and no
longer appeared in the second release were actually worth correction.

By analyzing the corrected issues we found that: 1) about half the warnings
issued by SpotBugs concern issues that were corrected; 2) more than 60% of the
warnings concerning correctness are corrected; 3) the number of correct issues
increases with the warning confidence.

An Empirical Study on the Persistence of SpotBugs Issues 151

Overall, SpotBugs seems to provide valuable indications concerning code that
needs corrections.

There are some interesting facts that we could not investigate in this paper
and will be the subject of future work. We shall investigate why different open-
source projects seem to address SpotBugs issues to very different extents. We
shall also try to understand which corrections were addressed on purpose, e.g.,
for correcting the bug correctly associated to the warning, and which ones were
performed in the context of broad refactoring activities or while maintaining
the code for other reasons, not directly connected with the warning. Finally, we
would like to understand why the likelihood of correction seems largely indepen-
dent of issue severity or confidence. Possibly we shall try to get some answers
directly from developers, rather than infer them via data analysis.

Acknowledgments. This work has been partially supported by the “Fondo di ricerca
d’Ateneo” of the Università degli Studi dell’Insubria.

References

1. FindBugs website (2020). http://findbugs.sourceforge.net/
2. SpotBugs documentation website (2020). https://spotbugs.readthedocs.io/en/

latest/
3. SpotBugs website (2020). https://spotbugs.github.io/
4. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static

analysis defect warnings on production software (2007)
5. Canfora, G., Ceccarelli, M., Cerulo, L., Di Penta, M.: How Long Does a Bug

Survive? An Empirical Study. In: 2011 18th Working Conference on Reverse Engi-
neering, pp. 191–200 (2011)

6. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM SIGPLAN Not. 39(12),
92–106 (2004)

7. Li, J., Beba, S., Karlsen, M.M.: Evaluation of open-source IDE plugins for detecting
security vulnerabilities. In: EASE, pp. 200–209. ACM (2019)

8. Rahman, F., Khatri, S., Barr, E.T., Devanbu, P.: Comparing static bug finders
and statistical prediction. In: International Conference on Software Engineering,
pp. 424–434 (2014)

9. Rwemalika, R., Kintis, M., Papadakis, M., Le Traon, Y., Lorrach, P.: An indus-
trial study on the differences between pre-release and post-release bugs. In: IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
92–102 (2019)

10. Tomassi, D.A.: Bugs in the wild: examining the effectiveness of static analyzers at
finding real-world bugs. In: ESEC/FSE 2018, pp. 980–982. ACM (2018)

11. Vestola, M.: Evaluating and enhancing FindBugs to detect bugs from mature soft-
ware; case study in valuatum (2012)

12. Vetrò, A., Morisio, M., Torchiano, M.: An empirical validation of FindBugs issues
related to defects. In: EASE, pp. 144–153. IET (2011)

13. Vetrò, A., Torchiano, M., Morisio, M.: Assessing the precision of FindBugs by min-
ing Java projects developed at a university. In: 7th Mining Software Repositories,
pp. 110–113. IEEE (2010)

14. Zhou, B., Neamtiu, I., Gupta, R.: A cross-platform analysis of bugs and bug-fixing
in open source projects: desktop vs. Android vs. IOS. In: 19th EASE. ACM (2015)

http://findbugs.sourceforge.net/
https://spotbugs.readthedocs.io/en/latest/
https://spotbugs.readthedocs.io/en/latest/
https://spotbugs.github.io/

Process Modeling, Improvement
and Assessment

Applying Continual Service Improvement
Practices to Study Quality of Healthcare
Information System Services: A Case

Study

Sanna Heikkinen1, Marko Jäntti2(B), and Kaija Saranto2

1 Istekki Oy, P.O Box 2000, 70601 Kuopio, Finland
sanna.heikkinen@istekki.fi

2 University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
{marko.jantti,kaija.saranto}@uef.fi

Abstract. Continual Service Improvement (CSI) plays a critical role in
increasing the quality of IT services leading to better customer satis-
faction. However, a key challenge in service management is that service
provider organizations do not identify CSI activities although they carry
out improvements task on daily basis. An ad hoc approach to CSI may
result in delays in improvement projects, poor transparency of improve-
ments tasks and lack of focus in service improvement. The research prob-
lem of this study is: how to manage service-related improvements with
ISO/IEC 20000 compliant CSI model. The main contribution of this
paper is to study how service-related improvements are managed. By
using case study methodology, we shall describe how CSI can be applied
to healthcare information system services. Case study results are ana-
lyzed through a Socio-Technical System (STS) view. Our results show
that service improvements can be managed with an ERP system includ-
ing CSI records, workflows and status monitoring of CSI. Additionally,
applying CSI to healthcare information systems requires a new set of
skills from service managers covering service management, healthcare
and medical device regulation. Finally, we show that multiactor network
may cause challenges to CSI such as coordinating multiple vendors, stake-
holders and customer representatives.

Keywords: Continual Service Improvement · Service quality · IT
service management

1 Introduction

Continual Service Improvement (CSI) [7] is a service lifecycle phase that is
responsible for improving the quality of IT services and underlying products,

Supported by Digiteknologian TKI-ympäristö project A74338 (ERDF, Regional Coun-
cil of Pohjois-Savo).

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 155–168, 2020.
https://doi.org/10.1007/978-3-030-58793-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_13

156 S. Heikkinen et al.

components, processes and practices. CSI (Continual Improvement in IT Infras-
tructure Library Edition 4 [2]) may initiate and manage improvements regarding
continuity management, risk management, availability management, capacity
management, as well as service operations of the service provider. Interoperabil-
ity and security of IT services play a crucial role especially in healthcare sector
where IT-related incidents (especially software incidents) or poorly managed
technical changes can cause service downtime or prevent access to healthcare
systems. Technical failures may cause risks to patient safety.

Previous studies on IT service management (ITSM) have mainly focused
on success factors of IT service management [24], challenges in service operation
processes [15] or other IT service management areas than continual improvement
such as implementation of preventive service systems [3], measurement of IT
service management [9] and implementing ITIL with Lean methods [20].

However, their findings can be used to deploy continual improvement in a
more systematic way. Deployment of CSI should take into account factors that
are crucial to any ITSM initiative [12] such as senior management involvement,
competence and training, information and communication to staff and stake-
holders, and culture.

In Finland, it is mandatory for healthcare organizations to have procedures
on how staff can participate on quality management and patient safety improve-
ment actions. Medical Devices Act (629/2010) [19] maintains and promotes the
safety of instruments and equipment in healthcare as well as their use. For exam-
ple, staff can participate on quality assurance by reporting potential threaths or
incidents to the HaiPro patient safety violations systems [22].

In order to perform change and technological transformation, IT service
providers need to play an active role in developing digital solutions that inte-
grate with healthcare processes and systems. For example, nowadays in Finland
electronic patient records (EPRs) and filmless picture archiving and communi-
cations systems (PACS) are source of important patient information covering
100% of both primary and specialized care [6]. This information system needs
to be updated and continually improved to deploy new features through a large
number of IT service providers and suppliers.

IT service providers and healthcare organizations need to improve their own
operations (internal improvement) in order to create, deliver and support health-
care services and deal with the growing number of legal requirements and medical
regulations. Related to ISO/IEC 20000 service management standard [13], the
organization shall have procedures to monitor changes in legal, regulatory, and
vendor requirements. The study of Varsha and Ganesh [1] revealed that using
appropriate quality management standards the quality of delivered service was
improved.

While many IT service provider organizations are aware of the need of con-
tinual improvement, they often struggle with improvement actions (e.g., clear
service roadmap or service improvement plans, schedules, monitoring) due to
lack of a process to manage improvements [11]. Additionally, one of the chal-
lenges is that organizations are not able to measure the maturity of continual

Applying Continual Service Improvement Practices 157

improvement although there are service management maturity frameworks and
standards (for example, ISO/IEC TS 33074:2020 [14]) available.

However, improvements or innovations in healthcare need engagement of
multiple stakeholders. IT service providers manage effective and efficient ser-
vice delivery and they need to be able to rapidly respond to the requirements of
the customers and service requests and feedback from service users. Healthcare
professionals represent the business perspective and participate in defining the
requirements for services.

In this paper, the goal is to study how IT service providers utilize continual
service improvement in their operations and services they offer. The focus is
on service improvement practices of a Finnish IT service provider company. The
results of this study can be used by service managers, business managers, and any
other service employees to improve service delivery in a multiactor network and
the ability of the company to respond to rapid cyclical developments. The results
can be applied for understanding the social and technical aspects of managing
improvements related to IT services.

The remainder of the paper is organized as follows. Section 2 describes the
research methods. Section 3 presents the results of the study. Section 4 provides
an analysis, and conclusions are given in Sect. 5.

2 Research Methods

This study aimed at answering the following research problem: How to man-
age service-related improvements with ISO 20000 compliant CSI model? In
this study, we used a case study method with single organization to answer
the research problem. The research problem was divided into three research
questions:

– How service-related improvements are managed in Enterprise Resource Plan-
ning (ERP) software?

– How CSI model can be applied to IT services on the healthcare domain?
– How CSI is operated in a multiactor network?

This study focused on continual service improvement methods in the context
of IT service management. By using case study methodology, we shall present
how CSI can be utilized by IT service provider in the healthcare IT services. The
case study can be defined as “an empirical inquiry that investigates a contem-
porary phenomenon within its real-life context” [25]. The real life context refers
to daily service management of an IT service provider organization (see Fig. 1).

In this study, we focused on exploring the CSI activities of IT service provider
in a healthcare domain. CSI in our case involves measurement of services and
service processes, identification of improvement ideas through measurement and
management of improvement actions [11]. Results are presented through Socio-
Technical System (STS) view. STS focussed at the phenomenological level, iden-
tifying the types of socio-technical interactions that occur when humans use IT

158 S. Heikkinen et al.

Fig. 1. The context of the case study.

in health settings [8]. As a theoretical framework of the study we used ser-
vice science, information technology (IT) service management, Continual Ser-
vice Improvement (CSI), quality management (preventive actions, corrective
actions), ISO/IEC 20000 service management standard (improvement manage-
ment), as well as healthcare laws and regulations (e.g. HaiPro).

2.1 Case Organization

The case organization Alfa has over 600 employees and provides information,
communication and medical technology services to its customers in Finland. Alfa
also operates in a service integrator role for social and healthcare organizations
and municipalities. The case organization was selected because the main author
of this paper was working for the case organization, thus having an easy access
to data. Additionally, we considered the case as a representative case of a typical
IT service provider organization because its service operations and processes are
compliant with standards (ISO/IEC 20000, ISO 9001) and it delivers IT services
to customers in healthcare domain by using a core ITSM system (ERP in this
paper). This study can be considered as exploratory case study with service
improvement aspects [21].

2.2 Data Collection Methods

Data for this study was collected by using multiple sources of evidence from
the case organization Alfa during the year 2019. The data was captured by the

Applying Continual Service Improvement Practices 159

first author while the second author participated in supervising and documenting
the case study, and third author provided additional insights regarding the socio-
technical system and healthcare information systems.

– Documentation: case documentation such as quality handbook, ITSM process
descriptions, ITMS process charts, standards: ISO 9001 and ISO/IEC 20000,
monthly steering board info, intranet information letters)

– Archival records: improvement records in the ERP software
– Interviews/discussions: CSI process owner, quality manager, quality special-

ist, group managers, ITSM tool specialist, process managers in Service Man-
agement Office (SMO)

– Participative observation: observations on CSI, participation in SMO meeting,
participation in a business steering group meeting

– Validation interviews (number of staff): ERP software main user (1), Secu-
rity manager (1), Information management specialist (1), Software architect
(1), Directors (4), HR Development Manager (1), Executive Assistant (1),
Development manager (3)

– Semi-structured theme interviews: two service managers of social and health-
care information system services

– Direct observations: Listening and making notes from conversations during
training sessions (ITIL 4)

2.3 Data Analysis Methods

The research problem of this research is to describe how to manage service-
related improvements with ISO/IEC 20000 compliant CSI model. According
to socio-technical theory [17], an organization consists of two interdependent
systems [18]. First, it includes a social system including the people and organi-
zational structures. Second, it involves a technical system including tasks and
processes as well as technologies and tools that people use to produce goods or
services to their customers.

The findings of the study were analysed by using within case analysis tech-
nique and taking into account four aspects involved in the Socio-Technical Sys-
tem (STS). Adopting the Socio-Technical System enables viewing the service
improvement practices as a wider and more sustainable perspective than just
as a single process area of IT service management. We shall describe four view-
points and present how to keep the continual improvement momentum going on
in the context of an IT service organization. In this study, the results shall be
analyzed through socio-technical components [5] in a way similar to the study
of Blomberg, Cater-Steel and Soar [4].

3 Results

The results of this study are presented in this paper according to three research
questions. These research questions are used to answer the main research problem
of this study: How to manage service-related improvements with ISO 20000
compliant CSI model?

160 S. Heikkinen et al.

3.1 How Service-Related Improvements Are Managed in Enterprise
Resource Planning (ERP) Software?

In case Alfa, ERP software (service management system) has been developed
to support effective way of work and management of customer needs (lead),
projects, invoices, and support request (ticket) in a one master data tool.

Discussion with the continual improvement process owner revealed the need
to collect and manage employee’s improvement ideas related to new business ser-
vice innovations, IT services or internal practices via ERP software. The author
of this paper designed the workflow to the ERP software based on the ISO/IEC
20000 standard requirements concerning management of improvement ideas (see
Fig. 1).

The process of managing improvement ideas guides employees to operate
with improvement records always in the same way. This type of model supports
and increases quality to the management process and encourages employees to
think how ideas would benefit the services of the organization.

The ERP software (deployed in 2018) enables designing particular forms
of ticket workflows and tasks to processes. The author designed a form where
service-related ideas can be documented in a basic web form. This supports a
structured and informative form of Continual Improvement record. The employ-
ees see this valuable because it forces to document basic information on improve-
ments (description, benefits, quality aspects).

During the study, we identified a challenge in the information quality of
improvement records. Ideas may be received like a post it notes with incomplete
information. Improvement records can be directed to a right group or people
for evaluation by using automation. The improvement record can be used to
replace case organization’s other forms such as financial expenditure form and
minimize the number of emails related to processing and content of ideas. This
provides the employees better opportunities to learn and remember only one tool
where they can document ideas. The improvement record includes the following
functionalities:

– Categorization and subcategorization of the improvement idea: enables effec-
tive routing of improvement idea to a right team or a person
• Improvement of current service ticket type (shall be assigned to quality

management group)
• Internal improvement idea (shall be assigned to area manager, for exam-

ple, improvement ideas related to corporate security shall be assigned to
security manager, human resources-related improvement ideas to the HR
Development Manager)

• New business opportunity (shall be assigned to Business Development
group)

– Reminders: After two weeks of documenting the idea, the reviewer will receive
an automatic reminder of the pending evaluation. The evaluation must be
done within 21 days. This is seen important because it forces to conduct a
review and make either a Go or a No Go decision.

Applying Continual Service Improvement Practices 161

– Evaluation of the improvement idea: Each idea is evaluated by using multiple
factors, such as expected business benefits, business impact, leading to mea-
surable results, time required for implementation, required resources, impact
to customer, summary of evaluation, decision of implementation.

– Communication of decision: Information on the decision (not imple-
mented/implemented) shall be delivered automatically to the person who
submitted the idea and the support person who performed the evaluation

– Status monitoring: The status (new, waiting evaluation, on handling, closed)
of the development idea changes automatically (new, pending evaluation,
implementation, etc.)

The tool provides employees a channel to represent ideas related to new
business service innovation, a service or an internal practice and increases the
visibility of ideas to employees. This enables employees to make a conversation
of ideas and support the progress. During the study, we observed the need is to
ensure that there is clear role to evaluate ideas, keep the implementation work
going on, and active dialog between participants.

There is a large number of potential ideas but in relation to benefits (cost,
effective, resources, risks) there is need to make selection. It is important to
review ideas by using the same attributes and aspects to ensure the equality of
ideas.

During the study, we captured comments (participative observation, inter-
views) that indicated the need to communicate improvement ideas to employees
and ensure that the processes are in place to support smooth management of
improvements. This includes identification of new ideas and allocating them to
the right people who can make the evaluation, motivated employees to design the
solution and work with implementation, as well as communicating the benefits
that are achieved.

The observations and interviews revealed the need of a ticket, because a
customer may suggest, for example, ideas related to internal practices and at the
moment it is not clear for employees how to manage this type of ideas. Customer
feedback and ideas should be brought under case organization’s processing and
someone should take action on them. One of the interviewees commented that
it is good that there is a tool to support the management practice, but there
is also need for employees that perform the implementation of improvements in
addition to their normal work.

3.2 How CSI Model Can Be Applied to IT Services on the
Healthcare Domain

How Service is Measured? In case organization, quality manuals describe
measurement and metrics on service and customer satisfaction (e.g. customer
surveys, customer feedback, project meetings, project feedback). The researchers
observed that measurement of the service benefits and impact is a challenging
task to perform. There should be common criteria and methods on how ser-
vice benefits can be evaluated. This type of analysis could show how IT service

162 S. Heikkinen et al.

brings broader benefits to customer and this data can be used by sales staff to
increase service sales. For example, regarding the robotics service there are view-
points such as cost quality aspects (patient safety, data transfer), and employee
experience (less manual checks and data copy and paste between systems).

What Type of Knowhow Is Required in a Service Manager Role? IT
service organization need different roles and skills on work. For example, one
important skill type for service managers are interaction skills, because they
manage the performance of provided service by working together with the cus-
tomer, organization’s experts and suppliers. Interviews revealed also need for
customer relationship management, service pricing, performance of maintenance,
contract management, procurement, contract management, service reporting to
organization management and to customers, continual improvement of the oper-
ational services.

For service delivery, service managers need to have knowhow on ITSM prac-
tices such as incident management, change and project management, continuity
and availability management, and service level management. Additionally, they
need to have tools for monitoring the service management. Service managers
reported that they have business intelligence (BI) tools to monitor the prof-
itability of the service. They can use the tool to identify and analyse the costs
of the service and service profitability. In the future, the service managers would
need to increase skills at service design, Medical Device Regulation related to
healthcare systems and service improvement perspectives in Finland, and bench-
mark to competitors.

How Service Managers Perform Service Improvement? According to
interviews, in IT and healthcare domains there is no other alternative than
continual improvement. Healthcare legislation and regulative frameworks result
in continuous stream of changes to the requirements due to government’s social
and healthcare reform. Additionally, customers’ growing need for digitalization
requires that IT service providers pay attention to improve services and service
management. In our case organization, continual improvement is performed in
many levels, roles, cycles and actions.

The researchers observed that continual service improvement is important in
case organization from value creation perspective. The case organization’s goal
is to add value to customers and do things for the customers by supporting their
operations in a way that the customer can focus on their own business and the
service provider organization will take care of the IT service improvement and
IT-related problems.

The service manager of case Alfa commented in interviews that ser-
vice improvement requires IT service management processes that are running
smoothly and there should be time to develop those processes that supports the
IT service delivery.

Which Roles Participate in Decision Making of Service Related
Improvements? While improving the service there might be different roles
that participate in the design and decision making. It depends on the scope

Applying Continual Service Improvement Practices 163

of improvement activity. In the case organization, participating roles included
business manager, specialists and service managers.

Depending on the value of investment and other factors described earlier in
this paper decision-making authorization is defined and limits for purchases are
set. The service manager gathers information from various sources to make the
business decision to move forward. We observed that it has been a little unclear
who will decide the bigger and smaller improvement thing.

Sometimes the implementation of development ideas may involve investments
that are seen to result in sufficient benefits through the calculations and whether
it is worthwhile to continue the implementation. From the company’s manage-
ment perspective, it would be better if ideas should be refined and not directly
presented as raw ideas in strategic decision-making.

In case organization, the business development team evaluates and filters new
business ideas which are recorded in the ERP system. If there is only one person
to decide, then there is a risk of not recognizing the potential.

How Service Review Meetings Are Organized? According to the case
Alfa’s quality manual, 2–4 service meetings are organized annually. Service man-
agers reported that meetings include overall service situation such as service
development needs, service functionality in production, customer satisfaction,
potential cost increase needs, and from the quality point of view, the number of
service requests from the ERP tool.

Participation depends on the meeting subject and could include customer’s
information management persons (e.g. responsible and accountable persons, sys-
tem administrators and executives). Service meetings are case-by-case, which
allows to choose the best customer relationship management model when there
is really no one-size-fits-all model.

3.3 How CSI Is Operated in Multiactor Network?

Which Actors and Stakeholders Are Related to the Service? The case
organization utilizes suppliers to provide the service. The suppliers are social and
healthcare system and equipment providers. Additionally, service-related actors
are the case organization’s business units and the production groups (e.g., net-
work, database, integrations), customer representatives and other authorities
such as the Finnish Institute for Health and Welfare (THL), Digital and Popu-
lation Data Services Agency, the Ministry of Social Affairs and Health, and the
Social Insurance Institution of Finland (KELA). Existing ICT communication
tools (e.g. Skype, Teams) enable cooperation with suppliers and customers.

How Improvements Are Implemented in Multiactor Network and
Which Challenges Has Been Identified? According to the interviewee, ser-
vice improvement requires a good cooperation with suppliers and support from
organization’s management. To make things progress there is need to identify
right channels for ideas and contact persons to communicate with regarding the
idea. The case organization has recognized that service development in multi-
actor network is a complex and time-consuming process. The most demanding

164 S. Heikkinen et al.

step is the co-ordination if there are multiple vendors, other stakeholders and
the customer involved in the development.

Service improvement begins with identification of a customer’s needs, plan-
ning, kickoff and review of suppliers’ offers. When the solution to a customer
need is known internally and externally, then the offer from the case organiza-
tion will be introduced to the customer. The scope of improvement affects the
delivery model where large implementations can be managed as projects and
smaller implementations can be managed as service requests. One of the inter-
viewees commented that it is good if a service manager would be involved in the
improvement because he/she can ensure that the business perspective is taken
into account.

To provide service via a multiactor model, the goal is to integrate the services
of internal and external service providers into a seamless service chain. Certain
challenges have been identified in delivering the service in terms of information
flow and managing information on the supplier’s operating practices. Addition-
ally, one of the interviewees pointed out challenges related to service support
times. The case organization needs to take into account all supplier contracts to
define service support times and service levels.

What Types of Expectations Customers Have Regarding the Service?
The operating environment of service is becoming more diverse and customers
expect that the case organization is able to provide customers with solutions
holistically through a wide catalogue of services. The expectations are related to
meeting the agreed service level requirements, for example, response times should
match customers’ requirements and service times for operations should follow
defined service levels. Additionally, staff needs to be aware what is happening
in the service environment, have readiness to improve the provided service, and
to collaborate and engage stakeholders. Customers also expect that the case
organization monitors the operating environment and provides added value, not
only from a perspective of a single service, but holistically from a wider business
perspective.

4 Analysis

Table 1 shows the analysis of results according to two elements of social
view. Data source has been described by using abbreviations: IN= Validation
interviews and theme interviews, DI = Discussions, DO = Documentation,
PO = Partic. observation, DOB = Direct observation, PA= Physical artefacts.
Other abbreviations: CSI = Continual Service Improvement.

A within-case analysis technique [10] was applied to analyze the data from
the case organization. The focus was in the continual service improvement. This
requires skilled service staff, appropriate organizational structure, defined pro-
cesses and effective tools to support service delivery. Next, we shall present the
analysis by using the components of the Socio-Technical System as patterns
(categories).

Applying Continual Service Improvement Practices 165

People: The IT service provider needs competent staff to lead the service
improvement implementation and smooth service delivery to the customer. Uti-
lizing staff throughout the organization to identify unnecessary job bottlenecks
increases job satisfaction. When new business service innovation, IT service, or
internal practice is recognized by staff and customer, employees are encouraged
to make a conversation about the recorded ideas and process the ideas together.

The customer expectation is that the case organization can provide added
value, not only from a perspective of a single service, but holistically from a wider
business perspective. The service provider needs to be aware of what is happening
in the service environment and take proactive actions, have readiness to improve
the provided service, and to collaborate and engage various stakeholder groups.

Table 1. Summary of key findings according to 4 views in the Socio-Technical System

STS Findings (source) Implication to CSI

People Interaction and cooperation skills IN

Creativity & innovation to improve services DI, IN

The tool provides a channel to present

ideas related to service innovation DI, IN

Be aware of changes in service environment IN

Have readiness to improve provided service IN

Collaborate and engage stakeholders IN

Ensure that CSI skills exist

Foster innovation skills

Utilize the full org. potential

in CSI

Know the service environment

Plan engagement

Structure Various roles participate in design, decision

making, and implementing improvements. IN

Communicate improvements to employees IN

Measurement of the service benefits and

impact from value creation perspective. IN

Set clear roles and responsibilities

to support smooth CSI.

Create visibility to CSI

Emphasize managem. of benefits

Process Meetings with customers and

suppliers related to service delivery. IN, DO

Planning the future roadmap helps to gather

and implement service improvements. IN, DO

Managing improvement ideas process ensures

unified processing of ideas. IN, DO, PO, DI

Common methods and criteria needed to

evaluate service improvement targets. IN, AR,

DO

Organize service meetings

to improve service delivery

Use roadmaps to show

direction for improvement

Define a process for

managing improvements

Evaluation of improvements

requires clear criteria

Technology ERP should enable managing service

tasks and support effective work. DO, PO, IN

ERP should produce monitoring data DO, PO, IN

Design a workflow where ideas can be

captured in a common form; helps creating

an informative impr. record. DO, PO, IN

Design a system supporting

service lifecycle management

Use standardized

procedures and workflows

in ITSM tools

Structure: In order to provide service via a multiactor model, the case organi-
zation aims at integrating the services of internal and external service providers
into a seamless service chain. To improve service, there is need to ensure that
there are clear roles to evaluate ideas, motivated employees to design the solution,
keeping the implementation work going on, active dialog between participants,
and effective communication on the benefits that have been achieved.

166 S. Heikkinen et al.

If there is a service roadmap or a service improvement plan (SIP), it would
help to prioritizing the improvement ideas. Additionally, SIP could help staff
to be proactive and manage the workload effectively. ISO/IEC 20000 standard
requires that IT service providers measure services and implemented improve-
ments and take necessary actions if targets are not achieved. The case organi-
zation could pay more attention to identification of benefits (e.g, patient safety,
increased employee experience), impact and goal-orientation while defining
metrics.

Process: IT service provider collects service improvements during meetings with
customers and suppliers. Meetings include overall service situation such as service
development needs, service functionality in production, customer satisfaction,
potential cost increase needs, and from the quality point of view, the number
of support tickets from the ERP tool. Workflows in the ERP tool support and
increase quality to the management of processes in the same way. There is a large
number of ITSM process frameworks available for improvement purposes [16].

The ERP system supports a structured and informative form of Continual
Improvement record. The employees see this valuable because it forces to docu-
ment basic information on improvements (description, benefits, quality aspects).
A well-known and familiar management process for improvements encourages
employees to think how ideas would benefit the services and customers. Addi-
tionally, there should be common methods and criteria on how service improve-
ment targets can be evaluated.

Technology: The ERP system should enable managing service lifecycle pro-
cesses and workflows within the case organization. This supports identifying
and analyzing the costs of the service and issues related to the effectiveness of
the service profitability.

Our results support the findings of previous studies in CSI by emphasizing the
need for systematic management of continual improvement actions for services
[11]. However, this study did not deal with CSI based on maturity models [23] but
instead applied a Socio-Technical Theory model in order to establish foundation
for continual improvement practices.

5 Conclusions

This study aimed at answering the research problem: how to manage service-
related improvements with ISO/IEC 20000 compliant CSI model. The main
contribution of this paper was to present a case study focusing on studying
continual service improvement practices of an IT service provider organization.
The study consisted of three research questions. Regarding the first research
question (How service-related improvements are managed?), we observed that
the ERP system plays a central role in continual service improvement of the
case organization. The ERP system includes CSI records, workflows, priorization
and categorization of improvement ideas, communication of decision and status
monitoring of continual improvement records.

Applying Continual Service Improvement Practices 167

The second research question (How CSI model can be applied to IT services
on the healthcare domain?) focused on studying CSI in the context of healthcare
information system services. Our findings indicate that continual improvement
can be seen as a mandatory process area for healthcare information system
services because they need to respond to the changes in healthcare legislation,
regulative frameworks and customers’ changing needs. We observed that service
managers need not only service management skills but also skills and knowhow on
Medical Device Regulation related to healthcare systems. Additionally, service
managers need information on customers’ strategies, improvement roadmaps and
actual service performance as well as solutions that help customers holistically.

Our findings from the third research question (How CSI is operated in a mul-
tiactor network?) revealed that service development in a multiactor network is
a complex and time-consuming process. One of the major challenges is how to
coordinate multiple vendors, stakeholders and customer representatives involved
in the improvement. The multiactor model of service provision aims at integrat-
ing the services of internal and external service providers into a seamless service
chain.

The following limitations are related to this case study: First, our study
included only one case organization with limited number of interviewees and
qualitative data. It would be interesting to conduct a study that compares CSI
procedures of multiple organizations and utilizes both qualitative and quanti-
tative data. Second, the selection of interviewees can also be seen as a limita-
tion. Interviews could have included customer representatives to provide richer
insights to CSI. Third, case study as a research method does not allow us to gen-
eralize research findings to other organizations. However, we are able to extend
the theory of service management through our results. We aimed at improving
the validity of the study by using multiple data sources and two interviewees
validating and reviewing the case study. Reliability was improved by utilizing
case study datastore and maintaining the chain of evidence.

References

1. Agarwal, V., Ganesh, L.: Implementing quality healthcare strategies for improving
service delivery at private hospitals in India. J. Health Manag. 19(1), 159–169
(2017)

2. Axelos: ITIL Foundation ITIL 4 Edition. The Stationary Office, UK (2020)
3. Barkai, O., Harison, E.: Preventive service management: towards pro-active

improvement of service quality. Rev. Bus. Inf. Syst. 15, 19–30 (2011)
4. Blumberg, M., Cater-Steel, A., Rajaeian, M., Soar, J.: Effective organisational

change to achieve successful ITIL implementation: lessons learned from a multiple
case study of large Australian firms. J. Enterp. Inf. Manag. 496–516 (2019)

5. Bostrom, R.P., Heinen, J.S.: MIS problems and failures: a socio-technical perspec-
tive. part I: the causes. MIS Q. 1(3), 17–32 (1977)

6. Braithwaite, J., Mannion, R., Matsuyama, Y.: Health Systems Improvement Across
the Globe: Success Stories From 60 Countries. CRC Press (2018)

7. Office, C.: ITIL Continual Service Improvement. The Stationary Office, UK (2011)

168 S. Heikkinen et al.

8. Coiera, E.: Putting the technical back into socio-technical systems research. Int. J.
Med. Inf. 76(1), 98–103 (2007)

9. Cronholm, S., Salomonson, N.: Measures that matters: service quality in it service
management. Int. J. Qual. Serv. Sci. 6, 60–75 (2014)

10. Eisenhardt, K.: Building theories from case study research. Acad. Manag. Rev. 14,
532–550 (1989)

11. Heikkinen, S., Jäntti, M.: Studying continual service improvement and monitoring
the quality of ITSM. In: Piattini, M., Rupino da Cunha, P., Garćıa Rodŕıguez de
Guzmán, I., Pérez-Castillo, R. (eds.) QUATIC 2019. CCIS, vol. 1010, pp. 193–206.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29238-6 14

12. Iden, J., Eikebrokk, T.: Implementing it service management: a systematic litera-
ture review. Int. J. Inf. Manag. 33, 512–523 (2013)

13. ISO/IEC 20000:1: Information technology - Service management - Part 1: Service
management system requirements. Finnish Standard Association (2018)

14. ISO/IEC TS 33074:2020: Information technology – Process assessment – Process
capability assessment model for service management. ISO Copyright Office (2020)

15. Jäntti, M., Cater-Steel, A.: Proactive management of it operations to improve it
services. J. Inf. Syst. Technol. Manag.: JISTEM 14(2), 191–218 (2017)

16. Jäntti, M., Hotti, V.: Defining the relationships between it service management
and it service governance. Inf. Technol. Manag. 17(2), 141–150 (2016)

17. Leavitt, H.J.: Applied organization change in industry: structural, technical and
human approaches. In: New Perspectives in Organization Research, pp. 55–71
(1964)

18. Lyytinen, K., Mathiassen, L., Ropponen, J.: Attention shaping and software risk -
a categorical analysis of four classical risk management approaches. Inf. Syst. Res.
9, 233–255 (1998)

19. Ministry of Social Affairs and Health: Medical devices act (1482/2019) (2019)
20. Obwegeser, N., Nielsen, D.T., Spandet, N.M.: Continual process improvement for

ITIL service operations: a lean perspective. Inf. Syst. Manag. 36(2), 141–167 (2019)
21. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)
22. Ruuhilehto, K., Kaila, M., Keistinen, T., Kinnunen, M., Vuorenkoski, L., Wallenius,

J.: Haipro-what was learned from patient safety incidents in Finnish health care
units in 2007 to 2009? Duodecim Med. J. 127, 1033–1040 (2011)

23. Shrestha, A., Cater-Steel, A., Toleman, M.: Virtualising process assessments to
facilitate continual service improvement in it service management. In: Australasian
Conference on Information Systems, pp. 1–14. Association for Information Sys-
tems, AIS, Asia and the Pacific (2015)

24. Tan, W.G., Cater-Steel, A., Toleman, M.: Implementing it service management: a
case study focussing on critical success factors. J. Comput. Inf. Syst. 50(2), 1–12
(2009)

25. Yin, R.: Case Study Research: Design and Methods, 5th edn. SAGE (2014)

https://doi.org/10.1007/978-3-030-29238-6_14

A Personal Opinion Survey on Process
Compliance Checking in the Safety

Context

Julieth Patricia Castellanos Ardila(B) and Barbara Gallina

IDT, Mälardalen University, Väster̊as, Sweden
{julieth.castellanos,barbara.gallina}@mdh.se

Abstract. Manually checking the compliance of process plans against
the requirements of applicable standards is a common practice in the
safety-critical context. We hypothesize that automating this task could
be of interest. To test our hypothesis, we conducted a personal opin-
ion survey among practitioners who participate in safety-related process
compliance checking. In this paper, we present the results of this survey.
Practitioners indicated the methods used and their challenges, as well as
their interest in a novel method that could permit them to move from
manual to automated practices via compliance checking.

Keywords: (Automated) compliance checking · Process plan ·
Safety-critical · Current practices · Challenges · Personal opinion
survey

1 Introduction

Safety standards usually include requirements that prescribe the planning of
tasks, and the resources required and produced, e.g., personnel, work products,
and tools. Nair et al. [13], reports 9 essential process plans required in safety
assessment, i.e., Safety Management, Communication, Risk Management, Con-
figuration Management, Development, Verification and Validation, Modification
Procedures, Operation Procedures, and Staff Competence. Manually checking
the compliance of such plans against the requirements of applicable standards is
a common practice. The checklists used can be obtained by listing the require-
ments of the standard, or listing personal or organizational practices [15]. A pro-
cess compliance checklist, which has been accurately filled-in, requires a proper
evaluation of the satisfaction of the requirements. Thus, missed requirements are
highlighted, providing hints to improve the process.

Process compliance checking could be overwhelming due to the sheer volume
and complexity of the knowledge included in the standards. Thus, we hypothe-
size that automating this task could be of interest. To test our hypothesis, we
conducted a personal opinion survey [12] among practitioners who participate in
safety-related process compliance checking. In this paper, we present the results

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 169–183, 2020.
https://doi.org/10.1007/978-3-030-58793-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_14

170 J. P. Castellanos Ardila and B. Gallina

of this survey. In particular, practitioners indicated the methods used and their
challenges, as well as their interest in a novel method that could permit them
to move from manual to automated process compliance checking. These results
contribute to systematizing the knowledge about process compliance checking
and finding methods and tools for facilitating this practice.

The rest of the paper is organized as follows. In Sect. 2, we present essential
background. In Sect. 3, we present the research method used to conduct the sur-
vey. In Sect. 4, we present the survey results. In Sect. 5, we discuss our findings.
In Sect. 6, we examine related work. Finally, in Sect. 7, we conclude our work
and present future work.

2 Background

This section presents essential background.

2.1 Facilitating Automated Process Compliance Checking

In the context of the European project AMASS (Architecture-driven, Multi-
concern and Seamless Assurance and Certification of Cyber-Physical Systems)1,
we proposed a process-centered planning-time method for safety-related pro-
cess compliance checking [4,5]. The method requires users to create artifacts in
a SPEM 2.0 (Systems & Software Process Engineering Metamodel)2 reference
implementation supported with Eclipse Process Framework (EPF) Composer3

(see Fig. 1), as follows. (1) Method content, which are elements that are part of
a process, i.e., roles, tasks, work products, and guidance. (2) A knowledge base
of compliance information based on the formalization of standard requirements
in Formal Contract Logic (FCL) [10]. FCL is a defeasible deontic logic, i.e., it
supports the modeling of norms representing obligations and permissions in a
normative context that can be defeated by evolving knowledge. In FCL, a rule
has the form: r: a1, ..., an ⇒ c, where r is the rule identifier, a1, ..., an are the
propositions that represent the conditions of the applicability of the norm, and c
is the concluding proposition that contains normative effects. For this, SPEM 2.0
guidance elements are customized as requirements, FCL rules, and compliance
effects (which correspond to the propositions of the rules). (3) Compliance effects
are annotated in the process tasks. As compliance effects describe the concrete
actions prescribed by the standard requirements, users need to evaluate each task
action and define its effects in the overall process compliance to make the anno-
tation. For example, the task Start software Unit Design Process indicates that
the process is performed and has two inputs. Thus, the annotated compliance
effects are addressSwUnitDesignProcess, ProvideSwArchitecturalDesign and Pro-
videSwSafetyRequirements. (4-a) A sequential representation of the process plan,
as well as its dynamic representation (4-b), are created by using the compliance
1

https://www.amass-ecsel.eu/.
2

https://www.omg.org/spec/SPEM/About-SPEM/.
3

https://www.eclipse.org/epf/.

https://www.amass-ecsel.eu/
https://www.omg.org/spec/SPEM/About-SPEM/
https://www.eclipse.org/epf/

A Personal Opinion Survey on Process Compliance Checking 171

Fig. 1. Method for facilitating automated process compliance checking.

annotated tasks. The dynamic representation is used to automatically gener-
ate a compliance state representation of the process, which permits automatic
compliance analysis with the compliance checker Regorous4. Regorous provides
(5) compliance checking results, i.e., description of compliance issues, rules and
elements involved, and possible resolutions. For facilitating FCL formalization,
the concept of Safety Compliance Pattern (SCP) [3,6] has been defined. An SCP

4 https://research.csiro.au/data61/regorous/.

https://research.csiro.au/data61/regorous/

172 J. P. Castellanos Ardila and B. Gallina

describes commonly occurring normative safety requirements on the permissi-
ble state sequence of a finite state model of a process. These patterns can be
instantiated from predetermined templates. EPF-C has been recently updated
to Eclipse Neon 4.6.3 in the context of the AMASS project [11].

2.2 Personal Opinion Surveys

A personal opinion survey [12] is a comprehensive research method for collecting
information using a questionnaire completed by subjects. When creating a sur-
vey, the first step is to define the expected outcomes. Then, the survey should
be designed, e.g., cross-sectional (participants are asked for information at one
fixed point in time). It is also essential to define options related to how the
survey would be administered. Once designed, the survey instrument should be
developed, evaluated, and applied to a sample population, from which obtained
data is analyzed.

Four types of validity need to be addressed to make sure that the survey
instrument is measuring what it supposes to measure [12]. 1) Face validity is a
cursory review of items by untrained judges. 2) Content validity is a subjective
assessment of how appropriate the instrument seems to a group of reviewers with
knowledge of the subject matter. 3) Criterion validity is the ability of a mea-
surement instrument to distinguish respondents belonging to different groups.
4) Construct validity concerns how well an instrument measures the construct
it is designed to measure.

In the creation of surveys, Likert Scales [1] are widely used. Likert Scales
are psychometric response scales, e.g., a five–point scale ranging from “Strongly
Disagree” to “Strongly Agree,” used to ask respondents to indicate their level of
agreement with a given statement. On a Likert scale, each specific question can
have its response analyzed separately, or have it summed with other related items
to create a score for a group of statements. Individual responses are generally
treated as ordinal data because although the response levels do have a relative
position, we cannot presume that participants perceive the difference between
adjacent levels to be equal.

2.3 Technology Acceptance Model

The Technology Acceptance Model (TAM) [7] provides general determinants
of computer acceptance. TAM is capable of explaining user behavior across a
broad range of end-user computing technologies and user populations, while at
the same time being theoretically justified. TAM focuses on three main facets
of user acceptance. The first is the degree to which a person believes that using
a particular method will be free of effort (Perceived Usability). The second is
related to a person’s subjective probability that using a particular system would
enhance his/her job (Perceived Usefulness). The third is the extent to which a
person intends to use a particular system (Intention to Use).

A Personal Opinion Survey on Process Compliance Checking 173

3 Research Method

In this section, we present the details regarding the creation of a personal opinion
survey. We followed the guidelines recalled in Sects. 2.2 and 2.3.

3.1 Research Questions

In this survey, we aim at gathering information about current industrial practices
and challenges in process compliance checking, as well as the acceptance level
of the method for automated compliance checking (recalled in Sect. 2.1). Within
this scope, we formulate the research questions presented below.

– RQ1: How do practitioners currently perform process compliance checking?
– RQ2: What are the challenges that practitioners face when performing process

compliance checking?
– RQ3: What is the level of acceptance of practitioners regarding a novel

method for facilitating automated compliance checking?

3.2 Survey Design

We designed a cross-sectional web-based personal opinion survey, whose goal is to
collect data relevant to answer the research questions presented in Sect. 3.1. The
target population is practitioners involved in process compliance checking in the
safety-related context. The final survey5, which starts with a short introduction
to the purpose of the study, is composed of 21 questions, which are organized
into four parts.

1. Demographics. Questions 1–7 aim at gathering the background character-
istics of the practitioners.

2. Current practices. Questions 8–14 aim at gathering information about
practitioners’ experiences in compliance checking.

3. Challenges. Questions 15 and 16 aim at inquiring about the challenges
appearing in process compliance checking. In question 15, practitioners rate
the importance of 7 possible challenges by using a five-point Likert scale rang-
ing from Unimportant to Very Important. Question 16 is an open question in
which practitioners can write further challenges.

4. Automated process compliance checking. First, practitioners read infor-
mation about the method for facilitating automated compliance checking
recalled in Sect. 2.1. Then, we present the questions 17–21 as a series of
claims from which we seek practitioners’ degree of acceptance regarding the
user acceptance aspects described in the TAM model (see Sect. 2.3), i.e., the
method usefulness, usability, and user’s intention to use it. To collect the
answers, we use a five-point Likert Scale ranging from Strongly Agree to
Strongly Disagree.

5 https://www.dropbox.com/s/efcab84me7kxpj8/FinalSurvey.pdf?dl=0.

https://www.dropbox.com/s/efcab84me7kxpj8/FinalSurvey.pdf?dl=0

174 J. P. Castellanos Ardila and B. Gallina

We were interested in the practitioners’ overall experience. Thus, where pos-
sible, the practitioners were allowed to select more than one option to indicate
their experience regarding several practices. Practitioners were also given the
possibility to mention additional options or answer “Don’t know” if this was the
case. We consider that completing the survey would take between 20–25 min.

3.3 Instrument Evaluation and Data Collection

The first author created a set of initial questions. The second author helped to
structure and design the survey by providing comments for cleaning ambiguity
and a more in-depth analysis that led to the formulation of further questions.
Then, we distributed the survey to a selected group of safety experts during the
Scandinavian Conference on System & Software Safety6. One expert provided
valuable comments that were used to improve the survey. The final evaluation
was performed by both authors, improving textual explanations and questions.

The data was collected from January 22th to February 28th of 2020. The
survey was distributed via personal e-mail invitations. The selection of the prac-
titioners included industrial experts (on purpose, we discarded research insti-
tutions) that participate in European projects related to certification and self-
assessment. We also extracted industrial-related practitioners from conferences,
symposiums, and workshops related to safety assurance. In total, we obtained
15 valid responses from which 8 were received after the initial invitation letter,
and 7 were received after a reminder e-mail.

3.4 Subject Characteristics and Data Analysis

The valid answers were obtained from practitioners mostly working in the con-
sultatory branch (see Fig. 2a and Fig. 2g) which have experience demonstrating
process compliance checking in 13 countries (see Fig. 2b), predominantly Europe.
The practitioners have experience in 9 safety-related domains (see Fig. 2c) and
13 standards (see Fig. 2d), where automotive is the most represented. The major
interest of the practitioners, which shows higher levels of expertise (see Fig. 2f) in
process compliance checking, is to get the compliance certification and improve
processes (see Fig. 2g). The analysis of our survey was adjusted with the infor-
mation provided in the “Others” option.

3.5 Survey Validity

The four types of validity of the survey instrument (recalled in Sect. 2.2) were
addressed as follows. To avoid face validity, we perform a careful review of our
survey instrument in several stages and with experts in the field of safety cer-
tification. Content validity was assured by doing a careful literature review on
the topic and validating as well with experts. Regarding criterion validity, we
assure that the practitioners’ background was related to the type of expertise we
6 http://safety.addalot.se/2019.

http://safety.addalot.se/2019

A Personal Opinion Survey on Process Compliance Checking 175

(a) Role. (b) Countries. (c) Domain. (d) Standards.

(e) Company Type. (f) Expertise. (g) Checking Reasons.

Fig. 2. Demographic results.

were looking by making a careful selection process. For reducing the construct
validity, we allow the practitioners to include the “Others” option. Thus, the
threat of providing an incomplete list of options is minimized. Additionally, to
avoid evaluation apprehension, we guaranteed confidentiality and anonymity of
the responses.

4 Survey Results

In this section, we present the results of the survey by answering the research
questions presented in Sect. 3.1.

4.1 Current Practices (RQ1)

Figure 3a shows the 9 process plans (recalled in the introductory part) provided
as alternatives in the questionnaire in the vertical axis, and the percentage of

(a) Plan Types. (b) Representation. (c) Creation.

Fig. 3. Information regarding processes.

176 J. P. Castellanos Ardila and B. Gallina

respondents, who selected each type in the horizontal axis. Figure 3a shows that
practitioners have performed compliance checking mostly on the Verification and
Validation, Configuration Management, Safety Management, Development, Risk
Management, and Modification Procedure Plans. The remaining plans listed
were less considered as part of the practitioners’ compliance checking duties. In
the “Others” option, practitioners mentioned the Software Quality Assurance,
Safety Assessment, Documentation, and Cybersecurity Plans.

Current practices indicate that processes are mostly represented with only
text, but graphical representations are also relevant (see Fig. 3b). Moreover,
process plan reuse is a common practice (see Fig. 3c).

Regarding checklist preparation, we found that the three alternatives given
in the questionnaire are almost equally used (see Fig. 4a). The practice of com-
pliance checking is done in different ways. Most commonly, practitioners take
every requirement and check it against the information provided by the process
specification (see Fig. 4b). Practitioners also base the compliance assessment
on other practices, such as the use of points of compliance, and the assessment
of strengths and weaknesses of the findings. It is common that practitioners
use software tools for performing compliance management tasks (see Fig. 4c).
Rational doors, Microsoft suite (e.g., Word, Excel, and MS project), opencert,
verification studio, engineering studio, stages (for modeling processes) were the
tools mentioned by practitioners in the survey.

(a) Preparation. (b) Checking. (c) Mechanism.

Fig. 4. Information regarding compliance checking.

4.2 Challenges (RQ2)

Figure 5 presents a set of challenges that could appear during process compli-
ance checking to which we ask respondents to rate them from very important to
unimportant. The results shows that one of the challenges that was considered
very important by the practitioners is that “it is common to miss requirements”.
Important challenges are: “Check process-based compliance requires that many
people are involved”, “Check the compliance of a process requires many inter-
actions”, “Check process-based compliance requires many hours of work”, and
“It isn’t easy to determine the kind of information that should be provided as

A Personal Opinion Survey on Process Compliance Checking 177

Fig. 5. Challenges in process compliance checking.

evidence from the process perspective.” The practitioners considered the other
challenges moderately important. The practitioners also have the option to list
their challenges to which they answer that “Sometimes there is no access to the
evidence”, “Sometimes the safety assessor could have different interpretations”,
and “It is difficult to check the user acceptance of the defined processes.”

4.3 Automatic Process Compliance Checking (RQ3)

This part of the survey gathered data regarding the user acceptance level of
the method for facilitating automated process compliance checking (recalled in
Sect. 2.1). Initial evaluation is performed on FCL, which is the logic used to
formalize the requirements prescribed by the standards. Practitioners somewhat
agree that the formalization of standard requirements could be facilitated with
FCL since it provides the compliance concepts and there are safety compliance
patterns to instantiate (see Fig. 6). Practitioners also somewhat agree that FCL

Fig. 6. The ability to formalize requirements with FCL.

178 J. P. Castellanos Ardila and B. Gallina

Fig. 7. The ability to represent processes and compliance information.

can be used to support the creation of the tailoring rules. However, most of
the practitioners are neutral whether the analysis required to formalize process
requirements could help them to understand their intention.

Regarding the ability of the method to represent processes and compliance
information (see Fig. 7) we found that the majority of the practitioners somewhat
agree with the statements regarding the provision of graphical representations.
In particular, graphical representation of the compliance information, as well
as process plans, facilitate their understanding and documentation. Similarly,
the majority of the practitioners somewhat agree that this aspect also would
facilitate compliance management.

Then, we focused on the ability of the method to perform automated compli-
ance checking (see Fig. 8). As the figure depicts, the ability to perform automated
compliance checking is seen by the majority of the practitioners as favorable. In
particular, practitioners somewhat agree that the iterative application of auto-
mated compliance checking can help them to reach process plans with compliant
states. Moreover, the majority of the practitioners strongly agree that modify-
ing a compliant process plan to define a new process reduces the work that
needs to be done. Finally, traceability could be facilitated with a hierarchically

Fig. 8. The ability to perform automated compliance checking.

A Personal Opinion Survey on Process Compliance Checking 179

organized knowledge-based of compliance artifacts. Such an organization helps
to understand the source of compliance problems.

Figure 9 shows the results regarding the perceived usability aspect of the
method. Practitioners do not strongly agree or strongly disagree with any of the
questionnaire’s options. However, there are two statements that practitioners
somewhat agree: it is easy to 1) trace uncompliant situations and 1) graphically
model process elements.

Fig. 9. Perceived usability aspect of the method.

Fig. 10. Intention to use.

Finally, one question was asked to the
practitioners about their intention to use
the method. As Fig. 10 depicts 67% of
the practitioners indicated that they would
use the method for facilitating automated
compliance checking if it were made avail-
able. In contrast, 13% of the practitioners
do not know, and 20% would not do it.

5 Discussion

In this section, based upon the result of the survey, we discuss our findings.

Current Practices: Given the characteristics of the subjects, presented in
Sect. 3.4, we consider our sample to be representative of the European safety-
critical context. For this kind of population, process compliance checking is

180 J. P. Castellanos Ardila and B. Gallina

not only the way towards a safety certificate but also a mechanism for pro-
cess improvement (see Fig. 2g). Their current practices include the checking of
a variety of process plans (see Fig. 3a). Additional plan types respect to the
ones described in the introductory part were considered necessary in the safety-
critical context, i.e., Software Quality Assurance Plan, Safety Assessment Plan,
Documentation Plan, and Cybersecurity Plan (see Sect. 4.1). Thus, it seems
that compliance management from the process perspective is a growing area.
Practitioners also create process plans mostly by reusing previous processes or
their elements (see Fig. 3c). This aspect indicates that support for reusability
is significant in process compliance management. We also could see that there
are different ways to create checklists (see Fig. 4a). It is interesting to see that
most of the time, the practitioners receive the checklist from the organization
(which is based on the organization’s experience in the domain) or transcribe the
actual requirements provided by the standard direct into a checklist. In those
cases, there is not additional intellectual work included in the preparation of
the checklist, and the provision of a general, widely accepted checklist could be
useful for minimizing such initial work. Finally, most of the practitioners use
software tools to perform compliance checking to support their activities (see
Fig. 4c). Thus, it is not expected that the introduction of more sophisticated
software tools would generate extreme distortions in their daily job. However, it
would be good to revise the ways to introduce them smoothly.

Challenges: Practitioners are faced with several challenges when performing
compliance checking, as presented in Sect. 4.2. In general, practitioners con-
sider that compliance checking is prone-to-error. For them, it is possible to miss
requirements. Moreover, they consider that it is not easy to determine the kind
of information that should be provided as evidence (or there is no access to
evidence), and that there are different possible interpretations provided by the
assessors. In addition, practitioners consider that compliance checking is time-
consuming since it requires many hours of work and several iterations. Finally,
many people in the organization are needed making it also resource-consuming.
Thus, there is a need for solutions that provide more confidence and efficiency
in process compliance checking.

Automated Compliance checking: User acceptance is a major for any tech-
nological endeavor. In general, as we presented in Sect. 4.3, there are advantages
regarding automated process compliance checking. In particular, as depicted in
Fig. 6, there is a good degree of acceptance for the characteristics provided
by FCL, which is the formal approach used for requirements representation.
However, there is some hesitation regarding its usage, as expected with formal
methods. In particular, practitioners do not see how the analysis required to for-
malize process requirements would help them to understand their intention. For
this reason, it is necessary to explain further the formalization part of the method
by providing more guidance and examples. As presented in Fig. 7 and Fig. 8, the
ability to represent processes and compliance information graphically and the
ability to automatically check compliance also have a good degree of acceptance.
Thus, the method has high acceptability potential, and its graphical represen-

A Personal Opinion Survey on Process Compliance Checking 181

tations are considered the strongest advantage. Finally, as presented in Fig. 9,
two aspects regarding the method are considered easy to use, i.e., graphically
represent process models and trace uncompliant situations. However, we need
to provide mechanisms for improving the tool usability in terms of compliance
information representation, which appears to be not easy to use by practitioners.
In addition, we need to improve the representation of checking results. For facil-
itating these aspects, we can provide more specific graphical representations of
the compliance artifacts and, after backpropagating the results of Regorous into
EPF Composer, present them in a suitable user interface that provides detailed
explanations. Finally, practitioners show a willingness to use the method, which
could be helpful for evolving from the current manual practices to automated
practices via compliance checking.

6 Related Work

Nair et al. [15] performed in-depth interviews with 7 safety-related practitioners,
which show the importance of checklists in safety assessment. In [14], a personal
opinion survey was applied to 53 experts to study safety evidence management
practices. Our survey also analyzed the use of the process plans analyzed in [14],
and found that additional process-related plans are required in safety assessment.
In [2], the authors present the results of interviews with practitioners regarding
change impact analysis, which is essential during safety assessment. De la Vara et
al. [8] surveyed safety evidence, particularly the circumstances under which it is
created, the tool support used, and the challenges faced. In contrast to the works
previously mentioned [2,8,14,15] our focus is to investigate the currently used
methods and its challenging aspects in process compliance checking, as well as
the practitioner’s interest in novel methods for facilitating the automation of this
task. The work conducted by Diebold and Scherr [9] reports industrial practices
regarding the use of software process descriptions. In particular, the survey shows
that companies use different process representations, i.e., graphical, table-based,
or structured text notations. It also shows that the use of formal models and their
advantages are highly desirable by practitioners. Our study differs from [9] in
that we also include aspects regarding the use of formal descriptions of processes
for compliance checking.

7 Conclusions and Future Work

In this paper, we presented the results of a personal opinion survey con-
ducted among practitioners who participate in process compliance checking in
the safety-critical context. The practitioners indicated that they mostly rep-
resent process plans and standard requirements by using software-based tools.
Thus, software-based compliance checking aids are not new for them. However,
practitioners consider that process compliance checking is prone-to-error; e.g.,
missing requirements is a common problem. Process compliance checking also
requires many hours of work and several people. Finally, the practitioners show

182 J. P. Castellanos Ardila and B. Gallina

a favorable position regarding automated process compliance checking based
on SPEM 2.0-like artifacts. They also indicated usability aspects regarding the
formalization of requirements that we need to revisit and improve.

Future work will include more empirical research with the use of interviews
and observations to see, for instance, how practitioners carry out their compli-
ance checking in real settings. In addition, the usability aspects will be revisited,
in order to provide more guidance and improve the representation of compliance
artifacts and checking results. Finally, the tool support will be concretized to
facilitate evaluations in terms of efficiency through industrial case studies.

References

1. Bertram, D.: Likert Scales Are the Meaning of Life. CPSC 681-Topic Report (2006).
http://poincare.matf.bg.ac.rs/∼kristina/topic-dane-likert.pdf

2. Borg, M., de la Vara, J.L., Wnuk, K.: Practitioners’ perspectives on change impact
analysis for safety-critical software – a preliminary analysis. In: Skavhaug, A., Guio-
chet, J., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp.
346–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45480-1 28

3. Castellanos Ardila, J.P., Gallina, B.: Formal contract logic based patterns for facil-
itating compliance checking against ISO 26262. In: 1st Workshop on Technologies
for Regulatory Compliance, pp. 65–72 (2017)

4. Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling compliance checking
against safety standards from SPEM 2.0 Process Models. In: Euromicro Conference
on Software Engineering and Advanced Applications, pp. 45–49 (2018)

5. Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Transforming SPEM 2.0-
compatible process models into models checkable for compliance. In: Stamelos,
I., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE 2018. CCIS, vol. 918, pp.
233–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00623-5 16

6. Castellanos Ardila, J., Gallina, B., Governatori, G.: Lessons learned while formal-
izing ISO 26262 for compliance checking. In: 2nd Workshop on Technologies for
Regulatory Compliance, pp. 1–12 (2018)

7. Davis, F.: A technology acceptance model for empirically testing new end-user
information systems: theory and results. Massachusetts Institute of Technology
(1985)

8. De La Vara, J., Borg, M., Wnuk, K., Moonen, L.: An industrial survey of safety
evidence change impact analysis practice. IEEE Trans. Softw. Eng. 42(12), 1095–
1117 (2016)

9. Diebold, P., Scherr, S.: Software process models vs descriptions: what do practi-
tioners use and need? J. Softw.: Evol. Process 29(11), 1–13 (2017)

10. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.
Syst. 14(02n03), 181–216 (2005)

11. Javed, M., Gallina, B.: Get EPF Composer back to the future: a trip from Galileo
to Photon after 11 years. In: EclipseCon (2018)

12. Kitchenham, B., Pfleeger, S.: Personal opinion surveys. In: Shull, F., Singer, J.,
Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical Software Engineering, pp.
63–92. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-5 3

13. Nair, S., De La Vara, J., Sabetzadeh, M., Briand, L.: An extended systematic lit-
erature review on provision of evidence for safety certification. Inf. Softw. Technol.
56(7), 689–717 (2014)

http://poincare.matf.bg.ac.rs/~kristina/topic-dane-likert.pdf
https://doi.org/10.1007/978-3-319-45480-1_28
https://doi.org/10.1007/978-3-030-00623-5_16
https://doi.org/10.1007/978-1-84800-044-5_3

A Personal Opinion Survey on Process Compliance Checking 183

14. Nair, S., De La Vara, J., Sabetzadeh, M., Falessi, D.: Evidence management for
compliance of critical systems with safety standards: a survey on the state of prac-
tice. Inf. Softw. Technol. 60, 1–15 (2015)

15. Nair, S., Kelly, T., Jørgensen, M.: A report on the state-of-the-practice of safety
evidence assessment. Technical report (2014)

Systematic Literature Review of DevOps Models

Monika Gasparaite , Kristina Naudziunaite , and Saulius Ragaisis(B)

Institute of Computer Science, Vilnius University, Vilnius, Lithuania
monika.gasparaite@gmail.com, kr.naudziunaite@gmail.com,

saulius.ragaisis@mif.vu.lt

Abstract. DevOps can be defined as a set of practices that enables development
and operations teams to collaborate in order to produce reliable and high-quality
products. Even though DevOps is still a new phenomenon, DevOps practices can
be successfully applied in numerous companies. However, it remains unclear what
DevOps models currently exist. In this paper, the availability of DevOps models
is analyzed by means of a systematic literature review. 24 papers with DevOps
models were found and 4 papers were selected as relevant.

Keywords: Systematic literature review · DevOps ·Maturity models · DevOps
process areas

1 Introduction

Currently, Agile is one of the most popular and widely used methodologies due to
its ability to manage projects with ever-changing requirements. However, while Agile
practices simplify communication with stakeholders, especially between the develop-
ment team and customer, communication with the operations team is often ignored. As
a result, more and more companies are adopting DevOps practices allowing them to
bridge the gap between development and operations. These practices could be adapted
in companies, but it is still difficult to assess the process improvement as there are
no acknowledged DevOps maturity models. The goal of these models is to assess the
current maturity level and identify the measures for process improvement. Of course,
there are some well-known and widely used general process assessment models such
as CMMI. However, existing studies [1] indicate that these models are not suitable for
the assessment of DevOps process. Therefore, it becomes important to determine the
existing variety of DevOps models. A systematic literature review is conducted in order
to achieve this goal.

2 Related Work and Research Methodology

No systematic literature reviews describing DevOps models have been found. However,
a study has been found [2], which overviews several DevOps maturity models and
compares them with each other. All described DevOps models [3–9] have been found in
this systematic literature review as well. In addition, there exist a few literature reviews

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 184–198, 2020.
https://doi.org/10.1007/978-3-030-58793-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_15&domain=pdf
http://orcid.org/0000-0002-2865-4327
http://orcid.org/0000-0003-4111-6299
http://orcid.org/0000-0002-1973-6697
https://doi.org/10.1007/978-3-030-58793-2_15

Systematic Literature Review of DevOps Models 185

[10–12] that analyze characteristics anddefinition ofDevOps.A small number of existing
researches shows that the situation of DevOps models must be investigated.

This study was carried out following B. Kitchenham and S. Charters guidelines for
performing systematic literature reviews in software engineering [13] because:

• It has been specifically developed for the field of software engineering.
• Guidelines are well-known and widely used, for instance [10–12, 14–16].

Figure 1 presents the adapted method for performing a systematic literature review.
All steps of this method are examined further.

Fig. 1. Systematic literature review process

3 Planning

3.1 Research Questions

The definition of research questions is the most important part of planning a systematic
literature review as all research steps rely on them. Literature search, filtering, and
analysis are performed in such a way that the research questions could be answered. For
these reasons, questions need to be clear and specific [13]. In order to achieve the goal
of this study, the following research questions were defined:

• RQ1: What DevOps models exist?
• RQ2: Which process areas of DevOps are emphasized by models?
• RQ3: Are found DevOps models suitable for practical use?
• RQ4: Does the comparison of DevOps models exist? If yes, how the comparison has
been performed?

A comparison of different models reveals more valuable information about them.
Consequently, questions related to the comparison of DevOps models are included as
well.

186 M. Gasparaite et al.

3.2 Data Sources

The literature search was performed on six databases and search engines:

• IEEE Xplore Digital Library,
• ACM Digital Library,
• Google Scholar,
• Science Direct,
• Springer Link, and
• Google.

According to the authors of guidelines [13], the first five data sources should be taken
into consideration when performing systematic literature reviews in software engineer-
ing. Google search engine is also included in the list of data sources as the authors
mentioned that it is important to use as many data sources as possible to find all poten-
tially important studies. It is important to mention that only the first five pages are
analyzed on Google, because the first pages are likely to contain the most important and
popular studies. In other data sources, all search results have been examined.

3.3 Inclusion and Exclusion Criteria

In order to select only relevant studies for answering defined research questions, inclusion
and exclusion criteria were established. The criteria are presented in Table 1.

Table 1. Inclusion and exclusion criteria

No. Criteria name Inclusion criteria Exclusion criteria

1. Year Papers published since 2009 Papers published before 2009

2. Language English Non-English

3. Availability Full text is available Full text is unavailable

4. Content DevOps model is provided DevOps model is not provided

Defined criteria were selected for the following reasons:

• The concept of DevOps was first officially mentioned at DevOpsDays conference in
2009. Accordingly, it was decided to exclude studies older than 2009.

• English language was selected due to its common use in the scientific environment
[17].

• Sources that are only partially available are not included. Such sources are not suitable
for further analysis.

• Only papers that describe DevOps models are suitable since the goal of this review is
to find all relevant DevOps models. It is important to note that a study, which provides
a DevOps model developed by other authors, is excluded from further analysis by

Systematic Literature Review of DevOps Models 187

the content criterion. The aim of this is to discover only the primary studies. It is
also possible that the same authors present the DevOps model in several studies (for
example, in the final master thesis and the scientific paper based on it). In this case,
the largest and most recent study is selected. Other studies are treated as duplicates.

3.4 Quality Criteria

In addition to inclusion and exclusion criteria, quality criteria are used to assess the
quality of the studies that were selected according to the inclusion criteria. The following
quality criteria were defined:

• Does the DevOps model contain non-graphical content?
• Is the DevOps model based on other scientific papers?
• Is the DevOps model referred by other scientific papers?
• Are the elements of the DevOps model justified?

These quality criteria were selected due to several reasons:

• Oneof the goals of this review is to select themost detailedDevOpsmodels. Therefore,
papers without textual explanations are not appropriate.

• Paper that refers to other scientific papers is more likely to be relevant and suitable for
further investigation. The same goes for the models that are referred by other papers.

• The validity of the model components (process areas, requirements, maturity levels)
increases the probability of non-bias.

Each question has two possible answers: yes and no. The positive answer is rated 1,
while the negative answer is rated 0. Thus, the study will be rated on a scale from 0 to
4. Papers with a score of 3 or 4 will be considered suitable for further investigation.

3.5 Search Terms

The following search string has been selected and adjusted to address defined research
questions:

DevOps AND (“maturity model” OR “capability model” OR “process reference
model” OR “process model” OR “process assessment model”).

In some cases, the search string has been customized to suit some specific require-
ments of the digital databases. For example, if the database does not support logical
operators, they are removed, and several search terms have been applied.

4 Conducting the Review

Study selection is a multistage process. The following steps were taken:

• Performing initial search.
• Removing duplicate studies.

188 M. Gasparaite et al.

• Manually performing search in references of studies found by the initial search. The
aim is to find more studies, which provide DevOps models.

• Filtering studies considering the inclusion/exclusion criteria. If the study does not
meet at least one of the inclusion criteria, the other criteria are no longer checked,
and the study is excluded. The inclusion/exclusion criteria are checked in the order
presented in Table 1.

The results of the conducted search are summarized in Fig. 2.

Fig. 2. The summarized search results

Mendeley was used to organize and analyze the studies. It helped to group the papers
by data sources and identify duplicates.

Table 2 provides the detailed results of selected studies grouped by data sources.
The table shows how many studies were filtered according to each inclusion/exclusion
criterion.

A total of 1582 studies were found. After excluding 159 duplicates, a total of 1423
unique studies were obtained. After filtering studies by inclusion/exclusion criteria it
was found that only 24 studies were suitable for quality analysis.

Most of the studies selected for quality analysis were found in Google Scholar and
Google search engines. SpringerLink database found only one study, which satisfied
inclusion criteria.

Most of the studies were excluded due to content criterion – the absence of DevOps
model. Studies have not met content criterion because of the following reasons:

• Described DevOps model is developed by other authors.
• Another model (e.g. Agile) is described, while the word DevOps is mentioned
somewhere in the study.

• The word DevOps is mentioned in literature references – the study is not related to
DevOps at all.

Systematic Literature Review of DevOps Models 189

Table 2. Search results

Nr. Data source In total Excluded by criterion Included
studiesYear Language Availability Content

1. IEEE Xplore 5 0 0 0 5 0

2. ACM Digital
Library

7 0 0 0 7 0

3. Google
Scholar

1380 16 183 261 912 8

4. Science Direct 67 0 0 7 60 0

5. SpringerLink 73 0 7 0 65 1

6. Google 50 0 0 1 30 19

In total (not unique): 1582 16 190 269 1079 28

In total (unique): 1423 16 181 250 952 24

Table 3 provides references of the selected studies. This table shows only the search
engines and databases in which at least one study was selected by inclusion criteria. The
following types of studies are provided:

Table 3. References of studies describing DevOps models

Search engine Selected studies Cited studies Unique studies

Google Scholar [3, 4, 6, 7, 9, 18–20] [3–9, 29, 31, 32] [3–9, 18–34]

SpringerLink [21] –

Google [4–6, 8, 9, 21–34] –

• Studies found by search string and met the inclusion criteria.
• Studies cited in selected studies and met the inclusion criteria.
• Unique studies obtained from selected and cited studies.

All studies found among the cited ones were also found by the initial search. This
greatly increases the likelihood that the search string has been defined correctly.

There are two types of cited studies – research papers and articles published on the
Internet. All these research papers were found using the same data source as the studies
in which citations were found. All cited online articles were found in the first five pages
of Google in the primary search.

190 M. Gasparaite et al.

5 Analysis

5.1 Quality Assessment

Each study is rated based on the quality criteria defined. Table 4 presents the results of
the quality assessment.

Table 4. Results of quality assessment

No. Study Not only
graphical
content
presented

Based on
scientific
papers

Referred by
other scientific
papers

Model
components are
justified

Final score

1. [9] Yes Yes Yes Yes 4

2. [7] Yes Yes Yes No 3

3. [4] Yes Yes Yes No 3

4. [19] Yes Yes No Yes 3

5. [3] Yes No Yes No 2

6. [6] Yes No Yes No 2

7. [5] Yes No Yes No 2

8. [31] Yes No Yes No 2

9. [18] No Yes No No 1

10. [23] Yes No No No 1

11. [8] No No Yes No 1

12. [21] No Yes No No 1

13. [25] Yes No No No 1

14. [26] Yes No No No 1

15. [28] No No Yes No 1

16. [29] No No Yes No 1

17. [30] Yes No No No 1

18. [32] No No Yes No 1

19. [34] Yes No No No 1

20. [20] No Yes No No 1

21. [22] No No No No 0

22. [24] No No No No 0

23. [27] No No No No 0

24. [33] No No No No 0

According to the chosen selection rule, only papers with scores 3 and 4 are selected
as the most relevant papers. They are presented in Table 5.

Systematic Literature Review of DevOps Models 191

Table 5. Papers selected by quality criteria

Study Authors Title Type

[9] Rico de Feijter, Rob van Vliet,
Erik Jagroep, Sietse Overbeek,
and Sjaak Brinkkemper

Towards the adoption of DevOps
in software product
organizations: A maturity model
approach

Technical report

[7] Ineta Bucena, Marite Kirikova Simplifying the DevOps
Adoption Process

Conference paper

[4] Samer I. Mohamed DevOps shiSting soStware
engineering strategy-value based
perspective

Journal paper

[19] Jeroen M. Radstaak Developing a DevOps maturity
model: A validated model to
evaluate the maturity of DevOps
in organizations

Master thesis

The model presented in [9] is the largest and most comprehensive model found. It is
a non-traditional model because of focus area representation, which allows an unlimited
number of maturity and capability levels as well as different evaluation intervals for
each focus area [35]. For simplicity, it will be referred as Focus Area model. The model
describes sixteen focus areas that are logically grouped into three perspectives: (1) culture
and communication, (2) product, process, and quality, and (3) foundation.

Bucena-Kirikova model [7] is created to guide small enterprises in DevOps adoption
process. This model is based on the old SW-CMM approach and has the same five
maturity levels. The model defines four enterprise areas that are assigned to all maturity
levels. The model also has a non-assessment part: for each enterprise area corresponding
DevOps practices are proposed together with recommended tools. Thesemodel elements
facilitate DevOps implementation.

Mohamed model [4] is based on the current CMMI approach but all four dimensions
defined in the model are assigned to all five maturity levels. Mohamed model provides
detailed descriptions of each maturity level for each dimension, but the general concepts
of maturity levels are not provided.

Radstaak model [19] is based on CMMI also but the representation of the model is
continuous. This model is primarily dedicated to (South)East-Asia region. The model
defines five capability levels and eighteen capabilities to assess. It is unclear why the
author uses the term “capability” instead of “process area”. Although the author has
chosen continuous representation of the model, he calls the model “maturity model”.
In general, this model provides a lot of DevOps ideas, but incorrect use of terms raises
doubts about the quality of the model.

All four models have their own terms (focus area, enterprise area, dimension, capa-
bility) for the term “process area” which is used in CMMI. From now on, the standard
term “process area” will be used to discuss all models. More details about the models
are provided answering the research questions.

192 M. Gasparaite et al.

5.2 Answers to Research Questions

RQ1: What DevOps Models Exist? According to the defined inclusion/exclusion cri-
teria, 24 papers were found. They are presented in Table 6. All models, except [9] and
[19], are models of staged representation. The numbers of maturity/capability levels and
process areas are quite different in DevOps models.

Table 6. Papers found by inclusion/exclusion criteria

No. Study Representation Maturity/capability levels Process areas

1. [9] Focus area 11 16

2. [7] Staged 5 4

3. [4] Staged 5 4

4. [19] Continuous 5 18

5. [3] Staged 4 4

6. [6] Staged 5 3

7. [5] Staged 5 3

8. [31] Staged 4 4

9. [18] Staged 5 Explicitly not defined

10. [23] Staged 5 Explicitly not defined

11. [8] Staged 4 7

12. [21] Staged 3 Explicitly not defined

13. [25] Staged 3 Explicitly not defined

14. [26] Staged 4 Explicitly not defined

15. [28] Staged 5 5

16. [29] Staged 5 4

17. [30] Staged 4 7

18. [32] Staged 4 4

19. [34] Staged 5 7

20. [20] Staged 5 Only general characteristics

21. [22] Staged 4 Explicitly not defined

22. [24] Staged 5 3

23. [27] Staged 5 Explicitly not defined

24. [33] Staged 5 Explicitly not defined

RQ2:Which Process Areas of DevOps are Emphasized byModels? The highlight of
process areas has been examined only in the most relevant DevOps models that satisfied
quality criteria – Focus Area [9], Bucena-Kirikova [7], Mohamed [4], and Radstaak [19]
models.

Systematic Literature Review of DevOps Models 193

Culture. Culture is understood as a frequent communication and collaboration between
teamsof different disciplines.Culture is an important aspect of all fourmodels.Mohamed
model defines communication/collaboration process area, Bucena-Kirikova – people and
culture process areas, FocusArea – culture process area, which includes communication,
knowledge sharing, trust and respect, team organization, release alignment categories.
Radstaak model has two separate process area groups, one dedicated for culture and
another for communication & collaboration. Although these process area groups are
separate in the model, we assume that we can combine them for summarizing DevOps
characteristics. Need to mention that the culture process area group in Radstaak model
includes team structure, process improvement, and feedback cycle while communication
& collaboration process area group includes communication & coordination and collab-
oration process areas. Interestingly, all DevOps models define culture-related process
areas while classic models such as CMMI do not have them.

Automation. All four models emphasize the importance of automation. Automation is
desired for systembuild, testing, deployment. Radstaakmodel also defines automation of
processes such as environments (test, staging, production, etc.) management, generation
of documentation & configurations, and delivery process.

Measurement. All four models define the need to collect metrics. Radstaak model
defines communication, collaboration, automation, quality (improvement performance)
metrics. Bucena-Kirikova model provides metrics related to the quality of collaboration,
Focus Area – code quality and production environment metrics,Mohamed – automation,
governance, communication, and quality metrics.

Optimization. All fourmodels emphasize optimization activities, but none of themodels
explicitly specify it as a separate process area.

Monitoring. All fourmodels highlightmonitoring.Bucena-Kirikovamodel defines core,
integrated monitoring, Focus Area – code quality, culture of collaboration, development
& operations processes, incident, root cause monitoring, Mohamed – defect monitoring,
Radstaak – requirements, incidents, quality, resources, software, and build monitoring.

Release. All models except Mohamed have direct requirements for software release,
but only Focus Area model explicitly specifies this process area.

Testing. Three models [7, 9, 19] focus on testing. Focus Area model specifies testing
types such as unit, regression, and acceptance testing. Radstaak also refers to testing
techniques such as systematic, requirements-based, integrated testing. Bucena-Kirikova
model not only outlines testing types but also provides possible testing tools, such as
Cucumber or Selenium.

Deployment. Focus Area, Bucena-Kirikova, and Radstaak models define deployment-
related actions. All these models represent one of the most important DevOps activities
- continuous deployment.

Quality. Quality characteristics are defined in these models: Mohamed model explicitly
specifies the quality process area, Radstaak indicates the quality assurance of the overall

194 M. Gasparaite et al.

process, Focus Area model gives the biggest attention to the quality in comparison
with other models. This model includes activities such as software code reviews, pair
programming, and automatic code quality monitoring.

Process. This area defines the main characteristics of the overall process. Three models
highlight this area. Bucena-Kirikova model characterizes not only the overall process
but also the individual processes as software delivery, development, testing, project
management, and deployment processes. In FocusAreamodel there is a groupof separate
process areas which is named “Product, process, and quality”. Radstaak model has a
process improvement process area.

Infrastructure. Infrastructure includes the management of environments. It is defined
by Focus Area, Bucena-Kirikova, and Radstaak models.

Configuration Management. This process area is highlighted by Focus Area, Bucena-
Kirikova, and Radstaak models.

Incident Management. This process area is highlighted by Focus Area, Bucena-
Kirikova, and Radstaak models.

Documentation. Radstaak model emphasizes the importance of having accessible and
up-to-date documentation. Documentation is also mentioned in Focus Area and Bucena-
Kirikova models.

Planning. Planning activities are defined by Bucena-Kirikova model only.

Governance. Governance is related to the control of various process areas, describing
how well they work together. It is defined by the Mohamed model only.

RQ3: Are Found Devops Models Suitable For Practical Use? Suitability for practi-
cal use is investigated only for DevOps models selected by quality criteria – Focus Area
[9], Bucena-Kirikova [7], Mohamed [4], and Radstaak [19] models. Three necessary
characteristics of the model to be applied in practice must be considered - the complete-
ness of the model, the clarity of model requirements, and the clarity of the assessment
method.

In Focus Area model requirements are formulated in a clear and precise manner.
Examples of possible requirement implementation are given which helps better under-
stand the presented requirements. There are clearly defined requirements for each matu-
rity level, so the reached maturity level is clear. The model has been validated by apply-
ing it to 7 different cases. Data for the assessment was collected by setting out self-
assessments with 45 questions, but details for interpreting the answers are not given.
Therefore, the assessment process is not clear enough. Although there is a doubt if the
assessment could be done by persons other than the authors, it is highly likely that the
model can be successfully applied in practice.

While Bucena-Kirikova model is not as large and detailed as Focus Area model,
it also touches many aspects of software development, from programming to project
management. Although many of the model’s requirements are clearly formulated there

Systematic Literature Review of DevOps Models 195

are some unpopular terms that make the model a bit more difficult to understand. Also,
there are some incorrect requirements (e.g. requirement for the second maturity level of
process area PR2 defines Scrum development, whereas the requirement for the higher
maturity level is Agile development) and some requirements arranged in an illogical
order (e.g. requirement for the fifth maturity level of process area PR1 is development
process integrated with Six sigma, whereas all other requirements in the PR1 are about
the delivery process). The model does not explicitly state how the requirement must
be assessed (e.g. does the requirement must be fully implemented or not). However,
the proposed maturity model has been tested in a national branch of an international
company with an internal IT development team. Therefore, it can be argued that the
model can be successfully applied in other companies by the model authors. With the
paper [7] alone, it is impossible to put the model into practice.

Although most requirements in Mohamed model are formulated explicitly, some
requirements lack clarity as it is not clear how the requirement can be enforced (different
interpretations of the requirement are possible). The assessment process is notmentioned
at all. For these reasons, the model can be applied in practice only as guidelines for
adopting DevOps in the company.

Most of the requirements in Radstaak model appear to be sufficiently understood
from the title of requirements, but only a small amount of the requirements is explained
more broadly. Therefore, different interpretations of requirements are possible. Also,
there is a section on how to apply this model in a company. The DevOps model has been
validated by applying it to 8 different projects. However, the model does not explicitly
state how the requirements must be assessed. Although validation of the model shows
that the model is applicable in practice, the source describing this model [19] does not
provide all steps required for full practical use.

In general, it can be argued that Focus Area and Bucena-Kirikova models can be
successfully applied in practice by anyone if authors of the models would document the
adopted assessment methods in academic publications.

RQ4: Does the Comparison of DevOps Models Exist? If yes, how the Comparison
has been Performed? A conducted systematic literature review indicates that no for-
mal comparison of DevOps models has been made so far. Only comparisons at a very
superficial level are presented discussing process areas similarities, for example, [2, 36].

6 Limitations

Although this systematic literature reviewwas conducted in a disciplinedmanner, poten-
tial limitations must be acknowledged. There is a potential risk of missing relevant liter-
ature since all papers written in other languages than English were excluded. However,
we have reasonable grounds to believe this risk is rather low because English language is
the most popular language in the academic field. Another possible limitation is selection
bias. To reduce this threat, the review was conducted and validated by two independent
researchers. Another area of concern is that this paper covers publications that were
published before the end of 2019. As a result, the results of this research can quickly
become outdated since the number of new DevOps models is increasing constantly.

196 M. Gasparaite et al.

7 Conclusions

This paper presents a systematic literature review of DevOps maturity/capability mod-
els found in the six most popular databases and search engines. The systematic review
was performed by two authors independently in May 2019 and in October 2019. We
found 24DevOpsmodels and 4 of themwere considered suitable for further investigation
according to quality assessment. DevOps process areas highlighted by all 4 models were
culture, automation, measurement, optimization, monitoring, and release. Although 2
models were complete enough and requirements were sufficiently clear, none of the
models’ authors have documented the adopted assessment method in an academic pub-
lication which makes unclear how to fully use the models in practice. Therefore, we
believe that the practical usability of those 2 models is possible but would be problem-
atic for persons other than the authors. Finally, a conducted systematic literature review
indicated that no formal DevOps models comparison has been made. The systematic
review results will serve as a knowledge base about DevOps maturity/capability mod-
els existing in academic literature. Future research would benefit from a comparison of
models in order to find whether the understanding of DevOps implementation is similar
in the models.

References

1. Rong, G., Zhang, H., Shao, D.: CMMI guided process improvement for DevOps projects:
an exploratory case study. In: Proceedings of the International Conference on Software and
Systems Process, pp. 76–85. ACM (2016)

2. Zarour, M.I., Alhammad, N., Alenezi, M., Alsarayrah, K.: A research on DevOps maturity
models (2019)

3. IBMDeveloper. https://developer.ibm.com/articles/d-adoption-paths/. Accessed 15 Oct 2019
4. Mohamed, S.I.: Devops shifting software engineering strategy value-based perspective. Int.

J. Comput. Eng. 17(2), 51–57 (2015)
5. Menzel, G., Macaulay, A. https://www.capgemini.com/de-de/wp-content/uploads/sites/5/

2016/03/devops-the-future-of-application-lifecycle-automation.pdf. Accessed 15 Oct 2019
6. Inbar, S., et al.: DevOps and OpsDev: how maturity model works (2013). http://h30499.

www3.hp.com/t5/Business-Service-Management-BAC/DevOps-and-OpsDev-How-Mat
urity-Model-Works/bap/6042901. Accessed 15 Oct 2019

7. Bucena, I., Kirikova, M.: Simplifying the DevOps adoption process. In: Joint Proceedings
of the BIR 2017 pre-BIR Forum, Workshops and Doctoral Consortium Co-located with
16th International Conference on Perspectives in Business Informatics Research (BIR 2017),
Copenhagen, Denmark (2017)

8. Eficode. https://www.eficode.com/hubfs/documents/Eficode-English-Devops-Guide.pdf?
hsLang=en. Accessed 15 Oct 2019

9. de Feijter, R., van Vliet, R., Jagroep, E., Overbeek, S., Brinkkemper, S.: Towards the adoption
of DevOps in software product organizations: a maturity model approach. Technical report,
Utrecht University (2017)

10. Erich, F., Amrit, C., Daneva, M.: Report: DevOps literature review. https://www.researchg
ate.net/publication/267330992_Report_DevOps_Literature_Review

11. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps? A systematic mapping
study on definitions and practices. In: Proceedings of the Scientific Workshop Proceedings
of XP2016, p. 12. ACM (2016)

https://developer.ibm.com/articles/d-adoption-paths/
https://www.capgemini.com/de-de/wp-content/uploads/sites/5/2016/03/devops-the-future-of-application-lifecycle-automation.pdf
http://h30499.www3.hp.com/t5/Business-Service-Management-BAC/DevOps-and-OpsDev-How-Maturity-Model-Works/bap/6042901
https://www.eficode.com/hubfs/documents/Eficode-English-Devops-Guide.pdf%3fhsLang%3den
https://www.researchgate.net/publication/267330992_Report_DevOps_Literature_Review

Systematic Literature Review of DevOps Models 197

12. Sánchez-Gordón, M., Colomo-Palacios, R.: Characterizing DevOps culture: a systematic
literature review. In: Stamelos, I., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE 2018.
CCIS, vol. 918, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-006
23-5_1

13. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Keele University and Durham University Joint Report (2007)

14. Calderón, A., Trinidad, M., Ruiz, M., O’Connor, R.V.: Teaching software processes and
standards: a review of serious games approaches. In: Stamelos, I., O’Connor, R.V., Rout, T.,
Dorling, A. (eds.) SPICE 2018. CCIS, vol. 918, pp. 154–166. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00623-5_11

15. Fernández Del Carpio, A., Angarita, L.B.: Techniques based on data science for software
processes: a systematic literature review. In: Stamelos, I., O’Connor, R.V., Rout, T., Dorling,
A. (eds.) SPICE 2018. CCIS, vol. 918, pp. 16–30. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00623-5_2

16. Trinidad, M., Calderón, A., Ruiz, M.: A systematic literature review on the gamification
monitoring phase: how SPI standards can contribute to gamification maturity. In: Stamelos,
I., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE 2018. CCIS, vol. 918, pp. 31–44.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00623-5_3

17. Kaplan, R.: The Dominance of English as a Language of Science: Effects on Other Languages
and Language Communities, pp. 3–26 (2001)

18. Abdelkebir, S., Maleh, Y., Belaissaoui, M.: An agile framework for ITS management in orga-
nizations: a case study based on DevOps. In: Proceedings of the 2nd International Conference
on Computing and Wireless Communication Systems, p. 67. ACM, Larache (2017)

19. Radstaak, J.M.: Developing a DevOps maturity model: a validated model to evaluate the
maturity of DevOps in organizations. Master thesis, University of Twente (2019)

20. Zage, D., Zage, W.: Components of a modern quality approach to software development.
Final Report, Ball State University (2015)

21. Hemon, A., Lyonnet, B., Rowe, F., Fitzgerald, B.: Conceptualizing the transition from agile to
DevOps: a maturity model for a smarter is function. In: Elbanna, A., Dwivedi, Y.K., Bunker,
D., Wastell, D. (eds.) TDIT 2018. IAICT, vol. 533, pp. 209–223. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-04315-5_15

22. Bluemeric. http://blog.bluemeric.com/devops-maturity-model/. Accessed 15 Oct 2019
23. The CloudBees: Assessing DevOps maturity using a quadrant model. White paper (2016)
24. Micro Focus. https://www.microfocus.com/media/data-sheet/devops_solution_discovery_

workshop_ds.pdf. Accessed 15 Oct 2019
25. Jeremiah, J. https://gitlab.com/gitlab-com/www-gitlab-com/issues/2095. Accessed 15 Oct

2019
26. Kavis, M. https://www.forbes.com/sites/mikekavis/2017/11/17/the-four-stages-of-devops-

maturity/#6879baca2f62. Accessed 15 Oct 2019
27. Kumar, A. https://vitalflux.com/devops-maturity-model-telstra-devops-implementation/.

Accessed 15 Oct 2019
28. Mendes, N. https://atlassianblog.wpengine.com/wp-content/uploads/xM_Atlassian_Dev

Ops_Survey_Web_Final.pdf. Accessed 15 Oct 2019
29. Parks, J. https://solinea.com/blog/solinea-devops-maturity-model. Accessed 15 Oct 2019
30. Plutora. https://www.plutora.com/devops-at-scale/maturity-level. Accessed 15 Oct 2019
31. Poelwijk, S.: https://blog.leaseweb.com/2016/05/30/maturity-model-devops-teams/.

Accessed 15 Oct 2019
32. Schneider, C.: Security DevOps-staying secure in agile projects. In: OWASPApp-Sec Europe

(2015)
33. Techtown. http://techtowntraining.com/resources/tools-resources/devops-maturity-model-

quiz. Accessed 15 Oct 2019

https://doi.org/10.1007/978-3-030-00623-5_1
https://doi.org/10.1007/978-3-030-00623-5_11
https://doi.org/10.1007/978-3-030-00623-5_2
https://doi.org/10.1007/978-3-030-00623-5_3
https://doi.org/10.1007/978-3-030-04315-5_15
http://blog.bluemeric.com/devops-maturity-model/
https://www.microfocus.com/media/data-sheet/devops_solution_discovery_workshop_ds.pdf
https://gitlab.com/gitlab-com/www-gitlab-com/issues/2095
https://www.forbes.com/sites/mikekavis/2017/11/17/the-four-stages-of-devops-maturity/#6879baca2f62
https://vitalflux.com/devops-maturity-model-telstra-devops-implementation/
https://atlassianblog.wpengine.com/wp-content/uploads/xM_Atlassian_DevOps_Survey_Web_Final.pdf
https://solinea.com/blog/solinea-devops-maturity-model
https://www.plutora.com/devops-at-scale/maturity-level
https://blog.leaseweb.com/2016/05/30/maturity-model-devops-teams/
http://techtowntraining.com/resources/tools-resources/devops-maturity-model-quiz

198 M. Gasparaite et al.

34. Verstraete, C.: https://cloudsourceblog.com/2016/11/15/. Accessed 15 Oct 2019
35. Koomen, T., Pol, M.: Improvement of the test process using TPI (1998). https://itq.ch/pdf/

tpi/tpi_uk.PDF. Accessed 17 Apr 2020
36. Seppä-Lassila, T.: An assessment of DevOps maturity in a software project. Master thesis,

University of Turku (2017)

https://cloudsourceblog.com/2016/11/15/
https://itq.ch/pdf/tpi/tpi_uk.PDF

Measuring the Maturity of BizDevOps

Eduardo Sanjurjo1, Oscar Pedreira1(B), Felix García2, and Mario Piattini2

1 Universidade da Coruña, Centro de Investigación CITIC, 15071 Elviña, A Coruña, Spain
{eduardo.sanjurjo.royo,oscar.pedreira}@udc.es

2 Information Technologies and Systems Institute (ITSI), Universidad de Castilla-La Mancha,
Paseo de la Universidad 4, 13071 Ciudad Real, Spain
{Felix.Garcia,Mario.Piattini}@uclm.es

Abstract. DevOps has emerged as an effective approach to the interaction
between development and operations. This approach has been extended to the
interaction with business functions, generating the term BizDevOps. Although
many proposals and tools support BizDevOps from a technical viewpoint, there
has been no significant progress in management aspects, such as the evaluation of
practices and processes involved in the area. In this article, we propose a maturity
model for BizDevOps, based on relevant international standards, and apply this
model to a software company, which demonstrates its applicability.

Keywords: Maturity model · DevOps · BizDevOps

1 Introduction

Agility and flexibility in IT operations is a necessity for companies to quickly meet
customer demands, market conditions, competitive pressures, or legal changes. This
implies, among other aspects, shortening the time from a request to the release of the
software update that fulfils that request. For this reason, the software development units
and the operations units must be effectively integrated. However, in many companies,
this integration is weak. The DevOps paradigm is based on lean and agile principles and
assumes that software development and system operations must continuously collabo-
rate to deliver software that meets the organization’s requirements quickly [1, 2]. The
term continuous software engineering is closely linked to DevOps and assumes that the
software development process can continuously release new versions of the software
that can be deployed in production [3].

Different works also propose integrating business functions and needs into the soft-
ware development process [4, 5]. The reason is thatmanyorganizations consider software
development as an integral part of their vision and strategy. However, addressing only the
technical aspects may be insufficient and result in a lack of alignment between people,
processes, businesses, and technology to ensure that business priorities are maintained
throughout the DevOps flow. Therefore, the business teams must be integrated with the
DevOps teams. BizDevOps is defined in [5] as the “integration of experts in the domain
with DevOps teams”. In this article, we will use the term BizDevOps, which includes
and expands the term DevOps.

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 199–210, 2020.
https://doi.org/10.1007/978-3-030-58793-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_16

200 E. Sanjurjo et al.

Despite the importance of implementing BizDevOps in companies, there are no stan-
dard methods and processes [6] nor standard practices [7] to guide that implementation.
In this work, we address the development of a maturity reference model for BizDe-
vOps, which can guide an implementation of BizDevOps based on compliance with
good practices currently included in standards of the IT sector.

The rest of this paper is structured as follows: Sect. 2 summarizes related work. In
Sect. 3 we present MMBDO, a maturity model for BizDevOps. In Sect. 4 we present a
case study on the application of MMBDO in a software development company. Finally,
Sect. 5 presents the conclusions and lines for future work.

2 Related Work

Faced with a traditional approach, in which the areas of development and systems work
separately and collaborate through inefficient interaction mechanisms, the DevOps phi-
losophy assumes a continuous and natural integration between these two areas. The
objective of DevOps is the delivery and deployment of new software releases to be
automatic, direct, and, in most cases, immediate, as well as ensuring that intermediate
versions of the software are as stable as possible.

Currently, the most technical aspects of the DevOps approachmay be the most popu-
lar, with a strong focus on concepts such as continuous integration, testing, and continu-
ous analysis of software and automatic application deployment. However, DevOps must
include management elements, especially in large and complex organizations. Fitzger-
ald and Stol [4] coined the term continuous software engineering, which extends the
concept of continuous integration to the entire software life cycle and business aspects,
structuring it in three phases: strategy and business planning, development, and opera-
tions. Thus, within the strategy and planning category, they contemplate activities such
as planning and continuous budgeting, in the development phase they add activities
such as continuous compliance, continuous security, or continuous evolution, and in the
operations phase, activities such as real-time continuous monitoring [4].

Process reference models typically guide the implementation of management sys-
tems and continuous improvement in software engineering. A process reference model
includes a set of good practices, grouped into process areas in the context of an activity
or set of activities. In general, this set of good practices is defined in the form of process
requirements, expected results, and suggestions on how to achieve those requirements
and results. Reference process models can be used in conjunction with assessment mod-
els to establish an assessment and certification framework. Within this framework, the
processes of an organization can be assessed for compliance. Also, these assessments
may be the first step for process improvement.

Over the years, many process models have emerged in the context of information and
communication technologies (ICT). In software development, the most used processes
are included in CMMI [8] and ISO 12207/MMIS [9, 10], which present a set of good
practices in different process areas of software development. A characteristic of these
models is that the assessment of the process requirements is structured on capability lev-
els for each process area, and organization maturity models, depending on the level of
capability the organization reaches in the different process areas. In the field of informa-
tion security, the family of ISO 27000 standards [11] proposes a set of processes for the

Measuring the Maturity of BizDevOps 201

management of information security and the many controls associated with this activity.
ISO 20000 [12] and ITIL play a similar role in the field of quality management of ICT
services. Although these models are the most widespread in the industry, other process
models have been proposed from academic and professional sources over the last years,
addressing other activity areas or specific contexts. For example, the COMPETISOFT
project defined a reference process model [13] for software development in SMEs.

Process models are used in organizations to perform process assessments that set the
basis for compliance certification and process improvement. For example, [10] details
how AENOR (a Spanish standardization and certification body) uses the family of ISO
33000 standards [14] for the assessment of software development processes.

Somehow, some of the main practices of DevOps are included in the “tradition-
al” process models. For example, software testing appears in CMMI and ISO 12207,
although the process models do not refer that requirements of these areas have to be
met in a specific way. In this paper, we present the first version of a specific maturity
model for BizDevOps (MMBDO), which will be the basis for a complete framework
for the evaluation of capability levels and maturity of BizDevOps practices. MMBDO
is based on the MMIS maturity model, described in [10]. MMBDO includes the pro-
cesses included in MMIS, adapts some of them to the needs of BizDevOps and adds
new processes, specific to BizDevOps. Although standards such as ISO 12207/MMIS
can be seen as aligned with traditional software development approaches (predictive or
“waterfall”) and DevOps is mainly an agile approach, we consider it is correct to base
MMBDOonMMIS, which is based on ISO 12207, since ISO 12207 indicates in its 2017
version: “This document does not prescribe any particular life cycle model. Instead, it
defines a set of processes, termed life cycle processes, which can be used in the definition
of the system’s life cycle […]–These life cycle models can incorporate agile techniques
and methods”.

The evaluation of DevOps processes has already been addressed. For example,
Mohamed [15] proposes a maturity model based on five levels, which coincide with
those of CMMI (Initial, Managed, Defined, Quantitatively Managed, Optimizing). The
proposal of [15] is structured in the dimensions of communication, automation, gover-
nance, and quality management. Meanwhile, Sahid et al. [16] propose an ITSM agility
maturity model based on DevOps, with the same five levels proposed in [15]. The most
complete DevOps competencymodel currently is proposed by de Feitjer et al. [17] and is
structured in three perspectives: culture and collaboration, product, process and quality;
and fundamentals. Based on this competency model, [17] proposes a capability model
with nine levels (from 0 to 8), for each one of the focus areas, framed in the dimensions
of the competence model.

After analysing the existing reference process models for ICT and the relevant bibli-
ography, we observed that there are proposals for DevOps maturity, mainly based on the
five levels described in CMMI, but there is no approach based on one, or several, existing
international standards, neither in DevOps nor in BizDevOps, which is the objective of
this article. From the result of this preliminary analysis, we carried out a systematic
review to have an insight into the coverage level of each of the processes we consider
relevant for BizDevOps in the literature.

202 E. Sanjurjo et al.

3 A Maturity Model for BizDevOps

In this section, we present the first version of the Maturity Reference Model for BizDe-
vOps (MMBDO). This model is based on widely recognized international IT stan-
dards and considers both business and technical related process areas. More specifically,
MMBDO considers the following existing process models:

• The family of ISO/IEC 33000 standards [14] for the evaluation of process capabil-
ity and organizational maturity, a proven reference in terms of quality evaluation in
software development processes.

• The ISO/IEC/IEEE 12207:2017 [9] standard for software development lifecycle
management.

• The family of ISO/IEC 20000 [12] standards for ICT service management.
• The family of ISO/IEC 27000 [11] standards for information security management.
• The Software Engineering Maturity Model Version 2.0 (MMIS V.2) developed by
AENOR in [10].

A first version of MMBDO was defined based on MMIS V.2, and processed derived
from the best practices detected in the literature were incorporated. Also, we have incor-
porated the corresponding maturity levels into the newmodel processes, based on expert
judgment. Table 1 shows the processes comprised in the first version of MMBDO. The
first three columns show the process area, the process number in MMIS (New for those
not included in MMIS), and the process number in MMBDO. Columns labeled 1 to 5
show the maturity levels. The last column shows the relation of the process with MMIS:
I (included from MMIS), M (modified from MMIS), N (New), and NI (not included).
MMBDO uses the process area groups of ISO 12207 to guarantee its conformity with
them.

In Table 1 we also show that the model maintains the same process groups (Agree-
ment,Organizational, TechnicalManagement, andTechnical) of ISO12207, to guarantee
its conformity with them.

All processes are adopted from [4], except “Transition”, “Continuous validation”,
and “Operation”. The processes “Project Planning”, “ContinuousMonitoring”, “Contin-
uous Business Planning”, “Continuous Integration” and “Continuous Validation”, are a
modification or extension of processes fromMMISV.2 (Project planning,Measurement,
Business ormission analysis, Integration, andValidation, respectively). The “Transition”
and “Operation” processes are adopted from ISO 12207, although they do not appear in
MMIS. Therefore, MMBDO has eleven updated processes or additional regarding the
MMIS V.2 model to give specific coverage to BizDevOps. TheMMBDOmodel consists
of twenty-seven processes: the twenty-one included in the MMIS V.2 model (of which
five have been updated), plus six new processes. In the MMBDO model, we keep the
sixteen processes unchanged at their same level of maturity as in MMIS, and we have
included the maturity levels of the new or updated processes.

Table 2 shows the description of the new or updated processes included in the model
regarding the sources considered:

Measuring the Maturity of BizDevOps 203

Table 1. MMBDO: BizDevOps maturity reference process model

Process area MMIS MMBDO Processes 1 2 3 4 5 E

Agreement 6.1.1 Acquisition NI
6.1.2 Supply X I

Organizational

6.2.1 Life cycle model management X I
6.2.2 Infrastructure Management X I
6.2.3 Project Portfolio Management X I
6.2.4 Human resources management X I
6.2.5 Quality management NI
6.2.6 Knowledge management X I

Technical
management

6.3.1 1 Project planning X M
6.3.2 Evaluation and control of projects X I
6.3.3 Decision management X I
6.3.4 Risk management X I
6.3.5 Configuration management X I
6.3.6 Information management NI
6.3.7 2 Con nuous Monitoring X M
6.3.8 Quality assurance X I
New 3 Con nuous Improvement X N

Technical

6.4.1 4 Con nuous Business Planning X M

6.4.2 Definition of stakeholder needs and
requirements X I

6.4.3 Definition of system/software
requirements X I

6.4.4 Architecture Definition X I
6.4.5 Design definition NI
6.4.6 System definition NI
6.4.7 Implementation X I
6.4.8 5 Con nuous Integra on X M
New 6 Con nuous Delivery X N
New 7 Con nuous Deployment X N
6.4.9 Verification X I

6.4.10 8 Transi on X N
6.4.11 9 Con nuous Valida on X M
6.4.12 10 Opera on X N
6.4.13 Maintenance NI
New 11 Con nuous Security (SecOps) X N

6.4.14 Retirement NI

204 E. Sanjurjo et al.

Table 2. Description of MMBDO processes

Process Description

Project planning
(Technical management)

The purpose of the Project Planning process is to produce and
coordinate effective and workable plans
Source: Adopted from [4]. Extension of the “Project Planning
(6.3.1)” process, from the ISO/IEC 12207 standard

Continuous monitoring
(Technical management)

As the historical boundary between design-time and runtime
research in software engineering is blurring, in the context of
continuous execution of cloud services, runtime behaviours of all
kinds must be monitored to allow for early detection of service
quality problems, such as performance degradation and also
compliance with service level agreements (SLA)
Source: Adopted from [4]. Extension of the “Measurement (6.3.7)”
process, from the ISO/IEC 12207 standard

Continuous improvement
(Technical management)

The organization must have incorporated processes that identify
areas for improvement while the organization matures and learns
from the processes it has adopted. Many businesses have process
improvement teams that work on process improvement based on
observations and lessons learned, others allow the teams that adopt
the processes to self-evaluate, and determine their process
improvement paths. Regardless of the method used, the objective is
to facilitate continuous improvement
Source: Adopted from [4]

Continuous business
Planning
(Technical)

It is a holistic effort that involves multiple stakeholders, from
Business teams to Software Development teams, in which the plans
are dynamic and open artefacts that evolve in response to changes
in the business environment and, therefore, involve a closer
integration between planning and execution
Source: Adopted from [4]. Extension of the “Business or mission
analysis (6.4.1)” process, from the ISO/IEC 12207 standard

Continuous
Integration
(Technical)

A process (generally automatic activation) consisting of
interconnected steps, such as compiling code, running unit and
acceptance tests, validating code coverage, verifying compliance
with standard coding and building deployment packages
Source: Adopted from [4]. Extension of the “Integration (6.4.8)”
process, from the ISO/IEC 12207 standard

Continuous Delivery
(Technical)

Continuous delivery is the practice of continuously implementing
good software compilations automatically in some environments,
but not necessarily to real users
Source: Adopted from [4]

(continued)

Measuring the Maturity of BizDevOps 205

Table 2. (continued)

Process Description

Continuous deployment
(Technical)

Continuous deployment involves continuous delivery and is the
practice of ensuring that the software is continuously ready for
launch and implementation to real customer
Source: Adopted from [4]

Transition
(Technical)

The purpose of the transition process is to establish a capacity for a
system to provide services specified by the requirements of those
interested in the operating environment. This process moves the
system in an orderly and planned manner to the operational state, so
that the system is functional, operational, and compatible with other
operational systems
Source: Coming from ISO/IEC 12.207 (not included in MMIS)

Continuous validation
(Technical)

The purpose of this process is to provide objective evidence that the
system, when used, meets the business or mission objectives and
stakeholder requirements, achieving its intended use in its intended
operational environment
The objective of validating a system or system element is to be able
to rely on its ability to achieve the intended mission or use under
specific operating conditions. The validation is ratified by the
stakeholders. This process provides the necessary information so
that the identified anomalies can be resolved by the appropriate
technical process where the anomaly was created
Source: Extension of the “Validation (6.4.11)” process, from the
ISO/IEC 12207 standard.

Operation
(Technical)

The purpose of the Operation process is to use the system to deliver
its services
This process establishes requirements and assigns personnel to
operate the system, and monitors services and system performance.
To maintain services, identify and analyse operational anomalies
concerning agreements, stakeholder requirements, and
organizational restrictions
Source: Coming from ISO/IEC 12207 (not included in MMIS)

Continuous security
(Technical)

Continuous security involves transforming security, evolving from
being treated as another non-functional requirement, to being a key
concern in all phases of the development life cycle and even after
deployment, backed by a smart and lightweight approach to
identifying vulnerabilities of security
Source: Adopted from [4]

206 E. Sanjurjo et al.

4 A Case Study on Assessing the Maturity of BizDevOps

In this section, we present a case study on the application of MMBDO to assess the
BizDevOps processes in a real company. We have applied the case-study method, fol-
lowing the guidelines of Runeson [18], and the template for case studies presented in
[19]. The remaining of this section describes the company in which we carried out the
case study, the interview procedure, and the interview results and lessons learned.

4.1 Background

The case study has been carried out at a software development and consultancy company
(in the rest of the document, we will refer to it as SwDevCompany). SwDevCompany
is a Spanish company that provides a wide range of software products and advanced
services with high added value. SwDevCompany offers its clients a portfolio of products,
along with tailor-made developments, in a balanced and diversified way. The company
works for clients from different activity sectors (such as banking, government, industry,
telecommunications, etc.), sizes, and countries.

The strength of the commercial offer of SwDevCompany is based on its position
as one of the leading digital transformation companies in Spain. SwDevCompany also
adds a differential methodology, an expanded portfolio of business solutions, a delivery
and support model aimed at generating impact, and a flexible organization based on
multidisciplinary teams, made up of specialists with very specific profiles.

Regarding its DevOps processes, SwDevCompany has a business unit dedicated to
implementing a DevOps framework. The DevOps team is composed of four DevOps
engineers exclusively dedicated to the DevOps project, and 26 architects from the dif-
ferent projects that make use of the DevOps framework. The project architects are in
charge of implementing the DevOps framework in their projects.

4.2 Design

According to the approachpresented in [20], this current case study is a holistic individual
case, becausewe have focused on the single case of SwDevCompany. The object of study
is the MMBDO Maturity Model presented in the previous section.

The main purpose of the case study is to validate MMBDO from the information
obtained in its application in a real environment and from the feedback received by the
experts that participated in its application. Table 3 shows the research questions of the
case study. The main research question is if MMBDO is a feasible model for assessing
the maturity of BizDevOps processes. This main research question is detailed into two
more specific questions about the completeness of the processes included in MMBDO
and its usefulness as a process improvement tool in BizDevOps environments.

4.3 Field Procedure and Data Collection

Thefield procedurewas directly determined by the newprocesses identified inMMBDO.
TheSwDevCompanyDevOps teamwas interviewed according to our research questions.
The data collected in the interviews with the head of the DevOps team were stored in
documents, and the results obtained were reflected in this document.

Measuring the Maturity of BizDevOps 207

Table 3. Research questions of the case study

Research questions

MRQ Is MMBDO feasible for assessing the maturity of an organization regarding its
BizDevOps processes?

SRQ1 Is MMDBO adequate regarding its processes? That is, is there any process that should
be included/excluded in/from MMDBO?

SRQ2 Is MMDBO adequate regarding its usefulness for continuous improvement of
BizDevOps processes?

4.4 Intervention

This subsection summarizes the most relevant information that can be extracted from the
application of MMBDO to SwDevCompany and the interview with the DevOps team
of SwDevCompany, concerning the adequateness and completeness of the MMBDO’s
processes and its usefulness for process improvement in a BizDevOps context. To carry
out the evaluation, we took into account the desired results, tasks, and work products
for each of the processes, and compared them with the results, tasks and work products
currently carried out by the company SwDevCompany. It is important to highlight that
we have focused, for the evaluation, on the new processes and the updated processes
on the MMIS model. The interviewer team consisted of two consultants, with years
of experience in the implementation and evaluation of software project management
systems and information security based on international standards.

Application of MMBDO
Regarding the application of MMBDO in SwDevCompany, we could conclude that:

• SwDevCompany currently fully complies with the processes of “Project Planning”,
“Continuous monitoring” (using the Prometheus tool), “Continuous integration”, and
“Continuous Delivery” (that is MMBDO’s processes 1, 2, 5 and 6).

• SwDevCompany currently complies partially with processes 3, 7, 8 and 10 of
MMBDO, since they are yet implementing them: “Continuous improvement”,
“Continuous deployment”, “Transition”, and “Operation”.

• SwDevCompany does not currently comply with the rest of the processes ofMMBDO
(4, 9 and 11), since, at this time, they are either not yet implemented, or in the very
initial implementation steps: “Continuous Business Planning”, “Continuous Valida-
tion”, and “Continuous Security – SecOps”. More specifically, the Transition process
is defined by the company but has not been carried out for the moment in any of the
projects that are in the DevOps field (it has not been necessary to take control of any
project that was managed by another company, nor transfer control of any project to
another company or different area).
We gathered specific information about how specific processes were implemented.
For example, the DevOps team detailed the activities being carried out concerning
process 2, “Continuous Improvement”, are: frontend & backend unit testing cover-
age, static code analysis tools, automatic review of code bugs, different unit testing

208 E. Sanjurjo et al.

frameworks depending on the technology, integration testing framework, performance
testing framework, console errors/warnings, code lint review.

Interview
After carrying out the interview, we concluded the DevOps team of SwDevCompany
considered that the application of MMBDO is feasible to assess the maturity of an
organization according to the BizDevOps processes. MMBDO provides a framework
for evaluating the current situation and, according to the desired situation, provides a
roadmap to get to the desired maturity level.

Table 4 shows the conclusions of the interview, regarding the case study questions:

Table 4. Answers to the research questions of the case study

Answers to the research questions

MRQ The DevOps team of SwDevCompany considered that MMBDO is feasible to assess
the organization’s maturity regarding its BizDevOps practices. MMBDO allows
evaluating the current situation (as-is) and, according to the desired scenario (to-be),
provides a roadmap for improvement

SRQ1 The DevOps team considered the processes included in MMBDO are adequate to
assess BizDevOps processes. Regarding specific processes, they indicated that the
“Software quality verification” activity could be highlighted. This activity is currently
included in processes 3, “Continuous Improvement”, and 5, “Continuous Integration”,
but we concluded that, due to its importance, this activity could be a process of the
model itself
On the other hand, we concluded that the scope of process 10, “Operation” may be
revised to re-define it, because several of its activities are distributed among other
processes of the model (e.g. 2, 5, 6, and 7)

SRQ2 The DevOps team indicated that, by having defined results, tasks, and work products
for each process, MMBDO allows the company to compare its current and objective
situations to improve its BizDevOps processes. Also, they considered that if this model
is used by numerous companies of different sizes and sectors, the company may also
benefit from the best practices of other companies (as long as they are incorporated
into the model

4.5 Analysis of the Results and Lessons Learned from the Case Study

The case study confirms the adequateness of the processes indicated in the model.
SwDevCompany currently implements four processes of the model and is implementing
another four processes, while, for the rest of the processes of the model, they are not yet
implemented, or are in the initial implementation process.

However, future work will include revising the software quality verification activity
(currently included in processes 3 and 5), to verify the feasibility of this activity to be a
process of themodel itself.We also study the scope of process 10, “Operation”, in deeper,

Measuring the Maturity of BizDevOps 209

because several of its activities are distributed among several of the other processes of
the Model (e.g. 2, 5, 6, and 7).

The case study also validates the feasibility of applying MMBDO to measure the
maturity of an organization regarding its BizDevOps processes. In this way, the model
can serve the company both to assess its current situation regarding the BizDevOps
processes and to help it improve this situation to achieve the next levels of maturity.

5 Conclusions

This paper presents MMBDO, a maturity assessment model for BizDevOps, based on
internationally recognized ICT process standards. We have defined the model based on
the result of a systematic review, and have taken as a basis the processes of the maturity
model for the development of MMIS V.2 [10], completing it with eleven additional or
modified processes specific to BizDevOps.

We have also presented the results of a case study in a Spanish software development
and consultancy company, that allowed us to validate the adequateness of the maturity
model MMBDO in a real scenario. The case study confirms the validity of the model,
and its processes, although it also revealed information that may guide future work to
refine the processes of the model.

Future work includes completing the model by defining the capability and maturity
levels of these processes included inMMBDOand completing the validation of themodel
with a wider case study, by interviewing managers and employees of areas involved in
BizDevOps activities in different organizations, of different sizes.

Acknowledgements. This work was supported by: BIZDEVOPS-Global (RTI2018-098309-B-
C31 and RTI2018-098309-B-C32), MINECO y FEDER; Centros singulares de investigación de
Galicia (ED431G/01), Grupo de Referencia Competitiva (ED431C 2017/58), and ConectaPEME
GEMA (IN852A 2018/14), Xunta de Galicia y FEDER.

References

1. Waller, J., Ehmke, N.C., Hasselbring,W.: Including performance benchmarks into continuous
integration to enable DevOps. ACM Softw. Eng. Notes 40, 1–4 (2015)

2. Wettinger, J., Breitenbucher, U., Leymann, F.: Standards-based DevOps automation and inte-
gration using TOSCA. In: Proceedings of 7th International Conference on Utility and Cloud
Computing, (UCC 2014), pp. 59–68. IEEE Press (2014)

3. Bosch, J.: Continuous Software Engineering. Springer, Dordrecht (2014). https://doi.org/10.
1007/978-3-319-11283-1

4. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

5. Wiedemann, A., Wiesche, M., Gewald, H., Krcmar, H.: Implementing the planning process
within DevOps teams to achieve continuous innovation. In: Proceedings of the 52nd Hawaii
International Conference on System Sciences (2019)

https://doi.org/10.1007/978-3-319-11283-1

210 E. Sanjurjo et al.

6. Erich, F.,Amrit, C.,Daneva,M.:Amapping study on cooperation between information system
development and operations. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,
Münch, J., Raatikainen, M. (eds.) Product-Focused Software Process Improvement. PROFES
2014. LNCS, vol 8892, pp. 277–280. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-13835-0_21

7. Lwakatare, L.E., Kuvaja, P., Oivo, M.: An exploratory study of DevOps extending the dimen-
sions of DevOpswith practices. In: Proceedings of 11th International Conference on Software
Engineering Advances (ICSEA), pp. 91–99 (2016)

8. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for Development: Guidelines for Process
Integration and Product Improvement. Addison-Wesley, Boston (2011)

9. ISO/IEC: ISO/IEC 12207:2017 Systems and software engineering – Software life cycle
processes (2017)

10. Garzás, J., Pino, F.J., Piattini,M., Fernández, C.M.: Amaturitymodel for the Spanish software
industry based on ISO standards. Comput. Stand. Interfaces 35, 616–628 (2013)

11. ISO: ISO - ISO/IEC 27001 Information security management (2017)
12. ISO/IEC: ISO/IEC 20000-1:2011(E), Information Technology - Service Management Part 1:

Service management system requirements (2011)
13. Oktaba, H., García, F., Piattini, M., Ruiz, F., Pino, F.J., Alquuicira, C.: Software process

improvement: the competisoft project. IEEE Comput. 40, 21–28 (2007)
14. ISO/IEC: ISO/IEC 33001:2015 Information technology – Process assessment – Concepts and

terminology (2015)
15. Mohamed, S.I.: DevOps shifting software engineering strategy value based perspective. IOSR

J. Comput. Eng. 17, 2278–2661 (2015)
16. Sahid, A., Maleh, Y., Belaissaoui, M.: An agile framework for ITS management in orga-

nizations. A case study based on DevOps. In: Proceedings of International Conference on
Computing and Wireless Communication System, pp. 1–8. ACM (2017)

17. Feijter, R., Vliet, R., Jagroep, E., Overbeek, S., Brinkkemper, S.: Towards the adoption of
DevOps in software product organizations: a maturity model approach (2017)

18. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering
- Guidelines and Examples. Wiley, Hoboken (2012)

19. Brereton, P.,Kitchenham,B.,Budgen,D., Li, Z.:Using a protocol template for case studyplan-
ning. In: Proceedings of International Conference on Evaluation and Assessment in Software
Engineering (EASE 2008), pp. 41–48. BCS (2008)

20. Yin, R.K.: Collecting Case Study Evidence. SAGE Publications, Thousand Oaks (2013)

https://doi.org/10.1007/978-3-319-13835-0_21

Process Compliance Re-Certification
Efficiency Enabled by EPF-C ◦ BVR-T:

A Case Study

Barbara Gallina(B) , Aleksandër Pulla, Antonela Bregu,
and Julieth Patricia Castellanos Ardila

IDT, Mälardalen University, Väster̊as, Sweden
{barbara.gallina,julieth.castellanos}@mdh.se,

{asa19008,abu19002}@student.mdh.se

Abstract. With today’s ever increasing demands on process (re)certi-
fication, enabling (re)certification efficiency is paramount. Within the EU
AMASS project, we delivered a tool-chain, called, in this paper, EPF-C
◦ BVR-T, obtained by the integration of EPF Composer (EPF-C) and
BVR Tool (BVR-T). This tool-chain supports process engineers in the
engineering and compliance demonstration activities as well as variabil-
ity and change management. The compliance recertification efficiency
enabled by the tool-chain has not been evaluated for changes triggered
by different jurisdictions, which impose the release of new standards.
Thus, to fill this gap, in this case study paper, we focus on the medi-
cal domain, precisely on the evolution of the ISO 14971 process for risk
analysis and evaluation for medical devices. Based on a set of efficiency-
related criteria, we evaluate the recertification efficiency enabled by the
change management strategy implemented in the tool-chain.

Keywords: (Re)certification · Process compliance · ISO 14971

1 Introduction

With today’s ever increasing demands on process (re)certification, enabling (re)-
certification efficiency is paramount. The AMASS project [18] has delivered the
first de-facto platform for (re)certification [17]. This platform includes a tool-
chain, called EPF-C ◦ BVR-T in this paper, obtained by integrating EPF Com-
poser (EPF-C) and BVR Tool (BVR-T). EPF-C ◦ BVR-T supports process
engineers in the engineering and compliance demonstration activities as well
as variability and change management. The compliance recertification efficiency
of the tool-chain has been illustrated and partially demonstrated in the space
domain taking into consideration recertification needs in case of different types
of changes, e.g. criticality level [4], concern (safety/security [6]). However, the

Partially funded by EU and VINNOVA via the ECSEL JU under grant agreement No.
692474, AMASS project.

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 211–219, 2020.
https://doi.org/10.1007/978-3-030-58793-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_17&domain=pdf
http://orcid.org/0000-0002-6952-1053
https://doi.org/10.1007/978-3-030-58793-2_17

212 B. Gallina et al.

tool-chain has not been evaluated in the medical domain and never for handling
the recertification effort needed in case of products crossing jurisdictions and
thus having to comply with different versions of the same standard. As known,
medical devices are governed by a broad range of national and international regu-
lations and medical equipment certification standards. These regulatory require-
ments are complex and vary between regions, which can make it challenging to
gain medical approval for products within a specific targeted market. An evident
example is represented by the requirements, included within ISO 14971:2007 and
its evolution (EN ISO 14971:2012, ISO 14971:2019), regarding the process for
risk analysis and evaluation. When published, ISO 14971:2007 was internation-
ally endorsed. Then, EN ISO 14971:2012 was released for the European mar-
ket only as a version harmonised with a set of EU directives (90/385/EEC [3],
93/42/EEC [2], and 98/79/EC [16]). As a consequence of the new release, recer-
tification was mandatory. Manufacturers of medical devices targeting an inter-
national market had to struggle to reconfigure their processes (i.e., provide new
evidence) to get approval from the different regulatory bodies within the different
jurisdictions within and outside EU. ISO 14971:2019 brought changes, making
it internationally endorsed again. Given the challenging regulatory context in
the medical domain and given the concrete need for a solution, in this paper,
we present a reduced but meaningful portion of a case study focused on the ISO
14971-compliant process for risk analysis and evaluation. The interested reader
may refer to [13] for the complete case study. During the execution of the case
study, we use EPF-C ◦ BVR-T to engineer compliant processes as well as man-
age the variability and change in relation to the different versions of ISO 14971.
Then, based on a set of efficiency-related criteria, we measure the re-certification
efficiency, enabled by EPF-C ◦ BVR-T and we analyse the results.

The rest of the paper is organised as follows. In Sect. 2, we give an overview
of EPF-C ◦ BVR-T for efficient process compliance management. In Sect. 3, we
recall the fundamental information regarding the ISO 14971 and its evolution. In
Sect. 4, we present the case study design and its execution. In Sect. 5, we present
the analysis of the case study. In Sect. 6, we discuss related work. Finally, in
Sect. 7, we draw our conclusion and sketch future work.

2 EPF-C ◦ BVR-T

EPF-C ◦ BVR-T [10] is a tool-chain, obtained by integrating EPF Composer
(EPF-C), which was recently brought back to the future [11], and BVR Tool
(BVR-T). EPF-C ◦ BVR-T supports efficient compliance management via reuse
enabled by managing commonalities and variabilities, i.e., by implementing
Safety-oriented Process Line Engineering (SoPLE) [5]. On the one hand, EPF-C
(Eclipse Process Framework Composer)1, which implements a metamodel that
covers the major parts of SPEM 2.0 (Software & Systems Process Engineer-
ing Metamodel) [12], is used to model the base process and its related library.
Essential elements are described in Table 1. A role represents who does a unit
1 See https://www.eclipse.org/epf/.

https://www.eclipse.org/epf/

Process Compliance Re-Certification Efficiency Enabled 213

of work, defined in a task definition. Artifacts and deliverables identify types of
work products resulting from a task. Guidelines, checklist, and practices repre-
sent supplementary free-form documentation.

Table 1. Subset of Icons Used in SPEM 2.0/EPF Composer [12].

Role Task Definition Deliverable Artifact Practice Checklist Guidance

On the other hand, BVR-T (Base Variability Resolution Tool)2, which imple-
ments the BVR metamodel [7], is used to orthogonally model (VSpec model via
VSpec editor), resolve (Resolution model via the Resolution editor) the variabil-
ity at abstract level. Once a new configuration is solved, the binding between
the abstract representation and the concrete representation (compliant to the
EPF Composer’s implemented metamodel) can be realised (Realization model
via the Realization editor). More precisely, VSpec permits users to model the
variability in a feature diagram-like fashion, embracing best practices of product
line modelling and thus inheriting the efficiency of product line engineering best
practices.
Table 2. VSpec

Element Symbol

Choice

Constraint

Group

As Table 2 recalls, a choice represents a yes/no decision,
a constraint, given in BCL (Basic Constraint Language),
specifies restrictions on permissible resolution models, and
a group dictates the number of choice resolutions, e.g., 1..1,
which refers to xor in which one of the child features must
be selected. For sake of clarity, we point out that Table 2
only recalls the BVR modelling elements used in this paper.

Resolution permits users to make choices at variation points, where desired vari-
ants can be selected. Resolution also includes the possibility to validate the
choices. Erroneous choices violating the cross-variation points constraints can
be detected. Realization permits users to bind abstract resolutions with the con-
crete elements in the base model.

3 ISO 14971 and Its Evolution

ISO 14971 is the standard that was developed specifically for medical devices. It
deals with processes for managing risks, primarily to the patient, but also to the
operator, other persons, other equipment and the environment. This standard
specifies a process through which the manufacturer of a medical device can
identify hazards associated with a medical device, estimate and evaluate the risks
associated with these hazards, control these risks, and monitor the effectiveness
of the controls throughout the life cycle of the medical device. The content of
ISO 14971 has been evolving over the years and different versions were published,
incorporating consensus-based modifications and refinements. In this paper, we
2 See https://github.com/SINTEF-9012/bvr.

https://github.com/SINTEF-9012/bvr

214 B. Gallina et al.

limit our attention to ISO 14971:2007 [8], EN ISO 14971:2012 [1], and ISO
14971:2019 [9], and, more specifically, to the portion of the process that deals
with risk analysis and evaluation.

Fig. 1. Risk management

Figure 1 depicts the portion of the process
considered in this paper. On the right side of
Fig. 1 two main differences are highlighted: 1)
Risk Acceptability Principle, known as RAP,
which stands for the principle that is followed
for reducing risks related to medical devices,
2) Treatment of negligible risks. These differ-
ences emerge by conducting a comparative
study of the different versions. Such differ-
ences are shown in detail in Table 3, where
ALARP stands for As Low As Reasonably
Practicable, while AFAP stands for As Far As Possible, which implies that all
risks have to be reduced without there being room for economic considerations.

Table 3. Risk identification and evaluation differences among ISO 14971 versions

Standard Treatment of negligible
risks

Risk Acceptability
Principle (RAP)

ISO 14971:2007 Discard negligible risks ALARP (Demands
risk reduction)

EN ISO 14971:2012 Take all risks
(including negligible)

AFAP (Requires risk
reduction)

ISO 14971:2019 Take all risks
(including negligible)

ALARP/AFAP
(Without affecting
benefit-risk ratio)

The reader may refer to [13] for a complete analysis of ISO 14971 evolution
focused on risk analysis and evaluation.

4 Case Study Design and Execution

In this section, we present the design and the execution of a reduced but mean-
ingful portion of a case study, designed according to the guidelines given in [15].

4.1 Case Study Design: Objective and Selection

The objective of the case study is the evaluation of the cross-jurisdiction/cross
version re-certification efficiency enabled by the change management strat-
egy implemented in EPF-C ◦ BVR-T. With this goal in mind, we expect to
answer the following question: is the cross-jurisdiction/cross-version recertifi-
cation, enabled by EPF-C ◦ BVR-T, efficient? To evaluate the re-certification
efficiency (i.e., the relationship between results achieved (recertification artefacts

Process Compliance Re-Certification Efficiency Enabled 215

provision) and resources used (effort in terms of modelling time), as done in our
previous work [4], we adopt and re-interpret in the context of process engineering
a set of metrics, see Table 4. As Table 4 shows, Cpi defines the set of process
components for each process. The intersection of the common Cpi(s) is equal to
Size of Commonality (SoC). SoC is the input for the PrRi, which measures the
extent of reusability of the common components for a specific process.

Table 4. Reuse metrics.

Size of Commonality (SoC) Product-related Reusability (PrRi)

SoC = |
n⋂

i=i

Cpi| PrRi = SoC
|Cpi|

As case study, we select the evolution of the ISO 14971 process for risk
analysis and risk evaluation (recalled in Sect. 3).

4.2 Case Study Execution and Results

We model the process in EPF-C, and the VSpec and the Resolution in BVR-T.
Figure 2 shows the modelling of process elements in EPF-C related to the three
versions of the standard ISO 14971 (recalled in Sect. 3). For space reasons, in this
paper, we only focus on the guidance part of each EPF-C plugin (highlighted in
green). With a red square, we highlight the applicable RAP and treatment of
negligible risk for each standard (recalled in Table 3).

Fig. 2. EPF-C Plugins Targeting ISO14971:2007, ISO14971:2012 and ISO14971:2019

216 B. Gallina et al.

We model the variability for negligible risk in BVR VSpec (see Fig. 3).
In particular, Discard negligible risks and Take negligible risks into account are
defined in the VSpec as optional-multiplicity 1..1, implying that only one of them
shall be applied, according to the constraints of the applicable standard. In a
similar way, we model the variability associated with RAP (see Fig. 4). For the
complete VSpec, embracing all the process elements considered in Fig. 2, the
interested reader may refer to [13]. Once the variability is modelled, the resolu-
tion is performed. For example, if the process model must comply with EN ISO
14971:2012, we set true for the option Take negligible risks into account for the
risk analysis (see Fig. 5a), while we set true for the option AFAP for the risk
evaluation (see Fig. 5b).

Fig. 3. BVR VSpec for the treatments of negligible risk

Fig. 4. BVR VSpec for RAP

Fig. 5. Resolution models.

In the guidance part of the three standards (see Fig. 2), we find 6 elements
that are common. Thus, Size of Commonality (SoC) for this portion is 6. In total,
8 guidance elements are required in ISO 14971:2007 and EN ISO 14971:2012, and
9 in ISO 14971:2019. Thus, the Product-related Reusability (PrRi) is 6/8 = 0.75
for ISO 14971:2007 and EN ISO 14971:2012, and 6/9 = 0,67 for ISO 14971:2019
in this portion of the standard. The interested reader may refer to [13] to find
the complete measurement, which does not only focus on the guidance part.

Process Compliance Re-Certification Efficiency Enabled 217

5 Case Study Analysis

In this section, we analyse the results and answer the question presented in
Sect. 4.1. The computation of SoC and PrRi shows a positive gain in terms of
reusability. Thus, we can answer that the change management strategy, imple-
mented in EPF-C ◦ BVR-T, is efficient when applied for handling changes related
to cross-jurisdiction/cross version in the context of ISO 14971. As a consequence,
this suggests that the provision of the new evidence, needed for recertification,
can be obtained by reusing a significant amount of pre-existing evidence in terms
of modelling artefacts. Thus, also the recertification is efficient.

6 Related Work

In the literature, other solutions have been proposed to increase efficiency via
reuse, while engineering/assuring safety-critical systems and their processes, and
case studies have been conducted to show their benefits. In the context of the
OPENCOSS3 project, for instance, a systematic approach for reusing safety
certification artefacts was applied to a cross-domain (railway and avionics) case
study [14] resulting into 50% of reuse. In contrast, our case study focuses on the
medical domain and in the context of different jurisdictions. To the best of our
knowledge, in the medical domain, our work represents a novelty and perhaps
the seminal evidence to trigger the attention to the potential efficiency increase
that could be gained by systematising and managing the variability that exists
within the broad range of national and international regulations and medical
equipment certification standards.

7 Conclusion and Future Work

In this paper, we conducted a case study-based evaluation of the process com-
pliance recertification efficiency enabled by EPF-C ◦ BVR-T. Precisely, the
ISO 14971 process for risk identification and evaluation for medical devices was
in focus. EPF-C ◦ BVR-T was used to model the process evidence needed for cer-
tification, systematise reuse, and manage change (i.e., reconfigure to successfully
re-certify). Based on a set of criteria, we evaluated the efficiency of the change
management strategy, implemented in EPF-C ◦ BVR-T, and the results enabled
us to draw conclusion on the recertification efficiency. Specifically, the case study
showed that, via EPF-C ◦ BVR-T, efficient reconfiguration (i.e., efficient pro-
vision of artefacts needed for the recertification process) is possible. Thus, for
instance, manufacturers targeting an international market can efficiently recon-
figure and validate their processes to satisfy the requirements within/outside
EU. This evaluation could represent the starting point for the adoption of the
tool chain EPF-C ◦ BVR-T in the medical domain. In the future, we aim at

3 Open Platform for EvolutioNary Certification of Safety-critical Systems- http://
www.opencoss-project.eu/.

http://www.opencoss-project.eu/
http://www.opencoss-project.eu/

218 B. Gallina et al.

conducting a larger evaluation by considering the entire ISO 14971, as well as
related standards (e.g., software process improvement, and security). In addi-
tion, in cooperation with industrial partners, we aim at evaluating EPF-C ◦
BVR-T in realistic industrial settings, where processes are typically not derived
by following the standard requirements by the book.

References

1. EN International Organization for Standardization (ISO) 14971:2012: Medical
devices - Application of risk management to medical devices (ISO 14971:2007,
Corrected version 2007–10-01), July 2012

2. The Council of the European Communities: Council Directive 93/42/EEC of 14
June 1993 concerning medical devices, June 1993

3. Council of the European Union: Council Directive 90/385/EEC of 20 June 1990 on
the approximation of the laws of the Member States relating to active implantable
medical devices, June 1990

4. Gallina, B., Iyer, S.: Towards quantitative evaluation of reuse within safety-oriented
process lines. In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.)
EuroSPI 2018. CCIS, vol. 896, pp. 469–479. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-97925-0 40

5. Gallina, B., Sljivo, I., Jaradat, O.: Towards a safety-oriented process line for
enabling reuse in safety critical systems development and certification. In: 35th
Annual IEEE Software Engineering Workshop, pp. 148–157 (2012). https://doi.
org/10.1109/SEW.2012.22

6. Gallina, B.: Quantitative evaluation of tailoring within SPICE-compliant security-
informed safety-oriented process lines. J. Softw.: Evol. Process - EuroSPI Special
Issue 32(3), 1–13 (2020). https://doi.org/10.1002/smr.2212

7. Haugen, Ø., Øg̊ard, O.: BVR – better variability results. In: Amyot, D., Fonseca i
Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 1–15. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11743-0 1

8. International Organization for Standardization (ISO) 14971:2007: Medical devices
- Application of risk management to medical devices, March 2007

9. International Organization for Standardization (ISO) 14971:2019: Medical devices
- Application of risk management to medical devices, December 2019

10. Javed, M., Gallina, B.: Safety-oriented process line engineering via seamless inte-
gration between EPF composer and BVR tool. In: 22nd International Systems and
Software Product Line Conference. SPLC, vol. 2, pp. 23–28 (2018). https://doi.
org/10.1145/3236405.3236406

11. Javed, M.A., Gallina, B.: Get EPF composer back to the future: a trip from Galileo
to Photon after 11 years. In: EclipseCon, Toulouse, France, 13–14 June 2018 (2018)

12. OMG: Software & Systems Process Engineering Meta-Model Specification. Version
2.0. (2008)

13. Pulla, A., Bregu, A.: Evaluating the compliance re-certification efficiency enabled
by the AMASS platform for medical devices. Master thesis, Mälardalen University,
School of Innovation, Design and Engineering, Väster̊as, Sweden (2020). https://
mdh.diva-portal.org/smash/get/diva2:1438427/FULLTEXT01.pdf

14. Ruiz, A., Juez, G., Espinoza, H., de la Vara, J.L., Larrucea, X.: Reuse of safety cer-
tification artefacts across standards and domains: a systematic approach. Reliab.
Eng. Syst. Saf. 158, 153–171 (2017). https://doi.org/10.1016/j.ress.2016.08.017

https://doi.org/10.1007/978-3-319-97925-0_40
https://doi.org/10.1007/978-3-319-97925-0_40
https://doi.org/10.1109/SEW.2012.22
https://doi.org/10.1109/SEW.2012.22
https://doi.org/10.1002/smr.2212
https://doi.org/10.1007/978-3-319-11743-0_1
https://doi.org/10.1145/3236405.3236406
https://doi.org/10.1145/3236405.3236406
https://mdh.diva-portal.org/smash/get/diva2:1438427/FULLTEXT01.pdf
https://mdh.diva-portal.org/smash/get/diva2:1438427/FULLTEXT01.pdf
https://doi.org/10.1016/j.ress.2016.08.017

Process Compliance Re-Certification Efficiency Enabled 219

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009). https://doi.
org/10.1007/s10664-008-9102-8

16. European Parliament & Council of the European Union: Directive 98/79/EC of the
European Parliament and of the Council of 27 October 1998 on in vitro diagnostic
medical devices, October 1998

17. de la Vara, J.L., Corredor, E.P., Lopez, A.R., Gallina, B.: The AMASS tool plat-
form: an innovative solution for assurance and certification of cyber-physical sys-
tems. In: Joint Proceedings of REFSQ-2020 Workshops, Doctoral Symposium, Live
Studies Track, and Poster Track co-located with the 26th International Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ), Pisa,
Italy, 24 March 2020, vol. 2584. CEUR Workshop Proceedings (2020)

18. de la Vara, J.L., Parra, E., Ruiz, A., Gallina, B.: AMASS: a large-scale European
project to improve the assurance and certification of cyber-physical systems. In:
Franch, X., Männistö, T., Mart́ınez-Fernández, S. (eds.) PROFES 2019. LNCS,
vol. 11915, pp. 626–632. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35333-9 49

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-030-35333-9_49
https://doi.org/10.1007/978-3-030-35333-9_49

Software Quality Education
and Training

Design of Secure Coding Challenges
for Cybersecurity Education

in the Industry

Tiago Gasiba1,2(B) , Ulrike Lechner2 , Maria Pinto-Albuquerque3 ,
and Alae Zouitni4

1 Siemens AG, Munich, Germany
tiago.gasiba@siemens.com

2 Universität der Bundeswehr München, Munich, Germany
ulrike.lechner@unibw.de

3 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisboa, Portugal
maria.albuquerque@iscte-iul.pt

4 Universität Passau, Passau, Germany
zouitni.alae@gmail.com

Abstract. According to a recent survey with more than 4000 software
developers, “less than half of developers can spot security holes”. As a
result, software products present a low-security quality expressed by vul-
nerabilities that can be exploited by cyber-criminals. This lack of qual-
ity and security is particularly dangerous if the software which contains
the vulnerabilities is deployed in critical infrastructures. Serious games,
and in particular, Capture-the-Flag (CTF) events, have shown promis-
ing results in improving secure coding awareness of software developers
in the industry. The challenges in the CTF event, to be useful, must be
adequately designed to address the target group. This paper presents
novel contributions by investigating which challenge types are adequate
to improve software developers’ ability to write secure code in an indus-
trial context. We propose 1) six challenge types usable in the industry
context, and 2) a structure for the CTF challenges. Our investigation also
presents results on 3) how to include hints and penalties into the cyber-
security challenges. We evaluated our work through a survey with secu-
rity experts. While our results show that “traditional” challenge types
seem to be adequate, they also reveal a new class of challenges based on
code entry and interaction with an automated coach.

Keywords: Education · Teaching · Training · Secure coding ·
Industry · Cybersecurity · Capture-the-flag · Game analysis · Game
design · Cybersecurity challenge

1 Introduction

To improve the quality (ISO250xx [16]) of software in terms of security, several
standards such as IEC-62443-4-1 [15] and ISO 27001 [17] mandate the imple-
mentation of a secure software development lifecycle (S-SDLC). Additionally,
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 223–237, 2020.
https://doi.org/10.1007/978-3-030-58793-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_18&domain=pdf
http://orcid.org/0000-0003-1462-6701
http://orcid.org/0000-0002-4286-3184
http://orcid.org/0000-0002-2725-7629
http://orcid.org/0000-0002-8809-7657
https://doi.org/10.1007/978-3-030-58793-2_18

224 T. Gasiba et al.

in recognition of the importance of secure code and need to develop secure
products [23,26], several companies have joined together and formed the SAFE-
code [25] alliance to promote security best practices. Automatic tools such as
Static Application Security Testing (SAST) [24] can be used to automate and aid
in improving code quality. These tools scan the code basis for existing vulnera-
bilities, which must be fixed by software developers. However, previous research
shows that this is not enough [22]: the reliability of such tools is still not good
enough, and they cannot automatically fix the code - this is done by software
developers who must also be trained in secure software development.

One of the methods currently being investigated and that is showing promis-
ing results are training methods based serious games of the type Capture-the-
Flag (CTF). The concept of these kinds of games was originally developed in
the pen-testing community. Several such games are continually being deployed
around the world [7] nowadays by universities, companies, and even groups of
individuals. However, most of the existing CTFs are not geared towards soft-
ware developers in the industry. Gasiba et al. [10] have recently shown that, in
order to raise awareness on secure coding in the industry, the game design must
address the specific requirements of its target audience.

Typically CTFs can be categorized as follows: 1) Attack-Only, 2) Attack-and-
Defend and 3) Defend Only. The participants of these CTFs are generally split
into two categories: Red Team (attackers) and Blue Team (defenders). In Attack-
Only Red team players try to exploit several systems to gain access and control.
In Attack-and-Defend competitions, the Red team players attack systems that
are being hardened and protected by blue team members. Finally, in Defend Only
CTFs, the players answer questions on cybersecurity for points or configure and
harden systems to be resilient to simulated attacks.

To address the needs of the industry and to better adapt to the players,
Gasiba et al. [10] have proposed a defensive CTF approach and also outlined
the requirements for the design of the defensive challenges. A proper design
of challenge types based on these requirements is especially important in an
industrial setting, as shown by an experiment by Barela et al. [3], where the
type of the challenge (based on comics) was seen to be inadequate for CTFs in
the industry.

Therefore, in this paper, we extend previous work by addressing the question
of which types of defensive challenges are suitable for software developers. In
particular, we are interested in the 1) structure of the said challenges and also
on 2) which types of challenges can be used in a CTF-like competition to raise
awareness of software developers in the industry. Our work is based on surveys
administered through interviews with expert security trainers from the industry.
The main contributions of this work are the following:

– design of defensive challenges for CTFs in the industry which aim at raising
awareness on secure coding and secure coding guidelines

– definition of a challenge structure for industrial CTFs,
– definition of six different challenge types for industrial CTFs, and
– insight into different options on how to include hints and penalties in indus-

trial CTFs.

Design of Secure Coding Challenges for Education in the Industry 225

We hope that this work can be used by designers of serious game and quality
engineers as a guideline on how to design defensive challenges for CTFs aimed
at raising awareness on secure coding on software developers in the industry.

In Sect. 2, we present previous work related to our research. Section 3 dis-
cusses our approach to the design of the defensive challenges. The results of our
study are presented in Sect. 4. This section also presents a critical discussion on
the obtained results, presents our main contribution to practical scenarios for
possible games, and briefly discusses the threats to the validity of our findings.
Finally, Sect. 5 summarizes our work and briefly discusses possible next steps.

2 Related Work

In [11], Graziotin et al. have shown that happy developers are better coders,
i.e., produce higher quality code and software. Davis et al. in [8] show that
CTF players experience fun during game play. Furthermore, Woody et al. [32]
argue that software vulnerabilities are quality defects. Since fun and happiness
are inter-related [30], these facts can be seen as a motivator to use Capture-the-
Flag (CTF)-base serious games [9] to raise awareness [14] on the topic of secure
coding for software developers in the industry, in order to improve code quality.

In [19] Mirkovic et al. introduced classroom CTF exercises as a form of cyber-
security education in academia. Their results show that the students that partic-
ipated in this kind of event have enjoyed the training and have shown increased
interest, attention, and focus towards cybersecurity topics. Additionally, in their
study, Gonzalez et al. [13] shown similar results and state that cybersecurity
training through serious games improves the students’ education and skills, and
has a positive impact on attracting students to cybersecurity field. They con-
clude that this kind of training can reduce the shortage of professionals in the
field of cybersecurity. Several additional studies [2,4,8] also show the positive
benefits of CTF in students’ attention and performance.

However, using CTFs as a tool to raise cybersecurity awareness comes with
different obstacles. In [10], Gasiba et al. elicit requirements for designing CTF
challenges geared towards software developers in the industry and show that
these CTF challenges should focus on the defensive perspective. Chung et al. [6]
also evaluated different aspects related to CTFs and concluded two important
issues related to CTFs: the challenge difficulty level and suitability the target
audience.

In our work, we are interested in designing high-quality defensive CTF chal-
lenges for software developers in the industry that address the topic of secure
coding guidelines [5] (SCG) and secure software development best practices [21]
(SDBP). However, most of the currently existing work focuses on academia,
where the target group is composed of current or future security experts, or
pen-testers. Furthermore, most existing studies also focus on the offensive per-
spective and do not address the topic of SCG, and SDBP. As such, this study is
driven by both the need to raise awareness on secure coding [1,20,33], and by the
lack of design of defensive CTF challenge geared towards software developers in

226 T. Gasiba et al.

the industry. The research method used in this work is based on semi-structured
interviews [31] and survey best practices as described by Grooves et al. [12] and
Seaman et al. [28]. The design of the serious games is based on [9].

3 Approach to Challenge Design

In order to design defensive challenges for industrial CTFs, the authors have
decided to focus on two different aspects: the challenge structure (CS) and the
challenge type (CT). The content of the challenge (e.g. questions or example
of software vulnerability), which are not the focus of the current work, can be
derived from existing SCG [5] and SDBP [21]. The challenge structure reflects
the mechanics of the challenge, i.e., how it is supposed to be deployed and how
it should work. The challenge type specifies the different ways that the challenge
can be presented to a participant. Figure 1 shows the steps that we have followed
in our approach to design the defensive CTF challenges for an industrial context.

Fig. 1. Study approach

In the first step, we have created a preliminary design, containing a proposed
CS and different CTs. For this, we conducted several informal discussions with
one security expert. Additionally, based on our experience with past Capture-
the-Flag events, we concluded the preliminary design of challenge structure and
challenge types. In the next step, we created a two-phase survey [12,28]. The goal
of the survey was to gather feedback and opinions, in a structured way, on the
preliminary challenge structure and challenge types. It was used to facilitate the
semi-structured interviews with several security experts. The interviews, carried
out in the following step, were realized in face-to-face meetings. The meetings
consisted of three parts: pre-survey, post-survey, and informal discussions. After
the interviews, the collected feedback was transferred to digital form and was
analyzed. The analysis step aims at understanding the joint agreement on the
different suggested improvements by the security experts. The commonly sug-
gested improvements were then used to adapt and change the preliminary design,
which resulted in the final challenge design.

In the following sub-sections, we present details on the different phases of our
approach. The results of the analysis, adaptation, and also the final challenge
design will be presented in Sect. 4.

Design of Secure Coding Challenges for Education in the Industry 227

3.1 Preliminary Design

In the preliminary design, the authors conducted several informal discussions
with a security expert which is also a trainer of secure coding in the industry.
The security expert has more than 10 years of experience in the industry and
has also knowledge and had previously participated in Capture-the-Flag events.
Based on the experience of the security expert and also on the experience of the
authors, preliminary design was derived.

3.2 Survey Preparation

In order to prepare for the interviews with security experts, a two-part survey [18]
was developed by the authors. The developed survey underwent three reviews
by three different cybersecurity experts: one holding a master of science in com-
puter science and two holding a Ph.D. in IT security, whereby one is additionally
a university lecturer in cybersecurity. The main goal of the pre-survey was to
understand what types of challenges do experienced industry security experts
find suitable for CTF-based awareness training. The post-survey’ primary goal
is to understand the level of agreement with the different preliminary challenges
types. The pre-survey was conducted at the beginning of the meeting, before pre-
senting the preliminary design. The post-survey was conducted after presenting
the preliminary design. This split allowed the participants to think and reflect
on their answers from the pre-survey and be prepared and more open-minded
for the discussions on the post-survey. Splitting the survey into two parts was
done in order to guarantee unbiased feedback collection from the security experts
during the pre-survey. Both the pre-survey and post-survey asked the partici-
pants - if they were to design a CTF challenge about secure coding for software
developers in the industry, what kind of challenge structure and type would they
use?. The post-survey additionally asked questions on the preliminary design,
in particular on what would the participant change, add or remove to the pre-
sented preliminary design, what other challenge types would they additionally
consider and also on the expert opinion on how to use penalties and hints in
the challenges. In total, the pre-survey consisted of 16 questions, of which 12
were multiple-choice, three were based on a Likert scale, and 1 was an open-
ended question [29]. The post-survey consisted of 11 questions, whereby 5 were
feedback questions based on a Likert scale, and 6 were open-ended questions.

3.3 Interviews

For the interview, the authors engaged 20 security experts with an average of
4 years of experience in the industry (minimum one year and maximum of 12
years). The experts were selected based on their experience, position, and back-
ground in the company - engaged in several consulting projects as a cyber-
security expert. A large part of the participants were also trainers themselves of
different topics on cybersecurity. The selected participants were all familiar with
CTF competitions. Half of the experts hold a Ph.D. degree in computer science or

228 T. Gasiba et al.

equivalent, and the remaining half holds a master of science in computer science
or equivalent. The face-to-face interviews lasted for one hour and were carried
out between the 1st of October 2019 and the 16th. During the interview, the first
20 min were dedicated to the pre-survey. Afterward, the preliminary design of
CTF challenges was presented to the participants. The remaining 30 min were
then spent on the post-survey, open-ended discussions and finished with 10 min
of informal discussions on the results.

3.4 Analysis

In this stage, we gathered all the collected data from the pre-surveys, post-
surveys, and informal discussions. The results using a Likert scale were analyzed
using standard statistical methods. Due to its nature, the open-ended questions
and the informal discussions need to be coded [28]. In order to guarantee the
quality of this step, the transcripts were given to three security experts who
were asked to perform the coding step manually. We have opted for a manual
procedure rather than automated to ensure high quality, as automated coding
has been previously shown not to achieve high accuracy [27]. The coding out-
come of each expert was then collected and discussed together. Similarities and
differences were then systematically addressed, and the final coding was derived
by mutual agreement between the three experts.

3.5 Adaptation and Final Design

The last step consisted of using the feedback from the previous step to adapt
and change the preliminary design accordingly. Only the proposed changes that
were agreed by the majority of the participants (i.e., more than 2/3 after coding
or 80% of participants) were considered for the final design. In Sect. 4, the final
challenge design, including challenge structure and derived challenge types, will
be presented in more detail.

4 Analysis and Results

In this section, we describe the results from the two-part survey interview, as
outlined in the previous section. We present the final challenge structure and
types, which take into consideration the feedback provided by all the security
experts. Finally, we summarize the main contributions and briefly discuss the
threat to the validity of our work.

4.1 Preliminary Design

As a result of the informal discussions with the security expert, the challenge
structure was defined in two rounds: round 1 : main challenge and round 2 :
presentation of secure coding guideline related to the challenge. No further details
will be given for the initial design, as this was changed after the interview with

Design of Secure Coding Challenges for Education in the Industry 229

the security experts, as shown in the next sub-sections. Section 4.4 details the
final challenge structure. The derived initial challenge types were the following:
Single Choice Question (CSQ), Multiple Choice Question (MCQ), Text Entry
Challenge (TEC), Code Snippet Challenge (CSC), and Code Entry Challenge
(CEC). Table 3 shows a summary of the challenge types. Further details are
given in Sect. 4.5, together with the final design.

4.2 Pre-survey Results

Pre-survey results showed that the majority (55%) of the participants thought an
adequate type of challenge would be of type question and answer, without spec-
ifying what they mean. Additionally, 85% answered that some form of challenge
involving coding would be adequate, since the challenges should be based on
SCG. However, some participants replied that friendly hacking exercises would
also be a good exercise - this was discarded as these types of challenges are
not defensive. One participant mentioned that an appropriate challenge would
involve fixing a problem on a vulnerable code snippet.

Table 1. Coding results on hints and penalties

Question Pre-survey results

When would you add the hints? (30%) For all challenges

(50%) For difficult challenges

(20%) No opinion

How to design the hints? (50%) Giving details on the answer

(75%) Disclosing important concept

(70%) Include an external reference

When would you add penalties? (60%) Agree to introduce penalties

(35%) Retrying the same challenge

(65%) When using a hint

(30%) Disagree to introduce penalties

(30%) No opinion

Table 1 shows a summary of the agreement level of the participants towards
questions asked during the pre-survey related the hints and penalties. The usage
of hints was backed by 80% of the survey participants, for difficult challenges
(50%) or all questions (30%). The hints should include details on how to solve the
questions (50%) and point-out the secure coding concept behind the challenge
(75%). The majority of the participants agreed that adding an external reference
(e.g. link to an article on the web) is an appropriate way to design hints for
challenges. Half of the participants agree that hints should disclose the essential
concept behind the challenge, e.g., on which secure coding guideline the challenge

230 T. Gasiba et al.

is based. Only 75% of the participants agree that giving targeted hints (e.g.,
disclosing an important concept) is a good idea. During the informal discussions,
several participants mentioned that the goal of the hints should be to make sure
that the CTF players are learning secure coding concepts during the game. The
hints should also be designed in order to lower player frustration and maximize
the learn-effect. In particular, the types of hint should be precise and to the
point, as industry players have a limited time to play the game.

In terms of penalty-points, 60% agreed to introduce them, 30% disagreed,
and 10% had no opinion. The ones that agreed to introduce penalty points, 65%
agreed that using hints should be penalized, and the remaining 35% agreed that
retrying a challenge should be penalized. During the informal discussions, the
survey participants mentioned that the intention to add penalties should be to
motivate the player to find solutions by him/herself and not to rely on hints.
Furthermore, the penalties should be small to lower the frustration level while
maximizing the learning effect of the CTF players.

4.3 Post-survey Results

In the post-survey, the participants were shown all the derived challenge types
and were asked to rate their agreement on the suitability for a CTF-like event
with software developers in an industrial setting on a Likert scale. Table 2 shows
the results of the post-survey for the five different challenge types. We use the
standard mapping of the Likert scale as follows: from 1-strongly disagree to 5-
strongly agree.

Table 2. Average agreement level

SCQ MCQ TEC CSC CEC

Average 3.95 3.80 3.15 4.30 4.30

Std. deviation 0.76 1.00 1.04 1.26 0.92

The derived ranks of the preferred challenge types are the following (from
highest agreement to lowest agreement): 1) Code-Entry-Challenge, 2) Code-
Snippet Challenge, 3) Single-Choice Question, 4) Multiple-Choice Question and
5) Text-Entry Challenge. Although CSC and CEC have the same average agree-
ment level, CSC has a higher standard deviation (i.e., higher uncertainty) than
CEC; therefore, we have placed CEC in first place in the rank.

When the participants were asked about ideas for additional challenge types,
80% had no new idea, 15% answered yes, they had an additional idea and 5%
had no opinion. The additional collected ideas were the following: a) “something
dynamic and fun”, b) “associating left and right lists” (ASL) and c)“modify code
that has one vulnerability”. The contribution (a) and (c) could not be mapped
into an existing challenge type, nor could a new challenge type be discerned.
However, (b) resulted in a new challenge type.

Design of Secure Coding Challenges for Education in the Industry 231

The participants were also asked what could be added to the existing chal-
lenges. The following additional points were collected with this question:

– Provide explanation at the end of the challenge, together with the flag
– Add explanations on multi-stage challenges
– Ask which coding guideline is not being followed in a code snippet
– Randomize the answers and randomize of the solutions
– Do not forget about the fun aspect when designing the challenge

These additional points were also used to improve the final challenge struc-
ture, as shown in the next sub-section.

4.4 Final Challenge Structure

The final challenge structure (CS) contains three phases consisting of four stages:
introduction (phase 1), challenge and logic (phase 2) and conclusion (phase
3), as shown in Fig. 2. In the introduction stage (phase 1), a topic related to
secure coding is introduced, which is helpful to solve and frame the challenge
(e.g., secure coding guideline or previously related cybersecurity incident). This
optional stage and can include a single-choice or multiple-choice question before
proceeding to the next phase. In the second phase, the challenge stage contains
the main CT according to a given challenge type, as presented in Sect. 4.5. In
this stage, several hints can be given to the player depending on several factors,
e.g., time taken by the player to solve the challenge or the previous number of
attempts to solve the challenge. The logic stage is responsible for evaluating the
solution to the challenge provided by the player and determining if it is correct
(acceptable) or wrong (not acceptable). According to the analysis of the answer
provided by the player, points or penalties might be awarded.

Fig. 2. Challenge structure

The third phase depends on the result of the logic stage. In case the player’s
answer was wrong, the following four options can occur: return to the chal-
lenge stage, give some explanation why the solution is wrong and return to the

232 T. Gasiba et al.

challenge stage, proceed to the finish or give an explanation why the solution
is wrong and proceed to the finish. In case the player’s solution was correct,
the following two options can occur: give some concluding remarks (with an
optional additional question) and then proceed to the finish or proceed to the
finish. If a correct solution is achieved at the finish state, then a flag is presented
to the player (according to the CTF rules). In the conclusion stage, additional
useful information can be given to the player, e.g., an explanation of secure cod-
ing guidelines related to the challenge, the importance of the challenge in the
industry context, for example, through lessons learned from past incidents or
vulnerabilities.

4.5 Final Challenge Types

Table 3 shows the final six derived challenge types. In single-choice questions
(SCQ), the participant is asked a question, and only one of the possible answers
is the correct solution. In multiple-choice questions (MCQ), the correct solution
must include more than one different answers. In text-entry questions (TEQ),
the participant needs to type in the solution as text - this can be achieved, for
example, by completing or writing a full sentence as the answer to the challenge.
Code-snippet challenge (CSC) presents a piece of code to the participant and lets
the participant select lines of code containing vulnerabilities or select changes
to the code that would avoid vulnerabilities (i.e., respect SCG and SDBP). In
code-entry challenges (CEC), the participant is given vulnerable code that needs
to be changed or rewritten to eliminate the vulnerability by complying with SCG
and SDBP. In associate left-right challenges, the participant needs to associate
items in a list on the left to items in a list on the right.

Figures 3, 4, 5, 6, 7 and 8 show mock-up sketches of possible implementations
on how to create a defensive CTF challenge based on the six challenge types.
Each challenge contains a guiding question, an area where the player can interact
with the challenge and a submit button to submit the results to the backend and
trigger the logic stage.

Table 3. Description of the derived challenge types

Challenge type Description

Single choice Question Select a single correct answer

Multiple choice question Select multiple correct answers

Text entry challenge Type the answer to the question

Code snippet challenge Identify lines or expressions in a code snippet

Code entry challenge Write or adapt code to eliminate vulnerabilities

Associate left-right Associate elements in left-list to those in right list

Design of Secure Coding Challenges for Education in the Industry 233

4.6 Observations

In this work, we designed defensive challenges for CTF events, which aim to
raise secure coding awareness of software developers in the industry. Code-Entry
Challenges were found to be among the most popular choice, while Text-Entry
Questions among the least popular. Both the initial CS and the CT were updated
as a result of the interviews with security experts. Interestingly, the informal
discussions with the security experts did not result in CTs based on comics [3].
Another interesting observation is that all the security experts considered “sim-
ple” game types, i.e., no discussions took place on advanced challenge types based
e.g., on Virtual Reality or Role-Playing-Games. This fact is likely related to the
particular nature of the topic and deployment environment (industry). As such,
challenge types that are more simple and traditional have been selected (e.g.,
Single-Choice Questions and Multiple-Choice Questions). One unexpected chal-
lenge type was the Code-Entry Challenge. Due to its complex nature, this type
of challenge requires more investigation to understand how to create a challenge
based on this type effectively.

Fig. 3. Single-choice question Fig. 4. Multiple-choice question

Fig. 5. Text-entry question Fig. 6. Code-snippet question

234 T. Gasiba et al.

Fig. 7. Code-entry challenge Fig. 8. Associate left-right

4.7 Threats to Validity

The work hereby presented is based on the knowledge and know-how obtained
through interactive discussions and surveys from a group of 20 security experts
from the industry. A possible threat to our conclusions is the limited number of
participants and their company background.

Although the authors found previous work on defensive challenges for
Capture-the-Flag events, they were not focused on secure coding, software devel-
opers, and the industry. Nevertheless, since the authors did not perform a system-
atic literature review, it might be that some challenge types present in scientific
literature might also apply to our situation and constraints.

Another limitation of our work is that it was based only on feedback from
security experts and not from players, i.e., real CTF participants. As such, no
direct feedback from the target group was used in our evaluation, especially in
the preferred challenge type ranking. The authors will address these issues in a
subsequent publication.

Although the present work follows survey methodology and semi-structured
interviews best practices, it lacks a systematic and academic approach. The rea-
son for this is that the study was conducted in an industrial setting. However,
extensive searches were conducted in scientific publication search engines to iden-
tify previous relevant work. These findings constituted part of the initial CT and
CS design.

5 Conclusions

Nowadays, there is an increasing demand for awareness training of software
developers in the industry on secure coding. This demand is motivated by
requirements from quality standards and security standards. One promising new
method to raise security awareness is the usage of Capture-the-Flag events. How-
ever, these events need to be specially designed in order to address the target
audience and its requirements - software developers in the industry.

Recently the requirements that are needed for designing these games in an
industrial setting have been investigated [10]. However, the authors of this previ-
ous work did not provide details on the challenge types but rather requirements

Design of Secure Coding Challenges for Education in the Industry 235

on the overall game. The design of challenge types is not a trivial task, and poor
quality challenges may result in inefficiencies (e.g., loss of productivity) that
industrial companies are not willing to accept. Barela [3] et al. gives one such
example, which has shown that challenge types based on comics, when deployed
in CTF, might not be adequate for the event and its goals. Furthermore, the
majority of the existing literature not only focuses on defensive challenges but
also mostly addresses a target audience of security professionals, e.g., pen-testers.

In this work, we have addressed the design of defensive challenges for CTFs
for the industry. We have derived a challenge structure and six different challenge
types. Our work is based on semi-structured interviews with security experts and
comprises a two-part survey and additional informal discussions. Our results
show that security experts prefer “traditional” challenge types, based e.g., on
Single-Choice and Multiple-Choice Questions. We have seen that the least pre-
ferred challenge type by security experts is the Text-Entry Challenges. Three
additional challenge types have been discussed: Association Left-Right, Code-
Entry Challenge, and Code-Snippet Challenge. The two latter types are well
adapted to secure coding challenges since they use software code.

However, the unexpected new challenge type was the Code-Entry Challenge,
where the player submits code to the backend, which decides if the challenge
is correctly solved. A topic that needs additional investigation is the details on
how to create such a challenge type. The results presented in this publication
have been derived solely based on feedback from interviews with security experts.
Further work is required to validate the derived challenge structure and challenge
types in real CTF events in an industrial setting. In particular, the authors intend
to give concrete examples of the implementation of the different derived challenge
types in an upcoming publication. This further work will allow to refine further
the challenge structure and challenge types based on the feedback from the CTF
players themselves.

Acknowledgement. This work is financed by portuguese national funds through
FCT - Fundação para a Ciência e Tecnologia, I.P., under the project FCT
UIDB/04466/2020. Furthermore, the third author thanks the Instituto Universitário
de Lisboa and ISTAR-IUL, for their support.

References

1. Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M.L., Fahl, S.: Developers
need support, too: a survey of security advice for software developers. In: 2017
IEEE Cybersecurity Development (SecDev), pp. 22–26. IEEE, September 2017

2. Aoyama, T., Nakano, T., Koshijima, I., Hashimoto, Y., Watanabe, K.: On the
complexity of cybersecurity exercises proportional to preparedness. J. Disaster Res.
12(5), 1081–1090 (2017)

3. Barela, J., Gasiba, E.T., Suppan, S., Berges, M., Beckers, K.: When interactive
graphic storytelling fails. In: 2019 IEEE 27th International Requirements Engi-
neering Conference Workshops (REW), pp. 164–169. IEEE, September 2019

236 T. Gasiba et al.

4. Beuran, R., Chinen, K.I., Tan, Y., Shinoda, Y.: Towards effective cybersecurity
education and training. Research report. School of Information Science, Graduate
School of Advanced Science and Technology, Japan Advanced Institute of Science
and Technology. IS-RR-2016, April 2016, pp. 1–16 (2016)

5. Carnegie Mellon University: SEI-CERT coding standards. https://wiki.sei.cmu.
edu/confluence/display/seccode

6. Chung, K., Cohen, J.: Learning obstacles in the capture the flag model. In: 2014
USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 2014). USENIX Association, San Diego (2014)

7. CTFtime team: CTFTime - all about CTF. https://ctftime.org
8. Davis, A., Leek, T., Zhivich, M., Gwinnup, K., Leonard, W.: The fun and future of

CTF. In: 2014 USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE 2014). USENIX Association, San Diego (2014)

9. Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J.: Serious Games: Foundations,
Concepts and Practice, 1st edn. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40612-1

10. Gasiba, T., Beckers, K., Suppan, S., Rezabek, F.: On the requirements for serious
games geared towards software developers in the industry. In: Damian, D.E., Perini,
A., Lee, S. (eds.) 27th IEEE International Requirements Engineering Conference,
RE 2019, Jeju Island, Korea (South), 23–27 September 2019. IEEE (2019)

11. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. J. Syst. Softw. 140, 32–47 (2018)

12. Groves, R.M., Fowler, F., Couper, M., Lepkowski, J., Singer, E.: Survey Method-
ology, 2nd edn. Wiley, Hoboken (2009)

13. Gonzalez, H., Llamas, R., Ordaz, F.: Cybersecurity teaching through gamification:
aligning training resources to our syllabus. Res. Comput. Sci. 146, 35–43 (2017).
https://doi.org/10.13053/rcs-146-1-4

14. Hänsch, N., Zinaida, B.: Specifying IT security awareness. In: 25th International
Workshop on Database and Expert Systems Applications, Munich, Germany, pp.
326–330, September 2014

15. IEC 62443-4-1: Security for industrial automation and control systems - part 4–1:
secure product development lifecycle requirements. Standard, International Elec-
trotechnical Commission, January 2018

16. ISO: ISO 250xx Series. Standard, International Organization for Standardization,
Geneva, CH (2005). http://iso25000.com/index.php/en/iso-25000-standards

17. ISO 27002: Information technology - security techniques - code of practice for
information security controls. Standard, International Organization for Standard-
ization, Geneva, CH, October 2013

18. Krosnick, J.A.: Questionnaire design. In: Vannette, D.L., Krosnick, J.A. (eds.)
The Palgrave Handbook of Survey Research, pp. 439–455. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-54395-6 53

19. Mirkovic, J., Peterson, P.: Class capture-the-flag exercises. In: 2014 USENIX Sum-
mit on Gaming, Games, and Gamification in Security Education (3GSE 2014)
(2014)

20. Nance, K., Hay, B., Bishop, M.: Secure coding education: are we making progress?
In: 16th Colloquium for Information Systems Security Education, pp. 83–88, June
2012

21. OWASP Top 10. https://www.owasp.org/images/7/72/OWASP Top 10-2017
(en).pdf. Accessed June 2019

https://wiki.sei.cmu.edu/confluence/display/seccode
https://wiki.sei.cmu.edu/confluence/display/seccode
https://ctftime.org
https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.13053/rcs-146-1-4
http://iso25000.com/index.php/en/iso-25000-standards
https://doi.org/10.1007/978-3-319-54395-6_53
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf

Design of Secure Coding Challenges for Education in the Industry 237

22. Oyetoyan, T.D., Milosheska, B., Grini, M., Soares Cruzes, D.: Myths and facts
about static application security testing tools: an action research at telenor digital.
In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 86–
103. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 6

23. Patel, S.: 2019 global developer report: DevSecOps finds security roadblocks divide
teams, July 2020. https://about.gitlab.com/blog/2019/07/15/global-developer-
report/. Accessed 15 July 2019

24. Rodriguez, M., Piattini, M., Ebert, C.: Software verification and validation tech-
nologies and tools. IEEE Softw. 36(2), 13–24 (2019)

25. SAFECode charter members: SAFECode - software assurance forum for excellence
in code. https://safecode.org

26. Schneier, B.: Software developers and security, July 2020. https://www.schneier.
com/blog/archives/2019/07/software develo.html. Accessed 25 July 2019

27. Schonlau, M., Couper, M.: Semi-automated categorization of open-ended ques-
tions. Surv. Res. Methods 10(2), 143–152 (2016). https://ojs.ub.uni-konstanz.de/
srm/article/view/6213

28. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Trans. Softw. Eng. 25(4), 557–572 (1999)

29. Smith, C.: Content analysis and narrative analysis. In: Handbook of Research
Methods in Social and Personality Psychology, pp. 313–335 (2000)

30. Tews, M.J., Noe, R.A.: Does training have to be fun? A review and conceptual
model of the role of fun in workplace training. Hum. Resour. Manag. Rev. 29(2),
226–238 (2019)

31. Whiting, L.: Semi-structured interviews: guidance for novice researchers. Nurs.
Stand. 22, 35–40 (2008)

32. Woody, C., Ellison, R., Nichols, W.: Predicting cybersecurity using quality data.
In: 2015 IEEE International Symposium on Technologies for Homeland Security
(HST), pp. 1–5. IEEE (2015)

33. Yang, X.L., Lo, D., Xia, X., Wan, Z.Y., Sun, J.L.: What security questions do
developers ask? A large-scale study of stack overflow posts. J. Comput. Sci. Tech-
nol. 31(5), 910–924 (2016)

https://doi.org/10.1007/978-3-319-91602-6_6
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://safecode.org
https://www.schneier.com/blog/archives/2019/07/software_develo.html
https://www.schneier.com/blog/archives/2019/07/software_develo.html
https://ojs.ub.uni-konstanz.de/srm/article/view/6213
https://ojs.ub.uni-konstanz.de/srm/article/view/6213

Q-Scrum: A Framework for Quality
in Safety-Critical Development

Johnny Cardoso Marques(B) , Adilson Marques da Cunha ,
and Luiz Alberto Vieira Dias

Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
{johnny,cunha,vdias}@ita.br

http://www.comp.ita.br

Abstract. This paper describes an adapted Scrum framework applied
to a successful academic experience, using Interdisciplinary Problem
Based Learning (IPBL) to conceptualize, model, and develop safety-
critical prototypes. It presents an adapted version of the Scrum agile
method used to develop a safety-critical project, achieving compliance
with software standards. It also reports the development of some aca-
demic projects using IPBL and involving students from four different
courses yearly offered by the Aeronautics Institute of Technology. At
the end of each year, a prototype was developed and presented by the
students.

Keywords: Scrum · Safety-critical prototype · Quality · Agile ·
Compliance

1 Introduction

Many organizations have adopted Agile as a practice to deliver high-quality
product releases with high value to the market [8,11]. While it is crucial to
focus on the mechanics of Agile disciplines internally, it is also important to
define what quality is, how customers view quality, and how it actually impacts
customer satisfaction and loyalty in such a way that it brings additional business
opportunities and enhances revenue [9]. Education involving agile development
and software quality is desired.

This paper describes an adapted Scrum framework applied to a successful
academic experience, using Interdisciplinary Problem Based Learning (IPBL)
to conceptualize, model, and develop safety-critical prototypes. We have been
applying our framework in projects developed, since 2013, at the Aeronautics
Institute of Technology (Instituto Tecnológico de Aeronáutica - ITA).

Our projects involve undergraduate and graduate students from the follow-
ing courses: CES-65 - Embedded Systems Project; CE-230 - Software Quality,
Reliability, and Safety; CE-235 - Real-time Embedded Systems Project; and CE-
237 - Advanced Topics on Software Testing. In summary, CES-65 and CE-235
courses tackle: the use of Software Engineering technologies, such as Integrated
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 238–245, 2020.
https://doi.org/10.1007/978-3-030-58793-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_19&domain=pdf
http://orcid.org/0000-0002-1551-435X
http://orcid.org/0000-0003-2399-5066
http://orcid.org/0000-0001-5958-8011
https://doi.org/10.1007/978-3-030-58793-2_19

Q-Scrum: A Framework for Quality in Safety-Critical Development 239

Computer-Aided Software Engineering Environment (I-CASE-E) tools; require-
ments specification, analysis, and design; and also the implementation of meth-
ods, tools, and techniques for real-time systems. The CE-230 course tackles:
standards for software development; reviews, inspections, and audits; and also
measurements and models of software reliability. Finally, the CE-237 tackles:
innovations in the software testing process; agile testing; and also Test-Driven
Development (TDD), and several types of black-box and white-box testing.

A safety-critical system is characterized by attributes such as functionality,
reliability, safety, usability, effectiveness, interoperability, testability, maintain-
ability, and portability. We offered to our students the opportunity to address
all these attributes, using an Interdisciplinary Problem Based Learning (IPBL).

At the end of 17 weeks of the 2nd Semester of each year, a unique developed
project prototype is presented by all students, as their final examinations, to Pro-
fessors and also to some invited local Research and Development and Industrial
community representatives. We use the IPBL as a student-centered pedagogy
approach in which students learn about a subject through the experience of solv-
ing an open-ended problem, involving multiple disciplines. During their project
execution, students conceptualize, model, and develop safety-critical prototypes
within these 17 weeks.

Basically, our IPBL approach involves: just one Problem Assigned
described in a Vision artifact; a minimum, necessary, and sufficient set of docu-
mentation artifact templates for three sprints development of Needs; and also
an assigned mission accomplishment template artifact to be presented by all
students, as part of their final examination and also to be delivered as a value
prototype for the Solution of the problem previously assigned, as presented in
Fig. 1.

Fig. 1. The organization of Scrum Teams using Scrum to generate a prototype

240 J. C. Marques et al.

2 Q-Scrum Framework

In the beginning of each Semester, Professors present the adapted version of
Scrum named Q-Scrum and meaning Quality-Scrum, as a modified framework
from the original Scrum proposed by Schwaber [10]. Other adaptations of Scrum
are available [4,6]. This adaptation involves the organization using the same pro-
cesses available in Software Standards (Requirements, Design, Modeling, Test-
ing, Configuration Management, Quality Assurance, and Validation). By train-
ing students in our framework, we have been able to use the Scrum agile method,
combine development with discipline, and achieve compliance with software stan-
dards.

Our prototype is divided into embedded system components. Each embedded
system component is developed by different Scrum Teams (ST). Each ST is
composed of 1 Student acting as Scrum Master (SM) and at most 8 Students
acting as ST Members from the 4 different courses, as also presented in Fig. 1.

All students are assigned to develop User Stories. However, students from dif-
ferent courses have specific roles: the CES-65 and CE-235 students are assigned
to design, model and implement solutions with the ANSYS Esterel SCADE [1];
the CE-230 students are assigned to conduct Walk-Throughs (WT) and Audits;
and the CE-237 students are assigned to specify, create and execute Test Cases
for User Stories.

At the beginning of each sprint, a Sprint Planning Meeting takes place. The
Product Owner and the Scrum Team review the Product Backlog, discuss goals
and the context of items. Each Scrum Team selects items from the Product
Backlog to commit and complete by the end of each sprint. Figure 2 presents the
Q-Scrum, as a Quality Assurance Safety-Critical Development Framework.

Fig. 2. Q-Scrum: the quality assurance safety-critical development framework

Q-Scrum: A Framework for Quality in Safety-Critical Development 241

2.1 Sprints

The 17 weeks have 4 Sprints of 4 weeks plus 1 week for the Final Project Pre-
sentation. The Week 1 of each Sprint is dedicated to the Sprint Planning, for
analyzing User Stories and creating their associated tasks. It is here, on the
Week 1 that the Design and Modeling of each User Story also begins. The Week
2 continues with the Design and Modeling and, it is at the end of this week
that Students perform the Walk-Through 1 (WT1). The Week 3 is dedicated to
Tests and the Walk-Through 2 (WT2) is performed at its end. On the Week 4,
the Sprint is finished and Students conduct Sprint Review, Retrospective, and
Audit. They also deliver incremental new releases of Prototypes at the end of
each Sprint. Figure 3 presents phases used during a typical sprint cycle of the
Q-Scrum.

Fig. 3. A typical sprint cycle of the Q-Scrum and its phases.

2.2 User Stories and Model-Based Development

User Stories (US) are mapped from requirements, making it possible to estimate
efforts to implement them, in a simple and direct way. Professors are the Product
Owners (PO) and fulfill with students the Product Backlog artifact with Sys-
tem and Software Requirements that later on could be mapped to User Stories,
following a specific format, adapted from [3]. User Stories contain behavioral
descriptions or properties comprised of: (i) Performance aspects; (ii) Function-
alities; (iii) External interfaces; and (iv) Limits, ranges, and data.

The Safety-Critical Application Development Environment (SCADE) from
ANSYS is a Model-Based Systems Engineering (MBSE) environment dedicated
to implement Safety-Critical Systems [1]. Previous works from the authors have
explored the Model-Based Development in some aviation projects using SCADE
[5,7]. The SCADE empowers users with a model-based development environ-
ment for critical embedded software. The SCADE Display empowers users with
versatile graphics design and development environment for embedded Human
Machine Interfaces (HMI), as presented in Fig. 4.

242 J. C. Marques et al.

Fig. 4. User Stories, SCADE Model, and SCADE Display

2.3 Walk-Throughs and Audits

The Walk-Through (WT) is a formal evaluation where a team of peers, includ-
ing the author, meets to examine work products such as User Stories, Models,
or Tests. As presented in Fig. 5a, the Walk-Through 1 (WT1) focuses in the
verification of User Stories and Models. It is executed at the end of Week 2.
Professors request Scrum Teams to create their WT1 Checklists. Each WT1
checklist must achieve at least the following objectives: (i) Verify if User Stories
are clear, testable, and non-ambiguous; (ii) Verify if Tasks are defined for each
User Story; (iii) Ensure that all Tasks, when executed, accomplish User Stories;
(iv) Ensure Models accomplish User Stories; and (v) Ensure that traceability
between User Stories and Models is established and correct.

As presented in Fig. 5b, the Walk-Through 2 (WT2) focuses in the verification
of Tests and is executed at the end of Week 3. Professors request Scrum Teams
to create their WT2 checklists. Each WT2 checklist must achieve at least the
following objectives: (i) Verify that Test Procedures were created and completely
exercised each User Story; and (ii) Verify that Test Results are correct.

An Audit is a formal evaluation of processes and their outputs and evaluates
consistency among work products. Audits are always conducted during the Week
4. Students must create an Audit checklist, to accomplish the following objec-
tives: (i) Verify that Sprint Reviews are properly conducted; (ii) Identify and
exercise some samples of the prototype, ensuring that User Stories, Models, and
Tests are correct; (iii) Ensure Issues identified in WT1 and WT2 were corrected;
(iv) Register additional Issues; and (v) Verify the compliance with applicable
Software Standard.

Professors request Students to perform Audits, using the flowchart presented
in Fig. 6. The CE-230 students collect artifacts (Step 1). The Audit is conducted

Q-Scrum: A Framework for Quality in Safety-Critical Development 243

Walk-Through 1 Walk-Through 2

Fig. 5. Walk-Throughs (WT) of Q-Scrum

by using the created Audit Checklist (Step 2). Then, Issues are identified and
requested for correction (Step 3). Finally, the CE-230 Students Confirm the
Correction (Step 4).

Fig. 6. Audit flow in a typical sprint cycle of the Q-Scrum

The IPBLs are always applied to safety-critical projects. Thus, Professors use
applicable software standards for each environment: RTCA DO-178C (Aviation),
ECSS-E-ST-40C (Space), and IEC 62304 (Medical).

3 Projects Using Q-SCRUM

Since 2013, we have been applying the IPBL and the Q-Scrum Agile in the
development of 7 academic Safety-Critical Software prototypes (Fig. 7) involving
the different environments of Aviation, Emergency, Medical, and Space in the
following academic projects:

– ARTES: An Avionics Real-Time Embedded System Project, involving a
Cockpit Display Systems (CDS) to control an Unmanned Aircraft Vehicle
(UAV);

– BAMLIS: The Brazilian Academic Micro-satellite Launching Integrated Sys-
tem Project, involving an interdisciplinary academic project for spatial critical
embedded system agile development [2];

244 J. C. Marques et al.

– ACMIS: The Accidents and Crises Management Integrated System Project,
to provide alert, prevent and decrease the effects of a crisis [12];

– APRES: The Alert Prevention System for Nature Events Project, to monitor
and alert nature events;

– TSA4HC-RT: Technological Solutions Applicable for Health Care in Real
Time Project, to integrate Patients, Hospitals, Physicians, and Health Sup-
pliers in a health system involving big accidents;

– HIMS: The Hospital Information Management System Project, to store,
retrieve, and analyze the evolution of rehabilitation, using an exoskeleton;
and

– PIMS: The Patient Information Management System Project, to monitor
wheelchair patients to perform daily activities.

Figure 7a presents an example of one Cockpit Display System (CDS) designed
from the first academic project developed using the Q-Scrum (ARTES) and
Fig. 7b presents examples of two Mobile CDS from the fourth academic project
developed using the Q-Scrum (APRES).

CDS from ARTES Project Mobile CDSs from APRES Project

Fig. 7. CDS examples

4 Conclusion

This paper described some successful experiences using Interdisciplinary Prob-
lem Based Learning (IPBL), to conceptualize, model, and develop safety-critical
prototypes, using a Scrum framework adapted from Schwaber [10] and named
Q-Scrum in the Brazilian Aeronautics Institute of Technology (Instituto Tec-
nológico de Aeronáutica - ITA).

On the past 7 years using the Q-Scrum academic framework, Professors were
able to apply and get successful experiences with the Q-Scrum development and
integration within 4 different courses, teaching how to apply quality assurance
in safety-critical developments.

As a natural consequence of these academic in-classes experiments the fol-
lowing innovative approaches and contributions were accomplished:

Q-Scrum: A Framework for Quality in Safety-Critical Development 245

– Application of agility, keeping the compliance with software standards;
– Use of Model-Based Development with the ANSYS Esterel SCADE;
– Creation of several checklists, supporting Walk-Throughs and audits;
– Cooperation in software quality education; and
– Use of multiple environments and standard driven-education.

Acknowledgements. The authors thank to: (i) the Aeronautics Institute of Tech-
nology (Instituto Tecnológico de Aeronáutica - ITA) for providing the motivation in
R&D environment; and (ii) ANSYS Esterel for providing the SCADE to support these
academic successful development experiences.

References

1. ANSYS: Embedded software. Electronic (2020). https://www.ansys.com/
products/embedded-software

2. Goncalves, G.S., et al.: An interdisciplinary academic project for spatial critical
embedded system agile development. In: 2015 IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC) (2015)

3. Leffingwell, D.: Agile Software Requirements, Lean Requirements Practices for
Teams Programs and the Enterprise. Addison-Wesley, Boston (2011)

4. Marques, J., Cunha, A.: A reference method for airborne software requirements.
In: 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC) (2013)

5. Marques, J., da Cunha, A.M.: Tailoring traditional software life cycles to ensure
compliance of rtca do-178c and do-331 with model-driven design. In: 2018
IEEE/AIAA 37th Digital Avionics Systems Conference (DASC) (2018)

6. Marques, J., Yelisetty, S.M.H., Cunha, A.M.D., Dias, L.A.V.: CARD-RM: a ref-
erence model for airborne software. In: 2013 10th International Conference on
Information Technology: New Generations (2013)

7. Marques, J.C., Yelisetty, S.M.H., Dias, L.A.V., da Cunha, A.M.: Using model-
based development as software low-level requirements to achieve airborne software
certification. In: 2012 Ninth International Conference on Information Technology-
New Generations (2012)

8. Merkow, M.: Secure, Resilient, and Agile Software Development. Auerbach Publi-
cations, Boca Raton (2019)

9. Nader-Rezvani, N.: An Executive’s Guide to Software Quality in an Agile Organi-
zation: A Continuous Improvement Journey. Apress, New York (2018)

10. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond
(2004)

11. Shah, S.H.: Quality Assurance in Agile Methodology. Grin Verlag, Munich (2018)
12. Siles, L.S., et al.: An integrated academic system prototype using accidents and

crises management as PBL. In: Latifi, S. (ed.) Information Technology - New Gen-
erations. AISC, vol. 558, pp. 419–427. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-54978-1 55

https://www.ansys.com/products/embedded-software
https://www.ansys.com/products/embedded-software
https://doi.org/10.1007/978-3-319-54978-1_55
https://doi.org/10.1007/978-3-319-54978-1_55

Quality Aspects in Quantum Computing

Reverse Engineering of Quantum Programs
Toward KDMModels

Luis Jiménez-Navajas(B) , Ricardo Pérez-Castillo(B) , and Mario Piattini

University of Castilla-La Mancha, 13071 Ciudad Real, Spain
{luis.jimeneznavajas,ricardo.pdelcastillo,

mario.piattini}@uclm.es

Abstract. The interest on quantum computing has grown dramatically due to
its incomparable computation power and many promising applications. This new
computing paradigm influences theway on how future information systemswill be
built. Legacy, classical systems cannot be simply replaced with quantum software
by several reasons. First, legacy systems usually embed a lot of mission-critical
knowledge over time, making its replacing too risky. Second, some business pro-
cesses do not make sense to be supported through quantum computing because
it supposes unnecessary expenses. This signifies that organizations need to adapt
their classical information systems alongside new specific quantum applications,
evolving toward hybrid information systems. Unfortunately, there are not spe-
cific methods for dealing with this challenge. We believe reengineering, and more
specifically software modernization using model-driven engineering principles,
could be useful for migrating classical systems toward hybrid ones. In particular,
this paper presents a reverse engineering technique that analyses quantum software
information from Q# code and generates more abstract models. These models are
generated according to the Knowledge Discovery Metamodel (KDM) standard.
The main implication is that through the usage of KDM the reengineering toward
hybrid systems can be accomplished in an independent way regarding the specific
quantum technology.

Keywords: Reengineering · Reverse engineering · Quantum computing ·
KDM · Q#

1 Introduction

In the history of software engineering, several methodologies, paradigms, frameworks
and technologies have emerged, which changed the way of how software is developed.
Nevertheless, the background of software programming has been almost the same, i.e.,
this is based in the Boolean algebra as one abstraction of the classical binary computers
[1].

Quantumcomputing is a new computing paradigmwith some new technology behind
this. It applies phenomena of quantum physics to computing, such as superposition and
entanglement. Furthermore, bits evolve into a new concept, the quantum bit or qubit.

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 249–262, 2020.
https://doi.org/10.1007/978-3-030-58793-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_20&domain=pdf
http://orcid.org/0000-0001-6257-7153
http://orcid.org/0000-0002-9271-3184
http://orcid.org/0000-0002-7212-8279
https://doi.org/10.1007/978-3-030-58793-2_20

250 L. Jiménez-Navajas et al.

These changes allow us to get an exponential growth in computational power that are
higher than the speed of the fastest supercomputer in the world.

As long as this new technology matures, organizations must face the modernization
of their enterprise information systems, taking advantage of the benefits that quantum
computing brings. This does not necessary mean to fully discard the classical informa-
tion systems, because some of the supported business processes will not be probably
supported through quantum computing. The same happens with the information systems
that embedded a vast amount of mission-critical knowledge during their evolution. That
knowledge is not present, probably, anywhere else. Thereby, the replacement of those
legacy, classical information systems becomes too risky. As a consequence, we believe
it is expected to find companies using classical-quantum information systems, which
we have denominated hybrid information systems. These systems consist of a master
classical system that make requests to quantum computers (typically in the cloud) to
compute specific quantum algorithms. However, the evolution from classical systems
into hybrid has not been treated before and there are no methods for dealing with this
problem.

We propose a solution based on reengineering andmore specifically onArchitecture-
DrivenModernization [2],which is the evolution of traditional reengineering that follows
Model-Driven Engineering (MDE) approach. ADM advocates the usage of KDM [3] to
accomplish such modernization. Software modernization can first analyse the software
artefacts and their interrelationships in legacy systems, and it builds one or more rep-
resentations of the legacy system according to KDM. The abstraction achieved through
KDM ensures the interoperability between reverse engineering tools and other software
modernization tools.

In particular, this paper focuses on the reverse engineering phase of the reengineering
process. The main contribution is a reverse engineering technique to analyse quantum
information (Q# code) and generates abstract models using KDM. For this solution,
a quantum parser has first been built, which analyses the Q# files and constructs the
corresponding abstract syntax tree (AST). Then, all the components and artefacts that
have been recognized aremapped and represented into the KDMmodel. That is achieved
through a KDM generator we have designed and built specifically for quantum code.

The main implication of this proposal is its contribution to the future and necessary
reengineering of classical-quantum information systems, and the way on how the sys-
tems will evolve through years. Thereby, we believe the proposed reverse engineering
technique, and particularly the whole reengineering process, will take a huge financial
worth.

The remaining of the paper is structured as follows: Sect. 2 explains the state of art
of quantum computing and reengineering. Then, Sect. 3 introduces Quantum Software
Reengineering where the proposed technique is framed. After that, Sect. 4 details our
proposal alongside its two main components, the Q# Parser and the KDM Generator. In
Sect. 5 a supporting tool and some implementation details are provided. Finally, Sect. 6
draws the conclusion of this research.

Reverse Engineering of Quantum Programs Toward KDM Models 251

2 State of the Art

2.1 Quantum Computing

Quantum computing started in the eighties when Paul Benioff proposed a quantum
mechanical model of the Turing machine [4]. Some years later, the physicists Richard
Feynman [5] andYuriManin [6] discovered the potential of how a quantum computer can
simulate and process than a classical computer cannot. After a few years, the mathemati-
cian Peter Shor, developed an algorithm for quantum computers which factors integers,
this means that bymeans of quantum computing, RSA-encrypted communications could
be decrypted [7].

This new computing paradigm is the result of applying quantum mechanics to com-
puting science. It changes the traditional bits, the smaller unit of information, with qubit.
A qubit is usually represented with the electron spin or photons among other particles. A
qubit is a multiple status quantum system (not only defined by zero and one as a classical
bit) where there exist infinite possible values, as a sphere (see Fig. 1). This means that a
qubit state might be zero and one at the same time. This phenomenon is known as super-
position [8]. Superposition is the keystone of the exponential computational power; n
qubits are represented by a superposition state vector in 2n.

|0>

|1>

|0> + i | 1|0> - i | 1

Fig. 1. Representation of a qubit based on the model of Felix Bloch [9].

The way of working with qubits it is through quantum circuits and quantum gates.
Quantum circuits are collections of quantum gates interconnected by quantum wires
[10], where qubit’s states change consequently of those quantum gates, which, some of
them, are internally composed of other quantum circuits but a lower level of abstraction
and still using quantum mechanics phenomena; like classical logical gates where, for
example, NAND gates are built internally with “AND” and “NOT” gates For example,
the Hadamard gate is typically used for initializing the qubits, that is, force the qubit to
have the same probabilities of being zero and one, in other terms, change the qubit’s state
into superposition. Other example of quantum gate is CNOT, which acts on two qubits
making a comparison between them and changing the status of one qubit depending on
the other’s one.

Likewise happened in sixties with the space race, nowadays there is a similar race to
get quantum supremacy. This race’s goal is to demonstrate that quantum computing can

252 L. Jiménez-Navajas et al.

solve a problem that a classical computer cannot [11]. Among many other, the head-to-
head competitors of this race are IBM and Google. In fact, Google recently announced
that has already achieved the quantum supremacy with a 54-qubit computer [12].

Together with the quantum computers, various quantum programming languages
have been developed such asQ# orQASMamong others. These programming languages
include abstractions for building quantum gates and other quantum operations [13].
Most of these programming languages are open-source and can be used by anyone
interested. On the one hand, having these open-source languages encourages the people
to contribute on the global knowledge, developing algorithms and new theories. On the
other hand, there are not guides of good practices to develop quantum code. There are
not guidelines of how quality quantum software must be developed. To alleviate this
problem the Talavera Manifesto for Quantum Software Engineering and Programming
[14] proposes good practices for the correct development of quantum software.

2.2 Traditional Reengineering

In a near future, organizations will develop hybrid information systems that combines
traditional information systems and quantum ones. The traditional will make all those
processes and procedures that do not make sense to implement in quantum computing
due to its complexity and price since these processed do not really take advantage of
the huge computational power. Nevertheless, this traditional software might call to other
operations implemented as quantum algorithms that run in remote quantum computers.
Thus, to accomplish the evolution toward hybrid information systems, reengineering
practices must be brought into the domain of quantum computing, which will deal with
the mentioned challenges.

All the technology evolves among time and so the information systems. This evo-
lution can have negative effects on those systems that were developed in the past, like
degradation or aging, making those information systems legacy information systems,
which means that the code in which were developed could be technologically obsolete
[15]. Nevertheless, discarding the whole system is not an option if the target information
systems must preserve business knowledge embedded in legacy ones. Reengineering
allows the preservation of the business knowledge, making possible to carry out evolu-
tionary maintenance of the legacy systems assuming low risks and low costs [16]. The
three stages of reengineering process [17] are:

1. Reverse engineering: the system is analysed to identify its components and interre-
lationships and create representations of the system in another form or at a higher
level of abstraction.

2. Restructuring: the transformation fromone representation form to another at the same
relative abstraction level, while preserving the subject system’s external behaviour
(functionality and semantics).

3. Forward engineering: the final stage consists of the renovation and reclamation, is
the examination and alteration of a subject system to reconstitute it in a new form
and the subsequent implementation of the form.

Reverse Engineering of Quantum Programs Toward KDM Models 253

The overall reengineering task is presented as a “horseshoe” model [18], where the
reengineering phase consists of the recovery of the architecture through source code
artifacts. Then, in the restructuring phase, the generated architecture on the previous
phase is reengineered to become the desired one, which can be modified to integrate
new requirements. Finally, forward reengineering works on the instantiation of the new
architecture.

The Architecture-driven Modernization (ADM) [19] consists of the use of tools that
facilitate the analysis, refactoring and transformation of existing system towards a mod-
ernization for supporting new requirements, migration of systems or even their interop-
erability. To accomplish this, ADMmakes use of reengineering and Model-driven engi-
neering (MDE) [20], where software development’s approach is done through defined
abstract models.

3 Quantum Software Reengineering

The specific reverse engineering proposal presented in this paper is framed in a long-term
research roadmap, a whole reengineering process for quantum software. We believe the
quantum software reengineering is necessary to deal with today’s and tomorrow’s hybrid
information systems.

We argue that reengineering and, in general, software modernization (its evolution
adding an MDE approach) can be used to deal with challenges associated with hybrid
information systems. Therefore, quantum software reengineering might be used in three
complementary scenarios (see Fig. 2):

1. Migrate existing, isolated quantum algorithms and integrate them into the hybrid
information systems.

2. Migrate classical legacy information systems toward hybrid architectures that
support the integration of classical-quantum information systems.

3. Transform or add new business operations supported by quantum software that will
be integrated into the target hybrid systems.

Figure 2 shows the overall quantum reengineering process. We propose a software
modernization based on existing standards such as UML and KDM. The first stage is
reverse engineering (which is the scope of this paper) and consist of analysing existing
information systems artefacts such as the source code, database schemas, etc. It could
analyse classical systems (scenario 1) plus quantum programs if these exist (scenario 2).
The output of the reverse engineering phase is a set ofKDMmodels that comprise aKDM
repository. As we explained, this KDM repository represents, in a technology-agnostic
way, all the different perspectives and concerns of the legacy information systems in a
holistic way. In this way, previous knowledge and business rules might be preserved, and
the impact of the integration of quantum programs is reduced. KDM is not specifically
designed to work with qubits, which implies that KDMmust be extended (through their
ordinary extensions mechanisms) to support the representation of quantum software
aspects.

254 L. Jiménez-Navajas et al.

UML Models

Classical
Informa on

System

Expert-based
model refactoring

Automa c
model refactoring

Code, docs, database,…
parsers

Model
transforma on

R
e

v
e

rs
e

 E

n
g

in
e

e
ri

n
g

F
o

rw
a

rd
 En

g
in

e
e

rin
g

R e s t r u c t u r i n g

Exis ng
Quantum
Programs

KDM Models

Quantum code
parser

Extended

New
Quantum
Programs

Extended

Target Classical-
Quantum System

Low-code
genera ve
techniques

❶ ❷

❸

Fig. 2. Quantum reengineering process

The second stage is restructuring (see Fig. 2). KDM models are then
(semi)automatically transformed into high-abstraction level models representing anal-
ysis and design aspects of the target hybrid systems. To achieve this, the metamodel
employed in this case might be UML. Similar to the KDM extension, UML should be
extended to support the new systems’ analysis and design elements concerning quantum
computing. In this point, software engineers can use this UML extension to manually
model quantum aspects for new, target systems (scenario 3) which are integrated with
the existing elements previously gathered by reverse engineering.

Finally, the forward engineering phase (see Fig. 2) consists of a set of techniques
that are able to generate many parts of the source code for the target hybrid systems.
Today, there exist many well-proven generators for different classical programming
languages to produce code from UML models. However, there is no generators for
quantumprogramming languages fromhigh abstractionmodels. In our concern, thismust
be provided and integrated with other existing generative techniques. Both, restructuring
and forward engineering are outside of the scope of this paper.

4 Reverse Engineering of Q# Programs

This section explains in detail themain contribution of this paper, the reverse engineering
of quantum programs and, in particular, for Q# programming language. This proposal is
framed in the reverse engineering stage of the overall quantum software reengineering
process presented in previous section. This reverse engineering techniques is specifically
focused on the scenario 1 (see Fig. 2).

Reverse Engineering of Quantum Programs Toward KDM Models 255

There are several frameworks for developing quantum software which offer different
options for the same purpose. Many of them allow to create quantum algorithms or
programs without coding, i.e., in a graphical way, just with a quantum circuit composer,
like IBM Quantum Experience [21], where you can use a real quantum computer for
executing the quantum algorithms that you develop. For our purpose, all these are outside
of the scope of this proposal, because no code is directly available. We need the source
code for analysing the syntax and derive the AST.

Q# file

Q# Parser

Syntax Tree

KDM
Generator

KDM
Model

Q# file Q# file

a

b

Fig. 3. Reverse engineering in Q# programming language.

Our proposed reverse engineering technique can be seen on Fig. 3 which is divided
into two modules. First, a Q# parser takes and analyses Q# files. The parser considers
a grammar for Q# to recognize Q# elements and build the respective AST. Second.
KDM generator takes such ASTs to generate a common KDMmodel. It considers some
mappings betweenQ# elements (as defined inAST) andKDM-compliant elements. This
proposal could be extended with additional parser for other programming languages by
changing the grammar-based rules of the parser. Same happens with the output of the
proposal and if there is any interest of swapping into other metamodel rather than KDM,
like for example UML, the code of the KDM Generator must be modified following the
necessary rules.

256 L. Jiménez-Navajas et al.

4.1 Q# Parser

The Q# Parser is the one in charge of building the abstract syntax tree based on the
Q# files that it receives. For achieving this it is necessary to define the grammar of the
programming language under analysis. There are tools to build parser from grammars
in an automatic manner. In this research the parser generator used is ANTLR [22], one
of the most used in the industry.

It should be noticed that Q# was developed by considering C# as the syntax base. As
a result, we started the definition of the Q# grammar as the extension of other existing
C# grammar. Nevertheless, several clauses (e.g., loops, method definitions, etc.) are
different regarding C#, and many others related to quantum information are genuine. In
particular, the use of quantum gates, which are the mechanisms for working with qubits,
need to be defined in the Q# grammar.

For example, Fig. 4 shows a small Q# program that instantiate a qubit (line 6), then it
applies aHadamard’s quantumgate on the qubit (line 7), and finally the qubit ismeasured
with the quantum gate M (line 8).

1 namespace Quantum.QSharpApplication1 {
2 open Microsoft.Quantum.Canon;
3 open Microsoft.Quantum.Intrinsic;
4
5 operation HelloQ () : (Result) {
6 using (var qubit = Qubit()){ // Allocate a qubit.
7 H(qubit);
8 let r = M(qubit);
9 Message("Welcome to the quantum world!");
10 return r;
11 }
12 }
13 }

Fig. 4. Q# program measuring a qubit after applying the Hadamard quantum gate.

Table 1 shows as example the rules of the developed grammar that are activated for
the Q# program in Fig. 4. The whole grammar can be queried in the online material
available at our GitHub repository. The definition of the whole parser must be staggered,
where all the grammar of lowest level group for building higher levels until all the syntax
is well defined. This way of defining all the syntax will set up the AST and following
the examples of Table 1 and Fig. 4, the outgoing AST is presented in Fig. 5.

4.2 KDM Generator

The KDM Generator takes the AST generated from the Q# files and builds a KDM
model. AST’s nodes are considered by the KDM Generator and depending on the type
of the node explored, the type of element on the KDM file is chosen and generated in
the target model.

Reverse Engineering of Quantum Programs Toward KDM Models 257

Table 1. Example of definition of quantum gates’ lexicon and grammar.

LEXER

HADAMARD: ‘H’;
MEASURE: ‘M’;

PARSER

quantum_gates_one_op
: HADAMARD
| MEASURE
;

one_gate_op
: quantum_gates_one_op OPEN_PARENS qubit_identifier CLOSE_PARENS
;

quantum_gate_op
: one_gate_op
| two_gate_op
| three_gate_op
;

operation_declaration

qsharp_declaration

identifier

IDENTIFIER

quantum_formal_parameter_list quantum_return_type quantum_using

quantum_qubit_assingment

qubit_declaration

qubit_identifier

quantum_body

block

statement quantum_gate_op

one_gate_op

quantum_gates_one_op

HADAMARD

MEASURE

Fig. 5. Q# abstract syntax tree generated for the Q# code example.

All the AST elements which are important on the architecture of the program need
to be specified on the KDM Generator, as well as the relations between those elements.
The specification of those components on the outgoing KDM model, will be based
on the KDM standard. Some elements in KDM are generic and are useful to represent

258 L. Jiménez-Navajas et al.

elements for different programming languages. Hence, some elementsmust be annotated
with specific stereotypes to provide specific semantic regarding quantum information.

KDM’s approach do not define quantum entities, as quantum gates, variables which
defined type are qubits or the way of how to measure them. As a result, we defined an
extension family, the default extension mechanism provided by the KDM standard. All
the components that exist in quantum programming language are thus represented in
this extension family (see Fig. 6). The extension family groups a set of stereotypes that
are then used in the ordinary elements provided by KDM.

<extensionFamily>
<stereotype name="quantum programming language" />
<stereotype name="quantum program" />
<stereotype name="quantum operation" />
<stereotype name="quantum gate" />
<stereotype name="qubit" />
<stereotype name="qubit measure" />

</extensionFamily>

Fig. 6. Extension family of KDM files for defining quantum entities.

The definition of this extension family will allow to extend previous classical infor-
mation systems towards quantum programming languages by means of quantum soft-
ware reengineering, going a step further to allowing the hybridization of systems, main-
taining previous knowledge and business rules, and the reducing the impact of the inte-
gration of quantum programs. This extension family might be extended in the future
with additional elements.

The KDM generator recognizes certain elements in the AST and creates certain
elements in the target KDM model. Table 2 shows the mapping applied by the KDM
generator. The left column shows elements in the Q# AST, while two right columns
provide the KDM element as well as the stereotype used (if any) to annotate the element.

Table 2. Q# AST - KDM mapping applied through the KDM generator

AST elements KDM element KDM stereotype

Q# program CodeModel

Q# program CompilationUnit Quantum program

Q# operation CallableUnit Quantum operation

Qubit_Declaration DefinedType Qubit

Quantum_Gate ActionElement Quantum gate

Qubit_identifier (used as operand in
a quantum_gate)

ActionRelation (type = Addresses)

* among AST elements appearing in
a sequence

ActionRelation (type = Flow)

Reverse Engineering of Quantum Programs Toward KDM Models 259

Figure 7 shows the whole KDMmodel after applying the transformation depicted in
Table 2 to the AST model (see Fig. 5) that was generated from the Q# code in Fig. 4. As
we can see from line 3 to 10 of Fig. 7, the extension family is defined and the quantum
elements of the code in Fig. 4 in lines 7 and 9 are located in lines 14 and 17 of the KDM
file. In line 12, it is necessary to specify the program, in this case “Program.qs”, which
its stereotype points to “quantum program” in the extension family.

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <kdm:Segment xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"

xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmi:version="2.0" name="Program_1587291045970.xml">

 3 <extensionFamily xmi:id="id.0">
 4 <stereotype xmi:id="id.1" name="quantum programming language"/>
 5 <stereotype xmi:id="id.2" name="quantum program"/>
 6 <stereotype xmi:id="id.3" name="quantum operation"/>
 7 <stereotype xmi:id="id.4" name="quantum gate"/>
 8 <stereotype xmi:id="id.5" name="qubit"/>
 9 <stereotype xmi:id="id.6" name="qubit measure"/>
10 </extensionFamily>
11 <model xmi:id="id.7" xsi:type="code:CodeModel"

name="Program_1587291045970.xml" action:action="code:Action">
12 <codeElement xsi:type="code:CompilationUnit" xmi:id="id.8"

stereotype="id.2" name="Program.qs" >
13 <codeElement xsi:type="code:CallableUnit" xmi:id="id.9"

name="HelloQ" stereotype="id.3" >
14 <codeElement type="code:DefinedType" xmi:id="id.10"

name="qubit" stereotype="id.5">
15 <codeElement type="code:ActionElement" name="Hadamard"

stereotype="id.4" xmi:id="id.11">
16 <source language="Q#" snippet="H(q)" />
17 <actionRelation xsi:type="action:Addresses"

from="id.11" to="id.10" />
18 <actionRelation xsi:type="action:Flow"

from="id.11" to="id.12" />
19 </codeElement>
20 <codeElement type="code:ActionElement" name="Measure"

stereotype="id.4" xmi:id="id.12">
21 <source language="Q#" snippet="M(q)" />
22 <actionRelation xsi:type="action:Addresses"
 from="id.12" to="id.10" />
23 </codeElement>
24 </codeElement>
25 </codeElement>
26 </codeElement>
27 </model>
28 </kdm:Segment>

Fig. 7. KDM file from code on Fig. 4

Develop a quantum program implies the use and declaration of qubits. Q# has an
structure called “Operations” which are similar to conventional methods but only inside
them you can work with qubits, as we can see in Fig. 4 from line 5 to 12, and in Fig. 7 it is
defined in line 13 as a “Callable Unit”. Then, the KDM’s declaration of the qubit inside

260 L. Jiménez-Navajas et al.

the operation is in line 14, with the type “Defined Type” due to it can be considered as
a variable type, just like and integer or a string.

The elementwhich better fits the definition of a quantumgate is the “ActionElement”,
which defines a basic unit of behaviour. Those elements have the stereotype “quantum
gate” (id 4 in line 7). Internally, the quantum gate definitions have the “source” element
(lines 16 and 21) that store the code snippet of the quantum gate. Then, quantum gate
entities collect some “Action Relation” entities tagged with the type ‘Addresses’ to
reference qubits involved as operands in the quantum gate. In our example, it references
a single qubit (lines 17 and 22) through the “from” and “to” attributes, that respectively
contains references to the current quantumgate and to the qubit declaration.Additionally,
the sequence flow in the program is modelled with “Action Relation” elements tagged
as “Flow” and a pair of “from” and “to” attributes (check line 18).

One limitation of the KDMgenerator lies in the fact that it cannot recognize in which
operation is the qubit used, but it does know where are declared. This is not a problem
if the Q# attached files use just one operation, which is the most common scenario.

5 Supporting Tool

This section presents first some implementation details for the tool we have developed,
which support the technique proposed.

As mentioned before, the proposal is divided into two main components, as shown
in Fig. 3, where both have been developed with different tools but joined with the aim
to getting closer into the hybridization of systems.

The Q# Parser (see Fig. 3 a) was developed with ANTLR, which is a powerful
parser generator for reading, processing, executing or translating structured text or binary
files [22]. This parser allows us to define the syntax of the programming languages for
developing the AST. This syntax is divided into two sections (see Table 1), the “Lexer”
where the lexicon and reserved words of the language are specified, and the “Parser”,
where the language’s structures are described. Since Q# is based on C# and ANTLR has
an open repository of defined languages, such as Java, C, C++, etc., instead of starting
from scratch, we took one ANTLR’s project for C# and adapted it to Q#, by defining
the necessary key words, structures and modules.

The KDM Generator (see Fig. 3 b) was constructed with Java. It takes the AST
explores all its nodes and children, and if it is a relevant component in the architecture
of the file, it is saved into a matrix. Then, all those matrixes are explored and based on
the definitions of the KDM model, all different types that can be saved are specified. If
one of those matrixes contain quantum entities, like quantum gates or qubit declarations,
a stereotype attribute is added to its KDM’s representation. These stereotypes point to
the extension family detailed on Sect. 4.2 and are necessary for the future extension of
classical information systems towards the hybrid ones.

Reverse Engineering of Quantum Programs Toward KDM Models 261

6 Conclusions and Future Work

The goal of this research is contributing to the reengineering of classical-quantum infor-
mation systems. In particular, this paper has focused on the reverse engineering phase
to be able to parser quantum code and generates KDMmodels. The proposed technique
has been specifically developed for Q# code, but further grammar could be provided
to extend this technique with parsers for other quantum programming language. Addi-
tionally, because of the usage of KDM, this technique ensures the independence from
quantum technology. This is particularly important due to the maturity status of the
quantum technology, i.e., with various new programming languages and development
platforms appearing in parallel, as well as different quantum hardware architectures.
Also, the outgoing KDM model, representing abstractions of classical-quantum infor-
mation systems, can be used during the next phases of reengineering, i.e. restructuring
and forward engineering.

The proposed technique is framed in a long-term research devoted to investigating
how reengineering can help to migrate both classical and quantum information systems
toward hybrid ones. We believe, the presented technique is a first step in this direction.
Thus, the main implications of this work are that quantum software developers can
abstract some quantum information together other information coming from classical
systems and it can be integrated in a high-abstracted model. This is usefully, not only for
the whole reengineering process, but also for the understanding the information systems’
components and their relationships.

As we presented before, we have already detected some possible improvements, like
the generation of KDM files from other quantum programming languages apart from
Q#. Further parsers might be semi automatically generated through the development of
grammars for additional quantum programming languages. As the future research lines,
we expect to work in the following reengineering phases. First, we expect to develop a
UML extension to represent analysis and designmodels of the target, hybrid information
system. Then, some automatic model transformations between KDM and UML will be
developed.

Acknowledgments. This researchhas beenpartially fundedby theG3SOFT (SBPLY/17/ 180501/
000150), and GEMA (SBPLY/17/180501/000293) projects funded by the ‘Dirección General
de Universidades, Investigación e Innovación – Consejería de Educación, Cultura y Deportes;
Gobierno de Castilla-La Mancha’. This work is also part of the projects BIZDEVOPS-Global
(RTI2018-098309-B-C31) and ECLIPSE (RTI2018-094283-B-C31) funded by Ministerio de
Economía, Industria y Competitividad (MINECO) & Fondo Europeo de Desarrollo Regional
(FEDER); and SMOQUIN (PID2019-104791RB-I00) funded by SpanishMinistry of Science and
Innovation (MICINN).

References

1. Washburn, S.H.: Boolean algebra in electronic circuit design. Electr. Eng. 73, 164 (2013).
https://doi.org/10.1109/ee.1954.6439254

https://doi.org/10.1109/ee.1954.6439254

262 L. Jiménez-Navajas et al.

2. Pérez-Castillo, R., García Rodríguez de Guzmán, I., Piattini, M.: Architecture-driven mod-
ernization. Mod. Softw. Eng. Concepts Pract. Adv. Approaches, 75–103 (2010). https://doi.
org/10.4018/978-1-60960-215-4.ch004

3. Pérez-Castillo, R., De Guzmán, I.G.R., Piattini, M.: Knowledge discovery metamodel-
ISO/IEC 19506: a standard to modernize legacy systems. Comput. Stand. Interfaces 33,
519–532 (2011). https://doi.org/10.1016/j.csi.2011.02.007

4. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamil-
tonian model of computers as represented by turing machines. J. Stat. Phys. 22, 563–591
(1980). https://doi.org/10.1007/BF01011339

5. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
https://doi.org/10.1007/BF02650179

6. Manin, I.I.: Vychislimoe i nevychislimoe (1980)
7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997). https://doi.org/10.1137/S00
97539795293172

8. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften
23, 807–812 (1935). https://doi.org/10.1007/BF01491891

9. Bloch, F.: Nuclear induction. Phys. Rev. 70, 460–474 (1946). https://doi.org/10.1103/Phy
sRev.70.460

10. Marinescu, D.C.: Classical and quantum information (2012). https://doi.org/10.1016/C2009-
0-64195-7

11. Preskill, J.: Quantum computing and the entanglement frontier, 1–18 (2012). http://arxiv.org/
abs/1203.5813

12. Google’s quantumblog (2019). https://www.blog.google/technology/ai/computing-takes-qua
ntum-leap-forward/. Accessed 13 April 2020

13. Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y., Stuckey,
P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24754-8_1

14. Piattini, M., et al.: The Talavera manifesto for quantum software engineering and program-
ming. In: CEUR Workshop Proceedings, vol. 2561, pp. 1–5 (2020)

15. William, M.: Ulrich, Legacy Systems: Transformation Strategies. Prentice Hall PTR, Upper
Saddle River (2002)

16. De Lucia, A., Ferrucci, F., Tortora, G., Tucci, M.: Emerging methods, technologies, and
processmanagement in software engineering (2007). https://doi.org/10.1002/9780470238103

17. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE
Softw. 7, 13–17 (1990). https://doi.org/10.1109/52.43044

18. Kazman, R., Woods, S.G., Carriere, S.J.: Requirements for integrating software architecture
and reengineering models: CORUM II. In: Reverse Engineering - Workshop Conference
Proceedings, pp. 154–163 (1998). https://doi.org/10.1109/wcre.1998.723185

19. Ulrich, W.M., Newcomb, P.H.: Information systems transformation (2010). https://doi.org/
10.1016/C2009-0-19987-7

20. Schmidt, D.C.: Model-Driven Engineering. Vanderbilt University Model-driven, Historia
Santiago, vol. 39, pp. 2–9 (2006). http://www.computer.org/portal/site/computer/menuitem.
e533b16739f5

21. IBMquantum experience homepage (2016). https://quantum-computing.ibm.com/. Accessed
23 April 2020

22. ANTLR homepage (n.d.). https://www.antlr.org/. Accessed 26 Mar 2020

https://doi.org/10.4018/978-1-60960-215-4.ch004
https://doi.org/10.1016/j.csi.2011.02.007
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF02650179
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/BF01491891
https://doi.org/10.1103/PhysRev.70.460
https://doi.org/10.1016/C2009-0-64195-7
http://arxiv.org/abs/1203.5813
https://www.blog.google/technology/ai/computing-takes-quantum-leap-forward/
https://doi.org/10.1007/978-3-540-24754-8_1
https://doi.org/10.1002/9780470238103
https://doi.org/10.1109/52.43044
https://doi.org/10.1109/wcre.1998.723185
https://doi.org/10.1016/C2009-0-19987-7
http://www.computer.org/portal/site/computer/menuitem.e533b16739f5
https://quantum-computing.ibm.com/
https://www.antlr.org/

Math and Physics Tools for Quality Quantum
Programming

Ezequiel Murina(B)

aQuantum, Madrid, Spain
ezequiel.murina@a-e.es

Abstract. We are in presence of a quantum computing revolution that will be
critical for the dominant global position of nations in near future. Some quantum
lab devices have been developed and important milestones have been reached,
mainly in the branch of communications. In this scenario, it is urgent to educate
people in quantum computing and technology, like it happens with disciplines
such as science, technology, engineering, and mathematics promoted by govern-
ment in order to instruct science-aware citizens. A solid knowledge base in math
and physics is essential for a workforce able to develop high quality quantum
technology. This work addresses the necessity of quantum literacy for the creation
of a new workforce, proposing the basic math tools, and physics background for
entering into the field of quantum programming. It also addresses a certification
about Science Foundation for Quantum Programming, as a means for assuring the
quality of quantum software professionals.

Keywords: Quantum literacy · Quantum programming · Quantum
math-physics · Quantum certification

1 Introduction

1.1 Quantum Computing Race

Researchers predicted, before the Coronavirus crisis, that Quantum Technology will
grow roughly 65 billion USD next two decades, reaching a global market worth of
300 billon USD by the year 2050 [1]. Nowadays, there are more than 40 companies
working in projects related to quantum cybersecurity, algorithms, financial services, and
communications [2].

China is the leading country in quantumcommunications,with a successful industrial
application of quantum key distribution (QKD). Let us just mention the launch of a quan-
tum satellite calledMicius, in August 2016, and the threemilestones reached: implemen-
tation of QKD from the satellite to the ground over a distance of up to 1200 km using the
decoy state BB84 protocol; quantum teleportation of independent single-photon qubits
from a ground observatory to a low-Earth-orbit satellite; and satellite-based distribution
of entangled photon pairs to two locations separated by more than 1000 km on Earth
[3].

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 263–273, 2020.
https://doi.org/10.1007/978-3-030-58793-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_21

264 E. Murina

In February 2020, Trump’s Administration destined 25 millon USD on what it calls
a national “quantum internet”, which consists of a network of machines designed to
prevent the interception of digital communication [4]. The Kremlin, in turn, will inject
up to 790 millon USD next 5 years into basic and applied quantum research at leading
Russian laboratories with aims of creating a quantum computer [5].

Regarding to Europe, it is important to mention the advances in quantum hardware
carried out by QuTech in the Netherlands. In February 2020, in collaboration with Intel,
they resolved the issue of integrate qubits and their controlling electronic in the same
chip [6]. This opens the possibility to the realization of large-scale quantum computers.

1.2 Quantum (il)Literacy. The State of Art

European Commission warns about the necessity of basic knowledge in quantum theory
and quantum technology as a component of all engineer’s education [7]. Furthermore,
they emphasis that it is required to train not only “quantumengineers” but also aquantum-
awareworkforce bymeans of reinforcement of education, conferences, summer schools,
student exchanges and international collaboration, among others.

In 2018, it started The Quantum Technologies Flagship Programme (QTflagship)
which aims to place Europe at the forefront of what they called the second quantum
revolution [7]. Thefirst revolutionbeganwith the development of quantumphysics and its
impact in transistor and laser technology. Currently, a second revolution is unfoldingwith
the advances in nanotechnology which allow a precise control of single quantum states
and exploit properties like superposition and entanglement. The impact in technology is
expected to be in four areas: quantum computation, quantum communication, quantum
simulation and quantum sensing and metrology.

Some countries configured its owns programmes as ways to overcome quantum
illiteracy and consolidate as the new “Sillicon Valley”. The most relevant propositions
are the UK National Quantum technologies programme, Netherlands Quantum Agenda
for Quantum Technology [1] and the German programme called Quantum Technology
Foundations and Applications [8]. Also the Talavera Manifesto, presented at QAN-
SWER 2020, proposes some principles and commitments about the quantum software
engineering and programming field, as well as some calls for action [9].

1.3 Forward a Quantum Literacy for Software Engineering: Math and Physics

Although currently there are several lab prototypes of quantum computing hardware, the
technology is in constant progress and is not yet standardized. The same happens with
the development of a software stack. Many high level quantum programming languages,
quantum software development kits, quantum assembly languages, and quantum com-
pilers have been developed. An exhaustive list may be found in reference [10]. It is not
clear which of them will remain in near future and will depend on how the ongoing
progress of quantum technology is taking place.

In this scenario, a standardized education is not available for future quantum engi-
neers. But something is clear: quantum programming needs software engineers and
programmers with a blend of specialized knowledge from math and physics. In that
sense, it is critical to understand that the lack of this knowledge constitutes the handicap

Math and Physics Tools for Quality Quantum Programming 265

to overcome in order to go beyond being a quantum software literate and become an
actual developer. Moreover, a solid base in math and physics will has a strong impact in
quality of quantum software development.

Next sections describe the fundamentals of quantum physics and introduce minimal
mathematical concepts relevant for starting to work in the field of quantum software
engineering and programming. Section 5 presents Foundations of Quantum Science for
Quantum Programming profile as a means for assuring the math and physics knowledge
required for the quality of quantum professionals. Finally, the main conclusions are
presented.

2 The Origin of Quantum Theory: A “Quantum”

The starting point of the fundamentals of quantum physics theory was in the beginning
of 20th century, when Max Planck proposed a microscopic model which describes the
black body electromagnetic spectrum. In simple words, he explained how materials
change color with temperature. The model postulates that the energy exchange between
molecules of a material and the surrounding electromagnetic radiation is not continuous
but by means of discrete amounts, “quanta” (“quantum”, in singular), afterward called
photons.Moreover, photon energy is proportional to the frequency of the electromagnetic
wave radiated or absorbed in the energy exchange process. The proportionality constant
is known as Planck’s constant. It quantifies the discretization of energy and somehow
plays the role of a signature for identifying quantum effects in mathematical equations.

Eventually, the revolutionary idea of a “quantum” was confirmed by experiments
and extended to other energy forms such as magnetic quantities (spin) or mechanical
collective vibrations (phonons), among others. A formal definition can be formulated
as follows: a quantum is the smallest amount of a physical quantity involved in an
energy exchange between matter and radiation. This discretization of physical quantities
imposed constraints on the behavior of classical systems and led to the origin of a
quantum theory for studying them.

The development of a quantum theory found a driving force in the field of atomic
physics, reaching a solid mathematical expression with Schrödinger’s equation. In its
origin, the equation intended to recover the “continuous” behavior of physical quantities
by means of the introduction of another revolutionary concept, inspired in a previous
proposal made by Louis de Broglie: the wave-particle duality. It consists in associating a
wave to a particle (a matter wave) and describing its physics as a wave entity. Therefore,
particles exhibit both particle and wave behaviors depending on the characteristic length
scale of the system. Wave behavior turns relevant in atomic systems and smaller.

The description of particles as waves led to the Heisenberg principle, a consequence
of Fourier analysis applied to matter waves. The principle establishes a limit to the preci-
sion in the determination of reciprocal physical quantities such as the same components
of position and linear momentum.

266 E. Murina

3 Physics Fundamentals of Quantum Computing and Quantum
Programming

3.1 Qubits

In classic computing, information is transmitted in binary units called bits that can adopt
logic values of zero or one, representing a low or high electric voltage, respectively. In
quantum computing, however, the units of information are call qubits and represent the
quantum states of a system (the spin of an electron, for example). The main properties of
qubits come from the wave behavior of the two-level system they represent in a logical
layer: superposition and entanglement.

3.2 Superposition

The most general quantum state of a single qubit can be written as follows:

|ψ〉 = α|0〉 + β|1〉; (1)

being α, β complex numbers. Notation |0〉, |1〉 represents the states of a quantum particle
that can access to only two different energy levels. The expression in Eq. (1) is called
superposition of states due the qubit |ψ〉 is composed by a combination of state |0〉 in
∥
∥α2

∥
∥ proportion and state |1〉 in ∥

∥β2
∥
∥ proportion.

The powerful of superposition is the infinity of possibilities it offers for mapping
information and, even more important, the parallel access to this information. It allows
pure states like |0〉 and |1〉,which are equivalent to bitswith values of 0 and1, respectively.
But also are allowed all combinations of states given by different values of concentration
∥
∥α2

∥
∥ and

∥
∥β2

∥
∥, inaccessible by classic information units like bits.

3.3 Entanglement

An entanglement state is a superposition of a pair of single qubits in a way that a strong
correlation is created between them. This strong correlation consists in the deterministic
nature of the state of one of the qubit once the other qubit is measured. An entanglement
can be obtained by applying quantum gates on qubits, which allows a control of the
interference of matter waves associated to each qubit in order to create the desired state.
Next section will clarify this issue.

3.4 The Wave Function Collapse and the Inspection of a Quantum Variable

Quantum physics theory has an intrinsic stochastic nature. In general, one proceeds as
follows: first, a matter wave is associated to a single massive nonrelativistic particle and,
then, the time evolution of the matter wave is given by the solution of the Schrödinger’s
equation.

Amatter wave contains all the information available about the particle it is associated
to, and its modulus squared is interpreted as a probability distribution of location in the
space. The physics information is recovering from the matter wave when measures are

Math and Physics Tools for Quality Quantum Programming 267

taken onto it. The measuring process affects the final quantum state of the matter wave
measured. This is called the wave function collapse.

A quantum variable is a name that allocates the memory space, a set of qubits, where
data will be stored. When a quantum variable is inspected, it has a stochastic nature in
the sense that it is possible to recover different values with a given probability. Once
one inspects its value, a quantum variable loses its stochastic nature and behaves as a
“classic” variable. At low level, what it happens is that the wave function associated to
the qubits collapses: in the measurement process (the inspection of the variable), the
measuring device interacts with the qubits, the interaction changes the quantum state of
the qubits and they adopt bit values of 0 or 1.

3.5 No-Copying Quantum Information

Information allocated in qubits in an unknown quantum state cannot be copied exactly.
This is called the no-cloning theorem. For further discussion and a formal prove, see
reference [11]. The term “exactly” means that only the orthogonal components of a qubit
in a quantum superposition state can be copied.

Another issue to point out about the no-cloning theorem is that it relies on the use
of the state of art quantum hardware devices that perform unitary transformation of the
qubits. However, copying quantum information might be possible with the development
of hardware devices able to perform non-unitary transformations.

3.6 Quantum Algorithms

The two main state of art quantum computing models are universal quantum comput-
ing and annealing quantum computing [12, 13]. The former will be describe in next
paragraphs, the latter is based in mapping a computational problem onto an interaction
model between qubits and is beyond the scope of this paper.

Quantum programming (QP) in the universal quantum computing model proceeds
as follows: the sequence of instruction that composed an algorithm is decoding in a
sequence of quantum logic gates (Q-gates) operating on qubits, in order to change its
quantum states. In this context, the concept of logic circuit arises as a visualization
diagram of the implementation of a quantum algorithm (Q-algorithm).

An example of a simple quantum circuit corresponding to the teleportation algorithm
is shown in Fig. 1. It is related to moving quantum data between qubits using 3-qubits as
inputs and considering as a single relevant output the final quantum state of one of them.
From left to right, a CNOTgate acts on the first pairs of the 3-qubits, enumerated from top
to bottom; then, a Hadamard gate H creates interference in the first qubits. Afterwards,
measurements are taken on the first pair of 3-qubits. Finally, pure rotations over X and
Z axis are applied depending on the information N and M received by a classic channel
overflow. Note the low abstraction level of QP, very close to the computer architecture
itself, dealing with combination of Q-gates to obtain an interesting result as an output
of the Q-algorithm. There are neither loops nor shortcuts, just a serial sequence of
transformation changing the qubit states in each step.

268 E. Murina

Fig. 1. Quantum circuit corresponding to the teleportation algorithm (Amended from reference
[11]).

One of the main features of Q-gates is their reversibility, i.e., it is possible to recover
and old quantum state from the new one applying the inverse transformation. This makes
Q-gates have no analogue in classic logic gates, where many of them are not reversible.

3.7 Quantum Programming Language and the Execution of a Quantum Code

QP languages (Q-languages) implement a Q-algorithm at high level. In that sense, a new
coding logic emerges due the quantum nature of qubits and how QP proceeds. They do
not use logic structures for flow control such if-else, switch, for or while statements.
Q-languages focus on the establishment of correlation among qubits (entanglements),
creation of interference (apart from entangled states, others superposition states) and
state projections (measurements).

Another feature of QP is the requirement of multiple times execution of the Q-
algorithm once it is implemented by a high-level Q-language. On the one hand, inherent
stochastic nature of qubits as a quantum device gives a probability distribution of occur-
rence to the possible outputs. The better sampling of this distribution, the more precision
in the estimation of the mean value of outputs. On the other hand, there is noise coupled
to the signal coming from operating with non-ideal Q-gates during the time coherence
of qubits. In an ideal case, that is why a code have to be executed multiple times: good
sampling of outputs and reduction of noise introduced by hardware. In non-ideal situa-
tions, other factors have to be taken into consideration, such as the interaction of qubits
with the environment.

4 Math Tools for Quantum Programming

For becoming a quantum software engineer it is necessary to be fluently in linear algebra
and understand the basic ideas of probability theory. Also, some knowledge in modular
arithmetic (basically, mod 2) and complex numbers (addition, multiplication and Euler
representation) is an advantage. At an advance level, Fourier analysis may be relevant.

Linear algebra introduces the notion of vector space and the tools required to deal
with qubits and changes in its quantum states. The quantum state of a qubit is represented
by a vector. A Q-gate action is mapping in a square matrix and its effect on a quantum
state of a qubit emerges when a matrix-vector multiplication is carried out. Let us see an

Math and Physics Tools for Quality Quantum Programming 269

example. Given the quantum circuit shown in Fig. 1, assume the input for the first wire
(from top to bottom) is a state like the following:

|ψ〉 = α(|0〉 + |1〉) (2)

being α = 1/
√

(2). Quantum state ψ〉 in expression (2) represents a superposition of
qubits 0〉 and 1〉 in equal proportions. The vector representation is:

|0 ⇒
[

1
0

]

|1 ⇒
[

0
1

]

(3)

Suppose we proceed along the circuit. The first Q-gate (from left to right) is a CNOT
gate. It does not affect the quantum state of |ψ〉 due this qubit is a control one in this
case. The second Q-gate is a Hadamard gate, H. Its matrix representation is:

H ⇒ α

[

1 1
1 −1

]

(4)

Let us see the effect of the H application on |ψ〉:
H |ψ〉 = α(H |0〉 + H |1〉) (5)

and in matrix-vector representation:

H |0〉 ⇒ α

[

1 1
1 −1

][

1
0

]

= α

[

1
1

]

= α

[

1
0

]

+ α

[

0
1

]

H |0〉 ⇒ α(|0〉 + |1〉)
(6)

In a similar way, one obtains:

H |1〉 ⇒ α(|0〉 − |1〉) (7)

From combination of expressions 5, 6, and 7 results:

H |ψ〉 = |0〉 (8)

The physics background of these calculations is close related with interference of
matter waves phenomenon. The effect of Hadamard gate is to create interference. When
a quantum state is pure, i.e. when α = 0 and β = 1, or vice verse, in Eq. (1), the state
unfolds in equal proportions along the set of accessible quantum configuration. This
homogeneous unfolding constitutes an isentropic thermodynamics trajectory. On can
recover the initial state re-applying the Hadamard gate. This time, more interference is
created and destroys the original one, as it is shown in previous example. Again, the
process is isentropic and there is no energy dissipation considering and ideal case.

270 E. Murina

5 Foundations of Quantum Science for Quality Quantum
Programming

5.1 Assuring the Quality of Quantum Professionals

To produce quality quantum software, as with classical software, engineers and pro-
grammers must have a set of scientific, technical and technological knowledge essential
for developing the competences required to develop software.

In the case of the development of quantum software, knowledge of the fundamentals
of quantum science is revealed as essential and, as has been shown before, knowledge of
physics and mathematics is decisive. The level of maturity of the specific competences
for the development of their tasks will depend on the degree of knowledge in these
sciences. As we know, they are not the same competences required for an engineer as
for a programmer, just as the competences required for a programmer are also different
from those required for a software architect.

Given that we think that competencies play a determining role in the quality of
quantum software development, as it happens with the quality of classic software, we
consider that it is necessary to design a training model appropriate to the objective of
developing these competences, which requires the appropriate combination of training
with the completion of practices in a training model. In our opinion, this can be success-
fully achieved through a certification model specially designed for the development of
quantum software that includes the competencies required for the different categories
of the quantum workforce.

The purpose of certification of persons is to measure the competence of individuals.
It is very important because it signifies an individual expertise and training to industry
and organizations. Certification also helps industries to define and maintain standards.
Confidence in the certification schemes for persons is achieved by means of a glob-
ally accepted process of assessment, and periodic re-assessments, of the competence of
certified persons. So, certification assures the quality of quantum professionals.

In full coherence with all the aforementioned, in Piattini, Peterssen et al. [14], a
ISO/IEC 17024-based certification schema with different categories to train and certify
the needed quantum workforce is proposed. For this reason, we believe that it is very
interesting to incorporate to this schema a category regarding a Foundations of Quantum
Science for Quantum Programming.

Regarding competences, we propose a first level of definition using the European e-
Competence Framework (e-CF) [15] which was established as “a tool to support mutual
understanding and provide transparency of language through the articulation of com-
petences required and deployed by ICT professionals (including both practitioners and
managers)”. The e-CF is structured from four dimensions:

• Dimension 1: 5 e-Competence areas, derived from the ICT business processes PLAN
– BUILD – RUN – ENABLE – MANAGE

• Dimension 2: A set of reference e-Competences for each area, with a generic descrip-
tion for each competence. 40 competences identified in total provide the European
generic reference definitions of the framework.

Math and Physics Tools for Quality Quantum Programming 271

• Dimension 3: Proficiency levels of each e-Competence provide European reference
level specifications on e-Competence levels e-1 to e-5.

• Dimension 4: Samples of knowledge and skills related to the e-Competences are
indicated as optional framework components for inspiration.

At a second level of definition, specific knowledge is detailed.

5.2 Foundations of Quantum Science for Quantum Programming Profile

To efficiently train the workforce for quantum development, the competencies to be
developed in the certifications for the different categories must be clearly defined. Oth-
erwise, the greatest mistake would be made of not properly dimensioning the contents
and practices to include in each one of them for the fulfillment of the objectives of each
certification.

In almost two years of work that we have already dedicated to the research and
development of Quantum Software Workforce, focused on the study of competencies
and training for the workforce in Quantum Software Engineering and Programming, we
have verified that, in general, all categories of the quantumworkforce require, to varying
degrees, the following minimum competencies to develop quality quantum software:

• Fundamental Physics
• Quantum Mechanics
• Mathematics
• Quantum Computers
• Quantum Algorithms
• Quantum Programming

Although we are currently working on defining the specific competencies for each
of the categories we have identified in the quantum software development workforce,
we have concluded that certified professionals at Foundations of Quantum Science for
Quantum Programming will be able to tackle and tackle with quality the following tasks:

a) Develop quantum components and applications
b) Follow quantum development guidelines
c) Document quantum components and applications
d) Identify quantum software problems and repair
e) Perform regular maintenance on quantum software components
f) Write test program to assess quantum software quality
g) Communicate effectively with end users and customer management.

272 E. Murina

And so, the following general competences must be acquired:

e-CF Competences Level

A.1. Application Design 1

B.1. Application Development 2

B.3. Testing 1

D.11. Needs Identification 2

Regarding knowledge, we group the specific concepts for this certification in three
domains:

• Domain 1: Quantum Mathematics.
• Domain 2: Quantum Physics.
• Domain 3: Quantum Computer Realisation.

6 Conclusions

Quantum literacy is the starting point for safe transformations towards a quality and
sustainable quantum industry. It should be a State policy in all modern countries, not
only those interesting in accessing to a global dominant position next decades. In this
work were discussing the first achievements in the area of quantum computing and some
programmes for quantum research and education recently implemented. Also, they were
presented the physics and math concepts in which quantum theory rely on.

The new software engineers need an interdisciplinary background with knowledge
in math and physics that allow them to address the quantum challenges. Up to now there
is not a standardized instruction to become a “Quantum Engineer”. In this regard, we
will offer the Basic Science Foundations Certification for Quantum Software Engineers.
It will include an introductory course about quantum programming fundamental and
also an intermediate-advanced course which gives a more detailed approach with the
math and physics tools required in this field.

Acknowledgements. The author thanks professors Guido Peterssen and Mario Piattini for the
very useful discussion about the topics presented in this paper.

References

1. TNO,QuTech,QuSoft,QT/e,NWO,h.L. Instituut,AMS-IX, S.Microsoft ym.EZK,National
Agenda for Quantum Technology, TNO (2019)

2. W Contributors: List of companies involved in quantum computing or communication.
Wikipedia. The Free Encyclopedia. https://en.wikipedia.org/wiki/List_of_companies_inv
olved_in_quantum_computing_or_communication. Accessed 22 June 2020

3. Zhang, Q., Xu, F., Li, L., Liu, N.-L., Pan, J.-W.: Quantum information research in China.
Quantum Sci. Technol. 4, 040503 (2019)

https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication

Math and Physics Tools for Quality Quantum Programming 273

4. Metz, C.: White House Earmarks New Money for A.I. and Quantum Computing. The New
York Times. https://www.nytimes.com/2020/02/10/technology/white-house-earmarks-new-
money-for-ai-and-quantum-computing.html. Accessed 22 June 2020

5. Schiermeier, Q.: Russia joins race to make quantum dreams a reality. Nature 577, 14 (2020)
6. Patra, B., et al.: A scalable Cryo-CMOS 2-to-20 GHz digitally intensive controller for 4 ×

32 frequency multiplexed spin qubits/transmons in 22 nm FinFET technology for quantum
computers. In: 2020 IEEE International Solid- State Circuits Conference (ISSCC), Kunming,
China (2020)

7. Riedel, M.F., Binosi, D., Thew, R., Calarco, T.: The European quantum technologies flagship
programme. Quantum Sci. Technol. 2, 030501 (2017)

8. Bayer, M., et al.: Quantum Technology Foundations and Applications. https://www.quante
ntechnologien.de/fileadmin/public/Redaktion/Dokumente/PDF/Publikationen/Qutega-QT-
Grundlagen-und-Anwendungen-01-2017-C1.pdf. Accessed 22 June 2020

9. Piattini, M., et al.: The talavera manifesto. In: 1st International Workshop on the QuANtum
SoftWare Engineering and pRogramming, Talavera de la Reina, Spain (2020)

10. W Contributors: Quantum programming. Wikipedia. The Free Encyclopedia. https://en.wik
ipedia.org/wiki/Quantum_programming. Accessed 22 June 2020

11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press (2000)

12. Silva, V.: Practical Quantum Computing for Developers: Programming Quantum Rigs in the
Cloud Using Python, Quantum Assembly Language and IBM QExperience. Apress (2018)

13. Biswas, R., et al.: A NASA perspective on quantum computing: opportunities and challenges.
Parallel Comput. 64, 81–98 (2017)

14. Piattini, M., Petterssen, G., Pérez-Castillo, R., Hevia, J.L., Murina, E.: A certification schema
for quantum software engineers (2020). Submitted to International Journal of Engineering
Education

15. European Committee for Standardization (CEN): European-e-Competence-Framework-
3.0 A common European Framework for ICT Professionals in all industry sec-
tors. CEN. http://ecompetences.eu/wp-content/uploads/2014/02/European-e-Competence-
Framework-3.0_CEN_CWA_16234-1_2014.pdf. Accessed 22 June 2020

https://www.nytimes.com/2020/02/10/technology/white-house-earmarks-new-money-for-ai-and-quantum-computing.html
https://www.quantentechnologien.de/fileadmin/public/Redaktion/Dokumente/PDF/Publikationen/Qutega-QT-Grundlagen-und-Anwendungen-01-2017-C1.pdf
https://en.wikipedia.org/wiki/Quantum_programming
http://ecompetences.eu/wp-content/uploads/2014/02/European-e-Competence-Framework-3.0_CEN_CWA_16234-1_2014.pdf

Adapting COBIT for Quantum Computing
Governance

Miguel Ángel Blanco(B) and Mario Piattini

Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad,
4, 13071 Ciudad Real, Spain

miguelangel.blanco@gmail.com, Mario.Piattini@uclm.es

Abstract. Quantumcomputing is a newparadigm that uses the properties of quan-
tum mechanics to achieve computers and technologies more powerful. Quantum
Technology will solve some types of problems more efficiently than current tech-
nology. Every organization that wants to use all the power of quantum computing
to be more competitive in its sector, must have a method that allows it to take
advantage of all the value that this technology can provide. This article proposes
the development of a framework for theManagement andGovernance ofQuantum
Computing based on COBIT.

Keywords: Governance ·Management · Quantum computing

1 Introduction

Quantum computing is an emerging computing paradigm bases in some quantum phe-
nomena [1], bywhichwill be solved some types of problemsmore efficiently that current
technology solves [2] and [3].

The particularity of the quantum computing and quantum technology is the use of
the principles of quantum mechanics. These principles are used for development a new
information theory based in the qubit concept that have the following characteristics [4]:

• Quantum parallelism: it is the capacity of the qubit to be in a superposition of states,
being able to contain state information 0 and 1 at the same time.

• Quantum entanglement: it is the property by which two qubits are separated at any
distance and the state of one of them is modified, the other is modified at the same
time. In this situation the two qubits would form a quantum system.

• Non-cloning theorem: it is impossible to duplicate an unknown quantum state.

The main applications of the quantum technology are [5]:

• Sensors. Quantum sensors are very accurate because use the entanglement property
for exceeding the quantum limit. Their applications are very varied such as metrology,
scanner or navigation.

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 274–283, 2020.
https://doi.org/10.1007/978-3-030-58793-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_22

Adapting COBIT for Quantum Computing Governance 275

• Security and communications. Quantum computing are capable to break efficiently
the discrete logarithm using to create the security keys and the cryptosystems that
uses them. For this reason, is necessary create a new discipline, the quantum cryp-
tography with will help improve the transmission of information securely. One of the
most important application of this technology will be the transmission of information
through quantum channels.

• Quantum simulation.This technologywill allow simulating the behavior of complex
systems that is currently not possible with current computing. This field will enable
develop new materials, drugs or predict the behavior of nature.

These applications will be developed thanks of the construction of quantum
computers that will allow solve problems that are impossible solve with the actual
technology.

Currently, it is very noteworthy to develop new classical algorithms using concepts
or principles of quantum computing to improve applications of emerging technologies
such as Blockchain, Artificial Intelligence, the Internet of Things and 5G. In the future it
will be interesting, as indicated in [5] and [6], to consider and analyze how it may affect
new applications and quantum computing in these emerging technologies:

• Blockchain. The application of this technology is carried out for the registration
of transactions, immutable, decentralized, and consensual. Quantum technology will
affect theBlockchain in these 4 situations: authentication, blockmining, the reversibil-
ity of hash functions and the use of the internet and its protocols for communication
between nodes.

• Artificial intelligence. There are a large number of studies where computation and
quantum technology can have different applications in the use of artificial intelligence,
such as solving problems that are very difficult to solve with current machine learning
techniques, finding patterns and correlations in unstructured data sets that allow them
to be classified or the analysis of data sets that may have intrinsic quantum type
correlations.

• Internet of things. Internet of things consists of a network of electronic devices
connected through the internet to solve many problems. Quantum technologies will
impact this technology in the transmissions between the devices, requiring the creation
of quantum telecommunications channels for the secure connection between them.

• 5G.Will be necessary to develop the 5th generation ofmobile communications, where
greater speed and lower latency are achieved in the transmission of information.Many
of the manufacturers of these networks are focusing their efforts and investments on
making them resistant to quantum computing. Under this concept, the disciplines of
cryptography and quantum security will be indispensable.

Quantum Technologies will be interesting analyze the impact of their results in
multiple industrial sectors [7] and [8]:

• Finance. Some of the challenges in the finance sector to quantum technology are
optimization of the asset price portfolio, risk analysis and fraud detection.

276 M. Á. Blanco and M. Piattini

• Insurance. The potential applications in the insurance sector are the evaluation of
financial instruments, options and guarantees in insurance products and measurement
of operational risk.

• Energy. The two main challenges in the energy sector facing quantum technologies
are optimizing current networks and predicting the appropriate use of energy.

• Transport. Traffic optimization is the most tangible application in this sector.
• Logistics. Optimization of operations related to optimizing the supply chain.
• Automobile and aerospace. The management and optimization of large fleets of cars
or autonomous planes are the main challenges in this sector.

• Chemist and pharmacist. The simulation of molecules for the discovery of new
compounds is the main application of Quantum Computing in these sectors.

• Materials. The simulation with quantum computing will be able to discover new
materials to improve batteries, microcircuits or network architectures.

The companies whose business is one of the list will have to invest in quantum a
new framework that help implement these technology and quantum computing in these
companies [7]. Depending on the type of industrial sector, it is necessary to implement
one type of quantum technology or another, the Table 1 shows this relationship.

Table 1. Relationship between sector and quantum technology

Sector Computing Communication Simulation Security Sensors

Finance X X

Insurance X X

Energy X X X X X

Transport X X

Automobile X X X X X

Aerospace X X X X X

Logistics X X

Chemist X X

Pharmacist X X

Materials X X

Depending on the technology implemented by each company depending on the
sector to which is belongs, it should focus on different government guidelines. The
Table 2 shows the relationship between main governance guidelines and the quantum
technologies.

Theobjective of this paper is proposed the changes to bemade toCOBIT2019 tobuild
a Governance and Management Framework for Quantum Computing and Technology.

The rest of the paper is organized as follows: Sect. 2 explains the most important
elements of COBIT 2019 for the purpose of this study; Sect. 3 proposes the changes to
be made on COBIT 2019 objectives to build the framework for Quantum Computing
Governance; Sect. 4 presents the conclusions and the future work of this research.

Adapting COBIT for Quantum Computing Governance 277

Table 2. Relationship between quantum governance guidelines and quantum technology

Governance guideline Computing Communication and security Simulation Sensors

Development Management X X

Testing Management X X

Deliver Management X

Services Management X X X

Support Management X X X X

Security Management X X X X

Risks Management X X X

2 COBIT 2019

COBIT 2019 [9] is a framework developed by ISACA (Information Systems Audit and
Control Association), which has its origins in the control and audit of the IT area.

Nowadays COBIT 2019 is a framework focused on the Enterprise Governance of
Information and Technology, aimed at the whole enterprise.

EnterpriseGovernance of Information andTechnology is an integral part of corporate
governance. It is exercised by the board that oversees the definition and implementation
of processes, structures and relational mechanisms in the organization that enable both
business and IT people to execute their responsibilities in support of business/IT align-
ment and the creation of business value from I&T–enabled business investments (see
Fig. 1).

Fig. 1. The context of enterprise governance of information and technology

COBIT Framework cover two different disciplines, Governance and Management,
that have the following characteristics:

• Governance ensures that

– Stakeholder needs, conditions and options are evaluated to determine balanced,
agreed-on enterprise objectives.

– Direction is set through prioritization and decision making.
– Performance and compliance are monitored against agreed-on direction and
objectives.

278 M. Á. Blanco and M. Piattini

• Management plans, builds, runs andmonitors activities, in alignmentwith the direction
set by governance body, to achieve the enterprise objectives and strategic.

These two disciplines groups 40 Governances Objectives that are the main compo-
nents of COBIT, this set of Government Objectives is shown in Fig. 2.

Fig. 2. COBIT core model

The main characteristics that has COBIT are the next:

• The Governance Framework is built based on 3 principles; is based on a concep-
tual model, should be open and flexible and should be aligned to relevant standards,
framework and regulations.

• The Governance System build based on Governance Framework should based on six
principles; provide Stakeholder value, is built from a number that work in a holistic
way, should be dynamic in fact of the change in design factors that impact on Enter-
prise Governance of Information and Technology must be considered, distinguish
between governance and management activities and structures, should be tailored
to the enterprise’s needs and should cover the enterprise end to end not only in IT
function.

• COBIT Core Model groups a set of government objectives and these in turn are
made up of a set of elements. These components are processes, organizational struc-
tures, policies and procedures, information flows, culture and behaviors, skills and
infrastructure.

Adapting COBIT for Quantum Computing Governance 279

• Define design factors that should be use by the enterprise to build a best-fit governance
system.

• The components are grouped by governance and management objectives that can be
managed to the required capabilities levels.

Based on this COBIT structure, the next section will show a proposal for changes
to be made to the COBIT Objectives for the development of a Framework for Quantum
Technology Governance.

3 Toward a Framework for the Government of Quantum
Technology

For developing the Framework for Quantum Technology Governance, we will begin by
identifying the main components of COBIT to adapt, remove or add. These components
are the Business Objectives that COBIT groups in 4 domains that are classified between
the Government and Management disciplines:

• Governance domains

– Evaluate, Direct and Monitor: Evaluates strategic options, directs senior man-
agement on the chosen strategic options and monitors the achievement of the
strategy

• Management domains

– Align, Plan and Organize: Addresses the overall organization, strategy and
supporting activities for I&T.

– Build, Acquire and Implement: Treats the definition, acquisition and implementa-
tion of I&T solutions and their integration in business processes.

– Deliver, Service and Support: Addresses the operational delivery and support of
I&T services, including security.

– Monitor, Evaluate and Assess: Addresses performance monitoring and confor-
mance of I&T with internal performance targets, internal control objectives and
external requirements.

In the following sections, each oneBusinessObjective is analyzed, and it is suggested
what action must be carried out for each of them in for developing the Framework for
Quantum Technology Governance. The different actions proposed are:

• Maintain: the objectives will be the same as in COBIT.
• Adapt: they will have to adapt to the needs for quantum computing management for
the new Framework for Quantum Technology Governance.

• Remove: in this case the objectives do not have sense for the needs for quantum
computing management and will be delete

• Include: in this case is necessary to include new Objectives in this domain to give
consistency to the new context.

280 M. Á. Blanco and M. Piattini

3.1 Adapting Objectives of Domain Evaluate, Direct and Monitor

The Domain Evaluate, Direct and Monitor (EDM) groups the following 5 objectives.
The Table 3 shows the actions to be carried out on each of the objectives of domain

Evaluate, Direct andMonitor to develop the Framework for the Government of Quantum
Technology and the features that are different between quantum computing and classical
computing and affects to the business objective.

Table 3. Actions to be carried out in the Objectives of Domain EDM

Business objective Action Features

EDM01. Ensured Governance
Framework Setting and Maintenance

Adapt - External environment

EDM02. Ensured Benefits Delivery Adapt - Delivery benefit

EDM03. Ensured Risk Optimization Adapt - Risks

EDM04. Ensured Resource Optimization Adapt - Resources characteristics

EDM05. Ensured Stakeholder
Engagement

Adapt - Stakeholders needs

EDM06. Ensured the alignment between
Governance Framework of Quantum
Computing and Governance Framework
of Classical Computing.

Include - Coexistence between the classical and
quantum paradigm in companies

3.2 Adapting Objectives of Domain Align, Plan and Organize

The Domain Align, Plan and Organize (APO) groups 14 Objectives:
The Table 4 shows the actions to be carried out on each of the objectives of domain

Align, Plan and Organize to develop to develop the Framework for the Government of
Quantum Technology and the features that are different between quantum computing
and classical computing and affects to the business objective.

3.3 Domain Build, Acquire and Implement

The Domain Build, Acquire and Implement (BAI) groups 11 Objectives:
The Table 5 shows the actions to be carried out on each of these objectives

3.4 Domain Deliver, Service and Support

The Domain Deliver, Service and Support (DSS) groups 6 Objectives:
The Table 6 shows the actions to be carried out on each of the objectives of domain

Deliver, Service and Support to develop the Framework for the Government of Quantum
Technology and the features that are different between quantum computing and classical
computing and affects to the business objective.

Adapting COBIT for Quantum Computing Governance 281

Table 4. Actions to be carried out in the s Objectives of Domain APO

Objective Action Features

APO01. Managed I&T Management
Framework

Adapt - Features of the computing paradigm.

APO02. Managed Strategy Adapt - External environment

APO03. Managed Enterprise
Architecture

Adapt - Business architecture

APO04. Managed Innovation Maintain

APO05. Managed Portfolio Adapt - Features of the computing paradigm.

APO06. Managed Budget and Costs Maintain

APO07. Managed Human Resources
Focus Area

Adapt - Knowledge and skills

APO08. Managed Relationships Maintain

APO09. Managed Service
Agreements

Adapt - Relationship with suppliers

APO10. Managed Vendors Adapt - Relationship with vendors

APO11. Managed Quality Adapt - Quality features

APO12. Managed Risk Adapt - Risks

APO13. Managed Security Adapt - Security features

APO14. Managed Data Maintain

APO15. Managed integration with
Classical Computing

Include - Coexistence between the classical and
quantum paradigm in companies

3.5 Domain Monitor, Evaluate and Assess

The Domain Monitor, Evaluate and Assess (MEA) groups 4 Objectives.
The Table 7 shows the actions to be carried out on each of the objectives of domain

Deliver, Service and Support to develop to develop the Framework for the Government
of Quantum Technology and the features that are different between quantum computing
and classical computing and affects to the business objective.

282 M. Á. Blanco and M. Piattini

Table 5. Actions to be carried out in the Objectives of Domain BAI

Objective Action Features

BAI01. Managed Programs Adapt - Programs requirements

BAI02. Managed Requirements
Definition

Adapt - Stakeholders needs
- Requirements definition

BAI03. Managed Solutions
Identification and Build

Adapt - Solution architecture
- Development methodologies

BAI04. Managed Availability and
Capacity

Adapt - Capacity and availability features

BAI05. Managed Organizational
Change

Maintain

BAI06. Managed IT Changes Adapt - Changes requirements

BAI07. Managed IT Change
Acceptance and Transitioning

Adapt - Acceptance requirements
- Transition requirements

BAI08. Managed Knowledge Maintain

BAI09. Managed Assets Adapt - Business requirements

BAI10. Managed Configuration Adapt - Assets Requirements

BAI11. Managed Projects Adapt - Projects requirements

BAI12. Coordinate the management of
classical and quantum computing
projects

Include - Coexistence between the classical and
quantum paradigm in companies.

Table 6. Actions to be carried out in the Business Objectives of Domain DSS

Objective Action Features

DSS01. Managed Operations Adapt - Operational requirements

DSS02. Managed Service Requests and
Incidents

Adapt - Services requirements

DSS03. Managed Problems Maintain

DSS04. Managed Continuity Adapt - Continuity requirements

DSS05. Managed Security Services Adapt - Security requirements

DSS06. Managed Business Process
Controls

Adapt - Security requirements

DSS07. Coordinate the management of
deliver, service and control between the
classical and quantum computing

Include - Coexistence between the classical and
quantum paradigm in companies

Adapting COBIT for Quantum Computing Governance 283

Table 7. Actions to be carried out in the Business Objectives of Domain MEA

Objective Action Features

MEA01. Managed Performance and
Conformance Monitoring

Adapt - Conformance requirements

MEA02. Managed System of Internal
Control Focus

Adapt - Security requirements

MEA03. Managed Compliance with
External Requirements

Adapt - External and compliance requirements

MEA04. Managed Assurance Maintain

4 Conclusions and Future Work

Quantum computing and technology is emerging as a computing paradigm, it will solve
amount of problems more efficiently than nowadays is solved with the currently tech-
nology. Computing and quantum technology impact multiple industrial sectors and
companies that invest in this technology have a great competitive advantage.

It is necessary to develop a quantum technology governance andmanagement frame-
work that helps organizations implement this technology and can take advantage of it.
This article proposes the construction of this governance andmanagement framework for
technology and quantum computing, proposingmodifications to COBIT as a governance
and management framework for IT.

This is the first step in the development of this line of research that gives rise to
the analysis, development and implementation of the changes to be made to COBIT in
order to create a Governance and Management Framework for quantum computing and
technology.

References

1. Mykhailova, M., Svore, K.M.: Teaching quantum computing through a practical software-
driven approach. In: 51st ACM Technical Symposium on Computer Science Education
(SIGCSE 2020), pp. 1019–1025. ACM, Portland (2020)

2. Humble, T.S., DeBenedictis, E.P.: Quantum realism. IEEE Comput. 52(6), 13–17 (2019)
3. MIT Technology Review. https://www.technologyreview.com/s/610250/serious-quantum-

computers-are-finally-here-what-are-we-going-to-do-with-them/. Accessed 14 June 2020
4. Maslov, D., Nam, Y., Kim, J.: An outlook for quantum computing. Proc. IEEE 107(1), 5–10

(2019)
5. Allende Lopez, M.: Quantum technologies. Digital transformation, social impact and cross-

sector disruption. Interamerican Development Bank (2019)
6. Smarter With Gartner. https://www.gartner.com/smarterwithgartner/the-cios-guide-to-qua

ntum-computing/. Accessed 14 June 2020
7. Efe, A.: Anticipating the Disruptive and Incremental Innovations Brought by Quantum

Computing. ISACA J. 1, 26–32 (2020)
8. Boston Consulting Group: https://www.bcg.com/publications/2019/quantum-computers-cre

ate-value-when.aspx. Accessed 14 June 2020
9. ISACA®: COBIT 2019 Framework. ISACA (2019). https://www.isaca.org/resources/cobit

https://www.technologyreview.com/s/610250/serious-quantum-computers-are-finally-here-what-are-we-going-to-do-with-them/
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-quantum-computing/
https://www.bcg.com/publications/2019/quantum-computers-create-value-when.aspx
https://www.isaca.org/resources/cobit

Quantum Agile Development Framework

Guillermo José Hernández González(B) and Claudio Andrés Paradela

Aquantum, 28030 Madrid, Spain
Guillermo.hernandez@m2iformacion.com

Abstract. The interest in quantum computing has grown exponentially in recent
years, with large technology companies engaging in the creation of computers
and quantum technologies. The number of qubits skyrockets and makes the future
practical implementation of mathematical algorithms and the creation of commer-
cial systems increasingly viable. However, the growth of hardware is not being
accompanied by programming and engineeringmethodologies adapted to this new
paradigm, with new needs and risks. Associated with this, we are also in a world
in which current development projects are carried out in multiple paradigms asso-
ciated with different needs. In this paper, our findings and proposals are defined
to anticipate the future needs of quantum software project management, taking
into account the new roles, requirements and deficiencies of this new technology.
Specifically, we focus on defining a classical-agile hybrid project management
framework that can be adapted to the needs of these new programming paradigms,
taking into account not only quantum programming, but projects that integrate
classical-quantum hybrid developments.

Keywords: Project management · Agile · Quantum computing

1 Historical Context of Project Management and Development
Frameworks

It could be said that in 1911 with the publication of “The principle of Scientific Man-
agement” by Frederic Taylor [1], the idea of the need for project management in various
scientific areas was planted. This evolution only continues with the creation of the Gantt
chart in 1917 [2].

Most of these foundations and many others, created by other people and organiza-
tions, such as the PMI project management institute, created in 1969. They lead to the
creation of a series of development frameworks, which as a whole, we currently call
cascade or traditional development frameworks. The original version for this type of
framework was proposed and is consolidated byWinstonW. Royce in 1970 [3] and later
revised by Barry Boehm in 1980 [4] and Ian Sommerville in 1985 [5].

In 1986 Scrum was first named as a project management style, transforming it into
the framework of reference for the other main strand of development frameworks: Agile
development.

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 284–291, 2020.
https://doi.org/10.1007/978-3-030-58793-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_23

Quantum Agile Development Framework 285

2 Current Situation

Currently there are three main types of management of development projects:

• Cascade or classics: Frameworks ormethodologies based on the philosophy of cascade
development and fixed phases.

• Agile: Frameworks or methodologies based on the principles of the agile manifesto.
• Hybrids: Composed of mixed waterfall and classic methods. They typically use an
early phase of requirements taking and classic design with agile-based development
cycles.

3 Current Situation Current Evolution

Classic projects arise as a basis for the need for projectmanagement in different scientific
areas and have provided a series of accumulated good practices that allow applying a
series of tools and facilitating decision-making in specific situations.

Agile approaches appear as a response to uncertainty and incremental complexity
that was occurring in expanded software projects due to the series of problems associated
with said complexity, such as:

– Lack of knowledge and little experience in certain technical sectors.
– High level of risk.
– Reduced time to market.
– Business integration needs.
– Quick response to changes.

Since 1980 theories of the use of quantum computers begin to emerge; in 2012 IBM
announces the creation of the first quantum chip; In 2011, the first sale of a quantum
computer was made, the 128-qubit D-Wave One; in 2013 D-Wave systems launches the
first quantum computer faster than a traditional computer and in 2019 IBMannounces the
first commercial quantum computer. Parallel to the creation of these quantum hardware
systems, development tools begin to appear created by the manufacturers of these com-
puters such as Qiskit from IBM in mid-2017 or other development tools not associated
with any of the hardware manufacturers initially, such as Q# de Microsoft in December
2017.

We will call quantum software the software developed to use quantum computers or
simulators of them. This software is currently developed and used largely for research
or scientific use, but gradually some companies use it alongside adiabatic quantum
machines or other more commercial implementations. According to multiple studies [6,
7], some of the fields in which quantum computing-based software could have immi-
nent use are: transportation, logistics, telecommunications, aeronautics, health, wellness
sciences, government, financial services, chemistry or logistics.

There is, therefore, a need to be able to adapt or create new frameworks or devel-
opment methods that can be used for the development of quantum software. Today, it
is difficult to find information on the management of these projects, since most are for
research and are managed as such, so wemust draw on our development experience with
quantum software within Alhambra IT to talk about such projects.

286 G. J. Hernández González and C. A. Paradela

4 Status of Quantum Software Development Projects

Quantum software development projectsmove in highly complex and experimental envi-
ronments, due to the constant evolution of the underlying physical technology; although
in a positive way, the existing development tools are being stable and having a positive
evolution.

Despite the complexities mentioned, it is also true that specialized literature begins
to appear in specialized literature in Quantum Software Engineering (QSE), of which
Talavera Manifesto [8] is a good example and, in particular, the relationship of principle
that promotes to contribute to the quality of quantum software. Based on this, we should
try to standardize or lay the foundations of methods for managing the development of
quantum software.

Quantum software development projects currently have numerous features that fit
neatly into the agile paradigm, such as adding features evolutionarily or using trial-
and-error algorithms. In any case, quantum software projects currently meet the highest
requirement of agile management need: most of the time it is difficult to define an
immutable end state.

A fundamental characteristic of quantum software development projects is that in
many cases, due to the current situation, they will go hand in hand with classic software
development projects, initially quantum software will be integrated with traditional soft-
ware orwill coexist as part of the sameproject; This is driven by the fact that organizations
are not going to dispose of all their current software and systems, that quantum software
is not necessary for every software solution and that the use of quantum machines, at
least in the short and medium term, is highly expensive. So in most cases, in the same
project, totally different roles will coexist from the usual ones in IT projects that must
be taken into account, and with integration requirements between both worlds that can-
not be ignored. For this reason, QSE adopts the coexistence of classical and quantum
computing, and advocates the use of reengineering techniques to integrate new quantum
algorithms with existing classical information systems [8].

5 Reference Framework

Although we think the idea of taking Scrum as the starting frame of reference is correct
because of its diffusion and high percentage of use in companies.

However, we are aware that Scrum has its limitations because it is designed for
a self-sufficient team of a relatively small volume of people with all the necessary and
transversal knowledge throughout the project team. This in the case of quantum software
we believe is highly difficult to perform and impractical.

In general, agile projects need some type of framework that allows scaling tomultiple
teams so that each canwork on different elements of the sameproject, sometimes creating
hybrid background frameworks, such as SAFe or Nexus, which focus on management.
from multiple teams. In the case of quantum software development projects, this type
of vertical scaling adds some complexities to those known in classic projects, due to the
multi-professional integration of the teams (engineers, mathematicians, physicists,…),
to which it will add, in the case of projects that integrate both classical and quantum

Quantum Agile Development Framework 287

software, which from now on we will call classical-quantum projects, the need to be
able to coordinate multiple teams made up of different types of professionals with very
different profiles than those professionals IT professionals are more used to, therefore
scaling teams horizontally.

Quantum project managers should manage projects based on detailed knowledge
of processes, organization, principles, policies and frameworks, information, culture,
ethics and behavior, people, skills and competencies as well as services, infrastructure
and applications associated with quantum software and provided by organizations [8].

6 Some of the Required Adaptations

In order to (re) define and adapt an agile framework it is necessary to take into account
the different types of professionals involved, in general for a quantum project we could
form teams of:

– Developers, product owner and Scrum Master.
– Non-computer specialists who are actively involved in projects (such as physicists,
mathematicians, and statisticians specializing in quantum environments).

Both groups speak in very different languages, so it is interesting to have some
additional coordination role, with a highly technical profile for these new specialists in
subjects that, in traditional settings, are not very common.

Due to the characteristics of quantum projects, it is not possible to consider starting a
construction phase without a minimum- or not so minimal- definition of objectives, and
an underlying architecture that facilitates work in this type of project. For this reason,
an initial phase of Inception (in some agile environments also called sprint 0, but which
is not part of Scrum as such) is considered a mandatory feature in any project.

The relationship with external providers, which in the case of access to quantum
computers is a necessity, is also an element that is not treated in Scrum as such and the
best way to work together with them must be investigated. This profile is also critical
given that as we have said previously, quantum hardware is the most volatile element
and its characteristics constantly evolve.

It is necessary to redefine the scaling of multidisciplinary teams in quantum software
development projects and it should be considered to be able to have a team of specialists
shared in different projects in order to condense the knowledge into a highly special-
ized layer that facilitates access to the knowledge of physicists and mathematicians by
multiple teams working on different projects.

The framework for quantum software development projects also has to take risk
management into account, which Scrum again does not explicitly take into account and
therefore an adaptive version for these projects should be proposed that falls within that
framework. Intermediate profile. In the development of quantum software to the usual
development risks, uncertainty is linked by the evolution of hardware, development
tools, error management of quantum software and software and the coordination of very
different profiles.

288 G. J. Hernández González and C. A. Paradela

These adaptations are a first approximation, it is evolving and improving with the
creation of practical knowledge associated with the realization to a greater extent and
scale of quantum software development projects.

7 Agile

Initially, it is proposed to use an agile framework that takes Scrum as a reference for its
extension and general knowledge, but with the necessary adaptations. At this point we
begin to define a framework that has little to do with Scrum, so being purists is more like
ScrumBut (Scrum.org, 2020), that is, the partial adoption of Scrum and modifying the
benefits it brings. But we are talking about an entirely new paradigm and the conviction
that quantum computing will redefine many concepts. Therefore, since we consider that
it is more appropriate not to speak of Scrum for the management of quantum software
development projects, we think that it would be more appropriate to speak of an agile
approach, in a generic way, focused on:

• Decision making based on experience, that is, the empiricism with which Scrum
advocates.

• Close cooperation between all parties involved.
• Stakeholders’ commitment to collaboration and support for the project.
• Accepting change, as the only way to be aligned with the changing needs of
stakeholders.

• Continuous improvement of processes and tools.
• Knowledge sharing between business, development team and other scientific profiles.

8 Classic-Quantum Projects

Due to the characteristics of quantum projects in which it will be necessary to use a
quantum computer and specific tools typical of this environment, and on the other hand,
the same equivalent elements but from the point of view of classical computing, that is,
traditional computers, the current, and their corresponding tools such as programming
languages that were not specifically designed for quantum use such as C# or Java. In
these classic-quantum projects, where in addition to the technical complexity we find
different approaches to their definition and management, we can also talk about the
possible life cycles and how a life cycle based on hybrid management (combination of
agile and waterfall) would be especially interesting to facilitate not only its development,
but also its evolution.

9 Hybrid Lifecycles

In software projects and in general, different life cycles can be applied depending on the
type and needs of the project we are undertaking (PMI (Project Management Institute,
Inc.), 2017):

Quantum Agile Development Framework 289

• Predictive or Traditional, it is the classic project in which the scope, time and cost of
the project is planned and fixed during the initial phases of the project.

• Iterative, when we set the scope initially, but we vary the estimates of time in cost as
we progress in the project.

• Incremental, when the deliverable is generated through a series of iterations, whose
functionality is considered complete in the last iteration.

• Adaptive or Agile, when the scope is defined during the start of the iteration (sprint
in the case of Scrum).

• Hybrid, when predictive and adaptive life cycles coexist simultaneously.

The use of all these life cycles during the execution of certain projects, and in
particular quantum ones, can generate additional complexity, the decision to use hybrid
life cycleswhere amore agile or traditionalmethodology is used in each phase/predictive
depends on the needs or restrictions of each phase or technology.

For quantum development projects you propose a hybrid approach, in which we can
use more robust requirements and design phases that require quantum software integra-
tion, but including agile cycle-based development, giving us flexibility for uncertainty
and change.

We must keep in mind that in many cases you can even work with two independent
teams, one focused on the traditional project part and another specialized team in quan-
tum computing that will be in charge of giving that differential value to the proposed
quantum solution. These teams should be managed and coordinated thanks to the new
proposed coordination role, sharing the same product backlog and holding meetings
similar to the Scrum of Scrums, as proposed by Scrum.

For all this, a hybrid solution, as we explain, can provide the solution to the com-
plexity in which we embark for these projects, always placing special emphasis on the
following points, which take the best of each approach:

• Coordination of various work teams, these being quantum or classic teams.
• Follow-up meetings to review progress by teams and between teams.
• Planning based on phases and milestones.
• Backlog based on phases instead of having a complete product backlog.

10 Inception Phases

In general, projects that apply Scrum as a framework do not define specific phases,
limiting themselves to a generic construction phase, with no division between analysis
or testing phases (Sutherland & Schwaber, 2017). Even this approach generates certain
drawbacks in classic projects where the initial knowledge of the problem to be solved is
limited by the development team, therefore in classical-quantum projects, where there is
greater uncertainty due to the lack of maturity of the technology, considers it interesting
to define at least an initial phase.

We believe that an initial inception phase integrated at the beginning of the classic
phase of the traditional part design, will allow to share among all the participants in the
project both the architecture, the team, an initial identification of the risks, the testing
strategies, the vision of the project and the required technological needs.

290 G. J. Hernández González and C. A. Paradela

This phase will be followed by a more classical design phase of the part that is
ultimately assigned to quantum teams to minimize uncertainty. But this phase of agile
inception will be critical to create a common product idea, lay the foundations for
collaboration of the different quantum and classical teams, and in general lay a series of
foundations for classical-quantum integration.

It will be during the construction phasewhere the development of the projectwill take
place, including tests and deployments in both environments (classical and quantum).
The evolution of quantum technology and therefore of your projects will determine
whether the formal definition of a specific phase of deployment or transition (as it is
called Disciplined Agile) will be necessary.

11 Risk Management

As the good practices for risk identification propose, the identification of risks and their
categorization should be started as soon as possible, so that a series of measures that
minimize the risk can be applied (DeMarco & Lister, 2003). This early identification
should start in the Inception phase or better still during pre-project phases, such as in
the creation of the Business Case, which justifies the start of the project.

The categories proposed for this type of project, based on the possible areas of
greatest conflict or complexity are the following:

• Quantum hardware.
• Quantum software.
• Quantum algorithms.
• Stakeholders.

12 Roles

In these projects there will be various roles that will be specific to different types of
projects depending on the sector towhich the benefits of quantum computing are applied,
such as:

• Simulation.
• Development of new materials.
• Development of new medicines.
• Cryptography.
• Machine Learning.

The specialists by sector will be the professionals who are directly associated
with all these practical applications where knowledge and expertise of the business
is fundamental and very specific to each industrial sector.

The procurement manager will be a purchasing expert, with the appropriate experi-
ence to understand the capabilities and limitations of the different providers of quantum
computers and to enable them to reach the appropriate agreements for each type of project
and sector, depending on the needs of each project and the algorithm to be applied, either

Quantum Agile Development Framework 291

by number of qubits, the error level of the response or by the type of computer required
(AQC-Adiabatic Quantum Computation- or QA-quantum annealing-).

Mathematicians and physicists as specialists, applying their skills as such, are the
great unknown in typical software projects, but in the case of projects that include quan-
tum software development, they will provide the mathematical knowledge necessary for
the definition of quantum algorithms when they are not available for solving specific
problems associated with each project.

13 Final Conclusion

Due to the characteristics of quantum projects in which it will be necessary to use a
quantum computer and specific tools typical of this environment, and on the other hand,
the same equivalent elements but from the point of view of classical computing, that is,
traditional computers, the current, and their corresponding tools such as programming
languages that were not specifically designed for quantum use such as C# or Java. In
these classic-quantum projects, where in addition to the technical complexity we find
different approaches to their definition and management, we can also talk about the
possible life cycles and how a life cycle based on hybrid management (combination of
agile and waterfall) would be especially interesting to facilitate not only its development,
but also its evolution.

References

1. Taylor, F.W.: The Principles of Scientific Management. Dover Publications, New York (2012)
2. Gantt, H.L.: Work, Wages and Profit. The Engineering Magazine, New York
3. Royce, W.W.: Managing the development of large software systems. In: Proceedings of IEEE

WESCON, vol. 26, pp. 1–9
4. Boehm, B.: A spiral model of software development and enhancement. ACMSIGSOFT Softw.

Eng. Notes 11(4), 14–24 (1986)
5. Sommerville, I.: Software Engineering. Addison Wesley, Boston (1985)
6. Accenture Labs: Innovating with Quantum Computing (2017)
7. Homeland Security Research Corp.: Quantum Computing Market & Technologies - 2018–

2024, HSRC, January 2018
8. Piattini, M., et al.: The talavera manifesto for quantum software engineering and program-

ming. In: Piattini, M., et al. (Ed.) QANSWER 2020. QuANtum SoftWare Engineering &
pRogramming, pp. 1–5. CEUR-WS, Talavera de la Reina (2020)

On the Source Code Structure
of Quantum Code: Insights

from Q# and QDK

Miguel-Angel Sicilia(B), Salvador Sánchez-Alonso, Marçal Mora-Cantallops,
and Elena Garćıa-Barriocanal

Computer Science Department, University of Alcalá, Polytechnic Building,
Ctra. Barcelona km. 33.6, 28871 Alcalá de Henares (Madrid), Spain
{msicilia,salvador.sanchez,marcal.mora,elena.garciab}@uah.es

Abstract. A considerable number of high-level quantum programming
languages have been proposed and implemented in the last years. This
fact opens the possibility to study the structure of the source code of
quantum software, using initially the same metrics typically used in clas-
sical software. Here we report a preliminary study in module structure
and use of quantum gates in the libraries of Microsoft’s quantum devel-
opment platform QDK (Quantum Developer Kit) that uses a specific
language, Q#. The structure of dependencies and the use of primitives
is analyzed across all the source code available in the Github repositories
related to the platform to date.

Keywords: Quantum programming languages · Software metrics ·
Dependency structures

1 Introduction

High-level programming languages for quantum computers have been proposed
and discussed since decades, even before there were actual quantum computers to
run the programs. Recently, a number of software platforms have emerged that
can be used with emulators; they include tools and libraries with both basic
and fundamental algorithms implemented, along with some specific libraries for
applications in chemistry, finance and other domains. Several general-purpose
gate-level quantum computing software platforms have appeared in the last years
[1]. Notable examples include Forest from Rigetti, Qiskit from IBM, ProjectQ
from ETH Zurich and the Quantum Development Kit (QDK) from Microsoft.

Understanding the software engineering aspects that are specific to high-
level quantum programming languages will be a key driver in an eventual future
context in which quantum computers gain widespread use. While it is still early
to reach conclusions due to the limited use of those languages, platforms as
those mentioned above present an opportunity for research, given that their open
source nature makes them candidates for the empirical study of coding practices.
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 292–299, 2020.
https://doi.org/10.1007/978-3-030-58793-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_24

On the Source Code Structure of Quantum Code: Insights from Q# and QDK 293

Here we focus on Microsoft’s QDK to understand the structure of the libraries
and code examples provided from the perspective of module dependencies and
the use of specific quantum primitives (gates). As a preliminary study, we analyze
code using the same constructs often used in classical software metrics, deferring
the proposal of quantum-specific metrics to future work.

The rest of this paper is structured as follows. Section 2 provides background
on the elements analyzed. Then, the results regarding dependency and sub-
routine structure are provided in Sect. 3. Finally, conclusions and outlook are
provided in Sect. 4.

2 Background

Q# is a programming language initially released to the public by Microsoft as
part of the QDK in 2017. The QDK includes a quantum computer simulator and
the hardware stack that will eventually come together with Q# is expected to
implement topological qubits. Q# programs consist of one or more operations
that describe side effects quantum operations can have on quantum data and
several functions with classical code. We depart from the assumption that there
might be specific elements in quantum programming that deserve attention from
an empirical software engineering standpoint, both at the level of source code
and at the level of modular structure. In that regard, we will briefly consider
previous work useful as a point of departure.

Source Code Metrics
Source code metrics for classical software based on lines of code (LOC) countings,
object-oriented (OO) code structure or complexity metrics have been used in a
number of past studies, but the specifics of the separation of concerns between
quantum operations and regular code have not been addressed to date, which
may be considered from outside as a kind of procedural programming, if the
internals of the quantum operations are abstracted out. In a recent systematic
review [2], cyclomatic complexity and traditional LOC are the most used in
studies together with a number of other countings involving operators, operands
or statements, to name a few. The review identified few new metrics proposed in
recent years, and most of them related to the OO or aspect-oriented paradigms.
Here we approached metrics by concentrating on the main quantum primitives,
as they may reflect the complexity of Q# programs better than measures based
on traditional control structures. The consideration of the aggregation of quality
metrics is also important [3] in quantum programs, as it can be hypothesized
that the differences in quantum programming and classical programming does
not make existing reported empirical studies comparable to new studies focused
on quantum code. Recent studies show thresholds for source code metrics and
their significance as predictors of defects [4] but they can hardly be taken as
baselines for quantum code as the scope, maturity and creators of the latter are
likely to be completely different.

294 M.-A. Sicilia et al.

Class Dependency Graphs
Class dependency graphs are networks built from the relationships among the
classes of software systems, where each node represents a unique class and links
between them reflect their dependencies. Class dependency networks are con-
structed from the header information of the classes; as this information is often
determined by a group of developers before actual software development takes
place, it could be argued that is less influenced by the subjective effect of each
particular developer. Previous work has shown how such graphs can be useful to,
for instance, study the Java libraries [5]. Other authors have also used complex
network analysis on dependency networks to capture structural characteristics
and to enable a maintainability and reliability analysis [6] or to analyze the evo-
lution of software systems [7], acknowledging how these techniques provide “a
different dimension to our understanding of software evolution”, becoming useful
for the design and development of software systems while easing the process of
identifying software components that violated common software design princi-
ples. This is also the principle behind Zimmermann and Nagappan’s work [8],
who evaluated Windows Server 2003 and found that, when using network met-
rics, their models improved by ten points and identified twice as many critical
binaries. The complex network analysis approach, thus, provides additional tools
and metrics to assess and potentially improve software quality, as “traditional
software reliability evaluation approaches lack the analysis of inter-component
interactions of component-based software systems” [9].

3 Results and Discussion

3.1 Primitive Usage

We have extracted all the source code appearances of primitives in the namespace
Microsoft.Quantum.Intrinsic1. We acknowledge that this decision does not
exhaust all the significant aspects of code complexity in the libraries, which
seems obvious, but it was chosen as a first attempt to understand the codebase.
For the purpose of the analysis, we have separated those primitives in a number
of categories2:

– Assertions: Assert, AsserProb.
– Gates: CCNOT, CNOT, H, I, S, SWAP, T, X, Y, Z
– Rotations: R, R1, R1Frac, RFrac, Rx, Ry, Rz
– Transformations: Exp, ExpFrac
– Initializations: Reset, ResetAll

The Random operation was kept apart, as it performs a random index selection
in an array based on array values, which is difficult to group in the categories
1 https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.intrinsic.
2 It should be noted that some operations as MResetZ that include various primitives

in one sentence have not been included which may affect the results (thanks to
anonymous reviewer for pointing this).

https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.intrinsic

On the Source Code Structure of Quantum Code: Insights from Q# and QDK 295

above. Concretely, the information extracted are tuples with information on each
call according to the format (module, operation, primitive), but there is
also information about the length of the modules in lines of code in the form
(module, mLOC). Operations in Q# –as opposed to regular functions– can be
called from classical .NET applications as well as by other operations within Q#.
Each operation defined may then call any number of other operations, including
the built-in intrinsic operations defined by the language. A total of 1,657 calls to
intrinsic subroutines in 124 modules (files) was obtained. Around 60% of the calls
(across all the source code) found are gates, and 14% initialization. Rotations
amount to 3% only, measurements 4% and transforms 7%. It should be noted
that the functions and operations were structured in 47 namespaces. A total of
412 subroutines were identified as having calls, of which only 7 are functions, and
the rest operations. This appears consistent with the fact that functions in Q#
are pure, thus not allowing many types of calls that are not deterministic inside
them. Figure 1 shows the rough distribution of the size of modules considering
number of calls to primitives and module LOC. As it is apparent, most modules
have a small size and a reduced number of calls.

Fig. 1. Hexbin view of module LOC and number of calls to primitives

The distribution of calls per subroutine is highly skewed, with a maximum of
101, and a mean of 4, with 90% of the subroutines having at most eight calls. A
closer examination of that number leads to the conclusion that the most “com-
plex” subroutines (more calls to primitives) concentrate fundamentally in tests.
The 11 subroutines two standard deviations away from the mean were inspected.
Three containing modules were test bundles (SystemTest.qs, QeccTests.qs,
Tests.qs, SystemTestJWOptimizedES.qs). These are not representatives of
complexity, e.g. the longer operation ExpTest is a sequence of combina-
tions of transformation primitives with different gates, surrounded by ini-
tialization and assertions per test. An operation that deserves attention

296 M.-A. Sicilia et al.

is LogicalANDMeasAndFix in Multiplexer.qs that implements a logical
AND of multiple qubits. The algorithm (based on [10]) and is yet an
optimization. Due to its general-purpose applicability, it can be considered
a critical module. Near the two standard deviations threshold, we have
ApplyOracleFromFunctionOnCleanTarget implementing an Oracle (a “black
box” operation that is used as input to another algorithm.) for a given function.
This is another example of a fundamental building block for other algorithms.

We attempted to find frequent patterns of co-occurrence of gates in subrou-
tines using the algorithms APriori and FPMAX, with the only frequent pattern
being that of gates H and X, however, these correspond to superposition and
NOT, which are common operations, so we found no relevant interpretation for
the pattern.

The detailed definitions of the Q# language can be found in the open
source compiler, concretely, grammar is defined in the SyntaxProcessing mod-
ule (in the Microsoft.Quantum.QsCompiler namespace), written in F#. We
have developed a partial Q# language processor using the SLY Python library3.

3.2 Dependency Structure

The class dependency graph for the QDK libraries is shown in Fig. 2. When
compared to the API reference provided by Microsoft a few differences can be
noticed:

– Microsoft.Quantum.Core does not appear; this is expected, as this names-
pace is opened automatically by the Q# compiler, so all its elements are
always available.

– Microsoft.Quantum.Environment is not imported by any library in the
QDK; these functions provide information about the environment in which
the quantum computation is occurring.

– There are a few other libraries that are not found in the dependency graph
as they are deprecated. These include (all preceded by Microsoft.Quantum):
Extensions.Bitwise, Extensions.Diagnostics, Extensions.Math, Exten-
sions.Oracle, Extensions.Testing and Primitive.

– Microsoft.Quantum.Extensions.Convert, although being deprecated (and
replaced by Microsoft.Quantum.Convert) is still imported by one class.

– Microsoft.Quantum.Bitwise is not imported by any class, even though it
replaces Microsoft.Quantum.Extensions.Bitwise.

Table 1 lists, for each library, the number of libraries that directly depend on
it (DD), transitively depend on it (TD) and the reciprocity (R) as a percentage
of the number of reciprocal dependencies.

Other interesting findings on dependencies are derived from the link analysis
algorithm HITS (hubs and authorities). When applied to the directed graph
formed by the class dependencies of the QDK libraries, HITS assigns two scores
for each library: authority and hub value. According to the original formulation
3 https://github.com/dabeaz/sly.

https://github.com/dabeaz/sly

On the Source Code Structure of Quantum Code: Insights from Q# and QDK 297

Fig. 2. Dependency graph (all libraries in “Microsoft.Quantum”)

Table 1. DD: Direct Dependencies, TD: Transitive Dependencies, R: Reciprocity.

Q# library DD TD R Q# library DD TD R

AmplitudeAmplification 1 22 0 Extensions.Diagnostics 0 0 0

Arithmetic 6 22 0.143 Extensions.Math 0 0 0

Arrays 16 22 0.364 Extensions.Testing 0 0 0

Bitwise 0 0 0 Intrinsic 18 22 0

Canon 19 22 0.621 Logical 6 22 0.222

Characterization 3 4 0 MachineLearning 1 1 0

Chemistry 3 3 0 MachineLearning.Datasets 0 0 0

Chemistry.JordanWigner 2 2 0 Math 16 22 0.286

Chemistry.JordanWigner.VQE 0 0 0 Measurement 5 22 0.25

Convert 11 22 0.286 Optimization 1 22 0

Core NA NA NA Oracles 6 22 0.286

Diagnostics 7 22 0.545 Preparation 4 22 0

Environment 0 0 0 Primitive 0 0 0

ErrorCorrection 0 0 0 Research.Characterization 0 0 0

Extensions.Bitwise 0 0 0 Research.Chemistry 0 0 0

Extensions.Convert 1 1 0 Simulation 5 22 0.154

in the context of web pages, the authority of a page estimates the value of the
content of the page, while the hub value estimates the value of its links to other
pages. When applied to our graph of dependencies, the authority value represents
the relative importance of a given library in terms of the number of imports from
other libraries. Because the library Intrinsic includes the primitives to operate
the quantic processor, the calculation of the relative importance of the ODK

298 M.-A. Sicilia et al.

libraries would be biased by the presence of Intrinsic, so, we have produced a
new dependency graph where Intrinsic has been removed. Figure 3 shows the
distribution of authority values for the rest of the QDK libraries, where four
different levels can be distinguished: libraries with high authority value (over
0.3) are imported by most other libraries, average value libraries (between 0.1
and 0.21) which represent a middle class status, low authority value libraries
(below 0.1 but not null) and finally those with a value of zero, representing
libraries not imported by any other.

Fig. 3. HITS authority: the importance of each library in terms of being imported

4 Conclusions and Outlook

The empirical study of source code metrics and its eventual relation to software
defects has not been addressed to date. We have reported herein a first study
on source code analysis of the quantum code in Microsoft’s Github repositories
using the Q# language. Insights from the use of primitive operations in source
code are that unsurprisingly it is in its majority made up of gate calls and reset
operations. Most modules have a limited number of calls, and only a few show a
high density of calls relative to LOC. Subroutines with a high density of calls are
mostly tests, except a few fundamental general-purpose algorithms that deserve
attention as critical building blocks. The study of the network of dependen-
cies, from both the perspective of transitive dependency and HITS authority,
shows a core of libraries that are imported by many of the others, a far from
optimal situation which seems prone to error propagation. Future work should
include other circuit-based quantum programming languages [1] and additional
libraries eventually available. Further, dependencies and primitive usage should

On the Source Code Structure of Quantum Code: Insights from Q# and QDK 299

be complemented with the analysis of the interfaces (operation signatures) and
code structure (e.g. cyclomatic complexity or functional composition) to come
up with a better understanding of programming patterns, and also account for
the number of qbits used in operations and other potential drivers of complex-
ity. Finally, the preliminary data presented here is just an initial step towards
an understanding of patterns and pitfalls in high-level quantum programming,
and they should eventually be combined with knowledge about the internals of
quantum languages and compilers [11], and also with higher level usage across
applications or domains.

References

1. LaRose, R.: Overview and comparison of gate level quantum software platforms.
Quantum 3, 130 (2019)

2. Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Mart́ınez-Perez, F.E., Soubervielle-
Montalvo, C.: Source code metrics: a systematic mapping study. J. Syst. Softw.
128, 164–197 (2017)

3. Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., Ducasse, S.:
Software quality metrics aggregation in industry. J. Softw. Evol. Process 25(10),
1117–1135 (2013)

4. Yamashita, K., et al.: Thresholds for size and complexity metrics: a case study
from the perspective of defect density. In: 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), Vienna, Austria, 1–3 August,
pp. 191–201 (2016)

5. Šubelj, L., Bajec, M.: Community structure of complex software systems: analysis
and applications. Phys. A Stat. Mech. Appl. 390(16), 2968–2975 (2011)

6. Chong, C.Y., Lee, S.P.: Analyzing maintainability and reliability of object-oriented
software using weighted complex network. J. Syst. Softw. 110, 28–53 (2015)

7. Pan, W., Li, B., Ma, Y., Liu, J.: Multi-granularity evolution analysis of software
using complex network theory. J. Syst. Sci. Complex. 24(6), 1068–1082 (2011)

8. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on
dependency graphs. In: Schafer, W., Dwyer, M.B., Gruhn, V. (eds.) Proceedings of
the 30th International Conference on Software Engineering, Leipzig, pp. 531–540
(2018)

9. Li, K., Yu, M., Liu, L., Zhai, J., Liu, W.: A novel reliability analysis approach
for component-based software based on the complex network theory. Softw. Test.
Verif. Reliab. 28(6), e1674 (2018)

10. Gidney, C.: Halving the cost of quantum addition. Quantum 2, 74 (2018)
11. JavadiAbhari, A., et al.: ScaffCC: scalable compilation and analysis of quantum

programs. Parallel Comput. 45, 2–17 (2015)

Safety, Security and Privacy

Towards a Framework for Improving
Experiments on DoS Attacks

Marta Catillo(B), Antonio Pecchia, and Umberto Villano

Dipartimento di Ingegneria, Università degli Studi del Sannio, Benevento, Italy
{marta.catillo,antonio.pecchia,villano}@unisannio.it

Abstract. In recent years, a number of solutions have been proposed for
the detection of Denial of Service (DoS) attacks. Most of them have been
tuned and tested by means of publicly available labelled datasets, which
can be conveniently used to overcome the scarceness of real-life data
gathered under incidents and attacks from production environments.
Notwithstanding the high detection rates of existing algorithms, there
is little concern about the representativeness of public traffic data and
the impact on continuity of operation of the victim services.

This paper presents a starting step towards a framework for replaying
and assessing DoS attacks. The framework aims to improve experiments
on DoS attacks by allowing to replay previously-recorded attack network
traffic. It features a number of components, such as a victim and a load
generator, that allow to conduct experiments in a controlled and config-
urable environment. Overall, this makes it possible to assess DoS traffic
itself and contextualize the effect on the service under assessment and
potential countermeasures. The framework is tested by means of direct
DoS emulation and traffic replay.

Keywords: DoS · Traffic replay · Network capture dataset

1 Introduction

Nowadays Denial of Service (DoS) attacks pose a significant threat to the avail-
ability of network services [11]. During a DoS attack a malicious user floods the
victim server with many service requests with the aim of clogging it or even
interrupting its activity [13]. As such, the server may fail to provide services
to legitimate users. In this context, early attack detection and prevention are
crucial in order to guarantee the continuity of service to the end user.

In the last years, DoS attacks evolved into a second generation, i.e., the so-
called Slow DoS attacks [17]. These use low-bandwidth approaches that exploit
application-layer vulnerabilities. Thanks to the plethora of ready-to-use and
easy-to-find attack tools available on the net, performing both flooding and slow
DoS attacks is extremely simple and does not require any coding expertise. How-
ever, if these tools have made extremely easy the task of attackers, on the other
hand have led to the collection of datasets of network traffic under attack that
can be used for intrusion detection research.
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 303–316, 2020.
https://doi.org/10.1007/978-3-030-58793-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_25

304 M. Catillo et al.

A number of countermeasures have been taken over the years to mitigate
DoS attacks [18]. Some conventional approaches are based on the monitoring of
the connection request rate. A requesting client whose connection request rate
is higher than a pre-established threshold is marked as an attacker. Of course,
this is mostly uneffective for Slow DoS attacks. Moreover, in some cases even a
legitimate requesting user could have a short-term burst of connection requests
without leading an attack. Moreover, they are mostly uneffective for Slow DoS
attacks. In recent years, with the rapid diffusion of deep learning techniques,
many machine learning-based DoS detectors have spread in the literature [10].
All these solutions achieve encouraging results in terms of detection rate, which
in some cases can even reach values close to 100%. In most cases, the experimen-
tation and evaluation of a new detector takes place on public-domain datasets,
which are used as a sort of benchmark to assess the validity of a given pro-
posal. These data are typically made available in the form of pcap data files and
correspond to several different attacks emulated in a test environment. Popular
public-domain intrusion detection datasets are CICIDS2017 [14], UNSW-NB15
[12], ISCX 2012 [15]. Unfortunately, most of the times these datasets are used
blindly, thus overlooking the representativeness of the traffic data therein. As a
matter of fact, in the relevant literature it is possible to observe the tendency to
pay more attention to the tuning of the detection algorithm than to the data on
which these algorithms are evaluated. As this would invalidate the effectiveness
of detection under real-world traffic conditions, it is necessary to ensure that
research datasets conform to representative operating conditions.

This paper represents a starting step towards a framework for replaying and
assessing DoS attacks. We aim to improve experiments on DoS attacks by allow-
ing to replay previously-recorded attack traffic –available in packets data files–
within a controlled and configurable environment. In particular, our tool lever-
ages pcap trace files, which are typically generated by network utility programs
such as tcpdump. Our framework has been designed to meet several open chal-
lenges in current DoS research:

– Public research datasets might not conform to representative operating con-
ditions. Our replay tool could be a key component for assessing the impact of
traffic data, with a consequent construction of more rigorous intrusion detec-
tion datasets. Noteworthy, many existing intrusion detection datasets come
with pcap trace files that can be replayed within our framework;

– Many machine learning-based algorithms are currently spreading for the
detection of network intrusions and, in particular, DoS attacks. Most of
them are tested and evaluated with public domain datasets that contain DoS
attacks launched in a simulated environment. Our framework can support the
tuning of detection algorithms by reliving the attacks within controllable and
configurable victim services and load conditions;

– Finding the suitable “defense threshold” of the system under assessment is
always a complex operation. Since our replay tool allows an effective evalua-
tion of the impact of a DoS attack, it could be used to understand whether
to strengthen or loosen the defenses as appropriate.

Towards a Framework for Improving Experiments on DoS Attacks 305

Although in the literature there are some traffic replay tools for network anal-
ysis purposes, there are no frameworks that allow to carry out traffic assessments
in a structured way, with the aim of conducting comprehensive security experi-
ments. Our ultimate goal is to create a framework that collects a series of “best
practices” –traffic replay is one of them– to conduct rigorous security experi-
ments. The framework features a number of components, such as a victim server
and a load generator, that allow to replay attack traffic data in a controlled
environment and to configure desired workload conditions. The framework is
tested by means of direct DoS emulation and traffic replay with CICIDS2017,
i.e., a recent dataset that is gaining massive attention by the community. Results
indicate that our tool can reproduce the impact of a previously-recorded DoS
and conveniently replay third-party data from an existing dataset.

This paper is organized as follows. Section 2 deals with related work. Section 3
describes our replay approach. The paper illustrates the framework in Sect. 4 and
describes the experiments that aim to provide practical insights into its usage in
Sect. 5. Finally, the conclusions are drawn and our future work outlined.

2 Related Work

There are many solutions in the literature that propose detection algorithms
tuned and tested by means of public domain intrusion detection datasets (trace-
based). A machine learning-based DoS detection system is presented in [9]. The
approach used by the Authors is based on inference and the detection rate
achieved is 96%. In [8], instead, it is described a feature reduction method in
order to detect DoS in a reduced feature space with the PART classifier. At
best, the Authors hit a 99.98% recall for DoS Hulk. In [2] the Authors describe
a hierarchical intrusion detection system that provides for the combination of
several classifiers. The system uses three classifiers placed on different levels of
the training phase. They reach an overall detection rate of 94.475% and a false
alarm rate of 1.145%. Finally, in [4] the Authors propose a DoS anomaly detec-
tor that uses a deep autoencoder as core component of the infrastructure. The
Authors highlight the potential of the proposal for 0-day attacks.

In this context of network security experiments, the use of appropriate
tools for generating controllable, reproducible, and realistic network traffic is
of extraordinary importance. Therefore, with the aim of testing environments
for security products, over time several network traffic replay tools have spread.
In general, replay tools can be either stateless or stateful. Those that follow a
stateless approach replay packets according to their timestamps, and the content
of replayed network packets is exactly the same as that stored in the original
network traces. On the other hand, stateful replay tools are much more sophis-
ticated. They manage the state of connections during replay, and therefore the
content of replayed network packets may need to be altered in order to fit the
“new” network configuration. As for the payload generation methods, instead,
there are replay tools that do not alter the payload of the original packets,
while others are able to replay packets with a new, “re-generated” payload.

306 M. Catillo et al.

Table 1. Replay tools - summary of comparison.

Tool Is stateful? Payload Approach Main feature

tcpreplay [1] No Original
payload

Trace-based Replays traces at a
specified rate

tcpliveplay [16] Yes Original
payload

Trace-based Replays traces using
new TCP connections

TCPOpera [7] Yes Original
payload

Statistical-
based

TCP state emulation

Our tool Yes Original
payload

Trace-based TCP replay for security
experiments

Another possible difference is between tools that follow a trace-based replay and
others that perform a statistical replay. The former provide that the traffic sent
over the network during replay is identical to the traffic contained in the capture
file. The latter, instead, analyze the original captured traffic in order to collect
statistical information (overall packet frequency, timing between packets, etc.)
and generate new traffic traces that are similar to the original capture.

One of the most famous replay tools is surely tcpreplay [1]. In fact, it is
a suite of tools containing a series of open-source UNIX utilities. In particular,
tcpreplay it is a command-line tool designed to work with standard network
cards. It simply replays previously captured traffic traces at a specified rate and
does not actively modify the information of the transport layer header and the
payload of a packet. However, tcpreplay is completely stateless and is unable
to handle the update of TCP sequence and acknowledgement numbers. As such,
although it replays traffic to a server, it does not actually communicate with the
server. In order to overcome this limitation, the same suite provides tcpliveplay
[16], a tool that replays packet captures statefully by keeping track and updating
TCP sequence numbers.

Finally, a tool that performs a statistical replay is TCPOpera [7]. It is designed
for a stateful emulation of TCP connections. TCPOPera does not provide trace-
based replay of the captured data. It first develops analytics from a packet trace,
then creates a statistical model of the identified events, and finally generates
synthetic traffic flows from the model.

The tool on which hinges the framework proposed in this paper uses a state-
ful replay approach, starting from the captured DoS traces in pcap format and
preserving the original payload of packets. Unlike the aforementioned tools,
designed essentially for network analysis or diagnostic activities, it is conceived
as a lightweight, ready-to-use solution for replaying and assessing DoS attacks
that typically appear in pcap format in most intrusion detection datasets. It
is, therefore, a key tool for conducting a robust experimentation and validation
of the detection techniques commonly tested and tuned on public DoS network
traffic data for cybersecurity research. Table 1 summarizes the characteristics of
the above cited replay tools with respect to our proposal.

Towards a Framework for Improving Experiments on DoS Attacks 307

3 Preliminary Replay Tool

3.1 Background and Approach

As briefly mentioned in the introduction, our framework hinges on a tool that
allows to replay previously-recorded network traffic under realistic conditions,
so as to measure the impact of attacks on a suitably-configured web server and
load conditions. One of the hallmarks of our replay tool is surely simplicity, both
in terms of design and use. As a matter of fact, given an input pcap file, it can
be used as a common command line tool. In particular, the input pcap trace file
contains the network capture we want to replay (that in our case includes a DoS
attack to a web server). PCAP (Packet CAPtures) files are commonly used for
storing traffic network traces. Currently there are multiple widely accepted pcap
formats, but one of the most popular is LibPCAP [6]. The name derives from the
library of the same name, where it is formally defined. LibPCAP is the oldest
pcap format, but it is the most popular, mainly because is the default format
used by widely used network applications such as tcpdump. In addition, most
intrusion detection datasets provide DoS traces in LibPCAP format. The typical
structure of a LibPCAP file is shown in Fig. 1. In particular, the first element is
a Global Header (GH) with general traffic information, such as the correction
to UTC time or the specific endianness (big/little). There then follow packets
characterized by Packet Header (PH) (including timestamps and data sizes) and
Packet Data (PD).

As previously mentioned our replay tool follows a trace-based replay app-
roach. In particular, its ultimate goal is to relive previously-recorded traffic
towards arbitrary IP addresses and over brand-new sockets and connections,
without altering the payload of the original packets. Therefore, since the tool
supports replaying data exchanges to/from a server, it can be considered fully
stateful. This feature is not trivial, as most existing replay tools are not able to
replay traces using new TCP connections. It is worth pointing out that the pro-
posal closest to our work, in that offers a similar replay service, is tcpliveplay
[16]. Unfortunately, the use of tcpliveplay for our purposes has not produced
the expected result. The weaknesses of tcpliveplay are also confirmed by the
intense ongoing bug fixing activity carried out by the community1.

Fig. 1. LibPCAP file structure.

1 https://github.com/appneta/tcpreplay/issues/540.

https://github.com/appneta/tcpreplay/issues/540

308 M. Catillo et al.

09 : 07 : 05 . 766440 IP 192 . 168 . 56 . 102 . 39842 > 192 . 1 6 8 . 5 6 . 1 0 1 . http :
Flags [S] , seq 2633020550 , win 64240 , options [mss 1460 , sackOK ,
TS val 2720361938 ecr 0 , nop , wscale 7] , length 0

09 : 07 : 05 . 766674 IP 192 . 168 . 56 . 102 . 39842 > 192 . 1 6 8 . 5 6 . 1 0 1 . http :
Flags [.] , ack 1353780858 , win 502 , options [nop , nop , TS val

2720361938 ecr 153334785] , length 0
09 : 07 : 05 . 766728 IP 192 . 168 . 56 . 102 . 39842 > 192 . 1 6 8 . 5 6 . 1 0 1 . http :
Flags [P .] , seq 0 : 19 , ack 1 , win 502 , options [nop , nop , TS val

2720361939 ecr 153334785] , length 19 : HTTP : GET /?12 HTTP /1 .1

Fig. 2. Human-readable tcpdump -r of three example packets.

3.2 Implementation

The tool has been implemented in python, exploiting dkpt32, i.e., a module for
fast packet creation and parsing with definitions for the basic TCP/IP protocols.
Unlike other available software, our tool replays traffic at the same rate it was
originally recorded in the pcap file. This functionality is extremely important to
reproduce effectively the original traffic conditions.

The whole replay process, which starts from the acquisition of a DoS pcap file
and leads to the replay of the original trace, is described below. From the input
pcap, containing a previously-recorded DoS attack, we extract the packets sent
by a given source address to a given destination. More specifically, source and
destination identify the attacker and the victim, respectively. A visual and sim-
plified representation of the pcap content is shown in Fig. 2. It shows a human-
readable tcpdump -r of three example packets (one packet spans three lines) sent
by IP 192.168.56.102 to IP 192.168.56.101. These addresses match the IP
of the attacking and the victim node used in our testbed, presented in the next
section. It is important to note that the figure shows just a small window of the
input pcap file, which typically consists of millions packets.

Given the input packets, since we want to replay a two-way communication
with data exchanges to/from a server, the destination address is rewritten with
the address of the server node towards which the traffic is intended to be sent
for replay purposes.

Then the adjusted file is scanned sequentially. For each packet in the file, the
tool either (i) discards it (at this stage of development our focus is only on TCP
traffic, and everything else is discarded) or (ii) mimics socket operations based
on the value of the Flags field, shown at the rightmost part of the lines in Fig. 3.
The Flags letter is meaningful for the operation to be performed. For example,
the tool initiates a new socket connection upon [S] (i.e., a SYN packet) or sends
data upon [P] (i.e., a PUSH packet). The operations are differentiated on the basis
of the timestamp of the packets contained in the original capture. This allows
to intercept and replay the actual timing of the recorded packets. Moreover, at
any time the tool maintains a suitable number of active concurrent connections

2 https://dpkt.readthedocs.io/en/latest/.

https://dpkt.readthedocs.io/en/latest/

Towards a Framework for Improving Experiments on DoS Attacks 309

Fig. 3. Replay process.

towards the destination address, based on the actual number of socket opening
and closing operations encountered across the input packets. The whole replay
process is depicted in Fig. 3.

It is worth noting that the current implementation of the replay tool is not
“tuned” to manage some isolated cases. For example, in the original pcap trace
there may be packets corresponding to GET URL requests valid on the “original”
victim node, but invalid for the server on which the replay experiment is being
performed. Furthermore, the tool might accidentally attempt to replay SSH traf-
fic with consequent and unavoidable authentication issues. Although we have
not yet addressed these issues, the current implementation allows to successfully
replay a significant class of DoS attacks. In particular, we are able to replay both
flooding and slow DoS. The two DoS categories exploit distinct attack strate-
gies, and therefore they leave different “fingerprints” inside the trace files. The
behavior of the replay tool is always aligned to the specific type of attack to be
replayed (more on this later).

4 Proposed Framework

We are striving for a comprehensive framework consisting of a number of compo-
nents that allow to conduct controlled and configurable DoS experiments. Whilst
our replay tool is a key addition towards addressing several open challenges in
DoS research stated in the Introduction, a typical security experiment includes
further steps, such as attack emulation, traffic data collection and evaluation
of performance metrics. As such, our “core” traffic replay tool is meant to be
instantiated in a controlled network testbed featuring a victim sever, i.e., the
target of the assessment, a load generator, i.e., the component supplying a con-
figurable workload to exercise the victim, and a supplementary attacker node,
which allows to conduct controlled attack emulations aimed at complementing
the findings obtained by means of replay. Although not covered at this starting
stage, in the future the framework will be enriched with additional facilities, such
as network flows extractors and intrusion detectors, which will be accompanied
by suitable data filtering algorithms [5]. Overall, the framework is conceived to
follow a series of “best practices” in computer performance evaluation.

310 M. Catillo et al.

4.1 Nodes and Usage Modes

In this current proposition, the framework above is instantiated by means of four
network nodes on a LAN, as follows:

- Attacker 1: emulates the attack by means of a suitable DoS tool hosted on
a Kali Linux node.

- Attacker 2: allows to replay the DoS attack by reliving the network traffic
gathered from a DoS previous capture stored in a pcap file.

- Victim: Apache 2.2 web server node.
- Load generator: triggers, through httperf3, HTTP requests that serve as

benign background load to exercise and to check the status of the web server
during the experiments.

Further information about the nodes is reported in Table 2. Noteworthy, the
framework we set up allows us to make experiments that involve both direct
emulation and replay of previously-recorded attacks. As such, it supports two
distinct usage modes:

1. attack emulation mode: consists in emulating real attacks by means of a given
DoS tool;

2. attack replay mode: consists in replaying a DoS attack by reliving the network
traffic from a previous capture.

Attacker nodes are used as follows. Attacker 1 allows emulating real attacks
by means of various DoS tools hosted by the Kali Linux node: it is unused in
replay mode. Attacker 2, instead, allows to replay an attack by reliving the
network traffic from a previous capture stored in a pcap file: it is unused in
emulation mode. Therefore, during the experimentation phase, the two attackers
are never simultaneously active. It is worth noting that in both operating modes
the web server is exercised concurrently with both DoS traffic (either emulated
or replayed in the two modes, respectively) and benign background HTTP load
generated by httperf. We selected the Apache web server as a significant case

Table 2. Nodes description.

IP address (role) Operating System Application

192.168.56.101

(Victim)
Ubuntu LTS
12.04

Apache 2.2 web
server

192.168.56.103

(Load Generator)
Ubuntu LTS
12.04

httperf

192.168.56.102

(Attacker 1)
Kali GNU/Linux
Roling 2019.4

DoS tool

192.168.56.1

(Attacker 2)
macOS Sierra
101.2.6

Proposed replay
tool

3 https://github.com/httperf/httperf.

https://github.com/httperf/httperf

Towards a Framework for Improving Experiments on DoS Attacks 311

Fig. 4. Proposed assessment framework.

study, given its widespread use. In Fig. 4 we show a complete representation of
our framework and its components.

4.2 Configurations and Evaluation Metrics

In order to emulate a realistic experiment, we adjusted the web server default
parameters (that can be found at /etc/apache2/apache2.conf in a typical
Linux-based system) because they may not be representative of real-life produc-
tion server. In the adjusted configuration we set MaxKeeplAliveRequests, i.e.,
number of requests over the same connection, to 0 (unlimited), ThreadLimit
to 1024, ThreadPerChild to 256 and MaxClients to 20148. These are crucial
parameters for making realistic assessments on production servers.

Our current focus is on DoS attacks. This type of attack often involves the
opening of a substantial number of concurrent connections to the target. By
default, Unix-like machines often have a ceiling to the allowed number of simul-
taneously open files (1024 by default) and hence to the maximum number of
currently opened sockets available to a process. We set this number to 200,000
with ulimit -n before launching the attack. This number is large enough to
avoid any interference or saturation effect by the operating system. Evaluation
metrics selected for our experiments are:

- Load (L): the desired level of load to stress the web server during a testing
timeframe. We set this value by exploiting parameters supported by httperf,
such as total connections, HTTP requests per connection and connection rate.
The load submitted to the server is measured in HTTP requests per second
(req/s in the following).

312 M. Catillo et al.

- Response Time (RT): the time taken to serve a request measured in mil-
liseconds (ms). It is useful for evaluating server performance. For completed
HTTP requests, the response time is a fundamental index as it impacts the
QoS perceived by the application users.

We conducted a capacity analysis of the web server before performing any
experiment, in order to discover the maximum load that can be handled by the
server in attack-free conditions. The details of the capacity analysis are omitted
here due to space limitations; however, we found out that in normal DoS-free
conditions the RT of the server in our testbed is 0.2 ms, without exceeding its
maximum load capacity.

5 Experimental Results

Experiments aim to provide practical insights into the usage of the proposed
framework to replay DoS attacks. Evaluation is twofold: (i) replay of a fully
“controlled” DoS attack generated within our framework, and (ii) replay of a
DoS taken from a state-of-the-art public research dataset. The former is intended
to demonstrate the ability of our framework at reproducing the impact of a
DoS; the latter entails a potential use case of the framework in assessing the
resiliency of a victim service by leveraging existing third-party malicious traffic.
The experiments presented here focus on Slowloris, which is a DoS attack that
aims to saturate the victim server, opening connections, but never completing
the HTTP requests. It is a well-known application-level attack, often effective:
as such, it is strongly relevant in the context of our work.

5.1 Replay of a Controlled DoS

We mimic a real Slowloris DoS, beforehand. Emulation is done in our con-
trolled network by attacking the victim server, i.e., 192.168.56.101, with a
well-consolidated Slowloris GitHub tool4 hosted by the Kali Linux node, i.e.,
Attacker 1. This will be referred to as the “original” attack throughout this
Section. Moreover, during the progression of the attack the victim undergoes a
concurrent, benign, load of 1,000 reqs/s generated by httperf, whose response
time is monitored in order to assess the impact of the DoS. It should be noted
that at this stage we also record the attack traffic in a pcap packet data file, so
that it can be replayed later on, which is the purpose of our framework.

Figure 5 (•-marked series) shows how RT varies during the progression of the
original attack. In the plot, the x-axis represents the time since the beginning of
the experiment; the y-axis is given in log scale to better appreciate fluctuations
around low RT values. The duration of the experiment is large enough to collect a
large sample, i.e., more than 30 observations, in order to make statistical claims.
It can be noted that the attack impacts service operations, whose RT = 0.2 ms
in attack-free conditions, and –occasionally– it causes up to RT = 10 ms, which
4 https://github.com/gkbrk/slowloris.

https://github.com/gkbrk/slowloris

Towards a Framework for Improving Experiments on DoS Attacks 313

Fig. 5. RT during the original attack and its replay (y-axis is in log scale).

Fig. 6. Boxplot of the response time.

is a significant degradation. Noteworthy, 10 ms is seen as a typical maximum
tolerable delay for a response of a web server in order to be usefully deployed in
multilayer workflows [3].

The second part of the experiment consists in replaying the traffic recorded
during the “original” attack: our aim is to verify whether we can reproduce
similar effects on the server. As in the previous experiment, the victim server
is exercised with a load L = 1,000 reqs/s during the progression of the replay;
however, the attacker is now represented by the replay node (which is fed with
the pcap file recorded) rather than Kali Linux. RT measured during the replay
is shown in Fig. 5 (×-marked series) and superimposed to the original attack for
better comparison. Interestingly, the “appearance” of the time series is similar:
replay seems to reasonably well mimic the original attack.

Beside the visual test, we conduct further statistical analysis. Figure 6 shows
the paired boxplots of the response time of the original attack and its replay. The
leftmost boxplot highlights few sporadic outliers (depicted by ◦-marked points)
in case of the original attack. Most notably, IQRs5 (Inter Quartile Ranges),
which catch the dispersion of the RT around the median value, strongly overlap.
Table 3 shows sample mean, standard deviation and 95% confidence interval of

5 The Inter Quartile Range (IQR) of a boxplot is the difference between the third and
first quartile.

314 M. Catillo et al.

Table 3. Summary of RT statistics within the original attack and its replay.

Mean Standard deviation 95% Confidence interval

ORIGINAL 3.97 4.02 (2.96, 4.99)

REPLAY 3.40 3.77 (2.59, 4.22)

Fig. 7. RT during CICIDS2017 Slowloris (y-axis is in log scale).

the RT observations after filtering out the outliers. It can be noted that the
sample mean of RT during the original attack, i.e., 3.97 ms is within the CI of
the replay and viceversa: as such, it can be reasonably claimed that the impact
of the original attack and its replay are not statistically different. For the data
in hand, the proposed replay framework produces an attack that is statistically
the same as the original in terms of the effects on the server.

5.2 Replay of a Third-Party DoS

We present here a replay experiment done with the Slowloris attack traffic
of CICIDS2017. It is worth noting that CICIDS2017 is a recent dataset that
gained massive attention by the community: the experiment is done to show
the potential of our framework at handling unseen third-party traffic. Given
the pcap packet data file available at the dataset’s webpage6 we (i) extract all
the packets sent by 172.16.0.1 to 192.168.10.50 (i.e., attacker and victim in
CICIDS2017, respectively) within the timeframe of the Slowloris attack emu-
lated by the Authors and (ii) rewrite the destination as 192.168.56.101, which
is the address of the victim server in our testbed. The pcap obtained is fed to the
replay framework and run against our victim web server. Such as the previous
experiments, the victim undergoes a concurrent, benign, load of 1,000 reqs/s,
which is monitored to measure RT.

Figure 7 shows how RT varies during the replay of CICIDS2017 Slowloris;
again, the y-axis is in log scale. Surprisingly, it can be noted that the attack
causes only marginal fluctuations above the normative response time of the

6 https://www.unb.ca/cic/datasets/ids-2017.html.

https://www.unb.ca/cic/datasets/ids- 2017.html

Towards a Framework for Improving Experiments on DoS Attacks 315

server, which is 0.2 ms in attack-free conditions. Another interesting outcome
is that RT under attack is always significantly lower than 10ms (again, the indi-
cation of the maximum tolerable delay for a response in many practical settings),
which is a further remark of the scarse effectiveness of the attack. This is quite
surprising given the large body of literature on anomaly detection that capital-
izes on CICIDS2017. A closer look into CICIDS2017 Slowloris traffic revealed
that –although somewhat relevant due to the abusive consumption of network
resources– the attack was not disruptive enough against a well “tuned-up” server
resembling a real-life configuration, such as the one of our testbed.

Although beyond the scope of this paper, this finding has major practical
implications when it comes to the representativeness of public datasets for cyber-
security research and it will be investigated in the future. Noteworthy, it pro-
vides some initial insights into the above-mentioned challenges in DoS research,
which pertains to the potential limitations of existing datasets in conform to
representative operating conditions. This is particularly relevant in the context
of machine-learning-based research on attack detection, which appears to be
among the major use cases of public datasets so far.

6 Conclusions

The goal of our work is to meet several open challenges in DoS cybersecurity
experiments, with a focus on the quality of network capture datasets. The paper
is a step towards the design of a framework for replaying DoS attacks and the
implementation of a tool that allows to relive previously-recorded network traffic.

Our work is driven by the observation that research datasets might not con-
form to representative operating conditions. We show the validity of our proposal
by evaluating the replay of both a fully controlled attack and a DoS taken from
a state-of-the-art public research dataset. Results show that the proposed frame-
work replays a DoS attack while obtaining –from the statistical standpoint– the
same effects on the server as the original attack. The use of the framework with
state-of-the-art datasets will give valuable insights on their actual representa-
tiveness for cybersecurity research. This analysis will be conducted in the future
in order to provide concrete guidelines for the construction of rigorous datasets.

Our long term objective is to develop an integrated set of tools that enable
traffic assessments in a structured way, with the aim of creating complete secu-
rity experiments. In particular, we aim to create a ready-to-use framework for
both researchers and practitioners that enables security experiments starting
with the deep analysis of the data and ending with the tuning of the detection
algorithm. In the future we will extend our replay tool to support additional
attack scenarios. We will extend the analysis to further datasets, such as those
designed to evaluate DoS attacks, other attacks and victim platforms.

316 M. Catillo et al.

References

1. Aaron, T., Bing, M.: Tcpreplay tool (2012). https://tcpreplay.appneta.com
2. Ahmim, A., Maglaras, L.A., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hier-

archical intrusion detection system based on decision tree and rules-based models.
In: International Conference on Distributed Computing in Sensor Systems, pp.
228–233. IEEE (2019)

3. Alizadeh, M., et al.: Data center TCP (DCTCP). ACM SIGCOMM Comput. Com-
mun. Rev. 40(4), 63–74 (2010)

4. Catillo, M., Rak, M., Villano, U.: Discovery of DoS attacks by the ZED-IDS
anomaly detector. J. High Speed Netw. 25, 349–365 (2019)

5. Cotroneo, D., Paudice, A., Pecchia, A.: Empirical analysis and validation of secu-
rity alerts filtering techniques. IEEE Trans. Dependable Secure Comput. 16(5),
856–870 (2019)

6. Harris, G.: Development/libpcapfileformat, March 2011. https://wiki.wireshark.
org/Development/LibpcapFileFormat/

7. Hong, S.-S., Wu, S.F.: On interactive internet traffic replay. In: Valdes, A., Zam-
boni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 247–264. Springer, Heidelberg
(2006). https://doi.org/10.1007/11663812 13

8. Kshirsagar, D., Kumar, S.: Identifying reduced features based on IG-Threshold for
DoS attack detection using PART. In: Hung, D.V., D’Souza, M. (eds.) ICDCIT
2020. LNCS, vol. 11969, pp. 411–419. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-36987-3 27

9. de Lima Filho, F.S., Silveira, F.A.F., de Medeiros Brito Júnior, A., Vargas-Solar,
G., Silveira, L.F.: Smart detection: an online approach for DoS/DDoS attack detec-
tion using machine learning. Secur. Comm. Netw. 2019, 1–15 (2019)

10. Liu, H., Lang, B.: Machine learning and deep learning methods for intrusion detec-
tion systems: a survey. Appl. Sci. 9(20), 4396 (2019)

11. Mantas, G., Stakhanova, N., Gonzalez, H., Jazi, H., Ghorbani, A.: Application-
layer denial of service attacks: taxonomy and survey. Int. J. Inf. Comput. Secur.
7(2), 216–239 (2015)

12. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: Military Communica-
tions and Information Systems Conference, pp. 1–6. IEEE (2015)

13. Purwanto, Y., Kuspriyanto, H., Rahardjo, B.: Traffic anomaly detection in DDos
flooding attack. In: International Conference on Telecommunication Systems Ser-
vices and Applications, pp. 1–6 (2014)

14. Sharafaldin, I., Lashkari, A.H., Ghorbani., A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: International Confer-
ence on Information Systems Security and Privacy, pp. 108–116. SciTePress (2018)

15. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.: Toward developing a system-
atic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31(3), 357–374 (2012)

16. Siam, Y.: Tcpreplay tool (2013). https://tcpreplay.appneta.com/wiki/tcpliveplay-
man.html

17. Sikora, M., Gerlich, T., Malina, L.: On detection and mitigation of slow rate denial
of service attacks. In: 11th International Congress on Ultra Modern Telecommuni-
cations and Control Systems and Workshops, pp. 1–5 (2019)

18. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor.
15(4), 2046–2069 (2013)

https://tcpreplay.appneta.com
https://wiki.wireshark.org/Development/LibpcapFileFormat/
https://wiki.wireshark.org/Development/LibpcapFileFormat/
https://doi.org/10.1007/11663812_13
https://doi.org/10.1007/978-3-030-36987-3_27
https://doi.org/10.1007/978-3-030-36987-3_27
https://tcpreplay.appneta.com/wiki/tcpliveplay-man.html
https://tcpreplay.appneta.com/wiki/tcpliveplay-man.html

A Cloud SecDevOps Methodology:
From Design to Testing

Valentina Casola1, Alessandra De Benedictis1, Massimiliano Rak2,
and Giovanni Salzillo2(B)

1 University of Napoli Federico II, Naples, Italy
{valentina.casola,alessandra.debenedictis}@unina.it

2 University of Campania Luigi Vanvitelli, Aversa, CE, Italy
{massimiliano.rak,giovanni.salzillo}@unicampania.it

Abstract. DevOps is becoming one of the most popular software devel-
opment methodologies, especially for cloud-based applications. In spite
of its popularity, it is still difficult to integrate non-functional require-
ments, such as security, in the full application development life-cycle.
In some recent works, security DevOps (or SecDevOps) has been intro-
duced, in order to enable the adoption of Security-by-Design principles
in DevOps processes. In [4], a novel SecDevOps methodology was pro-
posed to exploit such integration, but the security assessment and test-
ing were performed with a static approach. In this paper, we propose to
extend the SecDevOps methodology with the adoption of a novel secu-
rity testing technique in order to dynamically test security properties in
the operational phase, too. In order to validate the proposed approach,
a cloud application case study involving the WordPress software module
is presented and analyzed.

Keywords: Secure development methodologies · Secure cloud
applications · Security testing

1 Introduction

DevOps methodologies are becoming very popular, especially in the development
of cloud-based applications but, in spite of their wide adoption, they are hardly
integrated with security design methodologies. The term SecDevOps, or Security
DevOps, has recently appeared in the researchers and developers communities,
but the management of security in a DevOps life cycle is still hard due to the
lack of automatic tools to evaluate and assess security in both the design and
the operation phases.

In [4], authors introduced a novel Security-by-Design development methodol-
ogy for cloud applications providing automated mechanisms to support develop-
ers in the security-related analysis, design and assessment phases of the develop-
ment process. Secure by design, in software engineering, means that “the software
has been designed from the foundation to be secure. At this aim, the alternate
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 317–331, 2020.
https://doi.org/10.1007/978-3-030-58793-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_26

318 V. Casola et al.

security tactics and patterns are first thought and, among them, the best are
selected and enforced by the application designer, and then used as guiding prin-
ciples for developers” [16]. The approach proposed in [4] used models and quan-
titative metrics to enable the Security-by-Design approach and help developers
take secure-informed choices. Moreover, authors showed that it was easy to be
adopted by DevOps teams (mainly developers and tester, not security experts)
and that it could be easily integrated within common agile methodologies (e.g.
SCRUM).

Despite its potential, however, that methodology presents some limitation:
in fact, it is meant to support developers during the design and deployment
phases of a secure application, enabling to perform only a preliminary security
assessment, which does not take into account possible security issues that may
arise after deployment. In order to ensure that the designed security features
are correctly enforced after deployment, in fact, the security assessment should
include a dynamic security testing of the application when in operation.

To overcome this limitation, in this paper we propose an extension of the
Secure DevOps methodology that entails the integration of a dynamic security
assessment process at the operational phase, provided with the adoption of inno-
vative and semi-automated security penetration techniques. To demonstrate the
extended methodology, we applied it to a case study application, showing how it
is possible to launch guided security tests and detect possible flaws in the design
and implementation phase that would be otherwise difficult to identify with just
a static security assessment.

The reminder of the paper is structured as follows. In Sect. 2, we present the
extended Secure DevOps methodology. In Sect. 3, we discuss the security testing
phase and the methodology proposed to enable the semi-automation of pene-
tration tests. In Sect. 4, we illustrate the application of the testing methodology
to a case study cloud application. In Sect. 5, we report some relevant work in
existing state of the art and discuss limitations of current approaches. Finally,
in Sect. 6 we draw our conclusions and discuss the future work.

2 An Innovative Security DevOps Methodology

As anticipated in the Introduction, authors of [4] proposed a Security-by-Design
methodology for the development of secure (cloud) applications, relying upon
a guided risk analysis process and a completely automated security assessment
phase. The methodology was meant to support application developers through
the execution of three fundamental steps of the security-aware development
process:

1. the identification of the existing security threats based on the application
architecture and implementation (i.e., based on the type of involved software
components, on their internal behavior and on the components interconnec-
tions),

2. the identification of the needed countermeasures to mitigate existing threats,
in terms of standard security controls, and

A Cloud SecDevOps Methodology: From Design to Testing 319

3. the assessment of the actual security controls enforced by the application,
depending not only on whether and how such controls have been integrated
into the application implementation, but also on the enforcement of the con-
trols at a lower level, i.e., at the level of the software and hardware resources
used for the application deployment.

The whole methodology leverages on Security Service Level Agreements
(SLA) to model both the application security requirements identified after the
risk analysis process, and the security guarantees that the application is able to
provide based on the assessment results. Security SLAs are built in compliance
with the reference model introduced in [2], which enables to express the security
features requested or granted by a generic service in terms of standard security
controls, belonging to a standard security control framework. In this paper in
particular, we will refer to the NIST Security Control Framework [13], which
collects more than 900 different technical and organizational security controls
belonging to 18 different families.

The above steps are carried out in a semi-automated way (requiring only a
very limited intervention from the developer team), starting from a model of
the application under development and by suitably exploiting a complex knowl-
edge base (the Threat Catalogue [4]) that collects several well-known threats in
different domains.

In particular, with regard to application modeling, authors adopted the
MACM formalism, originally proposed in [14] to model multi-cloud applica-
tions. The MACM formalism enables to easily describe the high-level architec-
ture of a complex application in terms of a graph, whose nodes represent the
main components building the application and whose edges represent the compo-
nents interconnections. As shown in Table 1, which reports the component types
currently supported by the MACM formalism, MACM nodes not only model
the logic components which, together, help realize the application behavior, but
they also allow for the representation of the resources that enable the applica-
tion deployment and execution, and of the possible third-party providers of such
resources.

With regard to supported node interconnections, the MACM formalism dis-
tinguishes among a few different relationships: provides identifies the services
(either IaaS or SaaS) offered by a given CSP, hosts identifies the SaaS services
deployed on an infrastructure resource, and uses identifies a dependency among
services.

Finally, it is worth mentioning that the MACM formalism enables also to
model the security features of a component through SLAs, represented in com-
pliance with the reference model presented in [2].

As mentioned, the whole methodology relies upon a Threat Catalogue, which
suitably maps together different concepts related to assets (i.e., component
types), well-known threats affecting specific assets, and security controls that
mitigate such threats. Thanks to this catalogue, it is possible to elicit the secu-
rity requirements of an application based on its behavior and internal structure,
by performing a guided risk analysis aimed at identifying existing threats and

320 V. Casola et al.

Table 1. MACM node types

Node type Description

CSP Service Providers that offers generic cloud-based services

IaaS:Service Cloud-based infrastructure resource (Virtual Machines)

SaaS:Service Software service, either developed ad-hoc or offered directly by an
external CSP, which needs an infrastructure resource for
deployment and execution

at quantifying related risks. Moreover, by leveraging the information included
in the catalogue, it is possible to verify whether the elicited requirements are
met by the application implementation even when considering the impact of the
selected deployment configuration. The security assessment procedure is carried
out by means of a composition process discussed in detail in [14] and [4], which
leverages a set of pre-defined composition rules that are suitably identified and
invoked based on the security controls to assess and on the application model
in input. The output of this process is an assessed SLA, representing the set of
security-related guarantees that the application is (nominally) able to provide.

The data model supporting the methodology is shown in Fig. 1, it allows to
link together different concepts, including vulnerabilities, threats, attacks and
controls that will be used in the novel testing techniques.

Fig. 1. Security model

A Cloud SecDevOps Methodology: From Design to Testing 321

Despite its great potential, the above summarized methodology has some
limitations. In fact, the supported security assessment process is static, in the
sense that it does not consider the actual application behavior at runtime, but it
only performs a “forecast” based on static information, collected a-priori before
deployment and execution. Adding support for a dynamic assessment in terms of
security testing at runtime would sensibly improve the effectiveness and utility
of the whole methodology, especially in order to make it better suited for a
complete SecDevOps process. For this reason, we came up with an enhancement
of the methodology presented in [4], which is sketched in Fig. 2.

Fig. 2. The extended Security DevOps Methodology

As shown in the figure, we included a further step after the security assess-
ment phase, devoted to security testing. In this step, the application is tested by
launching a penetration testing campaign, conducted on the basis, again, of the
information included in the Threat Catalogue and of the model of the applica-
tion. In case of a cloud application the tests are conducted in a private cloud
environment. The core idea is to link detected security violations, as reported in
the test results, to failing or missing security controls. As shown in Fig. 2, the
comparative analysis of the test reports and of the assessed SLA built at the
end of the assessment phase provides a feedback to the previous phases: if any
control belonging to the assessed SLA is detected as failing by the test reports,
it means that there is probably a flaw somewhere in the implementation of a
component or in the security assessment phase (which relies on a catalogue that
may be not complete). If the reports identify a violation of a control that was
not included in the assessed SLA, it means that the control was not considered
by the risk analysis and, therefore, this phase must be repeated by adding new
requirements.

In [3], authors presented a preliminary technique to enable the automated
penetration testing of cloud applications, by sketching the main needed steps
and by identifying the information to collect to automate, as much as possible,
the tests. In this paper, we refine and extend this technique and integrated it in
the methodology, as presented in more details in the next section.

322 V. Casola et al.

3 Automating the Security Testing Phase

The security testing phase of the SecDevOps methodology relies upon the
automation of penetration testing techniques by leveraging the security SLA
and the security models, used to represent the application architecture with the
identified Security Controls, and its security properties in terms of applicable
threats, vulnerabilities and weaknesses, and by executing specific tasks enabling
the actual penetration testing activities.

Fig. 3. Security testing phases

As shown in Fig. 3, the security testing consists of three phases, namely
Preparation, Scanning and PenTesting, which include both model-based activ-
ities and system-based activities. The model-based activities are driven by the
SLA, the application model formalized according to the MACM and by the
security model behind the Threat Catalogue. System-based activities, instead,
are carried out by launching publicly-available tools that are suitably selected
and configured based on the information derived from the models. The security
testing starts after the security assessment phase, and takes as inputs the appli-
cation model (MACM), the threat model and the risk evaluation resulting from
the risk analysis phase, and the SLA produced at the end of the assessment phase
(the interested reader can find details on these in [4]). In the Preparation phase,
the system-based activities include the deployment of the cloud application in a
testing environment, as much as possible similar to the target production envi-
ronment. Note that, due to security policies or legal laws, the direct execution
of penetration testing activities may be impossible (or illegal) on the target
production CSPs. The model-based activities performed during the preparation
phase consist in the enrichment of the application model with the details related

A Cloud SecDevOps Methodology: From Design to Testing 323

to the deployment configuration, needed for the correct planning of penetration
tests. This information is collected by launching, in a semi-automated way, pub-
licly available scanning tools able to identify running services, open ports and
protocols etc.

The Scanning phase aims at identifying the weaknesses and vulnerabilities
affecting the application under test, in order to verify whether existing threats
can actually be exploited on the target system. Model-based activities focus
on weaknesses identification, which is still a work in progress at current state.
System-based activities focus on the detection of existing vulnerabilities and
leverage well-known tools, as seen for the previous phase. Finally, during the Pen-
Testing phase, weaknesses and vulnerabilities are effectively exploited through
adequate attacks, in order to evaluate the actual security level of the application.
As shown in Fig. 3, each of the above described phases is based on a continuous
reporting process, which allows to log all the executed steps and to generate
reports.

The final security report includes succeeded and failed attacks, as well as
exploited vulnerabilities and threats for each tested asset. According to the model
illustrated in Fig. 1, a successful attack exploits a specific threat and is linked to
one or more vulnerabilities, and a threat can be mitigated by suitably enforcing
a set of controls. This means that, from a successful attack, it is possible to
derive the set of broken or missing controls.

In particular, a successful attack shows up as a broken application SLA, which
in turn can be accounted backwards to three root causes: (i) the control is not
enforced at all and an additional component should be added to the application
design to enforce its implementation, (ii) the control has not been correctly
identified in the risk analysis phase, (iii) the control has not been implemented
correctly as stated during the assessment.

Often, especially in the early stages of development, developers may be totally
unaware of particular security problems (or classes of them), which results in
missing the proper countermeasures in the design, namely in missing the imple-
mentation/integration of dedicated security components. Since the risk analysis
phase is an iterative process and must be tuned to several factors, even a slight
modification or a wrong value in the considered risk parameters can strongly
alter the risk rate of particular threats, lowering the level of risk. As a conse-
quence, some security controls could not be considered at all. In this case, it
is necessary to reconsider the threat through a new risk analysis process and
implement the proper security controls to lower the affected level of risk. Lastly,
the security testing processes can point out mistakenly implemented security
controls, that can be promptly fixed accordingly, outlining an error done in the
security assessment.

324 V. Casola et al.

4 A Case Study

We designed a simple multi-tier cloud application based on WordPress1 to
demonstrate the advantages of the penetration testing process introduced in
the SecDevOps flow. WordPress is one of the most widely used open-source
Content Management Systems (CMS), usually adopted for blog, show-case site
or e-commerce platforms. It runs on top of PHP and supports the two common
Apache and NGNIX webservers, while it uses a MySQL database to store web
application data.

Wordpress has several features, including a well structured plugin architec-
ture and a flexible template system, which enables developers to integrate it to
virtually every existing back-end system.

Figure 4 shows the MACM representation of the case study web application
that we built during the modeling stage.

The deployment configuration consists of four virtual machines (red nodes)
provided by an IaaS cloud service provider (violet node): two VMs host two
WordPress instances, based on Apache and NGINX (WP1, WP2 nodes) respec-
tively, one VM hosts the MySQL DBMS (db node) and, finally, the last VM
hosts a load balancer (based on HAProxy, lb node) that we deployed to equally
distribute the incoming requests across the two web-server instances. The ser-
vices are all depicted with blu nodes. Note that, in this configuration, only the
load balancer is exposed to the Internet, while the other VMs are hosted inside
a virtual private LAN provided by the CSP.

Fig. 4. Testing application - MACM model (Color figure online)

According to the methodology, we first performed a guided risk analysis,
which produced a threat list and a requirement SLA (expressed as a list of
security controls to enforce) for each of the assets (red and blue nodes in the

1 https://wordpress.org.

https://wordpress.org

A Cloud SecDevOps Methodology: From Design to Testing 325

Table 2. Threats for the Load Balancer Component

Threat Description ID

Security
Misconfiguration

An attacker may exploit unpatched flaws or access
default accounts, unused pages, unprotected files
and directories etc to gain unauthorized access or
knowledge of the system

T99

Using Components
with Known
Vulnerabilities

An attacker may exploit the vulnerabilities of the
components used by an application to perform
some malicious action

T102

Broken Authentication An attacker may steal users access credentials or
forge session data to gain unauthorized access to
websites

T95

XML External Entities
(XXE)

An attacker may exploit vulnerable XML
processors to extract data, execute a remote
request from the server, scan internal systems,
perform a denial of service attack, as well as
execute other attacks

T97

Insecure Deserialization Applications and APIs may be vulnerable if they
deserialize hostile or tampered objects supplied by
an attacker

T101

Sensitive Data
Exposure

An attacker may steal sensitive data, both in
transit and at rest

T96

Insufficient Logging
and Monitoring

Attackers may rely on the lack of monitoring and
timely response to achieve their goals without
being detected

T103

Broken Access Control An attacker may exploit access control to disclose,
modify or disrupt all data, or to perform a
business function outside of his/her limits

T98

Cross Site Scripting
(XSS)

An attacker may inject client-side scripts into web
pages viewed by other users. A cross-site scripting
vulnerability may be used by attackers to bypass
access controls

T100

Injection An attacker may send hostile data to an
interpreter to steal sensitive data or execute
malicious commands. Some of the more common
injections are SQL, NoSQL, OS command, Object
Relational Mapping (ORM), LDAP, and
Expression Language (EL) or Object Graph
Navigation Library (OGNL) injection

T94

MACM representation). Table 2 summarizes the threats identified for the Load
Balancer component (lb node), while Table 3 reports a subset of the security
controls recommended for the load balancer component.

326 V. Casola et al.

Table 3. Security Controls recommended for the of the Load Balancer Component

Control ID Control name

AC-1 ACCESS CONTROL POLICY AND PROCEDURES

AC-10 CONCURRENT SESSION CONTROL

AC-11 SESSION LOCK

AC-12 SESSION TERMINATION

AC-17 REMOTE ACCESS

.

SI-10(1) INFORMATION INPUT VALIDATION — MANUAL OVERRIDE
CAPABILITY

SI-10(2) INFORMATION INPUT VALIDATION —
REVIEW/RESOLUTION OF ERRORS

SI-10(3) INFORMATION INPUT VALIDATION — PREDICTABLE
BEHAVIOR

SI-10(4) INFORMATION INPUT VALIDATION — REVIEW/TIMING
INTERACTIONS

SI-10(5) INFORMATION INPUT VALIDATION — RESTRICT INPUTS
TO TRUSTED SOURCES AND APPROVED FORMATS

SI-15 INFORMATION OUTPUT FILTERING

The threats have been automatically identified, based on the involved assets,
by suitably querying the Threat Catalogue, while the security controls of interest
have been automatically selected based on these threats and on the results of a
guided risk assessment process, which helped to find the proper countermeasures
to enforce based on the current level of risk. After the risk analysis process,
we executed the static security assessment step, which enabled us to take into
account the specific security features of involved deployment resources and the
interconnections among components to build the final assessed SLA of the whole
application.

After these steps, we finally launched the security testing phase, aimed at
testing the correct implementation of the recommended security controls. Note
that, at current state, the penetration testing phase adopts a grey-box approach:
we are aware of the components and of the network topology, but initially we
do not have much more details than the ones originally described in the MACM
model of the application. Moreover, we conducted the security analysis from the
outside of the private cloud virtual network, in particular against the services
exposed by the load balancer. Basically, we emulated the attacks performed by
an external threat agent, altough we intend to consider additional threat agents
in future and execute more automated tests.

The Preparation step involves the deployment of the cloud application in a
testing environment and the enrichment of the MACM model with extra infor-
mation deduced from the deployed system. This additional information can be

A Cloud SecDevOps Methodology: From Design to Testing 327

obtained by (semi-)automatically chaining the execution of publicly available
scanning tools. In particular, at state of art, our automation scripts relies on
nmap and nikto. At the end of this step, we obtained a detailed description of
the system: we were able to identify, for instance, the existence of the Word-
Press application and the services exposed by the load balancer node, expressed
in terms of open ports and service versions, besides other few information.

The enriched MACM model is an input to the Scanning step, where existing
weaknesses and vulnerabilities of the target system are identified. While the
weakness identification from the model is still a work in progress, vulnerabilities
are recovered through another set of well-known tools, whose activation and
configuration is guided by the extended MACM model. We used in particular
vulscan (an nmap plugin), nikto and WPscan (a WordPress specific scanning
tool).

By using the above tools, we discovered the following vulnerabilities:

– CVE-2019-9978. The social-warfare plugin before 3.5.3 for WordPress has
stored XSS, as exploited in the wild in March 2019. This affects Social Warfare
and Social Warfare Pro.

– WPVULNDB ID 9259. Unauthenticated remote code execution has been
discovered in functionality that handles settings import.

Both these vulnerabilities are based on the same improper sanity checking vali-
dation against a parameter directly passed to a eval() php function in a Word-
Press plugin (Social Warfare), which is installed automatically by the adopted
template.

After that, we started the PenTesting step and produced the actual testing
plans to verify the exploitability of the identified vulnerabilities, not reported
here for brevity reasons. For example, the exploitability of the XSS vulnerabil-
ity can be verified by forging a text file containing the JavaScript code to be
automatically executed on the plugin’s admin page.

This file must be uploaded to a web server accessible by the target word-
press application in order to be able to perform a remote file inclusion attack
on the plugin extension. By visiting the following address http://[URL to wp
frontend]/wp-admin/admin-post.php?swp debug=load options&swp url=[URL
to evil js text file] the javascript file specified into the last part of the URL
would be included and stored remotely into the wordpress plugin’s admin page.

The second vulnerability also makes use of the same remote vulnerable end-
point, though the file specified in the URL must contain the actual system com-
mands to be executed on the remote machine. The test plan for the XSS vul-
nerability led us to display an alert (‘message’) in every back-end page referred
by the affected plugin, whereas the second test plan enabled us to execute com-
mands on the remote host operating system and take the control by opening
a reverse shell to the penetration tester’s machine. As direct consequences, the
application database asset is immediately compromised, since the credentials are
stored in clear in a WordPress configuration file. At this point, other attacks can
be attempted on the other virtual machines.

328 V. Casola et al.

The discovered vulnerabilities are linked to the XSS and injection threats
(ID T94 and T100), previously identified during the risk analysis phase, and
associated to the security controls SI-10 and SI-15 selected for their mitigation
(which respectively address the information input validation and the information
output filtering).

It is worth to outline that these controls had been identified during the risk
analysis to cover security requirements, then they were erroneously included in
the assessed security SLA, since the assessment involved only the WordPress
core and not the (automatically) installed plugin (Social Warfare), but they
were instead found faulty during the testing phase. To conclude, the testing
phase enabled us to find a security flaw in the implementation of controls SI-10
and SI-15 which otherwise would have been very hard to discover. In general,
the possibility to launch semi-automated security tests during the SecDevOps
process enabled to easily and quickly identify the main existing security flaws
and support the developer teams in taking proper remediation actions without
involving highly-skilled security personnel.

5 Related Work

Security engineering practices [1] aim at building systems that are acceptably
robust against possible disruptions, threats and hazards. These practices typi-
cally suggest the adoption of processes that must be applied systematically to
a target system and carried out during its entire life cycle [15], even if they are
historically focused on the post-development testing activities, aimed to vali-
date the effectiveness of already enforced security controls or to identify existing
weaknesses and guide future security efforts and investments [6,17].

However, Security-by-Design approach [5] suggests the adoption of proac-
tive measures against existing security threats and the implementation of the
secure-by-default paradigm in the configuration of both software components
and access policies. Based on this principle, several Secure Development Life
Cycles (SDL) have recently been defined. The most common ones are Microsoft
SDL, OWASP OpenSAMM and Cisco SDL. All these life-cycles include threat
modeling at the beginning of the development process, and continuous security
testing and assessment over all the phases of the software product development.
The main limitation of such approaches is the cost they typically imply. In fact,
while a few solutions exist aimed at partially automating the testing and assess-
ment processes in several domains (including IoT [7,18]), the assessment phase
typically assumes the involvement of an “expensive” team of security experts
over the whole development life cycle and/or of security-skilled developers. The
interested reader is referred for additional information to the surveys [8,10].

In such methodologies the last step is always the security testing, which is an
expert-guided activity: despite the needs, as outlined in [12], at state of art, does
not exist any standard devoted to describe penetration testing activities. In the
following, we briefly summarize the most known penetration testing methodolo-
gies and security assurance techniques.

A Cloud SecDevOps Methodology: From Design to Testing 329

It is worth noticing that our methodology fully exploits the potentiality of
DevOps approach and Cloud paradigm, which are recently being more and more
affirmed, enabling a continuous deployment in testing environment enabling a
mostly automated penetration testing, that reduces the costs and enable the
adoption of agile practices (which are one of the main goals of the proposed
methodology [4]).

It should be noted that few stable methodologies exists for penetration test-
ing, as an example the ones proposed in NIST SP-800-115’s special publi-
cation [11] or the Penetration Testing Execution Standard (PTES) and the
Open Source Security Testing Methodology Manual (OSSTMM) [9]. However
all such methodologies are time and cost expensive and all of them focuses on
discovering technical vulnerabilities, instead of relating possible attacks to high-
level threats understandable to the end user. The approach we propose, on the
contrary, starts from the end-user perception of the risks and clearly offers a
feedback to the system designers and developers in order to correct and improve
system countermeasures.

6 Conclusions and Future Work

Security testing of cloud application is one of the most critical steps in existing
secure development methodologies: it is performed at the end of the development
life cycle, its results may affect the overall design and it is mostly manual, so the
quality of results depends on the tester experience.

In this paper we addressed such challenges by integrating into an existing
Security-by-Design methodology a technique that aims at automating the pen-
etration testing phase. The result is a methodology that is compatible with
agile and DevOps paradigms, enabling a semi-automated penetration testing in
a dedicated environment.

We tested our approach against a simple cloud application: a WordPress
deployment which integrates a load balancer, a DB and multiple front-ends. As
a main result we were not only able to identify and exploit vulnerabilities, but
even to indicate which are the security controls that were declared and incorrectly
or incompletely assessed, offering a clear feedback to the developers enabling
a fast identification and resolution of the security issue. Furthermore, thanks
to the adoption of proper security models and security SLAs, the developed
application will be able to guarantee that the security featurers specified are
correctly assessed and implemented as stipulated in the agreement.

The proposed solution is a new step in the direction of fully automated
penetration testing, that offers the advantage of assessing security controls in
a concrete way, but it still needs improvements. The testing plans, that we
build in an iterative way, need additional formalization, in order to enable full
automation. The scanning phase is limited to vulnerability scanning, while we
aim at extending the methodology in order to identify possible design weaknesses
using existing knowledge bases like MITRE CWE, and correlating them with our
models. All these challenges will be addressed in future work.

330 V. Casola et al.

References

1. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd edn (2008). http://www.cl.cam.ac.uk/∼rja14/book.html

2. Casola, V., De Benedictis, A., Erascu, M., Modic, J., Rak, M.: Automatically
enforcing security SLAs in the cloud. IEEE Trans. Serv. Comput. 10(5), 741–755
(2017)

3. Casola, V., De Benedictis, A., Rak, M., Villano, U.: A methodology for automated
penetration testing of cloud applications. Int. J. Grid Util. Comput. 11(2), 267–277
(2020)

4. Casola, V., De Benedictis, A., Rak, M., Villano, U.: A novel security-by-design
methodology: modeling and assessing security by SLAs with a quantitative app-
roach. J. Syst. Softw. 163, 110537 (2020)

5. Cavoukian, A., Chanliau, M.: Privacy and security by design: an enterprise archi-
tecture approach (2013). https://www.ipc.on.ca/wp-content/uploads/Resources/
pbd-privacy-and-security-by-design-oracle.pdf

6. Common Criteria: CCMB-2017-04-001: Common Criteria for Information Tech-
nology Security Evaluation v3.1 rev5 (2017). https://www.commoncriteriaportal.
org/files/ccfiles/CCPART1V3.1R5.pdf

7. Dejon, N., Caputo, D., Verderame, L., Armando, A., Merlo, A.: Automated security
analysis of IoT software updates. In: Laurent, M., Giannetsos, T. (eds.) WISTP
2019. LNCS, vol. 12024, pp. 223–239. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-41702-4 14

8. Geer, D.: Are companies actually using secure development life cycles? Computer
43(6), 12–16 (2010)

9. Herzog, P.: OSSTMM 3: the open source security testing methodology manual-
contemporary security testing and analysis (2010). http://www.isecom.org/

10. Jayaram, K., Mathur, A.P.: Software engineering for secure software-state of the
art: a survey. Purdue University (2005)

11. Scarfone, K., Souppaya, M., Cody, A., Orebaugh, A.: Technical guide to informa-
tion security testing and assessment. NIST Special Publication 800–115 (2008)

12. Knowles, W., Baron, A., McGarr, T.: The simulated security assessment ecosystem:
does penetration testing need standardisation? Comput. Secur. 62, 296–316 (2016).
https://doi.org/10.1016/j.cose.2016.08.002

13. National Institute of Standards and Technology: SP 800–53 Rev 4: Recommended
Security and Privacy Controls for Federal Information Systems and Organizations.
Technical report (2013). http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-53r4.pdf

14. Rak, M.: Security assurance of (multi-)cloud application with security SLA com-
position. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C.
(eds.) GPC 2017. LNCS, vol. 10232, pp. 786–799. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57186-7 57

15. Ross, R., McEvilley, M., Oren, J.C.: NIST SP 800–160: systems security
engineering: considerations for a multidisciplinary approach in the engineer-
ing of trustworthy secure systems (2016). https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-160v1.pdf

16. Santos, J.C.S., Tarrit, K., Mirakhorli, M.: A catalog of security architecture weak-
nesses. In: 2017 IEEE International Conference on Software Architecture Work-
shops (ICSAW), pp. 220–223 (2017)

http://www.cl.cam.ac.uk/~rja14/book.html
https://www.ipc.on.ca/wp-content/uploads/Resources/pbd-privacy-and-security-by-design-oracle.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/pbd-privacy-and-security-by-design-oracle.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://doi.org/10.1007/978-3-030-41702-4_14
https://doi.org/10.1007/978-3-030-41702-4_14
http://www.isecom.org/
https://doi.org/10.1016/j.cose.2016.08.002
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://doi.org/10.1007/978-3-319-57186-7_57
https://doi.org/10.1007/978-3-319-57186-7_57
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1.pdf

A Cloud SecDevOps Methodology: From Design to Testing 331

17. The Software Assurance Forum for Excellence in Code (SAFECode): Fundamental
Practices for Secure Software Development Essential Elements of a Secure Devel-
opment Lifecycle Program - Third Edition (2018)

18. Verderame, L., Caputo, D., Migliardi, M., Merlo, A.: AppIoTTE: an architecture
for the security assessment of mobile-IoT ecosystems. In: Barolli, L., Amato, F.,
Moscato, F., Enokido, T., Takizawa, M. (eds.) WAINA 2020. AISC, vol. 1150, pp.
867–876. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44038-1 79

https://doi.org/10.1007/978-3-030-44038-1_79

Accountability in the A Posteriori Access
Control: A Requirement

and a Mechanism

Farah Dernaika1,2(B), Nora Cuppens-Boulahia3(B), Frédéric Cuppens3(B),
and Olivier Raynaud2(B)

1 IMT Atlantique, Rennes, France
farah.dernaika@imt-atlantique.fr

2 Be-ys Research, Geneva, Switzerland
oraynaud.ext@almerys.com

3 Polytechnique Montreal, Montreal, Canada
{nora.boulahia-cuppens,frederic.cuppens}@polymtl.ca

Abstract. The a posteriori access control is a flexible type of access
control in which policy violations are deterred by applying accountabil-
ity. However, the definition of the accountability process is frequently
underestimated, as the auditors usually pay more attention to detecting
violations. In this paper, we define accountability as a requirement and
as a mechanism to serve the a posteriori access control.

Keywords: Accountability · A posteriori access control · Sanctions

1 Introduction

Setting the right access control is essential for organizations to ensure confiden-
tiality, integrity, and availability in their information systems. It can be imple-
mented in various ways depending on the environment.

Traditional access control models verify users’ privileges before granting them
access to information resources to avoid misuse. However, it is a prerequisite to
take into account the organization’s uses and practices, so that the deployed
security solution is not perceived as a constraint for users with a significant
risk of rejection. Therefore, the preventive access control can be inadequate in
environments where exceptions may occur and can impose undesirably high com-
putational costs. In this regard, the use of a more flexile access control appeared
to be convenient.

The a posteriori access control is relatively open where a break-glass mecha-
nism is deployed, and in which the user can override the access restrictions with
or without the intervention of the administrator. To be effective, the a posteri-
ori access control must be based on efficient monitoring mechanisms to detect
potential violations of the security policy. It must also be combined with a dis-
suasive sanction and reparation policy so that users are not tempted to violate
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 332–342, 2020.
https://doi.org/10.1007/978-3-030-58793-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_27

Accountability in the A Posteriori Access Control 333

the security policy. That being said, the a posteriori access control works on
deterring access violation rather than preventing it. But how?

In the literature, the a posteriori access control was defined as composed of
three critical components that are logging, auditing, and accountability. Log-
ging ensures that users’ actions are being logged and traced in the system to
serve as evidence in case of a future suspicious violation. Next, auditing is a
process in which the logs are solicited and analyzed to check their consistency
and compliance with the defined security policy. As for accountability, several
definitions were given to it since it is used broadly in a variety of fields. For
instance, [17] gave the following definition for accountability: “Accountability is
the ability to hold an entity, such as a person or organization, responsible for its
actions”. [12] considered that accountability is about punishing policy violators.
Thus, regardless if the sanctions will be actually applied or not, we can all agree
that “accountability is a way to deter the user from committing violations”, as
it constitutes a threat of punishment that pressures the user psychologically.

A good number of researches treated the a posteriori access control by focus-
ing mainly on its first two components that are concerned in detecting viola-
tions, but unfortunately they underestimated the importance of developing an
accountability mechanism. In this paper, we define a framework for accountabil-
ity to decide whether the user should be held responsible or not once a violation
is detected. The rest of this paper is organized as follows: Sect. 2 presents our
accountability framework, Sect. 3 discusses related work, and Sect. 4 concludes.

2 Accountability in the A Posteriori Access Control

As mentioned earlier, in the a posteriori access control, users’ actions are moni-
tored to assure their compliance with the security policy. We consider that the
security policy of an information system corresponds to a set of rules defining
access control requirements (permissions, prohibitions) as well as usage control
requirements (obligations) relating to the actions that a user carries out in this
information system. This policy can be modeled according to different access
control models such as RBAC [13], ABAC [15], OrBAC [9], etc. Thus, when a
user performs an action that is not conform with the rules defined in the security
policy, the action is considered a violation. However, the flexibility that offers
the a posteriori access control allows having certain exceptions for which the
actions of users become permitted, or the user becomes blameless. In the rest of
this paper, we consider a violation as an event, that is an action op done by a
subject u on an object o at a specific time, that abuses the security policy with-
out taking in consideration the exceptions. In this connection, security analysts
can derive different conclusions when analyzing access logs: 1) the concerned
subject did not violate the security policy, in this case the problem would arise
either from errors in system functions or from external malice, 2) the subject has
violated the security policy but there are legitimate reasons which justify this
behaviour and which invalidates this violation but does not exclude the respon-
sibility of the subject without sanctioning him, or 3) the subject has violated

334 F. Dernaika et al.

the security policy but no mitigating circumstances could be determined, he is
then responsible and punishable for his unauthorized action.

Even if in an a posteriori environment the user is trusted, there is always a
motivating reason that convinces him to breach the law to serve his self-interest
and access data. Therefore, it is evident that leaving the access open to users
exposes the system to different security threats that can be internal/external,
malicious/non malicious, intentional/accidental [16], and that can cause severe
consequences such as fraud, disclosure or destruction of information, etc. Since
the a posteriori access control is based on a trustworthy environment in which
users are knowledgeable of their rights (in reality, users are usually notified of
their responsibilities and validate them by signing a confidentiality charter), we
consider that the detected access policy violations are internal and intentional.
Thus, the first possibility of the violation being caused externally is eliminated.
Now that access policy violations are presumed, decisions should be made to
determine whether the violator should be punishable or not.

In contrast, the accountability framework can be seen in two different angles:
1) it can be considered a set of requirements (a theory) that should be employed
in the system to enforce the deterrence of policy violations, and 2) it can be
thought of as a mechanism to define and apply sanctions when violations are
committed. Moreover, it has been argued about whether increasing the probabil-
ity of punishment is more effectively deterrent than an increase in the severity of
punishment [14]. It all depends on whether the person who is tempted to violate
the policy is a risk lover or not. In the following we discuss the requirements that
should be adopted to deter policy violations and we propose an accountability
mechanism in case of the a posteriori access control.

2.1 Accountability as Requirement

Deploying measures that increase the users’ perception of accountability in the
information system will likely make the users experience systematic process-
ing and awareness which will increase conformance with the policy. In [20], the
authors presented an accountability theory to reduce access policy violations
through system artifacts and showed how this theory could increase account-
ability perception. We thus recall the three discussed system dimensions that
heighten accountability perception that are identifiability, evaluation, and social
presence. Identifiability ensures that user’s actions can be linked to him/her
while evaluation assesses his actions according to some normative ground rules
and with some implied consequences. As for social presence, it assumes that
user’s performances can be seen by others.

Indeed, these three criteria are assured in the a posteriori access control. First,
logging makes sure that all accesses can be traced; hence, their subjects can be
identified. In addition, the monitoring and auditing that is done by analyzing
logs evaluate the conformity of these accesses with the security policy. Finally,
although it is not always the case where one can see an other’s actions especially
in environments in which sensitive data is involved, the administrator or the
auditor can always have a peek regardless if he is performing monitoring or not.

Accountability in the A Posteriori Access Control 335

Having these three requirements in the information system will decrease the
user’s intent to commit access policy violations. However, unexpected circum-
stances could happen which will force the user to perform an unauthorized action
or have an exceptional access. To take into consideration these latter, we consider
a fourth requirement that is the justification obligation.

The justification obligation is an obligation that states that in case of excep-
tion (e.g., emergency) that pushes the user to perform an action that is outside
his sphere of access, the user must declare his access with a justification. A justifi-
cation is the reason (purpose) for which the user has performed an unauthorized
access. Each access event can only have one justification. Thus, we denote a
justification j as j = (u, op, o, r, t), where r is the reason for which the user u
performed an unauthorized action op on the object o, and which is logged at
time t. It is also worth mentioning that most of the times, in case of a sudden
emergency, the user does not have the time to justify his action before doing it.
Therefore, we consider that this obligation should be done a posteriori during
a certain period of time after the access. This time period is usually defined by
the organization. Moreover, we consider that once the justification is logged, it
can not be modified later on.

At this point some might be wondering how this requirement will enforce the
deterrence of policy violations. In fact, not respecting this obligation is a violation
by itself; hence, the probability of applying punishments will increase and risk-
taking will decrease. Now that we enforced the deterrence of the a posteriori
policy violation, we should integrate this requirement in the a posteriori access
control.

2.2 Accountability as a Mechanism

After what has been discussed in the previous sections, a user is held account-
able in the a posteriori access control once he/she violates the security policy;
hence, he/she is responsible for his/her actions and their consequences. However,
the concept of responsibility can have different meanings [6]. As accountability
regards the responsibility and liability of accesses performed by a user in an
information system, we consider a user is liable when he should be blamed and
sanctioned for his undesirable actions. It is evident that every liable user is also
responsible, however this latter is not necessarily sanctioned. Since we assumed
that the accountability process starts once violations are detected, the user is
always responsible. Nevertheless, we distinguish, in the following, the cases in
which the user is liable; hence, should be punished.

The Case of a Static Policy. In this section, we treat the case of a static
security policy in which its expression is defined once and for all.

A user is liable if he violated the security policy and did not justify his
violation as follows:

violation(u, op, o) ∧ ¬∃j[justification((u, op, o), j)] → is-liable(u, op, o) (1)

336 F. Dernaika et al.

While it is certain that the user is liable in case of non-existence of justification
since the justification obligation is violated, it is not the case when a justifica-
tion exists. As a matter of fact, other factors should be taken into account: 1)
the reason of access provided in the justification should be categorized as an
“allowed exception”, and 2) the justification should be “honest”. In contrast,
in traditional RBAC or ABAC access control models that are not leveraged to
dynamically adapt to fringe cases [1,10], exceptions are not encoded. Therefore,
we consider a particular setting, where an exception policy, that specifies how
the rights of users to access resources are affected in various exceptional situa-
tions, complements the security policy. It is generally a less constraining version
of the security policy. For example, in a hospital, an access control policy speci-
fies that each doctor has access to the medical records of his/her own patients.
However, if a patient has a heart attack, then any doctor in the ward can have
access to that patient’s medical record during this emergency. Figure 1 shows
our a posteriori access control setting.

Fig. 1. A posteriori access control

In this respect, a justification is considered to be valid if the reason provided
in it is relevant to the permissions defined the exception policy. We refer to
[1,5] for inferring the relevance between an access permission and a purpose.
Therefore, the user is also liable if he provided an invalid justification:

violation(u, op, o)∧is-invalid(justification((u, op, o), j))
→ is-liable(u, op, o)

(2)

Moving on to deciding if the justification is honest or not, the problem
becomes more difficult. It must be pointed out that the honesty of a justifi-
cation is investigated only if this latter is valid. As previously mentioned, the

Accountability in the A Posteriori Access Control 337

user will have a limited time period after his/her exceptional access to justify it.
Moreover, it has been shown in [18] that users tend to lie when they are pres-
sured in time and are more likely to be honest when they have enough time to
answer when they are being interrogated. In consequence, the time period cho-
sen by the organization should have a reasonable length but should not either
be so long so that the user will not have the time to plan a lie. Nevertheless,
the user might sometimes justify his exceptional access after the defined time
period because he/she had successive emergencies or simply because he/she for-
got to do so. Therefore, we distinguish between onTimeJustification, that is a
justification that is logged during the required time period, and lateJustification,
that is a justification that is given after the time period. That being said, we
consider that when a user logs an onTimeJustification, he/she is being honest.
This assumption was made since the user provided a valid justification in the
right time; hence, he/she is respecting the security rules. On the other hand,
qualifying a lateJustification can be confusing as it can be the object of a mali-
cious (dishonest) user and a non-malicious (honest) one. To solve this problem,
we examine the impact or the damage (e.g., data destruction) that results fol-
lowing an exceptional access in the information system. Thus, a lateJustification
is considered to be dishonest if there is an impact on the system. Besides, when
a lateJustification is provided with no impact, the concerned user will be given
a warning while always being responsible for his action:

violation(u, op, o) ∧ ∃j[is-valid(lateJustification((u, op, o), j)]∧
¬∃i[impact((u, op, o), i)] → is-responsible(u, op, o) ∧ warning(u,w)

(3)

Furthermore, if a user receives more than n warnings, then he is classified as
malicious; in other words, his (n+ 1)th late justification is dishonest (even if
it is honest, he did not respect the justification obligation several times). n is
also defined by the organization. This condition was put to not oppress the user
in case he is being honest even though he violated in a way the justification
obligation. The warning will give him the chance to adapt his behavior in the
future; hence, will serve as a reminder to respect the obligation. Nevertheless, n
should not take a great value so that the probability of being sanctioned remains
high (ideally should be equal to 1 or 2). The steps over which the accountability
decision model reasons is depicted in Fig. 2.

As a consequence, we define the profile of a sanctionable user as a user who
did not provide a justification, or provided an invalid justification, or provided a
valid lateJustification and his unauthorized access had an impact on the system,
or got n+1 warnings:

is-sanctionable(u) ≡
¬∃[justification((u, op, o), j)]∨
is-invalid(justification((u, op, o), j))∨
∃j[is-valid(lateJustification((u, op, o), j))] ∧ ∃i[impact((u, op, o), i)]∨
totalWarnings(u, n + 1)

(4)

338 F. Dernaika et al.

Fig. 2. Accountability decision module

As a result, the user will be liable, if he provoked a violation and he is
sanctionable:

violation(u, op, o) ∧ is-sanctionable(u) → is-liable(u, op, o) (5)

We can notice that (1) and (2) can be derived from (5).
Once the decision has been made about the user’s accountability, sanctions

and remedies should be applied. When thinking of sanctions, we first imagine
an amount of money. Therefore, we consider a sanction S as a penalty that is
calculated based on whether the user is sanctionable or not. The value of the
penalty is chosen by the organization (for example, it can be equal to the salary
of the employee). However, it must be noted that different types of sanctions
can be considered such as getting fired, prison, etc. We define γ as a boolean
variable that indicates if the user is sanctionable or not. Thus, γ = 1 (γ̄ = 0) if
the user is sanctionable and 0 otherwise. In consequence, the sanction value can
be calculated as follows:

S = penalty × (1 + γ − γ̄). (6)

In addition, other remedies can be put in place such as taking away the right
of “breaking the glass”, that is the ability to perform prohibited actions when
necessary. This remedy will be adopted when the organization looses the con-
fidence she had in the user, after this latter had caused several violations and
been given multiple sanctions.

The Case of an Administrative Policy. When security rules are controlled
by an administrative policy, administrators can also be held accountable follow-
ing their actions. Normally, they are responsible of creating the security rules
that permit or prohibit regular users from performing an access. Moreover, in

Accountability in the A Posteriori Access Control 339

order to do a break-glass action, the user might ask the administrator to create
him/her a specific rule to perform the action. The administrator can also cre-
ate/remove rules on his/her own without prior demand from the user. Whatever
the reason for the rule’s creation/removal is, the rules should be appropriate, and
the administrator should not abuse his/her rights. We thus, consider the same
setting represented in Fig. 1, but this time the security policy can be changed
over time by administrators. Nevertheless, the expression of the exception policy
remains static. That being said, a security auditor s can blame the administrator,
with respect to a justification, without exempting the user of his/her responsi-
bilities. It is worth noting that the security auditor must be different than the
concerned administrator so that the accountability decision will not be biased.
That being said, the user remains responsible since even if it was the admin-
istrator’s fault, he is the one who performed the unauthorized action; hence,
participated in the violation. In this case, the user will be given a warning, and
the administrator is held responsible too:

violation(u, op, o) ∧ ∃j[justification((u, op, o), j)] ∧ blame(s, (a, op, r))
→ is-responsible(u, op, o) ∧ warning(u,w) ∧ is-responsible(a, op, r)

(7)

In contrast, a new regulation came into force in May 2018, that is the General
Data Protection Regulation (GDPR) [21]. GDPR requires the collected data
to be used only for specific purposes. Therefore, [4] proposed a framework to
design access control policies in reference to the legal environment of the GDPR.
In consequence, we suppose that when an administrator has the right to cre-
ate/remove/modify a specific rule, his/her action leads to a GDPR compliant
access control policy (ACP), enforcing the principle of data protection by design
and by default. In consequence, when an administrator is blamed for his/her
actions or when he simply commits a violation, the first thing to check if the
resulted ACP from performing the action is GDPR compliant. If it is not the
case, the administrator is liable and should be sanctioned. On the other hand, if
the resulting ACP is GDPR compliant, the process returns to the normal liabil-
ity check. In this connection, the justification obligation is also imposed on the
administrators. Thus, the same conditions are applied to have a sanctionable
administrator (c.f. (5)). As a result, an administrator is liable for performing an
operation on a security rule, if the resulting ACP is not GDPR Compliant or if
he is sanctionable as follows:

violation(a, op, r) ∧ [¬GDPRCompliant(a, op, r) ∨ is-sanctionable(a)]
→ is-liable(a, op, r)

(8)

The functioning of this new version of the accountability decision module is
shown is Fig. 3.

Moving on to calculating the sanction’s value, it is the same as in Eq. (6).
Nevertheless, when the ACP is not GDPR compliant, the sanctions will be set
according to the GDPR, that is 4% of the total global annual turnover or 20
million euros, whichever is the higher. The GDPR’s fine is normally imposed
by authorities on the company. However, the organization can also charge the

340 F. Dernaika et al.

administrator, as he is the one representing it, and the value of the sanction is
normally made precise in a previously established agreement.

Fig. 3. Accountability decision module in case of an evolutive policy

3 Related Work

One of the first works to address the problematic of the a posteriori access control
was [7], where the authors proposed a language that allows agents to distribute
data with usage policies in a decentralized architecture. They designed a logic
that allows audited agents to prove their actions and authorization to possess
particular data. Moreover, they showed how this logic allows different kinds of
accountability (agent accountability and data accountability), and demonstrated
the soundness of this logic. Their vision of accountability is different than ours,
as for them an agent passes the accountability test if he provides proofs that rely
on a usage policy that is attached to the data and that specifies which actions
can be done to this data. In our proposal, we impose an obligation to the user to
justify his exceptional actions a posteriori, and the evaluation of accountability
is based on this justification.

Another work on the a posteriori access control was [11], where a logical
framework for a posteriori policy enforcement that combines trust management
and elements of audit logic was provided. Moreover, the a posteriori access con-
trol had a wide success in the healthcare domain. For instance, [8] outlined
the needed architecture to apply audit-based access control in electronic health
record systems. Other efforts in the medical domain were [2] and [3]. However,
none of these works proposed a solution for accountability.

Accountability in the A Posteriori Access Control 341

4 Conclusion and Future Work

In this paper, we proposed a framework for accountability in the a posteriori
access control. We showed how accountability can be seen as a requirement and
a mechanism, and how integrating the justification obligation in the process can
increase the probability and the severity of sanctions.

This current work highlights many insights that should be treated in the
future. First, our accountability framework considers that the violations are
already detected. As the investigations are usually done by analyzing multi-
ple logs and correlating them, it might be hard sometimes to detect violations
especially when we cannot find all the needed attributes that are defined in the
security policy. Thus, it is interesting to provide an accountability solution when
the violation is indecisive. Moreover, in our accountability framework, we con-
sidered both cases in which the expression of the security policy can be static
or subject to changes using an administrative model. Nevertheless, we did not
take into consideration the evolution of the exception policy that can also change
depending on the context. For instance, in case of a crisis, access permissions
are updated assuring the validity of a higher number of justifications [19]. In
fact, finding valid justifications when treating the violations a posteriori would
allow us to enrich and contextualize the exception policy. Therefore, we would
like to treat the changes of this policy along this contextualization process that
will influence the applicability of sanctions.

Acknowledgments. This research is funded by Be-ys Research, Meyrin 123, c/o BDO
SA, 1219 Châtelaine, GENEVE, a mark of the group be-ys dedicated to research and
innovation.

References

1. Alves, S., Fernández, M.: A framework for the analysis of access control policies
with emergency management. Electron. Notes Theor. Comput. Sci. 312, 89–105
(2015)

2. Azkia, H., Cuppens-Boulahia, N., Cuppens, F., Coatrieux, G.: Reconciling IHE-
ATNA profile with a posteriori contextual access and usage control policy in health-
care environment. In: 2010 Sixth International Conference on Information Assur-
ance and Security, pp. 197–203. IEEE (2010)

3. Azkia, H., Cuppens-Boulahia, N., Cuppens, F., Coatrieux, G.: Ontology based log
content extraction engine for a posteriori security control. Stud. Health Technol.
Inform. 180, 746–750 (2012)

4. Bartolini, C., Daoudagh, S., Lenzini, G., Marchetti, E.: Towards a lawful autho-
rized access: a preliminary GDPR-based authorized access. In: 14th International
Conference on Software Technologies (ICSOFT 2019), Prague, Czech Republic, pp.
26–28 (2019)

5. Byun, J.W., Li, N.: Purpose based access control for privacy protection in relational
database systems. VLDB J. 17(4), 603–619 (2008)

6. Cholvy, L., Cuppens, F., Saurel, C.: Towards a logical formalization of responsibil-
ity. In: Proceedings of the 6th International Conference on Artificial Intelligence
and Law, pp. 233–242 (1997)

342 F. Dernaika et al.

7. Corin, R., Etalle, S., den Hartog, J., Lenzini, G., Staicu, I.: A logic for auditing
accountability in decentralized systems. In: Dimitrakos, T., Martinelli, F. (eds.)
Formal Aspects in Security and Trust. IIFIP, vol. 173, pp. 187–201. Springer,
Boston, MA (2005). https://doi.org/10.1007/0-387-24098-5 14

8. Dekker, M.A.C., Etalle, S.: Audit-based access control for electronic health records.
Electron. Notes Theor. Comput. Sci. 168, 221–236 (2007)

9. El Kalam, A.A., et al.: Or-bac: un modèle de contrôle d’accès basé sur les organi-
sations. Cahiers francophones de la recherche en sécurité de l’information 1, 30–43
(2003)

10. Essaouini, N., Cuppens, F., Cuppens-Boulahia, N., El Kalam, A.A.: Specifying and
enforcing constraints in dynamic access control policies. In: 2014 Twelfth Annual
International Conference on Privacy, Security and Trust, pp. 290–297. IEEE (2014)

11. Etalle, S., Winsborough, W.H.: A posteriori compliance control categories and
subject descriptors, pp. 11–20 (2007)

12. Feigenbaum, J.: Accountability as a driver of innovative privacy solutions. In: Pri-
vacy and Innovation Symposium (2010)

13. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): features
and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241–48 (1995)

14. Friesen, L.: Certainty of punishment versus severity of punishment: an experimental
investigation. South. Econ. J. 79(2), 399–421 (2012)

15. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST special publication 800-162 (2013)

16. Jouini, M., Rabai, L.B.A., Aissa, A.B.: Classification of security threats in infor-
mation systems. ANT/SEIT 32, 489–496 (2014)

17. Lampson, B.: Accountability and freedom. In: Cambridge Computer Seminar,
Cambridge, UK, pp. 1–26 (2005)

18. Shalvi, S., Eldar, O., Bereby-Meyer, Y.: Honesty requires time (and lack of justi-
fications). Psychol. Sci. 23(10), 1264–1270 (2012)

19. Smari, W.W., Clemente, P., Lalande, J.F.: An extended attribute based access con-
trol model with trust and privacy: application to a collaborative crisis management
system. Future Gener. Comput. Syst. 31, 147–168 (2014)

20. Vance, A., Lowry, P.B., Eggett, D.: Using accountability to reduce access policy
violations in information systems. J. Manag. Inf. Syst. 29(4), 263–290 (2013)

21. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation
(GDPR). A Practical Guide. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-57959-7

https://doi.org/10.1007/0-387-24098-5_14
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1007/978-3-319-57959-7

Secure Agile Software Development:
Policies and Practices for Agile Teams

Carlos Magnum M. Bezerra1,2 , Suzana C. B. Sampaio2(B) ,
and Marcelo L. M. Marinho2

1 Tempest Security Intelligence, Recife, Brazil
carlos.bezerra@tempest.com.br

2 Department of Computer Science (DC),
Federal Rural University of Pernambuco (UFRPE), Recife, PE, Brazil

{suzana.sampaio,marcelo.marinho}@ufrpe.br

Abstract. In recent years there has been a significant shift from tradi-
tional development towards agile. Agile adoption has been reported to
result in more efficient and productive projects. Information security is
becoming an important entity for most organizations. Cyber security has
been a major concern in the digital world. However, despite its impor-
tance, agile methodologies hardly address the security requirements. In
result, many security problems have been exposed in recent years, often
leading to financial and social losses. As software is one of the compu-
tational assets most exposed to security threats, it is imperative that
its development process includes special attention to security require-
ments. In this scenario, the need arises to include safety practices in the
daily life of agile teams. In this paper, we highlight a security policies
that presents practices suitable for agile teams. In order to do that this
study (a) synthesizes the extant literature in this domain; (b) prioritizes
the agile security practices; (c) groups these practices in policies based
on the results of a workshop in a cyber security company (d) evaluates
the policies based on security and agile specialist assessment; and (e)
considering the feedback, presents the final security policies for software
development agile teams.

Keywords: Software security · Security · Secure software
development · Agile · Secure software development policies · Agile
methodologies

1 Introduction

Nowadays, organizations are looking for methods that meet their needs to adapt
to complex environments and successive changes [37]. In order to deliver software
products more efficiently and with greater value to the customer, many Software
Development (SD) companies have migrated to Agile Methodologies (AM), such
as: Scrum and XP. Therefore, the AM became the most noticeable change in
SD world and are the most used methodologies among the Software Projects
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 343–357, 2020.
https://doi.org/10.1007/978-3-030-58793-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_28&domain=pdf
http://orcid.org/0000-0002-0794-2688
http://orcid.org/0000-0001-6890-2914
http://orcid.org/0000-0001-9575-8161
https://doi.org/10.1007/978-3-030-58793-2_28

344 C. M. M. Bezerra et al.

worldwide [1]. However, the use of these methodologies imposes some limitations
in the inclusion of security activities [5,6,29,39,40].

Several security flaws are due to the lack of security activities during the SD
process [22]. Cybernetic attacks aims on obtaining confidential data, hiding valu-
able information in some way, retaliating against government or private initiative
actions or, in some cases, on the simple pleasure of fulfilling overcoming a chal-
lenge of invading computer systems. Whatever are the intentions, these attacks
always generate financial or other damages, therefore, currently, the search for
computational security is growing [12]. Several initiatives can demonstrate the
growth of these concerns, Google Project Zero [33], The Open Web Application
Security Project (OWASP) [31] and the data protection laws, such LGPD [26]
from Brazil and GPDR [21] from European Union.

Developing software with security attributes, as a way to prevent attacks, is
essential [19]. The growing need for software security and the adoption of AM
as a way to develop software efficiently, raise questions regarding the integration
of these two concepts. Reconciling these two worlds in the development process
is a research problem for several studies [2,5,7,11,19,29,30,35,39].

In this context, it is possible to establish the need to research ways to include
security activities in agile processes and teams. Bansal and Jolly [40] highlights
the lack of security requirements integrated view in agile practices. Authors,
such as [7] and [14] depict the importance of integrating security practices into
SD process, but not just as an isolated action. From these perspectives, it is
urgent to look for ways to integrate the agile development model and the security
practices and policies. Therefore, this study aims to address this gap on agile
security practices and policies. This study contributes to the current literature
in three ways: (i) by presenting a synthesis of identified security practices for
agile SD; (ii) providing security policies with practical practices and security
attributes for agile teams; (iii) by providing assistance to agile teams looking to
enhance their security practices.

The rest of the paper is organized as follows: Sect. 2 presents the theoreti-
cal background. Section 3 provides an overview of the methodological approach.
Section 4 describes our proposal, detailing the policies and its practices. Section 5
evaluates such proposal and discusses the findings. At last, Sect. 6 reports final
considerations, limitations and future works.

2 Theoretical Background

2.1 Agile Methodologies

Due to the complex corporate environments, agility has become a necessary con-
dition for obtaining a competitive market advantage in the market [37], and the
number of software development companies adopting these methods continues
to grow [16,37]. Several frameworks were created based on this concept such
as Scrum [38] and XP [9]. Elements from these methodologies are covered dur-
ing this research such as Product Backlog (List of all known requirements of
the projects [38]), Pair Programming (methods that allows two developers to

Secure Agile Software Development 345

implement, in a collaborative manner, a project activity [3]), Planning Poker
(estimation “game” in which the team reaches a consensus over a complexity
value to User Stories [3]), among others.

2.2 Secure Software Development

Cyber security is a collection of tools, policies, concepts, guidelines, risk manage-
ment, actions, training, practices, and technologies that can be used to protect
users’ environments, organization and assets [41]. Security is intended to guaran-
tee maintenance of the organization’s computational properties and user assets
against relevant risks, present on the internet. For this, it is necessary to guar-
antee three main attributes: confidentiality, integrity and availability [41]. Con-
fidentiality is a property that guarantees the absence of unwanted information
disclosure [7]. The integrity attribute ensures that there will be no unautho-
rized changes [7]. And availability is associated with the service and information
readiness and punctuality provided by the system [7].

Security must be considered a critical non-functional requirement, which
needs to be fully incorporated by the development methodologies [40]. Lack of
security requirements [40], technical implementation failures, lack of security val-
idation [19] and lack of experience and care with security [14], are a few aspects
problems in a mindset that does not include security requirements.

The secure development process is the main means, for implementing security
practices [30]. The secure SD cycle includes the training, requirements, planning,
implementation, verification, delivery and response processes [36]. Each of these
processes must contain its security-related practices. Among those known secu-
rity process presented by organizations in the market are: Microsoft Security
Development Lifecycle (MSDL) [27], the Comprehensive, Lightweight Applica-
tion Security Process (CLASP) of The Open Web Application Security Project
(OWASP) [18]. Although not all processes practices are suitable for agile teams.
Despite all the counterpoints, adapting security practices to the agile world is
an important task. Next section analyses related studies conducted in this area.

2.3 Related Works

Many studies [2,5,30] point to a lack of support for security activities in the agile
development. Some are quantitative studies [5,6], to evaluate security practices
for SD in agile environments and propose a new agile process for secure develop-
ment [5]. Other to assess compatibility of security practices with agile character-
istics [6]. A few studies focus only in one process, such as [35], that demonstrates
how to integrate security requirements in agile processes, and [40] that presents
a systematic analysis of approaches to add security to the requirements process,
within agile methodologies.

[7] presents practices that contribute to improving the agile SD process from
the security point of view. For each practice, a description and its benefits were
presented. Our study differentiates from theirs for adding the opinion and voice

346 C. M. M. Bezerra et al.

from specialist not only to prioritise the practices but to group them into policies
to support the secure and agile SD.

An integration analysis of agile development process and security-related
activities, based on quantitative metrics to conclude which security activities
are better to integrate in AD, is presented by [23] and [34]. Unlike those papers,
our work, presents the qualitative point of view of the presented practices.

[11] seeks to demonstrate if security practices inclusion in software projects
are compatible with AM. The author focus only in security practices from the
traditional world and mindset and the practices are not presented or discussed.
At last, [29] conducts six interviews in organizations that use agile methodologies.
As a result, the authors present an extension to agile methods, including security
activities. Our study goes further and enrich the possibilities by adding security
specialist and security-agile specialist’s point of view.

As seen, several studies address the inclusion of security activities in agile
methodologies. Many of these, argue that much still needs to be studied in order
to find a balance between safety and agility. Moreover, many focus only on the
agile point of view. Aiming on filling this gap, this work explores the practices
from these studies, to compose policies able to demonstrate how, when and who
should apply them considering the life cycle of an agile project.

3 Methodological Approach

This Section explains the research approach presented in Fig. 1.

Fig. 1. Research approach

3.1 Literature Review

This study applied an exploratory approach [25] to obtain an understanding of
the problem. Although exploratory, steps from Kitchenham and Charters’ guide-
lines on a systematic literature review, as explained by [24] was used to allow the
replication of the study. The review aimed on assessing security practices to be
included in agile software projects. Therefore, the research question addressed
by this review was “What are the security practices used by agile teams?”.

The inclusion criteria included: (i) The publication year must be equal or
higher to 2010; (ii) The paper must be written in English; (iii) Must be published

Secure Agile Software Development 347

in journals and peer-reviewed conferences; and (iv) Must be directly related
to the research questions. This process used five search engines: IEEE Xplore
Digital Library, Springer Link, Science Direct and Google Scholar. In addition,
the search process were performed using the following search string: (“Secu-
rity” AND “Development” AND “Agile” AND (“Lifecycle” OR “Process”) AND
(“Practices” OR “Policies” OR “Challenges” OR “Factors”)).

First all title and abstracts of all articles were read, in a second moment, for
the remaining set of papers introduction and conclusion. At last, the remaining
papers that answered the research question were read. After evaluating these
articles, all practices were mapped, resulting in a total of 99 practices. Although,
there was duplication, similarities and practices with the same goal. Therefore,
the repetition were removed and similar practices were grouped, reducing to 43
(forty-three) practices discussed briefly in the next section.

3.2 Practices Prioritisation and Workshop with Specialists

In order to focus on the most relevant ones, practices with less than 3 citations
were excluded. Twelve practices were excluded, among them Identify Vulnerabili-
ties, Verify and Validate the security and Define and use cryptography standards.
After that, thirty-one practices were analysed using workshops with specialists.

The workshop section was conducted with an agile SD team from a com-
pany specialized in cyber security, based in Recife-Brazil. This process sought
to answer: (Q1) Can these practices be related to agile methodologies?; (Q2) Is
it possible to group one or more of these practices? (Q3) How important is the
application of the practice for secure software development? and (Q4) At what
development stage should these practices be incorporated?

Based on the workshop’s feedback, fourteen practices were prioritized. Fif-
teen practices were excluded for not offering enough benefit for agile teams,
among them: Countermeasure Graphs, Define and Monitor Metrics, Incident
Plan, Define and use cryptography standards and Threat Modelling. The prac-
tice Prioritizing Security Risk was grouped with Protection Poker and Risk
Analysis, and Security Master was considered a role, not a practice.

At last, the practices were grouped by software development phase and five
policies for secure and agile software development were created.

3.3 Policy Evaluation

The last evaluation aims on presenting policies and its practices to users in
order to confirm their effectiveness, regarding security gains for agile teams.
Ten interviews were conducted with security experts, agile team developers with
security experience and experts in agile methods. Each policy was presented
in order to answer the following questions: (i) Do you think it is possible to
apply this policy to agile teams? If so, how?, (ii) Do the aggregated practices
make sense in relation to the description and objectives of the policy? (iii) Which
challenges and restrictions do you see regarding the policy’s use?, and (iv) Would
you include any other practices in this policy? Why?.

348 C. M. M. Bezerra et al.

Finally, based on the feedback, the policies were adjusted and concluded.

4 Security Policies for Agile Teams

This section presents a short version of the five policies for secure SD in agile
teams. The policies considered literature review and feedback from both agile
and security specialists. For each policy, its description, practices and how to
implement them and a few supporting references are given.

4.1 Security Readiness Policy

The main goal of this policy is to raise agile team awareness about the relevant
characteristics of information security, to empower them, to share skills and
spread security knowledge among the teams members.

Provide Security Training aims to prepare and educate agile team mem-
bers on the importance of safety. During training, it is essential to address topics
such as privacy policy, major attacks, defense strategies and threat modeling.

How to apply it: There are several ways to apply this training, such as online
training platforms and to hire specialists to promote these training within the
project environment. The best time to introduce the training is at the beginning
of the project and update periodically to contribute to excellence and technical
awareness [7]. In addition, new team members must conduct basic safety training.
Related works: [6,8,18,22,29,30,32,34,36,40].

Incentive Security Research establish and promote practices to encourage
research related to security. Many new vulnerabilities are discovered over time, so
the team need to be up to date on new forms of attack and protection measures.

How to apply it: Research can happen in several ways, such as: searches on
specialized portals, such as those at OWASP and Microsoft Technical Blog; chan-
nels for updating languages, tools, operating systems and others (Microsoft Secu-
rity Response Center, Golang Blog); social security discussion forums; database
of vulnerabilities CVE Details, Exploits Database. There is no specific time to
develop security research. It is possible to determine periods in which individ-
uals carry out research work or to include activity in the project cycle to meet
specific demands. Related works: [7,20,30,40,43].

4.2 Security Requirements Policy

Defining security requirements, in a clear, objective and consistent way is very
important to develop a secure software. Mapping project security needs reduces
the possibility to disregarding them. Adopting practices like Security Backlog
and Evil User Stories support agile team to map security activities. Moreover,
it will be possible to state, which security mechanisms have been implemented.

Define Security Requirements aims to identify security-related features,
expressed explicitly, within a software project [5,17]. It is necessary to ensure

Secure Agile Software Development 349

that these requirements are not put aside, due to the focus on functional require-
ments, so that they are included in the effort necessary to develop the application
[14,18,22,35].

How to apply it: In order to apply, the team should help the client understand
and define security requirements for the project. Known vulnerabilities can help
in this task, such requirements that the client may not be aware of existence
or importance [43]. These requirements should be updated and revised every
cycle to reflect changes that occur naturally in the agile project cycle and also
to consider changes in threat scenarios [14,27,35]. Related works: [6–8,13,20,22,
28,29,32,34,36,39,40].

Security Backlog should contain the list of activities related to the security
items pointed out [7,29], and should have all security. This Backlog does not
necessarily have to be separate from the Product Backlog.

How to apply it: It should follow the same operating modes as Product Back-
log, which is already widespread in agile teams. Whether or not to separate
security activities should be a decision of Product Owner and the team, accord-
ing to the needs of the project. It should be raised and updated with each project
requirements definition cycle. However, there is nothing to prevent new items
from being added, discussed, and prioritized in other moments, to implemented
in the following cycles. Related works: [4,40].

Evil User Stories describe security threats scenarios, demonstrating how
the system can be affected by attackers [5]. The main objective is to based on
the Security Backlog, stress the possibilities of threat scenarios in order to detect
possible system vulnerabilities and weaknesses that can be exploited [5,7].

How to apply it: The Evil User Stories should be documented, much like
User Stories [7]. But, it is necessary that those who write them have a good
knowledge of security to get as close as possible to real attack scenarios. These
artifacts must be defined in parallel with the items in the Product Backlog and
Security Backlog, during the iterative cycles of the project. Related works: [8,13–
15,28,29,35,40,44].

4.3 Security Design and Planning Policy

Often security problems are inserted into the project due to design and plan-
ning errors, such as not evaluating risks associated with functional requirements.
During the planning and design phases, special care with architecture, risk anal-
ysis and monitoring of the project, is necessary in order to avoid security flaws.
Challenges: The main challenge mentioned for agile teams is the time and cost
restrictions imposed by some of the practices. In addition, conducting train-
ing with the entire team, in order to raise the level of expertise to a sufficient
parameter for the application of this policy, can also be seen as a challenge.

Protection Poker is based on Planning Poker and it is intended to help
prioritize development activities according to the security risk associated with
them. In Protection Poker the higher the value given, the greater the associated
security risk [7]. This practice is a collaborative way to guide the prioritization
of project security requirements [44].

350 C. M. M. Bezerra et al.

How to apply it: As in the Planning Poker, the activity to be voted is
explained to everyone present. Then, a round of discussion precedes the scores.
Next, everyone scores the activity, and this steps must be repeated a few times.
The final score is defined based on the consensus among all, is the risk associ-
ated with that activity [44]. It should be conducted during the planning sessions
for the next development cycle, including activities selected for implementation.
Related works: [14,40].

In Perform Risk Analysis, the agile team analyzes the security risks based
on the requirements. This is captured in the Risk Assessment Document, which
is refined in subsequent iterations [5]. It can also be added to a canvas, or digital
board available for the team.

How to apply it: During development iterations, there must be micro itera-
tions of risk assessment, treatment and acceptance. However, in the initial phase
of the project, the team will demand more accuracy in this analysis. Its outputs
must update security requirements [20]. Related works: [17,29,39].

Establish Security Design Requirements deals with designing regarding
security. Thus, includes activities to help requirements implementation in a safe
manner. In many cases, the security features selection has proved so complicated
that the design or implementation choices have likely resulted in vulnerabilities.
Therefore, it is important that they are applied consistently and with a consistent
understanding of the protection they provide [27].

How to apply it: In the first iterations an initial architecture must be defined.
The architect goes through the list of initial product requirements and tries to
discover the necessary architectural security features. It is important that the
chosen architecture does not impose restrictions on possible security features
that may be needed later. In addition to a general architecture decision, during
the first iterations, whenever requirements for software are raised, the team will
have to talk about these decisions, especially those that involve greater risk, as
assessed [29]. Related works: [5,13,32,36].

4.4 Security Implementation Policy

Many developers are not aware of the correct way to implement certain features
in order to avoid security breaches [22]. In order to add mechanisms that avoid
problems of this type, this policy proposes practices that help developers to
avoid, identify and correct these flaws, even in the implementation phase.

Security Coding Rules must be established in order to avoid the most
common mistakes in this process, focusing on good practices related to software
security. These rules should specify some important aspects, such as handling
user input, avoiding the use of obsolete functions, using cryptography standards
and care when using third party software and libraries [5,27,29].

How to apply it: Many rules can be listed through training and research, as
noted in the Readiness Policy. Besides, programming guides and other practices
cited in the literature can also help to define standards such as the definition and
use of encryption standards and approved tools [5,27,36]. These rules must be

Secure Agile Software Development 351

followed throughout the implementation process, in particular, for items associ-
ated with high risks. Related works: [6,8,13,18,28,32].

Security Code Review allows the team members to observe possible secu-
rity problems during code review. Including safety precautions in this process,
it will be possible to prevent known failures from being perpetuated during the
implementation phase [10]. The review also help to distribute security skills,
since you give and receive feedback.

How to apply it: Tools help to make the developed code available for review
and allow to indicate the desired reviewers. Reviewers who have experience in
security contributes to a better result. After the review, the person responsible
for the code turns to the comments and solves the problems pointed out. This
practice should be applied throughout the implementation phase of software.
Related works: [5,15,30,32,39,40].

Pair Programming it is an agile concept that defines the situation where
developers code in pairs, solving and revising problems together, while the code
is written [5]. This practice can encourage team members with more security
experience to pass on their knowledge. Besides, this practice can shape the pro-
fessional’s mentality, so that he/she seeks more and more for security practices.

How to apply it: Two team members implement one activity in a cooperative
way throughout the sprint or development cycle. It is useful not only for stories
with high risk associate but to empower a new team member, it is useful for all
evil stories. Related works: [14,32].

4.5 Security Testing Policy

Well-performed specialized tests can expose not sufficiently secure code. Written
automated tests, in theory, prove that safety items have been considered and
implemented. The use of static code analysis tools can unveil common program-
ming errors and possible problems, even during development [29].

Security Automated Testing takes advantage of automatic tests imple-
mentation and include validation of security-related features. By having security-
related checks, it is possible to state that code developed to provide security will
not be distorted in future changes and corrections made should not happen again
and fixed vulnerabilities should not happen again [29].

How to apply it: Most, if not all, programming languages have their own
automated test modules, in addition, there are several libraries for this purpose.
When writing automated tests for security, you should ensure that you imple-
ment as many scenarios as possible and that they are as close as possible to real
world scenarios. During the sprint, in parallel to code development, the related
test code should be implemented [29]. Related works: [8,20,28,34].

Security Code Analysis ensures that the code is analyzed by tools, looking
for security holes in order to validate the implemented software security [5].
This practice basically consists on three verification methodologies: Static Code
Analysis, Dynamic Code Analysis and Fuzzy Testing.

How to apply it: There are tools to perform the verification of each of the
methodologies cited above, they just need to be configured correctly. OWASP

352 C. M. M. Bezerra et al.

maintains a list of tools for this purpose, [42]. The configuration of the code
verification tools must be performed in the first iterations of the project [15].
Once they are configured, the team must find the best time to execute them.
Related works: [6,7,12,13,18,20,22,28–30,32,34,36].

Security Specialized Testing Apply tests performed by security experts,
will ensure that most of existing security flaws will be raised [29]. Their expertise
and attacker’s mindset, allow them to find flaws ignored or inserted during the
development process [22].

How to apply it: Specialized tests usually requires security experts availabil-
ity. Therefore, one of the ways to apply this approach is to hire a company or
independent professionals that offer this service. In more critical scenarios, an
team of these professionals can be hired to carry out this task. However, it might
be a non available configuration. So, using those tests only during an applica-
tion launch, or before each major release, which includes several new features
[15] could be an option. Related works: [5,6,18,20,30,32,34].

5 Evaluation and Discussion

This section discusses the feedback from 10 (ten) practitioners. Table 1 depicts
interviewees’ profile, current role and experience in SD, agile and cyber security.

Table 1. Interviewee profile

ID Current role Exp. Agile exp. Cyber security exp.

E1 Sw Developer Over 16 Over 10 Over 3

E2 Security Consultant 9 1 7

E3 Software Engineer 14 9 2

E4 Software Engineer 21 12 2

E5 Software Engineer 8 8 8

E6 Cyber Security Analyst 21 0 9

E7 Cyber Security Analyst 5 0 5

E8 Team Leader 12 12 7

E9 Software Engineer Over 15 6 10

E10 Software Engineer 9 9 6

The lack of experience is one of the main factors that influences the lack of
secure SD projects. Dealing with security aspects is vital for the secure SD (E7).
The Security readiness policy was considered essential to enable the change in
the team security mentality (E4, E5), leading to an effective decrease in security
breaches (E2). This policy does not take a lot of time, and educates agile teams
members to deal with security aspects (E8).

Secure Agile Software Development 353

Regarding Research practice, some reservations were raised. The team may
not be prepared to perform this activity even after training. Research can con-
sume project time, if it is not well directed, and can become a flawed investment.
According to E7, “It must have a very specific focus, such as new defense ways,
tools” in order to bring the expected result. However, it has been demonstrated
that there are associated benefits and keeping the team up to date is one of
them. Interviewee E10 stated that consuming material on safety in the team’s
daily life can help to engage professionals in this practice.

Security requirements mapping gives visibility, both to the team and the
client (E8). Although, there is a time restriction (E1, E10) and performing these
activities within teams with little security experience is a challenge (E1). The
Security Backlog can be a good way to keep developers aware of what security
stories will be implemented (E3). The use of Evil User Stories will be a challenge,
since an attacker mentality is necessary to write them, a characteristic that
is hardly present in developers. “The team could struggle to write Evil User
Stories” (E2, E6), “there is a lack of attack knowledge” (E4), or “lack of attack
mindset generating fewer and insufficient scenarios” (E10). The expert advice or
a security role on the team could mitigate this problem.

The applicability of Security Design and Planning Policy is threaten by com-
plex and time consuming characteristics of security and risk analysis practice.
According to E10, “Establishing security design at the beginning of the project
is essential, since they are the foundation for SD to remain secure and to fasten
security requirements integration”. Furthermore, no definitive impediment for
the agile world was raised, although it will demand adaptation. Further more,
there was no doubts on its relevance and benefits.

Security Implementation showed the biggest acceptance. All interviewee
agree that it brings great value for a secure and agile SD. It is easy to adopt
within agile teams, mainly because there is already ceremonies to deal with it.
Among the practices, Pair Programming is seen as having an extra advantage
of perpetuating knowledge within the team (E6), in addition to helping in the
development of more complex security requirements (E2, E10). And in some
way, “They are already practiced, in most agile teams” (E2, E9).

Finally, Security Test was the most cherished policy. “Specialized tests are
essential to find more complex threat scenarios, however, it demands time and
resources for project development” (E6). Although there are free tools, it is also
a consensus that Security Code Analysis and Security Specialized Testing will
face restrictions due to lack of financial resources to either acquire a tool, or
specif training or consultant to train the team. Moreover, the benefit for agile
teams during SD projects are obvious and overcomes the constraints.

The results obtained shows that Security Readiness Policy, Security Imple-
mentation Policy are more coherent, ready and suitable for agile teams. Within
the Security Test Policy aside from the Security Specialized Testing that
demands a great cost and time, is a mandatory policy, ready to be used by agile
teams. These three policies were better accepted by all specialists. All opinions

354 C. M. M. Bezerra et al.

converge to confirm that despite some reservations, it is plausible to incorporate
these policies in the agile development process.

6 Final Considerations

The need to integrate agile methodologies and security requirements is still an
open problem. This being mainly caused due to the fact that security activities
were mostly conceived from the traditional model of software development. This
leads to several challenges, which are mainly linked to the differences between
these models. This research contributes to partially fill this gap, presenting poli-
cies that allow secure development within the agile world.

This work proposes 5 (five) security policies for agile teams: (I) Security
Readiness Policy, (II) Security Requirements Policy, (III) Security Design and
Planning Policy, (IV) Security Implementation Policy and (V) Security Test
Policy. Each of them, adds a subset of practices brought from the literature
review, and prioritised through a preliminary assessment with a group of experts.
At last, specialists that were also users of many of these practices, contribute to
evaluate the effectiveness regarding security gains for agile teams.

Furthermore, it was possible to observe two crucial needs for secure agile
software development: to meet the team’s training needs and to make available
project time, space in the process for security-related activities. Another issue
that arose from the interviews was that the developer’s mindset is focused on how
to protect the product, this can cause many attack scenarios to go unnoticed.
Moreover, in order to use these policies there is a need to at least one specialist
in security to spread the knowledge. Besides, lessons learned and known attacks
could help the creation of security requirements and test scenarios. In the design
context, there are other practices that could be added in this process, however,
they would cause overload, reducing agility. In addition, as mentioned by E5,
“totally safe, it is virtually impossible to reach”. However, preparing the team
is the best way to start dealing with security.

Even though some steps from systematic review was followed, some important
articles may have gone unnoticed, this may lead to the incompleteness set of the
practices. The interviewees profile diversity and number may have not been
sufficient to make a complete analysis of the proposed policies. In order to fill
the need of a secure development in the global world and to address the cyber
security issues within the increasing number of agile teams. We propose the
following future work: to conduct a multinational work on security practices
in agile teams; elaborate a survey to analyse a quantitative study; to carry
out an analysis of Threat Modeling practice and its application in the agile
world; to conduct a empirical case study to analyse cost, effort, and return of
investment when adopting these security policies within agile teams; at last to
further analyse security scenarios in agile teams and evaluate time restrictions
for the inclusion of security practices in agile projects.

Secure Agile Software Development 355

References

1. 13th annual state of agile development survey. https://explore.versionone.com/
state-of-agile/13th-annual-state-of-agile-report. Accessed 01 Dec 2019

2. Adelyar, S.H., Norta, A.: Towards a secure agile software development process. In:
10th International Conference on the Quality of Information and Communications
Technology (QUATIC), pp. 101–106. IEEE (2016)

3. Agile Alliance (2019). https://www.agilealliance.org/. Accessed 28 Nov 2019
4. Azham, Z., Ghani, I., Ithnin, N.: Security backlog in scrum security practices. In:

Malaysian Conference in Software Engineering, pp. 414–417. IEEE (2011)
5. Baca, D., Carlsson, B.: Agile development with security engineering activities. In:

International Conference on Software and Systems Process, pp. 149–158. ACM
(2011)

6. Bansal, S.K., Jolly, A.: An encyclopedic approach for realization of security activ-
ities with agile methodologies. In: 5th International Conference - Confluence The
Next Generation Information Technology Summit (Confluence), pp. 767–772. IEEE
(2014)

7. Barbosa, D.A., Sampaio, S.: Guide to the support for the enhancement of security
measures in agile projects. In: 2015 6th Brazilian Workshop on Agile Methods
(WBMA), pp. 25–31. IEEE (2015)

8. Bartsch, S.: Practitioners’ perspectives on security in agile development. In: 6th
International Conference on Availability, Reliability and Security, pp. 479–484.
IEEE (2011)

9. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (2000)

10. Bernhart, M., Mauczka, A., Grechenig, T.: Adopting code reviews for agile software
development. In: Agile Conference, pp. 44–47. IEEE (2010)

11. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Workshop on
New Security paradigms, pp. 47–54. ACM (2004)

12. Bodden, E.: State of the systems security. In: 40th International Conference on
Software Engineering: Companion Proceedings, pp. 550–551. ACM (2018)

13. Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., Kruchten, P.: Extending XP
practices to support security requirements engineering. In: International Workshop
on Software Engineering for Secure Systems, pp. 11–18. ACM (2006)

14. Bowen, J.P., Hinchey, M., Janicke, H., Ward, M., Zedan, H.: Formality, agility,
security, and evolution in software development. Computer 47(10), 86–89 (2014)

15. Chóliz, J., Vilas, J., Moreira, J.: Independent security testing on agile software
development: a case study in a software company. In: 10th International Conference
on Availability, Reliability and Security, pp. 522–531. IEEE (2015)

16. Choudhary, B., Rakesh, S.K.: An approach using agile method for software develop-
ment. In: International Conference on Innovation and Challenges in Cyber Security
(ICICCS-INBUSH), pp. 155–158. IEEE (2016)

17. Common Criteria (2019). https://www.commoncriteriaportal.org/. Accessed 19
Nov 2019

18. Comprehensive Lightweight Application Security Process (CLASP) (2019).
https://www.owasp.org/index.php/CLASP Concepts. Accessed 19 Nov 2019

19. Essafi, M., Labed, L., Ghezala, H.B.: Towards a comprehensive view of secure soft-
ware engineering. In: The International Conference on Emerging Security Informa-
tion, Systems, and Technologies, pp. 181–186. IEEE (2007)

https://explore.versionone.com/state-of-agile/13th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/13th-annual-state-of-agile-report
https://www.agilealliance.org/
https://www.commoncriteriaportal.org/
https://www.owasp.org/index.php/CLASP_Concepts

356 C. M. M. Bezerra et al.

20. Franqueira, V.N., Bakalova, Z., Tun, T.T., Daneva, M.: Towards agile security risk
management in re and beyond. In: Workshop on Empirical Requirements Engi-
neering (EmpiRE 2011), pp. 33–36. IEEE (2011)

21. General Data Protection Regulation (GDPR) (2018). https://gdpr-info.eu/.
Accessed 23 Nov 2019

22. Kanniah, S.L., Mahrin, M.N.: A review on factors influencing implementation of
secure software development practices. Int. J. Comput. Syst. Eng. 10(8), 3032–3039
(2016)

23. Keramati, H., Mirian-Hosseinabadi, S.H.: Integrating software development secu-
rity activities with agile methodologies. In: International Conference on Computer
Systems and Applications, pp. 749–754. IEEE/ACS (2008)

24. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical report, EBSE Technical Report EBSE-
2007-01 (2007)

25. Kothari, C.R.: Research Methodology: Methods and Techniques. New Age Inter-
national (2004)

26. Lei geral de proteção a dados (LGPD) (2019). http://www.planal-to.gov.br/ccivil
03/ ato2015-2018/2018/lei/L13709.htm. Accessed 23 Nov 2019

27. Microsoft Secure Development Lifecycle (2019). https://www.microsoft.com/en-
us/securityengineering/sdl/practices. Accessed 19 Nov 2019

28. Munetoh, S., Yoshioka, N.: RAILROADMAP: an agile security testing framework
for web-application development. In: 6th International Conference on Software
Testing, Verification and Validation, pp. 491–492. IEEE (2013)

29. Nicolaysen, T., Sasson, R., Line, M.B., Jaatun, M.G.: Agile software development:
the straight and narrow path to secure software? Int. J. Secure Softw. Eng. (IJSSE)
1(3), 71–85 (2010)

30. Oueslati, H., Rahman, M.M., ben Othmane, L.: Literature review of the challenges
of developing secure software using the agile approach. In: 10th International Con-
ference on Availability, Reliability and Security, pp. 540–547. IEEE (2015)

31. Open Web Application Security Project OWASP (2019). https://www.owasp.org/
index.php/Main Page. Accessed 23 Nov 2019

32. Oyetoyan, T.D., Cruzes, D.S., Jaatun, M.G.: An empirical study on the relationship
between software security skills, usage and training needs in agile settings. In: 11th
International Conference on Availability, Reliability and Security, pp. 548–555.
IEEE (2016)

33. Project zero (2019). https://googleprojectzero.blogspot.com/. Accessed 23 Nov
2019

34. Singhal, A.: Integration analysis of security activities from the perspective of agility.
In: Agile India, pp. 40–47. IEEE (2012)

35. Siponen, M., Baskerville, R., Kuivalainen, T.: Integrating security into agile devel-
opment methods. In: 38th Annual Hawaii International Conference on System Sci-
ences, pp. 185a–185a. IEEE (2005)

36. Sodanil, M., Quirchmayr, G., Porrawatpreyakorn, N., Tjoa, A.M.: A knowledge
transfer framework for secure coding practices. In: 12th International Joint Con-
ference on Computer Science and Software Engineering (JCSSE), pp. 120–125.
IEEE (2015)

37. Stoica, M., Mircea, M., Ghilic-Micu, B.: Software development: agile vs. traditional.
Informatica Economica 17(4) (2013)

38. Sutherland, J., Schwaber, K.: The definitive guide to scrum: the rules of the game.
Scrum.org 268 (2013)

https://gdpr-info.eu/
http://www.planal-to.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm
http://www.planal-to.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://googleprojectzero.blogspot.com/

Secure Agile Software Development 357

39. Terpstra, E., Daneva, M., Wang, C.: Agile practitioners’ understanding of secu-
rity requirements: insights from a grounded theory analysis. In: 25th International
Requirements Engineering Conference Workshops (REW), pp. 439–442. IEEE
(2017)

40. Villamizar, H., Kalinowski, M., Viana, M., Fernández, D.: A systematic mapping
study on security in agile requirements engineering. In: 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 454–461. IEEE
(2018)

41. Von Solms, R., Van Niekerk, J.: From information security to cyber security. Com-
put. Secur. 38, 97–102 (2013)

42. Vulnerability Scanning Tools (2001). https://www.owasp.org/index.php/Category:
Vulnerability Scanning Tools. Accessed 23 Nov 2019

43. Wang, W., Gupta, A., Niu, N.: Mining security requirements from common vul-
nerabilities and exposures for agile projects. In: 1st International Workshop on
Quality Requirements in Agile Projects (QuaRAP), pp. 6–9. IEEE (2018)

44. Williams, L., Meneely, A., Shipley, G.: Protection poker: the new software security
game. IEEE Secur. Priv. 8(3), 14–20 (2010)

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

A Privacy-By-Design Architecture
for Indoor Localization Systems

Paolo Barsocchi1 , Antonello Calabrò1 , Antonino Crivello1 ,
Said Daoudagh1,2(B) , Francesco Furfari1 , Michele Girolami1 ,

and Eda Marchetti1

1 CNR-ISTI, Pisa, Italy
{paolo.barsocchi,antonello.calabro,antonino.crivello,said.daoudagh,

francesco.furfari,michele.girolami,eda.marchetti}@isti.cnr.it
2 University of Pisa, Pisa, Italy

Abstract. The availability of mobile devices has led to an arising devel-
opment of indoor location services collecting a large amount of sensi-
tive information. However, without accurate and verified management,
such information could become severe back-doors for security and privacy
issues. We propose in this paper a novel Location-Based Service (LBS)
architecture in line with the GDPR’s provisions. For feasibility purposes
and considering a representative use-case, a reference implementation,
based on the popular Telegram app, is also presented.

Keywords: Access control systems · GDPR · Indoor Localization
Systems · Location-Based Services · Privacy-by-design

1 Introduction

The wide availability of mobile devices has led to an arising development of
(indoor/outdoor) Location-Based Services (LBSs) for improving users’ daily life
and works. More specifically, a high number of stakeholders are exploiting such
systems for providing commercial solutions, selling products, tracking facilities,
social apps, and services. Most of the previously cited systems are supposed to
acquire and store personal data such as IP address, the user’s localization and
the history of locations visited as well as a timestamp of such visits. As a result,
the final users disseminate kinds of digital crumbs that might potentially disclose
sensitive information without being aware of the actual risk.

Beyond Snowden [9] and the recent adoption in May 2018 of the General Data
Protection Regulation (GDPR) [7], people sensitiveness about personal privacy,
fortunately, has been increasing. However, in the context of Indoor Localization
Systems (ILSs), there is still the missing of a standardized reference architecture
that takes care of the security and privacy enforcement.

In this paper, we describe a novel LBS architecture in line with the GDPR
provisions, i.e., able to strengthen the rights of individuals over their personal
data and to make organizations more accountable regarding the regulation. The
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 358–366, 2020.
https://doi.org/10.1007/978-3-030-58793-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_29&domain=pdf
http://orcid.org/0000-0002-6862-7593
http://orcid.org/0000-0001-5502-303X
http://orcid.org/0000-0001-7238-2181
http://orcid.org/0000-0002-3073-6217
http://orcid.org/0000-0002-4957-828X
http://orcid.org/0000-0002-3683-7158
http://orcid.org/0000-0003-4223-8036
https://doi.org/10.1007/978-3-030-58793-2_29

A Privacy-By-Design Architecture for Indoor Localization Systems 359

provided solution relies on the innovative idea of integrating a GDPR-based
Access Control (AC) system inside the localization architecture. We argue that
the AC represents a promising technique for developing adequate and fine-
grained mechanisms taking into account legal requirements, such as the data
usage purpose, the management of the user’s consents as well as enforcing the
data retention period [4,17,18]. Thus, the main contribution of this paper is
to schematize an Indoor Localization System (ILS) reference architecture. We
define the purposes of the data management, the management of the user’s con-
sents, and the rights related to privacy and data protection correctly enforced
so as to guarantee the privacy-by-design GDPR compliance.

To the best of our knowledge, our solution is the first proposal that integrates
three key-aspects: i) the design of smart and easy-to-use ILS architecture, ii) the
use of access control systems for resource and data management inside localiza-
tion environment and, iii) the enforcement of the GDPR’s provisions inside the
localization systems.

This article is structured as follows: in the next section, an overview of back-
ground and related work is presented. Then, in Sect. 3 we describe the proposed
privacy-by-design solution, while in Sect. 4, we present an application example.
Finally, Sect. 5 concludes the paper.

2 Background and Related Work

In this section, we briefly describe the indoor localization, the GDPR, and the
AC basic knowledge and their related works.

Considering the ILSs, their main peculiarities are the positioning and local-
ization functionalities. Several proposals have been presented in the last decade
for ILSs, each one showing differences, in terms of methods and data sources.
Main ready to the market solutions are: IndoorAtlas1, Indoor Google Maps and
Anyplace [10]. Even if ILSs are a generally accepted cross-domain solution, they
still lack of a generic standard architecture and, more importantly, they are
agnostic about the privacy principles and exposed to the risk of location privacy
violation [14].

The GDPR [7] defines Personal Data as any information relating to an iden-
tified or identifiable natural person called Data Subject. That means that a data
subject is a Natural Person (a living human being), whose data are managed by
a Controller. The GDPR is applied to the processing of personal data, whether
it is automated (even partially) or not. It defines, among others, the following
principles and demands: Purposes, i.e., data should only be collected for deter-
mined, explicit and legitimate purposes, and should not be processed later for
other purposes; Accuracy, i.e., the processed data must be accurate and up-
to-date regularly; Retention, i.e., data must be deleted after a limited period;
Subject explicit consent, i.e., data may be collected and processed only if the
data subject has given his explicit consent.

1 https://www.indooratlas.com/.

https://www.indooratlas.com/

360 P. Barsocchi et al.

Concerning the design of the AC, it is usually implemented through Access
Control Mechanism (ACM), which is the system providing a decision to an
authorization request, typically based on predefined Access Control Policy
(ACP). The eXtensible Access Control Markup Language (XACML) [15] is one
of the most widely used AC languages, and it provides the reference architecture
in the AC environment. An XACML policy is a specific statement of what is
and is not allowed, on the basis of a set of rules. Rules are defined in terms of
conditions on attributes of subjects, resources, actions, and environment, and by
combining algorithms for establishing the order among the existing rules.

Notwithstanding the importance of the role of AC systems, their integration
with a localization system architecture is still an emerging topic [12]. Most of
the results achieved so far have been focused either on: (1) using access control
mechanisms for (physical) protection within virtual perimeters [11]; (2) using
location information for automatically authenticate customer [13]; (3) on specific
security attributes that do not fully cover the GDPR requirements [1,5]. This
paper enhances the current research by proposing, for the first time, a reference
architecture that includes a location and topology-aware access control system
to guarantee compliance with the GDPR’s provisions.

3 A Privacy-By-Design Solution

In this section, we schematize the possible reference architecture for the indoor
localization system which includes a GDPR-based AC system. The proposal
extends and integrates our previous solutions presented in [3,6,8]. Figure 1 shows
the main components of the proposed reference architecture that are:
User Agent (UA): the UA cooperates, on behalf of the user, with the indoor
infrastructure to estimate the user’s location. It is typically deployed in a smart
device (e.g., smartphone, tablet or smartwatch). As shown in Fig. 1, the UA
is in charge of managing the user interaction for: automatically detecting the
existence of an ILS (through the Discovery Service), enabling the localization
of the device (through the Positioning Service); rendering the device position
on a map (through the Mapping Service); managing the user’s consents and
sending/receiving access requests/responses (through the device GUI);
Localization Infrastructure (LI): the Localization Infrastructure (LI) is an
indoor distributed infrastructure in charge of determining the user’s location.
It relies on WiFi signals collected through the UA and it provides three main
components: 1 Map Manager, that manages the updating and storage of the
internal maps; 2 Discovery Server, that is in charge of sending the URL of
the available ILSs to the different UA; 3 ; Enhanced Indoor Localization System
(E-ILS), that is the core component of LI and it relies on two databases for
collecting the required information and personal data.

More specifically, the E-ILS is characterized by three main components: i)
the Communication and Interaction Orchestrator, which is in charge of managing
the communication to and from the E-ILS; ii) the GDPR-Based Access Control
System, which rules the resources and data access; iii) the ILS Engine, which is in

A Privacy-By-Design Architecture for Indoor Localization Systems 361

Fig. 1. The reference architecture: the UA implements the interaction between the
users and the LI throughout a network infrastructure.

charge of estimating the User Agent’s location. In turn, the ILS Engine returns
back to the UA the timestamped coordinates, according to the map reference
system (e.g., WGS84 reference system) [16].

The ILS Engine and the GDPR-Based Access Control System are designed to
cooperate, since different people (e.g., the data owner, administrators or super-
visors) and different services (e.g., booking services, advertisement services and
navigation services) may ask the data access at different moments. More specif-
ically, this last component is in charge of evaluating each single data access
request and allowing or denying the access according to the collected consent,
the data validity period, the specific users/service rights and the access control
policies established inside the overall Localization Infrastructure. By extend-
ing the our previous solution described in [2], the GDPR-Based Access Control
System provides facilities for: 1. Gather privacy requirements from collected con-
sents; 2. Identify privacy attributes; 3. Author the GDPR-based policies; 4. Test
GDPR-based policies; 5. Deploy GDPR-based policies on the E-ILS; 6. Manage
the data access. Through the interaction with the UA component, the GDPR-
Based Access Control System provides facilities to perform steps from 1 to 4.
Specifically, GDPR-Based Access Control System is in charge of preparing the
consents to be subscribed by the users, extracting useful personal data from
the signed consents, and storing them into a secure and protect database. It also
translates the consents first into processable structures, and then into enforceable

362 P. Barsocchi et al.

GDPR-based access control policies so as to easily manage the GDPR provisions
(we refer to our previous works [3,6] for more details). In this paper we refer to
XACML access control policies able to encode the GDPR principles for taking
into account the users’ consents. GDPR-Based Access Control System provides
also facilities for validating the derived policies before storing them into the
database. Finally, the GDPR-Based Access Control System is also in charge of
managing access to the personal data during the online use of ILS (step 5 and 6
of the above list) by adapting and extending the current version of the XACML
reference architecture (we refer to [3,6] for more details).

4 Proximity Marketing: An Application Example

In this section, a simple example of a proximity marketing service inside a mall
is presented for describing the use of our proposal. In this use case, we suppose
that infrastructure could provide several features such as: a navigation service
for optimizing the path for completing a shopping list; a check-out management
service notifying a user when to check-out; a discount notifier to advertise the
user when he/she is in the proximity of a special offer and so on. Two relevant
aspects need to be evaluated: i) the data collected during the user’s localization
might be used to improve the user-experience in a shopping mall (e.g., the opti-
mal placement of products); ii) the appealing facilities of the indoor positioning
can make available a set of personal data that can be misused and exploited in
a way different than the users’ expectations.

As an example of possible implementation, UA in Fig. 1 has been developed
by extending the Telegram app [8]. In this case, the user starts the localization
process by looking for the services available in the mall through the Telegram
menu. Consequently, the UA retrieves information about the available localiza-
tion infrastructures through a discovery service. This service performs a periodic
Bluetooth/WiFi scan to retrieve information encoded in the payload of adver-
tising messages of such technologies. In the current implementation, we encoded
an URL on the payload of EddyStone beacons. In turn, the URL is used by the
UA to retrieve the meta information of the ILS.

In the example of this section, the ILS engine implements the localization
algorithm and the Map Server provides maps of the indoor environment. The
localization algorithm leverages the WiFi signals received by the UA: it peri-
odically scans the WiFi probes emitted by the WiFi Access Points (AP) in the
nearby, and it analyzes the received signal strength (RSS) of the messages. The
RSS collected from all the available WiFi APs are then transferred to the ILS,
which analyzes them to estimate the device position. In turn, the ILS returns
back the UA the timestamped coordinates so that to show on the map its current
position. In our implementation, the user also receives through the UA GUI, a
specific (textual) consent associated to the selected service, in which there is
detailed information about the usage of personal data and their purpose such
as (i) who is the data owner; (ii) how the data will be processed, and for which
purposes; (iii) the time of detention, and so on. In our proposal, according to

A Privacy-By-Design Architecture for Indoor Localization Systems 363

the GDPR demands, the user’s personal data, the device position, the times-
tamp as well as the ACPs area all kept on an exclusive database ruled by the
GDPR-Based Access Control System (Fig. 1). Moreover, the collected data are
stored only for the time needed to provide the user with the required services.

Table 1. Example of attribute classification.

Identified attribute Attribute category GDPR category AC category

Alice Customer Data Subject Subject
Marketing Service Service Provider Controller Subject
Read Processing Access Action
Notification Processing Send Action
Smart device ID Indirect ID Personal Data Resource
GPS data Location Data Personal Data Resource
Wi-Fi signal data Location Data Personal Data Resource
On-board Sensors data Location Data Personal Data Resource
Current Position Location data Personal Data Resource
Advertising Purpose Specific Purpose Resource

As described in Sect. 3, the data extracted from proximity marketing service
accepted consent are used for: automatically mapping the personal data into
access control attributes, instantiating a rule for each structured representation
and combining them into GDPR-based ACPs (we refer to [3,6] for more details).
As an example, considering the Art. 15.1 of the GDPR2, Table 1 reports the
mapping of the attributes for the following scenario: Alice (Customer, i.e., Data
Subject) provides the ID of her smart device, the GPS data, the WiFi signal data,
and on-board sensors data. Such information are sent to the proximity marketing
service (Controller) for advertising notifications when she is in proximity of a
shop. Alice, at any time, can exercise her right of access pursuant the Art. 15.1.

More precisely, column Identified Attribute of Table 1 contains the identified
attributes; column Attribute Category shows their classification into a specific
category; column GDPR Category maps attributes into regulation concepts; and
finally, column Access Control Category maps to the access control entities. In
Fig. 2 the derived GDPR-based Access control policy written in XACML-like
language is provided. Specifically, the policy is applicable to the subject Alice and
contains two rules: (1) the first rule, with RuleId equal to readRule, represents
the AC rule associated with Art. 15.1 and guarantees that Alice can read her
provided personal information; (2) the second rule, called defaultRule, denies all
which is not allowed explicitly.
2 Art. 15.1 of the GDPR: 1. The data subject shall have the right to obtain [. . .]

the following information: (a) the purposes of the processing; (b) the categories of
personal data concerned; [. . .] (Right of access by the data subject).

364 P. Barsocchi et al.

Policy . PolicyId = alicePolicy
root element
rule-combining-algorithm:permit-overrides

Target . Sample Policy

Subject . Subject = Alice

Rule . RuleId = readRule, Effect = Permit

Target .

Resource Name

Resource Smart device ID

Resource GPS data

Resource Wi-Fi signal data

Resource On-board Sensors data

Resource Current Position

Resource Advertising

Action . Read

Condition .

And . And Operator

string-one-and-only . . type-One-And-Only Function.
#Resource = 1

string-equal type-Equal Function.
Resource.owner = Subject

Rule . RuleId = defaultRule, Effect = Deny
default: deny all, which is not allowed explic-
itly.

Fig. 2. Example of an XACML-like Policy.

5 Conclusions and Future Work

We present in this paper the architecture of an indoor localization able to guaran-
tee the GDPR compliance through the integration of a specialized GDPR-based
access control system. Our architecture replies to the users’ need to be pro-
tected against unauthorized or unconscious privacy data collection and analysis.
Indeed, according to the GDRP regulation, our privacy-preserving architecture
can delegate to end-users the control of the provided personal data. We show the
feasibility of our proposal by considering a proximity marketing service inside
a mall. Even if very simple, the use case evidenced how the architecture could
increase the privacy consciousness of end-users while they are using indoor envi-
ronment services. By following this research line, we plan to extend our work
with a real-world data collection campaign to evaluate the scalability of the
platform at realistic conditions.

Acknowledgments. Partially Supported by CyberSec4Europe Grant Agreement ID
830929.

A Privacy-By-Design Architecture for Indoor Localization Systems 365

References

1. Barsocchi, P., Calabrò, A., Ferro, E., Gennaro, C., Marchetti, E., Vairo, C.: Boost-
ing a low-cost smart home environment with usage and access control rules. Sensors
18(6), 1886 (2018)

2. Bartolini, C., Daoudagh, S., Lenzini, G., Marchetti, E.: GDPR-based user stories
in the access control perspective. In: Piattini, M., Rupino da Cunha, P., Garćıa
Rodŕıguez de Guzmán, I., Pérez-Castillo, R. (eds.) QUATIC 2019. CCIS, vol. 1010,
pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29238-6 1

3. Bartolini, C., Daoudagh, S., Lenzini, G., Marchetti, E.: Towards a lawful authorized
access: a preliminary GDPR-based authorized access. In: Proceedings of ICSOFT
2019, Prague, Czech Republic, 26–28 July 2019, pp. 331–338 (2019)

4. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by necessity: compliance
under the GDPR. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957,
pp. 20–37. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-
6 2

5. Calabrò, A., Marchetti, E., Moroni, D., Pieri, G.: A dynamic and scalable solution
for improving daily life safety. In: Proceedings of APPIS 2019, pp. 1–6 (2019)

6. Daoudagh, S., Marchetti, E.: A life cycle for authorization systems development in
the GDPR perspective. In: Proceedings of the Fourth Italian Conference on Cyber
Security (ITASEC), Ancona, Italy, 4–7 February 2020, pp. 128–140 (2020)

7. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 (General Data Protection Regulation). Official Journal of the European
Union L119, 1–88, May 2016

8. Furfari, F., Crivello, A., Barsocchi, P., Palumbo, F., Potort̀ı, F.: What is next
for indoor localisation? Taxonomy, protocols, and patterns for advanced location
based services. In: Proceedings of IPIN 2019, pp. 1–8. IEEE (2019)

9. Gellman, B., Gribbons, J.M.: Edward snowden says motive behind leaks was to
expose surveillance state (2013)

10. Georgiou, K., Constambeys, T., Laoudias, C., Petrou, L., Chatzimilioudis, G.,
Zeinalipour-Yazti, D.: Anyplace: a crowdsourced indoor information service. In:
Proceedings of CMDM 2015, vol. 1, pp. 291–294. IEEE (2015)

11. Greaves, B., Coetzee, M., Leung, W.S.: Access control requirements for physical
spaces protected by virtual perimeters. In: Furnell, S., Mouratidis, H., Pernul,
G. (eds.) TrustBus 2018. LNCS, vol. 11033, pp. 182–197. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98385-1 13

12. Greaves, B., Coetzee, M., Leung, W.S.: A comparison of indoor positioning systems
for access control using virtual perimeters. In: Yang, X.-S., Sherratt, S., Dey, N.,
Joshi, A. (eds.) Fourth International Congress on Information and Communication
Technology. AISC, vol. 1041, pp. 293–302. Springer, Singapore (2020). https://doi.
org/10.1007/978-981-15-0637-6 24

13. Haofeng, J., Xiaorui, G.: Wi-Fi secure access control system based on geo-fence.
In: Proceedings of ISCC 2019, pp. 1–6 (2019)

14. Konstantinidis, A., Chatzimilioudis, G., Zeinalipour-Yazti, D., Mpeis, P., Pelekis,
N., Theodoridis, Y.: Privacy-preserving indoor localization on smartphones. IEEE
Trans. Knowl. Data Eng. 27(11), 3042–3055 (2015)

15. OASIS: eXtensible Access Control Markup Language (XACML) Version 3.0, Jan-
uary 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

16. Potort̀ı, F., Crivello, A., Girolami, M., Barsocchi, P., Traficante, E.: Localising
crowds through Wi-Fi probes. Ad Hoc Netw. 75, 87–97 (2018)

https://doi.org/10.1007/978-3-030-29238-6_1
https://doi.org/10.1007/978-3-662-58387-6_2
https://doi.org/10.1007/978-3-662-58387-6_2
https://doi.org/10.1007/978-3-319-98385-1_13
https://doi.org/10.1007/978-981-15-0637-6_24
https://doi.org/10.1007/978-981-15-0637-6_24
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

366 P. Barsocchi et al.

17. Ramadan, Q., Salnitriy, M., Strüber, D., Jürjens, J., Giorgini, P.: From secure
business process modeling to design-level security verification. In: Proceedings of
MODELS 2017, pp. 123–133. IEEE, September 2017

18. Ranise, S., Siswantoro, H.: Automated legal compliance checking by security policy
analysis. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS,
vol. 10489, pp. 361–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66284-8 30

https://doi.org/10.1007/978-3-319-66284-8_30
https://doi.org/10.1007/978-3-319-66284-8_30

ICT Verification and Validation

Reverse Engineering of Android
Applications: REiMPAcT

Marco Gonçalves1 and Ana C. R. Paiva1,2(B)

1 Faculty of Engineering, University of Porto,
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

{up201708897,apaiva}@fe.up.pt
2 INESC TEC, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract. Reverse engineering may be helpful for extracting informa-
tion from existing apps to understand them better and ease their mainte-
nance. Reverse engineering may be performed by a static analysis of the
apps’ code but, when the code is not available, a dynamic approach may
be useful. This paper presents a tool that allows extracting dynamically,
in a complete black-box approach, the explored activities of Android
applications. It is an extension of iMPAcT testing tool that combines
reverse engineering, dynamic exploration, and testing. The extracted
information is later used to construct an HFSM (Hierarchical Finite State
Machine) with three distinct levels of abstraction. The top-level shows
the interactions needed to traverse the activities of the mobile appli-
cation. The middle level shows the screens traversed while in a specific
activity. The bottom level shows all screens traversed during exploration.
This information helps to understand better the application which facil-
itates its maintenance and errors fixing. This paper provides a complete
description of the tool, its architecture and the results of some case stud-
ies conducted on mobile apps publicly available on the Google Store.

Keywords: Reverse engineering · Android crawler · Software testing ·
Android testing · Mobile testing

1 Introduction

According to IEEE, reverse engineering is “the process of analyzing a subject
system to identify the system’s components and their interrelationships and to
create representations of the system in another form or at a higher level of
abstraction”.

Reverse engineering may be useful to know more about the software sys-
tem being analyzed which may contribute to improve the system and help its
maintenance, especially when such system lacks of up-to-date and adequate doc-
umentation.

There are some research works that apply reverse engineering to extract
information from mobile apps. The type of reverse engineering performed and

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 369–382, 2020.
https://doi.org/10.1007/978-3-030-58793-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_30&domain=pdf
http://orcid.org/0000-0003-3431-8060
https://doi.org/10.1007/978-3-030-58793-2_30

370 M. Gonçalves and A. C. R. Paiva

the kind of information extracted varies. Reverse engineering may be static (look
into the code without executing it), dynamic (where the software is executed) or
historical (when looking into the changes performed in order to gain information
about the evolution of the system) [1].

Given that mobile applications are Event-Based, a static approach is not the
best approach. On the other hand, dynamic and hybrid approaches are the most
suitable and used for mobile applications [12].

When developing Android apps it is possible to “combine multiple fragments
in a single activity to build a multi-pane UI and reuse a fragment in multiple
activities”1. So, relating the captured activities with their inner screens may the
helpful to understand better how the app is structured.

As far as we know, there is no dynamic approach able to extract the activities
and related screens of Android apps based on a complete black-box approach,
i.e., without access to the code of the app in any phase of the reverse engineering
process.

This paper presents a reverse engineering approach (REiMPAcT) that
extends iMPAcT Tool (a testing tool for Android mobile applications). REiM-
PAcT approach is able to extract an HFSM (Hierarchical Finite State Machine)
from a dynamic black-box exploration of an Android app. It is able to extract the
activities, their inner screens traversed, the user events available in each screen
and navigation paths performed along the exploration. The generated HFSM is
composed of three distinct levels of abstraction. The top level presents the activ-
ities traversed, the middle level presents the screens traversed for each activity
explored, while the bottom level presents all the screens traversed during the
exploration.

This paper presents some related work regarding reverse engineering of
mobile applications in Sect. 2. Section 3 presents the motivational example. The
REiMPAcT approach is described in Sect. 4, and the specifications of the app-
roach and its architecture are presented in Sect. 5. Section 6 describes a case
study and Sect. 7 discusses threats to validity. Finally, the conclusions are in
Sect. 8.

2 State of the Art

Over the last few years, there has been a lot of research work on Software Reverse
Engineering and many approaches have been developed for extracting models
from Desktop [5,7,14] and Web applications [2,8,18].

However, although in less quantity, there are also some reverse engineering
works performed over mobile applications. The goal is still to analyze and sim-
ulate the user interaction to obtain a descriptive model [12].

TrimDroid [9] performs a static analysis of the Android apps code in order
to extract a Finite State Machine were states are the activities of the app.

The dynamic reverse engineering technique presented in [6] exercises the UI
(user interface) of iOS mobile applications to extract information regarding run
time behavior and for generating/extracting a user interface state model of the

1 https://developer.android.com/guide/components/fragments.

https://developer.android.com/guide/components/fragments

Reverse Engineering of Android Applications: REiMPAcT 371

application behavior. Despite being dynamic, this approach needs to access code
because it combines reflection and code injection to track method calls.

An example of Hybrid approach is presented in [19]. The approach consists
of an initial static phase that identifies possible events to be fired and a second
dynamic phase that explores the application by automatically firing the events
identified before and analyzing the effects on the application. The goal is to
extract a FSM where states are different screens (named visual observable states).

Another reverse engineering approach is presented by [4]. The goal is to
reverse-engineer application lifecycles of mobile platforms by testing.

Although there are several approaches in the area of mobile reverse engineer-
ing, none of them extracts information about the activities of an application
using a black-box dynamic exploration technique and do not relate the activities
with their inner different screens.

3 Motivational Example

There are currently 2.6 million apps available on the Google Play Store2. In such
crowded market applications that do not have the necessary quality or that do
not behave as desired are quickly replaced by other identical applications.

To ensure that the applications have quality and work as expected, it is nec-
essary to intensively test the applications. Sometimes developers or even testers
encounter problems in the application during those tests, and in several situa-
tions it is difficult to associate those problems with a specific activity. Because
of that it may be more difficult to locate the source of the failure inside the code.

Fig. 1. App with one activity with 2 fragments (left); two activities with one fragment
each (right).

2 https://www.statista.com/statistics/266210/number-of-available-applications-in-
the-google-play-store/.

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

372 M. Gonçalves and A. C. R. Paiva

The behaviour of a User Interface may be represented by fragments. A frag-
ment belongs to an activity and may be reused in different activities. Also differ-
ent fragments may be combined in a single activity. For example, Fig. 1 shows an
Activity A with two fragments (on the left) and the same fragments belonging
to two different activities (on the right).

Therefore, knowing the activity to which the fragment belongs can be helpful
and interesting to reduce the amount of code to search for a defect that is the
source of a failure.

4 iMPAcT Tool

iMPAcT tool [10,11,13] uses Reverse Engineering techniques and dynamic black-
box testing techniques to automate the testing of recurring behavior (UI pat-
terns) presented on Android apps.

Like other tools in the market, this tool was developed based on two Google
APIs, it uses the API UI Automator3 to interact with the device and the API
UiAutomation4 to read and extract information from the screen of the device.

The iMPAcT Tool can be decomposed into three different components: the
Explorer; the UI Patterns Finder (reverse engineering); and the Tester. All these
components work in iterative phases. While the Explorer component is crawl-
ing the application, the Finder component tries to identify the presence of UI
Patterns. When a UI Pattern is identified the Tester component applies the
associated Test Pattern (i.e., the test strategy to check if the UI pattern is well
implemented).

This tool works based on a catalog where the UI patterns and corresponding
Test Patterns are defined. It is only able to test the UI Patterns within such
catalog applying the corresponding Test Pattern. A Test Pattern is defined by:

<Goal, V, A, C, P>, where:

Goal is the id of a UI Pattern. V is the input of the UI Pattern and corre-
sponding values. A is the sequence of actions to perform in order to identify the
presence of the UI Pattern. C is a set of points to check if the Pattern exists.
P is the precondition that established states where actions should occur to infer
the presence of the UI Pattern.

Currently, the iMPAcT Tool has several UI Patterns, in the Patterns Catalog,
which it is able to test. This catalog was defined based on the good practices for
Android programming5.

For example, to test the background-foreground pattern [16], the iMPAcT
Tool captures the information of the screen and sends the application under
test (AUT) to the background by clicking on the home button. After that, the
iMPAcT Tool brings the application to the foreground again by selecting it in
the application manager. It then captures the information on the screen again
3 https://developer.android.com/training/testing/ui-automator.
4 https://developer.android.com/reference/android/app/UiAutomation.
5 https://developer.android.com/distribute/best-practices/.

https://developer.android.com/training/testing/ui-automator
https://developer.android.com/reference/android/app/UiAutomation
https://developer.android.com/distribute/best-practices/

Reverse Engineering of Android Applications: REiMPAcT 373

and compares it with the information previously captured. If the information
captured before and after is different, the test fails.

Another example is the Call Test Pattern [15]. To test the Call Test Pat-
tern two Emulators are needed: the Emulator A calls the Emulator B while the
iMPAcT Tool is exploring the Emulator B. The iMPAcT Tool saves the screen
state before receiving the call, then it disconnects the incoming call and saves the
screen state again. If the screens’ state are different before and after receiving
the call, the test fails.

The counterpart of the iMPAcT Tool is the fact that it is only able of testing
the UI Patterns that are in the Catalog.

The exploration and testing ends when the user presses the home button or
when there is no more behaviour to explore/test.

The output/result is a key factor in all testing tools because it helps under-
standing and fixing the problems detected. The iMPAcT Tool has two distinct
outputs: a Log File and a Finite State Machine (FSM). In the Log File, it saves
information about the UI Patterns identified during exploration and lists the
ones that passed the tests (correctly implemented) and the ones that failed the
tests (wrongly implemented). The FSM has nodes and arrows between nodes.
The nodes are screenshots of the AUT and the arrows describe the actions taken
to navigate from screen to screen.

The iMPAcT Tool is able to identify the presence of UI patterns and compare
two screens but it is not able of identifying the activities of the application
under test traversed during the exploration. The extension presented in this
paper (REiMPAcT) improves the reverse engineering component allowing to
extract information about the activities and their inner screens and presenting
an HFSM structured in three levels of abstraction to understand better the app
under analysis.

5 Reverse Engineering Tool: REiMPAcT

The approach presented in this paper extends the iMPAcT Tool with additional
reverse engineering capabilities. The REiMPAcT component is able to extract
information about the activities and the states traversed by a dynamic explo-
ration of an Android application.

This approach may be useful to:

– Create a navigation map of the explored application.
– Check if the navigation flow of an application is the one expected.
– Provide information about the activities and inner screens of the applications.

In addition, it should be noticed that this approach allows to extract dynam-
ically the activities of the apps in a complete black-box approach without any
access to the code neither APK of the application under analysis.

So, besides being useful to comprehend better the application under analysis,
this approach may help in a software testing context where failures are found.
This is a typical problem found in random testing tools. They are able to detect

374 M. Gonçalves and A. C. R. Paiva

crashes of the applications but then, since they do not provide any kind of help,
it is difficult to find the source of the problem within the code. With this tool, the
tester may add information about the activity in which the failure was detected
and so, help the developer to find out the source of the failure within the code.

The architecture of this approach can be seen in the Fig. 2.

Fig. 2. The architecture of the reverse engineering approach (REiMPAcT)

The output (Fig. 3) of the REiMPAcT is an HFSM (Hierarchical Finite State
Machine) composed by three distinct levels of abstraction (similar to the struc-
ture used in [17] for Desktop applications).

At the highest level of abstraction (First level), we can find a representation
of the activities traversed by the dynamic exploration algorithm of the iMPAcT
Tool. At this level, it is only necessary to know which activities are explored,
and the order of exploration, i.e., the sequence of activities explored.

The navigation through activities is represented by arrows with numbers. An
arrow between two activities describes user actions that allow navigating from
the origin activity to the destination activity, i.e., actions that departure from a
state/screen of the source activity and reaches a state/screen of target distinct
activity. The numbers are useful to sequence those actions.

At the middle level of abstraction (Second level), it is possible to visualize,
for each activity, which screens were traversed and the actions that allow such
navigation flow. At this level, it is necessary to know which activity each screen
belongs to and which actions traverse screens that belong to that same activity.
This level of the HFSM shows the inner navigation for each activity of the
explored application.

At the bottom level of abstraction (Third level), it is possible to visualize
all screens traversed during the exploration. This third level is built using an
already existing feature of the iMPAcT Tool that allows building the final state
machine (FSM) of the application under test. At this level, it is necessary to

Reverse Engineering of Android Applications: REiMPAcT 375

have access to the print screens and the sequence of actions that traverse screens
to build the FSM. This level of the HFSM shows the general navigation between
screens.

Fig. 3. Hierarchical Finite State Machine (HFSM) with 2nd level detailed for Activity
A

Consider an app with a set of different activities,

A = {a1, ..., a|A|} (1)

a set of different screens

S = {s1, ..., s|S|} (2)

and the set of possible user actions over that app

UA = {ua1, ..., ua|UA|} (3)

376 M. Gonçalves and A. C. R. Paiva

An exploration, E, of the app is a sequence of user actions traversing
screens/states of the app.

E = [(so, x, sd)|so, sd ∈ S, x ∈ UA] (4)

Now, consider M as the set of all possible explorations, E, over the app. This
set of all possible paths is the complete behaviour of such app. The automatic
exploration process executed by iMPAcT tool, T , is a path in M (of type E).

T ∈ M (5)

The bottom level of the HFSM (Fig. 3) is given by T .
The middle level (Fig. 3) of the HFSM for an activity a shows the sub-

sequence of T that traverses states belonging to such activity a. Consider a
function F that gets a state within T and gives the activity to which that S
belong to.

F (S) = A (6)

Consider also that the set of states traversed by T are obtained by

T.S (7)

and that the user actions exercised in T are obtained by

T.UA (8)

The middle level of the HFSM for activity a, is a subsequence of T, and may
be described by the sequence of actions on states belonging to activity a.

[(s1, ua, s2)|s1, s2 ∈ T.S ∧ ua ∈ T.UA ∧ F (s1) = F (s2) = a] (9)

The top level of the HFSM shows the activities exercised by T .

[(F (so), ua, F (sd))|so, sd ∈ T.S ∧ ua ∈ T.UA ∧ F (so)! = F (sd)] (10)

The extraction of information regarding the activities traversed is conducted
in parallel with the normal flow of execution of the iMPAcT Tool, i.e., in parallel
with the exploration algorithm that exercises the application under analysis.

The REiMPAcT component runs a process on the iMPAcT Tool present in
the computer (Fig. 2), that checks which is the current activity of the application
every second. This time interval may be customized.

Reverse Engineering of Android Applications: REiMPAcT 377

Fig. 4. ADB Shell command output

To do this, REiMAPcT uses the ADB (Android Debug Bridge) command
line tool that allows to communicate with a device. This command outputs the
package name and the name of the current activity of the application under
analysis in that moment, as it can be seen in the Fig. 4.

adb shell
dumpsys window windows | grep -E "mCurrentFocus"

All the information collected along the execution of the REiMPAcT is stored
in a text file (including the name of the activity and the exact time in which this
information was collected). Besides information about the traversed activities,
the tool also gathers screenshots of the explored screens and the time in which
such screenshots were taken; fired actions that change from one screen to another;
and other metrics. Based on the information collected about time, activities,
actions and screens, it is possible to determine which are the screens within
each activity and construct the HFSM (which is displayed using the Java library
called mxGraph).

6 Case Study

In order to validate the approach developed we performed an experiment over
20 apps available on Google Play store. The process followed was:

1. Select the Android mobile apps to analyze.
2. Execute the REiMPAcT tool over the apps selected.
3. Record the percentage of activities detected in a limited period of time.
4. Obtain the screens for each activity (2nd level of the HFSM)

6.1 Selection of the Android Mobile Applications

This study was performed on Android mobile applications that can be found
in the Google Play Store. The final set of 20 Android mobile applications was
selected randomly from the set of apps that met the following criteria:

– Its rating should be higher than 3.5 to ensure minimum quality
– It must been downloaded at least 5000 times
– It must use Gradle to build the application
– It must have GUI in order to be tested by the iMPAcT Tool
– It must be in English or Portuguese

The 20 Android apps selected belong to 9 different categories.

378 M. Gonçalves and A. C. R. Paiva

6.2 REiMPAcT Tool Execution over Apps Selected

We run the REiMPAcT Tool over the list of previously chosen Android mobile
applications. The example presented below is the REiMPAcT Tool output for a
5-minute test performed on the ametro.org Android application.

The Fig. 5 presents the first level of the HFSM, the Fig. 6 presents the second
level (for the activity CityList of the application) and Fig. 7 presents the third
level of the HFSM.

Fig. 5. The first level of the HFSM for the application org.ametro

Fig. 6. Hierarchical Finite State Machine (HFSM) with 2nd level detailed for Activity
CityList

Fig. 7. The third level of the HFSM for the application org.ametro

Analysing the figures presented above it is possible to verify that:

Reverse Engineering of Android Applications: REiMPAcT 379

1. During the dynamic exploration, it was possible to extract three distinct
activities (Map, MapList and CityList).

2. The CityList activity is composed of Screen 2 and Screen 3 which are tra-
versed after a click event on a screen element from the MapList activity.

3. The exploration captured four different screen shots.

We did not find any bugs during the exploration of these apps.

6.3 Percentage of Activities Explored

In order to calculate the percentage of activities explored, it is necessary to know
the total number of activities that exist in the application and the number of
activities explored. Using the REiMPAcT approach, it is possible to obtain the
number of activities explored, but it is not possible to obtain the total number
of activities of the application (it is a black-box approach). For that, it was
necessary to perform static analysis over the source code, or the APK. Given
that most of the chosen applications are not open-source it was necessary to
parse the APK.

There are several platforms that allow downloading the APKs through the
package name, and it is also possible to get the package name in the own Google
Play Store. Once we get the APK for each application, it is possible to use
the Analyze APK functionality of Android Studio to analyze the app and get
AndroidManifest.xml.

Through the analysis of the AndroidManifest.xml it is possible to know how
many activities there are in the application and, so, calculate the percentage of
activities explored.

The exploration algorithm may influence the results achieved by REiM-
PAcT. If the explorer is not able to exercise the complete behavior of the appli-
cation under analysis, the reverse engineering component will not be able to
detect/extract the complete HFSM of the application. Discussing and compar-
ing different crawlers is not the goal of this work, however, the description of a
new crawler developed for iMPAcT tool may be found in [3].

The results from the 20 apps tested in a limited time period of 15 min can
be found in Table 1.

From the 20 apps tested, only the exploration of the application Wlingua
was able to get 100% of the activities. The worst results belong to the NBA
application that only explored 10% of the activities. The total average number
of activities explored in whole apps is approximately 40%.

It should be noticed that REiMPAcT tool is fully black-box and does
not need to get access to AndroidManifest.xml. We only accessed the
AndroidManifest.xml file to perform this experiment and assess the percentage
of explored activities.

380 M. Gonçalves and A. C. R. Paiva

Table 1. Percentage of activities extracted

App name % of activities (15min)

1 aMetro 67

2 Paris Metro 18

3 EasyBus Porto 67

4 ProCiv Madeira 50

5 Forest Fires 67

6 Portugal Newspaper 33

7 Sapo Newspaper 28

8 Google News 18

9 Wlingua 100

10 GeoChallenge 75

11 Math tricks 30

12 MyResults 33

13 NBA 10

14 Wallet 75

15 Expense manager 30

16 HomeWorkout 13

17 Pedometer 17

18 Medication Alarm 22

19 Moodpath 17

20 eBoox 33

Average 40

7 Threats to Validity

It is important to remember that there are some threats to validity associated
with the results presented.

This study was performed over 20 apps. The set size could be bigger, however,
to mitigate this threat, we selected reliable apps of different categories to diversify
the subjects used in this case of study.

The current approach uses time units to synchronize/relate the information
regarding the screens and their activities, which is susceptible to error. Also,
there are activities declared in AndroidManifest.xml that are not related to
screens of the app. These activities will not be detected by REiMPAcT because
it only gets the activities that has focus on the device. So, if we exclude those
activities (not related to screens) the percentage of activities detected would be
higher.

To mitigate all these threats we tested each app two times, so we got 2
executions per app. After testing each app two times we end up spending 30 min
testing each app. So, we spend about 2 days with this experiment.

Reverse Engineering of Android Applications: REiMPAcT 381

8 Conclusions

This paper presented a reverse engineering tool, REiMPAcT, able to extract a
HFSM from a black-box dynamic exploration of Android applications.

The HFSM is structured in three levels: the top one shows the navigation
among activities; the middle layer shows the navigation through different states
of the Android application for each activity; and the bottom layer shows the
screens traversed during the exploration. The HFSM is formalized and illustrated
in real examples.

The main difference of REiMAPcT tool in relation to others is its complete
black-box nature. It does not need to have any access to the code and it does
not instrument the code. The architecture of the tool is presented in detail.

A case study was performed over real apps from Google Play Store. The goal
was to check if it was possible to apply the approach in real scenarios and gather
metrics about which percentage of activities it was possible to detect by this
dynamic exploration process. As we did not find any errors in the experiment,
we intend to carry out additional case studies, injecting errors into the applica-
tions and checking if the REiMPAcT tool can help to detect them more easily.
Also, we aim to perform experiments in industrial environments, to access the
applicability, utility and ease of use in this context.

References

1. Canfora, G., Di Penta, M., Cerulo, L.: Achievements and challenges in software
reverse engineering. Commun. ACM 54(4), 142–151 (2011). https://doi.org/10.
1145/1924421.1924451

2. Di Francescomarino, C., Marchetto, A., Tonella, P.: Reverse engineering of busi-
ness processes exposed as web applications. In: Proceedings of the 2009 European
Conference on Software Maintenance and Reengineering, CSMR 2009, pp. 139–
148. IEEE Computer Society, Washington, DC (2009). https://doi.org/10.1109/
CSMR.2009.26

3. Ferreira, J., Paiva, A.C.R.: Android testing crawler. In: Piattini, M., Rupino da
Cunha, P., Garćıa Rodŕıguez de Guzmán, I., Pérez-Castillo, R. (eds.) QUATIC
2019. CCIS, vol. 1010, pp. 313–326. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29238-6 23

4. Franke, D., Elsemann, C., Kowalewski, S., Weise, C.: Reverse engineering of mobile
application lifecycles. In: 2011 18th Working Conference on Reverse Engineering,
pp. 283–292, October 2011. https://doi.org/10.1109/WCRE.2011.42

5. Hackner, D., Memon, A.M.: Test case generator for GUITAR. In: Research Demon-
stration Track: International Conference on Software Engineering, ICSE 2008.
IEEE Computer Society, Washington, DC (2008)

6. Joorabchi, M.E., Mesbah, A.: Reverse engineering iOS mobile applications. In:
2012 19th Working Conference on Reverse Engineering, pp. 177–186, October 2012.
https://doi.org/10.1109/WCRE.2012.27

7. Memon, A.: GUI ripping: reverse engineering of graphical user interfaces for testing.
In: Proceedings of the 10th Working Conference on Reverse Engineering, pp. 260–
269 (2003)

https://doi.org/10.1145/1924421.1924451
https://doi.org/10.1145/1924421.1924451
https://doi.org/10.1109/CSMR.2009.26
https://doi.org/10.1109/CSMR.2009.26
https://doi.org/10.1007/978-3-030-29238-6_23
https://doi.org/10.1007/978-3-030-29238-6_23
https://doi.org/10.1109/WCRE.2011.42
https://doi.org/10.1109/WCRE.2012.27

382 M. Gonçalves and A. C. R. Paiva

8. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling Ajax-based web applications
through dynamic analysis of user interface state changes. ACM Trans. Web 6(1),
3:1–3:30 (2012). https://doi.org/10.1145/2109205.2109208

9. Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., Malek, S.: Reducing combinatorics
in GUI testing of Android applications. In: Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, pp. 559–570. ACM, New York
(2016). https://doi.org/10.1145/2884781.2884853

10. Morgado, I.C., Paiva, A.C.R.: The iMPAcT tool: testing UI patterns on mobile
applications. In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 876–881, November 2015. https://doi.org/10.
1109/ASE.2015.96

11. Morgado, I.C., Paiva, A.C.: The iMPAcT tool for Android testing. Proc.
ACM Hum. Comput. Interact. 3(EICS), 4:1–4:23 (2019). https://doi.org/10.1145/
3300963

12. Morgado, I.C., Paiva, A.C.R.: Testing approach for mobile applications through
reverse engineering of UI patterns. In: 30th IEEE/ACM International Conference
on Automated Software Engineering Workshops, ASE Workshops 2015, Lincoln,
NE, USA, 9–13 November 2015, pp. 42–49 (2015). https://doi.org/10.1109/ASEW.
2015.11

13. Morgado, I.C., Paiva, A.C.R.: Mobile GUI testing. Softw. Qual. J. 26(4), 1553–
1570 (2017). https://doi.org/10.1007/s11219-017-9387-1

14. Morgado, I.C., Paiva, A.C.R., Faria, J.P.: Dynamic reverse engineering of graphical
user interfaces. Int. J. Adv. Softw. 5, 224–236 (2012)

15. Paiva, A.C.R., Gonçalves, M.A., Barros, A.R.: Testing Android incoming calls.
In: 12th IEEE Conference on Software Testing, Validation and Verification, ICST
2019, Xi’an, China, 22–27 April 2019, pp. 441–448 (2019). https://doi.org/10.1109/
ICST.2019.00053

16. Paiva, A.C.R., Gouveia, J.M.E.P., Elizabeth, J., Delamaro, M.E.: Testing when
mobile apps go to background and come back to foreground. In: 2019 IEEE
International Conference on Software Testing, Verification and Validation Work-
shops, ICST Workshops 2019, Xi’an, China, 22–23 April 2019, pp. 102–111 (2019).
https://doi.org/10.1109/ICSTW.2019.00038

17. Paiva, A.C.R., Tillmann, N., Faria, J.C.P., Vidal, R.F.A.M.: Modeling and testing
hierarchical GUIs. In: Proceedings of the 12th International Workshop on Abstract
State Machines, ASM 2005, Paris, France, 8–11 March 2005, pp. 329–344 (2005)

18. Sacramento, C., Paiva, A.C.R.: Web application model generation through reverse
engineering and UI pattern inferring. In: 2014 9th International Conference on the
Quality of Information and Communications Technology, pp. 105–115, September
2014. https://doi.org/10.1109/QUATIC.2014.20

19. Yang, W., Prasad, M.R., Xie, T.: A grey-box approach for automated GUI-model
generation of mobile applications. In: Cortellessa, V., Varró, D. (eds.) FASE 2013.
LNCS, vol. 7793, pp. 250–265. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37057-1 19

https://doi.org/10.1145/2109205.2109208
https://doi.org/10.1145/2884781.2884853
https://doi.org/10.1109/ASE.2015.96
https://doi.org/10.1109/ASE.2015.96
https://doi.org/10.1145/3300963
https://doi.org/10.1145/3300963
https://doi.org/10.1109/ASEW.2015.11
https://doi.org/10.1109/ASEW.2015.11
https://doi.org/10.1007/s11219-017-9387-1
https://doi.org/10.1109/ICST.2019.00053
https://doi.org/10.1109/ICST.2019.00053
https://doi.org/10.1109/ICSTW.2019.00038
https://doi.org/10.1109/QUATIC.2014.20
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1007/978-3-642-37057-1_19

An Approach and a Prototype Tool
for Generating Executable IoT System

Test Cases

Dario Olianas(B) , Maurizio Leotta , and Filippo Ricca

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi
(DIBRIS), Università di Genova, Genova, Italy

dario.olianas@dibris.unige.it, {maurizio.leotta,filippo.ricca}@unige.it

Abstract. Internet of Things (IoT) systems are becoming ubiquitous
and assuring their quality is of paramount importance, especially in
safety-critical contexts. Unfortunately, few quality assurance proposals
are present in the literature.

In this paper, we propose an approach for semi-automated model-
based generation of executable test cases, oriented to system-level accep-
tance testing of IoT systems. Our approach is supported by a prototype
tool taking in input a UML model of the system under test and some
additional artifacts, and produces in output a test suite that checks if
the behavior of the system is compliant with such a model.

The empirical evaluation of the approach executed on a mobile health
IoT system for diabetic patients – involving sensors, actuators, a smart-
phone, and a remote cloud system – shows that the test suite generated
with our tool has been able to kill between 87% and 98% of the mutants
(i.e., artificial bugged versions of the system under test).

Keywords: IoT testing · Model-based test generation · Empirical
study

1 Introduction

Internet of Things (IoT) systems are composed of interconnected physical devices
that share data and often include a central remote control server on the cloud.
The spread of such systems has had a significant impact on all aspects of the
society, and in a few years has changed the life of billions of people.

Ensuring that IoT systems are secure, reliable, and compliant with the
requirements is a fundamental task since they are often safety-critical. How-
ever, testing these kinds of systems can be difficult due to: a) the wide set of
disparate technologies used to build them (hardware and software), b) the lack-
ing of consolidated testing approaches and, c) the added complexity that comes
with big data (the three ‘V’, huge volume, high velocity, and wide variety).

In this paper, we propose and evaluate a tool-supported approach for semi-
automated acceptance testing of IoT systems. Acceptance testing is a type of
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 383–398, 2020.
https://doi.org/10.1007/978-3-030-58793-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_31&domain=pdf
http://orcid.org/0000-0002-6618-4186
http://orcid.org/0000-0001-5267-0602
http://orcid.org/0000-0002-3928-5408
https://doi.org/10.1007/978-3-030-58793-2_31

384 D. Olianas et al.

black-box testing based on test scenarios, i.e., sequences of actions performed
by the users, sensors, or the system. Acceptance testing has been chosen for our
proposal since, according to many organizations [1], assembling an IoT system
and testing it as a whole is the most simple and effective way to ensure its
quality.

Our proposal can be classified as a model-based approach, since test cases are
derived from the model of the system, represented as a UML State Machine and
a Class diagrams in our case. The goal of the automated test generation tool
implementing the approach is generating a test suite composed by executable test
cases (i.e., test scripts) that: (Req1) is complete “enough” to exercise all the use
scenarios of the system under test (corresponding to paths on the state machine),
and (Req2) is correct with respect to the semantics of the provided model. To
satisfy the first requirement, our prototype tool relies on a graph exploration
algorithm that generates a set of paths starting from the target model (UML
State Machine + Class diagrams). Such an algorithm guarantees that every
transition of the state machine is traversed at least once considering all the
generated paths. To satisfy the second requirement, the proposed approach relies
on search-based algorithms to transform the previously generated test paths
in feasible paths. Search-based software engineering [7] is a branch of software
engineering that applies meta-heuristic search techniques to software engineering
problems.

The proposed approach has been empirically evaluated to determine the effec-
tiveness of the generated test suites in detecting bugs. A well established auto-
mated validation framework based on Mutation testing has been used to support
the empirical evaluation. Mutation testing [12] is a technique that consists in
exercising the test suite against slight variations (i.e., mutants) of the original
code, simulating the errors a developer could introduce during development and
maintenance activities.

Automatic test case generation from state machines is a well-known problem,
with many existing techniques and tools. Existing works cover different aspects
of the test generation problem, like criteria for state machine coverage in test
generation and algorithms used to implement them [4], prioritization of relevant
test cases (the ones that most likely will find bugs) [5,13], minimality of generated
test suites (i.e., generating the minimum number of test cases able to satisfy
the desired coverage criteria) [3], and transformation of abstract test cases in
executable code [15]. However, to the best of our knowledge, no scientific work
addresses explicitly the problem of generating test scripts from a model of an
IoT system and proposes a prototype tool as in our proposal.

This paper is organized as follows: Sect. 2 describes the DiaMH case study.
Section 3, 4, and 5 describe the proposed approach. Section 6 reports on the
empirical evaluation of the approach, while Sect. 7 concludes the paper.

2 Case Study: Diabetes Mobile Health IoT System

DiaMH is a simplified Diabetes Mobile Health system that: (1) monitors a patient
glucose level; (2) sends alarms to the patient smartphone when a dangerous

An Approach and a Prototype Tool for Generating Executable IoT System 385

glucose trend is detected; and (3) regulates insulin dose consequently. DiaMH
has already been used as a case study in other works concerning testing of
IoT systems [11] where, however, a manual approach to derive test cases from
a model of the behavior of the system has been proposed in contrast to the
automated generation proposed in this work. As shown in Fig. 1 the DiaMH
system is composed by:

– a glucose sensor and an insulin pump both attached to the patient;
– the patient smartphone, wirelessly connected to both the sensor and the

pump, and used to receive an alarm in case of dangerous glucose values;
– the analysis and control system, DiaMH Core, running on the cloud, that

receives the glucose readings, analyzes their patterns and commands the
proper actions.

DiaMH Required Behavior. The glucose sensor measures the glucose level
of the patient at given timed intervals (e.g., every 30 min), and sends them
to the smartphone. The mobile app displays the value and forwards it to the
remote DiaMH Core. The core component of the system stores the last 20 glucose
readings received from the patient’s smartphone and, depending on how many
readings exceed a given threshold, it will command an insulin injection, and if
necessary, send an alarm to the patient. After receiving a value, the analysis and
control system decides the state assigned to the user:

– Normal: between 0–3 values among the last 20 exceeded the threshold. No
action required;

– More insulin required: between 4–15 values among the last 20 exceeded the
threshold. An insulin injection is performed;

– Problematic: between 16–20 values among the last 20 exceeded the threshold.
An insulin injection is performed and an alarm is displayed on the smart-
phone.

To prevent performing too many injections, and to allow insulin to make effect,
every time an insulin injection is performed the following 5 glucose readings are
ignored (e.g., 2.5 h). When an injection is required, the patient should confirm
it: then the app will require the pump to inject the insulin dose. To prevent
missing injections because of pump failures, the pump sends a feedback to the
smartphone only if the injection is performed successfully: after receiving this
feedback, the app shows the total number of injections performed in the current
session.

Testing Execution Environment. In this work, we focus on testing at a level
of acceptance using a partially emulated/virtualized version of DiaMH, where
the sensor and the pump are virtualized by Node-RED flows, while the mobile
app is running on Android emulator (note that the code of the mobile app is
the same used in the real DiaMH system). The architecture of DiaMH and the
corresponding testing environment and interactions are shown in Fig. 1.

386 D. Olianas et al.

Node-RED (https://nodered.org/) is a visual flow-based programming tool
built on the Javascript server-side runtime environment Node.js, which allows
developing applications as a flow of interconnected nodes. The developer uses a
web-based flow editor to place different types of nodes in the flow and deploy it.
The execution model is based on nodes and messages: a node is a functional unit
of the flow delegated to a specific task. A message is a JSON object exchanged
between nodes, that will perform some actions over its properties. It can be
received from the network or generated by a node.

Fig. 1. DiaMH components, testing execution environment, and relations with test
scripts

3 Overview of the Approach

Before starting to describe the approach, let’s give some definitions. Accord-
ing to the definition of the IEEE/ISO/IEC Systems and software engineering
vocabulary [2] with test case we mean a set of inputs, execution conditions and
expected results developed for a particular objective, such as to exercise a par-
ticular program path or to verify compliance with a specific requirement. With
test path, we mean an ordered sequence of state machine transitions, starting
from an initial state, that represents a test case. We call executable test path a
feasible path, i.e. a path that if traversed on the state machine, never meets a
false guard. With test script, we mean the executable code that implements a
test path.

Approach Steps. Our approach is composed by five steps. To automatically
produce the test scripts the Test engineer has to:

1) Design a model of the IoT system;
2) Implement wrapper and mock classes following the model;

https://nodered.org/

An Approach and a Prototype Tool for Generating Executable IoT System 387

3) Define or generate some configuration files;
4) Execute our test generation prototype tool;
5) Run the generated test scripts against the IoT system.

The workflow, along with the involved artifacts and the relations among them,
is shown in Fig. 2. In the next sections, we provide details about the various
steps, even if, for space reasons, we cannot provide a full step-by-step guide to
the application of our approach and usage of our tool. For the interested reader,
further details about both the approach and the tool, its source code, and the
complete model and artifacts of the DiaMH case study are available at: https://
github.com/Quatic2020IoTTestGeneration/IoTExecutableTestCaseGeneration.

Fig. 2. Approach workflow

4 Input Data Preparation

In this section, we describe the first three steps of our approach dealing with the
preparation of the various artifacts required by the test scripts generator.

4.1 Model Design of the System Under Test

Starting from existing artifacts describing the system’s components and behav-
ior, the test engineer has to design a testing model for the system composed by
a UML Class and a UML State Machine diagram. Note that for serious indus-
trial IoT systems, we can reasonably assume that an accurate description of the
system components and required behavior exists and that it can be used as a
starting point for a test engineer.

To follow our approach, the test engineer has to create a class diagram con-
taining a class for each component of the IoT system, and each class can expose
three kinds of members: (a) method operations that perform some action and

https://github.com/Quatic2020IoTTestGeneration/IoTExecutableTestCaseGeneration
https://github.com/Quatic2020IoTTestGeneration/IoTExecutableTestCaseGeneration

388 D. Olianas et al.

may return a value, (b) operations generating call events, that will be used as
events in the state machine (those latter operations should not return a value),
and (c) fields, that store some value that is used by the system.

Then, the UML state machine describing the required behavior of the IoT
system has to be modeled. Each transition can be labeled with a triggering
event, a guard and an action. We call enabled transition a transition that has
a true guard. The execution of the state machine happens in a context, where
objects, i.e., instance of classes in class diagram, are declared. The execution flow
of the state machine always starts from the initial pseudo-state (black circle).
Figure 3 reports the state machine designed for DiaMH: there are three states
representing a generic patient’s condition: Normal, MoreInsulin, and Problematic
together with all the details describing the required behavior of DiaMH and of
its components: app, cloud, sensor, and pump.

4.2 Wrapper and Mock Classes Implementation

In this phase, the model is used to derive two sets of classes: wrapper classes
and mock classes. The former classes will be used by test scripts to interact
with IoT components while the latter classes will be used by the test scripts
generation tool to evaluate state machine’s guards when executable test paths
are generated (i.e., to simulate components behavior during test generation).
In this phase, it may be required to add some utility methods (e.g., a method
that resets component’s state to default, to be executed at the beginning of each
test case: it may be useless in the real system, but it is required for testing), or
to modify classes interfaces, for example adding some parameters to a method.
Wrapper and mock classes must be manually implemented: the first ones in the
language chosen for implementing the test scripts, the latter in Python, since
they have to be executed by our tool implemented in Python. To reduce the
effort required to the developer, for wrapper classes we may provide a framework
offering some common use functionalities in IoT testing, like for example sending
and receiving messages over different communication protocols. Mock classes,
since they must emulate the behavior of the SUT, require to be carefully designed
by the developer to make sure their behavior is compliant with the SUT’s one.
However, model-based code generation techniques can be employed to generate
them from the model. As an example, we report a sketch of a wrapper class for
DiaMH (for the InsulinPump component) and its methods and fields.

InsulinPump

– erogatedInjections: store the number of injections done in the current session;
– reset(): restore pump’s internal variables to default values.

An Approach and a Prototype Tool for Generating Executable IoT System 389

Fig. 3. DiaMH state machine diagram

In the following, a portion of the Python code of the Cloud mock class is provided:
class Cloud:

def getCriticalCount(self):
res = 0
for x in self.glucoseReadings :

if(x > self.threshold):
res += 1

return res
...

getCriticalCount(...) returns the number of glucose readings exceeding the thresh-
old received by the cloud so far. It will be invoked every time the test generation
tool traverses a transition which, in its guard, checks the number of values over
the threshold.

4.3 Configuration Files Definition/Generation

Interfaces of wrapper and mock classes, although derived from the model, can
significantly differ from the original components of the actual system under test.
To fill the gap between model and implementation, some configuration files have
to be defined. In our approach, there are four configuration files to make imple-
mentation details explicit:

390 D. Olianas et al.

1) Implementation definition file: associates every class in the model with the
actual implementation we want to use in test scripts (e.g., for DiaMH it
contains only a JSON object where each class in the model is associated to a
concrete wrapper class implementation {“MobileApp” : “MobileAppAppium”,
“Cloud” : “Cloud”, “Sensor” : “GlucoseSensor”, “Pump” : “InsulinPump”}).
At this prototyping stage it must be defined manually, but in a real-world
scenario it may be generated by a tool that lets the developers choose which
implementations they want to use in test scripts;

2) Wrapper class configuration file: maps the interface of classes in the model
with the interface of the implementations. Can be automatically generated
from wrapper classes;

3) Variable definition file: contains the information required to instantiate the
variables of the state machine in the generated test scripts (e.g., for the app
variable: “app” : {“type” : “MobileApp”, “options” : {“modifier” : “static”, “vis-
ibility”: “protected”}}). At this prototyping stage it must be defined manually,
but in a real-world scenario the information about type and access modifier
of variables may be integrated in the model;

4) Language configuration file: maps some constructs of the pseudocode of the
state machine in the actual code of test scripts (e.g., in the state machine we
declare objects as VarName := Class(), while in Java we must do Type VarName
= new Class();). Since this file depends only on the target language and the
pseudocode, it is provided with the test generation tool for the supported
target languages (Java and Python).

We chose to use four files instead of saving all this information in one to allow
changing them independently when generating test scripts. For example, if we
want to use a different implementation, we need to change only the implemen-
tation definition file.

The wrapper class configuration file can be compiled manually, or can be
generated automatically if our wrapper classes are written in Java (and prop-
erly annotated). We defined two annotations: @ModelName, which specifies the
model name of the class or method it annotates, and @Omitted, used to annotate
parameters of wrapper classes that are not reported in the model.

5 Test Scripts Generation

At this point, all the inputs required by the test generation tool are ready. Now
the tester is just required to run the tool providing them as input. The execution
flow of the tool is summarized in Fig. 4 and described in detail in the following
of the section. As the first step, the configuration builder (Step 1) inspects the
wrapper classes using reflection and creates the Wrapper class configuration file.
Then the tool analyzes the state machine (Step 2) and generates a set of paths
that traverse it, starting from the initial state (Step 3). These paths, thanks to
the code written in state machine’s labels and implementation details stored in
configuration files, are transformed by the tool in executable test scripts (Step
4 and 5) in a given target language (our implementation currently supports
Java and Python).

An Approach and a Prototype Tool for Generating Executable IoT System 391

Fig. 4. Tool architecture and execution flow

5.1 Test Paths Building

After the generation of Wrapper class configuration files (Step 1), the tool
reads the state machine, parses its code (Step 2) and finds an initial set of test
paths using an algorithm that guarantees transition coverage (Step 3). Every
transition of the state machine is traversed at least once considering all the
generated paths.

The proposed algorithm (Step 3) is designed as follows: it takes in input
a directed multigraph G (a directed graph which is permitted to have multiple
edges, i.e., edges with the same source and target nodes) represented as a set of
vertices V (the states of the diagram) and a set of edges E (the transitions of the
diagram), and an initial state s. We assume that every state in V is reachable
from s. Each element of E contains the edge itself and a boolean to mark if the
edge has been visited yet. Each element of V contains the state itself and a path
to reach it, saved the first time we visit the state. Each vertex v and edge e offers
the following methods:

– v.hasOutEdges(): returns true if the vertex has outgoing edges, false otherwise;
– v.unvisitedOutEdges(): returns the list of outgoing edges from v not yet visited;
– e.getTarget(): returns the destination vertex of e;
– e.getSource(): returns the source vertex of e;

Pseudocode of the initial paths generation algorithm:
list findPathsForEdgeCoverage (V,E,s) {

Queue edgeToVisit; List finalPaths;
edgeToVisit.push(s.unvisitedOutEdges ());
while (TRUE) {

e = edgeToVisit.pop(); vertex v = e.getTarget ();
e.visited = TRUE;
if (v.path is empty) { // first time we visit the node

392 D. Olianas et al.

/* the path to reach v is created by concatenating the current
edge to the path bringing to its source state */

v.path = e.getSource ().path+e;
/* if the current state has outgoing edges they are added to

the unvisited queue */
if (v.hasOutEdges ()) edgeToVisit.push(v.unvisitedOutEdges ());
//if there are no outgoing edges the path is finalized
else finalPaths.add(v.path);

}
else finalPaths.add(e.getSource ().path+e); /* we already visited

this node , so we finalize the path */
if (edgeToVisit is empty) break;

}
return finalPaths;

}

The algorithm produces (i.e., add to the set of “Potentially” non-executable test
path, see the output of Step 3) a new path in two cases: each time it visits an
already visited node and when it visits a node without outgoing edges. Since all
the unvisited edges of a node are added to the queue when the node is visited
for the first time, if we assume that every node is reachable from the starting
node s, every edge will appear in at least one produces path. Moreover, since
the final path is always taken from the edgeToVisit queue, and since there are
no duplicate edges in the queue (edges are added only when a node is visited
for the first time), the algorithm also guarantees that every produced path ends
with a different transition.

5.2 Paths’ Executability Handling

Test paths generated in the previous step are built looking only at the graph
structure of the state machine, without checking if transitions’ guards are
enabled. Therefore, they cannot be transformed immediately in executable test
scripts. In case the state machine has been properly designed (and in particular,
if all the used variables have been declared in the transitions outgoing from the
initial state), we can analyze the paths using symbolic execution [9] to check if
there are non-executable transitions, and add a loop (i.e., a sequence of tran-
sitions starting and ending in the state where the transition to enable starts)
before them to enable them (Step 4).

A test path is an ordered sequence of transitions: to execute it means execut-
ing, starting from the first transition, all the code included in transition labels
(events, guards, and actions) and entry actions (if any) of the target state. The
code in the state machine refers to classes declared in the class diagram, and
that is why we need the aforementioned mock classes: without them, we would
not be able to execute test paths in this phase.

To choose which transitions traverse to make the predicate true, we must
introduce the notion of branch distance. Described for the first time by Korel [10],
branch distance is a metric that can be computed on boolean predicates, and
tells us how close we are to make the given predicate true. The original version
of Korel handled only relational predicates (equalities and inequalities), but it
has been extended by Tracey et al. [14] to support negation, AND and OR. Usu-
ally, in input data generation for search-based test generation techniques, branch

An Approach and a Prototype Tool for Generating Executable IoT System 393

distance is used as fitness function (or as a component of the fitness function)
for meta-heuristic search algorithms like hill-climbing, simulated annealing or
genetic algorithm. In these scenarios, there is a big, potentially infinite search
space, in which to find the input values that maximize (or minimize) a fitness
function. In our case, the input we want to find is a loop, with a fixed max-
imum length, that enables a specific transition: the actions contained in the
transitions composing the loop will enable the transition of interest (see the fol-
lowing example). But at each step, our search space is limited to the enabled
outgoing transitions of the current state, so our search algorithm will be quite
straightforward.

Let’s make an example on the DiaMH state machine (see Fig. 3). At a
given moment, we need to enable transition from the Normal to the Mor-
eInsuline state. The context is: we already received 10 readings of which 2
above the threshold (i.e., critical). So we have to enable the transition guard
[cloud.getCriticalCount()>=4]. Tracey et al. [14] report that the branch dis-
tance for a boolean predicate of kind E1>=E2 is 0 if E1>=E2 otherwise E2–
E1. Thus the current distance d is 4–2=2. The algorithm needs to analyze
the effect (on the branch distance of the guard of interest) of executing the
other transitions. cloud.receiveOver(); increments of 1 the value of criticalCount,
cloud.receiveUnder(); does not modify the value of criticalCount, while the remain-
ing self-transition of the state Normal cannot be executed since maxReadings is
equal to 20 and we have obtained only 10 readings so far. So to reduce the
distance d to our goal (i.e., enabling the transition from Normal to MoreInsu-
line), the algorithm chooses to cycle twice on the self-transition labeled with
cloud.receiveOver();. Indeed, in this way, d changes from 2 to 1 (after the first
cycle), and then to 0 (after the second cycle). At this point, criticalCount becomes
equal to 4 and the transition to MoreInsuline will be executed.

5.3 Test Scripts Building

At this point, almost all the information required to build executable test scripts
is contained in the executable test paths (see the input to Step 5). We only
need some additional implementation details that are language-dependent and
can be stored in configuration files. More in detail, the language configuration
file is used to translate from the pseudocode used in the state machine to the
programming language used in actual test scripts; the variable definition file is
used to correctly instantiate variables. A simple loop traverses each path and
prints in a file the code found in traversed transitions and states, relying on the
aforementioned language configuration file to generate test scripts with a correct
syntax (e.g., if we are generating Java test scripts for the JUnit framework it
should generate test methods annotated with the @Test annotation and using
public void modifiers).

Test Scripts for DiaMH. Our prototype tool generated 12 test scripts for
DiaMH, composed of 889 lines of code (LOCs). The longest test script is com-
posed of 136 LOCs, the shortest of 9, with an average of 70 LOCs and a standard

394 D. Olianas et al.

deviation of 48 LOCs. The high standard deviation is due to the business logic
of DiaMH: to enable some transitions, we must send from 15 to 20 glucose val-
ues to the cloud, and each submission requires at least two lines of code. From
the state machine’s point of view, we can see that every state and transition is
traversed at least once, considering all the generated test paths.

Test Input Generation. Here we provide some details on how test input data
are managed. Our approach does not support arbitrary input coming from a
user or from the environment: each input value must be either fixed or computed
during the execution of the test generation tool. With arbitrary input we mean
an input whose value does not depend on the system, but on something external
like a user, the environment, or another system. Since usually systems do accept
this kind of input (and DiaMH makes no exception: values coming from sensors
are an example of arbitrary input), a solution must be found. We relied on
Equivalence partitioning, a software testing technique that divides the input
data of a program into partitions of values that produce an equivalent behavior
(e.g., in DiaMH, below and above the threshold). Note that this strategy can be
adopted when the input does not have too many partitions: otherwise would be
impractical to add too much transition to represent the input completely.

6 Empirical Study

The goal of the empirical evaluation is to determine the effectiveness of the
proposed approach/prototype. Thus, the only research question we investigated
is the following:

RQ: Are the generated test suites able to detect bugs/faults in the IoT system
under test?
To answer our research question, we must be able to quantify the bug-detection
capability of generated test suites.

Mutation Testing. A possible solution to validate the effectiveness of a test
suite is to apply mutation testing [12], a technique that consists in exercising the
test suite against slight variations of the original code, simulating the errors a
developer could introduce during development and maintenance activities. These
variations, named mutants, are used to identify the weaknesses in the test arti-
facts by determining the parts of software that are poorly or never tested. For
each mutant, the test scripts are run: if at least one test script fails, the mutant
has been detected (killed) and this proves the effectiveness of the test suite
in detecting the kind of fault introduced by the mutant. If no test fails, the
mutant is not detected (i.e., it survives) and this proves the test suite weakness
in detecting the kind of fault introduced by the mutant. Thus, our goal was to
build a generator able to build test suites killing the highest number of gener-
ated mutants; a metric to evaluate the overall test suite quality is given by the
percentage of mutants killed out of the total (i.e., the higher, the better).

An Approach and a Prototype Tool for Generating Executable IoT System 395

6.1 Validation Framework

To the best of our knowledge, no test suite validation framework, based on
mutation testing, for IoT systems exists. Thus we decided to implement a sup-
porting tool meant to generate the mutants of DiaMH and, for each mutant,
run the generated test suite and collect the results. More in detail, its execu-
tion flow is presented in Fig. 5. The starting point are the sources of the IoT
system under test. The tool 1 extracts code from function nodes of the system
flows and saves them to file, then 2 generates mutants of the extracted code,
and 3 for each mutant M of a node N , generates a copy of the Node-RED
flows with M in place of N . The Javascript Mutator subcomponent relies on
Stryker (https://stryker-mutator.io/), a mutation tool for Javascript that sup-
ports various mutation operators for unary, binary, logical and updates instruc-
tions, boolean substitutions, conditional removals, arrays declarations, and block
statements removals. Then, the Mutant manager and Test runner component 4
communicate with the Node-RED server and for each generated mutant Node-
RED flow: (a) starts the Node-RED server executing the mutated flow; (b) runs
the generated test suite on the SUT; (c) saves results; and (d) stops the server.

6.2 Results

For DiaMH a total of 185 mutants have been generated, precisely 20 for the
sensor flow, 116 for the cloud flow, and 49 for the pump flow (note that we

Fig. 5. Execution flow of the validation framework

Table 1. DiaMH mutation testing: preliminary results considering all generated
mutants

Component Mutants Survived Killed

Sensor 20 9 (45%) 11 (55%)

Cloud 116 37 (32%) 79 (68%)

Pump 49 29 (59%) 20 (41%)

Total 185 75 (41%) 110 (59%)

https://stryker-mutator.io/

396 D. Olianas et al.

did not mutate the mobile app implementation). Table 1 shows the number of
killed/survived mutants after the execution of the generated test suite. The first
column indicates which Component has been mutated, Mutants indicates the
number of generated mutants for that component, the Survived column indicates
how many mutants were not detected by the generated test suite, the Killed how
many were detected. From Table 1, it is evident that the generated test suite has
been able to kill/detect the 59% of the mutants overall (110 out of 185). For
mutants localized in the Cloud component (116 out of 185), the detection rate
is even higher, reaching the 68%.

We have analyzed in detail why some mutants have not been discovered.
Table 2 reports the results of our analysis. Of the 75 surviving mutants, 59 (43
+ 12 + 4, 78%) are undetectable since they manifest exactly the same expected
behavior of the original DiaMH (equivalent mutants), and therefore they can-
not be detected with any black-box testing technique [6,8]. Of these equivalent
mutants, the greatest majority (43 mutants, 57% of the survivors) affected only
log print statements on the Node-RED server console.

Others mutants are equivalent because of redundant statements (12 mutants,
16% of the survivors): some instructions performed in a function node (usually
loading a global variable and assigning its value to an attribute of the message)
are performed identically in a subsequent node before any use, so modifying this
assignment does not affect execution results.

Table 2. DiaMH mutation testing: survivors mutants detailed manual analysis

Component Survived Equivalent behavior Different behavior

Print
statements

Redundant
statements

Other Not
modeled

BVA
required

Sensor 9 2 1 4 2 0

Cloud 37 28 6 0 1 2

Pump 29 13 5 0 11 0

Total 75 43 12 4 14 2

The four mutants with equivalent behavior marked as Other modify the
expressions that generate glucose readings. In the sensor flow, two expressions
generate values, respectively under or over the threshold. These mutants change
an operator in the expressions, but the modified expression still generates values
in the right range.

Other survivors (14 mutants, 19%) change the behavior of DiaMH but on
minor aspects that were not documented in the requirements and thus in the
model (Not modeled). Thus, they differ from the original system in ways that are
not checked by the generated test scripts. For example, in the insulin pump, some
mutants prevent the pump from replying to pings coming from the smartphone.
If the mobile app, when started, does not receive a response to the ping, a red

An Approach and a Prototype Tool for Generating Executable IoT System 397

FAIL message will appear in the pump status info on the mobile app. But our
test scripts do not check these status info, since in the designed state machine
no assertion method checks them, and so the generated tests cannot detect these
mutants (that is why the majority of Not detected are in the pump).

Finally, we have two mutants in the ‘BVA required’ column. This kind of
mutants needs a specific input to be detected. BVA (Boundary Value Analy-
sis)is a testing technique that focuses on values around boundaries of decision
points. The two mutants in this category changed a ‘>’ in ‘≥’ in two nodes that
check how many readings over the threshold are stored in the cloud’s memory.
To appreciate a difference with the original system, we should have sent input
sequences that contain the precise threshold value.
Summary: the generated test scripts were able to detect the 59% of the mutants
overall (110 out of 185). However, by analyzing in detail the surviving mutants,
we discovered that several of them (59) cannot change the external behavior
of the DiaMH system, because equivalent. This increases the real capability of
our approach (87%, 110 out of 126). Finally, 14 additional mutants survived
since they changed the behavior of DiaMH in minor not documented aspects.
Excluding also these mutants – since this a limit more of the input model than
of the approach – the mutants detection rate of our approach arrives to 98%
(110 out of 112).

7 Conclusions and Future Work

In this paper, we have presented an approach for (semi-automated) model-based
test generation, oriented to acceptance testing of IoT systems. The approach is
supported by a prototype tool that automatically generates test scripts from an
input model representing the behavior of the system. The approach has been
empirically evaluated using mutation testing. The test suite generated with our
approach was able to detect between 87% and 98% of the considered mutants.

The majority of the mutants modifying the behavior of DiaMH were not
detected due to the incompleteness of the model. However, representing the
complete behavior of an IoT system on a single state machine is a quite hard
task. As a possible solution, we intend to use different state machines to describe
the behavior of the system under test: every state machine will focus on only
one specific aspect of the system behavior (e.g., main functionalities, reliability,
connectivity).

Clearly, our approach does not pay-off for small IoT systems like DiaMH since
its application is too complex. However, we believe it becomes cost-effective for
complex IoT systems, when tens or hundreds of test scripts must be generated
by our tool. To better understand this aspect, we are extending our experimental
part with a complex, IoT system inspired by the Smart Santander (http://www.
smartsantander.eu/) public parking management system, where each parking
lot is monitored by a sensor, that allows users to ask for free parking in their
surroundings, through a smartphone. Finally, we are preparing a guide able to
teach how to follow the various steps required by our approach and learn how
to use our tool.

http://www.smartsantander.eu/
http://www.smartsantander.eu/

398 D. Olianas et al.

References

1. End-to-end testing for IoT integrity. Technical report. https://alm.parasoft.com/
end-to-end-testing-for-iot-integrity

2. ISO/IEC/IEEE 24765:2010(E) International Standard - Systems and Software
Engineering - Vocabulary, pp. 1–418 (2010). https://doi.org/10.1109/IEEESTD.
2010.5733835

3. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

4. Friedman, G., Hartman, A., Nagin, K., Shiran, T.: Projected state machine cov-
erage for software testing. SIGSOFT Softw. Eng. Notes 27(4), 134–143 (2002).
https://doi.org/10.1145/566171.566192

5. Gantait, A.: Test case generation and prioritization from UML models. In: Pro-
ceedings of 2nd International Conference on Emerging Applications of Information
Technology, EAIT 2011, pp. 345–350. IEEE (2011)

6. Grün, B.J.M., Schuler, D., Zeller, A.: The impact of equivalent mutants. In: Pro-
ceedings of 2nd International Conference on Software Testing, Verification, and
Validation Workshops, ICSTW 2009, pp. 192–199 (2009). https://doi.org/10.1109/
ICSTW.2009.37

7. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
trends, techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012).
https://doi.org/10.1145/2379776.2379787

8. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
TSE.2010.62

9. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

10. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng.
16(8), 870–879 (1990). https://doi.org/10.1109/32.57624

11. Leotta, M., et al.: An acceptance testing approach for Internet of Things systems.
IET Softw. 12, 430–436 (2018). https://doi.org/10.1049/iet-sen.2017.0344

12. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, W.E.
(ed.) Mutation Testing for the New Century. ADBS, vol. 24, pp. 34–44. Springer,
Boston (2001). https://doi.org/10.1007/978-1-4757-5939-6 7

13. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test
case generation and prioritization. In: Proceedings of 3rd International Workshop
on Automation of Software Test, AST 2008, pp. 67–70 (2008)

14. Tracey, N., Clark, J., Mander, K., McDermid, J.: An automated framework for
structural test-data generation. In: Proceedings of the 13th IEEE International
Conference on Automated Software Engineering, ASE 1998, p. 285. IEEE (1998)

15. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc. (2007)

https://alm.parasoft.com/end-to-end-testing-for-iot-integrity
https://alm.parasoft.com/end-to-end-testing-for-iot-integrity
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1145/566171.566192
https://doi.org/10.1109/ICSTW.2009.37
https://doi.org/10.1109/ICSTW.2009.37
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/32.57624
https://doi.org/10.1049/iet-sen.2017.0344
https://doi.org/10.1007/978-1-4757-5939-6_7

Applied Statistical Model Checking
for a Sensor Behavior Analysis

Salim Chehida(B) , Abdelhakim Baouya , Saddek Bensalem ,
and Marius Bozga

University Grenoble Alpes, CNRS, VERIMAG, 38000 Grenoble, France
{salim.chehida,abdelhakim.baouya,saddek.bensalem,

marius.bozga}@univ-grenoble-alpes.fr

Abstract. The analysis of sensors’ behavior becomes one of the essential
challenges due to the growing use of these sensors for making a decision in
IoT systems. The paper proposes an approach for a formal specification
and analysis of such behavior starting from existing sensor traces. A
model that embodies the sensor measurements over the time in the form
of stochastic automata is built, then temporal properties are feed to
Statistical Model Checker to simulate the learned model and to perform
analysis. LTL properties are employed to predict sensors’ readings in
time and to check the conformity of sensed data with the sensor traces
in order to detect any abnormal behavior.

Keywords: IoT · Sensor · Stochastic automata · Statistical model
checking · LTL · BIP

1 Introduction

Internet of Things (IoT) has become one of recent technology mostly used in
various domains such as health and environmental monitoring [26], construction
and energy management [22], smart vehicles [2], and buildings [7]. It consists
of a collection of entities that interacts with users to fulfill a common goal.
The sensor is a critical device in the IoT ecosystem that allows to measure the
state information over time and monitor physical components. Data gathered
from different sensors are used to make a decision and promote automation in
IoT systems by providing efficient and intelligent services, whereas, corrupted
data during transmission or malfunction of sensors, due to natural events or
other causes can influence the correct operation of the entire system. Indeed,
the massive increase of these issues with the growing number of deployed sensors
push towards the sensors’ behavior analysis by checking their sensed data.

The analysis of sensors’ behavior and detecting the erroneous readings have
attracted great attention. Many approaches have been proposed based on sev-
eral methods such as statistical methods [30], probabilistic methods [14,28],
clustering-based methods [12] and prediction-based methods [25]. Governed by

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 399–411, 2020.
https://doi.org/10.1007/978-3-030-58793-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_32&domain=pdf
http://orcid.org/0000-0002-5070-2591
http://orcid.org/0000-0003-2182-7501
http://orcid.org/0000-0002-5753-2126
http://orcid.org/0000-0003-4412-5684
https://doi.org/10.1007/978-3-030-58793-2_32

400 S. Chehida et al.

the standard learning requirements, the approaches rely on the metadata and
structure of the sensed data.

In this paper, we propose a model-based approach involving formal verifi-
cation for sensor behavior analysis. Our approach aims to make the analysis
process of sensed data rigorous, automatic, scalable, and meaningful. Figure 1
shows the steps of our approach. First, we start by collecting sensor traces and
data preprocessing required to build an approximate model of the sensor behav-
ior, then we apply formal verification techniques to analyze this model and then
check if new measurements are compliant with the learned model.

Fig. 1. Generic approach for sensor behavior analysis

Model checkers allow checking the conformity of a system model expressed
in formal notation to a set of properties expressed in a logical language. In
this study, we apply a type of model checkers called Statistical Model Checkers
(SMC) to verify whether a sensor model expressed in Stochastic Automata (SA)
satisfies a given logical property up to some probability, based on model simula-
tions. We use quantitative properties expressed by Linear-time Temporal Logic
(LTL) to predict the sensor readings in time and qualitative LTL properties to
check the quality of sensed data and their compliance with the provided traces.
Several SMC tools have been proposed such as PRISM-SMC [15], UPPAAL-SMC
[8]. The BIP language [4] and SBIP [17] are used in this paper for behavior mod-
eling and SMC analysis. We apply our approach to the industrial case study of
the Cecebre dam in Spain, which is equipped with wireless sensors that measure
the water contributions to the dam.

This paper is organized as follows: we build the sensor behavior model in
Sect. 2. The analysis results of the sensor model will be presented in Sect. 3.
Finally, we present related works in Sect. 4 and draw our conclusions in Sect. 5.

2 Sensor Behavior Model

In this work, we use BIP1 (Behavior, Interaction, Priority), a component-based
language for rigorous design of systems. In BIP, components are finite-state
automata having transitions labeled with ports and states that denote control
locations (see Fig. 4). We first start by data preprocessing and extraction of some
statistical information needed to build the behavior models of sensors.

1 https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html.

https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html

Applied Statistical Model Checking for a Sensor Behavior Analysis 401

2.1 Data Preprocessing

In our case study, we consider three sensors deployed in the dam of Cecebre in
the city of la Coruna in Spain. These sensors are used to measure the Water
Height (WH), the Rain Precipitation (RP), and the Water output Flow (WF). As
shown in Fig. 2, the data collected from sensors are used to control the opening
of the spillgate in order to ensure that the water does not reach a maximum
level in the dam. The anomalous behavior of these sensors can influence the
correct operation of the dam system. Our objective is to build formal models
that specify the normal behavior of the sensors. These models will be used to
control the sensors’ readings and to detect any failure or anomaly.

Fig. 2. Dam infrastructure

A trace of time series data recorded by each sensor per day since 1989 to 2016
has been collected. We reorganized the original trace by creating a separate CSV
file per sensor. The new file contains the sensor readings per day for 28 years.
As shown in Fig. 3, the data preprocessing is done in three steps:
1. Data cleaning: we use a filter to remove faulty sensors data. The filter deletes

NaN data and data that not make sense, such as negative and inconsistent
data.

2. Data discretization: we convert continuous (or quantitative) data into discrete
(or qualitative) ones. The paper [27] presents the several methods proposed for
time series data discretization. In this study, we use the EWD (Equal Width
Discretization) method [9] because of its simplicity. It consists of mapping
numerical values into predefined fixed intervals that have an equal-width.
Each bin or level is associated with a distinct discrete value. In this work,
we relied on data visualization using histograms to determine the number of
levels. For the water height sensor, we use five levels for data discretization.

3. Generation of distribution: Once data was discretized, we extract some sta-
tistical information. We generate a sensor distribution file by counting the
occurrence of each level of water height (WH L) each day.

402 S. Chehida et al.

Fig. 3. Preprocessing of sensors data

2.2 Specification of Sensor Model

Figure 4 presents a behavior model for the water height sensor expressed in the
BIP language.

Fig. 4. Behavior model of water height sensor

BIP supports several formal modeling formalisms based on Discrete and
Continuous Time Markov Chains (DTMC and CTMC) and Generalized Semi-
Markov Process (GSMP). In this work, we use Stochastic Automata (SA) to
express a behavior model of the sensors. The stochastic semantics is defined
by variables based on the probability distributions. In the model of Fig. 4, we
select the day distribution based on sensorDistribution file generated in the

Applied Statistical Model Checking for a Sensor Behavior Analysis 403

previous section. According to this distribution, the water high level (1, 2, 3, 4
or 5) is defined.

The models that specify the behaviors of the other sensors (RP and WF) are
defined using the same pattern as WH sensor model. Only the number of levels
can change depending on the sensor data. Using these models, we can simulate
and analyze the behavior of the different sensors for any period of the year.

3 Analysis of Sensor Behavior

SBIP framework2 has a graphical user-interface permitting to edit, compile and
simulate models, and automates the different statistical analysis. As shown in
Fig. 5, the input of the tool is a system model S expressed in BIP language
like that of Fig. 4 and a property φ expressed in Linear-time Temporal Logic
(LTL)[23] and/or Metric Temporal Logic (MTL) [3]. Using SBIP, we can perform
two types of analysis:

1. Quantitative: we estimate the probability that the system S satisfies a given
property φ.

2. Qualitative: we test whether the probability of a given property φ being sat-
isfied by the system S is greater or equal to a certain threshold θ.

Fig. 5. SBIP statistical model checker

To decide whether S satisfies φ (written S |= φ), SBIP refers to simulation
based techniques: Probability Estimation (PE) [13] for quantitative properties
and Hypothesis Testing (HT) [29] for qualitative properties.

3.1 Quantitative Analysis

In this work, we use a stochastic bounded variant of LTL to express properties. In
LTL, path formulas are defined using four bounded temporal operators namely,
Next (Nψ1), Until (ψ1 ∪k ψ2), Eventually (F kψ1), and Always (Gkψ1), where
k is an integer value that specifies the length of the considered system execution
2 http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?

lang=en.

http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en
http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en

404 S. Chehida et al.

trace and ψ1, ψ2 are called state formulas, which is a Boolean predicate evaluated
on the system states.

SBIP allows to check parametric property φ(x), where x is a parameter
ranging over a finite instantiation domain. It also provides a summary of analysis
results and generates specific curves and/or plots of results. We present four
examples of quantitative properties:

Property 1: the probability of water height levels on April 27.
In LTL: P=?[F 1000 (WH L = L && Day = 117)]; L = 1 : 5 : 1;

The results are given in Fig. 6. We find that level 5 is the most likely and
levels 4 and 3 are less likely. However, levels 1 and 2 are never observed on
this day. These predictions concerning water height sensor and estimations from
other sensors can help the managers of dam infrastructure to adjust the spillgate
level.

Fig. 6. Probability of water height levels on April 27

Property 2: the probability of each level of water height at the first weeks of
January and May.
In LTL:

{
P=?[F 1000 (WH L = L && Day = T)]; T = 1 : 7 : 1;T = 121 : 127 : 1;

L = {1, 2, 3, 4, 5}

Figure 7 shows the SMC verdict of property 2. We see that level 5 is rarely
observed in the first week of January, however, this level is most likely in the
first week of May. The opposite for levels 1 and 2, which are more possible in the
first week of January and rare in the first week of May. With LTL properties,
we can predict the evolution of water height level at any period of the year.

Property 3: the probability that the water height level stays on the same level
the last week of May.

Applied Statistical Model Checking for a Sensor Behavior Analysis 405

Fig. 7. Probability of water height levels at first weeks of January and May

In LTL:
{

P=?[G1000 (WH L = L && Day = 145) ∪1000 (WH L = L && Day = T)];
T = 146 : 151 : 1; L = {1, 2, 3, 4, 5}

As shown in Fig. 8, there is a high possibility that the water height level will
remain at levels 4 or 5 in the last week of May.

Property 4: the probability that the water height changes from first level on
January 16th to other levels on the next day.
In LTL:
{

P=?[(WH L = 1 && Day = 16) ∪1000 (WH L = L && Day = 17)];
L = {2, 3, 4, 5}

Figure 9 shows that change to levels 2 and 3 is most likely while there is little
chance of change to levels 4 and 5.

Fig. 8. Results of property 3 Fig. 9. Results of property 4

3.2 Qualitative Analysis

For qualitative analysis of sensor behavior, we rate sensors’ readings based on
their probabilities as following:

406 S. Chehida et al.

1. Not observed (RED): never seen in 28 years.
2. Rare (ORANGE): observed once or twice within 28 years.
3. Possible (YELLOW): observed 3 to 21 times in 28 years.
4. Very possible (GREEN): observed more than 21 times.

Table 1 defines the possible probabilities. Based on these considerations, we
express qualitative properties that allow testing the compliant of sensors’ read-
ings with the learned model.

Table 1. Sensor state rate

State Not observed Rare Possible Very Possible

Probability 0]0, 0.09]]0.09, 0.75]]0.75, 1]

Property 5: Check whether the probability that water height reaches level 5 is
higher than 0.75.

In LTL: P>0.75[F 1000 (WH L = 5 && Day = T)]; T = 1 : 365 : 1;

Figure 10 shows the results provided by SBIP. This property allows calculat-
ing the set DL5vp = {124, .., 202} of days where the level 5 of water height is
very possible.

Fig. 10. Probability that water height level 5 is very possible

In the same way, we can calculate the sets DL4vp, DL3vp, DL2vp, DL1vp
where levels 4, 3, 2, and 1 are very possible. Based on these calculations, we
define the function isV eryPossibe as:

isV eryPossibe(WH L,Day) ←
(WH L = 5 && Day ∈ DL5vp || WH L = 4 && Day ∈ DL4vp||
WH L = 3 && Day ∈ DL3vp || WH L = 2 && Day ∈ DL2vp ||
WH L = 1 && Day ∈ DL1vp)

We have also defined the functions isPossible, isRare, and isNotObserved
which allow respectively to check if the data collected by the sensors are possible,
rarely observed, or never observed.

Applied Statistical Model Checking for a Sensor Behavior Analysis 407

The defined functions are used to build the model of Fig. 11 that allows eval-
uating the conformity of any water height sensor reading regarding the provided
trace. The model can help to distinguish between anomalous and correct sensor
readings.

Fig. 11. Sensor state model

The sensor state model can be used to check the quality of sensed data
from the existing trace. In Fig. 12, we discover very possible readings (Green
points), possible readings (Yellow points), and rare readings (Orange points) in
the months April and May of 2016. As shown in the Figure, some rare readings
are detected at the beginning of April and May.

Fig. 12. Score of water height sensor data for April and May of 2016 (Color figure
online)

408 S. Chehida et al.

The sensor state model also allows for checking new observations. Figure 13
presents the test results for April and May of 2017. We see that no unusual
observation is found and that the observations of Avril are possible and the
observations of May are highly possible.

Fig. 13. Score of water height sensor data for April and May of 2017

4 Related Work

Time series analysis is one of the active areas of research due to its application
in different fields, such as in the context of IoT-based systems. For sensors time
series data, predicting the next measurements and detecting erroneous readings
are the relevant tasks. The paper [11] presents the several approaches proposed
for this purpose:

– Statistical approaches such as the method proposed by [30] that builds a
window-based forecasting model from past observations, then it classifies the
sensors’ readings as anomalous based on a given prediction confidence inter-
val.

– Probabilistic approaches use probabilistic models such as Bayesian Networks
(BNs) [14] to measure the probability of sensors’ readings. However, these
approaches do not scale well.

– Proximity-based or clustering-based approaches such as [6,12] use distances
between the sensed data to detect the erroneous readings. For high dimen-
sional data, these approaches do not work well.

– Prediction-based approaches such as [16,25] use machine learning methods to
predict the sensors’ readings based on a model trained from past observations.
However, training is time-intensive.

In our approach, we generate stochastic automata that specify the sensor
behavior from past observations, and then we apply SMC to simulate the learned
model and express LTL properties that predict the sensors’ readings and analyze
the sensor behavior in time. SMC is a powerful technique that handles scalability
and requires less memory and time. The paper [1] provides a survey of the
existing SMC tools. SBIP tool used in this work was applied for the analysis
of various systems [5,20,21]. Our approach is different from all the approaches
presented above. It allows to build a behavioral automata-based model from data
and analyze this model using formal verification techniques. Among the works
in this direction:

Applied Statistical Model Checking for a Sensor Behavior Analysis 409

– The authors in [24] use Extended Finite Automata and residuals techniques
to detect deviations of the behavior of the inhabitant in a smart home from
a log of binary sensor events.

– The paper [18] models logs from SCADA systems using timed automata and
applies the UPPAAL model checker to express a set of logic properties for
detecting attacks targeting these systems.

– [19] uses Markov Decision Process for modeling the behavior of elastic cloud
applications based on past log and then introduces probabilistic model check-
ing to perform cloud elasticity decision using PCTL properties.

– [10] specifies a stochastic model in Deterministic-Time Markov Chain from
the architecture description of the managed system considering different met-
rics related to cloud-infrastructure execution traces. Then, the PRISM model
checker is used to optimize the self-adaptation decisions.

5 Conclusion

We presented an approach for a formal analysis of sensors’ behavior. A formal
model expressed as stochastic automata has been derived from sensor time series
data then quantitative LTL properties expressed on this model are used to pre-
dict sensor readings. Also, qualitative LTL properties are used for defining a
second automata-based model that allows checking if the new measurements are
compliant with past observations. We have applied our approach to analyzing
the behavior of three sensors from a dam infrastructure at different times. Our
approach provides several advantages, including:

– We use BIP formalisms that allow the rigorous specification and analysis of
sensor behavior.

– We use a component-based approach supported by BIP that facilitates por-
traying sensors behavior with reusability, and maintainability features.

– We developed a prototype that automatically generates sensor behavior and
sensor state models from any existing traces.

– We use statistical model checkers that consume less memory and can check
models with large state spaces.

In the future, we are planning to enhance the proposed approach by analyzing
the consistency between the behaviors of a set of sensors and expressing inter-
sensors properties.

Acknowledgments. The research leading to these results has been supported by the
European Union through the BRAIN-IoT project H2020-EU.2.1.1. Grant agreement
ID: 780089. The authors would like to thank EMALCSA Company for the data col-
lected from the dam infrastructure.

410 S. Chehida et al.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Mod-
eling Comput. Simul. 28(1), 1–39 (2018). https://doi.org/10.1145/3158668

2. Al-Turjman, F., Malekloo, A.: Smart parking in IoT-enabled cities: a survey. Sus-
tain. Cities Soc. 49, 101608 (2019)

3. Alur, R., Henzinger, T.: Real-time logics: complexity and expressiveness. Inf. Com-
put. 104(1), 35–77 (1993). https://doi.org/10.1006/inco.1993.1025

4. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011)

5. Beaulaton, D., Said, N.B., Cristescu, I., Sadou, S.: Security analysis of IoT systems
using attack trees. In: Albanese, M., Horne, R., Probst, C.W. (eds.) GraMSec 2019.
LNCS, vol. 11720, pp. 68–94. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-36537-0 5

6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/
335191.335388

7. Daissaoui, A., Boulmakoul, A., Karim, L., Lbath, A.: IoT and big data analytics
for smart buildings: a survey. Procedia Comput. Sci. 170, 161–168 (2020). https://
doi.org/10.1016/j.procs.2020.03.021

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

9. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretiza-
tion of continuous features. In: Prieditis, A., Russell, S. (eds.) Machine Learning
Proceedings 1995, pp. 194–202. Morgan Kaufmann, San Francisco (1995). https://
doi.org/10.1016/B978-1-55860-377-6.50032-3

10. Franco, J.M., Correia, F., Barbosa, R., Zenha-Rela, M., Schmerl, B., Garlan, D.:
Improving self-adaptation planning through software architecture-based stochastic
modeling. J. Syst. Softw. 115, 42–60 (2016). https://doi.org/10.1016/j.jss.2016.01.
026

11. Giannoni, F., Mancini, M., Marinelli, F.: Anomaly Detection Models for IoT Time
Series Data. ArXiv abs/1812.00890 (2018)

12. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn.
Lett. 24(9–10), 1641–1650 (2003). https://doi.org/10.1016/S0167-8655(03)00003-
5

13. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

14. Hill, D.J., Minsker, B.S., Amir, E.: Real-time Bayesian anomaly detec-
tion in streaming environmental data: REAL-TIME BAYESIAN ANOMALY
DETECTION. Water Resources Res. 45(4) (2009). https://doi.org/10.1029/
2008WR006956

15. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Ver-
ification, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

16. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks
for anomaly detection in time series. In: ESANN (2015)

https://doi.org/10.1145/3158668
https://doi.org/10.1006/inco.1993.1025
https://doi.org/10.1007/978-3-030-36537-0_5
https://doi.org/10.1007/978-3-030-36537-0_5
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1016/j.procs.2020.03.021
https://doi.org/10.1016/j.procs.2020.03.021
https://doi.org/10.1016/B978-1-55860-377-6.50032-3
https://doi.org/10.1016/B978-1-55860-377-6.50032-3
https://doi.org/10.1016/j.jss.2016.01.026
https://doi.org/10.1016/j.jss.2016.01.026
https://doi.org/10.1016/S0167-8655(03)00003-5
https://doi.org/10.1016/S0167-8655(03)00003-5
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1029/2008WR006956
https://doi.org/10.1029/2008WR006956
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Applied Statistical Model Checking for a Sensor Behavior Analysis 411

17. Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., Bensalem, S.:
SBIP 2.0: statistical model checking stochastic real-time systems. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 536–542. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01090-4 33

18. Mercaldo, F., Martinelli, F., Santone, A.: Real-Time SCADA attack detection
by means of formal methods. In: 2019 IEEE 28th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
pp. 231–236. IEEE, Napoli, Italy, June 2019. https://doi.org/10.1109/WETICE.
2019.00057

19. Naskos, A., Gounaris, A., Mouratidis, H., Katsaros, P.: Online analysis of secu-
rity risks in elastic cloud applications. IEEE Cloud Comput. 3(5), 26–33 (2016).
https://doi.org/10.1109/MCC.2016.108

20. Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A.: Statistical
model checking QoS properties of systems with SBIP. Int. J. Softw. Tools Technol.
Transf. 17(2), 171–185 (2014). https://doi.org/10.1007/s10009-014-0313-6

21. Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S., Legay, A.: Per-
formance evaluation of stochastic real-time systems with the SBIP framework. Int.
J. Critical Comput.-Based Syst. 8(3/4), 340 (2018)

22. Park, C., Kim, Y., Jeong, M.: Influencing factors on risk perception of IoT-based
home energy management services. Telematics Inform. 35(8), 2355–2365 (2018)

23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE Computer Society, USA, October
1977. https://doi.org/10.1109/SFCS.1977.32

24. Saives, J., Pianon, C., Faraut, G.: Activity discovery and detection of behavioral
deviations of an inhabitant from binary sensors. IEEE Trans. Autom. Sci. Eng.
12(4), 1211–1224 (2015). https://doi.org/10.1109/TASE.2015.2471842

25. Shahid, N., Naqvi, I.H., Qaisar, S.B.: One-class support vector machines: analysis
of outlier detection for wireless sensor networks in harsh environments. Artif. Intell.
Rev. 43(4), 515–563 (2013). https://doi.org/10.1007/s10462-013-9395-x

26. Tao, Z.: Advanced Wavelet Sampling algorithm for IoT based environmental mon-
itoring and management. Comput. Commun. 150, 547–555 (2020). https://doi.
org/10.1016/j.comcom.2019.12.006

27. Yang, Y., Webb, G.I., Wu, X.: Discretization methods. In: Maimon, O., Rokach, L.
(eds.) Data Mining and Knowledge Discovery Handbook, pp. 101–116. Springer,
Boston (2009). https://doi.org/10.1007/978-0-387-09823-4 6

28. Xie, Y., Shun-Zheng, Y.: A large-scale hidden semi-Markov model for anomaly
detection on user browsing behaviors. IEEE/ACM Trans. Network. 17(1), 54–65
(2009). https://doi.org/10.1109/TNET.2008.923716

29. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

30. Yu, Y., Zhu, Y., Li, S., Wan, D.: Time series outlier detection based on sliding
window prediction. Math. Probl. Eng. 2014, 1–14 (2014). https://doi.org/10.1155/
2014/879736

https://doi.org/10.1007/978-3-030-01090-4_33
https://doi.org/10.1109/WETICE.2019.00057
https://doi.org/10.1109/WETICE.2019.00057
https://doi.org/10.1109/MCC.2016.108
https://doi.org/10.1007/s10009-014-0313-6
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/TASE.2015.2471842
https://doi.org/10.1007/s10462-013-9395-x
https://doi.org/10.1016/j.comcom.2019.12.006
https://doi.org/10.1016/j.comcom.2019.12.006
https://doi.org/10.1007/978-0-387-09823-4_6
https://doi.org/10.1109/TNET.2008.923716
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1155/2014/879736
https://doi.org/10.1155/2014/879736

Preliminary Experiences
in Requirements-Based Security Testing

João Miranda1 , Ana C. R. Paiva1,2(B) , and Alberto Rodrigues da Silva3,4

1 Faculty of Engineering, University of Porto, Porto, Portugal
{up201802166,apaiva}@fe.up.pt
2 INESC TEC, Porto, Portugal
3 INESC-ID, Lisbon, Portugal

4 Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
alberto.silva@tecnico.ulisboa.pt

Abstract. Software requirements engineers and testers generally define
technical documents in natural languages, but this practice can lead to
inconsistencies between the documentation and the consequent system
implementation. Previous research has shown that writing requirements
and tests in a structured way, with controlled natural languages like RSL,
can help mitigate these problems. This study goes further, discussing new
experiments carried out to validate that RSL (with its complementary
tools, called “ITLingo Studio”) can be applied in different systems and
technologies, namely the possibility of applying the approach to inte-
grate test automation capabilities in security testing. The preliminary
conclusion indicates that, by combining tools such as ITLingo Studio
and the Robot Framework, it is possible to integrate requirements and
test specifications with test automation, and that would bring benefits
in the testing process’ productivity.

Keywords: Tests automation · Security testing · Test case
generation · Requirements engineering · RSL

1 Introduction

The vast majority of requirement specifications are written in natural languages.
However, the use of natural language may lead to problems, such as ambiguity,
incompleteness, inconsistency, and incorrectness [3] in the documentation, which,
in turn, can lead to implementation errors. In addition, to define acceptance
tests, testers rely on reading these documents. If the documents are not clear
and complete, the test cases will also experience the same problems and the final
system will be different from what is intended.

One of the approaches to mitigate these issues is by using controlled natural
languages, like the ITLingo RSL (Requirements Specification Language) [14,16],
which provides a structured way of writing requirements and test cases [16].
RSL provides the capability to specify use cases, use case tests, and many other
constructs in a common language.
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 412–425, 2020.
https://doi.org/10.1007/978-3-030-58793-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_33&domain=pdf
http://orcid.org/0000-0003-0976-3760
http://orcid.org/0000-0003-3431-8060
http://orcid.org/0000-0002-7900-9846
https://doi.org/10.1007/978-3-030-58793-2_33

Preliminary Experiences in Requirements-Based Security Testing 413

Recently, Maciel et al. discussed an approach [6,10] that aims to integrate and
combine requirements and test cases specification with test automation tools, to
improve the process of defining and executing acceptance tests. In particular,
they discussed how to integrate ITLingo Studio (i.e., a Eclipse-based IDE that
supports RSL and other languages) with the Robot Framework [14]. However,
the software application and the examples they used to illustrate the approach
were very simple. Thus, the goal of this work is to assess the applicability of the
approach in different settings. First, we aim to assess the applicability on web
applications developed using other technologies, namely based on the SPA (i.e.,
single page application) architecture. Second, we aim to preliminary check if it
is possible to extend the approach to perform security testing.

This paper is structured in 5 sections. Section 2 presents the proposed testing
process. Section 3 describes the experiments performed and discusses the results
achieved. Section 4 refers and discusses the related work. Finally, Sect. 5 presents
final conclusion and open issues.

2 Proposed Testing Process

The proposed testing process intends to combine (1) both requirement and test
specifications, defined in a tool like ITLingo Studio, with (2) test automation,
supported by a tool like Robot Framework. This section briefly introduces the
tools considered in this research, and overviews the proposed process.

2.1 Suported Tools: ITLingo Studio and Robot Framework

ITLingo-Studio is an Eclipse-based tool (i.e. a desktop IDE) for authoring
IT technical documentation, such as requirements and tests (with the RSL
language), project management plans (with the PSL language), or platform-
independent application specifications (with the ASL). In the scope of this paper,
we only consider the ITLingo RSL (or just RSL for brevity). RSL is a controlled
natural language that helps the production of requirements and tests specifica-
tions in a systematic, rigorous and consistent way [3,14,16,17]. RSL includes
a rich set of constructs like use cases, goals, user stories, but also use case
tests, data entities, actors, stakeholders, and many others (further details in
[10,15]. The ITLingo languages have been implemented with the Xtext frame-
work (https://eclipse.org/Xtext/), so its specifications are rigorous and can be
automatically validated and transformed into other representations and formats.
Figure 1 depicts the ITLingo Studio with a test case specified in both RSL and
Robot Framework languages.

Robot Framework (RF for short) is a generic open source automation frame-
work that can be used for test automation and robotic process automation [11].
RF has an open and extensible architecture and can be integrated with other
tools to create flexible automation solutions. Robot Framework provides a tex-
tual language with a keyword-based easy syntax, both machine and human-
readable. Its capabilities can be extended by libraries implemented with Python
or Java.

https://eclipse.org/Xtext/

414 J. Miranda et al.

Fig. 1. RSL specification and test script in Robot.

In the scope of our research, the test cases defined in RSL [15] are generated to
RF test scripts, and then these test scripts are executed by the RF’s engine [12].
A key advantage of RF is its high modularity and extensibility, as it is platform-
agnostic and thanks to its driver plugin architecture, the core framework does
not require any previous knowledge of the system under test [13].

2.2 The Process

Figure 2 shows the approach originally proposed in [6], which considers an “end-
to-end integration of requirements, test cases, and test scripts”, namely by com-
bining tools like the ITLingo Studio (with RSL specifications) and Robot Frame-
work (with keyword-based test scripts).

This approach consists in a sequence of tasks, that varies from the specifica-
tion of requirements until the execution of tests, as follows.

Requirements Specification. In the task “(1) Specify Requirements (manual)” the
requirements are elicited and documented by requirement engineers using the
RSL language. This may also involve other stakeholders (like testers or domain
experts) for validation purposes. This task favors with a systematic specification
of requirements and can be done manually with the ITLingo Studio (that is an
Eclipse IDE for authoring RSL specs) or an Excel template.

Test Cases Specification and Validation. Task “(2) Specify Test Cases (semi-
auto)” uses the requirements defined in the previous step to generate test cases,
namely considering the mappings between use case and use case test, as defined
in [16]. Task “(3) Refine Test Cases (manual)” allows the tests engineers to
refine and complete the (previously generated) test cases with all the relevant
test scenarios, steps, etc. Also, the tests generated from the previous task may
be subject to manual validation and this could result in new test cases which are

Preliminary Experiences in Requirements-Based Security Testing 415

then added to the final specification. This test case validation is also a human-
intensive and time-consuming task.

Fig. 2. Proposed testing approach, as originally defined in [6].

Test Scripts Generation. Once the specification and validation of test cases are
completed, the task “(4) Generate Test Scripts (auto)” consists in the generation
of test scripts, which can be then executed by a test automation tool, like the
Robot Framework. This generation is based on the mappings established between
the RSL specification and the concrete syntax of the Robot Framework [6].

Map the UI Elements. The user interface (UI) of a web application involves
several UI elements [6]. To properly support the test automation based on the
acceptance tests, these generic UI elements have to be mapped to concrete UI
variables defined in the test scripts so as to act over related UI elements dur-
ing test case execution. The establishment of this map is the purpose of task

416 J. Miranda et al.

“(5) Map GUI elements to keywords (semi-auto)”. However, using a web scrap-
per browser extension, as the Selenium WebDriver (https://www.selenium.dev/
projects/), it is possible to automatically capture and generate scripts that suc-
cessfully map these UI elements with the test scripts. Unfortunately, most of
these cases depend on the proper keywords mapping, which is hard to be fully
automated.

Execute Test Scripts. Task “(6) Execute tests (auto)” takes into consideration
the test scripts (previously generated, and with their UI variables mapped to
concrete UI elements) and execute them on the system under test (SUT). This
test automation task produces an artifact “Test Report”, which includes the log
details of its execution.

3 Security Testing Based on RSL

This section describes two sets of experiments conducted to explore different
objectives. The first one aims to apply the RSL testing approach, as it is, but
with a web application with different characteristics than the one considered orig-
inally in [6]. There are differences in technologies used to develop the Automation
Practice website (used in the previous study) and OWASP Juice Shop. While
Automation Practice is developed in PHP [6,13], OWASP Juice Shop is devel-
oped using Angular and Angular-Material library for styling [8]. The usage of
Angular, in many cases, prevented the correct mapping of the UI elements to
their respective keywords. This happens mainly because: there are unspecified
element identifiers, elements are too generic, are not standard, or have overlays.
These issues prevented the correct map of inputs, buttons and dropdown but-
tons, which are not found at all. The second set of experiments aims to evaluate
if the RSL-based testing approach can be used as well to test security aspects.

The application used in these experiments is the Juice Shop web application,
which is an open-source web application, entirely written in JavaScript, and
listed in the OWASP VWA (Vulnerable Web Applications) directory [8]. Juice
Shop includes a large number of hacking challenges and vulnerabilities that a user
is supposed to exploit. As suggested in Fig. 3, Juice Shop mimics an e-commerce
website that sells juices and vegetables, and so, it is a good application example
for acceptance and security testing.

3.1 First Experiments

The first set of experiments aims to check the applicability of the RSL testing
approach. The first step of these experiments was to define the requirements spec-
ification. For that we defined the data entities (e.g. user, product, and others),
actors (e.g., visitor and cracker), use cases (e.g., sign-up, sign-in), and respective
test cases.

The second step was to define test cases to check the behavior of the appli-
cation related to the authentication functionality, namely: (1) Sign up; (2) Sign

https://www.selenium.dev/projects/
https://www.selenium.dev/projects/

Preliminary Experiences in Requirements-Based Security Testing 417

Fig. 3. Screenshot of the juice shop application.

in (Spec. 1.1); and (3) Sign in attempt by simulating a brute force attack (Spec.
1.3).

The test cases consist of a user trying to sign-up and then to sign-in. After-
wards, the goal is a brute force attempt by deliberately sending wrong passwords
and, in the last time, submitting the correct password.

After the specification of these test cases, the RSL engine generates automat-
ically the respective test scripts defined as Robot Framework (“.robot”) files.

Then, to support establishing the mapping between keywords and UI ele-
ments of the GUI, we used two tools: the one developed in previous work [6] and
web scraper techniques to select elements to be used by the Robot Framework.

Web scraping can be achieved by mapping specific elements of a web page
through their XML path (X-Path) or CSS selectors, generally speaking, X-Path
is more trustworthy as it is possible to achieve certain elements selection more
precisely [5,19]. The X-Path of a given element can be constructed by its XML
absolute path or through additional selectors, that allow to “take shortcuts” on
a document’s structure in order to reach some element [5,19].

The solution we adopted to overcome this technical problem was to resort to
X-Path mapping instead of CSS mapping. However, a X-Path based approach
has also some issues, namely: most of the web-scrapping tools that support X-
Path are not free; the free web-scrapping extension that supported X-Path was
not accurate leading to unnecessary rework, the free web-scrapping extension
that was used by default tries to find the X-Path using special selectors which
may include CSS, classes, and relative selectors, thus we opted to use always the
absolute X-Paths.

418 J. Miranda et al.

Sign-Up Test Case
The idea of the “Sign-Up” is to try to test an user registration by informing the
correct parameters and check if the user is successfully created. This test can be
extended to verify if the web application allows the same user to be registered
twice, etc.

The test results were successful although some mapping issues with custom
elements of angular material such as the select or the input were detected and
fixed by the usage of X-Path.

Sign-In Test Case
The idea of the “Sign-In” test is to check if a previously registered user can sign
in according to the documentation by providing the e-mail and their respective
password. The result of this test is a success even though it presented the same
issues as the previous test. A successful login attempt is made and the user is
correctly authenticated.

Spec. 1.1 shows the Sign-In test case specified in the RSL language. Spec.
1.2 shows the equivalent specification in the Robot Framework language.

UseCaseTest t u c 2 S i gn In ”Sign−In t e s t case ” : Val id [
useCase uc 2 S ign In a c t o r I n i t i a t e s aU Vis i to r
d e s c r i p t i o n ”As a V i s i t o r I want to s i gn in ”
t e s tS c ena r i o SignIn : Main [

i sConcre te
dataEntity e User withValues (

| e User . emai l | e User . password +|
| ”user001@awdrt . net ” | ”q1w2e3r4” +|
)

step s1 : System Execute : OpenBrowser [”The system opens the browser in
https :// ju i c e −shop . herokuapp . com/#/”]

step s2 : Actor Cal lSystem :
Cl ick element (’ d ismiss ’)
[”The V i s i t o r c l i c k s the ’ Dismiss ’ button ”]

step s3 : Actor Cal lSystem :
Cl ick element (’ Account ’) [” ”]

s tep s4 : Actor Cal lSystem :
Cl ick element (’ SignIn ’)
[”The V i s i t o r c l i c k s on the ’ SignIn ’ button ”]

step s5 : Actor PrepareData :
PostData readFrom e User . emai l
[”The V i s i t o r wr i t e s the email ”]

s tep s6 : Actor PrepareData :
PostData readFrom e User . password
[”The V i s i t o r wr i t e s the password ”]

step s7 : Actor Cal lSystem :
Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s8 : Actor Cal lSystem :
Cl ick element (’My Account ’)
[”The V i s i t o r c l i c k s on the ’My Account ’ button ”]

step s9 : System Execute :
Check elementOnScreen (text e User . f i rstName)
[” ’MyAccount ’ appears with the user name”]

]
]

Spec. 1.1. User Sign In test case (RSL spec).

∗∗∗ Se t t i ng s ∗∗∗
Documentation This i s a bas i c t e s t
Library Selenium2Library
∗∗∗ Var iab l e s ∗∗∗

${ email1} wypizsbdbmiazqybiz@awdrt . net
${password1} q1w2e3r4

∗∗∗ Test Cases ∗∗∗

SignIn−Test 1
[Documentation] As a V i s i t o r I want to s i gn in
open browser https :// ju i c e −shop . herokuapp . com/
Cl ick element

Preliminary Experiences in Requirements-Based Security Testing 419

// button [conta ins (@class , ’ mat−focus−i nd i c a t o r mat−ra i s ed−button ’)]
/ f o l l ow ing −s i b l i n g : : button [1]

Cl i ck element
(//mat−too lbar−row [@class=’mat−too lbar−row ’] / / button) [3]

Cl i ck element
navbarLoginButton

input text
(// input [conta ins (@class , ’ mat−input−element mat−form−f i e l d −a u t o f i l l −contro l ’)]) [2]
${ email1}

Input password
(// input [conta ins (@class , ’ mat−input−element mat−form−f i e l d −a u t o f i l l −contro l ’)]) [3]

${password1}
Cl ick element

(// div [@id=’ log in−form ’] / / button) [2]
Cl i ck element

(// button [conta ins (@class , ’ mat−focus−i nd i c a t o r mat−menu−t r i g g e r ’)]) [1]
Page Should Contain Element

(// simple−snack−bar [@class=’mat−simple−snackbar ng−star−i n s e r t ed ’] / / span) [1]
${ email1}

Spec. 1.2. User Sign In test (Robot Framework spec).

Multiple Invalid Login Attempts Test Case
This test aims to try and check, by repetition, if there is any kind of protection
against multiple incorrect login attempts such as IP blocking, account locking,
etc. This attempt tries emulate the incorrect submission of a username/password
combination before attempting to login with the correct password to check if
the user/account was blocked or not. The repeated submission of requests to a
determined application could be also identified as a potential Denial of Service
attack and an application that has protection against such attacks could also
block a malicious user attempt after a number of login attempts.

The main point of this test is to check if after 3 to 5 attempts of requests with
invalid passwords the system will present any kind of lock or captcha to block
malicious attempts to sign-in. This test results showed that the web application
has no countermeasures against brute force attacks as after 5 attempts it was
possible to keep retrying until the password was correct.

UseCaseTest s t uc 1 BruteForce ” SignInBruteForce ” : Val id [
useCase suc 1 BruteForce S ign In a c t o r I n i t i a t e s aU Cracker
d e s c r i p t i on ”As a Cracker I want to brute f o r c e s i gn in ”

va r i ab l e user [
a t t r i bu t e emai l : S t r ing
a t t r i bu t e password : St r ing
a t t r i bu t e wrong password : St r ing]

t e s t S c ena r i o BruteForceSignIn : Main [
i sConcre te
va r i ab l e user withValues (

| user . emai l | user . wrong password | user . password +|
| ”user001@awdrt . net ” | ”q1w2e3r4t5” | ”q1w2e3r4” +|

)
step s1 : System Execute :

OpenBrowser [”The system opens the browser
in https :// ju i c e −shop . herokuapp . com/#/”]

step s2 : Actor Cal lSystem :
Cl ick element (’ Dismiss ’)
[”The V i s i t o r c l i c k s the ’ Dismiss ’ button ”]

step s3 : Actor Cal lSystem :
Cl ick element (’ Account ’) [” ”]

s tep s4 : Actor Cal lSystem :
Cl ick element (’ SignIn ’)
[”The V i s i t o r c l i c k s on the ’ SignIn ’ button ”]

step s5 : Actor PrepareData :
PostData readFrom user . r eg ema i l
[”The V i s i t o r wr i t e s the email ”]

s tep s6 : Actor PrepareData :
PostData readFrom user . reg wrong password
[”The V i s i t o r wr i t e s the wrong password ”]

step s7 : Actor Cal lSystem :
Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s8 : Actor Cal lSystem :
Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s9 : Actor Cal lSystem :

420 J. Miranda et al.

Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s10 : Actor Cal lSystem :
Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s11 : Actor Cal lSystem :
Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s12 : Actor PrepareData :
PostData readFrom user . reg password
[”The V i s i t o r wr i t e s the c o r r e c t password ”]

step s13 : Actor Cal lSystem :
Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s14 : Actor Cal lSystem : Cl ick element (’My Account ’)
[”The V i s i t o r c l i c k s on the ’My Account ’ button ”]

step s15 : System Execute : Check elementOnScreen (text e User . f i rstName)
[” ’MyAccount ’ appears with the user name”]

]
]

Spec. 1.3. Multiple invalid login attempts test case (RSL spec).

The result of this first set of tests showed that, although it is possible to
perform such validations using RSL and ITLingo Studio, this may be a very
repetitive and time consuming task, as the language currently does not support
iteration operators, thus requiring manual implementation of each invalid sign in
attempt. In the case of the Juice Shop application, after 5 attempts with wrong
passwords, the test login with a correct password and was successfully authen-
ticated, and thus, this shows that the Juice Shop application is not protected
against brute force sign-in attacks.

3.2 Second Experiments

The goal of the second set of experiments is to check if it is possible to apply
the proposed approach in security testing.

We analyzed the documentation of OWASP Juice Shop [8] to identify and
understand the involved exploits. Most of its exploits referred to the follow-
ing vulnerabilities: SQL Injection; XSS; Vulnerable Components; Sensitive Data
Exposure; Broken Authentication; Broken Access Control.

Many of these exploits require tools that have to be combined with ITLingo
Studio, namely to include features such as: use browser developer mode, use
external programs to inspect requests, and penetration testing tools. In this
preliminary study, we just explored the following vulnerabilities: SQL Injections
and XSS based on UI inputs.

SQL Injection attack - Abuse Login as Administrator
The goal of this test is to check if it is possible to execute an SQL injection attack
on the system. This requires some previous knowledge of the system architecture,
but in general, this knowledge is available.

Spec. 1.4 shows an RSL specification of the “Abuse Login as Administrator”
test case. This test is a simple example of an SQL injection attack. The goal of
this test is to break the login query by sending a special sequence of characters
(i.e., the string “OR 1=1–”) that returns true, and that allows to login with the
first user of the application’s database: that happens to be the “administrator”
user! With this test, it was possible to detect an important system vulnerability,
since it is possible to incorrectly login as an administrator and, thus, login with
higher privileges accessing information that should not be supposed to.

Preliminary Experiences in Requirements-Based Security Testing 421

This test resulted in a successful login as administrator, which in a real
scenario would allow an attacker to execute actions that normally should not be
available to regular users.
UseCaseTest s t uc 1 SQLIn j ec t ”” : I nva l i d [

useCase suc 2 SQLi Admin User a c t o r I n i t i a t e s aU Cracker
d e s c r i p t i on ”As a Cracker I want to l o g i n as

Administrator us ing SQLi”
va r i ab l e query [

a t t r i bu t e l o g i n : St r ing
a t t r i bu t e password : St r ing

]
t e s t S c ena r i o SQLinject ionAdminis t ratorS ignIn : Main [

i sConcre te
va r i ab l e query withValues (
| query . l o g i n | query . password+|
|” ’ OR 1=1−−” |”” +|

)
step s1 : System Execute : OpenBrowser

[”The system opens the browser in
https :// ju i c e −shop . herokuapp . com/#/”]

step s2 : Actor Cal lSystem :
Cl ick element (’ Dismiss ’)
[”The V i s i t o r c l i c k s the ’ Dismiss ’ button ”]

step s3 : Actor Cal lSystem :
Cl ick element (’ Account ’) [” ”]

s tep s4 : Actor Cal lSystem :
Cl ick element (’ SignIn ’)
[”The V i s i t o r c l i c k s on the ’ SignIn ’ button ”]

step s5 : Actor PrepareData :
PostData readFrom query . l o g i n
[”The Cracker wr i t e s the query ”]

step s6 : Actor PrepareData :
PostData readFrom query . password
[”The Cracker wr i t e s random data ”]

step s7 : Actor Cal lSystem :
Cl ick element (’ Confirm SignIn ’)
[”The V i s i t o r c l i c k s on the ’ Sign In ’ button ”]

step s8 : Actor Cal lSystem :
Cl ick element (’My Account ’)
[”The V i s i t o r c l i c k s on the ’My Account ’ button ”]

step s9 : System Execute :
Check elementOnScreen (text query . l o g i n)
[” ’MyAccount ’ appears with the user name”]

]

Spec. 1.4. RSL Test Steps for SQL injection.

Embed IFrame Which Calls Another Website on Screen
This test consists in creating an address that would return a specific set of
characters, then by inputting an IFrame that references that address and submit
the search query to test if the system renders the input data as HTML.

This test aims to check if it is possible to fill in an input field with an IFrame
redirecting to a new location that does not belong to the application under test.
Indeed, it was possible to confirm this vulnerability since after the search input
form, the system redirected to the new location. However, this test required the
local execution of the OWASP Juice Shop as it is needed to access a local API.

With this preliminary study it is possible to conclude that the proposed app-
roach (with tools like ITLingo Studio and Robot Framework) can be adopted to
test security vulnerabilities. Nevertheless, it need to be extended and combined
with additional functionalities and other cyber-security specific tools.

4 Related Work

The greatest problem of using natural language for documenting requirements is
that it usually leads to well-known problems, such as ambiguity, incompleteness,

422 J. Miranda et al.

inconsistency, and incorrectness [3]. Ambiguity is a particularly serious prob-
lem, as it allows for multiple interpretations of the same requirement [3]. This
issue can make the automation of some subsequent activities of the software
development process more difficult or even unfeasible. One way to overcome the
ambiguity problem is to use structured languages and/or models.

4.1 Test Cases Generation

One of the less treated phases during a software development project is the test-
ing and validation phase [4]. Therefore, a good way to combat this trend would
be to increase the automation of testing activities, with the aim of improving
the final quality of a software development project.

One test activity that is a candidate for automation is the generation of test
cases. It is common to find research works that generate test cases from models of
the system under development. The models adopted and data used by different
approaches may vary significantly [2,7,18]. Besides this, it is also possible to find
some works that try to generate test cases from requirements specified in natural
languages [1].

Requirements specification in natural language are common. However, gen-
erating automatically test cases from them is challenging because they are often
written in a non-standardized way.

The work presented in [1] uses Natural Language processing tools to gen-
erate automatically test cases from functional requirements written in natu-
ral language. The process followed is based on three steps, namely: (1) Func-
tional Requirements specification; (2) Applying Natural Language Processing
technique to analyze requirements and extract the data necessary for the con-
struction of test cases; and (3) Generate the test cases from the extracted data.

To enable the generation of test cases, the requirements’ document must be
written according to a certain level of standardization, otherwise no results are
produced.

An approach based on models is presented in [4] where test cases are gen-
erated from a Round-Strip Strategy and Extended Use Cases. In this work, the
functional requirement may be treated as a graph or state machine which allows
to apply path-finding algorithms. Each path can be used as a test case. In com-
plement, the authors use a Category-Partition method on Use Cases to identify
subsets of the domain for executing concrete pieces of the behavior.

In [9], the authors generate test cases from user execution traces, i.e., all
user interactions with the web application are saved so as to work as regression
test cases when the application suffers updates in the context of its mainte-
nance. The original traces are extended by applying mutation operators that
were designed to generate different sequences of interaction and ultimately exer-
cise more behavior of the web application under test.

One of the challenges that these approaches have to deal with is to identify
the User Interface (UI) elements to act upon when executing the final generated
test scripts over the application under test. Sometimes this mapping between
concepts of the specification level (either model elements or textual keywords)

Preliminary Experiences in Requirements-Based Security Testing 423

and UI elements is established manually which may require some effort. Although
the keyword mapping is still done manually in ITLingo Studio, it does not require
language processing capabilities since the specification is structured and it is
simple to get all keywords that must be mapped to UI elements for test script
execution.

5 Conclusion

At the moment, RSL and ITLingo Studio have some dependencies and work well
in some specific scenarios. In the future, this approach should be extended and
improved to provide a more simplified user experience.

One aspect that should be considered for improvement is to allow working
with more types of applications based on different technologies. In addition,
changing from the exclusive CSS mapping to the generic X-Path mapping will
allow the use of CSS and X-Path mapping in the selection of UI elements. This
change combined with a browser extension capable of inferring the absolute X-
Path and, if necessary, in a second step, offering CSS alternatives, may allow
a more direct way of mapping the elements of the user interface to the desired
keywords.

Regarding the language, we noticed that the entire approach would benefit
from some RSL extensions. In particular, it should be considered extending the
RSL language with the ability to make direct references to entities. This may
be useful for defining test scenarios. Another aspect is to extend RSL with a
mechanism supporting iterations inside test scenarios. This problem was noticed
when defining the “brute force” test case in Spec 1.3.

Regarding the overall approach, we think that it would benefit from adding a
test data generation technique. This would ease the definition of the test cases. In
addition, ITLingo’s usability would improve if the components were integrated
in a single environment. As it is now, it requires the use of different technologies
and different IDEs to successfully run all necessary scripts.

Finally, and related to security tests, the tool has some limitations to perform
this type of tests. However, some of the mentioned problems may be overcome
if implemented in the scripting engine.

References

1. Ansari, A., Shagufta, M.B., Sadaf Fatima, A., Tehreem, S.: Constructing test cases
using natural language processing. In: Proceedings of the 3rd IEEE International
Conference on Advances in Electrical and Electronics, Information, Communi-
cation and Bio-Informatics, AEEICB (2017). https://doi.org/10.1109/AEEICB.
2017.7972390

2. Barbosa, A., Paiva, A.C.R., Campos, J.C.: Test case generation from mutated
task models. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing System, EICS 2011. ACM (2011). https://doi.org/10.1145/
1996461.1996516

https://doi.org/10.1109/AEEICB.2017.7972390
https://doi.org/10.1109/AEEICB.2017.7972390
https://doi.org/10.1145/1996461.1996516
https://doi.org/10.1145/1996461.1996516

424 J. Miranda et al.

3. de Almeida Ferreira, D., da Silva, A.R.: RSLingo: an information extraction app-
roach toward formal requirements specifications. In: 2nd IEEE International Work-
shop on Model-Driven Requirements Engineering, MoDRE (2012). https://doi.
org/10.1109/MoDRE.2012.6360073

4. Gutiérrez, J., Aragón, G., Mej́ıas, M., Domı́nguez Mayo, F.J., Ruiz Cutilla, C.M.:
Automatic test case generation from functional requirements in NDT. In: Gross-
niklaus, M., Wimmer, M. (eds.) ICWE 2012. LNCS, vol. 7703, pp. 176–185.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35623-0 18

5. Jr, V.S.: An Introduction to XPath: How to Get Started (2016). https://blog.
scrapinghub.com/2016/10/27/an-introduction-to-xpath-with-examples

6. Maciel, D., Paiva, A.C., Da Silva, A.R.: From requirements to automated accep-
tance tests of interactive apps: an integrated model-based testing approach. In:
ENASE 2019 - Proceedings of the 14th International Conference on Evaluation
of Novel Approaches to Software Engineering (2019). https://doi.org/10.5220/
0007679202650272

7. Moreira, R.M.L.M., Paiva, A.C.R., Nabuco, M., Memon, A.: Pattern-based GUI
testing: bridging the gap between design and quality assurance. Softw. Test. Veri-
fication Reliab. 27(3) (2017). https://doi.org/10.1002/stvr.1629

8. OWASP: OWASP Juice Shop - demo and testing instance. https://juice-shop.
herokuapp.com

9. Paiva, A.C.R., Restivo, A., Almeida, S.: Test case generation based on mutations
over user execution traces. Softw. Qual. J. 1–14 (2020). https://doi.org/10.1007/
s11219-020-09503-4

10. Paiva, A.C.R., Maciel, D., da Silva, A.R.: From requirements to automated accep-
tance tests with the RSL language. In: Damiani, E., Spanoudakis, G., Maciaszek,
L.A. (eds.) ENASE 2019. CCIS, vol. 1172, pp. 39–57. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-40223-5 3

11. Robot-Framework-Foundation: Robot Framework. https://robotframework.org/
12. Rwemalika, R., Kintis, M., Papadakis, M., Le Traon, Y., Lorrach, P.: On the evolu-

tion of keyword-driven test suites. In: Proceedings - 2019 IEEE 12th International
Conference on Software Testing, Verification and Validation, ICST (2019). https://
doi.org/10.1109/ICST.2019.00040

13. Selenium: Automation Practice. http://automationpractice.com/index.php?id
cms=4&controller=cms

14. da Silva, A.R.: Linguistic patterns and linguistic styles for requirements specifi-
cation (i): an application case with the rigorous RSL/business-level language. In:
Proceedings of the 22nd European Conference on Pattern Languages of Programs
(2017)

15. da Silva, A.R.: Rigorous specification of use cases with the RSL language. In: 28th
International Conference on Information Systems Development - IDS (2019)

16. da Silva, A.R., Paiva, A.C.R., da Silva, V.E.R.: A test specification language for
information systems based on data entities, use cases and state machines. In: Ham-
moudi, S., Pires, L.F., Selic, B. (eds.) MODELSWARD 2018. CCIS, vol. 991, pp.
455–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11030-7 20

17. da Silva, A.R., Paiva, A.C.R., da Silva, V.E.R.: Towards a test specification lan-
guage for information systems: focus on data entity and state machine tests. In:
Proceedings of the 6th International Conference on Model-Driven Engineering and
Software Development - MODELSWARD. INSTICC, SciTePress (2018). https://
doi.org/10.5220/0006608002130224

https://doi.org/10.1109/MoDRE.2012.6360073
https://doi.org/10.1109/MoDRE.2012.6360073
https://doi.org/10.1007/978-3-642-35623-0_18
https://blog.scrapinghub.com/2016/10/27/an-introduction-to-xpath-with-examples
https://blog.scrapinghub.com/2016/10/27/an-introduction-to-xpath-with-examples
https://doi.org/10.5220/0007679202650272
https://doi.org/10.5220/0007679202650272
https://doi.org/10.1002/stvr.1629
https://juice-shop.herokuapp.com
https://juice-shop.herokuapp.com
https://doi.org/10.1007/s11219-020-09503-4
https://doi.org/10.1007/s11219-020-09503-4
https://doi.org/10.1007/978-3-030-40223-5_3
https://robotframework.org/
https://doi.org/10.1109/ICST.2019.00040
https://doi.org/10.1109/ICST.2019.00040
http://automationpractice.com/index.php?id_cms=4&controller=cms
http://automationpractice.com/index.php?id_cms=4&controller=cms
https://doi.org/10.1007/978-3-030-11030-7_20
https://doi.org/10.5220/0006608002130224
https://doi.org/10.5220/0006608002130224

Preliminary Experiences in Requirements-Based Security Testing 425

18. Silva, P., Paiva, A.C.R., Restivo, A., Garcia, J.E.: Automatic test case genera-
tion from usage information. In: 11th International Conference on the Quality of
Information and Communications Technology, QUATIC. IEEE Computer Society
(2018). https://doi.org/10.1109/QUATIC.2018.00047

19. W3School: XML and XPath. https://www.w3schools.com/xml/xml xpath.asp

https://doi.org/10.1109/QUATIC.2018.00047
https://www.w3schools.com/xml/xml_xpath.asp

Testing Chatbots with Charm

Sergio Bravo-Santos, Esther Guerra, and Juan de Lara(B)

Modelling and Software Engineering Research Group, Computer Science Department,
Universidad Autónoma de Madrid, Madrid, Spain

{sergio.bravos,esther.guerra,juan.delara}@uam.es
http://miso.es

Abstract. Chatbots are software programs with a conversational user
interface, typically embedded in webs or messaging systems like Slack,
Facebook Messenger or Telegram. Many companies are investing in chat-
bots to improve their customer support. This has led to a proliferation
of chatbot creation platforms (e.g., Dialogflow, Lex, Watson). However,
there is currently little support for testing chatbots, which may impact
in their final quality.

To alleviate this problem, we propose a methodology that automates
the generation of coherence, sturdiness and precision tests for chat-
bots, and exploits the test results to improve the chatbot precision. The
methodology is supported by a tool called Charm, which uses Botium
as the backend for automated test execution. Moreover, we report on
experiments aimed at improving Dialogflow chatbots built by third
parties.

Keywords: Chatbots · Testing · Botium · Dialogflow

1 Introduction

Chatbots – also called conversational agents – are software programs that inter-
act with users via conversation in natural language (NL) [9]. Many companies
are developing chatbots to provide access to their services or automate customer
support, and they are increasingly being used to automate software engineering
tasks [4,6]. Their use is booming as they do not require installing dedicated apps
but can be embedded in social networks – like Slack, Telegram or Twitter – for
their use in mobile devices, as if talking with a colleague.

Because of this growing interest in chatbots, many tools for their develop-
ment have appeared, such as Google’s Dialogflow1, IBM’s Watson Assistant2,
Microsoft’s bot framework3 or Amazon’s Lex4. Some of them are cloud-based
low-code development environments that greatly facilitate the main chatbot con-
struction steps, from the application of NL processing (NLP) for identifying the
1 https://dialogflow.com/.
2 https://www.ibm.com/cloud/watson-assistant/.
3 https://dev.botframework.com/.
4 https://aws.amazon.com/en/lex/.

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 426–438, 2020.
https://doi.org/10.1007/978-3-030-58793-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_34&domain=pdf
https://dialogflow.com/
https://www.ibm.com/cloud/watson-assistant/
https://dev.botframework.com/
https://aws.amazon.com/en/lex/
https://doi.org/10.1007/978-3-030-58793-2_34

Testing Chatbots with Charm 427

user intents, to the chatbot deployment in social networks. However, these tools
barely provide support for testing chatbots, even if testing is essential to ensure
the chatbot quality. At most, they offer a console where developers can manually
test if the chatbot reacts properly to the NL inputs. While this helps during the
development, a proper software process requires systematic, automatable testing
mechanisms.

To address this need, a few chatbot testing tools are starting to emerge,
most notably Botium5. This tool successfully automates the chatbot testing
process. Moreover, it permits synthesizing an initial set of test cases derived
from the training phrases of the chatbot. However, the generated test cases only
consider basic conversation flows, and need to be extended by hand. Our aim is
to automate this manual process as much as possible.

In this paper, we propose a methodology for chatbot testing that extends the
test case synthesizer of Botium to cover more complex cases, such as context-
dependent conversations. The generated test cases have two aims: testing the
robustness of the NLP engine, and the precision of the chatbot to identify the
user intents. For this purpose, our tests include variations of the chatbot train-
ing phrases, constructed via fuzzing/mutation functions [12]. Moreover, the test
results can be used to improve the chatbot precision. The method is supported
by a tool called Charm, and has been evaluated through some experiments on
chatbots developed by third parties.

In the remainder of the paper, Sect. 2 provides background on chatbots and
their testing with Botium; Sect. 3 presents our approach for test synthesis;
Sect. 4 describes our methodology and its tool support; Sect. 5 reports on an
initial evaluation; Sect. 6 compares with related work; and Sect. 7 presents the
conclusions and lines of future work.

2 Background on Chatbots and Their Testing

This section overviews the working scheme of chatbots (Sect. 2.1) and how they
can be tested with Botium (Sect. 2.2).

2.1 What’s in a Chatbot

Chatbots are programs with a conversational user interface. As Fig. 1 illustrates,
the interaction starts when the user writes a sentence or utterance (label 1).
Then, the chatbot tries to match the utterance to the most appropriate intent
among a predefined set (label 2). For example, upon the receipt of the user
utterance “what types of pizza do you have?”, a chatbot for food delivery would
recognize that the user intent is obtaining information about the availability
of some kind of food, and would reply with a list of pizza types. To identify
the intent that corresponds to an utterance, intent definitions include sample
phrases (i.e., different ways to express the intent) which are used for training
the chatbot.
5 https://www.botium.ai/.

https://www.botium.ai/

428 S. Bravo-Santos et al.

user

NL
phrase

intent1

intentn

chatbot match
intent

…
intenti

…

chatbot
response

2

5
external
service

1

build
response

store
context

extract
params

6

4

3

<<
re

us
e>

>

Fig. 1. Chatbot working scheme.

Upon matching an intent, the chatbot may need to extract information from
the utterance (label 3). In the previous example, it may need to know the query
target, which is “types of pizza”. Each piece of information is called parameter,
and is typed by an entity which can be either predefined (e.g., date) or chatbot-
specific (e.g., food type). Entities define a list of possible values (e.g., pizza,
noodles) and synonyms, and some platforms like Dialogflow allow fuzzy matching
to overcome misspellings and mistakes. If a parameter is mandatory but the
utterance does not include it, the chatbot may ask for it in a follow-up intent.
Moreover, chatbots sometimes need to store information about a conversation
(e.g., desired type of pizza) to reuse it in subsequent intents. In Dialogflow, the
conversation state is stored in contexts (label 4).

Finally, the chatbot may need to invoke an external service (e.g., the infor-
mation system of a food delivery shop) to handle the user intent (label 5), and
ultimately responds to the user (label 6) with a text, media elements, or widgets
specific of the deployment platform (e.g., buttons in Telegram).

2.2 Testing Chatbots with Botium

Botium is a suite of open-source components for automated chatbot testing. It
communicates with the chatbot under test via connectors. These are available
for many chatbot platforms (like Dialogflow, Watson or Lex), and new ones
can be added. Botium executes all test cases found in a given folder against
the chatbot. It follows a behaviour-driven development approach [10] similar
to Cucumber6, in which test cases consist of convo files that hold the global
structure of the test conversation, and utterance files that contain the phrases
used in the conversation.

As an example, Listing 1 shows a convo where the user (#me) provides any
utterance in order drink utterance (i.e., any phrase in Listing 2), and the chatbot
(#bot) is expected to match the intent order.drink. Overall, the convo would be

6 https://cucumber.io/.

https://cucumber.io/

Testing Chatbots with Charm 429

executed three times (once per utterance). As a result, Botium reports the
number of passed and failed tests, the reason for failure, and a confusion matrix
with the percentage of tests that matched the expected intent. The latter matrix
allows detecting loosely defined intents.

1 #me
2 order drink utterance
3
4 #bot
5 INTENT order.drink

Listing 1. Convo file.

1 order drink utterance
2
3 do you have iced latte?
4 can I get a small iced cappuccino with low−fat milk?
5 I want tea

Listing 2. Utterance file.

While test cases can be created by hand, Botium also supports their auto-
mated generation from the chatbot specification. Specifically, it generates one
convo and one utterance file per intent, the latter containing the intent training
phrases. The generated tests are simple, e.g., they do not consider conversa-
tions with context or chatbot responses. Hence, the developer needs to create
additional tests to tackle those scenarios. In the next section, we propose an
extension of these test synthesis capabilities.

3 Test Synthesis

Charm extends the set of test cases generated by Botium in two ways. First, it
produces further convos to test behaviour uncovered in the synthesized test set.
This process is explained in Sect. 3.1. Second, Charm augments the utterance
files by means of mutation. This technique is introduced in Sect. 3.2.

3.1 Convo Generation

Charm produces convos to test the following aspects:

– Chatbot response: Botium produces convos that specify the intent that
should be matched (see, for example, line 5 in Listing 1). Charm extends
these convos to include and assess the expected chatbot response as well.

– Required parameters: Intents may have required parameters, and the chat-
bot response may depend on their value (or lack of value). Hence, Charm
extends the base convos to tackle different parameter values.

– Context: Charm generates new convos for testing the use of contexts (i.e.,
previously stored information). To this aim, for every intent that uses context
variables, it creates all possible convo combinations that fill those variables
and lead to the intent.

Example. Listing 3 shows a convo generated by Charm for an intent with con-
text and two required parameters: type of drink and delivery method. The convo
emulates an interaction where the user utterance omits the delivery method (line
2). This triggers a follow-up question of the chatbot asking for it (line 6), to
which the user replies delivery (line 9). Then, the chatbot recaps the order details

430 S. Bravo-Santos et al.

and asks for confirmation (line 13), which requires retrieving the ordered drink
and delivery method from the previous context. Thus, to generate this convo,
Charm needs to statically build a conversation flow that feeds the context with
the necessary information, as done in lines 1–9.

1 #me
2 order drink nodeliv utt
3
4 #bot
5 INTENT order.drink
6 order drink nodeliv response
7
8 #me
9 delivery

10
11 #bot
12 INTENT order.drink
13 order drink confirmation
14
15 #me
16 order drink nodeliv yes utt
17
18 #bot
19 INTENT order.drink.yes
20 order drink confirmation yes

Listing 3. Convo for testing intent with context.

1 me:
2 Two medium cappuccinos
3
4 bot:
5 Would you like delivery or pickup?
6
7
8 me:
9 delivery

10
11 bot:
12 You want two medium cappuccinos
13 for delivery, is that right?
14
15 me:
16 Yes
17
18 bot:
19 Have a nice day!
20

Listing 4. Conversation.

As an example, Listing 4 shows an instance of the execution of the convo with
concrete utterances. We use the same line numbers as in Listing 3 to facilitate
traceability.

3.2 Utterance Generation

Starting from the utterance set generated by Botium, Charm creates new utter-
ance variants by applying the mutation operators shown in Table 1. We distin-
guish the following four kinds of mutation operators, which are applied with a
customizable probability:

– Character operators emulate typing errors according to a given probabil-
ity. Specifically, swap-char swaps a character with another one, swap-char-close
swaps one character to another one which is close in the keyboard, and delete-

char deletes one character.
– Language operators translate an utterance between a list of user-defined or

random languages, and the result is translated back to the initial language.
The goal is creating utterances with equivalent meaning but different form.

– Word operators change a word (adjectives, nouns or adverbs) by synonyms
or antonyms. The aim is creating utterances accepted by the same intents as
the original utterance.

– Number operators substitute numbers by equivalent words and vice versa.

Testing Chatbots with Charm 431

Table 1. Mutation operators for utterances.

Mutation Description Example

Character

swap-char swaps a character to any other character hello → hkllo

swap-char-close swaps a character to another one close in the keyboard hello → hwllo

delete-char deletes a character hello → hllo

Language

translation-chain translates between a list of languages hello → hola → hi

Word

word-to-synonym changes an adjective, adverb or noun to a synonym 2 pants → 2 trousers

word-to-antonym changes an adjective or adverb to an antonym hot tea → cold tea

Number

number-to-word changes a number into an equivalent word 2 pants → two pants

word-to-number changes a word to a number two pants → 2 pants

4 Testing Methodology and Tool Support

In this section, we first introduce our proposed methodology for testing chatbots
(Sect. 4.1), and then we overview our supporting tool Charm (Sect. 4.2).

4.1 Testing Process

Figure 2 shows the chatbot testing process in our tool Charm. It supports three
kinds of tests: coherence, sturdiness and precision.

chatbot CHARM

muta�on muta�on train

coherence
test

precision
test u�erances

of failed tests

extended convo
and u�erance files

mutated
u�erances

mutated
u�erances

character &
number muta�ons

language & word
muta�ons

BOTIUM

sturdiness
test

BOTIUM

convo and
u�erance files

Fig. 2. Charm’s testing process.

432 S. Bravo-Santos et al.

First, Charm invokes Botium to create the base convo and utterance files,
and extends the convo files as explained in Sect. 3.1. Then, depending on the
kind of test, Charm creates new utterances by applying a subset of the muta-
tion operators detailed in Sect. 3.2. This stage may require the intervention of
the tester to confirm that the new utterances preserve the original utterance
semantics. Finally, the test cases are executed atop Botium, and the results are
interpreted according to the test kind:

– Coherence test: This is the simplest test. It executes the extended convo
files but does not perform any utterance mutation. This test is typically per-
formed first, to detect coarse-grained defects like duplicated training phrases
in different intents, or too similar intents and entities.

– Sturdiness test: This test assesses how good the chatbot is at dealing with
typing mistakes or different writing styles. For this purpose, Charm applies
the character mutations to emulate typing mistakes, and the number muta-
tions to have a same utterance written in different ways (numbers vs words).
This type of test actually evaluates the robustness of the NLP engine of the
underlying chatbot platform. If the results are deemed bad, some platforms
allow fine-tuning the intent matching process, e.g., by enabling fuzzy match-
ing.

– Precision test: The precision test evaluates the ability of the chatbot to
predict the correct intent when utterances have a different formulation from
the intent training phrases. To do so, Charm produces new utterances using
the language and word mutations. If a test with a mutated utterance fails,
then the utterance can be used as a training phrase to improve the chatbot
precision. This testing-improvement cycle can be repeated until the chatbot
precision is deemed adequate.

4.2 Tool Support

Charm is implemented in Python and uses Botium as a backend. The tool
is freely available at https://charmtool.github.io/Charm/. It permits generating
convo files and parameterizing the distribution probabilities of the mutation
operators programmatically.

In addition, we provide a web application, implemented in Django and React,
that enables the use of Charm from a web-based user interface. Figure 3 shows
this web application, which can be accessed from the webpage of Charm. Its
main page, with label 1, shows on the left top the chatbot that is currently active.
If no chatbot has been selected, as in the figure, the user can select one from
the list of available chatbots, or upload a new one. The latter is done using the
page with label 2, where the user can also delete existing chatbots. We currently
support Dialogflow chatbot definitions, but we plan to support further formats
in the future. The user can upload hand-made convos, and generate convos using
Botium, from the page with label 3. Finally, the main page contains buttons to
execute the presented coherence, sturdiness and precision tests. As an example,
the page with label 4 shows the results of the sturdiness test. The displayed
report is generated by Botium.

https://charmtool.github.io/Charm/

Testing Chatbots with Charm 433

3

4
1

2

Fig. 3. Web-based user interface of Charm: (1) Main window. (2) Chatbot manage-
ment page. (3) Page for uploading and generating convos. (4) Results of sturdiness test
(report obtained from Botium).

5 Evaluation

In this section, we report on the results of an experiment aimed at answering
the following two research questions (RQs):

RQ1 Can Charm uncover problems in chatbots that the default test cases gen-
erated by Botium do not detect?

RQ2 Can the iterative testing process of Charm improve the chatbot quality?

5.1 Experiment Set-Up

The experiment considers the three Dialogflow chatbots shown in Table 2. The
first one was built by us, and the other two are third-party chatbots found on
github. The Baseline7 chatbot has neither contexts nor entities, and so, the chat-
bot responses do not depend on parameter values or previous conversation states.
The Nutrition8 chatbot has 7 entities, some of them with more than 100 entries,

7 https://github.com/CharmTool/Charm/blob/master/chatbots/Miso-Test.zip.
8 https://github.com/Viber/apiai-nutrition-sample.

https://github.com/CharmTool/Charm/blob/master/chatbots/Miso-Test.zip
https://github.com/Viber/apiai-nutrition-sample

434 S. Bravo-Santos et al.

and it defines several intents with required parameters, so conversations can
become complex. The RoomService9 chatbot has 5 intents, 1 of them dependant
on another via a context, and it uses 4 predefined entities and 1 chatbot-specific
entity.

Table 2. Chatbots under test.

Chatbot #Intents #Entities #Contexts

Baseline 4 0 0

Nutrition 4 7 0

RoomService 5 5 1

In the experiment, we set a maximum of 10 utterances per utterance file.
Moreover, the mutation operators were applied to each utterance with a certain
probability: in the sturdiness tests, the application probability was 30% for swap-

char-close and delete-char, 20% for number-to-word and word-to-number, and 0% for
swap-char; while in the precision tests, we gave probability 30–45% to translation-

chain, and 5% to the word mutation operators. These values were decided after
calibration, based on the quality of the resulting tests.

5.2 Experiment Execution

We run each type of test on every chatbot, and next, we extended the chatbot
training set with the utterances of the failing cases of the precision tests, per-
forming two improvement cycles. Table 3 summarizes the results. All chatbots
obtained perfect score in the coherence test (2nd column). This means that the
chatbots have no evident errors in their specification, and the default Botium
tests detect no faults.

Table 3. Results of the experiment.

Coherence,

1st cycle

Sturdiness,

1st cycle

Sturdiness,

fuzzy

matching

Precision,

1st cycle

Precision,

1st cycle

Precision,

2nd cycle

new training

Precision,

2nd cycle

new training

Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail

Baseline 32 0 31 1 31 1 29 1 30 0 30 1 31 0

Nutrition 48 0 43 5 46 2 45 2 47 0 48 1 49 0

RoomService 32 0 29 3 28 4 29 2 31 0 33 2 35 0

To test sturdiness, the character and number mutation operators produced
32, 48 and 32 additional test utterances. All chatbots failed some test case (3rd

column). If we activate fuzzy matching on the problematic entities (4th column),
9 https://github.com/dialogflow/dialogflow-java-client-v2.

https://github.com/dialogflow/dialogflow-java-client-v2

Testing Chatbots with Charm 435

then the results of Baseline do not change because it has no entities, the results
of Nutrition improve, but RoomService worsens. The latter is because the chatbot
defines an entity “room name” with entries A, B and C, and Charm generated
an utterance with a different room name, which the chatbot (incorrectly) took
as valid. This shows that fuzzy matching is not appropriate for this intent.

The precision tests produced the same number of utterances as the sturdiness
tests, though using the language and word operators. Moreover, we manually
filtered 4 of the generated test utterances out, as they were meaningless. From
the remaining test cases, all chatbots failed some (5th column), so we trained the
chatbots with the utterances of the failed cases, after which all tests succeeded
(6th column). Next, we applied the precision test with new mutated utterances,
obtaining fewer errors than in the first cycle (7th and 8th columns).

5.3 Discussion

Overall, we can answer RQ1 and RQ2 positively: Charm produced tests that
revealed faults, and also helped in improving the quality of the chatbots. How-
ever, we need to perform further experiments with more complex chatbots to
strengthen this assessment. We observed that Charm synthesized convo files to
test the context in chatbot RoomService. While Charm can generate tests that
detect chatbot defects, there is still a manual step to filter meaningless utterances
in precision tests. For instance, in our experiment, we had to remove around 3%
of the automatically generated utterances.

To get an intuition of the synthesized tests, Table 4 shows some of the utter-
ances generated by Charm, together with the mutation operator that produced
them. The last column of the table indicates whether the generated utterance
was manually discarded or not. For example, we removed the last utterance

Table 4. Sample of generated utterances.

Chatbot Utterance Mutated utterance Operator Discarded?

Baseline Just going to say hi Just come to say

hello

Translation-chain No

Baseline When are the

meetings?

When is the

meetings?

Translation-chain No

Baseline Good luck good muck Swap-char-close No

Nutrition Nutrition analysis Food analysis Word-to-synonym No

Nutrition Calories in 4 oz of

steak

Calories in four oz

of steak

Number-to-word No

Nutrition How many calories

in one big mac

How many calories

in 1 big mac

Word-to-number No

Nutrition Does a kiwi contain

vitamin A

Not one kiwi fruit

contains vitamin a

Translation-chain Yes

RoomService Is there any room

free tomorrow?

Any rooms free Translation-chain No

RoomService Do you have rooms

for this monday?

Do you have rooms

for thismonday?

Delete-char No

436 S. Bravo-Santos et al.

shown for chatbot Nutrition, as the translation chain produced a sentence with
almost opposite meaning to the original.

6 Related Work

While there are many tools for chatbot development, their support for testing
is scarce. Most development platforms (like Dialogflow, Lex or Watson) pro-
vide a web chat console that permits informal, manual testing of the chatbots.
Approaches based on programming languages – like Rasa10, which is built atop
Python – can rely on the debugging and testing support offered by the pro-
gramming language itself. Only a few platforms, like Dialogflow, offer debugging
facilities to inspect the matched intent and related information. In addition,
Dialogflow includes checks of the chatbot quality, like detecting intents with
similar training phrases.

Some companies have developed their own chatbot testing tools. For example,
haptik.ai provides a testing tool11 that automates the interaction with the chatbot
via simple scripts, and can be integrated with automation servers such as Jenkins.
Botium can also be integrated in testing flows using Jenkins. However, these
tools require manual building or extension of the test suites, which our work
aims to automate.

Regarding academic proposals, in [1], the authors use AI planning techniques
to generate tests traversing the conversation flow. More similar to us, the meta-
morphic chatbot testing approach in [3] applies mutation operators (e.g., replac-
ing a word by a synonym, or a number by another one) to a set of utterances
to produce follow-up test cases, which should match the same intent. In a sim-
ilar vein, BoTest [8] creates divergent inputs (word order errors, incorrect verb
tense, synonyms) from an initial utterance set. We also rely on mutation, but in
addition, we classify our mutation operators to obtain different types of tests (to
test either the robustness of the NLP engine or the precision of the intent defi-
nitions), provide automation on top of Botium, and a methodology for chatbot
improvement.

To reduce the human cost of chatbot testing, Bottester [11] simulates users
who interact with chatbots, and collects some interaction metrics like the answer
frequency, the response time or the precision of the intent recognition. While
Bottester targets chatbots created with in-house technology, Charm is based
on Botium and so can test chatbots for the major chatbot creation platforms.
Moreover, our testing process covers different chatbot aspects and provides a
cycle of chatbot improvement.

Charm is focused on testing the NL aspect of the chatbot, but other (non-
functional) aspects need to be tested as well, like the communication with exter-
nal services or the chatbot security [2]. For example, Alma12 is a chatbot that

10 https://rasa.com/.
11 https://haptik.ai/tech/automating-bot-testing/.
12 http://chatbottest.com.

https://rasa.com/
https://haptik.ai/tech/automating-bot-testing/
http://chatbottest.com

Testing Chatbots with Charm 437

helps in evaluating Messenger and Telegram bots across seven categories: per-
sonality, onboarding, understanding, navigation, error management, intelligence
and response time. While Alma is based on questions to the chatbot users, we
support automated testing. One of the decisive aspects for chatbot acceptance is
their usability. Some heuristics for bot usability have been proposed13, but more
actionable usability patterns – possibly integrated within chatbot development
tools – and automated means for usability evaluation are needed [7].

7 Conclusions and Future Work

The increasing use of chatbots for varying activities makes necessary techniques
to ensure their quality. This paper contributes to solve this need by proposing a
set of techniques for automated chatbot test synthesis, a methodology supporting
three different types of tests, and a supporting tool that uses Botium for test
automation.

In the future, we would like to extend our set of mutation operators (for
example, to enable adversarial text generation [5]), support new types of tests,
improve the functionality of the Charm service, and enable the integration of
Charm with continuous testing and integration workflows.

Acknowledgments. We would like to thank the anonymous reviewers for their
comments. This work has been partially funded by the Spanish Ministry of Sci-
ence (project MASSIVE, RTI2018-095255-B-I00) and the R&D programme of Madrid
(project FORTE, P2018/TCS-4314).

References

1. Bozic, J., Tazl, O.A., Wotawa, F.: Chatbot testing using AI planning. In: AITest,
pp. 37–44. IEEE (2019)

2. Bozic, J., Wotawa, F.: Security testing for chatbots. In: Medina-Bulo, I., Merayo,
M.G., Hierons, R. (eds.) ICTSS 2018. LNCS, vol. 11146, pp. 33–38. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99927-2 3

3. Bozic, J., Wotawa, F.: Testing chatbots using metamorphic relations. In: Gaston,
C., Kosmatov, N., Le Gall, P. (eds.) ICTSS 2019. LNCS, vol. 11812, pp. 41–55.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31280-0 3

4. Erlenhov, L., de Oliveira Neto, F.G., Scandariato, R., Leitner, P.: Current and
future bots in software development. In: Proceedings of the 1st International Work-
shop on Bots in Software Engineering BotSE@ICSE, pp. 7–11. IEEE / ACM (2019)

5. Jin, D., Jin, Z., Zhou, J.T., Szolovits, P.: Is BERT really robust? a strong baseline
for natural language attack on text classification and entailment. In: AAAI (2020)

6. Pérez-Soler, S., Guerra, E., de Lara, J.: Collaborative modeling and group decision
making using chatbots in social networks. IEEE Softw. 35(6), 48–54 (2018)

7. Ren, R., Castro, J.W., Acuña, S.T., de Lara, J.: Evaluation techniques for chatbot
usability: a systematic mapping study. Int. J. Softw. Eng. Knowl. Eng. 29(11&12),
1673–1702 (2019)

13 https://haptik.ai/blog/usability-heuristics-chatbots/.

https://doi.org/10.1007/978-3-319-99927-2_3
https://doi.org/10.1007/978-3-030-31280-0_3
https://haptik.ai/blog/usability-heuristics-chatbots/

438 S. Bravo-Santos et al.

8. Ruane, E., Faure, T., Smith, R., Bean, D., Carson-Berndsen, J., Ventresque, A.:
Botest: a framework to test the quality of conversational agents using divergent
input examples. In: IUI Companion. ACM (2018)

9. Shevat, A.: Designing Bots: Creating Conversational Experiences. O’Reilly,
Sebastopol (2017)

10. Soĺıs, C., Wang, X.: A study of the characteristics of behaviour driven develop-
ment. In: 37th EUROMICRO Conference on Software Engineering and Advanced
Applications SEAA, pp. 383–387. IEEE Computer Society (2011)

11. Vasconcelos, M., Candello, H., Pinhanez, C., dos Santos, T.: Bottester: testing
conversational systems with simulated users. In: IHC, pp. 73:1–73:4. ACM (2017)

12. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: Mutation-based fuzzing.
In: The Fuzzing Book. Saarland University (2019). https://www.fuzzingbook.org/
html/MutationFuzzer.html. Accessed June 2020

https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html

A Dataset of Regressions in Web
Applications Detected by End-to-End

Tests

Óscar Soto-Sánchez, Michel Maes-Bermejo(B), Micael Gallego,
and Francisco Gortázar

Universidad Rey Juan Carlos, 28933 Móstoles, Spain
{oscar.soto,michel.maes,micael.gallego,francisco.gortazar}@urjc.es

Abstract. End-to-end (e2e) tests present many challenges in the indus-
try, however, academics are not addressing them and there is little work
on this kind of tests. Running e2e tests is hard and time consuming,
therefore we believe that the availability of a dataset containing regres-
sion bugs, e2e tests, documentation and logs might help in easing the
path towards researching them. This paper presents a dataset for e2e
tests and regression bugs in 3 web applications using Spring Framework
in Java, with 6 well-documented synthetic regression bugs. The dataset
also includes all the tools needed to reproduce the errors.

Keywords: Dataset · Testing · End-to-end tests

1 Introduction

Empirical studies in software testing research require projects that are the sub-
ject of that study. There are frameworks [13], infrastructures [6] and reposito-
ries [3,22] in which different researchers have collected (or added manually) and
documented existing bugs in different projects being available to researchers,
allowing studies to be compared using the same bug dataset as a reference.
The projects considered are usually open source projects, which are more eas-
ily available, and they’re usually libraries rather than applications. Some of the
research datasets include the tests that reveal the different bugs. However, these
tests are mostly unitary, which in many investigations can be a limitation, due
to the specific characteristics that non-unitary tests (integration, end-to-end or
performance tests) have.

These studies are limited because they do not have access to more complex
tests, like integration, performance or end-to-end tests. Thus, researching these is
difficult. Usually, libraries only have unitary tests. Non-unitary tests are usually
available as part of more complex projects (usually complete applications) that
expose a front-end to interact with the user, a back-end to handle requests and
a database where the information persisted, as an example. These applications
tend to have end-to-end test (e2e), which allow revealing failures introduced
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 439–448, 2020.
https://doi.org/10.1007/978-3-030-58793-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_35&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_35

440 Ó. Soto-Sánchez et al.

when simulating the interaction of a user with the application. These tests allow
studies to be carried out with a broader scope by including real applications.
Some of the problems faced by the industry are based on the non-scalability of
Continuous Integration systems in terms of dealing with an ever-increasing code
base and tests, as Memon et al. [15] report in Google, where every day 800,000
builds and 150 million test runs are performed in more than 13,000 projects.
Most of the computational efforts are due to functional tests (integration and
end-to-end) that require from minutes to hours to execute and much more com-
putational resources (memory and cpu) than unitary tests.

This paper presents a dataset of regression bugs which are revealed by e2e test
to support software testing research. A regression bug is defined by Nir et al. [18]
as a bug which causes a feature that worked correctly to stop working after a
certain event (system upgrade, system patching, daylight saving time switch, etc).
The contributions of this paper are as follows:

– A repository comprised of 3 complex applications with multiple components.
Each project consists of a git repository with different branches that allow
you to explore the different changes the project has undergone as well as the
buggy versions that have a documented regression bug.

– Tools to build the projects and run the tests, using Docker1 and Docker
Compose. These tools allow researchers to reproduce any version of the code
in a simple way to check the applications and their outputs (both in versions
that work correctly and in those that contain an error).

– Extensive documentation of each regression bug accompanied by all resources
that help to identify it; logs of the cases where the tests pass and fail, a visual
diff-comparative of logs and videos of the e2e tests.

The paper is structured as follows: Previous work is presented in Sect. 2. The
characteristics of the regression bugs is presented in Sect. 3 and this dataset is
detailed in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

There have several attempts at building a dataset of bugs and regression tests
for them. As early as in 1994, Siemens Corporate Research conducted an exper-
imental study that led to building a dataset containing a set of 130 errors [12],
introduced manually by the researchers in 7 projects written in C.

The first attempt we found that proposes a dataset of real bugs for use in
software research is proposed by H. Do et al., Subject-Artifact Infrastructure
Repository [6], an infrastructure of 24 projects with documentation on 662 bugs
(only 35 of them are real, the rest have been introduced by hand). In most
projects, all the bugs are introduced by a single commit, being complicated to
treat them individually. It is a dataset oriented to studies where the execution
of the code is not a priority, oriented to make a static analysis of the code like in

1 https://www.docker.com/.

https://www.docker.com/

A Dataset of Regressions in Web Applications Detected by End-to-End Tests 441

Test Case Prioritization (TCP) when using approaches based on the similarity
of the test cases.

Spacco et al. [22] collect the bugs produced by students in a tool (Marmoset)
where you can upload your code and it is checked on a server automatically. It
includes 8 different projects, carried out individually by 73 students, resulting
in a total of 569 projects. They include not only the errors in the test, but also
build errors of the project.

Bugs.jar [21] is a large-scale dataset for research in automated debugging,
patching, and testing of Java programs. It contains a total of 1,158 bugs and
patches from 8 large open source Java projects.

The iBugs [3] project provides a repository of real bugs in Java projects. It
contains 364 bugs, of which there is only one test that reveals the bug. It includes
mechanisms to get the corrected version of the bug, as well as its previous version
for comparison. It also allows the execution of the tests in both versions.

Defects4J [13] is a extensible framework which provides real bugs to enable
reproducible studies. This framework contains 357 real bugs from 5 real-world
open source projects written in Java. Each bug included in their dataset contains
information about the commit where the bug is fixed (which includes at least
one test that reveals the bug), plus a failed commit to compare them. All bugs
have their origin in the source code, are reproducible (both their failed and fixed
versions) and the fix-commit does not include changes unrelated to the fix.

BugsJS [10] is the first large benchmark of 453 real manually selected and
validated JavaScript bugs from 10 popular server-side programs. Like Defects4J,
it facilitates the reproducibility of the execution of the tests, specifically repro-
ducing the environment from a Docker image.

3 Generation of the Regression Bugs

The main difference between our dataset and the ones mentioned in Sect. 2 is
the use of more complete programs with e2e test (in comparison to the unit tests
used by these datasets). To the best of our knowledge there are no other datasets
including e2e tests. This section describes the methodology used to generate the
bugs as well as the characteristics of those bugs. The main objective is to make
the process as close as possible to how actual projects introduce new regression
bugs.

3.1 Methodology

The approach is to generate a new branch in git that includes multiple com-
mits, simulating the changes that would occur in a real project, introducing a
regression in one of them. We will call this commit that introduces the regression
the commit of the regression (Cregression). The introduced regression must be
detected with a test that must pass in a satisfactory way in the commit previous
to the creation of the branch (Cbranch). In the context of continuous integra-
tion (CI) it is common that these tests are not executed in each commit, so the

442 Ó. Soto-Sánchez et al.

regression is not detected until, for example, we try to merge again this branch
with the master branch. We will call this commit, where the error is detected,
the error commit (Cerror). After verifying that Cerror fails the test, we will pro-
ceed to introduce a fix commit (Cfix), which fixes the regression so that the test
passes again and we can merge it with master. An example of this structure can
be seen in Fig. 1.

CFIX

CBRANCH

CERRORCREGRESSION

Fig. 1. A simplified example of a commit history

3.2 Characteristics

We carefully designed the regression bugs so that they have the following char-
acteristics:

– The bug is reproducible. Any regression bug must be able to be repro-
duced, i.e., the execution of the tests always generates the same output.

– The bug is related to source code. The bug cannot be related to the
build system, the configuration or the test files. Instead, the root cause of the
bug must be related to a change in the source code of the application.

– The change is realistic. The commit in which the bug is introduced must
contain more changes than the bug itself. The branch where this bug is placed
must contain more commits with different changes in the application. This is
to imitate the natural changes that occur in the application and in which a
regression usually appears.

– The tests are end-to-end. The tests that detect the regression check a
functionality as the user would do it.

4 Dataset of Regression Bugs

4.1 Subject Applications

For the realization of our dataset we have selected applications from the students
of the subject Development of Web Applications, these projects simulate a real
applications.

A Dataset of Regressions in Web Applications Detected by End-to-End Tests 443

– Webapp-1. This application consists of a back-end developed in Java with
Spring, and a front-end developed in Angular with TypeScript. This applica-
tion is a social network of films, series and books.

– Webapp-2. This application consists of a back-end developed in Java with
Spring, and a front-end developed in Angular with TypeScript. This applica-
tion is a platform for online courses.

– Webapp-3. This application consists of a back-end developed in Java with
Spring and a front-end developed with Moustache using Spring. This appli-
cation is the web page of a library.

Both Webbapp-1 and Webapp-2 are Single Page Applications (SPA), whereas
Webapp-3 is a MVC application. The three applications are complex ones com-
posed of several parts which is why we decided to use them for the creation of
our dataset.

Just to give an idea of the kind of regression bugs introduced, one of the bugs,
introduced in Webapp-1, is related to the correct visualization of some parts of
the webpage. When the bug is introduced, a part of the application that allowed
to create lists stops rendering in the page. There is an e2e test that checks that
lists can be created. Other bug types that we introduced are related to security,
erroneous information displayed and components not shown.

All in all the dataset thus created contains three projects, and a total of 6
regression bugs, as it is shown in Table 1. Figure 2 shows the commit history
of Webapp-1, containing two branches and two regression bugs. Each branch
exposes a different regression bug.

Table 1. Applications and number of regression bugs available in our dataset

Application # of regressions

Webapp-1 2

Webapp-2 3

Webapp-3 1

master

fixed-footer refactor-index-charts

Fig. 2. In this figure we can see the webapp-1 git history graph, this application present
two regression bugs.

444 Ó. Soto-Sánchez et al.

4.2 Dataset Contents

The dataset is composed of a set of 3 applications. For each one of the applica-
tions there are a series of bugs or regressions properly documented. Logs, videos
and detailed information of the commit where the regression is introduced, as
well as the commit where the bug is fixed, are included. It is interesting that
any researcher is able to obtain the same logs when running the tests on the
different highlighted commits. For this purpose, a Docker image is provided to
allow the deployment and execution of the tests in an simple way. A conceptual
model of the dataset can be observed in the Fig. 3.

Fig. 3. Conceptual model of e2e dataset

Each of the artifacts in the dataset is detailed below:

– Source code. The dataset provides a git code repository with the source
code of the three applications used for the creation of the regression bugs.

– Document with bugs. A document is provided describing the regression
bugs, explaining how they works, where the regression bug was introduced
and the test that detects the bug.

– Logs with the correct execution. The dataset contains text files with
the correct execution output, including back-end logs, front-end logs (logs
exposed by the front-end part of the application on the browser) and test
logs.

– Logs with the regression bug execution. The dataset provides text files
with the regression bug execution output, including back-end logs, front-end
logs and test logs.

– Logs comparison. The dataset provides a comparison between the correct
execution and regression bug execution. For this comparison we use the library
diff-math-patch2, which makes use of the Myer’s algorithm [16].

2 https://github.com/google/diff-match-patch.

https://github.com/google/diff-match-patch

A Dataset of Regressions in Web Applications Detected by End-to-End Tests 445

– Videos. The dataset contains two videos of the test, the first video corre-
sponds to a correct execution of the application and the second video corre-
sponds to the regression bug execution.

– Docker image. The dataset provides a docker image with the projects and
all dependencies that are needed in order to run the application, along with
a script to build the image for any commit in history.

In order to be able to collect all the information related to the application
execution, we have used the ElasTest tool [1,8,9] which allowed the authors to
execute tests, capture the logs and the videos, and produce the log comparisons.

The dataset is public and available on a GitHub repository:

https://github.com/e2e-tests-dataset/e2e-tests-dataset

4.3 Applications for End-to-End Bugs in Software Research

We strongly believe that e2e tests should be subject of study, and practitioners
are continuously expressing their frustration due to the several problems that
this kind of tests have in their CI environments. In this section we will present
in which cases the bugs included in our dataset may be useful for researching
different problems.

This dataset could be used to compare the different proposals of Test Case
Prioritization (TCP), a subject studied extensively in the literature [2,11,24].
These proposals usually use as subjects simple programs/applications, prioritiz-
ing unit tests, with low execution times (less than 1 s). Since time is not a metric
to work with, it was ignored in literature, despite being the main reason why
tests are prioritized (to execute first the tests that tend to fail). Adjusting these
proposals with a dataset with more realistic tests of more complex applications
(e2e) would extend their applicability to industrial projects, where running a
test before another could save minutes, even hours.

Automatic Repair is another subject dealt with in literature [5,7,14,20,23]
that requires a collection of documented bugs in order to build different pro-
posals. Researchers in this field often use simple program examples. Our dataset
provides repairable bugs that present a challenge, since the error can be obtained
in another component. From this dataset more complex proposals would be gen-
erated and applicable to the applications that we find in the real world.

Bug localization is another research field that can be explored through the
glasses of e2e tests using this dataset. It could be used to measure the effect of
having more or less information in the search of bugs [4,25].

Bug classification is a possible research that can be done with our dataset,
using all the data sources it offers [17,19].

4.4 Limitations and Threats to Validity

Authors see mainly two threats to validity for the dataset described in the paper.
One threat we face is related to external validity, specifically to the representa-
tiveness of the selected subjects. These projects arise from the academic field,

https://github.com/e2e-tests-dataset/e2e-tests-dataset

446 Ó. Soto-Sánchez et al.

they are not real applications. We tried to implement the functionalities of the
applications they pretend to imitate without being under the property of any
company, making them perfect candidates to investigate. The number of regres-
sion bugs is limited due to the time it takes to develop them (in the context of
other changes in the project) and document them properly, but the efforts made
to introduce them are similar to real industrial projects.

The other threat comes from the limitation in the number of projects and
bugs. Authors aim is to increase the number of projects and bugs, both manually
and automatically, so that a dataset of significant size can be provided.

Another threat contemplated but which does not apply to our dataset (but
has to be taken into account when creating such a dataset or expanding it) is that
in e2e testing, many smaller bugs may be hidden behind a revealed (inadvertent)
bug.

5 Conclusions and Future Work

This paper presents a dataset of Java application bugs, which are detected by e2e
test. The dataset includes not only the source code of the applications and the
tests, but also extensive documentation of each of the bugs, logs for the different
pieces composing the applications, their comparison and video recordings of the
execution of the tests. This work intends to be a starting point to create a
more sophisticated dataset that allows researchers to work with a type of bugs
(e2e) not usually considered, but that are part of the development of numerous
software projects. We plan to expand the dataset with new projects and errors,
starting from the methodology presented in this paper.

Acknowledgments. This work has been supported by the Government of Spain
through project “BugBirth” (RTI2018-101963-B-100), the Regional Government of
Madrid (CM) through project Cloud4BigData (S2013/ICE-2894) cofunded by FSE
& FEDER and the European Commission through European Project H2020 822717:
MICADO.

References

1. Bertolino, A., Calabró, A., De Angelis, G., Gallego, M., Garćıa, B., Gortázar, F.:
When the testing gets tough, the tough get ElasTest. In: Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings, pp.
17–20. ACM (2018)

2. Catal, C., Mishra, D.: Test case prioritization: a systematic mapping study. Softw.
Qual. J. 21(3), 445–478 (2013)

3. Dallmeier, V., Zimmermann, T.: Extraction of bug localization benchmarks from
history. In: Proceedings of the Twenty-second IEEE/ACM International Con-
ference on Automated Software Engineering ASE 2007, pp. 433–436. ACM,
New York (2007). https://doi.org/10.1145/1321631.1321702. http://doi.acm.org/
10.1145/1321631.1321702

https://doi.org/10.1145/1321631.1321702
http://doi.acm.org/10.1145/1321631.1321702
http://doi.acm.org/10.1145/1321631.1321702

A Dataset of Regressions in Web Applications Detected by End-to-End Tests 447

4. Dao, T., Zhang, L., Meng, N.: How does execution information help with
information-retrieval based bug localization? In: 2017 IEEE/ACM 25th Interna-
tional Conference on Program Comprehension (ICPC), pp. 241–250, May 2017.
https://doi.org/10.1109/ICPC.2017.29

5. DeMarco, F., Xuan, J., Le Berre, D., Monperrus, M.: Automatic repair of buggy if
conditions and missing preconditions with SMT. In: Proceedings of the 6th Inter-
national Workshop on Constraints in Software Testing, Verification, and Analysis,
pp. 30–39. ACM (2014)

6. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empirical Softw.
Eng. 10(4), 405–435 (2005)

7. Durieux, T., Martinez, M., Monperrus, M., Sommerard, R., Xuan, J.: Automatic
repair of real bugs: an experience report on the defects4J dataset (2015)

8. Gortázar, F., et al.: The elastest platform: supporting automation of end-to-end
testing of large complex applications (2018)

9. Gortazár, F., Gallego, M., Garćıa, B., Carella, G.A., Pauls, M., Gheorghe-Pop,
I.D.: Elastest-an open source project for testing distributed applications with fail-
ure injection. In: 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pp. 1–2. IEEE (2017)

10. Gyimesi, P., et al.: BugsJS: a benchmark of Javascript bugs. In: Proceedings of 12th
IEEE International Conference on Software Testing, Verification and Validation
(ICST) (2019)

11. Hao, D., Zhang, L., Mei, H.: Test-case prioritization: achievements and challenges.
Front. Comput. Sci. 10(5), 769–777 (2016). https://doi.org/10.1007/s11704-016-
6112-3

12. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effective-
ness of dataflow-and control-flow-based test adequacy criteria. In: Proceedings of
16th International Conference on Software Engineering, pp. 191–200. IEEE (1994)

13. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis ISSTA 2014, pp. 437–
440. ACM, New York (2014). https://doi.org/10.1145/2610384.2628055. http://
doi.acm.org/10.1145/2610384.2628055

14. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

15. Memon, A., et al.: Taming google-scale continuous testing. In: Proceedings of
the 39th International Conference on Software Engineering: Software Engineering
in Practice TrackICSE-SEIP 2017, pp. 233–242. IEEE Press, Piscataway (2017).
https://doi.org/10.1109/ICSE-SEIP.2017.16

16. Myers, E.W.: Ano (ND) difference algorithm and its variations. Algorithmica 1(1–
4), 251–266 (1986)

17. Neelofar, Javed, M.Y., Mohsin, H.: An automated approach for software bug classi-
fication. In: 2012 Sixth International Conference on Complex, Intelligent, and Soft-
ware Intensive Systems, pp. 414–419, July 2012. https://doi.org/10.1109/CISIS.
2012.132

18. Nir, D., Tyszberowicz, S., Yehudai, A.: Locating regression bugs. In: Yorav, K. (ed.)
HVC 2007. LNCS, vol. 4899, pp. 218–234. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77966-7 18

https://doi.org/10.1109/ICPC.2017.29
https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/CISIS.2012.132
https://doi.org/10.1109/CISIS.2012.132
https://doi.org/10.1007/978-3-540-77966-7_18
https://doi.org/10.1007/978-3-540-77966-7_18

448 Ó. Soto-Sánchez et al.

19. Pingclasai, N., Hata, H., Matsumoto, K.: Classifying bug reports to bugs and other
requests using topic modeling. In: 2013 20th Asia-Pacific Software Engineering
Conference (APSEC), vol. 2, pp. 13–18, December 2013. https://doi.org/10.1109/
APSEC.2013.105

20. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: Proceedings of
the 2015 International Symposium on Software Testing and Analysis, pp. 24–36.
ACM (2015)

21. Saha, R., Lyu, Y., Lam, W., Yoshida, H., Prasad, M.: Bugs. jar: a large-scale,
diverse dataset of real-world java bugs. In: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pp. 10–13. IEEE (2018)

22. Spacco, J., Strecker, J., Hovemeyer, D., Pugh, W.: Software repository mining with
marmoset: an automated programming project snapshot and testing system. In:
ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 1–5. ACM (2005)

23. Xuan, J., et al.: Nopol: Automatic repair of conditional statement bugs in large-
scale object-oriented programs. IEEE Trans. Softw. Eng. (2015, Underreview)

24. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Testing Verification Reliabil. 22(2), 67–120 (2012)

25. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? more accurate infor-
mation retrieval-based bug localization based on bug reports. In: 2012 34th Interna-
tional Conference on Software Engineering (ICSE), pp. 14–24, June 2012. https://
doi.org/10.1109/ICSE.2012.6227210

https://doi.org/10.1109/APSEC.2013.105
https://doi.org/10.1109/APSEC.2013.105
https://doi.org/10.1109/ICSE.2012.6227210
https://doi.org/10.1109/ICSE.2012.6227210

Towards Failure Prediction in Scientific
Workflows Using Stochastic Petri Nets

and Dynamic Logic

Bruno Lopes(B) and Daniel de Oliveira

Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
{bruno,danielcmo}@ic.uff.br

Abstract. Scientific workflows are models composed of activities,
parameters, data, and dependencies, whose goal is to implement a com-
plex computer simulation. Scientific workflows are commonly managed
by Workflow Management Systems (WfMS). Several existing workflows
demand many computing resources since they process a massive volume
of data. This way, High-Performance Computing (HPC) environments
allied to parallelization techniques have to be applied to support the
execution of such workflows. Although HPC environments offer several
advantages, failures are a reality rather than a possibility due to the
high number of compute nodes involved in the execution. Thus, WfMS
should be able to calculate the probability of a failure occurs in order to
spare resources. In this paper, we propose the usage of DS3, a dynamic
logic tailored to reason about stochastic Petri nets, to verify and predict
failures in scientific workflows.

Keywords: Scientific workflow · Stochastic Petri nets · Logic

1 Introduction

Scientific workflows (henceforth names only as workflows) may be defined as a
formal specification of a scientific process, which represents the steps to be exe-
cuted within an in silico scientific experiment [2,13]. Such steps (i.e., activities)
are commonly associated to program and/or services invocations that perform
a series of transformations over scientific data, i.e., data selection, data aggre-
gation, filtering and summarization, etc. A workflow can be formally defined as
a directed acyclic graph Wf(A,Dep) where nodes A = {a1, a2, ..., an} are the
activities and the edges Dep represent the data dependencies among activities
in A. Thus, given ai | (1 ≤ i ≤ n), the set P = {p1, p2, .., pm} represents the
possible input parameters (e.g., values, file pointers, etc) for activity ai that
define the behavior of ai.

Let us also define activation [9] as the smallest unit of work that can
be processed in parallel and consumes a specific data chunk [7] and consider

This work was partially sponsored by CAPES, CNPq and FAPERJ.

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 449–456, 2020.
https://doi.org/10.1007/978-3-030-58793-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_36&domain=pdf
http://orcid.org/0000-0003-1204-0176
http://orcid.org/0000-0001-9346-7651
https://doi.org/10.1007/978-3-030-58793-2_36

450 B. Lopes and D. de Oliveira

Ac = {ac1, ac2, ..., ack} as the set of activations of the workflow Wf . Each aci is
associated with a specific activity aj that is represented as act(aci) = aj . Acti-
vations also present data dependencies, thus input(aci) ∈ I and output(aci) ∈ O
and the dependency between two activations aci and acj can be represented as
dep(aci, acj) ↔ ∃r ∈ input(acj)|r ∈ output(aci) ∧ dep(act(aci), act(acj)). Let
us also define PVi = {pv1i, pv2i, .., pvmi} as the parameter values (e.g., values
consumed by an activation aci during execution). Workflows are commonly mod-
eled, enacted and monitored by complex engines called Workflow Management
Systems (WfMS) that support the specification of the workflow in terms of exe-
cutable artifacts (programs or services). Well-known WfMSs are Pegasus [3] and
Swift/T [16], among others. The majority of these WfMS, in addition to the
execution of activities and activations, capture historical data of the workflow,
called provenance data [4].

Scientists commonly vary input parameters and data to evaluate a hypoth-
esis. This parameter exploration is commonly data and compute-intensive and
requires a parallel execution using high-performance computing (HPC) environ-
ments to produce results in a timely manner. In these environments, failures
are a reality rather than a possibility due to the high number of processors and
machines. Thus, it is far from trivial to identify possible failures in a workflow
execution, especially when the workflow is composed of several activations exe-
cuted in parallel in a HPC environment. Provenance data can play an important
role in this failure prediction task since it can provide historical information that
can be used to identify common failure patterns or to calculate the probability
of a failure to occur. However, it is still an arduous task to identify such patterns
that can be used by existing WfMS to predict failures and inform the scientist
that a given activation aci consuming certain set of parameter values PVi is
likely to generate execution errors or produce undesired results.

In this paper, we propose the usage of DS3 [8], a dynamic logic tailored
to reason about Stochastic Petri nets (SPN), to check and predict failures in
workflows based on provenance data collected by WfMSs. It is well known that
workflows benefit from Petri nets to check workflow executions that lead to the
desired result, regardless of how it may execute, according to Aalst et al. [14].
The advantage of using DS3 in comparison with traditional Petri net approaches
for predicting failures in workflows is that the expressive power is increased by
combining Petri nets with logic models and it takes advantage of an stochastic
approach specially when dealing with cases of high computational costs. We
evaluate our approach using the astronomy Montage workflow running on a
virtual cluster deployed on Amazon AWS.

2 The DS3 Logic

The logic DS3 [8] is a dynamic logic in which each program is a Stochastic Petri
net. Among its advantages, we have that DS3 is proved to be sound, complete
and decidable and has some deductive systems. We recover the definitions orig-
inally presented in Lopes et al. [8] that are required in this paper. The DS3

language consists of:

Towards Failure Prediction in Scientific Work Flows 451

Propositional symbols: p, q. . . , where Φ is the set of all proposi-
tional symbols

Place names: e.g.: a, b, c, d . . .
Transition types: T1 :at1b, T2 :abt2c and T3 :at3bc, each

transition has a unique type
Petri net Composition symbol: �

Sequence of names: S = {ε, s1, . . .}, where ε is the empty
sequence. We use the notation s ≺ s′ to
denote that all names occurring in s also
occur in s′.

A DS3 program is a pair (Π,Λ) where Π is a composition of transitions. A firing
relation f : S × πb → S receives as input a sequence and a SPN and return a
sequence that corresponds to the result of a firing in the net.

Definition 1. DS3 Frame
A frame for DS3 is a tuple F3 = 〈W,Rπ,M, (Π,Λ), δ〉 where

– W is a non-empty set of states
– M : W → S
– (Π,Λ) is a stochastic Petri
– δ(w, π) = 〈d1, d2, . . . , dn〉 is the sequence of firing delays of the program π ∈ Π

in the world w ∈ W respectively for each program π1 � π2 � · · · � πn = π
– we inductively define a binary relation Rη, for each Petri net program

η = η1 � η2 � · · · � ηn, as Rη = {(w, v) | ∃ηi,∃u such that si ≺ M(u) and
wRηi

u and δ(w, ηi) = min(δ(w,Π)) and uRηv} where si = f(s, ηi), for all
1 ≤ i ≤ n.

Definition 2. DS3 Model
A model for DS3 is a pair M = 〈F3,V〉, where F3 is an DS3 frame and V is a
valuation function V : Φ → 2W .

The probability of M3,w � 〈s, πb〉ϕ is (let s = M(w))

Pr(M3,w � 〈s, πb〉ϕ | δ(w,Π)) =
δ(w, πb)∑

πb∈Π:f(s,πb) �=ε

δ(w, πb)

So if we say that M3,w � 〈s, η〉ϕ then it means that the program η begin-
ning with the markup s has probability of running greater than one (i.e. the
probability of a firing happens is greater than zero) and that when it stops ϕ
holds in the current state.

3 System Design

In this section, we present how we couple the DS3 logic and the SPN framework
with an existing WfMS. The DS3 is implemented within a component named

452 B. Lopes and D. de Oliveira

FoWL (Failure prediction in Workflow based on Logic). The architecture is com-
posed of 4 main components: ETL Component (extractor), FoWL component,
the WfMS and the provenance database.

The first component to be invoked is the ETL (Extract, Transform, and Load)
component that extracts information from the provenance database and the
workflow specification to be sent to FoWL component. It is worth noticing that
the ETL component should be customized for each different type of provenance
database (e.g., relational, RDF, etc). In its current version, we implemented
a python script that extracts information from the provenance database and
represents it in XML. Once the ETL component converts the information, it
invokes the FoWL component, which is a program that reads the produced
XML and uses DS3 logic to reason about stochastic Petri nets, to verify and
predict activation failures in the input workflows. Once the failures are identified
(with an associated probability), FoWL informs the WfMS in order to avoid (or
stop) the execution of such activations. In this paper, we extended SciCumulus
SWfMS [10] to load the list of activations that present high probability of failure.
Since SciCumulus is a database-oriented WfMS (all data is stored in a relational
database), it is simple to inform the WfMS what are the activations that present
high failure probability using a SQL UPDATE command in the eactivation
table, i.e., each activation is represented in a tuple in the eactivation table and
there is a field that informs the failure probability provided by FoWL. For more
information about SciCumulus provenance schema, please refer to Oliveira et
al. [10].

4 Experimental Evaluation

We modeled the Montage workflow in SciCumulus using Montage astronomy
toolkit for assembling astronomical images into custom mosaics using a suit-
able format for large scale data processing of the sky. This toolkit comprises
a set of components that provides astronomy image mosaic services to build
mosaics in the Flexible Image Transport System (FITS) file format. FITS for-
mat respects the common astronomy coordinate system, arbitrary image sizes
and rotations, and all World Coordinate System (WCS) map projections. The
Montage workflow uses different astronomical images to blend them into custom
mosaics, considering the necessary geometric transformations.

The Montage workflow is composed of nine activities. We have added an
extra activity in the original Montage workflow that extracts the FITS images
to be processed (this activity is not considered in the Petri net since it is a simple
activation that only lists the files to be processed). This way, the first activity
(List FITS) extracts several FITS files from a compressed file (obtained from
an external astronomy repository - 2MASS1). Each input FITS file has several
attributes, which are defined as attributes in the relations in the workflow algebra
used in SciCumulus [9]. The second activity (Projection) computes the projection
of these astronomy-positioning references into a specific plane (extraction of
1 https://www.ipac.caltech.edu/2mass/releases/allsky/.

https://www.ipac.caltech.edu/2mass/releases/allsky/

Towards Failure Prediction in Scientific Work Flows 453

2 attributes and propagation of 19 previous attributes). Then, the following
3 activities join FITS projection files that are associated to the same mosaic
(extraction of 2 attributes). Create Uncorrected Mosaic activity creates a mosaic
without overlap interferences and color corrections and, as a result, it creates
a JPG image. The other activities from the Montage workflow are defined to
consider overlap interferences and color corrections in order to create a corrected
custom mosaic. For more details about Montage, please refer to Jacob et al. [5].

4.1 The Montage Workflow as a Stochastic Petri Net

Figure 1(a) presents the translation from Montage workflow specification to a
stochastic Petri net. The translation from Montage workflow specification to a
SPN considers each node as a place and defines a transition for each dependence
in the workflow. Using a DS3 model one can verify all the standard desired
properties as the absence of deadlocks, liveness, etc. It is possible to improve the
model for failure handling.

In Fig. 1(b) we also extend the basic translation to include failure prediction.
Using provenance information of past failures we may model the presence of
failures in the several activations of the workflow. Exponentially distributed
random variables are widely used into the literature to model failures. We use
the provenance data to identify activation failures and define transitions that
represent the reaction, i.e. the actions that have to be performed when a failure
occurs (e.g. e1 and e2); after that we estimate the parameter which by maximum
likelihood is

λ̂ =
n∑n
1 xi

. (1)

Hence, it is possible to predict activation failures not only by simula-
tion (as in ordinary Petri net models) but also using a DS3 model M3 =
〈W,Rπ,M, (Π,Λ),V〉. Let π ∈ Π the correspondent SPN program and e ∈ Φ
a propositional symbol that means that a failure occurred when s61 was being
processed. To verify if it is possible that a failure may occur in s61 we only have
to check if the transition e1 is enabled. Supposing yes, to verify the probability
of this failure occurring in a state w, we may compute

Pr(M3,w�〈s,s61e1p〉e|δ(w,Π))=
δ(w,s61e1p)∑

s61e1p∈Π:f(s,s61e1p) �=ε

δ(w, s61e1p)
(2)

4.2 Results and Discussion

In this first experiment we considered 100 executions of Montage 50 instance as
presented in the Workflow Generator site2. In these executions we have artifi-
cially inserted failures in 10 executions in order to have activations failures for
DS3 to detect, i.e., the executions failure rate is of 20%.
2 https://confluence.pegasus.isi.edu/display/pegasus/workflowgenerator.

https://confluence.pegasus.isi.edu/display/pegasus/workflowgenerator

454 B. Lopes and D. de Oliveira

s11 s12 s13 s14

s22s21 s23 s24 s25 s26

s31

s41

s52s51 s53 s54

s61

s71

s81

s91

(a)

s11 s12 s13 s14

s22s21 s23 s24 s25 s26

s31

s41

s52s51 s53 s54

s61

s71

s81

s91

e1

e2

(b)

Fig. 1. (a) The Montage workflow as a Petri net and (b) The Montage work flow as a
Petri net with failure handling

We artificially inserted failures in activations ID00003 (in 7 executions) and
ID00002 (in 3 executions). Activations ID00011, ID00019, ID00023, ID00025,
ID00029, ID00033, ID00041 and ID00046 have failed due to data dependen-
cies to activation ID00003. On the other hand, activations ID00015, ID00018,
ID00019, ID00032 and ID00040 have failed due to data dependencies to activa-
tion ID00002. Using Eq. 1 it is possible to estimate the parameters of the random
variables to the Petri net and define the firing rates.

To verify if any two activations may execute in parallel (e.g. from s41 to
s51 and s52), we only have to verify the results of the firing function. To verify
for the probability of successfully processing s31 (let π the whole Petri net), we
compute Compute Pr(M,w � 〈M(w), s31t1s41〉� | δ(w, π)), which results in
computing δ(w,s31t1s41)∑

πb∈π:f(M(w),πb) �=ε

δ(w, πb)
. In this experiment we achieved value 0.95.

We also can logically prove that entire workflow may fail (e.g. M � ¬[M(w),
s31t1s41]�) using model checking techniques (the implementation of such tools
are considered in future work section as an ongoing work). For any other action

Towards Failure Prediction in Scientific Work Flows 455

in the workflow the aforementioned equation holds. What is interesting is the
possibility of formally proving, when required, but it is also possible to have a
probabilistic result when it is not possible (due to high computational efforts
required) to use logical methods.

The Petri net will have two “failure handling” transitions. This idea is that
the WfMS can perform modifications in the workflow specification or scheduling
in order to redo necessary computations in case of failure to achieve the desired
results.

5 Related Work

The relation between scientific workflows and Petri nets has been widely dis-
cussed [11]. Petri nets may be used as a design language for complex work-
flows [14] with a wide framework to the analysis correctness verification [12,14].
Their usage leads to the possibility of verify conceptual properties as the absence
of deadlocks, liveness, etc. Zhao et al. [15] propose a modeling method based on
CCS to describe behaviors between activities in workflows. They add constraints
of dependency and parameters into activations expressions. They also provide a
specification language to establish a formal model. Their approach is evaluated
in a case study using a developed prototype.

Relating scientific workflows with logic is also already present into the lit-
erature [1]. Logical frameworks are very powerful but the computational com-
plexity of satisfiability and theorem proving may lead to impracticable scenarios
(the SAT problem complexity of CTL [1] is known to be EXPTime-Complete).
Liang and Zhao [6] propose a verification method for scientific workflows that
is based on propositional logic. This logic-based workflow verification approach
presents some advantages such as logical formalism and its ability to handle
generic activity-based process models. They showed that this approach is capa-
ble of detecting process anomalies in workflow models, but they do not consider
probabilities.

The DS3 logic [8] is a system tailored to reason about stochastic Petri nets.
Despite its high complexity of SAT-problem, DS3 has stochastic components
that make it possible to use stochastic reasoning when logical approaches may
be impracticable.

6 Conclusions and Future Work

This paper presents an initial effort on combining logic, a formal method and
probability to model and reason about failures in large-scale scientific workflows.
We show how to model scientific workflows as Petri nets and how to use DS3

logic to reason about activation failures.
Using the Montage workflow we defined an experiment from which we cal-

culated the parameters of the SPN and presented how to compute some desired
properties, focusing on failure prediction, i.e., we are able to discover the prob-
ability of an activation failure based on provenance data.

456 B. Lopes and D. de Oliveira

Future work includes more sophisticated experiments with more instances of
Montage and new workflows, and the integration with some tools that automa-
tize the reasoning (an ongoing work). This is a step towards workflow systems
to be able to certify and/or predict failures automatically.

References

1. Curcin, V., Ghanem, M.M., Guo, Y.: Analysing scientific workflows with Compu-
tational Tree Logic. Cluster Comput. 12(4), 399–418 (2009)

2. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an
overview of workflow system features and capabilities. FGCS 25(5), 528–540 (2009)

3. Deelman, E., Mehta, G., Singh, G., Su, M.-H., Vahi, K.: Pegasus: mapping large-
scale workflows to distributed resources. In: Taylor, I.J., Deelman, E., Gannon,
D.B., Shields, M. (eds.) Workflows for e-Science, pp. 376–394. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-1-84628-757-2 23

4. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:
a survey. In: CSE, pp. 20–30 (2008)

5. Jacob, J.C., et al.: Montage: an astronomical image mosaicking toolkit. 1, 10036
(2010)

6. Liang, Q.A., Zhao, J.L.: Verification of unstructured workflows via propositional
logic. ICIS 2008, 247–252 (2008)

7. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. JoGC 13(4), 457–493 (2015)

8. Lopes, B., Benevides, M., Haeusler, E.H.: Extending propositional dynamic logic
for petri nets. Elec. Notes Theoret. Comput. Sci. 305(11), 67–83 (2014)

9. Ogasawara, E., De Oliveira, D., Valduriez, P., Dias, J., Porto, F., Mattoso, M.:
An algebraic approach for data-centric scientific workflows. Proc. VLDB Endow.
4(12), 1328–1339 (2011)

10. Oliveira, D., Ogasawara, E., Ocaña, K., Baião, F., Mattoso, M.: An adaptive par-
allel execution strategy for cloud-based scientific workflows. CCPE 24(13), 1531–
1550 (2012)

11. Salimifard, K., Wright, M.: Petri net-based modelling of workflow systems: an
overview. EJOR 134(3), 664–676 (2001)

12. ter Hofstede, A.H.M., Orlowska, M.E., Rajapakse, J.: Verification problems in con-
ceptual workflow specifications. Data Knowl. Eng. 24(3), 239–256 (1998)

13. Travassos, G.H., Barros, M.O.: Contributions of in virtuo and in silico experi-
ments for the future of empirical studies in software engineering. In 2nd Workshop
on Empirical Software Engineering the Future of Empirical Studies in Software
Engineering, pp. 117–130 (2003)

14. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

15. Zhao, L., Li, Q., Liu, X., Du, N.: A modeling method based on CCS for workflow.
In: ICUIMC 2009, pp. 376–384 (2009)

16. Zhao, Y., et al.: Swift: fast, reliable, loosely coupled parallel computation. In: 2007
IEEE Congress on Services, pp. 199–206. IEEE (2007)

https://doi.org/10.1007/978-1-84628-757-2_23

RE, MDD and Agile

From Rigorous Requirements and User
Interfaces Specifications into Software Business

Applications

Ivo Gamito(B) and Alberto Rodrigues da Silva

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{ivo.gamito,alberto.silva}@tecnico.ulisboa.pt

Abstract. Software applications have been developed with multiple program-
ming languages (specific software libraries and frameworks) and deployed on var-
ious software and hardware infrastructures. This paper introduces and discusses-
the ASL language (short for “Application Specification Language”) that combines
constructs from two previous languages: ITLingo RSL and IFML. ASL specifica-
tions are strict and rigorous sentences that allow us to define both requirements and
user interfaces aspects of software applications in a consistent and integrated way.
Alike RSL, and differently from IFML, ASL is a controlled natural language with
a textual concrete syntax. Furthermore, the proposed approach includes model-to-
model andmodel-to-code transformations thatmay considerably improve the qual-
ity and productivity of both the requirements specification and the development
of software applications.

Keywords: Requirements engineering ·Model-driven engineering ·Web
engineering · ITLingo RSL · IFML · ITLingo ASL

1 Introduction

Currently, developers use expressive programming languages, software libraries and
frameworks that help them develop a multitude of software applications. However,
developers have to master details of these tools and technologies which [1] are com-
plex, require long learning curves, and raise challenges like the need to create appealing
and cross-platform user interfaces, and the need to deal with cross-cutting concerns like
scalability, performance, security and others [2].

In this scope, the importance of requirements engineering (RE) has been crucial
to the development and management of software, and to reduce software errors at the
early stages of the development process. RE has had a crucial role in different stages of
software engineering and has provided a variety of approaches [3]. RE practices have
been essential to give a broad understanding of the problem-domain before starting any
sort of effort toward the design, development and deployment of a given solution, as well
as to prevent rework costs [4, 5].Also, REhas also been crucial for the success of a project
and it has dealtwith socio-technical challenges like the adoption of elicitation techniques,
communication difficulties, and or with conflicting and ambiguous requirements [6].

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 459–473, 2020.
https://doi.org/10.1007/978-3-030-58793-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_37&domain=pdf
http://orcid.org/0000-0002-7900-9846
https://doi.org/10.1007/978-3-030-58793-2_37

460 I. Gamito and A. R. da Silva

System requirements are the description of what services and features the system
shall provide, aswell as its quality attributes andother constraints [5]. These requirements
reflect the needs of different stakeholders, like customers, end-users, but also software
engineers. System requirements are often broadly classified as functional (FRs), non-
functional requirements (NFRs) and constraints. They are statements of features and
services the system shall provide and may define how the system responds to its users’
inputs, what outputs to generate. FRs may be defined in multiple NFRs, like use cases
or scenarios. On the other hand, non-functional requirements define the cross-cutting
quality attributes of the system, such as availability, performance, usability, or security.
Finally, constraints are requirements that can affect the product itself or the involved
development process, and can be defined as a technology, legal or process constraints.

We propose in this paper an approach to improve the RE process by mitigating some
of its problems, namely in what concerns the specification and validation of require-
ments. This is also a model-driven approach. i.e., an approach that considers models
not just documentation artifacts, but also central artifacts in the software engineering
area, allowing automatic creation of software applications starting from those models.
Model-driven engineering (MDE) involves the adoption of languages and transformation
engines to address the diversity and complexity of software platforms and frameworks
[7]. In the scope of MDE, we consider a model as an abstraction of a system often
used to replace the system under study [8]. MDE aims to raise the abstraction level of
software specifications and increase automation in software development. Using exe-
cutable model transformations, a model can be transformed into another (lower level)
model until it can be transformed or generated into (programing language) artifacts, or it
can be directly executed by some interpretation engine [8].In this context, we introduce
and discuss the ASL specification language (“Application Specification Language”) that
combines constructs from two languages (further details in the next section): ITLingo
RSL [4, 9, 20, 23] and IFML [10]. Like with ITLingo RSL, the ASL specifications (or
ASLmodels) are strict and rigorous sentences. However, ASL is comprehensive enough
to specify user interface (UI) aspects, based on the concepts found inmodeling languages
like IFML. ASL gathers characteristics and advantages from both RSL and IFML. Like-
wise RSL, and differently from IFML (and that is a visual modeling language), ASL is a
controlled natural language with a textual concrete syntax (that is the reason we named
it as a “specification language” instead of a “modeling language”). Also, to the rigor-
ous and systematic specification of software applications, we show that it is possible to
take advantage of these specifications to semi-automatically generate software applica-
tions following an MDE approach: this means that with appropriate tools, an ASL user
can create web applications, which can be generated through automatic transformations
techniques, from ASL rigorous specifications.

2 Background

This section briefly introduces ITLingo RSL and IFML languages, in which the ASL is
based on.

From Rigorous Requirements and User Interfaces Specifications 461

2.1 RSL

ITLingo RSL (or just RSL for brevity) is a specification language created to mitigate
problems that arise when writing requirements. RSL is a controlled natural language that
helpswriting requirements and test specifications in a systematic, rigorous and consistent
way. RSL includes a rich set of constructs logically arranged in views according to
concerns that exist at different abstraction levels, such as stakeholders, actors, data
entities, use cases, goals, use case tests [9, 20, 23, 24].

RSL constructs are logically classified according to two cross-cutting dimensions:
abstraction levels and RE specific concerns. According to the abstraction level, the con-
structs can be used to define businesses, applications, software or even hardware systems.
According to the RE concerns dimension, the constructs are classified in the following
aspects: active structure, behavior, passive structure, requirements, tests, relations and
sets, and others [9, 23]. Spec. 1 illustrates a simple example of an RSL specification that
defines the actor “Blogger”, whom participates in the use-case “Manage Blog Posts”,
which involves the management of the data entity “Blog’s Post”.

Actor aU_Blogger "Blogger": User

DataEntity e_Post "Blog Post": Document [
 attribute Id "Post ID" : Integer [isNotNull isUnique]
 attribute State "Post State" : DataEnumeration enum_PostState
 attribute Title "Post Title" : String(30) [isNotNull]
 attribute Body "Post Body" : Text

[...]]

UseCase uc_1_ManagePost "Manage Blog Posts": EntitiesManage [
actorInitiates aU_Blogger
dataEntity e_Post
actions Create, Read, Update, Delete]

2.2 IFML

Interaction Flow Modeling Language (IFML) is a standard modeling language in the
field of software engineering. IFML allows us to define platform independent models of
graphical user interfaces (GUIs) of software applications. IFML describes the structure
and the behavior of the applications as perceived by end-users [10].

IFML brings benefits to the development process of application front-ends, namely
[11]: supports the specification of application front-ends with different perspectives (the
connection with the business logic, the data model, and the graphical presentation layer);
isolates the front-end specification from implementation-specific details; (iii) separates
the concerns between roles in the interaction design; and enables the communication of
UI design to non-technical stakeholders.

IFML was developed by WebRatio and inspired by the previous WebML notation
[22], as well as by other experiences in the Web modeling field [10]. IFML intends to
solve a problem mentioned above in the introduction: the variety of hardware devices
and software platforms and, consequently, the complexity of designing and developing
software applications. IFML supports the specification of the following perspectives
[10]: UI structure, UI content specification, events, events transition specification and

462 I. Gamito and A. R. da Silva

parameter binding. The UI structure specification consists of the UI containers, while
the UI content specification focus on the data contained. The events specification con-
sists of the definition of events that may affect the UI while the specification of events
transition defines the changes to apply after those events occur. Finally, specifications
of parameter binding consist of the definition of the input-output dependencies between
view components and between view components and actions. Figure 4 (left) shows a
simple example of an IFML model.

3 ASL Language

The ASL language combines the main aspects of the RSL and the IFML languages to
support the specification of software applications systematically and rigorously. These
applications can also be classified as “business applications, in which data is a core
asset, and support several business activities, like planning, forecasting, control, coordi-
nation, decision making and operational activities [17]. Popular classes of software busi-
ness applications are e-commerce, ERP (enterprise resource planning), CRM (customer
relationship management), SCM (supply chain management).

This section introduces theASLarchitecture.This discussion is supportedby a simple
running example named “MyTinyBlog” application, described as follows: «MyTinyBlog
is a simple web application that allows a blogger to setup and manage his own blog. The
blogger may add categories and posts to the blog. Each blog post has a title, a body, the
creation date and authors. Also, a post can be classified by a given category, and can be
in one of the following states: “Draft” or “Published”. Only published posts are visible
to the blog’s audience (readers). Readers can add and read comments of a published
post but can only edit or delete their own comments».

Figures 1 and 2 illustrate some models of the MyTinyBlog application: the domain
model and the use-cases model. The main feature of this application involves managing
blog posts through typical create, read, update and delete (CRUD) operations.

Post

«enumera�on»
Post State

Published
Dra�

Blog

Category

Comment

User author

*
1

*

*

1 * * 1

Fig. 1. MyTinyBlog data model (UML class diagram)

3.1 Data Entities

ASL adopts and extends the definition of the DataEntity construct as defined initially in
RSL [9, 20]. DataEntity is the construct used to define domain concepts or information

From Rigorous Requirements and User Interfaces Specifications 463

MyTinyBlog

Manage Posts

Blogger

Reader

Administrator

Manage
Categories

Manage Users

Update Post

Update Comment

Read Post (by
Reader)

Read Comment

Delete Post

Delete Comment

Create Post

Create Comment

Read Posts

Read Post (by
Blogger)

Only to own
comments

Validade Post

Share Post

«extend»

«extend»

«extend»
«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

Fig. 2. MyTinyBlog use cases model (UML use cases diagram)

entities such as goods, people, or business transactions. A DataEntity denotes an indi-
vidual structural entity that might include the specification of attributes, foreign keys and
other data constraints [9]. A DataEntity can be classified by type and subtype. The types
are the following: (1) Parameter, which can include data that is specific to an industry or
business; (2) Reference, simple reference data, which is required to operate a business
process; (3) Master, data assets of the business, usually reflects more complex data (e.g.,
customers, vendors, projects); (4) Document, worksheet data that might be converted
into transactions later (e.g., invoices); and (5) Transaction, the operational transaction
data of the business (e.g., paid invoices).

In the MyTinyBlog example, we define the following data entities, as also suggested
in Fig. 1: Blog, Blog Post, Category, Comment and User (see Spec. 2).

464 I. Gamito and A. R. da Silva

DataEntity e_Blog "Blog" : Parameter [
attribute Name "Blog Name" : String(30) [constraints (NotNull Unique)]
attribute Slogan "Blog Slogan" : String(80) [constraints (NotNull)]

DataEntity e_Post "Blog Post" : Document [
attribute Id "Post ID" : Integer [constraints (NotNull Unique)]
attribute State "Post State" : DataEnumeration enum_PostState
attribute Title "Post Title" : String(30) [constraints (NotNull)]
attribute Body "Post Body" : Text
attribute Date "Post Date" : Datetime [defaultValue "CurrentDateTime"]
attribute Category "Post Category" : String

[constraints (NotNull ForeignKey (e_Category))]
attribute Author "Post Author" : String

[constraints (NotNull ForeignKey e_User)]
attribute LastEditAuthor "Last Edit Author" : String

[constraints (ForeignKey (e_User))]]

DataEntity e_Category "Category" : Reference [
attribute CategoryName "Category Name" : String(30) [constraints (Unique)]]

DataEntity e_Comment "Comments" : Document [
attribute PostID "Post ID": Integer [constraints (NotNull ForeignKey (e_Post))]
attribute Text "Comment" : String [constraints NotNull)]
attribute Date "Comment Date" : Datetime [defaultValue "CurrentDateTime"

constraints (NotNull ReadOnly)]
attribute Author "Post Author" : String

[constraints (NotNull ForeignKey (e_User))]
attribute Like: Boolean [defaultValue "True"]]

DataEntity e_User "Blog User" : Master [
attribute UserName: String [constraints (NotNull Unique)]
attribute RegistrationDate : Datetime [defaultValue "CurrentDateTime"]
tag (name "User" value "User")]

After defining the data entities, DataEntityClusters can be defined. A DataEntity-
Cluster construct denotes a cluster of structural entities that present logical arrangements
among them and are commonly used in the context of use cases.

In this example, we define three data clusters with specific roles to their involved
data entities. The “main” role represents the primary data entity involved, while the
“child” role represents a “part of” (or “child”) data entity, and the “uses” role represents
other logical dependencies between entities [9]. Furthermore, the tag “Inline” with value
“Stacked”, in the ec_PostComment cluster, is used as an extended property to influence
model-to-model or model-to-code transformations (in what respect the UI definition of
the application).

DataEntityCluster ec_Blog "Blog" : Parameter [main e_Blog]
DataEntityCluster ec_Users "Users" : Parameter [main e_Users]
DataEntityCluster ec_Post "Posts" : Document

[main e_Post uses e_Category uses e_User]
DataEntityCluster ec_Category "Categories" : Reference [main e_Category]
DataEntityCluster ec_PostComment : Document [master e_Post child e_Comment

uses e_Category tag (name "Inline" value "Stacked")]

3.2 Use Cases

A use case is defined as a sequence of interactions between an actor(s) and the system
under consideration, which gives some value to the actor [9]. Use cases is a popular
technique of modelling user tasks, that can be complemented with informal storyboards
and free-form scenarios [9]. Likewisewith theRSL,ASL includes theUseCase construct

From Rigorous Requirements and User Interfaces Specifications 465

that allows to define several properties such as: the involved DataEntityCluster; the
actor that initiates the use-case and other participating actors or the actions that may be
performed in the use case scope, e.g. CRUD actions.

In the MyTinyBlog example (see Spec. 4), we define the ContextActor “Blogger”
that creates and manages blog posts. The use case “Manage Blog Posts” is initiated by
the “Blogger” that involves the management of data cluster “Blog Posts” (ec_Post) with
CRUD actions and a validation action.

ContextActor aU_Admin "Administrator": User
ContextActor aU_Blogger "Blogger": User
ContextActor aU_Reader " Reader": User
UseCase uc_1_ManageUsers "Manage Users": EntitiesManage [

actorInitiates aU_Administrator
dataEntity ec_Users
actions aCreate, aRead, aDelete, aUpdate]

UseCase uc_2_ManagePosts "Manage Blog Posts": EntitiesManage [
actorInitiates aU_Blogger
dataEntity ec_Post
actions aCreate, aRead, aDelete, aUpdate, aValidate]

UseCase uc_3_ManageCategories "Manage Posts Categories": EntitiesManage [
actorInitiates aU_Blogger
dataEntity ec_Category
actions aCreate, aRead, aDelete, aUpdate]

UseCase uc_4_ReadPosts "Read Blog Posts": EntitiesBrowse [
actorInitiates aU_Reader
dataEntity ec_Post
actions aRead, aShare, aAddComment]

UseCase uc_5_CreateComment "Manage Comment on Post": EntitiesManage [
actorInitiates aU_Reader
dataEntity ec_PostComment
actions aCreate, aRead, aDelete]

3.3 User Interface Elements

As seen above, using ASL we can define Data Entities, Data Entities Clusters, Use
Cases, Context Actors and other constructs needed to specify the application. We may
also define UI elements, namely (and following the IFML terminology): UI containers,
UI components and UI parts. The rules to express such elements in ASL are aligned with
the IFML definition. The UI components supported by ASL are of the following types:
List, Details, Form, Dialog and Menu. These UI components can be further classified
as different sub-types like List-MultiChoice, List-Tree, List-Table, etc. as suggested in
Fig. 4 (Table 1).

466 I. Gamito and A. R. da Silva

Table 1. Supported types used for the UIViewComponent definition

Type List Detail Form Dialog Menu

Sub-type MultiChoice Simple Success Main

Tree MasterDetail Error Contextual

Table Other Warning

Nested Info

Message

4 The ASL-Based Approach

Figure 3 suggests the approach proposed to systematically and rigorously define soft-
ware applications based on the ASL language. This approach includes the possibility of
automatically generating the software application for a specific software platform.

ASL-based Approach

Specify Par al Model
(Data+UseCases)

Validate Par al Model
(Data+UseCases)

Generate UI Model from
Par al Model

(Data+UseCases)

Generate Code from
complete model

Par al Model
(Data+UseCases)

Validated Par al Model
(Data+UseCases)

Complete Model
(Data+UseCases+UI)

So ware
Ar facts

Specify Complete Model
(Data+ UseCases +UI)

Validate Complete Model
(Data+UseCases+UI)

Complete
Model

Validated

[1] [2] [3]

[4] [5] [6]

Fig. 3. ASL-based proposed approach

The proposed approach consists in 6 main tasks, represented in Fig. 3. Task 1 starts
with a developer specifying the data and use cases models. Then, Task 2 automatically
validates that partial model. If this model is valid, the ASL may run tool support may
run model-to-model transformations to generate ASL UI specifications (Task 3) auto-
matically. Then, in the Task 4, the developer can still add or change the generated model
with their preferences and repeat the process (this is not illustrated in the figure for the
sake of legibility). After this hybrid set of manual and automatic tasks, the complete
model shall be validated (Task 5) before running model-to-code transformations (Task
6), and producing the source code artifacts for the target software infrastructure.

From Rigorous Requirements and User Interfaces Specifications 467

4.1 Model-to-Model Transformation

The proposed approach follows an idea initially introduced with the XIS approach [12]:
the idea of smart and dummy modeling approaches. According to that approach, the
designer has just to define the Domain, Business Entities, Actors and Use Cases views
(based on the XIS terminology), and then the User Interfaces views are automatically
generated based on model-to-model (M2M) transformations and a predefined set of UI
patterns [12].

We integrate that “smart approach” to the ASL approach, which allows to gener-
ate UI specifications, as referred above in Task 3. These generated ASL files include
UI specifications that depend on the data entities and use cases previously defined.
For instance, considering the use-case defined in Spec. 4 (i.e., use case “Manage Blog
Posts”(uc_1_ManagePost)), it generates UI elements to support CRUD actions of posts.
The “databinding” mentions the e_Post entity. Features or actions like Listing, filtering
and searching of e_Post can be then manually customized.

//Search
component uiCo_Search_e_Post: Details [

dataBinding e_Post [searchAttributes e_Post.Title, e_Post.Id]]

As suggested in Spec. 5 and Fig. 4, the specification of that UI list table can be subject
of further customization, like the definition of data attributes can be considered for filter
and search features, or we can even customize the properties of each data attribute.

Fig. 4. Search posts: IFML model (left) and UI (right)

4.2 Model-to-Code Transformation

The transformation referred above as Task-3 generatesASLUI specifications, but the tar-
get software application (e.g.,MyTinyBlog) is not yet developed and deployed.However,
a complete specification of the application under consideration can be used to produce
the target application into a different number of software frameworks. As a proof of
concept, we have developed model-to-code transformations into the Django web frame-
work. Django is an open-source high-level PythonWeb framework that encourages rapid
development and clean, pragmatic design [13, 23].

468 I. Gamito and A. R. da Silva

from django.db import models
from datetime import datetime
from django.contrib.auth.models import User

ENUM_POSTSTATE_CHOICES = (('published','Published'),('draft','Draft'),)

class e_User(models.Model):

User = models.OneToOneField(User, on_delete=models.CASCADE)
UserName = models.CharField(max_length=30)
RegistrationDate = models.DateTimeField(default=datetime.now, blank=True)

class e_Post(models.Model):

Id = models.IntegerField()
State = models.CharField(max_length=15, choices=ENUM_POSTSTATE_CHOICES)
Title = models.CharField(max_length=100)
Body = models.TextField()
Date = models.DateTimeField(default=datetime.now, blank=True)
Category = models.ForeignKey(e_Category, on_delete=models.CASCADE, relat-

ed_name='PostCategory')
Author = models.ForeignKey(e_User, on_delete=models.CASCADE, relat-

ed_name='PostAuthor')
LastEditAuthor = models.ForeignKey(e_User, on_delete=models.CASCADE, relat-

ed_name='LastEditAuthor')

class e_Blog(models.Model):

Name = models.CharField(max_length=100)
Slogan = models.CharField(max_length=100)
State = models.CharField(max_length=15, choices=ENUM_POSTSTATE_CHOICES)

class e_Comment(models.Model):

PostID = models.ForeignKey(e_Post, on_delete=models.CASCADE, relat-
ed_name='PostID')

Text = models.CharField(max_length=100)
Date = models.DateTimeField(default=datetime.now, blank=True)
Author = models.ForeignKey(e_User, on_delete=models.CASCADE, relat-

ed_name='CommentAuthor')
Like = models.BooleanField()

As a simple example of these model-to-code transformations, Spec. 6 illustrates
the corresponding Django data model for MyTinyBlog. This code is generated mainly
from the data entities defined in ASL (see Spec. 2). This transformation generates the file
“models.py”,which takes into account all the data entities, attributes and data constraints,
including foreign keys constraints.

This generated Python file defines the domain model with the application’s data
structure and allows to create and update the respective database. Then, a developer can
customize and refine that model and still add more information (by default, Django uses
SQLite database to store the data [13]).

Users (who were given permissions) can create, read, update or delete the blog posts
using the Django admin site [13]. This site reads metadata from the models and provides
a simple model-centric interface.

To perform CRUD operations, we need to register those models in the “admin.py”
file. This file is created by default when a Django project is started. However, we replace
it with new settings; It shall contain the models to be registered, and other constraints
generated from the ASL specifications files (spec. 5). These options are visible in the
generated application, as suggested in Fig. 5.

From Rigorous Requirements and User Interfaces Specifications 469

Fig. 5. MyTinyBlog posts list

4.3 Actors and Permissions

The implemented model-to-code transformations can also speed up the process of man-
aging users and permissions (see Table 2 for some concepts mapping between ASL and
Django). Python interpreter allows to create groups and assign permissions to users.
However, Django Admin provides a built-in authentication system that allows the same
features through a simple, intuitive interface [14].

Table 2. ASL to Django – Concepts mapping

ASL Django

Context Actor Group instance

Context Actor (name) User

Use Case Actions Permissions

In the MyTinyBlog application, the blog administrator oversees those tasks. In his
turn, the blog editor should be able to create, read, update and delete posts. ASL tool
generates a Python script to insert groups and users in the database. This script also
assigns user groups different permissions. To quickly validate the authorization features,
this script adds one user to each user group. All these settings can be later directly
managed by a superuser using the Django admin site. (If logged in as a superuser, the
user can create, edit, and delete any object; he can as well modify groups/permissions
[14]).

470 I. Gamito and A. R. da Silva

from django.contrib.auth.models import Group
from django.contrib.auth.models import Permission
from django.contrib.auth.models import User

aU_Blogger_group = Group(name='aU_Blogger_group')
aU_Blogger_group.save()

user=User.objects.create_user('aU_Blogger', password='password')
user.is_staff=True
user.save()
aU_Blogger_group.user_set.add(user)

permission_CreatePost = Permission.objects.get(codename='add_e_post')
aU_Blogger_group.permissions.add(permission_CreatePost)

5 Related Work

Some approaches and tools have either improved and accelerated how the community
has produced software applications, either developed by the industry (e.g., Mendix,
Outsystems, or WebRatio) or by research settings (e.g., EMF on Rails, ADM, XIS or
ITLingo RSL).

Mendix is a commercial platform designed to enable different groups of people to
create software that delivers business value. It was founded in the early 2000 s with the
belief that software development could be improved with a paradigm shift [15]. Mendix
builds a wide range of transactional, event-driven, and adjacent applications for all kinds
of industries [15]. In Mendix perspective, it is becoming harder to keep up to date with
the evolving number of programming tools and languages across the spectrum [15].
To reduce the development effort and to improve the feedback loop, Mendix follows a
model-driven approach that includes tools like Mendix Studio and Mendix Studio Pro.
These tools provide visual drag-and-drop features for UI, data, logic, and navigation
using no-code or low-code development [15].

OutSystems is another commercial platform for low-code rapid application devel-
opment with advanced capabilities for enterprise mobile and web apps [16]. Starting
in 2001, OutSystems recognized that a vast majority of software projects were failing,
due to multiple reasons. Therefore, OutSystems software is an integrated development
environment that covers the entire development lifecycle, namely: development, quality
assurance, deployment, monitoring and management [16].

Mendix andOutsystems platforms surpass ASL transformations by providing a user-
friendly interface that allows development of applications with features and customiza-
tion aspects. ASL provides a good start for many situations due to its flexibility and
extensibility. Using a lower code-level, it can be challenging for people that do not usu-
ally work with programming languages and other IT tools. Still, it may simplify the
communication of the software application’s vision. From the generated application, we
still have control over the necessary code to scale the web application.

EMF on Rails proposes an approach that combines MDE with automation frame-
works for web development like Spring Roo [18]. It uses ATL, a rule-based declarative
model transformation language, where “transformations are specified bymapping object

From Rigorous Requirements and User Interfaces Specifications 471

patterns from the source model into patterns of the target model”. Like ASL, it acceler-
ates the generation of CRUD operations on data models [18]. A difference of our project
and EMF on Rails transformations is when their impact is more visible, as ASL pro-
motes a better understanding of requirements at the start and final specifications through
interfaces and use-cases specifications.

ADM (Ariadne Development Method) is another approach with the primary goal
of accelerating the development of web systems [21]. Like ASL, it offers constructs to
specify these systems making use of Labyrinth++. This tool allows the specification of
all the components for web systems and includes a pattern language. Those patterns are
organized according to the nature of the problem they solve and make the development
of solution easier for less-experienced web developers [21].

WebML (Web Modeling Language) is a domain-specific language for designing
complex, distributed, multi-actor, and adaptive applications deployed on the Web and
Service-Oriented Architectures usingWeb Services [3]. WebML provides graphical, yet
formal, specifications, embodied in a complete design process, which can be assisted by
visual design tools. It was extended to cover a broader spectrum of front-end interfaces,
thus resulting in the Interaction FlowModeling Language (IFML), adopted as a standard
by the OMG. Formerly known as the WebML, it is now IFML because it is no longer
limited to web development but also used for mobile apps [11].

XIS is a research project that has developed and evaluated mechanisms and tools
to produce business applications more efficiently and productively than it was done
[12]. XIS intends to reduce costs and improve the fulfillment of the requirements in
software production. XIS approach defends that the most significant effort in a project
shall not be in the implementation phase; these activities shall be performed almost
automatically, based on high-level and platform-independent specifications. Defining
the right specifications shall be the main effort of the developers. XIS also defends
a model-driven approach for designing interactive systems at a platform-independent
level, considering its modeling languages (i.e., the XIS* languages) that are defined
as UML profiles [25–27]. The approach discussed in this paper gathers the benefits
from the tools and approaches mentioned above. For example, like the IFML, it sup-
ports a platform-independent description of graphical user interfaces. Like RSL, but on
the contrary of IFML, the concrete syntax of ASL specs are textual and consequently
more natural to be rigorously defined and validated. ASL adapts the XIS smart app-
roach, where UI models can be generated from high-level models. Unlike XIS, ASL
can allow to specify and to automatize the process of creating different types of users,
assigning distinct roles and respective permissions. Due to its platform-independent and
human-friendly text-based syntax, ASL specifications are more open and easier to be
manipulated and interoperated comparing with the options referred above, namely the
commercial solutions. One relevant work to explore in the future is to verify if ASL
could be suitable to support interoperability between the models developed with these
low-code or no-code platforms.

6 Conclusion

This paper discusses a new approach that combines the disciplines of requirements
engineering andweb engineering. This approach intends to address the followings issues:

472 I. Gamito and A. R. da Silva

How to better specify requirements and business applications’ (user interfaces) in an
integrated way and how to increase the productivity of developers by automatizing the
production of artifacts like technical documentation and software code.

We discuss some existing solutions, namely those mostly related to the RSL and
IFML languages, in which the ASL language design is based. ASL allows to rigorously
specify requirements (namely use cases with their relationships with actors and data
entities), but also to specify user interface elements of the applications. We show that
this language can be combined with tools that support both model-to-model and model-
to-code transformations, and thus can considerably improve the quality and productivity
of both the requirements definition and the development of these applications.We support
the discussion with a simple but effective example, considering a popular class of web
applications (i.e., a Blog application) on top of a popular Python-based framework (the
Django framework).

Future research shall consider improving the customization of either the specification
and generation of the business applications and shall specify and develop multiple cases
studies. The integration with other popular software (e.g., NodeJS, JavaScript frame-
works, .NET) and low-code frameworks (e.g., Mendix, OutSystems or Genio [19]) can
also be considered as they can bring more flexibility to this solution. This research
shall discuss how to consider how to deal with cross-cutting quality attributes such as
availability, performance, usability or security.

Acknowledgments. Work supported by funds under FCT UID/CEC/50021/2019 and
02/SAICT/2017/29360.

References

1. Ousterhout, J.K.: A Philosophy of Software Design. Yaknyam Press, Palo Alto (2018)
2. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and Design,

1st edn. Prentice Hall, Upper Saddle River (2017)
3. Al-Fedaghi, S.: Developing web applications. Int. J. Softw. Eng. Appl. 5(2), 57–68 (2011)
4. Ferreira, D., Silva, A.R.: RSLingo: an information extraction approach toward formal require-

ments specifications. In: 2nd IEEE International Workshop on Model-Driven Requirements
Engineering. IEEE Computer Society (2012)

5. Sommerville, I.: Software Engineering, 9th edn. Pearson, Boston (2011)
6. Shah, T., Patel, S.: A review of requirement engineering issues and challenges in various

software development methods. Int. J. Comput. Appl. 99(15), 36–45 (2014)
7. Schmidt, D.: Model-driven engineering. IEEE Comput. 39, 41–47 (2006)
8. Silva, A.R.: Model-driven engineering: a survey supported by a unified conceptual model.

Comput. Lang. Syst. Struct. 43, 139–155 (2015)
9. Silva, A.R.: Rigorous specification of use cases with the RSL language. In: Proceedings of

the Information Systems Development (ISD 2019) Conference. AIS (2019)
10. OMG: Interaction FlowModeling Language Specification Version 1.0. https://www.omg.org/

spec/IFML/1.0/. Accessed 25 Apr 2020
11. Brambilla, M., Fraternali, P.: Interaction flow modeling language: model-driven UI engineer-

ing of web and mobile apps with IFML (2014)
12. Silva, A.R., Saraiva, J., Silva, R., Martins, C.: XIS – UML profile for eXtreme modeling

interactive systems. In: Proceedings of the MOMPES 2007. IEEE Computer Society (2007)

https://www.omg.org/spec/IFML/1.0/

From Rigorous Requirements and User Interfaces Specifications 473

13. Pinkham, A.: Django Unleashed, 1st edn. Pearson, Indiana (2016)
14. Rubio, D.: Beginning Django: Web Application Development and Deployment with Python,

1st edn. Apress, California (2017)
15. MendixEvaluationGuide. https://www.mendix.com/evaluation-guide.Accessed 26Apr 2020
16. OutSystems Evaluation Guide, 16. https://www.outsystems.com/evaluation-guide. Accessed

26 Apr 2020
17. Stair, R., Reynolds, G.: Fundamentals of Information Systems, 9th edn., Cengage Learning

(2017)
18. López-Landa, R., Noguez, J., Guerra E., Lara, J.: EMF on rails. In: ICSOFT 2012 - Pro-

ceedings of the 7th International Conference on Software Paradigm Trends, pp. 273–278
(2012)

19. Genio Plataforma. https://genio.quidgest.com/plataforma/. Accessed 26 Jun 2020
20. Silva, A.R.: Linguistic patterns and linguistic styles for requirements specification (I): an

application casewith the rigorousRSL/business-level language. In: Proceedings ofEuroPLOP
2017. ACM (2017)

21. Montero, S., Díaz, P., Aedo, I.: From requirements to implementations: a model-driven app-
roach for web development. EJIS 16, 407–419 (2007). https://doi.org/10.1057/palgrave.ejis.
3000689

22. Stefano, C., Fraternali, P., Bongio, A.: Web modeling language (WebML): a modeling lan-
guage for designing web sites. Comput. Netw. 33, 137–157 (2000). https://doi.org/10.1016/
S1389-1286(00)00040-2

23. da Silva, A.R., Paiva, Ana C.R., da Silva, Valter E.R.: A test specification language for
information systems based on data entities, use cases and state machines. In: Hammoudi, S.,
Pires, L.F., Selic, B. (eds.) MODELSWARD 2018. CCIS, vol. 991, pp. 455–474. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11030-7_20

24. Paiva, A.C.R., Maciel, D., da Silva, A.R.: From requirements to automated acceptance tests
with the RSL language. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE
2019. CCIS, vol. 1172, pp. 39–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-40223-5_3

25. Ribeiro, A., Silva, A.R.: XIS-mobile: a DSL for mobile applications. In: Proceedings of the
29th Annual ACM Symposium on Applied Computing (2014)

26. Ribeiro, A., Silva, A.R.: Evaluation of XIS-mobile, a domain specific language for mobile
application development. J. Softw. Eng. Appl. 7(11), 906–919 (2014)

27. Seixas, J., Ribeiro, A., Silva, A.R.: A model-driven approach for developing responsive web
apps. In: Proceedings of ENASE 2019. SCITEPRESS (2019)

28. Django. https://www.djangoproject.com/. Accessed 25 Jun 2020

https://www.mendix.com/evaluation-guide
https://www.outsystems.com/evaluation-guide
https://genio.quidgest.com/plataforma/
https://doi.org/10.1057/palgrave.ejis.3000689
https://doi.org/10.1016/S1389-1286(00)00040-2
https://doi.org/10.1007/978-3-030-11030-7_20
https://doi.org/10.1007/978-3-030-40223-5_3
https://www.djangoproject.com/

The Human Factors of the Agile
Software Tester

Lucas Paruch , Viktoria Stray(B) , and Raluca Florea

Department of Informatics, University of Oslo, Oslo, Norway
{lucasp,stray,ralucamf}@ifi.uio.no

Abstract. Although there has been extensive research on the technolog-
ical aspects of the software testers, little investigation has been conducted
within human factors determinant for the software testing role. The cur-
rent paper explores the human factors of the software testers working
in agile projects, through a qualitative study focusing on the perception
of these factors, in a software service company. We interviewed 13 agile
team members; 6 testers, 5 developers, and 2 designers. Additionally, we
observed 11 meetings and observed the teams at work. Our results show
that the following six traits are pivotal for the software testing role, seen
by working agile software professionals: able to see the whole picture,
having good communication skills, being detailed-oriented, structured,
creative, and adaptable. Based on our results, we propose how organi-
zations may think when recruiting agile software testers, how the traits
may be used as a reference for those considering a software testing career.

Keywords: Human factors · Character traits · Soft skills · Human
qualities · Software testing · Agile software development

1 Introduction

Currently, agile software development is a widely adopted practice of companies
seeking to improve their industrial competitiveness [30]. As advantageous as
it may be, working in an agile environment brings challenges such as parallel
information flow, collaborative work, opportunistic use of technology, and lack
of alignment among teams [10].

As such, the human factors play a vital role in agile projects, in all the
development facets of the software products, from the requirements elicitation,
stakeholder meetings, development, testing, and release. Personality traits of
developers have been investigated (e.g., [1,27]), some going as far back as 1980s
[9]. For testers, there are a few recent studies. For example, one study found
an abundance of soft skills shaping software testing role, with greater diversity
in particular for the agile testers [15]. Kanij et al. [22] utilized the Big Five
taxonomy from the psychology field to explore the personality traits of software
testers. However, more studies on human factors in software testing and the
testers’ mindset are needed [17].
c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 474–487, 2020.
https://doi.org/10.1007/978-3-030-58793-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_38&domain=pdf
http://orcid.org/0000-0003-3726-1231
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0000-0002-7344-2817
https://doi.org/10.1007/978-3-030-58793-2_38

The Human Factors of the Agile Software Tester 475

To explore human factors of the agile software tester, we conducted a quali-
tative study in a software service company. We aimed at answering the following
research question: Which human factors do the software professionals, working
in agile projects, perceive as significant for the software testing role?

2 Background

2.1 The Agile Software Tester

One of the seven ISTQB testing principles states that quality assurance activ-
ities should be started as early as possible in the life-cycle to avoid additional
cost and time [4]. In agile, a noticeable divergence from traditional develop-
ment methods entails involving testers from the beginning of each development
increment. The early involvement allows testers to identify different test environ-
ments and scenarios early on - thus increasing the overall productivity and test
validity. In agile, it is expected that developers perform unit-tests on their own.
Additionally, developers may also do other testing tasks, such as reviewing user
stories and creating test conditions. Therefore, dedicated testers may be able
to implement a myriad of test techniques, such as exploratory testing, usability
testing, and improving test coverage with the developers [3,26]. In such work
environments, knowledge transfer also happens more frequently and naturally
amongst developers and testers, as both testing and development happen con-
currently during each iteration. While new team members may benefit from the
active feedback, agile testers can also focus even more on eliminating misunder-
standings or confusion during development. The tight coupling between testers
and the rest of the team enables fast learning and understanding.

While the software designers and programmers’ roles are intrinsically con-
structive, in the sense that they create products, a tester’s job is most often of
a destructive nature - involving many repeated attempts to break the software
constructed [21,22]. Kanji et al. argue that the effectiveness of a tester role is
somehow related to their personality. Their findings suggest that testers have
a significantly higher level of conscientiousness than other software engineering
roles [22]. Conscientiousness is closely related to being disciplined, hard-working,
and dedicated. Although highly conscientious individuals are important in any
profession, Kanji et al. suggest that these qualities might be particularly cru-
cial for testers. Following the destructive nature of the testers’ job, automation
testing is seen as a ’safety-net’ for testers to reduce confrontation because they
can refer to the automatic tests failing. Florea et al. [13] found that automation
testing is rising in demand and that there is a definite shift of the tester towards
being a more technical profession than before.

Itkonen et al. [20] investigated what knowledge types testers utilized during
exploratory software testing, and came up with three knowledge types: domain
knowledge, system knowledge (the act of knowing the system’s mechanisms,
logic, interactions), and generic software engineering knowledge (knowledge of
usability of the system and the ability to interpret error messages).

476 L. Paruch et al.

Livonen et al. [24] investigated the characteristics of high performing testers
(characterized by either having a high defect detection rate or possessing char-
acteristics seen as important by managers and testers). They found four themes
that were important: experience, ability to reflect, motivation, and personality.
The most important personal characteristics of high performing testers were
thoroughness, carefulness, patience, and conscientiousness [24].

Two studies focused purely on what soft skills are required for software
testers. Matturro [25] investigated what soft skills software companies in
Uruguay required. The author analyzed 43 advertisements to investigate the
frequency of soft skills within software testing. The majority of the advertise-
ments asked for skills like teamwork, initiative, and analytical problem-solving
skills. Similarly, Florea and Stray [12] analyzed 400 advertisements specifi-
cally for software testers across 33 countries. The most popular traits asked
were communication skills, analytical problem-solving skills, team-player, and
independent-working skills. Both articles suggest that there is a more definite
need for teamwork and communication skills, analytical problem-solving skills,
and pro-activeness. These traits have also, to some degree, been confirmed by
other studies [8,24].

3 Research Method

The study of the software professionals’ perception of the human factors char-
acteristic for the agile testers was conducted with the support and collaboration
of a software service company for the finance and banking sector, employing
over 500 IT specialists across Europe. The company’s motivation for participat-
ing in the research was to understand better how to support their employees in
the software testing roles and better understand the traits they should focus on
when hiring new software testers. Besides, the company aimed at giving its soft-
ware testing professionals autonomy to think differently, be creative, and further
improve their testing skills.

We conducted semi-structured interviews of 13 software professionals: six
testers, five developers, and two interaction designers see Table 1. All the inter-
viewees were located in Oslo, Norway. In addition to the interviews, we observed
many of the participants working, and attended eight daily stand-up meetings,
two test status meetings, and one domain expert workshop. We also had access
to all the participants’ on Slack1, as well as access to a common channel for the
testers. The observation notes and Slack logs were mostly used to affirm our
findings from the interviews.

All the respondents consented to the recording of the dialogue and the pub-
lication of the results. Where it was necessary, we furthered the understanding
of our participants’ responses with follow-up questions and confirmed that we
captured their responses entirely and unambiguously. We steered the interviews’
direction by having a clear understanding of the objectives we pursued, asking

1 Slack is an electronic communication tool, a trademark of Slack Technologies.

The Human Factors of the Agile Software Tester 477

Table 1. Overview of the interviews

Interviewee software field Work experience Interview length

Software testing 7 months 53 min

Software testing 1 year 1h 3 min

Software testing 4 years 51 min

Software testing 6 years 1h 6 min

Software testing 3 years 41 min

Software testing 11 years 30 min

Software development 1 year 23 min

Software development 1 year 24 min

Software development 2.5 years 20 min

Software development 2 years 26 min

Software development 10 years 38 min

Interaction design 1.5 years 37 min

Interaction design 4 years 41 min

targeted questions, and giving appropriate feedback to the respondents: encour-
aging them to talk, reflecting on their remarks, and probing on their remarks. At
the same time, the interviews were, to a great extent, protected from interrup-
tions from the outside, from competing distractions, and by not asking inhibiting
questions. The atmosphere of the interview was relaxed and invited communica-
tion. Furthermore, we took notes of other relevant information and captured our
impression after each of the interviews we carried out. The interviews ranged
approximately from 45 min to 1 h and were held solely with employees from the
service provider company.

We employed semi-structured individual interviews, as they allowed us to
gain insight into the participant’s views on the software-testing human factors,
based on their work experience. Some of the questions we asked were as follows:

– Can you tell me about your role, and what are typical tasks and assignments?
– What attributes do you think a software tester should have?
– Do we need dedicated testers?
– To what degree do you feel ‘connected/associated’ to the team?
– How much time do you spend on interaction with others to complete a task?
– How do team members and teams coordinate?
– Assume that you have found a bug during testing, how would you present it

to the team? What do you do if someone says it is not a bug?
– Have there been cases where bugs have slipped through testing onto the

production? How did it happen?
– Have there been challenges working with others in the team?
– How much knowledge do you have about the other team members’ fields?
– Could you imagine to switch to something other than your current role?

478 L. Paruch et al.

– Have there been cases where you had to re-prioritize a task or do something
unplanned in your workday?

– What keeps you going during work?

We analyzed the data using thematic analysis [5]. We coded the collected
data, and grouped the codes into themes, see Fig. 1. For this purpose, we used
NVivo, as it enabled us to organize the codes and explore the relationships
between them easily. During our analysis, a total of 95 different codes emerged
- these were grouped into different traits. Our analysis suggested that six traits
were vital for agile software testers, as seen from both testers themselves and
the other team members. We also found one other trait that seemed important
but did not emerge as any of the top six traits. Eagerness-to-learn was a trait
that seemed inherent to all of the interviewed testers but was not mentioned by
any of the other roles. All traits we included were stated as important by all of
the three roles (testers, developers, and designers).

"A developer is supposed to develop something, the
tester is actually the one to see if it works, and then

you have to almost use a checklist"

Usage of
checklist

Developer

Designer

Tester

Tester

Structured

"I occationally test the software, but I do see that the
tests (the tester) does are much more thorough

because he has a test matrix where he goes
through case by case"

"If you're not structured, you may not be able to
write down exactly what took you to that bug when

you find a mistake"

"I can be distressed and forgetful at times. So I write
a lot of notes, to-do lists for myself, checklists"

Data source Codes Trait

Meticulous
process

Observation
notes

Conversation
logs

The tester writes down list of test cases and checks
test coverage of different conditions

"I tend to focus on what is wrong, how should it be,
also possibly how to reproduce the error. If it is a

very specific scenario then I attach test data used"

Fig. 1. Example of the thematic coding of the collected data

The interviewed professionals used agile methods and mainly Kanban devel-
opment, combined with Scrum ceremonies. They used Product Backlog Items

The Human Factors of the Agile Software Tester 479

(PBI) extensively - usually in the form of a user story. Some of the intervie-
wees had no time-boxed sprints, working rather with a continuous stream of
tasks, as they appeared in the backlog. They were involved in the prioritization
of tasks and maintenance of the PBI. The professionals within the testing also
participated in the test automation process, thus enhancing agile development
by automation-as-they-go.

Table 2. Number of interviewees stating importance of the trait

Trait Testers (6) Developers (5) Designers (2)

Able to see the whole picture 6 5 2

Detail-oriented 6 5 2

Good communication skills 6 5 2

Structured 6 3 2

Creative 6 2 2

Adaptable 4 5 2

The professionals had daily stand-up meetings, which were held every day
at 09:00. The purpose of these meetings was to update team members on each
other’s progression and to bring up problems with regards to specific fields. On
average, the meetings lasted from five to ten minutes and rarely reached the
15 min mark. The meetings were conducted online using Microsoft Teams and
video-chat, to include the team members overseas.

Additional to the daily stand-up meetings, the interviewees with a test-
ing role attended test-status meetings held on a bi-weekly basis. The pur-
pose of these meetings was to establish coordination through communication
between projects. Each tester reported their current test status in their projects
and discussed any issues currently facing. Additionally, the testers could ask
other testers for help. Exemplified by the common test-environment used by all
projects - due to them being partly dependent on each other - each project needs
to make sure that data are correct and not manipulated by others under testing.

4 Results

Our analysis of the data material revealed six essential characteristic traits of
the agile software tester, as presented in Table 2, displaying the human factors
seen by software professionals as pivotal traits of the agile software tester. We
will now present each of the traits.

4.1 Able to See the Whole Picture

The participants stated that being able to understand the project as a whole
was essential for a tester. The ability to have an overview of the project objec-
tives, customer requirements, quality demands, and both domain-knowledge and

480 L. Paruch et al.

technical knowledge was voiced as vital testers’ traits by those we interviewed.
Similarly, the interviewees holding a tester role stated that having such a per-
spective often helped them to find unusual bugs and see things from a different
perspective than others.

One tester mentioned the need to understand the critical parts of the sys-
tem: “It’s not about finding most bugs or fewest bugs or run most test-cases. A
tester who completed one test-case but has found that the system works how it is
supposed to, is often more effective than a tester who ran a hundred test-cases
and have not found anything. So it’s about being able to see the total picture”.

One interaction designer recalled that the testers they worked with were
impressive in terms of possessing both domain and technical skills and a good bal-
ance between the two: “...he is the only one in the team who has a good overview
of how things are connected, helicopter-perspective, how insurance works, the
scope of different insurance types, how things are connected back-end”.

As well, the developers brought-up that the software testers needed to have
the ability to understand the big picture. One participant stated “Often as a
developer, you receive a task and you do it. They are not very involved in the
entire process. I think it’s more exciting to be involved in both the functional and
technical aspects, not just super-technical”.

4.2 Detail-Oriented

We found that agile software testers needed to be attentive to a multitude of
details. The interviewees mentioned that having this attribute as a software
tester was focal. One tester stated that he had to manage a considerable amount
of small details on things he’s worked on. The non-tester interview participants
experienced that testers were very attentive and used the trait to further improve
the product. We found two common kinds of attentiveness: user experience-
related and technical-related.

Both the interaction designers that we interviewed mentioned that the testers
they worked with helped them spot user-experience faults that the respectively
overlooked. One designer mentioned: “I remember he went through an old appli-
cation, he began to carefully read the text that was there. I thought we were pretty
attentive on death insurances - the fact that someone needed to report it when a
person dies. He tested the whole process and made me aware of the text; it wasn’t
pleasant in a highly sensitive situation. So yeah, he is very aware of details”.

Similarly to the designers, the developers stated that software testers needed
to have attention to details. One developer stated: “...this is why I love working
with them, because of exactly that- they pick up things that we don’t see, and
things we haven’t even thought of. They inform us that’this is wrong’ and’this
wouldn’t work because of this method and this module,’ very logical individu-
als...”. Another developer mentioned:“If it’s a complex, tangible product, then
it is nice to have a tester next to you. It gives me safety in the form of’okay,
he confirms that everything I do is correct. Then it’s more likely that what I’m
doing is correct”.

The Human Factors of the Agile Software Tester 481

4.3 Good Communication Skills

In addition to their core tasks of their role, it emerged from the interviews that
the agile software testers were often needed to provide support for their fellow
team members, by clarifying requirements or providing additional bug-related
information. However, some testers frequently communicated with various stake-
holders of the project in order to conduct rigorous testing - hence internal and
external communication, respectively.

Testers needed to be friendly and provide constructive feedback regarding the
issues they discovered though their testing to mitigate potential negative team
dynamics. For example, one software tester mentioned that “I was on a project
a few years back where I sat next to the developers. When I’ve found a bug, I
stood up and walked towards them with a friendly smile”. Another mentioned
that “Whenever I find a bug, I go to the developer in mind and ask him if
it’s suppose to be like that. I try not to point any fingers because that’s never
pleasant for anyone, and it’s not appreciated”. Part of the interviewees mentioned
that testers had to be good at asking for additional information from external
stakeholders. A tester recalled “...if the specification is too vague and we find
that there can be many different ways to interpret it, then often I’m the one
who has to go ask the ones who wrote the specification and find out what exactly
do they mean, because I’m the one who specifies concrete requirements to the
developers”. This aspect was also brought up by a second tester “...it could
be that the developers have interpreted correctly, or that I have interpreted it
correctly, we don’t know. That’s why I often have to go to the (customers’) desk
and ask”. A developer asserted that it was important for testers to ask about
commodities and try to find out how things work; “They are very active in
meetings with product-owners and ask questions about functionalities and what
they need to find out about in order to set up test-scenarios”. Furthermore, the
team members appreciated to communicate on Slack, and we observed that they
often discussed test automation with distributed team members. The testers
would also often conduct an ad-hoc video meeting on Slack to give developers a
thorough explanation of discovered bugs.

4.4 Structured

During the interviews, the software testers disclosed that they were structured,
and not only at work. The majority of testers disclosed that they usually noted
everything down in checklists, notes, or in their calendars. One tester voiced her
usual course-of-action when it comes to planning and being systematic; “Every
Friday, I look at the calendar to see what’s happening next week. Also, once a
month, I look through the whole calendar for the next month so that I can plan
and leave some room for unexpected meetings”. Another tester stated that in
order to succeed as a tester, one had to be structured; “...Even if one performs
exploratory testing - through just playing around - if you’re not structured, then
you might not be able to describe the steps you performed when you found a bug. If
you’re just exploring without being systematic, then I don’t think you can retrace

482 L. Paruch et al.

your steps. So, in my opinion, all testers must be structured”. One developer
recalled the results of the systematic work of the testers: “...they worked really
hard to systematically map, find out and clarify the requirement specifications for
us - and even found out things that we overlooked. And as a result, also adjusted
and improved our work processes”.

4.5 Creative

The interviewees stated the importance of being creative in software testing,
which allowed them to find abnormal bugs. One participant stated “I’ve man-
aged to find weird bugs by being creative, such as mid-way force shutdowns and
performing unusual process-sequences. One has to test like that because the users
are always creative”. The interviewed designers mentioned that the testers they
worked with were creative in solving issues, such as suggesting several alterna-
tive ways to resolve obstacles. Furthermore, they stated that a creative mind was
what made testers valuable; “...one finds strange things and loopholes by being
creative. This is very much appreciated from a tester because we (non-testers)
have’tunneled’ ways of testing, there are many guest-testers that test precisely
how it’s supposed to be used, meaning we’d only test the system’s behavior when
we do things right”.

The tester interviewees voiced that creativity was necessary for the profes-
sion. However, one of the participants in a software testing role added that even
though creativity could help find weird bugs, it could that the team could choose
not to fix it; “I daresay I use a lot of creativity to the point that I was told’the
bug you’ve reported, it is so specific that it only affects one specific customer
during a leap year, so we’re not going to fix it’.

One of the testers also mentioned that they did not always get to be creative,
mainly due to time pressure. The participant stated that some of the bugs found
post-testing could have been found during the stage if only he would have time
to think or toyed with it more; “There isn’t always enough time, so I have to
focus on getting the most important pieces to work, and then deliver it to the
business analysts to test”.

The developers mentioned that creativity was more important for a tester to
possess, mainly because of the difference in the role: “As a developer, you receive
a business requirement. Your job is to only fulfill those requirements. You can
have a creative process where you construct the architecture, choose frameworks
etc. But in the end, you’re fulfilling a requirement. Testers are supposed to test
a system that’s going to work 100%, and there could be many anomalies. So a
creative tester is most likely much more important to have in a team than a
creative developer”.

4.6 Adaptable

Three of the interviewees with a testing role mentioned that one has to adapt, by
following the current situation quickly. One commented: “Yes, it can sometimes
be as early as after I looked over my tasks and feel ready to start, someone would

The Human Factors of the Agile Software Tester 483

pat me on the shoulder and say that I have to do something else”, another said:
“We work with prioritization, when an item of high priority is incomplete from
the developers’ side, I’ll start to work on something with medium (priority).
However, often the developers finish before I get to complete the testing on that
item, so I have to drop it and start testing on the other one (with high priority)”.

One tester with a junior position stated that since she was newly qualified,
the constant context-switching proved to be quite challenging to keep up with
the rest of the team. During our time of observation, she mentioned working
extensively together with a more experienced tester had greatly improved her
ability to context-switch.

5 Discussion

In the previous section, we described the human factors that emerged from the
data analysis describing the software tester in agile teams. The first notable result
is related to the overall perception of the role. In a previous study [7], it was
found that testing was not a popular job due to that it was seen as’second-class’
and unattractive career development. Currently, this perception has drastically
changed, as our participants with a software testing role voiced the full recogni-
tion of the merits of their role. The testing and non-testing interviewees stated
that testers were seen on the same line as other roles and that the teams had
a flat structure. This incidentally improved their motivation in bettering their
work - an exciting find, considering previous research such as Shah et al. [28],
who reported testing as a stepping stone for the developer career.

Another notable result is the usage of digital communication tools in agile
teams. We noted that Slack had a significant positive impact on testers and
increased team transparency - supporting recent studies [6,29] stating that the
use of Slack makes communication more transparent.

We now discuss our research question: Which human factors do the software
professionals, working in agile projects, perceive as significant for the software
testing role?. Our findings show that the views on the human factors shaping
the role of the agile software tester crystallized in six distinct dimensions: the
ability to see the whole picture, being detailed-oriented, having communication
skills, being structured, being creative, and being adaptable.

Our results show that testers need to have, in addition to technical abilities,
and even more complex overview than other roles in agile teams. This finding
supports Florea et al. [14], with regards to the number and diversity of skills
necessary for the software testers. The results also show a change in the per-
ception of the role in the last decade, when Capretz et al. [7], and Shah et al.
[28] found that people were choosing a software testing role when they were
technically proficient. Our findings support Hernandez et al. [19], who pointed
that software testers worked on a wide variety of topics, because it “requires a
complete view of the software”, as well as the communication skill as a necessary
trait to possess, to factor for effective collaboration with other departments.

484 L. Paruch et al.

Most of the participants to the interview voiced attention to detail as imper-
ative for a tester to possess since it was useful in user-experience, technical solu-
tions, and enhancing domain-knowledge and technical-knowledge, in line with
the survey research conducted by Kanij et al. [21], in which most respondents
agreed that this trait was something a good software tester should have. However,
Capretz et al. [7] found a set of demotivated factors, in which the requirement
of detail-oriented skill demotivated Cuban software testers.

We found that having good communication skills was seen as crucial for
agile software testers, as was also found in earlier studies [8,12]. Ahmed et al.
[2] described software testers as”the software development team’s worst enemy”
and, therefore, in need of good relational skills. A recent study showed that
people were more careful in their communication if a conflict was thought to
occur [18]. As the software testing role implies bringing unwanted news to the
team, our findings confirm the need for good communication skills, in a way that
does not provoke conflicts.

Most testers stated that writing check-lists and creating notes allowed them
to free up their brains to focus on other things. Kanji et al. utilized the Big
Five Taxonomy from psychology to highlight testers’ personalities. Their find-
ings show that testers generally have a higher level of conscientiousness than
other roles - conscientiousness being orderliness, self-discipline, hard-working,
and dedication [22]. Our results show that testers tend to be more organized,
systematic, and structured - which all can be subsumed under conscientiousness.

Even though creativity is generally useful in software development, the degree
of importance varies greatly amongst roles [23]. Regarding software testers, our
study shows that creativity was perceived necessary in two courses of action:
to conduct software testing by making up different user personas in different
scenarios, and to come up with creative ways of testing the technicalities of the
system. Our study confirms the results obtained by Itkonen et al. [20], who found
that exploratory testing nurtured diverse and creative opportunities for testing.

Ekwoge et al. [11] mentioned that adaptability was needed for new tool usage
and techniques of testing. Our results suggest that although adaptability does
indeed benefit the technical proficiency, the trait is more holistic in the sense
that adaptability also concerns domain-knowledge, and the ability to quickly
switch between different context and different mindsets.

5.1 Implications for Practice

Given the effort that software companies invest in recruiting and retaining the
best-suited individuals for the roles, the first implication for the practice of
our study concerns the employers in the software development industry. This
paper’s findings could benefit the industry by providing the set of relevant traits
that software testers should possess, useful as a checklist to those in charge of
hiring new testing personnel. Additionally, our findings could benefit all those
professionals, whether with a technical background or not, considering a software
tester career by setting a frame of expectations for the role in soft factors. Garousi
et al., recently reported that one of the top-ranked knowledge gaps from software

The Human Factors of the Agile Software Tester 485

engineers was software testing, and argue that it is vital to teach more testing
[16]. The second implication of our findings relates to the ISTQB’s syllabus for
the agile tester: As it resulted from the self-description of the software testers,
backed by the description of testers by the other roles in the team, the listed
skills of the agile software tester should be updated with, for example, being able
to see the whole picture and being creative.

5.2 Limitations

As our study was conducted at one specific company in one geographical location,
the results could have been influenced by the cultural and organizational values
specific to the company or particular to the interview location. We mitigated
this influence by interviewing three roles within the software development team,
asking them to describe the relevant human factors composing the software tester
role. To avoid ambiguity, to allow time for reflection on the questions. We were
open to all input and insight, and we kept in contact with our respondents until
the finalization of the study. We routinely checked the data’s consistency in the
transcripts, the codes, and the themes we used.

6 Conclusion and Future Work

Through a qualitative study of 13 software professionals, in order to capture their
view of the relevant traits composing the software testing role, we brought to light
that the software testers in agile settings need to have a helicopter perspective
of the project, encompassing technical and domain-specific abilities, in order
to conduct testing effectively. Testers need to think creatively in two courses
to test the software: from the consumer perspective by testing user personas,
domain condition coverage, and unique scenarios. Nevertheless, they need also
to test the system’s technical perspective, such as system flow, memory leak,
and SQL injections. Software testers need also be detail-oriented in terms of the
user experience, such as refining the user-journey or the technical aspect where
testers can suggest alternative solutions to developers. Testers need to be more
structured than other roles in order to test and retrace steps systematically.
They should finally be adaptable to changes and adept context-switchers.

The findings of the study can be used by the industry, in particular those in
charge of the hiring of software testers, to check that the candidates for the role
do possess these traits. Moreover, those considering a career in software testing
should use our results to scrutinize and assess their fitness for a software testing
role in an agile environment.

Findings show that the agile software testers had a self-image of the human
factors of importance to their role following the perception of the other team
members. Additionally, to the human factors listed in the ISTQB agile syllabus,
we found the ability to see the whole picture and being creative. Future work
should be conducted to investigate the manifestations of the constituent parts
of these newly-revealed traits.

486 L. Paruch et al.

Acknowledgements. We want to thank all the participants for their generous and
thoughtful collaboration on this study and for allowing us to observe and conduct
interviews. A special thanks to the company supporting our research, for making the
collaboration setup possible.

References

1. Acuña, S.T., Gómez, M., Juristo, N.: How do personality, team processes and task
characteristics relate to job satisfaction and software quality? Inf. Softw. Technol.
51(3), 627–639 (2009)

2. Ahmed, F., Capretz, L.F., Campbell, P.: Evaluating the demand for soft skills
in software development. IT Prof. 14(1), 44–49 (2012). https://doi.org/10.1109/
MITP.2012.7

3. Bai, A., Mork, H.C., Stray, V.: A cost-benefit analysis of accessibility testing in
agile software development: results from a multiple case study. Int. J. Adv. Softw.
10(1&2), 96–107 (2017)

4. Black, R., van Veenendaal, E., Graham, D.: Foundations of Software Testing
ISTQB Certification. Cengage Learning EMEA; 3rd edn. (2012)

5. Braun, V., Clarke, V., Hayfield, N., Terry, G.: Thematic analysis. In: Liamput-
tong, P. (ed.) Handbook of Research Methods in Health Social Sciences. Springer,
Singapore (2019). https://doi.org/10.1007/978-981-10-5251-4 103

6. Calefato, F., Giove, Andrea, L.F., Losavio, M.: A case study on tool support for
collaboration in agile development. In: IEEE/ACM International Conference on
Global Software Engineering (ICGSE 2020), 5–6 October 2020, Seoul, Republic of
Korea. ACM, New York (2020)

7. Capretz, L.F., Waychal, P., Jia, J., Varona, D., Lizama, Y.: Studies on the software
testing profession. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pp. 262–263. https://
doi.org/10.1109/ICSE-Companion.2019.00105

8. Deak, A.: What characterizes a good software tester? – a survey in four nor-
wegian companies. In: Merayo, M.G., de Oca, E.M. (eds.) ICTSS 2014. LNCS,
vol. 8763, pp. 161–172. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44857-1 11

9. DeMarco, T., Lister, T.: Peopleware: Productive Projects and Teams. Dorset House
Publishing Co. Inc, New York City (1987)

10. Dingsøyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier.
IEEE Softw. 36(2), 30–38 (2019)

11. Ekwoge, O.M., Fontão, A., Dias-Neto, A.C.: Tester experience: concept, issues
and definition. In: 2017 IEEE 41st Annual Computer Software and Applications
Conference. vol. 1, pp. 208–213. https://doi.org/10.1109/COMPSAC.2017.232

12. Florea, R., Stray, V.: Software tester, we want to hire you! an analysis of the
demand for soft skills. In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018.
LNBIP, vol. 314, pp. 54–67. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-91602-6 4

13. Florea, R., Stray, V.: A global view on the hard skills and testing tools in software
testing. In: Proceedings of the 14th International Conference on Global Software
Engineering ICGSE 2019, pp. 133–141. IEEE Press (2019). https://doi.org/10.
1109/ICGSE.2019.00036

14. Florea, R., Stray, V.: The skills that employers look for in software testers. Softw.
Qual. J. 27(4), 1449–1479 (2019). https://doi.org/10.1007/s11219-019-09462-5

https://doi.org/10.1109/MITP.2012.7
https://doi.org/10.1109/MITP.2012.7
https://doi.org/10.1007/978-981-10-5251-4_103
https://doi.org/10.1109/ICSE-Companion.2019.00105
https://doi.org/10.1109/ICSE-Companion.2019.00105
https://doi.org/10.1007/978-3-662-44857-1_11
https://doi.org/10.1007/978-3-662-44857-1_11
https://doi.org/10.1109/COMPSAC.2017.232
https://doi.org/10.1007/978-3-319-91602-6_4
https://doi.org/10.1007/978-3-319-91602-6_4
https://doi.org/10.1109/ICGSE.2019.00036
https://doi.org/10.1109/ICGSE.2019.00036
https://doi.org/10.1007/s11219-019-09462-5

The Human Factors of the Agile Software Tester 487

15. Florea, R., Stray, V.: A qualitative study of the background, skill acquisition,
and learning preferences of software testers. In: Proceedings of the Evaluation and
Assessment in Software Engineering EASE 2020, pp. 299–305. Association for Com-
puting Machinery, New York (2020). https://doi.org/10.1145/3383219.3383252

16. Garousi, V., Giray, G., Tuzun, E., Catal, C., Felderer, M.: Closing the gap between
software engineering education and industrial needs. IEEE Softw. 37, 68–77 (2019)

17. Garousi, V., Mäntylä, M.V.: A systematic literature review of literature reviews in
software testing. Inf. Softw. Technol. 80, 195–216 (2016)

18. Gren, L.: The links between agile practices, interpersonal conflict, and perceived
productivity. In: Proceedings of the 21st International Conference on Evaluation
and Assessment in Software Engineering, pp. 292–297 (2017)

19. Hernández, T.P.R.y., Marsden, N.: Understanding software testers in the automo-
tive industry a mixed-method case study. In: 2014 9th International Conference on
Software Engineering and Applications (ICSOFT-EA), pp. 305–314 (2014)

20. Itkonen, J., Mäntylä, M.V., Lassenius, C.: The role of the tester’s knowledge in
exploratory software testing. 39(5), 707–724. https://doi.org/10.1109/TSE.2012.
55

21. Kanij, T., Merkel, R., Grundy, J.: A preliminary survey of factors affecting software
testers. In: 2014 23rd Australian Software Engineering Conference, pp. 180–189
(2014). https://doi.org/10.1109/ASWEC.2014.32

22. Kanij, T., Merkel, R., Grundy, J.: An empirical investigation of personality traits of
software testers. In: 2015 IEEE/ACM 8th International Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 1–7 (2015). https://doi.org/10.
1109/CHASE.2015.7

23. Li, P.L., Ko, A.J., Begel, A.: What distinguishes great software engineers? Empir-
ical Softw. Eng. 25, 322–352 (2019)

24. Livonen, J., Mantyla, M., Itkonen, J.: Characteristics of high performing testers: a
case study. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement ESEM 2010

25. Matturro, G.: Soft skills in software engineering: a study of its demand by software
companies in uruguay. In: 2013 6th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), pp. 133–136. https://doi.org/
10.1109/CHASE.2013.6614749

26. Santos, A.M.d., Karlsson, B.F., Cavalcante, A.M., Correia, I.B., Silva, E.: Testing
in an agile product development environment: an industry experience report. In:
2011 12th Latin American Test Workshop (LATW), pp. 1–6 (2011). https://doi.
org/10.1109/LATW.2011.5985897

27. Sfetsos, P., Stamelos, I., Angelis, L., Deligiannis, I.: An experimental investigation
of personality types impact on pair effectiveness in pair programming. Empirical
Softw. Eng. 14(2), 187 (2009)

28. Shah, H., Harrold, M.J.: Studying human and social aspects of testing in a service-
based software company: case study. In: Proceedings of the 2010 ICSE Workshop
on Cooperative and Human Aspects of software Engineering, pp. 102–108 (2010)

29. Stray, V., Moe, N.B.: Understanding coordination in global software engineering:
A mixed-methods study on the use of meetings and slack. J. Syst. Softw. 1–33.
https://doi.org/10.1016/j.jss.2020.110717. (In press)

30. Yang, C., Liang, P., Avgeriou, P.: A systematic mapping study on the combination
of software architecture and agile development. J. Syst. Softw. 111, 157–184 (2016)

https://doi.org/10.1145/3383219.3383252
https://doi.org/10.1109/TSE.2012.55
https://doi.org/10.1109/TSE.2012.55
https://doi.org/10.1109/ASWEC.2014.32
https://doi.org/10.1109/CHASE.2015.7
https://doi.org/10.1109/CHASE.2015.7
https://doi.org/10.1109/CHASE.2013.6614749
https://doi.org/10.1109/CHASE.2013.6614749
https://doi.org/10.1109/LATW.2011.5985897
https://doi.org/10.1109/LATW.2011.5985897
https://doi.org/10.1016/j.jss.2020.110717

An Experience with the Application
of Three NLP Tools for the Analysis
of Natural Language Requirements

Monica Arrabito1, Alessandro Fantechi2,3(B), Stefania Gnesi3,
and Laura Semini1,3

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
monica.arrabito@hotmail.it, laura.semini@unipi.it

2 Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Florence, Italy
alessandro.fantechi@unifi.it

3 Istituto di Scienza e Tecnologie dell’Informazione “A.Faedo” Consiglio Nazionale
delle Ricerche, ISTI-CNR, Pisa, Italy

stefania.gnesi@isti.cnr.it

Abstract. We report on the experience made with three Natural Lan-
guage Processing analysis tools, aimed to compare their performance in
detecting ambiguity and under-specification in requirements documents,
and to compare them with respect to other qualities like learnability,
usability, and efficiency. Two industrial tools, Requirements Scout and
QVscribe, and an academic one, QuARS, are compared.

Keywords: Natural Language Processing · Natural language
requirements · Ambiguity

1 Introduction

Natural language (NL) is the most common way to express software requirements
even though it is intrinsically ambiguous, and ambiguity is seen as a possible
source of problems in the later interpretation of requirements. Ambiguity is one
of the most difficult defects to avoid since natural language is ambiguous by
nature and devoid of formal semantics. The lack of intrinsic formalism of the
requirements document must therefore be compensated by a detailed analysis
during the initial stages of the product life cycle in order to correctly extrapolate
all the needed information. For this reason, part of the work carried out during
the analysis phase is intended for disambiguation of the requirements.

Natural Language Processing (NLP) techniques have been used to analyse
requirement documents to single out, among other issues, ambiguity and under-
specification defects, analyzing the structure of sentences using grammatical and
lexical analysis, dictionaries and parsers for natural language [1].

Work partially funded by MIUR project PRIN 2017FTXR7S IT MaTTerS (Methods
and Tools for Trustworthy Smart Systems).

c© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 488–498, 2020.
https://doi.org/10.1007/978-3-030-58793-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_39&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_39

An Experience with the Application of Three NLP Tools 489

Recently, several tools have been developed for analyzing NL requirements
in a systematic and automatic way by means of NLP techniques with a focus on
ambiguity detection.

In this paper, we report on the experience made with thee NLP analysis
tools, aimed to compare their performance in detecting ambiguity and under-
specification, and to compare them with respect to other qualities like learnabil-
ity, usability, efficiency. Two industrial tools, Requirements Scout and QVscribe,
and an academic one, QuARS, are analysed.

2 The Scope of the Experience

The choice of the three mentioned tools can be traced back to their similarities:

– they perform an automatic detection of possible language defects that may
determine interpretation problems and affect the following development
stages;

– they highlight the word or construct that they reveal as defective;
– the detected defects may however be false positives, and a subsequent manual

analysis is needed.

The limited scope of our experience on the one hand allows us to focus on
similar tools to better highlight the differences, on the other hand it is a threat
to the validity of our results. To broaden the investigation, other requirement
analysis tools (see for instance Sect. 2.4) can be considered in a future work.

Notwithstanding its limited extension, we believe that this study can provide
some useful insights on the current state of the art of automatic detection of
ambiguity in natural language requirements.

In the following, we introduce the NLP tools we use for the comparison:
QuARS, QVscribe, and Requirements Scout.

2.1 QuARS

QuARS - Quality Analyzer for Requirement Specifications - is a tool for ana-
lyzing NL requirements in a systematic and automatic way by means of NLP
techniques with a focus on ambiguity detection [5].

QuARS performs an automatic linguistic analysis of a requirements docu-
ment in plain text format, based on a given quality model. Its output indicates
the defective requirements and highlights the words that reveal the defect.

Below, we present the indicators used by QuARS to detect defects of lexical
and syntactic ambiguity in NL sentences.

490 M. Arrabito et al.

Defect Indicators

Vagueness Dictionary: clear, easy, strong, good, bad,

adequate...

Subjectivity Dictionary: similar, have in mind, take

into account, ...

Optionality Dictionary: or, and/or, possibly,

eventually, case, if possible, if

appropriate...

Weakness Dictionary: can, could, may, . . .

Implicity Demonstrative adjectives or pronouns

Under-specification Wordings missing a qualification (e.g.:

interface or information without a

qualifier, such as user and price,

respectively)

Multiplicity Multiple syntactic constructs such as

multiple verbs or multiple subjects

The defect identification process is divided into two, independent, parts. The
first part, lexical analysis, detects candidate defective terms using a set of dictio-
naries. Lexical analysis permits to capture optionality, subjectivity, vagueness,
optionality, and weakness defects. The second part is syntactical analysis, that
captures implicity, multiplicity and under-specification defects.

Other features of QuARS are (i) metrics derivation for evaluating the quality
of NL requirements; (ii) the capability to modify existing dictionaries, and to add
new dictionaries for new indicators; (iii) view derivation, to identify and collect
together those requirements belonging to given functional and non functional
characteristics, by defining specific requirements.

2.2 QVscribe

QVscribe [6] is an industrial tool for requirements analysis for quality and consis-
tency, developed by QRA (https://qracorp.com/). QVscribe analyzes the quality
of the requirements, highlighting ambiguity, inconsistencies and possible similar-
ities, providing scores to the single requirements and to the whole document. It
generates a detailed report that can be used to increase the quality of require-
ments, reducing the review and rewriting work.

The analysis performed by QVscribe is based on part of the rules defined by
the INCOSE Guide for Writing Requirements. The defects detected by the tool
and the related indicators can be classified according to following table.

https://qracorp.com/

An Experience with the Application of Three NLP Tools 491

Defect Indicators

Imperatives Absence, negation, or multiple occurrence of imperatives

Optional escape clauses Optional terms like: possibly, may, . . .

Vague words Vague nouns and verbs as: various, completed, . . .

Cross-referencing pronouns Both, everybody, anyone, it, . . .

Non-specific temporal words Early, years ago, before, . . .

Continuances Otherwise, in particular, below, following, . . .

Superfluous infinitives Since they can hide the subject, as in: shall permit

Passive voice Since it can hide the subject, ex: based, found, shipped

Immeasurable quantification Abundant, far, always, all, . . .

Incomplete sentences Missing critical details of who must do something or what

must be done

2.3 Requirements Scout

Requirements Scout [3] is developed by Qualicen GmbH, to analyze require-
ments specifications (https://www.qualicen.de/en/). It is distributed as pluging
of NL editors, including Microsoft Word, which makes is suitable for immediate
feedback when writing requirements. Requirements Scout operates similarly to
QuARS and QVscribe, using dictionaries and syntactic rules to specify the criti-
cal words that might denote a quality smell. We list below defects and indicators.

Defect Indicators, if any, or motivation

Long&complicated sentences Which are difficult to read and prone to ambiguities

Passive voice Done, found, sent, . . . since they can hide the subject

Multiple negations Requirements must be expressed in positive terms

Universal quantifiers All, always, every, any, nothing, . . .

Imprecise phrases (vagueness) Possibly, various, current, small, general, if possible, . . .

Vague pronouns That, which, their, it, nobody, . . .

Comparatives & superlatives Faster than, fastest, bigger than, . . . they make a

requirement not understandable in isolation

Exactly one shall or should More than one occurrence of shall or should

Occurrence of will or may Weak verbs such as will, may, . . .

Wrong abstraction level To exclude implementation details

Dangerous slash “/” , that can be interpreted both as an and and an or

UI details Requirements should not contain details of the user

interface.

Cloning Since duplicates burden successive maintenance

Besides identifying the defects, it also permits to keep track of different ver-
sions of the requirements, creating a complete history of the detected defects: as
soon as the requirements are updated, the tool re-analyzes the modified parts
and shows whether the update has eliminated existing defects or has introduced
new ones.

https://www.qualicen.de/en/

492 M. Arrabito et al.

2.4 Other Tools

A recent industrial tool for assisting the analyst in the definition of NL require-
ments is ReqSuite, by OSSENO Software GmbH. Differently than the tools con-
sidered in this paper, which highlight defective words or constructs, ReqSuite
supports rigorous requirement definition by correcting the writer according to
some patterns and hence is out of the scope for our study.

Other candidate tools to experiment with are RAT (Requirements Authoring
Tool) from REUSE (https://www.reusecompany.com/) and IBM RQA (https://
www.ibm.com/products/requirements-quality-assistant), both able to detect
ambiguities, but those, for their commercial nature, were not immediately avail-
able for our study.

An alternative to the experimentation of off-the-shelf tools is the adoption
and customization of more general and flexible NLP tools, that allow to tune
the kind of detected ambiguities and other defects. GATE [2] is an example of
such tools: it collects several NLP modules and provides a means to define ad
hoc rules (JAPE rules), so to create advanced and customized NLP solutions.
As an example related to requirement analysis, in [4] GATE was used to tune
the proposed requirement analysis according to the requirement writing style
adopted by the involved company, achieving a significantly better quality of the
analysis.

3 Application of the Tools to a E-Shop Case Study

We report our observations when applying QuARS, QVscribe and Requirements
Scout to a running example, a simple E-shop (requirements in Table 1). The
tools are analysed first for their general qualities, then in their ability to support
ambiguities detection in requirements.

3.1 General Qualities Evaluation

We first address documentation, learnability, and usability. QuARS was simple
to learn and use without referring to any manual. QVscribe comes equipped
with good documentation and video tutorials and it was easy to be acquainted
with. Requirements Scout is the tool were most difficulties were encountered,
because of lack of documentation, a non intuitive interface, and a complex setup
of the user profile. To give a rough measure of learnability, we report the number
of hours of training in order to proficiently use them: 30 for QuARS, 36 for
QVscribe, 48 for Requirements Scout.

https://www.reusecompany.com/
https://www.ibm.com/products/requirements-quality-assistant
https://www.ibm.com/products/requirements-quality-assistant

An Experience with the Application of Three NLP Tools 493

Table 1. Requirements of the E-shop case study

R1 The system shall enable the user to enter the search text on the screen

R2 The system shall display all the matching products based on the search

R3 The system possibly notifies with a pop-up the user when no matching
product is found on the search

R4 The system shall allow a user to create his profile and set his credentials

R5 The system shall authenticate user credentials to enter the profile

R6 The system shall display the list of active and/or the list of completed
orders in the customer profile

R7 The system shall maintain customer email information as a required part
of customer profile

R8 The system shall send an order confirmation to the user through email

R9 The system shall allow an user to add and remove products in the
shopping cart

R10 The system shall display various shipping methods

R11 The order shall be shipped to the client address or, if the “collect
in-store” service is available, to an associated store

R12 The system shall enable the user to select the shipping method

R13 The system may display the current tracking information about the order

R14 The system shall display the available payment methods

R15 The system shall allow the user to select the payment method for order

R16 After delivery, the system may enable the users to enter their reviews or
ratings

R17 In order to publish the feedback on the purchases, the system needs to
collect both reviews and ratings

R18 The “collect in-store” service excludes the tracking information service

Efficiency was found to be an issue for Requirements Scout – to analyze
documents of 20 and 50 requirements the tool takes 1 min and 2 min respectively
– while it was not for QVscribe and QuARS: with both tools the analysis time
for the considered documents was few seconds. The problem was probably due
to the larger amount of checks performed by Requirements Scout, so it has to be
considered as an issue related to the particular usage of the tool for ambiguity
detection, rather than a generic low performance of the tool.

Extensibility is represented by the ability to add new quality indicators.
QuARS has this feature and it also permits the user to select the indicators
she wants to use for the analysis. In QVscribe, only the modification of the indi-
cators already present in the tool is permitted, by adding or removing terms
to be identified during the analysis. Requirements Scout implements indicators’
selection too, but indicators are fixed.

Report generation is possible in QuARS and QVscribe. In QuARS the report
contains, for each quality indicator, the list of requirements that present an

494 M. Arrabito et al.

ambiguity, together with the terms deemed incorrect. The report generated by
QVscribe assigns to each requirement a score ranging from 1 to 5, depending on
the gravity of the defects. Results can be filtered to focus on specific defects.

Other qualities are interoperability and version control. A particularly impor-
tant positive aspect of QVscribe is the possibility of integrating the tool as a
Word feature, so that the analysis of a document can be started by selecting
QVscribe from the Word ribbon, and selecting the requirements to be analyzed.

A version control system is offered by Requirements Scout: the tool records
the history containing the various versions of a document so that the comparison
of two versions of the same document returns the list of defects added or removed.
However the tool does not permit any editing of the document under analysis:
the user has to edit the document externally and load the new version.

3.2 Evaluation of the Ability to Detect Defects in the Requirements

We now focus on analysing the three tools from the point of view of the ability
of their indicators to detect ambiguities and under-specifications. We report in
Table 2 the raw outcomes of the analysis of the E-shop example with the three
tools, requirement by requirement: the “Indicator” column shows the words that
have been considered by each tool to indicate a certain defect (reported in the
last column). The detected defects results have then been manually analysed to
distinguish real defects from false positives. The detailed results of this analysis
are discussed in the following indicator by indicator. Table 3 cumulatively shows
the number of false positives and ambiguities, as the result of the manual analysis
of the tools’ outcome of Table 2.

For vagueness QuARS detects a defect, QVscribe and Requirements Scout
detect four defects each. The vagueness related to requirement R10, detected
both by QuARS and Requirements Scout, can be indeed classified as a real defect
(various). The same happens for the term possibly detected by Requirements
Scout in R3. All the other defects are false positives.

We note that the term possibly in QuARS and QVscribe is an indicator of
Optionality and is hence detected according to another indicator.

With respect to optionality, we refer to its meaning as in QuARS, and include
the term possibly, classified as Optional Escape Clause by QVscribe. According to
this indicator, there are four ambiguities detected by QuARS (R3, R6, R11, and
R16) and one by QVscribe (R3). Optionality is not an indicator of Requirement
Scout. The good number of defects detected by QuARS is due to fact that it is
the only tool looking for occurrences of or and of and/or.

For weakness all the tools perform the same on E-shop. Weakness is referred
to as optional escape clause in QVscribe and occurrence of will or may in
Requirement Scout. When applying the tools to other documents, we have also
observed that QuARS and QVscribe detect the weak verb can which is not
detected by Requirements Scout.

The only two defecs related to multiplicity in QuARS are indeed disjunctions
(R11, R16) that were already detected by optionality indicators.

An Experience with the Application of Three NLP Tools 495

Table 2. Results of the application of QuARS, QVscribe, and Requirements Scout to
the e-shop case study. Requirements R5, R8, and R14 contain no defect according to
all tools.

Requirement Tool Indicator Defect

R1 The system shall enable the

user to enter the search text on

the screen

QuARS Multiplicity

QVscribe Enable Vague words

Req. Scout Screen UI details

R2 The system shall display all

the matching products based on

the search

QuARS

QVscribe All Universal quantifiers

Based Passive voice

Req. Scout All Universal quantifiers

R3 The system possibly notifies

with a pop-up the user when no

matching product is found on the

search.

QuARS Possibly Optionality

Multiplicity

Possibly Optional escape clauses

When Immeasurable

quantification

QVscribe No Universal quantifiers

Found Passive voice

No imperatives

Possibly Vagueness

Req. Scout Found Passive voice

Exactly one shall or

should

R4 The system shall allow a user

to create his profile and set his

credentials

QuARS Multiplicity

QVscribe Allow Superfluous infinitives

His Cross-referencing

pronouns

Req. Scout His Vague pronouns

R6 The system shall display the

list of active and/or the list of

completed orders in the customer

profile

QuARS And/or Optionality

QVscribe

Req. Scout Completed Vagueness

And/or Dangerous slash

R7 The system shall maintain

customer email information as a

required part of customer profile

QuARS Multiplicity

QVscribe Maintain Superfluous infinitives

As Immeasurable

quantification

Req. Scout

R9 The system shall allow an

user to add and remove products

in the shopping cart

QuARS Multiplicity

QVscribe Allow Superfluous infinitives

Req. Scout

R10 The system shall display

various shipping methods

QuARS Various Vagueness

QVscribe

Req. Scout Various Vagueness

R11 The order shall be shipped

to the client address or, if the

“collect in-store” service is

available, to an associated store

QuARS Multiplicity

Or Optionality

QVscribe Shipped Passive voice

Req. Scout Shipped Passive voice

R12 The system shall enable the

user to select the shipping method

QuARS Multiplicity

QVscribe Enable Vague words

Req. Scout

(continued)

496 M. Arrabito et al.

Table 2. (continued)

Requirement Tool Indicator Defect

R13 The system may display the

current tracking information

about the order

QuARS May Weakness

May Optional escape clauses

QVscribe About Vague words

No imperatives

Current Vagueness

Req. Scout May Occurrence of will or

may

Exactly one shall or

should

R15 The system shall allow the

user to select the payment

method for order

QuARS

QVscribe Allow Superfluous infinitives

Req. Scout

R16 After delivery, the system

may enable the users to enter

their reviews or ratings

Multiplicity

QuARS Or Optionality

May Weakness

After Non-specific temporal

words

May Optional escape clauses

QVscribe Enable Vague words

Their Cross-referencing

pronouns

No imperatives

Their Vague pronouns

Req. Scout May Occurrence of will or

may

Exactly one shall or

should

R17 In order to publish the

feedback on the purchases, the

system needs to collect both

reviews and ratings

QuARS

QVscribe Both Cross-referencing

pronouns

No imperatives

Req. Scout Exactly one shall or

should

R18 The “collect in-store”

service excludes the tracking

information service

QuARS

QVscribe No imperatives

Req. Scout Exactly one shall or

should

Looking at Table 3, we notice that the absence of imperatives is a main ambi-
guity indicator. This is an indicator considered by QVScribe (no imperatives)
and in Requirement Scout (exactly one shall or should), but not by QuARS.
However, we can notice that the requirements lacking an imperative and being
defective (R3, R13, R16) are those containing terms such as if possible, or
weak verbs such as may or can. QuARS captures them with other indicators,
namely optionality, weakness and cross-tree constraints indicators.

An Experience with the Application of Three NLP Tools 497

Table 3. Summary of ambiguity detection (n.a. means not applicable)

E-shop QuARS Qvscribe
Requirements
Scout

F.Pos. Amb. F.Pos. Amb. F.Pos. Amb.

Vagueness - 1 4 - 2 2

Optionality - 4 - 1 n.a.

Weakness - 2 - 2 - 2

Multiplicity 6 2 n.a. n.a.

Under-Specificaiton - - n.a. n.a.

Imperatives n.a. 2 3 2 3

Vague Pronouns n.a. 1 2 - 2

Passive voices n.a. 1 2 - 2

Immeasurable quantification n.a. 2 2 1 -

Superflous infinitives n.a. 4 - n.a.

Incomplete sentences n.a. - - n.a.

Long/complicated sentences n.a. n.a. - -

Multiple negations n.a. n.a. - -

Comparatives, superlatives n.a. n.a. - -

Wrong abstraction level n.a. n.a. - -

Dangerous slash n.a. n.a. - 1

UI details n.a. n.a. 1 -

4 Conclusions

The three tools examined have shown to be comparable in all the considered
dimensions. They apparently use different indicators but in the end (e.g. weak
verbs vs no imperatives) they find roughly the same defects. Best performances
are obtained with best dictionaries, which means that there is room for lowering
the false negative rate with better dictionaries: to this end the extensibility
features of QuARS, permitting to add and modify dictionaries and of QVscribe
that permits to modify the built-in dictionaries are suited and helpful.

There are some differences when considering other quality aspects, and the
outcome of the comparison can help the vendors to refactor their tool and beat
the competitors. However, in the end, they all share a similar defect detecting
strategy, and from this respect younger tools (QVscribe and Requirements Scout)
do not perform better than QuARS developed 20 years before.

References

1. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of confor-
mance to requirements templates using natural language processing. IEEE Trans.
on Softw. Eng. 41(10), 944–968 (2015)

498 M. Arrabito et al.

2. Cunningham, H.: Gate, a general architecture for text engineering. Comput.
Humanit. 36(2), 223–254 (2002)

3. Femmer, H.: Requirements quality defect detection with the Qualicen requirements
Scout. In: Joint Proceedings of 23rd International Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ 2018). CEUR Workshop
Proceedings, vol. 2075. CEUR-WS.org (2018)

4. Ferrari, A., Gori, G., Rosadini, B., Trotta, I., Bacherini, S., Fantechi, A., Gnesi, S.:
Detecting requirements defects with NLP patterns: an industrial experience in the
railway domain. Empirical Softw. Eng. 23(6), 3684–3733 (2018). https://doi.org/
10.1007/s10664-018-9596-7

5. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. Comput. Syst. Sci. Eng. 20(1), 1–17 (2005)

6. Kenney, O., Cooper, M.: Automating requirement quality standards with QVscribe.
In: Joint Proceedings of the 26th International Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ 2020). CEUR Workshop Pro-
ceedings, vol. 2584. CEUR-WS.org (2020)

https://doi.org/10.1007/s10664-018-9596-7
https://doi.org/10.1007/s10664-018-9596-7

Author Index

Ampatzoglou, Apostolos 53, 68
Aoyama, Mikio 17
Ardila, Julieth Patricia Castellanos 211
Arrabito, Monica 488
Arvanitou, Elvira-Maria 53
Arzoky, Mahir 83
Avgeriou, Paris 68

Bakhteev, Dmitry V. 41
Baouya, Abdelhakim 399
Barsocchi, Paolo 358
Bensalem, Saddek 399
Bergel, Alexandre 93
Bezerra, Carlos Magnum M. 343
Blanco, Miguel Ángel 274
Bowes, David 135
Bozga, Marius 399
Bragagnolo, Santiago 107
Bravo-Santos, Sergio 426
Bregu, Antonela 211

Calabrò, Antonello 358
Casola, Valentina 317
Castellanos Ardila, Julieth Patricia 169
Catillo, Marta 303
Chatzigeorgiou, Alexander 53, 68
Chehida, Salim 399
Counsell, Steve 83
Crivello, Antonino 358
Cuppens, Frédéric 332
Cuppens-Boulahia, Nora 332

da Cunha, Adilson Marques 238
da Silva, Alberto Rodrigues 412, 459
Daoudagh, Said 358
De Benedictis, Alessandra 317
de Lara, Juan 426
de Oliveira, Daniel 449
Dernaika, Farah 332
Derras, Mustapha 107
Destefanis, Giuseppe 83

Dias, Luiz Alberto Vieira 238
Digkas, Georgios 68
Ducasse, Stephane 93

Etien, Anne 107
Eveillard, Mathieu 93

Fantechi, Alessandro 488
Fischer, Rudolf 3
Florea, Raluca 474
Furfari, Francesco 358

Gallego, Micael 439
Gallina, Barbara 169, 211
Gamito, Ivo 459
Ganz, Walter 3
García, Felix 199
García-Barriocanal, Elena 292
Gasiba, Tiago 223
Gasparaite, Monika 184
Girolami, Michele 358
Gnesi, Stefania 488
Gonçalves, Marco 369
Gortázar, Francisco 439
Guerra, Esther 426

Hall, Tracy 135
Heidrich, Jens 17
Heikkinen, Sanna 155
Hernández González, Guillermo José 284

Jäntti, Marko 155
Jiménez-Navajas, Luis 249
Joeckel, Lisa 17

Lavazza, Luigi 144
Lechner, Ulrike 223
Leotta, Maurizio 383
Licorish, Sherlock A. 120
Lopes, Bruno 449

Maes-Bermejo, Michel 439
Malgaonkar, Saurabh 120
Marchetti, Eda 358
Marinho, Marcelo L. M. 343
Marques, Johnny Cardoso 238
Miranda, João 412
Mora-Cantallops, Marçal 292
Morasca, Sandro 144
Murina, Ezequiel 263

Nakamichi, Koji 17
Namba, Isao 17
Naudziunaite, Kristina 184
Neuhüttler, Jens 3

Ohashi, Kyoko 17
Olianas, Dario 383

Paiva, Ana C. R. 369, 412
Paradela, Claudio Andrés 284
Paruch, Lucas 474
Pecchia, Antonio 303
Pedreira, Oscar 199
Pérez-Castillo, Ricardo 249
Petrić, Jean 135
Petrova-Antonova, Dessislava 32
Piattini, Mario 199, 249, 274
Pinto-Albuquerque, Maria 223
Pulla, Aleksandër 211

Ragaisis, Saulius 184
Rak, Massimiliano 317

Raynaud, Olivier 332
Ricca, Filippo 383

Salzillo, Giovanni 317
Sampaio, Suzana C. B. 343
Sánchez-Alonso, Salvador 292
Sanjurjo, Eduardo 199
Saranto, Kaija 155
Savarimuthu, Bastin Tony Roy 120
Semini, Laura 488
Seriai, Abderrahmane 107
Sicilia, Miguel-Angel 292
Siebert, Julien 17
Soto-Sánchez, Óscar 439
Stray, Viktoria 474
Sudarikov, Roman 41
Swift, Steve 83

Tancheva, Rumyana 32
Tosi, Davide 144
Tsintzira, Angeliki-Agathi 53

Urmetzer, Florian 3

Verhaeghe, Benoît 107
Villano, Umberto 303

Yamamoto, Rieko 17

Zaitsev, Oleksandr 93
Zouitni, Alae 223

500 Author Index

	Preface
	Technical Papers Summary
	Invited Talks
	SEDES Doctoral Symposium

	Acknowledgments
	Organization
	Contents
	Quality Aspects in Machine Learning, AI and Data Analytics
	Perceived Quality of Artificial Intelligence in Smart Service Systems: A Structured Approach
	1 Introduction
	2 AI-Based Smart Service Systems
	2.1 Characterization of Smart Service Systems
	2.2 Artificial Intelligence in Smart Service Systems

	3 Quality Aspects for Smart Service Systems
	3.1 Relevance and Requirements
	3.2 Existing Quality Concepts in the Context of Smart Service Systems
	3.3 Assessment of Existing Approaches

	4 Integrative Conceptual Framework for Quality Assessment of AI-Based Smart Service Systems
	4.1 Structure of the Integrative Conceptual Framework
	4.2 Quality Aspects for AI-Based Smart Service Systems

	5 Summary and Outlook
	References

	Towards Guidelines for Assessing Qualities of Machine Learning Systems
	1 Introduction
	2 Related Work
	3 Views on ML Systems
	4 Quality Modeling for ML Systems
	5 Discussion
	6 Lessons Learned and Conclusions
	References

	Data Cleaning: A Case Study with OpenRefine and Trifacta Wrangler
	1 Introduction
	2 Data Quality and Cleaning
	3 Case Study
	3.1 Data Cleaning with OpenRefine
	3.2 Data Cleaning with Trifacta Wrangler

	4 Result Analysis
	5 Conclusions
	References

	NSP Dataset and Offline Signature Verification
	1 Introduction
	2 Related Works
	3 NSP Dataset Collection
	4 Types of Signatures
	5 Experiments
	5.1 Experiment Results

	6 Conclusion/Discussion
	References

	Evidence-Based Software Quality Engineering
	Applying Machine Learning in Technical Debt Management: Future Opportunities and Challenges
	1 Introduction
	2 Related Work and Background Information
	3 Study Design
	4 Results
	5 TDM Through Machine Learning
	6 Threats to Validity
	7 Discussion/Conclusions
	References

	On the Temporality of Introducing Code Technical Debt
	1 Introduction
	2 Related Work
	3 Background Information
	3.1 Identifying New TD Items Along Evolution
	3.2 Fluctuation of Software Metrics

	4 Case Study Design
	4.1 Research Questions
	4.2 Cases and Units of Analysis
	4.3 Data Collection
	4.4 Data Analysis

	5 Results
	5.1 Fluctuation Analysis (RQ1)
	5.2 Correlation Analysis: Fluctuation vs. Activity (RQ2)

	6 Discussion
	6.1 Interpretation of Results
	6.2 Implications to Researchers and Practitioners

	7 Threats to Validity
	8 Conclusions
	References

	Is Complexity of Re-test a Reason Why Some Refactorings Are Buggy? an Empirical Perspective
	1 Introduction
	2 Preliminaries
	2.1 Taxonomy of van Deursen and Moonen
	2.2 Systems Analysed
	2.3 V&M Decomposition

	3 Data Analysis
	3.1 Buggy Classes
	3.2 Non-buggy Classes

	4 Discussion
	5 Conclusions and Future Work
	References

	Human and Artificial Intelligences for Software Evolution
	Suggesting Descriptive Method Names: An Exploratory Study of Two Machine Learning Approaches
	1 Introduction
	2 Two Approaches for Text Summarization
	2.1 Extractive Model: TF-IDF with N-Grams
	2.2 Abstractive Model: Sequence to Sequence Neural Network

	3 Applying the Learning Models to Source Code
	3.1 Pharo Language Specificities
	3.2 Data Preparation: Extracting Words from Source Code
	3.3 Data Preparation: Filtering the Dataset
	3.4 Finetuning the Models

	4 Experiment Setup
	4.1 Quality Metrics
	4.2 Random Baseline

	5 Results
	5.1 Evaluation Results

	6 Related Work
	7 Conclusion
	References

	Challenges for Layout Validation: Lessons Learned
	1 Introduction
	2 UI Validation
	2.1 Current Migration Validation Approach
	2.2 Layout Validation

	3 State of the Art
	3.1 Applications Comparison
	3.2 Images Comparison

	4 First Sketch of Solution
	5 Challenges of Layout Validation
	5.1 Structural Layout Elements
	5.2 Ajax-Based Architecture
	5.3 Successive Shifting
	5.4 Dynamic Content
	5.5 Interactive Widget
	5.6 Overlap

	6 Validation Helping Feature
	6.1 Block Identification
	6.2 Traceability
	6.3 Block Relationship

	7 Conclusion and Future Work
	References

	Towards Automated Taxonomy Generation for Grouping App Reviews: A Preliminary Empirical Study
	1 Introduction
	2 Research Gaps and Related Studies
	3 Automatically Generating Taxonomy (RQ1)
	3.1 Feature Engineering
	3.2 Semantic Similarity Methods
	3.3 Pareto Distribution Law
	3.4 Keyword Lookup Grouping Mechanism

	4 Experimental Setup and Evaluation
	4.1 Dataset
	4.2 Text Pre-processing
	4.3 Evaluation of COALS, PPMI and GloVe
	4.4 Evaluation of Generated Taxonomy

	5 Results and Generated Taxonomy Validity (RQ2)
	5.1 COALS, PPMI and GloVe
	5.2 Generated Taxonomy Validity

	6 Discussion and Implications
	7 Threats to Validity
	8 Conclusion and Future Work
	References

	Zones of Pain: Visualising the Relationship Between Software Architecture and Defects
	1 Introduction
	2 Background
	3 Methodology
	3.1 Architectural Metrics
	3.2 Experiment

	4 Results and Analysis
	5 Conclusions
	References

	An Empirical Study on the Persistence of SpotBugs Issues in Open-Source Software Evolution
	1 Introduction
	2 SpotBugs
	3 The Empirical Study
	4 Discussion
	5 Related Work
	6 Conclusions
	References

	Process Modeling, Improvement and Assessment
	Applying Continual Service Improvement Practices to Study Quality of Healthcare Information System Services: A Case Study
	1 Introduction
	2 Research Methods
	2.1 Case Organization
	2.2 Data Collection Methods
	2.3 Data Analysis Methods

	3 Results
	3.1 How Service-Related Improvements Are Managed in Enterprise Resource Planning (ERP) Software?
	3.2 How CSI Model Can Be Applied to IT Services on the Healthcare Domain
	3.3 How CSI Is Operated in Multiactor Network?

	4 Analysis
	5 Conclusions
	References

	A Personal Opinion Survey on Process Compliance Checking in the Safety Context
	1 Introduction
	2 Background
	2.1 Facilitating Automated Process Compliance Checking
	2.2 Personal Opinion Surveys
	2.3 Technology Acceptance Model

	3 Research Method
	3.1 Research Questions
	3.2 Survey Design
	3.3 Instrument Evaluation and Data Collection
	3.4 Subject Characteristics and Data Analysis
	3.5 Survey Validity

	4 Survey Results
	4.1 Current Practices (RQ1)
	4.2 Challenges (RQ2)
	4.3 Automatic Process Compliance Checking (RQ3)

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	Systematic Literature Review of DevOps Models
	1 Introduction
	2 Related Work and Research Methodology
	3 Planning
	3.1 Research Questions
	3.2 Data Sources
	3.3 Inclusion and Exclusion Criteria
	3.4 Quality Criteria
	3.5 Search Terms

	4 Conducting the Review
	5 Analysis
	5.1 Quality Assessment
	5.2 Answers to Research Questions

	6 Limitations
	7 Conclusions
	References

	Measuring the Maturity of BizDevOps
	1 Introduction
	2 Related Work
	3 A Maturity Model for BizDevOps
	4 A Case Study on Assessing the Maturity of BizDevOps
	4.1 Background
	4.2 Design
	4.3 Field Procedure and Data Collection
	4.4 Intervention
	4.5 Analysis of the Results and Lessons Learned from the Case Study

	5 Conclusions
	References

	Process Compliance Re-Certification Efficiency Enabled by EPF-C BVR-T: A Case Study
	1 Introduction
	2 EPF-C BVR-T
	3 ISO 14971 and Its Evolution
	4 Case Study Design and Execution
	4.1 Case Study Design: Objective and Selection
	4.2 Case Study Execution and Results

	5 Case Study Analysis
	6 Related Work
	7 Conclusion and Future Work
	References

	Software Quality Education and Training
	Design of Secure Coding Challenges for Cybersecurity Education in the Industry
	1 Introduction
	2 Related Work
	3 Approach to Challenge Design
	3.1 Preliminary Design
	3.2 Survey Preparation
	3.3 Interviews
	3.4 Analysis
	3.5 Adaptation and Final Design

	4 Analysis and Results
	4.1 Preliminary Design
	4.2 Pre-survey Results
	4.3 Post-survey Results
	4.4 Final Challenge Structure
	4.5 Final Challenge Types
	4.6 Observations
	4.7 Threats to Validity

	5 Conclusions
	References

	Q-Scrum: A Framework for Quality in Safety-Critical Development
	1 Introduction
	2 Q-Scrum Framework
	2.1 Sprints
	2.2 User Stories and Model-Based Development
	2.3 Walk-Throughs and Audits

	3 Projects Using Q-SCRUM
	4 Conclusion
	References

	Quality Aspects in Quantum Computing
	Reverse Engineering of Quantum Programs Toward KDM Models
	1 Introduction
	2 State of the Art
	2.1 Quantum Computing
	2.2 Traditional Reengineering

	3 Quantum Software Reengineering
	4 Reverse Engineering of Q# Programs
	4.1 Q# Parser
	4.2 KDM Generator

	5 Supporting Tool
	6 Conclusions and Future Work
	References

	Math and Physics Tools for Quality Quantum Programming
	1 Introduction
	1.1 Quantum Computing Race
	1.2 Quantum (il)Literacy. The State of Art
	1.3 Forward a Quantum Literacy for Software Engineering: Math and Physics

	2 The Origin of Quantum Theory: A “Quantum”
	3 Physics Fundamentals of Quantum Computing and Quantum Programming
	3.1 Qubits
	3.2 Superposition
	3.3 Entanglement
	3.4 The Wave Function Collapse and the Inspection of a Quantum Variable
	3.5 No-Copying Quantum Information
	3.6 Quantum Algorithms
	3.7 Quantum Programming Language and the Execution of a Quantum Code

	4 Math Tools for Quantum Programming
	5 Foundations of Quantum Science for Quality Quantum Programming
	5.1 Assuring the Quality of Quantum Professionals
	5.2 Foundations of Quantum Science for Quantum Programming Profile

	6 Conclusions
	References

	Adapting COBIT for Quantum Computing Governance
	1 Introduction
	2 COBIT 2019
	3 Toward a Framework for the Government of Quantum Technology
	3.1 Adapting Objectives of Domain Evaluate, Direct and Monitor
	3.2 Adapting Objectives of Domain Align, Plan and Organize
	3.3 Domain Build, Acquire and Implement
	3.4 Domain Deliver, Service and Support
	3.5 Domain Monitor, Evaluate and Assess

	4 Conclusions and Future Work
	References

	Quantum Agile Development Framework
	1 Historical Context of Project Management and Development Frameworks
	2 Current Situation
	3 Current Situation Current Evolution
	4 Status of Quantum Software Development Projects
	5 Reference Framework
	6 Some of the Required Adaptations
	7 Agile
	8 Classic-Quantum Projects
	9 Hybrid Lifecycles
	10 Inception Phases
	11 Risk Management
	12 Roles
	13 Final Conclusion
	References

	On the Source Code Structure of Quantum Code: Insights from Q# and QDK
	1 Introduction
	2 Background
	3 Results and Discussion
	3.1 Primitive Usage
	3.2 Dependency Structure

	4 Conclusions and Outlook
	References

	Safety, Security and Privacy
	Towards a Framework for Improving Experiments on DoS Attacks
	1 Introduction
	2 Related Work
	3 Preliminary Replay Tool
	3.1 Background and Approach
	3.2 Implementation

	4 Proposed Framework
	4.1 Nodes and Usage Modes
	4.2 Configurations and Evaluation Metrics

	5 Experimental Results
	5.1 Replay of a Controlled DoS
	5.2 Replay of a Third-Party DoS

	6 Conclusions
	References

	A Cloud SecDevOps Methodology: From Design to Testing
	1 Introduction
	2 An Innovative Security DevOps Methodology
	3 Automating the Security Testing Phase
	4 A Case Study
	5 Related Work
	6 Conclusions and Future Work
	References

	Accountability in the A Posteriori Access Control: A Requirement and a Mechanism
	1 Introduction
	2 Accountability in the A Posteriori Access Control
	2.1 Accountability as Requirement
	2.2 Accountability as a Mechanism

	3 Related Work
	4 Conclusion and Future Work
	References

	Secure Agile Software Development: Policies and Practices for Agile Teams
	1 Introduction
	2 Theoretical Background
	2.1 Agile Methodologies
	2.2 Secure Software Development
	2.3 Related Works

	3 Methodological Approach
	3.1 Literature Review
	3.2 Practices Prioritisation and Workshop with Specialists
	3.3 Policy Evaluation

	4 Security Policies for Agile Teams
	4.1 Security Readiness Policy
	4.2 Security Requirements Policy
	4.3 Security Design and Planning Policy
	4.4 Security Implementation Policy
	4.5 Security Testing Policy

	5 Evaluation and Discussion
	6 Final Considerations
	References

	A Privacy-By-Design Architecture for Indoor Localization Systems
	1 Introduction
	2 Background and Related Work
	3 A Privacy-By-Design Solution
	4 Proximity Marketing: An Application Example
	5 Conclusions and Future Work
	References

	ICT Verification and Validation
	Reverse Engineering of Android Applications: REiMPAcT
	1 Introduction
	2 State of the Art
	3 Motivational Example
	4 iMPAcT Tool
	5 Reverse Engineering Tool: REiMPAcT
	6 Case Study
	6.1 Selection of the Android Mobile Applications
	6.2 REiMPAcT Tool Execution over Apps Selected
	6.3 Percentage of Activities Explored

	7 Threats to Validity
	8 Conclusions
	References

	An Approach and a Prototype Tool for Generating Executable IoT System Test Cases
	1 Introduction
	2 Case Study: Diabetes Mobile Health IoT System
	3 Overview of the Approach
	4 Input Data Preparation
	4.1 Model Design of the System Under Test
	4.2 Wrapper and Mock Classes Implementation
	4.3 Configuration Files Definition/Generation

	5 Test Scripts Generation
	5.1 Test Paths Building
	5.2 Paths' Executability Handling
	5.3 Test Scripts Building

	6 Empirical Study
	6.1 Validation Framework
	6.2 Results

	7 Conclusions and Future Work
	References

	Applied Statistical Model Checking for a Sensor Behavior Analysis
	1 Introduction
	2 Sensor Behavior Model
	2.1 Data Preprocessing
	2.2 Specification of Sensor Model

	3 Analysis of Sensor Behavior
	3.1 Quantitative Analysis
	3.2 Qualitative Analysis

	4 Related Work
	5 Conclusion
	References

	Preliminary Experiences in Requirements-Based Security Testing
	1 Introduction
	2 Proposed Testing Process
	2.1 Suported Tools: ITLingo Studio and Robot Framework
	2.2 The Process

	3 Security Testing Based on RSL
	3.1 First Experiments
	3.2 Second Experiments

	4 Related Work
	4.1 Test Cases Generation

	5 Conclusion
	References

	Testing Chatbots with Charm
	1 Introduction
	2 Background on Chatbots and Their Testing
	2.1 What's in a Chatbot
	2.2 Testing Chatbots with Botium

	3 Test Synthesis
	3.1 Convo Generation
	3.2 Utterance Generation

	4 Testing Methodology and Tool Support
	4.1 Testing Process
	4.2 Tool Support

	5 Evaluation
	5.1 Experiment Set-Up
	5.2 Experiment Execution
	5.3 Discussion

	6 Related Work
	7 Conclusions and Future Work
	References

	A Dataset of Regressions in Web Applications Detected by End-to-End Tests
	1 Introduction
	2 Related Work
	3 Generation of the Regression Bugs
	3.1 Methodology
	3.2 Characteristics

	4 Dataset of Regression Bugs
	4.1 Subject Applications
	4.2 Dataset Contents
	4.3 Applications for End-to-End Bugs in Software Research
	4.4 Limitations and Threats to Validity

	5 Conclusions and Future Work
	References

	Towards Failure Prediction in Scientific Workflows Using Stochastic Petri Nets and Dynamic Logic
	1 Introduction
	2 The DS3 Logic
	3 System Design
	4 Experimental Evaluation
	4.1 The Montage Workflow as a Stochastic Petri Net
	4.2 Results and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	RE, MDD and Agile
	From Rigorous Requirements and User Interfaces Specifications into Software Business Applications
	1 Introduction
	2 Background
	2.1 RSL
	2.2 IFML

	3 ASL Language
	3.1 Data Entities
	3.2 Use Cases
	3.3 User Interface Elements

	4 The ASL-Based Approach
	4.1 Model-to-Model Transformation
	4.2 Model-to-Code Transformation
	4.3 Actors and Permissions

	5 Related Work
	6 Conclusion
	References

	The Human Factors of the Agile Software Tester
	1 Introduction
	2 Background
	2.1 The Agile Software Tester

	3 Research Method
	4 Results
	4.1 Able to See the Whole Picture
	4.2 Detail-Oriented
	4.3 Good Communication Skills
	4.4 Structured
	4.5 Creative
	4.6 Adaptable

	5 Discussion
	5.1 Implications for Practice
	5.2 Limitations

	6 Conclusion and Future Work
	References

	An Experience with the Application of Three NLP Tools for the Analysis of Natural Language Requirements
	1 Introduction
	2 The Scope of the Experience
	2.1 QuARS
	2.2 QVscribe
	2.3 Requirements Scout
	2.4 Other Tools

	3 Application of the Tools to a E-Shop Case Study
	3.1 General Qualities Evaluation
	3.2 Evaluation of the Ability to Detect Defects in the Requirements

	4 Conclusions
	References

	Author Index

