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Abstract. Blockchain has evolved into a platform for decentralized
applications, with beneficial properties like high integrity, transparency,
and resilience against censorship and tampering. However, blockchains
are closed-world systems which do not have access to external state. To
overcome this limitation, oracles have been introduced in various forms
and for different purposes. However so far common oracle best prac-
tices have not been dissected, classified, and studied in their fundamen-
tal aspects. In this paper, we address this gap by studying foundational
blockchain oracle patterns in two foundational dimensions characteris-
ing the oracles: (i) the data flow direction, i.e., inbound and outbound
data flow, from the viewpoint of the blockchain; and (ii) the initiator
of the data flow, i.e., whether it is push or pull-based communication.
We provide a structured description of the four patterns in detail, and
discuss an implementation of these patterns based on use cases. On this
basis we conduct a quantitative analysis, which results in the insight that
the four different patterns are characterized by distinct performance and
costs profiles.
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1 Introduction

Conceptually, a blockchain is an append-only store for transactions, which is dis-
tributed across many machines and structured into a linked list of blocks [26].
Based on its decentralized nature, structure, and use of cryptographic protocols,
blockchain technology provides a modern platform for distributed applications
with properties like high integrity, transparency, and resilience against censor-
ship and tampering. This creates, among others, new opportunities and chal-
lenges for inter-organizational business processes [16]. These inherent properties
make blockchain technology a good fit for use cases where data integrity is of
crucial importance, e.g. clinical trials [12,22], food security [3], or financial risk
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Table 1. An overview of the four oracle types.

Pull Push

Inbound
The on-chain component requests the off-chain state

from an off-chain component

The off-chain component sends the off-chain state

to the on-chain component

Outbound
The off-chain component retrieves the on-chain state

from an on-chain component

The on-chain component sends the off-chain state

to an off-chain component

when dealing with business partners [26, Ch. 12]. Consequently, organizations
realize efficiency and effectiveness gains with blockchain technology as business
processes can have a higher degree of automation, e.g., by running business pro-
cesses on the blockchain [21] or by automating information exchange between
mutually untrusting parties. Many such applications are made possible by a
feature of second-generation blockchains, smart contracts, which “are programs
deployed as data in the blockchain ledger, and executed in transactions on the
blockchain” [26]. With smart contracts, blockchains become decentralized, neu-
tral execution platforms for user code.

Regardless of the generation, blockchains are closed-world systems: from
inside, one can only access data that is on the blockchain already. Oracles have
been proposed to mitigate that limitation. In the context of blockchains, an
oracle is a component that can transfer data between the outside world and
the blockchain. However, the implementation of oracles provides considerable
conceptual challenges as they can be regarded as a centralized point of failure
or may introduce security and trust concerns [16]. Consequently, much of the
research regarding oracles focuses on how to address these security and trust
concerns, e.g., by using multiple independent oracle instances to form a decen-
tralized oracle [25], extending trust properties to off-chain computation [10],
or strengthening trust in incoming data [13]. However, foundational aspects of
blockchain oracles that allow for their categorization and abstraction have not
been subject to close investigation yet.

In this paper, we address this gap by examining two core dimensions of
oracles: (i) the direction, i.e., whether the data flow is inbound or outbound from
the viewpoint of the blockchain; and (ii) the initiator of the data flow, i.e.,
whether it is push or pull -based communication. There are four combinations
of these options, an overview of which is shown in Table 1. We describe each
of these as a pattern, and examine its characteristics. Note that, on this level,
the four patterns can be implemented without relying on smart contracts, i.e.,
even on first-generation blockchains like Bitcoin. Each of the patterns can also
be suitably combined with other, higher-level patterns from the literature, like
decentralization or provable computation.

To characterise the different patterns, we implemented them in the context
of two use cases, and use these implementations for the purpose of obtaining
measurements. To this end, the implementations are based on Ethereum, and
we sent over 2,500 transactions to the Ethereum test network to obtain concrete
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data. This allows us to quantitatively study the characteristic differences between
the four oracle patterns. In particular, we focus on time (latency) and cost.

The remainder of the paper is structured as follows. Section 2 introduces
background literature and related work. The patterns are described and con-
trasted in Sect. 3. The use cases for the implementation are described in Sect. 4.
On the basis of the implementation, we analyze the four patterns with respect
to time and costs in Sect. 5.1 Next, we discuss our results and threats to validity
in Sect. 6. Finally, the paper concludes in Sect. 7.

2 Background and State of the Art

In a significant number of times, applications built on blockchain infrastructure
require data from real world states and events [4,9]. Examples include finan-
cial data, weather-related information, random number generations or arbitrary
data from off-chain devices and web services accessible via Application Program-
ming Interfaces (APIs). Blockchain oracles provide a way to interact with the
off-chain world [26]. Oracles can be implemented as software (interacting with
online sources) or hardware (interacting with the physical world), human (inter-
acting with individuals) or computation-based oracles (performing off-chain cal-
culations), single-source (centralized) or consensus-based oracles (decentralized,
using a multitude of sources) [4]. In this paper, we abstract from the way in
which oracles are implemented and focus on the foundational patterns they real-
ize. Next, we discuss the basic notions behind blockchains and elaborate on
state-of-the-art solutions adopted thus far for the realization of oracles.

Blockchain. At the core of a blockchain lies the transaction, that is, the trans-
fer of value between accounts. Transactions are temporally ordered and stored
in a sequential structure named ledger. Every participating full node in the
blockchain network keeps a local copy of the ledger. Updates in the network
are communicated via blocks, each collating the transactions to be appended to
the ledger. To generate and broadcast new blocks, the so-called mining nodes
can be required to prove their trustworthiness, e.g., by solving computationally
hard problems (Proof of Work). A consensus algorithm allows for the even-
tual consistency of the distributed ledger. Every block is linked to the previous
one via hashing, thus forming a chain – hence the name, blockchain. Smart
contracts turn blockchains such as Ethereum [23], Hyperledger Fabric [7] and
Algorand [5] into programmable infrastructures. Developers can encode smart
contracts with a programming language and compile them to bytecode. Upon
deployment, smart contracts are associated with a unique address. They are
executed and saved across all connected nodes of the network. The invocations
have a computation price expressed in terms of gas. In order to store information,
e.g., on the Ethereum blockchain, it can be placed into a transaction payload and
possibly added to the contract storage, contract logs, or kept in the transaction

1 The source code can be found at https://github.com/MacOS/blockchain-oracles-
data-collection.

https://github.com/MacOS/blockchain-oracles-data-collection.
https://github.com/MacOS/blockchain-oracles-data-collection.
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payload [24]. After the transaction is included into a block, the information is
publicly accessible within the network.

Blockchain Oracles. A plethora of commercial and open-source tools have
emerged that implement inbound oracles. Orisi2 is a solution for a distributed
set of inbound oracles for Bitcoin, which are executed by independent and trust-
worthy third parties. The majority of all oracles has to agree on the outcome
from external data. To fulfill this purpose, money from senders and receivers is
parked into a multiple-signature address, including their signatures as well as the
signature address of the majority of the oracles result. In our framework, Orisi is
categorized as a pull-based inbound oracle. Oraclize, recently rebranded as Prov-
able Things (see Footnote 2) is a popular service for inbound oracles that works
with multiple smart-contract-enabled blockchain platforms. The service acts like
a trusted intermediary between blockchains and a variety of independent data
sources. It also provides a mechanism to mitigate corrupt oracles [17]. Its Prov-
able Engine executes a set of instructions to react as certain conditions are met,
thus making it classifiable both as a push-based and a pull-based inbound ora-
cle. Other services which are natively classifiable as pull-based follow. In the
Ethereum-specific TinyOracle (see Footnote 2) an intermediary contract acts
as a receiver for the actual contract and simultaneously emits an event to the
subscribing RPC client. The lookup contract stores both query and respondent
addresses, while the sample client contract calls the oracle service of TinyOracle.
Reality Keys provides a combination of both automated and human-driven pull-
based inbound oracles [17]. ChainLink (see Footnote 2) offers a general-purpose
framework for building decentralized inbound oracles, providing decentraliza-
tion on both oracle and data-source levels. A Chainlink node can have multiple
external adapters for different data sources. Witnet [18] provides a decentral-
ized oracle network protocol based on Ethereum. It also enables miners to earn
tokens. An Ethereum bridge is implemented, providing Witnet nodes to run
Ethereum nodes with the option to operate with Ether and make contract calls.

Blockchain inbound oracles have also been considered in a number of research
works. Xu et al. [24] introduce the concept of validation oracles, namely trusted
third-party operators (either automatic or human) that act as inbound ora-
cles. The authors distinguish between internal ones, periodically transmitting
external verified data to the blockchain, and external ones, operating as trusted
external validators of transactions based on information that is external to the
blockchain. According to our scheme, we see that the former is push-based
and the latter is pull-based. Adler et al. [2] introduce a decentralized pull-
based inbound oracle service. The implementation provides a voting game, which
decides the truth or inaccuracy of propositions. Players can be voters or certi-
fiers. While certifiers play a role in cases with the requirement for high accuracy,
voters are utilized for low-risk/low-reward roles. Due to the random selections
of propositions, a level of security is provided against manipulation. We remark

2 Orisi: https://orisi.org/. Provable Things: https://provable.xyz. TinyOracle:
https://github.com/axic/tinyoracle. ChainLink: https://chain.link/. All links
accessed on June 7, 2020.

https://orisi.org/
https://provable.xyz
https://github.com/axic/tinyoracle
https://chain.link/


Foundational Blockchain Oracle Patterns 39

that the successful implementation of random generators is also part of the real-
ization of oracles. Zhang et al. [27] present Town Crier, a push-based inbound
oracle that acts like a data-feed system connecting a blockchain with a back-end
that scrapes HTTPS websites.

We can observe that, thus far, the vast majority of the efforts has been
devoted to the design and implementation of inbound oracles. Indeed, a recent
technical report of ISO/TC 307 describes oracles for their sole task of providing
off-chain information to the blockchain [14]. In this paper, however, we also inves-
tigate and specify the patterns behind the opposite information flow, namely that
of outbound oracles, also known as reverse oracles [25].

3 Patterns

In this section, we describe in detail basic oracle patterns resulting from the
partitioning of the direction (inbound/outbound) and initiation of data flow
(pull/push) between on-chain and off-chain components. Figure 1 shows the data
flow along the fundamental dimensions outlined above. When applying this par-
titioning, a basic distinction can be made between inbound oracles and outbound
oracles, each of which can be further refined according to data pull and push
strategies.

Before discussing each pattern in more detail, we first give a general overview
of the patterns and their respective conceptual structural components (also
called “pattern participant”) in Fig. 2. The blockchain is considered to be part
of a larger software system, with software components being located on and
off-chain. In such an environment, it is often necessary to be able to communi-
cate across system boundaries in both directions to exchange information. For
example, components on the blockchain (such as smart contracts) may require
knowledge from software components outside the blockchain, and vice versa.
The outside world requires knowledge from the blockchain, too. Regarding the
terminology used throughout this paper, note that the term “event” in relation
to the blockchain refers to any activity that can take place on the blockchain
(e.g., data is persisted, a transaction occurs, a block is added, etc.).

On-
chain

Off-
chain

pull
push

push
pull

Pull strategy
Data flow

Inbound

Outbound

1. Pull-based Inbound

2. Push-based Inbound

3. Pull-based Outbound

4. Push-based Outbound

1.
2.

3.
4.

Push strategy

Fig. 1. Conceptual overview of the oracle data flow partitioning.
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Fig. 2. An overview of the oracle types and conceptual structural components.

3.1 Inbound Oracle

An inbound oracle transmits information from the outside world to the
blockchain. As a blockchain cannot directly acquire information from the outside
world, it relies on the outside world pushing information into the network. Given
this fact, the most obvious approach to obtaining external information on the
blockchain is to alert the outside world about the need to push required infor-
mation into the network. This approach is described in the pull-based inbound
oracle pattern and is characterized by the fact that the exchange of information
is initiated on-chain.

Controller

Process
data

Off-chain
component Blockchain

Subscribe to events /
Pull data

Data

Event
Listener

Blockchain
Facade

Data

Request off-chain data 

Provide 
data

Off-chain State
Retriever

Off-chain data

Request 
off-chain data 

Off-chain data

Process 
data

Build 
transaction

Send signed transaction

Fig. 3. Sequence diagram showing the component interactions for the pull-based
inbound oracle.
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PATTERN: Pull-based inbound oracle
ProblemA blockchain application requires knowledge contained outside of the blockchain, but since
blockchains are closed systems, applications cannot directly acquire information from the outside world.
Solution A pull-based inbound oracleallows blockchain applications to request states from off-chain
components. When a blockchain application requests an off-chain state, the pull-based inbound oracle
receives this request, gathers the state from off-chain components, and sends the result back to the
blockchain (via a transaction).
Benefits State requests are initiated in the blockchain. Thus the whole process is transparent. It can
be traced whether off-chain data was successfully provided (in time) or not.
Drawbacks State requests have to be initiated from the blockchain, this induces a passive character.
Further, the pull-based inbound oracleresponse time depends on the speed of the blockchain network,
which may lead to a bottleneck. Network congestion may result in delayed or missed off-chain state
retrieval, as the oracle only starts working after it registers requests from the blockchain.

The conceptual interaction of the pattern participants is shown in Fig. 3: An
Event Listener subscribes to relevant events on the blockchain, which forwards
event data to a Controller. The Controller gathers required data from an off-
chain component via an Off-chain State Retriever. The gathered data may be
further processed by the Controller before it is returned to the blockchain via a
Blockchain Facade.

Another approach to transferring external knowledge to the blockchain is to
monitor changes in the off-chain world that are relevant to the blockchain and to
transfer these changes to the network. This approach is described by the push-
based inbound oracle pattern and is characterized by the fact that the exchange
of information is initiated off-chain.

Data

Off-chain
component 

Listen for updates / 
Search for data

Blockchain Blockchain
FacadeController

Data
Process 
data

Data
Build
transaction

Send signed 
transaction

Update
Listener

Fig. 4. Sequence diagram showing the component interactions for the push-based
inbound oracle.
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PATTERN: Push-based inbound oracle
Problem A blockchain application must be supplied with knowledge outside the blockchain, but since
blockchains are closed systems, this knowledge cannot be directly communicated.
Solution A push-based inbound oracleallows off-chain information to be propagated to the blockchain
by monitoring off-chain state changes and forwarding them to the blockchain.
Benefits Scattered or irregularly updated data outside the blockchain is proactively pushed to the
blockchain application. Therefore, the application does not require capabilities to search and query
off-chain data. In addition, data can be checked more easily by the push-based inbound oracle,
considering the limited functionality of blockchain environments.
Drawbacks The push-based inbound oracleis not deployed or triggered on the blockchain, making
data provision entirely dependent from (non-distributed) applications running off-chain. To manipulate
blockchains with incorrect information, an adversary only needs to compromise the off-chain
component(s) from which the oracle receives the data.

The push-based inbound oracle, as conceptually illustrated in Fig. 4, listens
to relevant off-chain component updates via an Update Listener and forwards
the data to the Controller. The Controller may process (e.g., filter, verify, etc.)
the data before it is sent to the blockchain via a Blockchain Facade.

3.2 Outbound Oracle

An outbound oracle transmits information from the blockchain to the outside
world. Due to its underlying properties, a blockchain can store state information
in the form of transactions, but it cannot actively communicate that state to
the off-chain world. In light of this, the most obvious path to obtaining data
from the blockchain is to fetch it. This approach is described by the pull-based
outbound oracle pattern and is characterized by the fact that the exchange of
information is initiated off-chain.

PATTERN: Pull-based outbound oracle
Problem Knowledge contained on the blockchain is needed outside the blockchain, but since
blockchains are closed systems, the outside world cannot directly request information.
Solution A pull-based outbound oracleallows blockchain data to be queried and filtered to make it
available to the outside world. It can be called from (off-chain) components to pull (all) blockchain
data and query relevant information.
Benefits The pull-based outbound oracleallows to decouple external status requests from the actual
status retrieval. Thus, the pattern offers the possibility of uniformly accessing and querying relevant
information on the blockchain.
DrawbacksDepending on the size of the blockchain and the knowledge of the location of the requested
information, the provision of the data may take some time.

The pull-based outbound oracle, as conceptually outlined in Fig. 5, receives
off-chain data requests via an Off-chain Request Handler and forwards the
requests to the Controller to process the request before forwarding it to the
State Retriever, which is responsible for retrieving data from the blockchain.
The result is returned to the Controller, which may process the data before it is
sent to the off-chain requester via the Off-chain Request Handler.
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Off-chain
Component Blockchain
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On-chain data

Events /
On-chain data

State
Retriever Controller

Process 
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Process 
data

Off-chain
Request
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Provide 
request

Data

Result Result

Request data

Fig. 5. Sequence diagram showing the component interactions for the pull-based out-
bound oracle.

Another approach to transferring internal information from the blockchain is
to observe changes on the blockchain that are relevant to the outside world and
to transfer these changes off-chain. This approach is described by the push-based
outbound oracle and is characterized by the fact that the exchange of information
is initiated on-chain.

PATTERN: Push-based outbound oracle
ProblemKnowledge contained on the blockchain must be available outside the blockchain, but since
blockchains are closed systems, applications cannot directly propagate information to the outside world.
Solution A push-based outbound oraclemonitors the blockchain for relevant changes to subsequently
trigger or perform activities outside the blockchain.
Benefits The push-based outbound oracleconstantly monitors the blockchain. Thus, it is possible to
(partially) automate blockchain related tasks by taking action when a blockchain state is updated.
Drawbacks The push-based outbound oracleis required to run continuously in order to monitor all
events (on time) on the blockchain. In case the oracle unexpectedly stops, updates (depending on the
implementation) may be missed. In addition, depending on the speed of the blockchain network, delays
can occur, which can lead to unwanted delays in time-sensitive interactions.

The push-based outbound oracle, as shown in Fig. 6, subscribes to relevant
events on the blockchain via an Event Listener and forwards event data to
the Controller, which may process the data before it is sent via the Off-chain
Transmitter to an off-chain component.
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Off-chain
component Blockchain

Event

Event
Listener Controller

Process 
Data

Off-chain
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Build data
transmission

Event

Data

Data

Fig. 6. Sequence diagram showing the component interactions for the push-based out-
bound oracle.
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Fig. 7. A supply chain process (in BPMN, from [21]), showing where oracles are
employed.

4 Use Cases

Among other successful use cases, the blockchain has been adopted as a backbone
for the execution of multi-party business processes [8]. This section describes
some use cases in that domain we considered to implement the oracle patterns.

Figure 7 illustrates a simplified model of a supply-chain process inspired by
[21]. The initiator of the process is a bulk buyer who places an order. The order
is then forwarded to a manufacturer. The manufacturer, in turn, calculates the
needed material and delegates a middleman to forward the order to a supplier
and to book the transportation by a special carrier. When materials are ready,
the carrier takes care of the transport from the supplier site to the manufac-
turer’s. Finally, the manufacturer produces the goods and delivers them to the
bulk buyer.

The execution of the process is tightly bound at many stages to data flows
from and toward the blockchain system. The transfer of information from the
off-chain world to the on-chain environment and vice-versa is carried out by the
oracles. We focus in particular on four oracles – one for each pattern. They are
highlighted with textual comments in Fig. 7 and detailed next. Our implementa-
tions of those oracles are based on the Ethereum blockchain, Web3 library and
Python. Our additional modules for QR scans are based on QR-Code-Scanner.3

The source code is available, see Footnote 1.
Figure 8 depicts the oracle-based interaction between a bulk buyer and the

manufacturer. The bulk buyer places an order over a web application (1). The
order is forwarded to the manufacturer if the creditworthiness of the buyer is
verified. The order details including the order ID and information on the cus-
tomer and bulk buyer are forwarded via a transaction to a smart contract (2).
The smart contract publishes an event containing information on the bulk buyer

3 Web3: https://github.com/ethereum/web3.py. Python: https://www.python.
org/. QR-Code-Scanner: https://github.com/code-kotis/qr-code-scanner. All links
accessed on June 7, 2020.

https://github.com/ethereum/web3.py
https://www.python.org/
https://www.python.org/
https://github.com/code-kotis/qr-code-scanner
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Fig. 9. Oracle-based tracing of goods via QR Code scanning in the supply chain process
of Fig. 7.

such as name and Tax ID. The Event Listener of a pull-based inbound oracle
subscribes to updates on such events. To retrieve information on the buyer’s
creditworthiness, the oracle calls the API of an external credit assessment ser-
vice upon request via its Off-chain State Retriever (4). As the oracle processes
the response (5) with the Controller, it returns this information as transaction
data to the smart contract (6) with its Blockchain Facade. Finally, the manu-
facturer accesses the order after the verification (7).

Figure 9 illustrates a blockchain-based use-case for the tracing of goods in a
supply chain via QR-code scanning. It involves three oracle patterns. The use
case starts with an employee registering the delivery of a package. To certify the
sending of the package, the employee uses a device with a QR-code scanning
application (1). The information from the QR code includes the order ID, the
name and the quantity of items (2). Thereafter, the push-based inbound oracle
receives the data from the scan (3) via its Update Listener. The Controller of
the oracle encodes the data into a blockchain transaction, enriching it with the
location and current timestamp. Its Blockchain Facade transmits the data to a
smart contract (4). The smart contract, in turn, publishes an event that is parsed
by the Event Listener of a push-based outbound oracle (5a). The Controller of
the latter decodes the event data and further passes it along to an ERP system
via an Off-chain Transmitter (6a). The bulk buyer traces the production of the
items identified by the order ID over the blockchain via a web application (5b).
Upon request, the web application calls the Off-chain Request Handler of a pull-
based outbound oracle (6b). The oracle Controller turns the request into a query
for the On-chain State Retriever. As the requested information is found (8b),
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the application provides the entire data record on the product(s) back (9b). We
implemented these use cases to serve as a basis of the analysis described next.

5 Analysis of Performance and Transaction Fees

This section describes our findings from a quantitative analysis on proof-of-
concept implementations of the four oracles, based on the use cases presented
above.

Send
transaction

Receive
transaction

hash

Prepare
transaction

Mine
block

Receive
event

Receive
transaction

Fig. 10. Schematic process for measuring latency, with off-chain (white) and on-chain
(grey) tasks.

Setup. We focus on the time and costs dimensions. Regarding time, specif-
ically latency, we are interested in answering two questions. The first ques-
tion is whether we observe differences in time among the different imple-
mented patterns. This might indicate that dissecting oracles the way we pro-
pose in this paper is not only important from a software engineering per-
spective, but also with respect to the range of use cases they cater for. The
second question is whether the observed timings are caused by our experi-
mental settings. We perform all experiments on Ropsten, a test network for
Ethereum. We choose Ropsten as it is accepted in the scientific literature for
testing purposes [1,6,15]. The test code and the code used for the quanti-
tative analysis are available, see Footnote 1. The smart contract arrival.sol
mimics the use case from Fig. 9, which we use to evaluate the push-based
inbound oracle, the pull-based outbound oracle and the push-based outbound ora-
cle. It is deployed at address 0x1186aEDAb8f37C08CC00a887dBb119787cfE6AAf.
The smart contract customer.sol mimics the use case from Fig. 8, which
we use to evaluate the pull-based inbound oracle. It is deployed at address
0x9c2306eccc5afa6ee0c1eca6deab66cc336c3b3d.

To assess the costs of inbound oracles, we measure the consumed gas. Note
that gas costs also captures the computational and storage effort. We convert
Ether to Euros by using the mean exchange price for Ether over the evaluation
period (144.86 e/Ether), and gas usage converts to Ether using the gas price of
the transactions (on average 7.45 × 10−10 Ether/gas).

The outbound oracles read from the blockchain and we thus focus on the
time dimension. Note that we keep the retrieval state of the pull-based out-
bound oracle constant to eliminate this as a varying factor. Furthermore, in the
implementation of the pull-based inbound oracle we do not store any states in
the receiving smart contract, because the transaction invokes the client smart
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Table 2. Summary statistics of time and costs for oracle invocations (on the Ropsten
Ethereum test-net).

n mean std min x0.25 x0.50 x0.75 max

Push-based inbound oracle 2437

dttx-hash [seconds] 0.53 0.08 0.46 0.49 0.50 0.54 2.14

Transaction cost [Gas] 44,827 1,265 36,739 45,139 45,235 45,259 45,319

Transaction cost [C] 4.96×10−3 5.78×10−3 2.96×10−11 6.55×10−5 6.53×10−3 6.55×10−3 1.37×10−1

Push-based outbound oracle 438

dttx-mined [seconds] 16.20 15.95 0.53 5.41 10.71 21.44 129.95

Pull-based inbound oracle 126

dttx-hash [seconds] 0.52 0.05 0.46 0.48 0.50 0.52 0.78

Transaction cost [Gas] 22,770 0 22,770 22,770 22,770 22,770 22,770

Transaction cost [C] 8.91×10−5 3.96×10−4 7.91×10−7 7.91×10−7 7.91×10−7 7.91×10−7 1.85×10−3

Pull-based outbound oracle 2611

dttx-hash [seconds] 0.13 0.03 0.11 0.11 0.12 0.12 0.45

contract directly and we exclude its handling of the data in the experiment.
In contrast, the push-based inbound oracle stores the state and emits an event;
this is necessary so that the client smart contract can retrieve the state.

To measure latency (see also Fig. 10) we capture the time between a trans-
action being sent to the blockchain node (t1) and the time when we receive the
transaction hash (t2). We indicate the difference as dttx-hash. For the push-based
outbound oracle, we measure the period between the timestamp of the block that
included the transaction (i.e., the timestamp when the miner started mining that
block, t3), and the time in which we receive the event (t4). We name the differ-
ence as dttx-mined. When clear from the context, we will refer to both measures
as dt. It is debatable whether the mining time should be part of the latency mea-
surement. Note that the time between the submission of a transaction and its
inclusion/commitment on the ledger varies drastically between blockchain plat-
forms. Additionally, various other factors need to be taken into account, such
as network congestion and, for commit time on Proof-of-Work blockchains, the
number of confirmation blocks which is a user-defined parameter – see e.g. [20]
for details and measurements. Here, we measured simple inclusion time without
additional confirmation blocks, as a placeholder and to highlight this underlying
issue.

Results. Figure 11 and Table 2 show the results of our experiments. The pull-
based outbound oracle is the fastest of the four oracles with a mean dt of
0.13 ± 0.03 s, while the push-based outbound oracle is the slowest with a mean
dt of 16.20± 15.95 s. This difference stems from the fact that the pull-based out-
bound oracle reads historical states from the blockchain, whereas the push-based
outbound oracle requires a transaction to be included – which is subject to high
variance and an average delay of roughly 1.5 inter-block times [26]. This trans-
action triggers the event that is picked up by the push-based outbound oracle.
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Fig. 11. Performance plots for the four oracle implementations.

We received 75% of the pull-based outbound oracle transactions within 0.12 s. For
the push-based outbound oracle, instead, the third quartile amounts to 21.44 s.
From the box plots in Fig. 11, we can observe that the dt measurements of the
pull-based outbound oracle and the push-based inbound oracle have a significant
number of outliers and follow a long-tail distribution. This is less pronounced
for the other two oracles. Discounting outliers, the dt distribution for the pull-
based inbound oracle is similar to push-based inbound oracle, with mean dts of
0.52 ± 0.05 and 0.53 ± 0.08, respectively, and the same minimum (0.46) and
median (0.50) values. They differ slightly in their 25th (0.48 vs. 0.49) and 75th
(0.52 vs 0.54) percentiles.

For push-based inbound oracle and pull-based inbound oracle we measured
the transaction costs in Ether, and converted them to Euros with the above-
mentioned exchange rate. The results are reported in Table 2. The gas price
setting in our setup relied on the current market price – which turned out to be
highly variable on Ropsten, and not representative of the Ethereum mainnet. To
give an indication of the cost we would have incurred on the mainnet, we retrieved
the approximate median gas price from the Google BigQuery public database
of Ethereum for the period in question, which was 8.5 Gwei (averaged over 3.15
million transactions). If we multiply this with our mean gas consumption and
the exchange rate, we get a median transaction cost of 0.028 e for push-based
inbound oracle and 0.056 e for pull-based inbound oracle.

6 Discussion and Threats to Validity

In the following, we discuss advantages and disadvantages, our experience from
the implementation process, the results analysis above, and finally the limita-
tions and threats to validity of this work. An advantage of the foundational
viewpoint taken in this paper is the clear separation and composition of con-
cerns we can achieve. For example, our implementation, following the patterns
in this paper, enables us to implement logic for distinct abstraction levels. As
such, it is possible to implement behaviour for all oracles. More crucially, adding
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or changing information sources to the oracle only requires us to revise the sole
oracle without the need to change the on-chain implementation logic.

Regarding the results of the analysis, we find that latency and cost are both
not particularly high. For instance, when comparing the latency with results
from [20], where the median commit time of transactions was around 200 s, it is
fair to say that the sub-second latency measured in almost all cases (where no
transaction inclusion time is part of the latency) is relatively low. This, however,
may be different if other blockchain platforms or consensus algorithms are used.

As for cost, we found that a single interaction of either inbound oracle did
not incur high fees. For the fairest possible comparison, gas consumption should
be used as a metric as it does not depend on current market prices. Comparing
the results on this basis, in [11] (a cost-optimized version of [21]) transactions
have a typical gas consumption of 24,000 to 27,000 gas. This is in line with the
pull-based inbound oracle’s gas consumption; for the push-based inbound oracle’s
gas usage the additional storage cost accounts for the higher gas cost. Specific
implementations of this pattern can be optimized in this regard, in particular by
storing data on-chain only when necessary. This may be particularly important
when many oracle invocations are expected in a given setting, and cost and time
delays would add up.

The work we present in this paper has a number of limitations and threats
to validity. The patterns are mined using a qualitative mining process (as it is
usual). Thus, possible misinterpretations or biases of individual researchers or
the whole author team cannot be fully excluded and might have influenced our
results. Generalizability can only be claimed for the studied technologies (see
Sect. 2), but we aimed to define foundational patterns to mitigate this threat
as far as possible. Therefore, despite our implementation resorts on Ethereum,
our findings are applicable to other blockhain platforms. Nevertheless, we do
not claim any form of completeness. Our analyses are preliminary and can only
provide a rough indication of time performance and costs; for claiming general-
izability beyond the scope of the studied cases, more research would be needed.
Furthermore, the use of a testnet like Ropsten may reduce the representative-
ness of the analysis results for practical applications. We mitigated these effects
by not relying on time and cost measurements from the testnet in our discus-
sion, and by basing relevant cost analyses on data from the Ethereum mainnet
instead. In future work, we will also study different strategies on data structures
and message rates to further mitigate the impact that information exchanges
have on the overall execution costs.

7 Conclusion

In this paper, we have investigated how blockchain oracles can be characterized
for the communication between the on-chain and off-chain realms. We abstract
individual technical solutions adopted in existing implementations into four foun-
dational oracle patterns. In addition, we have studied their relations, benefits,
liabilities, and consequences. Finally, we have quantitatively analysed the four
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patterns in terms of time performance (latency) and cost impacts. We find that
neither cost nor latency are particularly high for a single invocation of any of the
patterns, except that latency can be dominated by transaction inclusion time.
Also, in our experiments the patterns were in most cases subject to different
distributions in terms of cost and latency; the results show these characteristic
differences.

In future research, we will deepen our analysis with further studies conducted
on multiple blockchain platforms, further study how exchanged data rate and
quantity has an impact on execution costs, and apply the patterns to more
use cases spanning over different fields including autonomous robotic swarm
systems [19]. Furthermore, we want to study the use of patterns for information
exchange between blockchains. The combination of oracle patterns would also
be the subject of our future studies.
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