
A Formal Modeling Approach
for Portable Low-Level OS Functionality

Renata Martins Gomes(B), Bernhard Aichernig , and Marcel Baunach

Graz University of Technology, Graz, Austria
{renata.gomes,baunach}@tugraz.at, aichernig@ist.tugraz.at

Abstract. The increasing dependability requirements and hardware
diversity of the Internet of Things (IoT) pose a challenge to developers.
New approaches for software development that guarantee correct imple-
mentations will become indispensable. Specially for Real Time Operating
Systems (RTOSs), automatic porting for all current and future devices
will also be required. As part of our framework for embedded RTOS
portability, based on formal methods and code generation, we present
our approach to formally model low-level operating-system functionality
using Event-B. We show the part of our RTOS model where the switch
into the kernel and back to a task happens, and prove that the model is
correct according to the specification. Hardware details are only intro-
duced in late refinements, which allows us to reuse most of the RTOS
model and proofs for several target platforms. As a proof of concept, we
refine the generic model to two different architectures and prove safety
and liveness properties of the models.

Keywords: Event-B · RTOS · Portability · Refinement · Verification

1 Introduction

The amount of devices in the Internet of Things (IoT) (e.g. autonomous vehicles,
smart infrastructures, automated homes and production facilities), is expected
to increase exponentially, along with the diversity on both the hardware and the
software side [15,20]. Operating System (OS) developers, who currently focus on
just a couple of different computing platforms, will face a huge variety of devices,
ranging from simple single-core to more complex multi or many-core systems,
including specialized ASIC or even reconfigurable FPGA components [12,18].

While high-level code can more easily be compiled for another hardware, low-
level functionality (i.e. context switches, system initialization routines, interrupt
handling) are still handwritten for each architecture. To support a new Instruc-
tion Set Architecture (ISA), for example, an OS must have many low-level parts
completely rewritten, which requires in-depth knowledge of both software and

This work is partially supported by the TU Graz LEAD project “Dependable Internet
of Things in Adverse Environments”.

c© Springer Nature Switzerland AG 2020
F. de Boer and A. Cerone (Eds.): SEFM 2020, LNCS 12310, pp. 155–174, 2020.
https://doi.org/10.1007/978-3-030-58768-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58768-0_9&domain=pdf
http://orcid.org/0000-0002-3484-5584
http://orcid.org/0000-0002-3716-2682
https://doi.org/10.1007/978-3-030-58768-0_9


156 R. M. Gomes et al.

hardware, including a deep understanding of their interaction. From our own
experience and industry cooperations, supporting additional MCU families or
just variants is not straightforward, even if there are only a few differences to
existing ports. This increases the development time, often limiting OS support
to a low number of devices. Even though the code base of many OSs is modular,
there are noticeably often just a few complete and directly usable ports avail-
able. Especially when developed under time pressure, wrong implementations,
new bugs, and security breaches are common. Besides, changes in the logic of low-
level software must be manually introduced to all implementations, which also
hinders or slows down important improvements of the OS. Since dependability
is key for the IoT [4,15,36], we propose an approach to improve the portability
of embedded Real Time Operating Systems (RTOSs) based on formal models,
refinement, and code generation to target-specific code.

We report on the first part of the approach: the modeling and verification
of low-level functionality. Parts of the model of an RTOS are presented that
focus on the switch into the kernel and back to a task, detailing the operations
that happen in these transitions. We chose the context switch as demonstrating
example, because it is architecture-specific, requires reimplementation for each
architecture, and its correctness is crucial: corrupted task contexts, resulting
from incorrect implementations, may produce errors that are hard to find and
compromise the OS’s ability to properly interleave concurrently running tasks.

First, we model the OS execution flow and functionality incrementally
through formal refinements. Then, as a proof of concept, we further refine the
generic OS model to two different architectures: an MSP430 and a RISC-V. In
order to verify safety (something bad must not happen) and liveness (something
good should eventually happen) properties [25], we (1) prove that our RTOS
models do not corrupt any task’s context by properly saving and loading them,
even though the process for saving and restoring a context differs for different
MCU architectures; (2) prove that the kernel runs in the appropriate CPU state
and changes it as specified for task execution; (3) prove that the kernel executes
in the correct order and finishes execution. Since we only introduce hardware
details in late refinements, most of those proofs need only be done once, on the
generic RTOS model. The refinement to each architecture, as well as their proofs
follow and become much simpler, as we will show.

Contributions. To the best of our knowledge, this is the first time that OS low-
level functionality is formally modeled with focus on its portability. Our main
contributions in this paper are: (1) we decouple low-level functionality from
hardware specifics; (2) a generic formal RTOS model with context switches;
(3) safety and liveness verification of two instantiations of the generic model via
interactive theorem proving and model checking.

Structure. Section 2 discusses related work and Sect. 3 provides background on
the tools and the two target HW architectures. Section 4 presents the require-
ments and the modeled RTOS. Section 5 introduces the general idea of the mod-
eling process and our refinement strategy, while the model itself is detailed in
Sect. 6. Section 7 discusses verification. We conclude in Sect. 8.



A Formal Modeling Approach for Portable Low-Level OS Functionality 157

2 Related Work

Many works investigate how to formally model and verify OSs. Brandenburg [6]
introduces a new concept to develop RTOSs with time predictability. Craig [8,9]
specifies an OS using formal models, also showing it can be refined to executable
code. However, he either assumes several HW details or leaves further refinements
to be done, conceding that “the hardware specification poses a slight problem”.
Novikov and Zakharov [29] verify Linux to detect faults in the entire mono-
lithic kernel. Alkhammash et al. present modeling guidelines of FreeRTOS [2],
and Cheng et al. model FreeRTOS’ task model [7]. Stoddart et al. [33] model
an interrupt driven scheduler in B. Danmin et al. [11] also use B to model an
OS. Su et al. [34] design an RTOS memory manager in Event-B. With correct-
ness proofs from abstract kernel function specification down to the binary file,
seL4 [16] does not model the direct hardware instructions, assuming correct-
ness of hardware-specific code, such as handwritten assembly code, boot code,
etc [24]. Syeda and Klein [35] tackle the modeling of low-level cached address
translation, whose correctness is usually left as an assumption, aiming to even-
tually integrate their model into seL4’s verification. Baumann et al. [3] develop
a method to model the underlying hardware of embedded systems such that
the detailed modeling of each hardware component can be delayed, while still
allowing the verification of high level security properties. OpenComRTOS [37],
was designed with TLA+ and has been ported to several targets, however code
is always handwritten.

Others tried to generate code from models: Hu et al. [21] report on problems
found when trying to synthesize an OS. Fathabadi et al. [14] design a platform-
independent formal model of an OS module that interacts with the HW and
automatically generates C code. Dalvandi et al. [10] generate verifiable code from
formal models. Popp et al. [31] generate information about device properties and
addresses. Méry [28] presents formal modeling design patterns later translated to
software. The generated software in these works is semantically dependent on the
HW, but the syntax is pure C, not solving the problem of generating low-level OS
code, that must, at least partially, be handwritten in assembly. Wright [40,41]
formally specifies an entire ISA in Event-B and automatically generates a virtual
machine capable of simulating it. Borghorst et al. [5] generate code for low-
level OS functions using abstract assembly to describe the software and a HW
architecture description to generate code, but without formal methods.

These works advance the state of the art in model-based OS development
either by modeling and proving properties of high-level parts of the kernel (such
as scheduling, task management, or resource management), or assuming HW
characteristics that render the model HW-specific. Some code can often be gen-
erated for different programming languages, but the low-level code remains to
be ported manually, and the models are not usable for different HW platforms.
Our work aims at covering this gap on low-level software, providing an approach
for its modeling and automatic code generation.



158 R. M. Gomes et al.

3 Background

Model Checking and ProB. Temporal logic [27,30] is a logic system that for-
mally describes properties of time. Linear Temporal Logic (LTL) is the most
popular and widely used temporal logic in computer science to specify and ver-
ify the correct behavior of reactive and concurrent programs [19]. It is particu-
larly useful for expressing properties such as safety (given a precondition, then
undesirable states that violate the safety condition will never occur), liveness
(given a precondition, then a desirable state will eventually be reached), and
fairness (involves combinations of temporal patterns of the form a predicate
holds “infinitely often” or “eventually always”). ProB is an animator, constraint
solver, and model checker for the B-Method [26] that integrates as a plugin-in
Rodin and can be easily used for LTL model checking of our RTOS models.

1 SETS // sets block
2 S
3 VARIABLES // variables block
4 x ⊆ S
5 f ∈ S � →DATA // f is a partial

function
6 b ∈ S �� DATA // b is a bijective

function
7 eventName // event block
8 ANY // parameter block
9 p ⊆ x

10 WHERE // guards block
11 p �= ∅

12 x �− b = x �− f // b and f are equal
for all domain elements not in x (

domain subtraction �−)
13 THEN // actions block.
14 f := f �− (p � b) // f is

overwritten (�−) by the pairs in b
whose first element is in p (domain
restriction �)

15 x := x \ p // set subtraction

Fig. 1. Event-B notation

Event-B and Rodin. Event-B is
a formal method for system-level
modeling and analysis [1,13]. The
Rodin Platform [23], an Event-
BIDE based on Eclipse, supports
the development and refinement of
models with automatic generation
and partial discharging of mathe-
matical Proof Obligations (POs).
Event-B is based on set theory
and state transitions. The two top
elements of a model are contexts
and machines. The term context is
overloaded in the domains of OSs
and formal methods. Hence, we will
always refer to a context in Event-
B as Event-B context. Event-B con-
texts describe all static information
about the system. They are composed by carrier sets, constants, and axioms.
Dynamic information is represented by the machines, which are composed of
variables, invariants, and events. Event-B machines can see Event-B contexts,
such that the machine can use their constants and axioms to relate static and
dynamic information as well as to discharge POs. Considering machine states
as sets of the variables’ values, each event represents a state transition. Events
are enabled if the state satisfies the corresponding guard condition and modify
the current state according to their actions, which are executed in parallel when
the event is enabled. When a machine refines another one, it must refine (or
keep) its events, adding details or more variables; POs are automatically gen-
erated by Rodin to e.g. guarantee that invariants always hold and that refined
events do not contradict the abstract ones. In order to ease the understanding
for readers not familiar with Event-B, Fig. 1 presents a summary of the Event-B



A Formal Modeling Approach for Portable Low-Level OS Functionality 159

notation used in our models. We assume the reader is familiar with basic set
theory notation.

Next, we present the main characteristics of the two HW architectures we use
as examples for the architecture-specific instantiations of our model in Sect. 6.

MSP430. The TI MSP430 [22] family of MCUs comprises a range of ultra-low
power devices featuring 16 and 20-bit RISC architectures with a large variation of
on-chip peripherals, depending on the model. Among its 16 registers are general
purpose registers, the program counter PC, the stack pointer SP, and the status
register SR, which stores status flags, such as interrupt enabled, overflow, etc.
The MSP430 offers a very simple architecture with only one execution mode and
a fully orthogonal instruction set. There is no privileged mode, nor any memory
protection or memory management unit. Once an interrupt occurs, the PC and
SR registers are pushed onto the stack. Then, further interrupt requests (IRQs)
are disabled and the PC is overwritten with the address of the first instruction of
the corresponding interrupt handler. The return from interrupt instruction, i.e.,
RETI, restores SR and PC from the stack and finally continues where the handler
has interrupted the regular execution flow.

RISC-V. The open RISC-V instruction set architecture [32] was originally devel-
oped by UC Berkeley and is meanwhile supported by a highly active commu-
nity of software and hardware innovators with more than 100 members from
industry and academia. The RISC-V is a load-store architecture, and its speci-
fication [39] defines privilege levels used to provide protection between different
components of the software stack. We refer to an implementation that supports
user and machine modes, with 32-bit integer and multiplication/division instruc-
tions (RV32IM) [38]. There are 32 registers available in all modes, including a
zero register and the program counter pc. The calling convention specification
assigns meanings to the other registers, such as a stack pointer sp, function argu-
ments and return values. Additionally, Control and Status Registers (CSRs) with
special access instructions are available for e.g. managing the CPU or accessing
on-chip peripherals in defined privilege levels. An IRQ switches the CPU into a
higher privilege level, while software can issue an ECALL instruction for that. In
both cases, returning to user level is done by the instruction URET.

4 Requirements

We modeled the MCSmartOS [17], an RTOS we have developed and used for
many years. This section presents its architecture and requirements. An impor-
tant concept to understand is the context (not in the sense of Event-B, but in the
sense of operating systems): A context is a set of information and configuration
of a CPU or a CPU core that is required to control the execution flow of soft-
ware, i.e. code sequences. Depending on the CPU state and external events, cores
can usually switch between different code sequences by loading their respective
context. To be able to continue an earlier code sequence from the interrupted
instruction, its context is saved before the switch. The actual switching process



160 R. M. Gomes et al.

as well as the composition of the contexts is defined by the interrupt concept of
the CPU; in any case, the hardware automatically saves and loads the contexts.
If, in addition to interrupts of the hardware, an OS supports preemptive, i.e.
interleaved executable tasks (or threads or processes), the context is extended.
In order to switch between tasks, this extended information is saved (previous
task) and loaded (next task) by the kernel. Next, we describe our assumptions
about the computing platform and present MCSmartOS’s requirements.

4.1 Hardware Assumptions

Even though we aim on keeping the OS model initially independent from the
hardware, a target architecture must have certain features in order to be capable
of running an operating system. Focusing only on the relevant aspects for our
RTOS model, we define data storage and interrupt handling features as envi-
ronmental assumptions, numbering and labeling them env. Different OSs might
require other features, but that does not affect our general concept.

env1 The CPU provides means to store/load data to/from referable locations.
These locations can be, e.g., registers or memory addresses.

env2 The context is a well-defined subset of locations and their stored values
that the CPU requires for execution of a code sequence. It must be saved
when the code sequence is interrupted, so that it can later be resumed
from the same point.

env3 The CPU has an interrupt enabled flag. Interrupts will only be accepted
if the interrupt enabled flag is set.

env4 When an interrupt is accepted, the values of the context or a part of it
are automatically copied into other locations defined by the architecture.

env5 The CPU offers a “return from interrupt” instruction that automatically
loads the context with the values automatically saved when the interrupt
was accepted (env4).

env6 The saving process (env4) is allowed to modify the context values before
they are saved, according to a well-defined and CPU-specific function.

env7 The restoring process (env5) must reverse the modification of env6.

4.2 Software Specification

MCSmartOS provides, among many other features, a preemptive and priority-
based scheduler for concurrent tasks. The kernel is invoked when an interrupt
occurs or a syscall is called, and is divided into three parts: (1) the kernel entry
is responsible for stack management and context saving. It unites both entry
points, enters kernel mode, and continues to (2) the kernel body which handles
the actual interrupt or syscall request and runs the scheduler that selects the
task to be executed next. Finally, (3) the kernel exit executes a context switch
by loading the selected task’s context and returning to task mode.

In this work, we only model the context switches in kernel entry and exit ,
and the conditions required by the OS to execute its other functions. High-level



A Formal Modeling Approach for Portable Low-Level OS Functionality 161

kernel functionality, such as scheduling, task management, etc. is out of scope.
The requirements for correct context switches and kernel execution (os) are:

os1 (a) A task executes on the context defined in env2. When not running,
the values of its context are stored in locations reserved for context saving.
(b) Each element of the context has its correspondent in the saved context.

os2 (a) Once the kernel is invoked, kernel entry saves the old task’s context.
(b) On kernel exit the next task’s context is loaded into the CPU.

os3 (a) Each task has dedicated locations for context saving. (b) These loca-
tions with their stored values are the task’s saved context, where contexts
are saved to and loaded from (os2).

os4 The scheduler chooses the new task and is implemented in kernel body .
os5 The cause for kernel invocation, unambiguously identifying which inter-

rupt or syscall has occurred, must be recorded for use within kernel body .
os6 (a) The kernel body always runs in kernel mode, with interrupts disabled,

and on the OS stack. (b) Each task runs on its own stack, with the
interrupt flag the same as it was when that task was running last, and
never on kernel mode.

os7 A part of kernel entry context saving and CPU preparation is automat-
ically executed by the hardware (env4). The rest must be executed in
software after the automatic part.

os8 The kernel is exited with a return from interrupt instruction (env5). The
task selected by the scheduler shall continue execution and where it was
preempted before.

os9 A part of kernel exit context loading and CPU preparation is automati-
cally executed by the return from interrupt instruction (env5, os8). The
rest must be executed in software before the automatic part.

os10 (a) If the values copied on interrupt (env4) are copied into task-specific
locations, these locations and their data are considered a part of the saved
context. (b) Otherwise, it is the OS’s responsibility to save those values
into the task’s save context, and to copy them back where the CPU expects
them to be when returning from an interrupt (env5).

os11 If the architecture provides a privileged mode, kernel body runs in it, while
tasks run in less privileged modes. Switching the mode must be done on
kernel entry and kernel exit .

5 Refinement Strategy: From Abstraction to Detailed
Specification

The model has several refinements and showing all would be too cumbersome.
So, we divide it into 6 levels of abstraction (referred to as Level). Each Level
is composed of several refinements and addresses a new set of requirements
(Table 1). 1 Up to Level 4, the model remains generic, only requiring the generic
1 Model artifact at https://figshare.com/s/0f262342284eada236f5. The relationship

between refinements and levels can be found in the README file. Model elements
are referenced as [component.label].

https://figshare.com/s/0f262342284eada236f5


162 R. M. Gomes et al.

hardware features described in Sect. 4.1. We only introduce further hardware
details in Level 5, where we instantiate the model for specific target architectures.
This section introduces the general idea of each Level, while Sect. 6 details how
each level was modeled. This model focuses on the interface between hardware
and software in order to model the kernel’s interleaved execution of concurrently
running tasks. The goal is to prove that the kernel does not corrupt any task’s
context by properly saving and loading them, as well as to guarantee that tasks
and kernel body run in the appropriate conditions described by the requirements
from Sect. 4.

Table 1. Model and requirements.

Level ENV OS

0 env1, env2 os1

1 – os2

2 env6, env7 os3, os4

3 env3 os5, os6

4 env4, env5 os7, os8, os9, os10

5 Target-specific os11

The state of an Event-B machine
is the set of its variables’ values, and
state transitions are represented by
the machine’s events. In our model,
these events represent the differ-
ent parts of the kernel, building a
state machine that starts with the
switch into the kernel and finishes
with the switch back to a task. The
events, therefore, are modeled such
that their order is well-defined, in
the order the kernel parts must run:

kernel entry executes first, then body , and finally exit ; and the automatic part of
entry executes before the manual part that must be executed in software (os7),
and in exit manual executes before automatic (os9).

Level 0 In this initial abstraction, we only present the expected result of the OS
execution, i.e., that an old context is saved and a new one is loaded, without
modeling how this will be achieved. We also define the basic Event-B sets
and their relations, used along the refinements.

Level 1 In the first refinements, we define the entry and exit parts of the kernel
simply as two context copies: one in kernel entry for saving a context, and
another one in kernel exit for loading a context. At this level, we do not yet
define where those contexts are copied from or to, nor do we have any notion
of tasks or conditions for proper task and kernel body execution.

Level 2 Next, we introduce tasks, their saved contexts, and kernel body . This
level also defines where the context is saved to and loaded from.

Level 3 Then, we introduce and set up the variables that control the conditions
for proper task and kernel body execution (interrupts disabled, kernel mode,
running on its own stack, and cause for the kernel execution).

Level 4 Refines the model to a generic hardware that automatically saves
and loads a subset of the context, and the software that complements the
switches.

Level 5 Finally, we refine the model into architecture-specific models from
which OS code can be generated (code generation is not in the scope of this
paper).



A Formal Modeling Approach for Portable Low-Level OS Functionality 163

6 Kernel Model

This section details the levels from Sect. 5. Please, refer to Fig. 1 for the Event-B
notation used in the following listings.

Level 0. First, we define the carrier set location (Fig. 2a), an abstract rep-
resentation of memory addresses and registers. In combination with data, a
subset of Z, memory and registers can be represented according to env1. Two
non-overlapping subsets with the same cardinality, context and savedctx rep-
resent the subset of locations that compose the context (env2) and the sub-
set of locations of a saved context (os1.a), respectively. The bijective function
ctx2saved ∈ context��savedctx relates each context location to where it is
saved, while saved2ctx is its inverse (os1.b). The context is defined as a rela-
tion from context to data, while a saved context is a relation from savedctx

to data.

(a) env1 in Level 1 and the rela-
tions of os1.b [c0,c1]

(b) env1 in Level 4 [c2,c3,c4]

1 EVENTS
2 osProgress anticipated
3 THEN
4 act1:loaded :∈ context data
5 act2:saved :∈ savedctx data
6 END
7 osFinal
8 ANY
9 new ∈ context→data

10 old ∈ savedctx→data
11 WHERE
12 grd3:loaded = new
13 grd4:saved = old
14 THEN
15 skip //state not changed

(c) Level 0

Fig. 2. Diagrams of location and initial abstraction

The initial abstraction (Fig. 2c), sees the context switches as two context
copies: one copies old context to saved ∈ savedctx �→data, and the other loads
new context to loaded ∈ context �→ data. The old and new contexts that are
copied are simply event parameters, that will later be refined into the actual
contexts that are copied. The OS is modeled in the event osProgress. The
event osFinal is not a part of the OS, but is only introduced to model the state
where the OS has successfully executed. This event is composed only of guards,
that is, it is enabled once the state represented in its guards is reached but does
not change it anymore. The event osProgress, that represents the OS kernel,
is allowed to change the variables saved and loaded, but does not yet describe



164 R. M. Gomes et al.

1 osEntry REFINES osProgress
2 ANY
3 saveSet ⊆ toSave
4 old ∈ savedctx→data
5 WHERE
6 saveSet �= ∅

7 saved = toSave �− old
8 loaded = ∅ //load not started
9 THEN

10 saved := saved ∪ (saveSet � old)
11 toSave := toSave\saveSet

(a) Kernel entry

1 osExit REFINES osProgress
2 ANY
3 loadSet ⊆ toLoad
4 new ∈ context→data
5 WHERE
6 loadSet �= ∅

7 loaded = toLoad �− new
8 toSave = ∅ //save complete
9 THEN

10 loaded := loaded ∪ (loadSet � new)
11 toLoad := toLoad\loadSet

(b) Kernel exit

Fig. 3. Level 1

how the copies are made. It is made anticipated, which, in Event-B, means that
it may execute several times, but must eventually give up control and allow the
model to reach osFinal. Refinements of an anticipated event must converge,
i.e., decrease a variant, thereby proving that it eventually gives up control. The
idea is that, since the context is copied in different steps by HW and software,
this event can be refined into these steps. The POs generated by Rodin verify
that the refinements of this abstraction (Levels 1 to 5) are correct. If we prove
that the model always reaches osFinal, we prove that the desired state after
OS execution is reached. These proofs are shown in Sect. 7.

Fig. 4. Level 1 states and transitions

Level 1. Figure 3 shows the refine-
ment of osProgress into two events:
osEntry (os2.a: kernel entry respon-
sible for saving the old context), and
osExit (os2.b: kernel exit is responsi-
ble for loading the new context). They
model state transitions (Fig. 4), and
their guards define that entry must
happen before exit, and exit may only
start after entry is done.

The new variable toSave ⊆ savedctx keeps track of the context yet to be
saved, while the parameter saveSet defines the context subset saved in each run of
osEntry. The event is made convergent on the variant toSave, and saveSet is sub-
tracted from toSave in each run (Fig. 3a, Line 11). This guarantees that, eventu-
ally, the save process will complete and we move to a saved state. Similarly, the new
variable toLoad⊆ context represents the context yet to be loaded, while loadSet
defines the context subset loaded in each run of osExit. The event is made conver-
gent on the variant toLoad, and loadSet is subtracted from toLoad on each run
(Fig. 3b, Line 11), allowing the event to eventually reach the loaded state. Event
osFinal remains unchanged.

Level 2. Next, we define the input constants oldTask ∈ tasks and oldCtx ∈
context→data that represent the old task and its context when the kernel was
requested. The saving operation in osEntry must save oldCtx into oldTask’s



A Formal Modeling Approach for Portable Low-Level OS Functionality 165

1 osEntry REFINES osEntry
2 ANY
3 saveSet ⊆ toSave
4 WHERE
5 saveSet �= ∅

6 toSave �− t_saved(runningTask) =
toSave �− transform(oldCtx)

7 loaded = ∅ // load not started
8 THEN
9 t_saved(runningTask) := t_saved(

runningTask) �− (saveSet �
transform(oldCtx))

10 toSave := toSave\saveSet

(a) Kernel entry

1 osExit REFINES osExit
2 ANY
3 loadSet ⊆ toLoad
4 WHERE
5 loadSet �= ∅

6 loaded = toLoad �− invTransform(
t_saved(runningTask))

7 toSave = ∅ //save complete
8 THEN
9 loaded := loaded ∪ (loadSet �

invTransform(t_saved(runningTask)))
10 toLoad := toLoad\loadSet

(b) Kernel exit

Fig. 5. Level 2

save space. In order to save the context, we must map it to a saved context.
Additionally, the context might be modified during the saving process (env6),
e.g. the stack pointer is changed before it is saved when the architecture auto-
matically pushes some registers onto the stack. We must account for this modi-
fication, since what is finally saved is the transformed version of the values, and
not the original input values. Thus, we define the functions ctxTransform ∈
context→(data��data) and transform ∈ (context→data)��(savedctx→
data). The architecture-specific function ctxTransform is only declared at this
level, and represents the modification of each value in the context. The function
itself is only fully specified in Level 5. The function transform converts a con-
text into a saved context according to ctx2saved, modifying the values stored
in each location according to ctxTransform. This is modeled by the axiom.

c1.axm7: ∀ ctx ,el · ctx ∈ context→data ∧ el ∈ context ⇒
transform(ctx)(ctx2saved(el)) = ctxTransform(el)(ctx(el))

1 osFinal (guards)
2 loaded = invTransform(t_saved(runningTask))
3 t_saved(oldTask) = transform(oldCtx)
4 toSave = ∅

Fig. 6. Level 2: osFinal

With these definitions in
Event-B contexts, we also
refine the machine variables
and events (Fig. 5). To rep-
resent the saved contexts
of all tasks (os3.a), saved
is refined into t saved ∈ tasks→(savedctx → data), with glue invariant
saved = toSave�− t saved(oldTask). The new variable runningTask ∈ tasks

is equal to the constant oldTask before kernel body is run, and represents the new
scheduled task after the scheduler has run. While osFinal always uses oldTask
to check if the context has been correctly saved, osEntry refers to runningTask
to save the context. This way, all three kernel parts (entry , body , and exit) deal
with the same variable, simplifying code generation. We can finally replace the
abstract save action in Fig. 3a (Line 10) by the action in Fig. 5a (Line 9).



166 R. M. Gomes et al.

The context to be loaded during kernel exit actually comes from the
saved context of runningTask, thus we replace the abstract load from Fig. 3b
(Line 10) by the load in Fig. 5b (Line 9). The functions ctxTransform and
transform used for saving a context have their inverses, used for the load process,
defined as ctxInvTransform ∈ savedctx→(data�� data) and invTransform
∈ (savedctx → data)��(context → data), related with the axiom

c1.axm8: ∀ sctx ,el · sctx ∈ savedctx→data ∧ el ∈ savedctx ⇒
invTransform(sctx)(saved2ctx(el)) = ctxInvTransform(el)(sctx(el))

1 osBody
2 WHERE
3 toSave = ∅

4 toLoad = context
5 THEN
6 runningTask :∈ tasks

Fig. 7. Level 2: osBody

Now, we can refine the old and new parameters
to reflect the real source and destination of the con-
text copies (os3.b) in Level 2 (Fig. 5a, 5b, and 6).

Finally, the new event osBody models kernel body
(Fig. 7), abstractly representing the scheduler (os4).
We do not model kernel body in more detail in this
work, but will refine it to guarantee its execution
according to the OS requirements.

Level 3. Though we do not model kernel body , we want to guarantee that
kernel entry prepares the CPU to start its execution. Analogously, we do not
model tasks, but want to guarantee that kernel exit prepares the CPU to run
them. Thus, we introduce the variables that control the conditions for proper
task and kernel body execution (os5, os6): kernelMode is a flag that indicates
when the kernel has been entered. osBody can only be enabled if it is true, and
osFinal if it is false; kernelCause records why the kernel has been invoked. It
unambiguously identifies each interrupt and syscall, and must be valid within
osBody; interruptEnable is the interrupt enabled flag (env3). It must be false
in osBody, and loaded from the next task’s saved context during kernel exit ;
currStack indicates the stack currently in use, abstractly representing a kernel
or a task stack. osBody is enabled if currStack indicates kernel stack, while
osFinal requires it to indicate task stack. We strengthen osBody and osFinal
guards to fulfill os5 and os6. Modification of these variables in kernel entry
and exit remain nondeterministic, since they are highly hardware-dependent.
Figure 8 shows the new sets, variables, and guards. We also create the event
entryNothingToSave, that mimics osEntry and is explained in Level 4.

Level 4. Now, kernel entry and exit are divided in two parts: one models what
is automatically done by the hardware, via an interrupt acceptance or a return
from interrupt instruction (env4, env5). This may save some registers, turn off
the interrupt enabled flag, switch the CPU mode, etc. The remaining actions of
kernel entry (os7) and exit (os8, os9) are fulfilled by their manual parts.

This Level still does not refer to specific details of a potential target architec-
ture. Therefore, the model must support different behaviors: the hardware might,
on interrupt, copy a set of its registers into another set of registers designed for
that (os10.b), or it might copy them to memory, for example pushing them
onto the stack (os10.a). In the first case, we call this a temporary save, since



A Formal Modeling Approach for Portable Low-Level OS Functionality 167

1 SETS (new)
2 stacks
3 kernelcauses
4 VARIABLES (new)
5 kernelMode ∈ bool
6 kernelCause ∈ kernelcauses
7 interruptEnable ∈ bool
8 currStack ∈ stacks

(a) New carrier sets and variables

1 AXIOMS (new)
2 partition(stacks,kernelstack,taskstacks)
3 partition(kernelcauses,{kCause_invalid},

kcause syscalls,kcause flowints)

(b) New axioms

1 osBody (new guards)
2 kernelMode = true
3 kernelCause �= kCause_invalid
4 interruptEnable = false
5 currStack ∈ kernelstack

(c) New guards in body

Fig. 8. Level 3: Additions to model

the destination is the same for all tasks and must, therefore, still be made per-
manent by copying it to the task’s saved context in kernel entry . To model this,
we partition context and savedctx in three sections, as shown in Fig. 2b: sec-
tions manualctx and manualsaved for the locations only manipulated in the
manual part, and two others for those automatically handled by the hardware.
autodirectctx and autodirectsave for those locations permanently saved by
the hardware, and autotempctx and autotempsave for those first copied to/from
a temp location. temp is another subset of location, created in this level.

Fig. 9. Kernel entry context save. dx ⊂ data and d′
x = ctxTransform(dx)

We refine the events osEntry and osExit by splitting each in two, and refin-
ing their parameters (saveSet and loadSet in Fig. 5) to differentiate the par-
titions in context and savedctx. The transform and invTransform functions
are also refined to reflect the refinements of this level and the separation of
the different levels of context copy. The events are refined according to Fig. 9:
osAutoEntry saves values from autodirectctx into autodirectsave and copies
from autotempctx to the new variable temp ∈ temp → data. For architectures
that only copy part of the context to temporary locations, not saving anything,
we refine entryNothingToSave into tempSave, adding a copy to temp and mak-
ing it convergent on the variant temp \ dom(temp) (must add elements to temp).
We also keep entryNothingToSave only modifying variables from Level 3. Then,
osManualEntry saves manualctx into manualsaved and copies temp into the
autotempsave location, completing the saving of the temporary part of the con-
text. The inverse operation is modeled in kernel exit : First, osManualExit loads
from manualsaved into manualctx and copies from autotempsave into temp,
then osAutoExit loads all autoctx from temp and autodirectsave.



168 R. M. Gomes et al.

Level 5 - Architecture-Specific Instantiations. Having intentionally mod-
eled the OS independent from the hardware so far, we finally introduce hardware
details in a new refinement level per target architecture. For each, we extend the
Event-B context and define, within location, all registers available in the archi-
tecture. At the same time, we also define which of them are part of context

(and to which subset), temp, etc. We also define the locations for saved con-
texts and the CPU-specific functions ctxTransform and ctx2saved. For each
target, one Event-B machine refines the last Level 4 machine, see the cor-
respondent Event-B context, and the architecture-specific actions from Level
3 are made deterministic. On interrupt, RISC-V copies some registers into
temp, not saving anything directly, therefore osAutoEntry is never enabled
and we can remove it. tempSave is refined into interrupt and ecall, which
are very similar: both switch into kernel (machine) mode, disable interrupts
and copy data into temp. Additionally, interrupt registers the interrupt ID
(kernelCause). For a syscall, we need to do this before ecall, so we refine
entryNothingToSave into syscall. We can refine kernelMode to the privilege
levels, adding an invariant that relates kernelMode = true to machine mode and
kernelMode = false to user mode (os11). On MSP430, registers are pushed
onto the task’s stack, and there are no temporarily saved registers, so tempSave
is removed. Without privileged modes, kernelMode is a variable, which is set to
true in osManualEntry and to false in osManualExit. osAutoEntry is refined
into interrupt and syscall. The latter imitates the former, additionally reg-
istering which syscall triggered the kernel. Since the interrupt can not do this
automatically, entryNothingToSave is refined to interruptHandler, which is
enabled after the interrupt.

7 Proofs and Model Checking

This section shows the properties we verified via theorem proving in Rodin and
LTL model checking. From the requirements, we elaborate safety properties to
be proved: (S1) Contexts are never corrupted by the kernel (os2), (S2) osBody
always runs in the specified conditions for its execution and osFinal is reached
with the specified conditions for task execution (os5, os6). And liveness proper-
ties guarantee the model reaches the intended states: (L1) The kernel executes in
the correct order, and (L2) always finishes execution (always reaches osFinal).

7.1 Theorem Proving

All refinements in our model must correspond to their abstraction, which is
proved with discharging the POs generated by Rodin. The initial abstraction,
Level 0, defines the state (osFinal guards) we want to achieve after OS execu-
tion, namely that an old context is saved and a new context is loaded. This state
must be reached by osProgress, which models the OS. Event osProgress is
refined into the three main parts of the kernel (entry, body, and exit). Entry and
exit are responsible, respectively, for saving the old task’s context and loading the



A Formal Modeling Approach for Portable Low-Level OS Functionality 169

new task into the CPU. The first abstraction is modeled such that osProgress
can not run forever. The idea is that it must change the state until it finally
enables osFinal, i.e. the desired terminal state. Through the refinements, we
model how exactly this happens, splitting osProgress into several events, and
creating invariants and actions that model the OS requirements.

Some of the discharged POs guarantee that the events refining osProgress
also give up control, and in Sect. 7.2 we prove they indeed modify the state
such that it eventually reaches osFinal. Other POs prove that actions always
respect the invariants (INV POs), or that a concrete event’s actions do simu-
late the abstract correspondents (SIM POs). There are several other rules for
PO generation, which we do not detail here. Table 2 summarizes the number of
POs generated in each level of abstraction, and shows how many of them were
automatically or manually discharged. The manually discharged ones are dif-
ferentiated according to their discharging complexity: simple POs only required
a few steps to be discharged, while the complex POs required more experience
with the proving system and the PO’s breakdown in several proving steps.

In Level 2, two invariants to guarantee that the save and load processes do
save oldCtx and load the runningTask’s saved context:

m05.inv2:toSave = ∅ ⇔ saved = transform(oldCtx)
m07.inv4:toLoad = ∅ ⇔ loaded = invTransform(t_saved(runningTask))

Discharging the related INV POs proves that, for every refinement, when our
model considers the old context as saved and the new context as loaded, they
indeed are. Those INV POs were always automatically discharged, except in few
refinements, where they were manually discharged in a few steps.

Table 2. Number of POs discharged

Level #POs Auto Simple Complex

0 8 8 0 0

1 17 15 2 0

2 63 52 11 0

3 14 14 0 0

4 83 39 35 9

5 70 58 6 6

Total 255 186 54 15

100% 73% 21% 6%

The SIM POs involving save and
load actions, however, were rather com-
plex, especially in Level 4. In par-
ticular for events osManualEntry and
osAutoExit, we had to create a new
parameter and a theorem in order to
discharge the SIM POs. We detail here
the proof strategy for the save action
SIM PO in osManualEntry. The same
strategy was applied to osAutoExit.
We must prove that the action model-
ing the osManualEntry arrows in Fig. 9
as described in Level 4, simulates its

abstract correspondent in Fig. 5a (Line 9):
m12.osManualEntry.act2: t_saved(runningTask) := t_saved(runningTask) �− (
autoSaveSet � autoTempTEMPSVDtransform(temp)) �−(manualSaveSet �
manualTransform(manualctx � oldCtx))

We replace the automatic save part of the action by the parameter aux =
autoSaveSet � autoTempTEMPSVDtransform(temp) and add to the event’s
guards the theorem aux = autoSaveSet� autoTempTransform(autotempctx�
oldCtx). After proving the theorem, the SIM PO is much easier to discharge.



170 R. M. Gomes et al.

7.2 LTL Model Checking

For the liveness verification, we encode a set of LTL formulas that guarantee the
specified execution order and that osFinal is eventually enabled. The model
shall (1) eventually reach osFinal, staying there forever, (2) not reach a state
where all events are disabled, (3) always have exactly one event enabled, and (4)
implement the specified execution order: first, entry , then body , and finally exit ,
and manual save after auto save (os7) and manual load before auto load (os9).

Since the model’s axioms are rather complex, we need to create a minimal
set of context and savedctx elements to represent the locations that compose
contexts and saved contexts, otherwise the state space explodes and ProB cannot
run. For this, we extend the Event-B contexts with the constant instantiations,
and refine the machines we want to check. These machines are not modified any
further, except for the model checks of Level 3 and 4, where the nondeterministic
actions introduced in Level 3 would cause the checks to fail, since paths would
exist in which osBody and osFinal could not be reached. As our intention is
to leave this determinism to the architecture-specific models, the actions are
modified to enforce the correct execution path. In Level 5, all actions are left
unmodified, and we can check if the variables have been correctly set.

One error was found in Level 2: LTL finds a counterexample for reachability,
so the model may never reach osFinal. An infinite loop is possible, because
osBody does not decrease any variant and does not modify any variables that
affect its guards. Thus, we introduce a new boolean variable osBodyRun, initialize
it with false, and add the guard osBodyRun = false and an action osBodyRun
:= true. A similar error was found when entryNothingToSave was introduced,
prompting us to make it convergent and create a variant as explained in Level 4.

Model checking Level 4 also revealed that the execution order of events as not
as intended: one formula fails because we forgot to strengthen osManualEntry’s
guards to require it to only be enabled after all autodirectsave elements have
been saved, as required by os7. The new guard autodirectsave ∩ toSave = ∅

forces this order. Similarly, osAutoExit may only execute after all manualctx is
loaded (os9), thus the new guard manualctx ∩ toLoad = ∅ was introduced.

With these modifications to the models and the discharging of all proofs, we
prove that the requirements are fulfilled and the model is correct.

8 Conclusion and Future Work

We have presented the first step in our approach towards portability of embedded
RTOS based on formal methods and code generation. We have shown a generic
formal RTOS model in Event-B with context switches that decouples low-level
functionality from hardware specifics. This allows us to reuse the model and its
proofs for several architectures. Then, we instantiated the model for two architec-
tures and verified them via interactive theorem proving and model checking. The
safety and liveness verification of the models (1) proved that the generic model
and its instantiations do not corrupt task contexts by having them properly



A Formal Modeling Approach for Portable Low-Level OS Functionality 171

saved and loaded; (2) proved that the kernel and the tasks run in the appropri-
ate CPU states and privilege levels by having them properly changed; (3) proved
that the kernel executes in the correct order and finishes execution.

To the best of our knowledge, this is the first time that OS low-level function-
ality is formally modeled for portability and verification. With the target-specific
models, we can already generate significant parts of the OS assembly code for
the MSP430 and RISC-V architectures, however this is still an ongoing work.
Besides the code generation and automatic porting of low-level code, we are also
working on the modeling and verification of additional aspects in the OS, such
as security, timing, and energy consumption.

There is still much to do to make automatic porting a reality: Among other
issues, the effort of modeling is not negligible, specially for the average software
developer, who often lacks a background in formal methods. Besides, the cor-
rectness proofs can only be as good as the model itself, so the modeling process
must be thorough. Additionally, modeling and verifying an entire OS, includ-
ing all its low-level components, will require considerable effort. Nevertheless,
it has been proved that formal modeling in software improves its quality and
can reduce costs. Furthermore, architectures with completely different concepts
would require the model to be adapted. While the effort must still be investi-
gated, the hardware requirements of our current model should be fulfilled by most
modern architectures. For maintainability, specially for porting, we expect that
it will not only be beneficial, but also crucial within the IoT. The effort invested
in modeling can be mitigated by increasing the number of ports and partially
replacing testing by verification for guaranteed dependability during the devel-
opment process. Another issue we must mention is the time and computation
power required for model checking. The axioms in the presented model already
cause state explosion in ProB if all registers available in the target architectures
are included, which prompted us to create a minimal set for model checking.
With bigger and more complex models, even a minimal set will eventually not
avoid state explosion. We hope that advances in formal methods will eventually
solve this problem. Other methods, such as TLA+, Isabelle/HOL, and HOL4
are potentially suitable for the model presented in this work, and should be
investigated in future works.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Alkhammash, E.H., Butler, M.J., Cristea, C.: Modeling guidelines of FreeRTOS
in Event-B. In: International Conference on Communication, Management and
Information Technology, pp. 453–462. CRC Press (2017)

3. Baumann, C., Schwarz, O., Dam, M.: Compositional verification of security prop-
erties for embedded execution platforms. In: Kühne, U., Danger, J.L., Guilley,
S. (eds.) 6th International Workshop on Security Proofs for Embedded Systems,
PROOFS 2017. EPiC Series in Computing, vol. 49, pp. 1–16. EasyChair (2017).
https://doi.org/10.29007/h4rv. https://easychair.org/publications/paper/wkpS

https://doi.org/10.29007/h4rv
https://easychair.org/publications/paper/wkpS


172 R. M. Gomes et al.

4. Boano, C.A., Römer, K., Bloem, R., Witrisal, K., Baunach, M., Horn, M.: Depend-
ability for the Internet of Things–from dependable networking in harsh environ-
ments to a holistic view on dependability. e & i Elektrotechnik und Information-
stechnik 133(7), 304–309 (2016). https://doi.org/10.1007/s00502-016-0436-4

5. Borghorst, H., Bieling, K., Spinkczyk, O.: Towards versatile models for contempo-
rary hardware platforms. In: 12th Annual Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications, OSPERT 2016, pp. 7–9, July 2016

6. Brandenburg, B.B.: The case of an opinionated, theory-oriented real-time operating
system. In: NGOSCPS 2019, April 2019

7. Cheng, S., Woodcock, J., D’Souza, D.: Using formal reasoning on a model of tasks
for FreeRTOS. Formal Aspects Comput. 27(1), 167–192 (2014). https://doi.org/
10.1007/s00165-014-0308-9

8. Craig, I.D.: Formal Refinement for Operating System Kernels. Springer, London
(2007). https://doi.org/10.1007/978-1-84628-967-5

9. Craig, I.D.: Formal Models of Operating System Kernels, 1st edn. Springer, London
(2010). https://doi.org/10.1007/978-1-84628-718-3

10. Dalvandi, M., Butler, M., Rezazadeh, A., Salehi Fathabadi, A.: Verifiable code
generation from scheduled Event-B models. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 234–248. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 16

11. Danmin, C., Yue, S., Zhiguo, C.: A formal specification in B of an operating system.
Open Cybern. Syst. J. 9(1) (2015)

12. Dhote, S., Charjan, P., Phansekar, A., Hegde, A., Joshi, S., Joshi, J.: Using FPGA-
SoC interface for low cost IoT based image processing. In: 2016 International Con-
ference on Advances in Computing, Communications and Informatics (ICACCI),
pp. 1963–1968, September 2016. https://doi.org/10.1109/ICACCI.2016.7732339

13. Event-B: Event-B and the Rodin Platform. www.event-b.org
14. Fathabadi, A.S., et al.: A model-based framework for software portability and

verification in embedded power management systems. J. Syst. Archit. 82, 12–23
(2018). https://doi.org/10.1016/j.sysarc.2017.12.001. http://www.sciencedirect.
com/science/article/pii/S1383762117305234

15. Frühwirth, T., Krammer, L., Kastner, W.: Dependability demands and state of
the art in the internet of things. In: 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), pp. 1–4, September 2015. https://doi.
org/10.1109/ETFA.2015.7301592

16. General Dynamics C4 Systems: The seL4 microkernel (2016). https://sel4.
systems/. Accessed 05 Feb 2020

17. Gomes, R.M., Baunach, M., Malenko, M., Ribeiro, L.B., Mauroner, F.: A co-
designed RTOS and MCU concept for dynamically composed embedded systems.
In: OSPERT 2017 (2017)

18. Gomes, T., Pinto, S., Gomes, T., Tavares, A., Cabral, J.: Towards an FPGA-based
edge device for the Internet of Things. In: 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), pp. 1–4, September 2015. https://doi.
org/10.1109/ETFA.2015.7301601

19. Goranko, V., Galton, A.: Temporal logic. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, win-
ter 2015 edn. (2015). https://plato.stanford.edu/archives/win2015/entries/logic-
temporal/

20. Hahm, O., Baccelli, E., Petersen, H., Tsiftes, N.: Operating systems for low-end
devices in the Internet of Things: a survey. IEEE Internet Things J. 3(5), 720–734
(2016). https://doi.org/10.1109/JIOT.2015.2505901

https://doi.org/10.1007/s00502-016-0436-4
https://doi.org/10.1007/s00165-014-0308-9
https://doi.org/10.1007/s00165-014-0308-9
https://doi.org/10.1007/978-1-84628-967-5
https://doi.org/10.1007/978-1-84628-718-3
https://doi.org/10.1007/978-3-319-91271-4_16
https://doi.org/10.1109/ICACCI.2016.7732339
www.event-b.org
https://doi.org/10.1016/j.sysarc.2017.12.001
http://www.sciencedirect.com/science/article/pii/S1383762117305234
http://www.sciencedirect.com/science/article/pii/S1383762117305234
https://doi.org/10.1109/ETFA.2015.7301592
https://doi.org/10.1109/ETFA.2015.7301592
https://sel4.systems/
https://sel4.systems/
https://doi.org/10.1109/ETFA.2015.7301601
https://doi.org/10.1109/ETFA.2015.7301601
https://plato.stanford.edu/archives/win2015/entries/logic-temporal/
https://plato.stanford.edu/archives/win2015/entries/logic-temporal/
https://doi.org/10.1109/JIOT.2015.2505901


A Formal Modeling Approach for Portable Low-Level OS Functionality 173

21. Hu, J., Lu, E., Holland, D.A., Kawaguchi, M., Chong, S., Seltzer, M.I.: Trials
and tribulations in synthesizing operating systems. In: Proceedings of the 10th
Workshop on Programming Languages and Operating Systems, PLOS 2019, pp.
67–73. Association for Computing Machinery, New York (2019). https://doi.org/
10.1145/3365137.3365401

22. Texas Instruments: MSP430 ultra-low-power sensing and measurement MCUs
(2019). http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/
overview/overview.html

23. Jastram, M., Butler, P.M.: Rodin User’s Handbook: Covers Rodin vol. 2.8, USA
(2014)

24. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. 32(1) (2014). https://doi.org/10.1145/2560537

25. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. SE-3(2), 125–143 (1977). https://doi.org/10.1109/TSE.1977.229904

26. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008). https://doi.org/10.
1007/s10009-007-0063-9

27. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (2012). https://doi.org/10.1007/978-1-
4612-0931-7

28. Méry, D.: Modelling by patterns for correct-by-construction process. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 399–423. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03418-4 24

29. Novikov, E., Zakharov, I.: Verification of operating system monolithic kernels with-
out extensions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247,
pp. 230–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-
6 19

30. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, SFCS 1977, pp. 46–57, October 1977. https://doi.
org/10.1109/SFCS.1977.32

31. Popp, M., Moreira, O., Yedema, W., Lindwer, M.: Automatic HAL generation for
embedded multiprocessor systems. In: Proceedings of the 13th International Con-
ference on Embedded Software, EMSOFT 2016, ACM, New York (2016). https://
doi.org/10.1145/2968478.2968493

32. RISC-V Foundation: RISC-V. https://riscv.org/
33. Stoddart, B., Cansell, D., Zeyda, F.: Modelling and proof analysis of inter-

rupt driven scheduling. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, pp. 155–170. Springer, Heidelberg (2006). https://doi.org/10.1007/
11955757 14

34. Su, W., Abrial, J.R., Pu, G., Fang, B.: Formal development of a real-time operating
system memory manager. In: 2015 20th International Conference on Engineering of
Complex Computer Systems (ICECCS). IEEE, December 2015. https://doi.org/
10.1109/iceccs.2015.24

35. Syeda, H.T., Klein, G.: Formal reasoning under cached address translation. J.
Autom. Reason. 64, 911–945 (2020). https://doi.org/10.1007/s10817-019-09539-7

36. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software
challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017). https://doi.org/10.
1109/MS.2017.26

37. Verhulst, E., Boute, R.T., Faria, J.M.S., Sputh, B., Mezhuyev, V.: Formal Devel-
opment of a Network-Centric RTOS. Springer, Boston (2011). https://doi.org/10.
1007/978-1-4419-9736-4

https://doi.org/10.1145/3365137.3365401
https://doi.org/10.1145/3365137.3365401
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview/overview.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview/overview.html
https://doi.org/10.1145/2560537
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-030-03418-4_24
https://doi.org/10.1007/978-3-030-03427-6_19
https://doi.org/10.1007/978-3-030-03427-6_19
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2968478.2968493
https://doi.org/10.1145/2968478.2968493
https://riscv.org/
https://doi.org/10.1007/11955757_14
https://doi.org/10.1007/11955757_14
https://doi.org/10.1109/iceccs.2015.24
https://doi.org/10.1109/iceccs.2015.24
https://doi.org/10.1007/s10817-019-09539-7
https://doi.org/10.1109/MS.2017.26
https://doi.org/10.1109/MS.2017.26
https://doi.org/10.1007/978-1-4419-9736-4
https://doi.org/10.1007/978-1-4419-9736-4


174 R. M. Gomes et al.

38. Waterman, A., Asanović, K.: The RISC-V instruction set manual volume I: user-
level ISA version 2.2, May 2017. https://riscv.org/specifications

39. Waterman, A., Lee, Y., Avizienis, R., Patterson, D.A., Asanović, K.: The RISC-
V instruction set manual volume II: privileged architecture version 1.7. Technical
report UCB/EECS-2015-49, EECS Department, University of California, Berke-
ley, May 2015. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-
49.html

40. Wright, S.: Formal construction of instruction set architectures. Ph.D. thesis, Uni-
versity of Bristol (2009). http://www.cs.bris.ac.uk/Publications/Papers/2001121.
pdf

41. Wright, S.: Automatic generation of C from Event-B. In: Workshop on Integration
of Model-Based Formal Methods and Tools, p. 14 (2009)

https://riscv.org/specifications
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html
http://www.cs.bris.ac.uk/Publications/Papers/2001121.pdf
http://www.cs.bris.ac.uk/Publications/Papers/2001121.pdf

	A Formal Modeling Approach for Portable Low-Level OS Functionality
	1 Introduction
	2 Related Work
	3 Background
	4 Requirements
	4.1 Hardware Assumptions
	4.2 Software Specification

	5 Refinement Strategy: From Abstraction to Detailed Specification
	6 Kernel Model
	7 Proofs and Model Checking
	7.1 Theorem Proving
	7.2 LTL Model Checking

	8 Conclusion and Future Work
	References




